1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"} 493 }; 494 495 static const struct { 496 uint32_t offset; 497 uint32_t size; 498 char string[STAT_NAME_LEN]; 499 } bxe_eth_q_stats_arr[] = { 500 { Q_STATS_OFFSET32(total_bytes_received_hi), 501 8, "rx_bytes" }, 502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 503 8, "rx_ucast_packets" }, 504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 505 8, "rx_mcast_packets" }, 506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 507 8, "rx_bcast_packets" }, 508 { Q_STATS_OFFSET32(no_buff_discard_hi), 509 8, "rx_discards" }, 510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 511 8, "tx_bytes" }, 512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 513 8, "tx_ucast_packets" }, 514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 515 8, "tx_mcast_packets" }, 516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 517 8, "tx_bcast_packets" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 519 8, "tpa_aggregations" }, 520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 521 8, "tpa_aggregated_frames"}, 522 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 523 8, "tpa_bytes"}, 524 { Q_STATS_OFFSET32(rx_calls), 525 4, "rx_calls"}, 526 { Q_STATS_OFFSET32(rx_pkts), 527 4, "rx_pkts"}, 528 { Q_STATS_OFFSET32(rx_tpa_pkts), 529 4, "rx_tpa_pkts"}, 530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 531 4, "rx_erroneous_jumbo_sge_pkts"}, 532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 533 4, "rx_bxe_service_rxsgl"}, 534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 535 4, "rx_jumbo_sge_pkts"}, 536 { Q_STATS_OFFSET32(rx_soft_errors), 537 4, "rx_soft_errors"}, 538 { Q_STATS_OFFSET32(rx_hw_csum_errors), 539 4, "rx_hw_csum_errors"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 541 4, "rx_ofld_frames_csum_ip"}, 542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 543 4, "rx_ofld_frames_csum_tcp_udp"}, 544 { Q_STATS_OFFSET32(rx_budget_reached), 545 4, "rx_budget_reached"}, 546 { Q_STATS_OFFSET32(tx_pkts), 547 4, "tx_pkts"}, 548 { Q_STATS_OFFSET32(tx_soft_errors), 549 4, "tx_soft_errors"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 551 4, "tx_ofld_frames_csum_ip"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 553 4, "tx_ofld_frames_csum_tcp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 555 4, "tx_ofld_frames_csum_udp"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 557 4, "tx_ofld_frames_lso"}, 558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 559 4, "tx_ofld_frames_lso_hdr_splits"}, 560 { Q_STATS_OFFSET32(tx_encap_failures), 561 4, "tx_encap_failures"}, 562 { Q_STATS_OFFSET32(tx_hw_queue_full), 563 4, "tx_hw_queue_full"}, 564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 565 4, "tx_hw_max_queue_depth"}, 566 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 567 4, "tx_dma_mapping_failure"}, 568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 569 4, "tx_max_drbr_queue_depth"}, 570 { Q_STATS_OFFSET32(tx_window_violation_std), 571 4, "tx_window_violation_std"}, 572 { Q_STATS_OFFSET32(tx_window_violation_tso), 573 4, "tx_window_violation_tso"}, 574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 575 4, "tx_chain_lost_mbuf"}, 576 { Q_STATS_OFFSET32(tx_frames_deferred), 577 4, "tx_frames_deferred"}, 578 { Q_STATS_OFFSET32(tx_queue_xoff), 579 4, "tx_queue_xoff"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 581 4, "mbuf_defrag_attempts"}, 582 { Q_STATS_OFFSET32(mbuf_defrag_failures), 583 4, "mbuf_defrag_failures"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 585 4, "mbuf_rx_bd_alloc_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 587 4, "mbuf_rx_bd_mapping_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 589 4, "mbuf_rx_tpa_alloc_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 591 4, "mbuf_rx_tpa_mapping_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 593 4, "mbuf_rx_sge_alloc_failed"}, 594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 595 4, "mbuf_rx_sge_mapping_failed"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_tx), 597 4, "mbuf_alloc_tx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_rx), 599 4, "mbuf_alloc_rx"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_sge), 601 4, "mbuf_alloc_sge"}, 602 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 603 4, "mbuf_alloc_tpa"}, 604 { Q_STATS_OFFSET32(tx_queue_full_return), 605 4, "tx_queue_full_return"} 606 }; 607 608 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 609 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 610 611 612 static void bxe_cmng_fns_init(struct bxe_softc *sc, 613 uint8_t read_cfg, 614 uint8_t cmng_type); 615 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 616 static void storm_memset_cmng(struct bxe_softc *sc, 617 struct cmng_init *cmng, 618 uint8_t port); 619 static void bxe_set_reset_global(struct bxe_softc *sc); 620 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 621 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 622 int engine); 623 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 624 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 625 uint8_t *global, 626 uint8_t print); 627 static void bxe_int_disable(struct bxe_softc *sc); 628 static int bxe_release_leader_lock(struct bxe_softc *sc); 629 static void bxe_pf_disable(struct bxe_softc *sc); 630 static void bxe_free_fp_buffers(struct bxe_softc *sc); 631 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 632 struct bxe_fastpath *fp, 633 uint16_t rx_bd_prod, 634 uint16_t rx_cq_prod, 635 uint16_t rx_sge_prod); 636 static void bxe_link_report_locked(struct bxe_softc *sc); 637 static void bxe_link_report(struct bxe_softc *sc); 638 static void bxe_link_status_update(struct bxe_softc *sc); 639 static void bxe_periodic_callout_func(void *xsc); 640 static void bxe_periodic_start(struct bxe_softc *sc); 641 static void bxe_periodic_stop(struct bxe_softc *sc); 642 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 643 uint16_t prev_index, 644 uint16_t index); 645 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 646 int queue); 647 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 648 uint16_t index); 649 static uint8_t bxe_txeof(struct bxe_softc *sc, 650 struct bxe_fastpath *fp); 651 static void bxe_task_fp(struct bxe_fastpath *fp); 652 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 653 struct mbuf *m, 654 uint8_t contents); 655 static int bxe_alloc_mem(struct bxe_softc *sc); 656 static void bxe_free_mem(struct bxe_softc *sc); 657 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 658 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 659 static int bxe_interrupt_attach(struct bxe_softc *sc); 660 static void bxe_interrupt_detach(struct bxe_softc *sc); 661 static void bxe_set_rx_mode(struct bxe_softc *sc); 662 static int bxe_init_locked(struct bxe_softc *sc); 663 static int bxe_stop_locked(struct bxe_softc *sc); 664 static __noinline int bxe_nic_load(struct bxe_softc *sc, 665 int load_mode); 666 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 667 uint32_t unload_mode, 668 uint8_t keep_link); 669 670 static void bxe_handle_sp_tq(void *context, int pending); 671 static void bxe_handle_fp_tq(void *context, int pending); 672 673 static int bxe_add_cdev(struct bxe_softc *sc); 674 static void bxe_del_cdev(struct bxe_softc *sc); 675 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 676 static void bxe_free_buf_rings(struct bxe_softc *sc); 677 678 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 679 uint32_t 680 calc_crc32(uint8_t *crc32_packet, 681 uint32_t crc32_length, 682 uint32_t crc32_seed, 683 uint8_t complement) 684 { 685 uint32_t byte = 0; 686 uint32_t bit = 0; 687 uint8_t msb = 0; 688 uint32_t temp = 0; 689 uint32_t shft = 0; 690 uint8_t current_byte = 0; 691 uint32_t crc32_result = crc32_seed; 692 const uint32_t CRC32_POLY = 0x1edc6f41; 693 694 if ((crc32_packet == NULL) || 695 (crc32_length == 0) || 696 ((crc32_length % 8) != 0)) 697 { 698 return (crc32_result); 699 } 700 701 for (byte = 0; byte < crc32_length; byte = byte + 1) 702 { 703 current_byte = crc32_packet[byte]; 704 for (bit = 0; bit < 8; bit = bit + 1) 705 { 706 /* msb = crc32_result[31]; */ 707 msb = (uint8_t)(crc32_result >> 31); 708 709 crc32_result = crc32_result << 1; 710 711 /* it (msb != current_byte[bit]) */ 712 if (msb != (0x1 & (current_byte >> bit))) 713 { 714 crc32_result = crc32_result ^ CRC32_POLY; 715 /* crc32_result[0] = 1 */ 716 crc32_result |= 1; 717 } 718 } 719 } 720 721 /* Last step is to: 722 * 1. "mirror" every bit 723 * 2. swap the 4 bytes 724 * 3. complement each bit 725 */ 726 727 /* Mirror */ 728 temp = crc32_result; 729 shft = sizeof(crc32_result) * 8 - 1; 730 731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 732 { 733 temp <<= 1; 734 temp |= crc32_result & 1; 735 shft-- ; 736 } 737 738 /* temp[31-bit] = crc32_result[bit] */ 739 temp <<= shft; 740 741 /* Swap */ 742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 743 { 744 uint32_t t0, t1, t2, t3; 745 t0 = (0x000000ff & (temp >> 24)); 746 t1 = (0x0000ff00 & (temp >> 8)); 747 t2 = (0x00ff0000 & (temp << 8)); 748 t3 = (0xff000000 & (temp << 24)); 749 crc32_result = t0 | t1 | t2 | t3; 750 } 751 752 /* Complement */ 753 if (complement) 754 { 755 crc32_result = ~crc32_result; 756 } 757 758 return (crc32_result); 759 } 760 761 int 762 bxe_test_bit(int nr, 763 volatile unsigned long *addr) 764 { 765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 766 } 767 768 void 769 bxe_set_bit(unsigned int nr, 770 volatile unsigned long *addr) 771 { 772 atomic_set_acq_long(addr, (1 << nr)); 773 } 774 775 void 776 bxe_clear_bit(int nr, 777 volatile unsigned long *addr) 778 { 779 atomic_clear_acq_long(addr, (1 << nr)); 780 } 781 782 int 783 bxe_test_and_set_bit(int nr, 784 volatile unsigned long *addr) 785 { 786 unsigned long x; 787 nr = (1 << nr); 788 do { 789 x = *addr; 790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 791 // if (x & nr) bit_was_set; else bit_was_not_set; 792 return (x & nr); 793 } 794 795 int 796 bxe_test_and_clear_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 unsigned long x; 800 nr = (1 << nr); 801 do { 802 x = *addr; 803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 804 // if (x & nr) bit_was_set; else bit_was_not_set; 805 return (x & nr); 806 } 807 808 int 809 bxe_cmpxchg(volatile int *addr, 810 int old, 811 int new) 812 { 813 int x; 814 do { 815 x = *addr; 816 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 817 return (x); 818 } 819 820 /* 821 * Get DMA memory from the OS. 822 * 823 * Validates that the OS has provided DMA buffers in response to a 824 * bus_dmamap_load call and saves the physical address of those buffers. 825 * When the callback is used the OS will return 0 for the mapping function 826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 827 * failures back to the caller. 828 * 829 * Returns: 830 * Nothing. 831 */ 832 static void 833 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 834 { 835 struct bxe_dma *dma = arg; 836 837 if (error) { 838 dma->paddr = 0; 839 dma->nseg = 0; 840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 841 } else { 842 dma->paddr = segs->ds_addr; 843 dma->nseg = nseg; 844 } 845 } 846 847 /* 848 * Allocate a block of memory and map it for DMA. No partial completions 849 * allowed and release any resources acquired if we can't acquire all 850 * resources. 851 * 852 * Returns: 853 * 0 = Success, !0 = Failure 854 */ 855 int 856 bxe_dma_alloc(struct bxe_softc *sc, 857 bus_size_t size, 858 struct bxe_dma *dma, 859 const char *msg) 860 { 861 int rc; 862 863 if (dma->size > 0) { 864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 865 (unsigned long)dma->size); 866 return (1); 867 } 868 869 memset(dma, 0, sizeof(*dma)); /* sanity */ 870 dma->sc = sc; 871 dma->size = size; 872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 873 874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 875 BCM_PAGE_SIZE, /* alignment */ 876 0, /* boundary limit */ 877 BUS_SPACE_MAXADDR, /* restricted low */ 878 BUS_SPACE_MAXADDR, /* restricted hi */ 879 NULL, /* addr filter() */ 880 NULL, /* addr filter() arg */ 881 size, /* max map size */ 882 1, /* num discontinuous */ 883 size, /* max seg size */ 884 BUS_DMA_ALLOCNOW, /* flags */ 885 NULL, /* lock() */ 886 NULL, /* lock() arg */ 887 &dma->tag); /* returned dma tag */ 888 if (rc != 0) { 889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 890 memset(dma, 0, sizeof(*dma)); 891 return (1); 892 } 893 894 rc = bus_dmamem_alloc(dma->tag, 895 (void **)&dma->vaddr, 896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 897 &dma->map); 898 if (rc != 0) { 899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 900 bus_dma_tag_destroy(dma->tag); 901 memset(dma, 0, sizeof(*dma)); 902 return (1); 903 } 904 905 rc = bus_dmamap_load(dma->tag, 906 dma->map, 907 dma->vaddr, 908 size, 909 bxe_dma_map_addr, /* BLOGD in here */ 910 dma, 911 BUS_DMA_NOWAIT); 912 if (rc != 0) { 913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 915 bus_dma_tag_destroy(dma->tag); 916 memset(dma, 0, sizeof(*dma)); 917 return (1); 918 } 919 920 return (0); 921 } 922 923 void 924 bxe_dma_free(struct bxe_softc *sc, 925 struct bxe_dma *dma) 926 { 927 if (dma->size > 0) { 928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 929 930 bus_dmamap_sync(dma->tag, dma->map, 931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 932 bus_dmamap_unload(dma->tag, dma->map); 933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 934 bus_dma_tag_destroy(dma->tag); 935 } 936 937 memset(dma, 0, sizeof(*dma)); 938 } 939 940 /* 941 * These indirect read and write routines are only during init. 942 * The locking is handled by the MCP. 943 */ 944 945 void 946 bxe_reg_wr_ind(struct bxe_softc *sc, 947 uint32_t addr, 948 uint32_t val) 949 { 950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 953 } 954 955 uint32_t 956 bxe_reg_rd_ind(struct bxe_softc *sc, 957 uint32_t addr) 958 { 959 uint32_t val; 960 961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 964 965 return (val); 966 } 967 968 static int 969 bxe_acquire_hw_lock(struct bxe_softc *sc, 970 uint32_t resource) 971 { 972 uint32_t lock_status; 973 uint32_t resource_bit = (1 << resource); 974 int func = SC_FUNC(sc); 975 uint32_t hw_lock_control_reg; 976 int cnt; 977 978 /* validate the resource is within range */ 979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 981 " resource_bit 0x%x\n", resource, resource_bit); 982 return (-1); 983 } 984 985 if (func <= 5) { 986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 987 } else { 988 hw_lock_control_reg = 989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 990 } 991 992 /* validate the resource is not already taken */ 993 lock_status = REG_RD(sc, hw_lock_control_reg); 994 if (lock_status & resource_bit) { 995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 996 resource, lock_status, resource_bit); 997 return (-1); 998 } 999 1000 /* try every 5ms for 5 seconds */ 1001 for (cnt = 0; cnt < 1000; cnt++) { 1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1003 lock_status = REG_RD(sc, hw_lock_control_reg); 1004 if (lock_status & resource_bit) { 1005 return (0); 1006 } 1007 DELAY(5000); 1008 } 1009 1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1011 resource, resource_bit); 1012 return (-1); 1013 } 1014 1015 static int 1016 bxe_release_hw_lock(struct bxe_softc *sc, 1017 uint32_t resource) 1018 { 1019 uint32_t lock_status; 1020 uint32_t resource_bit = (1 << resource); 1021 int func = SC_FUNC(sc); 1022 uint32_t hw_lock_control_reg; 1023 1024 /* validate the resource is within range */ 1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1027 " resource_bit 0x%x\n", resource, resource_bit); 1028 return (-1); 1029 } 1030 1031 if (func <= 5) { 1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1033 } else { 1034 hw_lock_control_reg = 1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1036 } 1037 1038 /* validate the resource is currently taken */ 1039 lock_status = REG_RD(sc, hw_lock_control_reg); 1040 if (!(lock_status & resource_bit)) { 1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1042 resource, lock_status, resource_bit); 1043 return (-1); 1044 } 1045 1046 REG_WR(sc, hw_lock_control_reg, resource_bit); 1047 return (0); 1048 } 1049 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1050 { 1051 BXE_PHY_LOCK(sc); 1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1053 } 1054 1055 static void bxe_release_phy_lock(struct bxe_softc *sc) 1056 { 1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1058 BXE_PHY_UNLOCK(sc); 1059 } 1060 /* 1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1062 * had we done things the other way around, if two pfs from the same port 1063 * would attempt to access nvram at the same time, we could run into a 1064 * scenario such as: 1065 * pf A takes the port lock. 1066 * pf B succeeds in taking the same lock since they are from the same port. 1067 * pf A takes the per pf misc lock. Performs eeprom access. 1068 * pf A finishes. Unlocks the per pf misc lock. 1069 * Pf B takes the lock and proceeds to perform it's own access. 1070 * pf A unlocks the per port lock, while pf B is still working (!). 1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1072 * access corrupted by pf B).* 1073 */ 1074 static int 1075 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1076 { 1077 int port = SC_PORT(sc); 1078 int count, i; 1079 uint32_t val = 0; 1080 1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1083 1084 /* adjust timeout for emulation/FPGA */ 1085 count = NVRAM_TIMEOUT_COUNT; 1086 if (CHIP_REV_IS_SLOW(sc)) { 1087 count *= 100; 1088 } 1089 1090 /* request access to nvram interface */ 1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1093 1094 for (i = 0; i < count*10; i++) { 1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1097 break; 1098 } 1099 1100 DELAY(5); 1101 } 1102 1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1104 BLOGE(sc, "Cannot get access to nvram interface " 1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1106 port, val); 1107 return (-1); 1108 } 1109 1110 return (0); 1111 } 1112 1113 static int 1114 bxe_release_nvram_lock(struct bxe_softc *sc) 1115 { 1116 int port = SC_PORT(sc); 1117 int count, i; 1118 uint32_t val = 0; 1119 1120 /* adjust timeout for emulation/FPGA */ 1121 count = NVRAM_TIMEOUT_COUNT; 1122 if (CHIP_REV_IS_SLOW(sc)) { 1123 count *= 100; 1124 } 1125 1126 /* relinquish nvram interface */ 1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1129 1130 for (i = 0; i < count*10; i++) { 1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1133 break; 1134 } 1135 1136 DELAY(5); 1137 } 1138 1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1140 BLOGE(sc, "Cannot free access to nvram interface " 1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1142 port, val); 1143 return (-1); 1144 } 1145 1146 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1148 1149 return (0); 1150 } 1151 1152 static void 1153 bxe_enable_nvram_access(struct bxe_softc *sc) 1154 { 1155 uint32_t val; 1156 1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1158 1159 /* enable both bits, even on read */ 1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1162 } 1163 1164 static void 1165 bxe_disable_nvram_access(struct bxe_softc *sc) 1166 { 1167 uint32_t val; 1168 1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1170 1171 /* disable both bits, even after read */ 1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1174 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1175 } 1176 1177 static int 1178 bxe_nvram_read_dword(struct bxe_softc *sc, 1179 uint32_t offset, 1180 uint32_t *ret_val, 1181 uint32_t cmd_flags) 1182 { 1183 int count, i, rc; 1184 uint32_t val; 1185 1186 /* build the command word */ 1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1188 1189 /* need to clear DONE bit separately */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1191 1192 /* address of the NVRAM to read from */ 1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1195 1196 /* issue a read command */ 1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1198 1199 /* adjust timeout for emulation/FPGA */ 1200 count = NVRAM_TIMEOUT_COUNT; 1201 if (CHIP_REV_IS_SLOW(sc)) { 1202 count *= 100; 1203 } 1204 1205 /* wait for completion */ 1206 *ret_val = 0; 1207 rc = -1; 1208 for (i = 0; i < count; i++) { 1209 DELAY(5); 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1211 1212 if (val & MCPR_NVM_COMMAND_DONE) { 1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1214 /* we read nvram data in cpu order 1215 * but ethtool sees it as an array of bytes 1216 * converting to big-endian will do the work 1217 */ 1218 *ret_val = htobe32(val); 1219 rc = 0; 1220 break; 1221 } 1222 } 1223 1224 if (rc == -1) { 1225 BLOGE(sc, "nvram read timeout expired " 1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1227 offset, cmd_flags, val); 1228 } 1229 1230 return (rc); 1231 } 1232 1233 static int 1234 bxe_nvram_read(struct bxe_softc *sc, 1235 uint32_t offset, 1236 uint8_t *ret_buf, 1237 int buf_size) 1238 { 1239 uint32_t cmd_flags; 1240 uint32_t val; 1241 int rc; 1242 1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1245 offset, buf_size); 1246 return (-1); 1247 } 1248 1249 if ((offset + buf_size) > sc->devinfo.flash_size) { 1250 BLOGE(sc, "Invalid parameter, " 1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1252 offset, buf_size, sc->devinfo.flash_size); 1253 return (-1); 1254 } 1255 1256 /* request access to nvram interface */ 1257 rc = bxe_acquire_nvram_lock(sc); 1258 if (rc) { 1259 return (rc); 1260 } 1261 1262 /* enable access to nvram interface */ 1263 bxe_enable_nvram_access(sc); 1264 1265 /* read the first word(s) */ 1266 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1269 memcpy(ret_buf, &val, 4); 1270 1271 /* advance to the next dword */ 1272 offset += sizeof(uint32_t); 1273 ret_buf += sizeof(uint32_t); 1274 buf_size -= sizeof(uint32_t); 1275 cmd_flags = 0; 1276 } 1277 1278 if (rc == 0) { 1279 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1281 memcpy(ret_buf, &val, 4); 1282 } 1283 1284 /* disable access to nvram interface */ 1285 bxe_disable_nvram_access(sc); 1286 bxe_release_nvram_lock(sc); 1287 1288 return (rc); 1289 } 1290 1291 static int 1292 bxe_nvram_write_dword(struct bxe_softc *sc, 1293 uint32_t offset, 1294 uint32_t val, 1295 uint32_t cmd_flags) 1296 { 1297 int count, i, rc; 1298 1299 /* build the command word */ 1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1301 1302 /* need to clear DONE bit separately */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1304 1305 /* write the data */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1307 1308 /* address of the NVRAM to write to */ 1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1311 1312 /* issue the write command */ 1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1314 1315 /* adjust timeout for emulation/FPGA */ 1316 count = NVRAM_TIMEOUT_COUNT; 1317 if (CHIP_REV_IS_SLOW(sc)) { 1318 count *= 100; 1319 } 1320 1321 /* wait for completion */ 1322 rc = -1; 1323 for (i = 0; i < count; i++) { 1324 DELAY(5); 1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1326 if (val & MCPR_NVM_COMMAND_DONE) { 1327 rc = 0; 1328 break; 1329 } 1330 } 1331 1332 if (rc == -1) { 1333 BLOGE(sc, "nvram write timeout expired " 1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1335 offset, cmd_flags, val); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1342 1343 static int 1344 bxe_nvram_write1(struct bxe_softc *sc, 1345 uint32_t offset, 1346 uint8_t *data_buf, 1347 int buf_size) 1348 { 1349 uint32_t cmd_flags; 1350 uint32_t align_offset; 1351 uint32_t val; 1352 int rc; 1353 1354 if ((offset + buf_size) > sc->devinfo.flash_size) { 1355 BLOGE(sc, "Invalid parameter, " 1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1357 offset, buf_size, sc->devinfo.flash_size); 1358 return (-1); 1359 } 1360 1361 /* request access to nvram interface */ 1362 rc = bxe_acquire_nvram_lock(sc); 1363 if (rc) { 1364 return (rc); 1365 } 1366 1367 /* enable access to nvram interface */ 1368 bxe_enable_nvram_access(sc); 1369 1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1371 align_offset = (offset & ~0x03); 1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1373 1374 if (rc == 0) { 1375 val &= ~(0xff << BYTE_OFFSET(offset)); 1376 val |= (*data_buf << BYTE_OFFSET(offset)); 1377 1378 /* nvram data is returned as an array of bytes 1379 * convert it back to cpu order 1380 */ 1381 val = be32toh(val); 1382 1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1384 } 1385 1386 /* disable access to nvram interface */ 1387 bxe_disable_nvram_access(sc); 1388 bxe_release_nvram_lock(sc); 1389 1390 return (rc); 1391 } 1392 1393 static int 1394 bxe_nvram_write(struct bxe_softc *sc, 1395 uint32_t offset, 1396 uint8_t *data_buf, 1397 int buf_size) 1398 { 1399 uint32_t cmd_flags; 1400 uint32_t val; 1401 uint32_t written_so_far; 1402 int rc; 1403 1404 if (buf_size == 1) { 1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1406 } 1407 1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1410 offset, buf_size); 1411 return (-1); 1412 } 1413 1414 if (buf_size == 0) { 1415 return (0); /* nothing to do */ 1416 } 1417 1418 if ((offset + buf_size) > sc->devinfo.flash_size) { 1419 BLOGE(sc, "Invalid parameter, " 1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1421 offset, buf_size, sc->devinfo.flash_size); 1422 return (-1); 1423 } 1424 1425 /* request access to nvram interface */ 1426 rc = bxe_acquire_nvram_lock(sc); 1427 if (rc) { 1428 return (rc); 1429 } 1430 1431 /* enable access to nvram interface */ 1432 bxe_enable_nvram_access(sc); 1433 1434 written_so_far = 0; 1435 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1436 while ((written_so_far < buf_size) && (rc == 0)) { 1437 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1438 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1440 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1443 } 1444 1445 memcpy(&val, data_buf, 4); 1446 1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1448 1449 /* advance to the next dword */ 1450 offset += sizeof(uint32_t); 1451 data_buf += sizeof(uint32_t); 1452 written_so_far += sizeof(uint32_t); 1453 cmd_flags = 0; 1454 } 1455 1456 /* disable access to nvram interface */ 1457 bxe_disable_nvram_access(sc); 1458 bxe_release_nvram_lock(sc); 1459 1460 return (rc); 1461 } 1462 1463 /* copy command into DMAE command memory and set DMAE command Go */ 1464 void 1465 bxe_post_dmae(struct bxe_softc *sc, 1466 struct dmae_cmd *dmae, 1467 int idx) 1468 { 1469 uint32_t cmd_offset; 1470 int i; 1471 1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1475 } 1476 1477 REG_WR(sc, dmae_reg_go_c[idx], 1); 1478 } 1479 1480 uint32_t 1481 bxe_dmae_opcode_add_comp(uint32_t opcode, 1482 uint8_t comp_type) 1483 { 1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1485 DMAE_CMD_C_TYPE_ENABLE)); 1486 } 1487 1488 uint32_t 1489 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1490 { 1491 return (opcode & ~DMAE_CMD_SRC_RESET); 1492 } 1493 1494 uint32_t 1495 bxe_dmae_opcode(struct bxe_softc *sc, 1496 uint8_t src_type, 1497 uint8_t dst_type, 1498 uint8_t with_comp, 1499 uint8_t comp_type) 1500 { 1501 uint32_t opcode = 0; 1502 1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1504 (dst_type << DMAE_CMD_DST_SHIFT)); 1505 1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1507 1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1509 1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1512 1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1514 1515 #ifdef __BIG_ENDIAN 1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1517 #else 1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1519 #endif 1520 1521 if (with_comp) { 1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1523 } 1524 1525 return (opcode); 1526 } 1527 1528 static void 1529 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1530 struct dmae_cmd *dmae, 1531 uint8_t src_type, 1532 uint8_t dst_type) 1533 { 1534 memset(dmae, 0, sizeof(struct dmae_cmd)); 1535 1536 /* set the opcode */ 1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1538 TRUE, DMAE_COMP_PCI); 1539 1540 /* fill in the completion parameters */ 1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1543 dmae->comp_val = DMAE_COMP_VAL; 1544 } 1545 1546 /* issue a DMAE command over the init channel and wait for completion */ 1547 static int 1548 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1549 struct dmae_cmd *dmae) 1550 { 1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1553 1554 BXE_DMAE_LOCK(sc); 1555 1556 /* reset completion */ 1557 *wb_comp = 0; 1558 1559 /* post the command on the channel used for initializations */ 1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1561 1562 /* wait for completion */ 1563 DELAY(5); 1564 1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1566 if (!timeout || 1567 (sc->recovery_state != BXE_RECOVERY_DONE && 1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1570 *wb_comp, sc->recovery_state); 1571 BXE_DMAE_UNLOCK(sc); 1572 return (DMAE_TIMEOUT); 1573 } 1574 1575 timeout--; 1576 DELAY(50); 1577 } 1578 1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1581 *wb_comp, sc->recovery_state); 1582 BXE_DMAE_UNLOCK(sc); 1583 return (DMAE_PCI_ERROR); 1584 } 1585 1586 BXE_DMAE_UNLOCK(sc); 1587 return (0); 1588 } 1589 1590 void 1591 bxe_read_dmae(struct bxe_softc *sc, 1592 uint32_t src_addr, 1593 uint32_t len32) 1594 { 1595 struct dmae_cmd dmae; 1596 uint32_t *data; 1597 int i, rc; 1598 1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1600 1601 if (!sc->dmae_ready) { 1602 data = BXE_SP(sc, wb_data[0]); 1603 1604 for (i = 0; i < len32; i++) { 1605 data[i] = (CHIP_IS_E1(sc)) ? 1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1607 REG_RD(sc, (src_addr + (i * 4))); 1608 } 1609 1610 return; 1611 } 1612 1613 /* set opcode and fixed command fields */ 1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1615 1616 /* fill in addresses and len */ 1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1618 dmae.src_addr_hi = 0; 1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1621 dmae.len = len32; 1622 1623 /* issue the command and wait for completion */ 1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1626 } 1627 } 1628 1629 void 1630 bxe_write_dmae(struct bxe_softc *sc, 1631 bus_addr_t dma_addr, 1632 uint32_t dst_addr, 1633 uint32_t len32) 1634 { 1635 struct dmae_cmd dmae; 1636 int rc; 1637 1638 if (!sc->dmae_ready) { 1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1640 1641 if (CHIP_IS_E1(sc)) { 1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1643 } else { 1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1645 } 1646 1647 return; 1648 } 1649 1650 /* set opcode and fixed command fields */ 1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1652 1653 /* fill in addresses and len */ 1654 dmae.src_addr_lo = U64_LO(dma_addr); 1655 dmae.src_addr_hi = U64_HI(dma_addr); 1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1657 dmae.dst_addr_hi = 0; 1658 dmae.len = len32; 1659 1660 /* issue the command and wait for completion */ 1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1663 } 1664 } 1665 1666 void 1667 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1668 bus_addr_t phys_addr, 1669 uint32_t addr, 1670 uint32_t len) 1671 { 1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1673 int offset = 0; 1674 1675 while (len > dmae_wr_max) { 1676 bxe_write_dmae(sc, 1677 (phys_addr + offset), /* src DMA address */ 1678 (addr + offset), /* dst GRC address */ 1679 dmae_wr_max); 1680 offset += (dmae_wr_max * 4); 1681 len -= dmae_wr_max; 1682 } 1683 1684 bxe_write_dmae(sc, 1685 (phys_addr + offset), /* src DMA address */ 1686 (addr + offset), /* dst GRC address */ 1687 len); 1688 } 1689 1690 void 1691 bxe_set_ctx_validation(struct bxe_softc *sc, 1692 struct eth_context *cxt, 1693 uint32_t cid) 1694 { 1695 /* ustorm cxt validation */ 1696 cxt->ustorm_ag_context.cdu_usage = 1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1699 /* xcontext validation */ 1700 cxt->xstorm_ag_context.cdu_reserved = 1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1703 } 1704 1705 static void 1706 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1707 uint8_t port, 1708 uint8_t fw_sb_id, 1709 uint8_t sb_index, 1710 uint8_t ticks) 1711 { 1712 uint32_t addr = 1713 (BAR_CSTRORM_INTMEM + 1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1715 1716 REG_WR8(sc, addr, ticks); 1717 1718 BLOGD(sc, DBG_LOAD, 1719 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1720 port, fw_sb_id, sb_index, ticks); 1721 } 1722 1723 static void 1724 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1725 uint8_t port, 1726 uint16_t fw_sb_id, 1727 uint8_t sb_index, 1728 uint8_t disable) 1729 { 1730 uint32_t enable_flag = 1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1732 uint32_t addr = 1733 (BAR_CSTRORM_INTMEM + 1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1735 uint8_t flags; 1736 1737 /* clear and set */ 1738 flags = REG_RD8(sc, addr); 1739 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1740 flags |= enable_flag; 1741 REG_WR8(sc, addr, flags); 1742 1743 BLOGD(sc, DBG_LOAD, 1744 "port %d fw_sb_id %d sb_index %d disable %d\n", 1745 port, fw_sb_id, sb_index, disable); 1746 } 1747 1748 void 1749 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1750 uint8_t fw_sb_id, 1751 uint8_t sb_index, 1752 uint8_t disable, 1753 uint16_t usec) 1754 { 1755 int port = SC_PORT(sc); 1756 uint8_t ticks = (usec / 4); /* XXX ??? */ 1757 1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1759 1760 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1762 } 1763 1764 void 1765 elink_cb_udelay(struct bxe_softc *sc, 1766 uint32_t usecs) 1767 { 1768 DELAY(usecs); 1769 } 1770 1771 uint32_t 1772 elink_cb_reg_read(struct bxe_softc *sc, 1773 uint32_t reg_addr) 1774 { 1775 return (REG_RD(sc, reg_addr)); 1776 } 1777 1778 void 1779 elink_cb_reg_write(struct bxe_softc *sc, 1780 uint32_t reg_addr, 1781 uint32_t val) 1782 { 1783 REG_WR(sc, reg_addr, val); 1784 } 1785 1786 void 1787 elink_cb_reg_wb_write(struct bxe_softc *sc, 1788 uint32_t offset, 1789 uint32_t *wb_write, 1790 uint16_t len) 1791 { 1792 REG_WR_DMAE(sc, offset, wb_write, len); 1793 } 1794 1795 void 1796 elink_cb_reg_wb_read(struct bxe_softc *sc, 1797 uint32_t offset, 1798 uint32_t *wb_write, 1799 uint16_t len) 1800 { 1801 REG_RD_DMAE(sc, offset, wb_write, len); 1802 } 1803 1804 uint8_t 1805 elink_cb_path_id(struct bxe_softc *sc) 1806 { 1807 return (SC_PATH(sc)); 1808 } 1809 1810 void 1811 elink_cb_event_log(struct bxe_softc *sc, 1812 const elink_log_id_t elink_log_id, 1813 ...) 1814 { 1815 /* XXX */ 1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1817 } 1818 1819 static int 1820 bxe_set_spio(struct bxe_softc *sc, 1821 int spio, 1822 uint32_t mode) 1823 { 1824 uint32_t spio_reg; 1825 1826 /* Only 2 SPIOs are configurable */ 1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1829 return (-1); 1830 } 1831 1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1833 1834 /* read SPIO and mask except the float bits */ 1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1836 1837 switch (mode) { 1838 case MISC_SPIO_OUTPUT_LOW: 1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1840 /* clear FLOAT and set CLR */ 1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1842 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1843 break; 1844 1845 case MISC_SPIO_OUTPUT_HIGH: 1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1847 /* clear FLOAT and set SET */ 1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1849 spio_reg |= (spio << MISC_SPIO_SET_POS); 1850 break; 1851 1852 case MISC_SPIO_INPUT_HI_Z: 1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1854 /* set FLOAT */ 1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1856 break; 1857 1858 default: 1859 break; 1860 } 1861 1862 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1864 1865 return (0); 1866 } 1867 1868 static int 1869 bxe_gpio_read(struct bxe_softc *sc, 1870 int gpio_num, 1871 uint8_t port) 1872 { 1873 /* The GPIO should be swapped if swap register is set and active */ 1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1876 int gpio_shift = (gpio_num + 1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1878 uint32_t gpio_mask = (1 << gpio_shift); 1879 uint32_t gpio_reg; 1880 1881 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1884 gpio_mask); 1885 return (-1); 1886 } 1887 1888 /* read GPIO value */ 1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1890 1891 /* get the requested pin value */ 1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1893 } 1894 1895 static int 1896 bxe_gpio_write(struct bxe_softc *sc, 1897 int gpio_num, 1898 uint32_t mode, 1899 uint8_t port) 1900 { 1901 /* The GPIO should be swapped if swap register is set and active */ 1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1904 int gpio_shift = (gpio_num + 1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1906 uint32_t gpio_mask = (1 << gpio_shift); 1907 uint32_t gpio_reg; 1908 1909 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1911 " gpio_shift %d gpio_mask 0x%x\n", 1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1913 return (-1); 1914 } 1915 1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1917 1918 /* read GPIO and mask except the float bits */ 1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1920 1921 switch (mode) { 1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1923 BLOGD(sc, DBG_PHY, 1924 "Set GPIO %d (shift %d) -> output low\n", 1925 gpio_num, gpio_shift); 1926 /* clear FLOAT and set CLR */ 1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1929 break; 1930 1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1932 BLOGD(sc, DBG_PHY, 1933 "Set GPIO %d (shift %d) -> output high\n", 1934 gpio_num, gpio_shift); 1935 /* clear FLOAT and set SET */ 1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1938 break; 1939 1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1941 BLOGD(sc, DBG_PHY, 1942 "Set GPIO %d (shift %d) -> input\n", 1943 gpio_num, gpio_shift); 1944 /* set FLOAT */ 1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1946 break; 1947 1948 default: 1949 break; 1950 } 1951 1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1954 1955 return (0); 1956 } 1957 1958 static int 1959 bxe_gpio_mult_write(struct bxe_softc *sc, 1960 uint8_t pins, 1961 uint32_t mode) 1962 { 1963 uint32_t gpio_reg; 1964 1965 /* any port swapping should be handled by caller */ 1966 1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1968 1969 /* read GPIO and mask except the float bits */ 1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1974 1975 switch (mode) { 1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1978 /* set CLR */ 1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1980 break; 1981 1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1984 /* set SET */ 1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1986 break; 1987 1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1990 /* set FLOAT */ 1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1992 break; 1993 1994 default: 1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1998 return (-1); 1999 } 2000 2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 return (0); 2005 } 2006 2007 static int 2008 bxe_gpio_int_write(struct bxe_softc *sc, 2009 int gpio_num, 2010 uint32_t mode, 2011 uint8_t port) 2012 { 2013 /* The GPIO should be swapped if swap register is set and active */ 2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2016 int gpio_shift = (gpio_num + 2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2018 uint32_t gpio_mask = (1 << gpio_shift); 2019 uint32_t gpio_reg; 2020 2021 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2023 " gpio_shift %d gpio_mask 0x%x\n", 2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2025 return (-1); 2026 } 2027 2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2029 2030 /* read GPIO int */ 2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2032 2033 switch (mode) { 2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2035 BLOGD(sc, DBG_PHY, 2036 "Clear GPIO INT %d (shift %d) -> output low\n", 2037 gpio_num, gpio_shift); 2038 /* clear SET and set CLR */ 2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2041 break; 2042 2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2044 BLOGD(sc, DBG_PHY, 2045 "Set GPIO INT %d (shift %d) -> output high\n", 2046 gpio_num, gpio_shift); 2047 /* clear CLR and set SET */ 2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2050 break; 2051 2052 default: 2053 break; 2054 } 2055 2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2058 2059 return (0); 2060 } 2061 2062 uint32_t 2063 elink_cb_gpio_read(struct bxe_softc *sc, 2064 uint16_t gpio_num, 2065 uint8_t port) 2066 { 2067 return (bxe_gpio_read(sc, gpio_num, port)); 2068 } 2069 2070 uint8_t 2071 elink_cb_gpio_write(struct bxe_softc *sc, 2072 uint16_t gpio_num, 2073 uint8_t mode, /* 0=low 1=high */ 2074 uint8_t port) 2075 { 2076 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2077 } 2078 2079 uint8_t 2080 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2081 uint8_t pins, 2082 uint8_t mode) /* 0=low 1=high */ 2083 { 2084 return (bxe_gpio_mult_write(sc, pins, mode)); 2085 } 2086 2087 uint8_t 2088 elink_cb_gpio_int_write(struct bxe_softc *sc, 2089 uint16_t gpio_num, 2090 uint8_t mode, /* 0=low 1=high */ 2091 uint8_t port) 2092 { 2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2094 } 2095 2096 void 2097 elink_cb_notify_link_changed(struct bxe_softc *sc) 2098 { 2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2101 } 2102 2103 /* send the MCP a request, block until there is a reply */ 2104 uint32_t 2105 elink_cb_fw_command(struct bxe_softc *sc, 2106 uint32_t command, 2107 uint32_t param) 2108 { 2109 int mb_idx = SC_FW_MB_IDX(sc); 2110 uint32_t seq; 2111 uint32_t rc = 0; 2112 uint32_t cnt = 1; 2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2114 2115 BXE_FWMB_LOCK(sc); 2116 2117 seq = ++sc->fw_seq; 2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2120 2121 BLOGD(sc, DBG_PHY, 2122 "wrote command 0x%08x to FW MB param 0x%08x\n", 2123 (command | seq), param); 2124 2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2126 do { 2127 DELAY(delay * 1000); 2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2130 2131 BLOGD(sc, DBG_PHY, 2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2133 cnt*delay, rc, seq); 2134 2135 /* is this a reply to our command? */ 2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2137 rc &= FW_MSG_CODE_MASK; 2138 } else { 2139 /* Ruh-roh! */ 2140 BLOGE(sc, "FW failed to respond!\n"); 2141 // XXX bxe_fw_dump(sc); 2142 rc = 0; 2143 } 2144 2145 BXE_FWMB_UNLOCK(sc); 2146 return (rc); 2147 } 2148 2149 static uint32_t 2150 bxe_fw_command(struct bxe_softc *sc, 2151 uint32_t command, 2152 uint32_t param) 2153 { 2154 return (elink_cb_fw_command(sc, command, param)); 2155 } 2156 2157 static void 2158 __storm_memset_dma_mapping(struct bxe_softc *sc, 2159 uint32_t addr, 2160 bus_addr_t mapping) 2161 { 2162 REG_WR(sc, addr, U64_LO(mapping)); 2163 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2164 } 2165 2166 static void 2167 storm_memset_spq_addr(struct bxe_softc *sc, 2168 bus_addr_t mapping, 2169 uint16_t abs_fid) 2170 { 2171 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2173 __storm_memset_dma_mapping(sc, addr, mapping); 2174 } 2175 2176 static void 2177 storm_memset_vf_to_pf(struct bxe_softc *sc, 2178 uint16_t abs_fid, 2179 uint16_t pf_id) 2180 { 2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2185 } 2186 2187 static void 2188 storm_memset_func_en(struct bxe_softc *sc, 2189 uint16_t abs_fid, 2190 uint8_t enable) 2191 { 2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2196 } 2197 2198 static void 2199 storm_memset_eq_data(struct bxe_softc *sc, 2200 struct event_ring_data *eq_data, 2201 uint16_t pfid) 2202 { 2203 uint32_t addr; 2204 size_t size; 2205 2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2207 size = sizeof(struct event_ring_data); 2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2209 } 2210 2211 static void 2212 storm_memset_eq_prod(struct bxe_softc *sc, 2213 uint16_t eq_prod, 2214 uint16_t pfid) 2215 { 2216 uint32_t addr = (BAR_CSTRORM_INTMEM + 2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2218 REG_WR16(sc, addr, eq_prod); 2219 } 2220 2221 /* 2222 * Post a slowpath command. 2223 * 2224 * A slowpath command is used to propogate a configuration change through 2225 * the controller in a controlled manner, allowing each STORM processor and 2226 * other H/W blocks to phase in the change. The commands sent on the 2227 * slowpath are referred to as ramrods. Depending on the ramrod used the 2228 * completion of the ramrod will occur in different ways. Here's a 2229 * breakdown of ramrods and how they complete: 2230 * 2231 * RAMROD_CMD_ID_ETH_PORT_SETUP 2232 * Used to setup the leading connection on a port. Completes on the 2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2234 * 2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2236 * Used to setup an additional connection on a port. Completes on the 2237 * RCQ of the multi-queue/RSS connection being initialized. 2238 * 2239 * RAMROD_CMD_ID_ETH_STAT_QUERY 2240 * Used to force the storm processors to update the statistics database 2241 * in host memory. This ramrod is send on the leading connection CID and 2242 * completes as an index increment of the CSTORM on the default status 2243 * block. 2244 * 2245 * RAMROD_CMD_ID_ETH_UPDATE 2246 * Used to update the state of the leading connection, usually to udpate 2247 * the RSS indirection table. Completes on the RCQ of the leading 2248 * connection. (Not currently used under FreeBSD until OS support becomes 2249 * available.) 2250 * 2251 * RAMROD_CMD_ID_ETH_HALT 2252 * Used when tearing down a connection prior to driver unload. Completes 2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2254 * use this on the leading connection. 2255 * 2256 * RAMROD_CMD_ID_ETH_SET_MAC 2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2258 * the RCQ of the leading connection. 2259 * 2260 * RAMROD_CMD_ID_ETH_CFC_DEL 2261 * Used when tearing down a conneciton prior to driver unload. Completes 2262 * on the RCQ of the leading connection (since the current connection 2263 * has been completely removed from controller memory). 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_DEL 2266 * Used to tear down the leading connection prior to driver unload, 2267 * typically fp[0]. Completes as an index increment of the CSTORM on the 2268 * default status block. 2269 * 2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2271 * Used for connection offload. Completes on the RCQ of the multi-queue 2272 * RSS connection that is being offloaded. (Not currently used under 2273 * FreeBSD.) 2274 * 2275 * There can only be one command pending per function. 2276 * 2277 * Returns: 2278 * 0 = Success, !0 = Failure. 2279 */ 2280 2281 /* must be called under the spq lock */ 2282 static inline 2283 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2284 { 2285 struct eth_spe *next_spe = sc->spq_prod_bd; 2286 2287 if (sc->spq_prod_bd == sc->spq_last_bd) { 2288 /* wrap back to the first eth_spq */ 2289 sc->spq_prod_bd = sc->spq; 2290 sc->spq_prod_idx = 0; 2291 } else { 2292 sc->spq_prod_bd++; 2293 sc->spq_prod_idx++; 2294 } 2295 2296 return (next_spe); 2297 } 2298 2299 /* must be called under the spq lock */ 2300 static inline 2301 void bxe_sp_prod_update(struct bxe_softc *sc) 2302 { 2303 int func = SC_FUNC(sc); 2304 2305 /* 2306 * Make sure that BD data is updated before writing the producer. 2307 * BD data is written to the memory, the producer is read from the 2308 * memory, thus we need a full memory barrier to ensure the ordering. 2309 */ 2310 mb(); 2311 2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2313 sc->spq_prod_idx); 2314 2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2316 BUS_SPACE_BARRIER_WRITE); 2317 } 2318 2319 /** 2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2321 * 2322 * @cmd: command to check 2323 * @cmd_type: command type 2324 */ 2325 static inline 2326 int bxe_is_contextless_ramrod(int cmd, 2327 int cmd_type) 2328 { 2329 if ((cmd_type == NONE_CONNECTION_TYPE) || 2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2336 return (TRUE); 2337 } else { 2338 return (FALSE); 2339 } 2340 } 2341 2342 /** 2343 * bxe_sp_post - place a single command on an SP ring 2344 * 2345 * @sc: driver handle 2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2347 * @cid: SW CID the command is related to 2348 * @data_hi: command private data address (high 32 bits) 2349 * @data_lo: command private data address (low 32 bits) 2350 * @cmd_type: command type (e.g. NONE, ETH) 2351 * 2352 * SP data is handled as if it's always an address pair, thus data fields are 2353 * not swapped to little endian in upper functions. Instead this function swaps 2354 * data as if it's two uint32 fields. 2355 */ 2356 int 2357 bxe_sp_post(struct bxe_softc *sc, 2358 int command, 2359 int cid, 2360 uint32_t data_hi, 2361 uint32_t data_lo, 2362 int cmd_type) 2363 { 2364 struct eth_spe *spe; 2365 uint16_t type; 2366 int common; 2367 2368 common = bxe_is_contextless_ramrod(command, cmd_type); 2369 2370 BXE_SP_LOCK(sc); 2371 2372 if (common) { 2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2374 BLOGE(sc, "EQ ring is full!\n"); 2375 BXE_SP_UNLOCK(sc); 2376 return (-1); 2377 } 2378 } else { 2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2380 BLOGE(sc, "SPQ ring is full!\n"); 2381 BXE_SP_UNLOCK(sc); 2382 return (-1); 2383 } 2384 } 2385 2386 spe = bxe_sp_get_next(sc); 2387 2388 /* CID needs port number to be encoded int it */ 2389 spe->hdr.conn_and_cmd_data = 2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2391 2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2393 2394 /* TBD: Check if it works for VFs */ 2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2396 SPE_HDR_T_FUNCTION_ID); 2397 2398 spe->hdr.type = htole16(type); 2399 2400 spe->data.update_data_addr.hi = htole32(data_hi); 2401 spe->data.update_data_addr.lo = htole32(data_lo); 2402 2403 /* 2404 * It's ok if the actual decrement is issued towards the memory 2405 * somewhere between the lock and unlock. Thus no more explict 2406 * memory barrier is needed. 2407 */ 2408 if (common) { 2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2410 } else { 2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2412 } 2413 2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2417 BLOGD(sc, DBG_SP, 2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2419 sc->spq_prod_idx, 2420 (uint32_t)U64_HI(sc->spq_dma.paddr), 2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2422 command, 2423 common, 2424 HW_CID(sc, cid), 2425 data_hi, 2426 data_lo, 2427 type, 2428 atomic_load_acq_long(&sc->cq_spq_left), 2429 atomic_load_acq_long(&sc->eq_spq_left)); 2430 2431 bxe_sp_prod_update(sc); 2432 2433 BXE_SP_UNLOCK(sc); 2434 return (0); 2435 } 2436 2437 /** 2438 * bxe_debug_print_ind_table - prints the indirection table configuration. 2439 * 2440 * @sc: driver hanlde 2441 * @p: pointer to rss configuration 2442 */ 2443 2444 /* 2445 * FreeBSD Device probe function. 2446 * 2447 * Compares the device found to the driver's list of supported devices and 2448 * reports back to the bsd loader whether this is the right driver for the device. 2449 * This is the driver entry function called from the "kldload" command. 2450 * 2451 * Returns: 2452 * BUS_PROBE_DEFAULT on success, positive value on failure. 2453 */ 2454 static int 2455 bxe_probe(device_t dev) 2456 { 2457 struct bxe_softc *sc; 2458 struct bxe_device_type *t; 2459 char *descbuf; 2460 uint16_t did, sdid, svid, vid; 2461 2462 /* Find our device structure */ 2463 sc = device_get_softc(dev); 2464 sc->dev = dev; 2465 t = bxe_devs; 2466 2467 /* Get the data for the device to be probed. */ 2468 vid = pci_get_vendor(dev); 2469 did = pci_get_device(dev); 2470 svid = pci_get_subvendor(dev); 2471 sdid = pci_get_subdevice(dev); 2472 2473 BLOGD(sc, DBG_LOAD, 2474 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2475 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2476 2477 /* Look through the list of known devices for a match. */ 2478 while (t->bxe_name != NULL) { 2479 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2480 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2481 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2482 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2483 if (descbuf == NULL) 2484 return (ENOMEM); 2485 2486 /* Print out the device identity. */ 2487 snprintf(descbuf, BXE_DEVDESC_MAX, 2488 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2489 (((pci_read_config(dev, PCIR_REVID, 4) & 2490 0xf0) >> 4) + 'A'), 2491 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2492 BXE_DRIVER_VERSION); 2493 2494 device_set_desc_copy(dev, descbuf); 2495 free(descbuf, M_TEMP); 2496 return (BUS_PROBE_DEFAULT); 2497 } 2498 t++; 2499 } 2500 2501 return (ENXIO); 2502 } 2503 2504 static void 2505 bxe_init_mutexes(struct bxe_softc *sc) 2506 { 2507 #ifdef BXE_CORE_LOCK_SX 2508 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2509 "bxe%d_core_lock", sc->unit); 2510 sx_init(&sc->core_sx, sc->core_sx_name); 2511 #else 2512 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2513 "bxe%d_core_lock", sc->unit); 2514 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2515 #endif 2516 2517 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2518 "bxe%d_sp_lock", sc->unit); 2519 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2520 2521 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2522 "bxe%d_dmae_lock", sc->unit); 2523 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2524 2525 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2526 "bxe%d_phy_lock", sc->unit); 2527 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2528 2529 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2530 "bxe%d_fwmb_lock", sc->unit); 2531 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2532 2533 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2534 "bxe%d_print_lock", sc->unit); 2535 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2536 2537 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2538 "bxe%d_stats_lock", sc->unit); 2539 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2540 2541 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2542 "bxe%d_mcast_lock", sc->unit); 2543 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2544 } 2545 2546 static void 2547 bxe_release_mutexes(struct bxe_softc *sc) 2548 { 2549 #ifdef BXE_CORE_LOCK_SX 2550 sx_destroy(&sc->core_sx); 2551 #else 2552 if (mtx_initialized(&sc->core_mtx)) { 2553 mtx_destroy(&sc->core_mtx); 2554 } 2555 #endif 2556 2557 if (mtx_initialized(&sc->sp_mtx)) { 2558 mtx_destroy(&sc->sp_mtx); 2559 } 2560 2561 if (mtx_initialized(&sc->dmae_mtx)) { 2562 mtx_destroy(&sc->dmae_mtx); 2563 } 2564 2565 if (mtx_initialized(&sc->port.phy_mtx)) { 2566 mtx_destroy(&sc->port.phy_mtx); 2567 } 2568 2569 if (mtx_initialized(&sc->fwmb_mtx)) { 2570 mtx_destroy(&sc->fwmb_mtx); 2571 } 2572 2573 if (mtx_initialized(&sc->print_mtx)) { 2574 mtx_destroy(&sc->print_mtx); 2575 } 2576 2577 if (mtx_initialized(&sc->stats_mtx)) { 2578 mtx_destroy(&sc->stats_mtx); 2579 } 2580 2581 if (mtx_initialized(&sc->mcast_mtx)) { 2582 mtx_destroy(&sc->mcast_mtx); 2583 } 2584 } 2585 2586 static void 2587 bxe_tx_disable(struct bxe_softc* sc) 2588 { 2589 if_t ifp = sc->ifp; 2590 2591 /* tell the stack the driver is stopped and TX queue is full */ 2592 if (ifp != NULL) { 2593 if_setdrvflags(ifp, 0); 2594 } 2595 } 2596 2597 static void 2598 bxe_drv_pulse(struct bxe_softc *sc) 2599 { 2600 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2601 sc->fw_drv_pulse_wr_seq); 2602 } 2603 2604 static inline uint16_t 2605 bxe_tx_avail(struct bxe_softc *sc, 2606 struct bxe_fastpath *fp) 2607 { 2608 int16_t used; 2609 uint16_t prod; 2610 uint16_t cons; 2611 2612 prod = fp->tx_bd_prod; 2613 cons = fp->tx_bd_cons; 2614 2615 used = SUB_S16(prod, cons); 2616 2617 return (int16_t)(sc->tx_ring_size) - used; 2618 } 2619 2620 static inline int 2621 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2622 { 2623 uint16_t hw_cons; 2624 2625 mb(); /* status block fields can change */ 2626 hw_cons = le16toh(*fp->tx_cons_sb); 2627 return (hw_cons != fp->tx_pkt_cons); 2628 } 2629 2630 static inline uint8_t 2631 bxe_has_tx_work(struct bxe_fastpath *fp) 2632 { 2633 /* expand this for multi-cos if ever supported */ 2634 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2635 } 2636 2637 static inline int 2638 bxe_has_rx_work(struct bxe_fastpath *fp) 2639 { 2640 uint16_t rx_cq_cons_sb; 2641 2642 mb(); /* status block fields can change */ 2643 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2644 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2645 rx_cq_cons_sb++; 2646 return (fp->rx_cq_cons != rx_cq_cons_sb); 2647 } 2648 2649 static void 2650 bxe_sp_event(struct bxe_softc *sc, 2651 struct bxe_fastpath *fp, 2652 union eth_rx_cqe *rr_cqe) 2653 { 2654 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2655 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2656 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2657 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2658 2659 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2660 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2661 2662 switch (command) { 2663 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2664 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2665 drv_cmd = ECORE_Q_CMD_UPDATE; 2666 break; 2667 2668 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2669 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2670 drv_cmd = ECORE_Q_CMD_SETUP; 2671 break; 2672 2673 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2674 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2675 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2676 break; 2677 2678 case (RAMROD_CMD_ID_ETH_HALT): 2679 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2680 drv_cmd = ECORE_Q_CMD_HALT; 2681 break; 2682 2683 case (RAMROD_CMD_ID_ETH_TERMINATE): 2684 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2685 drv_cmd = ECORE_Q_CMD_TERMINATE; 2686 break; 2687 2688 case (RAMROD_CMD_ID_ETH_EMPTY): 2689 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2690 drv_cmd = ECORE_Q_CMD_EMPTY; 2691 break; 2692 2693 default: 2694 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2695 command, fp->index); 2696 return; 2697 } 2698 2699 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2700 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2701 /* 2702 * q_obj->complete_cmd() failure means that this was 2703 * an unexpected completion. 2704 * 2705 * In this case we don't want to increase the sc->spq_left 2706 * because apparently we haven't sent this command the first 2707 * place. 2708 */ 2709 // bxe_panic(sc, ("Unexpected SP completion\n")); 2710 return; 2711 } 2712 2713 atomic_add_acq_long(&sc->cq_spq_left, 1); 2714 2715 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2716 atomic_load_acq_long(&sc->cq_spq_left)); 2717 } 2718 2719 /* 2720 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2721 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2722 * the current aggregation queue as in-progress. 2723 */ 2724 static void 2725 bxe_tpa_start(struct bxe_softc *sc, 2726 struct bxe_fastpath *fp, 2727 uint16_t queue, 2728 uint16_t cons, 2729 uint16_t prod, 2730 struct eth_fast_path_rx_cqe *cqe) 2731 { 2732 struct bxe_sw_rx_bd tmp_bd; 2733 struct bxe_sw_rx_bd *rx_buf; 2734 struct eth_rx_bd *rx_bd; 2735 int max_agg_queues; 2736 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2737 uint16_t index; 2738 2739 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2740 "cons=%d prod=%d\n", 2741 fp->index, queue, cons, prod); 2742 2743 max_agg_queues = MAX_AGG_QS(sc); 2744 2745 KASSERT((queue < max_agg_queues), 2746 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2747 fp->index, queue, max_agg_queues)); 2748 2749 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2750 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2751 fp->index, queue)); 2752 2753 /* copy the existing mbuf and mapping from the TPA pool */ 2754 tmp_bd = tpa_info->bd; 2755 2756 if (tmp_bd.m == NULL) { 2757 uint32_t *tmp; 2758 2759 tmp = (uint32_t *)cqe; 2760 2761 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2762 fp->index, queue, cons, prod); 2763 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2764 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2765 2766 /* XXX Error handling? */ 2767 return; 2768 } 2769 2770 /* change the TPA queue to the start state */ 2771 tpa_info->state = BXE_TPA_STATE_START; 2772 tpa_info->placement_offset = cqe->placement_offset; 2773 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2774 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2775 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2776 2777 fp->rx_tpa_queue_used |= (1 << queue); 2778 2779 /* 2780 * If all the buffer descriptors are filled with mbufs then fill in 2781 * the current consumer index with a new BD. Else if a maximum Rx 2782 * buffer limit is imposed then fill in the next producer index. 2783 */ 2784 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2785 prod : cons; 2786 2787 /* move the received mbuf and mapping to TPA pool */ 2788 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2789 2790 /* release any existing RX BD mbuf mappings */ 2791 if (cons != index) { 2792 rx_buf = &fp->rx_mbuf_chain[cons]; 2793 2794 if (rx_buf->m_map != NULL) { 2795 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2796 BUS_DMASYNC_POSTREAD); 2797 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2798 } 2799 2800 /* 2801 * We get here when the maximum number of rx buffers is less than 2802 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2803 * it out here without concern of a memory leak. 2804 */ 2805 fp->rx_mbuf_chain[cons].m = NULL; 2806 } 2807 2808 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2809 fp->rx_mbuf_chain[index] = tmp_bd; 2810 2811 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2812 rx_bd = &fp->rx_chain[index]; 2813 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2814 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2815 } 2816 2817 /* 2818 * When a TPA aggregation is completed, loop through the individual mbufs 2819 * of the aggregation, combining them into a single mbuf which will be sent 2820 * up the stack. Refill all freed SGEs with mbufs as we go along. 2821 */ 2822 static int 2823 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2824 struct bxe_fastpath *fp, 2825 struct bxe_sw_tpa_info *tpa_info, 2826 uint16_t queue, 2827 uint16_t pages, 2828 struct mbuf *m, 2829 struct eth_end_agg_rx_cqe *cqe, 2830 uint16_t cqe_idx) 2831 { 2832 struct mbuf *m_frag; 2833 uint32_t frag_len, frag_size, i; 2834 uint16_t sge_idx; 2835 int rc = 0; 2836 int j; 2837 2838 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2839 2840 BLOGD(sc, DBG_LRO, 2841 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2842 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2843 2844 /* make sure the aggregated frame is not too big to handle */ 2845 if (pages > 8 * PAGES_PER_SGE) { 2846 2847 uint32_t *tmp = (uint32_t *)cqe; 2848 2849 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2850 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2851 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2852 tpa_info->len_on_bd, frag_size); 2853 2854 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2855 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2856 2857 bxe_panic(sc, ("sge page count error\n")); 2858 return (EINVAL); 2859 } 2860 2861 /* 2862 * Scan through the scatter gather list pulling individual mbufs into a 2863 * single mbuf for the host stack. 2864 */ 2865 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2866 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2867 2868 /* 2869 * Firmware gives the indices of the SGE as if the ring is an array 2870 * (meaning that the "next" element will consume 2 indices). 2871 */ 2872 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2873 2874 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2875 "sge_idx=%d frag_size=%d frag_len=%d\n", 2876 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2877 2878 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2879 2880 /* allocate a new mbuf for the SGE */ 2881 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2882 if (rc) { 2883 /* Leave all remaining SGEs in the ring! */ 2884 return (rc); 2885 } 2886 2887 /* update the fragment length */ 2888 m_frag->m_len = frag_len; 2889 2890 /* concatenate the fragment to the head mbuf */ 2891 m_cat(m, m_frag); 2892 fp->eth_q_stats.mbuf_alloc_sge--; 2893 2894 /* update the TPA mbuf size and remaining fragment size */ 2895 m->m_pkthdr.len += frag_len; 2896 frag_size -= frag_len; 2897 } 2898 2899 BLOGD(sc, DBG_LRO, 2900 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2901 fp->index, queue, frag_size); 2902 2903 return (rc); 2904 } 2905 2906 static inline void 2907 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2908 { 2909 int i, j; 2910 2911 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2912 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2913 2914 for (j = 0; j < 2; j++) { 2915 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2916 idx--; 2917 } 2918 } 2919 } 2920 2921 static inline void 2922 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2923 { 2924 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2925 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2926 2927 /* 2928 * Clear the two last indices in the page to 1. These are the indices that 2929 * correspond to the "next" element, hence will never be indicated and 2930 * should be removed from the calculations. 2931 */ 2932 bxe_clear_sge_mask_next_elems(fp); 2933 } 2934 2935 static inline void 2936 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2937 uint16_t idx) 2938 { 2939 uint16_t last_max = fp->last_max_sge; 2940 2941 if (SUB_S16(idx, last_max) > 0) { 2942 fp->last_max_sge = idx; 2943 } 2944 } 2945 2946 static inline void 2947 bxe_update_sge_prod(struct bxe_softc *sc, 2948 struct bxe_fastpath *fp, 2949 uint16_t sge_len, 2950 union eth_sgl_or_raw_data *cqe) 2951 { 2952 uint16_t last_max, last_elem, first_elem; 2953 uint16_t delta = 0; 2954 uint16_t i; 2955 2956 if (!sge_len) { 2957 return; 2958 } 2959 2960 /* first mark all used pages */ 2961 for (i = 0; i < sge_len; i++) { 2962 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2963 RX_SGE(le16toh(cqe->sgl[i]))); 2964 } 2965 2966 BLOGD(sc, DBG_LRO, 2967 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2968 fp->index, sge_len - 1, 2969 le16toh(cqe->sgl[sge_len - 1])); 2970 2971 /* assume that the last SGE index is the biggest */ 2972 bxe_update_last_max_sge(fp, 2973 le16toh(cqe->sgl[sge_len - 1])); 2974 2975 last_max = RX_SGE(fp->last_max_sge); 2976 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2977 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2978 2979 /* if ring is not full */ 2980 if (last_elem + 1 != first_elem) { 2981 last_elem++; 2982 } 2983 2984 /* now update the prod */ 2985 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2986 if (__predict_true(fp->sge_mask[i])) { 2987 break; 2988 } 2989 2990 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2991 delta += BIT_VEC64_ELEM_SZ; 2992 } 2993 2994 if (delta > 0) { 2995 fp->rx_sge_prod += delta; 2996 /* clear page-end entries */ 2997 bxe_clear_sge_mask_next_elems(fp); 2998 } 2999 3000 BLOGD(sc, DBG_LRO, 3001 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3002 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3003 } 3004 3005 /* 3006 * The aggregation on the current TPA queue has completed. Pull the individual 3007 * mbuf fragments together into a single mbuf, perform all necessary checksum 3008 * calculations, and send the resuting mbuf to the stack. 3009 */ 3010 static void 3011 bxe_tpa_stop(struct bxe_softc *sc, 3012 struct bxe_fastpath *fp, 3013 struct bxe_sw_tpa_info *tpa_info, 3014 uint16_t queue, 3015 uint16_t pages, 3016 struct eth_end_agg_rx_cqe *cqe, 3017 uint16_t cqe_idx) 3018 { 3019 if_t ifp = sc->ifp; 3020 struct mbuf *m; 3021 int rc = 0; 3022 3023 BLOGD(sc, DBG_LRO, 3024 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3025 fp->index, queue, tpa_info->placement_offset, 3026 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3027 3028 m = tpa_info->bd.m; 3029 3030 /* allocate a replacement before modifying existing mbuf */ 3031 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3032 if (rc) { 3033 /* drop the frame and log an error */ 3034 fp->eth_q_stats.rx_soft_errors++; 3035 goto bxe_tpa_stop_exit; 3036 } 3037 3038 /* we have a replacement, fixup the current mbuf */ 3039 m_adj(m, tpa_info->placement_offset); 3040 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3041 3042 /* mark the checksums valid (taken care of by the firmware) */ 3043 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3044 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3045 m->m_pkthdr.csum_data = 0xffff; 3046 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3047 CSUM_IP_VALID | 3048 CSUM_DATA_VALID | 3049 CSUM_PSEUDO_HDR); 3050 3051 /* aggregate all of the SGEs into a single mbuf */ 3052 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3053 if (rc) { 3054 /* drop the packet and log an error */ 3055 fp->eth_q_stats.rx_soft_errors++; 3056 m_freem(m); 3057 } else { 3058 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3059 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3060 m->m_flags |= M_VLANTAG; 3061 } 3062 3063 /* assign packet to this interface interface */ 3064 if_setrcvif(m, ifp); 3065 3066 #if __FreeBSD_version >= 800000 3067 /* specify what RSS queue was used for this flow */ 3068 m->m_pkthdr.flowid = fp->index; 3069 BXE_SET_FLOWID(m); 3070 #endif 3071 3072 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3073 fp->eth_q_stats.rx_tpa_pkts++; 3074 3075 /* pass the frame to the stack */ 3076 if_input(ifp, m); 3077 } 3078 3079 /* we passed an mbuf up the stack or dropped the frame */ 3080 fp->eth_q_stats.mbuf_alloc_tpa--; 3081 3082 bxe_tpa_stop_exit: 3083 3084 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3085 fp->rx_tpa_queue_used &= ~(1 << queue); 3086 } 3087 3088 static uint8_t 3089 bxe_service_rxsgl( 3090 struct bxe_fastpath *fp, 3091 uint16_t len, 3092 uint16_t lenonbd, 3093 struct mbuf *m, 3094 struct eth_fast_path_rx_cqe *cqe_fp) 3095 { 3096 struct mbuf *m_frag; 3097 uint16_t frags, frag_len; 3098 uint16_t sge_idx = 0; 3099 uint16_t j; 3100 uint8_t i, rc = 0; 3101 uint32_t frag_size; 3102 3103 /* adjust the mbuf */ 3104 m->m_len = lenonbd; 3105 3106 frag_size = len - lenonbd; 3107 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3108 3109 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3110 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3111 3112 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3113 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3114 m_frag->m_len = frag_len; 3115 3116 /* allocate a new mbuf for the SGE */ 3117 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3118 if (rc) { 3119 /* Leave all remaining SGEs in the ring! */ 3120 return (rc); 3121 } 3122 fp->eth_q_stats.mbuf_alloc_sge--; 3123 3124 /* concatenate the fragment to the head mbuf */ 3125 m_cat(m, m_frag); 3126 3127 frag_size -= frag_len; 3128 } 3129 3130 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3131 3132 return rc; 3133 } 3134 3135 static uint8_t 3136 bxe_rxeof(struct bxe_softc *sc, 3137 struct bxe_fastpath *fp) 3138 { 3139 if_t ifp = sc->ifp; 3140 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3141 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3142 int rx_pkts = 0; 3143 int rc = 0; 3144 3145 BXE_FP_RX_LOCK(fp); 3146 3147 /* CQ "next element" is of the size of the regular element */ 3148 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3149 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3150 hw_cq_cons++; 3151 } 3152 3153 bd_cons = fp->rx_bd_cons; 3154 bd_prod = fp->rx_bd_prod; 3155 bd_prod_fw = bd_prod; 3156 sw_cq_cons = fp->rx_cq_cons; 3157 sw_cq_prod = fp->rx_cq_prod; 3158 3159 /* 3160 * Memory barrier necessary as speculative reads of the rx 3161 * buffer can be ahead of the index in the status block 3162 */ 3163 rmb(); 3164 3165 BLOGD(sc, DBG_RX, 3166 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3167 fp->index, hw_cq_cons, sw_cq_cons); 3168 3169 while (sw_cq_cons != hw_cq_cons) { 3170 struct bxe_sw_rx_bd *rx_buf = NULL; 3171 union eth_rx_cqe *cqe; 3172 struct eth_fast_path_rx_cqe *cqe_fp; 3173 uint8_t cqe_fp_flags; 3174 enum eth_rx_cqe_type cqe_fp_type; 3175 uint16_t len, lenonbd, pad; 3176 struct mbuf *m = NULL; 3177 3178 comp_ring_cons = RCQ(sw_cq_cons); 3179 bd_prod = RX_BD(bd_prod); 3180 bd_cons = RX_BD(bd_cons); 3181 3182 cqe = &fp->rcq_chain[comp_ring_cons]; 3183 cqe_fp = &cqe->fast_path_cqe; 3184 cqe_fp_flags = cqe_fp->type_error_flags; 3185 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3186 3187 BLOGD(sc, DBG_RX, 3188 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3189 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3190 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3191 fp->index, 3192 hw_cq_cons, 3193 sw_cq_cons, 3194 bd_prod, 3195 bd_cons, 3196 CQE_TYPE(cqe_fp_flags), 3197 cqe_fp_flags, 3198 cqe_fp->status_flags, 3199 le32toh(cqe_fp->rss_hash_result), 3200 le16toh(cqe_fp->vlan_tag), 3201 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3202 le16toh(cqe_fp->len_on_bd)); 3203 3204 /* is this a slowpath msg? */ 3205 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3206 bxe_sp_event(sc, fp, cqe); 3207 goto next_cqe; 3208 } 3209 3210 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3211 3212 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3213 struct bxe_sw_tpa_info *tpa_info; 3214 uint16_t frag_size, pages; 3215 uint8_t queue; 3216 3217 if (CQE_TYPE_START(cqe_fp_type)) { 3218 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3219 bd_cons, bd_prod, cqe_fp); 3220 m = NULL; /* packet not ready yet */ 3221 goto next_rx; 3222 } 3223 3224 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3225 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3226 3227 queue = cqe->end_agg_cqe.queue_index; 3228 tpa_info = &fp->rx_tpa_info[queue]; 3229 3230 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3231 fp->index, queue); 3232 3233 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3234 tpa_info->len_on_bd); 3235 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3236 3237 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3238 &cqe->end_agg_cqe, comp_ring_cons); 3239 3240 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3241 3242 goto next_cqe; 3243 } 3244 3245 /* non TPA */ 3246 3247 /* is this an error packet? */ 3248 if (__predict_false(cqe_fp_flags & 3249 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3250 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3251 fp->eth_q_stats.rx_soft_errors++; 3252 goto next_rx; 3253 } 3254 3255 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3256 lenonbd = le16toh(cqe_fp->len_on_bd); 3257 pad = cqe_fp->placement_offset; 3258 3259 m = rx_buf->m; 3260 3261 if (__predict_false(m == NULL)) { 3262 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3263 bd_cons, fp->index); 3264 goto next_rx; 3265 } 3266 3267 /* XXX double copy if packet length under a threshold */ 3268 3269 /* 3270 * If all the buffer descriptors are filled with mbufs then fill in 3271 * the current consumer index with a new BD. Else if a maximum Rx 3272 * buffer limit is imposed then fill in the next producer index. 3273 */ 3274 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3275 (sc->max_rx_bufs != RX_BD_USABLE) ? 3276 bd_prod : bd_cons); 3277 if (rc != 0) { 3278 3279 /* we simply reuse the received mbuf and don't post it to the stack */ 3280 m = NULL; 3281 3282 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3283 fp->index, rc); 3284 fp->eth_q_stats.rx_soft_errors++; 3285 3286 if (sc->max_rx_bufs != RX_BD_USABLE) { 3287 /* copy this consumer index to the producer index */ 3288 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3289 sizeof(struct bxe_sw_rx_bd)); 3290 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3291 } 3292 3293 goto next_rx; 3294 } 3295 3296 /* current mbuf was detached from the bd */ 3297 fp->eth_q_stats.mbuf_alloc_rx--; 3298 3299 /* we allocated a replacement mbuf, fixup the current one */ 3300 m_adj(m, pad); 3301 m->m_pkthdr.len = m->m_len = len; 3302 3303 if ((len > 60) && (len > lenonbd)) { 3304 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3305 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3306 if (rc) 3307 break; 3308 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3309 } else if (lenonbd < len) { 3310 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3311 } 3312 3313 /* assign packet to this interface interface */ 3314 if_setrcvif(m, ifp); 3315 3316 /* assume no hardware checksum has complated */ 3317 m->m_pkthdr.csum_flags = 0; 3318 3319 /* validate checksum if offload enabled */ 3320 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3321 /* check for a valid IP frame */ 3322 if (!(cqe->fast_path_cqe.status_flags & 3323 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3324 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3325 if (__predict_false(cqe_fp_flags & 3326 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3327 fp->eth_q_stats.rx_hw_csum_errors++; 3328 } else { 3329 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3330 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3331 } 3332 } 3333 3334 /* check for a valid TCP/UDP frame */ 3335 if (!(cqe->fast_path_cqe.status_flags & 3336 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3337 if (__predict_false(cqe_fp_flags & 3338 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3339 fp->eth_q_stats.rx_hw_csum_errors++; 3340 } else { 3341 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3342 m->m_pkthdr.csum_data = 0xFFFF; 3343 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3344 CSUM_PSEUDO_HDR); 3345 } 3346 } 3347 } 3348 3349 /* if there is a VLAN tag then flag that info */ 3350 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3351 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3352 m->m_flags |= M_VLANTAG; 3353 } 3354 3355 #if __FreeBSD_version >= 800000 3356 /* specify what RSS queue was used for this flow */ 3357 m->m_pkthdr.flowid = fp->index; 3358 BXE_SET_FLOWID(m); 3359 #endif 3360 3361 next_rx: 3362 3363 bd_cons = RX_BD_NEXT(bd_cons); 3364 bd_prod = RX_BD_NEXT(bd_prod); 3365 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3366 3367 /* pass the frame to the stack */ 3368 if (__predict_true(m != NULL)) { 3369 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3370 rx_pkts++; 3371 if_input(ifp, m); 3372 } 3373 3374 next_cqe: 3375 3376 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3377 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3378 3379 /* limit spinning on the queue */ 3380 if (rc != 0) 3381 break; 3382 3383 if (rx_pkts == sc->rx_budget) { 3384 fp->eth_q_stats.rx_budget_reached++; 3385 break; 3386 } 3387 } /* while work to do */ 3388 3389 fp->rx_bd_cons = bd_cons; 3390 fp->rx_bd_prod = bd_prod_fw; 3391 fp->rx_cq_cons = sw_cq_cons; 3392 fp->rx_cq_prod = sw_cq_prod; 3393 3394 /* Update producers */ 3395 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3396 3397 fp->eth_q_stats.rx_pkts += rx_pkts; 3398 fp->eth_q_stats.rx_calls++; 3399 3400 BXE_FP_RX_UNLOCK(fp); 3401 3402 return (sw_cq_cons != hw_cq_cons); 3403 } 3404 3405 static uint16_t 3406 bxe_free_tx_pkt(struct bxe_softc *sc, 3407 struct bxe_fastpath *fp, 3408 uint16_t idx) 3409 { 3410 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3411 struct eth_tx_start_bd *tx_start_bd; 3412 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3413 uint16_t new_cons; 3414 int nbd; 3415 3416 /* unmap the mbuf from non-paged memory */ 3417 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3418 3419 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3420 nbd = le16toh(tx_start_bd->nbd) - 1; 3421 3422 new_cons = (tx_buf->first_bd + nbd); 3423 3424 /* free the mbuf */ 3425 if (__predict_true(tx_buf->m != NULL)) { 3426 m_freem(tx_buf->m); 3427 fp->eth_q_stats.mbuf_alloc_tx--; 3428 } else { 3429 fp->eth_q_stats.tx_chain_lost_mbuf++; 3430 } 3431 3432 tx_buf->m = NULL; 3433 tx_buf->first_bd = 0; 3434 3435 return (new_cons); 3436 } 3437 3438 /* transmit timeout watchdog */ 3439 static int 3440 bxe_watchdog(struct bxe_softc *sc, 3441 struct bxe_fastpath *fp) 3442 { 3443 BXE_FP_TX_LOCK(fp); 3444 3445 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3446 BXE_FP_TX_UNLOCK(fp); 3447 return (0); 3448 } 3449 3450 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3451 if(sc->trigger_grcdump) { 3452 /* taking grcdump */ 3453 bxe_grc_dump(sc); 3454 } 3455 3456 BXE_FP_TX_UNLOCK(fp); 3457 3458 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3459 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3460 3461 return (-1); 3462 } 3463 3464 /* processes transmit completions */ 3465 static uint8_t 3466 bxe_txeof(struct bxe_softc *sc, 3467 struct bxe_fastpath *fp) 3468 { 3469 if_t ifp = sc->ifp; 3470 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3471 uint16_t tx_bd_avail; 3472 3473 BXE_FP_TX_LOCK_ASSERT(fp); 3474 3475 bd_cons = fp->tx_bd_cons; 3476 hw_cons = le16toh(*fp->tx_cons_sb); 3477 sw_cons = fp->tx_pkt_cons; 3478 3479 while (sw_cons != hw_cons) { 3480 pkt_cons = TX_BD(sw_cons); 3481 3482 BLOGD(sc, DBG_TX, 3483 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3484 fp->index, hw_cons, sw_cons, pkt_cons); 3485 3486 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3487 3488 sw_cons++; 3489 } 3490 3491 fp->tx_pkt_cons = sw_cons; 3492 fp->tx_bd_cons = bd_cons; 3493 3494 BLOGD(sc, DBG_TX, 3495 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3496 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3497 3498 mb(); 3499 3500 tx_bd_avail = bxe_tx_avail(sc, fp); 3501 3502 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3503 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3504 } else { 3505 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3506 } 3507 3508 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3509 /* reset the watchdog timer if there are pending transmits */ 3510 fp->watchdog_timer = BXE_TX_TIMEOUT; 3511 return (TRUE); 3512 } else { 3513 /* clear watchdog when there are no pending transmits */ 3514 fp->watchdog_timer = 0; 3515 return (FALSE); 3516 } 3517 } 3518 3519 static void 3520 bxe_drain_tx_queues(struct bxe_softc *sc) 3521 { 3522 struct bxe_fastpath *fp; 3523 int i, count; 3524 3525 /* wait until all TX fastpath tasks have completed */ 3526 for (i = 0; i < sc->num_queues; i++) { 3527 fp = &sc->fp[i]; 3528 3529 count = 1000; 3530 3531 while (bxe_has_tx_work(fp)) { 3532 3533 BXE_FP_TX_LOCK(fp); 3534 bxe_txeof(sc, fp); 3535 BXE_FP_TX_UNLOCK(fp); 3536 3537 if (count == 0) { 3538 BLOGE(sc, "Timeout waiting for fp[%d] " 3539 "transmits to complete!\n", i); 3540 bxe_panic(sc, ("tx drain failure\n")); 3541 return; 3542 } 3543 3544 count--; 3545 DELAY(1000); 3546 rmb(); 3547 } 3548 } 3549 3550 return; 3551 } 3552 3553 static int 3554 bxe_del_all_macs(struct bxe_softc *sc, 3555 struct ecore_vlan_mac_obj *mac_obj, 3556 int mac_type, 3557 uint8_t wait_for_comp) 3558 { 3559 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3560 int rc; 3561 3562 /* wait for completion of requested */ 3563 if (wait_for_comp) { 3564 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3565 } 3566 3567 /* Set the mac type of addresses we want to clear */ 3568 bxe_set_bit(mac_type, &vlan_mac_flags); 3569 3570 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3571 if (rc < 0) { 3572 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3573 rc, mac_type, wait_for_comp); 3574 } 3575 3576 return (rc); 3577 } 3578 3579 static int 3580 bxe_fill_accept_flags(struct bxe_softc *sc, 3581 uint32_t rx_mode, 3582 unsigned long *rx_accept_flags, 3583 unsigned long *tx_accept_flags) 3584 { 3585 /* Clear the flags first */ 3586 *rx_accept_flags = 0; 3587 *tx_accept_flags = 0; 3588 3589 switch (rx_mode) { 3590 case BXE_RX_MODE_NONE: 3591 /* 3592 * 'drop all' supersedes any accept flags that may have been 3593 * passed to the function. 3594 */ 3595 break; 3596 3597 case BXE_RX_MODE_NORMAL: 3598 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3599 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3600 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3601 3602 /* internal switching mode */ 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3606 3607 break; 3608 3609 case BXE_RX_MODE_ALLMULTI: 3610 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3611 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3612 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3613 3614 /* internal switching mode */ 3615 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3616 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3617 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3618 3619 break; 3620 3621 case BXE_RX_MODE_PROMISC: 3622 /* 3623 * According to deffinition of SI mode, iface in promisc mode 3624 * should receive matched and unmatched (in resolution of port) 3625 * unicast packets. 3626 */ 3627 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3628 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3629 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3630 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3631 3632 /* internal switching mode */ 3633 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3634 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3635 3636 if (IS_MF_SI(sc)) { 3637 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3638 } else { 3639 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3640 } 3641 3642 break; 3643 3644 default: 3645 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3646 return (-1); 3647 } 3648 3649 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3650 if (rx_mode != BXE_RX_MODE_NONE) { 3651 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3652 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3653 } 3654 3655 return (0); 3656 } 3657 3658 static int 3659 bxe_set_q_rx_mode(struct bxe_softc *sc, 3660 uint8_t cl_id, 3661 unsigned long rx_mode_flags, 3662 unsigned long rx_accept_flags, 3663 unsigned long tx_accept_flags, 3664 unsigned long ramrod_flags) 3665 { 3666 struct ecore_rx_mode_ramrod_params ramrod_param; 3667 int rc; 3668 3669 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3670 3671 /* Prepare ramrod parameters */ 3672 ramrod_param.cid = 0; 3673 ramrod_param.cl_id = cl_id; 3674 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3675 ramrod_param.func_id = SC_FUNC(sc); 3676 3677 ramrod_param.pstate = &sc->sp_state; 3678 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3679 3680 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3681 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3682 3683 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3684 3685 ramrod_param.ramrod_flags = ramrod_flags; 3686 ramrod_param.rx_mode_flags = rx_mode_flags; 3687 3688 ramrod_param.rx_accept_flags = rx_accept_flags; 3689 ramrod_param.tx_accept_flags = tx_accept_flags; 3690 3691 rc = ecore_config_rx_mode(sc, &ramrod_param); 3692 if (rc < 0) { 3693 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3694 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3695 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3696 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3697 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3698 return (rc); 3699 } 3700 3701 return (0); 3702 } 3703 3704 static int 3705 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3706 { 3707 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3708 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3709 int rc; 3710 3711 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3712 &tx_accept_flags); 3713 if (rc) { 3714 return (rc); 3715 } 3716 3717 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3718 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3719 3720 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3721 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3722 rx_accept_flags, tx_accept_flags, 3723 ramrod_flags)); 3724 } 3725 3726 /* returns the "mcp load_code" according to global load_count array */ 3727 static int 3728 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3729 { 3730 int path = SC_PATH(sc); 3731 int port = SC_PORT(sc); 3732 3733 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3734 path, load_count[path][0], load_count[path][1], 3735 load_count[path][2]); 3736 load_count[path][0]++; 3737 load_count[path][1 + port]++; 3738 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3739 path, load_count[path][0], load_count[path][1], 3740 load_count[path][2]); 3741 if (load_count[path][0] == 1) { 3742 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3743 } else if (load_count[path][1 + port] == 1) { 3744 return (FW_MSG_CODE_DRV_LOAD_PORT); 3745 } else { 3746 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3747 } 3748 } 3749 3750 /* returns the "mcp load_code" according to global load_count array */ 3751 static int 3752 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3753 { 3754 int port = SC_PORT(sc); 3755 int path = SC_PATH(sc); 3756 3757 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3758 path, load_count[path][0], load_count[path][1], 3759 load_count[path][2]); 3760 load_count[path][0]--; 3761 load_count[path][1 + port]--; 3762 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3763 path, load_count[path][0], load_count[path][1], 3764 load_count[path][2]); 3765 if (load_count[path][0] == 0) { 3766 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3767 } else if (load_count[path][1 + port] == 0) { 3768 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3769 } else { 3770 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3771 } 3772 } 3773 3774 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3775 static uint32_t 3776 bxe_send_unload_req(struct bxe_softc *sc, 3777 int unload_mode) 3778 { 3779 uint32_t reset_code = 0; 3780 3781 /* Select the UNLOAD request mode */ 3782 if (unload_mode == UNLOAD_NORMAL) { 3783 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3784 } else { 3785 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3786 } 3787 3788 /* Send the request to the MCP */ 3789 if (!BXE_NOMCP(sc)) { 3790 reset_code = bxe_fw_command(sc, reset_code, 0); 3791 } else { 3792 reset_code = bxe_nic_unload_no_mcp(sc); 3793 } 3794 3795 return (reset_code); 3796 } 3797 3798 /* send UNLOAD_DONE command to the MCP */ 3799 static void 3800 bxe_send_unload_done(struct bxe_softc *sc, 3801 uint8_t keep_link) 3802 { 3803 uint32_t reset_param = 3804 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3805 3806 /* Report UNLOAD_DONE to MCP */ 3807 if (!BXE_NOMCP(sc)) { 3808 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3809 } 3810 } 3811 3812 static int 3813 bxe_func_wait_started(struct bxe_softc *sc) 3814 { 3815 int tout = 50; 3816 3817 if (!sc->port.pmf) { 3818 return (0); 3819 } 3820 3821 /* 3822 * (assumption: No Attention from MCP at this stage) 3823 * PMF probably in the middle of TX disable/enable transaction 3824 * 1. Sync IRS for default SB 3825 * 2. Sync SP queue - this guarantees us that attention handling started 3826 * 3. Wait, that TX disable/enable transaction completes 3827 * 3828 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3829 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3830 * received completion for the transaction the state is TX_STOPPED. 3831 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3832 * transaction. 3833 */ 3834 3835 /* XXX make sure default SB ISR is done */ 3836 /* need a way to synchronize an irq (intr_mtx?) */ 3837 3838 /* XXX flush any work queues */ 3839 3840 while (ecore_func_get_state(sc, &sc->func_obj) != 3841 ECORE_F_STATE_STARTED && tout--) { 3842 DELAY(20000); 3843 } 3844 3845 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3846 /* 3847 * Failed to complete the transaction in a "good way" 3848 * Force both transactions with CLR bit. 3849 */ 3850 struct ecore_func_state_params func_params = { NULL }; 3851 3852 BLOGE(sc, "Unexpected function state! " 3853 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3854 3855 func_params.f_obj = &sc->func_obj; 3856 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3857 3858 /* STARTED-->TX_STOPPED */ 3859 func_params.cmd = ECORE_F_CMD_TX_STOP; 3860 ecore_func_state_change(sc, &func_params); 3861 3862 /* TX_STOPPED-->STARTED */ 3863 func_params.cmd = ECORE_F_CMD_TX_START; 3864 return (ecore_func_state_change(sc, &func_params)); 3865 } 3866 3867 return (0); 3868 } 3869 3870 static int 3871 bxe_stop_queue(struct bxe_softc *sc, 3872 int index) 3873 { 3874 struct bxe_fastpath *fp = &sc->fp[index]; 3875 struct ecore_queue_state_params q_params = { NULL }; 3876 int rc; 3877 3878 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3879 3880 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3881 /* We want to wait for completion in this context */ 3882 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3883 3884 /* Stop the primary connection: */ 3885 3886 /* ...halt the connection */ 3887 q_params.cmd = ECORE_Q_CMD_HALT; 3888 rc = ecore_queue_state_change(sc, &q_params); 3889 if (rc) { 3890 return (rc); 3891 } 3892 3893 /* ...terminate the connection */ 3894 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3895 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3896 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3897 rc = ecore_queue_state_change(sc, &q_params); 3898 if (rc) { 3899 return (rc); 3900 } 3901 3902 /* ...delete cfc entry */ 3903 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3904 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3905 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3906 return (ecore_queue_state_change(sc, &q_params)); 3907 } 3908 3909 /* wait for the outstanding SP commands */ 3910 static inline uint8_t 3911 bxe_wait_sp_comp(struct bxe_softc *sc, 3912 unsigned long mask) 3913 { 3914 unsigned long tmp; 3915 int tout = 5000; /* wait for 5 secs tops */ 3916 3917 while (tout--) { 3918 mb(); 3919 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3920 return (TRUE); 3921 } 3922 3923 DELAY(1000); 3924 } 3925 3926 mb(); 3927 3928 tmp = atomic_load_acq_long(&sc->sp_state); 3929 if (tmp & mask) { 3930 BLOGE(sc, "Filtering completion timed out: " 3931 "sp_state 0x%lx, mask 0x%lx\n", 3932 tmp, mask); 3933 return (FALSE); 3934 } 3935 3936 return (FALSE); 3937 } 3938 3939 static int 3940 bxe_func_stop(struct bxe_softc *sc) 3941 { 3942 struct ecore_func_state_params func_params = { NULL }; 3943 int rc; 3944 3945 /* prepare parameters for function state transitions */ 3946 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3947 func_params.f_obj = &sc->func_obj; 3948 func_params.cmd = ECORE_F_CMD_STOP; 3949 3950 /* 3951 * Try to stop the function the 'good way'. If it fails (in case 3952 * of a parity error during bxe_chip_cleanup()) and we are 3953 * not in a debug mode, perform a state transaction in order to 3954 * enable further HW_RESET transaction. 3955 */ 3956 rc = ecore_func_state_change(sc, &func_params); 3957 if (rc) { 3958 BLOGE(sc, "FUNC_STOP ramrod failed. " 3959 "Running a dry transaction (%d)\n", rc); 3960 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3961 return (ecore_func_state_change(sc, &func_params)); 3962 } 3963 3964 return (0); 3965 } 3966 3967 static int 3968 bxe_reset_hw(struct bxe_softc *sc, 3969 uint32_t load_code) 3970 { 3971 struct ecore_func_state_params func_params = { NULL }; 3972 3973 /* Prepare parameters for function state transitions */ 3974 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3975 3976 func_params.f_obj = &sc->func_obj; 3977 func_params.cmd = ECORE_F_CMD_HW_RESET; 3978 3979 func_params.params.hw_init.load_phase = load_code; 3980 3981 return (ecore_func_state_change(sc, &func_params)); 3982 } 3983 3984 static void 3985 bxe_int_disable_sync(struct bxe_softc *sc, 3986 int disable_hw) 3987 { 3988 if (disable_hw) { 3989 /* prevent the HW from sending interrupts */ 3990 bxe_int_disable(sc); 3991 } 3992 3993 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3994 /* make sure all ISRs are done */ 3995 3996 /* XXX make sure sp_task is not running */ 3997 /* cancel and flush work queues */ 3998 } 3999 4000 static void 4001 bxe_chip_cleanup(struct bxe_softc *sc, 4002 uint32_t unload_mode, 4003 uint8_t keep_link) 4004 { 4005 int port = SC_PORT(sc); 4006 struct ecore_mcast_ramrod_params rparam = { NULL }; 4007 uint32_t reset_code; 4008 int i, rc = 0; 4009 4010 bxe_drain_tx_queues(sc); 4011 4012 /* give HW time to discard old tx messages */ 4013 DELAY(1000); 4014 4015 /* Clean all ETH MACs */ 4016 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4017 if (rc < 0) { 4018 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4019 } 4020 4021 /* Clean up UC list */ 4022 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4023 if (rc < 0) { 4024 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4025 } 4026 4027 /* Disable LLH */ 4028 if (!CHIP_IS_E1(sc)) { 4029 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4030 } 4031 4032 /* Set "drop all" to stop Rx */ 4033 4034 /* 4035 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4036 * a race between the completion code and this code. 4037 */ 4038 BXE_MCAST_LOCK(sc); 4039 4040 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4041 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4042 } else { 4043 bxe_set_storm_rx_mode(sc); 4044 } 4045 4046 /* Clean up multicast configuration */ 4047 rparam.mcast_obj = &sc->mcast_obj; 4048 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4049 if (rc < 0) { 4050 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4051 } 4052 4053 BXE_MCAST_UNLOCK(sc); 4054 4055 // XXX bxe_iov_chip_cleanup(sc); 4056 4057 /* 4058 * Send the UNLOAD_REQUEST to the MCP. This will return if 4059 * this function should perform FUNCTION, PORT, or COMMON HW 4060 * reset. 4061 */ 4062 reset_code = bxe_send_unload_req(sc, unload_mode); 4063 4064 /* 4065 * (assumption: No Attention from MCP at this stage) 4066 * PMF probably in the middle of TX disable/enable transaction 4067 */ 4068 rc = bxe_func_wait_started(sc); 4069 if (rc) { 4070 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4071 } 4072 4073 /* 4074 * Close multi and leading connections 4075 * Completions for ramrods are collected in a synchronous way 4076 */ 4077 for (i = 0; i < sc->num_queues; i++) { 4078 if (bxe_stop_queue(sc, i)) { 4079 goto unload_error; 4080 } 4081 } 4082 4083 /* 4084 * If SP settings didn't get completed so far - something 4085 * very wrong has happen. 4086 */ 4087 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4088 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4089 } 4090 4091 unload_error: 4092 4093 rc = bxe_func_stop(sc); 4094 if (rc) { 4095 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4096 } 4097 4098 /* disable HW interrupts */ 4099 bxe_int_disable_sync(sc, TRUE); 4100 4101 /* detach interrupts */ 4102 bxe_interrupt_detach(sc); 4103 4104 /* Reset the chip */ 4105 rc = bxe_reset_hw(sc, reset_code); 4106 if (rc) { 4107 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4108 } 4109 4110 /* Report UNLOAD_DONE to MCP */ 4111 bxe_send_unload_done(sc, keep_link); 4112 } 4113 4114 static void 4115 bxe_disable_close_the_gate(struct bxe_softc *sc) 4116 { 4117 uint32_t val; 4118 int port = SC_PORT(sc); 4119 4120 BLOGD(sc, DBG_LOAD, 4121 "Disabling 'close the gates'\n"); 4122 4123 if (CHIP_IS_E1(sc)) { 4124 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4125 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4126 val = REG_RD(sc, addr); 4127 val &= ~(0x300); 4128 REG_WR(sc, addr, val); 4129 } else { 4130 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4131 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4132 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4133 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4134 } 4135 } 4136 4137 /* 4138 * Cleans the object that have internal lists without sending 4139 * ramrods. Should be run when interrutps are disabled. 4140 */ 4141 static void 4142 bxe_squeeze_objects(struct bxe_softc *sc) 4143 { 4144 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4145 struct ecore_mcast_ramrod_params rparam = { NULL }; 4146 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4147 int rc; 4148 4149 /* Cleanup MACs' object first... */ 4150 4151 /* Wait for completion of requested */ 4152 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4153 /* Perform a dry cleanup */ 4154 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4155 4156 /* Clean ETH primary MAC */ 4157 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4158 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4159 &ramrod_flags); 4160 if (rc != 0) { 4161 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4162 } 4163 4164 /* Cleanup UC list */ 4165 vlan_mac_flags = 0; 4166 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4167 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4168 &ramrod_flags); 4169 if (rc != 0) { 4170 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4171 } 4172 4173 /* Now clean mcast object... */ 4174 4175 rparam.mcast_obj = &sc->mcast_obj; 4176 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4177 4178 /* Add a DEL command... */ 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4180 if (rc < 0) { 4181 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4182 } 4183 4184 /* now wait until all pending commands are cleared */ 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 while (rc != 0) { 4188 if (rc < 0) { 4189 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4190 return; 4191 } 4192 4193 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4194 } 4195 } 4196 4197 /* stop the controller */ 4198 static __noinline int 4199 bxe_nic_unload(struct bxe_softc *sc, 4200 uint32_t unload_mode, 4201 uint8_t keep_link) 4202 { 4203 uint8_t global = FALSE; 4204 uint32_t val; 4205 int i; 4206 4207 BXE_CORE_LOCK_ASSERT(sc); 4208 4209 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4210 4211 for (i = 0; i < sc->num_queues; i++) { 4212 struct bxe_fastpath *fp; 4213 4214 fp = &sc->fp[i]; 4215 BXE_FP_TX_LOCK(fp); 4216 BXE_FP_TX_UNLOCK(fp); 4217 } 4218 4219 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4220 4221 /* mark driver as unloaded in shmem2 */ 4222 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4223 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4224 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4225 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4226 } 4227 4228 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4229 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4230 /* 4231 * We can get here if the driver has been unloaded 4232 * during parity error recovery and is either waiting for a 4233 * leader to complete or for other functions to unload and 4234 * then ifconfig down has been issued. In this case we want to 4235 * unload and let other functions to complete a recovery 4236 * process. 4237 */ 4238 sc->recovery_state = BXE_RECOVERY_DONE; 4239 sc->is_leader = 0; 4240 bxe_release_leader_lock(sc); 4241 mb(); 4242 4243 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4244 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4245 " state = 0x%x\n", sc->recovery_state, sc->state); 4246 return (-1); 4247 } 4248 4249 /* 4250 * Nothing to do during unload if previous bxe_nic_load() 4251 * did not completed succesfully - all resourses are released. 4252 */ 4253 if ((sc->state == BXE_STATE_CLOSED) || 4254 (sc->state == BXE_STATE_ERROR)) { 4255 return (0); 4256 } 4257 4258 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4259 mb(); 4260 4261 /* stop tx */ 4262 bxe_tx_disable(sc); 4263 4264 sc->rx_mode = BXE_RX_MODE_NONE; 4265 /* XXX set rx mode ??? */ 4266 4267 if (IS_PF(sc) && !sc->grcdump_done) { 4268 /* set ALWAYS_ALIVE bit in shmem */ 4269 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4270 4271 bxe_drv_pulse(sc); 4272 4273 bxe_stats_handle(sc, STATS_EVENT_STOP); 4274 bxe_save_statistics(sc); 4275 } 4276 4277 /* wait till consumers catch up with producers in all queues */ 4278 bxe_drain_tx_queues(sc); 4279 4280 /* if VF indicate to PF this function is going down (PF will delete sp 4281 * elements and clear initializations 4282 */ 4283 if (IS_VF(sc)) { 4284 ; /* bxe_vfpf_close_vf(sc); */ 4285 } else if (unload_mode != UNLOAD_RECOVERY) { 4286 /* if this is a normal/close unload need to clean up chip */ 4287 if (!sc->grcdump_done) 4288 bxe_chip_cleanup(sc, unload_mode, keep_link); 4289 } else { 4290 /* Send the UNLOAD_REQUEST to the MCP */ 4291 bxe_send_unload_req(sc, unload_mode); 4292 4293 /* 4294 * Prevent transactions to host from the functions on the 4295 * engine that doesn't reset global blocks in case of global 4296 * attention once gloabl blocks are reset and gates are opened 4297 * (the engine which leader will perform the recovery 4298 * last). 4299 */ 4300 if (!CHIP_IS_E1x(sc)) { 4301 bxe_pf_disable(sc); 4302 } 4303 4304 /* disable HW interrupts */ 4305 bxe_int_disable_sync(sc, TRUE); 4306 4307 /* detach interrupts */ 4308 bxe_interrupt_detach(sc); 4309 4310 /* Report UNLOAD_DONE to MCP */ 4311 bxe_send_unload_done(sc, FALSE); 4312 } 4313 4314 /* 4315 * At this stage no more interrupts will arrive so we may safely clean 4316 * the queue'able objects here in case they failed to get cleaned so far. 4317 */ 4318 if (IS_PF(sc)) { 4319 bxe_squeeze_objects(sc); 4320 } 4321 4322 /* There should be no more pending SP commands at this stage */ 4323 sc->sp_state = 0; 4324 4325 sc->port.pmf = 0; 4326 4327 bxe_free_fp_buffers(sc); 4328 4329 if (IS_PF(sc)) { 4330 bxe_free_mem(sc); 4331 } 4332 4333 bxe_free_fw_stats_mem(sc); 4334 4335 sc->state = BXE_STATE_CLOSED; 4336 4337 /* 4338 * Check if there are pending parity attentions. If there are - set 4339 * RECOVERY_IN_PROGRESS. 4340 */ 4341 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4342 bxe_set_reset_in_progress(sc); 4343 4344 /* Set RESET_IS_GLOBAL if needed */ 4345 if (global) { 4346 bxe_set_reset_global(sc); 4347 } 4348 } 4349 4350 /* 4351 * The last driver must disable a "close the gate" if there is no 4352 * parity attention or "process kill" pending. 4353 */ 4354 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4355 bxe_reset_is_done(sc, SC_PATH(sc))) { 4356 bxe_disable_close_the_gate(sc); 4357 } 4358 4359 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4360 4361 return (0); 4362 } 4363 4364 /* 4365 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4366 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4367 */ 4368 static int 4369 bxe_ifmedia_update(struct ifnet *ifp) 4370 { 4371 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4372 struct ifmedia *ifm; 4373 4374 ifm = &sc->ifmedia; 4375 4376 /* We only support Ethernet media type. */ 4377 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4378 return (EINVAL); 4379 } 4380 4381 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4382 case IFM_AUTO: 4383 break; 4384 case IFM_10G_CX4: 4385 case IFM_10G_SR: 4386 case IFM_10G_T: 4387 case IFM_10G_TWINAX: 4388 default: 4389 /* We don't support changing the media type. */ 4390 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4391 IFM_SUBTYPE(ifm->ifm_media)); 4392 return (EINVAL); 4393 } 4394 4395 return (0); 4396 } 4397 4398 /* 4399 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4400 */ 4401 static void 4402 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4403 { 4404 struct bxe_softc *sc = if_getsoftc(ifp); 4405 4406 /* Report link down if the driver isn't running. */ 4407 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4408 ifmr->ifm_active |= IFM_NONE; 4409 return; 4410 } 4411 4412 /* Setup the default interface info. */ 4413 ifmr->ifm_status = IFM_AVALID; 4414 ifmr->ifm_active = IFM_ETHER; 4415 4416 if (sc->link_vars.link_up) { 4417 ifmr->ifm_status |= IFM_ACTIVE; 4418 } else { 4419 ifmr->ifm_active |= IFM_NONE; 4420 return; 4421 } 4422 4423 ifmr->ifm_active |= sc->media; 4424 4425 if (sc->link_vars.duplex == DUPLEX_FULL) { 4426 ifmr->ifm_active |= IFM_FDX; 4427 } else { 4428 ifmr->ifm_active |= IFM_HDX; 4429 } 4430 } 4431 4432 static void 4433 bxe_handle_chip_tq(void *context, 4434 int pending) 4435 { 4436 struct bxe_softc *sc = (struct bxe_softc *)context; 4437 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4438 4439 switch (work) 4440 { 4441 4442 case CHIP_TQ_REINIT: 4443 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4444 /* restart the interface */ 4445 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4446 bxe_periodic_stop(sc); 4447 BXE_CORE_LOCK(sc); 4448 bxe_stop_locked(sc); 4449 bxe_init_locked(sc); 4450 BXE_CORE_UNLOCK(sc); 4451 } 4452 break; 4453 4454 default: 4455 break; 4456 } 4457 } 4458 4459 /* 4460 * Handles any IOCTL calls from the operating system. 4461 * 4462 * Returns: 4463 * 0 = Success, >0 Failure 4464 */ 4465 static int 4466 bxe_ioctl(if_t ifp, 4467 u_long command, 4468 caddr_t data) 4469 { 4470 struct bxe_softc *sc = if_getsoftc(ifp); 4471 struct ifreq *ifr = (struct ifreq *)data; 4472 int mask = 0; 4473 int reinit = 0; 4474 int error = 0; 4475 4476 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4477 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4478 4479 switch (command) 4480 { 4481 case SIOCSIFMTU: 4482 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4483 ifr->ifr_mtu); 4484 4485 if (sc->mtu == ifr->ifr_mtu) { 4486 /* nothing to change */ 4487 break; 4488 } 4489 4490 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4491 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4492 ifr->ifr_mtu, mtu_min, mtu_max); 4493 error = EINVAL; 4494 break; 4495 } 4496 4497 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4498 (unsigned long)ifr->ifr_mtu); 4499 /* 4500 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4501 (unsigned long)ifr->ifr_mtu); 4502 XXX - Not sure why it needs to be atomic 4503 */ 4504 if_setmtu(ifp, ifr->ifr_mtu); 4505 reinit = 1; 4506 break; 4507 4508 case SIOCSIFFLAGS: 4509 /* toggle the interface state up or down */ 4510 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4511 4512 BXE_CORE_LOCK(sc); 4513 /* check if the interface is up */ 4514 if (if_getflags(ifp) & IFF_UP) { 4515 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4516 /* set the receive mode flags */ 4517 bxe_set_rx_mode(sc); 4518 } else if(sc->state != BXE_STATE_DISABLED) { 4519 bxe_init_locked(sc); 4520 } 4521 } else { 4522 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4523 bxe_periodic_stop(sc); 4524 bxe_stop_locked(sc); 4525 } 4526 } 4527 BXE_CORE_UNLOCK(sc); 4528 4529 break; 4530 4531 case SIOCADDMULTI: 4532 case SIOCDELMULTI: 4533 /* add/delete multicast addresses */ 4534 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4535 4536 /* check if the interface is up */ 4537 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4538 /* set the receive mode flags */ 4539 BXE_CORE_LOCK(sc); 4540 bxe_set_rx_mode(sc); 4541 BXE_CORE_UNLOCK(sc); 4542 } 4543 4544 break; 4545 4546 case SIOCSIFCAP: 4547 /* find out which capabilities have changed */ 4548 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4549 4550 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4551 mask); 4552 4553 /* toggle the LRO capabilites enable flag */ 4554 if (mask & IFCAP_LRO) { 4555 if_togglecapenable(ifp, IFCAP_LRO); 4556 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4557 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4558 reinit = 1; 4559 } 4560 4561 /* toggle the TXCSUM checksum capabilites enable flag */ 4562 if (mask & IFCAP_TXCSUM) { 4563 if_togglecapenable(ifp, IFCAP_TXCSUM); 4564 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4565 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4566 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4567 if_sethwassistbits(ifp, (CSUM_IP | 4568 CSUM_TCP | 4569 CSUM_UDP | 4570 CSUM_TSO | 4571 CSUM_TCP_IPV6 | 4572 CSUM_UDP_IPV6), 0); 4573 } else { 4574 if_clearhwassist(ifp); /* XXX */ 4575 } 4576 } 4577 4578 /* toggle the RXCSUM checksum capabilities enable flag */ 4579 if (mask & IFCAP_RXCSUM) { 4580 if_togglecapenable(ifp, IFCAP_RXCSUM); 4581 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4582 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4583 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4584 if_sethwassistbits(ifp, (CSUM_IP | 4585 CSUM_TCP | 4586 CSUM_UDP | 4587 CSUM_TSO | 4588 CSUM_TCP_IPV6 | 4589 CSUM_UDP_IPV6), 0); 4590 } else { 4591 if_clearhwassist(ifp); /* XXX */ 4592 } 4593 } 4594 4595 /* toggle TSO4 capabilities enabled flag */ 4596 if (mask & IFCAP_TSO4) { 4597 if_togglecapenable(ifp, IFCAP_TSO4); 4598 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4599 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4600 } 4601 4602 /* toggle TSO6 capabilities enabled flag */ 4603 if (mask & IFCAP_TSO6) { 4604 if_togglecapenable(ifp, IFCAP_TSO6); 4605 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4606 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4607 } 4608 4609 /* toggle VLAN_HWTSO capabilities enabled flag */ 4610 if (mask & IFCAP_VLAN_HWTSO) { 4611 4612 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4613 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4614 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4615 } 4616 4617 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4618 if (mask & IFCAP_VLAN_HWCSUM) { 4619 /* XXX investigate this... */ 4620 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4621 error = EINVAL; 4622 } 4623 4624 /* toggle VLAN_MTU capabilities enable flag */ 4625 if (mask & IFCAP_VLAN_MTU) { 4626 /* XXX investigate this... */ 4627 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4628 error = EINVAL; 4629 } 4630 4631 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4632 if (mask & IFCAP_VLAN_HWTAGGING) { 4633 /* XXX investigate this... */ 4634 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4635 error = EINVAL; 4636 } 4637 4638 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4639 if (mask & IFCAP_VLAN_HWFILTER) { 4640 /* XXX investigate this... */ 4641 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4642 error = EINVAL; 4643 } 4644 4645 /* XXX not yet... 4646 * IFCAP_WOL_MAGIC 4647 */ 4648 4649 break; 4650 4651 case SIOCSIFMEDIA: 4652 case SIOCGIFMEDIA: 4653 /* set/get interface media */ 4654 BLOGD(sc, DBG_IOCTL, 4655 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4656 (command & 0xff)); 4657 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4658 break; 4659 4660 default: 4661 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4662 (command & 0xff)); 4663 error = ether_ioctl(ifp, command, data); 4664 break; 4665 } 4666 4667 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4668 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4669 "Re-initializing hardware from IOCTL change\n"); 4670 bxe_periodic_stop(sc); 4671 BXE_CORE_LOCK(sc); 4672 bxe_stop_locked(sc); 4673 bxe_init_locked(sc); 4674 BXE_CORE_UNLOCK(sc); 4675 } 4676 4677 return (error); 4678 } 4679 4680 static __noinline void 4681 bxe_dump_mbuf(struct bxe_softc *sc, 4682 struct mbuf *m, 4683 uint8_t contents) 4684 { 4685 char * type; 4686 int i = 0; 4687 4688 if (!(sc->debug & DBG_MBUF)) { 4689 return; 4690 } 4691 4692 if (m == NULL) { 4693 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4694 return; 4695 } 4696 4697 while (m) { 4698 4699 #if __FreeBSD_version >= 1000000 4700 BLOGD(sc, DBG_MBUF, 4701 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4702 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4703 4704 if (m->m_flags & M_PKTHDR) { 4705 BLOGD(sc, DBG_MBUF, 4706 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4707 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4708 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4709 } 4710 #else 4711 BLOGD(sc, DBG_MBUF, 4712 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4713 i, m, m->m_len, m->m_flags, 4714 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4715 4716 if (m->m_flags & M_PKTHDR) { 4717 BLOGD(sc, DBG_MBUF, 4718 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4719 i, m->m_pkthdr.len, m->m_flags, 4720 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4721 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4722 "\22M_PROMISC\23M_NOFREE", 4723 (int)m->m_pkthdr.csum_flags, 4724 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4725 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4726 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4727 "\14CSUM_PSEUDO_HDR"); 4728 } 4729 #endif /* #if __FreeBSD_version >= 1000000 */ 4730 4731 if (m->m_flags & M_EXT) { 4732 switch (m->m_ext.ext_type) { 4733 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4734 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4735 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4736 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4737 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4738 case EXT_PACKET: type = "EXT_PACKET"; break; 4739 case EXT_MBUF: type = "EXT_MBUF"; break; 4740 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4741 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4742 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4743 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4744 default: type = "UNKNOWN"; break; 4745 } 4746 4747 BLOGD(sc, DBG_MBUF, 4748 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4749 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4750 } 4751 4752 if (contents) { 4753 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4754 } 4755 4756 m = m->m_next; 4757 i++; 4758 } 4759 } 4760 4761 /* 4762 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4763 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4764 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4765 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 4766 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4767 */ 4768 static int 4769 bxe_chktso_window(struct bxe_softc *sc, 4770 int nsegs, 4771 bus_dma_segment_t *segs, 4772 struct mbuf *m) 4773 { 4774 uint32_t num_wnds, wnd_size, wnd_sum; 4775 int32_t frag_idx, wnd_idx; 4776 unsigned short lso_mss; 4777 int defrag; 4778 4779 defrag = 0; 4780 wnd_sum = 0; 4781 wnd_size = 10; 4782 num_wnds = nsegs - wnd_size; 4783 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4784 4785 /* 4786 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4787 * first window sum of data while skipping the first assuming it is the 4788 * header in FreeBSD. 4789 */ 4790 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4791 wnd_sum += htole16(segs[frag_idx].ds_len); 4792 } 4793 4794 /* check the first 10 bd window size */ 4795 if (wnd_sum < lso_mss) { 4796 return (1); 4797 } 4798 4799 /* run through the windows */ 4800 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4801 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4802 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4803 /* add the next mbuf len to the len of our new window */ 4804 wnd_sum += htole16(segs[frag_idx].ds_len); 4805 if (wnd_sum < lso_mss) { 4806 return (1); 4807 } 4808 } 4809 4810 return (0); 4811 } 4812 4813 static uint8_t 4814 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4815 struct mbuf *m, 4816 uint32_t *parsing_data) 4817 { 4818 struct ether_vlan_header *eh = NULL; 4819 struct ip *ip4 = NULL; 4820 struct ip6_hdr *ip6 = NULL; 4821 caddr_t ip = NULL; 4822 struct tcphdr *th = NULL; 4823 int e_hlen, ip_hlen, l4_off; 4824 uint16_t proto; 4825 4826 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4827 /* no L4 checksum offload needed */ 4828 return (0); 4829 } 4830 4831 /* get the Ethernet header */ 4832 eh = mtod(m, struct ether_vlan_header *); 4833 4834 /* handle VLAN encapsulation if present */ 4835 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4836 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4837 proto = ntohs(eh->evl_proto); 4838 } else { 4839 e_hlen = ETHER_HDR_LEN; 4840 proto = ntohs(eh->evl_encap_proto); 4841 } 4842 4843 switch (proto) { 4844 case ETHERTYPE_IP: 4845 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4846 ip4 = (m->m_len < sizeof(struct ip)) ? 4847 (struct ip *)m->m_next->m_data : 4848 (struct ip *)(m->m_data + e_hlen); 4849 /* ip_hl is number of 32-bit words */ 4850 ip_hlen = (ip4->ip_hl << 2); 4851 ip = (caddr_t)ip4; 4852 break; 4853 case ETHERTYPE_IPV6: 4854 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4855 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4856 (struct ip6_hdr *)m->m_next->m_data : 4857 (struct ip6_hdr *)(m->m_data + e_hlen); 4858 /* XXX cannot support offload with IPv6 extensions */ 4859 ip_hlen = sizeof(struct ip6_hdr); 4860 ip = (caddr_t)ip6; 4861 break; 4862 default: 4863 /* We can't offload in this case... */ 4864 /* XXX error stat ??? */ 4865 return (0); 4866 } 4867 4868 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4869 l4_off = (e_hlen + ip_hlen); 4870 4871 *parsing_data |= 4872 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4873 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4874 4875 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4876 CSUM_TSO | 4877 CSUM_TCP_IPV6)) { 4878 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4879 th = (struct tcphdr *)(ip + ip_hlen); 4880 /* th_off is number of 32-bit words */ 4881 *parsing_data |= ((th->th_off << 4882 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4883 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4884 return (l4_off + (th->th_off << 2)); /* entire header length */ 4885 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4886 CSUM_UDP_IPV6)) { 4887 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4888 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4889 } else { 4890 /* XXX error stat ??? */ 4891 return (0); 4892 } 4893 } 4894 4895 static uint8_t 4896 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4897 struct mbuf *m, 4898 struct eth_tx_parse_bd_e1x *pbd) 4899 { 4900 struct ether_vlan_header *eh = NULL; 4901 struct ip *ip4 = NULL; 4902 struct ip6_hdr *ip6 = NULL; 4903 caddr_t ip = NULL; 4904 struct tcphdr *th = NULL; 4905 struct udphdr *uh = NULL; 4906 int e_hlen, ip_hlen; 4907 uint16_t proto; 4908 uint8_t hlen; 4909 uint16_t tmp_csum; 4910 uint32_t *tmp_uh; 4911 4912 /* get the Ethernet header */ 4913 eh = mtod(m, struct ether_vlan_header *); 4914 4915 /* handle VLAN encapsulation if present */ 4916 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4917 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4918 proto = ntohs(eh->evl_proto); 4919 } else { 4920 e_hlen = ETHER_HDR_LEN; 4921 proto = ntohs(eh->evl_encap_proto); 4922 } 4923 4924 switch (proto) { 4925 case ETHERTYPE_IP: 4926 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4927 ip4 = (m->m_len < sizeof(struct ip)) ? 4928 (struct ip *)m->m_next->m_data : 4929 (struct ip *)(m->m_data + e_hlen); 4930 /* ip_hl is number of 32-bit words */ 4931 ip_hlen = (ip4->ip_hl << 1); 4932 ip = (caddr_t)ip4; 4933 break; 4934 case ETHERTYPE_IPV6: 4935 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4936 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4937 (struct ip6_hdr *)m->m_next->m_data : 4938 (struct ip6_hdr *)(m->m_data + e_hlen); 4939 /* XXX cannot support offload with IPv6 extensions */ 4940 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4941 ip = (caddr_t)ip6; 4942 break; 4943 default: 4944 /* We can't offload in this case... */ 4945 /* XXX error stat ??? */ 4946 return (0); 4947 } 4948 4949 hlen = (e_hlen >> 1); 4950 4951 /* note that rest of global_data is indirectly zeroed here */ 4952 if (m->m_flags & M_VLANTAG) { 4953 pbd->global_data = 4954 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4955 } else { 4956 pbd->global_data = htole16(hlen); 4957 } 4958 4959 pbd->ip_hlen_w = ip_hlen; 4960 4961 hlen += pbd->ip_hlen_w; 4962 4963 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4964 4965 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4966 CSUM_TSO | 4967 CSUM_TCP_IPV6)) { 4968 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4969 /* th_off is number of 32-bit words */ 4970 hlen += (uint16_t)(th->th_off << 1); 4971 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4972 CSUM_UDP_IPV6)) { 4973 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4974 hlen += (sizeof(struct udphdr) / 2); 4975 } else { 4976 /* valid case as only CSUM_IP was set */ 4977 return (0); 4978 } 4979 4980 pbd->total_hlen_w = htole16(hlen); 4981 4982 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4983 CSUM_TSO | 4984 CSUM_TCP_IPV6)) { 4985 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4986 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4987 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4988 CSUM_UDP_IPV6)) { 4989 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4990 4991 /* 4992 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 4993 * checksums and does not know anything about the UDP header and where 4994 * the checksum field is located. It only knows about TCP. Therefore 4995 * we "lie" to the hardware for outgoing UDP packets w/ checksum 4996 * offload. Since the checksum field offset for TCP is 16 bytes and 4997 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 4998 * bytes less than the start of the UDP header. This allows the 4999 * hardware to write the checksum in the correct spot. But the 5000 * hardware will compute a checksum which includes the last 10 bytes 5001 * of the IP header. To correct this we tweak the stack computed 5002 * pseudo checksum by folding in the calculation of the inverse 5003 * checksum for those final 10 bytes of the IP header. This allows 5004 * the correct checksum to be computed by the hardware. 5005 */ 5006 5007 /* set pointer 10 bytes before UDP header */ 5008 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5009 5010 /* calculate a pseudo header checksum over the first 10 bytes */ 5011 tmp_csum = in_pseudo(*tmp_uh, 5012 *(tmp_uh + 1), 5013 *(uint16_t *)(tmp_uh + 2)); 5014 5015 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5016 } 5017 5018 return (hlen * 2); /* entire header length, number of bytes */ 5019 } 5020 5021 static void 5022 bxe_set_pbd_lso_e2(struct mbuf *m, 5023 uint32_t *parsing_data) 5024 { 5025 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5026 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5027 ETH_TX_PARSE_BD_E2_LSO_MSS); 5028 5029 /* XXX test for IPv6 with extension header... */ 5030 } 5031 5032 static void 5033 bxe_set_pbd_lso(struct mbuf *m, 5034 struct eth_tx_parse_bd_e1x *pbd) 5035 { 5036 struct ether_vlan_header *eh = NULL; 5037 struct ip *ip = NULL; 5038 struct tcphdr *th = NULL; 5039 int e_hlen; 5040 5041 /* get the Ethernet header */ 5042 eh = mtod(m, struct ether_vlan_header *); 5043 5044 /* handle VLAN encapsulation if present */ 5045 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5046 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5047 5048 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5049 /* XXX assuming IPv4 */ 5050 ip = (struct ip *)(m->m_data + e_hlen); 5051 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5052 5053 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5054 pbd->tcp_send_seq = ntohl(th->th_seq); 5055 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5056 5057 #if 1 5058 /* XXX IPv4 */ 5059 pbd->ip_id = ntohs(ip->ip_id); 5060 pbd->tcp_pseudo_csum = 5061 ntohs(in_pseudo(ip->ip_src.s_addr, 5062 ip->ip_dst.s_addr, 5063 htons(IPPROTO_TCP))); 5064 #else 5065 /* XXX IPv6 */ 5066 pbd->tcp_pseudo_csum = 5067 ntohs(in_pseudo(&ip6->ip6_src, 5068 &ip6->ip6_dst, 5069 htons(IPPROTO_TCP))); 5070 #endif 5071 5072 pbd->global_data |= 5073 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5074 } 5075 5076 /* 5077 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5078 * visible to the controller. 5079 * 5080 * If an mbuf is submitted to this routine and cannot be given to the 5081 * controller (e.g. it has too many fragments) then the function may free 5082 * the mbuf and return to the caller. 5083 * 5084 * Returns: 5085 * 0 = Success, !0 = Failure 5086 * Note the side effect that an mbuf may be freed if it causes a problem. 5087 */ 5088 static int 5089 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5090 { 5091 bus_dma_segment_t segs[32]; 5092 struct mbuf *m0; 5093 struct bxe_sw_tx_bd *tx_buf; 5094 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5095 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5096 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5097 struct eth_tx_bd *tx_data_bd; 5098 struct eth_tx_bd *tx_total_pkt_size_bd; 5099 struct eth_tx_start_bd *tx_start_bd; 5100 uint16_t bd_prod, pkt_prod, total_pkt_size; 5101 uint8_t mac_type; 5102 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5103 struct bxe_softc *sc; 5104 uint16_t tx_bd_avail; 5105 struct ether_vlan_header *eh; 5106 uint32_t pbd_e2_parsing_data = 0; 5107 uint8_t hlen = 0; 5108 int tmp_bd; 5109 int i; 5110 5111 sc = fp->sc; 5112 5113 #if __FreeBSD_version >= 800000 5114 M_ASSERTPKTHDR(*m_head); 5115 #endif /* #if __FreeBSD_version >= 800000 */ 5116 5117 m0 = *m_head; 5118 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5119 tx_start_bd = NULL; 5120 tx_data_bd = NULL; 5121 tx_total_pkt_size_bd = NULL; 5122 5123 /* get the H/W pointer for packets and BDs */ 5124 pkt_prod = fp->tx_pkt_prod; 5125 bd_prod = fp->tx_bd_prod; 5126 5127 mac_type = UNICAST_ADDRESS; 5128 5129 /* map the mbuf into the next open DMAable memory */ 5130 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5131 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5132 tx_buf->m_map, m0, 5133 segs, &nsegs, BUS_DMA_NOWAIT); 5134 5135 /* mapping errors */ 5136 if(__predict_false(error != 0)) { 5137 fp->eth_q_stats.tx_dma_mapping_failure++; 5138 if (error == ENOMEM) { 5139 /* resource issue, try again later */ 5140 rc = ENOMEM; 5141 } else if (error == EFBIG) { 5142 /* possibly recoverable with defragmentation */ 5143 fp->eth_q_stats.mbuf_defrag_attempts++; 5144 m0 = m_defrag(*m_head, M_NOWAIT); 5145 if (m0 == NULL) { 5146 fp->eth_q_stats.mbuf_defrag_failures++; 5147 rc = ENOBUFS; 5148 } else { 5149 /* defrag successful, try mapping again */ 5150 *m_head = m0; 5151 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5152 tx_buf->m_map, m0, 5153 segs, &nsegs, BUS_DMA_NOWAIT); 5154 if (error) { 5155 fp->eth_q_stats.tx_dma_mapping_failure++; 5156 rc = error; 5157 } 5158 } 5159 } else { 5160 /* unknown, unrecoverable mapping error */ 5161 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5162 bxe_dump_mbuf(sc, m0, FALSE); 5163 rc = error; 5164 } 5165 5166 goto bxe_tx_encap_continue; 5167 } 5168 5169 tx_bd_avail = bxe_tx_avail(sc, fp); 5170 5171 /* make sure there is enough room in the send queue */ 5172 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5173 /* Recoverable, try again later. */ 5174 fp->eth_q_stats.tx_hw_queue_full++; 5175 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5176 rc = ENOMEM; 5177 goto bxe_tx_encap_continue; 5178 } 5179 5180 /* capture the current H/W TX chain high watermark */ 5181 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5182 (TX_BD_USABLE - tx_bd_avail))) { 5183 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5184 } 5185 5186 /* make sure it fits in the packet window */ 5187 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5188 /* 5189 * The mbuf may be to big for the controller to handle. If the frame 5190 * is a TSO frame we'll need to do an additional check. 5191 */ 5192 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5193 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5194 goto bxe_tx_encap_continue; /* OK to send */ 5195 } else { 5196 fp->eth_q_stats.tx_window_violation_tso++; 5197 } 5198 } else { 5199 fp->eth_q_stats.tx_window_violation_std++; 5200 } 5201 5202 /* lets try to defragment this mbuf and remap it */ 5203 fp->eth_q_stats.mbuf_defrag_attempts++; 5204 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5205 5206 m0 = m_defrag(*m_head, M_NOWAIT); 5207 if (m0 == NULL) { 5208 fp->eth_q_stats.mbuf_defrag_failures++; 5209 /* Ugh, just drop the frame... :( */ 5210 rc = ENOBUFS; 5211 } else { 5212 /* defrag successful, try mapping again */ 5213 *m_head = m0; 5214 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5215 tx_buf->m_map, m0, 5216 segs, &nsegs, BUS_DMA_NOWAIT); 5217 if (error) { 5218 fp->eth_q_stats.tx_dma_mapping_failure++; 5219 /* No sense in trying to defrag/copy chain, drop it. :( */ 5220 rc = error; 5221 } 5222 else { 5223 /* if the chain is still too long then drop it */ 5224 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5225 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5226 rc = ENODEV; 5227 } 5228 } 5229 } 5230 } 5231 5232 bxe_tx_encap_continue: 5233 5234 /* Check for errors */ 5235 if (rc) { 5236 if (rc == ENOMEM) { 5237 /* recoverable try again later */ 5238 } else { 5239 fp->eth_q_stats.tx_soft_errors++; 5240 fp->eth_q_stats.mbuf_alloc_tx--; 5241 m_freem(*m_head); 5242 *m_head = NULL; 5243 } 5244 5245 return (rc); 5246 } 5247 5248 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5249 if (m0->m_flags & M_BCAST) { 5250 mac_type = BROADCAST_ADDRESS; 5251 } else if (m0->m_flags & M_MCAST) { 5252 mac_type = MULTICAST_ADDRESS; 5253 } 5254 5255 /* store the mbuf into the mbuf ring */ 5256 tx_buf->m = m0; 5257 tx_buf->first_bd = fp->tx_bd_prod; 5258 tx_buf->flags = 0; 5259 5260 /* prepare the first transmit (start) BD for the mbuf */ 5261 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5262 5263 BLOGD(sc, DBG_TX, 5264 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5265 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5266 5267 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5268 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5269 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5270 total_pkt_size += tx_start_bd->nbytes; 5271 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5272 5273 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5274 5275 /* all frames have at least Start BD + Parsing BD */ 5276 nbds = nsegs + 1; 5277 tx_start_bd->nbd = htole16(nbds); 5278 5279 if (m0->m_flags & M_VLANTAG) { 5280 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5281 tx_start_bd->bd_flags.as_bitfield |= 5282 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5283 } else { 5284 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5285 if (IS_VF(sc)) { 5286 /* map ethernet header to find type and header length */ 5287 eh = mtod(m0, struct ether_vlan_header *); 5288 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5289 } else { 5290 /* used by FW for packet accounting */ 5291 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5292 } 5293 } 5294 5295 /* 5296 * add a parsing BD from the chain. The parsing BD is always added 5297 * though it is only used for TSO and chksum 5298 */ 5299 bd_prod = TX_BD_NEXT(bd_prod); 5300 5301 if (m0->m_pkthdr.csum_flags) { 5302 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5303 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5304 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5305 } 5306 5307 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5308 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5309 ETH_TX_BD_FLAGS_L4_CSUM); 5310 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5311 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5312 ETH_TX_BD_FLAGS_IS_UDP | 5313 ETH_TX_BD_FLAGS_L4_CSUM); 5314 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5315 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5316 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5317 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5318 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5319 ETH_TX_BD_FLAGS_IS_UDP); 5320 } 5321 } 5322 5323 if (!CHIP_IS_E1x(sc)) { 5324 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5325 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5326 5327 if (m0->m_pkthdr.csum_flags) { 5328 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5329 } 5330 5331 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5332 mac_type); 5333 } else { 5334 uint16_t global_data = 0; 5335 5336 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5337 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5338 5339 if (m0->m_pkthdr.csum_flags) { 5340 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5341 } 5342 5343 SET_FLAG(global_data, 5344 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5345 pbd_e1x->global_data |= htole16(global_data); 5346 } 5347 5348 /* setup the parsing BD with TSO specific info */ 5349 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5350 fp->eth_q_stats.tx_ofld_frames_lso++; 5351 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5352 5353 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5354 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5355 5356 /* split the first BD into header/data making the fw job easy */ 5357 nbds++; 5358 tx_start_bd->nbd = htole16(nbds); 5359 tx_start_bd->nbytes = htole16(hlen); 5360 5361 bd_prod = TX_BD_NEXT(bd_prod); 5362 5363 /* new transmit BD after the tx_parse_bd */ 5364 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5365 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5366 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5367 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5368 if (tx_total_pkt_size_bd == NULL) { 5369 tx_total_pkt_size_bd = tx_data_bd; 5370 } 5371 5372 BLOGD(sc, DBG_TX, 5373 "TSO split header size is %d (%x:%x) nbds %d\n", 5374 le16toh(tx_start_bd->nbytes), 5375 le32toh(tx_start_bd->addr_hi), 5376 le32toh(tx_start_bd->addr_lo), 5377 nbds); 5378 } 5379 5380 if (!CHIP_IS_E1x(sc)) { 5381 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5382 } else { 5383 bxe_set_pbd_lso(m0, pbd_e1x); 5384 } 5385 } 5386 5387 if (pbd_e2_parsing_data) { 5388 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5389 } 5390 5391 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5392 for (i = 1; i < nsegs ; i++) { 5393 bd_prod = TX_BD_NEXT(bd_prod); 5394 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5395 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5396 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5397 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5398 if (tx_total_pkt_size_bd == NULL) { 5399 tx_total_pkt_size_bd = tx_data_bd; 5400 } 5401 total_pkt_size += tx_data_bd->nbytes; 5402 } 5403 5404 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5405 5406 if (tx_total_pkt_size_bd != NULL) { 5407 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5408 } 5409 5410 if (__predict_false(sc->debug & DBG_TX)) { 5411 tmp_bd = tx_buf->first_bd; 5412 for (i = 0; i < nbds; i++) 5413 { 5414 if (i == 0) { 5415 BLOGD(sc, DBG_TX, 5416 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5417 "bd_flags=0x%x hdr_nbds=%d\n", 5418 tx_start_bd, 5419 tmp_bd, 5420 le16toh(tx_start_bd->nbd), 5421 le16toh(tx_start_bd->vlan_or_ethertype), 5422 tx_start_bd->bd_flags.as_bitfield, 5423 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5424 } else if (i == 1) { 5425 if (pbd_e1x) { 5426 BLOGD(sc, DBG_TX, 5427 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5428 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5429 "tcp_seq=%u total_hlen_w=%u\n", 5430 pbd_e1x, 5431 tmp_bd, 5432 pbd_e1x->global_data, 5433 pbd_e1x->ip_hlen_w, 5434 pbd_e1x->ip_id, 5435 pbd_e1x->lso_mss, 5436 pbd_e1x->tcp_flags, 5437 pbd_e1x->tcp_pseudo_csum, 5438 pbd_e1x->tcp_send_seq, 5439 le16toh(pbd_e1x->total_hlen_w)); 5440 } else { /* if (pbd_e2) */ 5441 BLOGD(sc, DBG_TX, 5442 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5443 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5444 pbd_e2, 5445 tmp_bd, 5446 pbd_e2->data.mac_addr.dst_hi, 5447 pbd_e2->data.mac_addr.dst_mid, 5448 pbd_e2->data.mac_addr.dst_lo, 5449 pbd_e2->data.mac_addr.src_hi, 5450 pbd_e2->data.mac_addr.src_mid, 5451 pbd_e2->data.mac_addr.src_lo, 5452 pbd_e2->parsing_data); 5453 } 5454 } 5455 5456 if (i != 1) { /* skip parse db as it doesn't hold data */ 5457 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5458 BLOGD(sc, DBG_TX, 5459 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5460 tx_data_bd, 5461 tmp_bd, 5462 le16toh(tx_data_bd->nbytes), 5463 le32toh(tx_data_bd->addr_hi), 5464 le32toh(tx_data_bd->addr_lo)); 5465 } 5466 5467 tmp_bd = TX_BD_NEXT(tmp_bd); 5468 } 5469 } 5470 5471 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5472 5473 /* update TX BD producer index value for next TX */ 5474 bd_prod = TX_BD_NEXT(bd_prod); 5475 5476 /* 5477 * If the chain of tx_bd's describing this frame is adjacent to or spans 5478 * an eth_tx_next_bd element then we need to increment the nbds value. 5479 */ 5480 if (TX_BD_IDX(bd_prod) < nbds) { 5481 nbds++; 5482 } 5483 5484 /* don't allow reordering of writes for nbd and packets */ 5485 mb(); 5486 5487 fp->tx_db.data.prod += nbds; 5488 5489 /* producer points to the next free tx_bd at this point */ 5490 fp->tx_pkt_prod++; 5491 fp->tx_bd_prod = bd_prod; 5492 5493 DOORBELL(sc, fp->index, fp->tx_db.raw); 5494 5495 fp->eth_q_stats.tx_pkts++; 5496 5497 /* Prevent speculative reads from getting ahead of the status block. */ 5498 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5499 0, 0, BUS_SPACE_BARRIER_READ); 5500 5501 /* Prevent speculative reads from getting ahead of the doorbell. */ 5502 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5503 0, 0, BUS_SPACE_BARRIER_READ); 5504 5505 return (0); 5506 } 5507 5508 static void 5509 bxe_tx_start_locked(struct bxe_softc *sc, 5510 if_t ifp, 5511 struct bxe_fastpath *fp) 5512 { 5513 struct mbuf *m = NULL; 5514 int tx_count = 0; 5515 uint16_t tx_bd_avail; 5516 5517 BXE_FP_TX_LOCK_ASSERT(fp); 5518 5519 /* keep adding entries while there are frames to send */ 5520 while (!if_sendq_empty(ifp)) { 5521 5522 /* 5523 * check for any frames to send 5524 * dequeue can still be NULL even if queue is not empty 5525 */ 5526 m = if_dequeue(ifp); 5527 if (__predict_false(m == NULL)) { 5528 break; 5529 } 5530 5531 /* the mbuf now belongs to us */ 5532 fp->eth_q_stats.mbuf_alloc_tx++; 5533 5534 /* 5535 * Put the frame into the transmit ring. If we don't have room, 5536 * place the mbuf back at the head of the TX queue, set the 5537 * OACTIVE flag, and wait for the NIC to drain the chain. 5538 */ 5539 if (__predict_false(bxe_tx_encap(fp, &m))) { 5540 fp->eth_q_stats.tx_encap_failures++; 5541 if (m != NULL) { 5542 /* mark the TX queue as full and return the frame */ 5543 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5544 if_sendq_prepend(ifp, m); 5545 fp->eth_q_stats.mbuf_alloc_tx--; 5546 fp->eth_q_stats.tx_queue_xoff++; 5547 } 5548 5549 /* stop looking for more work */ 5550 break; 5551 } 5552 5553 /* the frame was enqueued successfully */ 5554 tx_count++; 5555 5556 /* send a copy of the frame to any BPF listeners. */ 5557 if_etherbpfmtap(ifp, m); 5558 5559 tx_bd_avail = bxe_tx_avail(sc, fp); 5560 5561 /* handle any completions if we're running low */ 5562 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5563 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5564 bxe_txeof(sc, fp); 5565 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5566 break; 5567 } 5568 } 5569 } 5570 5571 /* all TX packets were dequeued and/or the tx ring is full */ 5572 if (tx_count > 0) { 5573 /* reset the TX watchdog timeout timer */ 5574 fp->watchdog_timer = BXE_TX_TIMEOUT; 5575 } 5576 } 5577 5578 /* Legacy (non-RSS) dispatch routine */ 5579 static void 5580 bxe_tx_start(if_t ifp) 5581 { 5582 struct bxe_softc *sc; 5583 struct bxe_fastpath *fp; 5584 5585 sc = if_getsoftc(ifp); 5586 5587 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5588 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5589 return; 5590 } 5591 5592 if (!sc->link_vars.link_up) { 5593 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5594 return; 5595 } 5596 5597 fp = &sc->fp[0]; 5598 5599 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5600 fp->eth_q_stats.tx_queue_full_return++; 5601 return; 5602 } 5603 5604 BXE_FP_TX_LOCK(fp); 5605 bxe_tx_start_locked(sc, ifp, fp); 5606 BXE_FP_TX_UNLOCK(fp); 5607 } 5608 5609 #if __FreeBSD_version >= 800000 5610 5611 static int 5612 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5613 if_t ifp, 5614 struct bxe_fastpath *fp, 5615 struct mbuf *m) 5616 { 5617 struct buf_ring *tx_br = fp->tx_br; 5618 struct mbuf *next; 5619 int depth, rc, tx_count; 5620 uint16_t tx_bd_avail; 5621 5622 rc = tx_count = 0; 5623 5624 BXE_FP_TX_LOCK_ASSERT(fp); 5625 5626 if (!tx_br) { 5627 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5628 return (EINVAL); 5629 } 5630 5631 if (!sc->link_vars.link_up || 5632 (if_getdrvflags(ifp) & 5633 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5634 rc = drbr_enqueue(ifp, tx_br, m); 5635 goto bxe_tx_mq_start_locked_exit; 5636 } 5637 5638 /* fetch the depth of the driver queue */ 5639 depth = drbr_inuse_drv(ifp, tx_br); 5640 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5641 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5642 } 5643 5644 if (m == NULL) { 5645 /* no new work, check for pending frames */ 5646 next = drbr_dequeue_drv(ifp, tx_br); 5647 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5648 /* have both new and pending work, maintain packet order */ 5649 rc = drbr_enqueue(ifp, tx_br, m); 5650 if (rc != 0) { 5651 fp->eth_q_stats.tx_soft_errors++; 5652 goto bxe_tx_mq_start_locked_exit; 5653 } 5654 next = drbr_dequeue_drv(ifp, tx_br); 5655 } else { 5656 /* new work only and nothing pending */ 5657 next = m; 5658 } 5659 5660 /* keep adding entries while there are frames to send */ 5661 while (next != NULL) { 5662 5663 /* the mbuf now belongs to us */ 5664 fp->eth_q_stats.mbuf_alloc_tx++; 5665 5666 /* 5667 * Put the frame into the transmit ring. If we don't have room, 5668 * place the mbuf back at the head of the TX queue, set the 5669 * OACTIVE flag, and wait for the NIC to drain the chain. 5670 */ 5671 rc = bxe_tx_encap(fp, &next); 5672 if (__predict_false(rc != 0)) { 5673 fp->eth_q_stats.tx_encap_failures++; 5674 if (next != NULL) { 5675 /* mark the TX queue as full and save the frame */ 5676 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5677 /* XXX this may reorder the frame */ 5678 rc = drbr_enqueue(ifp, tx_br, next); 5679 fp->eth_q_stats.mbuf_alloc_tx--; 5680 fp->eth_q_stats.tx_frames_deferred++; 5681 } 5682 5683 /* stop looking for more work */ 5684 break; 5685 } 5686 5687 /* the transmit frame was enqueued successfully */ 5688 tx_count++; 5689 5690 /* send a copy of the frame to any BPF listeners */ 5691 if_etherbpfmtap(ifp, next); 5692 5693 tx_bd_avail = bxe_tx_avail(sc, fp); 5694 5695 /* handle any completions if we're running low */ 5696 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5697 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5698 bxe_txeof(sc, fp); 5699 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5700 break; 5701 } 5702 } 5703 5704 next = drbr_dequeue_drv(ifp, tx_br); 5705 } 5706 5707 /* all TX packets were dequeued and/or the tx ring is full */ 5708 if (tx_count > 0) { 5709 /* reset the TX watchdog timeout timer */ 5710 fp->watchdog_timer = BXE_TX_TIMEOUT; 5711 } 5712 5713 bxe_tx_mq_start_locked_exit: 5714 5715 return (rc); 5716 } 5717 5718 /* Multiqueue (TSS) dispatch routine. */ 5719 static int 5720 bxe_tx_mq_start(struct ifnet *ifp, 5721 struct mbuf *m) 5722 { 5723 struct bxe_softc *sc = if_getsoftc(ifp); 5724 struct bxe_fastpath *fp; 5725 int fp_index, rc; 5726 5727 fp_index = 0; /* default is the first queue */ 5728 5729 /* check if flowid is set */ 5730 5731 if (BXE_VALID_FLOWID(m)) 5732 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5733 5734 fp = &sc->fp[fp_index]; 5735 5736 if (BXE_FP_TX_TRYLOCK(fp)) { 5737 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5738 BXE_FP_TX_UNLOCK(fp); 5739 } else 5740 rc = drbr_enqueue(ifp, fp->tx_br, m); 5741 5742 return (rc); 5743 } 5744 5745 static void 5746 bxe_mq_flush(struct ifnet *ifp) 5747 { 5748 struct bxe_softc *sc = if_getsoftc(ifp); 5749 struct bxe_fastpath *fp; 5750 struct mbuf *m; 5751 int i; 5752 5753 for (i = 0; i < sc->num_queues; i++) { 5754 fp = &sc->fp[i]; 5755 5756 if (fp->state != BXE_FP_STATE_OPEN) { 5757 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5758 fp->index, fp->state); 5759 continue; 5760 } 5761 5762 if (fp->tx_br != NULL) { 5763 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5764 BXE_FP_TX_LOCK(fp); 5765 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5766 m_freem(m); 5767 } 5768 BXE_FP_TX_UNLOCK(fp); 5769 } 5770 } 5771 5772 if_qflush(ifp); 5773 } 5774 5775 #endif /* FreeBSD_version >= 800000 */ 5776 5777 static uint16_t 5778 bxe_cid_ilt_lines(struct bxe_softc *sc) 5779 { 5780 if (IS_SRIOV(sc)) { 5781 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5782 } 5783 return (L2_ILT_LINES(sc)); 5784 } 5785 5786 static void 5787 bxe_ilt_set_info(struct bxe_softc *sc) 5788 { 5789 struct ilt_client_info *ilt_client; 5790 struct ecore_ilt *ilt = sc->ilt; 5791 uint16_t line = 0; 5792 5793 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5794 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5795 5796 /* CDU */ 5797 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5798 ilt_client->client_num = ILT_CLIENT_CDU; 5799 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5800 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5801 ilt_client->start = line; 5802 line += bxe_cid_ilt_lines(sc); 5803 5804 if (CNIC_SUPPORT(sc)) { 5805 line += CNIC_ILT_LINES; 5806 } 5807 5808 ilt_client->end = (line - 1); 5809 5810 BLOGD(sc, DBG_LOAD, 5811 "ilt client[CDU]: start %d, end %d, " 5812 "psz 0x%x, flags 0x%x, hw psz %d\n", 5813 ilt_client->start, ilt_client->end, 5814 ilt_client->page_size, 5815 ilt_client->flags, 5816 ilog2(ilt_client->page_size >> 12)); 5817 5818 /* QM */ 5819 if (QM_INIT(sc->qm_cid_count)) { 5820 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5821 ilt_client->client_num = ILT_CLIENT_QM; 5822 ilt_client->page_size = QM_ILT_PAGE_SZ; 5823 ilt_client->flags = 0; 5824 ilt_client->start = line; 5825 5826 /* 4 bytes for each cid */ 5827 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5828 QM_ILT_PAGE_SZ); 5829 5830 ilt_client->end = (line - 1); 5831 5832 BLOGD(sc, DBG_LOAD, 5833 "ilt client[QM]: start %d, end %d, " 5834 "psz 0x%x, flags 0x%x, hw psz %d\n", 5835 ilt_client->start, ilt_client->end, 5836 ilt_client->page_size, ilt_client->flags, 5837 ilog2(ilt_client->page_size >> 12)); 5838 } 5839 5840 if (CNIC_SUPPORT(sc)) { 5841 /* SRC */ 5842 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5843 ilt_client->client_num = ILT_CLIENT_SRC; 5844 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5845 ilt_client->flags = 0; 5846 ilt_client->start = line; 5847 line += SRC_ILT_LINES; 5848 ilt_client->end = (line - 1); 5849 5850 BLOGD(sc, DBG_LOAD, 5851 "ilt client[SRC]: start %d, end %d, " 5852 "psz 0x%x, flags 0x%x, hw psz %d\n", 5853 ilt_client->start, ilt_client->end, 5854 ilt_client->page_size, ilt_client->flags, 5855 ilog2(ilt_client->page_size >> 12)); 5856 5857 /* TM */ 5858 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5859 ilt_client->client_num = ILT_CLIENT_TM; 5860 ilt_client->page_size = TM_ILT_PAGE_SZ; 5861 ilt_client->flags = 0; 5862 ilt_client->start = line; 5863 line += TM_ILT_LINES; 5864 ilt_client->end = (line - 1); 5865 5866 BLOGD(sc, DBG_LOAD, 5867 "ilt client[TM]: start %d, end %d, " 5868 "psz 0x%x, flags 0x%x, hw psz %d\n", 5869 ilt_client->start, ilt_client->end, 5870 ilt_client->page_size, ilt_client->flags, 5871 ilog2(ilt_client->page_size >> 12)); 5872 } 5873 5874 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5875 } 5876 5877 static void 5878 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5879 { 5880 int i; 5881 uint32_t rx_buf_size; 5882 5883 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5884 5885 for (i = 0; i < sc->num_queues; i++) { 5886 if(rx_buf_size <= MCLBYTES){ 5887 sc->fp[i].rx_buf_size = rx_buf_size; 5888 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5889 }else if (rx_buf_size <= MJUMPAGESIZE){ 5890 sc->fp[i].rx_buf_size = rx_buf_size; 5891 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5892 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5893 sc->fp[i].rx_buf_size = MCLBYTES; 5894 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5895 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5896 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5897 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5898 }else { 5899 sc->fp[i].rx_buf_size = MCLBYTES; 5900 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5901 } 5902 } 5903 } 5904 5905 static int 5906 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5907 { 5908 int rc = 0; 5909 5910 if ((sc->ilt = 5911 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5912 M_BXE_ILT, 5913 (M_NOWAIT | M_ZERO))) == NULL) { 5914 rc = 1; 5915 } 5916 5917 return (rc); 5918 } 5919 5920 static int 5921 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5922 { 5923 int rc = 0; 5924 5925 if ((sc->ilt->lines = 5926 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5927 M_BXE_ILT, 5928 (M_NOWAIT | M_ZERO))) == NULL) { 5929 rc = 1; 5930 } 5931 5932 return (rc); 5933 } 5934 5935 static void 5936 bxe_free_ilt_mem(struct bxe_softc *sc) 5937 { 5938 if (sc->ilt != NULL) { 5939 free(sc->ilt, M_BXE_ILT); 5940 sc->ilt = NULL; 5941 } 5942 } 5943 5944 static void 5945 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5946 { 5947 if (sc->ilt->lines != NULL) { 5948 free(sc->ilt->lines, M_BXE_ILT); 5949 sc->ilt->lines = NULL; 5950 } 5951 } 5952 5953 static void 5954 bxe_free_mem(struct bxe_softc *sc) 5955 { 5956 int i; 5957 5958 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5959 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5960 sc->context[i].vcxt = NULL; 5961 sc->context[i].size = 0; 5962 } 5963 5964 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5965 5966 bxe_free_ilt_lines_mem(sc); 5967 5968 } 5969 5970 static int 5971 bxe_alloc_mem(struct bxe_softc *sc) 5972 { 5973 int context_size; 5974 int allocated; 5975 int i; 5976 5977 /* 5978 * Allocate memory for CDU context: 5979 * This memory is allocated separately and not in the generic ILT 5980 * functions because CDU differs in few aspects: 5981 * 1. There can be multiple entities allocating memory for context - 5982 * regular L2, CNIC, and SRIOV drivers. Each separately controls 5983 * its own ILT lines. 5984 * 2. Since CDU page-size is not a single 4KB page (which is the case 5985 * for the other ILT clients), to be efficient we want to support 5986 * allocation of sub-page-size in the last entry. 5987 * 3. Context pointers are used by the driver to pass to FW / update 5988 * the context (for the other ILT clients the pointers are used just to 5989 * free the memory during unload). 5990 */ 5991 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 5992 for (i = 0, allocated = 0; allocated < context_size; i++) { 5993 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 5994 (context_size - allocated)); 5995 5996 if (bxe_dma_alloc(sc, sc->context[i].size, 5997 &sc->context[i].vcxt_dma, 5998 "cdu context") != 0) { 5999 bxe_free_mem(sc); 6000 return (-1); 6001 } 6002 6003 sc->context[i].vcxt = 6004 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6005 6006 allocated += sc->context[i].size; 6007 } 6008 6009 bxe_alloc_ilt_lines_mem(sc); 6010 6011 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6012 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6013 { 6014 for (i = 0; i < 4; i++) { 6015 BLOGD(sc, DBG_LOAD, 6016 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6017 i, 6018 sc->ilt->clients[i].page_size, 6019 sc->ilt->clients[i].start, 6020 sc->ilt->clients[i].end, 6021 sc->ilt->clients[i].client_num, 6022 sc->ilt->clients[i].flags); 6023 } 6024 } 6025 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6026 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6027 bxe_free_mem(sc); 6028 return (-1); 6029 } 6030 6031 return (0); 6032 } 6033 6034 static void 6035 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6036 { 6037 struct bxe_softc *sc; 6038 int i; 6039 6040 sc = fp->sc; 6041 6042 if (fp->rx_mbuf_tag == NULL) { 6043 return; 6044 } 6045 6046 /* free all mbufs and unload all maps */ 6047 for (i = 0; i < RX_BD_TOTAL; i++) { 6048 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6049 bus_dmamap_sync(fp->rx_mbuf_tag, 6050 fp->rx_mbuf_chain[i].m_map, 6051 BUS_DMASYNC_POSTREAD); 6052 bus_dmamap_unload(fp->rx_mbuf_tag, 6053 fp->rx_mbuf_chain[i].m_map); 6054 } 6055 6056 if (fp->rx_mbuf_chain[i].m != NULL) { 6057 m_freem(fp->rx_mbuf_chain[i].m); 6058 fp->rx_mbuf_chain[i].m = NULL; 6059 fp->eth_q_stats.mbuf_alloc_rx--; 6060 } 6061 } 6062 } 6063 6064 static void 6065 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6066 { 6067 struct bxe_softc *sc; 6068 int i, max_agg_queues; 6069 6070 sc = fp->sc; 6071 6072 if (fp->rx_mbuf_tag == NULL) { 6073 return; 6074 } 6075 6076 max_agg_queues = MAX_AGG_QS(sc); 6077 6078 /* release all mbufs and unload all DMA maps in the TPA pool */ 6079 for (i = 0; i < max_agg_queues; i++) { 6080 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6081 bus_dmamap_sync(fp->rx_mbuf_tag, 6082 fp->rx_tpa_info[i].bd.m_map, 6083 BUS_DMASYNC_POSTREAD); 6084 bus_dmamap_unload(fp->rx_mbuf_tag, 6085 fp->rx_tpa_info[i].bd.m_map); 6086 } 6087 6088 if (fp->rx_tpa_info[i].bd.m != NULL) { 6089 m_freem(fp->rx_tpa_info[i].bd.m); 6090 fp->rx_tpa_info[i].bd.m = NULL; 6091 fp->eth_q_stats.mbuf_alloc_tpa--; 6092 } 6093 } 6094 } 6095 6096 static void 6097 bxe_free_sge_chain(struct bxe_fastpath *fp) 6098 { 6099 struct bxe_softc *sc; 6100 int i; 6101 6102 sc = fp->sc; 6103 6104 if (fp->rx_sge_mbuf_tag == NULL) { 6105 return; 6106 } 6107 6108 /* rree all mbufs and unload all maps */ 6109 for (i = 0; i < RX_SGE_TOTAL; i++) { 6110 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6111 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6112 fp->rx_sge_mbuf_chain[i].m_map, 6113 BUS_DMASYNC_POSTREAD); 6114 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6115 fp->rx_sge_mbuf_chain[i].m_map); 6116 } 6117 6118 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6119 m_freem(fp->rx_sge_mbuf_chain[i].m); 6120 fp->rx_sge_mbuf_chain[i].m = NULL; 6121 fp->eth_q_stats.mbuf_alloc_sge--; 6122 } 6123 } 6124 } 6125 6126 static void 6127 bxe_free_fp_buffers(struct bxe_softc *sc) 6128 { 6129 struct bxe_fastpath *fp; 6130 int i; 6131 6132 for (i = 0; i < sc->num_queues; i++) { 6133 fp = &sc->fp[i]; 6134 6135 #if __FreeBSD_version >= 800000 6136 if (fp->tx_br != NULL) { 6137 /* just in case bxe_mq_flush() wasn't called */ 6138 if (mtx_initialized(&fp->tx_mtx)) { 6139 struct mbuf *m; 6140 6141 BXE_FP_TX_LOCK(fp); 6142 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6143 m_freem(m); 6144 BXE_FP_TX_UNLOCK(fp); 6145 } 6146 } 6147 #endif 6148 6149 /* free all RX buffers */ 6150 bxe_free_rx_bd_chain(fp); 6151 bxe_free_tpa_pool(fp); 6152 bxe_free_sge_chain(fp); 6153 6154 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6155 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6156 fp->eth_q_stats.mbuf_alloc_rx); 6157 } 6158 6159 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6160 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6161 fp->eth_q_stats.mbuf_alloc_sge); 6162 } 6163 6164 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6165 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6166 fp->eth_q_stats.mbuf_alloc_tpa); 6167 } 6168 6169 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6170 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6171 fp->eth_q_stats.mbuf_alloc_tx); 6172 } 6173 6174 /* XXX verify all mbufs were reclaimed */ 6175 } 6176 } 6177 6178 static int 6179 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6180 uint16_t prev_index, 6181 uint16_t index) 6182 { 6183 struct bxe_sw_rx_bd *rx_buf; 6184 struct eth_rx_bd *rx_bd; 6185 bus_dma_segment_t segs[1]; 6186 bus_dmamap_t map; 6187 struct mbuf *m; 6188 int nsegs, rc; 6189 6190 rc = 0; 6191 6192 /* allocate the new RX BD mbuf */ 6193 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6194 if (__predict_false(m == NULL)) { 6195 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6196 return (ENOBUFS); 6197 } 6198 6199 fp->eth_q_stats.mbuf_alloc_rx++; 6200 6201 /* initialize the mbuf buffer length */ 6202 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6203 6204 /* map the mbuf into non-paged pool */ 6205 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6206 fp->rx_mbuf_spare_map, 6207 m, segs, &nsegs, BUS_DMA_NOWAIT); 6208 if (__predict_false(rc != 0)) { 6209 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6210 m_freem(m); 6211 fp->eth_q_stats.mbuf_alloc_rx--; 6212 return (rc); 6213 } 6214 6215 /* all mbufs must map to a single segment */ 6216 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6217 6218 /* release any existing RX BD mbuf mappings */ 6219 6220 if (prev_index != index) { 6221 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6222 6223 if (rx_buf->m_map != NULL) { 6224 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6225 BUS_DMASYNC_POSTREAD); 6226 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6227 } 6228 6229 /* 6230 * We only get here from bxe_rxeof() when the maximum number 6231 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6232 * holds the mbuf in the prev_index so it's OK to NULL it out 6233 * here without concern of a memory leak. 6234 */ 6235 fp->rx_mbuf_chain[prev_index].m = NULL; 6236 } 6237 6238 rx_buf = &fp->rx_mbuf_chain[index]; 6239 6240 if (rx_buf->m_map != NULL) { 6241 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6242 BUS_DMASYNC_POSTREAD); 6243 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6244 } 6245 6246 /* save the mbuf and mapping info for a future packet */ 6247 map = (prev_index != index) ? 6248 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6249 rx_buf->m_map = fp->rx_mbuf_spare_map; 6250 fp->rx_mbuf_spare_map = map; 6251 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6252 BUS_DMASYNC_PREREAD); 6253 rx_buf->m = m; 6254 6255 rx_bd = &fp->rx_chain[index]; 6256 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6257 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6258 6259 return (rc); 6260 } 6261 6262 static int 6263 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6264 int queue) 6265 { 6266 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6267 bus_dma_segment_t segs[1]; 6268 bus_dmamap_t map; 6269 struct mbuf *m; 6270 int nsegs; 6271 int rc = 0; 6272 6273 /* allocate the new TPA mbuf */ 6274 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6275 if (__predict_false(m == NULL)) { 6276 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6277 return (ENOBUFS); 6278 } 6279 6280 fp->eth_q_stats.mbuf_alloc_tpa++; 6281 6282 /* initialize the mbuf buffer length */ 6283 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6284 6285 /* map the mbuf into non-paged pool */ 6286 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6287 fp->rx_tpa_info_mbuf_spare_map, 6288 m, segs, &nsegs, BUS_DMA_NOWAIT); 6289 if (__predict_false(rc != 0)) { 6290 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6291 m_free(m); 6292 fp->eth_q_stats.mbuf_alloc_tpa--; 6293 return (rc); 6294 } 6295 6296 /* all mbufs must map to a single segment */ 6297 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6298 6299 /* release any existing TPA mbuf mapping */ 6300 if (tpa_info->bd.m_map != NULL) { 6301 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6302 BUS_DMASYNC_POSTREAD); 6303 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6304 } 6305 6306 /* save the mbuf and mapping info for the TPA mbuf */ 6307 map = tpa_info->bd.m_map; 6308 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6309 fp->rx_tpa_info_mbuf_spare_map = map; 6310 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6311 BUS_DMASYNC_PREREAD); 6312 tpa_info->bd.m = m; 6313 tpa_info->seg = segs[0]; 6314 6315 return (rc); 6316 } 6317 6318 /* 6319 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6320 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6321 * chain. 6322 */ 6323 static int 6324 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6325 uint16_t index) 6326 { 6327 struct bxe_sw_rx_bd *sge_buf; 6328 struct eth_rx_sge *sge; 6329 bus_dma_segment_t segs[1]; 6330 bus_dmamap_t map; 6331 struct mbuf *m; 6332 int nsegs; 6333 int rc = 0; 6334 6335 /* allocate a new SGE mbuf */ 6336 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6337 if (__predict_false(m == NULL)) { 6338 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6339 return (ENOMEM); 6340 } 6341 6342 fp->eth_q_stats.mbuf_alloc_sge++; 6343 6344 /* initialize the mbuf buffer length */ 6345 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6346 6347 /* map the SGE mbuf into non-paged pool */ 6348 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6349 fp->rx_sge_mbuf_spare_map, 6350 m, segs, &nsegs, BUS_DMA_NOWAIT); 6351 if (__predict_false(rc != 0)) { 6352 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6353 m_freem(m); 6354 fp->eth_q_stats.mbuf_alloc_sge--; 6355 return (rc); 6356 } 6357 6358 /* all mbufs must map to a single segment */ 6359 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6360 6361 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6362 6363 /* release any existing SGE mbuf mapping */ 6364 if (sge_buf->m_map != NULL) { 6365 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6366 BUS_DMASYNC_POSTREAD); 6367 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6368 } 6369 6370 /* save the mbuf and mapping info for a future packet */ 6371 map = sge_buf->m_map; 6372 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6373 fp->rx_sge_mbuf_spare_map = map; 6374 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6375 BUS_DMASYNC_PREREAD); 6376 sge_buf->m = m; 6377 6378 sge = &fp->rx_sge_chain[index]; 6379 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6380 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6381 6382 return (rc); 6383 } 6384 6385 static __noinline int 6386 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6387 { 6388 struct bxe_fastpath *fp; 6389 int i, j, rc = 0; 6390 int ring_prod, cqe_ring_prod; 6391 int max_agg_queues; 6392 6393 for (i = 0; i < sc->num_queues; i++) { 6394 fp = &sc->fp[i]; 6395 6396 ring_prod = cqe_ring_prod = 0; 6397 fp->rx_bd_cons = 0; 6398 fp->rx_cq_cons = 0; 6399 6400 /* allocate buffers for the RX BDs in RX BD chain */ 6401 for (j = 0; j < sc->max_rx_bufs; j++) { 6402 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6403 if (rc != 0) { 6404 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6405 i, rc); 6406 goto bxe_alloc_fp_buffers_error; 6407 } 6408 6409 ring_prod = RX_BD_NEXT(ring_prod); 6410 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6411 } 6412 6413 fp->rx_bd_prod = ring_prod; 6414 fp->rx_cq_prod = cqe_ring_prod; 6415 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6416 6417 max_agg_queues = MAX_AGG_QS(sc); 6418 6419 fp->tpa_enable = TRUE; 6420 6421 /* fill the TPA pool */ 6422 for (j = 0; j < max_agg_queues; j++) { 6423 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6424 if (rc != 0) { 6425 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6426 i, j); 6427 fp->tpa_enable = FALSE; 6428 goto bxe_alloc_fp_buffers_error; 6429 } 6430 6431 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6432 } 6433 6434 if (fp->tpa_enable) { 6435 /* fill the RX SGE chain */ 6436 ring_prod = 0; 6437 for (j = 0; j < RX_SGE_USABLE; j++) { 6438 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6439 if (rc != 0) { 6440 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6441 i, ring_prod); 6442 fp->tpa_enable = FALSE; 6443 ring_prod = 0; 6444 goto bxe_alloc_fp_buffers_error; 6445 } 6446 6447 ring_prod = RX_SGE_NEXT(ring_prod); 6448 } 6449 6450 fp->rx_sge_prod = ring_prod; 6451 } 6452 } 6453 6454 return (0); 6455 6456 bxe_alloc_fp_buffers_error: 6457 6458 /* unwind what was already allocated */ 6459 bxe_free_rx_bd_chain(fp); 6460 bxe_free_tpa_pool(fp); 6461 bxe_free_sge_chain(fp); 6462 6463 return (ENOBUFS); 6464 } 6465 6466 static void 6467 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6468 { 6469 bxe_dma_free(sc, &sc->fw_stats_dma); 6470 6471 sc->fw_stats_num = 0; 6472 6473 sc->fw_stats_req_size = 0; 6474 sc->fw_stats_req = NULL; 6475 sc->fw_stats_req_mapping = 0; 6476 6477 sc->fw_stats_data_size = 0; 6478 sc->fw_stats_data = NULL; 6479 sc->fw_stats_data_mapping = 0; 6480 } 6481 6482 static int 6483 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6484 { 6485 uint8_t num_queue_stats; 6486 int num_groups; 6487 6488 /* number of queues for statistics is number of eth queues */ 6489 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6490 6491 /* 6492 * Total number of FW statistics requests = 6493 * 1 for port stats + 1 for PF stats + num of queues 6494 */ 6495 sc->fw_stats_num = (2 + num_queue_stats); 6496 6497 /* 6498 * Request is built from stats_query_header and an array of 6499 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6500 * rules. The real number or requests is configured in the 6501 * stats_query_header. 6502 */ 6503 num_groups = 6504 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6505 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6506 6507 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6508 sc->fw_stats_num, num_groups); 6509 6510 sc->fw_stats_req_size = 6511 (sizeof(struct stats_query_header) + 6512 (num_groups * sizeof(struct stats_query_cmd_group))); 6513 6514 /* 6515 * Data for statistics requests + stats_counter. 6516 * stats_counter holds per-STORM counters that are incremented when 6517 * STORM has finished with the current request. Memory for FCoE 6518 * offloaded statistics are counted anyway, even if they will not be sent. 6519 * VF stats are not accounted for here as the data of VF stats is stored 6520 * in memory allocated by the VF, not here. 6521 */ 6522 sc->fw_stats_data_size = 6523 (sizeof(struct stats_counter) + 6524 sizeof(struct per_port_stats) + 6525 sizeof(struct per_pf_stats) + 6526 /* sizeof(struct fcoe_statistics_params) + */ 6527 (sizeof(struct per_queue_stats) * num_queue_stats)); 6528 6529 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6530 &sc->fw_stats_dma, "fw stats") != 0) { 6531 bxe_free_fw_stats_mem(sc); 6532 return (-1); 6533 } 6534 6535 /* set up the shortcuts */ 6536 6537 sc->fw_stats_req = 6538 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6539 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6540 6541 sc->fw_stats_data = 6542 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6543 sc->fw_stats_req_size); 6544 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6545 sc->fw_stats_req_size); 6546 6547 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6548 (uintmax_t)sc->fw_stats_req_mapping); 6549 6550 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6551 (uintmax_t)sc->fw_stats_data_mapping); 6552 6553 return (0); 6554 } 6555 6556 /* 6557 * Bits map: 6558 * 0-7 - Engine0 load counter. 6559 * 8-15 - Engine1 load counter. 6560 * 16 - Engine0 RESET_IN_PROGRESS bit. 6561 * 17 - Engine1 RESET_IN_PROGRESS bit. 6562 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6563 * function on the engine 6564 * 19 - Engine1 ONE_IS_LOADED. 6565 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6566 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6567 * for just the one belonging to its engine). 6568 */ 6569 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6570 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6571 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6572 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6573 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6574 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6575 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6576 #define BXE_GLOBAL_RESET_BIT 0x00040000 6577 6578 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6579 static void 6580 bxe_set_reset_global(struct bxe_softc *sc) 6581 { 6582 uint32_t val; 6583 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6584 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6585 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6586 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6587 } 6588 6589 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6590 static void 6591 bxe_clear_reset_global(struct bxe_softc *sc) 6592 { 6593 uint32_t val; 6594 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6595 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6596 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6597 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6598 } 6599 6600 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6601 static uint8_t 6602 bxe_reset_is_global(struct bxe_softc *sc) 6603 { 6604 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6605 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6606 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6607 } 6608 6609 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6610 static void 6611 bxe_set_reset_done(struct bxe_softc *sc) 6612 { 6613 uint32_t val; 6614 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6615 BXE_PATH0_RST_IN_PROG_BIT; 6616 6617 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6618 6619 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6620 /* Clear the bit */ 6621 val &= ~bit; 6622 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6623 6624 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6625 } 6626 6627 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6628 static void 6629 bxe_set_reset_in_progress(struct bxe_softc *sc) 6630 { 6631 uint32_t val; 6632 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6633 BXE_PATH0_RST_IN_PROG_BIT; 6634 6635 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6636 6637 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6638 /* Set the bit */ 6639 val |= bit; 6640 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6641 6642 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6643 } 6644 6645 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6646 static uint8_t 6647 bxe_reset_is_done(struct bxe_softc *sc, 6648 int engine) 6649 { 6650 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6651 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6652 BXE_PATH0_RST_IN_PROG_BIT; 6653 6654 /* return false if bit is set */ 6655 return (val & bit) ? FALSE : TRUE; 6656 } 6657 6658 /* get the load status for an engine, should be run under rtnl lock */ 6659 static uint8_t 6660 bxe_get_load_status(struct bxe_softc *sc, 6661 int engine) 6662 { 6663 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6664 BXE_PATH0_LOAD_CNT_MASK; 6665 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6666 BXE_PATH0_LOAD_CNT_SHIFT; 6667 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6668 6669 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6670 6671 val = ((val & mask) >> shift); 6672 6673 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6674 6675 return (val != 0); 6676 } 6677 6678 /* set pf load mark */ 6679 /* XXX needs to be under rtnl lock */ 6680 static void 6681 bxe_set_pf_load(struct bxe_softc *sc) 6682 { 6683 uint32_t val; 6684 uint32_t val1; 6685 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6686 BXE_PATH0_LOAD_CNT_MASK; 6687 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6688 BXE_PATH0_LOAD_CNT_SHIFT; 6689 6690 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6691 6692 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6693 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6694 6695 /* get the current counter value */ 6696 val1 = ((val & mask) >> shift); 6697 6698 /* set bit of this PF */ 6699 val1 |= (1 << SC_ABS_FUNC(sc)); 6700 6701 /* clear the old value */ 6702 val &= ~mask; 6703 6704 /* set the new one */ 6705 val |= ((val1 << shift) & mask); 6706 6707 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6708 6709 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6710 } 6711 6712 /* clear pf load mark */ 6713 /* XXX needs to be under rtnl lock */ 6714 static uint8_t 6715 bxe_clear_pf_load(struct bxe_softc *sc) 6716 { 6717 uint32_t val1, val; 6718 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6719 BXE_PATH0_LOAD_CNT_MASK; 6720 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6721 BXE_PATH0_LOAD_CNT_SHIFT; 6722 6723 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6724 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6725 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6726 6727 /* get the current counter value */ 6728 val1 = (val & mask) >> shift; 6729 6730 /* clear bit of that PF */ 6731 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6732 6733 /* clear the old value */ 6734 val &= ~mask; 6735 6736 /* set the new one */ 6737 val |= ((val1 << shift) & mask); 6738 6739 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6740 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6741 return (val1 != 0); 6742 } 6743 6744 /* send load requrest to mcp and analyze response */ 6745 static int 6746 bxe_nic_load_request(struct bxe_softc *sc, 6747 uint32_t *load_code) 6748 { 6749 /* init fw_seq */ 6750 sc->fw_seq = 6751 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6752 DRV_MSG_SEQ_NUMBER_MASK); 6753 6754 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6755 6756 /* get the current FW pulse sequence */ 6757 sc->fw_drv_pulse_wr_seq = 6758 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6759 DRV_PULSE_SEQ_MASK); 6760 6761 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6762 sc->fw_drv_pulse_wr_seq); 6763 6764 /* load request */ 6765 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6766 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6767 6768 /* if the MCP fails to respond we must abort */ 6769 if (!(*load_code)) { 6770 BLOGE(sc, "MCP response failure!\n"); 6771 return (-1); 6772 } 6773 6774 /* if MCP refused then must abort */ 6775 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6776 BLOGE(sc, "MCP refused load request\n"); 6777 return (-1); 6778 } 6779 6780 return (0); 6781 } 6782 6783 /* 6784 * Check whether another PF has already loaded FW to chip. In virtualized 6785 * environments a pf from anoth VM may have already initialized the device 6786 * including loading FW. 6787 */ 6788 static int 6789 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6790 uint32_t load_code) 6791 { 6792 uint32_t my_fw, loaded_fw; 6793 6794 /* is another pf loaded on this engine? */ 6795 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6796 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6797 /* build my FW version dword */ 6798 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6799 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6800 (BCM_5710_FW_REVISION_VERSION << 16) + 6801 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6802 6803 /* read loaded FW from chip */ 6804 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6805 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6806 loaded_fw, my_fw); 6807 6808 /* abort nic load if version mismatch */ 6809 if (my_fw != loaded_fw) { 6810 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6811 loaded_fw, my_fw); 6812 return (-1); 6813 } 6814 } 6815 6816 return (0); 6817 } 6818 6819 /* mark PMF if applicable */ 6820 static void 6821 bxe_nic_load_pmf(struct bxe_softc *sc, 6822 uint32_t load_code) 6823 { 6824 uint32_t ncsi_oem_data_addr; 6825 6826 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6827 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6828 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6829 /* 6830 * Barrier here for ordering between the writing to sc->port.pmf here 6831 * and reading it from the periodic task. 6832 */ 6833 sc->port.pmf = 1; 6834 mb(); 6835 } else { 6836 sc->port.pmf = 0; 6837 } 6838 6839 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6840 6841 /* XXX needed? */ 6842 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6843 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6844 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6845 if (ncsi_oem_data_addr) { 6846 REG_WR(sc, 6847 (ncsi_oem_data_addr + 6848 offsetof(struct glob_ncsi_oem_data, driver_version)), 6849 0); 6850 } 6851 } 6852 } 6853 } 6854 6855 static void 6856 bxe_read_mf_cfg(struct bxe_softc *sc) 6857 { 6858 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6859 int abs_func; 6860 int vn; 6861 6862 if (BXE_NOMCP(sc)) { 6863 return; /* what should be the default bvalue in this case */ 6864 } 6865 6866 /* 6867 * The formula for computing the absolute function number is... 6868 * For 2 port configuration (4 functions per port): 6869 * abs_func = 2 * vn + SC_PORT + SC_PATH 6870 * For 4 port configuration (2 functions per port): 6871 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6872 */ 6873 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6874 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6875 if (abs_func >= E1H_FUNC_MAX) { 6876 break; 6877 } 6878 sc->devinfo.mf_info.mf_config[vn] = 6879 MFCFG_RD(sc, func_mf_config[abs_func].config); 6880 } 6881 6882 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6883 FUNC_MF_CFG_FUNC_DISABLED) { 6884 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6885 sc->flags |= BXE_MF_FUNC_DIS; 6886 } else { 6887 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6888 sc->flags &= ~BXE_MF_FUNC_DIS; 6889 } 6890 } 6891 6892 /* acquire split MCP access lock register */ 6893 static int bxe_acquire_alr(struct bxe_softc *sc) 6894 { 6895 uint32_t j, val; 6896 6897 for (j = 0; j < 1000; j++) { 6898 val = (1UL << 31); 6899 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6900 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6901 if (val & (1L << 31)) 6902 break; 6903 6904 DELAY(5000); 6905 } 6906 6907 if (!(val & (1L << 31))) { 6908 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6909 return (-1); 6910 } 6911 6912 return (0); 6913 } 6914 6915 /* release split MCP access lock register */ 6916 static void bxe_release_alr(struct bxe_softc *sc) 6917 { 6918 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6919 } 6920 6921 static void 6922 bxe_fan_failure(struct bxe_softc *sc) 6923 { 6924 int port = SC_PORT(sc); 6925 uint32_t ext_phy_config; 6926 6927 /* mark the failure */ 6928 ext_phy_config = 6929 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6930 6931 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6932 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6933 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6934 ext_phy_config); 6935 6936 /* log the failure */ 6937 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6938 "the card to prevent permanent damage. " 6939 "Please contact OEM Support for assistance\n"); 6940 6941 /* XXX */ 6942 #if 1 6943 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6944 #else 6945 /* 6946 * Schedule device reset (unload) 6947 * This is due to some boards consuming sufficient power when driver is 6948 * up to overheat if fan fails. 6949 */ 6950 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6951 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6952 #endif 6953 } 6954 6955 /* this function is called upon a link interrupt */ 6956 static void 6957 bxe_link_attn(struct bxe_softc *sc) 6958 { 6959 uint32_t pause_enabled = 0; 6960 struct host_port_stats *pstats; 6961 int cmng_fns; 6962 6963 /* Make sure that we are synced with the current statistics */ 6964 bxe_stats_handle(sc, STATS_EVENT_STOP); 6965 6966 elink_link_update(&sc->link_params, &sc->link_vars); 6967 6968 if (sc->link_vars.link_up) { 6969 6970 /* dropless flow control */ 6971 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 6972 pause_enabled = 0; 6973 6974 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 6975 pause_enabled = 1; 6976 } 6977 6978 REG_WR(sc, 6979 (BAR_USTRORM_INTMEM + 6980 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 6981 pause_enabled); 6982 } 6983 6984 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 6985 pstats = BXE_SP(sc, port_stats); 6986 /* reset old mac stats */ 6987 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 6988 } 6989 6990 if (sc->state == BXE_STATE_OPEN) { 6991 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 6992 } 6993 } 6994 6995 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 6996 cmng_fns = bxe_get_cmng_fns_mode(sc); 6997 6998 if (cmng_fns != CMNG_FNS_NONE) { 6999 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7000 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7001 } else { 7002 /* rate shaping and fairness are disabled */ 7003 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7004 } 7005 } 7006 7007 bxe_link_report_locked(sc); 7008 7009 if (IS_MF(sc)) { 7010 ; // XXX bxe_link_sync_notify(sc); 7011 } 7012 } 7013 7014 static void 7015 bxe_attn_int_asserted(struct bxe_softc *sc, 7016 uint32_t asserted) 7017 { 7018 int port = SC_PORT(sc); 7019 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7020 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7021 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7022 NIG_REG_MASK_INTERRUPT_PORT0; 7023 uint32_t aeu_mask; 7024 uint32_t nig_mask = 0; 7025 uint32_t reg_addr; 7026 uint32_t igu_acked; 7027 uint32_t cnt; 7028 7029 if (sc->attn_state & asserted) { 7030 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7031 } 7032 7033 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7034 7035 aeu_mask = REG_RD(sc, aeu_addr); 7036 7037 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7038 aeu_mask, asserted); 7039 7040 aeu_mask &= ~(asserted & 0x3ff); 7041 7042 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7043 7044 REG_WR(sc, aeu_addr, aeu_mask); 7045 7046 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7047 7048 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7049 sc->attn_state |= asserted; 7050 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7051 7052 if (asserted & ATTN_HARD_WIRED_MASK) { 7053 if (asserted & ATTN_NIG_FOR_FUNC) { 7054 7055 bxe_acquire_phy_lock(sc); 7056 /* save nig interrupt mask */ 7057 nig_mask = REG_RD(sc, nig_int_mask_addr); 7058 7059 /* If nig_mask is not set, no need to call the update function */ 7060 if (nig_mask) { 7061 REG_WR(sc, nig_int_mask_addr, 0); 7062 7063 bxe_link_attn(sc); 7064 } 7065 7066 /* handle unicore attn? */ 7067 } 7068 7069 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7070 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7071 } 7072 7073 if (asserted & GPIO_2_FUNC) { 7074 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7075 } 7076 7077 if (asserted & GPIO_3_FUNC) { 7078 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7079 } 7080 7081 if (asserted & GPIO_4_FUNC) { 7082 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7083 } 7084 7085 if (port == 0) { 7086 if (asserted & ATTN_GENERAL_ATTN_1) { 7087 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7088 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7089 } 7090 if (asserted & ATTN_GENERAL_ATTN_2) { 7091 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7092 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7093 } 7094 if (asserted & ATTN_GENERAL_ATTN_3) { 7095 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7096 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7097 } 7098 } else { 7099 if (asserted & ATTN_GENERAL_ATTN_4) { 7100 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7101 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7102 } 7103 if (asserted & ATTN_GENERAL_ATTN_5) { 7104 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7105 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7106 } 7107 if (asserted & ATTN_GENERAL_ATTN_6) { 7108 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7109 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7110 } 7111 } 7112 } /* hardwired */ 7113 7114 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7115 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7116 } else { 7117 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7118 } 7119 7120 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7121 asserted, 7122 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7123 REG_WR(sc, reg_addr, asserted); 7124 7125 /* now set back the mask */ 7126 if (asserted & ATTN_NIG_FOR_FUNC) { 7127 /* 7128 * Verify that IGU ack through BAR was written before restoring 7129 * NIG mask. This loop should exit after 2-3 iterations max. 7130 */ 7131 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7132 cnt = 0; 7133 7134 do { 7135 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7136 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7137 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7138 7139 if (!igu_acked) { 7140 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7141 } 7142 7143 mb(); 7144 } 7145 7146 REG_WR(sc, nig_int_mask_addr, nig_mask); 7147 7148 bxe_release_phy_lock(sc); 7149 } 7150 } 7151 7152 static void 7153 bxe_print_next_block(struct bxe_softc *sc, 7154 int idx, 7155 const char *blk) 7156 { 7157 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7158 } 7159 7160 static int 7161 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7162 uint32_t sig, 7163 int par_num, 7164 uint8_t print) 7165 { 7166 uint32_t cur_bit = 0; 7167 int i = 0; 7168 7169 for (i = 0; sig; i++) { 7170 cur_bit = ((uint32_t)0x1 << i); 7171 if (sig & cur_bit) { 7172 switch (cur_bit) { 7173 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7174 if (print) 7175 bxe_print_next_block(sc, par_num++, "BRB"); 7176 break; 7177 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7178 if (print) 7179 bxe_print_next_block(sc, par_num++, "PARSER"); 7180 break; 7181 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7182 if (print) 7183 bxe_print_next_block(sc, par_num++, "TSDM"); 7184 break; 7185 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7186 if (print) 7187 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7188 break; 7189 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7190 if (print) 7191 bxe_print_next_block(sc, par_num++, "TCM"); 7192 break; 7193 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7194 if (print) 7195 bxe_print_next_block(sc, par_num++, "TSEMI"); 7196 break; 7197 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7198 if (print) 7199 bxe_print_next_block(sc, par_num++, "XPB"); 7200 break; 7201 } 7202 7203 /* Clear the bit */ 7204 sig &= ~cur_bit; 7205 } 7206 } 7207 7208 return (par_num); 7209 } 7210 7211 static int 7212 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7213 uint32_t sig, 7214 int par_num, 7215 uint8_t *global, 7216 uint8_t print) 7217 { 7218 int i = 0; 7219 uint32_t cur_bit = 0; 7220 for (i = 0; sig; i++) { 7221 cur_bit = ((uint32_t)0x1 << i); 7222 if (sig & cur_bit) { 7223 switch (cur_bit) { 7224 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7225 if (print) 7226 bxe_print_next_block(sc, par_num++, "PBF"); 7227 break; 7228 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7229 if (print) 7230 bxe_print_next_block(sc, par_num++, "QM"); 7231 break; 7232 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7233 if (print) 7234 bxe_print_next_block(sc, par_num++, "TM"); 7235 break; 7236 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7237 if (print) 7238 bxe_print_next_block(sc, par_num++, "XSDM"); 7239 break; 7240 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7241 if (print) 7242 bxe_print_next_block(sc, par_num++, "XCM"); 7243 break; 7244 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7245 if (print) 7246 bxe_print_next_block(sc, par_num++, "XSEMI"); 7247 break; 7248 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7249 if (print) 7250 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7251 break; 7252 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7253 if (print) 7254 bxe_print_next_block(sc, par_num++, "NIG"); 7255 break; 7256 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7257 if (print) 7258 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7259 *global = TRUE; 7260 break; 7261 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7262 if (print) 7263 bxe_print_next_block(sc, par_num++, "DEBUG"); 7264 break; 7265 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7266 if (print) 7267 bxe_print_next_block(sc, par_num++, "USDM"); 7268 break; 7269 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7270 if (print) 7271 bxe_print_next_block(sc, par_num++, "UCM"); 7272 break; 7273 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7274 if (print) 7275 bxe_print_next_block(sc, par_num++, "USEMI"); 7276 break; 7277 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7278 if (print) 7279 bxe_print_next_block(sc, par_num++, "UPB"); 7280 break; 7281 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7282 if (print) 7283 bxe_print_next_block(sc, par_num++, "CSDM"); 7284 break; 7285 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7286 if (print) 7287 bxe_print_next_block(sc, par_num++, "CCM"); 7288 break; 7289 } 7290 7291 /* Clear the bit */ 7292 sig &= ~cur_bit; 7293 } 7294 } 7295 7296 return (par_num); 7297 } 7298 7299 static int 7300 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7301 uint32_t sig, 7302 int par_num, 7303 uint8_t print) 7304 { 7305 uint32_t cur_bit = 0; 7306 int i = 0; 7307 7308 for (i = 0; sig; i++) { 7309 cur_bit = ((uint32_t)0x1 << i); 7310 if (sig & cur_bit) { 7311 switch (cur_bit) { 7312 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7313 if (print) 7314 bxe_print_next_block(sc, par_num++, "CSEMI"); 7315 break; 7316 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7317 if (print) 7318 bxe_print_next_block(sc, par_num++, "PXP"); 7319 break; 7320 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7321 if (print) 7322 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7323 break; 7324 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7325 if (print) 7326 bxe_print_next_block(sc, par_num++, "CFC"); 7327 break; 7328 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7329 if (print) 7330 bxe_print_next_block(sc, par_num++, "CDU"); 7331 break; 7332 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7333 if (print) 7334 bxe_print_next_block(sc, par_num++, "DMAE"); 7335 break; 7336 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7337 if (print) 7338 bxe_print_next_block(sc, par_num++, "IGU"); 7339 break; 7340 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7341 if (print) 7342 bxe_print_next_block(sc, par_num++, "MISC"); 7343 break; 7344 } 7345 7346 /* Clear the bit */ 7347 sig &= ~cur_bit; 7348 } 7349 } 7350 7351 return (par_num); 7352 } 7353 7354 static int 7355 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7356 uint32_t sig, 7357 int par_num, 7358 uint8_t *global, 7359 uint8_t print) 7360 { 7361 uint32_t cur_bit = 0; 7362 int i = 0; 7363 7364 for (i = 0; sig; i++) { 7365 cur_bit = ((uint32_t)0x1 << i); 7366 if (sig & cur_bit) { 7367 switch (cur_bit) { 7368 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7369 if (print) 7370 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7371 *global = TRUE; 7372 break; 7373 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7374 if (print) 7375 bxe_print_next_block(sc, par_num++, 7376 "MCP UMP RX"); 7377 *global = TRUE; 7378 break; 7379 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7380 if (print) 7381 bxe_print_next_block(sc, par_num++, 7382 "MCP UMP TX"); 7383 *global = TRUE; 7384 break; 7385 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7386 if (print) 7387 bxe_print_next_block(sc, par_num++, 7388 "MCP SCPAD"); 7389 *global = TRUE; 7390 break; 7391 } 7392 7393 /* Clear the bit */ 7394 sig &= ~cur_bit; 7395 } 7396 } 7397 7398 return (par_num); 7399 } 7400 7401 static int 7402 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7403 uint32_t sig, 7404 int par_num, 7405 uint8_t print) 7406 { 7407 uint32_t cur_bit = 0; 7408 int i = 0; 7409 7410 for (i = 0; sig; i++) { 7411 cur_bit = ((uint32_t)0x1 << i); 7412 if (sig & cur_bit) { 7413 switch (cur_bit) { 7414 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7415 if (print) 7416 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7417 break; 7418 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7419 if (print) 7420 bxe_print_next_block(sc, par_num++, "ATC"); 7421 break; 7422 } 7423 7424 /* Clear the bit */ 7425 sig &= ~cur_bit; 7426 } 7427 } 7428 7429 return (par_num); 7430 } 7431 7432 static uint8_t 7433 bxe_parity_attn(struct bxe_softc *sc, 7434 uint8_t *global, 7435 uint8_t print, 7436 uint32_t *sig) 7437 { 7438 int par_num = 0; 7439 7440 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7441 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7442 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7443 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7444 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7445 BLOGE(sc, "Parity error: HW block parity attention:\n" 7446 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7447 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7448 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7449 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7450 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7451 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7452 7453 if (print) 7454 BLOGI(sc, "Parity errors detected in blocks: "); 7455 7456 par_num = 7457 bxe_check_blocks_with_parity0(sc, sig[0] & 7458 HW_PRTY_ASSERT_SET_0, 7459 par_num, print); 7460 par_num = 7461 bxe_check_blocks_with_parity1(sc, sig[1] & 7462 HW_PRTY_ASSERT_SET_1, 7463 par_num, global, print); 7464 par_num = 7465 bxe_check_blocks_with_parity2(sc, sig[2] & 7466 HW_PRTY_ASSERT_SET_2, 7467 par_num, print); 7468 par_num = 7469 bxe_check_blocks_with_parity3(sc, sig[3] & 7470 HW_PRTY_ASSERT_SET_3, 7471 par_num, global, print); 7472 par_num = 7473 bxe_check_blocks_with_parity4(sc, sig[4] & 7474 HW_PRTY_ASSERT_SET_4, 7475 par_num, print); 7476 7477 if (print) 7478 BLOGI(sc, "\n"); 7479 7480 return (TRUE); 7481 } 7482 7483 return (FALSE); 7484 } 7485 7486 static uint8_t 7487 bxe_chk_parity_attn(struct bxe_softc *sc, 7488 uint8_t *global, 7489 uint8_t print) 7490 { 7491 struct attn_route attn = { {0} }; 7492 int port = SC_PORT(sc); 7493 7494 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7495 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7496 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7497 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7498 7499 /* 7500 * Since MCP attentions can't be disabled inside the block, we need to 7501 * read AEU registers to see whether they're currently disabled 7502 */ 7503 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7504 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7505 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7506 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7507 7508 7509 if (!CHIP_IS_E1x(sc)) 7510 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7511 7512 return (bxe_parity_attn(sc, global, print, attn.sig)); 7513 } 7514 7515 static void 7516 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7517 uint32_t attn) 7518 { 7519 uint32_t val; 7520 7521 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7522 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7523 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7524 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7525 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7526 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7527 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7528 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7529 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7530 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7531 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7532 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7533 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7534 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7535 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7536 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7537 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7538 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7539 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7540 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7541 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7542 } 7543 7544 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7545 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7546 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7547 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7548 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7549 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7550 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7551 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7552 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7553 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7554 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7555 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7556 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7557 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7558 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7559 } 7560 7561 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7562 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7563 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7564 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7565 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7566 } 7567 } 7568 7569 static void 7570 bxe_e1h_disable(struct bxe_softc *sc) 7571 { 7572 int port = SC_PORT(sc); 7573 7574 bxe_tx_disable(sc); 7575 7576 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7577 } 7578 7579 static void 7580 bxe_e1h_enable(struct bxe_softc *sc) 7581 { 7582 int port = SC_PORT(sc); 7583 7584 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7585 7586 // XXX bxe_tx_enable(sc); 7587 } 7588 7589 /* 7590 * called due to MCP event (on pmf): 7591 * reread new bandwidth configuration 7592 * configure FW 7593 * notify others function about the change 7594 */ 7595 static void 7596 bxe_config_mf_bw(struct bxe_softc *sc) 7597 { 7598 if (sc->link_vars.link_up) { 7599 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7600 // XXX bxe_link_sync_notify(sc); 7601 } 7602 7603 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7604 } 7605 7606 static void 7607 bxe_set_mf_bw(struct bxe_softc *sc) 7608 { 7609 bxe_config_mf_bw(sc); 7610 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7611 } 7612 7613 static void 7614 bxe_handle_eee_event(struct bxe_softc *sc) 7615 { 7616 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7617 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7618 } 7619 7620 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7621 7622 static void 7623 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7624 { 7625 struct eth_stats_info *ether_stat = 7626 &sc->sp->drv_info_to_mcp.ether_stat; 7627 7628 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7629 ETH_STAT_INFO_VERSION_LEN); 7630 7631 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7632 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7633 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7634 ether_stat->mac_local + MAC_PAD, 7635 MAC_PAD, ETH_ALEN); 7636 7637 ether_stat->mtu_size = sc->mtu; 7638 7639 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7640 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7641 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7642 } 7643 7644 // XXX ether_stat->feature_flags |= ???; 7645 7646 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7647 7648 ether_stat->txq_size = sc->tx_ring_size; 7649 ether_stat->rxq_size = sc->rx_ring_size; 7650 } 7651 7652 static void 7653 bxe_handle_drv_info_req(struct bxe_softc *sc) 7654 { 7655 enum drv_info_opcode op_code; 7656 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7657 7658 /* if drv_info version supported by MFW doesn't match - send NACK */ 7659 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7660 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7661 return; 7662 } 7663 7664 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7665 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7666 7667 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7668 7669 switch (op_code) { 7670 case ETH_STATS_OPCODE: 7671 bxe_drv_info_ether_stat(sc); 7672 break; 7673 case FCOE_STATS_OPCODE: 7674 case ISCSI_STATS_OPCODE: 7675 default: 7676 /* if op code isn't supported - send NACK */ 7677 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7678 return; 7679 } 7680 7681 /* 7682 * If we got drv_info attn from MFW then these fields are defined in 7683 * shmem2 for sure 7684 */ 7685 SHMEM2_WR(sc, drv_info_host_addr_lo, 7686 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7687 SHMEM2_WR(sc, drv_info_host_addr_hi, 7688 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7689 7690 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7691 } 7692 7693 static void 7694 bxe_dcc_event(struct bxe_softc *sc, 7695 uint32_t dcc_event) 7696 { 7697 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7698 7699 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7700 /* 7701 * This is the only place besides the function initialization 7702 * where the sc->flags can change so it is done without any 7703 * locks 7704 */ 7705 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7706 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7707 sc->flags |= BXE_MF_FUNC_DIS; 7708 bxe_e1h_disable(sc); 7709 } else { 7710 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7711 sc->flags &= ~BXE_MF_FUNC_DIS; 7712 bxe_e1h_enable(sc); 7713 } 7714 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7715 } 7716 7717 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7718 bxe_config_mf_bw(sc); 7719 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7720 } 7721 7722 /* Report results to MCP */ 7723 if (dcc_event) 7724 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7725 else 7726 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7727 } 7728 7729 static void 7730 bxe_pmf_update(struct bxe_softc *sc) 7731 { 7732 int port = SC_PORT(sc); 7733 uint32_t val; 7734 7735 sc->port.pmf = 1; 7736 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7737 7738 /* 7739 * We need the mb() to ensure the ordering between the writing to 7740 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7741 */ 7742 mb(); 7743 7744 /* queue a periodic task */ 7745 // XXX schedule task... 7746 7747 // XXX bxe_dcbx_pmf_update(sc); 7748 7749 /* enable nig attention */ 7750 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7751 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7752 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7753 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7754 } else if (!CHIP_IS_E1x(sc)) { 7755 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7756 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7757 } 7758 7759 bxe_stats_handle(sc, STATS_EVENT_PMF); 7760 } 7761 7762 static int 7763 bxe_mc_assert(struct bxe_softc *sc) 7764 { 7765 char last_idx; 7766 int i, rc = 0; 7767 uint32_t row0, row1, row2, row3; 7768 7769 /* XSTORM */ 7770 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7771 if (last_idx) 7772 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7773 7774 /* print the asserts */ 7775 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7776 7777 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7778 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7779 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7780 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7781 7782 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7783 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7784 i, row3, row2, row1, row0); 7785 rc++; 7786 } else { 7787 break; 7788 } 7789 } 7790 7791 /* TSTORM */ 7792 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7793 if (last_idx) { 7794 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7795 } 7796 7797 /* print the asserts */ 7798 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7799 7800 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7801 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7802 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7803 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7804 7805 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7806 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7807 i, row3, row2, row1, row0); 7808 rc++; 7809 } else { 7810 break; 7811 } 7812 } 7813 7814 /* CSTORM */ 7815 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7816 if (last_idx) { 7817 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7818 } 7819 7820 /* print the asserts */ 7821 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7822 7823 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7824 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7825 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7826 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7827 7828 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7829 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7830 i, row3, row2, row1, row0); 7831 rc++; 7832 } else { 7833 break; 7834 } 7835 } 7836 7837 /* USTORM */ 7838 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7839 if (last_idx) { 7840 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7841 } 7842 7843 /* print the asserts */ 7844 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7845 7846 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7847 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7848 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7849 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7850 7851 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7852 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7853 i, row3, row2, row1, row0); 7854 rc++; 7855 } else { 7856 break; 7857 } 7858 } 7859 7860 return (rc); 7861 } 7862 7863 static void 7864 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7865 uint32_t attn) 7866 { 7867 int func = SC_FUNC(sc); 7868 uint32_t val; 7869 7870 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7871 7872 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7873 7874 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7875 bxe_read_mf_cfg(sc); 7876 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7877 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7878 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7879 7880 if (val & DRV_STATUS_DCC_EVENT_MASK) 7881 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7882 7883 if (val & DRV_STATUS_SET_MF_BW) 7884 bxe_set_mf_bw(sc); 7885 7886 if (val & DRV_STATUS_DRV_INFO_REQ) 7887 bxe_handle_drv_info_req(sc); 7888 7889 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7890 bxe_pmf_update(sc); 7891 7892 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7893 bxe_handle_eee_event(sc); 7894 7895 if (sc->link_vars.periodic_flags & 7896 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7897 /* sync with link */ 7898 bxe_acquire_phy_lock(sc); 7899 sc->link_vars.periodic_flags &= 7900 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7901 bxe_release_phy_lock(sc); 7902 if (IS_MF(sc)) 7903 ; // XXX bxe_link_sync_notify(sc); 7904 bxe_link_report(sc); 7905 } 7906 7907 /* 7908 * Always call it here: bxe_link_report() will 7909 * prevent the link indication duplication. 7910 */ 7911 bxe_link_status_update(sc); 7912 7913 } else if (attn & BXE_MC_ASSERT_BITS) { 7914 7915 BLOGE(sc, "MC assert!\n"); 7916 bxe_mc_assert(sc); 7917 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7918 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7919 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7920 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7921 bxe_panic(sc, ("MC assert!\n")); 7922 7923 } else if (attn & BXE_MCP_ASSERT) { 7924 7925 BLOGE(sc, "MCP assert!\n"); 7926 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7927 // XXX bxe_fw_dump(sc); 7928 7929 } else { 7930 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7931 } 7932 } 7933 7934 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7935 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7936 if (attn & BXE_GRC_TIMEOUT) { 7937 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7938 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7939 } 7940 if (attn & BXE_GRC_RSV) { 7941 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7942 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7943 } 7944 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 7945 } 7946 } 7947 7948 static void 7949 bxe_attn_int_deasserted2(struct bxe_softc *sc, 7950 uint32_t attn) 7951 { 7952 int port = SC_PORT(sc); 7953 int reg_offset; 7954 uint32_t val0, mask0, val1, mask1; 7955 uint32_t val; 7956 7957 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 7958 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 7959 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 7960 /* CFC error attention */ 7961 if (val & 0x2) { 7962 BLOGE(sc, "FATAL error from CFC\n"); 7963 } 7964 } 7965 7966 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 7967 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 7968 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 7969 /* RQ_USDMDP_FIFO_OVERFLOW */ 7970 if (val & 0x18000) { 7971 BLOGE(sc, "FATAL error from PXP\n"); 7972 } 7973 7974 if (!CHIP_IS_E1x(sc)) { 7975 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 7976 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 7977 } 7978 } 7979 7980 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 7981 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 7982 7983 if (attn & AEU_PXP2_HW_INT_BIT) { 7984 /* CQ47854 workaround do not panic on 7985 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 7986 */ 7987 if (!CHIP_IS_E1x(sc)) { 7988 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 7989 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 7990 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 7991 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 7992 /* 7993 * If the olny PXP2_EOP_ERROR_BIT is set in 7994 * STS0 and STS1 - clear it 7995 * 7996 * probably we lose additional attentions between 7997 * STS0 and STS_CLR0, in this case user will not 7998 * be notified about them 7999 */ 8000 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8001 !(val1 & mask1)) 8002 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8003 8004 /* print the register, since no one can restore it */ 8005 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8006 8007 /* 8008 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8009 * then notify 8010 */ 8011 if (val0 & PXP2_EOP_ERROR_BIT) { 8012 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8013 8014 /* 8015 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8016 * set then clear attention from PXP2 block without panic 8017 */ 8018 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8019 ((val1 & mask1) == 0)) 8020 attn &= ~AEU_PXP2_HW_INT_BIT; 8021 } 8022 } 8023 } 8024 8025 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8026 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8027 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8028 8029 val = REG_RD(sc, reg_offset); 8030 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8031 REG_WR(sc, reg_offset, val); 8032 8033 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8034 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8035 bxe_panic(sc, ("HW block attention set2\n")); 8036 } 8037 } 8038 8039 static void 8040 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8041 uint32_t attn) 8042 { 8043 int port = SC_PORT(sc); 8044 int reg_offset; 8045 uint32_t val; 8046 8047 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8048 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8049 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8050 /* DORQ discard attention */ 8051 if (val & 0x2) { 8052 BLOGE(sc, "FATAL error from DORQ\n"); 8053 } 8054 } 8055 8056 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8057 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8058 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8059 8060 val = REG_RD(sc, reg_offset); 8061 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8062 REG_WR(sc, reg_offset, val); 8063 8064 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8065 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8066 bxe_panic(sc, ("HW block attention set1\n")); 8067 } 8068 } 8069 8070 static void 8071 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8072 uint32_t attn) 8073 { 8074 int port = SC_PORT(sc); 8075 int reg_offset; 8076 uint32_t val; 8077 8078 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8079 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8080 8081 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8082 val = REG_RD(sc, reg_offset); 8083 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8084 REG_WR(sc, reg_offset, val); 8085 8086 BLOGW(sc, "SPIO5 hw attention\n"); 8087 8088 /* Fan failure attention */ 8089 elink_hw_reset_phy(&sc->link_params); 8090 bxe_fan_failure(sc); 8091 } 8092 8093 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8094 bxe_acquire_phy_lock(sc); 8095 elink_handle_module_detect_int(&sc->link_params); 8096 bxe_release_phy_lock(sc); 8097 } 8098 8099 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8100 val = REG_RD(sc, reg_offset); 8101 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8102 REG_WR(sc, reg_offset, val); 8103 8104 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8105 (attn & HW_INTERRUT_ASSERT_SET_0))); 8106 } 8107 } 8108 8109 static void 8110 bxe_attn_int_deasserted(struct bxe_softc *sc, 8111 uint32_t deasserted) 8112 { 8113 struct attn_route attn; 8114 struct attn_route *group_mask; 8115 int port = SC_PORT(sc); 8116 int index; 8117 uint32_t reg_addr; 8118 uint32_t val; 8119 uint32_t aeu_mask; 8120 uint8_t global = FALSE; 8121 8122 /* 8123 * Need to take HW lock because MCP or other port might also 8124 * try to handle this event. 8125 */ 8126 bxe_acquire_alr(sc); 8127 8128 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8129 /* XXX 8130 * In case of parity errors don't handle attentions so that 8131 * other function would "see" parity errors. 8132 */ 8133 sc->recovery_state = BXE_RECOVERY_INIT; 8134 // XXX schedule a recovery task... 8135 /* disable HW interrupts */ 8136 bxe_int_disable(sc); 8137 bxe_release_alr(sc); 8138 return; 8139 } 8140 8141 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8142 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8143 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8144 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8145 if (!CHIP_IS_E1x(sc)) { 8146 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8147 } else { 8148 attn.sig[4] = 0; 8149 } 8150 8151 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8152 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8153 8154 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8155 if (deasserted & (1 << index)) { 8156 group_mask = &sc->attn_group[index]; 8157 8158 BLOGD(sc, DBG_INTR, 8159 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8160 group_mask->sig[0], group_mask->sig[1], 8161 group_mask->sig[2], group_mask->sig[3], 8162 group_mask->sig[4]); 8163 8164 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8165 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8166 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8167 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8168 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8169 } 8170 } 8171 8172 bxe_release_alr(sc); 8173 8174 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8175 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8176 COMMAND_REG_ATTN_BITS_CLR); 8177 } else { 8178 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8179 } 8180 8181 val = ~deasserted; 8182 BLOGD(sc, DBG_INTR, 8183 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8184 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8185 REG_WR(sc, reg_addr, val); 8186 8187 if (~sc->attn_state & deasserted) { 8188 BLOGE(sc, "IGU error\n"); 8189 } 8190 8191 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8192 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8193 8194 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8195 8196 aeu_mask = REG_RD(sc, reg_addr); 8197 8198 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8199 aeu_mask, deasserted); 8200 aeu_mask |= (deasserted & 0x3ff); 8201 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8202 8203 REG_WR(sc, reg_addr, aeu_mask); 8204 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8205 8206 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8207 sc->attn_state &= ~deasserted; 8208 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8209 } 8210 8211 static void 8212 bxe_attn_int(struct bxe_softc *sc) 8213 { 8214 /* read local copy of bits */ 8215 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8216 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8217 uint32_t attn_state = sc->attn_state; 8218 8219 /* look for changed bits */ 8220 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8221 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8222 8223 BLOGD(sc, DBG_INTR, 8224 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8225 attn_bits, attn_ack, asserted, deasserted); 8226 8227 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8228 BLOGE(sc, "BAD attention state\n"); 8229 } 8230 8231 /* handle bits that were raised */ 8232 if (asserted) { 8233 bxe_attn_int_asserted(sc, asserted); 8234 } 8235 8236 if (deasserted) { 8237 bxe_attn_int_deasserted(sc, deasserted); 8238 } 8239 } 8240 8241 static uint16_t 8242 bxe_update_dsb_idx(struct bxe_softc *sc) 8243 { 8244 struct host_sp_status_block *def_sb = sc->def_sb; 8245 uint16_t rc = 0; 8246 8247 mb(); /* status block is written to by the chip */ 8248 8249 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8250 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8251 rc |= BXE_DEF_SB_ATT_IDX; 8252 } 8253 8254 if (sc->def_idx != def_sb->sp_sb.running_index) { 8255 sc->def_idx = def_sb->sp_sb.running_index; 8256 rc |= BXE_DEF_SB_IDX; 8257 } 8258 8259 mb(); 8260 8261 return (rc); 8262 } 8263 8264 static inline struct ecore_queue_sp_obj * 8265 bxe_cid_to_q_obj(struct bxe_softc *sc, 8266 uint32_t cid) 8267 { 8268 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8269 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8270 } 8271 8272 static void 8273 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8274 { 8275 struct ecore_mcast_ramrod_params rparam; 8276 int rc; 8277 8278 memset(&rparam, 0, sizeof(rparam)); 8279 8280 rparam.mcast_obj = &sc->mcast_obj; 8281 8282 BXE_MCAST_LOCK(sc); 8283 8284 /* clear pending state for the last command */ 8285 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8286 8287 /* if there are pending mcast commands - send them */ 8288 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8289 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8290 if (rc < 0) { 8291 BLOGD(sc, DBG_SP, 8292 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8293 } 8294 } 8295 8296 BXE_MCAST_UNLOCK(sc); 8297 } 8298 8299 static void 8300 bxe_handle_classification_eqe(struct bxe_softc *sc, 8301 union event_ring_elem *elem) 8302 { 8303 unsigned long ramrod_flags = 0; 8304 int rc = 0; 8305 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8306 struct ecore_vlan_mac_obj *vlan_mac_obj; 8307 8308 /* always push next commands out, don't wait here */ 8309 bit_set(&ramrod_flags, RAMROD_CONT); 8310 8311 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8312 case ECORE_FILTER_MAC_PENDING: 8313 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8314 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8315 break; 8316 8317 case ECORE_FILTER_MCAST_PENDING: 8318 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8319 /* 8320 * This is only relevant for 57710 where multicast MACs are 8321 * configured as unicast MACs using the same ramrod. 8322 */ 8323 bxe_handle_mcast_eqe(sc); 8324 return; 8325 8326 default: 8327 BLOGE(sc, "Unsupported classification command: %d\n", 8328 elem->message.data.eth_event.echo); 8329 return; 8330 } 8331 8332 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8333 8334 if (rc < 0) { 8335 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8336 } else if (rc > 0) { 8337 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8338 } 8339 } 8340 8341 static void 8342 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8343 union event_ring_elem *elem) 8344 { 8345 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8346 8347 /* send rx_mode command again if was requested */ 8348 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8349 &sc->sp_state)) { 8350 bxe_set_storm_rx_mode(sc); 8351 } 8352 } 8353 8354 static void 8355 bxe_update_eq_prod(struct bxe_softc *sc, 8356 uint16_t prod) 8357 { 8358 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8359 wmb(); /* keep prod updates ordered */ 8360 } 8361 8362 static void 8363 bxe_eq_int(struct bxe_softc *sc) 8364 { 8365 uint16_t hw_cons, sw_cons, sw_prod; 8366 union event_ring_elem *elem; 8367 uint8_t echo; 8368 uint32_t cid; 8369 uint8_t opcode; 8370 int spqe_cnt = 0; 8371 struct ecore_queue_sp_obj *q_obj; 8372 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8373 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8374 8375 hw_cons = le16toh(*sc->eq_cons_sb); 8376 8377 /* 8378 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8379 * when we get to the next-page we need to adjust so the loop 8380 * condition below will be met. The next element is the size of a 8381 * regular element and hence incrementing by 1 8382 */ 8383 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8384 hw_cons++; 8385 } 8386 8387 /* 8388 * This function may never run in parallel with itself for a 8389 * specific sc and no need for a read memory barrier here. 8390 */ 8391 sw_cons = sc->eq_cons; 8392 sw_prod = sc->eq_prod; 8393 8394 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8395 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8396 8397 for (; 8398 sw_cons != hw_cons; 8399 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8400 8401 elem = &sc->eq[EQ_DESC(sw_cons)]; 8402 8403 /* elem CID originates from FW, actually LE */ 8404 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8405 opcode = elem->message.opcode; 8406 8407 /* handle eq element */ 8408 switch (opcode) { 8409 8410 case EVENT_RING_OPCODE_STAT_QUERY: 8411 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8412 sc->stats_comp++); 8413 /* nothing to do with stats comp */ 8414 goto next_spqe; 8415 8416 case EVENT_RING_OPCODE_CFC_DEL: 8417 /* handle according to cid range */ 8418 /* we may want to verify here that the sc state is HALTING */ 8419 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8420 q_obj = bxe_cid_to_q_obj(sc, cid); 8421 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8422 break; 8423 } 8424 goto next_spqe; 8425 8426 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8427 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8428 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8429 break; 8430 } 8431 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8432 goto next_spqe; 8433 8434 case EVENT_RING_OPCODE_START_TRAFFIC: 8435 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8436 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8437 break; 8438 } 8439 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8440 goto next_spqe; 8441 8442 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8443 echo = elem->message.data.function_update_event.echo; 8444 if (echo == SWITCH_UPDATE) { 8445 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8446 if (f_obj->complete_cmd(sc, f_obj, 8447 ECORE_F_CMD_SWITCH_UPDATE)) { 8448 break; 8449 } 8450 } 8451 else { 8452 BLOGD(sc, DBG_SP, 8453 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8454 } 8455 goto next_spqe; 8456 8457 case EVENT_RING_OPCODE_FORWARD_SETUP: 8458 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8459 if (q_obj->complete_cmd(sc, q_obj, 8460 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8461 break; 8462 } 8463 goto next_spqe; 8464 8465 case EVENT_RING_OPCODE_FUNCTION_START: 8466 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8467 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8468 break; 8469 } 8470 goto next_spqe; 8471 8472 case EVENT_RING_OPCODE_FUNCTION_STOP: 8473 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8474 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8475 break; 8476 } 8477 goto next_spqe; 8478 } 8479 8480 switch (opcode | sc->state) { 8481 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8482 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8483 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8484 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8485 rss_raw->clear_pending(rss_raw); 8486 break; 8487 8488 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8489 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8490 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8491 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8492 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8493 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8494 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8495 bxe_handle_classification_eqe(sc, elem); 8496 break; 8497 8498 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8499 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8500 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8501 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8502 bxe_handle_mcast_eqe(sc); 8503 break; 8504 8505 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8506 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8507 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8508 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8509 bxe_handle_rx_mode_eqe(sc, elem); 8510 break; 8511 8512 default: 8513 /* unknown event log error and continue */ 8514 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8515 elem->message.opcode, sc->state); 8516 } 8517 8518 next_spqe: 8519 spqe_cnt++; 8520 } /* for */ 8521 8522 mb(); 8523 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8524 8525 sc->eq_cons = sw_cons; 8526 sc->eq_prod = sw_prod; 8527 8528 /* make sure that above mem writes were issued towards the memory */ 8529 wmb(); 8530 8531 /* update producer */ 8532 bxe_update_eq_prod(sc, sc->eq_prod); 8533 } 8534 8535 static void 8536 bxe_handle_sp_tq(void *context, 8537 int pending) 8538 { 8539 struct bxe_softc *sc = (struct bxe_softc *)context; 8540 uint16_t status; 8541 8542 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8543 8544 /* what work needs to be performed? */ 8545 status = bxe_update_dsb_idx(sc); 8546 8547 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8548 8549 /* HW attentions */ 8550 if (status & BXE_DEF_SB_ATT_IDX) { 8551 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8552 bxe_attn_int(sc); 8553 status &= ~BXE_DEF_SB_ATT_IDX; 8554 } 8555 8556 /* SP events: STAT_QUERY and others */ 8557 if (status & BXE_DEF_SB_IDX) { 8558 /* handle EQ completions */ 8559 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8560 bxe_eq_int(sc); 8561 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8562 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8563 status &= ~BXE_DEF_SB_IDX; 8564 } 8565 8566 /* if status is non zero then something went wrong */ 8567 if (__predict_false(status)) { 8568 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8569 } 8570 8571 /* ack status block only if something was actually handled */ 8572 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8573 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8574 8575 /* 8576 * Must be called after the EQ processing (since eq leads to sriov 8577 * ramrod completion flows). 8578 * This flow may have been scheduled by the arrival of a ramrod 8579 * completion, or by the sriov code rescheduling itself. 8580 */ 8581 // XXX bxe_iov_sp_task(sc); 8582 8583 } 8584 8585 static void 8586 bxe_handle_fp_tq(void *context, 8587 int pending) 8588 { 8589 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8590 struct bxe_softc *sc = fp->sc; 8591 uint8_t more_tx = FALSE; 8592 uint8_t more_rx = FALSE; 8593 8594 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8595 8596 /* XXX 8597 * IFF_DRV_RUNNING state can't be checked here since we process 8598 * slowpath events on a client queue during setup. Instead 8599 * we need to add a "process/continue" flag here that the driver 8600 * can use to tell the task here not to do anything. 8601 */ 8602 #if 0 8603 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8604 return; 8605 } 8606 #endif 8607 8608 /* update the fastpath index */ 8609 bxe_update_fp_sb_idx(fp); 8610 8611 /* XXX add loop here if ever support multiple tx CoS */ 8612 /* fp->txdata[cos] */ 8613 if (bxe_has_tx_work(fp)) { 8614 BXE_FP_TX_LOCK(fp); 8615 more_tx = bxe_txeof(sc, fp); 8616 BXE_FP_TX_UNLOCK(fp); 8617 } 8618 8619 if (bxe_has_rx_work(fp)) { 8620 more_rx = bxe_rxeof(sc, fp); 8621 } 8622 8623 if (more_rx /*|| more_tx*/) { 8624 /* still more work to do */ 8625 taskqueue_enqueue(fp->tq, &fp->tq_task); 8626 return; 8627 } 8628 8629 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8630 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8631 } 8632 8633 static void 8634 bxe_task_fp(struct bxe_fastpath *fp) 8635 { 8636 struct bxe_softc *sc = fp->sc; 8637 uint8_t more_tx = FALSE; 8638 uint8_t more_rx = FALSE; 8639 8640 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8641 8642 /* update the fastpath index */ 8643 bxe_update_fp_sb_idx(fp); 8644 8645 /* XXX add loop here if ever support multiple tx CoS */ 8646 /* fp->txdata[cos] */ 8647 if (bxe_has_tx_work(fp)) { 8648 BXE_FP_TX_LOCK(fp); 8649 more_tx = bxe_txeof(sc, fp); 8650 BXE_FP_TX_UNLOCK(fp); 8651 } 8652 8653 if (bxe_has_rx_work(fp)) { 8654 more_rx = bxe_rxeof(sc, fp); 8655 } 8656 8657 if (more_rx /*|| more_tx*/) { 8658 /* still more work to do, bail out if this ISR and process later */ 8659 taskqueue_enqueue(fp->tq, &fp->tq_task); 8660 return; 8661 } 8662 8663 /* 8664 * Here we write the fastpath index taken before doing any tx or rx work. 8665 * It is very well possible other hw events occurred up to this point and 8666 * they were actually processed accordingly above. Since we're going to 8667 * write an older fastpath index, an interrupt is coming which we might 8668 * not do any work in. 8669 */ 8670 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8671 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8672 } 8673 8674 /* 8675 * Legacy interrupt entry point. 8676 * 8677 * Verifies that the controller generated the interrupt and 8678 * then calls a separate routine to handle the various 8679 * interrupt causes: link, RX, and TX. 8680 */ 8681 static void 8682 bxe_intr_legacy(void *xsc) 8683 { 8684 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8685 struct bxe_fastpath *fp; 8686 uint16_t status, mask; 8687 int i; 8688 8689 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8690 8691 /* 8692 * 0 for ustorm, 1 for cstorm 8693 * the bits returned from ack_int() are 0-15 8694 * bit 0 = attention status block 8695 * bit 1 = fast path status block 8696 * a mask of 0x2 or more = tx/rx event 8697 * a mask of 1 = slow path event 8698 */ 8699 8700 status = bxe_ack_int(sc); 8701 8702 /* the interrupt is not for us */ 8703 if (__predict_false(status == 0)) { 8704 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8705 return; 8706 } 8707 8708 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8709 8710 FOR_EACH_ETH_QUEUE(sc, i) { 8711 fp = &sc->fp[i]; 8712 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8713 if (status & mask) { 8714 /* acknowledge and disable further fastpath interrupts */ 8715 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8716 bxe_task_fp(fp); 8717 status &= ~mask; 8718 } 8719 } 8720 8721 if (__predict_false(status & 0x1)) { 8722 /* acknowledge and disable further slowpath interrupts */ 8723 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8724 8725 /* schedule slowpath handler */ 8726 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8727 8728 status &= ~0x1; 8729 } 8730 8731 if (__predict_false(status)) { 8732 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8733 } 8734 } 8735 8736 /* slowpath interrupt entry point */ 8737 static void 8738 bxe_intr_sp(void *xsc) 8739 { 8740 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8741 8742 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8743 8744 /* acknowledge and disable further slowpath interrupts */ 8745 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8746 8747 /* schedule slowpath handler */ 8748 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8749 } 8750 8751 /* fastpath interrupt entry point */ 8752 static void 8753 bxe_intr_fp(void *xfp) 8754 { 8755 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8756 struct bxe_softc *sc = fp->sc; 8757 8758 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8759 8760 BLOGD(sc, DBG_INTR, 8761 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8762 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8763 8764 /* acknowledge and disable further fastpath interrupts */ 8765 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8766 8767 bxe_task_fp(fp); 8768 } 8769 8770 /* Release all interrupts allocated by the driver. */ 8771 static void 8772 bxe_interrupt_free(struct bxe_softc *sc) 8773 { 8774 int i; 8775 8776 switch (sc->interrupt_mode) { 8777 case INTR_MODE_INTX: 8778 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8779 if (sc->intr[0].resource != NULL) { 8780 bus_release_resource(sc->dev, 8781 SYS_RES_IRQ, 8782 sc->intr[0].rid, 8783 sc->intr[0].resource); 8784 } 8785 break; 8786 case INTR_MODE_MSI: 8787 for (i = 0; i < sc->intr_count; i++) { 8788 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8789 if (sc->intr[i].resource && sc->intr[i].rid) { 8790 bus_release_resource(sc->dev, 8791 SYS_RES_IRQ, 8792 sc->intr[i].rid, 8793 sc->intr[i].resource); 8794 } 8795 } 8796 pci_release_msi(sc->dev); 8797 break; 8798 case INTR_MODE_MSIX: 8799 for (i = 0; i < sc->intr_count; i++) { 8800 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8801 if (sc->intr[i].resource && sc->intr[i].rid) { 8802 bus_release_resource(sc->dev, 8803 SYS_RES_IRQ, 8804 sc->intr[i].rid, 8805 sc->intr[i].resource); 8806 } 8807 } 8808 pci_release_msi(sc->dev); 8809 break; 8810 default: 8811 /* nothing to do as initial allocation failed */ 8812 break; 8813 } 8814 } 8815 8816 /* 8817 * This function determines and allocates the appropriate 8818 * interrupt based on system capabilites and user request. 8819 * 8820 * The user may force a particular interrupt mode, specify 8821 * the number of receive queues, specify the method for 8822 * distribuitng received frames to receive queues, or use 8823 * the default settings which will automatically select the 8824 * best supported combination. In addition, the OS may or 8825 * may not support certain combinations of these settings. 8826 * This routine attempts to reconcile the settings requested 8827 * by the user with the capabilites available from the system 8828 * to select the optimal combination of features. 8829 * 8830 * Returns: 8831 * 0 = Success, !0 = Failure. 8832 */ 8833 static int 8834 bxe_interrupt_alloc(struct bxe_softc *sc) 8835 { 8836 int msix_count = 0; 8837 int msi_count = 0; 8838 int num_requested = 0; 8839 int num_allocated = 0; 8840 int rid, i, j; 8841 int rc; 8842 8843 /* get the number of available MSI/MSI-X interrupts from the OS */ 8844 if (sc->interrupt_mode > 0) { 8845 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8846 msix_count = pci_msix_count(sc->dev); 8847 } 8848 8849 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8850 msi_count = pci_msi_count(sc->dev); 8851 } 8852 8853 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8854 msi_count, msix_count); 8855 } 8856 8857 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8858 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8859 break; 8860 } 8861 8862 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8863 (msix_count < 2)) { 8864 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8865 break; 8866 } 8867 8868 /* ask for the necessary number of MSI-X vectors */ 8869 num_requested = min((sc->num_queues + 1), msix_count); 8870 8871 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8872 8873 num_allocated = num_requested; 8874 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8875 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8876 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8877 break; 8878 } 8879 8880 if (num_allocated < 2) { /* possible? */ 8881 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8882 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8883 pci_release_msi(sc->dev); 8884 break; 8885 } 8886 8887 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8888 num_requested, num_allocated); 8889 8890 /* best effort so use the number of vectors allocated to us */ 8891 sc->intr_count = num_allocated; 8892 sc->num_queues = num_allocated - 1; 8893 8894 rid = 1; /* initial resource identifier */ 8895 8896 /* allocate the MSI-X vectors */ 8897 for (i = 0; i < num_allocated; i++) { 8898 sc->intr[i].rid = (rid + i); 8899 8900 if ((sc->intr[i].resource = 8901 bus_alloc_resource_any(sc->dev, 8902 SYS_RES_IRQ, 8903 &sc->intr[i].rid, 8904 RF_ACTIVE)) == NULL) { 8905 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8906 i, (rid + i)); 8907 8908 for (j = (i - 1); j >= 0; j--) { 8909 bus_release_resource(sc->dev, 8910 SYS_RES_IRQ, 8911 sc->intr[j].rid, 8912 sc->intr[j].resource); 8913 } 8914 8915 sc->intr_count = 0; 8916 sc->num_queues = 0; 8917 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8918 pci_release_msi(sc->dev); 8919 break; 8920 } 8921 8922 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8923 } 8924 } while (0); 8925 8926 do { /* try allocating MSI vector resources (at least 2) */ 8927 if (sc->interrupt_mode != INTR_MODE_MSI) { 8928 break; 8929 } 8930 8931 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 8932 (msi_count < 1)) { 8933 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8934 break; 8935 } 8936 8937 /* ask for a single MSI vector */ 8938 num_requested = 1; 8939 8940 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 8941 8942 num_allocated = num_requested; 8943 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 8944 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 8945 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8946 break; 8947 } 8948 8949 if (num_allocated != 1) { /* possible? */ 8950 BLOGE(sc, "MSI allocation is not 1!\n"); 8951 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8952 pci_release_msi(sc->dev); 8953 break; 8954 } 8955 8956 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 8957 num_requested, num_allocated); 8958 8959 /* best effort so use the number of vectors allocated to us */ 8960 sc->intr_count = num_allocated; 8961 sc->num_queues = num_allocated; 8962 8963 rid = 1; /* initial resource identifier */ 8964 8965 sc->intr[0].rid = rid; 8966 8967 if ((sc->intr[0].resource = 8968 bus_alloc_resource_any(sc->dev, 8969 SYS_RES_IRQ, 8970 &sc->intr[0].rid, 8971 RF_ACTIVE)) == NULL) { 8972 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 8973 sc->intr_count = 0; 8974 sc->num_queues = 0; 8975 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8976 pci_release_msi(sc->dev); 8977 break; 8978 } 8979 8980 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 8981 } while (0); 8982 8983 do { /* try allocating INTx vector resources */ 8984 if (sc->interrupt_mode != INTR_MODE_INTX) { 8985 break; 8986 } 8987 8988 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 8989 8990 /* only one vector for INTx */ 8991 sc->intr_count = 1; 8992 sc->num_queues = 1; 8993 8994 rid = 0; /* initial resource identifier */ 8995 8996 sc->intr[0].rid = rid; 8997 8998 if ((sc->intr[0].resource = 8999 bus_alloc_resource_any(sc->dev, 9000 SYS_RES_IRQ, 9001 &sc->intr[0].rid, 9002 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9003 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9004 sc->intr_count = 0; 9005 sc->num_queues = 0; 9006 sc->interrupt_mode = -1; /* Failed! */ 9007 break; 9008 } 9009 9010 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9011 } while (0); 9012 9013 if (sc->interrupt_mode == -1) { 9014 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9015 rc = 1; 9016 } else { 9017 BLOGD(sc, DBG_LOAD, 9018 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9019 sc->interrupt_mode, sc->num_queues); 9020 rc = 0; 9021 } 9022 9023 return (rc); 9024 } 9025 9026 static void 9027 bxe_interrupt_detach(struct bxe_softc *sc) 9028 { 9029 struct bxe_fastpath *fp; 9030 int i; 9031 9032 /* release interrupt resources */ 9033 for (i = 0; i < sc->intr_count; i++) { 9034 if (sc->intr[i].resource && sc->intr[i].tag) { 9035 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9036 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9037 } 9038 } 9039 9040 for (i = 0; i < sc->num_queues; i++) { 9041 fp = &sc->fp[i]; 9042 if (fp->tq) { 9043 taskqueue_drain(fp->tq, &fp->tq_task); 9044 taskqueue_free(fp->tq); 9045 fp->tq = NULL; 9046 } 9047 } 9048 9049 9050 if (sc->sp_tq) { 9051 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9052 taskqueue_free(sc->sp_tq); 9053 sc->sp_tq = NULL; 9054 } 9055 } 9056 9057 /* 9058 * Enables interrupts and attach to the ISR. 9059 * 9060 * When using multiple MSI/MSI-X vectors the first vector 9061 * is used for slowpath operations while all remaining 9062 * vectors are used for fastpath operations. If only a 9063 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9064 * ISR must look for both slowpath and fastpath completions. 9065 */ 9066 static int 9067 bxe_interrupt_attach(struct bxe_softc *sc) 9068 { 9069 struct bxe_fastpath *fp; 9070 int rc = 0; 9071 int i; 9072 9073 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9074 "bxe%d_sp_tq", sc->unit); 9075 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9076 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9077 taskqueue_thread_enqueue, 9078 &sc->sp_tq); 9079 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9080 "%s", sc->sp_tq_name); 9081 9082 9083 for (i = 0; i < sc->num_queues; i++) { 9084 fp = &sc->fp[i]; 9085 snprintf(fp->tq_name, sizeof(fp->tq_name), 9086 "bxe%d_fp%d_tq", sc->unit, i); 9087 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9088 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9089 taskqueue_thread_enqueue, 9090 &fp->tq); 9091 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9092 "%s", fp->tq_name); 9093 } 9094 9095 /* setup interrupt handlers */ 9096 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9097 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9098 9099 /* 9100 * Setup the interrupt handler. Note that we pass the driver instance 9101 * to the interrupt handler for the slowpath. 9102 */ 9103 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9104 (INTR_TYPE_NET | INTR_MPSAFE), 9105 NULL, bxe_intr_sp, sc, 9106 &sc->intr[0].tag)) != 0) { 9107 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9108 goto bxe_interrupt_attach_exit; 9109 } 9110 9111 bus_describe_intr(sc->dev, sc->intr[0].resource, 9112 sc->intr[0].tag, "sp"); 9113 9114 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9115 9116 /* initialize the fastpath vectors (note the first was used for sp) */ 9117 for (i = 0; i < sc->num_queues; i++) { 9118 fp = &sc->fp[i]; 9119 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9120 9121 /* 9122 * Setup the interrupt handler. Note that we pass the 9123 * fastpath context to the interrupt handler in this 9124 * case. 9125 */ 9126 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9127 (INTR_TYPE_NET | INTR_MPSAFE), 9128 NULL, bxe_intr_fp, fp, 9129 &sc->intr[i + 1].tag)) != 0) { 9130 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9131 (i + 1), rc); 9132 goto bxe_interrupt_attach_exit; 9133 } 9134 9135 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9136 sc->intr[i + 1].tag, "fp%02d", i); 9137 9138 /* bind the fastpath instance to a cpu */ 9139 if (sc->num_queues > 1) { 9140 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9141 } 9142 9143 fp->state = BXE_FP_STATE_IRQ; 9144 } 9145 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9146 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9147 9148 /* 9149 * Setup the interrupt handler. Note that we pass the 9150 * driver instance to the interrupt handler which 9151 * will handle both the slowpath and fastpath. 9152 */ 9153 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9154 (INTR_TYPE_NET | INTR_MPSAFE), 9155 NULL, bxe_intr_legacy, sc, 9156 &sc->intr[0].tag)) != 0) { 9157 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9158 goto bxe_interrupt_attach_exit; 9159 } 9160 9161 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9162 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9163 9164 /* 9165 * Setup the interrupt handler. Note that we pass the 9166 * driver instance to the interrupt handler which 9167 * will handle both the slowpath and fastpath. 9168 */ 9169 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9170 (INTR_TYPE_NET | INTR_MPSAFE), 9171 NULL, bxe_intr_legacy, sc, 9172 &sc->intr[0].tag)) != 0) { 9173 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9174 goto bxe_interrupt_attach_exit; 9175 } 9176 } 9177 9178 bxe_interrupt_attach_exit: 9179 9180 return (rc); 9181 } 9182 9183 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9184 static int bxe_init_hw_common(struct bxe_softc *sc); 9185 static int bxe_init_hw_port(struct bxe_softc *sc); 9186 static int bxe_init_hw_func(struct bxe_softc *sc); 9187 static void bxe_reset_common(struct bxe_softc *sc); 9188 static void bxe_reset_port(struct bxe_softc *sc); 9189 static void bxe_reset_func(struct bxe_softc *sc); 9190 static int bxe_gunzip_init(struct bxe_softc *sc); 9191 static void bxe_gunzip_end(struct bxe_softc *sc); 9192 static int bxe_init_firmware(struct bxe_softc *sc); 9193 static void bxe_release_firmware(struct bxe_softc *sc); 9194 9195 static struct 9196 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9197 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9198 .init_hw_cmn = bxe_init_hw_common, 9199 .init_hw_port = bxe_init_hw_port, 9200 .init_hw_func = bxe_init_hw_func, 9201 9202 .reset_hw_cmn = bxe_reset_common, 9203 .reset_hw_port = bxe_reset_port, 9204 .reset_hw_func = bxe_reset_func, 9205 9206 .gunzip_init = bxe_gunzip_init, 9207 .gunzip_end = bxe_gunzip_end, 9208 9209 .init_fw = bxe_init_firmware, 9210 .release_fw = bxe_release_firmware, 9211 }; 9212 9213 static void 9214 bxe_init_func_obj(struct bxe_softc *sc) 9215 { 9216 sc->dmae_ready = 0; 9217 9218 ecore_init_func_obj(sc, 9219 &sc->func_obj, 9220 BXE_SP(sc, func_rdata), 9221 BXE_SP_MAPPING(sc, func_rdata), 9222 BXE_SP(sc, func_afex_rdata), 9223 BXE_SP_MAPPING(sc, func_afex_rdata), 9224 &bxe_func_sp_drv); 9225 } 9226 9227 static int 9228 bxe_init_hw(struct bxe_softc *sc, 9229 uint32_t load_code) 9230 { 9231 struct ecore_func_state_params func_params = { NULL }; 9232 int rc; 9233 9234 /* prepare the parameters for function state transitions */ 9235 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9236 9237 func_params.f_obj = &sc->func_obj; 9238 func_params.cmd = ECORE_F_CMD_HW_INIT; 9239 9240 func_params.params.hw_init.load_phase = load_code; 9241 9242 /* 9243 * Via a plethora of function pointers, we will eventually reach 9244 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9245 */ 9246 rc = ecore_func_state_change(sc, &func_params); 9247 9248 return (rc); 9249 } 9250 9251 static void 9252 bxe_fill(struct bxe_softc *sc, 9253 uint32_t addr, 9254 int fill, 9255 uint32_t len) 9256 { 9257 uint32_t i; 9258 9259 if (!(len % 4) && !(addr % 4)) { 9260 for (i = 0; i < len; i += 4) { 9261 REG_WR(sc, (addr + i), fill); 9262 } 9263 } else { 9264 for (i = 0; i < len; i++) { 9265 REG_WR8(sc, (addr + i), fill); 9266 } 9267 } 9268 } 9269 9270 /* writes FP SP data to FW - data_size in dwords */ 9271 static void 9272 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9273 int fw_sb_id, 9274 uint32_t *sb_data_p, 9275 uint32_t data_size) 9276 { 9277 int index; 9278 9279 for (index = 0; index < data_size; index++) { 9280 REG_WR(sc, 9281 (BAR_CSTRORM_INTMEM + 9282 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9283 (sizeof(uint32_t) * index)), 9284 *(sb_data_p + index)); 9285 } 9286 } 9287 9288 static void 9289 bxe_zero_fp_sb(struct bxe_softc *sc, 9290 int fw_sb_id) 9291 { 9292 struct hc_status_block_data_e2 sb_data_e2; 9293 struct hc_status_block_data_e1x sb_data_e1x; 9294 uint32_t *sb_data_p; 9295 uint32_t data_size = 0; 9296 9297 if (!CHIP_IS_E1x(sc)) { 9298 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9299 sb_data_e2.common.state = SB_DISABLED; 9300 sb_data_e2.common.p_func.vf_valid = FALSE; 9301 sb_data_p = (uint32_t *)&sb_data_e2; 9302 data_size = (sizeof(struct hc_status_block_data_e2) / 9303 sizeof(uint32_t)); 9304 } else { 9305 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9306 sb_data_e1x.common.state = SB_DISABLED; 9307 sb_data_e1x.common.p_func.vf_valid = FALSE; 9308 sb_data_p = (uint32_t *)&sb_data_e1x; 9309 data_size = (sizeof(struct hc_status_block_data_e1x) / 9310 sizeof(uint32_t)); 9311 } 9312 9313 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9314 9315 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9316 0, CSTORM_STATUS_BLOCK_SIZE); 9317 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9318 0, CSTORM_SYNC_BLOCK_SIZE); 9319 } 9320 9321 static void 9322 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9323 struct hc_sp_status_block_data *sp_sb_data) 9324 { 9325 int i; 9326 9327 for (i = 0; 9328 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9329 i++) { 9330 REG_WR(sc, 9331 (BAR_CSTRORM_INTMEM + 9332 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9333 (i * sizeof(uint32_t))), 9334 *((uint32_t *)sp_sb_data + i)); 9335 } 9336 } 9337 9338 static void 9339 bxe_zero_sp_sb(struct bxe_softc *sc) 9340 { 9341 struct hc_sp_status_block_data sp_sb_data; 9342 9343 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9344 9345 sp_sb_data.state = SB_DISABLED; 9346 sp_sb_data.p_func.vf_valid = FALSE; 9347 9348 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9349 9350 bxe_fill(sc, 9351 (BAR_CSTRORM_INTMEM + 9352 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9353 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9354 bxe_fill(sc, 9355 (BAR_CSTRORM_INTMEM + 9356 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9357 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9358 } 9359 9360 static void 9361 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9362 int igu_sb_id, 9363 int igu_seg_id) 9364 { 9365 hc_sm->igu_sb_id = igu_sb_id; 9366 hc_sm->igu_seg_id = igu_seg_id; 9367 hc_sm->timer_value = 0xFF; 9368 hc_sm->time_to_expire = 0xFFFFFFFF; 9369 } 9370 9371 static void 9372 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9373 { 9374 /* zero out state machine indices */ 9375 9376 /* rx indices */ 9377 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9378 9379 /* tx indices */ 9380 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9381 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9382 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9383 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9384 9385 /* map indices */ 9386 9387 /* rx indices */ 9388 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9389 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9390 9391 /* tx indices */ 9392 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9393 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9394 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9395 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9396 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9397 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9398 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9399 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9400 } 9401 9402 static void 9403 bxe_init_sb(struct bxe_softc *sc, 9404 bus_addr_t busaddr, 9405 int vfid, 9406 uint8_t vf_valid, 9407 int fw_sb_id, 9408 int igu_sb_id) 9409 { 9410 struct hc_status_block_data_e2 sb_data_e2; 9411 struct hc_status_block_data_e1x sb_data_e1x; 9412 struct hc_status_block_sm *hc_sm_p; 9413 uint32_t *sb_data_p; 9414 int igu_seg_id; 9415 int data_size; 9416 9417 if (CHIP_INT_MODE_IS_BC(sc)) { 9418 igu_seg_id = HC_SEG_ACCESS_NORM; 9419 } else { 9420 igu_seg_id = IGU_SEG_ACCESS_NORM; 9421 } 9422 9423 bxe_zero_fp_sb(sc, fw_sb_id); 9424 9425 if (!CHIP_IS_E1x(sc)) { 9426 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9427 sb_data_e2.common.state = SB_ENABLED; 9428 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9429 sb_data_e2.common.p_func.vf_id = vfid; 9430 sb_data_e2.common.p_func.vf_valid = vf_valid; 9431 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9432 sb_data_e2.common.same_igu_sb_1b = TRUE; 9433 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9434 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9435 hc_sm_p = sb_data_e2.common.state_machine; 9436 sb_data_p = (uint32_t *)&sb_data_e2; 9437 data_size = (sizeof(struct hc_status_block_data_e2) / 9438 sizeof(uint32_t)); 9439 bxe_map_sb_state_machines(sb_data_e2.index_data); 9440 } else { 9441 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9442 sb_data_e1x.common.state = SB_ENABLED; 9443 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9444 sb_data_e1x.common.p_func.vf_id = 0xff; 9445 sb_data_e1x.common.p_func.vf_valid = FALSE; 9446 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9447 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9448 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9449 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9450 hc_sm_p = sb_data_e1x.common.state_machine; 9451 sb_data_p = (uint32_t *)&sb_data_e1x; 9452 data_size = (sizeof(struct hc_status_block_data_e1x) / 9453 sizeof(uint32_t)); 9454 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9455 } 9456 9457 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9458 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9459 9460 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9461 9462 /* write indices to HW - PCI guarantees endianity of regpairs */ 9463 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9464 } 9465 9466 static inline uint8_t 9467 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9468 { 9469 if (CHIP_IS_E1x(fp->sc)) { 9470 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9471 } else { 9472 return (fp->cl_id); 9473 } 9474 } 9475 9476 static inline uint32_t 9477 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9478 struct bxe_fastpath *fp) 9479 { 9480 uint32_t offset = BAR_USTRORM_INTMEM; 9481 9482 if (!CHIP_IS_E1x(sc)) { 9483 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9484 } else { 9485 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9486 } 9487 9488 return (offset); 9489 } 9490 9491 static void 9492 bxe_init_eth_fp(struct bxe_softc *sc, 9493 int idx) 9494 { 9495 struct bxe_fastpath *fp = &sc->fp[idx]; 9496 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9497 unsigned long q_type = 0; 9498 int cos; 9499 9500 fp->sc = sc; 9501 fp->index = idx; 9502 9503 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9504 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9505 9506 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9507 (SC_L_ID(sc) + idx) : 9508 /* want client ID same as IGU SB ID for non-E1 */ 9509 fp->igu_sb_id; 9510 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9511 9512 /* setup sb indices */ 9513 if (!CHIP_IS_E1x(sc)) { 9514 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9515 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9516 } else { 9517 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9518 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9519 } 9520 9521 /* init shortcut */ 9522 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9523 9524 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9525 9526 /* 9527 * XXX If multiple CoS is ever supported then each fastpath structure 9528 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9529 */ 9530 for (cos = 0; cos < sc->max_cos; cos++) { 9531 cids[cos] = idx; 9532 } 9533 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9534 9535 /* nothing more for a VF to do */ 9536 if (IS_VF(sc)) { 9537 return; 9538 } 9539 9540 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9541 fp->fw_sb_id, fp->igu_sb_id); 9542 9543 bxe_update_fp_sb_idx(fp); 9544 9545 /* Configure Queue State object */ 9546 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9547 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9548 9549 ecore_init_queue_obj(sc, 9550 &sc->sp_objs[idx].q_obj, 9551 fp->cl_id, 9552 cids, 9553 sc->max_cos, 9554 SC_FUNC(sc), 9555 BXE_SP(sc, q_rdata), 9556 BXE_SP_MAPPING(sc, q_rdata), 9557 q_type); 9558 9559 /* configure classification DBs */ 9560 ecore_init_mac_obj(sc, 9561 &sc->sp_objs[idx].mac_obj, 9562 fp->cl_id, 9563 idx, 9564 SC_FUNC(sc), 9565 BXE_SP(sc, mac_rdata), 9566 BXE_SP_MAPPING(sc, mac_rdata), 9567 ECORE_FILTER_MAC_PENDING, 9568 &sc->sp_state, 9569 ECORE_OBJ_TYPE_RX_TX, 9570 &sc->macs_pool); 9571 9572 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9573 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9574 } 9575 9576 static inline void 9577 bxe_update_rx_prod(struct bxe_softc *sc, 9578 struct bxe_fastpath *fp, 9579 uint16_t rx_bd_prod, 9580 uint16_t rx_cq_prod, 9581 uint16_t rx_sge_prod) 9582 { 9583 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9584 uint32_t i; 9585 9586 /* update producers */ 9587 rx_prods.bd_prod = rx_bd_prod; 9588 rx_prods.cqe_prod = rx_cq_prod; 9589 rx_prods.sge_prod = rx_sge_prod; 9590 9591 /* 9592 * Make sure that the BD and SGE data is updated before updating the 9593 * producers since FW might read the BD/SGE right after the producer 9594 * is updated. 9595 * This is only applicable for weak-ordered memory model archs such 9596 * as IA-64. The following barrier is also mandatory since FW will 9597 * assumes BDs must have buffers. 9598 */ 9599 wmb(); 9600 9601 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9602 REG_WR(sc, 9603 (fp->ustorm_rx_prods_offset + (i * 4)), 9604 ((uint32_t *)&rx_prods)[i]); 9605 } 9606 9607 wmb(); /* keep prod updates ordered */ 9608 9609 BLOGD(sc, DBG_RX, 9610 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9611 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9612 } 9613 9614 static void 9615 bxe_init_rx_rings(struct bxe_softc *sc) 9616 { 9617 struct bxe_fastpath *fp; 9618 int i; 9619 9620 for (i = 0; i < sc->num_queues; i++) { 9621 fp = &sc->fp[i]; 9622 9623 fp->rx_bd_cons = 0; 9624 9625 /* 9626 * Activate the BD ring... 9627 * Warning, this will generate an interrupt (to the TSTORM) 9628 * so this can only be done after the chip is initialized 9629 */ 9630 bxe_update_rx_prod(sc, fp, 9631 fp->rx_bd_prod, 9632 fp->rx_cq_prod, 9633 fp->rx_sge_prod); 9634 9635 if (i != 0) { 9636 continue; 9637 } 9638 9639 if (CHIP_IS_E1(sc)) { 9640 REG_WR(sc, 9641 (BAR_USTRORM_INTMEM + 9642 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9643 U64_LO(fp->rcq_dma.paddr)); 9644 REG_WR(sc, 9645 (BAR_USTRORM_INTMEM + 9646 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9647 U64_HI(fp->rcq_dma.paddr)); 9648 } 9649 } 9650 } 9651 9652 static void 9653 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9654 { 9655 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9656 fp->tx_db.data.zero_fill1 = 0; 9657 fp->tx_db.data.prod = 0; 9658 9659 fp->tx_pkt_prod = 0; 9660 fp->tx_pkt_cons = 0; 9661 fp->tx_bd_prod = 0; 9662 fp->tx_bd_cons = 0; 9663 fp->eth_q_stats.tx_pkts = 0; 9664 } 9665 9666 static inline void 9667 bxe_init_tx_rings(struct bxe_softc *sc) 9668 { 9669 int i; 9670 9671 for (i = 0; i < sc->num_queues; i++) { 9672 bxe_init_tx_ring_one(&sc->fp[i]); 9673 } 9674 } 9675 9676 static void 9677 bxe_init_def_sb(struct bxe_softc *sc) 9678 { 9679 struct host_sp_status_block *def_sb = sc->def_sb; 9680 bus_addr_t mapping = sc->def_sb_dma.paddr; 9681 int igu_sp_sb_index; 9682 int igu_seg_id; 9683 int port = SC_PORT(sc); 9684 int func = SC_FUNC(sc); 9685 int reg_offset, reg_offset_en5; 9686 uint64_t section; 9687 int index, sindex; 9688 struct hc_sp_status_block_data sp_sb_data; 9689 9690 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9691 9692 if (CHIP_INT_MODE_IS_BC(sc)) { 9693 igu_sp_sb_index = DEF_SB_IGU_ID; 9694 igu_seg_id = HC_SEG_ACCESS_DEF; 9695 } else { 9696 igu_sp_sb_index = sc->igu_dsb_id; 9697 igu_seg_id = IGU_SEG_ACCESS_DEF; 9698 } 9699 9700 /* attentions */ 9701 section = ((uint64_t)mapping + 9702 offsetof(struct host_sp_status_block, atten_status_block)); 9703 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9704 sc->attn_state = 0; 9705 9706 reg_offset = (port) ? 9707 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9708 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9709 reg_offset_en5 = (port) ? 9710 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9711 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9712 9713 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9714 /* take care of sig[0]..sig[4] */ 9715 for (sindex = 0; sindex < 4; sindex++) { 9716 sc->attn_group[index].sig[sindex] = 9717 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9718 } 9719 9720 if (!CHIP_IS_E1x(sc)) { 9721 /* 9722 * enable5 is separate from the rest of the registers, 9723 * and the address skip is 4 and not 16 between the 9724 * different groups 9725 */ 9726 sc->attn_group[index].sig[4] = 9727 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9728 } else { 9729 sc->attn_group[index].sig[4] = 0; 9730 } 9731 } 9732 9733 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9734 reg_offset = (port) ? 9735 HC_REG_ATTN_MSG1_ADDR_L : 9736 HC_REG_ATTN_MSG0_ADDR_L; 9737 REG_WR(sc, reg_offset, U64_LO(section)); 9738 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9739 } else if (!CHIP_IS_E1x(sc)) { 9740 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9741 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9742 } 9743 9744 section = ((uint64_t)mapping + 9745 offsetof(struct host_sp_status_block, sp_sb)); 9746 9747 bxe_zero_sp_sb(sc); 9748 9749 /* PCI guarantees endianity of regpair */ 9750 sp_sb_data.state = SB_ENABLED; 9751 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9752 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9753 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9754 sp_sb_data.igu_seg_id = igu_seg_id; 9755 sp_sb_data.p_func.pf_id = func; 9756 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9757 sp_sb_data.p_func.vf_id = 0xff; 9758 9759 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9760 9761 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9762 } 9763 9764 static void 9765 bxe_init_sp_ring(struct bxe_softc *sc) 9766 { 9767 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9768 sc->spq_prod_idx = 0; 9769 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9770 sc->spq_prod_bd = sc->spq; 9771 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9772 } 9773 9774 static void 9775 bxe_init_eq_ring(struct bxe_softc *sc) 9776 { 9777 union event_ring_elem *elem; 9778 int i; 9779 9780 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9781 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9782 9783 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9784 BCM_PAGE_SIZE * 9785 (i % NUM_EQ_PAGES))); 9786 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9787 BCM_PAGE_SIZE * 9788 (i % NUM_EQ_PAGES))); 9789 } 9790 9791 sc->eq_cons = 0; 9792 sc->eq_prod = NUM_EQ_DESC; 9793 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9794 9795 atomic_store_rel_long(&sc->eq_spq_left, 9796 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9797 NUM_EQ_DESC) - 1)); 9798 } 9799 9800 static void 9801 bxe_init_internal_common(struct bxe_softc *sc) 9802 { 9803 int i; 9804 9805 /* 9806 * Zero this manually as its initialization is currently missing 9807 * in the initTool. 9808 */ 9809 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9810 REG_WR(sc, 9811 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9812 0); 9813 } 9814 9815 if (!CHIP_IS_E1x(sc)) { 9816 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9817 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9818 } 9819 } 9820 9821 static void 9822 bxe_init_internal(struct bxe_softc *sc, 9823 uint32_t load_code) 9824 { 9825 switch (load_code) { 9826 case FW_MSG_CODE_DRV_LOAD_COMMON: 9827 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9828 bxe_init_internal_common(sc); 9829 /* no break */ 9830 9831 case FW_MSG_CODE_DRV_LOAD_PORT: 9832 /* nothing to do */ 9833 /* no break */ 9834 9835 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9836 /* internal memory per function is initialized inside bxe_pf_init */ 9837 break; 9838 9839 default: 9840 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9841 break; 9842 } 9843 } 9844 9845 static void 9846 storm_memset_func_cfg(struct bxe_softc *sc, 9847 struct tstorm_eth_function_common_config *tcfg, 9848 uint16_t abs_fid) 9849 { 9850 uint32_t addr; 9851 size_t size; 9852 9853 addr = (BAR_TSTRORM_INTMEM + 9854 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9855 size = sizeof(struct tstorm_eth_function_common_config); 9856 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9857 } 9858 9859 static void 9860 bxe_func_init(struct bxe_softc *sc, 9861 struct bxe_func_init_params *p) 9862 { 9863 struct tstorm_eth_function_common_config tcfg = { 0 }; 9864 9865 if (CHIP_IS_E1x(sc)) { 9866 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9867 } 9868 9869 /* Enable the function in the FW */ 9870 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9871 storm_memset_func_en(sc, p->func_id, 1); 9872 9873 /* spq */ 9874 if (p->func_flgs & FUNC_FLG_SPQ) { 9875 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9876 REG_WR(sc, 9877 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9878 p->spq_prod); 9879 } 9880 } 9881 9882 /* 9883 * Calculates the sum of vn_min_rates. 9884 * It's needed for further normalizing of the min_rates. 9885 * Returns: 9886 * sum of vn_min_rates. 9887 * or 9888 * 0 - if all the min_rates are 0. 9889 * In the later case fainess algorithm should be deactivated. 9890 * If all min rates are not zero then those that are zeroes will be set to 1. 9891 */ 9892 static void 9893 bxe_calc_vn_min(struct bxe_softc *sc, 9894 struct cmng_init_input *input) 9895 { 9896 uint32_t vn_cfg; 9897 uint32_t vn_min_rate; 9898 int all_zero = 1; 9899 int vn; 9900 9901 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9902 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9903 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9904 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9905 9906 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9907 /* skip hidden VNs */ 9908 vn_min_rate = 0; 9909 } else if (!vn_min_rate) { 9910 /* If min rate is zero - set it to 100 */ 9911 vn_min_rate = DEF_MIN_RATE; 9912 } else { 9913 all_zero = 0; 9914 } 9915 9916 input->vnic_min_rate[vn] = vn_min_rate; 9917 } 9918 9919 /* if ETS or all min rates are zeros - disable fairness */ 9920 if (BXE_IS_ETS_ENABLED(sc)) { 9921 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9922 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 9923 } else if (all_zero) { 9924 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9925 BLOGD(sc, DBG_LOAD, 9926 "Fariness disabled (all MIN values are zeroes)\n"); 9927 } else { 9928 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9929 } 9930 } 9931 9932 static inline uint16_t 9933 bxe_extract_max_cfg(struct bxe_softc *sc, 9934 uint32_t mf_cfg) 9935 { 9936 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 9937 FUNC_MF_CFG_MAX_BW_SHIFT); 9938 9939 if (!max_cfg) { 9940 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 9941 max_cfg = 100; 9942 } 9943 9944 return (max_cfg); 9945 } 9946 9947 static void 9948 bxe_calc_vn_max(struct bxe_softc *sc, 9949 int vn, 9950 struct cmng_init_input *input) 9951 { 9952 uint16_t vn_max_rate; 9953 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9954 uint32_t max_cfg; 9955 9956 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9957 vn_max_rate = 0; 9958 } else { 9959 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 9960 9961 if (IS_MF_SI(sc)) { 9962 /* max_cfg in percents of linkspeed */ 9963 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 9964 } else { /* SD modes */ 9965 /* max_cfg is absolute in 100Mb units */ 9966 vn_max_rate = (max_cfg * 100); 9967 } 9968 } 9969 9970 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 9971 9972 input->vnic_max_rate[vn] = vn_max_rate; 9973 } 9974 9975 static void 9976 bxe_cmng_fns_init(struct bxe_softc *sc, 9977 uint8_t read_cfg, 9978 uint8_t cmng_type) 9979 { 9980 struct cmng_init_input input; 9981 int vn; 9982 9983 memset(&input, 0, sizeof(struct cmng_init_input)); 9984 9985 input.port_rate = sc->link_vars.line_speed; 9986 9987 if (cmng_type == CMNG_FNS_MINMAX) { 9988 /* read mf conf from shmem */ 9989 if (read_cfg) { 9990 bxe_read_mf_cfg(sc); 9991 } 9992 9993 /* get VN min rate and enable fairness if not 0 */ 9994 bxe_calc_vn_min(sc, &input); 9995 9996 /* get VN max rate */ 9997 if (sc->port.pmf) { 9998 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9999 bxe_calc_vn_max(sc, vn, &input); 10000 } 10001 } 10002 10003 /* always enable rate shaping and fairness */ 10004 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10005 10006 ecore_init_cmng(&input, &sc->cmng); 10007 return; 10008 } 10009 10010 /* rate shaping and fairness are disabled */ 10011 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10012 } 10013 10014 static int 10015 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10016 { 10017 if (CHIP_REV_IS_SLOW(sc)) { 10018 return (CMNG_FNS_NONE); 10019 } 10020 10021 if (IS_MF(sc)) { 10022 return (CMNG_FNS_MINMAX); 10023 } 10024 10025 return (CMNG_FNS_NONE); 10026 } 10027 10028 static void 10029 storm_memset_cmng(struct bxe_softc *sc, 10030 struct cmng_init *cmng, 10031 uint8_t port) 10032 { 10033 int vn; 10034 int func; 10035 uint32_t addr; 10036 size_t size; 10037 10038 addr = (BAR_XSTRORM_INTMEM + 10039 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10040 size = sizeof(struct cmng_struct_per_port); 10041 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10042 10043 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10044 func = func_by_vn(sc, vn); 10045 10046 addr = (BAR_XSTRORM_INTMEM + 10047 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10048 size = sizeof(struct rate_shaping_vars_per_vn); 10049 ecore_storm_memset_struct(sc, addr, size, 10050 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10051 10052 addr = (BAR_XSTRORM_INTMEM + 10053 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10054 size = sizeof(struct fairness_vars_per_vn); 10055 ecore_storm_memset_struct(sc, addr, size, 10056 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10057 } 10058 } 10059 10060 static void 10061 bxe_pf_init(struct bxe_softc *sc) 10062 { 10063 struct bxe_func_init_params func_init = { 0 }; 10064 struct event_ring_data eq_data = { { 0 } }; 10065 uint16_t flags; 10066 10067 if (!CHIP_IS_E1x(sc)) { 10068 /* reset IGU PF statistics: MSIX + ATTN */ 10069 /* PF */ 10070 REG_WR(sc, 10071 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10072 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10073 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10074 0); 10075 /* ATTN */ 10076 REG_WR(sc, 10077 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10078 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10079 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10080 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10081 0); 10082 } 10083 10084 /* function setup flags */ 10085 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10086 10087 /* 10088 * This flag is relevant for E1x only. 10089 * E2 doesn't have a TPA configuration in a function level. 10090 */ 10091 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10092 10093 func_init.func_flgs = flags; 10094 func_init.pf_id = SC_FUNC(sc); 10095 func_init.func_id = SC_FUNC(sc); 10096 func_init.spq_map = sc->spq_dma.paddr; 10097 func_init.spq_prod = sc->spq_prod_idx; 10098 10099 bxe_func_init(sc, &func_init); 10100 10101 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10102 10103 /* 10104 * Congestion management values depend on the link rate. 10105 * There is no active link so initial link rate is set to 10Gbps. 10106 * When the link comes up the congestion management values are 10107 * re-calculated according to the actual link rate. 10108 */ 10109 sc->link_vars.line_speed = SPEED_10000; 10110 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10111 10112 /* Only the PMF sets the HW */ 10113 if (sc->port.pmf) { 10114 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10115 } 10116 10117 /* init Event Queue - PCI bus guarantees correct endainity */ 10118 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10119 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10120 eq_data.producer = sc->eq_prod; 10121 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10122 eq_data.sb_id = DEF_SB_ID; 10123 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10124 } 10125 10126 static void 10127 bxe_hc_int_enable(struct bxe_softc *sc) 10128 { 10129 int port = SC_PORT(sc); 10130 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10131 uint32_t val = REG_RD(sc, addr); 10132 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10133 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10134 (sc->intr_count == 1)) ? TRUE : FALSE; 10135 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10136 10137 if (msix) { 10138 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10139 HC_CONFIG_0_REG_INT_LINE_EN_0); 10140 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10141 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10142 if (single_msix) { 10143 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10144 } 10145 } else if (msi) { 10146 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10147 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10148 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10149 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10150 } else { 10151 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10152 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10153 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10154 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10155 10156 if (!CHIP_IS_E1(sc)) { 10157 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10158 val, port, addr); 10159 10160 REG_WR(sc, addr, val); 10161 10162 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10163 } 10164 } 10165 10166 if (CHIP_IS_E1(sc)) { 10167 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10168 } 10169 10170 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10171 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10172 10173 REG_WR(sc, addr, val); 10174 10175 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10176 mb(); 10177 10178 if (!CHIP_IS_E1(sc)) { 10179 /* init leading/trailing edge */ 10180 if (IS_MF(sc)) { 10181 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10182 if (sc->port.pmf) { 10183 /* enable nig and gpio3 attention */ 10184 val |= 0x1100; 10185 } 10186 } else { 10187 val = 0xffff; 10188 } 10189 10190 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10191 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10192 } 10193 10194 /* make sure that interrupts are indeed enabled from here on */ 10195 mb(); 10196 } 10197 10198 static void 10199 bxe_igu_int_enable(struct bxe_softc *sc) 10200 { 10201 uint32_t val; 10202 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10203 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10204 (sc->intr_count == 1)) ? TRUE : FALSE; 10205 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10206 10207 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10208 10209 if (msix) { 10210 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10211 IGU_PF_CONF_SINGLE_ISR_EN); 10212 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10213 IGU_PF_CONF_ATTN_BIT_EN); 10214 if (single_msix) { 10215 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10216 } 10217 } else if (msi) { 10218 val &= ~IGU_PF_CONF_INT_LINE_EN; 10219 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10220 IGU_PF_CONF_ATTN_BIT_EN | 10221 IGU_PF_CONF_SINGLE_ISR_EN); 10222 } else { 10223 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10224 val |= (IGU_PF_CONF_INT_LINE_EN | 10225 IGU_PF_CONF_ATTN_BIT_EN | 10226 IGU_PF_CONF_SINGLE_ISR_EN); 10227 } 10228 10229 /* clean previous status - need to configure igu prior to ack*/ 10230 if ((!msix) || single_msix) { 10231 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10232 bxe_ack_int(sc); 10233 } 10234 10235 val |= IGU_PF_CONF_FUNC_EN; 10236 10237 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10238 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10239 10240 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10241 10242 mb(); 10243 10244 /* init leading/trailing edge */ 10245 if (IS_MF(sc)) { 10246 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10247 if (sc->port.pmf) { 10248 /* enable nig and gpio3 attention */ 10249 val |= 0x1100; 10250 } 10251 } else { 10252 val = 0xffff; 10253 } 10254 10255 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10256 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10257 10258 /* make sure that interrupts are indeed enabled from here on */ 10259 mb(); 10260 } 10261 10262 static void 10263 bxe_int_enable(struct bxe_softc *sc) 10264 { 10265 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10266 bxe_hc_int_enable(sc); 10267 } else { 10268 bxe_igu_int_enable(sc); 10269 } 10270 } 10271 10272 static void 10273 bxe_hc_int_disable(struct bxe_softc *sc) 10274 { 10275 int port = SC_PORT(sc); 10276 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10277 uint32_t val = REG_RD(sc, addr); 10278 10279 /* 10280 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10281 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10282 * block 10283 */ 10284 if (CHIP_IS_E1(sc)) { 10285 /* 10286 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10287 * to prevent from HC sending interrupts after we exit the function 10288 */ 10289 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10290 10291 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10292 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10293 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10294 } else { 10295 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10296 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10297 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10298 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10299 } 10300 10301 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10302 10303 /* flush all outstanding writes */ 10304 mb(); 10305 10306 REG_WR(sc, addr, val); 10307 if (REG_RD(sc, addr) != val) { 10308 BLOGE(sc, "proper val not read from HC IGU!\n"); 10309 } 10310 } 10311 10312 static void 10313 bxe_igu_int_disable(struct bxe_softc *sc) 10314 { 10315 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10316 10317 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10318 IGU_PF_CONF_INT_LINE_EN | 10319 IGU_PF_CONF_ATTN_BIT_EN); 10320 10321 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10322 10323 /* flush all outstanding writes */ 10324 mb(); 10325 10326 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10327 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10328 BLOGE(sc, "proper val not read from IGU!\n"); 10329 } 10330 } 10331 10332 static void 10333 bxe_int_disable(struct bxe_softc *sc) 10334 { 10335 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10336 bxe_hc_int_disable(sc); 10337 } else { 10338 bxe_igu_int_disable(sc); 10339 } 10340 } 10341 10342 static void 10343 bxe_nic_init(struct bxe_softc *sc, 10344 int load_code) 10345 { 10346 int i; 10347 10348 for (i = 0; i < sc->num_queues; i++) { 10349 bxe_init_eth_fp(sc, i); 10350 } 10351 10352 rmb(); /* ensure status block indices were read */ 10353 10354 bxe_init_rx_rings(sc); 10355 bxe_init_tx_rings(sc); 10356 10357 if (IS_VF(sc)) { 10358 return; 10359 } 10360 10361 /* initialize MOD_ABS interrupts */ 10362 elink_init_mod_abs_int(sc, &sc->link_vars, 10363 sc->devinfo.chip_id, 10364 sc->devinfo.shmem_base, 10365 sc->devinfo.shmem2_base, 10366 SC_PORT(sc)); 10367 10368 bxe_init_def_sb(sc); 10369 bxe_update_dsb_idx(sc); 10370 bxe_init_sp_ring(sc); 10371 bxe_init_eq_ring(sc); 10372 bxe_init_internal(sc, load_code); 10373 bxe_pf_init(sc); 10374 bxe_stats_init(sc); 10375 10376 /* flush all before enabling interrupts */ 10377 mb(); 10378 10379 bxe_int_enable(sc); 10380 10381 /* check for SPIO5 */ 10382 bxe_attn_int_deasserted0(sc, 10383 REG_RD(sc, 10384 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10385 SC_PORT(sc)*4)) & 10386 AEU_INPUTS_ATTN_BITS_SPIO5); 10387 } 10388 10389 static inline void 10390 bxe_init_objs(struct bxe_softc *sc) 10391 { 10392 /* mcast rules must be added to tx if tx switching is enabled */ 10393 ecore_obj_type o_type = 10394 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10395 ECORE_OBJ_TYPE_RX; 10396 10397 /* RX_MODE controlling object */ 10398 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10399 10400 /* multicast configuration controlling object */ 10401 ecore_init_mcast_obj(sc, 10402 &sc->mcast_obj, 10403 sc->fp[0].cl_id, 10404 sc->fp[0].index, 10405 SC_FUNC(sc), 10406 SC_FUNC(sc), 10407 BXE_SP(sc, mcast_rdata), 10408 BXE_SP_MAPPING(sc, mcast_rdata), 10409 ECORE_FILTER_MCAST_PENDING, 10410 &sc->sp_state, 10411 o_type); 10412 10413 /* Setup CAM credit pools */ 10414 ecore_init_mac_credit_pool(sc, 10415 &sc->macs_pool, 10416 SC_FUNC(sc), 10417 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10418 VNICS_PER_PATH(sc)); 10419 10420 ecore_init_vlan_credit_pool(sc, 10421 &sc->vlans_pool, 10422 SC_ABS_FUNC(sc) >> 1, 10423 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10424 VNICS_PER_PATH(sc)); 10425 10426 /* RSS configuration object */ 10427 ecore_init_rss_config_obj(sc, 10428 &sc->rss_conf_obj, 10429 sc->fp[0].cl_id, 10430 sc->fp[0].index, 10431 SC_FUNC(sc), 10432 SC_FUNC(sc), 10433 BXE_SP(sc, rss_rdata), 10434 BXE_SP_MAPPING(sc, rss_rdata), 10435 ECORE_FILTER_RSS_CONF_PENDING, 10436 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10437 } 10438 10439 /* 10440 * Initialize the function. This must be called before sending CLIENT_SETUP 10441 * for the first client. 10442 */ 10443 static inline int 10444 bxe_func_start(struct bxe_softc *sc) 10445 { 10446 struct ecore_func_state_params func_params = { NULL }; 10447 struct ecore_func_start_params *start_params = &func_params.params.start; 10448 10449 /* Prepare parameters for function state transitions */ 10450 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10451 10452 func_params.f_obj = &sc->func_obj; 10453 func_params.cmd = ECORE_F_CMD_START; 10454 10455 /* Function parameters */ 10456 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10457 start_params->sd_vlan_tag = OVLAN(sc); 10458 10459 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10460 start_params->network_cos_mode = STATIC_COS; 10461 } else { /* CHIP_IS_E1X */ 10462 start_params->network_cos_mode = FW_WRR; 10463 } 10464 10465 //start_params->gre_tunnel_mode = 0; 10466 //start_params->gre_tunnel_rss = 0; 10467 10468 return (ecore_func_state_change(sc, &func_params)); 10469 } 10470 10471 static int 10472 bxe_set_power_state(struct bxe_softc *sc, 10473 uint8_t state) 10474 { 10475 uint16_t pmcsr; 10476 10477 /* If there is no power capability, silently succeed */ 10478 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10479 BLOGW(sc, "No power capability\n"); 10480 return (0); 10481 } 10482 10483 pmcsr = pci_read_config(sc->dev, 10484 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10485 2); 10486 10487 switch (state) { 10488 case PCI_PM_D0: 10489 pci_write_config(sc->dev, 10490 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10491 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10492 10493 if (pmcsr & PCIM_PSTAT_DMASK) { 10494 /* delay required during transition out of D3hot */ 10495 DELAY(20000); 10496 } 10497 10498 break; 10499 10500 case PCI_PM_D3hot: 10501 /* XXX if there are other clients above don't shut down the power */ 10502 10503 /* don't shut down the power for emulation and FPGA */ 10504 if (CHIP_REV_IS_SLOW(sc)) { 10505 return (0); 10506 } 10507 10508 pmcsr &= ~PCIM_PSTAT_DMASK; 10509 pmcsr |= PCIM_PSTAT_D3; 10510 10511 if (sc->wol) { 10512 pmcsr |= PCIM_PSTAT_PMEENABLE; 10513 } 10514 10515 pci_write_config(sc->dev, 10516 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10517 pmcsr, 4); 10518 10519 /* 10520 * No more memory access after this point until device is brought back 10521 * to D0 state. 10522 */ 10523 break; 10524 10525 default: 10526 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10527 state, pmcsr); 10528 return (-1); 10529 } 10530 10531 return (0); 10532 } 10533 10534 10535 /* return true if succeeded to acquire the lock */ 10536 static uint8_t 10537 bxe_trylock_hw_lock(struct bxe_softc *sc, 10538 uint32_t resource) 10539 { 10540 uint32_t lock_status; 10541 uint32_t resource_bit = (1 << resource); 10542 int func = SC_FUNC(sc); 10543 uint32_t hw_lock_control_reg; 10544 10545 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10546 10547 /* Validating that the resource is within range */ 10548 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10549 BLOGD(sc, DBG_LOAD, 10550 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10551 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10552 return (FALSE); 10553 } 10554 10555 if (func <= 5) { 10556 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10557 } else { 10558 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10559 } 10560 10561 /* try to acquire the lock */ 10562 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10563 lock_status = REG_RD(sc, hw_lock_control_reg); 10564 if (lock_status & resource_bit) { 10565 return (TRUE); 10566 } 10567 10568 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10569 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10570 lock_status, resource_bit); 10571 10572 return (FALSE); 10573 } 10574 10575 /* 10576 * Get the recovery leader resource id according to the engine this function 10577 * belongs to. Currently only only 2 engines is supported. 10578 */ 10579 static int 10580 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10581 { 10582 if (SC_PATH(sc)) { 10583 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10584 } else { 10585 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10586 } 10587 } 10588 10589 /* try to acquire a leader lock for current engine */ 10590 static uint8_t 10591 bxe_trylock_leader_lock(struct bxe_softc *sc) 10592 { 10593 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10594 } 10595 10596 static int 10597 bxe_release_leader_lock(struct bxe_softc *sc) 10598 { 10599 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10600 } 10601 10602 /* close gates #2, #3 and #4 */ 10603 static void 10604 bxe_set_234_gates(struct bxe_softc *sc, 10605 uint8_t close) 10606 { 10607 uint32_t val; 10608 10609 /* gates #2 and #4a are closed/opened for "not E1" only */ 10610 if (!CHIP_IS_E1(sc)) { 10611 /* #4 */ 10612 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10613 /* #2 */ 10614 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10615 } 10616 10617 /* #3 */ 10618 if (CHIP_IS_E1x(sc)) { 10619 /* prevent interrupts from HC on both ports */ 10620 val = REG_RD(sc, HC_REG_CONFIG_1); 10621 REG_WR(sc, HC_REG_CONFIG_1, 10622 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10623 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10624 10625 val = REG_RD(sc, HC_REG_CONFIG_0); 10626 REG_WR(sc, HC_REG_CONFIG_0, 10627 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10628 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10629 } else { 10630 /* Prevent incomming interrupts in IGU */ 10631 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10632 10633 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10634 (!close) ? 10635 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10636 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10637 } 10638 10639 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10640 close ? "closing" : "opening"); 10641 10642 wmb(); 10643 } 10644 10645 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10646 static int 10647 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10648 { 10649 uint32_t cnt = 1000; 10650 uint32_t pend_bits = 0; 10651 10652 do { 10653 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10654 10655 if (pend_bits == 0) { 10656 break; 10657 } 10658 10659 DELAY(1000); 10660 } while (--cnt > 0); 10661 10662 if (cnt == 0) { 10663 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10664 return (-1); 10665 } 10666 10667 return (0); 10668 } 10669 10670 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10671 10672 static void 10673 bxe_clp_reset_prep(struct bxe_softc *sc, 10674 uint32_t *magic_val) 10675 { 10676 /* Do some magic... */ 10677 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10678 *magic_val = val & SHARED_MF_CLP_MAGIC; 10679 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10680 } 10681 10682 /* restore the value of the 'magic' bit */ 10683 static void 10684 bxe_clp_reset_done(struct bxe_softc *sc, 10685 uint32_t magic_val) 10686 { 10687 /* Restore the 'magic' bit value... */ 10688 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10689 MFCFG_WR(sc, shared_mf_config.clp_mb, 10690 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10691 } 10692 10693 /* prepare for MCP reset, takes care of CLP configurations */ 10694 static void 10695 bxe_reset_mcp_prep(struct bxe_softc *sc, 10696 uint32_t *magic_val) 10697 { 10698 uint32_t shmem; 10699 uint32_t validity_offset; 10700 10701 /* set `magic' bit in order to save MF config */ 10702 if (!CHIP_IS_E1(sc)) { 10703 bxe_clp_reset_prep(sc, magic_val); 10704 } 10705 10706 /* get shmem offset */ 10707 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10708 validity_offset = 10709 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10710 10711 /* Clear validity map flags */ 10712 if (shmem > 0) { 10713 REG_WR(sc, shmem + validity_offset, 0); 10714 } 10715 } 10716 10717 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10718 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10719 10720 static void 10721 bxe_mcp_wait_one(struct bxe_softc *sc) 10722 { 10723 /* special handling for emulation and FPGA (10 times longer) */ 10724 if (CHIP_REV_IS_SLOW(sc)) { 10725 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10726 } else { 10727 DELAY((MCP_ONE_TIMEOUT) * 1000); 10728 } 10729 } 10730 10731 /* initialize shmem_base and waits for validity signature to appear */ 10732 static int 10733 bxe_init_shmem(struct bxe_softc *sc) 10734 { 10735 int cnt = 0; 10736 uint32_t val = 0; 10737 10738 do { 10739 sc->devinfo.shmem_base = 10740 sc->link_params.shmem_base = 10741 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10742 10743 if (sc->devinfo.shmem_base) { 10744 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10745 if (val & SHR_MEM_VALIDITY_MB) 10746 return (0); 10747 } 10748 10749 bxe_mcp_wait_one(sc); 10750 10751 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10752 10753 BLOGE(sc, "BAD MCP validity signature\n"); 10754 10755 return (-1); 10756 } 10757 10758 static int 10759 bxe_reset_mcp_comp(struct bxe_softc *sc, 10760 uint32_t magic_val) 10761 { 10762 int rc = bxe_init_shmem(sc); 10763 10764 /* Restore the `magic' bit value */ 10765 if (!CHIP_IS_E1(sc)) { 10766 bxe_clp_reset_done(sc, magic_val); 10767 } 10768 10769 return (rc); 10770 } 10771 10772 static void 10773 bxe_pxp_prep(struct bxe_softc *sc) 10774 { 10775 if (!CHIP_IS_E1(sc)) { 10776 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10777 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10778 wmb(); 10779 } 10780 } 10781 10782 /* 10783 * Reset the whole chip except for: 10784 * - PCIE core 10785 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10786 * - IGU 10787 * - MISC (including AEU) 10788 * - GRC 10789 * - RBCN, RBCP 10790 */ 10791 static void 10792 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10793 uint8_t global) 10794 { 10795 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10796 uint32_t global_bits2, stay_reset2; 10797 10798 /* 10799 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10800 * (per chip) blocks. 10801 */ 10802 global_bits2 = 10803 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10804 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10805 10806 /* 10807 * Don't reset the following blocks. 10808 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10809 * reset, as in 4 port device they might still be owned 10810 * by the MCP (there is only one leader per path). 10811 */ 10812 not_reset_mask1 = 10813 MISC_REGISTERS_RESET_REG_1_RST_HC | 10814 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10815 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10816 10817 not_reset_mask2 = 10818 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10819 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10820 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10821 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10822 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10823 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10824 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10825 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10826 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10827 MISC_REGISTERS_RESET_REG_2_PGLC | 10828 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10829 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10830 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10831 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10832 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10833 MISC_REGISTERS_RESET_REG_2_UMAC1; 10834 10835 /* 10836 * Keep the following blocks in reset: 10837 * - all xxMACs are handled by the elink code. 10838 */ 10839 stay_reset2 = 10840 MISC_REGISTERS_RESET_REG_2_XMAC | 10841 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10842 10843 /* Full reset masks according to the chip */ 10844 reset_mask1 = 0xffffffff; 10845 10846 if (CHIP_IS_E1(sc)) 10847 reset_mask2 = 0xffff; 10848 else if (CHIP_IS_E1H(sc)) 10849 reset_mask2 = 0x1ffff; 10850 else if (CHIP_IS_E2(sc)) 10851 reset_mask2 = 0xfffff; 10852 else /* CHIP_IS_E3 */ 10853 reset_mask2 = 0x3ffffff; 10854 10855 /* Don't reset global blocks unless we need to */ 10856 if (!global) 10857 reset_mask2 &= ~global_bits2; 10858 10859 /* 10860 * In case of attention in the QM, we need to reset PXP 10861 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10862 * because otherwise QM reset would release 'close the gates' shortly 10863 * before resetting the PXP, then the PSWRQ would send a write 10864 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10865 * read the payload data from PSWWR, but PSWWR would not 10866 * respond. The write queue in PGLUE would stuck, dmae commands 10867 * would not return. Therefore it's important to reset the second 10868 * reset register (containing the 10869 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10870 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10871 * bit). 10872 */ 10873 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10874 reset_mask2 & (~not_reset_mask2)); 10875 10876 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10877 reset_mask1 & (~not_reset_mask1)); 10878 10879 mb(); 10880 wmb(); 10881 10882 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10883 reset_mask2 & (~stay_reset2)); 10884 10885 mb(); 10886 wmb(); 10887 10888 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10889 wmb(); 10890 } 10891 10892 static int 10893 bxe_process_kill(struct bxe_softc *sc, 10894 uint8_t global) 10895 { 10896 int cnt = 1000; 10897 uint32_t val = 0; 10898 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10899 uint32_t tags_63_32 = 0; 10900 10901 /* Empty the Tetris buffer, wait for 1s */ 10902 do { 10903 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10904 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10905 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10906 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10907 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10908 if (CHIP_IS_E3(sc)) { 10909 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10910 } 10911 10912 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10913 ((port_is_idle_0 & 0x1) == 0x1) && 10914 ((port_is_idle_1 & 0x1) == 0x1) && 10915 (pgl_exp_rom2 == 0xffffffff) && 10916 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10917 break; 10918 DELAY(1000); 10919 } while (cnt-- > 0); 10920 10921 if (cnt <= 0) { 10922 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 10923 "are still outstanding read requests after 1s! " 10924 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 10925 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 10926 sr_cnt, blk_cnt, port_is_idle_0, 10927 port_is_idle_1, pgl_exp_rom2); 10928 return (-1); 10929 } 10930 10931 mb(); 10932 10933 /* Close gates #2, #3 and #4 */ 10934 bxe_set_234_gates(sc, TRUE); 10935 10936 /* Poll for IGU VQs for 57712 and newer chips */ 10937 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 10938 return (-1); 10939 } 10940 10941 /* XXX indicate that "process kill" is in progress to MCP */ 10942 10943 /* clear "unprepared" bit */ 10944 REG_WR(sc, MISC_REG_UNPREPARED, 0); 10945 mb(); 10946 10947 /* Make sure all is written to the chip before the reset */ 10948 wmb(); 10949 10950 /* 10951 * Wait for 1ms to empty GLUE and PCI-E core queues, 10952 * PSWHST, GRC and PSWRD Tetris buffer. 10953 */ 10954 DELAY(1000); 10955 10956 /* Prepare to chip reset: */ 10957 /* MCP */ 10958 if (global) { 10959 bxe_reset_mcp_prep(sc, &val); 10960 } 10961 10962 /* PXP */ 10963 bxe_pxp_prep(sc); 10964 mb(); 10965 10966 /* reset the chip */ 10967 bxe_process_kill_chip_reset(sc, global); 10968 mb(); 10969 10970 /* clear errors in PGB */ 10971 if (!CHIP_IS_E1(sc)) 10972 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 10973 10974 /* Recover after reset: */ 10975 /* MCP */ 10976 if (global && bxe_reset_mcp_comp(sc, val)) { 10977 return (-1); 10978 } 10979 10980 /* XXX add resetting the NO_MCP mode DB here */ 10981 10982 /* Open the gates #2, #3 and #4 */ 10983 bxe_set_234_gates(sc, FALSE); 10984 10985 /* XXX 10986 * IGU/AEU preparation bring back the AEU/IGU to a reset state 10987 * re-enable attentions 10988 */ 10989 10990 return (0); 10991 } 10992 10993 static int 10994 bxe_leader_reset(struct bxe_softc *sc) 10995 { 10996 int rc = 0; 10997 uint8_t global = bxe_reset_is_global(sc); 10998 uint32_t load_code; 10999 11000 /* 11001 * If not going to reset MCP, load "fake" driver to reset HW while 11002 * driver is owner of the HW. 11003 */ 11004 if (!global && !BXE_NOMCP(sc)) { 11005 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11006 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11007 if (!load_code) { 11008 BLOGE(sc, "MCP response failure, aborting\n"); 11009 rc = -1; 11010 goto exit_leader_reset; 11011 } 11012 11013 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11014 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11015 BLOGE(sc, "MCP unexpected response, aborting\n"); 11016 rc = -1; 11017 goto exit_leader_reset2; 11018 } 11019 11020 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11021 if (!load_code) { 11022 BLOGE(sc, "MCP response failure, aborting\n"); 11023 rc = -1; 11024 goto exit_leader_reset2; 11025 } 11026 } 11027 11028 /* try to recover after the failure */ 11029 if (bxe_process_kill(sc, global)) { 11030 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11031 rc = -1; 11032 goto exit_leader_reset2; 11033 } 11034 11035 /* 11036 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11037 * state. 11038 */ 11039 bxe_set_reset_done(sc); 11040 if (global) { 11041 bxe_clear_reset_global(sc); 11042 } 11043 11044 exit_leader_reset2: 11045 11046 /* unload "fake driver" if it was loaded */ 11047 if (!global && !BXE_NOMCP(sc)) { 11048 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11049 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11050 } 11051 11052 exit_leader_reset: 11053 11054 sc->is_leader = 0; 11055 bxe_release_leader_lock(sc); 11056 11057 mb(); 11058 return (rc); 11059 } 11060 11061 /* 11062 * prepare INIT transition, parameters configured: 11063 * - HC configuration 11064 * - Queue's CDU context 11065 */ 11066 static void 11067 bxe_pf_q_prep_init(struct bxe_softc *sc, 11068 struct bxe_fastpath *fp, 11069 struct ecore_queue_init_params *init_params) 11070 { 11071 uint8_t cos; 11072 int cxt_index, cxt_offset; 11073 11074 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11075 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11076 11077 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11078 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11079 11080 /* HC rate */ 11081 init_params->rx.hc_rate = 11082 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11083 init_params->tx.hc_rate = 11084 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11085 11086 /* FW SB ID */ 11087 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11088 11089 /* CQ index among the SB indices */ 11090 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11091 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11092 11093 /* set maximum number of COSs supported by this queue */ 11094 init_params->max_cos = sc->max_cos; 11095 11096 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11097 fp->index, init_params->max_cos); 11098 11099 /* set the context pointers queue object */ 11100 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11101 /* XXX change index/cid here if ever support multiple tx CoS */ 11102 /* fp->txdata[cos]->cid */ 11103 cxt_index = fp->index / ILT_PAGE_CIDS; 11104 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11105 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11106 } 11107 } 11108 11109 /* set flags that are common for the Tx-only and not normal connections */ 11110 static unsigned long 11111 bxe_get_common_flags(struct bxe_softc *sc, 11112 struct bxe_fastpath *fp, 11113 uint8_t zero_stats) 11114 { 11115 unsigned long flags = 0; 11116 11117 /* PF driver will always initialize the Queue to an ACTIVE state */ 11118 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11119 11120 /* 11121 * tx only connections collect statistics (on the same index as the 11122 * parent connection). The statistics are zeroed when the parent 11123 * connection is initialized. 11124 */ 11125 11126 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11127 if (zero_stats) { 11128 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11129 } 11130 11131 /* 11132 * tx only connections can support tx-switching, though their 11133 * CoS-ness doesn't survive the loopback 11134 */ 11135 if (sc->flags & BXE_TX_SWITCHING) { 11136 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11137 } 11138 11139 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11140 11141 return (flags); 11142 } 11143 11144 static unsigned long 11145 bxe_get_q_flags(struct bxe_softc *sc, 11146 struct bxe_fastpath *fp, 11147 uint8_t leading) 11148 { 11149 unsigned long flags = 0; 11150 11151 if (IS_MF_SD(sc)) { 11152 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11153 } 11154 11155 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11156 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11157 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11158 } 11159 11160 if (leading) { 11161 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11162 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11163 } 11164 11165 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11166 11167 /* merge with common flags */ 11168 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11169 } 11170 11171 static void 11172 bxe_pf_q_prep_general(struct bxe_softc *sc, 11173 struct bxe_fastpath *fp, 11174 struct ecore_general_setup_params *gen_init, 11175 uint8_t cos) 11176 { 11177 gen_init->stat_id = bxe_stats_id(fp); 11178 gen_init->spcl_id = fp->cl_id; 11179 gen_init->mtu = sc->mtu; 11180 gen_init->cos = cos; 11181 } 11182 11183 static void 11184 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11185 struct bxe_fastpath *fp, 11186 struct rxq_pause_params *pause, 11187 struct ecore_rxq_setup_params *rxq_init) 11188 { 11189 uint8_t max_sge = 0; 11190 uint16_t sge_sz = 0; 11191 uint16_t tpa_agg_size = 0; 11192 11193 pause->sge_th_lo = SGE_TH_LO(sc); 11194 pause->sge_th_hi = SGE_TH_HI(sc); 11195 11196 /* validate SGE ring has enough to cross high threshold */ 11197 if (sc->dropless_fc && 11198 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11199 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11200 BLOGW(sc, "sge ring threshold limit\n"); 11201 } 11202 11203 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11204 tpa_agg_size = (2 * sc->mtu); 11205 if (tpa_agg_size < sc->max_aggregation_size) { 11206 tpa_agg_size = sc->max_aggregation_size; 11207 } 11208 11209 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11210 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11211 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11212 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11213 11214 /* pause - not for e1 */ 11215 if (!CHIP_IS_E1(sc)) { 11216 pause->bd_th_lo = BD_TH_LO(sc); 11217 pause->bd_th_hi = BD_TH_HI(sc); 11218 11219 pause->rcq_th_lo = RCQ_TH_LO(sc); 11220 pause->rcq_th_hi = RCQ_TH_HI(sc); 11221 11222 /* validate rings have enough entries to cross high thresholds */ 11223 if (sc->dropless_fc && 11224 pause->bd_th_hi + FW_PREFETCH_CNT > 11225 sc->rx_ring_size) { 11226 BLOGW(sc, "rx bd ring threshold limit\n"); 11227 } 11228 11229 if (sc->dropless_fc && 11230 pause->rcq_th_hi + FW_PREFETCH_CNT > 11231 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11232 BLOGW(sc, "rcq ring threshold limit\n"); 11233 } 11234 11235 pause->pri_map = 1; 11236 } 11237 11238 /* rxq setup */ 11239 rxq_init->dscr_map = fp->rx_dma.paddr; 11240 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11241 rxq_init->rcq_map = fp->rcq_dma.paddr; 11242 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11243 11244 /* 11245 * This should be a maximum number of data bytes that may be 11246 * placed on the BD (not including paddings). 11247 */ 11248 rxq_init->buf_sz = (fp->rx_buf_size - 11249 IP_HEADER_ALIGNMENT_PADDING); 11250 11251 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11252 rxq_init->tpa_agg_sz = tpa_agg_size; 11253 rxq_init->sge_buf_sz = sge_sz; 11254 rxq_init->max_sges_pkt = max_sge; 11255 rxq_init->rss_engine_id = SC_FUNC(sc); 11256 rxq_init->mcast_engine_id = SC_FUNC(sc); 11257 11258 /* 11259 * Maximum number or simultaneous TPA aggregation for this Queue. 11260 * For PF Clients it should be the maximum available number. 11261 * VF driver(s) may want to define it to a smaller value. 11262 */ 11263 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11264 11265 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11266 rxq_init->fw_sb_id = fp->fw_sb_id; 11267 11268 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11269 11270 /* 11271 * configure silent vlan removal 11272 * if multi function mode is afex, then mask default vlan 11273 */ 11274 if (IS_MF_AFEX(sc)) { 11275 rxq_init->silent_removal_value = 11276 sc->devinfo.mf_info.afex_def_vlan_tag; 11277 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11278 } 11279 } 11280 11281 static void 11282 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11283 struct bxe_fastpath *fp, 11284 struct ecore_txq_setup_params *txq_init, 11285 uint8_t cos) 11286 { 11287 /* 11288 * XXX If multiple CoS is ever supported then each fastpath structure 11289 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11290 * fp->txdata[cos]->tx_dma.paddr; 11291 */ 11292 txq_init->dscr_map = fp->tx_dma.paddr; 11293 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11294 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11295 txq_init->fw_sb_id = fp->fw_sb_id; 11296 11297 /* 11298 * set the TSS leading client id for TX classfication to the 11299 * leading RSS client id 11300 */ 11301 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11302 } 11303 11304 /* 11305 * This function performs 2 steps in a queue state machine: 11306 * 1) RESET->INIT 11307 * 2) INIT->SETUP 11308 */ 11309 static int 11310 bxe_setup_queue(struct bxe_softc *sc, 11311 struct bxe_fastpath *fp, 11312 uint8_t leading) 11313 { 11314 struct ecore_queue_state_params q_params = { NULL }; 11315 struct ecore_queue_setup_params *setup_params = 11316 &q_params.params.setup; 11317 int rc; 11318 11319 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11320 11321 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11322 11323 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11324 11325 /* we want to wait for completion in this context */ 11326 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11327 11328 /* prepare the INIT parameters */ 11329 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11330 11331 /* Set the command */ 11332 q_params.cmd = ECORE_Q_CMD_INIT; 11333 11334 /* Change the state to INIT */ 11335 rc = ecore_queue_state_change(sc, &q_params); 11336 if (rc) { 11337 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11338 return (rc); 11339 } 11340 11341 BLOGD(sc, DBG_LOAD, "init complete\n"); 11342 11343 /* now move the Queue to the SETUP state */ 11344 memset(setup_params, 0, sizeof(*setup_params)); 11345 11346 /* set Queue flags */ 11347 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11348 11349 /* set general SETUP parameters */ 11350 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11351 FIRST_TX_COS_INDEX); 11352 11353 bxe_pf_rx_q_prep(sc, fp, 11354 &setup_params->pause_params, 11355 &setup_params->rxq_params); 11356 11357 bxe_pf_tx_q_prep(sc, fp, 11358 &setup_params->txq_params, 11359 FIRST_TX_COS_INDEX); 11360 11361 /* Set the command */ 11362 q_params.cmd = ECORE_Q_CMD_SETUP; 11363 11364 /* change the state to SETUP */ 11365 rc = ecore_queue_state_change(sc, &q_params); 11366 if (rc) { 11367 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11368 return (rc); 11369 } 11370 11371 return (rc); 11372 } 11373 11374 static int 11375 bxe_setup_leading(struct bxe_softc *sc) 11376 { 11377 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11378 } 11379 11380 static int 11381 bxe_config_rss_pf(struct bxe_softc *sc, 11382 struct ecore_rss_config_obj *rss_obj, 11383 uint8_t config_hash) 11384 { 11385 struct ecore_config_rss_params params = { NULL }; 11386 int i; 11387 11388 /* 11389 * Although RSS is meaningless when there is a single HW queue we 11390 * still need it enabled in order to have HW Rx hash generated. 11391 */ 11392 11393 params.rss_obj = rss_obj; 11394 11395 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11396 11397 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11398 11399 /* RSS configuration */ 11400 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11401 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11402 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11403 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11404 if (rss_obj->udp_rss_v4) { 11405 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11406 } 11407 if (rss_obj->udp_rss_v6) { 11408 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11409 } 11410 11411 /* Hash bits */ 11412 params.rss_result_mask = MULTI_MASK; 11413 11414 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11415 11416 if (config_hash) { 11417 /* RSS keys */ 11418 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11419 params.rss_key[i] = arc4random(); 11420 } 11421 11422 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11423 } 11424 11425 return (ecore_config_rss(sc, ¶ms)); 11426 } 11427 11428 static int 11429 bxe_config_rss_eth(struct bxe_softc *sc, 11430 uint8_t config_hash) 11431 { 11432 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11433 } 11434 11435 static int 11436 bxe_init_rss_pf(struct bxe_softc *sc) 11437 { 11438 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11439 int i; 11440 11441 /* 11442 * Prepare the initial contents of the indirection table if 11443 * RSS is enabled 11444 */ 11445 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11446 sc->rss_conf_obj.ind_table[i] = 11447 (sc->fp->cl_id + (i % num_eth_queues)); 11448 } 11449 11450 if (sc->udp_rss) { 11451 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11452 } 11453 11454 /* 11455 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11456 * per-port, so if explicit configuration is needed, do it only 11457 * for a PMF. 11458 * 11459 * For 57712 and newer it's a per-function configuration. 11460 */ 11461 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11462 } 11463 11464 static int 11465 bxe_set_mac_one(struct bxe_softc *sc, 11466 uint8_t *mac, 11467 struct ecore_vlan_mac_obj *obj, 11468 uint8_t set, 11469 int mac_type, 11470 unsigned long *ramrod_flags) 11471 { 11472 struct ecore_vlan_mac_ramrod_params ramrod_param; 11473 int rc; 11474 11475 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11476 11477 /* fill in general parameters */ 11478 ramrod_param.vlan_mac_obj = obj; 11479 ramrod_param.ramrod_flags = *ramrod_flags; 11480 11481 /* fill a user request section if needed */ 11482 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11483 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11484 11485 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11486 11487 /* Set the command: ADD or DEL */ 11488 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11489 ECORE_VLAN_MAC_DEL; 11490 } 11491 11492 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11493 11494 if (rc == ECORE_EXISTS) { 11495 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11496 /* do not treat adding same MAC as error */ 11497 rc = 0; 11498 } else if (rc < 0) { 11499 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11500 } 11501 11502 return (rc); 11503 } 11504 11505 static int 11506 bxe_set_eth_mac(struct bxe_softc *sc, 11507 uint8_t set) 11508 { 11509 unsigned long ramrod_flags = 0; 11510 11511 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11512 11513 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11514 11515 /* Eth MAC is set on RSS leading client (fp[0]) */ 11516 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11517 &sc->sp_objs->mac_obj, 11518 set, ECORE_ETH_MAC, &ramrod_flags)); 11519 } 11520 11521 static int 11522 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11523 { 11524 uint32_t sel_phy_idx = 0; 11525 11526 if (sc->link_params.num_phys <= 1) { 11527 return (ELINK_INT_PHY); 11528 } 11529 11530 if (sc->link_vars.link_up) { 11531 sel_phy_idx = ELINK_EXT_PHY1; 11532 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11533 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11534 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11535 ELINK_SUPPORTED_FIBRE)) 11536 sel_phy_idx = ELINK_EXT_PHY2; 11537 } else { 11538 switch (elink_phy_selection(&sc->link_params)) { 11539 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11540 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11541 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11542 sel_phy_idx = ELINK_EXT_PHY1; 11543 break; 11544 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11545 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11546 sel_phy_idx = ELINK_EXT_PHY2; 11547 break; 11548 } 11549 } 11550 11551 return (sel_phy_idx); 11552 } 11553 11554 static int 11555 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11556 { 11557 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11558 11559 /* 11560 * The selected activated PHY is always after swapping (in case PHY 11561 * swapping is enabled). So when swapping is enabled, we need to reverse 11562 * the configuration 11563 */ 11564 11565 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11566 if (sel_phy_idx == ELINK_EXT_PHY1) 11567 sel_phy_idx = ELINK_EXT_PHY2; 11568 else if (sel_phy_idx == ELINK_EXT_PHY2) 11569 sel_phy_idx = ELINK_EXT_PHY1; 11570 } 11571 11572 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11573 } 11574 11575 static void 11576 bxe_set_requested_fc(struct bxe_softc *sc) 11577 { 11578 /* 11579 * Initialize link parameters structure variables 11580 * It is recommended to turn off RX FC for jumbo frames 11581 * for better performance 11582 */ 11583 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11584 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11585 } else { 11586 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11587 } 11588 } 11589 11590 static void 11591 bxe_calc_fc_adv(struct bxe_softc *sc) 11592 { 11593 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11594 switch (sc->link_vars.ieee_fc & 11595 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11596 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11597 default: 11598 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11599 ADVERTISED_Pause); 11600 break; 11601 11602 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11603 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11604 ADVERTISED_Pause); 11605 break; 11606 11607 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11608 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11609 break; 11610 } 11611 } 11612 11613 static uint16_t 11614 bxe_get_mf_speed(struct bxe_softc *sc) 11615 { 11616 uint16_t line_speed = sc->link_vars.line_speed; 11617 if (IS_MF(sc)) { 11618 uint16_t maxCfg = 11619 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11620 11621 /* calculate the current MAX line speed limit for the MF devices */ 11622 if (IS_MF_SI(sc)) { 11623 line_speed = (line_speed * maxCfg) / 100; 11624 } else { /* SD mode */ 11625 uint16_t vn_max_rate = maxCfg * 100; 11626 11627 if (vn_max_rate < line_speed) { 11628 line_speed = vn_max_rate; 11629 } 11630 } 11631 } 11632 11633 return (line_speed); 11634 } 11635 11636 static void 11637 bxe_fill_report_data(struct bxe_softc *sc, 11638 struct bxe_link_report_data *data) 11639 { 11640 uint16_t line_speed = bxe_get_mf_speed(sc); 11641 11642 memset(data, 0, sizeof(*data)); 11643 11644 /* fill the report data with the effective line speed */ 11645 data->line_speed = line_speed; 11646 11647 /* Link is down */ 11648 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11649 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11650 } 11651 11652 /* Full DUPLEX */ 11653 if (sc->link_vars.duplex == DUPLEX_FULL) { 11654 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11655 } 11656 11657 /* Rx Flow Control is ON */ 11658 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11659 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11660 } 11661 11662 /* Tx Flow Control is ON */ 11663 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11664 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11665 } 11666 } 11667 11668 /* report link status to OS, should be called under phy_lock */ 11669 static void 11670 bxe_link_report_locked(struct bxe_softc *sc) 11671 { 11672 struct bxe_link_report_data cur_data; 11673 11674 /* reread mf_cfg */ 11675 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11676 bxe_read_mf_cfg(sc); 11677 } 11678 11679 /* Read the current link report info */ 11680 bxe_fill_report_data(sc, &cur_data); 11681 11682 /* Don't report link down or exactly the same link status twice */ 11683 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11684 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11685 &sc->last_reported_link.link_report_flags) && 11686 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11687 &cur_data.link_report_flags))) { 11688 return; 11689 } 11690 11691 sc->link_cnt++; 11692 11693 /* report new link params and remember the state for the next time */ 11694 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11695 11696 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11697 &cur_data.link_report_flags)) { 11698 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11699 BLOGI(sc, "NIC Link is Down\n"); 11700 } else { 11701 const char *duplex; 11702 const char *flow; 11703 11704 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11705 &cur_data.link_report_flags)) { 11706 duplex = "full"; 11707 } else { 11708 duplex = "half"; 11709 } 11710 11711 /* 11712 * Handle the FC at the end so that only these flags would be 11713 * possibly set. This way we may easily check if there is no FC 11714 * enabled. 11715 */ 11716 if (cur_data.link_report_flags) { 11717 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11718 &cur_data.link_report_flags) && 11719 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11720 &cur_data.link_report_flags)) { 11721 flow = "ON - receive & transmit"; 11722 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11723 &cur_data.link_report_flags) && 11724 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11725 &cur_data.link_report_flags)) { 11726 flow = "ON - receive"; 11727 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11728 &cur_data.link_report_flags) && 11729 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11730 &cur_data.link_report_flags)) { 11731 flow = "ON - transmit"; 11732 } else { 11733 flow = "none"; /* possible? */ 11734 } 11735 } else { 11736 flow = "none"; 11737 } 11738 11739 if_link_state_change(sc->ifp, LINK_STATE_UP); 11740 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11741 cur_data.line_speed, duplex, flow); 11742 } 11743 } 11744 11745 static void 11746 bxe_link_report(struct bxe_softc *sc) 11747 { 11748 bxe_acquire_phy_lock(sc); 11749 bxe_link_report_locked(sc); 11750 bxe_release_phy_lock(sc); 11751 } 11752 11753 static void 11754 bxe_link_status_update(struct bxe_softc *sc) 11755 { 11756 if (sc->state != BXE_STATE_OPEN) { 11757 return; 11758 } 11759 11760 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11761 elink_link_status_update(&sc->link_params, &sc->link_vars); 11762 } else { 11763 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11764 ELINK_SUPPORTED_10baseT_Full | 11765 ELINK_SUPPORTED_100baseT_Half | 11766 ELINK_SUPPORTED_100baseT_Full | 11767 ELINK_SUPPORTED_1000baseT_Full | 11768 ELINK_SUPPORTED_2500baseX_Full | 11769 ELINK_SUPPORTED_10000baseT_Full | 11770 ELINK_SUPPORTED_TP | 11771 ELINK_SUPPORTED_FIBRE | 11772 ELINK_SUPPORTED_Autoneg | 11773 ELINK_SUPPORTED_Pause | 11774 ELINK_SUPPORTED_Asym_Pause); 11775 sc->port.advertising[0] = sc->port.supported[0]; 11776 11777 sc->link_params.sc = sc; 11778 sc->link_params.port = SC_PORT(sc); 11779 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11780 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11781 sc->link_params.req_line_speed[0] = SPEED_10000; 11782 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11783 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11784 11785 if (CHIP_REV_IS_FPGA(sc)) { 11786 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11787 sc->link_vars.line_speed = ELINK_SPEED_1000; 11788 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11789 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11790 } else { 11791 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11792 sc->link_vars.line_speed = ELINK_SPEED_10000; 11793 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11794 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11795 } 11796 11797 sc->link_vars.link_up = 1; 11798 11799 sc->link_vars.duplex = DUPLEX_FULL; 11800 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11801 11802 if (IS_PF(sc)) { 11803 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11804 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11805 bxe_link_report(sc); 11806 } 11807 } 11808 11809 if (IS_PF(sc)) { 11810 if (sc->link_vars.link_up) { 11811 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11812 } else { 11813 bxe_stats_handle(sc, STATS_EVENT_STOP); 11814 } 11815 bxe_link_report(sc); 11816 } else { 11817 bxe_link_report(sc); 11818 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11819 } 11820 } 11821 11822 static int 11823 bxe_initial_phy_init(struct bxe_softc *sc, 11824 int load_mode) 11825 { 11826 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11827 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11828 struct elink_params *lp = &sc->link_params; 11829 11830 bxe_set_requested_fc(sc); 11831 11832 if (CHIP_REV_IS_SLOW(sc)) { 11833 uint32_t bond = CHIP_BOND_ID(sc); 11834 uint32_t feat = 0; 11835 11836 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11837 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11838 } else if (bond & 0x4) { 11839 if (CHIP_IS_E3(sc)) { 11840 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11841 } else { 11842 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11843 } 11844 } else if (bond & 0x8) { 11845 if (CHIP_IS_E3(sc)) { 11846 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11847 } else { 11848 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11849 } 11850 } 11851 11852 /* disable EMAC for E3 and above */ 11853 if (bond & 0x2) { 11854 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11855 } 11856 11857 sc->link_params.feature_config_flags |= feat; 11858 } 11859 11860 bxe_acquire_phy_lock(sc); 11861 11862 if (load_mode == LOAD_DIAG) { 11863 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11864 /* Prefer doing PHY loopback at 10G speed, if possible */ 11865 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11866 if (lp->speed_cap_mask[cfg_idx] & 11867 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11868 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11869 } else { 11870 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11871 } 11872 } 11873 } 11874 11875 if (load_mode == LOAD_LOOPBACK_EXT) { 11876 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11877 } 11878 11879 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11880 11881 bxe_release_phy_lock(sc); 11882 11883 bxe_calc_fc_adv(sc); 11884 11885 if (sc->link_vars.link_up) { 11886 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11887 bxe_link_report(sc); 11888 } 11889 11890 if (!CHIP_REV_IS_SLOW(sc)) { 11891 bxe_periodic_start(sc); 11892 } 11893 11894 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11895 return (rc); 11896 } 11897 11898 /* must be called under IF_ADDR_LOCK */ 11899 11900 static int 11901 bxe_set_mc_list(struct bxe_softc *sc) 11902 { 11903 struct ecore_mcast_ramrod_params rparam = { NULL }; 11904 int rc = 0; 11905 int mc_count = 0; 11906 int mcnt, i; 11907 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11908 unsigned char *mta; 11909 if_t ifp = sc->ifp; 11910 11911 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 11912 if (!mc_count) 11913 return (0); 11914 11915 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 11916 mc_count, M_DEVBUF, M_NOWAIT); 11917 11918 if(mta == NULL) { 11919 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11920 return (-1); 11921 } 11922 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 11923 11924 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 11925 mc_mac_start = mc_mac; 11926 11927 if (!mc_mac) { 11928 free(mta, M_DEVBUF); 11929 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11930 return (-1); 11931 } 11932 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 11933 11934 /* mta and mcnt not expected to be different */ 11935 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 11936 11937 11938 rparam.mcast_obj = &sc->mcast_obj; 11939 ECORE_LIST_INIT(&rparam.mcast_list); 11940 11941 for(i=0; i< mcnt; i++) { 11942 11943 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 11944 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 11945 11946 BLOGD(sc, DBG_LOAD, 11947 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 11948 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 11949 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 11950 11951 mc_mac++; 11952 } 11953 rparam.mcast_list_len = mc_count; 11954 11955 BXE_MCAST_LOCK(sc); 11956 11957 /* first, clear all configured multicast MACs */ 11958 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 11959 if (rc < 0) { 11960 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 11961 BXE_MCAST_UNLOCK(sc); 11962 free(mc_mac_start, M_DEVBUF); 11963 free(mta, M_DEVBUF); 11964 return (rc); 11965 } 11966 11967 /* Now add the new MACs */ 11968 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 11969 if (rc < 0) { 11970 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 11971 } 11972 11973 BXE_MCAST_UNLOCK(sc); 11974 11975 free(mc_mac_start, M_DEVBUF); 11976 free(mta, M_DEVBUF); 11977 11978 return (rc); 11979 } 11980 11981 static int 11982 bxe_set_uc_list(struct bxe_softc *sc) 11983 { 11984 if_t ifp = sc->ifp; 11985 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 11986 struct ifaddr *ifa; 11987 unsigned long ramrod_flags = 0; 11988 int rc; 11989 11990 #if __FreeBSD_version < 800000 11991 IF_ADDR_LOCK(ifp); 11992 #else 11993 if_addr_rlock(ifp); 11994 #endif 11995 11996 /* first schedule a cleanup up of old configuration */ 11997 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 11998 if (rc < 0) { 11999 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12000 #if __FreeBSD_version < 800000 12001 IF_ADDR_UNLOCK(ifp); 12002 #else 12003 if_addr_runlock(ifp); 12004 #endif 12005 return (rc); 12006 } 12007 12008 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12009 while (ifa) { 12010 if (ifa->ifa_addr->sa_family != AF_LINK) { 12011 ifa = TAILQ_NEXT(ifa, ifa_link); 12012 continue; 12013 } 12014 12015 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12016 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12017 if (rc == -EEXIST) { 12018 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12019 /* do not treat adding same MAC as an error */ 12020 rc = 0; 12021 } else if (rc < 0) { 12022 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12023 #if __FreeBSD_version < 800000 12024 IF_ADDR_UNLOCK(ifp); 12025 #else 12026 if_addr_runlock(ifp); 12027 #endif 12028 return (rc); 12029 } 12030 12031 ifa = TAILQ_NEXT(ifa, ifa_link); 12032 } 12033 12034 #if __FreeBSD_version < 800000 12035 IF_ADDR_UNLOCK(ifp); 12036 #else 12037 if_addr_runlock(ifp); 12038 #endif 12039 12040 /* Execute the pending commands */ 12041 bit_set(&ramrod_flags, RAMROD_CONT); 12042 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12043 ECORE_UC_LIST_MAC, &ramrod_flags)); 12044 } 12045 12046 static void 12047 bxe_set_rx_mode(struct bxe_softc *sc) 12048 { 12049 if_t ifp = sc->ifp; 12050 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12051 12052 if (sc->state != BXE_STATE_OPEN) { 12053 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12054 return; 12055 } 12056 12057 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12058 12059 if (if_getflags(ifp) & IFF_PROMISC) { 12060 rx_mode = BXE_RX_MODE_PROMISC; 12061 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12062 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12063 CHIP_IS_E1(sc))) { 12064 rx_mode = BXE_RX_MODE_ALLMULTI; 12065 } else { 12066 if (IS_PF(sc)) { 12067 /* some multicasts */ 12068 if (bxe_set_mc_list(sc) < 0) { 12069 rx_mode = BXE_RX_MODE_ALLMULTI; 12070 } 12071 if (bxe_set_uc_list(sc) < 0) { 12072 rx_mode = BXE_RX_MODE_PROMISC; 12073 } 12074 } 12075 } 12076 12077 sc->rx_mode = rx_mode; 12078 12079 /* schedule the rx_mode command */ 12080 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12081 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12082 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12083 return; 12084 } 12085 12086 if (IS_PF(sc)) { 12087 bxe_set_storm_rx_mode(sc); 12088 } 12089 } 12090 12091 12092 /* update flags in shmem */ 12093 static void 12094 bxe_update_drv_flags(struct bxe_softc *sc, 12095 uint32_t flags, 12096 uint32_t set) 12097 { 12098 uint32_t drv_flags; 12099 12100 if (SHMEM2_HAS(sc, drv_flags)) { 12101 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12102 drv_flags = SHMEM2_RD(sc, drv_flags); 12103 12104 if (set) { 12105 SET_FLAGS(drv_flags, flags); 12106 } else { 12107 RESET_FLAGS(drv_flags, flags); 12108 } 12109 12110 SHMEM2_WR(sc, drv_flags, drv_flags); 12111 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12112 12113 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12114 } 12115 } 12116 12117 /* periodic timer callout routine, only runs when the interface is up */ 12118 12119 static void 12120 bxe_periodic_callout_func(void *xsc) 12121 { 12122 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12123 struct bxe_fastpath *fp; 12124 uint16_t tx_bd_avail; 12125 int i; 12126 12127 if (!BXE_CORE_TRYLOCK(sc)) { 12128 /* just bail and try again next time */ 12129 12130 if ((sc->state == BXE_STATE_OPEN) && 12131 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12132 /* schedule the next periodic callout */ 12133 callout_reset(&sc->periodic_callout, hz, 12134 bxe_periodic_callout_func, sc); 12135 } 12136 12137 return; 12138 } 12139 12140 if ((sc->state != BXE_STATE_OPEN) || 12141 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12142 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12143 BXE_CORE_UNLOCK(sc); 12144 return; 12145 } 12146 12147 #if __FreeBSD_version >= 800000 12148 12149 FOR_EACH_QUEUE(sc, i) { 12150 fp = &sc->fp[i]; 12151 12152 if (BXE_FP_TX_TRYLOCK(fp)) { 12153 if_t ifp = sc->ifp; 12154 /* 12155 * If interface was stopped due to unavailable 12156 * bds, try to process some tx completions 12157 */ 12158 (void) bxe_txeof(sc, fp); 12159 12160 tx_bd_avail = bxe_tx_avail(sc, fp); 12161 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12162 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 12163 } 12164 BXE_FP_TX_UNLOCK(fp); 12165 } 12166 } 12167 12168 #else 12169 12170 fp = &sc->fp[0]; 12171 if (BXE_FP_TX_TRYLOCK(fp)) { 12172 struct ifnet *ifp = sc->ifnet; 12173 /* 12174 * If interface was stopped due to unavailable 12175 * bds, try to process some tx completions 12176 */ 12177 (void) bxe_txeof(sc, fp); 12178 12179 tx_bd_avail = bxe_tx_avail(sc, fp); 12180 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12181 bxe_tx_start_locked(sc, ifp, fp); 12182 } 12183 12184 BXE_FP_TX_UNLOCK(fp); 12185 } 12186 12187 #endif /* #if __FreeBSD_version >= 800000 */ 12188 12189 /* Check for TX timeouts on any fastpath. */ 12190 FOR_EACH_QUEUE(sc, i) { 12191 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12192 /* Ruh-Roh, chip was reset! */ 12193 break; 12194 } 12195 } 12196 12197 if (!CHIP_REV_IS_SLOW(sc)) { 12198 /* 12199 * This barrier is needed to ensure the ordering between the writing 12200 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12201 * the reading here. 12202 */ 12203 mb(); 12204 if (sc->port.pmf) { 12205 bxe_acquire_phy_lock(sc); 12206 elink_period_func(&sc->link_params, &sc->link_vars); 12207 bxe_release_phy_lock(sc); 12208 } 12209 } 12210 12211 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12212 int mb_idx = SC_FW_MB_IDX(sc); 12213 uint32_t drv_pulse; 12214 uint32_t mcp_pulse; 12215 12216 ++sc->fw_drv_pulse_wr_seq; 12217 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12218 12219 drv_pulse = sc->fw_drv_pulse_wr_seq; 12220 bxe_drv_pulse(sc); 12221 12222 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12223 MCP_PULSE_SEQ_MASK); 12224 12225 /* 12226 * The delta between driver pulse and mcp response should 12227 * be 1 (before mcp response) or 0 (after mcp response). 12228 */ 12229 if ((drv_pulse != mcp_pulse) && 12230 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12231 /* someone lost a heartbeat... */ 12232 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12233 drv_pulse, mcp_pulse); 12234 } 12235 } 12236 12237 /* state is BXE_STATE_OPEN */ 12238 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12239 12240 BXE_CORE_UNLOCK(sc); 12241 12242 if ((sc->state == BXE_STATE_OPEN) && 12243 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12244 /* schedule the next periodic callout */ 12245 callout_reset(&sc->periodic_callout, hz, 12246 bxe_periodic_callout_func, sc); 12247 } 12248 } 12249 12250 static void 12251 bxe_periodic_start(struct bxe_softc *sc) 12252 { 12253 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12254 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12255 } 12256 12257 static void 12258 bxe_periodic_stop(struct bxe_softc *sc) 12259 { 12260 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12261 callout_drain(&sc->periodic_callout); 12262 } 12263 12264 /* start the controller */ 12265 static __noinline int 12266 bxe_nic_load(struct bxe_softc *sc, 12267 int load_mode) 12268 { 12269 uint32_t val; 12270 int load_code = 0; 12271 int i, rc = 0; 12272 12273 BXE_CORE_LOCK_ASSERT(sc); 12274 12275 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12276 12277 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12278 12279 if (IS_PF(sc)) { 12280 /* must be called before memory allocation and HW init */ 12281 bxe_ilt_set_info(sc); 12282 } 12283 12284 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12285 12286 bxe_set_fp_rx_buf_size(sc); 12287 12288 if (bxe_alloc_fp_buffers(sc) != 0) { 12289 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12290 sc->state = BXE_STATE_CLOSED; 12291 rc = ENOMEM; 12292 goto bxe_nic_load_error0; 12293 } 12294 12295 if (bxe_alloc_mem(sc) != 0) { 12296 sc->state = BXE_STATE_CLOSED; 12297 rc = ENOMEM; 12298 goto bxe_nic_load_error0; 12299 } 12300 12301 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12302 sc->state = BXE_STATE_CLOSED; 12303 rc = ENOMEM; 12304 goto bxe_nic_load_error0; 12305 } 12306 12307 if (IS_PF(sc)) { 12308 /* set pf load just before approaching the MCP */ 12309 bxe_set_pf_load(sc); 12310 12311 /* if MCP exists send load request and analyze response */ 12312 if (!BXE_NOMCP(sc)) { 12313 /* attempt to load pf */ 12314 if (bxe_nic_load_request(sc, &load_code) != 0) { 12315 sc->state = BXE_STATE_CLOSED; 12316 rc = ENXIO; 12317 goto bxe_nic_load_error1; 12318 } 12319 12320 /* what did the MCP say? */ 12321 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12322 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12323 sc->state = BXE_STATE_CLOSED; 12324 rc = ENXIO; 12325 goto bxe_nic_load_error2; 12326 } 12327 } else { 12328 BLOGI(sc, "Device has no MCP!\n"); 12329 load_code = bxe_nic_load_no_mcp(sc); 12330 } 12331 12332 /* mark PMF if applicable */ 12333 bxe_nic_load_pmf(sc, load_code); 12334 12335 /* Init Function state controlling object */ 12336 bxe_init_func_obj(sc); 12337 12338 /* Initialize HW */ 12339 if (bxe_init_hw(sc, load_code) != 0) { 12340 BLOGE(sc, "HW init failed\n"); 12341 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12342 sc->state = BXE_STATE_CLOSED; 12343 rc = ENXIO; 12344 goto bxe_nic_load_error2; 12345 } 12346 } 12347 12348 /* set ALWAYS_ALIVE bit in shmem */ 12349 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12350 bxe_drv_pulse(sc); 12351 sc->flags |= BXE_NO_PULSE; 12352 12353 /* attach interrupts */ 12354 if (bxe_interrupt_attach(sc) != 0) { 12355 sc->state = BXE_STATE_CLOSED; 12356 rc = ENXIO; 12357 goto bxe_nic_load_error2; 12358 } 12359 12360 bxe_nic_init(sc, load_code); 12361 12362 /* Init per-function objects */ 12363 if (IS_PF(sc)) { 12364 bxe_init_objs(sc); 12365 // XXX bxe_iov_nic_init(sc); 12366 12367 /* set AFEX default VLAN tag to an invalid value */ 12368 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12369 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12370 12371 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12372 rc = bxe_func_start(sc); 12373 if (rc) { 12374 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12375 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12376 sc->state = BXE_STATE_ERROR; 12377 goto bxe_nic_load_error3; 12378 } 12379 12380 /* send LOAD_DONE command to MCP */ 12381 if (!BXE_NOMCP(sc)) { 12382 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12383 if (!load_code) { 12384 BLOGE(sc, "MCP response failure, aborting\n"); 12385 sc->state = BXE_STATE_ERROR; 12386 rc = ENXIO; 12387 goto bxe_nic_load_error3; 12388 } 12389 } 12390 12391 rc = bxe_setup_leading(sc); 12392 if (rc) { 12393 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12394 sc->state = BXE_STATE_ERROR; 12395 goto bxe_nic_load_error3; 12396 } 12397 12398 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12399 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12400 if (rc) { 12401 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12402 sc->state = BXE_STATE_ERROR; 12403 goto bxe_nic_load_error3; 12404 } 12405 } 12406 12407 rc = bxe_init_rss_pf(sc); 12408 if (rc) { 12409 BLOGE(sc, "PF RSS init failed\n"); 12410 sc->state = BXE_STATE_ERROR; 12411 goto bxe_nic_load_error3; 12412 } 12413 } 12414 /* XXX VF */ 12415 12416 /* now when Clients are configured we are ready to work */ 12417 sc->state = BXE_STATE_OPEN; 12418 12419 /* Configure a ucast MAC */ 12420 if (IS_PF(sc)) { 12421 rc = bxe_set_eth_mac(sc, TRUE); 12422 } 12423 if (rc) { 12424 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12425 sc->state = BXE_STATE_ERROR; 12426 goto bxe_nic_load_error3; 12427 } 12428 12429 if (sc->port.pmf) { 12430 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12431 if (rc) { 12432 sc->state = BXE_STATE_ERROR; 12433 goto bxe_nic_load_error3; 12434 } 12435 } 12436 12437 sc->link_params.feature_config_flags &= 12438 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12439 12440 /* start fast path */ 12441 12442 /* Initialize Rx filter */ 12443 bxe_set_rx_mode(sc); 12444 12445 /* start the Tx */ 12446 switch (/* XXX load_mode */LOAD_OPEN) { 12447 case LOAD_NORMAL: 12448 case LOAD_OPEN: 12449 break; 12450 12451 case LOAD_DIAG: 12452 case LOAD_LOOPBACK_EXT: 12453 sc->state = BXE_STATE_DIAG; 12454 break; 12455 12456 default: 12457 break; 12458 } 12459 12460 if (sc->port.pmf) { 12461 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12462 } else { 12463 bxe_link_status_update(sc); 12464 } 12465 12466 /* start the periodic timer callout */ 12467 bxe_periodic_start(sc); 12468 12469 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12470 /* mark driver is loaded in shmem2 */ 12471 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12472 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12473 (val | 12474 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12475 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12476 } 12477 12478 /* wait for all pending SP commands to complete */ 12479 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12480 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12481 bxe_periodic_stop(sc); 12482 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12483 return (ENXIO); 12484 } 12485 12486 /* Tell the stack the driver is running! */ 12487 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12488 12489 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12490 12491 return (0); 12492 12493 bxe_nic_load_error3: 12494 12495 if (IS_PF(sc)) { 12496 bxe_int_disable_sync(sc, 1); 12497 12498 /* clean out queued objects */ 12499 bxe_squeeze_objects(sc); 12500 } 12501 12502 bxe_interrupt_detach(sc); 12503 12504 bxe_nic_load_error2: 12505 12506 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12507 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12508 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12509 } 12510 12511 sc->port.pmf = 0; 12512 12513 bxe_nic_load_error1: 12514 12515 /* clear pf_load status, as it was already set */ 12516 if (IS_PF(sc)) { 12517 bxe_clear_pf_load(sc); 12518 } 12519 12520 bxe_nic_load_error0: 12521 12522 bxe_free_fw_stats_mem(sc); 12523 bxe_free_fp_buffers(sc); 12524 bxe_free_mem(sc); 12525 12526 return (rc); 12527 } 12528 12529 static int 12530 bxe_init_locked(struct bxe_softc *sc) 12531 { 12532 int other_engine = SC_PATH(sc) ? 0 : 1; 12533 uint8_t other_load_status, load_status; 12534 uint8_t global = FALSE; 12535 int rc; 12536 12537 BXE_CORE_LOCK_ASSERT(sc); 12538 12539 /* check if the driver is already running */ 12540 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12541 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12542 return (0); 12543 } 12544 12545 bxe_set_power_state(sc, PCI_PM_D0); 12546 12547 /* 12548 * If parity occurred during the unload, then attentions and/or 12549 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12550 * loaded on the current engine to complete the recovery. Parity recovery 12551 * is only relevant for PF driver. 12552 */ 12553 if (IS_PF(sc)) { 12554 other_load_status = bxe_get_load_status(sc, other_engine); 12555 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12556 12557 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12558 bxe_chk_parity_attn(sc, &global, TRUE)) { 12559 do { 12560 /* 12561 * If there are attentions and they are in global blocks, set 12562 * the GLOBAL_RESET bit regardless whether it will be this 12563 * function that will complete the recovery or not. 12564 */ 12565 if (global) { 12566 bxe_set_reset_global(sc); 12567 } 12568 12569 /* 12570 * Only the first function on the current engine should try 12571 * to recover in open. In case of attentions in global blocks 12572 * only the first in the chip should try to recover. 12573 */ 12574 if ((!load_status && (!global || !other_load_status)) && 12575 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12576 BLOGI(sc, "Recovered during init\n"); 12577 break; 12578 } 12579 12580 /* recovery has failed... */ 12581 bxe_set_power_state(sc, PCI_PM_D3hot); 12582 sc->recovery_state = BXE_RECOVERY_FAILED; 12583 12584 BLOGE(sc, "Recovery flow hasn't properly " 12585 "completed yet, try again later. " 12586 "If you still see this message after a " 12587 "few retries then power cycle is required.\n"); 12588 12589 rc = ENXIO; 12590 goto bxe_init_locked_done; 12591 } while (0); 12592 } 12593 } 12594 12595 sc->recovery_state = BXE_RECOVERY_DONE; 12596 12597 rc = bxe_nic_load(sc, LOAD_OPEN); 12598 12599 bxe_init_locked_done: 12600 12601 if (rc) { 12602 /* Tell the stack the driver is NOT running! */ 12603 BLOGE(sc, "Initialization failed, " 12604 "stack notified driver is NOT running!\n"); 12605 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12606 } 12607 12608 return (rc); 12609 } 12610 12611 static int 12612 bxe_stop_locked(struct bxe_softc *sc) 12613 { 12614 BXE_CORE_LOCK_ASSERT(sc); 12615 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12616 } 12617 12618 /* 12619 * Handles controller initialization when called from an unlocked routine. 12620 * ifconfig calls this function. 12621 * 12622 * Returns: 12623 * void 12624 */ 12625 static void 12626 bxe_init(void *xsc) 12627 { 12628 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12629 12630 BXE_CORE_LOCK(sc); 12631 bxe_init_locked(sc); 12632 BXE_CORE_UNLOCK(sc); 12633 } 12634 12635 static int 12636 bxe_init_ifnet(struct bxe_softc *sc) 12637 { 12638 if_t ifp; 12639 int capabilities; 12640 12641 /* ifconfig entrypoint for media type/status reporting */ 12642 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12643 bxe_ifmedia_update, 12644 bxe_ifmedia_status); 12645 12646 /* set the default interface values */ 12647 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12648 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12649 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12650 12651 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12652 12653 /* allocate the ifnet structure */ 12654 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12655 BLOGE(sc, "Interface allocation failed!\n"); 12656 return (ENXIO); 12657 } 12658 12659 if_setsoftc(ifp, sc); 12660 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12661 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12662 if_setioctlfn(ifp, bxe_ioctl); 12663 if_setstartfn(ifp, bxe_tx_start); 12664 if_setgetcounterfn(ifp, bxe_get_counter); 12665 #if __FreeBSD_version >= 800000 12666 if_settransmitfn(ifp, bxe_tx_mq_start); 12667 if_setqflushfn(ifp, bxe_mq_flush); 12668 #endif 12669 #ifdef FreeBSD8_0 12670 if_settimer(ifp, 0); 12671 #endif 12672 if_setinitfn(ifp, bxe_init); 12673 if_setmtu(ifp, sc->mtu); 12674 if_sethwassist(ifp, (CSUM_IP | 12675 CSUM_TCP | 12676 CSUM_UDP | 12677 CSUM_TSO | 12678 CSUM_TCP_IPV6 | 12679 CSUM_UDP_IPV6)); 12680 12681 capabilities = 12682 #if __FreeBSD_version < 700000 12683 (IFCAP_VLAN_MTU | 12684 IFCAP_VLAN_HWTAGGING | 12685 IFCAP_HWCSUM | 12686 IFCAP_JUMBO_MTU | 12687 IFCAP_LRO); 12688 #else 12689 (IFCAP_VLAN_MTU | 12690 IFCAP_VLAN_HWTAGGING | 12691 IFCAP_VLAN_HWTSO | 12692 IFCAP_VLAN_HWFILTER | 12693 IFCAP_VLAN_HWCSUM | 12694 IFCAP_HWCSUM | 12695 IFCAP_JUMBO_MTU | 12696 IFCAP_LRO | 12697 IFCAP_TSO4 | 12698 IFCAP_TSO6 | 12699 IFCAP_WOL_MAGIC); 12700 #endif 12701 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12702 if_setbaudrate(ifp, IF_Gbps(10)); 12703 /* XXX */ 12704 if_setsendqlen(ifp, sc->tx_ring_size); 12705 if_setsendqready(ifp); 12706 /* XXX */ 12707 12708 sc->ifp = ifp; 12709 12710 /* attach to the Ethernet interface list */ 12711 ether_ifattach(ifp, sc->link_params.mac_addr); 12712 12713 return (0); 12714 } 12715 12716 static void 12717 bxe_deallocate_bars(struct bxe_softc *sc) 12718 { 12719 int i; 12720 12721 for (i = 0; i < MAX_BARS; i++) { 12722 if (sc->bar[i].resource != NULL) { 12723 bus_release_resource(sc->dev, 12724 SYS_RES_MEMORY, 12725 sc->bar[i].rid, 12726 sc->bar[i].resource); 12727 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12728 i, PCIR_BAR(i)); 12729 } 12730 } 12731 } 12732 12733 static int 12734 bxe_allocate_bars(struct bxe_softc *sc) 12735 { 12736 u_int flags; 12737 int i; 12738 12739 memset(sc->bar, 0, sizeof(sc->bar)); 12740 12741 for (i = 0; i < MAX_BARS; i++) { 12742 12743 /* memory resources reside at BARs 0, 2, 4 */ 12744 /* Run `pciconf -lb` to see mappings */ 12745 if ((i != 0) && (i != 2) && (i != 4)) { 12746 continue; 12747 } 12748 12749 sc->bar[i].rid = PCIR_BAR(i); 12750 12751 flags = RF_ACTIVE; 12752 if (i == 0) { 12753 flags |= RF_SHAREABLE; 12754 } 12755 12756 if ((sc->bar[i].resource = 12757 bus_alloc_resource_any(sc->dev, 12758 SYS_RES_MEMORY, 12759 &sc->bar[i].rid, 12760 flags)) == NULL) { 12761 return (0); 12762 } 12763 12764 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12765 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12766 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12767 12768 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12769 i, PCIR_BAR(i), 12770 (void *)rman_get_start(sc->bar[i].resource), 12771 (void *)rman_get_end(sc->bar[i].resource), 12772 rman_get_size(sc->bar[i].resource), 12773 (void *)sc->bar[i].kva); 12774 } 12775 12776 return (0); 12777 } 12778 12779 static void 12780 bxe_get_function_num(struct bxe_softc *sc) 12781 { 12782 uint32_t val = 0; 12783 12784 /* 12785 * Read the ME register to get the function number. The ME register 12786 * holds the relative-function number and absolute-function number. The 12787 * absolute-function number appears only in E2 and above. Before that 12788 * these bits always contained zero, therefore we cannot blindly use them. 12789 */ 12790 12791 val = REG_RD(sc, BAR_ME_REGISTER); 12792 12793 sc->pfunc_rel = 12794 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12795 sc->path_id = 12796 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12797 12798 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12799 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12800 } else { 12801 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12802 } 12803 12804 BLOGD(sc, DBG_LOAD, 12805 "Relative function %d, Absolute function %d, Path %d\n", 12806 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12807 } 12808 12809 static uint32_t 12810 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12811 { 12812 uint32_t shmem2_size; 12813 uint32_t offset; 12814 uint32_t mf_cfg_offset_value; 12815 12816 /* Non 57712 */ 12817 offset = (SHMEM_RD(sc, func_mb) + 12818 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12819 12820 /* 57712 plus */ 12821 if (sc->devinfo.shmem2_base != 0) { 12822 shmem2_size = SHMEM2_RD(sc, size); 12823 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12824 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12825 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12826 offset = mf_cfg_offset_value; 12827 } 12828 } 12829 } 12830 12831 return (offset); 12832 } 12833 12834 static uint32_t 12835 bxe_pcie_capability_read(struct bxe_softc *sc, 12836 int reg, 12837 int width) 12838 { 12839 int pcie_reg; 12840 12841 /* ensure PCIe capability is enabled */ 12842 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12843 if (pcie_reg != 0) { 12844 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12845 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12846 } 12847 } 12848 12849 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12850 12851 return (0); 12852 } 12853 12854 static uint8_t 12855 bxe_is_pcie_pending(struct bxe_softc *sc) 12856 { 12857 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12858 PCIM_EXP_STA_TRANSACTION_PND); 12859 } 12860 12861 /* 12862 * Walk the PCI capabiites list for the device to find what features are 12863 * supported. These capabilites may be enabled/disabled by firmware so it's 12864 * best to walk the list rather than make assumptions. 12865 */ 12866 static void 12867 bxe_probe_pci_caps(struct bxe_softc *sc) 12868 { 12869 uint16_t link_status; 12870 int reg; 12871 12872 /* check if PCI Power Management is enabled */ 12873 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12874 if (reg != 0) { 12875 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12876 12877 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12878 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12879 } 12880 } 12881 12882 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12883 12884 /* handle PCIe 2.0 workarounds for 57710 */ 12885 if (CHIP_IS_E1(sc)) { 12886 /* workaround for 57710 errata E4_57710_27462 */ 12887 sc->devinfo.pcie_link_speed = 12888 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12889 12890 /* workaround for 57710 errata E4_57710_27488 */ 12891 sc->devinfo.pcie_link_width = 12892 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12893 if (sc->devinfo.pcie_link_speed > 1) { 12894 sc->devinfo.pcie_link_width = 12895 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12896 } 12897 } else { 12898 sc->devinfo.pcie_link_speed = 12899 (link_status & PCIM_LINK_STA_SPEED); 12900 sc->devinfo.pcie_link_width = 12901 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12902 } 12903 12904 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12905 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12906 12907 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12908 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12909 12910 /* check if MSI capability is enabled */ 12911 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12912 if (reg != 0) { 12913 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12914 12915 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12916 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12917 } 12918 } 12919 12920 /* check if MSI-X capability is enabled */ 12921 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12922 if (reg != 0) { 12923 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12924 12925 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12926 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12927 } 12928 } 12929 } 12930 12931 static int 12932 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12933 { 12934 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12935 uint32_t val; 12936 12937 /* get the outer vlan if we're in switch-dependent mode */ 12938 12939 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12940 mf_info->ext_id = (uint16_t)val; 12941 12942 mf_info->multi_vnics_mode = 1; 12943 12944 if (!VALID_OVLAN(mf_info->ext_id)) { 12945 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12946 return (1); 12947 } 12948 12949 /* get the capabilities */ 12950 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12951 FUNC_MF_CFG_PROTOCOL_ISCSI) { 12952 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 12953 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12954 FUNC_MF_CFG_PROTOCOL_FCOE) { 12955 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 12956 } else { 12957 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 12958 } 12959 12960 mf_info->vnics_per_port = 12961 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 12962 12963 return (0); 12964 } 12965 12966 static uint32_t 12967 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 12968 { 12969 uint32_t retval = 0; 12970 uint32_t val; 12971 12972 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12973 12974 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 12975 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 12976 retval |= MF_PROTO_SUPPORT_ETHERNET; 12977 } 12978 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 12979 retval |= MF_PROTO_SUPPORT_ISCSI; 12980 } 12981 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 12982 retval |= MF_PROTO_SUPPORT_FCOE; 12983 } 12984 } 12985 12986 return (retval); 12987 } 12988 12989 static int 12990 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 12991 { 12992 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12993 uint32_t val; 12994 12995 /* 12996 * There is no outer vlan if we're in switch-independent mode. 12997 * If the mac is valid then assume multi-function. 12998 */ 12999 13000 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13001 13002 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13003 13004 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13005 13006 mf_info->vnics_per_port = 13007 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13008 13009 return (0); 13010 } 13011 13012 static int 13013 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13014 { 13015 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13016 uint32_t e1hov_tag; 13017 uint32_t func_config; 13018 uint32_t niv_config; 13019 13020 mf_info->multi_vnics_mode = 1; 13021 13022 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13023 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13024 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13025 13026 mf_info->ext_id = 13027 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13028 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13029 13030 mf_info->default_vlan = 13031 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13032 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13033 13034 mf_info->niv_allowed_priorities = 13035 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13036 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13037 13038 mf_info->niv_default_cos = 13039 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13040 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13041 13042 mf_info->afex_vlan_mode = 13043 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13044 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13045 13046 mf_info->niv_mba_enabled = 13047 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13048 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13049 13050 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13051 13052 mf_info->vnics_per_port = 13053 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13054 13055 return (0); 13056 } 13057 13058 static int 13059 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13060 { 13061 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13062 uint32_t mf_cfg1; 13063 uint32_t mf_cfg2; 13064 uint32_t ovlan1; 13065 uint32_t ovlan2; 13066 uint8_t i, j; 13067 13068 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13069 SC_PORT(sc)); 13070 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13071 mf_info->mf_config[SC_VN(sc)]); 13072 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13073 mf_info->multi_vnics_mode); 13074 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13075 mf_info->vnics_per_port); 13076 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13077 mf_info->ext_id); 13078 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13079 mf_info->min_bw[0], mf_info->min_bw[1], 13080 mf_info->min_bw[2], mf_info->min_bw[3]); 13081 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13082 mf_info->max_bw[0], mf_info->max_bw[1], 13083 mf_info->max_bw[2], mf_info->max_bw[3]); 13084 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13085 sc->mac_addr_str); 13086 13087 /* various MF mode sanity checks... */ 13088 13089 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13090 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13091 SC_PORT(sc)); 13092 return (1); 13093 } 13094 13095 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13096 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13097 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13098 return (1); 13099 } 13100 13101 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13102 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13103 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13104 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13105 SC_VN(sc), OVLAN(sc)); 13106 return (1); 13107 } 13108 13109 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13110 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13111 mf_info->multi_vnics_mode, OVLAN(sc)); 13112 return (1); 13113 } 13114 13115 /* 13116 * Verify all functions are either MF or SF mode. If MF, make sure 13117 * sure that all non-hidden functions have a valid ovlan. If SF, 13118 * make sure that all non-hidden functions have an invalid ovlan. 13119 */ 13120 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13121 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13122 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13123 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13124 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13125 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13126 BLOGE(sc, "mf_mode=SD function %d MF config " 13127 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13128 i, mf_info->multi_vnics_mode, ovlan1); 13129 return (1); 13130 } 13131 } 13132 13133 /* Verify all funcs on the same port each have a different ovlan. */ 13134 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13135 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13136 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13137 /* iterate from the next function on the port to the max func */ 13138 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13139 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13140 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13141 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13142 VALID_OVLAN(ovlan1) && 13143 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13144 VALID_OVLAN(ovlan2) && 13145 (ovlan1 == ovlan2)) { 13146 BLOGE(sc, "mf_mode=SD functions %d and %d " 13147 "have the same ovlan (%d)\n", 13148 i, j, ovlan1); 13149 return (1); 13150 } 13151 } 13152 } 13153 } /* MULTI_FUNCTION_SD */ 13154 13155 return (0); 13156 } 13157 13158 static int 13159 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13160 { 13161 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13162 uint32_t val, mac_upper; 13163 uint8_t i, vnic; 13164 13165 /* initialize mf_info defaults */ 13166 mf_info->vnics_per_port = 1; 13167 mf_info->multi_vnics_mode = FALSE; 13168 mf_info->path_has_ovlan = FALSE; 13169 mf_info->mf_mode = SINGLE_FUNCTION; 13170 13171 if (!CHIP_IS_MF_CAP(sc)) { 13172 return (0); 13173 } 13174 13175 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13176 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13177 return (1); 13178 } 13179 13180 /* get the MF mode (switch dependent / independent / single-function) */ 13181 13182 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13183 13184 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13185 { 13186 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13187 13188 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13189 13190 /* check for legal upper mac bytes */ 13191 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13192 mf_info->mf_mode = MULTI_FUNCTION_SI; 13193 } else { 13194 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13195 } 13196 13197 break; 13198 13199 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13200 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13201 13202 /* get outer vlan configuration */ 13203 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13204 13205 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13206 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13207 mf_info->mf_mode = MULTI_FUNCTION_SD; 13208 } else { 13209 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13210 } 13211 13212 break; 13213 13214 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13215 13216 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13217 return (0); 13218 13219 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13220 13221 /* 13222 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13223 * and the MAC address is valid. 13224 */ 13225 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13226 13227 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13228 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13229 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13230 } else { 13231 BLOGE(sc, "Invalid config for AFEX mode\n"); 13232 } 13233 13234 break; 13235 13236 default: 13237 13238 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13239 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13240 13241 return (1); 13242 } 13243 13244 /* set path mf_mode (which could be different than function mf_mode) */ 13245 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13246 mf_info->path_has_ovlan = TRUE; 13247 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13248 /* 13249 * Decide on path multi vnics mode. If we're not in MF mode and in 13250 * 4-port mode, this is good enough to check vnic-0 of the other port 13251 * on the same path 13252 */ 13253 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13254 uint8_t other_port = !(PORT_ID(sc) & 1); 13255 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13256 13257 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13258 13259 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13260 } 13261 } 13262 13263 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13264 /* invalid MF config */ 13265 if (SC_VN(sc) >= 1) { 13266 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13267 return (1); 13268 } 13269 13270 return (0); 13271 } 13272 13273 /* get the MF configuration */ 13274 mf_info->mf_config[SC_VN(sc)] = 13275 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13276 13277 switch(mf_info->mf_mode) 13278 { 13279 case MULTI_FUNCTION_SD: 13280 13281 bxe_get_shmem_mf_cfg_info_sd(sc); 13282 break; 13283 13284 case MULTI_FUNCTION_SI: 13285 13286 bxe_get_shmem_mf_cfg_info_si(sc); 13287 break; 13288 13289 case MULTI_FUNCTION_AFEX: 13290 13291 bxe_get_shmem_mf_cfg_info_niv(sc); 13292 break; 13293 13294 default: 13295 13296 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13297 mf_info->mf_mode); 13298 return (1); 13299 } 13300 13301 /* get the congestion management parameters */ 13302 13303 vnic = 0; 13304 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13305 /* get min/max bw */ 13306 val = MFCFG_RD(sc, func_mf_config[i].config); 13307 mf_info->min_bw[vnic] = 13308 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13309 mf_info->max_bw[vnic] = 13310 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13311 vnic++; 13312 } 13313 13314 return (bxe_check_valid_mf_cfg(sc)); 13315 } 13316 13317 static int 13318 bxe_get_shmem_info(struct bxe_softc *sc) 13319 { 13320 int port; 13321 uint32_t mac_hi, mac_lo, val; 13322 13323 port = SC_PORT(sc); 13324 mac_hi = mac_lo = 0; 13325 13326 sc->link_params.sc = sc; 13327 sc->link_params.port = port; 13328 13329 /* get the hardware config info */ 13330 sc->devinfo.hw_config = 13331 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13332 sc->devinfo.hw_config2 = 13333 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13334 13335 sc->link_params.hw_led_mode = 13336 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13337 SHARED_HW_CFG_LED_MODE_SHIFT); 13338 13339 /* get the port feature config */ 13340 sc->port.config = 13341 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 13342 13343 /* get the link params */ 13344 sc->link_params.speed_cap_mask[0] = 13345 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13346 sc->link_params.speed_cap_mask[1] = 13347 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13348 13349 /* get the lane config */ 13350 sc->link_params.lane_config = 13351 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13352 13353 /* get the link config */ 13354 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13355 sc->port.link_config[ELINK_INT_PHY] = val; 13356 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13357 sc->port.link_config[ELINK_EXT_PHY1] = 13358 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13359 13360 /* get the override preemphasis flag and enable it or turn it off */ 13361 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13362 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13363 sc->link_params.feature_config_flags |= 13364 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13365 } else { 13366 sc->link_params.feature_config_flags &= 13367 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13368 } 13369 13370 /* get the initial value of the link params */ 13371 sc->link_params.multi_phy_config = 13372 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13373 13374 /* get external phy info */ 13375 sc->port.ext_phy_config = 13376 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13377 13378 /* get the multifunction configuration */ 13379 bxe_get_mf_cfg_info(sc); 13380 13381 /* get the mac address */ 13382 if (IS_MF(sc)) { 13383 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13384 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13385 } else { 13386 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13387 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13388 } 13389 13390 if ((mac_lo == 0) && (mac_hi == 0)) { 13391 *sc->mac_addr_str = 0; 13392 BLOGE(sc, "No Ethernet address programmed!\n"); 13393 } else { 13394 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13395 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13396 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13397 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13398 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13399 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13400 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13401 "%02x:%02x:%02x:%02x:%02x:%02x", 13402 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13403 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13404 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13405 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13406 } 13407 13408 return (0); 13409 } 13410 13411 static void 13412 bxe_get_tunable_params(struct bxe_softc *sc) 13413 { 13414 /* sanity checks */ 13415 13416 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13417 (bxe_interrupt_mode != INTR_MODE_MSI) && 13418 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13419 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13420 bxe_interrupt_mode = INTR_MODE_MSIX; 13421 } 13422 13423 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13424 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13425 bxe_queue_count = 0; 13426 } 13427 13428 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13429 if (bxe_max_rx_bufs == 0) { 13430 bxe_max_rx_bufs = RX_BD_USABLE; 13431 } else { 13432 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13433 bxe_max_rx_bufs = 2048; 13434 } 13435 } 13436 13437 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13438 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13439 bxe_hc_rx_ticks = 25; 13440 } 13441 13442 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13443 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13444 bxe_hc_tx_ticks = 50; 13445 } 13446 13447 if (bxe_max_aggregation_size == 0) { 13448 bxe_max_aggregation_size = TPA_AGG_SIZE; 13449 } 13450 13451 if (bxe_max_aggregation_size > 0xffff) { 13452 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13453 bxe_max_aggregation_size); 13454 bxe_max_aggregation_size = TPA_AGG_SIZE; 13455 } 13456 13457 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13458 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13459 bxe_mrrs = -1; 13460 } 13461 13462 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13463 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13464 bxe_autogreeen = 0; 13465 } 13466 13467 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13468 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13469 bxe_udp_rss = 0; 13470 } 13471 13472 /* pull in user settings */ 13473 13474 sc->interrupt_mode = bxe_interrupt_mode; 13475 sc->max_rx_bufs = bxe_max_rx_bufs; 13476 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13477 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13478 sc->max_aggregation_size = bxe_max_aggregation_size; 13479 sc->mrrs = bxe_mrrs; 13480 sc->autogreeen = bxe_autogreeen; 13481 sc->udp_rss = bxe_udp_rss; 13482 13483 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13484 sc->num_queues = 1; 13485 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13486 sc->num_queues = 13487 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13488 MAX_RSS_CHAINS); 13489 if (sc->num_queues > mp_ncpus) { 13490 sc->num_queues = mp_ncpus; 13491 } 13492 } 13493 13494 BLOGD(sc, DBG_LOAD, 13495 "User Config: " 13496 "debug=0x%lx " 13497 "interrupt_mode=%d " 13498 "queue_count=%d " 13499 "hc_rx_ticks=%d " 13500 "hc_tx_ticks=%d " 13501 "rx_budget=%d " 13502 "max_aggregation_size=%d " 13503 "mrrs=%d " 13504 "autogreeen=%d " 13505 "udp_rss=%d\n", 13506 bxe_debug, 13507 sc->interrupt_mode, 13508 sc->num_queues, 13509 sc->hc_rx_ticks, 13510 sc->hc_tx_ticks, 13511 bxe_rx_budget, 13512 sc->max_aggregation_size, 13513 sc->mrrs, 13514 sc->autogreeen, 13515 sc->udp_rss); 13516 } 13517 13518 static int 13519 bxe_media_detect(struct bxe_softc *sc) 13520 { 13521 int port_type; 13522 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13523 13524 switch (sc->link_params.phy[phy_idx].media_type) { 13525 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13526 case ELINK_ETH_PHY_XFP_FIBER: 13527 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13528 sc->media = IFM_10G_SR; 13529 port_type = PORT_FIBRE; 13530 break; 13531 case ELINK_ETH_PHY_SFP_1G_FIBER: 13532 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13533 sc->media = IFM_1000_SX; 13534 port_type = PORT_FIBRE; 13535 break; 13536 case ELINK_ETH_PHY_KR: 13537 case ELINK_ETH_PHY_CX4: 13538 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13539 sc->media = IFM_10G_CX4; 13540 port_type = PORT_FIBRE; 13541 break; 13542 case ELINK_ETH_PHY_DA_TWINAX: 13543 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13544 sc->media = IFM_10G_TWINAX; 13545 port_type = PORT_DA; 13546 break; 13547 case ELINK_ETH_PHY_BASE_T: 13548 if (sc->link_params.speed_cap_mask[0] & 13549 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13550 BLOGI(sc, "Found 10GBase-T media.\n"); 13551 sc->media = IFM_10G_T; 13552 port_type = PORT_TP; 13553 } else { 13554 BLOGI(sc, "Found 1000Base-T media.\n"); 13555 sc->media = IFM_1000_T; 13556 port_type = PORT_TP; 13557 } 13558 break; 13559 case ELINK_ETH_PHY_NOT_PRESENT: 13560 BLOGI(sc, "Media not present.\n"); 13561 sc->media = 0; 13562 port_type = PORT_OTHER; 13563 break; 13564 case ELINK_ETH_PHY_UNSPECIFIED: 13565 default: 13566 BLOGI(sc, "Unknown media!\n"); 13567 sc->media = 0; 13568 port_type = PORT_OTHER; 13569 break; 13570 } 13571 return port_type; 13572 } 13573 13574 #define GET_FIELD(value, fname) \ 13575 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13576 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13577 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13578 13579 static int 13580 bxe_get_igu_cam_info(struct bxe_softc *sc) 13581 { 13582 int pfid = SC_FUNC(sc); 13583 int igu_sb_id; 13584 uint32_t val; 13585 uint8_t fid, igu_sb_cnt = 0; 13586 13587 sc->igu_base_sb = 0xff; 13588 13589 if (CHIP_INT_MODE_IS_BC(sc)) { 13590 int vn = SC_VN(sc); 13591 igu_sb_cnt = sc->igu_sb_cnt; 13592 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13593 FP_SB_MAX_E1x); 13594 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13595 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13596 return (0); 13597 } 13598 13599 /* IGU in normal mode - read CAM */ 13600 for (igu_sb_id = 0; 13601 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13602 igu_sb_id++) { 13603 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13604 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13605 continue; 13606 } 13607 fid = IGU_FID(val); 13608 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13609 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13610 continue; 13611 } 13612 if (IGU_VEC(val) == 0) { 13613 /* default status block */ 13614 sc->igu_dsb_id = igu_sb_id; 13615 } else { 13616 if (sc->igu_base_sb == 0xff) { 13617 sc->igu_base_sb = igu_sb_id; 13618 } 13619 igu_sb_cnt++; 13620 } 13621 } 13622 } 13623 13624 /* 13625 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13626 * that number of CAM entries will not be equal to the value advertised in 13627 * PCI. Driver should use the minimal value of both as the actual status 13628 * block count 13629 */ 13630 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13631 13632 if (igu_sb_cnt == 0) { 13633 BLOGE(sc, "CAM configuration error\n"); 13634 return (-1); 13635 } 13636 13637 return (0); 13638 } 13639 13640 /* 13641 * Gather various information from the device config space, the device itself, 13642 * shmem, and the user input. 13643 */ 13644 static int 13645 bxe_get_device_info(struct bxe_softc *sc) 13646 { 13647 uint32_t val; 13648 int rc; 13649 13650 /* Get the data for the device */ 13651 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13652 sc->devinfo.device_id = pci_get_device(sc->dev); 13653 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13654 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13655 13656 /* get the chip revision (chip metal comes from pci config space) */ 13657 sc->devinfo.chip_id = 13658 sc->link_params.chip_id = 13659 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13660 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13661 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13662 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13663 13664 /* force 57811 according to MISC register */ 13665 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13666 if (CHIP_IS_57810(sc)) { 13667 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13668 (sc->devinfo.chip_id & 0x0000ffff)); 13669 } else if (CHIP_IS_57810_MF(sc)) { 13670 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13671 (sc->devinfo.chip_id & 0x0000ffff)); 13672 } 13673 sc->devinfo.chip_id |= 0x1; 13674 } 13675 13676 BLOGD(sc, DBG_LOAD, 13677 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13678 sc->devinfo.chip_id, 13679 ((sc->devinfo.chip_id >> 16) & 0xffff), 13680 ((sc->devinfo.chip_id >> 12) & 0xf), 13681 ((sc->devinfo.chip_id >> 4) & 0xff), 13682 ((sc->devinfo.chip_id >> 0) & 0xf)); 13683 13684 val = (REG_RD(sc, 0x2874) & 0x55); 13685 if ((sc->devinfo.chip_id & 0x1) || 13686 (CHIP_IS_E1(sc) && val) || 13687 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13688 sc->flags |= BXE_ONE_PORT_FLAG; 13689 BLOGD(sc, DBG_LOAD, "single port device\n"); 13690 } 13691 13692 /* set the doorbell size */ 13693 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13694 13695 /* determine whether the device is in 2 port or 4 port mode */ 13696 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13697 if (CHIP_IS_E2E3(sc)) { 13698 /* 13699 * Read port4mode_en_ovwr[0]: 13700 * If 1, four port mode is in port4mode_en_ovwr[1]. 13701 * If 0, four port mode is in port4mode_en[0]. 13702 */ 13703 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13704 if (val & 1) { 13705 val = ((val >> 1) & 1); 13706 } else { 13707 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13708 } 13709 13710 sc->devinfo.chip_port_mode = 13711 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13712 13713 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13714 } 13715 13716 /* get the function and path info for the device */ 13717 bxe_get_function_num(sc); 13718 13719 /* get the shared memory base address */ 13720 sc->devinfo.shmem_base = 13721 sc->link_params.shmem_base = 13722 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13723 sc->devinfo.shmem2_base = 13724 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13725 MISC_REG_GENERIC_CR_0)); 13726 13727 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13728 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13729 13730 if (!sc->devinfo.shmem_base) { 13731 /* this should ONLY prevent upcoming shmem reads */ 13732 BLOGI(sc, "MCP not active\n"); 13733 sc->flags |= BXE_NO_MCP_FLAG; 13734 return (0); 13735 } 13736 13737 /* make sure the shared memory contents are valid */ 13738 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13739 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13740 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13741 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13742 return (0); 13743 } 13744 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13745 13746 /* get the bootcode version */ 13747 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13748 snprintf(sc->devinfo.bc_ver_str, 13749 sizeof(sc->devinfo.bc_ver_str), 13750 "%d.%d.%d", 13751 ((sc->devinfo.bc_ver >> 24) & 0xff), 13752 ((sc->devinfo.bc_ver >> 16) & 0xff), 13753 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13754 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13755 13756 /* get the bootcode shmem address */ 13757 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13758 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13759 13760 /* clean indirect addresses as they're not used */ 13761 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13762 if (IS_PF(sc)) { 13763 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13764 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13765 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13766 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13767 if (CHIP_IS_E1x(sc)) { 13768 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13769 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13770 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13771 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13772 } 13773 13774 /* 13775 * Enable internal target-read (in case we are probed after PF 13776 * FLR). Must be done prior to any BAR read access. Only for 13777 * 57712 and up 13778 */ 13779 if (!CHIP_IS_E1x(sc)) { 13780 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13781 } 13782 } 13783 13784 /* get the nvram size */ 13785 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13786 sc->devinfo.flash_size = 13787 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13788 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13789 13790 /* get PCI capabilites */ 13791 bxe_probe_pci_caps(sc); 13792 13793 bxe_set_power_state(sc, PCI_PM_D0); 13794 13795 /* get various configuration parameters from shmem */ 13796 bxe_get_shmem_info(sc); 13797 13798 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13799 val = pci_read_config(sc->dev, 13800 (sc->devinfo.pcie_msix_cap_reg + 13801 PCIR_MSIX_CTRL), 13802 2); 13803 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13804 } else { 13805 sc->igu_sb_cnt = 1; 13806 } 13807 13808 sc->igu_base_addr = BAR_IGU_INTMEM; 13809 13810 /* initialize IGU parameters */ 13811 if (CHIP_IS_E1x(sc)) { 13812 sc->devinfo.int_block = INT_BLOCK_HC; 13813 sc->igu_dsb_id = DEF_SB_IGU_ID; 13814 sc->igu_base_sb = 0; 13815 } else { 13816 sc->devinfo.int_block = INT_BLOCK_IGU; 13817 13818 /* do not allow device reset during IGU info preocessing */ 13819 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13820 13821 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13822 13823 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13824 int tout = 5000; 13825 13826 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13827 13828 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13829 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13830 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13831 13832 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13833 tout--; 13834 DELAY(1000); 13835 } 13836 13837 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13838 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13839 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13840 return (-1); 13841 } 13842 } 13843 13844 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13845 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13846 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13847 } else { 13848 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13849 } 13850 13851 rc = bxe_get_igu_cam_info(sc); 13852 13853 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13854 13855 if (rc) { 13856 return (rc); 13857 } 13858 } 13859 13860 /* 13861 * Get base FW non-default (fast path) status block ID. This value is 13862 * used to initialize the fw_sb_id saved on the fp/queue structure to 13863 * determine the id used by the FW. 13864 */ 13865 if (CHIP_IS_E1x(sc)) { 13866 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13867 } else { 13868 /* 13869 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13870 * the same queue are indicated on the same IGU SB). So we prefer 13871 * FW and IGU SBs to be the same value. 13872 */ 13873 sc->base_fw_ndsb = sc->igu_base_sb; 13874 } 13875 13876 BLOGD(sc, DBG_LOAD, 13877 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13878 sc->igu_dsb_id, sc->igu_base_sb, 13879 sc->igu_sb_cnt, sc->base_fw_ndsb); 13880 13881 elink_phy_probe(&sc->link_params); 13882 13883 return (0); 13884 } 13885 13886 static void 13887 bxe_link_settings_supported(struct bxe_softc *sc, 13888 uint32_t switch_cfg) 13889 { 13890 uint32_t cfg_size = 0; 13891 uint32_t idx; 13892 uint8_t port = SC_PORT(sc); 13893 13894 /* aggregation of supported attributes of all external phys */ 13895 sc->port.supported[0] = 0; 13896 sc->port.supported[1] = 0; 13897 13898 switch (sc->link_params.num_phys) { 13899 case 1: 13900 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13901 cfg_size = 1; 13902 break; 13903 case 2: 13904 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13905 cfg_size = 1; 13906 break; 13907 case 3: 13908 if (sc->link_params.multi_phy_config & 13909 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13910 sc->port.supported[1] = 13911 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13912 sc->port.supported[0] = 13913 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13914 } else { 13915 sc->port.supported[0] = 13916 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13917 sc->port.supported[1] = 13918 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13919 } 13920 cfg_size = 2; 13921 break; 13922 } 13923 13924 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13925 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13926 SHMEM_RD(sc, 13927 dev_info.port_hw_config[port].external_phy_config), 13928 SHMEM_RD(sc, 13929 dev_info.port_hw_config[port].external_phy_config2)); 13930 return; 13931 } 13932 13933 if (CHIP_IS_E3(sc)) 13934 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13935 else { 13936 switch (switch_cfg) { 13937 case ELINK_SWITCH_CFG_1G: 13938 sc->port.phy_addr = 13939 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13940 break; 13941 case ELINK_SWITCH_CFG_10G: 13942 sc->port.phy_addr = 13943 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13944 break; 13945 default: 13946 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13947 sc->port.link_config[0]); 13948 return; 13949 } 13950 } 13951 13952 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 13953 13954 /* mask what we support according to speed_cap_mask per configuration */ 13955 for (idx = 0; idx < cfg_size; idx++) { 13956 if (!(sc->link_params.speed_cap_mask[idx] & 13957 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 13958 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 13959 } 13960 13961 if (!(sc->link_params.speed_cap_mask[idx] & 13962 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 13963 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 13964 } 13965 13966 if (!(sc->link_params.speed_cap_mask[idx] & 13967 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 13968 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 13969 } 13970 13971 if (!(sc->link_params.speed_cap_mask[idx] & 13972 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 13973 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 13974 } 13975 13976 if (!(sc->link_params.speed_cap_mask[idx] & 13977 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 13978 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 13979 } 13980 13981 if (!(sc->link_params.speed_cap_mask[idx] & 13982 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 13983 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 13984 } 13985 13986 if (!(sc->link_params.speed_cap_mask[idx] & 13987 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 13988 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 13989 } 13990 13991 if (!(sc->link_params.speed_cap_mask[idx] & 13992 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 13993 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 13994 } 13995 } 13996 13997 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 13998 sc->port.supported[0], sc->port.supported[1]); 13999 } 14000 14001 static void 14002 bxe_link_settings_requested(struct bxe_softc *sc) 14003 { 14004 uint32_t link_config; 14005 uint32_t idx; 14006 uint32_t cfg_size = 0; 14007 14008 sc->port.advertising[0] = 0; 14009 sc->port.advertising[1] = 0; 14010 14011 switch (sc->link_params.num_phys) { 14012 case 1: 14013 case 2: 14014 cfg_size = 1; 14015 break; 14016 case 3: 14017 cfg_size = 2; 14018 break; 14019 } 14020 14021 for (idx = 0; idx < cfg_size; idx++) { 14022 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14023 link_config = sc->port.link_config[idx]; 14024 14025 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14026 case PORT_FEATURE_LINK_SPEED_AUTO: 14027 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14028 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14029 sc->port.advertising[idx] |= sc->port.supported[idx]; 14030 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14031 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14032 sc->port.advertising[idx] |= 14033 (ELINK_SUPPORTED_100baseT_Half | 14034 ELINK_SUPPORTED_100baseT_Full); 14035 } else { 14036 /* force 10G, no AN */ 14037 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14038 sc->port.advertising[idx] |= 14039 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14040 continue; 14041 } 14042 break; 14043 14044 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14045 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14046 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14047 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14048 ADVERTISED_TP); 14049 } else { 14050 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14051 "speed_cap_mask=0x%08x\n", 14052 link_config, sc->link_params.speed_cap_mask[idx]); 14053 return; 14054 } 14055 break; 14056 14057 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14058 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14059 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14060 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14061 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14062 ADVERTISED_TP); 14063 } else { 14064 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14065 "speed_cap_mask=0x%08x\n", 14066 link_config, sc->link_params.speed_cap_mask[idx]); 14067 return; 14068 } 14069 break; 14070 14071 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14072 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14073 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14074 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14075 ADVERTISED_TP); 14076 } else { 14077 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14078 "speed_cap_mask=0x%08x\n", 14079 link_config, sc->link_params.speed_cap_mask[idx]); 14080 return; 14081 } 14082 break; 14083 14084 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14085 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14086 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14087 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14088 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14089 ADVERTISED_TP); 14090 } else { 14091 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14092 "speed_cap_mask=0x%08x\n", 14093 link_config, sc->link_params.speed_cap_mask[idx]); 14094 return; 14095 } 14096 break; 14097 14098 case PORT_FEATURE_LINK_SPEED_1G: 14099 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14100 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14101 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14102 ADVERTISED_TP); 14103 } else { 14104 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14105 "speed_cap_mask=0x%08x\n", 14106 link_config, sc->link_params.speed_cap_mask[idx]); 14107 return; 14108 } 14109 break; 14110 14111 case PORT_FEATURE_LINK_SPEED_2_5G: 14112 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14113 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14114 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14115 ADVERTISED_TP); 14116 } else { 14117 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14118 "speed_cap_mask=0x%08x\n", 14119 link_config, sc->link_params.speed_cap_mask[idx]); 14120 return; 14121 } 14122 break; 14123 14124 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14125 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14126 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14127 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14128 ADVERTISED_FIBRE); 14129 } else { 14130 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14131 "speed_cap_mask=0x%08x\n", 14132 link_config, sc->link_params.speed_cap_mask[idx]); 14133 return; 14134 } 14135 break; 14136 14137 case PORT_FEATURE_LINK_SPEED_20G: 14138 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14139 break; 14140 14141 default: 14142 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14143 "speed_cap_mask=0x%08x\n", 14144 link_config, sc->link_params.speed_cap_mask[idx]); 14145 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14146 sc->port.advertising[idx] = sc->port.supported[idx]; 14147 break; 14148 } 14149 14150 sc->link_params.req_flow_ctrl[idx] = 14151 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14152 14153 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14154 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14155 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14156 } else { 14157 bxe_set_requested_fc(sc); 14158 } 14159 } 14160 14161 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14162 "req_flow_ctrl=0x%x advertising=0x%x\n", 14163 sc->link_params.req_line_speed[idx], 14164 sc->link_params.req_duplex[idx], 14165 sc->link_params.req_flow_ctrl[idx], 14166 sc->port.advertising[idx]); 14167 } 14168 } 14169 14170 static void 14171 bxe_get_phy_info(struct bxe_softc *sc) 14172 { 14173 uint8_t port = SC_PORT(sc); 14174 uint32_t config = sc->port.config; 14175 uint32_t eee_mode; 14176 14177 /* shmem data already read in bxe_get_shmem_info() */ 14178 14179 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14180 "link_config0=0x%08x\n", 14181 sc->link_params.lane_config, 14182 sc->link_params.speed_cap_mask[0], 14183 sc->port.link_config[0]); 14184 14185 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14186 bxe_link_settings_requested(sc); 14187 14188 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14189 sc->link_params.feature_config_flags |= 14190 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14191 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14192 sc->link_params.feature_config_flags &= 14193 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14194 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14195 sc->link_params.feature_config_flags |= 14196 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14197 } 14198 14199 /* configure link feature according to nvram value */ 14200 eee_mode = 14201 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14202 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14203 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14204 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14205 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14206 ELINK_EEE_MODE_ENABLE_LPI | 14207 ELINK_EEE_MODE_OUTPUT_TIME); 14208 } else { 14209 sc->link_params.eee_mode = 0; 14210 } 14211 14212 /* get the media type */ 14213 bxe_media_detect(sc); 14214 } 14215 14216 static void 14217 bxe_get_params(struct bxe_softc *sc) 14218 { 14219 /* get user tunable params */ 14220 bxe_get_tunable_params(sc); 14221 14222 /* select the RX and TX ring sizes */ 14223 sc->tx_ring_size = TX_BD_USABLE; 14224 sc->rx_ring_size = RX_BD_USABLE; 14225 14226 /* XXX disable WoL */ 14227 sc->wol = 0; 14228 } 14229 14230 static void 14231 bxe_set_modes_bitmap(struct bxe_softc *sc) 14232 { 14233 uint32_t flags = 0; 14234 14235 if (CHIP_REV_IS_FPGA(sc)) { 14236 SET_FLAGS(flags, MODE_FPGA); 14237 } else if (CHIP_REV_IS_EMUL(sc)) { 14238 SET_FLAGS(flags, MODE_EMUL); 14239 } else { 14240 SET_FLAGS(flags, MODE_ASIC); 14241 } 14242 14243 if (CHIP_IS_MODE_4_PORT(sc)) { 14244 SET_FLAGS(flags, MODE_PORT4); 14245 } else { 14246 SET_FLAGS(flags, MODE_PORT2); 14247 } 14248 14249 if (CHIP_IS_E2(sc)) { 14250 SET_FLAGS(flags, MODE_E2); 14251 } else if (CHIP_IS_E3(sc)) { 14252 SET_FLAGS(flags, MODE_E3); 14253 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14254 SET_FLAGS(flags, MODE_E3_A0); 14255 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14256 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14257 } 14258 } 14259 14260 if (IS_MF(sc)) { 14261 SET_FLAGS(flags, MODE_MF); 14262 switch (sc->devinfo.mf_info.mf_mode) { 14263 case MULTI_FUNCTION_SD: 14264 SET_FLAGS(flags, MODE_MF_SD); 14265 break; 14266 case MULTI_FUNCTION_SI: 14267 SET_FLAGS(flags, MODE_MF_SI); 14268 break; 14269 case MULTI_FUNCTION_AFEX: 14270 SET_FLAGS(flags, MODE_MF_AFEX); 14271 break; 14272 } 14273 } else { 14274 SET_FLAGS(flags, MODE_SF); 14275 } 14276 14277 #if defined(__LITTLE_ENDIAN) 14278 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14279 #else /* __BIG_ENDIAN */ 14280 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14281 #endif 14282 14283 INIT_MODE_FLAGS(sc) = flags; 14284 } 14285 14286 static int 14287 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14288 { 14289 struct bxe_fastpath *fp; 14290 bus_addr_t busaddr; 14291 int max_agg_queues; 14292 int max_segments; 14293 bus_size_t max_size; 14294 bus_size_t max_seg_size; 14295 char buf[32]; 14296 int rc; 14297 int i, j; 14298 14299 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14300 14301 /* allocate the parent bus DMA tag */ 14302 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14303 1, /* alignment */ 14304 0, /* boundary limit */ 14305 BUS_SPACE_MAXADDR, /* restricted low */ 14306 BUS_SPACE_MAXADDR, /* restricted hi */ 14307 NULL, /* addr filter() */ 14308 NULL, /* addr filter() arg */ 14309 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14310 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14311 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14312 0, /* flags */ 14313 NULL, /* lock() */ 14314 NULL, /* lock() arg */ 14315 &sc->parent_dma_tag); /* returned dma tag */ 14316 if (rc != 0) { 14317 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14318 return (1); 14319 } 14320 14321 /************************/ 14322 /* DEFAULT STATUS BLOCK */ 14323 /************************/ 14324 14325 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14326 &sc->def_sb_dma, "default status block") != 0) { 14327 /* XXX */ 14328 bus_dma_tag_destroy(sc->parent_dma_tag); 14329 return (1); 14330 } 14331 14332 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14333 14334 /***************/ 14335 /* EVENT QUEUE */ 14336 /***************/ 14337 14338 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14339 &sc->eq_dma, "event queue") != 0) { 14340 /* XXX */ 14341 bxe_dma_free(sc, &sc->def_sb_dma); 14342 sc->def_sb = NULL; 14343 bus_dma_tag_destroy(sc->parent_dma_tag); 14344 return (1); 14345 } 14346 14347 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14348 14349 /*************/ 14350 /* SLOW PATH */ 14351 /*************/ 14352 14353 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14354 &sc->sp_dma, "slow path") != 0) { 14355 /* XXX */ 14356 bxe_dma_free(sc, &sc->eq_dma); 14357 sc->eq = NULL; 14358 bxe_dma_free(sc, &sc->def_sb_dma); 14359 sc->def_sb = NULL; 14360 bus_dma_tag_destroy(sc->parent_dma_tag); 14361 return (1); 14362 } 14363 14364 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14365 14366 /*******************/ 14367 /* SLOW PATH QUEUE */ 14368 /*******************/ 14369 14370 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14371 &sc->spq_dma, "slow path queue") != 0) { 14372 /* XXX */ 14373 bxe_dma_free(sc, &sc->sp_dma); 14374 sc->sp = NULL; 14375 bxe_dma_free(sc, &sc->eq_dma); 14376 sc->eq = NULL; 14377 bxe_dma_free(sc, &sc->def_sb_dma); 14378 sc->def_sb = NULL; 14379 bus_dma_tag_destroy(sc->parent_dma_tag); 14380 return (1); 14381 } 14382 14383 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14384 14385 /***************************/ 14386 /* FW DECOMPRESSION BUFFER */ 14387 /***************************/ 14388 14389 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14390 "fw decompression buffer") != 0) { 14391 /* XXX */ 14392 bxe_dma_free(sc, &sc->spq_dma); 14393 sc->spq = NULL; 14394 bxe_dma_free(sc, &sc->sp_dma); 14395 sc->sp = NULL; 14396 bxe_dma_free(sc, &sc->eq_dma); 14397 sc->eq = NULL; 14398 bxe_dma_free(sc, &sc->def_sb_dma); 14399 sc->def_sb = NULL; 14400 bus_dma_tag_destroy(sc->parent_dma_tag); 14401 return (1); 14402 } 14403 14404 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14405 14406 if ((sc->gz_strm = 14407 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14408 /* XXX */ 14409 bxe_dma_free(sc, &sc->gz_buf_dma); 14410 sc->gz_buf = NULL; 14411 bxe_dma_free(sc, &sc->spq_dma); 14412 sc->spq = NULL; 14413 bxe_dma_free(sc, &sc->sp_dma); 14414 sc->sp = NULL; 14415 bxe_dma_free(sc, &sc->eq_dma); 14416 sc->eq = NULL; 14417 bxe_dma_free(sc, &sc->def_sb_dma); 14418 sc->def_sb = NULL; 14419 bus_dma_tag_destroy(sc->parent_dma_tag); 14420 return (1); 14421 } 14422 14423 /*************/ 14424 /* FASTPATHS */ 14425 /*************/ 14426 14427 /* allocate DMA memory for each fastpath structure */ 14428 for (i = 0; i < sc->num_queues; i++) { 14429 fp = &sc->fp[i]; 14430 fp->sc = sc; 14431 fp->index = i; 14432 14433 /*******************/ 14434 /* FP STATUS BLOCK */ 14435 /*******************/ 14436 14437 snprintf(buf, sizeof(buf), "fp %d status block", i); 14438 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14439 &fp->sb_dma, buf) != 0) { 14440 /* XXX unwind and free previous fastpath allocations */ 14441 BLOGE(sc, "Failed to alloc %s\n", buf); 14442 return (1); 14443 } else { 14444 if (CHIP_IS_E2E3(sc)) { 14445 fp->status_block.e2_sb = 14446 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14447 } else { 14448 fp->status_block.e1x_sb = 14449 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14450 } 14451 } 14452 14453 /******************/ 14454 /* FP TX BD CHAIN */ 14455 /******************/ 14456 14457 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14458 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14459 &fp->tx_dma, buf) != 0) { 14460 /* XXX unwind and free previous fastpath allocations */ 14461 BLOGE(sc, "Failed to alloc %s\n", buf); 14462 return (1); 14463 } else { 14464 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14465 } 14466 14467 /* link together the tx bd chain pages */ 14468 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14469 /* index into the tx bd chain array to last entry per page */ 14470 struct eth_tx_next_bd *tx_next_bd = 14471 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14472 /* point to the next page and wrap from last page */ 14473 busaddr = (fp->tx_dma.paddr + 14474 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14475 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14476 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14477 } 14478 14479 /******************/ 14480 /* FP RX BD CHAIN */ 14481 /******************/ 14482 14483 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14484 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14485 &fp->rx_dma, buf) != 0) { 14486 /* XXX unwind and free previous fastpath allocations */ 14487 BLOGE(sc, "Failed to alloc %s\n", buf); 14488 return (1); 14489 } else { 14490 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14491 } 14492 14493 /* link together the rx bd chain pages */ 14494 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14495 /* index into the rx bd chain array to last entry per page */ 14496 struct eth_rx_bd *rx_bd = 14497 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14498 /* point to the next page and wrap from last page */ 14499 busaddr = (fp->rx_dma.paddr + 14500 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14501 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14502 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14503 } 14504 14505 /*******************/ 14506 /* FP RX RCQ CHAIN */ 14507 /*******************/ 14508 14509 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14510 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14511 &fp->rcq_dma, buf) != 0) { 14512 /* XXX unwind and free previous fastpath allocations */ 14513 BLOGE(sc, "Failed to alloc %s\n", buf); 14514 return (1); 14515 } else { 14516 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14517 } 14518 14519 /* link together the rcq chain pages */ 14520 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14521 /* index into the rcq chain array to last entry per page */ 14522 struct eth_rx_cqe_next_page *rx_cqe_next = 14523 (struct eth_rx_cqe_next_page *) 14524 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14525 /* point to the next page and wrap from last page */ 14526 busaddr = (fp->rcq_dma.paddr + 14527 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14528 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14529 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14530 } 14531 14532 /*******************/ 14533 /* FP RX SGE CHAIN */ 14534 /*******************/ 14535 14536 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14537 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14538 &fp->rx_sge_dma, buf) != 0) { 14539 /* XXX unwind and free previous fastpath allocations */ 14540 BLOGE(sc, "Failed to alloc %s\n", buf); 14541 return (1); 14542 } else { 14543 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14544 } 14545 14546 /* link together the sge chain pages */ 14547 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14548 /* index into the rcq chain array to last entry per page */ 14549 struct eth_rx_sge *rx_sge = 14550 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14551 /* point to the next page and wrap from last page */ 14552 busaddr = (fp->rx_sge_dma.paddr + 14553 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14554 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14555 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14556 } 14557 14558 /***********************/ 14559 /* FP TX MBUF DMA MAPS */ 14560 /***********************/ 14561 14562 /* set required sizes before mapping to conserve resources */ 14563 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14564 max_size = BXE_TSO_MAX_SIZE; 14565 max_segments = BXE_TSO_MAX_SEGMENTS; 14566 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14567 } else { 14568 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14569 max_segments = BXE_MAX_SEGMENTS; 14570 max_seg_size = MCLBYTES; 14571 } 14572 14573 /* create a dma tag for the tx mbufs */ 14574 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14575 1, /* alignment */ 14576 0, /* boundary limit */ 14577 BUS_SPACE_MAXADDR, /* restricted low */ 14578 BUS_SPACE_MAXADDR, /* restricted hi */ 14579 NULL, /* addr filter() */ 14580 NULL, /* addr filter() arg */ 14581 max_size, /* max map size */ 14582 max_segments, /* num discontinuous */ 14583 max_seg_size, /* max seg size */ 14584 0, /* flags */ 14585 NULL, /* lock() */ 14586 NULL, /* lock() arg */ 14587 &fp->tx_mbuf_tag); /* returned dma tag */ 14588 if (rc != 0) { 14589 /* XXX unwind and free previous fastpath allocations */ 14590 BLOGE(sc, "Failed to create dma tag for " 14591 "'fp %d tx mbufs' (%d)\n", i, rc); 14592 return (1); 14593 } 14594 14595 /* create dma maps for each of the tx mbuf clusters */ 14596 for (j = 0; j < TX_BD_TOTAL; j++) { 14597 if (bus_dmamap_create(fp->tx_mbuf_tag, 14598 BUS_DMA_NOWAIT, 14599 &fp->tx_mbuf_chain[j].m_map)) { 14600 /* XXX unwind and free previous fastpath allocations */ 14601 BLOGE(sc, "Failed to create dma map for " 14602 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14603 return (1); 14604 } 14605 } 14606 14607 /***********************/ 14608 /* FP RX MBUF DMA MAPS */ 14609 /***********************/ 14610 14611 /* create a dma tag for the rx mbufs */ 14612 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14613 1, /* alignment */ 14614 0, /* boundary limit */ 14615 BUS_SPACE_MAXADDR, /* restricted low */ 14616 BUS_SPACE_MAXADDR, /* restricted hi */ 14617 NULL, /* addr filter() */ 14618 NULL, /* addr filter() arg */ 14619 MJUM9BYTES, /* max map size */ 14620 1, /* num discontinuous */ 14621 MJUM9BYTES, /* max seg size */ 14622 0, /* flags */ 14623 NULL, /* lock() */ 14624 NULL, /* lock() arg */ 14625 &fp->rx_mbuf_tag); /* returned dma tag */ 14626 if (rc != 0) { 14627 /* XXX unwind and free previous fastpath allocations */ 14628 BLOGE(sc, "Failed to create dma tag for " 14629 "'fp %d rx mbufs' (%d)\n", i, rc); 14630 return (1); 14631 } 14632 14633 /* create dma maps for each of the rx mbuf clusters */ 14634 for (j = 0; j < RX_BD_TOTAL; j++) { 14635 if (bus_dmamap_create(fp->rx_mbuf_tag, 14636 BUS_DMA_NOWAIT, 14637 &fp->rx_mbuf_chain[j].m_map)) { 14638 /* XXX unwind and free previous fastpath allocations */ 14639 BLOGE(sc, "Failed to create dma map for " 14640 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14641 return (1); 14642 } 14643 } 14644 14645 /* create dma map for the spare rx mbuf cluster */ 14646 if (bus_dmamap_create(fp->rx_mbuf_tag, 14647 BUS_DMA_NOWAIT, 14648 &fp->rx_mbuf_spare_map)) { 14649 /* XXX unwind and free previous fastpath allocations */ 14650 BLOGE(sc, "Failed to create dma map for " 14651 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14652 return (1); 14653 } 14654 14655 /***************************/ 14656 /* FP RX SGE MBUF DMA MAPS */ 14657 /***************************/ 14658 14659 /* create a dma tag for the rx sge mbufs */ 14660 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14661 1, /* alignment */ 14662 0, /* boundary limit */ 14663 BUS_SPACE_MAXADDR, /* restricted low */ 14664 BUS_SPACE_MAXADDR, /* restricted hi */ 14665 NULL, /* addr filter() */ 14666 NULL, /* addr filter() arg */ 14667 BCM_PAGE_SIZE, /* max map size */ 14668 1, /* num discontinuous */ 14669 BCM_PAGE_SIZE, /* max seg size */ 14670 0, /* flags */ 14671 NULL, /* lock() */ 14672 NULL, /* lock() arg */ 14673 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14674 if (rc != 0) { 14675 /* XXX unwind and free previous fastpath allocations */ 14676 BLOGE(sc, "Failed to create dma tag for " 14677 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14678 return (1); 14679 } 14680 14681 /* create dma maps for the rx sge mbuf clusters */ 14682 for (j = 0; j < RX_SGE_TOTAL; j++) { 14683 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14684 BUS_DMA_NOWAIT, 14685 &fp->rx_sge_mbuf_chain[j].m_map)) { 14686 /* XXX unwind and free previous fastpath allocations */ 14687 BLOGE(sc, "Failed to create dma map for " 14688 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14689 return (1); 14690 } 14691 } 14692 14693 /* create dma map for the spare rx sge mbuf cluster */ 14694 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14695 BUS_DMA_NOWAIT, 14696 &fp->rx_sge_mbuf_spare_map)) { 14697 /* XXX unwind and free previous fastpath allocations */ 14698 BLOGE(sc, "Failed to create dma map for " 14699 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14700 return (1); 14701 } 14702 14703 /***************************/ 14704 /* FP RX TPA MBUF DMA MAPS */ 14705 /***************************/ 14706 14707 /* create dma maps for the rx tpa mbuf clusters */ 14708 max_agg_queues = MAX_AGG_QS(sc); 14709 14710 for (j = 0; j < max_agg_queues; j++) { 14711 if (bus_dmamap_create(fp->rx_mbuf_tag, 14712 BUS_DMA_NOWAIT, 14713 &fp->rx_tpa_info[j].bd.m_map)) { 14714 /* XXX unwind and free previous fastpath allocations */ 14715 BLOGE(sc, "Failed to create dma map for " 14716 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14717 return (1); 14718 } 14719 } 14720 14721 /* create dma map for the spare rx tpa mbuf cluster */ 14722 if (bus_dmamap_create(fp->rx_mbuf_tag, 14723 BUS_DMA_NOWAIT, 14724 &fp->rx_tpa_info_mbuf_spare_map)) { 14725 /* XXX unwind and free previous fastpath allocations */ 14726 BLOGE(sc, "Failed to create dma map for " 14727 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14728 return (1); 14729 } 14730 14731 bxe_init_sge_ring_bit_mask(fp); 14732 } 14733 14734 return (0); 14735 } 14736 14737 static void 14738 bxe_free_hsi_mem(struct bxe_softc *sc) 14739 { 14740 struct bxe_fastpath *fp; 14741 int max_agg_queues; 14742 int i, j; 14743 14744 if (sc->parent_dma_tag == NULL) { 14745 return; /* assume nothing was allocated */ 14746 } 14747 14748 for (i = 0; i < sc->num_queues; i++) { 14749 fp = &sc->fp[i]; 14750 14751 /*******************/ 14752 /* FP STATUS BLOCK */ 14753 /*******************/ 14754 14755 bxe_dma_free(sc, &fp->sb_dma); 14756 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14757 14758 /******************/ 14759 /* FP TX BD CHAIN */ 14760 /******************/ 14761 14762 bxe_dma_free(sc, &fp->tx_dma); 14763 fp->tx_chain = NULL; 14764 14765 /******************/ 14766 /* FP RX BD CHAIN */ 14767 /******************/ 14768 14769 bxe_dma_free(sc, &fp->rx_dma); 14770 fp->rx_chain = NULL; 14771 14772 /*******************/ 14773 /* FP RX RCQ CHAIN */ 14774 /*******************/ 14775 14776 bxe_dma_free(sc, &fp->rcq_dma); 14777 fp->rcq_chain = NULL; 14778 14779 /*******************/ 14780 /* FP RX SGE CHAIN */ 14781 /*******************/ 14782 14783 bxe_dma_free(sc, &fp->rx_sge_dma); 14784 fp->rx_sge_chain = NULL; 14785 14786 /***********************/ 14787 /* FP TX MBUF DMA MAPS */ 14788 /***********************/ 14789 14790 if (fp->tx_mbuf_tag != NULL) { 14791 for (j = 0; j < TX_BD_TOTAL; j++) { 14792 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14793 bus_dmamap_unload(fp->tx_mbuf_tag, 14794 fp->tx_mbuf_chain[j].m_map); 14795 bus_dmamap_destroy(fp->tx_mbuf_tag, 14796 fp->tx_mbuf_chain[j].m_map); 14797 } 14798 } 14799 14800 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14801 fp->tx_mbuf_tag = NULL; 14802 } 14803 14804 /***********************/ 14805 /* FP RX MBUF DMA MAPS */ 14806 /***********************/ 14807 14808 if (fp->rx_mbuf_tag != NULL) { 14809 for (j = 0; j < RX_BD_TOTAL; j++) { 14810 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14811 bus_dmamap_unload(fp->rx_mbuf_tag, 14812 fp->rx_mbuf_chain[j].m_map); 14813 bus_dmamap_destroy(fp->rx_mbuf_tag, 14814 fp->rx_mbuf_chain[j].m_map); 14815 } 14816 } 14817 14818 if (fp->rx_mbuf_spare_map != NULL) { 14819 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14820 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14821 } 14822 14823 /***************************/ 14824 /* FP RX TPA MBUF DMA MAPS */ 14825 /***************************/ 14826 14827 max_agg_queues = MAX_AGG_QS(sc); 14828 14829 for (j = 0; j < max_agg_queues; j++) { 14830 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14831 bus_dmamap_unload(fp->rx_mbuf_tag, 14832 fp->rx_tpa_info[j].bd.m_map); 14833 bus_dmamap_destroy(fp->rx_mbuf_tag, 14834 fp->rx_tpa_info[j].bd.m_map); 14835 } 14836 } 14837 14838 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14839 bus_dmamap_unload(fp->rx_mbuf_tag, 14840 fp->rx_tpa_info_mbuf_spare_map); 14841 bus_dmamap_destroy(fp->rx_mbuf_tag, 14842 fp->rx_tpa_info_mbuf_spare_map); 14843 } 14844 14845 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14846 fp->rx_mbuf_tag = NULL; 14847 } 14848 14849 /***************************/ 14850 /* FP RX SGE MBUF DMA MAPS */ 14851 /***************************/ 14852 14853 if (fp->rx_sge_mbuf_tag != NULL) { 14854 for (j = 0; j < RX_SGE_TOTAL; j++) { 14855 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14856 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14857 fp->rx_sge_mbuf_chain[j].m_map); 14858 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14859 fp->rx_sge_mbuf_chain[j].m_map); 14860 } 14861 } 14862 14863 if (fp->rx_sge_mbuf_spare_map != NULL) { 14864 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14865 fp->rx_sge_mbuf_spare_map); 14866 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14867 fp->rx_sge_mbuf_spare_map); 14868 } 14869 14870 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14871 fp->rx_sge_mbuf_tag = NULL; 14872 } 14873 } 14874 14875 /***************************/ 14876 /* FW DECOMPRESSION BUFFER */ 14877 /***************************/ 14878 14879 bxe_dma_free(sc, &sc->gz_buf_dma); 14880 sc->gz_buf = NULL; 14881 free(sc->gz_strm, M_DEVBUF); 14882 sc->gz_strm = NULL; 14883 14884 /*******************/ 14885 /* SLOW PATH QUEUE */ 14886 /*******************/ 14887 14888 bxe_dma_free(sc, &sc->spq_dma); 14889 sc->spq = NULL; 14890 14891 /*************/ 14892 /* SLOW PATH */ 14893 /*************/ 14894 14895 bxe_dma_free(sc, &sc->sp_dma); 14896 sc->sp = NULL; 14897 14898 /***************/ 14899 /* EVENT QUEUE */ 14900 /***************/ 14901 14902 bxe_dma_free(sc, &sc->eq_dma); 14903 sc->eq = NULL; 14904 14905 /************************/ 14906 /* DEFAULT STATUS BLOCK */ 14907 /************************/ 14908 14909 bxe_dma_free(sc, &sc->def_sb_dma); 14910 sc->def_sb = NULL; 14911 14912 bus_dma_tag_destroy(sc->parent_dma_tag); 14913 sc->parent_dma_tag = NULL; 14914 } 14915 14916 /* 14917 * Previous driver DMAE transaction may have occurred when pre-boot stage 14918 * ended and boot began. This would invalidate the addresses of the 14919 * transaction, resulting in was-error bit set in the PCI causing all 14920 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14921 * the interrupt which detected this from the pglueb and the was-done bit 14922 */ 14923 static void 14924 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14925 { 14926 uint32_t val; 14927 14928 if (!CHIP_IS_E1x(sc)) { 14929 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14930 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14931 BLOGD(sc, DBG_LOAD, 14932 "Clearing 'was-error' bit that was set in pglueb"); 14933 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14934 } 14935 } 14936 } 14937 14938 static int 14939 bxe_prev_mcp_done(struct bxe_softc *sc) 14940 { 14941 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 14942 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 14943 if (!rc) { 14944 BLOGE(sc, "MCP response failure, aborting\n"); 14945 return (-1); 14946 } 14947 14948 return (0); 14949 } 14950 14951 static struct bxe_prev_list_node * 14952 bxe_prev_path_get_entry(struct bxe_softc *sc) 14953 { 14954 struct bxe_prev_list_node *tmp; 14955 14956 LIST_FOREACH(tmp, &bxe_prev_list, node) { 14957 if ((sc->pcie_bus == tmp->bus) && 14958 (sc->pcie_device == tmp->slot) && 14959 (SC_PATH(sc) == tmp->path)) { 14960 return (tmp); 14961 } 14962 } 14963 14964 return (NULL); 14965 } 14966 14967 static uint8_t 14968 bxe_prev_is_path_marked(struct bxe_softc *sc) 14969 { 14970 struct bxe_prev_list_node *tmp; 14971 int rc = FALSE; 14972 14973 mtx_lock(&bxe_prev_mtx); 14974 14975 tmp = bxe_prev_path_get_entry(sc); 14976 if (tmp) { 14977 if (tmp->aer) { 14978 BLOGD(sc, DBG_LOAD, 14979 "Path %d/%d/%d was marked by AER\n", 14980 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14981 } else { 14982 rc = TRUE; 14983 BLOGD(sc, DBG_LOAD, 14984 "Path %d/%d/%d was already cleaned from previous drivers\n", 14985 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14986 } 14987 } 14988 14989 mtx_unlock(&bxe_prev_mtx); 14990 14991 return (rc); 14992 } 14993 14994 static int 14995 bxe_prev_mark_path(struct bxe_softc *sc, 14996 uint8_t after_undi) 14997 { 14998 struct bxe_prev_list_node *tmp; 14999 15000 mtx_lock(&bxe_prev_mtx); 15001 15002 /* Check whether the entry for this path already exists */ 15003 tmp = bxe_prev_path_get_entry(sc); 15004 if (tmp) { 15005 if (!tmp->aer) { 15006 BLOGD(sc, DBG_LOAD, 15007 "Re-marking AER in path %d/%d/%d\n", 15008 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15009 } else { 15010 BLOGD(sc, DBG_LOAD, 15011 "Removing AER indication from path %d/%d/%d\n", 15012 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15013 tmp->aer = 0; 15014 } 15015 15016 mtx_unlock(&bxe_prev_mtx); 15017 return (0); 15018 } 15019 15020 mtx_unlock(&bxe_prev_mtx); 15021 15022 /* Create an entry for this path and add it */ 15023 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15024 (M_NOWAIT | M_ZERO)); 15025 if (!tmp) { 15026 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15027 return (-1); 15028 } 15029 15030 tmp->bus = sc->pcie_bus; 15031 tmp->slot = sc->pcie_device; 15032 tmp->path = SC_PATH(sc); 15033 tmp->aer = 0; 15034 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15035 15036 mtx_lock(&bxe_prev_mtx); 15037 15038 BLOGD(sc, DBG_LOAD, 15039 "Marked path %d/%d/%d - finished previous unload\n", 15040 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15041 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15042 15043 mtx_unlock(&bxe_prev_mtx); 15044 15045 return (0); 15046 } 15047 15048 static int 15049 bxe_do_flr(struct bxe_softc *sc) 15050 { 15051 int i; 15052 15053 /* only E2 and onwards support FLR */ 15054 if (CHIP_IS_E1x(sc)) { 15055 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15056 return (-1); 15057 } 15058 15059 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15060 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15061 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15062 sc->devinfo.bc_ver); 15063 return (-1); 15064 } 15065 15066 /* Wait for Transaction Pending bit clean */ 15067 for (i = 0; i < 4; i++) { 15068 if (i) { 15069 DELAY(((1 << (i - 1)) * 100) * 1000); 15070 } 15071 15072 if (!bxe_is_pcie_pending(sc)) { 15073 goto clear; 15074 } 15075 } 15076 15077 BLOGE(sc, "PCIE transaction is not cleared, " 15078 "proceeding with reset anyway\n"); 15079 15080 clear: 15081 15082 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15083 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15084 15085 return (0); 15086 } 15087 15088 struct bxe_mac_vals { 15089 uint32_t xmac_addr; 15090 uint32_t xmac_val; 15091 uint32_t emac_addr; 15092 uint32_t emac_val; 15093 uint32_t umac_addr; 15094 uint32_t umac_val; 15095 uint32_t bmac_addr; 15096 uint32_t bmac_val[2]; 15097 }; 15098 15099 static void 15100 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15101 struct bxe_mac_vals *vals) 15102 { 15103 uint32_t val, base_addr, offset, mask, reset_reg; 15104 uint8_t mac_stopped = FALSE; 15105 uint8_t port = SC_PORT(sc); 15106 uint32_t wb_data[2]; 15107 15108 /* reset addresses as they also mark which values were changed */ 15109 vals->bmac_addr = 0; 15110 vals->umac_addr = 0; 15111 vals->xmac_addr = 0; 15112 vals->emac_addr = 0; 15113 15114 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15115 15116 if (!CHIP_IS_E3(sc)) { 15117 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15118 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15119 if ((mask & reset_reg) && val) { 15120 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15121 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15122 : NIG_REG_INGRESS_BMAC0_MEM; 15123 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15124 : BIGMAC_REGISTER_BMAC_CONTROL; 15125 15126 /* 15127 * use rd/wr since we cannot use dmae. This is safe 15128 * since MCP won't access the bus due to the request 15129 * to unload, and no function on the path can be 15130 * loaded at this time. 15131 */ 15132 wb_data[0] = REG_RD(sc, base_addr + offset); 15133 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15134 vals->bmac_addr = base_addr + offset; 15135 vals->bmac_val[0] = wb_data[0]; 15136 vals->bmac_val[1] = wb_data[1]; 15137 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15138 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15139 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15140 } 15141 15142 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15143 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15144 vals->emac_val = REG_RD(sc, vals->emac_addr); 15145 REG_WR(sc, vals->emac_addr, 0); 15146 mac_stopped = TRUE; 15147 } else { 15148 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15149 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15150 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15151 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15152 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15153 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15154 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15155 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15156 REG_WR(sc, vals->xmac_addr, 0); 15157 mac_stopped = TRUE; 15158 } 15159 15160 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15161 if (mask & reset_reg) { 15162 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15163 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15164 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15165 vals->umac_val = REG_RD(sc, vals->umac_addr); 15166 REG_WR(sc, vals->umac_addr, 0); 15167 mac_stopped = TRUE; 15168 } 15169 } 15170 15171 if (mac_stopped) { 15172 DELAY(20000); 15173 } 15174 } 15175 15176 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15177 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15178 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15179 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15180 15181 static void 15182 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15183 uint8_t port, 15184 uint8_t inc) 15185 { 15186 uint16_t rcq, bd; 15187 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15188 15189 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15190 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15191 15192 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15193 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15194 15195 BLOGD(sc, DBG_LOAD, 15196 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15197 port, bd, rcq); 15198 } 15199 15200 static int 15201 bxe_prev_unload_common(struct bxe_softc *sc) 15202 { 15203 uint32_t reset_reg, tmp_reg = 0, rc; 15204 uint8_t prev_undi = FALSE; 15205 struct bxe_mac_vals mac_vals; 15206 uint32_t timer_count = 1000; 15207 uint32_t prev_brb; 15208 15209 /* 15210 * It is possible a previous function received 'common' answer, 15211 * but hasn't loaded yet, therefore creating a scenario of 15212 * multiple functions receiving 'common' on the same path. 15213 */ 15214 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15215 15216 memset(&mac_vals, 0, sizeof(mac_vals)); 15217 15218 if (bxe_prev_is_path_marked(sc)) { 15219 return (bxe_prev_mcp_done(sc)); 15220 } 15221 15222 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15223 15224 /* Reset should be performed after BRB is emptied */ 15225 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15226 /* Close the MAC Rx to prevent BRB from filling up */ 15227 bxe_prev_unload_close_mac(sc, &mac_vals); 15228 15229 /* close LLH filters towards the BRB */ 15230 elink_set_rx_filter(&sc->link_params, 0); 15231 15232 /* 15233 * Check if the UNDI driver was previously loaded. 15234 * UNDI driver initializes CID offset for normal bell to 0x7 15235 */ 15236 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15237 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15238 if (tmp_reg == 0x7) { 15239 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15240 prev_undi = TRUE; 15241 /* clear the UNDI indication */ 15242 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15243 /* clear possible idle check errors */ 15244 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15245 } 15246 } 15247 15248 /* wait until BRB is empty */ 15249 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15250 while (timer_count) { 15251 prev_brb = tmp_reg; 15252 15253 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15254 if (!tmp_reg) { 15255 break; 15256 } 15257 15258 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15259 15260 /* reset timer as long as BRB actually gets emptied */ 15261 if (prev_brb > tmp_reg) { 15262 timer_count = 1000; 15263 } else { 15264 timer_count--; 15265 } 15266 15267 /* If UNDI resides in memory, manually increment it */ 15268 if (prev_undi) { 15269 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15270 } 15271 15272 DELAY(10); 15273 } 15274 15275 if (!timer_count) { 15276 BLOGE(sc, "Failed to empty BRB\n"); 15277 } 15278 } 15279 15280 /* No packets are in the pipeline, path is ready for reset */ 15281 bxe_reset_common(sc); 15282 15283 if (mac_vals.xmac_addr) { 15284 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15285 } 15286 if (mac_vals.umac_addr) { 15287 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15288 } 15289 if (mac_vals.emac_addr) { 15290 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15291 } 15292 if (mac_vals.bmac_addr) { 15293 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15294 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15295 } 15296 15297 rc = bxe_prev_mark_path(sc, prev_undi); 15298 if (rc) { 15299 bxe_prev_mcp_done(sc); 15300 return (rc); 15301 } 15302 15303 return (bxe_prev_mcp_done(sc)); 15304 } 15305 15306 static int 15307 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15308 { 15309 int rc; 15310 15311 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15312 15313 /* Test if previous unload process was already finished for this path */ 15314 if (bxe_prev_is_path_marked(sc)) { 15315 return (bxe_prev_mcp_done(sc)); 15316 } 15317 15318 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15319 15320 /* 15321 * If function has FLR capabilities, and existing FW version matches 15322 * the one required, then FLR will be sufficient to clean any residue 15323 * left by previous driver 15324 */ 15325 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15326 if (!rc) { 15327 /* fw version is good */ 15328 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15329 rc = bxe_do_flr(sc); 15330 } 15331 15332 if (!rc) { 15333 /* FLR was performed */ 15334 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15335 return (0); 15336 } 15337 15338 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15339 15340 /* Close the MCP request, return failure*/ 15341 rc = bxe_prev_mcp_done(sc); 15342 if (!rc) { 15343 rc = BXE_PREV_WAIT_NEEDED; 15344 } 15345 15346 return (rc); 15347 } 15348 15349 static int 15350 bxe_prev_unload(struct bxe_softc *sc) 15351 { 15352 int time_counter = 10; 15353 uint32_t fw, hw_lock_reg, hw_lock_val; 15354 uint32_t rc = 0; 15355 15356 /* 15357 * Clear HW from errors which may have resulted from an interrupted 15358 * DMAE transaction. 15359 */ 15360 bxe_prev_interrupted_dmae(sc); 15361 15362 /* Release previously held locks */ 15363 hw_lock_reg = 15364 (SC_FUNC(sc) <= 5) ? 15365 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15366 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15367 15368 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15369 if (hw_lock_val) { 15370 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15371 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15372 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15373 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15374 } 15375 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15376 REG_WR(sc, hw_lock_reg, 0xffffffff); 15377 } else { 15378 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15379 } 15380 15381 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15382 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15383 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15384 } 15385 15386 do { 15387 /* Lock MCP using an unload request */ 15388 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15389 if (!fw) { 15390 BLOGE(sc, "MCP response failure, aborting\n"); 15391 rc = -1; 15392 break; 15393 } 15394 15395 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15396 rc = bxe_prev_unload_common(sc); 15397 break; 15398 } 15399 15400 /* non-common reply from MCP night require looping */ 15401 rc = bxe_prev_unload_uncommon(sc); 15402 if (rc != BXE_PREV_WAIT_NEEDED) { 15403 break; 15404 } 15405 15406 DELAY(20000); 15407 } while (--time_counter); 15408 15409 if (!time_counter || rc) { 15410 BLOGE(sc, "Failed to unload previous driver!" 15411 " time_counter %d rc %d\n", time_counter, rc); 15412 rc = -1; 15413 } 15414 15415 return (rc); 15416 } 15417 15418 void 15419 bxe_dcbx_set_state(struct bxe_softc *sc, 15420 uint8_t dcb_on, 15421 uint32_t dcbx_enabled) 15422 { 15423 if (!CHIP_IS_E1x(sc)) { 15424 sc->dcb_state = dcb_on; 15425 sc->dcbx_enabled = dcbx_enabled; 15426 } else { 15427 sc->dcb_state = FALSE; 15428 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15429 } 15430 BLOGD(sc, DBG_LOAD, 15431 "DCB state [%s:%s]\n", 15432 dcb_on ? "ON" : "OFF", 15433 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15434 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15435 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15436 "on-chip with negotiation" : "invalid"); 15437 } 15438 15439 /* must be called after sriov-enable */ 15440 static int 15441 bxe_set_qm_cid_count(struct bxe_softc *sc) 15442 { 15443 int cid_count = BXE_L2_MAX_CID(sc); 15444 15445 if (IS_SRIOV(sc)) { 15446 cid_count += BXE_VF_CIDS; 15447 } 15448 15449 if (CNIC_SUPPORT(sc)) { 15450 cid_count += CNIC_CID_MAX; 15451 } 15452 15453 return (roundup(cid_count, QM_CID_ROUND)); 15454 } 15455 15456 static void 15457 bxe_init_multi_cos(struct bxe_softc *sc) 15458 { 15459 int pri, cos; 15460 15461 uint32_t pri_map = 0; /* XXX change to user config */ 15462 15463 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15464 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15465 if (cos < sc->max_cos) { 15466 sc->prio_to_cos[pri] = cos; 15467 } else { 15468 BLOGW(sc, "Invalid COS %d for priority %d " 15469 "(max COS is %d), setting to 0\n", 15470 cos, pri, (sc->max_cos - 1)); 15471 sc->prio_to_cos[pri] = 0; 15472 } 15473 } 15474 } 15475 15476 static int 15477 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15478 { 15479 struct bxe_softc *sc; 15480 int error, result; 15481 15482 result = 0; 15483 error = sysctl_handle_int(oidp, &result, 0, req); 15484 15485 if (error || !req->newptr) { 15486 return (error); 15487 } 15488 15489 if (result == 1) { 15490 uint32_t temp; 15491 sc = (struct bxe_softc *)arg1; 15492 15493 BLOGI(sc, "... dumping driver state ...\n"); 15494 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15495 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15496 } 15497 15498 return (error); 15499 } 15500 15501 static int 15502 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15503 { 15504 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15505 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15506 uint32_t *offset; 15507 uint64_t value = 0; 15508 int index = (int)arg2; 15509 15510 if (index >= BXE_NUM_ETH_STATS) { 15511 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15512 return (-1); 15513 } 15514 15515 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15516 15517 switch (bxe_eth_stats_arr[index].size) { 15518 case 4: 15519 value = (uint64_t)*offset; 15520 break; 15521 case 8: 15522 value = HILO_U64(*offset, *(offset + 1)); 15523 break; 15524 default: 15525 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15526 index, bxe_eth_stats_arr[index].size); 15527 return (-1); 15528 } 15529 15530 return (sysctl_handle_64(oidp, &value, 0, req)); 15531 } 15532 15533 static int 15534 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15535 { 15536 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15537 uint32_t *eth_stats; 15538 uint32_t *offset; 15539 uint64_t value = 0; 15540 uint32_t q_stat = (uint32_t)arg2; 15541 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15542 uint32_t index = (q_stat & 0xffff); 15543 15544 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15545 15546 if (index >= BXE_NUM_ETH_Q_STATS) { 15547 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15548 return (-1); 15549 } 15550 15551 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15552 15553 switch (bxe_eth_q_stats_arr[index].size) { 15554 case 4: 15555 value = (uint64_t)*offset; 15556 break; 15557 case 8: 15558 value = HILO_U64(*offset, *(offset + 1)); 15559 break; 15560 default: 15561 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15562 index, bxe_eth_q_stats_arr[index].size); 15563 return (-1); 15564 } 15565 15566 return (sysctl_handle_64(oidp, &value, 0, req)); 15567 } 15568 15569 static void 15570 bxe_add_sysctls(struct bxe_softc *sc) 15571 { 15572 struct sysctl_ctx_list *ctx; 15573 struct sysctl_oid_list *children; 15574 struct sysctl_oid *queue_top, *queue; 15575 struct sysctl_oid_list *queue_top_children, *queue_children; 15576 char queue_num_buf[32]; 15577 uint32_t q_stat; 15578 int i, j; 15579 15580 ctx = device_get_sysctl_ctx(sc->dev); 15581 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15582 15583 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15584 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15585 "version"); 15586 15587 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15588 BCM_5710_FW_MAJOR_VERSION, 15589 BCM_5710_FW_MINOR_VERSION, 15590 BCM_5710_FW_REVISION_VERSION, 15591 BCM_5710_FW_ENGINEERING_VERSION); 15592 15593 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15594 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15595 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15596 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15597 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15598 "Unknown")); 15599 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15600 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15601 "multifunction vnics per port"); 15602 15603 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15604 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15605 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15606 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15607 "???GT/s"), 15608 sc->devinfo.pcie_link_width); 15609 15610 sc->debug = bxe_debug; 15611 15612 #if __FreeBSD_version >= 900000 15613 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15614 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15615 "bootcode version"); 15616 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15617 CTLFLAG_RD, sc->fw_ver_str, 0, 15618 "firmware version"); 15619 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15620 CTLFLAG_RD, sc->mf_mode_str, 0, 15621 "multifunction mode"); 15622 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15623 CTLFLAG_RD, sc->mac_addr_str, 0, 15624 "mac address"); 15625 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15626 CTLFLAG_RD, sc->pci_link_str, 0, 15627 "pci link status"); 15628 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15629 CTLFLAG_RW, &sc->debug, 15630 "debug logging mode"); 15631 #else 15632 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15633 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15634 "bootcode version"); 15635 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15636 CTLFLAG_RD, &sc->fw_ver_str, 0, 15637 "firmware version"); 15638 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15639 CTLFLAG_RD, &sc->mf_mode_str, 0, 15640 "multifunction mode"); 15641 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15642 CTLFLAG_RD, &sc->mac_addr_str, 0, 15643 "mac address"); 15644 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15645 CTLFLAG_RD, &sc->pci_link_str, 0, 15646 "pci link status"); 15647 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15648 CTLFLAG_RW, &sc->debug, 0, 15649 "debug logging mode"); 15650 #endif /* #if __FreeBSD_version >= 900000 */ 15651 15652 sc->trigger_grcdump = 0; 15653 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15654 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15655 "trigger grcdump should be invoked" 15656 " before collecting grcdump"); 15657 15658 sc->grcdump_started = 0; 15659 sc->grcdump_done = 0; 15660 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15661 CTLFLAG_RD, &sc->grcdump_done, 0, 15662 "set by driver when grcdump is done"); 15663 15664 sc->rx_budget = bxe_rx_budget; 15665 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15666 CTLFLAG_RW, &sc->rx_budget, 0, 15667 "rx processing budget"); 15668 15669 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15670 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15671 bxe_sysctl_state, "IU", "dump driver state"); 15672 15673 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15674 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15675 bxe_eth_stats_arr[i].string, 15676 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15677 bxe_sysctl_eth_stat, "LU", 15678 bxe_eth_stats_arr[i].string); 15679 } 15680 15681 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15682 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15683 CTLFLAG_RD, NULL, "queue"); 15684 queue_top_children = SYSCTL_CHILDREN(queue_top); 15685 15686 for (i = 0; i < sc->num_queues; i++) { 15687 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15688 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15689 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15690 queue_num_buf, CTLFLAG_RD, NULL, 15691 "single queue"); 15692 queue_children = SYSCTL_CHILDREN(queue); 15693 15694 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15695 q_stat = ((i << 16) | j); 15696 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15697 bxe_eth_q_stats_arr[j].string, 15698 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15699 bxe_sysctl_eth_q_stat, "LU", 15700 bxe_eth_q_stats_arr[j].string); 15701 } 15702 } 15703 } 15704 15705 static int 15706 bxe_alloc_buf_rings(struct bxe_softc *sc) 15707 { 15708 #if __FreeBSD_version >= 800000 15709 15710 int i; 15711 struct bxe_fastpath *fp; 15712 15713 for (i = 0; i < sc->num_queues; i++) { 15714 15715 fp = &sc->fp[i]; 15716 15717 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15718 M_NOWAIT, &fp->tx_mtx); 15719 if (fp->tx_br == NULL) 15720 return (-1); 15721 } 15722 #endif 15723 return (0); 15724 } 15725 15726 static void 15727 bxe_free_buf_rings(struct bxe_softc *sc) 15728 { 15729 #if __FreeBSD_version >= 800000 15730 15731 int i; 15732 struct bxe_fastpath *fp; 15733 15734 for (i = 0; i < sc->num_queues; i++) { 15735 15736 fp = &sc->fp[i]; 15737 15738 if (fp->tx_br) { 15739 buf_ring_free(fp->tx_br, M_DEVBUF); 15740 fp->tx_br = NULL; 15741 } 15742 } 15743 15744 #endif 15745 } 15746 15747 static void 15748 bxe_init_fp_mutexs(struct bxe_softc *sc) 15749 { 15750 int i; 15751 struct bxe_fastpath *fp; 15752 15753 for (i = 0; i < sc->num_queues; i++) { 15754 15755 fp = &sc->fp[i]; 15756 15757 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15758 "bxe%d_fp%d_tx_lock", sc->unit, i); 15759 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15760 15761 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15762 "bxe%d_fp%d_rx_lock", sc->unit, i); 15763 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15764 } 15765 } 15766 15767 static void 15768 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15769 { 15770 int i; 15771 struct bxe_fastpath *fp; 15772 15773 for (i = 0; i < sc->num_queues; i++) { 15774 15775 fp = &sc->fp[i]; 15776 15777 if (mtx_initialized(&fp->tx_mtx)) { 15778 mtx_destroy(&fp->tx_mtx); 15779 } 15780 15781 if (mtx_initialized(&fp->rx_mtx)) { 15782 mtx_destroy(&fp->rx_mtx); 15783 } 15784 } 15785 } 15786 15787 15788 /* 15789 * Device attach function. 15790 * 15791 * Allocates device resources, performs secondary chip identification, and 15792 * initializes driver instance variables. This function is called from driver 15793 * load after a successful probe. 15794 * 15795 * Returns: 15796 * 0 = Success, >0 = Failure 15797 */ 15798 static int 15799 bxe_attach(device_t dev) 15800 { 15801 struct bxe_softc *sc; 15802 15803 sc = device_get_softc(dev); 15804 15805 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15806 15807 sc->state = BXE_STATE_CLOSED; 15808 15809 sc->dev = dev; 15810 sc->unit = device_get_unit(dev); 15811 15812 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15813 15814 sc->pcie_bus = pci_get_bus(dev); 15815 sc->pcie_device = pci_get_slot(dev); 15816 sc->pcie_func = pci_get_function(dev); 15817 15818 /* enable bus master capability */ 15819 pci_enable_busmaster(dev); 15820 15821 /* get the BARs */ 15822 if (bxe_allocate_bars(sc) != 0) { 15823 return (ENXIO); 15824 } 15825 15826 /* initialize the mutexes */ 15827 bxe_init_mutexes(sc); 15828 15829 /* prepare the periodic callout */ 15830 callout_init(&sc->periodic_callout, 0); 15831 15832 /* prepare the chip taskqueue */ 15833 sc->chip_tq_flags = CHIP_TQ_NONE; 15834 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15835 "bxe%d_chip_tq", sc->unit); 15836 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15837 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15838 taskqueue_thread_enqueue, 15839 &sc->chip_tq); 15840 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15841 "%s", sc->chip_tq_name); 15842 15843 /* get device info and set params */ 15844 if (bxe_get_device_info(sc) != 0) { 15845 BLOGE(sc, "getting device info\n"); 15846 bxe_deallocate_bars(sc); 15847 pci_disable_busmaster(dev); 15848 return (ENXIO); 15849 } 15850 15851 /* get final misc params */ 15852 bxe_get_params(sc); 15853 15854 /* set the default MTU (changed via ifconfig) */ 15855 sc->mtu = ETHERMTU; 15856 15857 bxe_set_modes_bitmap(sc); 15858 15859 /* XXX 15860 * If in AFEX mode and the function is configured for FCoE 15861 * then bail... no L2 allowed. 15862 */ 15863 15864 /* get phy settings from shmem and 'and' against admin settings */ 15865 bxe_get_phy_info(sc); 15866 15867 /* initialize the FreeBSD ifnet interface */ 15868 if (bxe_init_ifnet(sc) != 0) { 15869 bxe_release_mutexes(sc); 15870 bxe_deallocate_bars(sc); 15871 pci_disable_busmaster(dev); 15872 return (ENXIO); 15873 } 15874 15875 if (bxe_add_cdev(sc) != 0) { 15876 if (sc->ifp != NULL) { 15877 ether_ifdetach(sc->ifp); 15878 } 15879 ifmedia_removeall(&sc->ifmedia); 15880 bxe_release_mutexes(sc); 15881 bxe_deallocate_bars(sc); 15882 pci_disable_busmaster(dev); 15883 return (ENXIO); 15884 } 15885 15886 /* allocate device interrupts */ 15887 if (bxe_interrupt_alloc(sc) != 0) { 15888 bxe_del_cdev(sc); 15889 if (sc->ifp != NULL) { 15890 ether_ifdetach(sc->ifp); 15891 } 15892 ifmedia_removeall(&sc->ifmedia); 15893 bxe_release_mutexes(sc); 15894 bxe_deallocate_bars(sc); 15895 pci_disable_busmaster(dev); 15896 return (ENXIO); 15897 } 15898 15899 bxe_init_fp_mutexs(sc); 15900 15901 if (bxe_alloc_buf_rings(sc) != 0) { 15902 bxe_free_buf_rings(sc); 15903 bxe_interrupt_free(sc); 15904 bxe_del_cdev(sc); 15905 if (sc->ifp != NULL) { 15906 ether_ifdetach(sc->ifp); 15907 } 15908 ifmedia_removeall(&sc->ifmedia); 15909 bxe_release_mutexes(sc); 15910 bxe_deallocate_bars(sc); 15911 pci_disable_busmaster(dev); 15912 return (ENXIO); 15913 } 15914 15915 /* allocate ilt */ 15916 if (bxe_alloc_ilt_mem(sc) != 0) { 15917 bxe_free_buf_rings(sc); 15918 bxe_interrupt_free(sc); 15919 bxe_del_cdev(sc); 15920 if (sc->ifp != NULL) { 15921 ether_ifdetach(sc->ifp); 15922 } 15923 ifmedia_removeall(&sc->ifmedia); 15924 bxe_release_mutexes(sc); 15925 bxe_deallocate_bars(sc); 15926 pci_disable_busmaster(dev); 15927 return (ENXIO); 15928 } 15929 15930 /* allocate the host hardware/software hsi structures */ 15931 if (bxe_alloc_hsi_mem(sc) != 0) { 15932 bxe_free_ilt_mem(sc); 15933 bxe_free_buf_rings(sc); 15934 bxe_interrupt_free(sc); 15935 bxe_del_cdev(sc); 15936 if (sc->ifp != NULL) { 15937 ether_ifdetach(sc->ifp); 15938 } 15939 ifmedia_removeall(&sc->ifmedia); 15940 bxe_release_mutexes(sc); 15941 bxe_deallocate_bars(sc); 15942 pci_disable_busmaster(dev); 15943 return (ENXIO); 15944 } 15945 15946 /* need to reset chip if UNDI was active */ 15947 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15948 /* init fw_seq */ 15949 sc->fw_seq = 15950 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15951 DRV_MSG_SEQ_NUMBER_MASK); 15952 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15953 bxe_prev_unload(sc); 15954 } 15955 15956 #if 1 15957 /* XXX */ 15958 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15959 #else 15960 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15961 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15962 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15963 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15964 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15965 bxe_dcbx_init_params(sc); 15966 } else { 15967 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15968 } 15969 #endif 15970 15971 /* calculate qm_cid_count */ 15972 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15973 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15974 15975 sc->max_cos = 1; 15976 bxe_init_multi_cos(sc); 15977 15978 bxe_add_sysctls(sc); 15979 15980 return (0); 15981 } 15982 15983 /* 15984 * Device detach function. 15985 * 15986 * Stops the controller, resets the controller, and releases resources. 15987 * 15988 * Returns: 15989 * 0 = Success, >0 = Failure 15990 */ 15991 static int 15992 bxe_detach(device_t dev) 15993 { 15994 struct bxe_softc *sc; 15995 if_t ifp; 15996 15997 sc = device_get_softc(dev); 15998 15999 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16000 16001 ifp = sc->ifp; 16002 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16003 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16004 return(EBUSY); 16005 } 16006 16007 bxe_del_cdev(sc); 16008 16009 /* stop the periodic callout */ 16010 bxe_periodic_stop(sc); 16011 16012 /* stop the chip taskqueue */ 16013 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16014 if (sc->chip_tq) { 16015 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16016 taskqueue_free(sc->chip_tq); 16017 sc->chip_tq = NULL; 16018 } 16019 16020 /* stop and reset the controller if it was open */ 16021 if (sc->state != BXE_STATE_CLOSED) { 16022 BXE_CORE_LOCK(sc); 16023 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16024 sc->state = BXE_STATE_DISABLED; 16025 BXE_CORE_UNLOCK(sc); 16026 } 16027 16028 /* release the network interface */ 16029 if (ifp != NULL) { 16030 ether_ifdetach(ifp); 16031 } 16032 ifmedia_removeall(&sc->ifmedia); 16033 16034 /* XXX do the following based on driver state... */ 16035 16036 /* free the host hardware/software hsi structures */ 16037 bxe_free_hsi_mem(sc); 16038 16039 /* free ilt */ 16040 bxe_free_ilt_mem(sc); 16041 16042 bxe_free_buf_rings(sc); 16043 16044 /* release the interrupts */ 16045 bxe_interrupt_free(sc); 16046 16047 /* Release the mutexes*/ 16048 bxe_destroy_fp_mutexs(sc); 16049 bxe_release_mutexes(sc); 16050 16051 16052 /* Release the PCIe BAR mapped memory */ 16053 bxe_deallocate_bars(sc); 16054 16055 /* Release the FreeBSD interface. */ 16056 if (sc->ifp != NULL) { 16057 if_free(sc->ifp); 16058 } 16059 16060 pci_disable_busmaster(dev); 16061 16062 return (0); 16063 } 16064 16065 /* 16066 * Device shutdown function. 16067 * 16068 * Stops and resets the controller. 16069 * 16070 * Returns: 16071 * Nothing 16072 */ 16073 static int 16074 bxe_shutdown(device_t dev) 16075 { 16076 struct bxe_softc *sc; 16077 16078 sc = device_get_softc(dev); 16079 16080 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16081 16082 /* stop the periodic callout */ 16083 bxe_periodic_stop(sc); 16084 16085 BXE_CORE_LOCK(sc); 16086 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16087 BXE_CORE_UNLOCK(sc); 16088 16089 return (0); 16090 } 16091 16092 void 16093 bxe_igu_ack_sb(struct bxe_softc *sc, 16094 uint8_t igu_sb_id, 16095 uint8_t segment, 16096 uint16_t index, 16097 uint8_t op, 16098 uint8_t update) 16099 { 16100 uint32_t igu_addr = sc->igu_base_addr; 16101 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16102 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16103 } 16104 16105 static void 16106 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16107 uint8_t func, 16108 uint8_t idu_sb_id, 16109 uint8_t is_pf) 16110 { 16111 uint32_t data, ctl, cnt = 100; 16112 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16113 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16114 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16115 uint32_t sb_bit = 1 << (idu_sb_id%32); 16116 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16117 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16118 16119 /* Not supported in BC mode */ 16120 if (CHIP_INT_MODE_IS_BC(sc)) { 16121 return; 16122 } 16123 16124 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16125 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16126 IGU_REGULAR_CLEANUP_SET | 16127 IGU_REGULAR_BCLEANUP); 16128 16129 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16130 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16131 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16132 16133 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16134 data, igu_addr_data); 16135 REG_WR(sc, igu_addr_data, data); 16136 16137 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16138 BUS_SPACE_BARRIER_WRITE); 16139 mb(); 16140 16141 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16142 ctl, igu_addr_ctl); 16143 REG_WR(sc, igu_addr_ctl, ctl); 16144 16145 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16146 BUS_SPACE_BARRIER_WRITE); 16147 mb(); 16148 16149 /* wait for clean up to finish */ 16150 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16151 DELAY(20000); 16152 } 16153 16154 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16155 BLOGD(sc, DBG_LOAD, 16156 "Unable to finish IGU cleanup: " 16157 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16158 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16159 } 16160 } 16161 16162 static void 16163 bxe_igu_clear_sb(struct bxe_softc *sc, 16164 uint8_t idu_sb_id) 16165 { 16166 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16167 } 16168 16169 16170 16171 16172 16173 16174 16175 /*******************/ 16176 /* ECORE CALLBACKS */ 16177 /*******************/ 16178 16179 static void 16180 bxe_reset_common(struct bxe_softc *sc) 16181 { 16182 uint32_t val = 0x1400; 16183 16184 /* reset_common */ 16185 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16186 16187 if (CHIP_IS_E3(sc)) { 16188 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16189 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16190 } 16191 16192 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16193 } 16194 16195 static void 16196 bxe_common_init_phy(struct bxe_softc *sc) 16197 { 16198 uint32_t shmem_base[2]; 16199 uint32_t shmem2_base[2]; 16200 16201 /* Avoid common init in case MFW supports LFA */ 16202 if (SHMEM2_RD(sc, size) > 16203 (uint32_t)offsetof(struct shmem2_region, 16204 lfa_host_addr[SC_PORT(sc)])) { 16205 return; 16206 } 16207 16208 shmem_base[0] = sc->devinfo.shmem_base; 16209 shmem2_base[0] = sc->devinfo.shmem2_base; 16210 16211 if (!CHIP_IS_E1x(sc)) { 16212 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16213 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16214 } 16215 16216 bxe_acquire_phy_lock(sc); 16217 elink_common_init_phy(sc, shmem_base, shmem2_base, 16218 sc->devinfo.chip_id, 0); 16219 bxe_release_phy_lock(sc); 16220 } 16221 16222 static void 16223 bxe_pf_disable(struct bxe_softc *sc) 16224 { 16225 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16226 16227 val &= ~IGU_PF_CONF_FUNC_EN; 16228 16229 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16230 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16231 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16232 } 16233 16234 static void 16235 bxe_init_pxp(struct bxe_softc *sc) 16236 { 16237 uint16_t devctl; 16238 int r_order, w_order; 16239 16240 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16241 16242 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16243 16244 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16245 16246 if (sc->mrrs == -1) { 16247 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16248 } else { 16249 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16250 r_order = sc->mrrs; 16251 } 16252 16253 ecore_init_pxp_arb(sc, r_order, w_order); 16254 } 16255 16256 static uint32_t 16257 bxe_get_pretend_reg(struct bxe_softc *sc) 16258 { 16259 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16260 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16261 return (base + (SC_ABS_FUNC(sc)) * stride); 16262 } 16263 16264 /* 16265 * Called only on E1H or E2. 16266 * When pretending to be PF, the pretend value is the function number 0..7. 16267 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16268 * combination. 16269 */ 16270 static int 16271 bxe_pretend_func(struct bxe_softc *sc, 16272 uint16_t pretend_func_val) 16273 { 16274 uint32_t pretend_reg; 16275 16276 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16277 return (-1); 16278 } 16279 16280 /* get my own pretend register */ 16281 pretend_reg = bxe_get_pretend_reg(sc); 16282 REG_WR(sc, pretend_reg, pretend_func_val); 16283 REG_RD(sc, pretend_reg); 16284 return (0); 16285 } 16286 16287 static void 16288 bxe_iov_init_dmae(struct bxe_softc *sc) 16289 { 16290 return; 16291 } 16292 16293 static void 16294 bxe_iov_init_dq(struct bxe_softc *sc) 16295 { 16296 return; 16297 } 16298 16299 /* send a NIG loopback debug packet */ 16300 static void 16301 bxe_lb_pckt(struct bxe_softc *sc) 16302 { 16303 uint32_t wb_write[3]; 16304 16305 /* Ethernet source and destination addresses */ 16306 wb_write[0] = 0x55555555; 16307 wb_write[1] = 0x55555555; 16308 wb_write[2] = 0x20; /* SOP */ 16309 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16310 16311 /* NON-IP protocol */ 16312 wb_write[0] = 0x09000000; 16313 wb_write[1] = 0x55555555; 16314 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16315 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16316 } 16317 16318 /* 16319 * Some of the internal memories are not directly readable from the driver. 16320 * To test them we send debug packets. 16321 */ 16322 static int 16323 bxe_int_mem_test(struct bxe_softc *sc) 16324 { 16325 int factor; 16326 int count, i; 16327 uint32_t val = 0; 16328 16329 if (CHIP_REV_IS_FPGA(sc)) { 16330 factor = 120; 16331 } else if (CHIP_REV_IS_EMUL(sc)) { 16332 factor = 200; 16333 } else { 16334 factor = 1; 16335 } 16336 16337 /* disable inputs of parser neighbor blocks */ 16338 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16339 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16340 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16341 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16342 16343 /* write 0 to parser credits for CFC search request */ 16344 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16345 16346 /* send Ethernet packet */ 16347 bxe_lb_pckt(sc); 16348 16349 /* TODO do i reset NIG statistic? */ 16350 /* Wait until NIG register shows 1 packet of size 0x10 */ 16351 count = 1000 * factor; 16352 while (count) { 16353 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16354 val = *BXE_SP(sc, wb_data[0]); 16355 if (val == 0x10) { 16356 break; 16357 } 16358 16359 DELAY(10000); 16360 count--; 16361 } 16362 16363 if (val != 0x10) { 16364 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16365 return (-1); 16366 } 16367 16368 /* wait until PRS register shows 1 packet */ 16369 count = (1000 * factor); 16370 while (count) { 16371 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16372 if (val == 1) { 16373 break; 16374 } 16375 16376 DELAY(10000); 16377 count--; 16378 } 16379 16380 if (val != 0x1) { 16381 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16382 return (-2); 16383 } 16384 16385 /* Reset and init BRB, PRS */ 16386 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16387 DELAY(50000); 16388 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16389 DELAY(50000); 16390 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16391 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16392 16393 /* Disable inputs of parser neighbor blocks */ 16394 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16395 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16396 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16397 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16398 16399 /* Write 0 to parser credits for CFC search request */ 16400 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16401 16402 /* send 10 Ethernet packets */ 16403 for (i = 0; i < 10; i++) { 16404 bxe_lb_pckt(sc); 16405 } 16406 16407 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16408 count = (1000 * factor); 16409 while (count) { 16410 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16411 val = *BXE_SP(sc, wb_data[0]); 16412 if (val == 0xb0) { 16413 break; 16414 } 16415 16416 DELAY(10000); 16417 count--; 16418 } 16419 16420 if (val != 0xb0) { 16421 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16422 return (-3); 16423 } 16424 16425 /* Wait until PRS register shows 2 packets */ 16426 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16427 if (val != 2) { 16428 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16429 } 16430 16431 /* Write 1 to parser credits for CFC search request */ 16432 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16433 16434 /* Wait until PRS register shows 3 packets */ 16435 DELAY(10000 * factor); 16436 16437 /* Wait until NIG register shows 1 packet of size 0x10 */ 16438 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16439 if (val != 3) { 16440 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16441 } 16442 16443 /* clear NIG EOP FIFO */ 16444 for (i = 0; i < 11; i++) { 16445 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16446 } 16447 16448 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16449 if (val != 1) { 16450 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16451 return (-4); 16452 } 16453 16454 /* Reset and init BRB, PRS, NIG */ 16455 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16456 DELAY(50000); 16457 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16458 DELAY(50000); 16459 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16460 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16461 if (!CNIC_SUPPORT(sc)) { 16462 /* set NIC mode */ 16463 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16464 } 16465 16466 /* Enable inputs of parser neighbor blocks */ 16467 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16468 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16469 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16470 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16471 16472 return (0); 16473 } 16474 16475 static void 16476 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16477 { 16478 int is_required; 16479 uint32_t val; 16480 int port; 16481 16482 is_required = 0; 16483 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16484 SHARED_HW_CFG_FAN_FAILURE_MASK); 16485 16486 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16487 is_required = 1; 16488 } 16489 /* 16490 * The fan failure mechanism is usually related to the PHY type since 16491 * the power consumption of the board is affected by the PHY. Currently, 16492 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16493 */ 16494 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16495 for (port = PORT_0; port < PORT_MAX; port++) { 16496 is_required |= elink_fan_failure_det_req(sc, 16497 sc->devinfo.shmem_base, 16498 sc->devinfo.shmem2_base, 16499 port); 16500 } 16501 } 16502 16503 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16504 16505 if (is_required == 0) { 16506 return; 16507 } 16508 16509 /* Fan failure is indicated by SPIO 5 */ 16510 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16511 16512 /* set to active low mode */ 16513 val = REG_RD(sc, MISC_REG_SPIO_INT); 16514 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16515 REG_WR(sc, MISC_REG_SPIO_INT, val); 16516 16517 /* enable interrupt to signal the IGU */ 16518 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16519 val |= MISC_SPIO_SPIO5; 16520 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16521 } 16522 16523 static void 16524 bxe_enable_blocks_attention(struct bxe_softc *sc) 16525 { 16526 uint32_t val; 16527 16528 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16529 if (!CHIP_IS_E1x(sc)) { 16530 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16531 } else { 16532 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16533 } 16534 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16535 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16536 /* 16537 * mask read length error interrupts in brb for parser 16538 * (parsing unit and 'checksum and crc' unit) 16539 * these errors are legal (PU reads fixed length and CAC can cause 16540 * read length error on truncated packets) 16541 */ 16542 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16543 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16544 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16545 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16546 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16547 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16548 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16549 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16550 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16551 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16552 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16553 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16554 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16555 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16556 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16557 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16558 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16559 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16560 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16561 16562 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16563 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16564 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16565 if (!CHIP_IS_E1x(sc)) { 16566 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16567 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16568 } 16569 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16570 16571 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16572 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16573 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16574 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16575 16576 if (!CHIP_IS_E1x(sc)) { 16577 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16578 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16579 } 16580 16581 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16582 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16583 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16584 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16585 } 16586 16587 /** 16588 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16589 * 16590 * @sc: driver handle 16591 */ 16592 static int 16593 bxe_init_hw_common(struct bxe_softc *sc) 16594 { 16595 uint8_t abs_func_id; 16596 uint32_t val; 16597 16598 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16599 SC_ABS_FUNC(sc)); 16600 16601 /* 16602 * take the RESET lock to protect undi_unload flow from accessing 16603 * registers while we are resetting the chip 16604 */ 16605 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16606 16607 bxe_reset_common(sc); 16608 16609 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16610 16611 val = 0xfffc; 16612 if (CHIP_IS_E3(sc)) { 16613 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16614 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16615 } 16616 16617 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16618 16619 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16620 16621 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16622 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16623 16624 if (!CHIP_IS_E1x(sc)) { 16625 /* 16626 * 4-port mode or 2-port mode we need to turn off master-enable for 16627 * everyone. After that we turn it back on for self. So, we disregard 16628 * multi-function, and always disable all functions on the given path, 16629 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16630 */ 16631 for (abs_func_id = SC_PATH(sc); 16632 abs_func_id < (E2_FUNC_MAX * 2); 16633 abs_func_id += 2) { 16634 if (abs_func_id == SC_ABS_FUNC(sc)) { 16635 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16636 continue; 16637 } 16638 16639 bxe_pretend_func(sc, abs_func_id); 16640 16641 /* clear pf enable */ 16642 bxe_pf_disable(sc); 16643 16644 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16645 } 16646 } 16647 16648 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16649 16650 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16651 16652 if (CHIP_IS_E1(sc)) { 16653 /* 16654 * enable HW interrupt from PXP on USDM overflow 16655 * bit 16 on INT_MASK_0 16656 */ 16657 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16658 } 16659 16660 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16661 bxe_init_pxp(sc); 16662 16663 #ifdef __BIG_ENDIAN 16664 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16665 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16666 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16667 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16668 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16669 /* make sure this value is 0 */ 16670 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16671 16672 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16673 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16674 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16675 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16676 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16677 #endif 16678 16679 ecore_ilt_init_page_size(sc, INITOP_SET); 16680 16681 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16682 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16683 } 16684 16685 /* let the HW do it's magic... */ 16686 DELAY(100000); 16687 16688 /* finish PXP init */ 16689 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16690 if (val != 1) { 16691 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16692 val); 16693 return (-1); 16694 } 16695 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16696 if (val != 1) { 16697 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16698 return (-1); 16699 } 16700 16701 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16702 16703 /* 16704 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16705 * entries with value "0" and valid bit on. This needs to be done by the 16706 * first PF that is loaded in a path (i.e. common phase) 16707 */ 16708 if (!CHIP_IS_E1x(sc)) { 16709 /* 16710 * In E2 there is a bug in the timers block that can cause function 6 / 7 16711 * (i.e. vnic3) to start even if it is marked as "scan-off". 16712 * This occurs when a different function (func2,3) is being marked 16713 * as "scan-off". Real-life scenario for example: if a driver is being 16714 * load-unloaded while func6,7 are down. This will cause the timer to access 16715 * the ilt, translate to a logical address and send a request to read/write. 16716 * Since the ilt for the function that is down is not valid, this will cause 16717 * a translation error which is unrecoverable. 16718 * The Workaround is intended to make sure that when this happens nothing 16719 * fatal will occur. The workaround: 16720 * 1. First PF driver which loads on a path will: 16721 * a. After taking the chip out of reset, by using pretend, 16722 * it will write "0" to the following registers of 16723 * the other vnics. 16724 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16725 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16726 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16727 * And for itself it will write '1' to 16728 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16729 * dmae-operations (writing to pram for example.) 16730 * note: can be done for only function 6,7 but cleaner this 16731 * way. 16732 * b. Write zero+valid to the entire ILT. 16733 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16734 * VNIC3 (of that port). The range allocated will be the 16735 * entire ILT. This is needed to prevent ILT range error. 16736 * 2. Any PF driver load flow: 16737 * a. ILT update with the physical addresses of the allocated 16738 * logical pages. 16739 * b. Wait 20msec. - note that this timeout is needed to make 16740 * sure there are no requests in one of the PXP internal 16741 * queues with "old" ILT addresses. 16742 * c. PF enable in the PGLC. 16743 * d. Clear the was_error of the PF in the PGLC. (could have 16744 * occurred while driver was down) 16745 * e. PF enable in the CFC (WEAK + STRONG) 16746 * f. Timers scan enable 16747 * 3. PF driver unload flow: 16748 * a. Clear the Timers scan_en. 16749 * b. Polling for scan_on=0 for that PF. 16750 * c. Clear the PF enable bit in the PXP. 16751 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16752 * e. Write zero+valid to all ILT entries (The valid bit must 16753 * stay set) 16754 * f. If this is VNIC 3 of a port then also init 16755 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16756 * to the last enrty in the ILT. 16757 * 16758 * Notes: 16759 * Currently the PF error in the PGLC is non recoverable. 16760 * In the future the there will be a recovery routine for this error. 16761 * Currently attention is masked. 16762 * Having an MCP lock on the load/unload process does not guarantee that 16763 * there is no Timer disable during Func6/7 enable. This is because the 16764 * Timers scan is currently being cleared by the MCP on FLR. 16765 * Step 2.d can be done only for PF6/7 and the driver can also check if 16766 * there is error before clearing it. But the flow above is simpler and 16767 * more general. 16768 * All ILT entries are written by zero+valid and not just PF6/7 16769 * ILT entries since in the future the ILT entries allocation for 16770 * PF-s might be dynamic. 16771 */ 16772 struct ilt_client_info ilt_cli; 16773 struct ecore_ilt ilt; 16774 16775 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16776 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16777 16778 /* initialize dummy TM client */ 16779 ilt_cli.start = 0; 16780 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16781 ilt_cli.client_num = ILT_CLIENT_TM; 16782 16783 /* 16784 * Step 1: set zeroes to all ilt page entries with valid bit on 16785 * Step 2: set the timers first/last ilt entry to point 16786 * to the entire range to prevent ILT range error for 3rd/4th 16787 * vnic (this code assumes existence of the vnic) 16788 * 16789 * both steps performed by call to ecore_ilt_client_init_op() 16790 * with dummy TM client 16791 * 16792 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16793 * and his brother are split registers 16794 */ 16795 16796 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16797 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16798 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16799 16800 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16801 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16802 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16803 } 16804 16805 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16806 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16807 16808 if (!CHIP_IS_E1x(sc)) { 16809 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16810 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16811 16812 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16813 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16814 16815 /* let the HW do it's magic... */ 16816 do { 16817 DELAY(200000); 16818 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16819 } while (factor-- && (val != 1)); 16820 16821 if (val != 1) { 16822 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16823 return (-1); 16824 } 16825 } 16826 16827 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16828 16829 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16830 16831 bxe_iov_init_dmae(sc); 16832 16833 /* clean the DMAE memory */ 16834 sc->dmae_ready = 1; 16835 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16836 16837 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16838 16839 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16840 16841 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16842 16843 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16844 16845 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16846 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16847 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16848 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16849 16850 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16851 16852 /* QM queues pointers table */ 16853 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16854 16855 /* soft reset pulse */ 16856 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16857 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16858 16859 if (CNIC_SUPPORT(sc)) 16860 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16861 16862 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16863 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16864 if (!CHIP_REV_IS_SLOW(sc)) { 16865 /* enable hw interrupt from doorbell Q */ 16866 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16867 } 16868 16869 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16870 16871 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16872 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16873 16874 if (!CHIP_IS_E1(sc)) { 16875 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16876 } 16877 16878 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16879 if (IS_MF_AFEX(sc)) { 16880 /* 16881 * configure that AFEX and VLAN headers must be 16882 * received in AFEX mode 16883 */ 16884 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16885 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16886 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16887 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16888 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16889 } else { 16890 /* 16891 * Bit-map indicating which L2 hdrs may appear 16892 * after the basic Ethernet header 16893 */ 16894 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16895 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16896 } 16897 } 16898 16899 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16900 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16901 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16902 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16903 16904 if (!CHIP_IS_E1x(sc)) { 16905 /* reset VFC memories */ 16906 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16907 VFC_MEMORIES_RST_REG_CAM_RST | 16908 VFC_MEMORIES_RST_REG_RAM_RST); 16909 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16910 VFC_MEMORIES_RST_REG_CAM_RST | 16911 VFC_MEMORIES_RST_REG_RAM_RST); 16912 16913 DELAY(20000); 16914 } 16915 16916 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16917 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16918 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16919 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16920 16921 /* sync semi rtc */ 16922 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16923 0x80000000); 16924 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16925 0x80000000); 16926 16927 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16928 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16929 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16930 16931 if (!CHIP_IS_E1x(sc)) { 16932 if (IS_MF_AFEX(sc)) { 16933 /* 16934 * configure that AFEX and VLAN headers must be 16935 * sent in AFEX mode 16936 */ 16937 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16938 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16939 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16940 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16941 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16942 } else { 16943 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16944 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16945 } 16946 } 16947 16948 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16949 16950 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16951 16952 if (CNIC_SUPPORT(sc)) { 16953 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16954 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16955 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16956 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16957 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16958 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16959 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16960 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16961 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16962 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16963 } 16964 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16965 16966 if (sizeof(union cdu_context) != 1024) { 16967 /* we currently assume that a context is 1024 bytes */ 16968 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16969 (long)sizeof(union cdu_context)); 16970 } 16971 16972 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16973 val = (4 << 24) + (0 << 12) + 1024; 16974 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16975 16976 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16977 16978 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 16979 /* enable context validation interrupt from CFC */ 16980 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16981 16982 /* set the thresholds to prevent CFC/CDU race */ 16983 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 16984 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 16985 16986 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 16987 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 16988 } 16989 16990 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 16991 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 16992 16993 /* Reset PCIE errors for debug */ 16994 REG_WR(sc, 0x2814, 0xffffffff); 16995 REG_WR(sc, 0x3820, 0xffffffff); 16996 16997 if (!CHIP_IS_E1x(sc)) { 16998 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 16999 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17000 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17001 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17002 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17003 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17004 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17005 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17006 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17007 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17008 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17009 } 17010 17011 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17012 17013 if (!CHIP_IS_E1(sc)) { 17014 /* in E3 this done in per-port section */ 17015 if (!CHIP_IS_E3(sc)) 17016 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17017 } 17018 17019 if (CHIP_IS_E1H(sc)) { 17020 /* not applicable for E2 (and above ...) */ 17021 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17022 } 17023 17024 if (CHIP_REV_IS_SLOW(sc)) { 17025 DELAY(200000); 17026 } 17027 17028 /* finish CFC init */ 17029 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17030 if (val != 1) { 17031 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17032 return (-1); 17033 } 17034 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17035 if (val != 1) { 17036 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17037 return (-1); 17038 } 17039 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17040 if (val != 1) { 17041 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17042 return (-1); 17043 } 17044 REG_WR(sc, CFC_REG_DEBUG0, 0); 17045 17046 if (CHIP_IS_E1(sc)) { 17047 /* read NIG statistic to see if this is our first up since powerup */ 17048 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17049 val = *BXE_SP(sc, wb_data[0]); 17050 17051 /* do internal memory self test */ 17052 if ((val == 0) && bxe_int_mem_test(sc)) { 17053 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17054 return (-1); 17055 } 17056 } 17057 17058 bxe_setup_fan_failure_detection(sc); 17059 17060 /* clear PXP2 attentions */ 17061 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17062 17063 bxe_enable_blocks_attention(sc); 17064 17065 if (!CHIP_REV_IS_SLOW(sc)) { 17066 ecore_enable_blocks_parity(sc); 17067 } 17068 17069 if (!BXE_NOMCP(sc)) { 17070 if (CHIP_IS_E1x(sc)) { 17071 bxe_common_init_phy(sc); 17072 } 17073 } 17074 17075 return (0); 17076 } 17077 17078 /** 17079 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17080 * 17081 * @sc: driver handle 17082 */ 17083 static int 17084 bxe_init_hw_common_chip(struct bxe_softc *sc) 17085 { 17086 int rc = bxe_init_hw_common(sc); 17087 17088 if (rc) { 17089 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17090 return (rc); 17091 } 17092 17093 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17094 if (!BXE_NOMCP(sc)) { 17095 bxe_common_init_phy(sc); 17096 } 17097 17098 return (0); 17099 } 17100 17101 static int 17102 bxe_init_hw_port(struct bxe_softc *sc) 17103 { 17104 int port = SC_PORT(sc); 17105 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17106 uint32_t low, high; 17107 uint32_t val; 17108 17109 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17110 17111 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17112 17113 ecore_init_block(sc, BLOCK_MISC, init_phase); 17114 ecore_init_block(sc, BLOCK_PXP, init_phase); 17115 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17116 17117 /* 17118 * Timers bug workaround: disables the pf_master bit in pglue at 17119 * common phase, we need to enable it here before any dmae access are 17120 * attempted. Therefore we manually added the enable-master to the 17121 * port phase (it also happens in the function phase) 17122 */ 17123 if (!CHIP_IS_E1x(sc)) { 17124 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17125 } 17126 17127 ecore_init_block(sc, BLOCK_ATC, init_phase); 17128 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17129 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17130 ecore_init_block(sc, BLOCK_QM, init_phase); 17131 17132 ecore_init_block(sc, BLOCK_TCM, init_phase); 17133 ecore_init_block(sc, BLOCK_UCM, init_phase); 17134 ecore_init_block(sc, BLOCK_CCM, init_phase); 17135 ecore_init_block(sc, BLOCK_XCM, init_phase); 17136 17137 /* QM cid (connection) count */ 17138 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17139 17140 if (CNIC_SUPPORT(sc)) { 17141 ecore_init_block(sc, BLOCK_TM, init_phase); 17142 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17143 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17144 } 17145 17146 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17147 17148 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17149 17150 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17151 if (IS_MF(sc)) { 17152 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17153 } else if (sc->mtu > 4096) { 17154 if (BXE_ONE_PORT(sc)) { 17155 low = 160; 17156 } else { 17157 val = sc->mtu; 17158 /* (24*1024 + val*4)/256 */ 17159 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17160 } 17161 } else { 17162 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17163 } 17164 high = (low + 56); /* 14*1024/256 */ 17165 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17166 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17167 } 17168 17169 if (CHIP_IS_MODE_4_PORT(sc)) { 17170 REG_WR(sc, SC_PORT(sc) ? 17171 BRB1_REG_MAC_GUARANTIED_1 : 17172 BRB1_REG_MAC_GUARANTIED_0, 40); 17173 } 17174 17175 ecore_init_block(sc, BLOCK_PRS, init_phase); 17176 if (CHIP_IS_E3B0(sc)) { 17177 if (IS_MF_AFEX(sc)) { 17178 /* configure headers for AFEX mode */ 17179 REG_WR(sc, SC_PORT(sc) ? 17180 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17181 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17182 REG_WR(sc, SC_PORT(sc) ? 17183 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17184 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17185 REG_WR(sc, SC_PORT(sc) ? 17186 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17187 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17188 } else { 17189 /* Ovlan exists only if we are in multi-function + 17190 * switch-dependent mode, in switch-independent there 17191 * is no ovlan headers 17192 */ 17193 REG_WR(sc, SC_PORT(sc) ? 17194 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17195 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17196 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17197 } 17198 } 17199 17200 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17201 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17202 ecore_init_block(sc, BLOCK_USDM, init_phase); 17203 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17204 17205 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17206 ecore_init_block(sc, BLOCK_USEM, init_phase); 17207 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17208 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17209 17210 ecore_init_block(sc, BLOCK_UPB, init_phase); 17211 ecore_init_block(sc, BLOCK_XPB, init_phase); 17212 17213 ecore_init_block(sc, BLOCK_PBF, init_phase); 17214 17215 if (CHIP_IS_E1x(sc)) { 17216 /* configure PBF to work without PAUSE mtu 9000 */ 17217 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17218 17219 /* update threshold */ 17220 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17221 /* update init credit */ 17222 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17223 17224 /* probe changes */ 17225 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17226 DELAY(50); 17227 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17228 } 17229 17230 if (CNIC_SUPPORT(sc)) { 17231 ecore_init_block(sc, BLOCK_SRC, init_phase); 17232 } 17233 17234 ecore_init_block(sc, BLOCK_CDU, init_phase); 17235 ecore_init_block(sc, BLOCK_CFC, init_phase); 17236 17237 if (CHIP_IS_E1(sc)) { 17238 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17239 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17240 } 17241 ecore_init_block(sc, BLOCK_HC, init_phase); 17242 17243 ecore_init_block(sc, BLOCK_IGU, init_phase); 17244 17245 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17246 /* init aeu_mask_attn_func_0/1: 17247 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17248 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17249 * bits 4-7 are used for "per vn group attention" */ 17250 val = IS_MF(sc) ? 0xF7 : 0x7; 17251 /* Enable DCBX attention for all but E1 */ 17252 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17253 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17254 17255 ecore_init_block(sc, BLOCK_NIG, init_phase); 17256 17257 if (!CHIP_IS_E1x(sc)) { 17258 /* Bit-map indicating which L2 hdrs may appear after the 17259 * basic Ethernet header 17260 */ 17261 if (IS_MF_AFEX(sc)) { 17262 REG_WR(sc, SC_PORT(sc) ? 17263 NIG_REG_P1_HDRS_AFTER_BASIC : 17264 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17265 } else { 17266 REG_WR(sc, SC_PORT(sc) ? 17267 NIG_REG_P1_HDRS_AFTER_BASIC : 17268 NIG_REG_P0_HDRS_AFTER_BASIC, 17269 IS_MF_SD(sc) ? 7 : 6); 17270 } 17271 17272 if (CHIP_IS_E3(sc)) { 17273 REG_WR(sc, SC_PORT(sc) ? 17274 NIG_REG_LLH1_MF_MODE : 17275 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17276 } 17277 } 17278 if (!CHIP_IS_E3(sc)) { 17279 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17280 } 17281 17282 if (!CHIP_IS_E1(sc)) { 17283 /* 0x2 disable mf_ov, 0x1 enable */ 17284 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17285 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17286 17287 if (!CHIP_IS_E1x(sc)) { 17288 val = 0; 17289 switch (sc->devinfo.mf_info.mf_mode) { 17290 case MULTI_FUNCTION_SD: 17291 val = 1; 17292 break; 17293 case MULTI_FUNCTION_SI: 17294 case MULTI_FUNCTION_AFEX: 17295 val = 2; 17296 break; 17297 } 17298 17299 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17300 NIG_REG_LLH0_CLS_TYPE), val); 17301 } 17302 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17303 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17304 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17305 } 17306 17307 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17308 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17309 if (val & MISC_SPIO_SPIO5) { 17310 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17311 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17312 val = REG_RD(sc, reg_addr); 17313 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17314 REG_WR(sc, reg_addr, val); 17315 } 17316 17317 return (0); 17318 } 17319 17320 static uint32_t 17321 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17322 uint32_t reg, 17323 uint32_t expected, 17324 uint32_t poll_count) 17325 { 17326 uint32_t cur_cnt = poll_count; 17327 uint32_t val; 17328 17329 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17330 DELAY(FLR_WAIT_INTERVAL); 17331 } 17332 17333 return (val); 17334 } 17335 17336 static int 17337 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17338 uint32_t reg, 17339 char *msg, 17340 uint32_t poll_cnt) 17341 { 17342 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17343 17344 if (val != 0) { 17345 BLOGE(sc, "%s usage count=%d\n", msg, val); 17346 return (1); 17347 } 17348 17349 return (0); 17350 } 17351 17352 /* Common routines with VF FLR cleanup */ 17353 static uint32_t 17354 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17355 { 17356 /* adjust polling timeout */ 17357 if (CHIP_REV_IS_EMUL(sc)) { 17358 return (FLR_POLL_CNT * 2000); 17359 } 17360 17361 if (CHIP_REV_IS_FPGA(sc)) { 17362 return (FLR_POLL_CNT * 120); 17363 } 17364 17365 return (FLR_POLL_CNT); 17366 } 17367 17368 static int 17369 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17370 uint32_t poll_cnt) 17371 { 17372 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17373 if (bxe_flr_clnup_poll_hw_counter(sc, 17374 CFC_REG_NUM_LCIDS_INSIDE_PF, 17375 "CFC PF usage counter timed out", 17376 poll_cnt)) { 17377 return (1); 17378 } 17379 17380 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17381 if (bxe_flr_clnup_poll_hw_counter(sc, 17382 DORQ_REG_PF_USAGE_CNT, 17383 "DQ PF usage counter timed out", 17384 poll_cnt)) { 17385 return (1); 17386 } 17387 17388 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17389 if (bxe_flr_clnup_poll_hw_counter(sc, 17390 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17391 "QM PF usage counter timed out", 17392 poll_cnt)) { 17393 return (1); 17394 } 17395 17396 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17397 if (bxe_flr_clnup_poll_hw_counter(sc, 17398 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17399 "Timers VNIC usage counter timed out", 17400 poll_cnt)) { 17401 return (1); 17402 } 17403 17404 if (bxe_flr_clnup_poll_hw_counter(sc, 17405 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17406 "Timers NUM_SCANS usage counter timed out", 17407 poll_cnt)) { 17408 return (1); 17409 } 17410 17411 /* Wait DMAE PF usage counter to zero */ 17412 if (bxe_flr_clnup_poll_hw_counter(sc, 17413 dmae_reg_go_c[INIT_DMAE_C(sc)], 17414 "DMAE dommand register timed out", 17415 poll_cnt)) { 17416 return (1); 17417 } 17418 17419 return (0); 17420 } 17421 17422 #define OP_GEN_PARAM(param) \ 17423 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17424 #define OP_GEN_TYPE(type) \ 17425 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17426 #define OP_GEN_AGG_VECT(index) \ 17427 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17428 17429 static int 17430 bxe_send_final_clnup(struct bxe_softc *sc, 17431 uint8_t clnup_func, 17432 uint32_t poll_cnt) 17433 { 17434 uint32_t op_gen_command = 0; 17435 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17436 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17437 int ret = 0; 17438 17439 if (REG_RD(sc, comp_addr)) { 17440 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17441 return (1); 17442 } 17443 17444 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17445 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17446 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17447 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17448 17449 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17450 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17451 17452 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17453 BLOGE(sc, "FW final cleanup did not succeed\n"); 17454 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17455 (REG_RD(sc, comp_addr))); 17456 bxe_panic(sc, ("FLR cleanup failed\n")); 17457 return (1); 17458 } 17459 17460 /* Zero completion for nxt FLR */ 17461 REG_WR(sc, comp_addr, 0); 17462 17463 return (ret); 17464 } 17465 17466 static void 17467 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17468 struct pbf_pN_buf_regs *regs, 17469 uint32_t poll_count) 17470 { 17471 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17472 uint32_t cur_cnt = poll_count; 17473 17474 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17475 crd = crd_start = REG_RD(sc, regs->crd); 17476 init_crd = REG_RD(sc, regs->init_crd); 17477 17478 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17479 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17480 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17481 17482 while ((crd != init_crd) && 17483 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17484 (init_crd - crd_start))) { 17485 if (cur_cnt--) { 17486 DELAY(FLR_WAIT_INTERVAL); 17487 crd = REG_RD(sc, regs->crd); 17488 crd_freed = REG_RD(sc, regs->crd_freed); 17489 } else { 17490 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17491 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17492 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17493 break; 17494 } 17495 } 17496 17497 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17498 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17499 } 17500 17501 static void 17502 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17503 struct pbf_pN_cmd_regs *regs, 17504 uint32_t poll_count) 17505 { 17506 uint32_t occup, to_free, freed, freed_start; 17507 uint32_t cur_cnt = poll_count; 17508 17509 occup = to_free = REG_RD(sc, regs->lines_occup); 17510 freed = freed_start = REG_RD(sc, regs->lines_freed); 17511 17512 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17513 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17514 17515 while (occup && 17516 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17517 if (cur_cnt--) { 17518 DELAY(FLR_WAIT_INTERVAL); 17519 occup = REG_RD(sc, regs->lines_occup); 17520 freed = REG_RD(sc, regs->lines_freed); 17521 } else { 17522 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17523 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17524 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17525 break; 17526 } 17527 } 17528 17529 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17530 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17531 } 17532 17533 static void 17534 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17535 { 17536 struct pbf_pN_cmd_regs cmd_regs[] = { 17537 {0, (CHIP_IS_E3B0(sc)) ? 17538 PBF_REG_TQ_OCCUPANCY_Q0 : 17539 PBF_REG_P0_TQ_OCCUPANCY, 17540 (CHIP_IS_E3B0(sc)) ? 17541 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17542 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17543 {1, (CHIP_IS_E3B0(sc)) ? 17544 PBF_REG_TQ_OCCUPANCY_Q1 : 17545 PBF_REG_P1_TQ_OCCUPANCY, 17546 (CHIP_IS_E3B0(sc)) ? 17547 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17548 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17549 {4, (CHIP_IS_E3B0(sc)) ? 17550 PBF_REG_TQ_OCCUPANCY_LB_Q : 17551 PBF_REG_P4_TQ_OCCUPANCY, 17552 (CHIP_IS_E3B0(sc)) ? 17553 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17554 PBF_REG_P4_TQ_LINES_FREED_CNT} 17555 }; 17556 17557 struct pbf_pN_buf_regs buf_regs[] = { 17558 {0, (CHIP_IS_E3B0(sc)) ? 17559 PBF_REG_INIT_CRD_Q0 : 17560 PBF_REG_P0_INIT_CRD , 17561 (CHIP_IS_E3B0(sc)) ? 17562 PBF_REG_CREDIT_Q0 : 17563 PBF_REG_P0_CREDIT, 17564 (CHIP_IS_E3B0(sc)) ? 17565 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17566 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17567 {1, (CHIP_IS_E3B0(sc)) ? 17568 PBF_REG_INIT_CRD_Q1 : 17569 PBF_REG_P1_INIT_CRD, 17570 (CHIP_IS_E3B0(sc)) ? 17571 PBF_REG_CREDIT_Q1 : 17572 PBF_REG_P1_CREDIT, 17573 (CHIP_IS_E3B0(sc)) ? 17574 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17575 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17576 {4, (CHIP_IS_E3B0(sc)) ? 17577 PBF_REG_INIT_CRD_LB_Q : 17578 PBF_REG_P4_INIT_CRD, 17579 (CHIP_IS_E3B0(sc)) ? 17580 PBF_REG_CREDIT_LB_Q : 17581 PBF_REG_P4_CREDIT, 17582 (CHIP_IS_E3B0(sc)) ? 17583 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17584 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17585 }; 17586 17587 int i; 17588 17589 /* Verify the command queues are flushed P0, P1, P4 */ 17590 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17591 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17592 } 17593 17594 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17595 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17596 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17597 } 17598 } 17599 17600 static void 17601 bxe_hw_enable_status(struct bxe_softc *sc) 17602 { 17603 uint32_t val; 17604 17605 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17606 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17607 17608 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17609 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17610 17611 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17612 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17613 17614 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17615 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17616 17617 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17618 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17619 17620 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17621 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17622 17623 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17624 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17625 17626 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17627 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17628 } 17629 17630 static int 17631 bxe_pf_flr_clnup(struct bxe_softc *sc) 17632 { 17633 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17634 17635 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17636 17637 /* Re-enable PF target read access */ 17638 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17639 17640 /* Poll HW usage counters */ 17641 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17642 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17643 return (-1); 17644 } 17645 17646 /* Zero the igu 'trailing edge' and 'leading edge' */ 17647 17648 /* Send the FW cleanup command */ 17649 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17650 return (-1); 17651 } 17652 17653 /* ATC cleanup */ 17654 17655 /* Verify TX hw is flushed */ 17656 bxe_tx_hw_flushed(sc, poll_cnt); 17657 17658 /* Wait 100ms (not adjusted according to platform) */ 17659 DELAY(100000); 17660 17661 /* Verify no pending pci transactions */ 17662 if (bxe_is_pcie_pending(sc)) { 17663 BLOGE(sc, "PCIE Transactions still pending\n"); 17664 } 17665 17666 /* Debug */ 17667 bxe_hw_enable_status(sc); 17668 17669 /* 17670 * Master enable - Due to WB DMAE writes performed before this 17671 * register is re-initialized as part of the regular function init 17672 */ 17673 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17674 17675 return (0); 17676 } 17677 17678 static int 17679 bxe_init_hw_func(struct bxe_softc *sc) 17680 { 17681 int port = SC_PORT(sc); 17682 int func = SC_FUNC(sc); 17683 int init_phase = PHASE_PF0 + func; 17684 struct ecore_ilt *ilt = sc->ilt; 17685 uint16_t cdu_ilt_start; 17686 uint32_t addr, val; 17687 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17688 int i, main_mem_width, rc; 17689 17690 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17691 17692 /* FLR cleanup */ 17693 if (!CHIP_IS_E1x(sc)) { 17694 rc = bxe_pf_flr_clnup(sc); 17695 if (rc) { 17696 BLOGE(sc, "FLR cleanup failed!\n"); 17697 // XXX bxe_fw_dump(sc); 17698 // XXX bxe_idle_chk(sc); 17699 return (rc); 17700 } 17701 } 17702 17703 /* set MSI reconfigure capability */ 17704 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17705 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17706 val = REG_RD(sc, addr); 17707 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17708 REG_WR(sc, addr, val); 17709 } 17710 17711 ecore_init_block(sc, BLOCK_PXP, init_phase); 17712 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17713 17714 ilt = sc->ilt; 17715 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17716 17717 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17718 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17719 ilt->lines[cdu_ilt_start + i].page_mapping = 17720 sc->context[i].vcxt_dma.paddr; 17721 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17722 } 17723 ecore_ilt_init_op(sc, INITOP_SET); 17724 17725 /* Set NIC mode */ 17726 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17727 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17728 17729 if (!CHIP_IS_E1x(sc)) { 17730 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17731 17732 /* Turn on a single ISR mode in IGU if driver is going to use 17733 * INT#x or MSI 17734 */ 17735 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17736 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17737 } 17738 17739 /* 17740 * Timers workaround bug: function init part. 17741 * Need to wait 20msec after initializing ILT, 17742 * needed to make sure there are no requests in 17743 * one of the PXP internal queues with "old" ILT addresses 17744 */ 17745 DELAY(20000); 17746 17747 /* 17748 * Master enable - Due to WB DMAE writes performed before this 17749 * register is re-initialized as part of the regular function 17750 * init 17751 */ 17752 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17753 /* Enable the function in IGU */ 17754 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17755 } 17756 17757 sc->dmae_ready = 1; 17758 17759 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17760 17761 if (!CHIP_IS_E1x(sc)) 17762 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17763 17764 ecore_init_block(sc, BLOCK_ATC, init_phase); 17765 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17766 ecore_init_block(sc, BLOCK_NIG, init_phase); 17767 ecore_init_block(sc, BLOCK_SRC, init_phase); 17768 ecore_init_block(sc, BLOCK_MISC, init_phase); 17769 ecore_init_block(sc, BLOCK_TCM, init_phase); 17770 ecore_init_block(sc, BLOCK_UCM, init_phase); 17771 ecore_init_block(sc, BLOCK_CCM, init_phase); 17772 ecore_init_block(sc, BLOCK_XCM, init_phase); 17773 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17774 ecore_init_block(sc, BLOCK_USEM, init_phase); 17775 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17776 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17777 17778 if (!CHIP_IS_E1x(sc)) 17779 REG_WR(sc, QM_REG_PF_EN, 1); 17780 17781 if (!CHIP_IS_E1x(sc)) { 17782 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17783 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17784 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17785 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17786 } 17787 ecore_init_block(sc, BLOCK_QM, init_phase); 17788 17789 ecore_init_block(sc, BLOCK_TM, init_phase); 17790 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17791 17792 bxe_iov_init_dq(sc); 17793 17794 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17795 ecore_init_block(sc, BLOCK_PRS, init_phase); 17796 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17797 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17798 ecore_init_block(sc, BLOCK_USDM, init_phase); 17799 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17800 ecore_init_block(sc, BLOCK_UPB, init_phase); 17801 ecore_init_block(sc, BLOCK_XPB, init_phase); 17802 ecore_init_block(sc, BLOCK_PBF, init_phase); 17803 if (!CHIP_IS_E1x(sc)) 17804 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17805 17806 ecore_init_block(sc, BLOCK_CDU, init_phase); 17807 17808 ecore_init_block(sc, BLOCK_CFC, init_phase); 17809 17810 if (!CHIP_IS_E1x(sc)) 17811 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17812 17813 if (IS_MF(sc)) { 17814 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17815 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17816 } 17817 17818 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17819 17820 /* HC init per function */ 17821 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17822 if (CHIP_IS_E1H(sc)) { 17823 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17824 17825 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17826 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17827 } 17828 ecore_init_block(sc, BLOCK_HC, init_phase); 17829 17830 } else { 17831 int num_segs, sb_idx, prod_offset; 17832 17833 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17834 17835 if (!CHIP_IS_E1x(sc)) { 17836 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17837 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17838 } 17839 17840 ecore_init_block(sc, BLOCK_IGU, init_phase); 17841 17842 if (!CHIP_IS_E1x(sc)) { 17843 int dsb_idx = 0; 17844 /** 17845 * Producer memory: 17846 * E2 mode: address 0-135 match to the mapping memory; 17847 * 136 - PF0 default prod; 137 - PF1 default prod; 17848 * 138 - PF2 default prod; 139 - PF3 default prod; 17849 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17850 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17851 * 144-147 reserved. 17852 * 17853 * E1.5 mode - In backward compatible mode; 17854 * for non default SB; each even line in the memory 17855 * holds the U producer and each odd line hold 17856 * the C producer. The first 128 producers are for 17857 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17858 * producers are for the DSB for each PF. 17859 * Each PF has five segments: (the order inside each 17860 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17861 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17862 * 144-147 attn prods; 17863 */ 17864 /* non-default-status-blocks */ 17865 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17866 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17867 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17868 prod_offset = (sc->igu_base_sb + sb_idx) * 17869 num_segs; 17870 17871 for (i = 0; i < num_segs; i++) { 17872 addr = IGU_REG_PROD_CONS_MEMORY + 17873 (prod_offset + i) * 4; 17874 REG_WR(sc, addr, 0); 17875 } 17876 /* send consumer update with value 0 */ 17877 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17878 USTORM_ID, 0, IGU_INT_NOP, 1); 17879 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17880 } 17881 17882 /* default-status-blocks */ 17883 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17884 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17885 17886 if (CHIP_IS_MODE_4_PORT(sc)) 17887 dsb_idx = SC_FUNC(sc); 17888 else 17889 dsb_idx = SC_VN(sc); 17890 17891 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17892 IGU_BC_BASE_DSB_PROD + dsb_idx : 17893 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17894 17895 /* 17896 * igu prods come in chunks of E1HVN_MAX (4) - 17897 * does not matters what is the current chip mode 17898 */ 17899 for (i = 0; i < (num_segs * E1HVN_MAX); 17900 i += E1HVN_MAX) { 17901 addr = IGU_REG_PROD_CONS_MEMORY + 17902 (prod_offset + i)*4; 17903 REG_WR(sc, addr, 0); 17904 } 17905 /* send consumer update with 0 */ 17906 if (CHIP_INT_MODE_IS_BC(sc)) { 17907 bxe_ack_sb(sc, sc->igu_dsb_id, 17908 USTORM_ID, 0, IGU_INT_NOP, 1); 17909 bxe_ack_sb(sc, sc->igu_dsb_id, 17910 CSTORM_ID, 0, IGU_INT_NOP, 1); 17911 bxe_ack_sb(sc, sc->igu_dsb_id, 17912 XSTORM_ID, 0, IGU_INT_NOP, 1); 17913 bxe_ack_sb(sc, sc->igu_dsb_id, 17914 TSTORM_ID, 0, IGU_INT_NOP, 1); 17915 bxe_ack_sb(sc, sc->igu_dsb_id, 17916 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17917 } else { 17918 bxe_ack_sb(sc, sc->igu_dsb_id, 17919 USTORM_ID, 0, IGU_INT_NOP, 1); 17920 bxe_ack_sb(sc, sc->igu_dsb_id, 17921 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17922 } 17923 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17924 17925 /* !!! these should become driver const once 17926 rf-tool supports split-68 const */ 17927 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17928 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17929 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17930 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17931 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17932 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17933 } 17934 } 17935 17936 /* Reset PCIE errors for debug */ 17937 REG_WR(sc, 0x2114, 0xffffffff); 17938 REG_WR(sc, 0x2120, 0xffffffff); 17939 17940 if (CHIP_IS_E1x(sc)) { 17941 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17942 main_mem_base = HC_REG_MAIN_MEMORY + 17943 SC_PORT(sc) * (main_mem_size * 4); 17944 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17945 main_mem_width = 8; 17946 17947 val = REG_RD(sc, main_mem_prty_clr); 17948 if (val) { 17949 BLOGD(sc, DBG_LOAD, 17950 "Parity errors in HC block during function init (0x%x)!\n", 17951 val); 17952 } 17953 17954 /* Clear "false" parity errors in MSI-X table */ 17955 for (i = main_mem_base; 17956 i < main_mem_base + main_mem_size * 4; 17957 i += main_mem_width) { 17958 bxe_read_dmae(sc, i, main_mem_width / 4); 17959 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17960 i, main_mem_width / 4); 17961 } 17962 /* Clear HC parity attention */ 17963 REG_RD(sc, main_mem_prty_clr); 17964 } 17965 17966 #if 1 17967 /* Enable STORMs SP logging */ 17968 REG_WR8(sc, BAR_USTRORM_INTMEM + 17969 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17970 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17971 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17972 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17973 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17974 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17975 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17976 #endif 17977 17978 elink_phy_probe(&sc->link_params); 17979 17980 return (0); 17981 } 17982 17983 static void 17984 bxe_link_reset(struct bxe_softc *sc) 17985 { 17986 if (!BXE_NOMCP(sc)) { 17987 bxe_acquire_phy_lock(sc); 17988 elink_lfa_reset(&sc->link_params, &sc->link_vars); 17989 bxe_release_phy_lock(sc); 17990 } else { 17991 if (!CHIP_REV_IS_SLOW(sc)) { 17992 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 17993 } 17994 } 17995 } 17996 17997 static void 17998 bxe_reset_port(struct bxe_softc *sc) 17999 { 18000 int port = SC_PORT(sc); 18001 uint32_t val; 18002 18003 /* reset physical Link */ 18004 bxe_link_reset(sc); 18005 18006 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18007 18008 /* Do not rcv packets to BRB */ 18009 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18010 /* Do not direct rcv packets that are not for MCP to the BRB */ 18011 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18012 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18013 18014 /* Configure AEU */ 18015 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18016 18017 DELAY(100000); 18018 18019 /* Check for BRB port occupancy */ 18020 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18021 if (val) { 18022 BLOGD(sc, DBG_LOAD, 18023 "BRB1 is not empty, %d blocks are occupied\n", val); 18024 } 18025 18026 /* TODO: Close Doorbell port? */ 18027 } 18028 18029 static void 18030 bxe_ilt_wr(struct bxe_softc *sc, 18031 uint32_t index, 18032 bus_addr_t addr) 18033 { 18034 int reg; 18035 uint32_t wb_write[2]; 18036 18037 if (CHIP_IS_E1(sc)) { 18038 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18039 } else { 18040 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18041 } 18042 18043 wb_write[0] = ONCHIP_ADDR1(addr); 18044 wb_write[1] = ONCHIP_ADDR2(addr); 18045 REG_WR_DMAE(sc, reg, wb_write, 2); 18046 } 18047 18048 static void 18049 bxe_clear_func_ilt(struct bxe_softc *sc, 18050 uint32_t func) 18051 { 18052 uint32_t i, base = FUNC_ILT_BASE(func); 18053 for (i = base; i < base + ILT_PER_FUNC; i++) { 18054 bxe_ilt_wr(sc, i, 0); 18055 } 18056 } 18057 18058 static void 18059 bxe_reset_func(struct bxe_softc *sc) 18060 { 18061 struct bxe_fastpath *fp; 18062 int port = SC_PORT(sc); 18063 int func = SC_FUNC(sc); 18064 int i; 18065 18066 /* Disable the function in the FW */ 18067 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18068 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18069 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18070 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18071 18072 /* FP SBs */ 18073 FOR_EACH_ETH_QUEUE(sc, i) { 18074 fp = &sc->fp[i]; 18075 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18076 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18077 SB_DISABLED); 18078 } 18079 18080 /* SP SB */ 18081 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18082 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18083 SB_DISABLED); 18084 18085 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18086 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18087 } 18088 18089 /* Configure IGU */ 18090 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18091 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18092 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18093 } else { 18094 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18095 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18096 } 18097 18098 if (CNIC_LOADED(sc)) { 18099 /* Disable Timer scan */ 18100 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18101 /* 18102 * Wait for at least 10ms and up to 2 second for the timers 18103 * scan to complete 18104 */ 18105 for (i = 0; i < 200; i++) { 18106 DELAY(10000); 18107 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18108 break; 18109 } 18110 } 18111 18112 /* Clear ILT */ 18113 bxe_clear_func_ilt(sc, func); 18114 18115 /* 18116 * Timers workaround bug for E2: if this is vnic-3, 18117 * we need to set the entire ilt range for this timers. 18118 */ 18119 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18120 struct ilt_client_info ilt_cli; 18121 /* use dummy TM client */ 18122 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18123 ilt_cli.start = 0; 18124 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18125 ilt_cli.client_num = ILT_CLIENT_TM; 18126 18127 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18128 } 18129 18130 /* this assumes that reset_port() called before reset_func()*/ 18131 if (!CHIP_IS_E1x(sc)) { 18132 bxe_pf_disable(sc); 18133 } 18134 18135 sc->dmae_ready = 0; 18136 } 18137 18138 static int 18139 bxe_gunzip_init(struct bxe_softc *sc) 18140 { 18141 return (0); 18142 } 18143 18144 static void 18145 bxe_gunzip_end(struct bxe_softc *sc) 18146 { 18147 return; 18148 } 18149 18150 static int 18151 bxe_init_firmware(struct bxe_softc *sc) 18152 { 18153 if (CHIP_IS_E1(sc)) { 18154 ecore_init_e1_firmware(sc); 18155 sc->iro_array = e1_iro_arr; 18156 } else if (CHIP_IS_E1H(sc)) { 18157 ecore_init_e1h_firmware(sc); 18158 sc->iro_array = e1h_iro_arr; 18159 } else if (!CHIP_IS_E1x(sc)) { 18160 ecore_init_e2_firmware(sc); 18161 sc->iro_array = e2_iro_arr; 18162 } else { 18163 BLOGE(sc, "Unsupported chip revision\n"); 18164 return (-1); 18165 } 18166 18167 return (0); 18168 } 18169 18170 static void 18171 bxe_release_firmware(struct bxe_softc *sc) 18172 { 18173 /* Do nothing */ 18174 return; 18175 } 18176 18177 static int 18178 ecore_gunzip(struct bxe_softc *sc, 18179 const uint8_t *zbuf, 18180 int len) 18181 { 18182 /* XXX : Implement... */ 18183 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18184 return (FALSE); 18185 } 18186 18187 static void 18188 ecore_reg_wr_ind(struct bxe_softc *sc, 18189 uint32_t addr, 18190 uint32_t val) 18191 { 18192 bxe_reg_wr_ind(sc, addr, val); 18193 } 18194 18195 static void 18196 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18197 bus_addr_t phys_addr, 18198 uint32_t addr, 18199 uint32_t len) 18200 { 18201 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18202 } 18203 18204 void 18205 ecore_storm_memset_struct(struct bxe_softc *sc, 18206 uint32_t addr, 18207 size_t size, 18208 uint32_t *data) 18209 { 18210 uint8_t i; 18211 for (i = 0; i < size/4; i++) { 18212 REG_WR(sc, addr + (i * 4), data[i]); 18213 } 18214 } 18215 18216 18217 /* 18218 * character device - ioctl interface definitions 18219 */ 18220 18221 18222 #include "bxe_dump.h" 18223 #include "bxe_ioctl.h" 18224 #include <sys/conf.h> 18225 18226 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18227 struct thread *td); 18228 18229 static struct cdevsw bxe_cdevsw = { 18230 .d_version = D_VERSION, 18231 .d_ioctl = bxe_eioctl, 18232 .d_name = "bxecnic", 18233 }; 18234 18235 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18236 18237 18238 #define DUMP_ALL_PRESETS 0x1FFF 18239 #define DUMP_MAX_PRESETS 13 18240 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18241 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18242 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18243 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18244 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18245 18246 #define IS_REG_IN_PRESET(presets, idx) \ 18247 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18248 18249 18250 static int 18251 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18252 { 18253 if (CHIP_IS_E1(sc)) 18254 return dump_num_registers[0][preset-1]; 18255 else if (CHIP_IS_E1H(sc)) 18256 return dump_num_registers[1][preset-1]; 18257 else if (CHIP_IS_E2(sc)) 18258 return dump_num_registers[2][preset-1]; 18259 else if (CHIP_IS_E3A0(sc)) 18260 return dump_num_registers[3][preset-1]; 18261 else if (CHIP_IS_E3B0(sc)) 18262 return dump_num_registers[4][preset-1]; 18263 else 18264 return 0; 18265 } 18266 18267 static int 18268 bxe_get_total_regs_len32(struct bxe_softc *sc) 18269 { 18270 uint32_t preset_idx; 18271 int regdump_len32 = 0; 18272 18273 18274 /* Calculate the total preset regs length */ 18275 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18276 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18277 } 18278 18279 return regdump_len32; 18280 } 18281 18282 static const uint32_t * 18283 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18284 { 18285 if (CHIP_IS_E2(sc)) 18286 return page_vals_e2; 18287 else if (CHIP_IS_E3(sc)) 18288 return page_vals_e3; 18289 else 18290 return NULL; 18291 } 18292 18293 static uint32_t 18294 __bxe_get_page_reg_num(struct bxe_softc *sc) 18295 { 18296 if (CHIP_IS_E2(sc)) 18297 return PAGE_MODE_VALUES_E2; 18298 else if (CHIP_IS_E3(sc)) 18299 return PAGE_MODE_VALUES_E3; 18300 else 18301 return 0; 18302 } 18303 18304 static const uint32_t * 18305 __bxe_get_page_write_ar(struct bxe_softc *sc) 18306 { 18307 if (CHIP_IS_E2(sc)) 18308 return page_write_regs_e2; 18309 else if (CHIP_IS_E3(sc)) 18310 return page_write_regs_e3; 18311 else 18312 return NULL; 18313 } 18314 18315 static uint32_t 18316 __bxe_get_page_write_num(struct bxe_softc *sc) 18317 { 18318 if (CHIP_IS_E2(sc)) 18319 return PAGE_WRITE_REGS_E2; 18320 else if (CHIP_IS_E3(sc)) 18321 return PAGE_WRITE_REGS_E3; 18322 else 18323 return 0; 18324 } 18325 18326 static const struct reg_addr * 18327 __bxe_get_page_read_ar(struct bxe_softc *sc) 18328 { 18329 if (CHIP_IS_E2(sc)) 18330 return page_read_regs_e2; 18331 else if (CHIP_IS_E3(sc)) 18332 return page_read_regs_e3; 18333 else 18334 return NULL; 18335 } 18336 18337 static uint32_t 18338 __bxe_get_page_read_num(struct bxe_softc *sc) 18339 { 18340 if (CHIP_IS_E2(sc)) 18341 return PAGE_READ_REGS_E2; 18342 else if (CHIP_IS_E3(sc)) 18343 return PAGE_READ_REGS_E3; 18344 else 18345 return 0; 18346 } 18347 18348 static bool 18349 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18350 { 18351 if (CHIP_IS_E1(sc)) 18352 return IS_E1_REG(reg_info->chips); 18353 else if (CHIP_IS_E1H(sc)) 18354 return IS_E1H_REG(reg_info->chips); 18355 else if (CHIP_IS_E2(sc)) 18356 return IS_E2_REG(reg_info->chips); 18357 else if (CHIP_IS_E3A0(sc)) 18358 return IS_E3A0_REG(reg_info->chips); 18359 else if (CHIP_IS_E3B0(sc)) 18360 return IS_E3B0_REG(reg_info->chips); 18361 else 18362 return 0; 18363 } 18364 18365 static bool 18366 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18367 { 18368 if (CHIP_IS_E1(sc)) 18369 return IS_E1_REG(wreg_info->chips); 18370 else if (CHIP_IS_E1H(sc)) 18371 return IS_E1H_REG(wreg_info->chips); 18372 else if (CHIP_IS_E2(sc)) 18373 return IS_E2_REG(wreg_info->chips); 18374 else if (CHIP_IS_E3A0(sc)) 18375 return IS_E3A0_REG(wreg_info->chips); 18376 else if (CHIP_IS_E3B0(sc)) 18377 return IS_E3B0_REG(wreg_info->chips); 18378 else 18379 return 0; 18380 } 18381 18382 /** 18383 * bxe_read_pages_regs - read "paged" registers 18384 * 18385 * @bp device handle 18386 * @p output buffer 18387 * 18388 * Reads "paged" memories: memories that may only be read by first writing to a 18389 * specific address ("write address") and then reading from a specific address 18390 * ("read address"). There may be more than one write address per "page" and 18391 * more than one read address per write address. 18392 */ 18393 static void 18394 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18395 { 18396 uint32_t i, j, k, n; 18397 18398 /* addresses of the paged registers */ 18399 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18400 /* number of paged registers */ 18401 int num_pages = __bxe_get_page_reg_num(sc); 18402 /* write addresses */ 18403 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18404 /* number of write addresses */ 18405 int write_num = __bxe_get_page_write_num(sc); 18406 /* read addresses info */ 18407 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18408 /* number of read addresses */ 18409 int read_num = __bxe_get_page_read_num(sc); 18410 uint32_t addr, size; 18411 18412 for (i = 0; i < num_pages; i++) { 18413 for (j = 0; j < write_num; j++) { 18414 REG_WR(sc, write_addr[j], page_addr[i]); 18415 18416 for (k = 0; k < read_num; k++) { 18417 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18418 size = read_addr[k].size; 18419 for (n = 0; n < size; n++) { 18420 addr = read_addr[k].addr + n*4; 18421 *p++ = REG_RD(sc, addr); 18422 } 18423 } 18424 } 18425 } 18426 } 18427 return; 18428 } 18429 18430 18431 static int 18432 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18433 { 18434 uint32_t i, j, addr; 18435 const struct wreg_addr *wreg_addr_p = NULL; 18436 18437 if (CHIP_IS_E1(sc)) 18438 wreg_addr_p = &wreg_addr_e1; 18439 else if (CHIP_IS_E1H(sc)) 18440 wreg_addr_p = &wreg_addr_e1h; 18441 else if (CHIP_IS_E2(sc)) 18442 wreg_addr_p = &wreg_addr_e2; 18443 else if (CHIP_IS_E3A0(sc)) 18444 wreg_addr_p = &wreg_addr_e3; 18445 else if (CHIP_IS_E3B0(sc)) 18446 wreg_addr_p = &wreg_addr_e3b0; 18447 else 18448 return (-1); 18449 18450 /* Read the idle_chk registers */ 18451 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18452 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18453 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18454 for (j = 0; j < idle_reg_addrs[i].size; j++) 18455 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18456 } 18457 } 18458 18459 /* Read the regular registers */ 18460 for (i = 0; i < REGS_COUNT; i++) { 18461 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18462 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18463 for (j = 0; j < reg_addrs[i].size; j++) 18464 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18465 } 18466 } 18467 18468 /* Read the CAM registers */ 18469 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18470 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18471 for (i = 0; i < wreg_addr_p->size; i++) { 18472 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18473 18474 /* In case of wreg_addr register, read additional 18475 registers from read_regs array 18476 */ 18477 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18478 addr = *(wreg_addr_p->read_regs); 18479 *p++ = REG_RD(sc, addr + j*4); 18480 } 18481 } 18482 } 18483 18484 /* Paged registers are supported in E2 & E3 only */ 18485 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18486 /* Read "paged" registers */ 18487 bxe_read_pages_regs(sc, p, preset); 18488 } 18489 18490 return 0; 18491 } 18492 18493 int 18494 bxe_grc_dump(struct bxe_softc *sc) 18495 { 18496 int rval = 0; 18497 uint32_t preset_idx; 18498 uint8_t *buf; 18499 uint32_t size; 18500 struct dump_header *d_hdr; 18501 uint32_t i; 18502 uint32_t reg_val; 18503 uint32_t reg_addr; 18504 uint32_t cmd_offset; 18505 int context_size; 18506 int allocated; 18507 struct ecore_ilt *ilt = SC_ILT(sc); 18508 struct bxe_fastpath *fp; 18509 struct ilt_client_info *ilt_cli; 18510 int grc_dump_size; 18511 18512 18513 if (sc->grcdump_done || sc->grcdump_started) 18514 return (rval); 18515 18516 sc->grcdump_started = 1; 18517 BLOGI(sc, "Started collecting grcdump\n"); 18518 18519 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18520 sizeof(struct dump_header); 18521 18522 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18523 18524 if (sc->grc_dump == NULL) { 18525 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18526 return(ENOMEM); 18527 } 18528 18529 18530 18531 /* Disable parity attentions as long as following dump may 18532 * cause false alarms by reading never written registers. We 18533 * will re-enable parity attentions right after the dump. 18534 */ 18535 18536 /* Disable parity on path 0 */ 18537 bxe_pretend_func(sc, 0); 18538 18539 ecore_disable_blocks_parity(sc); 18540 18541 /* Disable parity on path 1 */ 18542 bxe_pretend_func(sc, 1); 18543 ecore_disable_blocks_parity(sc); 18544 18545 /* Return to current function */ 18546 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18547 18548 buf = sc->grc_dump; 18549 d_hdr = sc->grc_dump; 18550 18551 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18552 d_hdr->version = BNX2X_DUMP_VERSION; 18553 d_hdr->preset = DUMP_ALL_PRESETS; 18554 18555 if (CHIP_IS_E1(sc)) { 18556 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18557 } else if (CHIP_IS_E1H(sc)) { 18558 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18559 } else if (CHIP_IS_E2(sc)) { 18560 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18561 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18562 } else if (CHIP_IS_E3A0(sc)) { 18563 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18564 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18565 } else if (CHIP_IS_E3B0(sc)) { 18566 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18567 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18568 } 18569 18570 buf += sizeof(struct dump_header); 18571 18572 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18573 18574 /* Skip presets with IOR */ 18575 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18576 (preset_idx == 11)) 18577 continue; 18578 18579 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18580 18581 if (rval) 18582 break; 18583 18584 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18585 18586 buf += size; 18587 } 18588 18589 bxe_pretend_func(sc, 0); 18590 ecore_clear_blocks_parity(sc); 18591 ecore_enable_blocks_parity(sc); 18592 18593 bxe_pretend_func(sc, 1); 18594 ecore_clear_blocks_parity(sc); 18595 ecore_enable_blocks_parity(sc); 18596 18597 /* Return to current function */ 18598 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18599 18600 18601 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18602 for (i = 0, allocated = 0; allocated < context_size; i++) { 18603 18604 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18605 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18606 sc->context[i].vcxt_dma.vaddr, 18607 sc->context[i].size); 18608 allocated += sc->context[i].size; 18609 } 18610 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18611 (uintmax_t)sc->fw_stats_req_mapping, 18612 (uintmax_t)sc->fw_stats_data_mapping, 18613 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18614 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18615 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18616 sizeof(struct host_sp_status_block)); 18617 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18618 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18619 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18620 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18621 sizeof(struct bxe_slowpath)); 18622 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18623 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18624 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18625 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18626 FW_BUF_SIZE); 18627 for (i = 0; i < sc->num_queues; i++) { 18628 fp = &sc->fp[i]; 18629 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18630 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18631 sizeof(union bxe_host_hc_status_block)); 18632 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18633 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18634 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18635 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18636 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18637 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18638 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18639 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18640 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18641 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18642 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18643 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18644 } 18645 18646 ilt_cli = &ilt->clients[1]; 18647 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18648 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18649 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18650 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18651 } 18652 18653 18654 cmd_offset = DMAE_REG_CMD_MEM; 18655 for (i = 0; i < 224; i++) { 18656 reg_addr = (cmd_offset +(i * 4)); 18657 reg_val = REG_RD(sc, reg_addr); 18658 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18659 reg_addr, reg_val); 18660 } 18661 18662 18663 BLOGI(sc, "Collection of grcdump done\n"); 18664 sc->grcdump_done = 1; 18665 return(rval); 18666 } 18667 18668 static int 18669 bxe_add_cdev(struct bxe_softc *sc) 18670 { 18671 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18672 18673 if (sc->eeprom == NULL) { 18674 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18675 return (-1); 18676 } 18677 18678 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18679 sc->ifp->if_dunit, 18680 UID_ROOT, 18681 GID_WHEEL, 18682 0600, 18683 "%s", 18684 if_name(sc->ifp)); 18685 18686 if (sc->ioctl_dev == NULL) { 18687 free(sc->eeprom, M_DEVBUF); 18688 sc->eeprom = NULL; 18689 return (-1); 18690 } 18691 18692 sc->ioctl_dev->si_drv1 = sc; 18693 18694 return (0); 18695 } 18696 18697 static void 18698 bxe_del_cdev(struct bxe_softc *sc) 18699 { 18700 if (sc->ioctl_dev != NULL) 18701 destroy_dev(sc->ioctl_dev); 18702 18703 if (sc->eeprom != NULL) { 18704 free(sc->eeprom, M_DEVBUF); 18705 sc->eeprom = NULL; 18706 } 18707 sc->ioctl_dev = NULL; 18708 18709 return; 18710 } 18711 18712 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18713 { 18714 18715 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18716 return FALSE; 18717 18718 return TRUE; 18719 } 18720 18721 18722 static int 18723 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18724 { 18725 int rval = 0; 18726 18727 if(!bxe_is_nvram_accessible(sc)) { 18728 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18729 return (-EAGAIN); 18730 } 18731 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18732 18733 18734 return (rval); 18735 } 18736 18737 static int 18738 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18739 { 18740 int rval = 0; 18741 18742 if(!bxe_is_nvram_accessible(sc)) { 18743 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18744 return (-EAGAIN); 18745 } 18746 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18747 18748 return (rval); 18749 } 18750 18751 static int 18752 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18753 { 18754 int rval = 0; 18755 18756 switch (eeprom->eeprom_cmd) { 18757 18758 case BXE_EEPROM_CMD_SET_EEPROM: 18759 18760 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18761 eeprom->eeprom_data_len); 18762 18763 if (rval) 18764 break; 18765 18766 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18767 eeprom->eeprom_data_len); 18768 break; 18769 18770 case BXE_EEPROM_CMD_GET_EEPROM: 18771 18772 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18773 eeprom->eeprom_data_len); 18774 18775 if (rval) { 18776 break; 18777 } 18778 18779 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18780 eeprom->eeprom_data_len); 18781 break; 18782 18783 default: 18784 rval = EINVAL; 18785 break; 18786 } 18787 18788 if (rval) { 18789 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18790 } 18791 18792 return (rval); 18793 } 18794 18795 static int 18796 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18797 { 18798 uint32_t ext_phy_config; 18799 int port = SC_PORT(sc); 18800 int cfg_idx = bxe_get_link_cfg_idx(sc); 18801 18802 dev_p->supported = sc->port.supported[cfg_idx] | 18803 (sc->port.supported[cfg_idx ^ 1] & 18804 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18805 dev_p->advertising = sc->port.advertising[cfg_idx]; 18806 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18807 ELINK_ETH_PHY_SFP_1G_FIBER) { 18808 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18809 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18810 } 18811 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18812 !(sc->flags & BXE_MF_FUNC_DIS)) { 18813 dev_p->duplex = sc->link_vars.duplex; 18814 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18815 dev_p->speed = bxe_get_mf_speed(sc); 18816 else 18817 dev_p->speed = sc->link_vars.line_speed; 18818 } else { 18819 dev_p->duplex = DUPLEX_UNKNOWN; 18820 dev_p->speed = SPEED_UNKNOWN; 18821 } 18822 18823 dev_p->port = bxe_media_detect(sc); 18824 18825 ext_phy_config = SHMEM_RD(sc, 18826 dev_info.port_hw_config[port].external_phy_config); 18827 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18828 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18829 dev_p->phy_address = sc->port.phy_addr; 18830 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18831 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18832 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18833 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18834 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18835 else 18836 dev_p->phy_address = 0; 18837 18838 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18839 dev_p->autoneg = AUTONEG_ENABLE; 18840 else 18841 dev_p->autoneg = AUTONEG_DISABLE; 18842 18843 18844 return 0; 18845 } 18846 18847 static int 18848 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18849 struct thread *td) 18850 { 18851 struct bxe_softc *sc; 18852 int rval = 0; 18853 device_t pci_dev; 18854 bxe_grcdump_t *dump = NULL; 18855 int grc_dump_size; 18856 bxe_drvinfo_t *drv_infop = NULL; 18857 bxe_dev_setting_t *dev_p; 18858 bxe_dev_setting_t dev_set; 18859 bxe_get_regs_t *reg_p; 18860 bxe_reg_rdw_t *reg_rdw_p; 18861 bxe_pcicfg_rdw_t *cfg_rdw_p; 18862 bxe_perm_mac_addr_t *mac_addr_p; 18863 18864 18865 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18866 return ENXIO; 18867 18868 pci_dev= sc->dev; 18869 18870 dump = (bxe_grcdump_t *)data; 18871 18872 switch(cmd) { 18873 18874 case BXE_GRC_DUMP_SIZE: 18875 dump->pci_func = sc->pcie_func; 18876 dump->grcdump_size = 18877 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18878 sizeof(struct dump_header); 18879 break; 18880 18881 case BXE_GRC_DUMP: 18882 18883 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18884 sizeof(struct dump_header); 18885 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 18886 (dump->grcdump_size < grc_dump_size)) { 18887 rval = EINVAL; 18888 break; 18889 } 18890 18891 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 18892 (!sc->grcdump_started)) { 18893 rval = bxe_grc_dump(sc); 18894 } 18895 18896 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 18897 (sc->grc_dump != NULL)) { 18898 dump->grcdump_dwords = grc_dump_size >> 2; 18899 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18900 free(sc->grc_dump, M_DEVBUF); 18901 sc->grc_dump = NULL; 18902 sc->grcdump_started = 0; 18903 sc->grcdump_done = 0; 18904 } 18905 18906 break; 18907 18908 case BXE_DRV_INFO: 18909 drv_infop = (bxe_drvinfo_t *)data; 18910 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 18911 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 18912 BXE_DRIVER_VERSION); 18913 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 18914 sc->devinfo.bc_ver_str); 18915 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 18916 "%s", sc->fw_ver_str); 18917 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 18918 drv_infop->reg_dump_len = 18919 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 18920 + sizeof(struct dump_header); 18921 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 18922 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 18923 break; 18924 18925 case BXE_DEV_SETTING: 18926 dev_p = (bxe_dev_setting_t *)data; 18927 bxe_get_settings(sc, &dev_set); 18928 dev_p->supported = dev_set.supported; 18929 dev_p->advertising = dev_set.advertising; 18930 dev_p->speed = dev_set.speed; 18931 dev_p->duplex = dev_set.duplex; 18932 dev_p->port = dev_set.port; 18933 dev_p->phy_address = dev_set.phy_address; 18934 dev_p->autoneg = dev_set.autoneg; 18935 18936 break; 18937 18938 case BXE_GET_REGS: 18939 18940 reg_p = (bxe_get_regs_t *)data; 18941 grc_dump_size = reg_p->reg_buf_len; 18942 18943 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 18944 bxe_grc_dump(sc); 18945 } 18946 if((sc->grcdump_done) && (sc->grcdump_started) && 18947 (sc->grc_dump != NULL)) { 18948 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 18949 free(sc->grc_dump, M_DEVBUF); 18950 sc->grc_dump = NULL; 18951 sc->grcdump_started = 0; 18952 sc->grcdump_done = 0; 18953 } 18954 18955 break; 18956 18957 case BXE_RDW_REG: 18958 reg_rdw_p = (bxe_reg_rdw_t *)data; 18959 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 18960 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18961 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 18962 18963 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 18964 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18965 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 18966 18967 break; 18968 18969 case BXE_RDW_PCICFG: 18970 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 18971 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 18972 18973 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 18974 cfg_rdw_p->cfg_width); 18975 18976 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 18977 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 18978 cfg_rdw_p->cfg_width); 18979 } else { 18980 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 18981 } 18982 break; 18983 18984 case BXE_MAC_ADDR: 18985 mac_addr_p = (bxe_perm_mac_addr_t *)data; 18986 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 18987 sc->mac_addr_str); 18988 break; 18989 18990 case BXE_EEPROM: 18991 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 18992 break; 18993 18994 18995 default: 18996 break; 18997 } 18998 18999 return (rval); 19000 } 19001