xref: /freebsd/sys/dev/bxe/bxe.c (revision 298022457a9a016cbdda4e22d751abb5cd91c919)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.79"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127 #if 0
128     {
129         BRCM_VENDORID,
130         CHIP_NUM_57712_VF,
131         PCI_ANY_ID, PCI_ANY_ID,
132         "QLogic NetXtreme II BCM57712 VF 10GbE"
133     },
134 #endif
135     {
136         BRCM_VENDORID,
137         CHIP_NUM_57800,
138         PCI_ANY_ID, PCI_ANY_ID,
139         "QLogic NetXtreme II BCM57800 10GbE"
140     },
141     {
142         BRCM_VENDORID,
143         CHIP_NUM_57800_MF,
144         PCI_ANY_ID, PCI_ANY_ID,
145         "QLogic NetXtreme II BCM57800 MF 10GbE"
146     },
147 #if 0
148     {
149         BRCM_VENDORID,
150         CHIP_NUM_57800_VF,
151         PCI_ANY_ID, PCI_ANY_ID,
152         "QLogic NetXtreme II BCM57800 VF 10GbE"
153     },
154 #endif
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57810,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57810 10GbE"
160     },
161     {
162         BRCM_VENDORID,
163         CHIP_NUM_57810_MF,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57810 MF 10GbE"
166     },
167 #if 0
168     {
169         BRCM_VENDORID,
170         CHIP_NUM_57810_VF,
171         PCI_ANY_ID, PCI_ANY_ID,
172         "QLogic NetXtreme II BCM57810 VF 10GbE"
173     },
174 #endif
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57811,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57811 10GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57811_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57811 MF 10GbE"
186     },
187 #if 0
188     {
189         BRCM_VENDORID,
190         CHIP_NUM_57811_VF,
191         PCI_ANY_ID, PCI_ANY_ID,
192         "QLogic NetXtreme II BCM57811 VF 10GbE"
193     },
194 #endif
195     {
196         BRCM_VENDORID,
197         CHIP_NUM_57840_4_10,
198         PCI_ANY_ID, PCI_ANY_ID,
199         "QLogic NetXtreme II BCM57840 4x10GbE"
200     },
201 #if 0
202     {
203         BRCM_VENDORID,
204         CHIP_NUM_57840_2_20,
205         PCI_ANY_ID, PCI_ANY_ID,
206         "QLogic NetXtreme II BCM57840 2x20GbE"
207     },
208 #endif
209     {
210         BRCM_VENDORID,
211         CHIP_NUM_57840_MF,
212         PCI_ANY_ID, PCI_ANY_ID,
213         "QLogic NetXtreme II BCM57840 MF 10GbE"
214     },
215 #if 0
216     {
217         BRCM_VENDORID,
218         CHIP_NUM_57840_VF,
219         PCI_ANY_ID, PCI_ANY_ID,
220         "QLogic NetXtreme II BCM57840 VF 10GbE"
221     },
222 #endif
223     {
224         0, 0, 0, 0, NULL
225     }
226 };
227 
228 MALLOC_DECLARE(M_BXE_ILT);
229 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230 
231 /*
232  * FreeBSD device entry points.
233  */
234 static int bxe_probe(device_t);
235 static int bxe_attach(device_t);
236 static int bxe_detach(device_t);
237 static int bxe_shutdown(device_t);
238 
239 /*
240  * FreeBSD KLD module/device interface event handler method.
241  */
242 static device_method_t bxe_methods[] = {
243     /* Device interface (device_if.h) */
244     DEVMETHOD(device_probe,     bxe_probe),
245     DEVMETHOD(device_attach,    bxe_attach),
246     DEVMETHOD(device_detach,    bxe_detach),
247     DEVMETHOD(device_shutdown,  bxe_shutdown),
248 #if 0
249     DEVMETHOD(device_suspend,   bxe_suspend),
250     DEVMETHOD(device_resume,    bxe_resume),
251 #endif
252     /* Bus interface (bus_if.h) */
253     DEVMETHOD(bus_print_child,  bus_generic_print_child),
254     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255     KOBJMETHOD_END
256 };
257 
258 /*
259  * FreeBSD KLD Module data declaration
260  */
261 static driver_t bxe_driver = {
262     "bxe",                   /* module name */
263     bxe_methods,             /* event handler */
264     sizeof(struct bxe_softc) /* extra data */
265 };
266 
267 /*
268  * FreeBSD dev class is needed to manage dev instances and
269  * to associate with a bus type
270  */
271 static devclass_t bxe_devclass;
272 
273 MODULE_DEPEND(bxe, pci, 1, 1, 1);
274 MODULE_DEPEND(bxe, ether, 1, 1, 1);
275 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276 
277 /* resources needed for unloading a previously loaded device */
278 
279 #define BXE_PREV_WAIT_NEEDED 1
280 struct mtx bxe_prev_mtx;
281 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282 struct bxe_prev_list_node {
283     LIST_ENTRY(bxe_prev_list_node) node;
284     uint8_t bus;
285     uint8_t slot;
286     uint8_t path;
287     uint8_t aer; /* XXX automatic error recovery */
288     uint8_t undi;
289 };
290 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291 
292 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293 
294 /* Tunable device values... */
295 
296 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297 
298 /* Debug */
299 unsigned long bxe_debug = 0;
300 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
301              &bxe_debug, 0, "Debug logging mode");
302 
303 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
304 static int bxe_interrupt_mode = INTR_MODE_MSIX;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
306            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
307 
308 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
309 static int bxe_queue_count = 4;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
311            &bxe_queue_count, 0, "Multi-Queue queue count");
312 
313 /* max number of buffers per queue (default RX_BD_USABLE) */
314 static int bxe_max_rx_bufs = 0;
315 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
316            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
317 
318 /* Host interrupt coalescing RX tick timer (usecs) */
319 static int bxe_hc_rx_ticks = 25;
320 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
321            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
322 
323 /* Host interrupt coalescing TX tick timer (usecs) */
324 static int bxe_hc_tx_ticks = 50;
325 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
326            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
327 
328 /* Maximum number of Rx packets to process at a time */
329 static int bxe_rx_budget = 0xffffffff;
330 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
331            &bxe_rx_budget, 0, "Rx processing budget");
332 
333 /* Maximum LRO aggregation size */
334 static int bxe_max_aggregation_size = 0;
335 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
336            &bxe_max_aggregation_size, 0, "max aggregation size");
337 
338 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
339 static int bxe_mrrs = -1;
340 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
341            &bxe_mrrs, 0, "PCIe maximum read request size");
342 
343 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
344 static int bxe_autogreeen = 0;
345 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
346            &bxe_autogreeen, 0, "AutoGrEEEn support");
347 
348 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
349 static int bxe_udp_rss = 0;
350 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
351            &bxe_udp_rss, 0, "UDP RSS support");
352 
353 
354 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
355 
356 #define STATS_OFFSET32(stat_name)                   \
357     (offsetof(struct bxe_eth_stats, stat_name) / 4)
358 
359 #define Q_STATS_OFFSET32(stat_name)                   \
360     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
361 
362 static const struct {
363     uint32_t offset;
364     uint32_t size;
365     uint32_t flags;
366 #define STATS_FLAGS_PORT  1
367 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
368 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
369     char string[STAT_NAME_LEN];
370 } bxe_eth_stats_arr[] = {
371     { STATS_OFFSET32(total_bytes_received_hi),
372                 8, STATS_FLAGS_BOTH, "rx_bytes" },
373     { STATS_OFFSET32(error_bytes_received_hi),
374                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
375     { STATS_OFFSET32(total_unicast_packets_received_hi),
376                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
377     { STATS_OFFSET32(total_multicast_packets_received_hi),
378                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
379     { STATS_OFFSET32(total_broadcast_packets_received_hi),
380                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
381     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
382                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
383     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
384                 8, STATS_FLAGS_PORT, "rx_align_errors" },
385     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
386                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
387     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
388                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
389     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
390                 8, STATS_FLAGS_PORT, "rx_fragments" },
391     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
392                 8, STATS_FLAGS_PORT, "rx_jabbers" },
393     { STATS_OFFSET32(no_buff_discard_hi),
394                 8, STATS_FLAGS_BOTH, "rx_discards" },
395     { STATS_OFFSET32(mac_filter_discard),
396                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
397     { STATS_OFFSET32(mf_tag_discard),
398                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
399     { STATS_OFFSET32(pfc_frames_received_hi),
400                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
401     { STATS_OFFSET32(pfc_frames_sent_hi),
402                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
403     { STATS_OFFSET32(brb_drop_hi),
404                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
405     { STATS_OFFSET32(brb_truncate_hi),
406                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
407     { STATS_OFFSET32(pause_frames_received_hi),
408                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
409     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
410                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
411     { STATS_OFFSET32(nig_timer_max),
412                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
413     { STATS_OFFSET32(total_bytes_transmitted_hi),
414                 8, STATS_FLAGS_BOTH, "tx_bytes" },
415     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
416                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
417     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
418                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
419     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
420                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
421     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
422                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
423     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
424                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
425     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
426                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
427     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
428                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
429     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
430                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
431     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
432                 8, STATS_FLAGS_PORT, "tx_deferred" },
433     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
434                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
435     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
436                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
437     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
438                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
439     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
440                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
441     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
442                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
443     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
444                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
445     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
446                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
447     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
448                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
449     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
450                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
451     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
452                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
453     { STATS_OFFSET32(pause_frames_sent_hi),
454                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
455     { STATS_OFFSET32(total_tpa_aggregations_hi),
456                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
457     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
458                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
459     { STATS_OFFSET32(total_tpa_bytes_hi),
460                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
461 #if 0
462     { STATS_OFFSET32(recoverable_error),
463                 4, STATS_FLAGS_FUNC, "recoverable_errors" },
464     { STATS_OFFSET32(unrecoverable_error),
465                 4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
466 #endif
467     { STATS_OFFSET32(eee_tx_lpi),
468                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
469     { STATS_OFFSET32(rx_calls),
470                 4, STATS_FLAGS_FUNC, "rx_calls"},
471     { STATS_OFFSET32(rx_pkts),
472                 4, STATS_FLAGS_FUNC, "rx_pkts"},
473     { STATS_OFFSET32(rx_tpa_pkts),
474                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
475     { STATS_OFFSET32(rx_jumbo_sge_pkts),
476                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
477     { STATS_OFFSET32(rx_soft_errors),
478                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
479     { STATS_OFFSET32(rx_hw_csum_errors),
480                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
481     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
482                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
483     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
484                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
485     { STATS_OFFSET32(rx_budget_reached),
486                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
487     { STATS_OFFSET32(tx_pkts),
488                 4, STATS_FLAGS_FUNC, "tx_pkts"},
489     { STATS_OFFSET32(tx_soft_errors),
490                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
491     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
492                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
493     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
494                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
495     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
496                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
497     { STATS_OFFSET32(tx_ofld_frames_lso),
498                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
499     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
500                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
501     { STATS_OFFSET32(tx_encap_failures),
502                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
503     { STATS_OFFSET32(tx_hw_queue_full),
504                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
505     { STATS_OFFSET32(tx_hw_max_queue_depth),
506                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
507     { STATS_OFFSET32(tx_dma_mapping_failure),
508                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
509     { STATS_OFFSET32(tx_max_drbr_queue_depth),
510                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
511     { STATS_OFFSET32(tx_window_violation_std),
512                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
513     { STATS_OFFSET32(tx_window_violation_tso),
514                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
515 #if 0
516     { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
517                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
518     { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
519                 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
520 #endif
521     { STATS_OFFSET32(tx_chain_lost_mbuf),
522                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
523     { STATS_OFFSET32(tx_frames_deferred),
524                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
525     { STATS_OFFSET32(tx_queue_xoff),
526                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
527     { STATS_OFFSET32(mbuf_defrag_attempts),
528                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
529     { STATS_OFFSET32(mbuf_defrag_failures),
530                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
531     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
532                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
533     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
534                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
535     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
536                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
537     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
538                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
539     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
540                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
541     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
542                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
543     { STATS_OFFSET32(mbuf_alloc_tx),
544                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
545     { STATS_OFFSET32(mbuf_alloc_rx),
546                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
547     { STATS_OFFSET32(mbuf_alloc_sge),
548                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
549     { STATS_OFFSET32(mbuf_alloc_tpa),
550                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
551 };
552 
553 static const struct {
554     uint32_t offset;
555     uint32_t size;
556     char string[STAT_NAME_LEN];
557 } bxe_eth_q_stats_arr[] = {
558     { Q_STATS_OFFSET32(total_bytes_received_hi),
559                 8, "rx_bytes" },
560     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
561                 8, "rx_ucast_packets" },
562     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
563                 8, "rx_mcast_packets" },
564     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
565                 8, "rx_bcast_packets" },
566     { Q_STATS_OFFSET32(no_buff_discard_hi),
567                 8, "rx_discards" },
568     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
569                 8, "tx_bytes" },
570     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
571                 8, "tx_ucast_packets" },
572     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
573                 8, "tx_mcast_packets" },
574     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
575                 8, "tx_bcast_packets" },
576     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
577                 8, "tpa_aggregations" },
578     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
579                 8, "tpa_aggregated_frames"},
580     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
581                 8, "tpa_bytes"},
582     { Q_STATS_OFFSET32(rx_calls),
583                 4, "rx_calls"},
584     { Q_STATS_OFFSET32(rx_pkts),
585                 4, "rx_pkts"},
586     { Q_STATS_OFFSET32(rx_tpa_pkts),
587                 4, "rx_tpa_pkts"},
588     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
589                 4, "rx_jumbo_sge_pkts"},
590     { Q_STATS_OFFSET32(rx_soft_errors),
591                 4, "rx_soft_errors"},
592     { Q_STATS_OFFSET32(rx_hw_csum_errors),
593                 4, "rx_hw_csum_errors"},
594     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
595                 4, "rx_ofld_frames_csum_ip"},
596     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
597                 4, "rx_ofld_frames_csum_tcp_udp"},
598     { Q_STATS_OFFSET32(rx_budget_reached),
599                 4, "rx_budget_reached"},
600     { Q_STATS_OFFSET32(tx_pkts),
601                 4, "tx_pkts"},
602     { Q_STATS_OFFSET32(tx_soft_errors),
603                 4, "tx_soft_errors"},
604     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
605                 4, "tx_ofld_frames_csum_ip"},
606     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
607                 4, "tx_ofld_frames_csum_tcp"},
608     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
609                 4, "tx_ofld_frames_csum_udp"},
610     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
611                 4, "tx_ofld_frames_lso"},
612     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
613                 4, "tx_ofld_frames_lso_hdr_splits"},
614     { Q_STATS_OFFSET32(tx_encap_failures),
615                 4, "tx_encap_failures"},
616     { Q_STATS_OFFSET32(tx_hw_queue_full),
617                 4, "tx_hw_queue_full"},
618     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
619                 4, "tx_hw_max_queue_depth"},
620     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
621                 4, "tx_dma_mapping_failure"},
622     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
623                 4, "tx_max_drbr_queue_depth"},
624     { Q_STATS_OFFSET32(tx_window_violation_std),
625                 4, "tx_window_violation_std"},
626     { Q_STATS_OFFSET32(tx_window_violation_tso),
627                 4, "tx_window_violation_tso"},
628 #if 0
629     { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
630                 4, "tx_unsupported_tso_request_ipv6"},
631     { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
632                 4, "tx_unsupported_tso_request_not_tcp"},
633 #endif
634     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
635                 4, "tx_chain_lost_mbuf"},
636     { Q_STATS_OFFSET32(tx_frames_deferred),
637                 4, "tx_frames_deferred"},
638     { Q_STATS_OFFSET32(tx_queue_xoff),
639                 4, "tx_queue_xoff"},
640     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
641                 4, "mbuf_defrag_attempts"},
642     { Q_STATS_OFFSET32(mbuf_defrag_failures),
643                 4, "mbuf_defrag_failures"},
644     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
645                 4, "mbuf_rx_bd_alloc_failed"},
646     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
647                 4, "mbuf_rx_bd_mapping_failed"},
648     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
649                 4, "mbuf_rx_tpa_alloc_failed"},
650     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
651                 4, "mbuf_rx_tpa_mapping_failed"},
652     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
653                 4, "mbuf_rx_sge_alloc_failed"},
654     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
655                 4, "mbuf_rx_sge_mapping_failed"},
656     { Q_STATS_OFFSET32(mbuf_alloc_tx),
657                 4, "mbuf_alloc_tx"},
658     { Q_STATS_OFFSET32(mbuf_alloc_rx),
659                 4, "mbuf_alloc_rx"},
660     { Q_STATS_OFFSET32(mbuf_alloc_sge),
661                 4, "mbuf_alloc_sge"},
662     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
663                 4, "mbuf_alloc_tpa"}
664 };
665 
666 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
667 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
668 
669 
670 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
671                                  uint8_t          read_cfg,
672                                  uint8_t          cmng_type);
673 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
674 static void    storm_memset_cmng(struct bxe_softc *sc,
675                                  struct cmng_init *cmng,
676                                  uint8_t          port);
677 static void    bxe_set_reset_global(struct bxe_softc *sc);
678 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
679 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
680                                  int              engine);
681 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
682 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
683                                    uint8_t          *global,
684                                    uint8_t          print);
685 static void    bxe_int_disable(struct bxe_softc *sc);
686 static int     bxe_release_leader_lock(struct bxe_softc *sc);
687 static void    bxe_pf_disable(struct bxe_softc *sc);
688 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
689 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
690                                       struct bxe_fastpath *fp,
691                                       uint16_t            rx_bd_prod,
692                                       uint16_t            rx_cq_prod,
693                                       uint16_t            rx_sge_prod);
694 static void    bxe_link_report_locked(struct bxe_softc *sc);
695 static void    bxe_link_report(struct bxe_softc *sc);
696 static void    bxe_link_status_update(struct bxe_softc *sc);
697 static void    bxe_periodic_callout_func(void *xsc);
698 static void    bxe_periodic_start(struct bxe_softc *sc);
699 static void    bxe_periodic_stop(struct bxe_softc *sc);
700 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
701                                     uint16_t prev_index,
702                                     uint16_t index);
703 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
704                                      int                 queue);
705 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
706                                      uint16_t            index);
707 static uint8_t bxe_txeof(struct bxe_softc *sc,
708                          struct bxe_fastpath *fp);
709 static void    bxe_task_fp(struct bxe_fastpath *fp);
710 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
711                                      struct mbuf      *m,
712                                      uint8_t          contents);
713 static int     bxe_alloc_mem(struct bxe_softc *sc);
714 static void    bxe_free_mem(struct bxe_softc *sc);
715 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
716 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
717 static int     bxe_interrupt_attach(struct bxe_softc *sc);
718 static void    bxe_interrupt_detach(struct bxe_softc *sc);
719 static void    bxe_set_rx_mode(struct bxe_softc *sc);
720 static int     bxe_init_locked(struct bxe_softc *sc);
721 static int     bxe_stop_locked(struct bxe_softc *sc);
722 static __noinline int bxe_nic_load(struct bxe_softc *sc,
723                                    int              load_mode);
724 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
725                                      uint32_t         unload_mode,
726                                      uint8_t          keep_link);
727 
728 static void bxe_handle_sp_tq(void *context, int pending);
729 static void bxe_handle_fp_tq(void *context, int pending);
730 
731 
732 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
733 uint32_t
734 calc_crc32(uint8_t  *crc32_packet,
735            uint32_t crc32_length,
736            uint32_t crc32_seed,
737            uint8_t  complement)
738 {
739    uint32_t byte         = 0;
740    uint32_t bit          = 0;
741    uint8_t  msb          = 0;
742    uint32_t temp         = 0;
743    uint32_t shft         = 0;
744    uint8_t  current_byte = 0;
745    uint32_t crc32_result = crc32_seed;
746    const uint32_t CRC32_POLY = 0x1edc6f41;
747 
748    if ((crc32_packet == NULL) ||
749        (crc32_length == 0) ||
750        ((crc32_length % 8) != 0))
751     {
752         return (crc32_result);
753     }
754 
755     for (byte = 0; byte < crc32_length; byte = byte + 1)
756     {
757         current_byte = crc32_packet[byte];
758         for (bit = 0; bit < 8; bit = bit + 1)
759         {
760             /* msb = crc32_result[31]; */
761             msb = (uint8_t)(crc32_result >> 31);
762 
763             crc32_result = crc32_result << 1;
764 
765             /* it (msb != current_byte[bit]) */
766             if (msb != (0x1 & (current_byte >> bit)))
767             {
768                 crc32_result = crc32_result ^ CRC32_POLY;
769                 /* crc32_result[0] = 1 */
770                 crc32_result |= 1;
771             }
772         }
773     }
774 
775     /* Last step is to:
776      * 1. "mirror" every bit
777      * 2. swap the 4 bytes
778      * 3. complement each bit
779      */
780 
781     /* Mirror */
782     temp = crc32_result;
783     shft = sizeof(crc32_result) * 8 - 1;
784 
785     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
786     {
787         temp <<= 1;
788         temp |= crc32_result & 1;
789         shft-- ;
790     }
791 
792     /* temp[31-bit] = crc32_result[bit] */
793     temp <<= shft;
794 
795     /* Swap */
796     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
797     {
798         uint32_t t0, t1, t2, t3;
799         t0 = (0x000000ff & (temp >> 24));
800         t1 = (0x0000ff00 & (temp >> 8));
801         t2 = (0x00ff0000 & (temp << 8));
802         t3 = (0xff000000 & (temp << 24));
803         crc32_result = t0 | t1 | t2 | t3;
804     }
805 
806     /* Complement */
807     if (complement)
808     {
809         crc32_result = ~crc32_result;
810     }
811 
812     return (crc32_result);
813 }
814 
815 int
816 bxe_test_bit(int                    nr,
817              volatile unsigned long *addr)
818 {
819     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
820 }
821 
822 void
823 bxe_set_bit(unsigned int           nr,
824             volatile unsigned long *addr)
825 {
826     atomic_set_acq_long(addr, (1 << nr));
827 }
828 
829 void
830 bxe_clear_bit(int                    nr,
831               volatile unsigned long *addr)
832 {
833     atomic_clear_acq_long(addr, (1 << nr));
834 }
835 
836 int
837 bxe_test_and_set_bit(int                    nr,
838                        volatile unsigned long *addr)
839 {
840     unsigned long x;
841     nr = (1 << nr);
842     do {
843         x = *addr;
844     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
845     // if (x & nr) bit_was_set; else bit_was_not_set;
846     return (x & nr);
847 }
848 
849 int
850 bxe_test_and_clear_bit(int                    nr,
851                        volatile unsigned long *addr)
852 {
853     unsigned long x;
854     nr = (1 << nr);
855     do {
856         x = *addr;
857     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
858     // if (x & nr) bit_was_set; else bit_was_not_set;
859     return (x & nr);
860 }
861 
862 int
863 bxe_cmpxchg(volatile int *addr,
864             int          old,
865             int          new)
866 {
867     int x;
868     do {
869         x = *addr;
870     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
871     return (x);
872 }
873 
874 /*
875  * Get DMA memory from the OS.
876  *
877  * Validates that the OS has provided DMA buffers in response to a
878  * bus_dmamap_load call and saves the physical address of those buffers.
879  * When the callback is used the OS will return 0 for the mapping function
880  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
881  * failures back to the caller.
882  *
883  * Returns:
884  *   Nothing.
885  */
886 static void
887 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
888 {
889     struct bxe_dma *dma = arg;
890 
891     if (error) {
892         dma->paddr = 0;
893         dma->nseg  = 0;
894         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
895     } else {
896         dma->paddr = segs->ds_addr;
897         dma->nseg  = nseg;
898 #if 0
899         BLOGD(dma->sc, DBG_LOAD,
900               "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
901               dma->msg, dma->vaddr, (void *)dma->paddr,
902               dma->nseg, dma->size);
903 #endif
904     }
905 }
906 
907 /*
908  * Allocate a block of memory and map it for DMA. No partial completions
909  * allowed and release any resources acquired if we can't acquire all
910  * resources.
911  *
912  * Returns:
913  *   0 = Success, !0 = Failure
914  */
915 int
916 bxe_dma_alloc(struct bxe_softc *sc,
917               bus_size_t       size,
918               struct bxe_dma   *dma,
919               const char       *msg)
920 {
921     int rc;
922 
923     if (dma->size > 0) {
924         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
925               (unsigned long)dma->size);
926         return (1);
927     }
928 
929     memset(dma, 0, sizeof(*dma)); /* sanity */
930     dma->sc   = sc;
931     dma->size = size;
932     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
933 
934     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
935                             BCM_PAGE_SIZE,      /* alignment */
936                             0,                  /* boundary limit */
937                             BUS_SPACE_MAXADDR,  /* restricted low */
938                             BUS_SPACE_MAXADDR,  /* restricted hi */
939                             NULL,               /* addr filter() */
940                             NULL,               /* addr filter() arg */
941                             size,               /* max map size */
942                             1,                  /* num discontinuous */
943                             size,               /* max seg size */
944                             BUS_DMA_ALLOCNOW,   /* flags */
945                             NULL,               /* lock() */
946                             NULL,               /* lock() arg */
947                             &dma->tag);         /* returned dma tag */
948     if (rc != 0) {
949         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
950         memset(dma, 0, sizeof(*dma));
951         return (1);
952     }
953 
954     rc = bus_dmamem_alloc(dma->tag,
955                           (void **)&dma->vaddr,
956                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
957                           &dma->map);
958     if (rc != 0) {
959         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
960         bus_dma_tag_destroy(dma->tag);
961         memset(dma, 0, sizeof(*dma));
962         return (1);
963     }
964 
965     rc = bus_dmamap_load(dma->tag,
966                          dma->map,
967                          dma->vaddr,
968                          size,
969                          bxe_dma_map_addr, /* BLOGD in here */
970                          dma,
971                          BUS_DMA_NOWAIT);
972     if (rc != 0) {
973         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
974         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
975         bus_dma_tag_destroy(dma->tag);
976         memset(dma, 0, sizeof(*dma));
977         return (1);
978     }
979 
980     return (0);
981 }
982 
983 void
984 bxe_dma_free(struct bxe_softc *sc,
985              struct bxe_dma   *dma)
986 {
987     if (dma->size > 0) {
988 #if 0
989         BLOGD(sc, DBG_LOAD,
990               "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
991               dma->msg, dma->vaddr, (void *)dma->paddr,
992               dma->nseg, dma->size);
993 #endif
994 
995         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
996 
997         bus_dmamap_sync(dma->tag, dma->map,
998                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
999         bus_dmamap_unload(dma->tag, dma->map);
1000         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1001         bus_dma_tag_destroy(dma->tag);
1002     }
1003 
1004     memset(dma, 0, sizeof(*dma));
1005 }
1006 
1007 /*
1008  * These indirect read and write routines are only during init.
1009  * The locking is handled by the MCP.
1010  */
1011 
1012 void
1013 bxe_reg_wr_ind(struct bxe_softc *sc,
1014                uint32_t         addr,
1015                uint32_t         val)
1016 {
1017     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1018     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1019     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1020 }
1021 
1022 uint32_t
1023 bxe_reg_rd_ind(struct bxe_softc *sc,
1024                uint32_t         addr)
1025 {
1026     uint32_t val;
1027 
1028     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1029     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1030     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1031 
1032     return (val);
1033 }
1034 
1035 #if 0
1036 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1037 {
1038     uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1039 
1040     switch (dmae->opcode & DMAE_COMMAND_DST) {
1041     case DMAE_CMD_DST_PCI:
1042         if (src_type == DMAE_CMD_SRC_PCI)
1043             DP(msglvl, "DMAE: opcode 0x%08x\n"
1044                "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1045                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1046                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1047                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1048                dmae->comp_addr_hi, dmae->comp_addr_lo,
1049                dmae->comp_val);
1050         else
1051             DP(msglvl, "DMAE: opcode 0x%08x\n"
1052                "src [%08x], len [%d*4], dst [%x:%08x]\n"
1053                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054                dmae->opcode, dmae->src_addr_lo >> 2,
1055                dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056                dmae->comp_addr_hi, dmae->comp_addr_lo,
1057                dmae->comp_val);
1058         break;
1059     case DMAE_CMD_DST_GRC:
1060         if (src_type == DMAE_CMD_SRC_PCI)
1061             DP(msglvl, "DMAE: opcode 0x%08x\n"
1062                "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1063                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1064                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1065                dmae->len, dmae->dst_addr_lo >> 2,
1066                dmae->comp_addr_hi, dmae->comp_addr_lo,
1067                dmae->comp_val);
1068         else
1069             DP(msglvl, "DMAE: opcode 0x%08x\n"
1070                "src [%08x], len [%d*4], dst [%08x]\n"
1071                "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072                dmae->opcode, dmae->src_addr_lo >> 2,
1073                dmae->len, dmae->dst_addr_lo >> 2,
1074                dmae->comp_addr_hi, dmae->comp_addr_lo,
1075                dmae->comp_val);
1076         break;
1077     default:
1078         if (src_type == DMAE_CMD_SRC_PCI)
1079             DP(msglvl, "DMAE: opcode 0x%08x\n"
1080                "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1081                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1082                dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1083                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1084                dmae->comp_val);
1085         else
1086             DP(msglvl, "DMAE: opcode 0x%08x\n"
1087                "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1088                "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1089                dmae->opcode, dmae->src_addr_lo >> 2,
1090                dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1091                dmae->comp_val);
1092         break;
1093     }
1094 
1095 }
1096 #endif
1097 
1098 static int
1099 bxe_acquire_hw_lock(struct bxe_softc *sc,
1100                     uint32_t         resource)
1101 {
1102     uint32_t lock_status;
1103     uint32_t resource_bit = (1 << resource);
1104     int func = SC_FUNC(sc);
1105     uint32_t hw_lock_control_reg;
1106     int cnt;
1107 
1108     /* validate the resource is within range */
1109     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1110         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1111         return (-1);
1112     }
1113 
1114     if (func <= 5) {
1115         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1116     } else {
1117         hw_lock_control_reg =
1118                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1119     }
1120 
1121     /* validate the resource is not already taken */
1122     lock_status = REG_RD(sc, hw_lock_control_reg);
1123     if (lock_status & resource_bit) {
1124         BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1125               lock_status, resource_bit);
1126         return (-1);
1127     }
1128 
1129     /* try every 5ms for 5 seconds */
1130     for (cnt = 0; cnt < 1000; cnt++) {
1131         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1132         lock_status = REG_RD(sc, hw_lock_control_reg);
1133         if (lock_status & resource_bit) {
1134             return (0);
1135         }
1136         DELAY(5000);
1137     }
1138 
1139     BLOGE(sc, "Resource lock timeout!\n");
1140     return (-1);
1141 }
1142 
1143 static int
1144 bxe_release_hw_lock(struct bxe_softc *sc,
1145                     uint32_t         resource)
1146 {
1147     uint32_t lock_status;
1148     uint32_t resource_bit = (1 << resource);
1149     int func = SC_FUNC(sc);
1150     uint32_t hw_lock_control_reg;
1151 
1152     /* validate the resource is within range */
1153     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1154         BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1155         return (-1);
1156     }
1157 
1158     if (func <= 5) {
1159         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1160     } else {
1161         hw_lock_control_reg =
1162                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1163     }
1164 
1165     /* validate the resource is currently taken */
1166     lock_status = REG_RD(sc, hw_lock_control_reg);
1167     if (!(lock_status & resource_bit)) {
1168         BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1169               lock_status, resource_bit);
1170         return (-1);
1171     }
1172 
1173     REG_WR(sc, hw_lock_control_reg, resource_bit);
1174     return (0);
1175 }
1176 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1177 {
1178 	BXE_PHY_LOCK(sc);
1179 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1180 }
1181 
1182 static void bxe_release_phy_lock(struct bxe_softc *sc)
1183 {
1184 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1185 	BXE_PHY_UNLOCK(sc);
1186 }
1187 /*
1188  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1189  * had we done things the other way around, if two pfs from the same port
1190  * would attempt to access nvram at the same time, we could run into a
1191  * scenario such as:
1192  * pf A takes the port lock.
1193  * pf B succeeds in taking the same lock since they are from the same port.
1194  * pf A takes the per pf misc lock. Performs eeprom access.
1195  * pf A finishes. Unlocks the per pf misc lock.
1196  * Pf B takes the lock and proceeds to perform it's own access.
1197  * pf A unlocks the per port lock, while pf B is still working (!).
1198  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1199  * access corrupted by pf B).*
1200  */
1201 static int
1202 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1203 {
1204     int port = SC_PORT(sc);
1205     int count, i;
1206     uint32_t val = 0;
1207 
1208     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1209     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1210 
1211     /* adjust timeout for emulation/FPGA */
1212     count = NVRAM_TIMEOUT_COUNT;
1213     if (CHIP_REV_IS_SLOW(sc)) {
1214         count *= 100;
1215     }
1216 
1217     /* request access to nvram interface */
1218     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1219            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1220 
1221     for (i = 0; i < count*10; i++) {
1222         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1223         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1224             break;
1225         }
1226 
1227         DELAY(5);
1228     }
1229 
1230     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1231         BLOGE(sc, "Cannot get access to nvram interface\n");
1232         return (-1);
1233     }
1234 
1235     return (0);
1236 }
1237 
1238 static int
1239 bxe_release_nvram_lock(struct bxe_softc *sc)
1240 {
1241     int port = SC_PORT(sc);
1242     int count, i;
1243     uint32_t val = 0;
1244 
1245     /* adjust timeout for emulation/FPGA */
1246     count = NVRAM_TIMEOUT_COUNT;
1247     if (CHIP_REV_IS_SLOW(sc)) {
1248         count *= 100;
1249     }
1250 
1251     /* relinquish nvram interface */
1252     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1253            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1254 
1255     for (i = 0; i < count*10; i++) {
1256         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1257         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1258             break;
1259         }
1260 
1261         DELAY(5);
1262     }
1263 
1264     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1265         BLOGE(sc, "Cannot free access to nvram interface\n");
1266         return (-1);
1267     }
1268 
1269     /* release HW lock: protect against other PFs in PF Direct Assignment */
1270     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1271 
1272     return (0);
1273 }
1274 
1275 static void
1276 bxe_enable_nvram_access(struct bxe_softc *sc)
1277 {
1278     uint32_t val;
1279 
1280     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1281 
1282     /* enable both bits, even on read */
1283     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1284            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1285 }
1286 
1287 static void
1288 bxe_disable_nvram_access(struct bxe_softc *sc)
1289 {
1290     uint32_t val;
1291 
1292     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1293 
1294     /* disable both bits, even after read */
1295     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1296            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1297                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1298 }
1299 
1300 static int
1301 bxe_nvram_read_dword(struct bxe_softc *sc,
1302                      uint32_t         offset,
1303                      uint32_t         *ret_val,
1304                      uint32_t         cmd_flags)
1305 {
1306     int count, i, rc;
1307     uint32_t val;
1308 
1309     /* build the command word */
1310     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1311 
1312     /* need to clear DONE bit separately */
1313     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1314 
1315     /* address of the NVRAM to read from */
1316     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1317            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1318 
1319     /* issue a read command */
1320     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1321 
1322     /* adjust timeout for emulation/FPGA */
1323     count = NVRAM_TIMEOUT_COUNT;
1324     if (CHIP_REV_IS_SLOW(sc)) {
1325         count *= 100;
1326     }
1327 
1328     /* wait for completion */
1329     *ret_val = 0;
1330     rc = -1;
1331     for (i = 0; i < count; i++) {
1332         DELAY(5);
1333         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1334 
1335         if (val & MCPR_NVM_COMMAND_DONE) {
1336             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1337             /* we read nvram data in cpu order
1338              * but ethtool sees it as an array of bytes
1339              * converting to big-endian will do the work
1340              */
1341             *ret_val = htobe32(val);
1342             rc = 0;
1343             break;
1344         }
1345     }
1346 
1347     if (rc == -1) {
1348         BLOGE(sc, "nvram read timeout expired\n");
1349     }
1350 
1351     return (rc);
1352 }
1353 
1354 static int
1355 bxe_nvram_read(struct bxe_softc *sc,
1356                uint32_t         offset,
1357                uint8_t          *ret_buf,
1358                int              buf_size)
1359 {
1360     uint32_t cmd_flags;
1361     uint32_t val;
1362     int rc;
1363 
1364     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1365         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1366               offset, buf_size);
1367         return (-1);
1368     }
1369 
1370     if ((offset + buf_size) > sc->devinfo.flash_size) {
1371         BLOGE(sc, "Invalid parameter, "
1372                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1373               offset, buf_size, sc->devinfo.flash_size);
1374         return (-1);
1375     }
1376 
1377     /* request access to nvram interface */
1378     rc = bxe_acquire_nvram_lock(sc);
1379     if (rc) {
1380         return (rc);
1381     }
1382 
1383     /* enable access to nvram interface */
1384     bxe_enable_nvram_access(sc);
1385 
1386     /* read the first word(s) */
1387     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1388     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1389         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1390         memcpy(ret_buf, &val, 4);
1391 
1392         /* advance to the next dword */
1393         offset += sizeof(uint32_t);
1394         ret_buf += sizeof(uint32_t);
1395         buf_size -= sizeof(uint32_t);
1396         cmd_flags = 0;
1397     }
1398 
1399     if (rc == 0) {
1400         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1401         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1402         memcpy(ret_buf, &val, 4);
1403     }
1404 
1405     /* disable access to nvram interface */
1406     bxe_disable_nvram_access(sc);
1407     bxe_release_nvram_lock(sc);
1408 
1409     return (rc);
1410 }
1411 
1412 static int
1413 bxe_nvram_write_dword(struct bxe_softc *sc,
1414                       uint32_t         offset,
1415                       uint32_t         val,
1416                       uint32_t         cmd_flags)
1417 {
1418     int count, i, rc;
1419 
1420     /* build the command word */
1421     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1422 
1423     /* need to clear DONE bit separately */
1424     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1425 
1426     /* write the data */
1427     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1428 
1429     /* address of the NVRAM to write to */
1430     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1431            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1432 
1433     /* issue the write command */
1434     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1435 
1436     /* adjust timeout for emulation/FPGA */
1437     count = NVRAM_TIMEOUT_COUNT;
1438     if (CHIP_REV_IS_SLOW(sc)) {
1439         count *= 100;
1440     }
1441 
1442     /* wait for completion */
1443     rc = -1;
1444     for (i = 0; i < count; i++) {
1445         DELAY(5);
1446         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1447         if (val & MCPR_NVM_COMMAND_DONE) {
1448             rc = 0;
1449             break;
1450         }
1451     }
1452 
1453     if (rc == -1) {
1454         BLOGE(sc, "nvram write timeout expired\n");
1455     }
1456 
1457     return (rc);
1458 }
1459 
1460 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1461 
1462 static int
1463 bxe_nvram_write1(struct bxe_softc *sc,
1464                  uint32_t         offset,
1465                  uint8_t          *data_buf,
1466                  int              buf_size)
1467 {
1468     uint32_t cmd_flags;
1469     uint32_t align_offset;
1470     uint32_t val;
1471     int rc;
1472 
1473     if ((offset + buf_size) > sc->devinfo.flash_size) {
1474         BLOGE(sc, "Invalid parameter, "
1475                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1476               offset, buf_size, sc->devinfo.flash_size);
1477         return (-1);
1478     }
1479 
1480     /* request access to nvram interface */
1481     rc = bxe_acquire_nvram_lock(sc);
1482     if (rc) {
1483         return (rc);
1484     }
1485 
1486     /* enable access to nvram interface */
1487     bxe_enable_nvram_access(sc);
1488 
1489     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1490     align_offset = (offset & ~0x03);
1491     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1492 
1493     if (rc == 0) {
1494         val &= ~(0xff << BYTE_OFFSET(offset));
1495         val |= (*data_buf << BYTE_OFFSET(offset));
1496 
1497         /* nvram data is returned as an array of bytes
1498          * convert it back to cpu order
1499          */
1500         val = be32toh(val);
1501 
1502         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1503     }
1504 
1505     /* disable access to nvram interface */
1506     bxe_disable_nvram_access(sc);
1507     bxe_release_nvram_lock(sc);
1508 
1509     return (rc);
1510 }
1511 
1512 static int
1513 bxe_nvram_write(struct bxe_softc *sc,
1514                 uint32_t         offset,
1515                 uint8_t          *data_buf,
1516                 int              buf_size)
1517 {
1518     uint32_t cmd_flags;
1519     uint32_t val;
1520     uint32_t written_so_far;
1521     int rc;
1522 
1523     if (buf_size == 1) {
1524         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1525     }
1526 
1527     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1528         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1529               offset, buf_size);
1530         return (-1);
1531     }
1532 
1533     if (buf_size == 0) {
1534         return (0); /* nothing to do */
1535     }
1536 
1537     if ((offset + buf_size) > sc->devinfo.flash_size) {
1538         BLOGE(sc, "Invalid parameter, "
1539                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1540               offset, buf_size, sc->devinfo.flash_size);
1541         return (-1);
1542     }
1543 
1544     /* request access to nvram interface */
1545     rc = bxe_acquire_nvram_lock(sc);
1546     if (rc) {
1547         return (rc);
1548     }
1549 
1550     /* enable access to nvram interface */
1551     bxe_enable_nvram_access(sc);
1552 
1553     written_so_far = 0;
1554     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1555     while ((written_so_far < buf_size) && (rc == 0)) {
1556         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1557             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1559             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1560         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1561             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1562         }
1563 
1564         memcpy(&val, data_buf, 4);
1565 
1566         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1567 
1568         /* advance to the next dword */
1569         offset += sizeof(uint32_t);
1570         data_buf += sizeof(uint32_t);
1571         written_so_far += sizeof(uint32_t);
1572         cmd_flags = 0;
1573     }
1574 
1575     /* disable access to nvram interface */
1576     bxe_disable_nvram_access(sc);
1577     bxe_release_nvram_lock(sc);
1578 
1579     return (rc);
1580 }
1581 
1582 /* copy command into DMAE command memory and set DMAE command Go */
1583 void
1584 bxe_post_dmae(struct bxe_softc    *sc,
1585               struct dmae_command *dmae,
1586               int                 idx)
1587 {
1588     uint32_t cmd_offset;
1589     int i;
1590 
1591     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1592     for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1593         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1594     }
1595 
1596     REG_WR(sc, dmae_reg_go_c[idx], 1);
1597 }
1598 
1599 uint32_t
1600 bxe_dmae_opcode_add_comp(uint32_t opcode,
1601                          uint8_t  comp_type)
1602 {
1603     return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1604                       DMAE_COMMAND_C_TYPE_ENABLE));
1605 }
1606 
1607 uint32_t
1608 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1609 {
1610     return (opcode & ~DMAE_COMMAND_SRC_RESET);
1611 }
1612 
1613 uint32_t
1614 bxe_dmae_opcode(struct bxe_softc *sc,
1615                 uint8_t          src_type,
1616                 uint8_t          dst_type,
1617                 uint8_t          with_comp,
1618                 uint8_t          comp_type)
1619 {
1620     uint32_t opcode = 0;
1621 
1622     opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1623                (dst_type << DMAE_COMMAND_DST_SHIFT));
1624 
1625     opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1626 
1627     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1628 
1629     opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1630                (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1631 
1632     opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1633 
1634 #ifdef __BIG_ENDIAN
1635     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1636 #else
1637     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1638 #endif
1639 
1640     if (with_comp) {
1641         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1642     }
1643 
1644     return (opcode);
1645 }
1646 
1647 static void
1648 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1649                         struct dmae_command *dmae,
1650                         uint8_t             src_type,
1651                         uint8_t             dst_type)
1652 {
1653     memset(dmae, 0, sizeof(struct dmae_command));
1654 
1655     /* set the opcode */
1656     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1657                                    TRUE, DMAE_COMP_PCI);
1658 
1659     /* fill in the completion parameters */
1660     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1661     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1662     dmae->comp_val     = DMAE_COMP_VAL;
1663 }
1664 
1665 /* issue a DMAE command over the init channel and wait for completion */
1666 static int
1667 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1668                          struct dmae_command *dmae)
1669 {
1670     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1671     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1672 
1673     BXE_DMAE_LOCK(sc);
1674 
1675     /* reset completion */
1676     *wb_comp = 0;
1677 
1678     /* post the command on the channel used for initializations */
1679     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1680 
1681     /* wait for completion */
1682     DELAY(5);
1683 
1684     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1685         if (!timeout ||
1686             (sc->recovery_state != BXE_RECOVERY_DONE &&
1687              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1688             BLOGE(sc, "DMAE timeout!\n");
1689             BXE_DMAE_UNLOCK(sc);
1690             return (DMAE_TIMEOUT);
1691         }
1692 
1693         timeout--;
1694         DELAY(50);
1695     }
1696 
1697     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1698         BLOGE(sc, "DMAE PCI error!\n");
1699         BXE_DMAE_UNLOCK(sc);
1700         return (DMAE_PCI_ERROR);
1701     }
1702 
1703     BXE_DMAE_UNLOCK(sc);
1704     return (0);
1705 }
1706 
1707 void
1708 bxe_read_dmae(struct bxe_softc *sc,
1709               uint32_t         src_addr,
1710               uint32_t         len32)
1711 {
1712     struct dmae_command dmae;
1713     uint32_t *data;
1714     int i, rc;
1715 
1716     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1717 
1718     if (!sc->dmae_ready) {
1719         data = BXE_SP(sc, wb_data[0]);
1720 
1721         for (i = 0; i < len32; i++) {
1722             data[i] = (CHIP_IS_E1(sc)) ?
1723                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1724                           REG_RD(sc, (src_addr + (i * 4)));
1725         }
1726 
1727         return;
1728     }
1729 
1730     /* set opcode and fixed command fields */
1731     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1732 
1733     /* fill in addresses and len */
1734     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1735     dmae.src_addr_hi = 0;
1736     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1737     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1738     dmae.len         = len32;
1739 
1740     /* issue the command and wait for completion */
1741     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1742         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1743     };
1744 }
1745 
1746 void
1747 bxe_write_dmae(struct bxe_softc *sc,
1748                bus_addr_t       dma_addr,
1749                uint32_t         dst_addr,
1750                uint32_t         len32)
1751 {
1752     struct dmae_command dmae;
1753     int rc;
1754 
1755     if (!sc->dmae_ready) {
1756         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1757 
1758         if (CHIP_IS_E1(sc)) {
1759             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760         } else {
1761             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1762         }
1763 
1764         return;
1765     }
1766 
1767     /* set opcode and fixed command fields */
1768     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1769 
1770     /* fill in addresses and len */
1771     dmae.src_addr_lo = U64_LO(dma_addr);
1772     dmae.src_addr_hi = U64_HI(dma_addr);
1773     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1774     dmae.dst_addr_hi = 0;
1775     dmae.len         = len32;
1776 
1777     /* issue the command and wait for completion */
1778     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1779         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1780     }
1781 }
1782 
1783 void
1784 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1785                         bus_addr_t       phys_addr,
1786                         uint32_t         addr,
1787                         uint32_t         len)
1788 {
1789     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1790     int offset = 0;
1791 
1792     while (len > dmae_wr_max) {
1793         bxe_write_dmae(sc,
1794                        (phys_addr + offset), /* src DMA address */
1795                        (addr + offset),      /* dst GRC address */
1796                        dmae_wr_max);
1797         offset += (dmae_wr_max * 4);
1798         len -= dmae_wr_max;
1799     }
1800 
1801     bxe_write_dmae(sc,
1802                    (phys_addr + offset), /* src DMA address */
1803                    (addr + offset),      /* dst GRC address */
1804                    len);
1805 }
1806 
1807 void
1808 bxe_set_ctx_validation(struct bxe_softc   *sc,
1809                        struct eth_context *cxt,
1810                        uint32_t           cid)
1811 {
1812     /* ustorm cxt validation */
1813     cxt->ustorm_ag_context.cdu_usage =
1814         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1815             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1816     /* xcontext validation */
1817     cxt->xstorm_ag_context.cdu_reserved =
1818         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1819             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1820 }
1821 
1822 static void
1823 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1824                             uint8_t          port,
1825                             uint8_t          fw_sb_id,
1826                             uint8_t          sb_index,
1827                             uint8_t          ticks)
1828 {
1829     uint32_t addr =
1830         (BAR_CSTRORM_INTMEM +
1831          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1832 
1833     REG_WR8(sc, addr, ticks);
1834 
1835     BLOGD(sc, DBG_LOAD,
1836           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1837           port, fw_sb_id, sb_index, ticks);
1838 }
1839 
1840 static void
1841 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1842                             uint8_t          port,
1843                             uint16_t         fw_sb_id,
1844                             uint8_t          sb_index,
1845                             uint8_t          disable)
1846 {
1847     uint32_t enable_flag =
1848         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1849     uint32_t addr =
1850         (BAR_CSTRORM_INTMEM +
1851          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1852     uint8_t flags;
1853 
1854     /* clear and set */
1855     flags = REG_RD8(sc, addr);
1856     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1857     flags |= enable_flag;
1858     REG_WR8(sc, addr, flags);
1859 
1860     BLOGD(sc, DBG_LOAD,
1861           "port %d fw_sb_id %d sb_index %d disable %d\n",
1862           port, fw_sb_id, sb_index, disable);
1863 }
1864 
1865 void
1866 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1867                              uint8_t          fw_sb_id,
1868                              uint8_t          sb_index,
1869                              uint8_t          disable,
1870                              uint16_t         usec)
1871 {
1872     int port = SC_PORT(sc);
1873     uint8_t ticks = (usec / 4); /* XXX ??? */
1874 
1875     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1876 
1877     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1878     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1879 }
1880 
1881 void
1882 elink_cb_udelay(struct bxe_softc *sc,
1883                 uint32_t         usecs)
1884 {
1885     DELAY(usecs);
1886 }
1887 
1888 uint32_t
1889 elink_cb_reg_read(struct bxe_softc *sc,
1890                   uint32_t         reg_addr)
1891 {
1892     return (REG_RD(sc, reg_addr));
1893 }
1894 
1895 void
1896 elink_cb_reg_write(struct bxe_softc *sc,
1897                    uint32_t         reg_addr,
1898                    uint32_t         val)
1899 {
1900     REG_WR(sc, reg_addr, val);
1901 }
1902 
1903 void
1904 elink_cb_reg_wb_write(struct bxe_softc *sc,
1905                       uint32_t         offset,
1906                       uint32_t         *wb_write,
1907                       uint16_t         len)
1908 {
1909     REG_WR_DMAE(sc, offset, wb_write, len);
1910 }
1911 
1912 void
1913 elink_cb_reg_wb_read(struct bxe_softc *sc,
1914                      uint32_t         offset,
1915                      uint32_t         *wb_write,
1916                      uint16_t         len)
1917 {
1918     REG_RD_DMAE(sc, offset, wb_write, len);
1919 }
1920 
1921 uint8_t
1922 elink_cb_path_id(struct bxe_softc *sc)
1923 {
1924     return (SC_PATH(sc));
1925 }
1926 
1927 void
1928 elink_cb_event_log(struct bxe_softc     *sc,
1929                    const elink_log_id_t elink_log_id,
1930                    ...)
1931 {
1932     /* XXX */
1933 #if 0
1934     //va_list ap;
1935     va_start(ap, elink_log_id);
1936     _XXX_(sc, lm_log_id, ap);
1937     va_end(ap);
1938 #endif
1939     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1940 }
1941 
1942 static int
1943 bxe_set_spio(struct bxe_softc *sc,
1944              int              spio,
1945              uint32_t         mode)
1946 {
1947     uint32_t spio_reg;
1948 
1949     /* Only 2 SPIOs are configurable */
1950     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1951         BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1952         return (-1);
1953     }
1954 
1955     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1956 
1957     /* read SPIO and mask except the float bits */
1958     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1959 
1960     switch (mode) {
1961     case MISC_SPIO_OUTPUT_LOW:
1962         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1963         /* clear FLOAT and set CLR */
1964         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1965         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1966         break;
1967 
1968     case MISC_SPIO_OUTPUT_HIGH:
1969         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1970         /* clear FLOAT and set SET */
1971         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1972         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1973         break;
1974 
1975     case MISC_SPIO_INPUT_HI_Z:
1976         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1977         /* set FLOAT */
1978         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1979         break;
1980 
1981     default:
1982         break;
1983     }
1984 
1985     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1986     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1987 
1988     return (0);
1989 }
1990 
1991 static int
1992 bxe_gpio_read(struct bxe_softc *sc,
1993               int              gpio_num,
1994               uint8_t          port)
1995 {
1996     /* The GPIO should be swapped if swap register is set and active */
1997     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1998                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1999     int gpio_shift = (gpio_num +
2000                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2001     uint32_t gpio_mask = (1 << gpio_shift);
2002     uint32_t gpio_reg;
2003 
2004     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2005         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2006         return (-1);
2007     }
2008 
2009     /* read GPIO value */
2010     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2011 
2012     /* get the requested pin value */
2013     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2014 }
2015 
2016 static int
2017 bxe_gpio_write(struct bxe_softc *sc,
2018                int              gpio_num,
2019                uint32_t         mode,
2020                uint8_t          port)
2021 {
2022     /* The GPIO should be swapped if swap register is set and active */
2023     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2024                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2025     int gpio_shift = (gpio_num +
2026                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2027     uint32_t gpio_mask = (1 << gpio_shift);
2028     uint32_t gpio_reg;
2029 
2030     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2031         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2032         return (-1);
2033     }
2034 
2035     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2036 
2037     /* read GPIO and mask except the float bits */
2038     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2039 
2040     switch (mode) {
2041     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2042         BLOGD(sc, DBG_PHY,
2043               "Set GPIO %d (shift %d) -> output low\n",
2044               gpio_num, gpio_shift);
2045         /* clear FLOAT and set CLR */
2046         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2047         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2048         break;
2049 
2050     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2051         BLOGD(sc, DBG_PHY,
2052               "Set GPIO %d (shift %d) -> output high\n",
2053               gpio_num, gpio_shift);
2054         /* clear FLOAT and set SET */
2055         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2057         break;
2058 
2059     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2060         BLOGD(sc, DBG_PHY,
2061               "Set GPIO %d (shift %d) -> input\n",
2062               gpio_num, gpio_shift);
2063         /* set FLOAT */
2064         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065         break;
2066 
2067     default:
2068         break;
2069     }
2070 
2071     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2072     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2073 
2074     return (0);
2075 }
2076 
2077 static int
2078 bxe_gpio_mult_write(struct bxe_softc *sc,
2079                     uint8_t          pins,
2080                     uint32_t         mode)
2081 {
2082     uint32_t gpio_reg;
2083 
2084     /* any port swapping should be handled by caller */
2085 
2086     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2087 
2088     /* read GPIO and mask except the float bits */
2089     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2090     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2091     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2092     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2093 
2094     switch (mode) {
2095     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2096         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2097         /* set CLR */
2098         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2099         break;
2100 
2101     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2102         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2103         /* set SET */
2104         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2105         break;
2106 
2107     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2108         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2109         /* set FLOAT */
2110         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2111         break;
2112 
2113     default:
2114         BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2115         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2116         return (-1);
2117     }
2118 
2119     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2120     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121 
2122     return (0);
2123 }
2124 
2125 static int
2126 bxe_gpio_int_write(struct bxe_softc *sc,
2127                    int              gpio_num,
2128                    uint32_t         mode,
2129                    uint8_t          port)
2130 {
2131     /* The GPIO should be swapped if swap register is set and active */
2132     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2133                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2134     int gpio_shift = (gpio_num +
2135                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2136     uint32_t gpio_mask = (1 << gpio_shift);
2137     uint32_t gpio_reg;
2138 
2139     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2140         BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2141         return (-1);
2142     }
2143 
2144     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2145 
2146     /* read GPIO int */
2147     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2148 
2149     switch (mode) {
2150     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2151         BLOGD(sc, DBG_PHY,
2152               "Clear GPIO INT %d (shift %d) -> output low\n",
2153               gpio_num, gpio_shift);
2154         /* clear SET and set CLR */
2155         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2156         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2157         break;
2158 
2159     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2160         BLOGD(sc, DBG_PHY,
2161               "Set GPIO INT %d (shift %d) -> output high\n",
2162               gpio_num, gpio_shift);
2163         /* clear CLR and set SET */
2164         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2165         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2166         break;
2167 
2168     default:
2169         break;
2170     }
2171 
2172     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2173     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2174 
2175     return (0);
2176 }
2177 
2178 uint32_t
2179 elink_cb_gpio_read(struct bxe_softc *sc,
2180                    uint16_t         gpio_num,
2181                    uint8_t          port)
2182 {
2183     return (bxe_gpio_read(sc, gpio_num, port));
2184 }
2185 
2186 uint8_t
2187 elink_cb_gpio_write(struct bxe_softc *sc,
2188                     uint16_t         gpio_num,
2189                     uint8_t          mode, /* 0=low 1=high */
2190                     uint8_t          port)
2191 {
2192     return (bxe_gpio_write(sc, gpio_num, mode, port));
2193 }
2194 
2195 uint8_t
2196 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2197                          uint8_t          pins,
2198                          uint8_t          mode) /* 0=low 1=high */
2199 {
2200     return (bxe_gpio_mult_write(sc, pins, mode));
2201 }
2202 
2203 uint8_t
2204 elink_cb_gpio_int_write(struct bxe_softc *sc,
2205                         uint16_t         gpio_num,
2206                         uint8_t          mode, /* 0=low 1=high */
2207                         uint8_t          port)
2208 {
2209     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2210 }
2211 
2212 void
2213 elink_cb_notify_link_changed(struct bxe_softc *sc)
2214 {
2215     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2216                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2217 }
2218 
2219 /* send the MCP a request, block until there is a reply */
2220 uint32_t
2221 elink_cb_fw_command(struct bxe_softc *sc,
2222                     uint32_t         command,
2223                     uint32_t         param)
2224 {
2225     int mb_idx = SC_FW_MB_IDX(sc);
2226     uint32_t seq;
2227     uint32_t rc = 0;
2228     uint32_t cnt = 1;
2229     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2230 
2231     BXE_FWMB_LOCK(sc);
2232 
2233     seq = ++sc->fw_seq;
2234     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2235     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2236 
2237     BLOGD(sc, DBG_PHY,
2238           "wrote command 0x%08x to FW MB param 0x%08x\n",
2239           (command | seq), param);
2240 
2241     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2242     do {
2243         DELAY(delay * 1000);
2244         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2245     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2246 
2247     BLOGD(sc, DBG_PHY,
2248           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2249           cnt*delay, rc, seq);
2250 
2251     /* is this a reply to our command? */
2252     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2253         rc &= FW_MSG_CODE_MASK;
2254     } else {
2255         /* Ruh-roh! */
2256         BLOGE(sc, "FW failed to respond!\n");
2257         // XXX bxe_fw_dump(sc);
2258         rc = 0;
2259     }
2260 
2261     BXE_FWMB_UNLOCK(sc);
2262     return (rc);
2263 }
2264 
2265 static uint32_t
2266 bxe_fw_command(struct bxe_softc *sc,
2267                uint32_t         command,
2268                uint32_t         param)
2269 {
2270     return (elink_cb_fw_command(sc, command, param));
2271 }
2272 
2273 static void
2274 __storm_memset_dma_mapping(struct bxe_softc *sc,
2275                            uint32_t         addr,
2276                            bus_addr_t       mapping)
2277 {
2278     REG_WR(sc, addr, U64_LO(mapping));
2279     REG_WR(sc, (addr + 4), U64_HI(mapping));
2280 }
2281 
2282 static void
2283 storm_memset_spq_addr(struct bxe_softc *sc,
2284                       bus_addr_t       mapping,
2285                       uint16_t         abs_fid)
2286 {
2287     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2288                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2289     __storm_memset_dma_mapping(sc, addr, mapping);
2290 }
2291 
2292 static void
2293 storm_memset_vf_to_pf(struct bxe_softc *sc,
2294                       uint16_t         abs_fid,
2295                       uint16_t         pf_id)
2296 {
2297     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2300     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2301 }
2302 
2303 static void
2304 storm_memset_func_en(struct bxe_softc *sc,
2305                      uint16_t         abs_fid,
2306                      uint8_t          enable)
2307 {
2308     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2311     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2312 }
2313 
2314 static void
2315 storm_memset_eq_data(struct bxe_softc       *sc,
2316                      struct event_ring_data *eq_data,
2317                      uint16_t               pfid)
2318 {
2319     uint32_t addr;
2320     size_t size;
2321 
2322     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2323     size = sizeof(struct event_ring_data);
2324     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2325 }
2326 
2327 static void
2328 storm_memset_eq_prod(struct bxe_softc *sc,
2329                      uint16_t         eq_prod,
2330                      uint16_t         pfid)
2331 {
2332     uint32_t addr = (BAR_CSTRORM_INTMEM +
2333                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2334     REG_WR16(sc, addr, eq_prod);
2335 }
2336 
2337 /*
2338  * Post a slowpath command.
2339  *
2340  * A slowpath command is used to propogate a configuration change through
2341  * the controller in a controlled manner, allowing each STORM processor and
2342  * other H/W blocks to phase in the change.  The commands sent on the
2343  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2344  * completion of the ramrod will occur in different ways.  Here's a
2345  * breakdown of ramrods and how they complete:
2346  *
2347  * RAMROD_CMD_ID_ETH_PORT_SETUP
2348  *   Used to setup the leading connection on a port.  Completes on the
2349  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2350  *
2351  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2352  *   Used to setup an additional connection on a port.  Completes on the
2353  *   RCQ of the multi-queue/RSS connection being initialized.
2354  *
2355  * RAMROD_CMD_ID_ETH_STAT_QUERY
2356  *   Used to force the storm processors to update the statistics database
2357  *   in host memory.  This ramrod is send on the leading connection CID and
2358  *   completes as an index increment of the CSTORM on the default status
2359  *   block.
2360  *
2361  * RAMROD_CMD_ID_ETH_UPDATE
2362  *   Used to update the state of the leading connection, usually to udpate
2363  *   the RSS indirection table.  Completes on the RCQ of the leading
2364  *   connection. (Not currently used under FreeBSD until OS support becomes
2365  *   available.)
2366  *
2367  * RAMROD_CMD_ID_ETH_HALT
2368  *   Used when tearing down a connection prior to driver unload.  Completes
2369  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2370  *   use this on the leading connection.
2371  *
2372  * RAMROD_CMD_ID_ETH_SET_MAC
2373  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2374  *   the RCQ of the leading connection.
2375  *
2376  * RAMROD_CMD_ID_ETH_CFC_DEL
2377  *   Used when tearing down a conneciton prior to driver unload.  Completes
2378  *   on the RCQ of the leading connection (since the current connection
2379  *   has been completely removed from controller memory).
2380  *
2381  * RAMROD_CMD_ID_ETH_PORT_DEL
2382  *   Used to tear down the leading connection prior to driver unload,
2383  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2384  *   default status block.
2385  *
2386  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2387  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2388  *   RSS connection that is being offloaded.  (Not currently used under
2389  *   FreeBSD.)
2390  *
2391  * There can only be one command pending per function.
2392  *
2393  * Returns:
2394  *   0 = Success, !0 = Failure.
2395  */
2396 
2397 /* must be called under the spq lock */
2398 static inline
2399 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2400 {
2401     struct eth_spe *next_spe = sc->spq_prod_bd;
2402 
2403     if (sc->spq_prod_bd == sc->spq_last_bd) {
2404         /* wrap back to the first eth_spq */
2405         sc->spq_prod_bd = sc->spq;
2406         sc->spq_prod_idx = 0;
2407     } else {
2408         sc->spq_prod_bd++;
2409         sc->spq_prod_idx++;
2410     }
2411 
2412     return (next_spe);
2413 }
2414 
2415 /* must be called under the spq lock */
2416 static inline
2417 void bxe_sp_prod_update(struct bxe_softc *sc)
2418 {
2419     int func = SC_FUNC(sc);
2420 
2421     /*
2422      * Make sure that BD data is updated before writing the producer.
2423      * BD data is written to the memory, the producer is read from the
2424      * memory, thus we need a full memory barrier to ensure the ordering.
2425      */
2426     mb();
2427 
2428     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2429              sc->spq_prod_idx);
2430 
2431     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2432                       BUS_SPACE_BARRIER_WRITE);
2433 }
2434 
2435 /**
2436  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2437  *
2438  * @cmd:      command to check
2439  * @cmd_type: command type
2440  */
2441 static inline
2442 int bxe_is_contextless_ramrod(int cmd,
2443                               int cmd_type)
2444 {
2445     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2446         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2447         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2448         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2449         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2450         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2451         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2452         return (TRUE);
2453     } else {
2454         return (FALSE);
2455     }
2456 }
2457 
2458 /**
2459  * bxe_sp_post - place a single command on an SP ring
2460  *
2461  * @sc:         driver handle
2462  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2463  * @cid:        SW CID the command is related to
2464  * @data_hi:    command private data address (high 32 bits)
2465  * @data_lo:    command private data address (low 32 bits)
2466  * @cmd_type:   command type (e.g. NONE, ETH)
2467  *
2468  * SP data is handled as if it's always an address pair, thus data fields are
2469  * not swapped to little endian in upper functions. Instead this function swaps
2470  * data as if it's two uint32 fields.
2471  */
2472 int
2473 bxe_sp_post(struct bxe_softc *sc,
2474             int              command,
2475             int              cid,
2476             uint32_t         data_hi,
2477             uint32_t         data_lo,
2478             int              cmd_type)
2479 {
2480     struct eth_spe *spe;
2481     uint16_t type;
2482     int common;
2483 
2484     common = bxe_is_contextless_ramrod(command, cmd_type);
2485 
2486     BXE_SP_LOCK(sc);
2487 
2488     if (common) {
2489         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2490             BLOGE(sc, "EQ ring is full!\n");
2491             BXE_SP_UNLOCK(sc);
2492             return (-1);
2493         }
2494     } else {
2495         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2496             BLOGE(sc, "SPQ ring is full!\n");
2497             BXE_SP_UNLOCK(sc);
2498             return (-1);
2499         }
2500     }
2501 
2502     spe = bxe_sp_get_next(sc);
2503 
2504     /* CID needs port number to be encoded int it */
2505     spe->hdr.conn_and_cmd_data =
2506         htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2507 
2508     type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2509 
2510     /* TBD: Check if it works for VFs */
2511     type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2512              SPE_HDR_FUNCTION_ID);
2513 
2514     spe->hdr.type = htole16(type);
2515 
2516     spe->data.update_data_addr.hi = htole32(data_hi);
2517     spe->data.update_data_addr.lo = htole32(data_lo);
2518 
2519     /*
2520      * It's ok if the actual decrement is issued towards the memory
2521      * somewhere between the lock and unlock. Thus no more explict
2522      * memory barrier is needed.
2523      */
2524     if (common) {
2525         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2526     } else {
2527         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2528     }
2529 
2530     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2531     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2532           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2533     BLOGD(sc, DBG_SP,
2534           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2535           sc->spq_prod_idx,
2536           (uint32_t)U64_HI(sc->spq_dma.paddr),
2537           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2538           command,
2539           common,
2540           HW_CID(sc, cid),
2541           data_hi,
2542           data_lo,
2543           type,
2544           atomic_load_acq_long(&sc->cq_spq_left),
2545           atomic_load_acq_long(&sc->eq_spq_left));
2546 
2547     bxe_sp_prod_update(sc);
2548 
2549     BXE_SP_UNLOCK(sc);
2550     return (0);
2551 }
2552 
2553 /**
2554  * bxe_debug_print_ind_table - prints the indirection table configuration.
2555  *
2556  * @sc: driver hanlde
2557  * @p:  pointer to rss configuration
2558  */
2559 #if 0
2560 static void
2561 bxe_debug_print_ind_table(struct bxe_softc               *sc,
2562                           struct ecore_config_rss_params *p)
2563 {
2564     int i;
2565 
2566     BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2567     BLOGD(sc, DBG_LOAD, "    0x0000: ");
2568     for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2569         BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2570 
2571         /* Print 4 bytes in a line */
2572         if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2573             (((i + 1) & 0x3) == 0)) {
2574             BLOGD(sc, DBG_LOAD, "\n");
2575             BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2576         }
2577     }
2578 
2579     BLOGD(sc, DBG_LOAD, "\n");
2580 }
2581 #endif
2582 
2583 /*
2584  * FreeBSD Device probe function.
2585  *
2586  * Compares the device found to the driver's list of supported devices and
2587  * reports back to the bsd loader whether this is the right driver for the device.
2588  * This is the driver entry function called from the "kldload" command.
2589  *
2590  * Returns:
2591  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2592  */
2593 static int
2594 bxe_probe(device_t dev)
2595 {
2596     struct bxe_softc *sc;
2597     struct bxe_device_type *t;
2598     char *descbuf;
2599     uint16_t did, sdid, svid, vid;
2600 
2601     /* Find our device structure */
2602     sc = device_get_softc(dev);
2603     sc->dev = dev;
2604     t = bxe_devs;
2605 
2606     /* Get the data for the device to be probed. */
2607     vid  = pci_get_vendor(dev);
2608     did  = pci_get_device(dev);
2609     svid = pci_get_subvendor(dev);
2610     sdid = pci_get_subdevice(dev);
2611 
2612     BLOGD(sc, DBG_LOAD,
2613           "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2614           "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2615 
2616     /* Look through the list of known devices for a match. */
2617     while (t->bxe_name != NULL) {
2618         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2619             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2620             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2621             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2622             if (descbuf == NULL)
2623                 return (ENOMEM);
2624 
2625             /* Print out the device identity. */
2626             snprintf(descbuf, BXE_DEVDESC_MAX,
2627                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2628                      (((pci_read_config(dev, PCIR_REVID, 4) &
2629                         0xf0) >> 4) + 'A'),
2630                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2631                      BXE_DRIVER_VERSION);
2632 
2633             device_set_desc_copy(dev, descbuf);
2634             free(descbuf, M_TEMP);
2635             return (BUS_PROBE_DEFAULT);
2636         }
2637         t++;
2638     }
2639 
2640     return (ENXIO);
2641 }
2642 
2643 static void
2644 bxe_init_mutexes(struct bxe_softc *sc)
2645 {
2646 #ifdef BXE_CORE_LOCK_SX
2647     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2648              "bxe%d_core_lock", sc->unit);
2649     sx_init(&sc->core_sx, sc->core_sx_name);
2650 #else
2651     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2652              "bxe%d_core_lock", sc->unit);
2653     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2654 #endif
2655 
2656     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2657              "bxe%d_sp_lock", sc->unit);
2658     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2659 
2660     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2661              "bxe%d_dmae_lock", sc->unit);
2662     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2663 
2664     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2665              "bxe%d_phy_lock", sc->unit);
2666     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2667 
2668     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2669              "bxe%d_fwmb_lock", sc->unit);
2670     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2671 
2672     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2673              "bxe%d_print_lock", sc->unit);
2674     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2675 
2676     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2677              "bxe%d_stats_lock", sc->unit);
2678     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2679 
2680     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2681              "bxe%d_mcast_lock", sc->unit);
2682     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2683 }
2684 
2685 static void
2686 bxe_release_mutexes(struct bxe_softc *sc)
2687 {
2688 #ifdef BXE_CORE_LOCK_SX
2689     sx_destroy(&sc->core_sx);
2690 #else
2691     if (mtx_initialized(&sc->core_mtx)) {
2692         mtx_destroy(&sc->core_mtx);
2693     }
2694 #endif
2695 
2696     if (mtx_initialized(&sc->sp_mtx)) {
2697         mtx_destroy(&sc->sp_mtx);
2698     }
2699 
2700     if (mtx_initialized(&sc->dmae_mtx)) {
2701         mtx_destroy(&sc->dmae_mtx);
2702     }
2703 
2704     if (mtx_initialized(&sc->port.phy_mtx)) {
2705         mtx_destroy(&sc->port.phy_mtx);
2706     }
2707 
2708     if (mtx_initialized(&sc->fwmb_mtx)) {
2709         mtx_destroy(&sc->fwmb_mtx);
2710     }
2711 
2712     if (mtx_initialized(&sc->print_mtx)) {
2713         mtx_destroy(&sc->print_mtx);
2714     }
2715 
2716     if (mtx_initialized(&sc->stats_mtx)) {
2717         mtx_destroy(&sc->stats_mtx);
2718     }
2719 
2720     if (mtx_initialized(&sc->mcast_mtx)) {
2721         mtx_destroy(&sc->mcast_mtx);
2722     }
2723 }
2724 
2725 static void
2726 bxe_tx_disable(struct bxe_softc* sc)
2727 {
2728     if_t ifp = sc->ifp;
2729 
2730     /* tell the stack the driver is stopped and TX queue is full */
2731     if (ifp !=  NULL) {
2732         if_setdrvflags(ifp, 0);
2733     }
2734 }
2735 
2736 static void
2737 bxe_drv_pulse(struct bxe_softc *sc)
2738 {
2739     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2740              sc->fw_drv_pulse_wr_seq);
2741 }
2742 
2743 static inline uint16_t
2744 bxe_tx_avail(struct bxe_softc *sc,
2745              struct bxe_fastpath *fp)
2746 {
2747     int16_t  used;
2748     uint16_t prod;
2749     uint16_t cons;
2750 
2751     prod = fp->tx_bd_prod;
2752     cons = fp->tx_bd_cons;
2753 
2754     used = SUB_S16(prod, cons);
2755 
2756 #if 0
2757     KASSERT((used < 0), ("used tx bds < 0"));
2758     KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2759     KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2760             ("invalid number of tx bds used"));
2761 #endif
2762 
2763     return (int16_t)(sc->tx_ring_size) - used;
2764 }
2765 
2766 static inline int
2767 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2768 {
2769     uint16_t hw_cons;
2770 
2771     mb(); /* status block fields can change */
2772     hw_cons = le16toh(*fp->tx_cons_sb);
2773     return (hw_cons != fp->tx_pkt_cons);
2774 }
2775 
2776 static inline uint8_t
2777 bxe_has_tx_work(struct bxe_fastpath *fp)
2778 {
2779     /* expand this for multi-cos if ever supported */
2780     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2781 }
2782 
2783 static inline int
2784 bxe_has_rx_work(struct bxe_fastpath *fp)
2785 {
2786     uint16_t rx_cq_cons_sb;
2787 
2788     mb(); /* status block fields can change */
2789     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2790     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2791         rx_cq_cons_sb++;
2792     return (fp->rx_cq_cons != rx_cq_cons_sb);
2793 }
2794 
2795 static void
2796 bxe_sp_event(struct bxe_softc    *sc,
2797              struct bxe_fastpath *fp,
2798              union eth_rx_cqe    *rr_cqe)
2799 {
2800     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2801     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2802     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2803     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2804 
2805     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2806           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2807 
2808 #if 0
2809     /*
2810      * If cid is within VF range, replace the slowpath object with the
2811      * one corresponding to this VF
2812      */
2813     if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2814         bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2815     }
2816 #endif
2817 
2818     switch (command) {
2819     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2820         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2821         drv_cmd = ECORE_Q_CMD_UPDATE;
2822         break;
2823 
2824     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2825         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2826         drv_cmd = ECORE_Q_CMD_SETUP;
2827         break;
2828 
2829     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2830         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2831         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2832         break;
2833 
2834     case (RAMROD_CMD_ID_ETH_HALT):
2835         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2836         drv_cmd = ECORE_Q_CMD_HALT;
2837         break;
2838 
2839     case (RAMROD_CMD_ID_ETH_TERMINATE):
2840         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2841         drv_cmd = ECORE_Q_CMD_TERMINATE;
2842         break;
2843 
2844     case (RAMROD_CMD_ID_ETH_EMPTY):
2845         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2846         drv_cmd = ECORE_Q_CMD_EMPTY;
2847         break;
2848 
2849     default:
2850         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2851               command, fp->index);
2852         return;
2853     }
2854 
2855     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2856         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2857         /*
2858          * q_obj->complete_cmd() failure means that this was
2859          * an unexpected completion.
2860          *
2861          * In this case we don't want to increase the sc->spq_left
2862          * because apparently we haven't sent this command the first
2863          * place.
2864          */
2865         // bxe_panic(sc, ("Unexpected SP completion\n"));
2866         return;
2867     }
2868 
2869 #if 0
2870     /* SRIOV: reschedule any 'in_progress' operations */
2871     bxe_iov_sp_event(sc, cid, TRUE);
2872 #endif
2873 
2874     atomic_add_acq_long(&sc->cq_spq_left, 1);
2875 
2876     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2877           atomic_load_acq_long(&sc->cq_spq_left));
2878 
2879 #if 0
2880     if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2881         (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2882         /*
2883          * If Queue update ramrod is completed for last Queue in AFEX VIF set
2884          * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2885          * prevent case that both bits are cleared. At the end of load/unload
2886          * driver checks that sp_state is cleared and this order prevents
2887          * races.
2888          */
2889         bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2890         wmb();
2891         bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2892 
2893         /* schedule the sp task as MCP ack is required */
2894         bxe_schedule_sp_task(sc);
2895     }
2896 #endif
2897 }
2898 
2899 /*
2900  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2901  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2902  * the current aggregation queue as in-progress.
2903  */
2904 static void
2905 bxe_tpa_start(struct bxe_softc            *sc,
2906               struct bxe_fastpath         *fp,
2907               uint16_t                    queue,
2908               uint16_t                    cons,
2909               uint16_t                    prod,
2910               struct eth_fast_path_rx_cqe *cqe)
2911 {
2912     struct bxe_sw_rx_bd tmp_bd;
2913     struct bxe_sw_rx_bd *rx_buf;
2914     struct eth_rx_bd *rx_bd;
2915     int max_agg_queues;
2916     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2917     uint16_t index;
2918 
2919     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2920                        "cons=%d prod=%d\n",
2921           fp->index, queue, cons, prod);
2922 
2923     max_agg_queues = MAX_AGG_QS(sc);
2924 
2925     KASSERT((queue < max_agg_queues),
2926             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2927              fp->index, queue, max_agg_queues));
2928 
2929     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2930             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2931              fp->index, queue));
2932 
2933     /* copy the existing mbuf and mapping from the TPA pool */
2934     tmp_bd = tpa_info->bd;
2935 
2936     if (tmp_bd.m == NULL) {
2937         BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2938               fp->index, queue);
2939         /* XXX Error handling? */
2940         return;
2941     }
2942 
2943     /* change the TPA queue to the start state */
2944     tpa_info->state            = BXE_TPA_STATE_START;
2945     tpa_info->placement_offset = cqe->placement_offset;
2946     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2947     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2948     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2949 
2950     fp->rx_tpa_queue_used |= (1 << queue);
2951 
2952     /*
2953      * If all the buffer descriptors are filled with mbufs then fill in
2954      * the current consumer index with a new BD. Else if a maximum Rx
2955      * buffer limit is imposed then fill in the next producer index.
2956      */
2957     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2958                 prod : cons;
2959 
2960     /* move the received mbuf and mapping to TPA pool */
2961     tpa_info->bd = fp->rx_mbuf_chain[cons];
2962 
2963     /* release any existing RX BD mbuf mappings */
2964     if (cons != index) {
2965         rx_buf = &fp->rx_mbuf_chain[cons];
2966 
2967         if (rx_buf->m_map != NULL) {
2968             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2969                             BUS_DMASYNC_POSTREAD);
2970             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2971         }
2972 
2973         /*
2974          * We get here when the maximum number of rx buffers is less than
2975          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2976          * it out here without concern of a memory leak.
2977          */
2978         fp->rx_mbuf_chain[cons].m = NULL;
2979     }
2980 
2981     /* update the Rx SW BD with the mbuf info from the TPA pool */
2982     fp->rx_mbuf_chain[index] = tmp_bd;
2983 
2984     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2985     rx_bd = &fp->rx_chain[index];
2986     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2987     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2988 }
2989 
2990 /*
2991  * When a TPA aggregation is completed, loop through the individual mbufs
2992  * of the aggregation, combining them into a single mbuf which will be sent
2993  * up the stack. Refill all freed SGEs with mbufs as we go along.
2994  */
2995 static int
2996 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2997                    struct bxe_fastpath       *fp,
2998                    struct bxe_sw_tpa_info    *tpa_info,
2999                    uint16_t                  queue,
3000                    uint16_t                  pages,
3001                    struct mbuf               *m,
3002 			       struct eth_end_agg_rx_cqe *cqe,
3003                    uint16_t                  cqe_idx)
3004 {
3005     struct mbuf *m_frag;
3006     uint32_t frag_len, frag_size, i;
3007     uint16_t sge_idx;
3008     int rc = 0;
3009     int j;
3010 
3011     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3012 
3013     BLOGD(sc, DBG_LRO,
3014           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3015           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3016 
3017     /* make sure the aggregated frame is not too big to handle */
3018     if (pages > 8 * PAGES_PER_SGE) {
3019         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3020                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3021               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3022               tpa_info->len_on_bd, frag_size);
3023         bxe_panic(sc, ("sge page count error\n"));
3024         return (EINVAL);
3025     }
3026 
3027     /*
3028      * Scan through the scatter gather list pulling individual mbufs into a
3029      * single mbuf for the host stack.
3030      */
3031     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3032         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3033 
3034         /*
3035          * Firmware gives the indices of the SGE as if the ring is an array
3036          * (meaning that the "next" element will consume 2 indices).
3037          */
3038         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3039 
3040         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3041                            "sge_idx=%d frag_size=%d frag_len=%d\n",
3042               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3043 
3044         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3045 
3046         /* allocate a new mbuf for the SGE */
3047         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3048         if (rc) {
3049             /* Leave all remaining SGEs in the ring! */
3050             return (rc);
3051         }
3052 
3053         /* update the fragment length */
3054         m_frag->m_len = frag_len;
3055 
3056         /* concatenate the fragment to the head mbuf */
3057         m_cat(m, m_frag);
3058         fp->eth_q_stats.mbuf_alloc_sge--;
3059 
3060         /* update the TPA mbuf size and remaining fragment size */
3061         m->m_pkthdr.len += frag_len;
3062         frag_size -= frag_len;
3063     }
3064 
3065     BLOGD(sc, DBG_LRO,
3066           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3067           fp->index, queue, frag_size);
3068 
3069     return (rc);
3070 }
3071 
3072 static inline void
3073 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3074 {
3075     int i, j;
3076 
3077     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3078         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3079 
3080         for (j = 0; j < 2; j++) {
3081             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3082             idx--;
3083         }
3084     }
3085 }
3086 
3087 static inline void
3088 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3089 {
3090     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3091     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3092 
3093     /*
3094      * Clear the two last indices in the page to 1. These are the indices that
3095      * correspond to the "next" element, hence will never be indicated and
3096      * should be removed from the calculations.
3097      */
3098     bxe_clear_sge_mask_next_elems(fp);
3099 }
3100 
3101 static inline void
3102 bxe_update_last_max_sge(struct bxe_fastpath *fp,
3103                         uint16_t            idx)
3104 {
3105     uint16_t last_max = fp->last_max_sge;
3106 
3107     if (SUB_S16(idx, last_max) > 0) {
3108         fp->last_max_sge = idx;
3109     }
3110 }
3111 
3112 static inline void
3113 bxe_update_sge_prod(struct bxe_softc          *sc,
3114                     struct bxe_fastpath       *fp,
3115                     uint16_t                  sge_len,
3116                     union eth_sgl_or_raw_data *cqe)
3117 {
3118     uint16_t last_max, last_elem, first_elem;
3119     uint16_t delta = 0;
3120     uint16_t i;
3121 
3122     if (!sge_len) {
3123         return;
3124     }
3125 
3126     /* first mark all used pages */
3127     for (i = 0; i < sge_len; i++) {
3128         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3129                             RX_SGE(le16toh(cqe->sgl[i])));
3130     }
3131 
3132     BLOGD(sc, DBG_LRO,
3133           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3134           fp->index, sge_len - 1,
3135           le16toh(cqe->sgl[sge_len - 1]));
3136 
3137     /* assume that the last SGE index is the biggest */
3138     bxe_update_last_max_sge(fp,
3139                             le16toh(cqe->sgl[sge_len - 1]));
3140 
3141     last_max = RX_SGE(fp->last_max_sge);
3142     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3143     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3144 
3145     /* if ring is not full */
3146     if (last_elem + 1 != first_elem) {
3147         last_elem++;
3148     }
3149 
3150     /* now update the prod */
3151     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3152         if (__predict_true(fp->sge_mask[i])) {
3153             break;
3154         }
3155 
3156         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3157         delta += BIT_VEC64_ELEM_SZ;
3158     }
3159 
3160     if (delta > 0) {
3161         fp->rx_sge_prod += delta;
3162         /* clear page-end entries */
3163         bxe_clear_sge_mask_next_elems(fp);
3164     }
3165 
3166     BLOGD(sc, DBG_LRO,
3167           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3168           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3169 }
3170 
3171 /*
3172  * The aggregation on the current TPA queue has completed. Pull the individual
3173  * mbuf fragments together into a single mbuf, perform all necessary checksum
3174  * calculations, and send the resuting mbuf to the stack.
3175  */
3176 static void
3177 bxe_tpa_stop(struct bxe_softc          *sc,
3178              struct bxe_fastpath       *fp,
3179              struct bxe_sw_tpa_info    *tpa_info,
3180              uint16_t                  queue,
3181              uint16_t                  pages,
3182 			 struct eth_end_agg_rx_cqe *cqe,
3183              uint16_t                  cqe_idx)
3184 {
3185     if_t ifp = sc->ifp;
3186     struct mbuf *m;
3187     int rc = 0;
3188 
3189     BLOGD(sc, DBG_LRO,
3190           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3191           fp->index, queue, tpa_info->placement_offset,
3192           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3193 
3194     m = tpa_info->bd.m;
3195 
3196     /* allocate a replacement before modifying existing mbuf */
3197     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3198     if (rc) {
3199         /* drop the frame and log an error */
3200         fp->eth_q_stats.rx_soft_errors++;
3201         goto bxe_tpa_stop_exit;
3202     }
3203 
3204     /* we have a replacement, fixup the current mbuf */
3205     m_adj(m, tpa_info->placement_offset);
3206     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3207 
3208     /* mark the checksums valid (taken care of by the firmware) */
3209     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3210     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3211     m->m_pkthdr.csum_data = 0xffff;
3212     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3213                                CSUM_IP_VALID   |
3214                                CSUM_DATA_VALID |
3215                                CSUM_PSEUDO_HDR);
3216 
3217     /* aggregate all of the SGEs into a single mbuf */
3218     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3219     if (rc) {
3220         /* drop the packet and log an error */
3221         fp->eth_q_stats.rx_soft_errors++;
3222         m_freem(m);
3223     } else {
3224         if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3225             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3226             m->m_flags |= M_VLANTAG;
3227         }
3228 
3229         /* assign packet to this interface interface */
3230         if_setrcvif(m, ifp);
3231 
3232 #if __FreeBSD_version >= 800000
3233         /* specify what RSS queue was used for this flow */
3234         m->m_pkthdr.flowid = fp->index;
3235         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3236 #endif
3237 
3238         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3239         fp->eth_q_stats.rx_tpa_pkts++;
3240 
3241         /* pass the frame to the stack */
3242         if_input(ifp, m);
3243     }
3244 
3245     /* we passed an mbuf up the stack or dropped the frame */
3246     fp->eth_q_stats.mbuf_alloc_tpa--;
3247 
3248 bxe_tpa_stop_exit:
3249 
3250     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3251     fp->rx_tpa_queue_used &= ~(1 << queue);
3252 }
3253 
3254 static uint8_t
3255 bxe_service_rxsgl(
3256                  struct bxe_fastpath *fp,
3257                  uint16_t len,
3258                  uint16_t lenonbd,
3259                  struct mbuf *m,
3260                  struct eth_fast_path_rx_cqe *cqe_fp)
3261 {
3262     struct mbuf *m_frag;
3263     uint16_t frags, frag_len;
3264     uint16_t sge_idx = 0;
3265     uint16_t j;
3266     uint8_t i, rc = 0;
3267     uint32_t frag_size;
3268 
3269     /* adjust the mbuf */
3270     m->m_len = lenonbd;
3271 
3272     frag_size =  len - lenonbd;
3273     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3274 
3275     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3276         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3277 
3278         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3279         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3280         m_frag->m_len = frag_len;
3281 
3282        /* allocate a new mbuf for the SGE */
3283         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3284         if (rc) {
3285             /* Leave all remaining SGEs in the ring! */
3286             return (rc);
3287         }
3288         fp->eth_q_stats.mbuf_alloc_sge--;
3289 
3290         /* concatenate the fragment to the head mbuf */
3291         m_cat(m, m_frag);
3292 
3293         frag_size -= frag_len;
3294     }
3295 
3296     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3297 
3298     return rc;
3299 }
3300 
3301 static uint8_t
3302 bxe_rxeof(struct bxe_softc    *sc,
3303           struct bxe_fastpath *fp)
3304 {
3305     if_t ifp = sc->ifp;
3306     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3307     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3308     int rx_pkts = 0;
3309     int rc = 0;
3310 
3311     BXE_FP_RX_LOCK(fp);
3312 
3313     /* CQ "next element" is of the size of the regular element */
3314     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3315     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3316         hw_cq_cons++;
3317     }
3318 
3319     bd_cons = fp->rx_bd_cons;
3320     bd_prod = fp->rx_bd_prod;
3321     bd_prod_fw = bd_prod;
3322     sw_cq_cons = fp->rx_cq_cons;
3323     sw_cq_prod = fp->rx_cq_prod;
3324 
3325     /*
3326      * Memory barrier necessary as speculative reads of the rx
3327      * buffer can be ahead of the index in the status block
3328      */
3329     rmb();
3330 
3331     BLOGD(sc, DBG_RX,
3332           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3333           fp->index, hw_cq_cons, sw_cq_cons);
3334 
3335     while (sw_cq_cons != hw_cq_cons) {
3336         struct bxe_sw_rx_bd *rx_buf = NULL;
3337         union eth_rx_cqe *cqe;
3338         struct eth_fast_path_rx_cqe *cqe_fp;
3339         uint8_t cqe_fp_flags;
3340         enum eth_rx_cqe_type cqe_fp_type;
3341         uint16_t len, lenonbd,  pad;
3342         struct mbuf *m = NULL;
3343 
3344         comp_ring_cons = RCQ(sw_cq_cons);
3345         bd_prod = RX_BD(bd_prod);
3346         bd_cons = RX_BD(bd_cons);
3347 
3348         cqe          = &fp->rcq_chain[comp_ring_cons];
3349         cqe_fp       = &cqe->fast_path_cqe;
3350         cqe_fp_flags = cqe_fp->type_error_flags;
3351         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3352 
3353         BLOGD(sc, DBG_RX,
3354               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3355               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3356               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3357               fp->index,
3358               hw_cq_cons,
3359               sw_cq_cons,
3360               bd_prod,
3361               bd_cons,
3362               CQE_TYPE(cqe_fp_flags),
3363               cqe_fp_flags,
3364               cqe_fp->status_flags,
3365               le32toh(cqe_fp->rss_hash_result),
3366               le16toh(cqe_fp->vlan_tag),
3367               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3368               le16toh(cqe_fp->len_on_bd));
3369 
3370         /* is this a slowpath msg? */
3371         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3372             bxe_sp_event(sc, fp, cqe);
3373             goto next_cqe;
3374         }
3375 
3376         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3377 
3378         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3379             struct bxe_sw_tpa_info *tpa_info;
3380             uint16_t frag_size, pages;
3381             uint8_t queue;
3382 
3383 #if 0
3384             /* sanity check */
3385             if (!fp->tpa_enable &&
3386                 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3387                 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3388                       CQE_TYPE(cqe_fp_type));
3389             }
3390 #endif
3391 
3392             if (CQE_TYPE_START(cqe_fp_type)) {
3393                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3394                               bd_cons, bd_prod, cqe_fp);
3395                 m = NULL; /* packet not ready yet */
3396                 goto next_rx;
3397             }
3398 
3399             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3400                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3401 
3402             queue = cqe->end_agg_cqe.queue_index;
3403             tpa_info = &fp->rx_tpa_info[queue];
3404 
3405             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3406                   fp->index, queue);
3407 
3408             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3409                          tpa_info->len_on_bd);
3410             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3411 
3412             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3413                          &cqe->end_agg_cqe, comp_ring_cons);
3414 
3415             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3416 
3417             goto next_cqe;
3418         }
3419 
3420         /* non TPA */
3421 
3422         /* is this an error packet? */
3423         if (__predict_false(cqe_fp_flags &
3424                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3425             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3426             fp->eth_q_stats.rx_soft_errors++;
3427             goto next_rx;
3428         }
3429 
3430         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3431         lenonbd = le16toh(cqe_fp->len_on_bd);
3432         pad = cqe_fp->placement_offset;
3433 
3434         m = rx_buf->m;
3435 
3436         if (__predict_false(m == NULL)) {
3437             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3438                   bd_cons, fp->index);
3439             goto next_rx;
3440         }
3441 
3442         /* XXX double copy if packet length under a threshold */
3443 
3444         /*
3445          * If all the buffer descriptors are filled with mbufs then fill in
3446          * the current consumer index with a new BD. Else if a maximum Rx
3447          * buffer limit is imposed then fill in the next producer index.
3448          */
3449         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3450                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3451                                       bd_prod : bd_cons);
3452         if (rc != 0) {
3453 
3454             /* we simply reuse the received mbuf and don't post it to the stack */
3455             m = NULL;
3456 
3457             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3458                   fp->index, rc);
3459             fp->eth_q_stats.rx_soft_errors++;
3460 
3461             if (sc->max_rx_bufs != RX_BD_USABLE) {
3462                 /* copy this consumer index to the producer index */
3463                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3464                        sizeof(struct bxe_sw_rx_bd));
3465                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3466             }
3467 
3468             goto next_rx;
3469         }
3470 
3471         /* current mbuf was detached from the bd */
3472         fp->eth_q_stats.mbuf_alloc_rx--;
3473 
3474         /* we allocated a replacement mbuf, fixup the current one */
3475         m_adj(m, pad);
3476         m->m_pkthdr.len = m->m_len = len;
3477 
3478         if (len != lenonbd){
3479             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3480             if (rc)
3481                 break;
3482             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3483         }
3484 
3485         /* assign packet to this interface interface */
3486 	if_setrcvif(m, ifp);
3487 
3488         /* assume no hardware checksum has complated */
3489         m->m_pkthdr.csum_flags = 0;
3490 
3491         /* validate checksum if offload enabled */
3492         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3493             /* check for a valid IP frame */
3494             if (!(cqe->fast_path_cqe.status_flags &
3495                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3496                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3497                 if (__predict_false(cqe_fp_flags &
3498                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3499                     fp->eth_q_stats.rx_hw_csum_errors++;
3500                 } else {
3501                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3502                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3503                 }
3504             }
3505 
3506             /* check for a valid TCP/UDP frame */
3507             if (!(cqe->fast_path_cqe.status_flags &
3508                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3509                 if (__predict_false(cqe_fp_flags &
3510                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3511                     fp->eth_q_stats.rx_hw_csum_errors++;
3512                 } else {
3513                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3514                     m->m_pkthdr.csum_data = 0xFFFF;
3515                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3516                                                CSUM_PSEUDO_HDR);
3517                 }
3518             }
3519         }
3520 
3521         /* if there is a VLAN tag then flag that info */
3522         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3523             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3524             m->m_flags |= M_VLANTAG;
3525         }
3526 
3527 #if __FreeBSD_version >= 800000
3528         /* specify what RSS queue was used for this flow */
3529         m->m_pkthdr.flowid = fp->index;
3530         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
3531 #endif
3532 
3533 next_rx:
3534 
3535         bd_cons    = RX_BD_NEXT(bd_cons);
3536         bd_prod    = RX_BD_NEXT(bd_prod);
3537         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3538 
3539         /* pass the frame to the stack */
3540         if (__predict_true(m != NULL)) {
3541             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3542             rx_pkts++;
3543             if_input(ifp, m);
3544         }
3545 
3546 next_cqe:
3547 
3548         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3549         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3550 
3551         /* limit spinning on the queue */
3552         if (rc != 0)
3553             break;
3554 
3555         if (rx_pkts == sc->rx_budget) {
3556             fp->eth_q_stats.rx_budget_reached++;
3557             break;
3558         }
3559     } /* while work to do */
3560 
3561     fp->rx_bd_cons = bd_cons;
3562     fp->rx_bd_prod = bd_prod_fw;
3563     fp->rx_cq_cons = sw_cq_cons;
3564     fp->rx_cq_prod = sw_cq_prod;
3565 
3566     /* Update producers */
3567     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3568 
3569     fp->eth_q_stats.rx_pkts += rx_pkts;
3570     fp->eth_q_stats.rx_calls++;
3571 
3572     BXE_FP_RX_UNLOCK(fp);
3573 
3574     return (sw_cq_cons != hw_cq_cons);
3575 }
3576 
3577 static uint16_t
3578 bxe_free_tx_pkt(struct bxe_softc    *sc,
3579                 struct bxe_fastpath *fp,
3580                 uint16_t            idx)
3581 {
3582     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3583     struct eth_tx_start_bd *tx_start_bd;
3584     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3585     uint16_t new_cons;
3586     int nbd;
3587 
3588     /* unmap the mbuf from non-paged memory */
3589     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3590 
3591     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3592     nbd = le16toh(tx_start_bd->nbd) - 1;
3593 
3594 #if 0
3595     if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3596         bxe_panic(sc, ("BAD nbd!\n"));
3597     }
3598 #endif
3599 
3600     new_cons = (tx_buf->first_bd + nbd);
3601 
3602 #if 0
3603     struct eth_tx_bd *tx_data_bd;
3604 
3605     /*
3606      * The following code doesn't do anything but is left here
3607      * for clarity on what the new value of new_cons skipped.
3608      */
3609 
3610     /* get the next bd */
3611     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3612 
3613     /* skip the parse bd */
3614     --nbd;
3615     bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3616 
3617     /* skip the TSO split header bd since they have no mapping */
3618     if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3619         --nbd;
3620         bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3621     }
3622 
3623     /* now free frags */
3624     while (nbd > 0) {
3625         tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3626         if (--nbd) {
3627             bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3628         }
3629     }
3630 #endif
3631 
3632     /* free the mbuf */
3633     if (__predict_true(tx_buf->m != NULL)) {
3634         m_freem(tx_buf->m);
3635         fp->eth_q_stats.mbuf_alloc_tx--;
3636     } else {
3637         fp->eth_q_stats.tx_chain_lost_mbuf++;
3638     }
3639 
3640     tx_buf->m = NULL;
3641     tx_buf->first_bd = 0;
3642 
3643     return (new_cons);
3644 }
3645 
3646 /* transmit timeout watchdog */
3647 static int
3648 bxe_watchdog(struct bxe_softc    *sc,
3649              struct bxe_fastpath *fp)
3650 {
3651     BXE_FP_TX_LOCK(fp);
3652 
3653     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3654         BXE_FP_TX_UNLOCK(fp);
3655         return (0);
3656     }
3657 
3658     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3659 
3660     BXE_FP_TX_UNLOCK(fp);
3661 
3662     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3663     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3664 
3665     return (-1);
3666 }
3667 
3668 /* processes transmit completions */
3669 static uint8_t
3670 bxe_txeof(struct bxe_softc    *sc,
3671           struct bxe_fastpath *fp)
3672 {
3673     if_t ifp = sc->ifp;
3674     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3675     uint16_t tx_bd_avail;
3676 
3677     BXE_FP_TX_LOCK_ASSERT(fp);
3678 
3679     bd_cons = fp->tx_bd_cons;
3680     hw_cons = le16toh(*fp->tx_cons_sb);
3681     sw_cons = fp->tx_pkt_cons;
3682 
3683     while (sw_cons != hw_cons) {
3684         pkt_cons = TX_BD(sw_cons);
3685 
3686         BLOGD(sc, DBG_TX,
3687               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3688               fp->index, hw_cons, sw_cons, pkt_cons);
3689 
3690         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3691 
3692         sw_cons++;
3693     }
3694 
3695     fp->tx_pkt_cons = sw_cons;
3696     fp->tx_bd_cons  = bd_cons;
3697 
3698     BLOGD(sc, DBG_TX,
3699           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3700           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3701 
3702     mb();
3703 
3704     tx_bd_avail = bxe_tx_avail(sc, fp);
3705 
3706     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3707         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3708     } else {
3709         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3710     }
3711 
3712     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3713         /* reset the watchdog timer if there are pending transmits */
3714         fp->watchdog_timer = BXE_TX_TIMEOUT;
3715         return (TRUE);
3716     } else {
3717         /* clear watchdog when there are no pending transmits */
3718         fp->watchdog_timer = 0;
3719         return (FALSE);
3720     }
3721 }
3722 
3723 static void
3724 bxe_drain_tx_queues(struct bxe_softc *sc)
3725 {
3726     struct bxe_fastpath *fp;
3727     int i, count;
3728 
3729     /* wait until all TX fastpath tasks have completed */
3730     for (i = 0; i < sc->num_queues; i++) {
3731         fp = &sc->fp[i];
3732 
3733         count = 1000;
3734 
3735         while (bxe_has_tx_work(fp)) {
3736 
3737             BXE_FP_TX_LOCK(fp);
3738             bxe_txeof(sc, fp);
3739             BXE_FP_TX_UNLOCK(fp);
3740 
3741             if (count == 0) {
3742                 BLOGE(sc, "Timeout waiting for fp[%d] "
3743                           "transmits to complete!\n", i);
3744                 bxe_panic(sc, ("tx drain failure\n"));
3745                 return;
3746             }
3747 
3748             count--;
3749             DELAY(1000);
3750             rmb();
3751         }
3752     }
3753 
3754     return;
3755 }
3756 
3757 static int
3758 bxe_del_all_macs(struct bxe_softc          *sc,
3759                  struct ecore_vlan_mac_obj *mac_obj,
3760                  int                       mac_type,
3761                  uint8_t                   wait_for_comp)
3762 {
3763     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3764     int rc;
3765 
3766     /* wait for completion of requested */
3767     if (wait_for_comp) {
3768         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3769     }
3770 
3771     /* Set the mac type of addresses we want to clear */
3772     bxe_set_bit(mac_type, &vlan_mac_flags);
3773 
3774     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3775     if (rc < 0) {
3776         BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3777     }
3778 
3779     return (rc);
3780 }
3781 
3782 static int
3783 bxe_fill_accept_flags(struct bxe_softc *sc,
3784                       uint32_t         rx_mode,
3785                       unsigned long    *rx_accept_flags,
3786                       unsigned long    *tx_accept_flags)
3787 {
3788     /* Clear the flags first */
3789     *rx_accept_flags = 0;
3790     *tx_accept_flags = 0;
3791 
3792     switch (rx_mode) {
3793     case BXE_RX_MODE_NONE:
3794         /*
3795          * 'drop all' supersedes any accept flags that may have been
3796          * passed to the function.
3797          */
3798         break;
3799 
3800     case BXE_RX_MODE_NORMAL:
3801         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3802         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3803         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3804 
3805         /* internal switching mode */
3806         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3807         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3808         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3809 
3810         break;
3811 
3812     case BXE_RX_MODE_ALLMULTI:
3813         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3814         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3815         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3816 
3817         /* internal switching mode */
3818         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3819         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3820         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3821 
3822         break;
3823 
3824     case BXE_RX_MODE_PROMISC:
3825         /*
3826          * According to deffinition of SI mode, iface in promisc mode
3827          * should receive matched and unmatched (in resolution of port)
3828          * unicast packets.
3829          */
3830         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3831         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3832         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3833         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3834 
3835         /* internal switching mode */
3836         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3837         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3838 
3839         if (IS_MF_SI(sc)) {
3840             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3841         } else {
3842             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3843         }
3844 
3845         break;
3846 
3847     default:
3848         BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3849         return (-1);
3850     }
3851 
3852     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3853     if (rx_mode != BXE_RX_MODE_NONE) {
3854         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3855         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3856     }
3857 
3858     return (0);
3859 }
3860 
3861 static int
3862 bxe_set_q_rx_mode(struct bxe_softc *sc,
3863                   uint8_t          cl_id,
3864                   unsigned long    rx_mode_flags,
3865                   unsigned long    rx_accept_flags,
3866                   unsigned long    tx_accept_flags,
3867                   unsigned long    ramrod_flags)
3868 {
3869     struct ecore_rx_mode_ramrod_params ramrod_param;
3870     int rc;
3871 
3872     memset(&ramrod_param, 0, sizeof(ramrod_param));
3873 
3874     /* Prepare ramrod parameters */
3875     ramrod_param.cid = 0;
3876     ramrod_param.cl_id = cl_id;
3877     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3878     ramrod_param.func_id = SC_FUNC(sc);
3879 
3880     ramrod_param.pstate = &sc->sp_state;
3881     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3882 
3883     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3884     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3885 
3886     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3887 
3888     ramrod_param.ramrod_flags = ramrod_flags;
3889     ramrod_param.rx_mode_flags = rx_mode_flags;
3890 
3891     ramrod_param.rx_accept_flags = rx_accept_flags;
3892     ramrod_param.tx_accept_flags = tx_accept_flags;
3893 
3894     rc = ecore_config_rx_mode(sc, &ramrod_param);
3895     if (rc < 0) {
3896         BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3897         return (rc);
3898     }
3899 
3900     return (0);
3901 }
3902 
3903 static int
3904 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3905 {
3906     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3907     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3908     int rc;
3909 
3910     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3911                                &tx_accept_flags);
3912     if (rc) {
3913         return (rc);
3914     }
3915 
3916     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3917     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3918 
3919     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3920     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3921                               rx_accept_flags, tx_accept_flags,
3922                               ramrod_flags));
3923 }
3924 
3925 /* returns the "mcp load_code" according to global load_count array */
3926 static int
3927 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3928 {
3929     int path = SC_PATH(sc);
3930     int port = SC_PORT(sc);
3931 
3932     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3933           path, load_count[path][0], load_count[path][1],
3934           load_count[path][2]);
3935     load_count[path][0]++;
3936     load_count[path][1 + port]++;
3937     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3938           path, load_count[path][0], load_count[path][1],
3939           load_count[path][2]);
3940     if (load_count[path][0] == 1) {
3941         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3942     } else if (load_count[path][1 + port] == 1) {
3943         return (FW_MSG_CODE_DRV_LOAD_PORT);
3944     } else {
3945         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3946     }
3947 }
3948 
3949 /* returns the "mcp load_code" according to global load_count array */
3950 static int
3951 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3952 {
3953     int port = SC_PORT(sc);
3954     int path = SC_PATH(sc);
3955 
3956     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3957           path, load_count[path][0], load_count[path][1],
3958           load_count[path][2]);
3959     load_count[path][0]--;
3960     load_count[path][1 + port]--;
3961     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3962           path, load_count[path][0], load_count[path][1],
3963           load_count[path][2]);
3964     if (load_count[path][0] == 0) {
3965         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3966     } else if (load_count[path][1 + port] == 0) {
3967         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3968     } else {
3969         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3970     }
3971 }
3972 
3973 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3974 static uint32_t
3975 bxe_send_unload_req(struct bxe_softc *sc,
3976                     int              unload_mode)
3977 {
3978     uint32_t reset_code = 0;
3979 #if 0
3980     int port = SC_PORT(sc);
3981     int path = SC_PATH(sc);
3982 #endif
3983 
3984     /* Select the UNLOAD request mode */
3985     if (unload_mode == UNLOAD_NORMAL) {
3986         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3987     }
3988 #if 0
3989     else if (sc->flags & BXE_NO_WOL_FLAG) {
3990         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3991     } else if (sc->wol) {
3992         uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3993         uint8_t *mac_addr = sc->dev->dev_addr;
3994         uint32_t val;
3995         uint16_t pmc;
3996 
3997         /*
3998          * The mac address is written to entries 1-4 to
3999          * preserve entry 0 which is used by the PMF
4000          */
4001         uint8_t entry = (SC_VN(sc) + 1)*8;
4002 
4003         val = (mac_addr[0] << 8) | mac_addr[1];
4004         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
4005 
4006         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4007               (mac_addr[4] << 8) | mac_addr[5];
4008         EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
4009 
4010         /* Enable the PME and clear the status */
4011         pmc = pci_read_config(sc->dev,
4012                               (sc->devinfo.pcie_pm_cap_reg +
4013                                PCIR_POWER_STATUS),
4014                               2);
4015         pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
4016         pci_write_config(sc->dev,
4017                          (sc->devinfo.pcie_pm_cap_reg +
4018                           PCIR_POWER_STATUS),
4019                          pmc, 4);
4020 
4021         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
4022     }
4023 #endif
4024     else {
4025         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
4026     }
4027 
4028     /* Send the request to the MCP */
4029     if (!BXE_NOMCP(sc)) {
4030         reset_code = bxe_fw_command(sc, reset_code, 0);
4031     } else {
4032         reset_code = bxe_nic_unload_no_mcp(sc);
4033     }
4034 
4035     return (reset_code);
4036 }
4037 
4038 /* send UNLOAD_DONE command to the MCP */
4039 static void
4040 bxe_send_unload_done(struct bxe_softc *sc,
4041                      uint8_t          keep_link)
4042 {
4043     uint32_t reset_param =
4044         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
4045 
4046     /* Report UNLOAD_DONE to MCP */
4047     if (!BXE_NOMCP(sc)) {
4048         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
4049     }
4050 }
4051 
4052 static int
4053 bxe_func_wait_started(struct bxe_softc *sc)
4054 {
4055     int tout = 50;
4056 
4057     if (!sc->port.pmf) {
4058         return (0);
4059     }
4060 
4061     /*
4062      * (assumption: No Attention from MCP at this stage)
4063      * PMF probably in the middle of TX disable/enable transaction
4064      * 1. Sync IRS for default SB
4065      * 2. Sync SP queue - this guarantees us that attention handling started
4066      * 3. Wait, that TX disable/enable transaction completes
4067      *
4068      * 1+2 guarantee that if DCBX attention was scheduled it already changed
4069      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4070      * received completion for the transaction the state is TX_STOPPED.
4071      * State will return to STARTED after completion of TX_STOPPED-->STARTED
4072      * transaction.
4073      */
4074 
4075     /* XXX make sure default SB ISR is done */
4076     /* need a way to synchronize an irq (intr_mtx?) */
4077 
4078     /* XXX flush any work queues */
4079 
4080     while (ecore_func_get_state(sc, &sc->func_obj) !=
4081            ECORE_F_STATE_STARTED && tout--) {
4082         DELAY(20000);
4083     }
4084 
4085     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4086         /*
4087          * Failed to complete the transaction in a "good way"
4088          * Force both transactions with CLR bit.
4089          */
4090         struct ecore_func_state_params func_params = { NULL };
4091 
4092         BLOGE(sc, "Unexpected function state! "
4093                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4094 
4095         func_params.f_obj = &sc->func_obj;
4096         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4097 
4098         /* STARTED-->TX_STOPPED */
4099         func_params.cmd = ECORE_F_CMD_TX_STOP;
4100         ecore_func_state_change(sc, &func_params);
4101 
4102         /* TX_STOPPED-->STARTED */
4103         func_params.cmd = ECORE_F_CMD_TX_START;
4104         return (ecore_func_state_change(sc, &func_params));
4105     }
4106 
4107     return (0);
4108 }
4109 
4110 static int
4111 bxe_stop_queue(struct bxe_softc *sc,
4112                int              index)
4113 {
4114     struct bxe_fastpath *fp = &sc->fp[index];
4115     struct ecore_queue_state_params q_params = { NULL };
4116     int rc;
4117 
4118     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4119 
4120     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4121     /* We want to wait for completion in this context */
4122     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4123 
4124     /* Stop the primary connection: */
4125 
4126     /* ...halt the connection */
4127     q_params.cmd = ECORE_Q_CMD_HALT;
4128     rc = ecore_queue_state_change(sc, &q_params);
4129     if (rc) {
4130         return (rc);
4131     }
4132 
4133     /* ...terminate the connection */
4134     q_params.cmd = ECORE_Q_CMD_TERMINATE;
4135     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4136     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4137     rc = ecore_queue_state_change(sc, &q_params);
4138     if (rc) {
4139         return (rc);
4140     }
4141 
4142     /* ...delete cfc entry */
4143     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4144     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4145     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4146     return (ecore_queue_state_change(sc, &q_params));
4147 }
4148 
4149 /* wait for the outstanding SP commands */
4150 static inline uint8_t
4151 bxe_wait_sp_comp(struct bxe_softc *sc,
4152                  unsigned long    mask)
4153 {
4154     unsigned long tmp;
4155     int tout = 5000; /* wait for 5 secs tops */
4156 
4157     while (tout--) {
4158         mb();
4159         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4160             return (TRUE);
4161         }
4162 
4163         DELAY(1000);
4164     }
4165 
4166     mb();
4167 
4168     tmp = atomic_load_acq_long(&sc->sp_state);
4169     if (tmp & mask) {
4170         BLOGE(sc, "Filtering completion timed out: "
4171                   "sp_state 0x%lx, mask 0x%lx\n",
4172               tmp, mask);
4173         return (FALSE);
4174     }
4175 
4176     return (FALSE);
4177 }
4178 
4179 static int
4180 bxe_func_stop(struct bxe_softc *sc)
4181 {
4182     struct ecore_func_state_params func_params = { NULL };
4183     int rc;
4184 
4185     /* prepare parameters for function state transitions */
4186     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4187     func_params.f_obj = &sc->func_obj;
4188     func_params.cmd = ECORE_F_CMD_STOP;
4189 
4190     /*
4191      * Try to stop the function the 'good way'. If it fails (in case
4192      * of a parity error during bxe_chip_cleanup()) and we are
4193      * not in a debug mode, perform a state transaction in order to
4194      * enable further HW_RESET transaction.
4195      */
4196     rc = ecore_func_state_change(sc, &func_params);
4197     if (rc) {
4198         BLOGE(sc, "FUNC_STOP ramrod failed. "
4199                   "Running a dry transaction\n");
4200         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4201         return (ecore_func_state_change(sc, &func_params));
4202     }
4203 
4204     return (0);
4205 }
4206 
4207 static int
4208 bxe_reset_hw(struct bxe_softc *sc,
4209              uint32_t         load_code)
4210 {
4211     struct ecore_func_state_params func_params = { NULL };
4212 
4213     /* Prepare parameters for function state transitions */
4214     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4215 
4216     func_params.f_obj = &sc->func_obj;
4217     func_params.cmd = ECORE_F_CMD_HW_RESET;
4218 
4219     func_params.params.hw_init.load_phase = load_code;
4220 
4221     return (ecore_func_state_change(sc, &func_params));
4222 }
4223 
4224 static void
4225 bxe_int_disable_sync(struct bxe_softc *sc,
4226                      int              disable_hw)
4227 {
4228     if (disable_hw) {
4229         /* prevent the HW from sending interrupts */
4230         bxe_int_disable(sc);
4231     }
4232 
4233     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4234     /* make sure all ISRs are done */
4235 
4236     /* XXX make sure sp_task is not running */
4237     /* cancel and flush work queues */
4238 }
4239 
4240 static void
4241 bxe_chip_cleanup(struct bxe_softc *sc,
4242                  uint32_t         unload_mode,
4243                  uint8_t          keep_link)
4244 {
4245     int port = SC_PORT(sc);
4246     struct ecore_mcast_ramrod_params rparam = { NULL };
4247     uint32_t reset_code;
4248     int i, rc = 0;
4249 
4250     bxe_drain_tx_queues(sc);
4251 
4252     /* give HW time to discard old tx messages */
4253     DELAY(1000);
4254 
4255     /* Clean all ETH MACs */
4256     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4257     if (rc < 0) {
4258         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4259     }
4260 
4261     /* Clean up UC list  */
4262     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4263     if (rc < 0) {
4264         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4265     }
4266 
4267     /* Disable LLH */
4268     if (!CHIP_IS_E1(sc)) {
4269         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4270     }
4271 
4272     /* Set "drop all" to stop Rx */
4273 
4274     /*
4275      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4276      * a race between the completion code and this code.
4277      */
4278     BXE_MCAST_LOCK(sc);
4279 
4280     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4281         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4282     } else {
4283         bxe_set_storm_rx_mode(sc);
4284     }
4285 
4286     /* Clean up multicast configuration */
4287     rparam.mcast_obj = &sc->mcast_obj;
4288     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4289     if (rc < 0) {
4290         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4291     }
4292 
4293     BXE_MCAST_UNLOCK(sc);
4294 
4295     // XXX bxe_iov_chip_cleanup(sc);
4296 
4297     /*
4298      * Send the UNLOAD_REQUEST to the MCP. This will return if
4299      * this function should perform FUNCTION, PORT, or COMMON HW
4300      * reset.
4301      */
4302     reset_code = bxe_send_unload_req(sc, unload_mode);
4303 
4304     /*
4305      * (assumption: No Attention from MCP at this stage)
4306      * PMF probably in the middle of TX disable/enable transaction
4307      */
4308     rc = bxe_func_wait_started(sc);
4309     if (rc) {
4310         BLOGE(sc, "bxe_func_wait_started failed\n");
4311     }
4312 
4313     /*
4314      * Close multi and leading connections
4315      * Completions for ramrods are collected in a synchronous way
4316      */
4317     for (i = 0; i < sc->num_queues; i++) {
4318         if (bxe_stop_queue(sc, i)) {
4319             goto unload_error;
4320         }
4321     }
4322 
4323     /*
4324      * If SP settings didn't get completed so far - something
4325      * very wrong has happen.
4326      */
4327     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4328         BLOGE(sc, "Common slow path ramrods got stuck!\n");
4329     }
4330 
4331 unload_error:
4332 
4333     rc = bxe_func_stop(sc);
4334     if (rc) {
4335         BLOGE(sc, "Function stop failed!\n");
4336     }
4337 
4338     /* disable HW interrupts */
4339     bxe_int_disable_sync(sc, TRUE);
4340 
4341     /* detach interrupts */
4342     bxe_interrupt_detach(sc);
4343 
4344     /* Reset the chip */
4345     rc = bxe_reset_hw(sc, reset_code);
4346     if (rc) {
4347         BLOGE(sc, "Hardware reset failed\n");
4348     }
4349 
4350     /* Report UNLOAD_DONE to MCP */
4351     bxe_send_unload_done(sc, keep_link);
4352 }
4353 
4354 static void
4355 bxe_disable_close_the_gate(struct bxe_softc *sc)
4356 {
4357     uint32_t val;
4358     int port = SC_PORT(sc);
4359 
4360     BLOGD(sc, DBG_LOAD,
4361           "Disabling 'close the gates'\n");
4362 
4363     if (CHIP_IS_E1(sc)) {
4364         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4365                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4366         val = REG_RD(sc, addr);
4367         val &= ~(0x300);
4368         REG_WR(sc, addr, val);
4369     } else {
4370         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4371         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4372                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4373         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4374     }
4375 }
4376 
4377 /*
4378  * Cleans the object that have internal lists without sending
4379  * ramrods. Should be run when interrutps are disabled.
4380  */
4381 static void
4382 bxe_squeeze_objects(struct bxe_softc *sc)
4383 {
4384     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4385     struct ecore_mcast_ramrod_params rparam = { NULL };
4386     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4387     int rc;
4388 
4389     /* Cleanup MACs' object first... */
4390 
4391     /* Wait for completion of requested */
4392     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4393     /* Perform a dry cleanup */
4394     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4395 
4396     /* Clean ETH primary MAC */
4397     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4398     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4399                              &ramrod_flags);
4400     if (rc != 0) {
4401         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4402     }
4403 
4404     /* Cleanup UC list */
4405     vlan_mac_flags = 0;
4406     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4407     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4408                              &ramrod_flags);
4409     if (rc != 0) {
4410         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4411     }
4412 
4413     /* Now clean mcast object... */
4414 
4415     rparam.mcast_obj = &sc->mcast_obj;
4416     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4417 
4418     /* Add a DEL command... */
4419     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4420     if (rc < 0) {
4421         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4422     }
4423 
4424     /* now wait until all pending commands are cleared */
4425 
4426     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4427     while (rc != 0) {
4428         if (rc < 0) {
4429             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4430             return;
4431         }
4432 
4433         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4434     }
4435 }
4436 
4437 /* stop the controller */
4438 static __noinline int
4439 bxe_nic_unload(struct bxe_softc *sc,
4440                uint32_t         unload_mode,
4441                uint8_t          keep_link)
4442 {
4443     uint8_t global = FALSE;
4444     uint32_t val;
4445 
4446     BXE_CORE_LOCK_ASSERT(sc);
4447 
4448     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4449 
4450     /* mark driver as unloaded in shmem2 */
4451     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4452         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4453         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4454                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4455     }
4456 
4457     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4458         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4459         /*
4460          * We can get here if the driver has been unloaded
4461          * during parity error recovery and is either waiting for a
4462          * leader to complete or for other functions to unload and
4463          * then ifconfig down has been issued. In this case we want to
4464          * unload and let other functions to complete a recovery
4465          * process.
4466          */
4467         sc->recovery_state = BXE_RECOVERY_DONE;
4468         sc->is_leader = 0;
4469         bxe_release_leader_lock(sc);
4470         mb();
4471 
4472         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4473         BLOGE(sc, "Can't unload in closed or error state\n");
4474         return (-1);
4475     }
4476 
4477     /*
4478      * Nothing to do during unload if previous bxe_nic_load()
4479      * did not completed succesfully - all resourses are released.
4480      */
4481     if ((sc->state == BXE_STATE_CLOSED) ||
4482         (sc->state == BXE_STATE_ERROR)) {
4483         return (0);
4484     }
4485 
4486     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4487     mb();
4488 
4489     /* stop tx */
4490     bxe_tx_disable(sc);
4491 
4492     sc->rx_mode = BXE_RX_MODE_NONE;
4493     /* XXX set rx mode ??? */
4494 
4495     if (IS_PF(sc)) {
4496         /* set ALWAYS_ALIVE bit in shmem */
4497         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4498 
4499         bxe_drv_pulse(sc);
4500 
4501         bxe_stats_handle(sc, STATS_EVENT_STOP);
4502         bxe_save_statistics(sc);
4503     }
4504 
4505     /* wait till consumers catch up with producers in all queues */
4506     bxe_drain_tx_queues(sc);
4507 
4508     /* if VF indicate to PF this function is going down (PF will delete sp
4509      * elements and clear initializations
4510      */
4511     if (IS_VF(sc)) {
4512         ; /* bxe_vfpf_close_vf(sc); */
4513     } else if (unload_mode != UNLOAD_RECOVERY) {
4514         /* if this is a normal/close unload need to clean up chip */
4515         bxe_chip_cleanup(sc, unload_mode, keep_link);
4516     } else {
4517         /* Send the UNLOAD_REQUEST to the MCP */
4518         bxe_send_unload_req(sc, unload_mode);
4519 
4520         /*
4521          * Prevent transactions to host from the functions on the
4522          * engine that doesn't reset global blocks in case of global
4523          * attention once gloabl blocks are reset and gates are opened
4524          * (the engine which leader will perform the recovery
4525          * last).
4526          */
4527         if (!CHIP_IS_E1x(sc)) {
4528             bxe_pf_disable(sc);
4529         }
4530 
4531         /* disable HW interrupts */
4532         bxe_int_disable_sync(sc, TRUE);
4533 
4534         /* detach interrupts */
4535         bxe_interrupt_detach(sc);
4536 
4537         /* Report UNLOAD_DONE to MCP */
4538         bxe_send_unload_done(sc, FALSE);
4539     }
4540 
4541     /*
4542      * At this stage no more interrupts will arrive so we may safely clean
4543      * the queue'able objects here in case they failed to get cleaned so far.
4544      */
4545     if (IS_PF(sc)) {
4546         bxe_squeeze_objects(sc);
4547     }
4548 
4549     /* There should be no more pending SP commands at this stage */
4550     sc->sp_state = 0;
4551 
4552     sc->port.pmf = 0;
4553 
4554     bxe_free_fp_buffers(sc);
4555 
4556     if (IS_PF(sc)) {
4557         bxe_free_mem(sc);
4558     }
4559 
4560     bxe_free_fw_stats_mem(sc);
4561 
4562     sc->state = BXE_STATE_CLOSED;
4563 
4564     /*
4565      * Check if there are pending parity attentions. If there are - set
4566      * RECOVERY_IN_PROGRESS.
4567      */
4568     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4569         bxe_set_reset_in_progress(sc);
4570 
4571         /* Set RESET_IS_GLOBAL if needed */
4572         if (global) {
4573             bxe_set_reset_global(sc);
4574         }
4575     }
4576 
4577     /*
4578      * The last driver must disable a "close the gate" if there is no
4579      * parity attention or "process kill" pending.
4580      */
4581     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4582         bxe_reset_is_done(sc, SC_PATH(sc))) {
4583         bxe_disable_close_the_gate(sc);
4584     }
4585 
4586     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4587 
4588     return (0);
4589 }
4590 
4591 /*
4592  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4593  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4594  */
4595 static int
4596 bxe_ifmedia_update(struct ifnet  *ifp)
4597 {
4598     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4599     struct ifmedia *ifm;
4600 
4601     ifm = &sc->ifmedia;
4602 
4603     /* We only support Ethernet media type. */
4604     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4605         return (EINVAL);
4606     }
4607 
4608     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4609     case IFM_AUTO:
4610          break;
4611     case IFM_10G_CX4:
4612     case IFM_10G_SR:
4613     case IFM_10G_T:
4614     case IFM_10G_TWINAX:
4615     default:
4616         /* We don't support changing the media type. */
4617         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4618               IFM_SUBTYPE(ifm->ifm_media));
4619         return (EINVAL);
4620     }
4621 
4622     return (0);
4623 }
4624 
4625 /*
4626  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4627  */
4628 static void
4629 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4630 {
4631     struct bxe_softc *sc = if_getsoftc(ifp);
4632 
4633     /* Report link down if the driver isn't running. */
4634     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4635         ifmr->ifm_active |= IFM_NONE;
4636         return;
4637     }
4638 
4639     /* Setup the default interface info. */
4640     ifmr->ifm_status = IFM_AVALID;
4641     ifmr->ifm_active = IFM_ETHER;
4642 
4643     if (sc->link_vars.link_up) {
4644         ifmr->ifm_status |= IFM_ACTIVE;
4645     } else {
4646         ifmr->ifm_active |= IFM_NONE;
4647         return;
4648     }
4649 
4650     ifmr->ifm_active |= sc->media;
4651 
4652     if (sc->link_vars.duplex == DUPLEX_FULL) {
4653         ifmr->ifm_active |= IFM_FDX;
4654     } else {
4655         ifmr->ifm_active |= IFM_HDX;
4656     }
4657 }
4658 
4659 static int
4660 bxe_ioctl_nvram(struct bxe_softc *sc,
4661                 uint32_t         priv_op,
4662                 struct ifreq     *ifr)
4663 {
4664     struct bxe_nvram_data nvdata_base;
4665     struct bxe_nvram_data *nvdata;
4666     int len;
4667     int error = 0;
4668 
4669     copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4670 
4671     len = (sizeof(struct bxe_nvram_data) +
4672            nvdata_base.len -
4673            sizeof(uint32_t));
4674 
4675     if (len > sizeof(struct bxe_nvram_data)) {
4676         if ((nvdata = (struct bxe_nvram_data *)
4677                  malloc(len, M_DEVBUF,
4678                         (M_NOWAIT | M_ZERO))) == NULL) {
4679             BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4680             return (1);
4681         }
4682         memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4683     } else {
4684         nvdata = &nvdata_base;
4685     }
4686 
4687     if (priv_op == BXE_IOC_RD_NVRAM) {
4688         BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4689               nvdata->offset, nvdata->len);
4690         error = bxe_nvram_read(sc,
4691                                nvdata->offset,
4692                                (uint8_t *)nvdata->value,
4693                                nvdata->len);
4694         copyout(nvdata, ifr->ifr_data, len);
4695     } else { /* BXE_IOC_WR_NVRAM */
4696         BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4697               nvdata->offset, nvdata->len);
4698         copyin(ifr->ifr_data, nvdata, len);
4699         error = bxe_nvram_write(sc,
4700                                 nvdata->offset,
4701                                 (uint8_t *)nvdata->value,
4702                                 nvdata->len);
4703     }
4704 
4705     if (len > sizeof(struct bxe_nvram_data)) {
4706         free(nvdata, M_DEVBUF);
4707     }
4708 
4709     return (error);
4710 }
4711 
4712 static int
4713 bxe_ioctl_stats_show(struct bxe_softc *sc,
4714                      uint32_t         priv_op,
4715                      struct ifreq     *ifr)
4716 {
4717     const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4718     const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4719     caddr_t p_tmp;
4720     uint32_t *offset;
4721     int i;
4722 
4723     switch (priv_op)
4724     {
4725     case BXE_IOC_STATS_SHOW_NUM:
4726         memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4727         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4728             BXE_NUM_ETH_STATS;
4729         ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4730             STAT_NAME_LEN;
4731         return (0);
4732 
4733     case BXE_IOC_STATS_SHOW_STR:
4734         memset(ifr->ifr_data, 0, str_size);
4735         p_tmp = ifr->ifr_data;
4736         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4737             strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4738             p_tmp += STAT_NAME_LEN;
4739         }
4740         return (0);
4741 
4742     case BXE_IOC_STATS_SHOW_CNT:
4743         memset(ifr->ifr_data, 0, stats_size);
4744         p_tmp = ifr->ifr_data;
4745         for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4746             offset = ((uint32_t *)&sc->eth_stats +
4747                       bxe_eth_stats_arr[i].offset);
4748             switch (bxe_eth_stats_arr[i].size) {
4749             case 4:
4750                 *((uint64_t *)p_tmp) = (uint64_t)*offset;
4751                 break;
4752             case 8:
4753                 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4754                 break;
4755             default:
4756                 *((uint64_t *)p_tmp) = 0;
4757             }
4758             p_tmp += sizeof(uint64_t);
4759         }
4760         return (0);
4761 
4762     default:
4763         return (-1);
4764     }
4765 }
4766 
4767 static void
4768 bxe_handle_chip_tq(void *context,
4769                    int  pending)
4770 {
4771     struct bxe_softc *sc = (struct bxe_softc *)context;
4772     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4773 
4774     switch (work)
4775     {
4776 
4777     case CHIP_TQ_REINIT:
4778         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4779             /* restart the interface */
4780             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4781             bxe_periodic_stop(sc);
4782             BXE_CORE_LOCK(sc);
4783             bxe_stop_locked(sc);
4784             bxe_init_locked(sc);
4785             BXE_CORE_UNLOCK(sc);
4786         }
4787         break;
4788 
4789     default:
4790         break;
4791     }
4792 }
4793 
4794 /*
4795  * Handles any IOCTL calls from the operating system.
4796  *
4797  * Returns:
4798  *   0 = Success, >0 Failure
4799  */
4800 static int
4801 bxe_ioctl(if_t ifp,
4802           u_long       command,
4803           caddr_t      data)
4804 {
4805     struct bxe_softc *sc = if_getsoftc(ifp);
4806     struct ifreq *ifr = (struct ifreq *)data;
4807     struct bxe_nvram_data *nvdata;
4808     uint32_t priv_op;
4809     int mask = 0;
4810     int reinit = 0;
4811     int error = 0;
4812 
4813     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4814     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4815 
4816     switch (command)
4817     {
4818     case SIOCSIFMTU:
4819         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4820               ifr->ifr_mtu);
4821 
4822         if (sc->mtu == ifr->ifr_mtu) {
4823             /* nothing to change */
4824             break;
4825         }
4826 
4827         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4828             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4829                   ifr->ifr_mtu, mtu_min, mtu_max);
4830             error = EINVAL;
4831             break;
4832         }
4833 
4834         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4835                              (unsigned long)ifr->ifr_mtu);
4836 	/*
4837         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4838                               (unsigned long)ifr->ifr_mtu);
4839 	XXX - Not sure why it needs to be atomic
4840 	*/
4841 	if_setmtu(ifp, ifr->ifr_mtu);
4842         reinit = 1;
4843         break;
4844 
4845     case SIOCSIFFLAGS:
4846         /* toggle the interface state up or down */
4847         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4848 
4849 	BXE_CORE_LOCK(sc);
4850         /* check if the interface is up */
4851         if (if_getflags(ifp) & IFF_UP) {
4852             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4853                 /* set the receive mode flags */
4854                 bxe_set_rx_mode(sc);
4855             } else {
4856 		bxe_init_locked(sc);
4857             }
4858         } else {
4859             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4860 		bxe_periodic_stop(sc);
4861 		bxe_stop_locked(sc);
4862             }
4863         }
4864 	BXE_CORE_UNLOCK(sc);
4865 
4866         break;
4867 
4868     case SIOCADDMULTI:
4869     case SIOCDELMULTI:
4870         /* add/delete multicast addresses */
4871         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4872 
4873         /* check if the interface is up */
4874         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4875             /* set the receive mode flags */
4876 	    BXE_CORE_LOCK(sc);
4877             bxe_set_rx_mode(sc);
4878 	    BXE_CORE_UNLOCK(sc);
4879         }
4880 
4881         break;
4882 
4883     case SIOCSIFCAP:
4884         /* find out which capabilities have changed */
4885         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4886 
4887         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4888               mask);
4889 
4890         /* toggle the LRO capabilites enable flag */
4891         if (mask & IFCAP_LRO) {
4892 	    if_togglecapenable(ifp, IFCAP_LRO);
4893             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4894                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4895             reinit = 1;
4896         }
4897 
4898         /* toggle the TXCSUM checksum capabilites enable flag */
4899         if (mask & IFCAP_TXCSUM) {
4900 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4901             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4902                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4903             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4904                 if_sethwassistbits(ifp, (CSUM_IP      |
4905                                     CSUM_TCP      |
4906                                     CSUM_UDP      |
4907                                     CSUM_TSO      |
4908                                     CSUM_TCP_IPV6 |
4909                                     CSUM_UDP_IPV6), 0);
4910             } else {
4911 		if_clearhwassist(ifp); /* XXX */
4912             }
4913         }
4914 
4915         /* toggle the RXCSUM checksum capabilities enable flag */
4916         if (mask & IFCAP_RXCSUM) {
4917 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4918             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4919                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4920             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4921                 if_sethwassistbits(ifp, (CSUM_IP      |
4922                                     CSUM_TCP      |
4923                                     CSUM_UDP      |
4924                                     CSUM_TSO      |
4925                                     CSUM_TCP_IPV6 |
4926                                     CSUM_UDP_IPV6), 0);
4927             } else {
4928 		if_clearhwassist(ifp); /* XXX */
4929             }
4930         }
4931 
4932         /* toggle TSO4 capabilities enabled flag */
4933         if (mask & IFCAP_TSO4) {
4934             if_togglecapenable(ifp, IFCAP_TSO4);
4935             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4936                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4937         }
4938 
4939         /* toggle TSO6 capabilities enabled flag */
4940         if (mask & IFCAP_TSO6) {
4941 	    if_togglecapenable(ifp, IFCAP_TSO6);
4942             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4943                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4944         }
4945 
4946         /* toggle VLAN_HWTSO capabilities enabled flag */
4947         if (mask & IFCAP_VLAN_HWTSO) {
4948 
4949 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4950             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4951                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4952         }
4953 
4954         /* toggle VLAN_HWCSUM capabilities enabled flag */
4955         if (mask & IFCAP_VLAN_HWCSUM) {
4956             /* XXX investigate this... */
4957             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4958             error = EINVAL;
4959         }
4960 
4961         /* toggle VLAN_MTU capabilities enable flag */
4962         if (mask & IFCAP_VLAN_MTU) {
4963             /* XXX investigate this... */
4964             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4965             error = EINVAL;
4966         }
4967 
4968         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4969         if (mask & IFCAP_VLAN_HWTAGGING) {
4970             /* XXX investigate this... */
4971             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4972             error = EINVAL;
4973         }
4974 
4975         /* toggle VLAN_HWFILTER capabilities enabled flag */
4976         if (mask & IFCAP_VLAN_HWFILTER) {
4977             /* XXX investigate this... */
4978             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4979             error = EINVAL;
4980         }
4981 
4982         /* XXX not yet...
4983          * IFCAP_WOL_MAGIC
4984          */
4985 
4986         break;
4987 
4988     case SIOCSIFMEDIA:
4989     case SIOCGIFMEDIA:
4990         /* set/get interface media */
4991         BLOGD(sc, DBG_IOCTL,
4992               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4993               (command & 0xff));
4994         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4995         break;
4996 
4997     case SIOCGPRIVATE_0:
4998         copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4999 
5000         switch (priv_op)
5001         {
5002         case BXE_IOC_RD_NVRAM:
5003         case BXE_IOC_WR_NVRAM:
5004             nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
5005             BLOGD(sc, DBG_IOCTL,
5006                   "Received Private NVRAM ioctl addr=0x%x size=%u\n",
5007                   nvdata->offset, nvdata->len);
5008             error = bxe_ioctl_nvram(sc, priv_op, ifr);
5009             break;
5010 
5011         case BXE_IOC_STATS_SHOW_NUM:
5012         case BXE_IOC_STATS_SHOW_STR:
5013         case BXE_IOC_STATS_SHOW_CNT:
5014             BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
5015                   priv_op);
5016             error = bxe_ioctl_stats_show(sc, priv_op, ifr);
5017             break;
5018 
5019         default:
5020             BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
5021             error = EINVAL;
5022             break;
5023         }
5024 
5025         break;
5026 
5027     default:
5028         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
5029               (command & 0xff));
5030         error = ether_ioctl(ifp, command, data);
5031         break;
5032     }
5033 
5034     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
5035         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5036               "Re-initializing hardware from IOCTL change\n");
5037 	bxe_periodic_stop(sc);
5038 	BXE_CORE_LOCK(sc);
5039 	bxe_stop_locked(sc);
5040 	bxe_init_locked(sc);
5041 	BXE_CORE_UNLOCK(sc);
5042     }
5043 
5044     return (error);
5045 }
5046 
5047 static __noinline void
5048 bxe_dump_mbuf(struct bxe_softc *sc,
5049               struct mbuf      *m,
5050               uint8_t          contents)
5051 {
5052     char * type;
5053     int i = 0;
5054 
5055     if (!(sc->debug & DBG_MBUF)) {
5056         return;
5057     }
5058 
5059     if (m == NULL) {
5060         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5061         return;
5062     }
5063 
5064     while (m) {
5065         BLOGD(sc, DBG_MBUF,
5066               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5067               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
5068 
5069         if (m->m_flags & M_PKTHDR) {
5070              BLOGD(sc, DBG_MBUF,
5071                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5072                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
5073                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
5074         }
5075 
5076         if (m->m_flags & M_EXT) {
5077             switch (m->m_ext.ext_type) {
5078             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5079             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5080             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5081             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5082             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5083             case EXT_PACKET:     type = "EXT_PACKET";     break;
5084             case EXT_MBUF:       type = "EXT_MBUF";       break;
5085             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5086             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5087             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5088             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5089             default:             type = "UNKNOWN";        break;
5090             }
5091 
5092             BLOGD(sc, DBG_MBUF,
5093                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
5094                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5095         }
5096 
5097         if (contents) {
5098             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5099         }
5100 
5101         m = m->m_next;
5102         i++;
5103     }
5104 }
5105 
5106 /*
5107  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5108  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5109  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5110  * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5111  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5112  */
5113 static int
5114 bxe_chktso_window(struct bxe_softc  *sc,
5115                   int               nsegs,
5116                   bus_dma_segment_t *segs,
5117                   struct mbuf       *m)
5118 {
5119     uint32_t num_wnds, wnd_size, wnd_sum;
5120     int32_t frag_idx, wnd_idx;
5121     unsigned short lso_mss;
5122     int defrag;
5123 
5124     defrag = 0;
5125     wnd_sum = 0;
5126     wnd_size = 10;
5127     num_wnds = nsegs - wnd_size;
5128     lso_mss = htole16(m->m_pkthdr.tso_segsz);
5129 
5130     /*
5131      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5132      * first window sum of data while skipping the first assuming it is the
5133      * header in FreeBSD.
5134      */
5135     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5136         wnd_sum += htole16(segs[frag_idx].ds_len);
5137     }
5138 
5139     /* check the first 10 bd window size */
5140     if (wnd_sum < lso_mss) {
5141         return (1);
5142     }
5143 
5144     /* run through the windows */
5145     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5146         /* subtract the first mbuf->m_len of the last wndw(-header) */
5147         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5148         /* add the next mbuf len to the len of our new window */
5149         wnd_sum += htole16(segs[frag_idx].ds_len);
5150         if (wnd_sum < lso_mss) {
5151             return (1);
5152         }
5153     }
5154 
5155     return (0);
5156 }
5157 
5158 static uint8_t
5159 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5160                     struct mbuf         *m,
5161                     uint32_t            *parsing_data)
5162 {
5163     struct ether_vlan_header *eh = NULL;
5164     struct ip *ip4 = NULL;
5165     struct ip6_hdr *ip6 = NULL;
5166     caddr_t ip = NULL;
5167     struct tcphdr *th = NULL;
5168     int e_hlen, ip_hlen, l4_off;
5169     uint16_t proto;
5170 
5171     if (m->m_pkthdr.csum_flags == CSUM_IP) {
5172         /* no L4 checksum offload needed */
5173         return (0);
5174     }
5175 
5176     /* get the Ethernet header */
5177     eh = mtod(m, struct ether_vlan_header *);
5178 
5179     /* handle VLAN encapsulation if present */
5180     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5181         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5182         proto  = ntohs(eh->evl_proto);
5183     } else {
5184         e_hlen = ETHER_HDR_LEN;
5185         proto  = ntohs(eh->evl_encap_proto);
5186     }
5187 
5188     switch (proto) {
5189     case ETHERTYPE_IP:
5190         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5191         ip4 = (m->m_len < sizeof(struct ip)) ?
5192                   (struct ip *)m->m_next->m_data :
5193                   (struct ip *)(m->m_data + e_hlen);
5194         /* ip_hl is number of 32-bit words */
5195         ip_hlen = (ip4->ip_hl << 2);
5196         ip = (caddr_t)ip4;
5197         break;
5198     case ETHERTYPE_IPV6:
5199         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5200         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5201                   (struct ip6_hdr *)m->m_next->m_data :
5202                   (struct ip6_hdr *)(m->m_data + e_hlen);
5203         /* XXX cannot support offload with IPv6 extensions */
5204         ip_hlen = sizeof(struct ip6_hdr);
5205         ip = (caddr_t)ip6;
5206         break;
5207     default:
5208         /* We can't offload in this case... */
5209         /* XXX error stat ??? */
5210         return (0);
5211     }
5212 
5213     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5214     l4_off = (e_hlen + ip_hlen);
5215 
5216     *parsing_data |=
5217         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5218          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5219 
5220     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5221                                   CSUM_TSO |
5222                                   CSUM_TCP_IPV6)) {
5223         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5224         th = (struct tcphdr *)(ip + ip_hlen);
5225         /* th_off is number of 32-bit words */
5226         *parsing_data |= ((th->th_off <<
5227                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5228                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5229         return (l4_off + (th->th_off << 2)); /* entire header length */
5230     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5231                                          CSUM_UDP_IPV6)) {
5232         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5233         return (l4_off + sizeof(struct udphdr)); /* entire header length */
5234     } else {
5235         /* XXX error stat ??? */
5236         return (0);
5237     }
5238 }
5239 
5240 static uint8_t
5241 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5242                  struct mbuf                *m,
5243                  struct eth_tx_parse_bd_e1x *pbd)
5244 {
5245     struct ether_vlan_header *eh = NULL;
5246     struct ip *ip4 = NULL;
5247     struct ip6_hdr *ip6 = NULL;
5248     caddr_t ip = NULL;
5249     struct tcphdr *th = NULL;
5250     struct udphdr *uh = NULL;
5251     int e_hlen, ip_hlen;
5252     uint16_t proto;
5253     uint8_t hlen;
5254     uint16_t tmp_csum;
5255     uint32_t *tmp_uh;
5256 
5257     /* get the Ethernet header */
5258     eh = mtod(m, struct ether_vlan_header *);
5259 
5260     /* handle VLAN encapsulation if present */
5261     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5262         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5263         proto  = ntohs(eh->evl_proto);
5264     } else {
5265         e_hlen = ETHER_HDR_LEN;
5266         proto  = ntohs(eh->evl_encap_proto);
5267     }
5268 
5269     switch (proto) {
5270     case ETHERTYPE_IP:
5271         /* get the IP header, if mbuf len < 20 then header in next mbuf */
5272         ip4 = (m->m_len < sizeof(struct ip)) ?
5273                   (struct ip *)m->m_next->m_data :
5274                   (struct ip *)(m->m_data + e_hlen);
5275         /* ip_hl is number of 32-bit words */
5276         ip_hlen = (ip4->ip_hl << 1);
5277         ip = (caddr_t)ip4;
5278         break;
5279     case ETHERTYPE_IPV6:
5280         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5281         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5282                   (struct ip6_hdr *)m->m_next->m_data :
5283                   (struct ip6_hdr *)(m->m_data + e_hlen);
5284         /* XXX cannot support offload with IPv6 extensions */
5285         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5286         ip = (caddr_t)ip6;
5287         break;
5288     default:
5289         /* We can't offload in this case... */
5290         /* XXX error stat ??? */
5291         return (0);
5292     }
5293 
5294     hlen = (e_hlen >> 1);
5295 
5296     /* note that rest of global_data is indirectly zeroed here */
5297     if (m->m_flags & M_VLANTAG) {
5298         pbd->global_data =
5299             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5300     } else {
5301         pbd->global_data = htole16(hlen);
5302     }
5303 
5304     pbd->ip_hlen_w = ip_hlen;
5305 
5306     hlen += pbd->ip_hlen_w;
5307 
5308     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5309 
5310     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5311                                   CSUM_TSO |
5312                                   CSUM_TCP_IPV6)) {
5313         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5314         /* th_off is number of 32-bit words */
5315         hlen += (uint16_t)(th->th_off << 1);
5316     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5317                                          CSUM_UDP_IPV6)) {
5318         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5319         hlen += (sizeof(struct udphdr) / 2);
5320     } else {
5321         /* valid case as only CSUM_IP was set */
5322         return (0);
5323     }
5324 
5325     pbd->total_hlen_w = htole16(hlen);
5326 
5327     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5328                                   CSUM_TSO |
5329                                   CSUM_TCP_IPV6)) {
5330         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5331         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5332     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5333                                          CSUM_UDP_IPV6)) {
5334         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5335 
5336         /*
5337          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5338          * checksums and does not know anything about the UDP header and where
5339          * the checksum field is located. It only knows about TCP. Therefore
5340          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5341          * offload. Since the checksum field offset for TCP is 16 bytes and
5342          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5343          * bytes less than the start of the UDP header. This allows the
5344          * hardware to write the checksum in the correct spot. But the
5345          * hardware will compute a checksum which includes the last 10 bytes
5346          * of the IP header. To correct this we tweak the stack computed
5347          * pseudo checksum by folding in the calculation of the inverse
5348          * checksum for those final 10 bytes of the IP header. This allows
5349          * the correct checksum to be computed by the hardware.
5350          */
5351 
5352         /* set pointer 10 bytes before UDP header */
5353         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5354 
5355         /* calculate a pseudo header checksum over the first 10 bytes */
5356         tmp_csum = in_pseudo(*tmp_uh,
5357                              *(tmp_uh + 1),
5358                              *(uint16_t *)(tmp_uh + 2));
5359 
5360         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5361     }
5362 
5363     return (hlen * 2); /* entire header length, number of bytes */
5364 }
5365 
5366 static void
5367 bxe_set_pbd_lso_e2(struct mbuf *m,
5368                    uint32_t    *parsing_data)
5369 {
5370     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5371                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5372                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5373 
5374     /* XXX test for IPv6 with extension header... */
5375 #if 0
5376     struct ip6_hdr *ip6;
5377     if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5378         *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5379 #endif
5380 }
5381 
5382 static void
5383 bxe_set_pbd_lso(struct mbuf                *m,
5384                 struct eth_tx_parse_bd_e1x *pbd)
5385 {
5386     struct ether_vlan_header *eh = NULL;
5387     struct ip *ip = NULL;
5388     struct tcphdr *th = NULL;
5389     int e_hlen;
5390 
5391     /* get the Ethernet header */
5392     eh = mtod(m, struct ether_vlan_header *);
5393 
5394     /* handle VLAN encapsulation if present */
5395     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5396                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5397 
5398     /* get the IP and TCP header, with LSO entire header in first mbuf */
5399     /* XXX assuming IPv4 */
5400     ip = (struct ip *)(m->m_data + e_hlen);
5401     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5402 
5403     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5404     pbd->tcp_send_seq = ntohl(th->th_seq);
5405     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5406 
5407 #if 1
5408         /* XXX IPv4 */
5409         pbd->ip_id = ntohs(ip->ip_id);
5410         pbd->tcp_pseudo_csum =
5411             ntohs(in_pseudo(ip->ip_src.s_addr,
5412                             ip->ip_dst.s_addr,
5413                             htons(IPPROTO_TCP)));
5414 #else
5415         /* XXX IPv6 */
5416         pbd->tcp_pseudo_csum =
5417             ntohs(in_pseudo(&ip6->ip6_src,
5418                             &ip6->ip6_dst,
5419                             htons(IPPROTO_TCP)));
5420 #endif
5421 
5422     pbd->global_data |=
5423         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5424 }
5425 
5426 /*
5427  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5428  * visible to the controller.
5429  *
5430  * If an mbuf is submitted to this routine and cannot be given to the
5431  * controller (e.g. it has too many fragments) then the function may free
5432  * the mbuf and return to the caller.
5433  *
5434  * Returns:
5435  *   0 = Success, !0 = Failure
5436  *   Note the side effect that an mbuf may be freed if it causes a problem.
5437  */
5438 static int
5439 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5440 {
5441     bus_dma_segment_t segs[32];
5442     struct mbuf *m0;
5443     struct bxe_sw_tx_bd *tx_buf;
5444     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5445     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5446     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5447     struct eth_tx_bd *tx_data_bd;
5448     struct eth_tx_bd *tx_total_pkt_size_bd;
5449     struct eth_tx_start_bd *tx_start_bd;
5450     uint16_t bd_prod, pkt_prod, total_pkt_size;
5451     uint8_t mac_type;
5452     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5453     struct bxe_softc *sc;
5454     uint16_t tx_bd_avail;
5455     struct ether_vlan_header *eh;
5456     uint32_t pbd_e2_parsing_data = 0;
5457     uint8_t hlen = 0;
5458     int tmp_bd;
5459     int i;
5460 
5461     sc = fp->sc;
5462 
5463     M_ASSERTPKTHDR(*m_head);
5464 
5465     m0 = *m_head;
5466     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5467     tx_start_bd = NULL;
5468     tx_data_bd = NULL;
5469     tx_total_pkt_size_bd = NULL;
5470 
5471     /* get the H/W pointer for packets and BDs */
5472     pkt_prod = fp->tx_pkt_prod;
5473     bd_prod = fp->tx_bd_prod;
5474 
5475     mac_type = UNICAST_ADDRESS;
5476 
5477     /* map the mbuf into the next open DMAable memory */
5478     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5479     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5480                                     tx_buf->m_map, m0,
5481                                     segs, &nsegs, BUS_DMA_NOWAIT);
5482 
5483     /* mapping errors */
5484     if(__predict_false(error != 0)) {
5485         fp->eth_q_stats.tx_dma_mapping_failure++;
5486         if (error == ENOMEM) {
5487             /* resource issue, try again later */
5488             rc = ENOMEM;
5489         } else if (error == EFBIG) {
5490             /* possibly recoverable with defragmentation */
5491             fp->eth_q_stats.mbuf_defrag_attempts++;
5492             m0 = m_defrag(*m_head, M_NOWAIT);
5493             if (m0 == NULL) {
5494                 fp->eth_q_stats.mbuf_defrag_failures++;
5495                 rc = ENOBUFS;
5496             } else {
5497                 /* defrag successful, try mapping again */
5498                 *m_head = m0;
5499                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5500                                                 tx_buf->m_map, m0,
5501                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5502                 if (error) {
5503                     fp->eth_q_stats.tx_dma_mapping_failure++;
5504                     rc = error;
5505                 }
5506             }
5507         } else {
5508             /* unknown, unrecoverable mapping error */
5509             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5510             bxe_dump_mbuf(sc, m0, FALSE);
5511             rc = error;
5512         }
5513 
5514         goto bxe_tx_encap_continue;
5515     }
5516 
5517     tx_bd_avail = bxe_tx_avail(sc, fp);
5518 
5519     /* make sure there is enough room in the send queue */
5520     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5521         /* Recoverable, try again later. */
5522         fp->eth_q_stats.tx_hw_queue_full++;
5523         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5524         rc = ENOMEM;
5525         goto bxe_tx_encap_continue;
5526     }
5527 
5528     /* capture the current H/W TX chain high watermark */
5529     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5530                         (TX_BD_USABLE - tx_bd_avail))) {
5531         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5532     }
5533 
5534     /* make sure it fits in the packet window */
5535     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5536         /*
5537          * The mbuf may be to big for the controller to handle. If the frame
5538          * is a TSO frame we'll need to do an additional check.
5539          */
5540         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5541             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5542                 goto bxe_tx_encap_continue; /* OK to send */
5543             } else {
5544                 fp->eth_q_stats.tx_window_violation_tso++;
5545             }
5546         } else {
5547             fp->eth_q_stats.tx_window_violation_std++;
5548         }
5549 
5550         /* lets try to defragment this mbuf and remap it */
5551         fp->eth_q_stats.mbuf_defrag_attempts++;
5552         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5553 
5554         m0 = m_defrag(*m_head, M_NOWAIT);
5555         if (m0 == NULL) {
5556             fp->eth_q_stats.mbuf_defrag_failures++;
5557             /* Ugh, just drop the frame... :( */
5558             rc = ENOBUFS;
5559         } else {
5560             /* defrag successful, try mapping again */
5561             *m_head = m0;
5562             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5563                                             tx_buf->m_map, m0,
5564                                             segs, &nsegs, BUS_DMA_NOWAIT);
5565             if (error) {
5566                 fp->eth_q_stats.tx_dma_mapping_failure++;
5567                 /* No sense in trying to defrag/copy chain, drop it. :( */
5568                 rc = error;
5569             }
5570             else {
5571                 /* if the chain is still too long then drop it */
5572                 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5573                     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5574                     rc = ENODEV;
5575                 }
5576             }
5577         }
5578     }
5579 
5580 bxe_tx_encap_continue:
5581 
5582     /* Check for errors */
5583     if (rc) {
5584         if (rc == ENOMEM) {
5585             /* recoverable try again later  */
5586         } else {
5587             fp->eth_q_stats.tx_soft_errors++;
5588             fp->eth_q_stats.mbuf_alloc_tx--;
5589             m_freem(*m_head);
5590             *m_head = NULL;
5591         }
5592 
5593         return (rc);
5594     }
5595 
5596     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5597     if (m0->m_flags & M_BCAST) {
5598         mac_type = BROADCAST_ADDRESS;
5599     } else if (m0->m_flags & M_MCAST) {
5600         mac_type = MULTICAST_ADDRESS;
5601     }
5602 
5603     /* store the mbuf into the mbuf ring */
5604     tx_buf->m        = m0;
5605     tx_buf->first_bd = fp->tx_bd_prod;
5606     tx_buf->flags    = 0;
5607 
5608     /* prepare the first transmit (start) BD for the mbuf */
5609     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5610 
5611     BLOGD(sc, DBG_TX,
5612           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5613           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5614 
5615     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5616     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5617     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5618     total_pkt_size += tx_start_bd->nbytes;
5619     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5620 
5621     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5622 
5623     /* all frames have at least Start BD + Parsing BD */
5624     nbds = nsegs + 1;
5625     tx_start_bd->nbd = htole16(nbds);
5626 
5627     if (m0->m_flags & M_VLANTAG) {
5628         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5629         tx_start_bd->bd_flags.as_bitfield |=
5630             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5631     } else {
5632         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5633         if (IS_VF(sc)) {
5634             /* map ethernet header to find type and header length */
5635             eh = mtod(m0, struct ether_vlan_header *);
5636             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5637         } else {
5638             /* used by FW for packet accounting */
5639             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5640 #if 0
5641             /*
5642              * If NPAR-SD is active then FW should do the tagging regardless
5643              * of value of priority. Otherwise, if priority indicates this is
5644              * a control packet we need to indicate to FW to avoid tagging.
5645              */
5646             if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5647                 SET_FLAG(tx_start_bd->general_data,
5648                          ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5649             }
5650 #endif
5651         }
5652     }
5653 
5654     /*
5655      * add a parsing BD from the chain. The parsing BD is always added
5656      * though it is only used for TSO and chksum
5657      */
5658     bd_prod = TX_BD_NEXT(bd_prod);
5659 
5660     if (m0->m_pkthdr.csum_flags) {
5661         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5662             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5663             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5664         }
5665 
5666         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5667             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5668                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5669         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5670             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5671                                                   ETH_TX_BD_FLAGS_IS_UDP |
5672                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5673         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5674                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5675             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5676         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5677             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5678                                                   ETH_TX_BD_FLAGS_IS_UDP);
5679         }
5680     }
5681 
5682     if (!CHIP_IS_E1x(sc)) {
5683         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5684         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5685 
5686         if (m0->m_pkthdr.csum_flags) {
5687             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5688         }
5689 
5690 #if 0
5691         /*
5692          * Add the MACs to the parsing BD if the module param was
5693          * explicitly set, if this is a vf, or in switch independent
5694          * mode.
5695          */
5696         if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5697             eh = mtod(m0, struct ether_vlan_header *);
5698             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5699                                 &pbd_e2->data.mac_addr.src_mid,
5700                                 &pbd_e2->data.mac_addr.src_lo,
5701                                 eh->evl_shost);
5702             bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5703                                 &pbd_e2->data.mac_addr.dst_mid,
5704                                 &pbd_e2->data.mac_addr.dst_lo,
5705                                 eh->evl_dhost);
5706         }
5707 #endif
5708 
5709         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5710                  mac_type);
5711     } else {
5712         uint16_t global_data = 0;
5713 
5714         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5715         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5716 
5717         if (m0->m_pkthdr.csum_flags) {
5718             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5719         }
5720 
5721         SET_FLAG(global_data,
5722                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5723         pbd_e1x->global_data |= htole16(global_data);
5724     }
5725 
5726     /* setup the parsing BD with TSO specific info */
5727     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5728         fp->eth_q_stats.tx_ofld_frames_lso++;
5729         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5730 
5731         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5732             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5733 
5734             /* split the first BD into header/data making the fw job easy */
5735             nbds++;
5736             tx_start_bd->nbd = htole16(nbds);
5737             tx_start_bd->nbytes = htole16(hlen);
5738 
5739             bd_prod = TX_BD_NEXT(bd_prod);
5740 
5741             /* new transmit BD after the tx_parse_bd */
5742             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5743             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5744             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5745             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5746             if (tx_total_pkt_size_bd == NULL) {
5747                 tx_total_pkt_size_bd = tx_data_bd;
5748             }
5749 
5750             BLOGD(sc, DBG_TX,
5751                   "TSO split header size is %d (%x:%x) nbds %d\n",
5752                   le16toh(tx_start_bd->nbytes),
5753                   le32toh(tx_start_bd->addr_hi),
5754                   le32toh(tx_start_bd->addr_lo),
5755                   nbds);
5756         }
5757 
5758         if (!CHIP_IS_E1x(sc)) {
5759             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5760         } else {
5761             bxe_set_pbd_lso(m0, pbd_e1x);
5762         }
5763     }
5764 
5765     if (pbd_e2_parsing_data) {
5766         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5767     }
5768 
5769     /* prepare remaining BDs, start tx bd contains first seg/frag */
5770     for (i = 1; i < nsegs ; i++) {
5771         bd_prod = TX_BD_NEXT(bd_prod);
5772         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5773         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5774         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5775         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5776         if (tx_total_pkt_size_bd == NULL) {
5777             tx_total_pkt_size_bd = tx_data_bd;
5778         }
5779         total_pkt_size += tx_data_bd->nbytes;
5780     }
5781 
5782     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5783 
5784     if (tx_total_pkt_size_bd != NULL) {
5785         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5786     }
5787 
5788     if (__predict_false(sc->debug & DBG_TX)) {
5789         tmp_bd = tx_buf->first_bd;
5790         for (i = 0; i < nbds; i++)
5791         {
5792             if (i == 0) {
5793                 BLOGD(sc, DBG_TX,
5794                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5795                       "bd_flags=0x%x hdr_nbds=%d\n",
5796                       tx_start_bd,
5797                       tmp_bd,
5798                       le16toh(tx_start_bd->nbd),
5799                       le16toh(tx_start_bd->vlan_or_ethertype),
5800                       tx_start_bd->bd_flags.as_bitfield,
5801                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5802             } else if (i == 1) {
5803                 if (pbd_e1x) {
5804                     BLOGD(sc, DBG_TX,
5805                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5806                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5807                           "tcp_seq=%u total_hlen_w=%u\n",
5808                           pbd_e1x,
5809                           tmp_bd,
5810                           pbd_e1x->global_data,
5811                           pbd_e1x->ip_hlen_w,
5812                           pbd_e1x->ip_id,
5813                           pbd_e1x->lso_mss,
5814                           pbd_e1x->tcp_flags,
5815                           pbd_e1x->tcp_pseudo_csum,
5816                           pbd_e1x->tcp_send_seq,
5817                           le16toh(pbd_e1x->total_hlen_w));
5818                 } else { /* if (pbd_e2) */
5819                     BLOGD(sc, DBG_TX,
5820                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5821                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5822                           pbd_e2,
5823                           tmp_bd,
5824                           pbd_e2->data.mac_addr.dst_hi,
5825                           pbd_e2->data.mac_addr.dst_mid,
5826                           pbd_e2->data.mac_addr.dst_lo,
5827                           pbd_e2->data.mac_addr.src_hi,
5828                           pbd_e2->data.mac_addr.src_mid,
5829                           pbd_e2->data.mac_addr.src_lo,
5830                           pbd_e2->parsing_data);
5831                 }
5832             }
5833 
5834             if (i != 1) { /* skip parse db as it doesn't hold data */
5835                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5836                 BLOGD(sc, DBG_TX,
5837                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5838                       tx_data_bd,
5839                       tmp_bd,
5840                       le16toh(tx_data_bd->nbytes),
5841                       le32toh(tx_data_bd->addr_hi),
5842                       le32toh(tx_data_bd->addr_lo));
5843             }
5844 
5845             tmp_bd = TX_BD_NEXT(tmp_bd);
5846         }
5847     }
5848 
5849     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5850 
5851     /* update TX BD producer index value for next TX */
5852     bd_prod = TX_BD_NEXT(bd_prod);
5853 
5854     /*
5855      * If the chain of tx_bd's describing this frame is adjacent to or spans
5856      * an eth_tx_next_bd element then we need to increment the nbds value.
5857      */
5858     if (TX_BD_IDX(bd_prod) < nbds) {
5859         nbds++;
5860     }
5861 
5862     /* don't allow reordering of writes for nbd and packets */
5863     mb();
5864 
5865     fp->tx_db.data.prod += nbds;
5866 
5867     /* producer points to the next free tx_bd at this point */
5868     fp->tx_pkt_prod++;
5869     fp->tx_bd_prod = bd_prod;
5870 
5871     DOORBELL(sc, fp->index, fp->tx_db.raw);
5872 
5873     fp->eth_q_stats.tx_pkts++;
5874 
5875     /* Prevent speculative reads from getting ahead of the status block. */
5876     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5877                       0, 0, BUS_SPACE_BARRIER_READ);
5878 
5879     /* Prevent speculative reads from getting ahead of the doorbell. */
5880     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5881                       0, 0, BUS_SPACE_BARRIER_READ);
5882 
5883     return (0);
5884 }
5885 
5886 static void
5887 bxe_tx_start_locked(struct bxe_softc *sc,
5888                     if_t ifp,
5889                     struct bxe_fastpath *fp)
5890 {
5891     struct mbuf *m = NULL;
5892     int tx_count = 0;
5893     uint16_t tx_bd_avail;
5894 
5895     BXE_FP_TX_LOCK_ASSERT(fp);
5896 
5897     /* keep adding entries while there are frames to send */
5898     while (!if_sendq_empty(ifp)) {
5899 
5900         /*
5901          * check for any frames to send
5902          * dequeue can still be NULL even if queue is not empty
5903          */
5904         m = if_dequeue(ifp);
5905         if (__predict_false(m == NULL)) {
5906             break;
5907         }
5908 
5909         /* the mbuf now belongs to us */
5910         fp->eth_q_stats.mbuf_alloc_tx++;
5911 
5912         /*
5913          * Put the frame into the transmit ring. If we don't have room,
5914          * place the mbuf back at the head of the TX queue, set the
5915          * OACTIVE flag, and wait for the NIC to drain the chain.
5916          */
5917         if (__predict_false(bxe_tx_encap(fp, &m))) {
5918             fp->eth_q_stats.tx_encap_failures++;
5919             if (m != NULL) {
5920                 /* mark the TX queue as full and return the frame */
5921                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5922 		if_sendq_prepend(ifp, m);
5923                 fp->eth_q_stats.mbuf_alloc_tx--;
5924                 fp->eth_q_stats.tx_queue_xoff++;
5925             }
5926 
5927             /* stop looking for more work */
5928             break;
5929         }
5930 
5931         /* the frame was enqueued successfully */
5932         tx_count++;
5933 
5934         /* send a copy of the frame to any BPF listeners. */
5935         if_etherbpfmtap(ifp, m);
5936 
5937         tx_bd_avail = bxe_tx_avail(sc, fp);
5938 
5939         /* handle any completions if we're running low */
5940         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5941             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5942             bxe_txeof(sc, fp);
5943             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5944                 break;
5945             }
5946         }
5947     }
5948 
5949     /* all TX packets were dequeued and/or the tx ring is full */
5950     if (tx_count > 0) {
5951         /* reset the TX watchdog timeout timer */
5952         fp->watchdog_timer = BXE_TX_TIMEOUT;
5953     }
5954 }
5955 
5956 /* Legacy (non-RSS) dispatch routine */
5957 static void
5958 bxe_tx_start(if_t ifp)
5959 {
5960     struct bxe_softc *sc;
5961     struct bxe_fastpath *fp;
5962 
5963     sc = if_getsoftc(ifp);
5964 
5965     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5966         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5967         return;
5968     }
5969 
5970     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5971         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5972         return;
5973     }
5974 
5975     if (!sc->link_vars.link_up) {
5976         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5977         return;
5978     }
5979 
5980     fp = &sc->fp[0];
5981 
5982     BXE_FP_TX_LOCK(fp);
5983     bxe_tx_start_locked(sc, ifp, fp);
5984     BXE_FP_TX_UNLOCK(fp);
5985 }
5986 
5987 #if __FreeBSD_version >= 800000
5988 
5989 static int
5990 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5991                        if_t                ifp,
5992                        struct bxe_fastpath *fp,
5993                        struct mbuf         *m)
5994 {
5995     struct buf_ring *tx_br = fp->tx_br;
5996     struct mbuf *next;
5997     int depth, rc, tx_count;
5998     uint16_t tx_bd_avail;
5999 
6000     rc = tx_count = 0;
6001 
6002     if (!tx_br) {
6003         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
6004         return (EINVAL);
6005     }
6006 
6007     /* fetch the depth of the driver queue */
6008     depth = drbr_inuse_drv(ifp, tx_br);
6009     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
6010         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
6011     }
6012 
6013     BXE_FP_TX_LOCK_ASSERT(fp);
6014 
6015     if (m == NULL) {
6016         /* no new work, check for pending frames */
6017         next = drbr_dequeue_drv(ifp, tx_br);
6018     } else if (drbr_needs_enqueue_drv(ifp, tx_br)) {
6019         /* have both new and pending work, maintain packet order */
6020         rc = drbr_enqueue_drv(ifp, tx_br, m);
6021         if (rc != 0) {
6022             fp->eth_q_stats.tx_soft_errors++;
6023             goto bxe_tx_mq_start_locked_exit;
6024         }
6025         next = drbr_dequeue_drv(ifp, tx_br);
6026     } else {
6027         /* new work only and nothing pending */
6028         next = m;
6029     }
6030 
6031     /* keep adding entries while there are frames to send */
6032     while (next != NULL) {
6033 
6034         /* the mbuf now belongs to us */
6035         fp->eth_q_stats.mbuf_alloc_tx++;
6036 
6037         /*
6038          * Put the frame into the transmit ring. If we don't have room,
6039          * place the mbuf back at the head of the TX queue, set the
6040          * OACTIVE flag, and wait for the NIC to drain the chain.
6041          */
6042         rc = bxe_tx_encap(fp, &next);
6043         if (__predict_false(rc != 0)) {
6044             fp->eth_q_stats.tx_encap_failures++;
6045             if (next != NULL) {
6046                 /* mark the TX queue as full and save the frame */
6047                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
6048                 /* XXX this may reorder the frame */
6049                 rc = drbr_enqueue_drv(ifp, tx_br, next);
6050                 fp->eth_q_stats.mbuf_alloc_tx--;
6051                 fp->eth_q_stats.tx_frames_deferred++;
6052             }
6053 
6054             /* stop looking for more work */
6055             break;
6056         }
6057 
6058         /* the transmit frame was enqueued successfully */
6059         tx_count++;
6060 
6061         /* send a copy of the frame to any BPF listeners */
6062 	if_etherbpfmtap(ifp, next);
6063 
6064         tx_bd_avail = bxe_tx_avail(sc, fp);
6065 
6066         /* handle any completions if we're running low */
6067         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6068             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6069             bxe_txeof(sc, fp);
6070             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6071                 break;
6072             }
6073         }
6074 
6075         next = drbr_dequeue_drv(ifp, tx_br);
6076     }
6077 
6078     /* all TX packets were dequeued and/or the tx ring is full */
6079     if (tx_count > 0) {
6080         /* reset the TX watchdog timeout timer */
6081         fp->watchdog_timer = BXE_TX_TIMEOUT;
6082     }
6083 
6084 bxe_tx_mq_start_locked_exit:
6085 
6086     return (rc);
6087 }
6088 
6089 /* Multiqueue (TSS) dispatch routine. */
6090 static int
6091 bxe_tx_mq_start(struct ifnet *ifp,
6092                 struct mbuf  *m)
6093 {
6094     struct bxe_softc *sc = if_getsoftc(ifp);
6095     struct bxe_fastpath *fp;
6096     int fp_index, rc;
6097 
6098     fp_index = 0; /* default is the first queue */
6099 
6100     /* check if flowid is set */
6101     if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
6102         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6103 
6104     fp = &sc->fp[fp_index];
6105 
6106     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6107         BLOGW(sc, "Interface not running, ignoring transmit request\n");
6108         return (ENETDOWN);
6109     }
6110 
6111     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
6112         BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6113         return (EBUSY);
6114     }
6115 
6116     if (!sc->link_vars.link_up) {
6117         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6118         return (ENETDOWN);
6119     }
6120 
6121     /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6122 
6123     BXE_FP_TX_LOCK(fp);
6124     rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6125     BXE_FP_TX_UNLOCK(fp);
6126 
6127     return (rc);
6128 }
6129 
6130 static void
6131 bxe_mq_flush(struct ifnet *ifp)
6132 {
6133     struct bxe_softc *sc = if_getsoftc(ifp);
6134     struct bxe_fastpath *fp;
6135     struct mbuf *m;
6136     int i;
6137 
6138     for (i = 0; i < sc->num_queues; i++) {
6139         fp = &sc->fp[i];
6140 
6141         if (fp->state != BXE_FP_STATE_OPEN) {
6142             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6143                   fp->index, fp->state);
6144             continue;
6145         }
6146 
6147         if (fp->tx_br != NULL) {
6148             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6149             BXE_FP_TX_LOCK(fp);
6150             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6151                 m_freem(m);
6152             }
6153             BXE_FP_TX_UNLOCK(fp);
6154         }
6155     }
6156 
6157     if_qflush(ifp);
6158 }
6159 
6160 #endif /* FreeBSD_version >= 800000 */
6161 
6162 static uint16_t
6163 bxe_cid_ilt_lines(struct bxe_softc *sc)
6164 {
6165     if (IS_SRIOV(sc)) {
6166         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6167     }
6168     return (L2_ILT_LINES(sc));
6169 }
6170 
6171 static void
6172 bxe_ilt_set_info(struct bxe_softc *sc)
6173 {
6174     struct ilt_client_info *ilt_client;
6175     struct ecore_ilt *ilt = sc->ilt;
6176     uint16_t line = 0;
6177 
6178     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6179     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6180 
6181     /* CDU */
6182     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6183     ilt_client->client_num = ILT_CLIENT_CDU;
6184     ilt_client->page_size = CDU_ILT_PAGE_SZ;
6185     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6186     ilt_client->start = line;
6187     line += bxe_cid_ilt_lines(sc);
6188 
6189     if (CNIC_SUPPORT(sc)) {
6190         line += CNIC_ILT_LINES;
6191     }
6192 
6193     ilt_client->end = (line - 1);
6194 
6195     BLOGD(sc, DBG_LOAD,
6196           "ilt client[CDU]: start %d, end %d, "
6197           "psz 0x%x, flags 0x%x, hw psz %d\n",
6198           ilt_client->start, ilt_client->end,
6199           ilt_client->page_size,
6200           ilt_client->flags,
6201           ilog2(ilt_client->page_size >> 12));
6202 
6203     /* QM */
6204     if (QM_INIT(sc->qm_cid_count)) {
6205         ilt_client = &ilt->clients[ILT_CLIENT_QM];
6206         ilt_client->client_num = ILT_CLIENT_QM;
6207         ilt_client->page_size = QM_ILT_PAGE_SZ;
6208         ilt_client->flags = 0;
6209         ilt_client->start = line;
6210 
6211         /* 4 bytes for each cid */
6212         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6213                              QM_ILT_PAGE_SZ);
6214 
6215         ilt_client->end = (line - 1);
6216 
6217         BLOGD(sc, DBG_LOAD,
6218               "ilt client[QM]: start %d, end %d, "
6219               "psz 0x%x, flags 0x%x, hw psz %d\n",
6220               ilt_client->start, ilt_client->end,
6221               ilt_client->page_size, ilt_client->flags,
6222               ilog2(ilt_client->page_size >> 12));
6223     }
6224 
6225     if (CNIC_SUPPORT(sc)) {
6226         /* SRC */
6227         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6228         ilt_client->client_num = ILT_CLIENT_SRC;
6229         ilt_client->page_size = SRC_ILT_PAGE_SZ;
6230         ilt_client->flags = 0;
6231         ilt_client->start = line;
6232         line += SRC_ILT_LINES;
6233         ilt_client->end = (line - 1);
6234 
6235         BLOGD(sc, DBG_LOAD,
6236               "ilt client[SRC]: start %d, end %d, "
6237               "psz 0x%x, flags 0x%x, hw psz %d\n",
6238               ilt_client->start, ilt_client->end,
6239               ilt_client->page_size, ilt_client->flags,
6240               ilog2(ilt_client->page_size >> 12));
6241 
6242         /* TM */
6243         ilt_client = &ilt->clients[ILT_CLIENT_TM];
6244         ilt_client->client_num = ILT_CLIENT_TM;
6245         ilt_client->page_size = TM_ILT_PAGE_SZ;
6246         ilt_client->flags = 0;
6247         ilt_client->start = line;
6248         line += TM_ILT_LINES;
6249         ilt_client->end = (line - 1);
6250 
6251         BLOGD(sc, DBG_LOAD,
6252               "ilt client[TM]: start %d, end %d, "
6253               "psz 0x%x, flags 0x%x, hw psz %d\n",
6254               ilt_client->start, ilt_client->end,
6255               ilt_client->page_size, ilt_client->flags,
6256               ilog2(ilt_client->page_size >> 12));
6257     }
6258 
6259     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6260 }
6261 
6262 static void
6263 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6264 {
6265     int i;
6266     uint32_t rx_buf_size;
6267 
6268     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
6269 
6270     for (i = 0; i < sc->num_queues; i++) {
6271         if(rx_buf_size <= MCLBYTES){
6272             sc->fp[i].rx_buf_size = rx_buf_size;
6273             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6274         }else if (rx_buf_size <= MJUMPAGESIZE){
6275             sc->fp[i].rx_buf_size = rx_buf_size;
6276             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6277         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
6278             sc->fp[i].rx_buf_size = MCLBYTES;
6279             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6280         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
6281             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
6282             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
6283         }else {
6284             sc->fp[i].rx_buf_size = MCLBYTES;
6285             sc->fp[i].mbuf_alloc_size = MCLBYTES;
6286         }
6287     }
6288 }
6289 
6290 static int
6291 bxe_alloc_ilt_mem(struct bxe_softc *sc)
6292 {
6293     int rc = 0;
6294 
6295     if ((sc->ilt =
6296          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6297                                     M_BXE_ILT,
6298                                     (M_NOWAIT | M_ZERO))) == NULL) {
6299         rc = 1;
6300     }
6301 
6302     return (rc);
6303 }
6304 
6305 static int
6306 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6307 {
6308     int rc = 0;
6309 
6310     if ((sc->ilt->lines =
6311          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6312                                     M_BXE_ILT,
6313                                     (M_NOWAIT | M_ZERO))) == NULL) {
6314         rc = 1;
6315     }
6316 
6317     return (rc);
6318 }
6319 
6320 static void
6321 bxe_free_ilt_mem(struct bxe_softc *sc)
6322 {
6323     if (sc->ilt != NULL) {
6324         free(sc->ilt, M_BXE_ILT);
6325         sc->ilt = NULL;
6326     }
6327 }
6328 
6329 static void
6330 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6331 {
6332     if (sc->ilt->lines != NULL) {
6333         free(sc->ilt->lines, M_BXE_ILT);
6334         sc->ilt->lines = NULL;
6335     }
6336 }
6337 
6338 static void
6339 bxe_free_mem(struct bxe_softc *sc)
6340 {
6341     int i;
6342 
6343 #if 0
6344     if (!CONFIGURE_NIC_MODE(sc)) {
6345         /* free searcher T2 table */
6346         bxe_dma_free(sc, &sc->t2);
6347     }
6348 #endif
6349 
6350     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6351         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6352         sc->context[i].vcxt = NULL;
6353         sc->context[i].size = 0;
6354     }
6355 
6356     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6357 
6358     bxe_free_ilt_lines_mem(sc);
6359 
6360 #if 0
6361     bxe_iov_free_mem(sc);
6362 #endif
6363 }
6364 
6365 static int
6366 bxe_alloc_mem(struct bxe_softc *sc)
6367 {
6368     int context_size;
6369     int allocated;
6370     int i;
6371 
6372 #if 0
6373     if (!CONFIGURE_NIC_MODE(sc)) {
6374         /* allocate searcher T2 table */
6375         if (bxe_dma_alloc(sc, SRC_T2_SZ,
6376                           &sc->t2, "searcher t2 table") != 0) {
6377             return (-1);
6378         }
6379     }
6380 #endif
6381 
6382     /*
6383      * Allocate memory for CDU context:
6384      * This memory is allocated separately and not in the generic ILT
6385      * functions because CDU differs in few aspects:
6386      * 1. There can be multiple entities allocating memory for context -
6387      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6388      * its own ILT lines.
6389      * 2. Since CDU page-size is not a single 4KB page (which is the case
6390      * for the other ILT clients), to be efficient we want to support
6391      * allocation of sub-page-size in the last entry.
6392      * 3. Context pointers are used by the driver to pass to FW / update
6393      * the context (for the other ILT clients the pointers are used just to
6394      * free the memory during unload).
6395      */
6396     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6397     for (i = 0, allocated = 0; allocated < context_size; i++) {
6398         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6399                                   (context_size - allocated));
6400 
6401         if (bxe_dma_alloc(sc, sc->context[i].size,
6402                           &sc->context[i].vcxt_dma,
6403                           "cdu context") != 0) {
6404             bxe_free_mem(sc);
6405             return (-1);
6406         }
6407 
6408         sc->context[i].vcxt =
6409             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6410 
6411         allocated += sc->context[i].size;
6412     }
6413 
6414     bxe_alloc_ilt_lines_mem(sc);
6415 
6416     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6417           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6418     {
6419         for (i = 0; i < 4; i++) {
6420             BLOGD(sc, DBG_LOAD,
6421                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6422                   i,
6423                   sc->ilt->clients[i].page_size,
6424                   sc->ilt->clients[i].start,
6425                   sc->ilt->clients[i].end,
6426                   sc->ilt->clients[i].client_num,
6427                   sc->ilt->clients[i].flags);
6428         }
6429     }
6430     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6431         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6432         bxe_free_mem(sc);
6433         return (-1);
6434     }
6435 
6436 #if 0
6437     if (bxe_iov_alloc_mem(sc)) {
6438         BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6439         bxe_free_mem(sc);
6440         return (-1);
6441     }
6442 #endif
6443 
6444     return (0);
6445 }
6446 
6447 static void
6448 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6449 {
6450     struct bxe_softc *sc;
6451     int i;
6452 
6453     sc = fp->sc;
6454 
6455     if (fp->rx_mbuf_tag == NULL) {
6456         return;
6457     }
6458 
6459     /* free all mbufs and unload all maps */
6460     for (i = 0; i < RX_BD_TOTAL; i++) {
6461         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6462             bus_dmamap_sync(fp->rx_mbuf_tag,
6463                             fp->rx_mbuf_chain[i].m_map,
6464                             BUS_DMASYNC_POSTREAD);
6465             bus_dmamap_unload(fp->rx_mbuf_tag,
6466                               fp->rx_mbuf_chain[i].m_map);
6467         }
6468 
6469         if (fp->rx_mbuf_chain[i].m != NULL) {
6470             m_freem(fp->rx_mbuf_chain[i].m);
6471             fp->rx_mbuf_chain[i].m = NULL;
6472             fp->eth_q_stats.mbuf_alloc_rx--;
6473         }
6474     }
6475 }
6476 
6477 static void
6478 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6479 {
6480     struct bxe_softc *sc;
6481     int i, max_agg_queues;
6482 
6483     sc = fp->sc;
6484 
6485     if (fp->rx_mbuf_tag == NULL) {
6486         return;
6487     }
6488 
6489     max_agg_queues = MAX_AGG_QS(sc);
6490 
6491     /* release all mbufs and unload all DMA maps in the TPA pool */
6492     for (i = 0; i < max_agg_queues; i++) {
6493         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6494             bus_dmamap_sync(fp->rx_mbuf_tag,
6495                             fp->rx_tpa_info[i].bd.m_map,
6496                             BUS_DMASYNC_POSTREAD);
6497             bus_dmamap_unload(fp->rx_mbuf_tag,
6498                               fp->rx_tpa_info[i].bd.m_map);
6499         }
6500 
6501         if (fp->rx_tpa_info[i].bd.m != NULL) {
6502             m_freem(fp->rx_tpa_info[i].bd.m);
6503             fp->rx_tpa_info[i].bd.m = NULL;
6504             fp->eth_q_stats.mbuf_alloc_tpa--;
6505         }
6506     }
6507 }
6508 
6509 static void
6510 bxe_free_sge_chain(struct bxe_fastpath *fp)
6511 {
6512     struct bxe_softc *sc;
6513     int i;
6514 
6515     sc = fp->sc;
6516 
6517     if (fp->rx_sge_mbuf_tag == NULL) {
6518         return;
6519     }
6520 
6521     /* rree all mbufs and unload all maps */
6522     for (i = 0; i < RX_SGE_TOTAL; i++) {
6523         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6524             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6525                             fp->rx_sge_mbuf_chain[i].m_map,
6526                             BUS_DMASYNC_POSTREAD);
6527             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6528                               fp->rx_sge_mbuf_chain[i].m_map);
6529         }
6530 
6531         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6532             m_freem(fp->rx_sge_mbuf_chain[i].m);
6533             fp->rx_sge_mbuf_chain[i].m = NULL;
6534             fp->eth_q_stats.mbuf_alloc_sge--;
6535         }
6536     }
6537 }
6538 
6539 static void
6540 bxe_free_fp_buffers(struct bxe_softc *sc)
6541 {
6542     struct bxe_fastpath *fp;
6543     int i;
6544 
6545     for (i = 0; i < sc->num_queues; i++) {
6546         fp = &sc->fp[i];
6547 
6548 #if __FreeBSD_version >= 800000
6549         if (fp->tx_br != NULL) {
6550             struct mbuf *m;
6551             /* just in case bxe_mq_flush() wasn't called */
6552             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6553                 m_freem(m);
6554             }
6555             buf_ring_free(fp->tx_br, M_DEVBUF);
6556             fp->tx_br = NULL;
6557         }
6558 #endif
6559 
6560         /* free all RX buffers */
6561         bxe_free_rx_bd_chain(fp);
6562         bxe_free_tpa_pool(fp);
6563         bxe_free_sge_chain(fp);
6564 
6565         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6566             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6567                   fp->eth_q_stats.mbuf_alloc_rx);
6568         }
6569 
6570         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6571             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6572                   fp->eth_q_stats.mbuf_alloc_sge);
6573         }
6574 
6575         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6576             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6577                   fp->eth_q_stats.mbuf_alloc_tpa);
6578         }
6579 
6580         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6581             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6582                   fp->eth_q_stats.mbuf_alloc_tx);
6583         }
6584 
6585         /* XXX verify all mbufs were reclaimed */
6586 
6587         if (mtx_initialized(&fp->tx_mtx)) {
6588             mtx_destroy(&fp->tx_mtx);
6589         }
6590 
6591         if (mtx_initialized(&fp->rx_mtx)) {
6592             mtx_destroy(&fp->rx_mtx);
6593         }
6594     }
6595 }
6596 
6597 static int
6598 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6599                      uint16_t            prev_index,
6600                      uint16_t            index)
6601 {
6602     struct bxe_sw_rx_bd *rx_buf;
6603     struct eth_rx_bd *rx_bd;
6604     bus_dma_segment_t segs[1];
6605     bus_dmamap_t map;
6606     struct mbuf *m;
6607     int nsegs, rc;
6608 
6609     rc = 0;
6610 
6611     /* allocate the new RX BD mbuf */
6612     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6613     if (__predict_false(m == NULL)) {
6614         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6615         return (ENOBUFS);
6616     }
6617 
6618     fp->eth_q_stats.mbuf_alloc_rx++;
6619 
6620     /* initialize the mbuf buffer length */
6621     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6622 
6623     /* map the mbuf into non-paged pool */
6624     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6625                                  fp->rx_mbuf_spare_map,
6626                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6627     if (__predict_false(rc != 0)) {
6628         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6629         m_freem(m);
6630         fp->eth_q_stats.mbuf_alloc_rx--;
6631         return (rc);
6632     }
6633 
6634     /* all mbufs must map to a single segment */
6635     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6636 
6637     /* release any existing RX BD mbuf mappings */
6638 
6639     if (prev_index != index) {
6640         rx_buf = &fp->rx_mbuf_chain[prev_index];
6641 
6642         if (rx_buf->m_map != NULL) {
6643             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6644                             BUS_DMASYNC_POSTREAD);
6645             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6646         }
6647 
6648         /*
6649          * We only get here from bxe_rxeof() when the maximum number
6650          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6651          * holds the mbuf in the prev_index so it's OK to NULL it out
6652          * here without concern of a memory leak.
6653          */
6654         fp->rx_mbuf_chain[prev_index].m = NULL;
6655     }
6656 
6657     rx_buf = &fp->rx_mbuf_chain[index];
6658 
6659     if (rx_buf->m_map != NULL) {
6660         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6661                         BUS_DMASYNC_POSTREAD);
6662         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6663     }
6664 
6665     /* save the mbuf and mapping info for a future packet */
6666     map = (prev_index != index) ?
6667               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6668     rx_buf->m_map = fp->rx_mbuf_spare_map;
6669     fp->rx_mbuf_spare_map = map;
6670     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6671                     BUS_DMASYNC_PREREAD);
6672     rx_buf->m = m;
6673 
6674     rx_bd = &fp->rx_chain[index];
6675     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6676     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6677 
6678     return (rc);
6679 }
6680 
6681 static int
6682 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6683                       int                 queue)
6684 {
6685     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6686     bus_dma_segment_t segs[1];
6687     bus_dmamap_t map;
6688     struct mbuf *m;
6689     int nsegs;
6690     int rc = 0;
6691 
6692     /* allocate the new TPA mbuf */
6693     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6694     if (__predict_false(m == NULL)) {
6695         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6696         return (ENOBUFS);
6697     }
6698 
6699     fp->eth_q_stats.mbuf_alloc_tpa++;
6700 
6701     /* initialize the mbuf buffer length */
6702     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6703 
6704     /* map the mbuf into non-paged pool */
6705     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6706                                  fp->rx_tpa_info_mbuf_spare_map,
6707                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6708     if (__predict_false(rc != 0)) {
6709         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6710         m_free(m);
6711         fp->eth_q_stats.mbuf_alloc_tpa--;
6712         return (rc);
6713     }
6714 
6715     /* all mbufs must map to a single segment */
6716     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6717 
6718     /* release any existing TPA mbuf mapping */
6719     if (tpa_info->bd.m_map != NULL) {
6720         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6721                         BUS_DMASYNC_POSTREAD);
6722         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6723     }
6724 
6725     /* save the mbuf and mapping info for the TPA mbuf */
6726     map = tpa_info->bd.m_map;
6727     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6728     fp->rx_tpa_info_mbuf_spare_map = map;
6729     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6730                     BUS_DMASYNC_PREREAD);
6731     tpa_info->bd.m = m;
6732     tpa_info->seg = segs[0];
6733 
6734     return (rc);
6735 }
6736 
6737 /*
6738  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6739  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6740  * chain.
6741  */
6742 static int
6743 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6744                       uint16_t            index)
6745 {
6746     struct bxe_sw_rx_bd *sge_buf;
6747     struct eth_rx_sge *sge;
6748     bus_dma_segment_t segs[1];
6749     bus_dmamap_t map;
6750     struct mbuf *m;
6751     int nsegs;
6752     int rc = 0;
6753 
6754     /* allocate a new SGE mbuf */
6755     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6756     if (__predict_false(m == NULL)) {
6757         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6758         return (ENOMEM);
6759     }
6760 
6761     fp->eth_q_stats.mbuf_alloc_sge++;
6762 
6763     /* initialize the mbuf buffer length */
6764     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6765 
6766     /* map the SGE mbuf into non-paged pool */
6767     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6768                                  fp->rx_sge_mbuf_spare_map,
6769                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6770     if (__predict_false(rc != 0)) {
6771         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6772         m_freem(m);
6773         fp->eth_q_stats.mbuf_alloc_sge--;
6774         return (rc);
6775     }
6776 
6777     /* all mbufs must map to a single segment */
6778     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6779 
6780     sge_buf = &fp->rx_sge_mbuf_chain[index];
6781 
6782     /* release any existing SGE mbuf mapping */
6783     if (sge_buf->m_map != NULL) {
6784         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6785                         BUS_DMASYNC_POSTREAD);
6786         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6787     }
6788 
6789     /* save the mbuf and mapping info for a future packet */
6790     map = sge_buf->m_map;
6791     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6792     fp->rx_sge_mbuf_spare_map = map;
6793     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6794                     BUS_DMASYNC_PREREAD);
6795     sge_buf->m = m;
6796 
6797     sge = &fp->rx_sge_chain[index];
6798     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6799     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6800 
6801     return (rc);
6802 }
6803 
6804 static __noinline int
6805 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6806 {
6807     struct bxe_fastpath *fp;
6808     int i, j, rc = 0;
6809     int ring_prod, cqe_ring_prod;
6810     int max_agg_queues;
6811 
6812     for (i = 0; i < sc->num_queues; i++) {
6813         fp = &sc->fp[i];
6814 
6815 #if __FreeBSD_version >= 800000
6816         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6817                                    M_NOWAIT, &fp->tx_mtx);
6818         if (fp->tx_br == NULL) {
6819             BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6820             goto bxe_alloc_fp_buffers_error;
6821         }
6822 #endif
6823 
6824         ring_prod = cqe_ring_prod = 0;
6825         fp->rx_bd_cons = 0;
6826         fp->rx_cq_cons = 0;
6827 
6828         /* allocate buffers for the RX BDs in RX BD chain */
6829         for (j = 0; j < sc->max_rx_bufs; j++) {
6830             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6831             if (rc != 0) {
6832                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6833                       i, rc);
6834                 goto bxe_alloc_fp_buffers_error;
6835             }
6836 
6837             ring_prod     = RX_BD_NEXT(ring_prod);
6838             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6839         }
6840 
6841         fp->rx_bd_prod = ring_prod;
6842         fp->rx_cq_prod = cqe_ring_prod;
6843         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6844 
6845         max_agg_queues = MAX_AGG_QS(sc);
6846 
6847         fp->tpa_enable = TRUE;
6848 
6849         /* fill the TPA pool */
6850         for (j = 0; j < max_agg_queues; j++) {
6851             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6852             if (rc != 0) {
6853                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6854                           i, j);
6855                 fp->tpa_enable = FALSE;
6856                 goto bxe_alloc_fp_buffers_error;
6857             }
6858 
6859             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6860         }
6861 
6862         if (fp->tpa_enable) {
6863             /* fill the RX SGE chain */
6864             ring_prod = 0;
6865             for (j = 0; j < RX_SGE_USABLE; j++) {
6866                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6867                 if (rc != 0) {
6868                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6869                               i, ring_prod);
6870                     fp->tpa_enable = FALSE;
6871                     ring_prod = 0;
6872                     goto bxe_alloc_fp_buffers_error;
6873                 }
6874 
6875                 ring_prod = RX_SGE_NEXT(ring_prod);
6876             }
6877 
6878             fp->rx_sge_prod = ring_prod;
6879         }
6880     }
6881 
6882     return (0);
6883 
6884 bxe_alloc_fp_buffers_error:
6885 
6886     /* unwind what was already allocated */
6887     bxe_free_rx_bd_chain(fp);
6888     bxe_free_tpa_pool(fp);
6889     bxe_free_sge_chain(fp);
6890 
6891     return (ENOBUFS);
6892 }
6893 
6894 static void
6895 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6896 {
6897     bxe_dma_free(sc, &sc->fw_stats_dma);
6898 
6899     sc->fw_stats_num = 0;
6900 
6901     sc->fw_stats_req_size = 0;
6902     sc->fw_stats_req = NULL;
6903     sc->fw_stats_req_mapping = 0;
6904 
6905     sc->fw_stats_data_size = 0;
6906     sc->fw_stats_data = NULL;
6907     sc->fw_stats_data_mapping = 0;
6908 }
6909 
6910 static int
6911 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6912 {
6913     uint8_t num_queue_stats;
6914     int num_groups;
6915 
6916     /* number of queues for statistics is number of eth queues */
6917     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6918 
6919     /*
6920      * Total number of FW statistics requests =
6921      *   1 for port stats + 1 for PF stats + num of queues
6922      */
6923     sc->fw_stats_num = (2 + num_queue_stats);
6924 
6925     /*
6926      * Request is built from stats_query_header and an array of
6927      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6928      * rules. The real number or requests is configured in the
6929      * stats_query_header.
6930      */
6931     num_groups =
6932         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6933          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6934 
6935     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6936           sc->fw_stats_num, num_groups);
6937 
6938     sc->fw_stats_req_size =
6939         (sizeof(struct stats_query_header) +
6940          (num_groups * sizeof(struct stats_query_cmd_group)));
6941 
6942     /*
6943      * Data for statistics requests + stats_counter.
6944      * stats_counter holds per-STORM counters that are incremented when
6945      * STORM has finished with the current request. Memory for FCoE
6946      * offloaded statistics are counted anyway, even if they will not be sent.
6947      * VF stats are not accounted for here as the data of VF stats is stored
6948      * in memory allocated by the VF, not here.
6949      */
6950     sc->fw_stats_data_size =
6951         (sizeof(struct stats_counter) +
6952          sizeof(struct per_port_stats) +
6953          sizeof(struct per_pf_stats) +
6954          /* sizeof(struct fcoe_statistics_params) + */
6955          (sizeof(struct per_queue_stats) * num_queue_stats));
6956 
6957     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6958                       &sc->fw_stats_dma, "fw stats") != 0) {
6959         bxe_free_fw_stats_mem(sc);
6960         return (-1);
6961     }
6962 
6963     /* set up the shortcuts */
6964 
6965     sc->fw_stats_req =
6966         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6967     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6968 
6969     sc->fw_stats_data =
6970         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6971                                      sc->fw_stats_req_size);
6972     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6973                                  sc->fw_stats_req_size);
6974 
6975     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6976           (uintmax_t)sc->fw_stats_req_mapping);
6977 
6978     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6979           (uintmax_t)sc->fw_stats_data_mapping);
6980 
6981     return (0);
6982 }
6983 
6984 /*
6985  * Bits map:
6986  * 0-7  - Engine0 load counter.
6987  * 8-15 - Engine1 load counter.
6988  * 16   - Engine0 RESET_IN_PROGRESS bit.
6989  * 17   - Engine1 RESET_IN_PROGRESS bit.
6990  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6991  *        function on the engine
6992  * 19   - Engine1 ONE_IS_LOADED.
6993  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6994  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6995  *        for just the one belonging to its engine).
6996  */
6997 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6998 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6999 #define BXE_PATH0_LOAD_CNT_SHIFT  0
7000 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
7001 #define BXE_PATH1_LOAD_CNT_SHIFT  8
7002 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
7003 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
7004 #define BXE_GLOBAL_RESET_BIT      0x00040000
7005 
7006 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
7007 static void
7008 bxe_set_reset_global(struct bxe_softc *sc)
7009 {
7010     uint32_t val;
7011     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7012     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7013     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
7014     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7015 }
7016 
7017 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
7018 static void
7019 bxe_clear_reset_global(struct bxe_softc *sc)
7020 {
7021     uint32_t val;
7022     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7023     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7024     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
7025     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7026 }
7027 
7028 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
7029 static uint8_t
7030 bxe_reset_is_global(struct bxe_softc *sc)
7031 {
7032     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7033     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
7034     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
7035 }
7036 
7037 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
7038 static void
7039 bxe_set_reset_done(struct bxe_softc *sc)
7040 {
7041     uint32_t val;
7042     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7043                                  BXE_PATH0_RST_IN_PROG_BIT;
7044 
7045     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7046 
7047     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7048     /* Clear the bit */
7049     val &= ~bit;
7050     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7051 
7052     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7053 }
7054 
7055 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7056 static void
7057 bxe_set_reset_in_progress(struct bxe_softc *sc)
7058 {
7059     uint32_t val;
7060     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7061                                  BXE_PATH0_RST_IN_PROG_BIT;
7062 
7063     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7064 
7065     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7066     /* Set the bit */
7067     val |= bit;
7068     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7069 
7070     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7071 }
7072 
7073 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7074 static uint8_t
7075 bxe_reset_is_done(struct bxe_softc *sc,
7076                   int              engine)
7077 {
7078     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7079     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7080                             BXE_PATH0_RST_IN_PROG_BIT;
7081 
7082     /* return false if bit is set */
7083     return (val & bit) ? FALSE : TRUE;
7084 }
7085 
7086 /* get the load status for an engine, should be run under rtnl lock */
7087 static uint8_t
7088 bxe_get_load_status(struct bxe_softc *sc,
7089                     int              engine)
7090 {
7091     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7092                              BXE_PATH0_LOAD_CNT_MASK;
7093     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7094                               BXE_PATH0_LOAD_CNT_SHIFT;
7095     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7096 
7097     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7098 
7099     val = ((val & mask) >> shift);
7100 
7101     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7102 
7103     return (val != 0);
7104 }
7105 
7106 /* set pf load mark */
7107 /* XXX needs to be under rtnl lock */
7108 static void
7109 bxe_set_pf_load(struct bxe_softc *sc)
7110 {
7111     uint32_t val;
7112     uint32_t val1;
7113     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7114                                   BXE_PATH0_LOAD_CNT_MASK;
7115     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7116                                    BXE_PATH0_LOAD_CNT_SHIFT;
7117 
7118     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7119 
7120     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7121     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7122 
7123     /* get the current counter value */
7124     val1 = ((val & mask) >> shift);
7125 
7126     /* set bit of this PF */
7127     val1 |= (1 << SC_ABS_FUNC(sc));
7128 
7129     /* clear the old value */
7130     val &= ~mask;
7131 
7132     /* set the new one */
7133     val |= ((val1 << shift) & mask);
7134 
7135     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7136 
7137     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7138 }
7139 
7140 /* clear pf load mark */
7141 /* XXX needs to be under rtnl lock */
7142 static uint8_t
7143 bxe_clear_pf_load(struct bxe_softc *sc)
7144 {
7145     uint32_t val1, val;
7146     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7147                                   BXE_PATH0_LOAD_CNT_MASK;
7148     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7149                                    BXE_PATH0_LOAD_CNT_SHIFT;
7150 
7151     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7152     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7153     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7154 
7155     /* get the current counter value */
7156     val1 = (val & mask) >> shift;
7157 
7158     /* clear bit of that PF */
7159     val1 &= ~(1 << SC_ABS_FUNC(sc));
7160 
7161     /* clear the old value */
7162     val &= ~mask;
7163 
7164     /* set the new one */
7165     val |= ((val1 << shift) & mask);
7166 
7167     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7168     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7169     return (val1 != 0);
7170 }
7171 
7172 /* send load requrest to mcp and analyze response */
7173 static int
7174 bxe_nic_load_request(struct bxe_softc *sc,
7175                      uint32_t         *load_code)
7176 {
7177     /* init fw_seq */
7178     sc->fw_seq =
7179         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7180          DRV_MSG_SEQ_NUMBER_MASK);
7181 
7182     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7183 
7184     /* get the current FW pulse sequence */
7185     sc->fw_drv_pulse_wr_seq =
7186         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7187          DRV_PULSE_SEQ_MASK);
7188 
7189     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7190           sc->fw_drv_pulse_wr_seq);
7191 
7192     /* load request */
7193     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7194                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7195 
7196     /* if the MCP fails to respond we must abort */
7197     if (!(*load_code)) {
7198         BLOGE(sc, "MCP response failure!\n");
7199         return (-1);
7200     }
7201 
7202     /* if MCP refused then must abort */
7203     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7204         BLOGE(sc, "MCP refused load request\n");
7205         return (-1);
7206     }
7207 
7208     return (0);
7209 }
7210 
7211 /*
7212  * Check whether another PF has already loaded FW to chip. In virtualized
7213  * environments a pf from anoth VM may have already initialized the device
7214  * including loading FW.
7215  */
7216 static int
7217 bxe_nic_load_analyze_req(struct bxe_softc *sc,
7218                          uint32_t         load_code)
7219 {
7220     uint32_t my_fw, loaded_fw;
7221 
7222     /* is another pf loaded on this engine? */
7223     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7224         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7225         /* build my FW version dword */
7226         my_fw = (BCM_5710_FW_MAJOR_VERSION +
7227                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
7228                  (BCM_5710_FW_REVISION_VERSION << 16) +
7229                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
7230 
7231         /* read loaded FW from chip */
7232         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7233         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7234               loaded_fw, my_fw);
7235 
7236         /* abort nic load if version mismatch */
7237         if (my_fw != loaded_fw) {
7238             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7239                   loaded_fw, my_fw);
7240             return (-1);
7241         }
7242     }
7243 
7244     return (0);
7245 }
7246 
7247 /* mark PMF if applicable */
7248 static void
7249 bxe_nic_load_pmf(struct bxe_softc *sc,
7250                  uint32_t         load_code)
7251 {
7252     uint32_t ncsi_oem_data_addr;
7253 
7254     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7255         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7256         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7257         /*
7258          * Barrier here for ordering between the writing to sc->port.pmf here
7259          * and reading it from the periodic task.
7260          */
7261         sc->port.pmf = 1;
7262         mb();
7263     } else {
7264         sc->port.pmf = 0;
7265     }
7266 
7267     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7268 
7269     /* XXX needed? */
7270     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7271         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7272             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7273             if (ncsi_oem_data_addr) {
7274                 REG_WR(sc,
7275                        (ncsi_oem_data_addr +
7276                         offsetof(struct glob_ncsi_oem_data, driver_version)),
7277                        0);
7278             }
7279         }
7280     }
7281 }
7282 
7283 static void
7284 bxe_read_mf_cfg(struct bxe_softc *sc)
7285 {
7286     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7287     int abs_func;
7288     int vn;
7289 
7290     if (BXE_NOMCP(sc)) {
7291         return; /* what should be the default bvalue in this case */
7292     }
7293 
7294     /*
7295      * The formula for computing the absolute function number is...
7296      * For 2 port configuration (4 functions per port):
7297      *   abs_func = 2 * vn + SC_PORT + SC_PATH
7298      * For 4 port configuration (2 functions per port):
7299      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7300      */
7301     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7302         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7303         if (abs_func >= E1H_FUNC_MAX) {
7304             break;
7305         }
7306         sc->devinfo.mf_info.mf_config[vn] =
7307             MFCFG_RD(sc, func_mf_config[abs_func].config);
7308     }
7309 
7310     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7311         FUNC_MF_CFG_FUNC_DISABLED) {
7312         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7313         sc->flags |= BXE_MF_FUNC_DIS;
7314     } else {
7315         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7316         sc->flags &= ~BXE_MF_FUNC_DIS;
7317     }
7318 }
7319 
7320 /* acquire split MCP access lock register */
7321 static int bxe_acquire_alr(struct bxe_softc *sc)
7322 {
7323     uint32_t j, val;
7324 
7325     for (j = 0; j < 1000; j++) {
7326         val = (1UL << 31);
7327         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7328         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7329         if (val & (1L << 31))
7330             break;
7331 
7332         DELAY(5000);
7333     }
7334 
7335     if (!(val & (1L << 31))) {
7336         BLOGE(sc, "Cannot acquire MCP access lock register\n");
7337         return (-1);
7338     }
7339 
7340     return (0);
7341 }
7342 
7343 /* release split MCP access lock register */
7344 static void bxe_release_alr(struct bxe_softc *sc)
7345 {
7346     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7347 }
7348 
7349 static void
7350 bxe_fan_failure(struct bxe_softc *sc)
7351 {
7352     int port = SC_PORT(sc);
7353     uint32_t ext_phy_config;
7354 
7355     /* mark the failure */
7356     ext_phy_config =
7357         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7358 
7359     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7360     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7361     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7362              ext_phy_config);
7363 
7364     /* log the failure */
7365     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7366               "the card to prevent permanent damage. "
7367               "Please contact OEM Support for assistance\n");
7368 
7369     /* XXX */
7370 #if 1
7371     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7372 #else
7373     /*
7374      * Schedule device reset (unload)
7375      * This is due to some boards consuming sufficient power when driver is
7376      * up to overheat if fan fails.
7377      */
7378     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7379     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7380 #endif
7381 }
7382 
7383 /* this function is called upon a link interrupt */
7384 static void
7385 bxe_link_attn(struct bxe_softc *sc)
7386 {
7387     uint32_t pause_enabled = 0;
7388     struct host_port_stats *pstats;
7389     int cmng_fns;
7390 
7391     /* Make sure that we are synced with the current statistics */
7392     bxe_stats_handle(sc, STATS_EVENT_STOP);
7393 
7394     elink_link_update(&sc->link_params, &sc->link_vars);
7395 
7396     if (sc->link_vars.link_up) {
7397 
7398         /* dropless flow control */
7399         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7400             pause_enabled = 0;
7401 
7402             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7403                 pause_enabled = 1;
7404             }
7405 
7406             REG_WR(sc,
7407                    (BAR_USTRORM_INTMEM +
7408                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7409                    pause_enabled);
7410         }
7411 
7412         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7413             pstats = BXE_SP(sc, port_stats);
7414             /* reset old mac stats */
7415             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7416         }
7417 
7418         if (sc->state == BXE_STATE_OPEN) {
7419             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7420         }
7421     }
7422 
7423     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7424         cmng_fns = bxe_get_cmng_fns_mode(sc);
7425 
7426         if (cmng_fns != CMNG_FNS_NONE) {
7427             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7428             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7429         } else {
7430             /* rate shaping and fairness are disabled */
7431             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7432         }
7433     }
7434 
7435     bxe_link_report_locked(sc);
7436 
7437     if (IS_MF(sc)) {
7438         ; // XXX bxe_link_sync_notify(sc);
7439     }
7440 }
7441 
7442 static void
7443 bxe_attn_int_asserted(struct bxe_softc *sc,
7444                       uint32_t         asserted)
7445 {
7446     int port = SC_PORT(sc);
7447     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7448                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7449     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7450                                         NIG_REG_MASK_INTERRUPT_PORT0;
7451     uint32_t aeu_mask;
7452     uint32_t nig_mask = 0;
7453     uint32_t reg_addr;
7454     uint32_t igu_acked;
7455     uint32_t cnt;
7456 
7457     if (sc->attn_state & asserted) {
7458         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7459     }
7460 
7461     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7462 
7463     aeu_mask = REG_RD(sc, aeu_addr);
7464 
7465     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7466           aeu_mask, asserted);
7467 
7468     aeu_mask &= ~(asserted & 0x3ff);
7469 
7470     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7471 
7472     REG_WR(sc, aeu_addr, aeu_mask);
7473 
7474     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7475 
7476     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7477     sc->attn_state |= asserted;
7478     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7479 
7480     if (asserted & ATTN_HARD_WIRED_MASK) {
7481         if (asserted & ATTN_NIG_FOR_FUNC) {
7482 
7483 	    bxe_acquire_phy_lock(sc);
7484             /* save nig interrupt mask */
7485             nig_mask = REG_RD(sc, nig_int_mask_addr);
7486 
7487             /* If nig_mask is not set, no need to call the update function */
7488             if (nig_mask) {
7489                 REG_WR(sc, nig_int_mask_addr, 0);
7490 
7491                 bxe_link_attn(sc);
7492             }
7493 
7494             /* handle unicore attn? */
7495         }
7496 
7497         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7498             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7499         }
7500 
7501         if (asserted & GPIO_2_FUNC) {
7502             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7503         }
7504 
7505         if (asserted & GPIO_3_FUNC) {
7506             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7507         }
7508 
7509         if (asserted & GPIO_4_FUNC) {
7510             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7511         }
7512 
7513         if (port == 0) {
7514             if (asserted & ATTN_GENERAL_ATTN_1) {
7515                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7516                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7517             }
7518             if (asserted & ATTN_GENERAL_ATTN_2) {
7519                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7520                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7521             }
7522             if (asserted & ATTN_GENERAL_ATTN_3) {
7523                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7524                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7525             }
7526         } else {
7527             if (asserted & ATTN_GENERAL_ATTN_4) {
7528                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7529                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7530             }
7531             if (asserted & ATTN_GENERAL_ATTN_5) {
7532                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7533                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7534             }
7535             if (asserted & ATTN_GENERAL_ATTN_6) {
7536                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7537                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7538             }
7539         }
7540     } /* hardwired */
7541 
7542     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7543         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7544     } else {
7545         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7546     }
7547 
7548     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7549           asserted,
7550           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7551     REG_WR(sc, reg_addr, asserted);
7552 
7553     /* now set back the mask */
7554     if (asserted & ATTN_NIG_FOR_FUNC) {
7555         /*
7556          * Verify that IGU ack through BAR was written before restoring
7557          * NIG mask. This loop should exit after 2-3 iterations max.
7558          */
7559         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7560             cnt = 0;
7561 
7562             do {
7563                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7564             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7565                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7566 
7567             if (!igu_acked) {
7568                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7569             }
7570 
7571             mb();
7572         }
7573 
7574         REG_WR(sc, nig_int_mask_addr, nig_mask);
7575 
7576 	bxe_release_phy_lock(sc);
7577     }
7578 }
7579 
7580 static void
7581 bxe_print_next_block(struct bxe_softc *sc,
7582                      int              idx,
7583                      const char       *blk)
7584 {
7585     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7586 }
7587 
7588 static int
7589 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7590                               uint32_t         sig,
7591                               int              par_num,
7592                               uint8_t          print)
7593 {
7594     uint32_t cur_bit = 0;
7595     int i = 0;
7596 
7597     for (i = 0; sig; i++) {
7598         cur_bit = ((uint32_t)0x1 << i);
7599         if (sig & cur_bit) {
7600             switch (cur_bit) {
7601             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7602                 if (print)
7603                     bxe_print_next_block(sc, par_num++, "BRB");
7604                 break;
7605             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7606                 if (print)
7607                     bxe_print_next_block(sc, par_num++, "PARSER");
7608                 break;
7609             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7610                 if (print)
7611                     bxe_print_next_block(sc, par_num++, "TSDM");
7612                 break;
7613             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7614                 if (print)
7615                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7616                 break;
7617             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7618                 if (print)
7619                     bxe_print_next_block(sc, par_num++, "TCM");
7620                 break;
7621             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7622                 if (print)
7623                     bxe_print_next_block(sc, par_num++, "TSEMI");
7624                 break;
7625             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7626                 if (print)
7627                     bxe_print_next_block(sc, par_num++, "XPB");
7628                 break;
7629             }
7630 
7631             /* Clear the bit */
7632             sig &= ~cur_bit;
7633         }
7634     }
7635 
7636     return (par_num);
7637 }
7638 
7639 static int
7640 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7641                               uint32_t         sig,
7642                               int              par_num,
7643                               uint8_t          *global,
7644                               uint8_t          print)
7645 {
7646     int i = 0;
7647     uint32_t cur_bit = 0;
7648     for (i = 0; sig; i++) {
7649         cur_bit = ((uint32_t)0x1 << i);
7650         if (sig & cur_bit) {
7651             switch (cur_bit) {
7652             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7653                 if (print)
7654                     bxe_print_next_block(sc, par_num++, "PBF");
7655                 break;
7656             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7657                 if (print)
7658                     bxe_print_next_block(sc, par_num++, "QM");
7659                 break;
7660             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7661                 if (print)
7662                     bxe_print_next_block(sc, par_num++, "TM");
7663                 break;
7664             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7665                 if (print)
7666                     bxe_print_next_block(sc, par_num++, "XSDM");
7667                 break;
7668             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7669                 if (print)
7670                     bxe_print_next_block(sc, par_num++, "XCM");
7671                 break;
7672             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7673                 if (print)
7674                     bxe_print_next_block(sc, par_num++, "XSEMI");
7675                 break;
7676             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7677                 if (print)
7678                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7679                 break;
7680             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7681                 if (print)
7682                     bxe_print_next_block(sc, par_num++, "NIG");
7683                 break;
7684             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7685                 if (print)
7686                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7687                 *global = TRUE;
7688                 break;
7689             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7690                 if (print)
7691                     bxe_print_next_block(sc, par_num++, "DEBUG");
7692                 break;
7693             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7694                 if (print)
7695                     bxe_print_next_block(sc, par_num++, "USDM");
7696                 break;
7697             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7698                 if (print)
7699                     bxe_print_next_block(sc, par_num++, "UCM");
7700                 break;
7701             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7702                 if (print)
7703                     bxe_print_next_block(sc, par_num++, "USEMI");
7704                 break;
7705             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7706                 if (print)
7707                     bxe_print_next_block(sc, par_num++, "UPB");
7708                 break;
7709             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7710                 if (print)
7711                     bxe_print_next_block(sc, par_num++, "CSDM");
7712                 break;
7713             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7714                 if (print)
7715                     bxe_print_next_block(sc, par_num++, "CCM");
7716                 break;
7717             }
7718 
7719             /* Clear the bit */
7720             sig &= ~cur_bit;
7721         }
7722     }
7723 
7724     return (par_num);
7725 }
7726 
7727 static int
7728 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7729                               uint32_t         sig,
7730                               int              par_num,
7731                               uint8_t          print)
7732 {
7733     uint32_t cur_bit = 0;
7734     int i = 0;
7735 
7736     for (i = 0; sig; i++) {
7737         cur_bit = ((uint32_t)0x1 << i);
7738         if (sig & cur_bit) {
7739             switch (cur_bit) {
7740             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7741                 if (print)
7742                     bxe_print_next_block(sc, par_num++, "CSEMI");
7743                 break;
7744             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7745                 if (print)
7746                     bxe_print_next_block(sc, par_num++, "PXP");
7747                 break;
7748             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7749                 if (print)
7750                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7751                 break;
7752             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7753                 if (print)
7754                     bxe_print_next_block(sc, par_num++, "CFC");
7755                 break;
7756             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7757                 if (print)
7758                     bxe_print_next_block(sc, par_num++, "CDU");
7759                 break;
7760             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7761                 if (print)
7762                     bxe_print_next_block(sc, par_num++, "DMAE");
7763                 break;
7764             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7765                 if (print)
7766                     bxe_print_next_block(sc, par_num++, "IGU");
7767                 break;
7768             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7769                 if (print)
7770                     bxe_print_next_block(sc, par_num++, "MISC");
7771                 break;
7772             }
7773 
7774             /* Clear the bit */
7775             sig &= ~cur_bit;
7776         }
7777     }
7778 
7779     return (par_num);
7780 }
7781 
7782 static int
7783 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7784                               uint32_t         sig,
7785                               int              par_num,
7786                               uint8_t          *global,
7787                               uint8_t          print)
7788 {
7789     uint32_t cur_bit = 0;
7790     int i = 0;
7791 
7792     for (i = 0; sig; i++) {
7793         cur_bit = ((uint32_t)0x1 << i);
7794         if (sig & cur_bit) {
7795             switch (cur_bit) {
7796             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7797                 if (print)
7798                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7799                 *global = TRUE;
7800                 break;
7801             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7802                 if (print)
7803                     bxe_print_next_block(sc, par_num++,
7804                               "MCP UMP RX");
7805                 *global = TRUE;
7806                 break;
7807             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7808                 if (print)
7809                     bxe_print_next_block(sc, par_num++,
7810                               "MCP UMP TX");
7811                 *global = TRUE;
7812                 break;
7813             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7814                 if (print)
7815                     bxe_print_next_block(sc, par_num++,
7816                               "MCP SCPAD");
7817                 *global = TRUE;
7818                 break;
7819             }
7820 
7821             /* Clear the bit */
7822             sig &= ~cur_bit;
7823         }
7824     }
7825 
7826     return (par_num);
7827 }
7828 
7829 static int
7830 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7831                               uint32_t         sig,
7832                               int              par_num,
7833                               uint8_t          print)
7834 {
7835     uint32_t cur_bit = 0;
7836     int i = 0;
7837 
7838     for (i = 0; sig; i++) {
7839         cur_bit = ((uint32_t)0x1 << i);
7840         if (sig & cur_bit) {
7841             switch (cur_bit) {
7842             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7843                 if (print)
7844                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7845                 break;
7846             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7847                 if (print)
7848                     bxe_print_next_block(sc, par_num++, "ATC");
7849                 break;
7850             }
7851 
7852             /* Clear the bit */
7853             sig &= ~cur_bit;
7854         }
7855     }
7856 
7857     return (par_num);
7858 }
7859 
7860 static uint8_t
7861 bxe_parity_attn(struct bxe_softc *sc,
7862                 uint8_t          *global,
7863                 uint8_t          print,
7864                 uint32_t         *sig)
7865 {
7866     int par_num = 0;
7867 
7868     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7869         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7870         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7871         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7872         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7873         BLOGE(sc, "Parity error: HW block parity attention:\n"
7874                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7875               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7876               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7877               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7878               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7879               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7880 
7881         if (print)
7882             BLOGI(sc, "Parity errors detected in blocks: ");
7883 
7884         par_num =
7885             bxe_check_blocks_with_parity0(sc, sig[0] &
7886                                           HW_PRTY_ASSERT_SET_0,
7887                                           par_num, print);
7888         par_num =
7889             bxe_check_blocks_with_parity1(sc, sig[1] &
7890                                           HW_PRTY_ASSERT_SET_1,
7891                                           par_num, global, print);
7892         par_num =
7893             bxe_check_blocks_with_parity2(sc, sig[2] &
7894                                           HW_PRTY_ASSERT_SET_2,
7895                                           par_num, print);
7896         par_num =
7897             bxe_check_blocks_with_parity3(sc, sig[3] &
7898                                           HW_PRTY_ASSERT_SET_3,
7899                                           par_num, global, print);
7900         par_num =
7901             bxe_check_blocks_with_parity4(sc, sig[4] &
7902                                           HW_PRTY_ASSERT_SET_4,
7903                                           par_num, print);
7904 
7905         if (print)
7906             BLOGI(sc, "\n");
7907 
7908         return (TRUE);
7909     }
7910 
7911     return (FALSE);
7912 }
7913 
7914 static uint8_t
7915 bxe_chk_parity_attn(struct bxe_softc *sc,
7916                     uint8_t          *global,
7917                     uint8_t          print)
7918 {
7919     struct attn_route attn = { {0} };
7920     int port = SC_PORT(sc);
7921 
7922     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7923     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7924     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7925     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7926 
7927     if (!CHIP_IS_E1x(sc))
7928         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7929 
7930     return (bxe_parity_attn(sc, global, print, attn.sig));
7931 }
7932 
7933 static void
7934 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7935                          uint32_t         attn)
7936 {
7937     uint32_t val;
7938 
7939     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7940         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7941         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7942         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7943             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7944         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7945             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7946         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7947             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7948         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7949             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7950         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7951             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7952         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7953             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7954         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7955             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7956         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7957             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7958         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7959             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7960     }
7961 
7962     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7963         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7964         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7965         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7966             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7967         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7968             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7969         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7970             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7971         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7972             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7973         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7974             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7975         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7976             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7977     }
7978 
7979     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7980                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7981         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7982               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7983                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7984     }
7985 }
7986 
7987 static void
7988 bxe_e1h_disable(struct bxe_softc *sc)
7989 {
7990     int port = SC_PORT(sc);
7991 
7992     bxe_tx_disable(sc);
7993 
7994     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7995 }
7996 
7997 static void
7998 bxe_e1h_enable(struct bxe_softc *sc)
7999 {
8000     int port = SC_PORT(sc);
8001 
8002     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
8003 
8004     // XXX bxe_tx_enable(sc);
8005 }
8006 
8007 /*
8008  * called due to MCP event (on pmf):
8009  *   reread new bandwidth configuration
8010  *   configure FW
8011  *   notify others function about the change
8012  */
8013 static void
8014 bxe_config_mf_bw(struct bxe_softc *sc)
8015 {
8016     if (sc->link_vars.link_up) {
8017         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
8018         // XXX bxe_link_sync_notify(sc);
8019     }
8020 
8021     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
8022 }
8023 
8024 static void
8025 bxe_set_mf_bw(struct bxe_softc *sc)
8026 {
8027     bxe_config_mf_bw(sc);
8028     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
8029 }
8030 
8031 static void
8032 bxe_handle_eee_event(struct bxe_softc *sc)
8033 {
8034     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
8035     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
8036 }
8037 
8038 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8039 
8040 static void
8041 bxe_drv_info_ether_stat(struct bxe_softc *sc)
8042 {
8043     struct eth_stats_info *ether_stat =
8044         &sc->sp->drv_info_to_mcp.ether_stat;
8045 
8046     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8047             ETH_STAT_INFO_VERSION_LEN);
8048 
8049     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8050     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8051                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8052                                           ether_stat->mac_local + MAC_PAD,
8053                                           MAC_PAD, ETH_ALEN);
8054 
8055     ether_stat->mtu_size = sc->mtu;
8056 
8057     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8058     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
8059         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8060     }
8061 
8062     // XXX ether_stat->feature_flags |= ???;
8063 
8064     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8065 
8066     ether_stat->txq_size = sc->tx_ring_size;
8067     ether_stat->rxq_size = sc->rx_ring_size;
8068 }
8069 
8070 static void
8071 bxe_handle_drv_info_req(struct bxe_softc *sc)
8072 {
8073     enum drv_info_opcode op_code;
8074     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8075 
8076     /* if drv_info version supported by MFW doesn't match - send NACK */
8077     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8078         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8079         return;
8080     }
8081 
8082     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8083                DRV_INFO_CONTROL_OP_CODE_SHIFT);
8084 
8085     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8086 
8087     switch (op_code) {
8088     case ETH_STATS_OPCODE:
8089         bxe_drv_info_ether_stat(sc);
8090         break;
8091     case FCOE_STATS_OPCODE:
8092     case ISCSI_STATS_OPCODE:
8093     default:
8094         /* if op code isn't supported - send NACK */
8095         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8096         return;
8097     }
8098 
8099     /*
8100      * If we got drv_info attn from MFW then these fields are defined in
8101      * shmem2 for sure
8102      */
8103     SHMEM2_WR(sc, drv_info_host_addr_lo,
8104               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8105     SHMEM2_WR(sc, drv_info_host_addr_hi,
8106               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8107 
8108     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8109 }
8110 
8111 static void
8112 bxe_dcc_event(struct bxe_softc *sc,
8113               uint32_t         dcc_event)
8114 {
8115     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8116 
8117     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8118         /*
8119          * This is the only place besides the function initialization
8120          * where the sc->flags can change so it is done without any
8121          * locks
8122          */
8123         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8124             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8125             sc->flags |= BXE_MF_FUNC_DIS;
8126             bxe_e1h_disable(sc);
8127         } else {
8128             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8129             sc->flags &= ~BXE_MF_FUNC_DIS;
8130             bxe_e1h_enable(sc);
8131         }
8132         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8133     }
8134 
8135     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8136         bxe_config_mf_bw(sc);
8137         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8138     }
8139 
8140     /* Report results to MCP */
8141     if (dcc_event)
8142         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8143     else
8144         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8145 }
8146 
8147 static void
8148 bxe_pmf_update(struct bxe_softc *sc)
8149 {
8150     int port = SC_PORT(sc);
8151     uint32_t val;
8152 
8153     sc->port.pmf = 1;
8154     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8155 
8156     /*
8157      * We need the mb() to ensure the ordering between the writing to
8158      * sc->port.pmf here and reading it from the bxe_periodic_task().
8159      */
8160     mb();
8161 
8162     /* queue a periodic task */
8163     // XXX schedule task...
8164 
8165     // XXX bxe_dcbx_pmf_update(sc);
8166 
8167     /* enable nig attention */
8168     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8169     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8170         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8171         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8172     } else if (!CHIP_IS_E1x(sc)) {
8173         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8174         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8175     }
8176 
8177     bxe_stats_handle(sc, STATS_EVENT_PMF);
8178 }
8179 
8180 static int
8181 bxe_mc_assert(struct bxe_softc *sc)
8182 {
8183     char last_idx;
8184     int i, rc = 0;
8185     uint32_t row0, row1, row2, row3;
8186 
8187     /* XSTORM */
8188     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8189     if (last_idx)
8190         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8191 
8192     /* print the asserts */
8193     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8194 
8195         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8196         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8197         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8198         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8199 
8200         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8201             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8202                   i, row3, row2, row1, row0);
8203             rc++;
8204         } else {
8205             break;
8206         }
8207     }
8208 
8209     /* TSTORM */
8210     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8211     if (last_idx) {
8212         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8213     }
8214 
8215     /* print the asserts */
8216     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8217 
8218         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8219         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8220         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8221         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8222 
8223         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8224             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8225                   i, row3, row2, row1, row0);
8226             rc++;
8227         } else {
8228             break;
8229         }
8230     }
8231 
8232     /* CSTORM */
8233     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8234     if (last_idx) {
8235         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8236     }
8237 
8238     /* print the asserts */
8239     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8240 
8241         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8242         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8243         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8244         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8245 
8246         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8247             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8248                   i, row3, row2, row1, row0);
8249             rc++;
8250         } else {
8251             break;
8252         }
8253     }
8254 
8255     /* USTORM */
8256     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8257     if (last_idx) {
8258         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8259     }
8260 
8261     /* print the asserts */
8262     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8263 
8264         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8265         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8266         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8267         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8268 
8269         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8270             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8271                   i, row3, row2, row1, row0);
8272             rc++;
8273         } else {
8274             break;
8275         }
8276     }
8277 
8278     return (rc);
8279 }
8280 
8281 static void
8282 bxe_attn_int_deasserted3(struct bxe_softc *sc,
8283                          uint32_t         attn)
8284 {
8285     int func = SC_FUNC(sc);
8286     uint32_t val;
8287 
8288     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8289 
8290         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8291 
8292             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8293             bxe_read_mf_cfg(sc);
8294             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8295                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8296             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8297 
8298             if (val & DRV_STATUS_DCC_EVENT_MASK)
8299                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8300 
8301             if (val & DRV_STATUS_SET_MF_BW)
8302                 bxe_set_mf_bw(sc);
8303 
8304             if (val & DRV_STATUS_DRV_INFO_REQ)
8305                 bxe_handle_drv_info_req(sc);
8306 
8307 #if 0
8308             if (val & DRV_STATUS_VF_DISABLED)
8309                 bxe_vf_handle_flr_event(sc);
8310 #endif
8311 
8312             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8313                 bxe_pmf_update(sc);
8314 
8315 #if 0
8316             if (sc->port.pmf &&
8317                 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8318                 (sc->dcbx_enabled > 0))
8319                 /* start dcbx state machine */
8320                 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8321 #endif
8322 
8323 #if 0
8324             if (val & DRV_STATUS_AFEX_EVENT_MASK)
8325                 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8326 #endif
8327 
8328             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8329                 bxe_handle_eee_event(sc);
8330 
8331             if (sc->link_vars.periodic_flags &
8332                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8333                 /* sync with link */
8334 		bxe_acquire_phy_lock(sc);
8335                 sc->link_vars.periodic_flags &=
8336                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8337 		bxe_release_phy_lock(sc);
8338                 if (IS_MF(sc))
8339                     ; // XXX bxe_link_sync_notify(sc);
8340                 bxe_link_report(sc);
8341             }
8342 
8343             /*
8344              * Always call it here: bxe_link_report() will
8345              * prevent the link indication duplication.
8346              */
8347             bxe_link_status_update(sc);
8348 
8349         } else if (attn & BXE_MC_ASSERT_BITS) {
8350 
8351             BLOGE(sc, "MC assert!\n");
8352             bxe_mc_assert(sc);
8353             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8354             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8355             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8356             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8357             bxe_panic(sc, ("MC assert!\n"));
8358 
8359         } else if (attn & BXE_MCP_ASSERT) {
8360 
8361             BLOGE(sc, "MCP assert!\n");
8362             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8363             // XXX bxe_fw_dump(sc);
8364 
8365         } else {
8366             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8367         }
8368     }
8369 
8370     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8371         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8372         if (attn & BXE_GRC_TIMEOUT) {
8373             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8374             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8375         }
8376         if (attn & BXE_GRC_RSV) {
8377             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8378             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8379         }
8380         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8381     }
8382 }
8383 
8384 static void
8385 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8386                          uint32_t         attn)
8387 {
8388     int port = SC_PORT(sc);
8389     int reg_offset;
8390     uint32_t val0, mask0, val1, mask1;
8391     uint32_t val;
8392 
8393     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8394         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8395         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8396         /* CFC error attention */
8397         if (val & 0x2) {
8398             BLOGE(sc, "FATAL error from CFC\n");
8399         }
8400     }
8401 
8402     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8403         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8404         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8405         /* RQ_USDMDP_FIFO_OVERFLOW */
8406         if (val & 0x18000) {
8407             BLOGE(sc, "FATAL error from PXP\n");
8408         }
8409 
8410         if (!CHIP_IS_E1x(sc)) {
8411             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8412             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8413         }
8414     }
8415 
8416 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8417 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8418 
8419     if (attn & AEU_PXP2_HW_INT_BIT) {
8420         /*  CQ47854 workaround do not panic on
8421          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8422          */
8423         if (!CHIP_IS_E1x(sc)) {
8424             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8425             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8426             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8427             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8428             /*
8429              * If the olny PXP2_EOP_ERROR_BIT is set in
8430              * STS0 and STS1 - clear it
8431              *
8432              * probably we lose additional attentions between
8433              * STS0 and STS_CLR0, in this case user will not
8434              * be notified about them
8435              */
8436             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8437                 !(val1 & mask1))
8438                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8439 
8440             /* print the register, since no one can restore it */
8441             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8442 
8443             /*
8444              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8445              * then notify
8446              */
8447             if (val0 & PXP2_EOP_ERROR_BIT) {
8448                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8449 
8450                 /*
8451                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8452                  * set then clear attention from PXP2 block without panic
8453                  */
8454                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8455                     ((val1 & mask1) == 0))
8456                     attn &= ~AEU_PXP2_HW_INT_BIT;
8457             }
8458         }
8459     }
8460 
8461     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8462         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8463                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8464 
8465         val = REG_RD(sc, reg_offset);
8466         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8467         REG_WR(sc, reg_offset, val);
8468 
8469         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8470               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8471         bxe_panic(sc, ("HW block attention set2\n"));
8472     }
8473 }
8474 
8475 static void
8476 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8477                          uint32_t         attn)
8478 {
8479     int port = SC_PORT(sc);
8480     int reg_offset;
8481     uint32_t val;
8482 
8483     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8484         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8485         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8486         /* DORQ discard attention */
8487         if (val & 0x2) {
8488             BLOGE(sc, "FATAL error from DORQ\n");
8489         }
8490     }
8491 
8492     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8493         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8494                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8495 
8496         val = REG_RD(sc, reg_offset);
8497         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8498         REG_WR(sc, reg_offset, val);
8499 
8500         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8501               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8502         bxe_panic(sc, ("HW block attention set1\n"));
8503     }
8504 }
8505 
8506 static void
8507 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8508                          uint32_t         attn)
8509 {
8510     int port = SC_PORT(sc);
8511     int reg_offset;
8512     uint32_t val;
8513 
8514     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8515                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8516 
8517     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8518         val = REG_RD(sc, reg_offset);
8519         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8520         REG_WR(sc, reg_offset, val);
8521 
8522         BLOGW(sc, "SPIO5 hw attention\n");
8523 
8524         /* Fan failure attention */
8525         elink_hw_reset_phy(&sc->link_params);
8526         bxe_fan_failure(sc);
8527     }
8528 
8529     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8530 	bxe_acquire_phy_lock(sc);
8531         elink_handle_module_detect_int(&sc->link_params);
8532 	bxe_release_phy_lock(sc);
8533     }
8534 
8535     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8536         val = REG_RD(sc, reg_offset);
8537         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8538         REG_WR(sc, reg_offset, val);
8539 
8540         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8541                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8542     }
8543 }
8544 
8545 static void
8546 bxe_attn_int_deasserted(struct bxe_softc *sc,
8547                         uint32_t         deasserted)
8548 {
8549     struct attn_route attn;
8550     struct attn_route *group_mask;
8551     int port = SC_PORT(sc);
8552     int index;
8553     uint32_t reg_addr;
8554     uint32_t val;
8555     uint32_t aeu_mask;
8556     uint8_t global = FALSE;
8557 
8558     /*
8559      * Need to take HW lock because MCP or other port might also
8560      * try to handle this event.
8561      */
8562     bxe_acquire_alr(sc);
8563 
8564     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8565         /* XXX
8566          * In case of parity errors don't handle attentions so that
8567          * other function would "see" parity errors.
8568          */
8569         sc->recovery_state = BXE_RECOVERY_INIT;
8570         // XXX schedule a recovery task...
8571         /* disable HW interrupts */
8572         bxe_int_disable(sc);
8573         bxe_release_alr(sc);
8574         return;
8575     }
8576 
8577     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8578     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8579     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8580     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8581     if (!CHIP_IS_E1x(sc)) {
8582         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8583     } else {
8584         attn.sig[4] = 0;
8585     }
8586 
8587     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8588           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8589 
8590     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8591         if (deasserted & (1 << index)) {
8592             group_mask = &sc->attn_group[index];
8593 
8594             BLOGD(sc, DBG_INTR,
8595                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8596                   group_mask->sig[0], group_mask->sig[1],
8597                   group_mask->sig[2], group_mask->sig[3],
8598                   group_mask->sig[4]);
8599 
8600             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8601             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8602             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8603             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8604             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8605         }
8606     }
8607 
8608     bxe_release_alr(sc);
8609 
8610     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8611         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8612                     COMMAND_REG_ATTN_BITS_CLR);
8613     } else {
8614         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8615     }
8616 
8617     val = ~deasserted;
8618     BLOGD(sc, DBG_INTR,
8619           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8620           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8621     REG_WR(sc, reg_addr, val);
8622 
8623     if (~sc->attn_state & deasserted) {
8624         BLOGE(sc, "IGU error\n");
8625     }
8626 
8627     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8628                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8629 
8630     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8631 
8632     aeu_mask = REG_RD(sc, reg_addr);
8633 
8634     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8635           aeu_mask, deasserted);
8636     aeu_mask |= (deasserted & 0x3ff);
8637     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8638 
8639     REG_WR(sc, reg_addr, aeu_mask);
8640     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8641 
8642     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8643     sc->attn_state &= ~deasserted;
8644     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8645 }
8646 
8647 static void
8648 bxe_attn_int(struct bxe_softc *sc)
8649 {
8650     /* read local copy of bits */
8651     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8652     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8653     uint32_t attn_state = sc->attn_state;
8654 
8655     /* look for changed bits */
8656     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8657     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8658 
8659     BLOGD(sc, DBG_INTR,
8660           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8661           attn_bits, attn_ack, asserted, deasserted);
8662 
8663     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8664         BLOGE(sc, "BAD attention state\n");
8665     }
8666 
8667     /* handle bits that were raised */
8668     if (asserted) {
8669         bxe_attn_int_asserted(sc, asserted);
8670     }
8671 
8672     if (deasserted) {
8673         bxe_attn_int_deasserted(sc, deasserted);
8674     }
8675 }
8676 
8677 static uint16_t
8678 bxe_update_dsb_idx(struct bxe_softc *sc)
8679 {
8680     struct host_sp_status_block *def_sb = sc->def_sb;
8681     uint16_t rc = 0;
8682 
8683     mb(); /* status block is written to by the chip */
8684 
8685     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8686         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8687         rc |= BXE_DEF_SB_ATT_IDX;
8688     }
8689 
8690     if (sc->def_idx != def_sb->sp_sb.running_index) {
8691         sc->def_idx = def_sb->sp_sb.running_index;
8692         rc |= BXE_DEF_SB_IDX;
8693     }
8694 
8695     mb();
8696 
8697     return (rc);
8698 }
8699 
8700 static inline struct ecore_queue_sp_obj *
8701 bxe_cid_to_q_obj(struct bxe_softc *sc,
8702                  uint32_t         cid)
8703 {
8704     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8705     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8706 }
8707 
8708 static void
8709 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8710 {
8711     struct ecore_mcast_ramrod_params rparam;
8712     int rc;
8713 
8714     memset(&rparam, 0, sizeof(rparam));
8715 
8716     rparam.mcast_obj = &sc->mcast_obj;
8717 
8718     BXE_MCAST_LOCK(sc);
8719 
8720     /* clear pending state for the last command */
8721     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8722 
8723     /* if there are pending mcast commands - send them */
8724     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8725         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8726         if (rc < 0) {
8727             BLOGD(sc, DBG_SP,
8728                   "ERROR: Failed to send pending mcast commands (%d)\n",
8729                   rc);
8730         }
8731     }
8732 
8733     BXE_MCAST_UNLOCK(sc);
8734 }
8735 
8736 static void
8737 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8738                               union event_ring_elem *elem)
8739 {
8740     unsigned long ramrod_flags = 0;
8741     int rc = 0;
8742     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8743     struct ecore_vlan_mac_obj *vlan_mac_obj;
8744 
8745     /* always push next commands out, don't wait here */
8746     bit_set(&ramrod_flags, RAMROD_CONT);
8747 
8748     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8749     case ECORE_FILTER_MAC_PENDING:
8750         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8751         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8752         break;
8753 
8754     case ECORE_FILTER_MCAST_PENDING:
8755         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8756         /*
8757          * This is only relevant for 57710 where multicast MACs are
8758          * configured as unicast MACs using the same ramrod.
8759          */
8760         bxe_handle_mcast_eqe(sc);
8761         return;
8762 
8763     default:
8764         BLOGE(sc, "Unsupported classification command: %d\n",
8765               elem->message.data.eth_event.echo);
8766         return;
8767     }
8768 
8769     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8770 
8771     if (rc < 0) {
8772         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8773     } else if (rc > 0) {
8774         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8775     }
8776 }
8777 
8778 static void
8779 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8780                        union event_ring_elem *elem)
8781 {
8782     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8783 
8784     /* send rx_mode command again if was requested */
8785     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8786                                &sc->sp_state)) {
8787         bxe_set_storm_rx_mode(sc);
8788     }
8789 #if 0
8790     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8791                                     &sc->sp_state)) {
8792         bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8793     }
8794     else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8795                                     &sc->sp_state)) {
8796         bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8797     }
8798 #endif
8799 }
8800 
8801 static void
8802 bxe_update_eq_prod(struct bxe_softc *sc,
8803                    uint16_t         prod)
8804 {
8805     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8806     wmb(); /* keep prod updates ordered */
8807 }
8808 
8809 static void
8810 bxe_eq_int(struct bxe_softc *sc)
8811 {
8812     uint16_t hw_cons, sw_cons, sw_prod;
8813     union event_ring_elem *elem;
8814     uint8_t echo;
8815     uint32_t cid;
8816     uint8_t opcode;
8817     int spqe_cnt = 0;
8818     struct ecore_queue_sp_obj *q_obj;
8819     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8820     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8821 
8822     hw_cons = le16toh(*sc->eq_cons_sb);
8823 
8824     /*
8825      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8826      * when we get to the next-page we need to adjust so the loop
8827      * condition below will be met. The next element is the size of a
8828      * regular element and hence incrementing by 1
8829      */
8830     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8831         hw_cons++;
8832     }
8833 
8834     /*
8835      * This function may never run in parallel with itself for a
8836      * specific sc and no need for a read memory barrier here.
8837      */
8838     sw_cons = sc->eq_cons;
8839     sw_prod = sc->eq_prod;
8840 
8841     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8842           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8843 
8844     for (;
8845          sw_cons != hw_cons;
8846          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8847 
8848         elem = &sc->eq[EQ_DESC(sw_cons)];
8849 
8850 #if 0
8851         int rc;
8852         rc = bxe_iov_eq_sp_event(sc, elem);
8853         if (!rc) {
8854             BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8855             goto next_spqe;
8856         }
8857 #endif
8858 
8859         /* elem CID originates from FW, actually LE */
8860         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8861         opcode = elem->message.opcode;
8862 
8863         /* handle eq element */
8864         switch (opcode) {
8865 #if 0
8866         case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8867             BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8868             bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8869             continue;
8870 #endif
8871 
8872         case EVENT_RING_OPCODE_STAT_QUERY:
8873             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8874                   sc->stats_comp++);
8875             /* nothing to do with stats comp */
8876             goto next_spqe;
8877 
8878         case EVENT_RING_OPCODE_CFC_DEL:
8879             /* handle according to cid range */
8880             /* we may want to verify here that the sc state is HALTING */
8881             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8882             q_obj = bxe_cid_to_q_obj(sc, cid);
8883             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8884                 break;
8885             }
8886             goto next_spqe;
8887 
8888         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8889             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8890             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8891                 break;
8892             }
8893             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8894             goto next_spqe;
8895 
8896         case EVENT_RING_OPCODE_START_TRAFFIC:
8897             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8898             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8899                 break;
8900             }
8901             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8902             goto next_spqe;
8903 
8904         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8905             echo = elem->message.data.function_update_event.echo;
8906             if (echo == SWITCH_UPDATE) {
8907                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8908                 if (f_obj->complete_cmd(sc, f_obj,
8909                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8910                     break;
8911                 }
8912             }
8913             else {
8914                 BLOGD(sc, DBG_SP,
8915                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8916 #if 0
8917                 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8918                 /*
8919                  * We will perform the queues update from the sp_core_task as
8920                  * all queue SP operations should run with CORE_LOCK.
8921                  */
8922                 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8923                 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8924 #endif
8925             }
8926             goto next_spqe;
8927 
8928 #if 0
8929         case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8930             f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8931             bxe_after_afex_vif_lists(sc, elem);
8932             goto next_spqe;
8933 #endif
8934 
8935         case EVENT_RING_OPCODE_FORWARD_SETUP:
8936             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8937             if (q_obj->complete_cmd(sc, q_obj,
8938                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8939                 break;
8940             }
8941             goto next_spqe;
8942 
8943         case EVENT_RING_OPCODE_FUNCTION_START:
8944             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8945             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8946                 break;
8947             }
8948             goto next_spqe;
8949 
8950         case EVENT_RING_OPCODE_FUNCTION_STOP:
8951             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8952             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8953                 break;
8954             }
8955             goto next_spqe;
8956         }
8957 
8958         switch (opcode | sc->state) {
8959         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8960         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8961             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8962             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8963             rss_raw->clear_pending(rss_raw);
8964             break;
8965 
8966         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8967         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8968         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8969         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8970         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8971         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8972             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8973             bxe_handle_classification_eqe(sc, elem);
8974             break;
8975 
8976         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8977         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8978         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8979             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8980             bxe_handle_mcast_eqe(sc);
8981             break;
8982 
8983         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8984         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8985         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8986             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8987             bxe_handle_rx_mode_eqe(sc, elem);
8988             break;
8989 
8990         default:
8991             /* unknown event log error and continue */
8992             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8993                   elem->message.opcode, sc->state);
8994         }
8995 
8996 next_spqe:
8997         spqe_cnt++;
8998     } /* for */
8999 
9000     mb();
9001     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
9002 
9003     sc->eq_cons = sw_cons;
9004     sc->eq_prod = sw_prod;
9005 
9006     /* make sure that above mem writes were issued towards the memory */
9007     wmb();
9008 
9009     /* update producer */
9010     bxe_update_eq_prod(sc, sc->eq_prod);
9011 }
9012 
9013 static void
9014 bxe_handle_sp_tq(void *context,
9015                  int  pending)
9016 {
9017     struct bxe_softc *sc = (struct bxe_softc *)context;
9018     uint16_t status;
9019 
9020     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
9021 
9022     /* what work needs to be performed? */
9023     status = bxe_update_dsb_idx(sc);
9024 
9025     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
9026 
9027     /* HW attentions */
9028     if (status & BXE_DEF_SB_ATT_IDX) {
9029         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
9030         bxe_attn_int(sc);
9031         status &= ~BXE_DEF_SB_ATT_IDX;
9032     }
9033 
9034     /* SP events: STAT_QUERY and others */
9035     if (status & BXE_DEF_SB_IDX) {
9036         /* handle EQ completions */
9037         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9038         bxe_eq_int(sc);
9039         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9040                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
9041         status &= ~BXE_DEF_SB_IDX;
9042     }
9043 
9044     /* if status is non zero then something went wrong */
9045     if (__predict_false(status)) {
9046         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9047     }
9048 
9049     /* ack status block only if something was actually handled */
9050     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9051                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9052 
9053     /*
9054      * Must be called after the EQ processing (since eq leads to sriov
9055      * ramrod completion flows).
9056      * This flow may have been scheduled by the arrival of a ramrod
9057      * completion, or by the sriov code rescheduling itself.
9058      */
9059     // XXX bxe_iov_sp_task(sc);
9060 
9061 #if 0
9062     /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9063     if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9064                                &sc->sp_state)) {
9065         bxe_link_report(sc);
9066         bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9067     }
9068 #endif
9069 }
9070 
9071 static void
9072 bxe_handle_fp_tq(void *context,
9073                  int  pending)
9074 {
9075     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9076     struct bxe_softc *sc = fp->sc;
9077     uint8_t more_tx = FALSE;
9078     uint8_t more_rx = FALSE;
9079 
9080     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9081 
9082     /* XXX
9083      * IFF_DRV_RUNNING state can't be checked here since we process
9084      * slowpath events on a client queue during setup. Instead
9085      * we need to add a "process/continue" flag here that the driver
9086      * can use to tell the task here not to do anything.
9087      */
9088 #if 0
9089     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
9090         return;
9091     }
9092 #endif
9093 
9094     /* update the fastpath index */
9095     bxe_update_fp_sb_idx(fp);
9096 
9097     /* XXX add loop here if ever support multiple tx CoS */
9098     /* fp->txdata[cos] */
9099     if (bxe_has_tx_work(fp)) {
9100         BXE_FP_TX_LOCK(fp);
9101         more_tx = bxe_txeof(sc, fp);
9102         BXE_FP_TX_UNLOCK(fp);
9103     }
9104 
9105     if (bxe_has_rx_work(fp)) {
9106         more_rx = bxe_rxeof(sc, fp);
9107     }
9108 
9109     if (more_rx /*|| more_tx*/) {
9110         /* still more work to do */
9111         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9112         return;
9113     }
9114 
9115     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9116                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9117 }
9118 
9119 static void
9120 bxe_task_fp(struct bxe_fastpath *fp)
9121 {
9122     struct bxe_softc *sc = fp->sc;
9123     uint8_t more_tx = FALSE;
9124     uint8_t more_rx = FALSE;
9125 
9126     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9127 
9128     /* update the fastpath index */
9129     bxe_update_fp_sb_idx(fp);
9130 
9131     /* XXX add loop here if ever support multiple tx CoS */
9132     /* fp->txdata[cos] */
9133     if (bxe_has_tx_work(fp)) {
9134         BXE_FP_TX_LOCK(fp);
9135         more_tx = bxe_txeof(sc, fp);
9136         BXE_FP_TX_UNLOCK(fp);
9137     }
9138 
9139     if (bxe_has_rx_work(fp)) {
9140         more_rx = bxe_rxeof(sc, fp);
9141     }
9142 
9143     if (more_rx /*|| more_tx*/) {
9144         /* still more work to do, bail out if this ISR and process later */
9145         taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9146         return;
9147     }
9148 
9149     /*
9150      * Here we write the fastpath index taken before doing any tx or rx work.
9151      * It is very well possible other hw events occurred up to this point and
9152      * they were actually processed accordingly above. Since we're going to
9153      * write an older fastpath index, an interrupt is coming which we might
9154      * not do any work in.
9155      */
9156     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9157                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9158 }
9159 
9160 /*
9161  * Legacy interrupt entry point.
9162  *
9163  * Verifies that the controller generated the interrupt and
9164  * then calls a separate routine to handle the various
9165  * interrupt causes: link, RX, and TX.
9166  */
9167 static void
9168 bxe_intr_legacy(void *xsc)
9169 {
9170     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9171     struct bxe_fastpath *fp;
9172     uint16_t status, mask;
9173     int i;
9174 
9175     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9176 
9177 #if 0
9178     /* Don't handle any interrupts if we're not ready. */
9179     if (__predict_false(sc->intr_sem != 0)) {
9180         return;
9181     }
9182 #endif
9183 
9184     /*
9185      * 0 for ustorm, 1 for cstorm
9186      * the bits returned from ack_int() are 0-15
9187      * bit 0 = attention status block
9188      * bit 1 = fast path status block
9189      * a mask of 0x2 or more = tx/rx event
9190      * a mask of 1 = slow path event
9191      */
9192 
9193     status = bxe_ack_int(sc);
9194 
9195     /* the interrupt is not for us */
9196     if (__predict_false(status == 0)) {
9197         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9198         return;
9199     }
9200 
9201     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9202 
9203     FOR_EACH_ETH_QUEUE(sc, i) {
9204         fp = &sc->fp[i];
9205         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9206         if (status & mask) {
9207             /* acknowledge and disable further fastpath interrupts */
9208             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9209             bxe_task_fp(fp);
9210             status &= ~mask;
9211         }
9212     }
9213 
9214 #if 0
9215     if (CNIC_SUPPORT(sc)) {
9216         mask = 0x2;
9217         if (status & (mask | 0x1)) {
9218             ...
9219             status &= ~mask;
9220         }
9221     }
9222 #endif
9223 
9224     if (__predict_false(status & 0x1)) {
9225         /* acknowledge and disable further slowpath interrupts */
9226         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9227 
9228         /* schedule slowpath handler */
9229         taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9230 
9231         status &= ~0x1;
9232     }
9233 
9234     if (__predict_false(status)) {
9235         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9236     }
9237 }
9238 
9239 /* slowpath interrupt entry point */
9240 static void
9241 bxe_intr_sp(void *xsc)
9242 {
9243     struct bxe_softc *sc = (struct bxe_softc *)xsc;
9244 
9245     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9246 
9247     /* acknowledge and disable further slowpath interrupts */
9248     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9249 
9250     /* schedule slowpath handler */
9251     taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9252 }
9253 
9254 /* fastpath interrupt entry point */
9255 static void
9256 bxe_intr_fp(void *xfp)
9257 {
9258     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9259     struct bxe_softc *sc = fp->sc;
9260 
9261     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9262 
9263     BLOGD(sc, DBG_INTR,
9264           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9265           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9266 
9267 #if 0
9268     /* Don't handle any interrupts if we're not ready. */
9269     if (__predict_false(sc->intr_sem != 0)) {
9270         return;
9271     }
9272 #endif
9273 
9274     /* acknowledge and disable further fastpath interrupts */
9275     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9276 
9277     bxe_task_fp(fp);
9278 }
9279 
9280 /* Release all interrupts allocated by the driver. */
9281 static void
9282 bxe_interrupt_free(struct bxe_softc *sc)
9283 {
9284     int i;
9285 
9286     switch (sc->interrupt_mode) {
9287     case INTR_MODE_INTX:
9288         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9289         if (sc->intr[0].resource != NULL) {
9290             bus_release_resource(sc->dev,
9291                                  SYS_RES_IRQ,
9292                                  sc->intr[0].rid,
9293                                  sc->intr[0].resource);
9294         }
9295         break;
9296     case INTR_MODE_MSI:
9297         for (i = 0; i < sc->intr_count; i++) {
9298             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9299             if (sc->intr[i].resource && sc->intr[i].rid) {
9300                 bus_release_resource(sc->dev,
9301                                      SYS_RES_IRQ,
9302                                      sc->intr[i].rid,
9303                                      sc->intr[i].resource);
9304             }
9305         }
9306         pci_release_msi(sc->dev);
9307         break;
9308     case INTR_MODE_MSIX:
9309         for (i = 0; i < sc->intr_count; i++) {
9310             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9311             if (sc->intr[i].resource && sc->intr[i].rid) {
9312                 bus_release_resource(sc->dev,
9313                                      SYS_RES_IRQ,
9314                                      sc->intr[i].rid,
9315                                      sc->intr[i].resource);
9316             }
9317         }
9318         pci_release_msi(sc->dev);
9319         break;
9320     default:
9321         /* nothing to do as initial allocation failed */
9322         break;
9323     }
9324 }
9325 
9326 /*
9327  * This function determines and allocates the appropriate
9328  * interrupt based on system capabilites and user request.
9329  *
9330  * The user may force a particular interrupt mode, specify
9331  * the number of receive queues, specify the method for
9332  * distribuitng received frames to receive queues, or use
9333  * the default settings which will automatically select the
9334  * best supported combination.  In addition, the OS may or
9335  * may not support certain combinations of these settings.
9336  * This routine attempts to reconcile the settings requested
9337  * by the user with the capabilites available from the system
9338  * to select the optimal combination of features.
9339  *
9340  * Returns:
9341  *   0 = Success, !0 = Failure.
9342  */
9343 static int
9344 bxe_interrupt_alloc(struct bxe_softc *sc)
9345 {
9346     int msix_count = 0;
9347     int msi_count = 0;
9348     int num_requested = 0;
9349     int num_allocated = 0;
9350     int rid, i, j;
9351     int rc;
9352 
9353     /* get the number of available MSI/MSI-X interrupts from the OS */
9354     if (sc->interrupt_mode > 0) {
9355         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9356             msix_count = pci_msix_count(sc->dev);
9357         }
9358 
9359         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9360             msi_count = pci_msi_count(sc->dev);
9361         }
9362 
9363         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9364               msi_count, msix_count);
9365     }
9366 
9367     do { /* try allocating MSI-X interrupt resources (at least 2) */
9368         if (sc->interrupt_mode != INTR_MODE_MSIX) {
9369             break;
9370         }
9371 
9372         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9373             (msix_count < 2)) {
9374             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9375             break;
9376         }
9377 
9378         /* ask for the necessary number of MSI-X vectors */
9379         num_requested = min((sc->num_queues + 1), msix_count);
9380 
9381         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9382 
9383         num_allocated = num_requested;
9384         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9385             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9386             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9387             break;
9388         }
9389 
9390         if (num_allocated < 2) { /* possible? */
9391             BLOGE(sc, "MSI-X allocation less than 2!\n");
9392             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9393             pci_release_msi(sc->dev);
9394             break;
9395         }
9396 
9397         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9398               num_requested, num_allocated);
9399 
9400         /* best effort so use the number of vectors allocated to us */
9401         sc->intr_count = num_allocated;
9402         sc->num_queues = num_allocated - 1;
9403 
9404         rid = 1; /* initial resource identifier */
9405 
9406         /* allocate the MSI-X vectors */
9407         for (i = 0; i < num_allocated; i++) {
9408             sc->intr[i].rid = (rid + i);
9409 
9410             if ((sc->intr[i].resource =
9411                  bus_alloc_resource_any(sc->dev,
9412                                         SYS_RES_IRQ,
9413                                         &sc->intr[i].rid,
9414                                         RF_ACTIVE)) == NULL) {
9415                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9416                       i, (rid + i));
9417 
9418                 for (j = (i - 1); j >= 0; j--) {
9419                     bus_release_resource(sc->dev,
9420                                          SYS_RES_IRQ,
9421                                          sc->intr[j].rid,
9422                                          sc->intr[j].resource);
9423                 }
9424 
9425                 sc->intr_count = 0;
9426                 sc->num_queues = 0;
9427                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9428                 pci_release_msi(sc->dev);
9429                 break;
9430             }
9431 
9432             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9433         }
9434     } while (0);
9435 
9436     do { /* try allocating MSI vector resources (at least 2) */
9437         if (sc->interrupt_mode != INTR_MODE_MSI) {
9438             break;
9439         }
9440 
9441         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9442             (msi_count < 1)) {
9443             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9444             break;
9445         }
9446 
9447         /* ask for a single MSI vector */
9448         num_requested = 1;
9449 
9450         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9451 
9452         num_allocated = num_requested;
9453         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9454             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9455             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9456             break;
9457         }
9458 
9459         if (num_allocated != 1) { /* possible? */
9460             BLOGE(sc, "MSI allocation is not 1!\n");
9461             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9462             pci_release_msi(sc->dev);
9463             break;
9464         }
9465 
9466         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9467               num_requested, num_allocated);
9468 
9469         /* best effort so use the number of vectors allocated to us */
9470         sc->intr_count = num_allocated;
9471         sc->num_queues = num_allocated;
9472 
9473         rid = 1; /* initial resource identifier */
9474 
9475         sc->intr[0].rid = rid;
9476 
9477         if ((sc->intr[0].resource =
9478              bus_alloc_resource_any(sc->dev,
9479                                     SYS_RES_IRQ,
9480                                     &sc->intr[0].rid,
9481                                     RF_ACTIVE)) == NULL) {
9482             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9483             sc->intr_count = 0;
9484             sc->num_queues = 0;
9485             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9486             pci_release_msi(sc->dev);
9487             break;
9488         }
9489 
9490         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9491     } while (0);
9492 
9493     do { /* try allocating INTx vector resources */
9494         if (sc->interrupt_mode != INTR_MODE_INTX) {
9495             break;
9496         }
9497 
9498         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9499 
9500         /* only one vector for INTx */
9501         sc->intr_count = 1;
9502         sc->num_queues = 1;
9503 
9504         rid = 0; /* initial resource identifier */
9505 
9506         sc->intr[0].rid = rid;
9507 
9508         if ((sc->intr[0].resource =
9509              bus_alloc_resource_any(sc->dev,
9510                                     SYS_RES_IRQ,
9511                                     &sc->intr[0].rid,
9512                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9513             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9514             sc->intr_count = 0;
9515             sc->num_queues = 0;
9516             sc->interrupt_mode = -1; /* Failed! */
9517             break;
9518         }
9519 
9520         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9521     } while (0);
9522 
9523     if (sc->interrupt_mode == -1) {
9524         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9525         rc = 1;
9526     } else {
9527         BLOGD(sc, DBG_LOAD,
9528               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9529               sc->interrupt_mode, sc->num_queues);
9530         rc = 0;
9531     }
9532 
9533     return (rc);
9534 }
9535 
9536 static void
9537 bxe_interrupt_detach(struct bxe_softc *sc)
9538 {
9539     struct bxe_fastpath *fp;
9540     int i;
9541 
9542     /* release interrupt resources */
9543     for (i = 0; i < sc->intr_count; i++) {
9544         if (sc->intr[i].resource && sc->intr[i].tag) {
9545             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9546             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9547         }
9548     }
9549 
9550     for (i = 0; i < sc->num_queues; i++) {
9551         fp = &sc->fp[i];
9552         if (fp->tq) {
9553             taskqueue_drain(fp->tq, &fp->tq_task);
9554             taskqueue_free(fp->tq);
9555             fp->tq = NULL;
9556         }
9557     }
9558 
9559 
9560     if (sc->sp_tq) {
9561         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9562         taskqueue_free(sc->sp_tq);
9563         sc->sp_tq = NULL;
9564     }
9565 }
9566 
9567 /*
9568  * Enables interrupts and attach to the ISR.
9569  *
9570  * When using multiple MSI/MSI-X vectors the first vector
9571  * is used for slowpath operations while all remaining
9572  * vectors are used for fastpath operations.  If only a
9573  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9574  * ISR must look for both slowpath and fastpath completions.
9575  */
9576 static int
9577 bxe_interrupt_attach(struct bxe_softc *sc)
9578 {
9579     struct bxe_fastpath *fp;
9580     int rc = 0;
9581     int i;
9582 
9583     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9584              "bxe%d_sp_tq", sc->unit);
9585     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9586     sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9587                                       taskqueue_thread_enqueue,
9588                                       &sc->sp_tq);
9589     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9590                             "%s", sc->sp_tq_name);
9591 
9592 
9593     for (i = 0; i < sc->num_queues; i++) {
9594         fp = &sc->fp[i];
9595         snprintf(fp->tq_name, sizeof(fp->tq_name),
9596                  "bxe%d_fp%d_tq", sc->unit, i);
9597         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9598         fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9599                                        taskqueue_thread_enqueue,
9600                                        &fp->tq);
9601         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9602                                 "%s", fp->tq_name);
9603     }
9604 
9605     /* setup interrupt handlers */
9606     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9607         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9608 
9609         /*
9610          * Setup the interrupt handler. Note that we pass the driver instance
9611          * to the interrupt handler for the slowpath.
9612          */
9613         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9614                                  (INTR_TYPE_NET | INTR_MPSAFE),
9615                                  NULL, bxe_intr_sp, sc,
9616                                  &sc->intr[0].tag)) != 0) {
9617             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9618             goto bxe_interrupt_attach_exit;
9619         }
9620 
9621         bus_describe_intr(sc->dev, sc->intr[0].resource,
9622                           sc->intr[0].tag, "sp");
9623 
9624         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9625 
9626         /* initialize the fastpath vectors (note the first was used for sp) */
9627         for (i = 0; i < sc->num_queues; i++) {
9628             fp = &sc->fp[i];
9629             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9630 
9631             /*
9632              * Setup the interrupt handler. Note that we pass the
9633              * fastpath context to the interrupt handler in this
9634              * case.
9635              */
9636             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9637                                      (INTR_TYPE_NET | INTR_MPSAFE),
9638                                      NULL, bxe_intr_fp, fp,
9639                                      &sc->intr[i + 1].tag)) != 0) {
9640                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9641                       (i + 1), rc);
9642                 goto bxe_interrupt_attach_exit;
9643             }
9644 
9645             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9646                               sc->intr[i + 1].tag, "fp%02d", i);
9647 
9648             /* bind the fastpath instance to a cpu */
9649             if (sc->num_queues > 1) {
9650                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9651             }
9652 
9653             fp->state = BXE_FP_STATE_IRQ;
9654         }
9655     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9656         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9657 
9658         /*
9659          * Setup the interrupt handler. Note that we pass the
9660          * driver instance to the interrupt handler which
9661          * will handle both the slowpath and fastpath.
9662          */
9663         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9664                                  (INTR_TYPE_NET | INTR_MPSAFE),
9665                                  NULL, bxe_intr_legacy, sc,
9666                                  &sc->intr[0].tag)) != 0) {
9667             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9668             goto bxe_interrupt_attach_exit;
9669         }
9670 
9671     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9672         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9673 
9674         /*
9675          * Setup the interrupt handler. Note that we pass the
9676          * driver instance to the interrupt handler which
9677          * will handle both the slowpath and fastpath.
9678          */
9679         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9680                                  (INTR_TYPE_NET | INTR_MPSAFE),
9681                                  NULL, bxe_intr_legacy, sc,
9682                                  &sc->intr[0].tag)) != 0) {
9683             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9684             goto bxe_interrupt_attach_exit;
9685         }
9686     }
9687 
9688 bxe_interrupt_attach_exit:
9689 
9690     return (rc);
9691 }
9692 
9693 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9694 static int  bxe_init_hw_common(struct bxe_softc *sc);
9695 static int  bxe_init_hw_port(struct bxe_softc *sc);
9696 static int  bxe_init_hw_func(struct bxe_softc *sc);
9697 static void bxe_reset_common(struct bxe_softc *sc);
9698 static void bxe_reset_port(struct bxe_softc *sc);
9699 static void bxe_reset_func(struct bxe_softc *sc);
9700 static int  bxe_gunzip_init(struct bxe_softc *sc);
9701 static void bxe_gunzip_end(struct bxe_softc *sc);
9702 static int  bxe_init_firmware(struct bxe_softc *sc);
9703 static void bxe_release_firmware(struct bxe_softc *sc);
9704 
9705 static struct
9706 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9707     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9708     .init_hw_cmn      = bxe_init_hw_common,
9709     .init_hw_port     = bxe_init_hw_port,
9710     .init_hw_func     = bxe_init_hw_func,
9711 
9712     .reset_hw_cmn     = bxe_reset_common,
9713     .reset_hw_port    = bxe_reset_port,
9714     .reset_hw_func    = bxe_reset_func,
9715 
9716     .gunzip_init      = bxe_gunzip_init,
9717     .gunzip_end       = bxe_gunzip_end,
9718 
9719     .init_fw          = bxe_init_firmware,
9720     .release_fw       = bxe_release_firmware,
9721 };
9722 
9723 static void
9724 bxe_init_func_obj(struct bxe_softc *sc)
9725 {
9726     sc->dmae_ready = 0;
9727 
9728     ecore_init_func_obj(sc,
9729                         &sc->func_obj,
9730                         BXE_SP(sc, func_rdata),
9731                         BXE_SP_MAPPING(sc, func_rdata),
9732                         BXE_SP(sc, func_afex_rdata),
9733                         BXE_SP_MAPPING(sc, func_afex_rdata),
9734                         &bxe_func_sp_drv);
9735 }
9736 
9737 static int
9738 bxe_init_hw(struct bxe_softc *sc,
9739             uint32_t         load_code)
9740 {
9741     struct ecore_func_state_params func_params = { NULL };
9742     int rc;
9743 
9744     /* prepare the parameters for function state transitions */
9745     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9746 
9747     func_params.f_obj = &sc->func_obj;
9748     func_params.cmd = ECORE_F_CMD_HW_INIT;
9749 
9750     func_params.params.hw_init.load_phase = load_code;
9751 
9752     /*
9753      * Via a plethora of function pointers, we will eventually reach
9754      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9755      */
9756     rc = ecore_func_state_change(sc, &func_params);
9757 
9758     return (rc);
9759 }
9760 
9761 static void
9762 bxe_fill(struct bxe_softc *sc,
9763          uint32_t         addr,
9764          int              fill,
9765          uint32_t         len)
9766 {
9767     uint32_t i;
9768 
9769     if (!(len % 4) && !(addr % 4)) {
9770         for (i = 0; i < len; i += 4) {
9771             REG_WR(sc, (addr + i), fill);
9772         }
9773     } else {
9774         for (i = 0; i < len; i++) {
9775             REG_WR8(sc, (addr + i), fill);
9776         }
9777     }
9778 }
9779 
9780 /* writes FP SP data to FW - data_size in dwords */
9781 static void
9782 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9783                   int              fw_sb_id,
9784                   uint32_t         *sb_data_p,
9785                   uint32_t         data_size)
9786 {
9787     int index;
9788 
9789     for (index = 0; index < data_size; index++) {
9790         REG_WR(sc,
9791                (BAR_CSTRORM_INTMEM +
9792                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9793                 (sizeof(uint32_t) * index)),
9794                *(sb_data_p + index));
9795     }
9796 }
9797 
9798 static void
9799 bxe_zero_fp_sb(struct bxe_softc *sc,
9800                int              fw_sb_id)
9801 {
9802     struct hc_status_block_data_e2 sb_data_e2;
9803     struct hc_status_block_data_e1x sb_data_e1x;
9804     uint32_t *sb_data_p;
9805     uint32_t data_size = 0;
9806 
9807     if (!CHIP_IS_E1x(sc)) {
9808         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9809         sb_data_e2.common.state = SB_DISABLED;
9810         sb_data_e2.common.p_func.vf_valid = FALSE;
9811         sb_data_p = (uint32_t *)&sb_data_e2;
9812         data_size = (sizeof(struct hc_status_block_data_e2) /
9813                      sizeof(uint32_t));
9814     } else {
9815         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9816         sb_data_e1x.common.state = SB_DISABLED;
9817         sb_data_e1x.common.p_func.vf_valid = FALSE;
9818         sb_data_p = (uint32_t *)&sb_data_e1x;
9819         data_size = (sizeof(struct hc_status_block_data_e1x) /
9820                      sizeof(uint32_t));
9821     }
9822 
9823     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9824 
9825     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9826              0, CSTORM_STATUS_BLOCK_SIZE);
9827     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9828              0, CSTORM_SYNC_BLOCK_SIZE);
9829 }
9830 
9831 static void
9832 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9833                   struct hc_sp_status_block_data *sp_sb_data)
9834 {
9835     int i;
9836 
9837     for (i = 0;
9838          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9839          i++) {
9840         REG_WR(sc,
9841                (BAR_CSTRORM_INTMEM +
9842                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9843                 (i * sizeof(uint32_t))),
9844                *((uint32_t *)sp_sb_data + i));
9845     }
9846 }
9847 
9848 static void
9849 bxe_zero_sp_sb(struct bxe_softc *sc)
9850 {
9851     struct hc_sp_status_block_data sp_sb_data;
9852 
9853     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9854 
9855     sp_sb_data.state           = SB_DISABLED;
9856     sp_sb_data.p_func.vf_valid = FALSE;
9857 
9858     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9859 
9860     bxe_fill(sc,
9861              (BAR_CSTRORM_INTMEM +
9862               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9863               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9864     bxe_fill(sc,
9865              (BAR_CSTRORM_INTMEM +
9866               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9867               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9868 }
9869 
9870 static void
9871 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9872                              int                       igu_sb_id,
9873                              int                       igu_seg_id)
9874 {
9875     hc_sm->igu_sb_id      = igu_sb_id;
9876     hc_sm->igu_seg_id     = igu_seg_id;
9877     hc_sm->timer_value    = 0xFF;
9878     hc_sm->time_to_expire = 0xFFFFFFFF;
9879 }
9880 
9881 static void
9882 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9883 {
9884     /* zero out state machine indices */
9885 
9886     /* rx indices */
9887     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9888 
9889     /* tx indices */
9890     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9891     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9892     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9893     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9894 
9895     /* map indices */
9896 
9897     /* rx indices */
9898     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9899         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9900 
9901     /* tx indices */
9902     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9903         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9904     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9905         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9906     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9907         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9908     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9909         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910 }
9911 
9912 static void
9913 bxe_init_sb(struct bxe_softc *sc,
9914             bus_addr_t       busaddr,
9915             int              vfid,
9916             uint8_t          vf_valid,
9917             int              fw_sb_id,
9918             int              igu_sb_id)
9919 {
9920     struct hc_status_block_data_e2  sb_data_e2;
9921     struct hc_status_block_data_e1x sb_data_e1x;
9922     struct hc_status_block_sm       *hc_sm_p;
9923     uint32_t *sb_data_p;
9924     int igu_seg_id;
9925     int data_size;
9926 
9927     if (CHIP_INT_MODE_IS_BC(sc)) {
9928         igu_seg_id = HC_SEG_ACCESS_NORM;
9929     } else {
9930         igu_seg_id = IGU_SEG_ACCESS_NORM;
9931     }
9932 
9933     bxe_zero_fp_sb(sc, fw_sb_id);
9934 
9935     if (!CHIP_IS_E1x(sc)) {
9936         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9937         sb_data_e2.common.state = SB_ENABLED;
9938         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9939         sb_data_e2.common.p_func.vf_id = vfid;
9940         sb_data_e2.common.p_func.vf_valid = vf_valid;
9941         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9942         sb_data_e2.common.same_igu_sb_1b = TRUE;
9943         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9944         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9945         hc_sm_p = sb_data_e2.common.state_machine;
9946         sb_data_p = (uint32_t *)&sb_data_e2;
9947         data_size = (sizeof(struct hc_status_block_data_e2) /
9948                      sizeof(uint32_t));
9949         bxe_map_sb_state_machines(sb_data_e2.index_data);
9950     } else {
9951         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9952         sb_data_e1x.common.state = SB_ENABLED;
9953         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9954         sb_data_e1x.common.p_func.vf_id = 0xff;
9955         sb_data_e1x.common.p_func.vf_valid = FALSE;
9956         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9957         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9958         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9959         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9960         hc_sm_p = sb_data_e1x.common.state_machine;
9961         sb_data_p = (uint32_t *)&sb_data_e1x;
9962         data_size = (sizeof(struct hc_status_block_data_e1x) /
9963                      sizeof(uint32_t));
9964         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9965     }
9966 
9967     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9968     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9969 
9970     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9971 
9972     /* write indices to HW - PCI guarantees endianity of regpairs */
9973     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9974 }
9975 
9976 static inline uint8_t
9977 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9978 {
9979     if (CHIP_IS_E1x(fp->sc)) {
9980         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9981     } else {
9982         return (fp->cl_id);
9983     }
9984 }
9985 
9986 static inline uint32_t
9987 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9988                            struct bxe_fastpath *fp)
9989 {
9990     uint32_t offset = BAR_USTRORM_INTMEM;
9991 
9992 #if 0
9993     if (IS_VF(sc)) {
9994         return (PXP_VF_ADDR_USDM_QUEUES_START +
9995                 (sc->acquire_resp.resc.hw_qid[fp->index] *
9996                  sizeof(struct ustorm_queue_zone_data)));
9997     } else
9998 #endif
9999     if (!CHIP_IS_E1x(sc)) {
10000         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10001     } else {
10002         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10003     }
10004 
10005     return (offset);
10006 }
10007 
10008 static void
10009 bxe_init_eth_fp(struct bxe_softc *sc,
10010                 int              idx)
10011 {
10012     struct bxe_fastpath *fp = &sc->fp[idx];
10013     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10014     unsigned long q_type = 0;
10015     int cos;
10016 
10017     fp->sc    = sc;
10018     fp->index = idx;
10019 
10020     snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10021              "bxe%d_fp%d_tx_lock", sc->unit, idx);
10022     mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10023 
10024     snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10025              "bxe%d_fp%d_rx_lock", sc->unit, idx);
10026     mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10027 
10028     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10029     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10030 
10031     fp->cl_id = (CHIP_IS_E1x(sc)) ?
10032                     (SC_L_ID(sc) + idx) :
10033                     /* want client ID same as IGU SB ID for non-E1 */
10034                     fp->igu_sb_id;
10035     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10036 
10037     /* setup sb indices */
10038     if (!CHIP_IS_E1x(sc)) {
10039         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10040         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10041     } else {
10042         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10043         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10044     }
10045 
10046     /* init shortcut */
10047     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10048 
10049     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10050 
10051     /*
10052      * XXX If multiple CoS is ever supported then each fastpath structure
10053      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10054      */
10055     for (cos = 0; cos < sc->max_cos; cos++) {
10056         cids[cos] = idx;
10057     }
10058     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10059 
10060     /* nothing more for a VF to do */
10061     if (IS_VF(sc)) {
10062         return;
10063     }
10064 
10065     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10066                 fp->fw_sb_id, fp->igu_sb_id);
10067 
10068     bxe_update_fp_sb_idx(fp);
10069 
10070     /* Configure Queue State object */
10071     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10072     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10073 
10074     ecore_init_queue_obj(sc,
10075                          &sc->sp_objs[idx].q_obj,
10076                          fp->cl_id,
10077                          cids,
10078                          sc->max_cos,
10079                          SC_FUNC(sc),
10080                          BXE_SP(sc, q_rdata),
10081                          BXE_SP_MAPPING(sc, q_rdata),
10082                          q_type);
10083 
10084     /* configure classification DBs */
10085     ecore_init_mac_obj(sc,
10086                        &sc->sp_objs[idx].mac_obj,
10087                        fp->cl_id,
10088                        idx,
10089                        SC_FUNC(sc),
10090                        BXE_SP(sc, mac_rdata),
10091                        BXE_SP_MAPPING(sc, mac_rdata),
10092                        ECORE_FILTER_MAC_PENDING,
10093                        &sc->sp_state,
10094                        ECORE_OBJ_TYPE_RX_TX,
10095                        &sc->macs_pool);
10096 
10097     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10098           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10099 }
10100 
10101 static inline void
10102 bxe_update_rx_prod(struct bxe_softc    *sc,
10103                    struct bxe_fastpath *fp,
10104                    uint16_t            rx_bd_prod,
10105                    uint16_t            rx_cq_prod,
10106                    uint16_t            rx_sge_prod)
10107 {
10108     struct ustorm_eth_rx_producers rx_prods = { 0 };
10109     uint32_t i;
10110 
10111     /* update producers */
10112     rx_prods.bd_prod  = rx_bd_prod;
10113     rx_prods.cqe_prod = rx_cq_prod;
10114     rx_prods.sge_prod = rx_sge_prod;
10115 
10116     /*
10117      * Make sure that the BD and SGE data is updated before updating the
10118      * producers since FW might read the BD/SGE right after the producer
10119      * is updated.
10120      * This is only applicable for weak-ordered memory model archs such
10121      * as IA-64. The following barrier is also mandatory since FW will
10122      * assumes BDs must have buffers.
10123      */
10124     wmb();
10125 
10126     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10127         REG_WR(sc,
10128                (fp->ustorm_rx_prods_offset + (i * 4)),
10129                ((uint32_t *)&rx_prods)[i]);
10130     }
10131 
10132     wmb(); /* keep prod updates ordered */
10133 
10134     BLOGD(sc, DBG_RX,
10135           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10136           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10137 }
10138 
10139 static void
10140 bxe_init_rx_rings(struct bxe_softc *sc)
10141 {
10142     struct bxe_fastpath *fp;
10143     int i;
10144 
10145     for (i = 0; i < sc->num_queues; i++) {
10146         fp = &sc->fp[i];
10147 
10148         fp->rx_bd_cons = 0;
10149 
10150         /*
10151          * Activate the BD ring...
10152          * Warning, this will generate an interrupt (to the TSTORM)
10153          * so this can only be done after the chip is initialized
10154          */
10155         bxe_update_rx_prod(sc, fp,
10156                            fp->rx_bd_prod,
10157                            fp->rx_cq_prod,
10158                            fp->rx_sge_prod);
10159 
10160         if (i != 0) {
10161             continue;
10162         }
10163 
10164         if (CHIP_IS_E1(sc)) {
10165             REG_WR(sc,
10166                    (BAR_USTRORM_INTMEM +
10167                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10168                    U64_LO(fp->rcq_dma.paddr));
10169             REG_WR(sc,
10170                    (BAR_USTRORM_INTMEM +
10171                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10172                    U64_HI(fp->rcq_dma.paddr));
10173         }
10174     }
10175 }
10176 
10177 static void
10178 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10179 {
10180     SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10181     fp->tx_db.data.zero_fill1 = 0;
10182     fp->tx_db.data.prod = 0;
10183 
10184     fp->tx_pkt_prod = 0;
10185     fp->tx_pkt_cons = 0;
10186     fp->tx_bd_prod = 0;
10187     fp->tx_bd_cons = 0;
10188     fp->eth_q_stats.tx_pkts = 0;
10189 }
10190 
10191 static inline void
10192 bxe_init_tx_rings(struct bxe_softc *sc)
10193 {
10194     int i;
10195 
10196     for (i = 0; i < sc->num_queues; i++) {
10197 #if 0
10198         uint8_t cos;
10199         for (cos = 0; cos < sc->max_cos; cos++) {
10200             bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10201         }
10202 #else
10203         bxe_init_tx_ring_one(&sc->fp[i]);
10204 #endif
10205     }
10206 }
10207 
10208 static void
10209 bxe_init_def_sb(struct bxe_softc *sc)
10210 {
10211     struct host_sp_status_block *def_sb = sc->def_sb;
10212     bus_addr_t mapping = sc->def_sb_dma.paddr;
10213     int igu_sp_sb_index;
10214     int igu_seg_id;
10215     int port = SC_PORT(sc);
10216     int func = SC_FUNC(sc);
10217     int reg_offset, reg_offset_en5;
10218     uint64_t section;
10219     int index, sindex;
10220     struct hc_sp_status_block_data sp_sb_data;
10221 
10222     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10223 
10224     if (CHIP_INT_MODE_IS_BC(sc)) {
10225         igu_sp_sb_index = DEF_SB_IGU_ID;
10226         igu_seg_id = HC_SEG_ACCESS_DEF;
10227     } else {
10228         igu_sp_sb_index = sc->igu_dsb_id;
10229         igu_seg_id = IGU_SEG_ACCESS_DEF;
10230     }
10231 
10232     /* attentions */
10233     section = ((uint64_t)mapping +
10234                offsetof(struct host_sp_status_block, atten_status_block));
10235     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10236     sc->attn_state = 0;
10237 
10238     reg_offset = (port) ?
10239                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10240                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10241     reg_offset_en5 = (port) ?
10242                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10243                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10244 
10245     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10246         /* take care of sig[0]..sig[4] */
10247         for (sindex = 0; sindex < 4; sindex++) {
10248             sc->attn_group[index].sig[sindex] =
10249                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10250         }
10251 
10252         if (!CHIP_IS_E1x(sc)) {
10253             /*
10254              * enable5 is separate from the rest of the registers,
10255              * and the address skip is 4 and not 16 between the
10256              * different groups
10257              */
10258             sc->attn_group[index].sig[4] =
10259                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10260         } else {
10261             sc->attn_group[index].sig[4] = 0;
10262         }
10263     }
10264 
10265     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10266         reg_offset = (port) ?
10267                          HC_REG_ATTN_MSG1_ADDR_L :
10268                          HC_REG_ATTN_MSG0_ADDR_L;
10269         REG_WR(sc, reg_offset, U64_LO(section));
10270         REG_WR(sc, (reg_offset + 4), U64_HI(section));
10271     } else if (!CHIP_IS_E1x(sc)) {
10272         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10273         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10274     }
10275 
10276     section = ((uint64_t)mapping +
10277                offsetof(struct host_sp_status_block, sp_sb));
10278 
10279     bxe_zero_sp_sb(sc);
10280 
10281     /* PCI guarantees endianity of regpair */
10282     sp_sb_data.state           = SB_ENABLED;
10283     sp_sb_data.host_sb_addr.lo = U64_LO(section);
10284     sp_sb_data.host_sb_addr.hi = U64_HI(section);
10285     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10286     sp_sb_data.igu_seg_id      = igu_seg_id;
10287     sp_sb_data.p_func.pf_id    = func;
10288     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10289     sp_sb_data.p_func.vf_id    = 0xff;
10290 
10291     bxe_wr_sp_sb_data(sc, &sp_sb_data);
10292 
10293     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10294 }
10295 
10296 static void
10297 bxe_init_sp_ring(struct bxe_softc *sc)
10298 {
10299     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10300     sc->spq_prod_idx = 0;
10301     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10302     sc->spq_prod_bd = sc->spq;
10303     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10304 }
10305 
10306 static void
10307 bxe_init_eq_ring(struct bxe_softc *sc)
10308 {
10309     union event_ring_elem *elem;
10310     int i;
10311 
10312     for (i = 1; i <= NUM_EQ_PAGES; i++) {
10313         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10314 
10315         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10316                                                  BCM_PAGE_SIZE *
10317                                                  (i % NUM_EQ_PAGES)));
10318         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10319                                                  BCM_PAGE_SIZE *
10320                                                  (i % NUM_EQ_PAGES)));
10321     }
10322 
10323     sc->eq_cons    = 0;
10324     sc->eq_prod    = NUM_EQ_DESC;
10325     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10326 
10327     atomic_store_rel_long(&sc->eq_spq_left,
10328                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10329                                NUM_EQ_DESC) - 1));
10330 }
10331 
10332 static void
10333 bxe_init_internal_common(struct bxe_softc *sc)
10334 {
10335     int i;
10336 
10337     if (IS_MF_SI(sc)) {
10338         /*
10339          * In switch independent mode, the TSTORM needs to accept
10340          * packets that failed classification, since approximate match
10341          * mac addresses aren't written to NIG LLH.
10342          */
10343         REG_WR8(sc,
10344                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10345                 2);
10346     } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10347         REG_WR8(sc,
10348                 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10349                 0);
10350     }
10351 
10352     /*
10353      * Zero this manually as its initialization is currently missing
10354      * in the initTool.
10355      */
10356     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10357         REG_WR(sc,
10358                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10359                0);
10360     }
10361 
10362     if (!CHIP_IS_E1x(sc)) {
10363         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10364                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10365     }
10366 }
10367 
10368 static void
10369 bxe_init_internal(struct bxe_softc *sc,
10370                   uint32_t         load_code)
10371 {
10372     switch (load_code) {
10373     case FW_MSG_CODE_DRV_LOAD_COMMON:
10374     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10375         bxe_init_internal_common(sc);
10376         /* no break */
10377 
10378     case FW_MSG_CODE_DRV_LOAD_PORT:
10379         /* nothing to do */
10380         /* no break */
10381 
10382     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10383         /* internal memory per function is initialized inside bxe_pf_init */
10384         break;
10385 
10386     default:
10387         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10388         break;
10389     }
10390 }
10391 
10392 static void
10393 storm_memset_func_cfg(struct bxe_softc                         *sc,
10394                       struct tstorm_eth_function_common_config *tcfg,
10395                       uint16_t                                  abs_fid)
10396 {
10397     uint32_t addr;
10398     size_t size;
10399 
10400     addr = (BAR_TSTRORM_INTMEM +
10401             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10402     size = sizeof(struct tstorm_eth_function_common_config);
10403     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10404 }
10405 
10406 static void
10407 bxe_func_init(struct bxe_softc            *sc,
10408               struct bxe_func_init_params *p)
10409 {
10410     struct tstorm_eth_function_common_config tcfg = { 0 };
10411 
10412     if (CHIP_IS_E1x(sc)) {
10413         storm_memset_func_cfg(sc, &tcfg, p->func_id);
10414     }
10415 
10416     /* Enable the function in the FW */
10417     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10418     storm_memset_func_en(sc, p->func_id, 1);
10419 
10420     /* spq */
10421     if (p->func_flgs & FUNC_FLG_SPQ) {
10422         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10423         REG_WR(sc,
10424                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10425                p->spq_prod);
10426     }
10427 }
10428 
10429 /*
10430  * Calculates the sum of vn_min_rates.
10431  * It's needed for further normalizing of the min_rates.
10432  * Returns:
10433  *   sum of vn_min_rates.
10434  *     or
10435  *   0 - if all the min_rates are 0.
10436  * In the later case fainess algorithm should be deactivated.
10437  * If all min rates are not zero then those that are zeroes will be set to 1.
10438  */
10439 static void
10440 bxe_calc_vn_min(struct bxe_softc       *sc,
10441                 struct cmng_init_input *input)
10442 {
10443     uint32_t vn_cfg;
10444     uint32_t vn_min_rate;
10445     int all_zero = 1;
10446     int vn;
10447 
10448     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10449         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10450         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10451                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10452 
10453         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10454             /* skip hidden VNs */
10455             vn_min_rate = 0;
10456         } else if (!vn_min_rate) {
10457             /* If min rate is zero - set it to 100 */
10458             vn_min_rate = DEF_MIN_RATE;
10459         } else {
10460             all_zero = 0;
10461         }
10462 
10463         input->vnic_min_rate[vn] = vn_min_rate;
10464     }
10465 
10466     /* if ETS or all min rates are zeros - disable fairness */
10467     if (BXE_IS_ETS_ENABLED(sc)) {
10468         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10469         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10470     } else if (all_zero) {
10471         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10472         BLOGD(sc, DBG_LOAD,
10473               "Fariness disabled (all MIN values are zeroes)\n");
10474     } else {
10475         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10476     }
10477 }
10478 
10479 static inline uint16_t
10480 bxe_extract_max_cfg(struct bxe_softc *sc,
10481                     uint32_t         mf_cfg)
10482 {
10483     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10484                         FUNC_MF_CFG_MAX_BW_SHIFT);
10485 
10486     if (!max_cfg) {
10487         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10488         max_cfg = 100;
10489     }
10490 
10491     return (max_cfg);
10492 }
10493 
10494 static void
10495 bxe_calc_vn_max(struct bxe_softc       *sc,
10496                 int                    vn,
10497                 struct cmng_init_input *input)
10498 {
10499     uint16_t vn_max_rate;
10500     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10501     uint32_t max_cfg;
10502 
10503     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10504         vn_max_rate = 0;
10505     } else {
10506         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10507 
10508         if (IS_MF_SI(sc)) {
10509             /* max_cfg in percents of linkspeed */
10510             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10511         } else { /* SD modes */
10512             /* max_cfg is absolute in 100Mb units */
10513             vn_max_rate = (max_cfg * 100);
10514         }
10515     }
10516 
10517     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10518 
10519     input->vnic_max_rate[vn] = vn_max_rate;
10520 }
10521 
10522 static void
10523 bxe_cmng_fns_init(struct bxe_softc *sc,
10524                   uint8_t          read_cfg,
10525                   uint8_t          cmng_type)
10526 {
10527     struct cmng_init_input input;
10528     int vn;
10529 
10530     memset(&input, 0, sizeof(struct cmng_init_input));
10531 
10532     input.port_rate = sc->link_vars.line_speed;
10533 
10534     if (cmng_type == CMNG_FNS_MINMAX) {
10535         /* read mf conf from shmem */
10536         if (read_cfg) {
10537             bxe_read_mf_cfg(sc);
10538         }
10539 
10540         /* get VN min rate and enable fairness if not 0 */
10541         bxe_calc_vn_min(sc, &input);
10542 
10543         /* get VN max rate */
10544         if (sc->port.pmf) {
10545             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10546                 bxe_calc_vn_max(sc, vn, &input);
10547             }
10548         }
10549 
10550         /* always enable rate shaping and fairness */
10551         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10552 
10553         ecore_init_cmng(&input, &sc->cmng);
10554         return;
10555     }
10556 
10557     /* rate shaping and fairness are disabled */
10558     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10559 }
10560 
10561 static int
10562 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10563 {
10564     if (CHIP_REV_IS_SLOW(sc)) {
10565         return (CMNG_FNS_NONE);
10566     }
10567 
10568     if (IS_MF(sc)) {
10569         return (CMNG_FNS_MINMAX);
10570     }
10571 
10572     return (CMNG_FNS_NONE);
10573 }
10574 
10575 static void
10576 storm_memset_cmng(struct bxe_softc *sc,
10577                   struct cmng_init *cmng,
10578                   uint8_t          port)
10579 {
10580     int vn;
10581     int func;
10582     uint32_t addr;
10583     size_t size;
10584 
10585     addr = (BAR_XSTRORM_INTMEM +
10586             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10587     size = sizeof(struct cmng_struct_per_port);
10588     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10589 
10590     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10591         func = func_by_vn(sc, vn);
10592 
10593         addr = (BAR_XSTRORM_INTMEM +
10594                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10595         size = sizeof(struct rate_shaping_vars_per_vn);
10596         ecore_storm_memset_struct(sc, addr, size,
10597                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10598 
10599         addr = (BAR_XSTRORM_INTMEM +
10600                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10601         size = sizeof(struct fairness_vars_per_vn);
10602         ecore_storm_memset_struct(sc, addr, size,
10603                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10604     }
10605 }
10606 
10607 static void
10608 bxe_pf_init(struct bxe_softc *sc)
10609 {
10610     struct bxe_func_init_params func_init = { 0 };
10611     struct event_ring_data eq_data = { { 0 } };
10612     uint16_t flags;
10613 
10614     if (!CHIP_IS_E1x(sc)) {
10615         /* reset IGU PF statistics: MSIX + ATTN */
10616         /* PF */
10617         REG_WR(sc,
10618                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10619                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10620                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10621                0);
10622         /* ATTN */
10623         REG_WR(sc,
10624                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10625                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10626                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10627                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10628                0);
10629     }
10630 
10631     /* function setup flags */
10632     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10633 
10634     /*
10635      * This flag is relevant for E1x only.
10636      * E2 doesn't have a TPA configuration in a function level.
10637      */
10638     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10639 
10640     func_init.func_flgs = flags;
10641     func_init.pf_id     = SC_FUNC(sc);
10642     func_init.func_id   = SC_FUNC(sc);
10643     func_init.spq_map   = sc->spq_dma.paddr;
10644     func_init.spq_prod  = sc->spq_prod_idx;
10645 
10646     bxe_func_init(sc, &func_init);
10647 
10648     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10649 
10650     /*
10651      * Congestion management values depend on the link rate.
10652      * There is no active link so initial link rate is set to 10Gbps.
10653      * When the link comes up the congestion management values are
10654      * re-calculated according to the actual link rate.
10655      */
10656     sc->link_vars.line_speed = SPEED_10000;
10657     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10658 
10659     /* Only the PMF sets the HW */
10660     if (sc->port.pmf) {
10661         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10662     }
10663 
10664     /* init Event Queue - PCI bus guarantees correct endainity */
10665     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10666     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10667     eq_data.producer     = sc->eq_prod;
10668     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10669     eq_data.sb_id        = DEF_SB_ID;
10670     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10671 }
10672 
10673 static void
10674 bxe_hc_int_enable(struct bxe_softc *sc)
10675 {
10676     int port = SC_PORT(sc);
10677     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10678     uint32_t val = REG_RD(sc, addr);
10679     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10680     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10681                            (sc->intr_count == 1)) ? TRUE : FALSE;
10682     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10683 
10684     if (msix) {
10685         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10686                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10687         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10688                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10689         if (single_msix) {
10690             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10691         }
10692     } else if (msi) {
10693         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10694         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10695                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10696                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10697     } else {
10698         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10699                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10700                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10701                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10702 
10703         if (!CHIP_IS_E1(sc)) {
10704             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10705                   val, port, addr);
10706 
10707             REG_WR(sc, addr, val);
10708 
10709             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10710         }
10711     }
10712 
10713     if (CHIP_IS_E1(sc)) {
10714         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10715     }
10716 
10717     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10718           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10719 
10720     REG_WR(sc, addr, val);
10721 
10722     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10723     mb();
10724 
10725     if (!CHIP_IS_E1(sc)) {
10726         /* init leading/trailing edge */
10727         if (IS_MF(sc)) {
10728             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10729             if (sc->port.pmf) {
10730                 /* enable nig and gpio3 attention */
10731                 val |= 0x1100;
10732             }
10733         } else {
10734             val = 0xffff;
10735         }
10736 
10737         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10738         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10739     }
10740 
10741     /* make sure that interrupts are indeed enabled from here on */
10742     mb();
10743 }
10744 
10745 static void
10746 bxe_igu_int_enable(struct bxe_softc *sc)
10747 {
10748     uint32_t val;
10749     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10750     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10751                            (sc->intr_count == 1)) ? TRUE : FALSE;
10752     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10753 
10754     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10755 
10756     if (msix) {
10757         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10758                  IGU_PF_CONF_SINGLE_ISR_EN);
10759         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10760                 IGU_PF_CONF_ATTN_BIT_EN);
10761         if (single_msix) {
10762             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10763         }
10764     } else if (msi) {
10765         val &= ~IGU_PF_CONF_INT_LINE_EN;
10766         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10767                 IGU_PF_CONF_ATTN_BIT_EN |
10768                 IGU_PF_CONF_SINGLE_ISR_EN);
10769     } else {
10770         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10771         val |= (IGU_PF_CONF_INT_LINE_EN |
10772                 IGU_PF_CONF_ATTN_BIT_EN |
10773                 IGU_PF_CONF_SINGLE_ISR_EN);
10774     }
10775 
10776     /* clean previous status - need to configure igu prior to ack*/
10777     if ((!msix) || single_msix) {
10778         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10779         bxe_ack_int(sc);
10780     }
10781 
10782     val |= IGU_PF_CONF_FUNC_EN;
10783 
10784     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10785           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10786 
10787     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10788 
10789     mb();
10790 
10791     /* init leading/trailing edge */
10792     if (IS_MF(sc)) {
10793         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10794         if (sc->port.pmf) {
10795             /* enable nig and gpio3 attention */
10796             val |= 0x1100;
10797         }
10798     } else {
10799         val = 0xffff;
10800     }
10801 
10802     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10803     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10804 
10805     /* make sure that interrupts are indeed enabled from here on */
10806     mb();
10807 }
10808 
10809 static void
10810 bxe_int_enable(struct bxe_softc *sc)
10811 {
10812     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10813         bxe_hc_int_enable(sc);
10814     } else {
10815         bxe_igu_int_enable(sc);
10816     }
10817 }
10818 
10819 static void
10820 bxe_hc_int_disable(struct bxe_softc *sc)
10821 {
10822     int port = SC_PORT(sc);
10823     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10824     uint32_t val = REG_RD(sc, addr);
10825 
10826     /*
10827      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10828      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10829      * block
10830      */
10831     if (CHIP_IS_E1(sc)) {
10832         /*
10833          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10834          * to prevent from HC sending interrupts after we exit the function
10835          */
10836         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10837 
10838         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10839                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10840                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10841     } else {
10842         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10843                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10844                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10845                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10846     }
10847 
10848     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10849 
10850     /* flush all outstanding writes */
10851     mb();
10852 
10853     REG_WR(sc, addr, val);
10854     if (REG_RD(sc, addr) != val) {
10855         BLOGE(sc, "proper val not read from HC IGU!\n");
10856     }
10857 }
10858 
10859 static void
10860 bxe_igu_int_disable(struct bxe_softc *sc)
10861 {
10862     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10863 
10864     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10865              IGU_PF_CONF_INT_LINE_EN |
10866              IGU_PF_CONF_ATTN_BIT_EN);
10867 
10868     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10869 
10870     /* flush all outstanding writes */
10871     mb();
10872 
10873     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10874     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10875         BLOGE(sc, "proper val not read from IGU!\n");
10876     }
10877 }
10878 
10879 static void
10880 bxe_int_disable(struct bxe_softc *sc)
10881 {
10882     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10883         bxe_hc_int_disable(sc);
10884     } else {
10885         bxe_igu_int_disable(sc);
10886     }
10887 }
10888 
10889 static void
10890 bxe_nic_init(struct bxe_softc *sc,
10891              int              load_code)
10892 {
10893     int i;
10894 
10895     for (i = 0; i < sc->num_queues; i++) {
10896         bxe_init_eth_fp(sc, i);
10897     }
10898 
10899     rmb(); /* ensure status block indices were read */
10900 
10901     bxe_init_rx_rings(sc);
10902     bxe_init_tx_rings(sc);
10903 
10904     if (IS_VF(sc)) {
10905         return;
10906     }
10907 
10908     /* initialize MOD_ABS interrupts */
10909     elink_init_mod_abs_int(sc, &sc->link_vars,
10910                            sc->devinfo.chip_id,
10911                            sc->devinfo.shmem_base,
10912                            sc->devinfo.shmem2_base,
10913                            SC_PORT(sc));
10914 
10915     bxe_init_def_sb(sc);
10916     bxe_update_dsb_idx(sc);
10917     bxe_init_sp_ring(sc);
10918     bxe_init_eq_ring(sc);
10919     bxe_init_internal(sc, load_code);
10920     bxe_pf_init(sc);
10921     bxe_stats_init(sc);
10922 
10923     /* flush all before enabling interrupts */
10924     mb();
10925 
10926     bxe_int_enable(sc);
10927 
10928     /* check for SPIO5 */
10929     bxe_attn_int_deasserted0(sc,
10930                              REG_RD(sc,
10931                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10932                                      SC_PORT(sc)*4)) &
10933                              AEU_INPUTS_ATTN_BITS_SPIO5);
10934 }
10935 
10936 static inline void
10937 bxe_init_objs(struct bxe_softc *sc)
10938 {
10939     /* mcast rules must be added to tx if tx switching is enabled */
10940     ecore_obj_type o_type =
10941         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10942                                          ECORE_OBJ_TYPE_RX;
10943 
10944     /* RX_MODE controlling object */
10945     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10946 
10947     /* multicast configuration controlling object */
10948     ecore_init_mcast_obj(sc,
10949                          &sc->mcast_obj,
10950                          sc->fp[0].cl_id,
10951                          sc->fp[0].index,
10952                          SC_FUNC(sc),
10953                          SC_FUNC(sc),
10954                          BXE_SP(sc, mcast_rdata),
10955                          BXE_SP_MAPPING(sc, mcast_rdata),
10956                          ECORE_FILTER_MCAST_PENDING,
10957                          &sc->sp_state,
10958                          o_type);
10959 
10960     /* Setup CAM credit pools */
10961     ecore_init_mac_credit_pool(sc,
10962                                &sc->macs_pool,
10963                                SC_FUNC(sc),
10964                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10965                                                  VNICS_PER_PATH(sc));
10966 
10967     ecore_init_vlan_credit_pool(sc,
10968                                 &sc->vlans_pool,
10969                                 SC_ABS_FUNC(sc) >> 1,
10970                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10971                                                   VNICS_PER_PATH(sc));
10972 
10973     /* RSS configuration object */
10974     ecore_init_rss_config_obj(sc,
10975                               &sc->rss_conf_obj,
10976                               sc->fp[0].cl_id,
10977                               sc->fp[0].index,
10978                               SC_FUNC(sc),
10979                               SC_FUNC(sc),
10980                               BXE_SP(sc, rss_rdata),
10981                               BXE_SP_MAPPING(sc, rss_rdata),
10982                               ECORE_FILTER_RSS_CONF_PENDING,
10983                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10984 }
10985 
10986 /*
10987  * Initialize the function. This must be called before sending CLIENT_SETUP
10988  * for the first client.
10989  */
10990 static inline int
10991 bxe_func_start(struct bxe_softc *sc)
10992 {
10993     struct ecore_func_state_params func_params = { NULL };
10994     struct ecore_func_start_params *start_params = &func_params.params.start;
10995 
10996     /* Prepare parameters for function state transitions */
10997     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10998 
10999     func_params.f_obj = &sc->func_obj;
11000     func_params.cmd = ECORE_F_CMD_START;
11001 
11002     /* Function parameters */
11003     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11004     start_params->sd_vlan_tag = OVLAN(sc);
11005 
11006     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11007         start_params->network_cos_mode = STATIC_COS;
11008     } else { /* CHIP_IS_E1X */
11009         start_params->network_cos_mode = FW_WRR;
11010     }
11011 
11012     start_params->gre_tunnel_mode = 0;
11013     start_params->gre_tunnel_rss  = 0;
11014 
11015     return (ecore_func_state_change(sc, &func_params));
11016 }
11017 
11018 static int
11019 bxe_set_power_state(struct bxe_softc *sc,
11020                     uint8_t          state)
11021 {
11022     uint16_t pmcsr;
11023 
11024     /* If there is no power capability, silently succeed */
11025     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11026         BLOGW(sc, "No power capability\n");
11027         return (0);
11028     }
11029 
11030     pmcsr = pci_read_config(sc->dev,
11031                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11032                             2);
11033 
11034     switch (state) {
11035     case PCI_PM_D0:
11036         pci_write_config(sc->dev,
11037                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11038                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11039 
11040         if (pmcsr & PCIM_PSTAT_DMASK) {
11041             /* delay required during transition out of D3hot */
11042             DELAY(20000);
11043         }
11044 
11045         break;
11046 
11047     case PCI_PM_D3hot:
11048         /* XXX if there are other clients above don't shut down the power */
11049 
11050         /* don't shut down the power for emulation and FPGA */
11051         if (CHIP_REV_IS_SLOW(sc)) {
11052             return (0);
11053         }
11054 
11055         pmcsr &= ~PCIM_PSTAT_DMASK;
11056         pmcsr |= PCIM_PSTAT_D3;
11057 
11058         if (sc->wol) {
11059             pmcsr |= PCIM_PSTAT_PMEENABLE;
11060         }
11061 
11062         pci_write_config(sc->dev,
11063                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11064                          pmcsr, 4);
11065 
11066         /*
11067          * No more memory access after this point until device is brought back
11068          * to D0 state.
11069          */
11070         break;
11071 
11072     default:
11073         BLOGE(sc, "Can't support PCI power state = %d\n", state);
11074         return (-1);
11075     }
11076 
11077     return (0);
11078 }
11079 
11080 
11081 /* return true if succeeded to acquire the lock */
11082 static uint8_t
11083 bxe_trylock_hw_lock(struct bxe_softc *sc,
11084                     uint32_t         resource)
11085 {
11086     uint32_t lock_status;
11087     uint32_t resource_bit = (1 << resource);
11088     int func = SC_FUNC(sc);
11089     uint32_t hw_lock_control_reg;
11090 
11091     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11092 
11093     /* Validating that the resource is within range */
11094     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11095         BLOGD(sc, DBG_LOAD,
11096               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11097               resource, HW_LOCK_MAX_RESOURCE_VALUE);
11098         return (FALSE);
11099     }
11100 
11101     if (func <= 5) {
11102         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11103     } else {
11104         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11105     }
11106 
11107     /* try to acquire the lock */
11108     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11109     lock_status = REG_RD(sc, hw_lock_control_reg);
11110     if (lock_status & resource_bit) {
11111         return (TRUE);
11112     }
11113 
11114     BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11115 
11116     return (FALSE);
11117 }
11118 
11119 /*
11120  * Get the recovery leader resource id according to the engine this function
11121  * belongs to. Currently only only 2 engines is supported.
11122  */
11123 static int
11124 bxe_get_leader_lock_resource(struct bxe_softc *sc)
11125 {
11126     if (SC_PATH(sc)) {
11127         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11128     } else {
11129         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11130     }
11131 }
11132 
11133 /* try to acquire a leader lock for current engine */
11134 static uint8_t
11135 bxe_trylock_leader_lock(struct bxe_softc *sc)
11136 {
11137     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11138 }
11139 
11140 static int
11141 bxe_release_leader_lock(struct bxe_softc *sc)
11142 {
11143     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11144 }
11145 
11146 /* close gates #2, #3 and #4 */
11147 static void
11148 bxe_set_234_gates(struct bxe_softc *sc,
11149                   uint8_t          close)
11150 {
11151     uint32_t val;
11152 
11153     /* gates #2 and #4a are closed/opened for "not E1" only */
11154     if (!CHIP_IS_E1(sc)) {
11155         /* #4 */
11156         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11157         /* #2 */
11158         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11159     }
11160 
11161     /* #3 */
11162     if (CHIP_IS_E1x(sc)) {
11163         /* prevent interrupts from HC on both ports */
11164         val = REG_RD(sc, HC_REG_CONFIG_1);
11165         REG_WR(sc, HC_REG_CONFIG_1,
11166                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11167                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11168 
11169         val = REG_RD(sc, HC_REG_CONFIG_0);
11170         REG_WR(sc, HC_REG_CONFIG_0,
11171                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11172                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11173     } else {
11174         /* Prevent incomming interrupts in IGU */
11175         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11176 
11177         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11178                (!close) ?
11179                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11180                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11181     }
11182 
11183     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11184           close ? "closing" : "opening");
11185 
11186     wmb();
11187 }
11188 
11189 /* poll for pending writes bit, it should get cleared in no more than 1s */
11190 static int
11191 bxe_er_poll_igu_vq(struct bxe_softc *sc)
11192 {
11193     uint32_t cnt = 1000;
11194     uint32_t pend_bits = 0;
11195 
11196     do {
11197         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11198 
11199         if (pend_bits == 0) {
11200             break;
11201         }
11202 
11203         DELAY(1000);
11204     } while (--cnt > 0);
11205 
11206     if (cnt == 0) {
11207         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11208         return (-1);
11209     }
11210 
11211     return (0);
11212 }
11213 
11214 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11215 
11216 static void
11217 bxe_clp_reset_prep(struct bxe_softc *sc,
11218                    uint32_t         *magic_val)
11219 {
11220     /* Do some magic... */
11221     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11222     *magic_val = val & SHARED_MF_CLP_MAGIC;
11223     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11224 }
11225 
11226 /* restore the value of the 'magic' bit */
11227 static void
11228 bxe_clp_reset_done(struct bxe_softc *sc,
11229                    uint32_t         magic_val)
11230 {
11231     /* Restore the 'magic' bit value... */
11232     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11233     MFCFG_WR(sc, shared_mf_config.clp_mb,
11234               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11235 }
11236 
11237 /* prepare for MCP reset, takes care of CLP configurations */
11238 static void
11239 bxe_reset_mcp_prep(struct bxe_softc *sc,
11240                    uint32_t         *magic_val)
11241 {
11242     uint32_t shmem;
11243     uint32_t validity_offset;
11244 
11245     /* set `magic' bit in order to save MF config */
11246     if (!CHIP_IS_E1(sc)) {
11247         bxe_clp_reset_prep(sc, magic_val);
11248     }
11249 
11250     /* get shmem offset */
11251     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11252     validity_offset =
11253         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11254 
11255     /* Clear validity map flags */
11256     if (shmem > 0) {
11257         REG_WR(sc, shmem + validity_offset, 0);
11258     }
11259 }
11260 
11261 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11262 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
11263 
11264 static void
11265 bxe_mcp_wait_one(struct bxe_softc *sc)
11266 {
11267     /* special handling for emulation and FPGA (10 times longer) */
11268     if (CHIP_REV_IS_SLOW(sc)) {
11269         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11270     } else {
11271         DELAY((MCP_ONE_TIMEOUT) * 1000);
11272     }
11273 }
11274 
11275 /* initialize shmem_base and waits for validity signature to appear */
11276 static int
11277 bxe_init_shmem(struct bxe_softc *sc)
11278 {
11279     int cnt = 0;
11280     uint32_t val = 0;
11281 
11282     do {
11283         sc->devinfo.shmem_base     =
11284         sc->link_params.shmem_base =
11285             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11286 
11287         if (sc->devinfo.shmem_base) {
11288             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11289             if (val & SHR_MEM_VALIDITY_MB)
11290                 return (0);
11291         }
11292 
11293         bxe_mcp_wait_one(sc);
11294 
11295     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11296 
11297     BLOGE(sc, "BAD MCP validity signature\n");
11298 
11299     return (-1);
11300 }
11301 
11302 static int
11303 bxe_reset_mcp_comp(struct bxe_softc *sc,
11304                    uint32_t         magic_val)
11305 {
11306     int rc = bxe_init_shmem(sc);
11307 
11308     /* Restore the `magic' bit value */
11309     if (!CHIP_IS_E1(sc)) {
11310         bxe_clp_reset_done(sc, magic_val);
11311     }
11312 
11313     return (rc);
11314 }
11315 
11316 static void
11317 bxe_pxp_prep(struct bxe_softc *sc)
11318 {
11319     if (!CHIP_IS_E1(sc)) {
11320         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11321         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11322         wmb();
11323     }
11324 }
11325 
11326 /*
11327  * Reset the whole chip except for:
11328  *      - PCIE core
11329  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11330  *      - IGU
11331  *      - MISC (including AEU)
11332  *      - GRC
11333  *      - RBCN, RBCP
11334  */
11335 static void
11336 bxe_process_kill_chip_reset(struct bxe_softc *sc,
11337                             uint8_t          global)
11338 {
11339     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11340     uint32_t global_bits2, stay_reset2;
11341 
11342     /*
11343      * Bits that have to be set in reset_mask2 if we want to reset 'global'
11344      * (per chip) blocks.
11345      */
11346     global_bits2 =
11347         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11348         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11349 
11350     /*
11351      * Don't reset the following blocks.
11352      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11353      *            reset, as in 4 port device they might still be owned
11354      *            by the MCP (there is only one leader per path).
11355      */
11356     not_reset_mask1 =
11357         MISC_REGISTERS_RESET_REG_1_RST_HC |
11358         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11359         MISC_REGISTERS_RESET_REG_1_RST_PXP;
11360 
11361     not_reset_mask2 =
11362         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11363         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11364         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11365         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11366         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11367         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11368         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11369         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11370         MISC_REGISTERS_RESET_REG_2_RST_ATC |
11371         MISC_REGISTERS_RESET_REG_2_PGLC |
11372         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11373         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11374         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11375         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11376         MISC_REGISTERS_RESET_REG_2_UMAC0 |
11377         MISC_REGISTERS_RESET_REG_2_UMAC1;
11378 
11379     /*
11380      * Keep the following blocks in reset:
11381      *  - all xxMACs are handled by the elink code.
11382      */
11383     stay_reset2 =
11384         MISC_REGISTERS_RESET_REG_2_XMAC |
11385         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11386 
11387     /* Full reset masks according to the chip */
11388     reset_mask1 = 0xffffffff;
11389 
11390     if (CHIP_IS_E1(sc))
11391         reset_mask2 = 0xffff;
11392     else if (CHIP_IS_E1H(sc))
11393         reset_mask2 = 0x1ffff;
11394     else if (CHIP_IS_E2(sc))
11395         reset_mask2 = 0xfffff;
11396     else /* CHIP_IS_E3 */
11397         reset_mask2 = 0x3ffffff;
11398 
11399     /* Don't reset global blocks unless we need to */
11400     if (!global)
11401         reset_mask2 &= ~global_bits2;
11402 
11403     /*
11404      * In case of attention in the QM, we need to reset PXP
11405      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11406      * because otherwise QM reset would release 'close the gates' shortly
11407      * before resetting the PXP, then the PSWRQ would send a write
11408      * request to PGLUE. Then when PXP is reset, PGLUE would try to
11409      * read the payload data from PSWWR, but PSWWR would not
11410      * respond. The write queue in PGLUE would stuck, dmae commands
11411      * would not return. Therefore it's important to reset the second
11412      * reset register (containing the
11413      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11414      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11415      * bit).
11416      */
11417     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11418            reset_mask2 & (~not_reset_mask2));
11419 
11420     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11421            reset_mask1 & (~not_reset_mask1));
11422 
11423     mb();
11424     wmb();
11425 
11426     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11427            reset_mask2 & (~stay_reset2));
11428 
11429     mb();
11430     wmb();
11431 
11432     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11433     wmb();
11434 }
11435 
11436 static int
11437 bxe_process_kill(struct bxe_softc *sc,
11438                  uint8_t          global)
11439 {
11440     int cnt = 1000;
11441     uint32_t val = 0;
11442     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11443     uint32_t tags_63_32 = 0;
11444 
11445     /* Empty the Tetris buffer, wait for 1s */
11446     do {
11447         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11448         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11449         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11450         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11451         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11452         if (CHIP_IS_E3(sc)) {
11453             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11454         }
11455 
11456         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11457             ((port_is_idle_0 & 0x1) == 0x1) &&
11458             ((port_is_idle_1 & 0x1) == 0x1) &&
11459             (pgl_exp_rom2 == 0xffffffff) &&
11460             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11461             break;
11462         DELAY(1000);
11463     } while (cnt-- > 0);
11464 
11465     if (cnt <= 0) {
11466         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11467                   "are still outstanding read requests after 1s! "
11468                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11469                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11470               sr_cnt, blk_cnt, port_is_idle_0,
11471               port_is_idle_1, pgl_exp_rom2);
11472         return (-1);
11473     }
11474 
11475     mb();
11476 
11477     /* Close gates #2, #3 and #4 */
11478     bxe_set_234_gates(sc, TRUE);
11479 
11480     /* Poll for IGU VQs for 57712 and newer chips */
11481     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11482         return (-1);
11483     }
11484 
11485     /* XXX indicate that "process kill" is in progress to MCP */
11486 
11487     /* clear "unprepared" bit */
11488     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11489     mb();
11490 
11491     /* Make sure all is written to the chip before the reset */
11492     wmb();
11493 
11494     /*
11495      * Wait for 1ms to empty GLUE and PCI-E core queues,
11496      * PSWHST, GRC and PSWRD Tetris buffer.
11497      */
11498     DELAY(1000);
11499 
11500     /* Prepare to chip reset: */
11501     /* MCP */
11502     if (global) {
11503         bxe_reset_mcp_prep(sc, &val);
11504     }
11505 
11506     /* PXP */
11507     bxe_pxp_prep(sc);
11508     mb();
11509 
11510     /* reset the chip */
11511     bxe_process_kill_chip_reset(sc, global);
11512     mb();
11513 
11514     /* clear errors in PGB */
11515     if (!CHIP_IS_E1(sc))
11516         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11517 
11518     /* Recover after reset: */
11519     /* MCP */
11520     if (global && bxe_reset_mcp_comp(sc, val)) {
11521         return (-1);
11522     }
11523 
11524     /* XXX add resetting the NO_MCP mode DB here */
11525 
11526     /* Open the gates #2, #3 and #4 */
11527     bxe_set_234_gates(sc, FALSE);
11528 
11529     /* XXX
11530      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11531      * re-enable attentions
11532      */
11533 
11534     return (0);
11535 }
11536 
11537 static int
11538 bxe_leader_reset(struct bxe_softc *sc)
11539 {
11540     int rc = 0;
11541     uint8_t global = bxe_reset_is_global(sc);
11542     uint32_t load_code;
11543 
11544     /*
11545      * If not going to reset MCP, load "fake" driver to reset HW while
11546      * driver is owner of the HW.
11547      */
11548     if (!global && !BXE_NOMCP(sc)) {
11549         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11550                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11551         if (!load_code) {
11552             BLOGE(sc, "MCP response failure, aborting\n");
11553             rc = -1;
11554             goto exit_leader_reset;
11555         }
11556 
11557         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11558             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11559             BLOGE(sc, "MCP unexpected response, aborting\n");
11560             rc = -1;
11561             goto exit_leader_reset2;
11562         }
11563 
11564         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11565         if (!load_code) {
11566             BLOGE(sc, "MCP response failure, aborting\n");
11567             rc = -1;
11568             goto exit_leader_reset2;
11569         }
11570     }
11571 
11572     /* try to recover after the failure */
11573     if (bxe_process_kill(sc, global)) {
11574         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11575         rc = -1;
11576         goto exit_leader_reset2;
11577     }
11578 
11579     /*
11580      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11581      * state.
11582      */
11583     bxe_set_reset_done(sc);
11584     if (global) {
11585         bxe_clear_reset_global(sc);
11586     }
11587 
11588 exit_leader_reset2:
11589 
11590     /* unload "fake driver" if it was loaded */
11591     if (!global && !BXE_NOMCP(sc)) {
11592         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11593         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11594     }
11595 
11596 exit_leader_reset:
11597 
11598     sc->is_leader = 0;
11599     bxe_release_leader_lock(sc);
11600 
11601     mb();
11602     return (rc);
11603 }
11604 
11605 /*
11606  * prepare INIT transition, parameters configured:
11607  *   - HC configuration
11608  *   - Queue's CDU context
11609  */
11610 static void
11611 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11612                    struct bxe_fastpath            *fp,
11613                    struct ecore_queue_init_params *init_params)
11614 {
11615     uint8_t cos;
11616     int cxt_index, cxt_offset;
11617 
11618     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11619     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11620 
11621     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11622     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11623 
11624     /* HC rate */
11625     init_params->rx.hc_rate =
11626         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11627     init_params->tx.hc_rate =
11628         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11629 
11630     /* FW SB ID */
11631     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11632 
11633     /* CQ index among the SB indices */
11634     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11635     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11636 
11637     /* set maximum number of COSs supported by this queue */
11638     init_params->max_cos = sc->max_cos;
11639 
11640     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11641           fp->index, init_params->max_cos);
11642 
11643     /* set the context pointers queue object */
11644     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11645         /* XXX change index/cid here if ever support multiple tx CoS */
11646         /* fp->txdata[cos]->cid */
11647         cxt_index = fp->index / ILT_PAGE_CIDS;
11648         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11649         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11650     }
11651 }
11652 
11653 /* set flags that are common for the Tx-only and not normal connections */
11654 static unsigned long
11655 bxe_get_common_flags(struct bxe_softc    *sc,
11656                      struct bxe_fastpath *fp,
11657                      uint8_t             zero_stats)
11658 {
11659     unsigned long flags = 0;
11660 
11661     /* PF driver will always initialize the Queue to an ACTIVE state */
11662     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11663 
11664     /*
11665      * tx only connections collect statistics (on the same index as the
11666      * parent connection). The statistics are zeroed when the parent
11667      * connection is initialized.
11668      */
11669 
11670     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11671     if (zero_stats) {
11672         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11673     }
11674 
11675     /*
11676      * tx only connections can support tx-switching, though their
11677      * CoS-ness doesn't survive the loopback
11678      */
11679     if (sc->flags & BXE_TX_SWITCHING) {
11680         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11681     }
11682 
11683     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11684 
11685     return (flags);
11686 }
11687 
11688 static unsigned long
11689 bxe_get_q_flags(struct bxe_softc    *sc,
11690                 struct bxe_fastpath *fp,
11691                 uint8_t             leading)
11692 {
11693     unsigned long flags = 0;
11694 
11695     if (IS_MF_SD(sc)) {
11696         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11697     }
11698 
11699     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11700         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11701         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11702 #if 0
11703         if (fp->mode == TPA_MODE_GRO)
11704             __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11705 #endif
11706     }
11707 
11708     if (leading) {
11709         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11710         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11711     }
11712 
11713     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11714 
11715 #if 0
11716     /* configure silent vlan removal */
11717     if (IS_MF_AFEX(sc)) {
11718         bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11719     }
11720 #endif
11721 
11722     /* merge with common flags */
11723     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11724 }
11725 
11726 static void
11727 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11728                       struct bxe_fastpath               *fp,
11729                       struct ecore_general_setup_params *gen_init,
11730                       uint8_t                           cos)
11731 {
11732     gen_init->stat_id = bxe_stats_id(fp);
11733     gen_init->spcl_id = fp->cl_id;
11734     gen_init->mtu = sc->mtu;
11735     gen_init->cos = cos;
11736 }
11737 
11738 static void
11739 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11740                  struct bxe_fastpath           *fp,
11741                  struct rxq_pause_params       *pause,
11742                  struct ecore_rxq_setup_params *rxq_init)
11743 {
11744     uint8_t max_sge = 0;
11745     uint16_t sge_sz = 0;
11746     uint16_t tpa_agg_size = 0;
11747 
11748     pause->sge_th_lo = SGE_TH_LO(sc);
11749     pause->sge_th_hi = SGE_TH_HI(sc);
11750 
11751     /* validate SGE ring has enough to cross high threshold */
11752     if (sc->dropless_fc &&
11753             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11754             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11755         BLOGW(sc, "sge ring threshold limit\n");
11756     }
11757 
11758     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11759     tpa_agg_size = (2 * sc->mtu);
11760     if (tpa_agg_size < sc->max_aggregation_size) {
11761         tpa_agg_size = sc->max_aggregation_size;
11762     }
11763 
11764     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11765     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11766                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11767     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11768 
11769     /* pause - not for e1 */
11770     if (!CHIP_IS_E1(sc)) {
11771         pause->bd_th_lo = BD_TH_LO(sc);
11772         pause->bd_th_hi = BD_TH_HI(sc);
11773 
11774         pause->rcq_th_lo = RCQ_TH_LO(sc);
11775         pause->rcq_th_hi = RCQ_TH_HI(sc);
11776 
11777         /* validate rings have enough entries to cross high thresholds */
11778         if (sc->dropless_fc &&
11779             pause->bd_th_hi + FW_PREFETCH_CNT >
11780             sc->rx_ring_size) {
11781             BLOGW(sc, "rx bd ring threshold limit\n");
11782         }
11783 
11784         if (sc->dropless_fc &&
11785             pause->rcq_th_hi + FW_PREFETCH_CNT >
11786             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11787             BLOGW(sc, "rcq ring threshold limit\n");
11788         }
11789 
11790         pause->pri_map = 1;
11791     }
11792 
11793     /* rxq setup */
11794     rxq_init->dscr_map   = fp->rx_dma.paddr;
11795     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11796     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11797     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11798 
11799     /*
11800      * This should be a maximum number of data bytes that may be
11801      * placed on the BD (not including paddings).
11802      */
11803     rxq_init->buf_sz = (fp->rx_buf_size -
11804                         IP_HEADER_ALIGNMENT_PADDING);
11805 
11806     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11807     rxq_init->tpa_agg_sz      = tpa_agg_size;
11808     rxq_init->sge_buf_sz      = sge_sz;
11809     rxq_init->max_sges_pkt    = max_sge;
11810     rxq_init->rss_engine_id   = SC_FUNC(sc);
11811     rxq_init->mcast_engine_id = SC_FUNC(sc);
11812 
11813     /*
11814      * Maximum number or simultaneous TPA aggregation for this Queue.
11815      * For PF Clients it should be the maximum available number.
11816      * VF driver(s) may want to define it to a smaller value.
11817      */
11818     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11819 
11820     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11821     rxq_init->fw_sb_id = fp->fw_sb_id;
11822 
11823     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11824 
11825     /*
11826      * configure silent vlan removal
11827      * if multi function mode is afex, then mask default vlan
11828      */
11829     if (IS_MF_AFEX(sc)) {
11830         rxq_init->silent_removal_value =
11831             sc->devinfo.mf_info.afex_def_vlan_tag;
11832         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11833     }
11834 }
11835 
11836 static void
11837 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11838                  struct bxe_fastpath           *fp,
11839                  struct ecore_txq_setup_params *txq_init,
11840                  uint8_t                       cos)
11841 {
11842     /*
11843      * XXX If multiple CoS is ever supported then each fastpath structure
11844      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11845      * fp->txdata[cos]->tx_dma.paddr;
11846      */
11847     txq_init->dscr_map     = fp->tx_dma.paddr;
11848     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11849     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11850     txq_init->fw_sb_id     = fp->fw_sb_id;
11851 
11852     /*
11853      * set the TSS leading client id for TX classfication to the
11854      * leading RSS client id
11855      */
11856     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11857 }
11858 
11859 /*
11860  * This function performs 2 steps in a queue state machine:
11861  *   1) RESET->INIT
11862  *   2) INIT->SETUP
11863  */
11864 static int
11865 bxe_setup_queue(struct bxe_softc    *sc,
11866                 struct bxe_fastpath *fp,
11867                 uint8_t             leading)
11868 {
11869     struct ecore_queue_state_params q_params = { NULL };
11870     struct ecore_queue_setup_params *setup_params =
11871                         &q_params.params.setup;
11872 #if 0
11873     struct ecore_queue_setup_tx_only_params *tx_only_params =
11874                         &q_params.params.tx_only;
11875     uint8_t tx_index;
11876 #endif
11877     int rc;
11878 
11879     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11880 
11881     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11882 
11883     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11884 
11885     /* we want to wait for completion in this context */
11886     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11887 
11888     /* prepare the INIT parameters */
11889     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11890 
11891     /* Set the command */
11892     q_params.cmd = ECORE_Q_CMD_INIT;
11893 
11894     /* Change the state to INIT */
11895     rc = ecore_queue_state_change(sc, &q_params);
11896     if (rc) {
11897         BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11898         return (rc);
11899     }
11900 
11901     BLOGD(sc, DBG_LOAD, "init complete\n");
11902 
11903     /* now move the Queue to the SETUP state */
11904     memset(setup_params, 0, sizeof(*setup_params));
11905 
11906     /* set Queue flags */
11907     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11908 
11909     /* set general SETUP parameters */
11910     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11911                           FIRST_TX_COS_INDEX);
11912 
11913     bxe_pf_rx_q_prep(sc, fp,
11914                      &setup_params->pause_params,
11915                      &setup_params->rxq_params);
11916 
11917     bxe_pf_tx_q_prep(sc, fp,
11918                      &setup_params->txq_params,
11919                      FIRST_TX_COS_INDEX);
11920 
11921     /* Set the command */
11922     q_params.cmd = ECORE_Q_CMD_SETUP;
11923 
11924     /* change the state to SETUP */
11925     rc = ecore_queue_state_change(sc, &q_params);
11926     if (rc) {
11927         BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11928         return (rc);
11929     }
11930 
11931 #if 0
11932     /* loop through the relevant tx-only indices */
11933     for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11934          tx_index < sc->max_cos;
11935          tx_index++) {
11936         /* prepare and send tx-only ramrod*/
11937         rc = bxe_setup_tx_only(sc, fp, &q_params,
11938                                tx_only_params, tx_index, leading);
11939         if (rc) {
11940             BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11941                   fp->index, tx_index);
11942             return (rc);
11943         }
11944     }
11945 #endif
11946 
11947     return (rc);
11948 }
11949 
11950 static int
11951 bxe_setup_leading(struct bxe_softc *sc)
11952 {
11953     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11954 }
11955 
11956 static int
11957 bxe_config_rss_pf(struct bxe_softc            *sc,
11958                   struct ecore_rss_config_obj *rss_obj,
11959                   uint8_t                     config_hash)
11960 {
11961     struct ecore_config_rss_params params = { NULL };
11962     int i;
11963 
11964     /*
11965      * Although RSS is meaningless when there is a single HW queue we
11966      * still need it enabled in order to have HW Rx hash generated.
11967      */
11968 
11969     params.rss_obj = rss_obj;
11970 
11971     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11972 
11973     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11974 
11975     /* RSS configuration */
11976     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11977     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11978     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11979     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11980     if (rss_obj->udp_rss_v4) {
11981         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11982     }
11983     if (rss_obj->udp_rss_v6) {
11984         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11985     }
11986 
11987     /* Hash bits */
11988     params.rss_result_mask = MULTI_MASK;
11989 
11990     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11991 
11992     if (config_hash) {
11993         /* RSS keys */
11994         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11995             params.rss_key[i] = arc4random();
11996         }
11997 
11998         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11999     }
12000 
12001     return (ecore_config_rss(sc, &params));
12002 }
12003 
12004 static int
12005 bxe_config_rss_eth(struct bxe_softc *sc,
12006                    uint8_t          config_hash)
12007 {
12008     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12009 }
12010 
12011 static int
12012 bxe_init_rss_pf(struct bxe_softc *sc)
12013 {
12014     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12015     int i;
12016 
12017     /*
12018      * Prepare the initial contents of the indirection table if
12019      * RSS is enabled
12020      */
12021     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12022         sc->rss_conf_obj.ind_table[i] =
12023             (sc->fp->cl_id + (i % num_eth_queues));
12024     }
12025 
12026     if (sc->udp_rss) {
12027         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12028     }
12029 
12030     /*
12031      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12032      * per-port, so if explicit configuration is needed, do it only
12033      * for a PMF.
12034      *
12035      * For 57712 and newer it's a per-function configuration.
12036      */
12037     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12038 }
12039 
12040 static int
12041 bxe_set_mac_one(struct bxe_softc          *sc,
12042                 uint8_t                   *mac,
12043                 struct ecore_vlan_mac_obj *obj,
12044                 uint8_t                   set,
12045                 int                       mac_type,
12046                 unsigned long             *ramrod_flags)
12047 {
12048     struct ecore_vlan_mac_ramrod_params ramrod_param;
12049     int rc;
12050 
12051     memset(&ramrod_param, 0, sizeof(ramrod_param));
12052 
12053     /* fill in general parameters */
12054     ramrod_param.vlan_mac_obj = obj;
12055     ramrod_param.ramrod_flags = *ramrod_flags;
12056 
12057     /* fill a user request section if needed */
12058     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12059         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12060 
12061         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12062 
12063         /* Set the command: ADD or DEL */
12064         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12065                                             ECORE_VLAN_MAC_DEL;
12066     }
12067 
12068     rc = ecore_config_vlan_mac(sc, &ramrod_param);
12069 
12070     if (rc == ECORE_EXISTS) {
12071         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12072         /* do not treat adding same MAC as error */
12073         rc = 0;
12074     } else if (rc < 0) {
12075         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12076     }
12077 
12078     return (rc);
12079 }
12080 
12081 static int
12082 bxe_set_eth_mac(struct bxe_softc *sc,
12083                 uint8_t          set)
12084 {
12085     unsigned long ramrod_flags = 0;
12086 
12087     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12088 
12089     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12090 
12091     /* Eth MAC is set on RSS leading client (fp[0]) */
12092     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12093                             &sc->sp_objs->mac_obj,
12094                             set, ECORE_ETH_MAC, &ramrod_flags));
12095 }
12096 
12097 #if 0
12098 static void
12099 bxe_update_max_mf_config(struct bxe_softc *sc,
12100                          uint32_t         value)
12101 {
12102     /* load old values */
12103     uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12104 
12105     if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12106         /* leave all but MAX value */
12107         mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12108 
12109         /* set new MAX value */
12110         mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12111                    FUNC_MF_CFG_MAX_BW_MASK);
12112 
12113         bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12114     }
12115 }
12116 #endif
12117 
12118 static int
12119 bxe_get_cur_phy_idx(struct bxe_softc *sc)
12120 {
12121     uint32_t sel_phy_idx = 0;
12122 
12123     if (sc->link_params.num_phys <= 1) {
12124         return (ELINK_INT_PHY);
12125     }
12126 
12127     if (sc->link_vars.link_up) {
12128         sel_phy_idx = ELINK_EXT_PHY1;
12129         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12130         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12131             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12132              ELINK_SUPPORTED_FIBRE))
12133             sel_phy_idx = ELINK_EXT_PHY2;
12134     } else {
12135         switch (elink_phy_selection(&sc->link_params)) {
12136         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12137         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12138         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12139                sel_phy_idx = ELINK_EXT_PHY1;
12140                break;
12141         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12142         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12143                sel_phy_idx = ELINK_EXT_PHY2;
12144                break;
12145         }
12146     }
12147 
12148     return (sel_phy_idx);
12149 }
12150 
12151 static int
12152 bxe_get_link_cfg_idx(struct bxe_softc *sc)
12153 {
12154     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12155 
12156     /*
12157      * The selected activated PHY is always after swapping (in case PHY
12158      * swapping is enabled). So when swapping is enabled, we need to reverse
12159      * the configuration
12160      */
12161 
12162     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12163         if (sel_phy_idx == ELINK_EXT_PHY1)
12164             sel_phy_idx = ELINK_EXT_PHY2;
12165         else if (sel_phy_idx == ELINK_EXT_PHY2)
12166             sel_phy_idx = ELINK_EXT_PHY1;
12167     }
12168 
12169     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12170 }
12171 
12172 static void
12173 bxe_set_requested_fc(struct bxe_softc *sc)
12174 {
12175     /*
12176      * Initialize link parameters structure variables
12177      * It is recommended to turn off RX FC for jumbo frames
12178      * for better performance
12179      */
12180     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12181         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12182     } else {
12183         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12184     }
12185 }
12186 
12187 static void
12188 bxe_calc_fc_adv(struct bxe_softc *sc)
12189 {
12190     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12191     switch (sc->link_vars.ieee_fc &
12192             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12193     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12194     default:
12195         sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12196                                            ADVERTISED_Pause);
12197         break;
12198 
12199     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12200         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12201                                           ADVERTISED_Pause);
12202         break;
12203 
12204     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12205         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12206         break;
12207     }
12208 }
12209 
12210 static uint16_t
12211 bxe_get_mf_speed(struct bxe_softc *sc)
12212 {
12213     uint16_t line_speed = sc->link_vars.line_speed;
12214     if (IS_MF(sc)) {
12215         uint16_t maxCfg =
12216             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12217 
12218         /* calculate the current MAX line speed limit for the MF devices */
12219         if (IS_MF_SI(sc)) {
12220             line_speed = (line_speed * maxCfg) / 100;
12221         } else { /* SD mode */
12222             uint16_t vn_max_rate = maxCfg * 100;
12223 
12224             if (vn_max_rate < line_speed) {
12225                 line_speed = vn_max_rate;
12226             }
12227         }
12228     }
12229 
12230     return (line_speed);
12231 }
12232 
12233 static void
12234 bxe_fill_report_data(struct bxe_softc            *sc,
12235                      struct bxe_link_report_data *data)
12236 {
12237     uint16_t line_speed = bxe_get_mf_speed(sc);
12238 
12239     memset(data, 0, sizeof(*data));
12240 
12241     /* fill the report data with the effective line speed */
12242     data->line_speed = line_speed;
12243 
12244     /* Link is down */
12245     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12246         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12247     }
12248 
12249     /* Full DUPLEX */
12250     if (sc->link_vars.duplex == DUPLEX_FULL) {
12251         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12252     }
12253 
12254     /* Rx Flow Control is ON */
12255     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12256         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12257     }
12258 
12259     /* Tx Flow Control is ON */
12260     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12261         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12262     }
12263 }
12264 
12265 /* report link status to OS, should be called under phy_lock */
12266 static void
12267 bxe_link_report_locked(struct bxe_softc *sc)
12268 {
12269     struct bxe_link_report_data cur_data;
12270 
12271     /* reread mf_cfg */
12272     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12273         bxe_read_mf_cfg(sc);
12274     }
12275 
12276     /* Read the current link report info */
12277     bxe_fill_report_data(sc, &cur_data);
12278 
12279     /* Don't report link down or exactly the same link status twice */
12280     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12281         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12282                       &sc->last_reported_link.link_report_flags) &&
12283          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12284                       &cur_data.link_report_flags))) {
12285         return;
12286     }
12287 
12288     sc->link_cnt++;
12289 
12290     /* report new link params and remember the state for the next time */
12291     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12292 
12293     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12294                      &cur_data.link_report_flags)) {
12295         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12296         BLOGI(sc, "NIC Link is Down\n");
12297     } else {
12298         const char *duplex;
12299         const char *flow;
12300 
12301         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12302                                    &cur_data.link_report_flags)) {
12303             duplex = "full";
12304         } else {
12305             duplex = "half";
12306         }
12307 
12308         /*
12309          * Handle the FC at the end so that only these flags would be
12310          * possibly set. This way we may easily check if there is no FC
12311          * enabled.
12312          */
12313         if (cur_data.link_report_flags) {
12314             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12315                              &cur_data.link_report_flags) &&
12316                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12317                              &cur_data.link_report_flags)) {
12318                 flow = "ON - receive & transmit";
12319             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12320                                     &cur_data.link_report_flags) &&
12321                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12322                                      &cur_data.link_report_flags)) {
12323                 flow = "ON - receive";
12324             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12325                                      &cur_data.link_report_flags) &&
12326                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12327                                     &cur_data.link_report_flags)) {
12328                 flow = "ON - transmit";
12329             } else {
12330                 flow = "none"; /* possible? */
12331             }
12332         } else {
12333             flow = "none";
12334         }
12335 
12336         if_link_state_change(sc->ifp, LINK_STATE_UP);
12337         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12338               cur_data.line_speed, duplex, flow);
12339     }
12340 }
12341 
12342 static void
12343 bxe_link_report(struct bxe_softc *sc)
12344 {
12345     bxe_acquire_phy_lock(sc);
12346     bxe_link_report_locked(sc);
12347     bxe_release_phy_lock(sc);
12348 }
12349 
12350 static void
12351 bxe_link_status_update(struct bxe_softc *sc)
12352 {
12353     if (sc->state != BXE_STATE_OPEN) {
12354         return;
12355     }
12356 
12357 #if 0
12358     /* read updated dcb configuration */
12359     if (IS_PF(sc))
12360         bxe_dcbx_pmf_update(sc);
12361 #endif
12362 
12363     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12364         elink_link_status_update(&sc->link_params, &sc->link_vars);
12365     } else {
12366         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12367                                   ELINK_SUPPORTED_10baseT_Full |
12368                                   ELINK_SUPPORTED_100baseT_Half |
12369                                   ELINK_SUPPORTED_100baseT_Full |
12370                                   ELINK_SUPPORTED_1000baseT_Full |
12371                                   ELINK_SUPPORTED_2500baseX_Full |
12372                                   ELINK_SUPPORTED_10000baseT_Full |
12373                                   ELINK_SUPPORTED_TP |
12374                                   ELINK_SUPPORTED_FIBRE |
12375                                   ELINK_SUPPORTED_Autoneg |
12376                                   ELINK_SUPPORTED_Pause |
12377                                   ELINK_SUPPORTED_Asym_Pause);
12378         sc->port.advertising[0] = sc->port.supported[0];
12379 
12380         sc->link_params.sc                = sc;
12381         sc->link_params.port              = SC_PORT(sc);
12382         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12383         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12384         sc->link_params.req_line_speed[0] = SPEED_10000;
12385         sc->link_params.speed_cap_mask[0] = 0x7f0000;
12386         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12387 
12388         if (CHIP_REV_IS_FPGA(sc)) {
12389             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12390             sc->link_vars.line_speed  = ELINK_SPEED_1000;
12391             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12392                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12393         } else {
12394             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12395             sc->link_vars.line_speed  = ELINK_SPEED_10000;
12396             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12397                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12398         }
12399 
12400         sc->link_vars.link_up = 1;
12401 
12402         sc->link_vars.duplex    = DUPLEX_FULL;
12403         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12404 
12405         if (IS_PF(sc)) {
12406             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12407             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12408             bxe_link_report(sc);
12409         }
12410     }
12411 
12412     if (IS_PF(sc)) {
12413         if (sc->link_vars.link_up) {
12414             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12415         } else {
12416             bxe_stats_handle(sc, STATS_EVENT_STOP);
12417         }
12418         bxe_link_report(sc);
12419     } else {
12420         bxe_link_report(sc);
12421         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12422     }
12423 }
12424 
12425 static int
12426 bxe_initial_phy_init(struct bxe_softc *sc,
12427                      int              load_mode)
12428 {
12429     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12430     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12431     struct elink_params *lp = &sc->link_params;
12432 
12433     bxe_set_requested_fc(sc);
12434 
12435     if (CHIP_REV_IS_SLOW(sc)) {
12436         uint32_t bond = CHIP_BOND_ID(sc);
12437         uint32_t feat = 0;
12438 
12439         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12440             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12441         } else if (bond & 0x4) {
12442             if (CHIP_IS_E3(sc)) {
12443                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12444             } else {
12445                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12446             }
12447         } else if (bond & 0x8) {
12448             if (CHIP_IS_E3(sc)) {
12449                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12450             } else {
12451                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12452             }
12453         }
12454 
12455         /* disable EMAC for E3 and above */
12456         if (bond & 0x2) {
12457             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12458         }
12459 
12460         sc->link_params.feature_config_flags |= feat;
12461     }
12462 
12463     bxe_acquire_phy_lock(sc);
12464 
12465     if (load_mode == LOAD_DIAG) {
12466         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12467         /* Prefer doing PHY loopback at 10G speed, if possible */
12468         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12469             if (lp->speed_cap_mask[cfg_idx] &
12470                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12471                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12472             } else {
12473                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12474             }
12475         }
12476     }
12477 
12478     if (load_mode == LOAD_LOOPBACK_EXT) {
12479         lp->loopback_mode = ELINK_LOOPBACK_EXT;
12480     }
12481 
12482     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12483 
12484     bxe_release_phy_lock(sc);
12485 
12486     bxe_calc_fc_adv(sc);
12487 
12488     if (sc->link_vars.link_up) {
12489         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12490         bxe_link_report(sc);
12491     }
12492 
12493     if (!CHIP_REV_IS_SLOW(sc)) {
12494         bxe_periodic_start(sc);
12495     }
12496 
12497     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12498     return (rc);
12499 }
12500 
12501 /* must be called under IF_ADDR_LOCK */
12502 
12503 static int
12504 bxe_set_mc_list(struct bxe_softc *sc)
12505 {
12506     struct ecore_mcast_ramrod_params rparam = { NULL };
12507     int rc = 0;
12508     int mc_count = 0;
12509     int mcnt, i;
12510     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12511     unsigned char *mta;
12512     if_t ifp = sc->ifp;
12513 
12514     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12515     if (!mc_count)
12516         return (0);
12517 
12518     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12519             mc_count, M_DEVBUF, M_NOWAIT);
12520 
12521     if(mta == NULL) {
12522         BLOGE(sc, "Failed to allocate temp mcast list\n");
12523         return (-1);
12524     }
12525     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12526 
12527     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12528     mc_mac_start = mc_mac;
12529 
12530     if (!mc_mac) {
12531         free(mta, M_DEVBUF);
12532         BLOGE(sc, "Failed to allocate temp mcast list\n");
12533         return (-1);
12534     }
12535     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12536 
12537     /* mta and mcnt not expected to be  different */
12538     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12539 
12540 
12541     rparam.mcast_obj = &sc->mcast_obj;
12542     ECORE_LIST_INIT(&rparam.mcast_list);
12543 
12544     for(i=0; i< mcnt; i++) {
12545 
12546         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12547         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12548 
12549         BLOGD(sc, DBG_LOAD,
12550               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12551               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12552               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12553 
12554         mc_mac++;
12555     }
12556     rparam.mcast_list_len = mc_count;
12557 
12558     BXE_MCAST_LOCK(sc);
12559 
12560     /* first, clear all configured multicast MACs */
12561     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12562     if (rc < 0) {
12563         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12564         BXE_MCAST_UNLOCK(sc);
12565     	free(mc_mac_start, M_DEVBUF);
12566         free(mta, M_DEVBUF);
12567         return (rc);
12568     }
12569 
12570     /* Now add the new MACs */
12571     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12572     if (rc < 0) {
12573         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12574     }
12575 
12576     BXE_MCAST_UNLOCK(sc);
12577 
12578     free(mc_mac_start, M_DEVBUF);
12579     free(mta, M_DEVBUF);
12580 
12581     return (rc);
12582 }
12583 
12584 static int
12585 bxe_set_uc_list(struct bxe_softc *sc)
12586 {
12587     if_t ifp = sc->ifp;
12588     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12589     struct ifaddr *ifa;
12590     unsigned long ramrod_flags = 0;
12591     int rc;
12592 
12593 #if __FreeBSD_version < 800000
12594     IF_ADDR_LOCK(ifp);
12595 #else
12596     if_addr_rlock(ifp);
12597 #endif
12598 
12599     /* first schedule a cleanup up of old configuration */
12600     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12601     if (rc < 0) {
12602         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12603 #if __FreeBSD_version < 800000
12604         IF_ADDR_UNLOCK(ifp);
12605 #else
12606         if_addr_runlock(ifp);
12607 #endif
12608         return (rc);
12609     }
12610 
12611     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12612     while (ifa) {
12613         if (ifa->ifa_addr->sa_family != AF_LINK) {
12614             ifa = TAILQ_NEXT(ifa, ifa_link);
12615             continue;
12616         }
12617 
12618         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12619                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12620         if (rc == -EEXIST) {
12621             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12622             /* do not treat adding same MAC as an error */
12623             rc = 0;
12624         } else if (rc < 0) {
12625             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12626 #if __FreeBSD_version < 800000
12627             IF_ADDR_UNLOCK(ifp);
12628 #else
12629             if_addr_runlock(ifp);
12630 #endif
12631             return (rc);
12632         }
12633 
12634         ifa = TAILQ_NEXT(ifa, ifa_link);
12635     }
12636 
12637 #if __FreeBSD_version < 800000
12638     IF_ADDR_UNLOCK(ifp);
12639 #else
12640     if_addr_runlock(ifp);
12641 #endif
12642 
12643     /* Execute the pending commands */
12644     bit_set(&ramrod_flags, RAMROD_CONT);
12645     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12646                             ECORE_UC_LIST_MAC, &ramrod_flags));
12647 }
12648 
12649 static void
12650 bxe_set_rx_mode(struct bxe_softc *sc)
12651 {
12652     if_t ifp = sc->ifp;
12653     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12654 
12655     if (sc->state != BXE_STATE_OPEN) {
12656         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12657         return;
12658     }
12659 
12660     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12661 
12662     if (if_getflags(ifp) & IFF_PROMISC) {
12663         rx_mode = BXE_RX_MODE_PROMISC;
12664     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12665                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12666                 CHIP_IS_E1(sc))) {
12667         rx_mode = BXE_RX_MODE_ALLMULTI;
12668     } else {
12669         if (IS_PF(sc)) {
12670             /* some multicasts */
12671             if (bxe_set_mc_list(sc) < 0) {
12672                 rx_mode = BXE_RX_MODE_ALLMULTI;
12673             }
12674             if (bxe_set_uc_list(sc) < 0) {
12675                 rx_mode = BXE_RX_MODE_PROMISC;
12676             }
12677         }
12678 #if 0
12679         else {
12680             /*
12681              * Configuring mcast to a VF involves sleeping (when we
12682              * wait for the PF's response). Since this function is
12683              * called from a non sleepable context we must schedule
12684              * a work item for this purpose
12685              */
12686             bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12687             schedule_delayed_work(&sc->sp_rtnl_task, 0);
12688         }
12689 #endif
12690     }
12691 
12692     sc->rx_mode = rx_mode;
12693 
12694     /* schedule the rx_mode command */
12695     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12696         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12697         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12698         return;
12699     }
12700 
12701     if (IS_PF(sc)) {
12702         bxe_set_storm_rx_mode(sc);
12703     }
12704 #if 0
12705     else {
12706         /*
12707          * Configuring mcast to a VF involves sleeping (when we
12708          * wait for the PF's response). Since this function is
12709          * called from a non sleepable context we must schedule
12710          * a work item for this purpose
12711          */
12712         bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12713         schedule_delayed_work(&sc->sp_rtnl_task, 0);
12714     }
12715 #endif
12716 
12717 }
12718 
12719 
12720 /* update flags in shmem */
12721 static void
12722 bxe_update_drv_flags(struct bxe_softc *sc,
12723                      uint32_t         flags,
12724                      uint32_t         set)
12725 {
12726     uint32_t drv_flags;
12727 
12728     if (SHMEM2_HAS(sc, drv_flags)) {
12729         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12730         drv_flags = SHMEM2_RD(sc, drv_flags);
12731 
12732         if (set) {
12733             SET_FLAGS(drv_flags, flags);
12734         } else {
12735             RESET_FLAGS(drv_flags, flags);
12736         }
12737 
12738         SHMEM2_WR(sc, drv_flags, drv_flags);
12739         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12740 
12741         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12742     }
12743 }
12744 
12745 /* periodic timer callout routine, only runs when the interface is up */
12746 
12747 static void
12748 bxe_periodic_callout_func(void *xsc)
12749 {
12750     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12751     int i;
12752 
12753     if (!BXE_CORE_TRYLOCK(sc)) {
12754         /* just bail and try again next time */
12755 
12756         if ((sc->state == BXE_STATE_OPEN) &&
12757             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12758             /* schedule the next periodic callout */
12759             callout_reset(&sc->periodic_callout, hz,
12760                           bxe_periodic_callout_func, sc);
12761         }
12762 
12763         return;
12764     }
12765 
12766     if ((sc->state != BXE_STATE_OPEN) ||
12767         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12768         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12769         BXE_CORE_UNLOCK(sc);
12770         return;
12771     }
12772 
12773     /* Check for TX timeouts on any fastpath. */
12774     FOR_EACH_QUEUE(sc, i) {
12775         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12776             /* Ruh-Roh, chip was reset! */
12777             break;
12778         }
12779     }
12780 
12781     if (!CHIP_REV_IS_SLOW(sc)) {
12782         /*
12783          * This barrier is needed to ensure the ordering between the writing
12784          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12785          * the reading here.
12786          */
12787         mb();
12788         if (sc->port.pmf) {
12789 	    bxe_acquire_phy_lock(sc);
12790             elink_period_func(&sc->link_params, &sc->link_vars);
12791 	    bxe_release_phy_lock(sc);
12792         }
12793     }
12794 
12795     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12796         int mb_idx = SC_FW_MB_IDX(sc);
12797         uint32_t drv_pulse;
12798         uint32_t mcp_pulse;
12799 
12800         ++sc->fw_drv_pulse_wr_seq;
12801         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12802 
12803         drv_pulse = sc->fw_drv_pulse_wr_seq;
12804         bxe_drv_pulse(sc);
12805 
12806         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12807                      MCP_PULSE_SEQ_MASK);
12808 
12809         /*
12810          * The delta between driver pulse and mcp response should
12811          * be 1 (before mcp response) or 0 (after mcp response).
12812          */
12813         if ((drv_pulse != mcp_pulse) &&
12814             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12815             /* someone lost a heartbeat... */
12816             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12817                   drv_pulse, mcp_pulse);
12818         }
12819     }
12820 
12821     /* state is BXE_STATE_OPEN */
12822     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12823 
12824 #if 0
12825     /* sample VF bulletin board for new posts from PF */
12826     if (IS_VF(sc)) {
12827         bxe_sample_bulletin(sc);
12828     }
12829 #endif
12830 
12831     BXE_CORE_UNLOCK(sc);
12832 
12833     if ((sc->state == BXE_STATE_OPEN) &&
12834         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12835         /* schedule the next periodic callout */
12836         callout_reset(&sc->periodic_callout, hz,
12837                       bxe_periodic_callout_func, sc);
12838     }
12839 }
12840 
12841 static void
12842 bxe_periodic_start(struct bxe_softc *sc)
12843 {
12844     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12845     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12846 }
12847 
12848 static void
12849 bxe_periodic_stop(struct bxe_softc *sc)
12850 {
12851     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12852     callout_drain(&sc->periodic_callout);
12853 }
12854 
12855 /* start the controller */
12856 static __noinline int
12857 bxe_nic_load(struct bxe_softc *sc,
12858              int              load_mode)
12859 {
12860     uint32_t val;
12861     int load_code = 0;
12862     int i, rc = 0;
12863 
12864     BXE_CORE_LOCK_ASSERT(sc);
12865 
12866     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12867 
12868     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12869 
12870     if (IS_PF(sc)) {
12871         /* must be called before memory allocation and HW init */
12872         bxe_ilt_set_info(sc);
12873     }
12874 
12875     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12876 
12877     bxe_set_fp_rx_buf_size(sc);
12878 
12879     if (bxe_alloc_fp_buffers(sc) != 0) {
12880         BLOGE(sc, "Failed to allocate fastpath memory\n");
12881         sc->state = BXE_STATE_CLOSED;
12882         rc = ENOMEM;
12883         goto bxe_nic_load_error0;
12884     }
12885 
12886     if (bxe_alloc_mem(sc) != 0) {
12887         sc->state = BXE_STATE_CLOSED;
12888         rc = ENOMEM;
12889         goto bxe_nic_load_error0;
12890     }
12891 
12892     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12893         sc->state = BXE_STATE_CLOSED;
12894         rc = ENOMEM;
12895         goto bxe_nic_load_error0;
12896     }
12897 
12898     if (IS_PF(sc)) {
12899         /* set pf load just before approaching the MCP */
12900         bxe_set_pf_load(sc);
12901 
12902         /* if MCP exists send load request and analyze response */
12903         if (!BXE_NOMCP(sc)) {
12904             /* attempt to load pf */
12905             if (bxe_nic_load_request(sc, &load_code) != 0) {
12906                 sc->state = BXE_STATE_CLOSED;
12907                 rc = ENXIO;
12908                 goto bxe_nic_load_error1;
12909             }
12910 
12911             /* what did the MCP say? */
12912             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12913                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12914                 sc->state = BXE_STATE_CLOSED;
12915                 rc = ENXIO;
12916                 goto bxe_nic_load_error2;
12917             }
12918         } else {
12919             BLOGI(sc, "Device has no MCP!\n");
12920             load_code = bxe_nic_load_no_mcp(sc);
12921         }
12922 
12923         /* mark PMF if applicable */
12924         bxe_nic_load_pmf(sc, load_code);
12925 
12926         /* Init Function state controlling object */
12927         bxe_init_func_obj(sc);
12928 
12929         /* Initialize HW */
12930         if (bxe_init_hw(sc, load_code) != 0) {
12931             BLOGE(sc, "HW init failed\n");
12932             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12933             sc->state = BXE_STATE_CLOSED;
12934             rc = ENXIO;
12935             goto bxe_nic_load_error2;
12936         }
12937     }
12938 
12939     /* set ALWAYS_ALIVE bit in shmem */
12940     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12941     bxe_drv_pulse(sc);
12942     sc->flags |= BXE_NO_PULSE;
12943 
12944     /* attach interrupts */
12945     if (bxe_interrupt_attach(sc) != 0) {
12946         sc->state = BXE_STATE_CLOSED;
12947         rc = ENXIO;
12948         goto bxe_nic_load_error2;
12949     }
12950 
12951     bxe_nic_init(sc, load_code);
12952 
12953     /* Init per-function objects */
12954     if (IS_PF(sc)) {
12955         bxe_init_objs(sc);
12956         // XXX bxe_iov_nic_init(sc);
12957 
12958         /* set AFEX default VLAN tag to an invalid value */
12959         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12960         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12961 
12962         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12963         rc = bxe_func_start(sc);
12964         if (rc) {
12965             BLOGE(sc, "Function start failed!\n");
12966             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12967             sc->state = BXE_STATE_ERROR;
12968             goto bxe_nic_load_error3;
12969         }
12970 
12971         /* send LOAD_DONE command to MCP */
12972         if (!BXE_NOMCP(sc)) {
12973             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12974             if (!load_code) {
12975                 BLOGE(sc, "MCP response failure, aborting\n");
12976                 sc->state = BXE_STATE_ERROR;
12977                 rc = ENXIO;
12978                 goto bxe_nic_load_error3;
12979             }
12980         }
12981 
12982         rc = bxe_setup_leading(sc);
12983         if (rc) {
12984             BLOGE(sc, "Setup leading failed!\n");
12985             sc->state = BXE_STATE_ERROR;
12986             goto bxe_nic_load_error3;
12987         }
12988 
12989         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12990             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12991             if (rc) {
12992                 BLOGE(sc, "Queue(%d) setup failed\n", i);
12993                 sc->state = BXE_STATE_ERROR;
12994                 goto bxe_nic_load_error3;
12995             }
12996         }
12997 
12998         rc = bxe_init_rss_pf(sc);
12999         if (rc) {
13000             BLOGE(sc, "PF RSS init failed\n");
13001             sc->state = BXE_STATE_ERROR;
13002             goto bxe_nic_load_error3;
13003         }
13004     }
13005     /* XXX VF */
13006 #if 0
13007     else { /* VF */
13008         FOR_EACH_ETH_QUEUE(sc, i) {
13009             rc = bxe_vfpf_setup_q(sc, i);
13010             if (rc) {
13011                 BLOGE(sc, "Queue(%d) setup failed\n", i);
13012                 sc->state = BXE_STATE_ERROR;
13013                 goto bxe_nic_load_error3;
13014             }
13015         }
13016     }
13017 #endif
13018 
13019     /* now when Clients are configured we are ready to work */
13020     sc->state = BXE_STATE_OPEN;
13021 
13022     /* Configure a ucast MAC */
13023     if (IS_PF(sc)) {
13024         rc = bxe_set_eth_mac(sc, TRUE);
13025     }
13026 #if 0
13027     else { /* IS_VF(sc) */
13028         rc = bxe_vfpf_set_mac(sc);
13029     }
13030 #endif
13031     if (rc) {
13032         BLOGE(sc, "Setting Ethernet MAC failed\n");
13033         sc->state = BXE_STATE_ERROR;
13034         goto bxe_nic_load_error3;
13035     }
13036 
13037 #if 0
13038     if (IS_PF(sc) && sc->pending_max) {
13039         /* for AFEX */
13040         bxe_update_max_mf_config(sc, sc->pending_max);
13041         sc->pending_max = 0;
13042     }
13043 #endif
13044 
13045     if (sc->port.pmf) {
13046         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13047         if (rc) {
13048             sc->state = BXE_STATE_ERROR;
13049             goto bxe_nic_load_error3;
13050         }
13051     }
13052 
13053     sc->link_params.feature_config_flags &=
13054         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13055 
13056     /* start fast path */
13057 
13058     /* Initialize Rx filter */
13059     bxe_set_rx_mode(sc);
13060 
13061     /* start the Tx */
13062     switch (/* XXX load_mode */LOAD_OPEN) {
13063     case LOAD_NORMAL:
13064     case LOAD_OPEN:
13065         break;
13066 
13067     case LOAD_DIAG:
13068     case LOAD_LOOPBACK_EXT:
13069         sc->state = BXE_STATE_DIAG;
13070         break;
13071 
13072     default:
13073         break;
13074     }
13075 
13076     if (sc->port.pmf) {
13077         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13078     } else {
13079         bxe_link_status_update(sc);
13080     }
13081 
13082     /* start the periodic timer callout */
13083     bxe_periodic_start(sc);
13084 
13085     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13086         /* mark driver is loaded in shmem2 */
13087         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13088         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13089                   (val |
13090                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13091                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
13092     }
13093 
13094     /* wait for all pending SP commands to complete */
13095     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13096         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13097         bxe_periodic_stop(sc);
13098         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13099         return (ENXIO);
13100     }
13101 
13102 #if 0
13103     /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13104     if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13105         bxe_dcbx_init(sc, FALSE);
13106     }
13107 #endif
13108 
13109     /* Tell the stack the driver is running! */
13110     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
13111 
13112     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13113 
13114     return (0);
13115 
13116 bxe_nic_load_error3:
13117 
13118     if (IS_PF(sc)) {
13119         bxe_int_disable_sync(sc, 1);
13120 
13121         /* clean out queued objects */
13122         bxe_squeeze_objects(sc);
13123     }
13124 
13125     bxe_interrupt_detach(sc);
13126 
13127 bxe_nic_load_error2:
13128 
13129     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13130         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13131         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13132     }
13133 
13134     sc->port.pmf = 0;
13135 
13136 bxe_nic_load_error1:
13137 
13138     /* clear pf_load status, as it was already set */
13139     if (IS_PF(sc)) {
13140         bxe_clear_pf_load(sc);
13141     }
13142 
13143 bxe_nic_load_error0:
13144 
13145     bxe_free_fw_stats_mem(sc);
13146     bxe_free_fp_buffers(sc);
13147     bxe_free_mem(sc);
13148 
13149     return (rc);
13150 }
13151 
13152 static int
13153 bxe_init_locked(struct bxe_softc *sc)
13154 {
13155     int other_engine = SC_PATH(sc) ? 0 : 1;
13156     uint8_t other_load_status, load_status;
13157     uint8_t global = FALSE;
13158     int rc;
13159 
13160     BXE_CORE_LOCK_ASSERT(sc);
13161 
13162     /* check if the driver is already running */
13163     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
13164         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13165         return (0);
13166     }
13167 
13168     bxe_set_power_state(sc, PCI_PM_D0);
13169 
13170     /*
13171      * If parity occurred during the unload, then attentions and/or
13172      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13173      * loaded on the current engine to complete the recovery. Parity recovery
13174      * is only relevant for PF driver.
13175      */
13176     if (IS_PF(sc)) {
13177         other_load_status = bxe_get_load_status(sc, other_engine);
13178         load_status = bxe_get_load_status(sc, SC_PATH(sc));
13179 
13180         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13181             bxe_chk_parity_attn(sc, &global, TRUE)) {
13182             do {
13183                 /*
13184                  * If there are attentions and they are in global blocks, set
13185                  * the GLOBAL_RESET bit regardless whether it will be this
13186                  * function that will complete the recovery or not.
13187                  */
13188                 if (global) {
13189                     bxe_set_reset_global(sc);
13190                 }
13191 
13192                 /*
13193                  * Only the first function on the current engine should try
13194                  * to recover in open. In case of attentions in global blocks
13195                  * only the first in the chip should try to recover.
13196                  */
13197                 if ((!load_status && (!global || !other_load_status)) &&
13198                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13199                     BLOGI(sc, "Recovered during init\n");
13200                     break;
13201                 }
13202 
13203                 /* recovery has failed... */
13204                 bxe_set_power_state(sc, PCI_PM_D3hot);
13205                 sc->recovery_state = BXE_RECOVERY_FAILED;
13206 
13207                 BLOGE(sc, "Recovery flow hasn't properly "
13208                           "completed yet, try again later. "
13209                           "If you still see this message after a "
13210                           "few retries then power cycle is required.\n");
13211 
13212                 rc = ENXIO;
13213                 goto bxe_init_locked_done;
13214             } while (0);
13215         }
13216     }
13217 
13218     sc->recovery_state = BXE_RECOVERY_DONE;
13219 
13220     rc = bxe_nic_load(sc, LOAD_OPEN);
13221 
13222 bxe_init_locked_done:
13223 
13224     if (rc) {
13225         /* Tell the stack the driver is NOT running! */
13226         BLOGE(sc, "Initialization failed, "
13227                   "stack notified driver is NOT running!\n");
13228 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
13229     }
13230 
13231     return (rc);
13232 }
13233 
13234 static int
13235 bxe_stop_locked(struct bxe_softc *sc)
13236 {
13237     BXE_CORE_LOCK_ASSERT(sc);
13238     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13239 }
13240 
13241 /*
13242  * Handles controller initialization when called from an unlocked routine.
13243  * ifconfig calls this function.
13244  *
13245  * Returns:
13246  *   void
13247  */
13248 static void
13249 bxe_init(void *xsc)
13250 {
13251     struct bxe_softc *sc = (struct bxe_softc *)xsc;
13252 
13253     BXE_CORE_LOCK(sc);
13254     bxe_init_locked(sc);
13255     BXE_CORE_UNLOCK(sc);
13256 }
13257 
13258 static int
13259 bxe_init_ifnet(struct bxe_softc *sc)
13260 {
13261     if_t ifp;
13262     int capabilities;
13263 
13264     /* ifconfig entrypoint for media type/status reporting */
13265     ifmedia_init(&sc->ifmedia, IFM_IMASK,
13266                  bxe_ifmedia_update,
13267                  bxe_ifmedia_status);
13268 
13269     /* set the default interface values */
13270     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13271     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13272     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13273 
13274     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13275 
13276     /* allocate the ifnet structure */
13277     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13278         BLOGE(sc, "Interface allocation failed!\n");
13279         return (ENXIO);
13280     }
13281 
13282     if_setsoftc(ifp, sc);
13283     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13284     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13285     if_setioctlfn(ifp, bxe_ioctl);
13286     if_setstartfn(ifp, bxe_tx_start);
13287     if_setgetcounterfn(ifp, bxe_get_counter);
13288 #if __FreeBSD_version >= 800000
13289     if_settransmitfn(ifp, bxe_tx_mq_start);
13290     if_setqflushfn(ifp, bxe_mq_flush);
13291 #endif
13292 #ifdef FreeBSD8_0
13293     if_settimer(ifp, 0);
13294 #endif
13295     if_setinitfn(ifp, bxe_init);
13296     if_setmtu(ifp, sc->mtu);
13297     if_sethwassist(ifp, (CSUM_IP      |
13298                         CSUM_TCP      |
13299                         CSUM_UDP      |
13300                         CSUM_TSO      |
13301                         CSUM_TCP_IPV6 |
13302                         CSUM_UDP_IPV6));
13303 
13304     capabilities =
13305 #if __FreeBSD_version < 700000
13306         (IFCAP_VLAN_MTU       |
13307          IFCAP_VLAN_HWTAGGING |
13308          IFCAP_HWCSUM         |
13309          IFCAP_JUMBO_MTU      |
13310          IFCAP_LRO);
13311 #else
13312         (IFCAP_VLAN_MTU       |
13313          IFCAP_VLAN_HWTAGGING |
13314          IFCAP_VLAN_HWTSO     |
13315          IFCAP_VLAN_HWFILTER  |
13316          IFCAP_VLAN_HWCSUM    |
13317          IFCAP_HWCSUM         |
13318          IFCAP_JUMBO_MTU      |
13319          IFCAP_LRO            |
13320          IFCAP_TSO4           |
13321          IFCAP_TSO6           |
13322          IFCAP_WOL_MAGIC);
13323 #endif
13324     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13325     if_setbaudrate(ifp, IF_Gbps(10));
13326 /* XXX */
13327     if_setsendqlen(ifp, sc->tx_ring_size);
13328     if_setsendqready(ifp);
13329 /* XXX */
13330 
13331     sc->ifp = ifp;
13332 
13333     /* attach to the Ethernet interface list */
13334     ether_ifattach(ifp, sc->link_params.mac_addr);
13335 
13336     return (0);
13337 }
13338 
13339 static void
13340 bxe_deallocate_bars(struct bxe_softc *sc)
13341 {
13342     int i;
13343 
13344     for (i = 0; i < MAX_BARS; i++) {
13345         if (sc->bar[i].resource != NULL) {
13346             bus_release_resource(sc->dev,
13347                                  SYS_RES_MEMORY,
13348                                  sc->bar[i].rid,
13349                                  sc->bar[i].resource);
13350             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13351                   i, PCIR_BAR(i));
13352         }
13353     }
13354 }
13355 
13356 static int
13357 bxe_allocate_bars(struct bxe_softc *sc)
13358 {
13359     u_int flags;
13360     int i;
13361 
13362     memset(sc->bar, 0, sizeof(sc->bar));
13363 
13364     for (i = 0; i < MAX_BARS; i++) {
13365 
13366         /* memory resources reside at BARs 0, 2, 4 */
13367         /* Run `pciconf -lb` to see mappings */
13368         if ((i != 0) && (i != 2) && (i != 4)) {
13369             continue;
13370         }
13371 
13372         sc->bar[i].rid = PCIR_BAR(i);
13373 
13374         flags = RF_ACTIVE;
13375         if (i == 0) {
13376             flags |= RF_SHAREABLE;
13377         }
13378 
13379         if ((sc->bar[i].resource =
13380              bus_alloc_resource_any(sc->dev,
13381                                     SYS_RES_MEMORY,
13382                                     &sc->bar[i].rid,
13383                                     flags)) == NULL) {
13384 #if 0
13385             /* BAR4 doesn't exist for E1 */
13386             BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13387                   i, PCIR_BAR(i));
13388 #endif
13389             return (0);
13390         }
13391 
13392         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13393         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13394         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13395 
13396         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13397               i, PCIR_BAR(i),
13398               (void *)rman_get_start(sc->bar[i].resource),
13399               (void *)rman_get_end(sc->bar[i].resource),
13400               rman_get_size(sc->bar[i].resource),
13401               (void *)sc->bar[i].kva);
13402     }
13403 
13404     return (0);
13405 }
13406 
13407 static void
13408 bxe_get_function_num(struct bxe_softc *sc)
13409 {
13410     uint32_t val = 0;
13411 
13412     /*
13413      * Read the ME register to get the function number. The ME register
13414      * holds the relative-function number and absolute-function number. The
13415      * absolute-function number appears only in E2 and above. Before that
13416      * these bits always contained zero, therefore we cannot blindly use them.
13417      */
13418 
13419     val = REG_RD(sc, BAR_ME_REGISTER);
13420 
13421     sc->pfunc_rel =
13422         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13423     sc->path_id =
13424         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13425 
13426     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13427         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13428     } else {
13429         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13430     }
13431 
13432     BLOGD(sc, DBG_LOAD,
13433           "Relative function %d, Absolute function %d, Path %d\n",
13434           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13435 }
13436 
13437 static uint32_t
13438 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13439 {
13440     uint32_t shmem2_size;
13441     uint32_t offset;
13442     uint32_t mf_cfg_offset_value;
13443 
13444     /* Non 57712 */
13445     offset = (SHMEM_RD(sc, func_mb) +
13446               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13447 
13448     /* 57712 plus */
13449     if (sc->devinfo.shmem2_base != 0) {
13450         shmem2_size = SHMEM2_RD(sc, size);
13451         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13452             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13453             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13454                 offset = mf_cfg_offset_value;
13455             }
13456         }
13457     }
13458 
13459     return (offset);
13460 }
13461 
13462 static uint32_t
13463 bxe_pcie_capability_read(struct bxe_softc *sc,
13464                          int    reg,
13465                          int    width)
13466 {
13467     int pcie_reg;
13468 
13469     /* ensure PCIe capability is enabled */
13470     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13471         if (pcie_reg != 0) {
13472             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13473             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13474         }
13475     }
13476 
13477     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13478 
13479     return (0);
13480 }
13481 
13482 static uint8_t
13483 bxe_is_pcie_pending(struct bxe_softc *sc)
13484 {
13485     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13486             PCIM_EXP_STA_TRANSACTION_PND);
13487 }
13488 
13489 /*
13490  * Walk the PCI capabiites list for the device to find what features are
13491  * supported. These capabilites may be enabled/disabled by firmware so it's
13492  * best to walk the list rather than make assumptions.
13493  */
13494 static void
13495 bxe_probe_pci_caps(struct bxe_softc *sc)
13496 {
13497     uint16_t link_status;
13498     int reg;
13499 
13500     /* check if PCI Power Management is enabled */
13501     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13502         if (reg != 0) {
13503             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13504 
13505             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13506             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13507         }
13508     }
13509 
13510     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13511 
13512     /* handle PCIe 2.0 workarounds for 57710 */
13513     if (CHIP_IS_E1(sc)) {
13514         /* workaround for 57710 errata E4_57710_27462 */
13515         sc->devinfo.pcie_link_speed =
13516             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13517 
13518         /* workaround for 57710 errata E4_57710_27488 */
13519         sc->devinfo.pcie_link_width =
13520             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13521         if (sc->devinfo.pcie_link_speed > 1) {
13522             sc->devinfo.pcie_link_width =
13523                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13524         }
13525     } else {
13526         sc->devinfo.pcie_link_speed =
13527             (link_status & PCIM_LINK_STA_SPEED);
13528         sc->devinfo.pcie_link_width =
13529             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13530     }
13531 
13532     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13533           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13534 
13535     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13536     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13537 
13538     /* check if MSI capability is enabled */
13539     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13540         if (reg != 0) {
13541             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13542 
13543             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13544             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13545         }
13546     }
13547 
13548     /* check if MSI-X capability is enabled */
13549     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13550         if (reg != 0) {
13551             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13552 
13553             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13554             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13555         }
13556     }
13557 }
13558 
13559 static int
13560 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13561 {
13562     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13563     uint32_t val;
13564 
13565     /* get the outer vlan if we're in switch-dependent mode */
13566 
13567     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13568     mf_info->ext_id = (uint16_t)val;
13569 
13570     mf_info->multi_vnics_mode = 1;
13571 
13572     if (!VALID_OVLAN(mf_info->ext_id)) {
13573         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13574         return (1);
13575     }
13576 
13577     /* get the capabilities */
13578     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13579         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13580         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13581     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13582                FUNC_MF_CFG_PROTOCOL_FCOE) {
13583         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13584     } else {
13585         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13586     }
13587 
13588     mf_info->vnics_per_port =
13589         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13590 
13591     return (0);
13592 }
13593 
13594 static uint32_t
13595 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13596 {
13597     uint32_t retval = 0;
13598     uint32_t val;
13599 
13600     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13601 
13602     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13603         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13604             retval |= MF_PROTO_SUPPORT_ETHERNET;
13605         }
13606         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13607             retval |= MF_PROTO_SUPPORT_ISCSI;
13608         }
13609         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13610             retval |= MF_PROTO_SUPPORT_FCOE;
13611         }
13612     }
13613 
13614     return (retval);
13615 }
13616 
13617 static int
13618 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13619 {
13620     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13621     uint32_t val;
13622 
13623     /*
13624      * There is no outer vlan if we're in switch-independent mode.
13625      * If the mac is valid then assume multi-function.
13626      */
13627 
13628     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13629 
13630     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13631 
13632     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13633 
13634     mf_info->vnics_per_port =
13635         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13636 
13637     return (0);
13638 }
13639 
13640 static int
13641 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13642 {
13643     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13644     uint32_t e1hov_tag;
13645     uint32_t func_config;
13646     uint32_t niv_config;
13647 
13648     mf_info->multi_vnics_mode = 1;
13649 
13650     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13651     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13652     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13653 
13654     mf_info->ext_id =
13655         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13656                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13657 
13658     mf_info->default_vlan =
13659         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13660                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13661 
13662     mf_info->niv_allowed_priorities =
13663         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13664                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13665 
13666     mf_info->niv_default_cos =
13667         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13668                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13669 
13670     mf_info->afex_vlan_mode =
13671         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13672          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13673 
13674     mf_info->niv_mba_enabled =
13675         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13676          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13677 
13678     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13679 
13680     mf_info->vnics_per_port =
13681         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13682 
13683     return (0);
13684 }
13685 
13686 static int
13687 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13688 {
13689     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13690     uint32_t mf_cfg1;
13691     uint32_t mf_cfg2;
13692     uint32_t ovlan1;
13693     uint32_t ovlan2;
13694     uint8_t i, j;
13695 
13696     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13697           SC_PORT(sc));
13698     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13699           mf_info->mf_config[SC_VN(sc)]);
13700     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13701           mf_info->multi_vnics_mode);
13702     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13703           mf_info->vnics_per_port);
13704     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13705           mf_info->ext_id);
13706     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13707           mf_info->min_bw[0], mf_info->min_bw[1],
13708           mf_info->min_bw[2], mf_info->min_bw[3]);
13709     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13710           mf_info->max_bw[0], mf_info->max_bw[1],
13711           mf_info->max_bw[2], mf_info->max_bw[3]);
13712     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13713           sc->mac_addr_str);
13714 
13715     /* various MF mode sanity checks... */
13716 
13717     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13718         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13719               SC_PORT(sc));
13720         return (1);
13721     }
13722 
13723     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13724         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13725               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13726         return (1);
13727     }
13728 
13729     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13730         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13731         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13732             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13733                   SC_VN(sc), OVLAN(sc));
13734             return (1);
13735         }
13736 
13737         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13738             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13739                   mf_info->multi_vnics_mode, OVLAN(sc));
13740             return (1);
13741         }
13742 
13743         /*
13744          * Verify all functions are either MF or SF mode. If MF, make sure
13745          * sure that all non-hidden functions have a valid ovlan. If SF,
13746          * make sure that all non-hidden functions have an invalid ovlan.
13747          */
13748         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13749             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13750             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13751             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13752                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13753                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13754                 BLOGE(sc, "mf_mode=SD function %d MF config "
13755                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13756                       i, mf_info->multi_vnics_mode, ovlan1);
13757                 return (1);
13758             }
13759         }
13760 
13761         /* Verify all funcs on the same port each have a different ovlan. */
13762         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13763             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13764             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13765             /* iterate from the next function on the port to the max func */
13766             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13767                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13768                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13769                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13770                     VALID_OVLAN(ovlan1) &&
13771                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13772                     VALID_OVLAN(ovlan2) &&
13773                     (ovlan1 == ovlan2)) {
13774                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13775                               "have the same ovlan (%d)\n",
13776                           i, j, ovlan1);
13777                     return (1);
13778                 }
13779             }
13780         }
13781     } /* MULTI_FUNCTION_SD */
13782 
13783     return (0);
13784 }
13785 
13786 static int
13787 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13788 {
13789     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13790     uint32_t val, mac_upper;
13791     uint8_t i, vnic;
13792 
13793     /* initialize mf_info defaults */
13794     mf_info->vnics_per_port   = 1;
13795     mf_info->multi_vnics_mode = FALSE;
13796     mf_info->path_has_ovlan   = FALSE;
13797     mf_info->mf_mode          = SINGLE_FUNCTION;
13798 
13799     if (!CHIP_IS_MF_CAP(sc)) {
13800         return (0);
13801     }
13802 
13803     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13804         BLOGE(sc, "Invalid mf_cfg_base!\n");
13805         return (1);
13806     }
13807 
13808     /* get the MF mode (switch dependent / independent / single-function) */
13809 
13810     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13811 
13812     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13813     {
13814     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13815 
13816         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13817 
13818         /* check for legal upper mac bytes */
13819         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13820             mf_info->mf_mode = MULTI_FUNCTION_SI;
13821         } else {
13822             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13823         }
13824 
13825         break;
13826 
13827     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13828     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13829 
13830         /* get outer vlan configuration */
13831         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13832 
13833         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13834             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13835             mf_info->mf_mode = MULTI_FUNCTION_SD;
13836         } else {
13837             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13838         }
13839 
13840         break;
13841 
13842     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13843 
13844         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13845         return (0);
13846 
13847     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13848 
13849         /*
13850          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13851          * and the MAC address is valid.
13852          */
13853         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13854 
13855         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13856             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13857             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13858         } else {
13859             BLOGE(sc, "Invalid config for AFEX mode\n");
13860         }
13861 
13862         break;
13863 
13864     default:
13865 
13866         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13867               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13868 
13869         return (1);
13870     }
13871 
13872     /* set path mf_mode (which could be different than function mf_mode) */
13873     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13874         mf_info->path_has_ovlan = TRUE;
13875     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13876         /*
13877          * Decide on path multi vnics mode. If we're not in MF mode and in
13878          * 4-port mode, this is good enough to check vnic-0 of the other port
13879          * on the same path
13880          */
13881         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13882             uint8_t other_port = !(PORT_ID(sc) & 1);
13883             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13884 
13885             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13886 
13887             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13888         }
13889     }
13890 
13891     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13892         /* invalid MF config */
13893         if (SC_VN(sc) >= 1) {
13894             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13895             return (1);
13896         }
13897 
13898         return (0);
13899     }
13900 
13901     /* get the MF configuration */
13902     mf_info->mf_config[SC_VN(sc)] =
13903         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13904 
13905     switch(mf_info->mf_mode)
13906     {
13907     case MULTI_FUNCTION_SD:
13908 
13909         bxe_get_shmem_mf_cfg_info_sd(sc);
13910         break;
13911 
13912     case MULTI_FUNCTION_SI:
13913 
13914         bxe_get_shmem_mf_cfg_info_si(sc);
13915         break;
13916 
13917     case MULTI_FUNCTION_AFEX:
13918 
13919         bxe_get_shmem_mf_cfg_info_niv(sc);
13920         break;
13921 
13922     default:
13923 
13924         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13925               mf_info->mf_mode);
13926         return (1);
13927     }
13928 
13929     /* get the congestion management parameters */
13930 
13931     vnic = 0;
13932     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13933         /* get min/max bw */
13934         val = MFCFG_RD(sc, func_mf_config[i].config);
13935         mf_info->min_bw[vnic] =
13936             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13937         mf_info->max_bw[vnic] =
13938             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13939         vnic++;
13940     }
13941 
13942     return (bxe_check_valid_mf_cfg(sc));
13943 }
13944 
13945 static int
13946 bxe_get_shmem_info(struct bxe_softc *sc)
13947 {
13948     int port;
13949     uint32_t mac_hi, mac_lo, val;
13950 
13951     port = SC_PORT(sc);
13952     mac_hi = mac_lo = 0;
13953 
13954     sc->link_params.sc   = sc;
13955     sc->link_params.port = port;
13956 
13957     /* get the hardware config info */
13958     sc->devinfo.hw_config =
13959         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13960     sc->devinfo.hw_config2 =
13961         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13962 
13963     sc->link_params.hw_led_mode =
13964         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13965          SHARED_HW_CFG_LED_MODE_SHIFT);
13966 
13967     /* get the port feature config */
13968     sc->port.config =
13969         SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13970 
13971     /* get the link params */
13972     sc->link_params.speed_cap_mask[0] =
13973         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13974     sc->link_params.speed_cap_mask[1] =
13975         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13976 
13977     /* get the lane config */
13978     sc->link_params.lane_config =
13979         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13980 
13981     /* get the link config */
13982     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13983     sc->port.link_config[ELINK_INT_PHY] = val;
13984     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13985     sc->port.link_config[ELINK_EXT_PHY1] =
13986         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13987 
13988     /* get the override preemphasis flag and enable it or turn it off */
13989     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13990     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13991         sc->link_params.feature_config_flags |=
13992             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13993     } else {
13994         sc->link_params.feature_config_flags &=
13995             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13996     }
13997 
13998     /* get the initial value of the link params */
13999     sc->link_params.multi_phy_config =
14000         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14001 
14002     /* get external phy info */
14003     sc->port.ext_phy_config =
14004         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14005 
14006     /* get the multifunction configuration */
14007     bxe_get_mf_cfg_info(sc);
14008 
14009     /* get the mac address */
14010     if (IS_MF(sc)) {
14011         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14012         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14013     } else {
14014         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14015         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14016     }
14017 
14018     if ((mac_lo == 0) && (mac_hi == 0)) {
14019         *sc->mac_addr_str = 0;
14020         BLOGE(sc, "No Ethernet address programmed!\n");
14021     } else {
14022         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14023         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14024         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14025         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14026         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14027         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14028         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14029                  "%02x:%02x:%02x:%02x:%02x:%02x",
14030                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14031                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14032                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14033         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14034     }
14035 
14036 #if 0
14037     if (!IS_MF(sc) &&
14038         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14039          PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14040         sc->flags |= BXE_NO_ISCSI;
14041     }
14042     if (!IS_MF(sc) &&
14043         ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14044          PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14045         sc->flags |= BXE_NO_FCOE_FLAG;
14046     }
14047 #endif
14048 
14049     return (0);
14050 }
14051 
14052 static void
14053 bxe_get_tunable_params(struct bxe_softc *sc)
14054 {
14055     /* sanity checks */
14056 
14057     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14058         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14059         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14060         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14061         bxe_interrupt_mode = INTR_MODE_MSIX;
14062     }
14063 
14064     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14065         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14066         bxe_queue_count = 0;
14067     }
14068 
14069     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14070         if (bxe_max_rx_bufs == 0) {
14071             bxe_max_rx_bufs = RX_BD_USABLE;
14072         } else {
14073             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14074             bxe_max_rx_bufs = 2048;
14075         }
14076     }
14077 
14078     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14079         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14080         bxe_hc_rx_ticks = 25;
14081     }
14082 
14083     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14084         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14085         bxe_hc_tx_ticks = 50;
14086     }
14087 
14088     if (bxe_max_aggregation_size == 0) {
14089         bxe_max_aggregation_size = TPA_AGG_SIZE;
14090     }
14091 
14092     if (bxe_max_aggregation_size > 0xffff) {
14093         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14094               bxe_max_aggregation_size);
14095         bxe_max_aggregation_size = TPA_AGG_SIZE;
14096     }
14097 
14098     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14099         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14100         bxe_mrrs = -1;
14101     }
14102 
14103     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14104         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14105         bxe_autogreeen = 0;
14106     }
14107 
14108     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14109         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14110         bxe_udp_rss = 0;
14111     }
14112 
14113     /* pull in user settings */
14114 
14115     sc->interrupt_mode       = bxe_interrupt_mode;
14116     sc->max_rx_bufs          = bxe_max_rx_bufs;
14117     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14118     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14119     sc->max_aggregation_size = bxe_max_aggregation_size;
14120     sc->mrrs                 = bxe_mrrs;
14121     sc->autogreeen           = bxe_autogreeen;
14122     sc->udp_rss              = bxe_udp_rss;
14123 
14124     if (bxe_interrupt_mode == INTR_MODE_INTX) {
14125         sc->num_queues = 1;
14126     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14127         sc->num_queues =
14128             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14129                 MAX_RSS_CHAINS);
14130         if (sc->num_queues > mp_ncpus) {
14131             sc->num_queues = mp_ncpus;
14132         }
14133     }
14134 
14135     BLOGD(sc, DBG_LOAD,
14136           "User Config: "
14137           "debug=0x%lx "
14138           "interrupt_mode=%d "
14139           "queue_count=%d "
14140           "hc_rx_ticks=%d "
14141           "hc_tx_ticks=%d "
14142           "rx_budget=%d "
14143           "max_aggregation_size=%d "
14144           "mrrs=%d "
14145           "autogreeen=%d "
14146           "udp_rss=%d\n",
14147           bxe_debug,
14148           sc->interrupt_mode,
14149           sc->num_queues,
14150           sc->hc_rx_ticks,
14151           sc->hc_tx_ticks,
14152           bxe_rx_budget,
14153           sc->max_aggregation_size,
14154           sc->mrrs,
14155           sc->autogreeen,
14156           sc->udp_rss);
14157 }
14158 
14159 static void
14160 bxe_media_detect(struct bxe_softc *sc)
14161 {
14162     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14163     switch (sc->link_params.phy[phy_idx].media_type) {
14164     case ELINK_ETH_PHY_SFPP_10G_FIBER:
14165     case ELINK_ETH_PHY_XFP_FIBER:
14166         BLOGI(sc, "Found 10Gb Fiber media.\n");
14167         sc->media = IFM_10G_SR;
14168         break;
14169     case ELINK_ETH_PHY_SFP_1G_FIBER:
14170         BLOGI(sc, "Found 1Gb Fiber media.\n");
14171         sc->media = IFM_1000_SX;
14172         break;
14173     case ELINK_ETH_PHY_KR:
14174     case ELINK_ETH_PHY_CX4:
14175         BLOGI(sc, "Found 10GBase-CX4 media.\n");
14176         sc->media = IFM_10G_CX4;
14177         break;
14178     case ELINK_ETH_PHY_DA_TWINAX:
14179         BLOGI(sc, "Found 10Gb Twinax media.\n");
14180         sc->media = IFM_10G_TWINAX;
14181         break;
14182     case ELINK_ETH_PHY_BASE_T:
14183         if (sc->link_params.speed_cap_mask[0] &
14184             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14185             BLOGI(sc, "Found 10GBase-T media.\n");
14186             sc->media = IFM_10G_T;
14187         } else {
14188             BLOGI(sc, "Found 1000Base-T media.\n");
14189             sc->media = IFM_1000_T;
14190         }
14191         break;
14192     case ELINK_ETH_PHY_NOT_PRESENT:
14193         BLOGI(sc, "Media not present.\n");
14194         sc->media = 0;
14195         break;
14196     case ELINK_ETH_PHY_UNSPECIFIED:
14197     default:
14198         BLOGI(sc, "Unknown media!\n");
14199         sc->media = 0;
14200         break;
14201     }
14202 }
14203 
14204 #define GET_FIELD(value, fname)                     \
14205     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14206 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14207 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14208 
14209 static int
14210 bxe_get_igu_cam_info(struct bxe_softc *sc)
14211 {
14212     int pfid = SC_FUNC(sc);
14213     int igu_sb_id;
14214     uint32_t val;
14215     uint8_t fid, igu_sb_cnt = 0;
14216 
14217     sc->igu_base_sb = 0xff;
14218 
14219     if (CHIP_INT_MODE_IS_BC(sc)) {
14220         int vn = SC_VN(sc);
14221         igu_sb_cnt = sc->igu_sb_cnt;
14222         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14223                            FP_SB_MAX_E1x);
14224         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14225                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14226         return (0);
14227     }
14228 
14229     /* IGU in normal mode - read CAM */
14230     for (igu_sb_id = 0;
14231          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14232          igu_sb_id++) {
14233         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14234         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14235             continue;
14236         }
14237         fid = IGU_FID(val);
14238         if ((fid & IGU_FID_ENCODE_IS_PF)) {
14239             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14240                 continue;
14241             }
14242             if (IGU_VEC(val) == 0) {
14243                 /* default status block */
14244                 sc->igu_dsb_id = igu_sb_id;
14245             } else {
14246                 if (sc->igu_base_sb == 0xff) {
14247                     sc->igu_base_sb = igu_sb_id;
14248                 }
14249                 igu_sb_cnt++;
14250             }
14251         }
14252     }
14253 
14254     /*
14255      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14256      * that number of CAM entries will not be equal to the value advertised in
14257      * PCI. Driver should use the minimal value of both as the actual status
14258      * block count
14259      */
14260     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14261 
14262     if (igu_sb_cnt == 0) {
14263         BLOGE(sc, "CAM configuration error\n");
14264         return (-1);
14265     }
14266 
14267     return (0);
14268 }
14269 
14270 /*
14271  * Gather various information from the device config space, the device itself,
14272  * shmem, and the user input.
14273  */
14274 static int
14275 bxe_get_device_info(struct bxe_softc *sc)
14276 {
14277     uint32_t val;
14278     int rc;
14279 
14280     /* Get the data for the device */
14281     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14282     sc->devinfo.device_id    = pci_get_device(sc->dev);
14283     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14284     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14285 
14286     /* get the chip revision (chip metal comes from pci config space) */
14287     sc->devinfo.chip_id     =
14288     sc->link_params.chip_id =
14289         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14290          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14291          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14292          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14293 
14294     /* force 57811 according to MISC register */
14295     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14296         if (CHIP_IS_57810(sc)) {
14297             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14298                                    (sc->devinfo.chip_id & 0x0000ffff));
14299         } else if (CHIP_IS_57810_MF(sc)) {
14300             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14301                                    (sc->devinfo.chip_id & 0x0000ffff));
14302         }
14303         sc->devinfo.chip_id |= 0x1;
14304     }
14305 
14306     BLOGD(sc, DBG_LOAD,
14307           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14308           sc->devinfo.chip_id,
14309           ((sc->devinfo.chip_id >> 16) & 0xffff),
14310           ((sc->devinfo.chip_id >> 12) & 0xf),
14311           ((sc->devinfo.chip_id >>  4) & 0xff),
14312           ((sc->devinfo.chip_id >>  0) & 0xf));
14313 
14314     val = (REG_RD(sc, 0x2874) & 0x55);
14315     if ((sc->devinfo.chip_id & 0x1) ||
14316         (CHIP_IS_E1(sc) && val) ||
14317         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14318         sc->flags |= BXE_ONE_PORT_FLAG;
14319         BLOGD(sc, DBG_LOAD, "single port device\n");
14320     }
14321 
14322     /* set the doorbell size */
14323     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14324 
14325     /* determine whether the device is in 2 port or 4 port mode */
14326     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14327     if (CHIP_IS_E2E3(sc)) {
14328         /*
14329          * Read port4mode_en_ovwr[0]:
14330          *   If 1, four port mode is in port4mode_en_ovwr[1].
14331          *   If 0, four port mode is in port4mode_en[0].
14332          */
14333         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14334         if (val & 1) {
14335             val = ((val >> 1) & 1);
14336         } else {
14337             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14338         }
14339 
14340         sc->devinfo.chip_port_mode =
14341             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14342 
14343         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14344     }
14345 
14346     /* get the function and path info for the device */
14347     bxe_get_function_num(sc);
14348 
14349     /* get the shared memory base address */
14350     sc->devinfo.shmem_base     =
14351     sc->link_params.shmem_base =
14352         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14353     sc->devinfo.shmem2_base =
14354         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14355                                   MISC_REG_GENERIC_CR_0));
14356 
14357     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14358           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14359 
14360     if (!sc->devinfo.shmem_base) {
14361         /* this should ONLY prevent upcoming shmem reads */
14362         BLOGI(sc, "MCP not active\n");
14363         sc->flags |= BXE_NO_MCP_FLAG;
14364         return (0);
14365     }
14366 
14367     /* make sure the shared memory contents are valid */
14368     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14369     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14370         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14371         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14372         return (0);
14373     }
14374     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14375 
14376     /* get the bootcode version */
14377     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14378     snprintf(sc->devinfo.bc_ver_str,
14379              sizeof(sc->devinfo.bc_ver_str),
14380              "%d.%d.%d",
14381              ((sc->devinfo.bc_ver >> 24) & 0xff),
14382              ((sc->devinfo.bc_ver >> 16) & 0xff),
14383              ((sc->devinfo.bc_ver >>  8) & 0xff));
14384     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14385 
14386     /* get the bootcode shmem address */
14387     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14388     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14389 
14390     /* clean indirect addresses as they're not used */
14391     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14392     if (IS_PF(sc)) {
14393         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14394         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14395         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14396         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14397         if (CHIP_IS_E1x(sc)) {
14398             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14399             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14400             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14401             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14402         }
14403 
14404         /*
14405          * Enable internal target-read (in case we are probed after PF
14406          * FLR). Must be done prior to any BAR read access. Only for
14407          * 57712 and up
14408          */
14409         if (!CHIP_IS_E1x(sc)) {
14410             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14411         }
14412     }
14413 
14414     /* get the nvram size */
14415     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14416     sc->devinfo.flash_size =
14417         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14418     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14419 
14420     /* get PCI capabilites */
14421     bxe_probe_pci_caps(sc);
14422 
14423     bxe_set_power_state(sc, PCI_PM_D0);
14424 
14425     /* get various configuration parameters from shmem */
14426     bxe_get_shmem_info(sc);
14427 
14428     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14429         val = pci_read_config(sc->dev,
14430                               (sc->devinfo.pcie_msix_cap_reg +
14431                                PCIR_MSIX_CTRL),
14432                               2);
14433         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14434     } else {
14435         sc->igu_sb_cnt = 1;
14436     }
14437 
14438     sc->igu_base_addr = BAR_IGU_INTMEM;
14439 
14440     /* initialize IGU parameters */
14441     if (CHIP_IS_E1x(sc)) {
14442         sc->devinfo.int_block = INT_BLOCK_HC;
14443         sc->igu_dsb_id = DEF_SB_IGU_ID;
14444         sc->igu_base_sb = 0;
14445     } else {
14446         sc->devinfo.int_block = INT_BLOCK_IGU;
14447 
14448         /* do not allow device reset during IGU info preocessing */
14449         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14450 
14451         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14452 
14453         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14454             int tout = 5000;
14455 
14456             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14457 
14458             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14459             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14460             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14461 
14462             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14463                 tout--;
14464                 DELAY(1000);
14465             }
14466 
14467             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14468                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14469                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14470                 return (-1);
14471             }
14472         }
14473 
14474         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14475             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14476             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14477         } else {
14478             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14479         }
14480 
14481         rc = bxe_get_igu_cam_info(sc);
14482 
14483         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14484 
14485         if (rc) {
14486             return (rc);
14487         }
14488     }
14489 
14490     /*
14491      * Get base FW non-default (fast path) status block ID. This value is
14492      * used to initialize the fw_sb_id saved on the fp/queue structure to
14493      * determine the id used by the FW.
14494      */
14495     if (CHIP_IS_E1x(sc)) {
14496         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14497     } else {
14498         /*
14499          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14500          * the same queue are indicated on the same IGU SB). So we prefer
14501          * FW and IGU SBs to be the same value.
14502          */
14503         sc->base_fw_ndsb = sc->igu_base_sb;
14504     }
14505 
14506     BLOGD(sc, DBG_LOAD,
14507           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14508           sc->igu_dsb_id, sc->igu_base_sb,
14509           sc->igu_sb_cnt, sc->base_fw_ndsb);
14510 
14511     elink_phy_probe(&sc->link_params);
14512 
14513     return (0);
14514 }
14515 
14516 static void
14517 bxe_link_settings_supported(struct bxe_softc *sc,
14518                             uint32_t         switch_cfg)
14519 {
14520     uint32_t cfg_size = 0;
14521     uint32_t idx;
14522     uint8_t port = SC_PORT(sc);
14523 
14524     /* aggregation of supported attributes of all external phys */
14525     sc->port.supported[0] = 0;
14526     sc->port.supported[1] = 0;
14527 
14528     switch (sc->link_params.num_phys) {
14529     case 1:
14530         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14531         cfg_size = 1;
14532         break;
14533     case 2:
14534         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14535         cfg_size = 1;
14536         break;
14537     case 3:
14538         if (sc->link_params.multi_phy_config &
14539             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14540             sc->port.supported[1] =
14541                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14542             sc->port.supported[0] =
14543                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14544         } else {
14545             sc->port.supported[0] =
14546                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14547             sc->port.supported[1] =
14548                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14549         }
14550         cfg_size = 2;
14551         break;
14552     }
14553 
14554     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14555         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14556               SHMEM_RD(sc,
14557                        dev_info.port_hw_config[port].external_phy_config),
14558               SHMEM_RD(sc,
14559                        dev_info.port_hw_config[port].external_phy_config2));
14560         return;
14561     }
14562 
14563     if (CHIP_IS_E3(sc))
14564         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14565     else {
14566         switch (switch_cfg) {
14567         case ELINK_SWITCH_CFG_1G:
14568             sc->port.phy_addr =
14569                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14570             break;
14571         case ELINK_SWITCH_CFG_10G:
14572             sc->port.phy_addr =
14573                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14574             break;
14575         default:
14576             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14577                   sc->port.link_config[0]);
14578             return;
14579         }
14580     }
14581 
14582     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14583 
14584     /* mask what we support according to speed_cap_mask per configuration */
14585     for (idx = 0; idx < cfg_size; idx++) {
14586         if (!(sc->link_params.speed_cap_mask[idx] &
14587               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14588             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14589         }
14590 
14591         if (!(sc->link_params.speed_cap_mask[idx] &
14592               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14593             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14594         }
14595 
14596         if (!(sc->link_params.speed_cap_mask[idx] &
14597               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14598             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14599         }
14600 
14601         if (!(sc->link_params.speed_cap_mask[idx] &
14602               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14603             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14604         }
14605 
14606         if (!(sc->link_params.speed_cap_mask[idx] &
14607               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14608             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14609         }
14610 
14611         if (!(sc->link_params.speed_cap_mask[idx] &
14612               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14613             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14614         }
14615 
14616         if (!(sc->link_params.speed_cap_mask[idx] &
14617               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14618             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14619         }
14620 
14621         if (!(sc->link_params.speed_cap_mask[idx] &
14622               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14623             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14624         }
14625     }
14626 
14627     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14628           sc->port.supported[0], sc->port.supported[1]);
14629 }
14630 
14631 static void
14632 bxe_link_settings_requested(struct bxe_softc *sc)
14633 {
14634     uint32_t link_config;
14635     uint32_t idx;
14636     uint32_t cfg_size = 0;
14637 
14638     sc->port.advertising[0] = 0;
14639     sc->port.advertising[1] = 0;
14640 
14641     switch (sc->link_params.num_phys) {
14642     case 1:
14643     case 2:
14644         cfg_size = 1;
14645         break;
14646     case 3:
14647         cfg_size = 2;
14648         break;
14649     }
14650 
14651     for (idx = 0; idx < cfg_size; idx++) {
14652         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14653         link_config = sc->port.link_config[idx];
14654 
14655         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14656         case PORT_FEATURE_LINK_SPEED_AUTO:
14657             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14658                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14659                 sc->port.advertising[idx] |= sc->port.supported[idx];
14660                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14661                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14662                     sc->port.advertising[idx] |=
14663                         (ELINK_SUPPORTED_100baseT_Half |
14664                          ELINK_SUPPORTED_100baseT_Full);
14665             } else {
14666                 /* force 10G, no AN */
14667                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14668                 sc->port.advertising[idx] |=
14669                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14670                 continue;
14671             }
14672             break;
14673 
14674         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14675             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14676                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14677                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14678                                               ADVERTISED_TP);
14679             } else {
14680                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14681                           "speed_cap_mask=0x%08x\n",
14682                       link_config, sc->link_params.speed_cap_mask[idx]);
14683                 return;
14684             }
14685             break;
14686 
14687         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14688             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14689                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14690                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14691                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14692                                               ADVERTISED_TP);
14693             } else {
14694                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14695                           "speed_cap_mask=0x%08x\n",
14696                       link_config, sc->link_params.speed_cap_mask[idx]);
14697                 return;
14698             }
14699             break;
14700 
14701         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14702             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14703                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14704                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14705                                               ADVERTISED_TP);
14706             } else {
14707                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14708                           "speed_cap_mask=0x%08x\n",
14709                       link_config, sc->link_params.speed_cap_mask[idx]);
14710                 return;
14711             }
14712             break;
14713 
14714         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14715             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14716                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14717                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14718                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14719                                               ADVERTISED_TP);
14720             } else {
14721                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14722                           "speed_cap_mask=0x%08x\n",
14723                       link_config, sc->link_params.speed_cap_mask[idx]);
14724                 return;
14725             }
14726             break;
14727 
14728         case PORT_FEATURE_LINK_SPEED_1G:
14729             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14730                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14731                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14732                                               ADVERTISED_TP);
14733             } else {
14734                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14735                           "speed_cap_mask=0x%08x\n",
14736                       link_config, sc->link_params.speed_cap_mask[idx]);
14737                 return;
14738             }
14739             break;
14740 
14741         case PORT_FEATURE_LINK_SPEED_2_5G:
14742             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14743                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14744                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14745                                               ADVERTISED_TP);
14746             } else {
14747                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14748                           "speed_cap_mask=0x%08x\n",
14749                       link_config, sc->link_params.speed_cap_mask[idx]);
14750                 return;
14751             }
14752             break;
14753 
14754         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14755             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14756                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14757                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14758                                               ADVERTISED_FIBRE);
14759             } else {
14760                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14761                           "speed_cap_mask=0x%08x\n",
14762                       link_config, sc->link_params.speed_cap_mask[idx]);
14763                 return;
14764             }
14765             break;
14766 
14767         case PORT_FEATURE_LINK_SPEED_20G:
14768             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14769             break;
14770 
14771         default:
14772             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14773                       "speed_cap_mask=0x%08x\n",
14774                   link_config, sc->link_params.speed_cap_mask[idx]);
14775             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14776             sc->port.advertising[idx] = sc->port.supported[idx];
14777             break;
14778         }
14779 
14780         sc->link_params.req_flow_ctrl[idx] =
14781             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14782 
14783         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14784             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14785                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14786             } else {
14787                 bxe_set_requested_fc(sc);
14788             }
14789         }
14790 
14791         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14792                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14793               sc->link_params.req_line_speed[idx],
14794               sc->link_params.req_duplex[idx],
14795               sc->link_params.req_flow_ctrl[idx],
14796               sc->port.advertising[idx]);
14797     }
14798 }
14799 
14800 static void
14801 bxe_get_phy_info(struct bxe_softc *sc)
14802 {
14803     uint8_t port = SC_PORT(sc);
14804     uint32_t config = sc->port.config;
14805     uint32_t eee_mode;
14806 
14807     /* shmem data already read in bxe_get_shmem_info() */
14808 
14809     BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14810                         "link_config0=0x%08x\n",
14811                sc->link_params.lane_config,
14812                sc->link_params.speed_cap_mask[0],
14813                sc->port.link_config[0]);
14814 
14815     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14816     bxe_link_settings_requested(sc);
14817 
14818     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14819         sc->link_params.feature_config_flags |=
14820             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14821     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14822         sc->link_params.feature_config_flags &=
14823             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14824     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14825         sc->link_params.feature_config_flags |=
14826             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14827     }
14828 
14829     /* configure link feature according to nvram value */
14830     eee_mode =
14831         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14832           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14833          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14834     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14835         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14836                                     ELINK_EEE_MODE_ENABLE_LPI |
14837                                     ELINK_EEE_MODE_OUTPUT_TIME);
14838     } else {
14839         sc->link_params.eee_mode = 0;
14840     }
14841 
14842     /* get the media type */
14843     bxe_media_detect(sc);
14844 }
14845 
14846 static void
14847 bxe_get_params(struct bxe_softc *sc)
14848 {
14849     /* get user tunable params */
14850     bxe_get_tunable_params(sc);
14851 
14852     /* select the RX and TX ring sizes */
14853     sc->tx_ring_size = TX_BD_USABLE;
14854     sc->rx_ring_size = RX_BD_USABLE;
14855 
14856     /* XXX disable WoL */
14857     sc->wol = 0;
14858 }
14859 
14860 static void
14861 bxe_set_modes_bitmap(struct bxe_softc *sc)
14862 {
14863     uint32_t flags = 0;
14864 
14865     if (CHIP_REV_IS_FPGA(sc)) {
14866         SET_FLAGS(flags, MODE_FPGA);
14867     } else if (CHIP_REV_IS_EMUL(sc)) {
14868         SET_FLAGS(flags, MODE_EMUL);
14869     } else {
14870         SET_FLAGS(flags, MODE_ASIC);
14871     }
14872 
14873     if (CHIP_IS_MODE_4_PORT(sc)) {
14874         SET_FLAGS(flags, MODE_PORT4);
14875     } else {
14876         SET_FLAGS(flags, MODE_PORT2);
14877     }
14878 
14879     if (CHIP_IS_E2(sc)) {
14880         SET_FLAGS(flags, MODE_E2);
14881     } else if (CHIP_IS_E3(sc)) {
14882         SET_FLAGS(flags, MODE_E3);
14883         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14884             SET_FLAGS(flags, MODE_E3_A0);
14885         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14886             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14887         }
14888     }
14889 
14890     if (IS_MF(sc)) {
14891         SET_FLAGS(flags, MODE_MF);
14892         switch (sc->devinfo.mf_info.mf_mode) {
14893         case MULTI_FUNCTION_SD:
14894             SET_FLAGS(flags, MODE_MF_SD);
14895             break;
14896         case MULTI_FUNCTION_SI:
14897             SET_FLAGS(flags, MODE_MF_SI);
14898             break;
14899         case MULTI_FUNCTION_AFEX:
14900             SET_FLAGS(flags, MODE_MF_AFEX);
14901             break;
14902         }
14903     } else {
14904         SET_FLAGS(flags, MODE_SF);
14905     }
14906 
14907 #if defined(__LITTLE_ENDIAN)
14908     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14909 #else /* __BIG_ENDIAN */
14910     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14911 #endif
14912 
14913     INIT_MODE_FLAGS(sc) = flags;
14914 }
14915 
14916 static int
14917 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14918 {
14919     struct bxe_fastpath *fp;
14920     bus_addr_t busaddr;
14921     int max_agg_queues;
14922     int max_segments;
14923     bus_size_t max_size;
14924     bus_size_t max_seg_size;
14925     char buf[32];
14926     int rc;
14927     int i, j;
14928 
14929     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14930 
14931     /* allocate the parent bus DMA tag */
14932     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14933                             1,                        /* alignment */
14934                             0,                        /* boundary limit */
14935                             BUS_SPACE_MAXADDR,        /* restricted low */
14936                             BUS_SPACE_MAXADDR,        /* restricted hi */
14937                             NULL,                     /* addr filter() */
14938                             NULL,                     /* addr filter() arg */
14939                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14940                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14941                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14942                             0,                        /* flags */
14943                             NULL,                     /* lock() */
14944                             NULL,                     /* lock() arg */
14945                             &sc->parent_dma_tag);     /* returned dma tag */
14946     if (rc != 0) {
14947         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14948         return (1);
14949     }
14950 
14951     /************************/
14952     /* DEFAULT STATUS BLOCK */
14953     /************************/
14954 
14955     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14956                       &sc->def_sb_dma, "default status block") != 0) {
14957         /* XXX */
14958         bus_dma_tag_destroy(sc->parent_dma_tag);
14959         return (1);
14960     }
14961 
14962     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14963 
14964     /***************/
14965     /* EVENT QUEUE */
14966     /***************/
14967 
14968     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14969                       &sc->eq_dma, "event queue") != 0) {
14970         /* XXX */
14971         bxe_dma_free(sc, &sc->def_sb_dma);
14972         sc->def_sb = NULL;
14973         bus_dma_tag_destroy(sc->parent_dma_tag);
14974         return (1);
14975     }
14976 
14977     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14978 
14979     /*************/
14980     /* SLOW PATH */
14981     /*************/
14982 
14983     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14984                       &sc->sp_dma, "slow path") != 0) {
14985         /* XXX */
14986         bxe_dma_free(sc, &sc->eq_dma);
14987         sc->eq = NULL;
14988         bxe_dma_free(sc, &sc->def_sb_dma);
14989         sc->def_sb = NULL;
14990         bus_dma_tag_destroy(sc->parent_dma_tag);
14991         return (1);
14992     }
14993 
14994     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14995 
14996     /*******************/
14997     /* SLOW PATH QUEUE */
14998     /*******************/
14999 
15000     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15001                       &sc->spq_dma, "slow path queue") != 0) {
15002         /* XXX */
15003         bxe_dma_free(sc, &sc->sp_dma);
15004         sc->sp = NULL;
15005         bxe_dma_free(sc, &sc->eq_dma);
15006         sc->eq = NULL;
15007         bxe_dma_free(sc, &sc->def_sb_dma);
15008         sc->def_sb = NULL;
15009         bus_dma_tag_destroy(sc->parent_dma_tag);
15010         return (1);
15011     }
15012 
15013     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15014 
15015     /***************************/
15016     /* FW DECOMPRESSION BUFFER */
15017     /***************************/
15018 
15019     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15020                       "fw decompression buffer") != 0) {
15021         /* XXX */
15022         bxe_dma_free(sc, &sc->spq_dma);
15023         sc->spq = NULL;
15024         bxe_dma_free(sc, &sc->sp_dma);
15025         sc->sp = NULL;
15026         bxe_dma_free(sc, &sc->eq_dma);
15027         sc->eq = NULL;
15028         bxe_dma_free(sc, &sc->def_sb_dma);
15029         sc->def_sb = NULL;
15030         bus_dma_tag_destroy(sc->parent_dma_tag);
15031         return (1);
15032     }
15033 
15034     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15035 
15036     if ((sc->gz_strm =
15037          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15038         /* XXX */
15039         bxe_dma_free(sc, &sc->gz_buf_dma);
15040         sc->gz_buf = NULL;
15041         bxe_dma_free(sc, &sc->spq_dma);
15042         sc->spq = NULL;
15043         bxe_dma_free(sc, &sc->sp_dma);
15044         sc->sp = NULL;
15045         bxe_dma_free(sc, &sc->eq_dma);
15046         sc->eq = NULL;
15047         bxe_dma_free(sc, &sc->def_sb_dma);
15048         sc->def_sb = NULL;
15049         bus_dma_tag_destroy(sc->parent_dma_tag);
15050         return (1);
15051     }
15052 
15053     /*************/
15054     /* FASTPATHS */
15055     /*************/
15056 
15057     /* allocate DMA memory for each fastpath structure */
15058     for (i = 0; i < sc->num_queues; i++) {
15059         fp = &sc->fp[i];
15060         fp->sc    = sc;
15061         fp->index = i;
15062 
15063         /*******************/
15064         /* FP STATUS BLOCK */
15065         /*******************/
15066 
15067         snprintf(buf, sizeof(buf), "fp %d status block", i);
15068         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15069                           &fp->sb_dma, buf) != 0) {
15070             /* XXX unwind and free previous fastpath allocations */
15071             BLOGE(sc, "Failed to alloc %s\n", buf);
15072             return (1);
15073         } else {
15074             if (CHIP_IS_E2E3(sc)) {
15075                 fp->status_block.e2_sb =
15076                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15077             } else {
15078                 fp->status_block.e1x_sb =
15079                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15080             }
15081         }
15082 
15083         /******************/
15084         /* FP TX BD CHAIN */
15085         /******************/
15086 
15087         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15088         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15089                           &fp->tx_dma, buf) != 0) {
15090             /* XXX unwind and free previous fastpath allocations */
15091             BLOGE(sc, "Failed to alloc %s\n", buf);
15092             return (1);
15093         } else {
15094             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15095         }
15096 
15097         /* link together the tx bd chain pages */
15098         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15099             /* index into the tx bd chain array to last entry per page */
15100             struct eth_tx_next_bd *tx_next_bd =
15101                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15102             /* point to the next page and wrap from last page */
15103             busaddr = (fp->tx_dma.paddr +
15104                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15105             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15106             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15107         }
15108 
15109         /******************/
15110         /* FP RX BD CHAIN */
15111         /******************/
15112 
15113         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15114         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15115                           &fp->rx_dma, buf) != 0) {
15116             /* XXX unwind and free previous fastpath allocations */
15117             BLOGE(sc, "Failed to alloc %s\n", buf);
15118             return (1);
15119         } else {
15120             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15121         }
15122 
15123         /* link together the rx bd chain pages */
15124         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15125             /* index into the rx bd chain array to last entry per page */
15126             struct eth_rx_bd *rx_bd =
15127                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15128             /* point to the next page and wrap from last page */
15129             busaddr = (fp->rx_dma.paddr +
15130                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15131             rx_bd->addr_hi = htole32(U64_HI(busaddr));
15132             rx_bd->addr_lo = htole32(U64_LO(busaddr));
15133         }
15134 
15135         /*******************/
15136         /* FP RX RCQ CHAIN */
15137         /*******************/
15138 
15139         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15140         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15141                           &fp->rcq_dma, buf) != 0) {
15142             /* XXX unwind and free previous fastpath allocations */
15143             BLOGE(sc, "Failed to alloc %s\n", buf);
15144             return (1);
15145         } else {
15146             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15147         }
15148 
15149         /* link together the rcq chain pages */
15150         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15151             /* index into the rcq chain array to last entry per page */
15152             struct eth_rx_cqe_next_page *rx_cqe_next =
15153                 (struct eth_rx_cqe_next_page *)
15154                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15155             /* point to the next page and wrap from last page */
15156             busaddr = (fp->rcq_dma.paddr +
15157                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15158             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15159             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15160         }
15161 
15162         /*******************/
15163         /* FP RX SGE CHAIN */
15164         /*******************/
15165 
15166         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15167         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15168                           &fp->rx_sge_dma, buf) != 0) {
15169             /* XXX unwind and free previous fastpath allocations */
15170             BLOGE(sc, "Failed to alloc %s\n", buf);
15171             return (1);
15172         } else {
15173             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15174         }
15175 
15176         /* link together the sge chain pages */
15177         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15178             /* index into the rcq chain array to last entry per page */
15179             struct eth_rx_sge *rx_sge =
15180                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15181             /* point to the next page and wrap from last page */
15182             busaddr = (fp->rx_sge_dma.paddr +
15183                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15184             rx_sge->addr_hi = htole32(U64_HI(busaddr));
15185             rx_sge->addr_lo = htole32(U64_LO(busaddr));
15186         }
15187 
15188         /***********************/
15189         /* FP TX MBUF DMA MAPS */
15190         /***********************/
15191 
15192         /* set required sizes before mapping to conserve resources */
15193         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
15194             max_size     = BXE_TSO_MAX_SIZE;
15195             max_segments = BXE_TSO_MAX_SEGMENTS;
15196             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15197         } else {
15198             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15199             max_segments = BXE_MAX_SEGMENTS;
15200             max_seg_size = MCLBYTES;
15201         }
15202 
15203         /* create a dma tag for the tx mbufs */
15204         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15205                                 1,                  /* alignment */
15206                                 0,                  /* boundary limit */
15207                                 BUS_SPACE_MAXADDR,  /* restricted low */
15208                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15209                                 NULL,               /* addr filter() */
15210                                 NULL,               /* addr filter() arg */
15211                                 max_size,           /* max map size */
15212                                 max_segments,       /* num discontinuous */
15213                                 max_seg_size,       /* max seg size */
15214                                 0,                  /* flags */
15215                                 NULL,               /* lock() */
15216                                 NULL,               /* lock() arg */
15217                                 &fp->tx_mbuf_tag);  /* returned dma tag */
15218         if (rc != 0) {
15219             /* XXX unwind and free previous fastpath allocations */
15220             BLOGE(sc, "Failed to create dma tag for "
15221                       "'fp %d tx mbufs' (%d)\n",
15222                   i, rc);
15223             return (1);
15224         }
15225 
15226         /* create dma maps for each of the tx mbuf clusters */
15227         for (j = 0; j < TX_BD_TOTAL; j++) {
15228             if (bus_dmamap_create(fp->tx_mbuf_tag,
15229                                   BUS_DMA_NOWAIT,
15230                                   &fp->tx_mbuf_chain[j].m_map)) {
15231                 /* XXX unwind and free previous fastpath allocations */
15232                 BLOGE(sc, "Failed to create dma map for "
15233                           "'fp %d tx mbuf %d' (%d)\n",
15234                       i, j, rc);
15235                 return (1);
15236             }
15237         }
15238 
15239         /***********************/
15240         /* FP RX MBUF DMA MAPS */
15241         /***********************/
15242 
15243         /* create a dma tag for the rx mbufs */
15244         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15245                                 1,                  /* alignment */
15246                                 0,                  /* boundary limit */
15247                                 BUS_SPACE_MAXADDR,  /* restricted low */
15248                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15249                                 NULL,               /* addr filter() */
15250                                 NULL,               /* addr filter() arg */
15251                                 MJUM9BYTES,         /* max map size */
15252                                 1,                  /* num discontinuous */
15253                                 MJUM9BYTES,         /* max seg size */
15254                                 0,                  /* flags */
15255                                 NULL,               /* lock() */
15256                                 NULL,               /* lock() arg */
15257                                 &fp->rx_mbuf_tag);  /* returned dma tag */
15258         if (rc != 0) {
15259             /* XXX unwind and free previous fastpath allocations */
15260             BLOGE(sc, "Failed to create dma tag for "
15261                       "'fp %d rx mbufs' (%d)\n",
15262                   i, rc);
15263             return (1);
15264         }
15265 
15266         /* create dma maps for each of the rx mbuf clusters */
15267         for (j = 0; j < RX_BD_TOTAL; j++) {
15268             if (bus_dmamap_create(fp->rx_mbuf_tag,
15269                                   BUS_DMA_NOWAIT,
15270                                   &fp->rx_mbuf_chain[j].m_map)) {
15271                 /* XXX unwind and free previous fastpath allocations */
15272                 BLOGE(sc, "Failed to create dma map for "
15273                           "'fp %d rx mbuf %d' (%d)\n",
15274                       i, j, rc);
15275                 return (1);
15276             }
15277         }
15278 
15279         /* create dma map for the spare rx mbuf cluster */
15280         if (bus_dmamap_create(fp->rx_mbuf_tag,
15281                               BUS_DMA_NOWAIT,
15282                               &fp->rx_mbuf_spare_map)) {
15283             /* XXX unwind and free previous fastpath allocations */
15284             BLOGE(sc, "Failed to create dma map for "
15285                       "'fp %d spare rx mbuf' (%d)\n",
15286                   i, rc);
15287             return (1);
15288         }
15289 
15290         /***************************/
15291         /* FP RX SGE MBUF DMA MAPS */
15292         /***************************/
15293 
15294         /* create a dma tag for the rx sge mbufs */
15295         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15296                                 1,                  /* alignment */
15297                                 0,                  /* boundary limit */
15298                                 BUS_SPACE_MAXADDR,  /* restricted low */
15299                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15300                                 NULL,               /* addr filter() */
15301                                 NULL,               /* addr filter() arg */
15302                                 BCM_PAGE_SIZE,      /* max map size */
15303                                 1,                  /* num discontinuous */
15304                                 BCM_PAGE_SIZE,      /* max seg size */
15305                                 0,                  /* flags */
15306                                 NULL,               /* lock() */
15307                                 NULL,               /* lock() arg */
15308                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15309         if (rc != 0) {
15310             /* XXX unwind and free previous fastpath allocations */
15311             BLOGE(sc, "Failed to create dma tag for "
15312                       "'fp %d rx sge mbufs' (%d)\n",
15313                   i, rc);
15314             return (1);
15315         }
15316 
15317         /* create dma maps for the rx sge mbuf clusters */
15318         for (j = 0; j < RX_SGE_TOTAL; j++) {
15319             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15320                                   BUS_DMA_NOWAIT,
15321                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15322                 /* XXX unwind and free previous fastpath allocations */
15323                 BLOGE(sc, "Failed to create dma map for "
15324                           "'fp %d rx sge mbuf %d' (%d)\n",
15325                       i, j, rc);
15326                 return (1);
15327             }
15328         }
15329 
15330         /* create dma map for the spare rx sge mbuf cluster */
15331         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15332                               BUS_DMA_NOWAIT,
15333                               &fp->rx_sge_mbuf_spare_map)) {
15334             /* XXX unwind and free previous fastpath allocations */
15335             BLOGE(sc, "Failed to create dma map for "
15336                       "'fp %d spare rx sge mbuf' (%d)\n",
15337                   i, rc);
15338             return (1);
15339         }
15340 
15341         /***************************/
15342         /* FP RX TPA MBUF DMA MAPS */
15343         /***************************/
15344 
15345         /* create dma maps for the rx tpa mbuf clusters */
15346         max_agg_queues = MAX_AGG_QS(sc);
15347 
15348         for (j = 0; j < max_agg_queues; j++) {
15349             if (bus_dmamap_create(fp->rx_mbuf_tag,
15350                                   BUS_DMA_NOWAIT,
15351                                   &fp->rx_tpa_info[j].bd.m_map)) {
15352                 /* XXX unwind and free previous fastpath allocations */
15353                 BLOGE(sc, "Failed to create dma map for "
15354                           "'fp %d rx tpa mbuf %d' (%d)\n",
15355                       i, j, rc);
15356                 return (1);
15357             }
15358         }
15359 
15360         /* create dma map for the spare rx tpa mbuf cluster */
15361         if (bus_dmamap_create(fp->rx_mbuf_tag,
15362                               BUS_DMA_NOWAIT,
15363                               &fp->rx_tpa_info_mbuf_spare_map)) {
15364             /* XXX unwind and free previous fastpath allocations */
15365             BLOGE(sc, "Failed to create dma map for "
15366                       "'fp %d spare rx tpa mbuf' (%d)\n",
15367                   i, rc);
15368             return (1);
15369         }
15370 
15371         bxe_init_sge_ring_bit_mask(fp);
15372     }
15373 
15374     return (0);
15375 }
15376 
15377 static void
15378 bxe_free_hsi_mem(struct bxe_softc *sc)
15379 {
15380     struct bxe_fastpath *fp;
15381     int max_agg_queues;
15382     int i, j;
15383 
15384     if (sc->parent_dma_tag == NULL) {
15385         return; /* assume nothing was allocated */
15386     }
15387 
15388     for (i = 0; i < sc->num_queues; i++) {
15389         fp = &sc->fp[i];
15390 
15391         /*******************/
15392         /* FP STATUS BLOCK */
15393         /*******************/
15394 
15395         bxe_dma_free(sc, &fp->sb_dma);
15396         memset(&fp->status_block, 0, sizeof(fp->status_block));
15397 
15398         /******************/
15399         /* FP TX BD CHAIN */
15400         /******************/
15401 
15402         bxe_dma_free(sc, &fp->tx_dma);
15403         fp->tx_chain = NULL;
15404 
15405         /******************/
15406         /* FP RX BD CHAIN */
15407         /******************/
15408 
15409         bxe_dma_free(sc, &fp->rx_dma);
15410         fp->rx_chain = NULL;
15411 
15412         /*******************/
15413         /* FP RX RCQ CHAIN */
15414         /*******************/
15415 
15416         bxe_dma_free(sc, &fp->rcq_dma);
15417         fp->rcq_chain = NULL;
15418 
15419         /*******************/
15420         /* FP RX SGE CHAIN */
15421         /*******************/
15422 
15423         bxe_dma_free(sc, &fp->rx_sge_dma);
15424         fp->rx_sge_chain = NULL;
15425 
15426         /***********************/
15427         /* FP TX MBUF DMA MAPS */
15428         /***********************/
15429 
15430         if (fp->tx_mbuf_tag != NULL) {
15431             for (j = 0; j < TX_BD_TOTAL; j++) {
15432                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15433                     bus_dmamap_unload(fp->tx_mbuf_tag,
15434                                       fp->tx_mbuf_chain[j].m_map);
15435                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15436                                        fp->tx_mbuf_chain[j].m_map);
15437                 }
15438             }
15439 
15440             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15441             fp->tx_mbuf_tag = NULL;
15442         }
15443 
15444         /***********************/
15445         /* FP RX MBUF DMA MAPS */
15446         /***********************/
15447 
15448         if (fp->rx_mbuf_tag != NULL) {
15449             for (j = 0; j < RX_BD_TOTAL; j++) {
15450                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15451                     bus_dmamap_unload(fp->rx_mbuf_tag,
15452                                       fp->rx_mbuf_chain[j].m_map);
15453                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15454                                        fp->rx_mbuf_chain[j].m_map);
15455                 }
15456             }
15457 
15458             if (fp->rx_mbuf_spare_map != NULL) {
15459                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15460                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15461             }
15462 
15463             /***************************/
15464             /* FP RX TPA MBUF DMA MAPS */
15465             /***************************/
15466 
15467             max_agg_queues = MAX_AGG_QS(sc);
15468 
15469             for (j = 0; j < max_agg_queues; j++) {
15470                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15471                     bus_dmamap_unload(fp->rx_mbuf_tag,
15472                                       fp->rx_tpa_info[j].bd.m_map);
15473                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15474                                        fp->rx_tpa_info[j].bd.m_map);
15475                 }
15476             }
15477 
15478             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15479                 bus_dmamap_unload(fp->rx_mbuf_tag,
15480                                   fp->rx_tpa_info_mbuf_spare_map);
15481                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15482                                    fp->rx_tpa_info_mbuf_spare_map);
15483             }
15484 
15485             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15486             fp->rx_mbuf_tag = NULL;
15487         }
15488 
15489         /***************************/
15490         /* FP RX SGE MBUF DMA MAPS */
15491         /***************************/
15492 
15493         if (fp->rx_sge_mbuf_tag != NULL) {
15494             for (j = 0; j < RX_SGE_TOTAL; j++) {
15495                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15496                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15497                                       fp->rx_sge_mbuf_chain[j].m_map);
15498                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15499                                        fp->rx_sge_mbuf_chain[j].m_map);
15500                 }
15501             }
15502 
15503             if (fp->rx_sge_mbuf_spare_map != NULL) {
15504                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15505                                   fp->rx_sge_mbuf_spare_map);
15506                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15507                                    fp->rx_sge_mbuf_spare_map);
15508             }
15509 
15510             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15511             fp->rx_sge_mbuf_tag = NULL;
15512         }
15513     }
15514 
15515     /***************************/
15516     /* FW DECOMPRESSION BUFFER */
15517     /***************************/
15518 
15519     bxe_dma_free(sc, &sc->gz_buf_dma);
15520     sc->gz_buf = NULL;
15521     free(sc->gz_strm, M_DEVBUF);
15522     sc->gz_strm = NULL;
15523 
15524     /*******************/
15525     /* SLOW PATH QUEUE */
15526     /*******************/
15527 
15528     bxe_dma_free(sc, &sc->spq_dma);
15529     sc->spq = NULL;
15530 
15531     /*************/
15532     /* SLOW PATH */
15533     /*************/
15534 
15535     bxe_dma_free(sc, &sc->sp_dma);
15536     sc->sp = NULL;
15537 
15538     /***************/
15539     /* EVENT QUEUE */
15540     /***************/
15541 
15542     bxe_dma_free(sc, &sc->eq_dma);
15543     sc->eq = NULL;
15544 
15545     /************************/
15546     /* DEFAULT STATUS BLOCK */
15547     /************************/
15548 
15549     bxe_dma_free(sc, &sc->def_sb_dma);
15550     sc->def_sb = NULL;
15551 
15552     bus_dma_tag_destroy(sc->parent_dma_tag);
15553     sc->parent_dma_tag = NULL;
15554 }
15555 
15556 /*
15557  * Previous driver DMAE transaction may have occurred when pre-boot stage
15558  * ended and boot began. This would invalidate the addresses of the
15559  * transaction, resulting in was-error bit set in the PCI causing all
15560  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15561  * the interrupt which detected this from the pglueb and the was-done bit
15562  */
15563 static void
15564 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15565 {
15566     uint32_t val;
15567 
15568     if (!CHIP_IS_E1x(sc)) {
15569         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15570         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15571             BLOGD(sc, DBG_LOAD,
15572                   "Clearing 'was-error' bit that was set in pglueb");
15573             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15574         }
15575     }
15576 }
15577 
15578 static int
15579 bxe_prev_mcp_done(struct bxe_softc *sc)
15580 {
15581     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15582                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15583     if (!rc) {
15584         BLOGE(sc, "MCP response failure, aborting\n");
15585         return (-1);
15586     }
15587 
15588     return (0);
15589 }
15590 
15591 static struct bxe_prev_list_node *
15592 bxe_prev_path_get_entry(struct bxe_softc *sc)
15593 {
15594     struct bxe_prev_list_node *tmp;
15595 
15596     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15597         if ((sc->pcie_bus == tmp->bus) &&
15598             (sc->pcie_device == tmp->slot) &&
15599             (SC_PATH(sc) == tmp->path)) {
15600             return (tmp);
15601         }
15602     }
15603 
15604     return (NULL);
15605 }
15606 
15607 static uint8_t
15608 bxe_prev_is_path_marked(struct bxe_softc *sc)
15609 {
15610     struct bxe_prev_list_node *tmp;
15611     int rc = FALSE;
15612 
15613     mtx_lock(&bxe_prev_mtx);
15614 
15615     tmp = bxe_prev_path_get_entry(sc);
15616     if (tmp) {
15617         if (tmp->aer) {
15618             BLOGD(sc, DBG_LOAD,
15619                   "Path %d/%d/%d was marked by AER\n",
15620                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15621         } else {
15622             rc = TRUE;
15623             BLOGD(sc, DBG_LOAD,
15624                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15625                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15626         }
15627     }
15628 
15629     mtx_unlock(&bxe_prev_mtx);
15630 
15631     return (rc);
15632 }
15633 
15634 static int
15635 bxe_prev_mark_path(struct bxe_softc *sc,
15636                    uint8_t          after_undi)
15637 {
15638     struct bxe_prev_list_node *tmp;
15639 
15640     mtx_lock(&bxe_prev_mtx);
15641 
15642     /* Check whether the entry for this path already exists */
15643     tmp = bxe_prev_path_get_entry(sc);
15644     if (tmp) {
15645         if (!tmp->aer) {
15646             BLOGD(sc, DBG_LOAD,
15647                   "Re-marking AER in path %d/%d/%d\n",
15648                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15649         } else {
15650             BLOGD(sc, DBG_LOAD,
15651                   "Removing AER indication from path %d/%d/%d\n",
15652                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15653             tmp->aer = 0;
15654         }
15655 
15656         mtx_unlock(&bxe_prev_mtx);
15657         return (0);
15658     }
15659 
15660     mtx_unlock(&bxe_prev_mtx);
15661 
15662     /* Create an entry for this path and add it */
15663     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15664                  (M_NOWAIT | M_ZERO));
15665     if (!tmp) {
15666         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15667         return (-1);
15668     }
15669 
15670     tmp->bus  = sc->pcie_bus;
15671     tmp->slot = sc->pcie_device;
15672     tmp->path = SC_PATH(sc);
15673     tmp->aer  = 0;
15674     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15675 
15676     mtx_lock(&bxe_prev_mtx);
15677 
15678     BLOGD(sc, DBG_LOAD,
15679           "Marked path %d/%d/%d - finished previous unload\n",
15680           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15681     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15682 
15683     mtx_unlock(&bxe_prev_mtx);
15684 
15685     return (0);
15686 }
15687 
15688 static int
15689 bxe_do_flr(struct bxe_softc *sc)
15690 {
15691     int i;
15692 
15693     /* only E2 and onwards support FLR */
15694     if (CHIP_IS_E1x(sc)) {
15695         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15696         return (-1);
15697     }
15698 
15699     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15700     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15701         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15702               sc->devinfo.bc_ver);
15703         return (-1);
15704     }
15705 
15706     /* Wait for Transaction Pending bit clean */
15707     for (i = 0; i < 4; i++) {
15708         if (i) {
15709             DELAY(((1 << (i - 1)) * 100) * 1000);
15710         }
15711 
15712         if (!bxe_is_pcie_pending(sc)) {
15713             goto clear;
15714         }
15715     }
15716 
15717     BLOGE(sc, "PCIE transaction is not cleared, "
15718               "proceeding with reset anyway\n");
15719 
15720 clear:
15721 
15722     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15723     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15724 
15725     return (0);
15726 }
15727 
15728 struct bxe_mac_vals {
15729     uint32_t xmac_addr;
15730     uint32_t xmac_val;
15731     uint32_t emac_addr;
15732     uint32_t emac_val;
15733     uint32_t umac_addr;
15734     uint32_t umac_val;
15735     uint32_t bmac_addr;
15736     uint32_t bmac_val[2];
15737 };
15738 
15739 static void
15740 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15741                           struct bxe_mac_vals *vals)
15742 {
15743     uint32_t val, base_addr, offset, mask, reset_reg;
15744     uint8_t mac_stopped = FALSE;
15745     uint8_t port = SC_PORT(sc);
15746     uint32_t wb_data[2];
15747 
15748     /* reset addresses as they also mark which values were changed */
15749     vals->bmac_addr = 0;
15750     vals->umac_addr = 0;
15751     vals->xmac_addr = 0;
15752     vals->emac_addr = 0;
15753 
15754     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15755 
15756     if (!CHIP_IS_E3(sc)) {
15757         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15758         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15759         if ((mask & reset_reg) && val) {
15760             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15761             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15762                                     : NIG_REG_INGRESS_BMAC0_MEM;
15763             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15764                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15765 
15766             /*
15767              * use rd/wr since we cannot use dmae. This is safe
15768              * since MCP won't access the bus due to the request
15769              * to unload, and no function on the path can be
15770              * loaded at this time.
15771              */
15772             wb_data[0] = REG_RD(sc, base_addr + offset);
15773             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15774             vals->bmac_addr = base_addr + offset;
15775             vals->bmac_val[0] = wb_data[0];
15776             vals->bmac_val[1] = wb_data[1];
15777             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15778             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15779             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15780         }
15781 
15782         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15783         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15784         vals->emac_val = REG_RD(sc, vals->emac_addr);
15785         REG_WR(sc, vals->emac_addr, 0);
15786         mac_stopped = TRUE;
15787     } else {
15788         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15789             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15790             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15791             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15792             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15793             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15794             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15795             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15796             REG_WR(sc, vals->xmac_addr, 0);
15797             mac_stopped = TRUE;
15798         }
15799 
15800         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15801         if (mask & reset_reg) {
15802             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15803             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15804             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15805             vals->umac_val = REG_RD(sc, vals->umac_addr);
15806             REG_WR(sc, vals->umac_addr, 0);
15807             mac_stopped = TRUE;
15808         }
15809     }
15810 
15811     if (mac_stopped) {
15812         DELAY(20000);
15813     }
15814 }
15815 
15816 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15817 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15818 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15819 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15820 
15821 static void
15822 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15823                          uint8_t          port,
15824                          uint8_t          inc)
15825 {
15826     uint16_t rcq, bd;
15827     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15828 
15829     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15830     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15831 
15832     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15833     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15834 
15835     BLOGD(sc, DBG_LOAD,
15836           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15837           port, bd, rcq);
15838 }
15839 
15840 static int
15841 bxe_prev_unload_common(struct bxe_softc *sc)
15842 {
15843     uint32_t reset_reg, tmp_reg = 0, rc;
15844     uint8_t prev_undi = FALSE;
15845     struct bxe_mac_vals mac_vals;
15846     uint32_t timer_count = 1000;
15847     uint32_t prev_brb;
15848 
15849     /*
15850      * It is possible a previous function received 'common' answer,
15851      * but hasn't loaded yet, therefore creating a scenario of
15852      * multiple functions receiving 'common' on the same path.
15853      */
15854     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15855 
15856     memset(&mac_vals, 0, sizeof(mac_vals));
15857 
15858     if (bxe_prev_is_path_marked(sc)) {
15859         return (bxe_prev_mcp_done(sc));
15860     }
15861 
15862     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15863 
15864     /* Reset should be performed after BRB is emptied */
15865     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15866         /* Close the MAC Rx to prevent BRB from filling up */
15867         bxe_prev_unload_close_mac(sc, &mac_vals);
15868 
15869         /* close LLH filters towards the BRB */
15870         elink_set_rx_filter(&sc->link_params, 0);
15871 
15872         /*
15873          * Check if the UNDI driver was previously loaded.
15874          * UNDI driver initializes CID offset for normal bell to 0x7
15875          */
15876         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15877             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15878             if (tmp_reg == 0x7) {
15879                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15880                 prev_undi = TRUE;
15881                 /* clear the UNDI indication */
15882                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15883                 /* clear possible idle check errors */
15884                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15885             }
15886         }
15887 
15888         /* wait until BRB is empty */
15889         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15890         while (timer_count) {
15891             prev_brb = tmp_reg;
15892 
15893             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15894             if (!tmp_reg) {
15895                 break;
15896             }
15897 
15898             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15899 
15900             /* reset timer as long as BRB actually gets emptied */
15901             if (prev_brb > tmp_reg) {
15902                 timer_count = 1000;
15903             } else {
15904                 timer_count--;
15905             }
15906 
15907             /* If UNDI resides in memory, manually increment it */
15908             if (prev_undi) {
15909                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15910             }
15911 
15912             DELAY(10);
15913         }
15914 
15915         if (!timer_count) {
15916             BLOGE(sc, "Failed to empty BRB\n");
15917         }
15918     }
15919 
15920     /* No packets are in the pipeline, path is ready for reset */
15921     bxe_reset_common(sc);
15922 
15923     if (mac_vals.xmac_addr) {
15924         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15925     }
15926     if (mac_vals.umac_addr) {
15927         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15928     }
15929     if (mac_vals.emac_addr) {
15930         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15931     }
15932     if (mac_vals.bmac_addr) {
15933         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15934         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15935     }
15936 
15937     rc = bxe_prev_mark_path(sc, prev_undi);
15938     if (rc) {
15939         bxe_prev_mcp_done(sc);
15940         return (rc);
15941     }
15942 
15943     return (bxe_prev_mcp_done(sc));
15944 }
15945 
15946 static int
15947 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15948 {
15949     int rc;
15950 
15951     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15952 
15953     /* Test if previous unload process was already finished for this path */
15954     if (bxe_prev_is_path_marked(sc)) {
15955         return (bxe_prev_mcp_done(sc));
15956     }
15957 
15958     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15959 
15960     /*
15961      * If function has FLR capabilities, and existing FW version matches
15962      * the one required, then FLR will be sufficient to clean any residue
15963      * left by previous driver
15964      */
15965     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15966     if (!rc) {
15967         /* fw version is good */
15968         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15969         rc = bxe_do_flr(sc);
15970     }
15971 
15972     if (!rc) {
15973         /* FLR was performed */
15974         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15975         return (0);
15976     }
15977 
15978     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15979 
15980     /* Close the MCP request, return failure*/
15981     rc = bxe_prev_mcp_done(sc);
15982     if (!rc) {
15983         rc = BXE_PREV_WAIT_NEEDED;
15984     }
15985 
15986     return (rc);
15987 }
15988 
15989 static int
15990 bxe_prev_unload(struct bxe_softc *sc)
15991 {
15992     int time_counter = 10;
15993     uint32_t fw, hw_lock_reg, hw_lock_val;
15994     uint32_t rc = 0;
15995 
15996     /*
15997      * Clear HW from errors which may have resulted from an interrupted
15998      * DMAE transaction.
15999      */
16000     bxe_prev_interrupted_dmae(sc);
16001 
16002     /* Release previously held locks */
16003     hw_lock_reg =
16004         (SC_FUNC(sc) <= 5) ?
16005             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16006             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16007 
16008     hw_lock_val = (REG_RD(sc, hw_lock_reg));
16009     if (hw_lock_val) {
16010         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16011             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16012             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16013                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16014         }
16015         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16016         REG_WR(sc, hw_lock_reg, 0xffffffff);
16017     } else {
16018         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16019     }
16020 
16021     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16022         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16023         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16024     }
16025 
16026     do {
16027         /* Lock MCP using an unload request */
16028         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16029         if (!fw) {
16030             BLOGE(sc, "MCP response failure, aborting\n");
16031             rc = -1;
16032             break;
16033         }
16034 
16035         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16036             rc = bxe_prev_unload_common(sc);
16037             break;
16038         }
16039 
16040         /* non-common reply from MCP night require looping */
16041         rc = bxe_prev_unload_uncommon(sc);
16042         if (rc != BXE_PREV_WAIT_NEEDED) {
16043             break;
16044         }
16045 
16046         DELAY(20000);
16047     } while (--time_counter);
16048 
16049     if (!time_counter || rc) {
16050         BLOGE(sc, "Failed to unload previous driver!\n");
16051         rc = -1;
16052     }
16053 
16054     return (rc);
16055 }
16056 
16057 void
16058 bxe_dcbx_set_state(struct bxe_softc *sc,
16059                    uint8_t          dcb_on,
16060                    uint32_t         dcbx_enabled)
16061 {
16062     if (!CHIP_IS_E1x(sc)) {
16063         sc->dcb_state = dcb_on;
16064         sc->dcbx_enabled = dcbx_enabled;
16065     } else {
16066         sc->dcb_state = FALSE;
16067         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16068     }
16069     BLOGD(sc, DBG_LOAD,
16070           "DCB state [%s:%s]\n",
16071           dcb_on ? "ON" : "OFF",
16072           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16073           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16074           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16075           "on-chip with negotiation" : "invalid");
16076 }
16077 
16078 /* must be called after sriov-enable */
16079 static int
16080 bxe_set_qm_cid_count(struct bxe_softc *sc)
16081 {
16082     int cid_count = BXE_L2_MAX_CID(sc);
16083 
16084     if (IS_SRIOV(sc)) {
16085         cid_count += BXE_VF_CIDS;
16086     }
16087 
16088     if (CNIC_SUPPORT(sc)) {
16089         cid_count += CNIC_CID_MAX;
16090     }
16091 
16092     return (roundup(cid_count, QM_CID_ROUND));
16093 }
16094 
16095 static void
16096 bxe_init_multi_cos(struct bxe_softc *sc)
16097 {
16098     int pri, cos;
16099 
16100     uint32_t pri_map = 0; /* XXX change to user config */
16101 
16102     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16103         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16104         if (cos < sc->max_cos) {
16105             sc->prio_to_cos[pri] = cos;
16106         } else {
16107             BLOGW(sc, "Invalid COS %d for priority %d "
16108                       "(max COS is %d), setting to 0\n",
16109                   cos, pri, (sc->max_cos - 1));
16110             sc->prio_to_cos[pri] = 0;
16111         }
16112     }
16113 }
16114 
16115 static int
16116 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16117 {
16118     struct bxe_softc *sc;
16119     int error, result;
16120 
16121     result = 0;
16122     error = sysctl_handle_int(oidp, &result, 0, req);
16123 
16124     if (error || !req->newptr) {
16125         return (error);
16126     }
16127 
16128     if (result == 1) {
16129         sc = (struct bxe_softc *)arg1;
16130         BLOGI(sc, "... dumping driver state ...\n");
16131         /* XXX */
16132     }
16133 
16134     return (error);
16135 }
16136 
16137 static int
16138 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16139 {
16140     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16141     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16142     uint32_t *offset;
16143     uint64_t value = 0;
16144     int index = (int)arg2;
16145 
16146     if (index >= BXE_NUM_ETH_STATS) {
16147         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16148         return (-1);
16149     }
16150 
16151     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16152 
16153     switch (bxe_eth_stats_arr[index].size) {
16154     case 4:
16155         value = (uint64_t)*offset;
16156         break;
16157     case 8:
16158         value = HILO_U64(*offset, *(offset + 1));
16159         break;
16160     default:
16161         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16162               index, bxe_eth_stats_arr[index].size);
16163         return (-1);
16164     }
16165 
16166     return (sysctl_handle_64(oidp, &value, 0, req));
16167 }
16168 
16169 static int
16170 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16171 {
16172     struct bxe_softc *sc = (struct bxe_softc *)arg1;
16173     uint32_t *eth_stats;
16174     uint32_t *offset;
16175     uint64_t value = 0;
16176     uint32_t q_stat = (uint32_t)arg2;
16177     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16178     uint32_t index = (q_stat & 0xffff);
16179 
16180     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16181 
16182     if (index >= BXE_NUM_ETH_Q_STATS) {
16183         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16184         return (-1);
16185     }
16186 
16187     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16188 
16189     switch (bxe_eth_q_stats_arr[index].size) {
16190     case 4:
16191         value = (uint64_t)*offset;
16192         break;
16193     case 8:
16194         value = HILO_U64(*offset, *(offset + 1));
16195         break;
16196     default:
16197         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16198               index, bxe_eth_q_stats_arr[index].size);
16199         return (-1);
16200     }
16201 
16202     return (sysctl_handle_64(oidp, &value, 0, req));
16203 }
16204 
16205 static void
16206 bxe_add_sysctls(struct bxe_softc *sc)
16207 {
16208     struct sysctl_ctx_list *ctx;
16209     struct sysctl_oid_list *children;
16210     struct sysctl_oid *queue_top, *queue;
16211     struct sysctl_oid_list *queue_top_children, *queue_children;
16212     char queue_num_buf[32];
16213     uint32_t q_stat;
16214     int i, j;
16215 
16216     ctx = device_get_sysctl_ctx(sc->dev);
16217     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16218 
16219     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16220                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16221                       "version");
16222 
16223     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16224                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16225                       "bootcode version");
16226 
16227     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16228              BCM_5710_FW_MAJOR_VERSION,
16229              BCM_5710_FW_MINOR_VERSION,
16230              BCM_5710_FW_REVISION_VERSION,
16231              BCM_5710_FW_ENGINEERING_VERSION);
16232     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16233                       CTLFLAG_RD, sc->fw_ver_str, 0,
16234                       "firmware version");
16235 
16236     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16237         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16238          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16239          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16240          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16241                                                                 "Unknown"));
16242     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16243                       CTLFLAG_RD, sc->mf_mode_str, 0,
16244                       "multifunction mode");
16245 
16246     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16247                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16248                     "multifunction vnics per port");
16249 
16250     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16251                       CTLFLAG_RD, sc->mac_addr_str, 0,
16252                       "mac address");
16253 
16254     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16255         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16256          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16257          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16258                                               "???GT/s"),
16259         sc->devinfo.pcie_link_width);
16260     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16261                       CTLFLAG_RD, sc->pci_link_str, 0,
16262                       "pci link status");
16263 
16264     sc->debug = bxe_debug;
16265     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16266                     CTLFLAG_RW, &sc->debug,
16267                     "debug logging mode");
16268 
16269     sc->rx_budget = bxe_rx_budget;
16270     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16271                     CTLFLAG_RW, &sc->rx_budget, 0,
16272                     "rx processing budget");
16273 
16274     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16275                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16276                     bxe_sysctl_state, "IU", "dump driver state");
16277 
16278     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16279         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16280                         bxe_eth_stats_arr[i].string,
16281                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16282                         bxe_sysctl_eth_stat, "LU",
16283                         bxe_eth_stats_arr[i].string);
16284     }
16285 
16286     /* add a new parent node for all queues "dev.bxe.#.queue" */
16287     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16288                                 CTLFLAG_RD, NULL, "queue");
16289     queue_top_children = SYSCTL_CHILDREN(queue_top);
16290 
16291     for (i = 0; i < sc->num_queues; i++) {
16292         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16293         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16294         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16295                                 queue_num_buf, CTLFLAG_RD, NULL,
16296                                 "single queue");
16297         queue_children = SYSCTL_CHILDREN(queue);
16298 
16299         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16300             q_stat = ((i << 16) | j);
16301             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16302                             bxe_eth_q_stats_arr[j].string,
16303                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16304                             bxe_sysctl_eth_q_stat, "LU",
16305                             bxe_eth_q_stats_arr[j].string);
16306         }
16307     }
16308 }
16309 
16310 /*
16311  * Device attach function.
16312  *
16313  * Allocates device resources, performs secondary chip identification, and
16314  * initializes driver instance variables. This function is called from driver
16315  * load after a successful probe.
16316  *
16317  * Returns:
16318  *   0 = Success, >0 = Failure
16319  */
16320 static int
16321 bxe_attach(device_t dev)
16322 {
16323     struct bxe_softc *sc;
16324 
16325     sc = device_get_softc(dev);
16326 
16327     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16328 
16329     sc->state = BXE_STATE_CLOSED;
16330 
16331     sc->dev  = dev;
16332     sc->unit = device_get_unit(dev);
16333 
16334     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16335 
16336     sc->pcie_bus    = pci_get_bus(dev);
16337     sc->pcie_device = pci_get_slot(dev);
16338     sc->pcie_func   = pci_get_function(dev);
16339 
16340     /* enable bus master capability */
16341     pci_enable_busmaster(dev);
16342 
16343     /* get the BARs */
16344     if (bxe_allocate_bars(sc) != 0) {
16345         return (ENXIO);
16346     }
16347 
16348     /* initialize the mutexes */
16349     bxe_init_mutexes(sc);
16350 
16351     /* prepare the periodic callout */
16352     callout_init(&sc->periodic_callout, 0);
16353 
16354     /* prepare the chip taskqueue */
16355     sc->chip_tq_flags = CHIP_TQ_NONE;
16356     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16357              "bxe%d_chip_tq", sc->unit);
16358     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16359     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16360                                    taskqueue_thread_enqueue,
16361                                    &sc->chip_tq);
16362     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16363                             "%s", sc->chip_tq_name);
16364 
16365     /* get device info and set params */
16366     if (bxe_get_device_info(sc) != 0) {
16367         BLOGE(sc, "getting device info\n");
16368         bxe_deallocate_bars(sc);
16369         pci_disable_busmaster(dev);
16370         return (ENXIO);
16371     }
16372 
16373     /* get final misc params */
16374     bxe_get_params(sc);
16375 
16376     /* set the default MTU (changed via ifconfig) */
16377     sc->mtu = ETHERMTU;
16378 
16379     bxe_set_modes_bitmap(sc);
16380 
16381     /* XXX
16382      * If in AFEX mode and the function is configured for FCoE
16383      * then bail... no L2 allowed.
16384      */
16385 
16386     /* get phy settings from shmem and 'and' against admin settings */
16387     bxe_get_phy_info(sc);
16388 
16389     /* initialize the FreeBSD ifnet interface */
16390     if (bxe_init_ifnet(sc) != 0) {
16391         bxe_release_mutexes(sc);
16392         bxe_deallocate_bars(sc);
16393         pci_disable_busmaster(dev);
16394         return (ENXIO);
16395     }
16396 
16397     /* allocate device interrupts */
16398     if (bxe_interrupt_alloc(sc) != 0) {
16399         if (sc->ifp != NULL) {
16400             ether_ifdetach(sc->ifp);
16401         }
16402         ifmedia_removeall(&sc->ifmedia);
16403         bxe_release_mutexes(sc);
16404         bxe_deallocate_bars(sc);
16405         pci_disable_busmaster(dev);
16406         return (ENXIO);
16407     }
16408 
16409     /* allocate ilt */
16410     if (bxe_alloc_ilt_mem(sc) != 0) {
16411         bxe_interrupt_free(sc);
16412         if (sc->ifp != NULL) {
16413             ether_ifdetach(sc->ifp);
16414         }
16415         ifmedia_removeall(&sc->ifmedia);
16416         bxe_release_mutexes(sc);
16417         bxe_deallocate_bars(sc);
16418         pci_disable_busmaster(dev);
16419         return (ENXIO);
16420     }
16421 
16422     /* allocate the host hardware/software hsi structures */
16423     if (bxe_alloc_hsi_mem(sc) != 0) {
16424         bxe_free_ilt_mem(sc);
16425         bxe_interrupt_free(sc);
16426         if (sc->ifp != NULL) {
16427             ether_ifdetach(sc->ifp);
16428         }
16429         ifmedia_removeall(&sc->ifmedia);
16430         bxe_release_mutexes(sc);
16431         bxe_deallocate_bars(sc);
16432         pci_disable_busmaster(dev);
16433         return (ENXIO);
16434     }
16435 
16436     /* need to reset chip if UNDI was active */
16437     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16438         /* init fw_seq */
16439         sc->fw_seq =
16440             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16441              DRV_MSG_SEQ_NUMBER_MASK);
16442         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16443         bxe_prev_unload(sc);
16444     }
16445 
16446 #if 1
16447     /* XXX */
16448     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16449 #else
16450     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16451         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16452         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16453         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16454         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16455         bxe_dcbx_init_params(sc);
16456     } else {
16457         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16458     }
16459 #endif
16460 
16461     /* calculate qm_cid_count */
16462     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16463     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16464 
16465     sc->max_cos = 1;
16466     bxe_init_multi_cos(sc);
16467 
16468     bxe_add_sysctls(sc);
16469 
16470     return (0);
16471 }
16472 
16473 /*
16474  * Device detach function.
16475  *
16476  * Stops the controller, resets the controller, and releases resources.
16477  *
16478  * Returns:
16479  *   0 = Success, >0 = Failure
16480  */
16481 static int
16482 bxe_detach(device_t dev)
16483 {
16484     struct bxe_softc *sc;
16485     if_t ifp;
16486 
16487     sc = device_get_softc(dev);
16488 
16489     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16490 
16491     ifp = sc->ifp;
16492     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16493         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16494         return(EBUSY);
16495     }
16496 
16497     /* stop the periodic callout */
16498     bxe_periodic_stop(sc);
16499 
16500     /* stop the chip taskqueue */
16501     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16502     if (sc->chip_tq) {
16503         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16504         taskqueue_free(sc->chip_tq);
16505         sc->chip_tq = NULL;
16506     }
16507 
16508     /* stop and reset the controller if it was open */
16509     if (sc->state != BXE_STATE_CLOSED) {
16510         BXE_CORE_LOCK(sc);
16511         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16512         BXE_CORE_UNLOCK(sc);
16513     }
16514 
16515     /* release the network interface */
16516     if (ifp != NULL) {
16517         ether_ifdetach(ifp);
16518     }
16519     ifmedia_removeall(&sc->ifmedia);
16520 
16521     /* XXX do the following based on driver state... */
16522 
16523     /* free the host hardware/software hsi structures */
16524     bxe_free_hsi_mem(sc);
16525 
16526     /* free ilt */
16527     bxe_free_ilt_mem(sc);
16528 
16529     /* release the interrupts */
16530     bxe_interrupt_free(sc);
16531 
16532     /* Release the mutexes*/
16533     bxe_release_mutexes(sc);
16534 
16535     /* Release the PCIe BAR mapped memory */
16536     bxe_deallocate_bars(sc);
16537 
16538     /* Release the FreeBSD interface. */
16539     if (sc->ifp != NULL) {
16540         if_free(sc->ifp);
16541     }
16542 
16543     pci_disable_busmaster(dev);
16544 
16545     return (0);
16546 }
16547 
16548 /*
16549  * Device shutdown function.
16550  *
16551  * Stops and resets the controller.
16552  *
16553  * Returns:
16554  *   Nothing
16555  */
16556 static int
16557 bxe_shutdown(device_t dev)
16558 {
16559     struct bxe_softc *sc;
16560 
16561     sc = device_get_softc(dev);
16562 
16563     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16564 
16565     /* stop the periodic callout */
16566     bxe_periodic_stop(sc);
16567 
16568     BXE_CORE_LOCK(sc);
16569     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16570     BXE_CORE_UNLOCK(sc);
16571 
16572     return (0);
16573 }
16574 
16575 void
16576 bxe_igu_ack_sb(struct bxe_softc *sc,
16577                uint8_t          igu_sb_id,
16578                uint8_t          segment,
16579                uint16_t         index,
16580                uint8_t          op,
16581                uint8_t          update)
16582 {
16583     uint32_t igu_addr = sc->igu_base_addr;
16584     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16585     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16586 }
16587 
16588 static void
16589 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16590                      uint8_t          func,
16591                      uint8_t          idu_sb_id,
16592                      uint8_t          is_pf)
16593 {
16594     uint32_t data, ctl, cnt = 100;
16595     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16596     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16597     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16598     uint32_t sb_bit =  1 << (idu_sb_id%32);
16599     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16600     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16601 
16602     /* Not supported in BC mode */
16603     if (CHIP_INT_MODE_IS_BC(sc)) {
16604         return;
16605     }
16606 
16607     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16608              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16609             IGU_REGULAR_CLEANUP_SET |
16610             IGU_REGULAR_BCLEANUP);
16611 
16612     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16613            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16614            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16615 
16616     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16617             data, igu_addr_data);
16618     REG_WR(sc, igu_addr_data, data);
16619 
16620     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16621                       BUS_SPACE_BARRIER_WRITE);
16622     mb();
16623 
16624     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16625             ctl, igu_addr_ctl);
16626     REG_WR(sc, igu_addr_ctl, ctl);
16627 
16628     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16629                       BUS_SPACE_BARRIER_WRITE);
16630     mb();
16631 
16632     /* wait for clean up to finish */
16633     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16634         DELAY(20000);
16635     }
16636 
16637     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16638         BLOGD(sc, DBG_LOAD,
16639               "Unable to finish IGU cleanup: "
16640               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16641               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16642     }
16643 }
16644 
16645 static void
16646 bxe_igu_clear_sb(struct bxe_softc *sc,
16647                  uint8_t          idu_sb_id)
16648 {
16649     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16650 }
16651 
16652 
16653 
16654 
16655 
16656 
16657 
16658 /*******************/
16659 /* ECORE CALLBACKS */
16660 /*******************/
16661 
16662 static void
16663 bxe_reset_common(struct bxe_softc *sc)
16664 {
16665     uint32_t val = 0x1400;
16666 
16667     /* reset_common */
16668     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16669 
16670     if (CHIP_IS_E3(sc)) {
16671         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16672         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16673     }
16674 
16675     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16676 }
16677 
16678 static void
16679 bxe_common_init_phy(struct bxe_softc *sc)
16680 {
16681     uint32_t shmem_base[2];
16682     uint32_t shmem2_base[2];
16683 
16684     /* Avoid common init in case MFW supports LFA */
16685     if (SHMEM2_RD(sc, size) >
16686         (uint32_t)offsetof(struct shmem2_region,
16687                            lfa_host_addr[SC_PORT(sc)])) {
16688         return;
16689     }
16690 
16691     shmem_base[0]  = sc->devinfo.shmem_base;
16692     shmem2_base[0] = sc->devinfo.shmem2_base;
16693 
16694     if (!CHIP_IS_E1x(sc)) {
16695         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16696         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16697     }
16698 
16699     bxe_acquire_phy_lock(sc);
16700     elink_common_init_phy(sc, shmem_base, shmem2_base,
16701                           sc->devinfo.chip_id, 0);
16702     bxe_release_phy_lock(sc);
16703 }
16704 
16705 static void
16706 bxe_pf_disable(struct bxe_softc *sc)
16707 {
16708     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16709 
16710     val &= ~IGU_PF_CONF_FUNC_EN;
16711 
16712     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16713     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16714     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16715 }
16716 
16717 static void
16718 bxe_init_pxp(struct bxe_softc *sc)
16719 {
16720     uint16_t devctl;
16721     int r_order, w_order;
16722 
16723     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16724 
16725     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16726 
16727     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16728 
16729     if (sc->mrrs == -1) {
16730         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16731     } else {
16732         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16733         r_order = sc->mrrs;
16734     }
16735 
16736     ecore_init_pxp_arb(sc, r_order, w_order);
16737 }
16738 
16739 static uint32_t
16740 bxe_get_pretend_reg(struct bxe_softc *sc)
16741 {
16742     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16743     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16744     return (base + (SC_ABS_FUNC(sc)) * stride);
16745 }
16746 
16747 /*
16748  * Called only on E1H or E2.
16749  * When pretending to be PF, the pretend value is the function number 0..7.
16750  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16751  * combination.
16752  */
16753 static int
16754 bxe_pretend_func(struct bxe_softc *sc,
16755                  uint16_t         pretend_func_val)
16756 {
16757     uint32_t pretend_reg;
16758 
16759     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16760         return (-1);
16761     }
16762 
16763     /* get my own pretend register */
16764     pretend_reg = bxe_get_pretend_reg(sc);
16765     REG_WR(sc, pretend_reg, pretend_func_val);
16766     REG_RD(sc, pretend_reg);
16767     return (0);
16768 }
16769 
16770 static void
16771 bxe_iov_init_dmae(struct bxe_softc *sc)
16772 {
16773     return;
16774 #if 0
16775     BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16776 
16777     if (!IS_SRIOV(sc)) {
16778         return;
16779     }
16780 
16781     REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16782 #endif
16783 }
16784 
16785 #if 0
16786 static int
16787 bxe_iov_init_ilt(struct bxe_softc *sc,
16788                  uint16_t         line)
16789 {
16790     return (line);
16791 #if 0
16792     int i;
16793     struct ecore_ilt* ilt = sc->ilt;
16794 
16795     if (!IS_SRIOV(sc)) {
16796         return (line);
16797     }
16798 
16799     /* set vfs ilt lines */
16800     for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16801         struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16802         ilt->lines[line+i].page = hw_cxt->addr;
16803         ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16804         ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16805     }
16806     return (line+i);
16807 #endif
16808 }
16809 #endif
16810 
16811 static void
16812 bxe_iov_init_dq(struct bxe_softc *sc)
16813 {
16814     return;
16815 #if 0
16816     if (!IS_SRIOV(sc)) {
16817         return;
16818     }
16819 
16820     /* Set the DQ such that the CID reflect the abs_vfid */
16821     REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16822     REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16823 
16824     /*
16825      * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16826      * the PF L2 queues
16827      */
16828     REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16829 
16830     /* The VF window size is the log2 of the max number of CIDs per VF */
16831     REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16832 
16833     /*
16834      * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16835      * the Pf doorbell size although the 2 are independent.
16836      */
16837     REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16838            BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16839 
16840     /*
16841      * No security checks for now -
16842      * configure single rule (out of 16) mask = 0x1, value = 0x0,
16843      * CID range 0 - 0x1ffff
16844      */
16845     REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16846     REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16847     REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16848     REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16849 
16850     /* set the number of VF alllowed doorbells to the full DQ range */
16851     REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16852 
16853     /* set the VF doorbell threshold */
16854     REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16855 #endif
16856 }
16857 
16858 /* send a NIG loopback debug packet */
16859 static void
16860 bxe_lb_pckt(struct bxe_softc *sc)
16861 {
16862     uint32_t wb_write[3];
16863 
16864     /* Ethernet source and destination addresses */
16865     wb_write[0] = 0x55555555;
16866     wb_write[1] = 0x55555555;
16867     wb_write[2] = 0x20;     /* SOP */
16868     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16869 
16870     /* NON-IP protocol */
16871     wb_write[0] = 0x09000000;
16872     wb_write[1] = 0x55555555;
16873     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16874     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16875 }
16876 
16877 /*
16878  * Some of the internal memories are not directly readable from the driver.
16879  * To test them we send debug packets.
16880  */
16881 static int
16882 bxe_int_mem_test(struct bxe_softc *sc)
16883 {
16884     int factor;
16885     int count, i;
16886     uint32_t val = 0;
16887 
16888     if (CHIP_REV_IS_FPGA(sc)) {
16889         factor = 120;
16890     } else if (CHIP_REV_IS_EMUL(sc)) {
16891         factor = 200;
16892     } else {
16893         factor = 1;
16894     }
16895 
16896     /* disable inputs of parser neighbor blocks */
16897     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16898     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16899     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16900     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16901 
16902     /*  write 0 to parser credits for CFC search request */
16903     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16904 
16905     /* send Ethernet packet */
16906     bxe_lb_pckt(sc);
16907 
16908     /* TODO do i reset NIG statistic? */
16909     /* Wait until NIG register shows 1 packet of size 0x10 */
16910     count = 1000 * factor;
16911     while (count) {
16912         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16913         val = *BXE_SP(sc, wb_data[0]);
16914         if (val == 0x10) {
16915             break;
16916         }
16917 
16918         DELAY(10000);
16919         count--;
16920     }
16921 
16922     if (val != 0x10) {
16923         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16924         return (-1);
16925     }
16926 
16927     /* wait until PRS register shows 1 packet */
16928     count = (1000 * factor);
16929     while (count) {
16930         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16931         if (val == 1) {
16932             break;
16933         }
16934 
16935         DELAY(10000);
16936         count--;
16937     }
16938 
16939     if (val != 0x1) {
16940         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16941         return (-2);
16942     }
16943 
16944     /* Reset and init BRB, PRS */
16945     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16946     DELAY(50000);
16947     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16948     DELAY(50000);
16949     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16950     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16951 
16952     /* Disable inputs of parser neighbor blocks */
16953     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16954     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16955     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16956     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16957 
16958     /* Write 0 to parser credits for CFC search request */
16959     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16960 
16961     /* send 10 Ethernet packets */
16962     for (i = 0; i < 10; i++) {
16963         bxe_lb_pckt(sc);
16964     }
16965 
16966     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16967     count = (1000 * factor);
16968     while (count) {
16969         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16970         val = *BXE_SP(sc, wb_data[0]);
16971         if (val == 0xb0) {
16972             break;
16973         }
16974 
16975         DELAY(10000);
16976         count--;
16977     }
16978 
16979     if (val != 0xb0) {
16980         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16981         return (-3);
16982     }
16983 
16984     /* Wait until PRS register shows 2 packets */
16985     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16986     if (val != 2) {
16987         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16988     }
16989 
16990     /* Write 1 to parser credits for CFC search request */
16991     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16992 
16993     /* Wait until PRS register shows 3 packets */
16994     DELAY(10000 * factor);
16995 
16996     /* Wait until NIG register shows 1 packet of size 0x10 */
16997     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16998     if (val != 3) {
16999         BLOGE(sc, "PRS timeout val=0x%x\n", val);
17000     }
17001 
17002     /* clear NIG EOP FIFO */
17003     for (i = 0; i < 11; i++) {
17004         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17005     }
17006 
17007     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17008     if (val != 1) {
17009         BLOGE(sc, "clear of NIG failed\n");
17010         return (-4);
17011     }
17012 
17013     /* Reset and init BRB, PRS, NIG */
17014     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17015     DELAY(50000);
17016     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17017     DELAY(50000);
17018     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17019     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17020     if (!CNIC_SUPPORT(sc)) {
17021         /* set NIC mode */
17022         REG_WR(sc, PRS_REG_NIC_MODE, 1);
17023     }
17024 
17025     /* Enable inputs of parser neighbor blocks */
17026     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17027     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17028     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17029     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17030 
17031     return (0);
17032 }
17033 
17034 static void
17035 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17036 {
17037     int is_required;
17038     uint32_t val;
17039     int port;
17040 
17041     is_required = 0;
17042     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17043            SHARED_HW_CFG_FAN_FAILURE_MASK);
17044 
17045     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17046         is_required = 1;
17047     }
17048     /*
17049      * The fan failure mechanism is usually related to the PHY type since
17050      * the power consumption of the board is affected by the PHY. Currently,
17051      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17052      */
17053     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17054         for (port = PORT_0; port < PORT_MAX; port++) {
17055             is_required |= elink_fan_failure_det_req(sc,
17056                                                      sc->devinfo.shmem_base,
17057                                                      sc->devinfo.shmem2_base,
17058                                                      port);
17059         }
17060     }
17061 
17062     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17063 
17064     if (is_required == 0) {
17065         return;
17066     }
17067 
17068     /* Fan failure is indicated by SPIO 5 */
17069     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17070 
17071     /* set to active low mode */
17072     val = REG_RD(sc, MISC_REG_SPIO_INT);
17073     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17074     REG_WR(sc, MISC_REG_SPIO_INT, val);
17075 
17076     /* enable interrupt to signal the IGU */
17077     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17078     val |= MISC_SPIO_SPIO5;
17079     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17080 }
17081 
17082 static void
17083 bxe_enable_blocks_attention(struct bxe_softc *sc)
17084 {
17085     uint32_t val;
17086 
17087     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17088     if (!CHIP_IS_E1x(sc)) {
17089         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17090     } else {
17091         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17092     }
17093     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17094     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17095     /*
17096      * mask read length error interrupts in brb for parser
17097      * (parsing unit and 'checksum and crc' unit)
17098      * these errors are legal (PU reads fixed length and CAC can cause
17099      * read length error on truncated packets)
17100      */
17101     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17102     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17103     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17104     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17105     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17106     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17107 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17108 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17109     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17110     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17111     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17112 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17113 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17114     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17115     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17116     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17117     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17118 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17119 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17120 
17121     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17122            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17123            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17124     if (!CHIP_IS_E1x(sc)) {
17125         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17126                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17127     }
17128     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17129 
17130     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17131     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17132     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17133 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17134 
17135     if (!CHIP_IS_E1x(sc)) {
17136         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17137         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17138     }
17139 
17140     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17141     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17142 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17143     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17144 }
17145 
17146 /**
17147  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17148  *
17149  * @sc:     driver handle
17150  */
17151 static int
17152 bxe_init_hw_common(struct bxe_softc *sc)
17153 {
17154     uint8_t abs_func_id;
17155     uint32_t val;
17156 
17157     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17158           SC_ABS_FUNC(sc));
17159 
17160     /*
17161      * take the RESET lock to protect undi_unload flow from accessing
17162      * registers while we are resetting the chip
17163      */
17164     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17165 
17166     bxe_reset_common(sc);
17167 
17168     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17169 
17170     val = 0xfffc;
17171     if (CHIP_IS_E3(sc)) {
17172         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17173         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17174     }
17175 
17176     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17177 
17178     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17179 
17180     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17181     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17182 
17183     if (!CHIP_IS_E1x(sc)) {
17184         /*
17185          * 4-port mode or 2-port mode we need to turn off master-enable for
17186          * everyone. After that we turn it back on for self. So, we disregard
17187          * multi-function, and always disable all functions on the given path,
17188          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17189          */
17190         for (abs_func_id = SC_PATH(sc);
17191              abs_func_id < (E2_FUNC_MAX * 2);
17192              abs_func_id += 2) {
17193             if (abs_func_id == SC_ABS_FUNC(sc)) {
17194                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17195                 continue;
17196             }
17197 
17198             bxe_pretend_func(sc, abs_func_id);
17199 
17200             /* clear pf enable */
17201             bxe_pf_disable(sc);
17202 
17203             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17204         }
17205     }
17206 
17207     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17208 
17209     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17210 
17211     if (CHIP_IS_E1(sc)) {
17212         /*
17213          * enable HW interrupt from PXP on USDM overflow
17214          * bit 16 on INT_MASK_0
17215          */
17216         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17217     }
17218 
17219     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17220     bxe_init_pxp(sc);
17221 
17222 #ifdef __BIG_ENDIAN
17223     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17224     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17225     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17226     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17227     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17228     /* make sure this value is 0 */
17229     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17230 
17231     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17232     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17233     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17234     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17235     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17236 #endif
17237 
17238     ecore_ilt_init_page_size(sc, INITOP_SET);
17239 
17240     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17241         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17242     }
17243 
17244     /* let the HW do it's magic... */
17245     DELAY(100000);
17246 
17247     /* finish PXP init */
17248     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17249     if (val != 1) {
17250         BLOGE(sc, "PXP2 CFG failed\n");
17251         return (-1);
17252     }
17253     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17254     if (val != 1) {
17255         BLOGE(sc, "PXP2 RD_INIT failed\n");
17256         return (-1);
17257     }
17258 
17259     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17260 
17261     /*
17262      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17263      * entries with value "0" and valid bit on. This needs to be done by the
17264      * first PF that is loaded in a path (i.e. common phase)
17265      */
17266     if (!CHIP_IS_E1x(sc)) {
17267 /*
17268  * In E2 there is a bug in the timers block that can cause function 6 / 7
17269  * (i.e. vnic3) to start even if it is marked as "scan-off".
17270  * This occurs when a different function (func2,3) is being marked
17271  * as "scan-off". Real-life scenario for example: if a driver is being
17272  * load-unloaded while func6,7 are down. This will cause the timer to access
17273  * the ilt, translate to a logical address and send a request to read/write.
17274  * Since the ilt for the function that is down is not valid, this will cause
17275  * a translation error which is unrecoverable.
17276  * The Workaround is intended to make sure that when this happens nothing
17277  * fatal will occur. The workaround:
17278  *  1.  First PF driver which loads on a path will:
17279  *      a.  After taking the chip out of reset, by using pretend,
17280  *          it will write "0" to the following registers of
17281  *          the other vnics.
17282  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17283  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17284  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17285  *          And for itself it will write '1' to
17286  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17287  *          dmae-operations (writing to pram for example.)
17288  *          note: can be done for only function 6,7 but cleaner this
17289  *            way.
17290  *      b.  Write zero+valid to the entire ILT.
17291  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17292  *          VNIC3 (of that port). The range allocated will be the
17293  *          entire ILT. This is needed to prevent  ILT range error.
17294  *  2.  Any PF driver load flow:
17295  *      a.  ILT update with the physical addresses of the allocated
17296  *          logical pages.
17297  *      b.  Wait 20msec. - note that this timeout is needed to make
17298  *          sure there are no requests in one of the PXP internal
17299  *          queues with "old" ILT addresses.
17300  *      c.  PF enable in the PGLC.
17301  *      d.  Clear the was_error of the PF in the PGLC. (could have
17302  *          occurred while driver was down)
17303  *      e.  PF enable in the CFC (WEAK + STRONG)
17304  *      f.  Timers scan enable
17305  *  3.  PF driver unload flow:
17306  *      a.  Clear the Timers scan_en.
17307  *      b.  Polling for scan_on=0 for that PF.
17308  *      c.  Clear the PF enable bit in the PXP.
17309  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17310  *      e.  Write zero+valid to all ILT entries (The valid bit must
17311  *          stay set)
17312  *      f.  If this is VNIC 3 of a port then also init
17313  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17314  *          to the last enrty in the ILT.
17315  *
17316  *      Notes:
17317  *      Currently the PF error in the PGLC is non recoverable.
17318  *      In the future the there will be a recovery routine for this error.
17319  *      Currently attention is masked.
17320  *      Having an MCP lock on the load/unload process does not guarantee that
17321  *      there is no Timer disable during Func6/7 enable. This is because the
17322  *      Timers scan is currently being cleared by the MCP on FLR.
17323  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17324  *      there is error before clearing it. But the flow above is simpler and
17325  *      more general.
17326  *      All ILT entries are written by zero+valid and not just PF6/7
17327  *      ILT entries since in the future the ILT entries allocation for
17328  *      PF-s might be dynamic.
17329  */
17330         struct ilt_client_info ilt_cli;
17331         struct ecore_ilt ilt;
17332 
17333         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17334         memset(&ilt, 0, sizeof(struct ecore_ilt));
17335 
17336         /* initialize dummy TM client */
17337         ilt_cli.start      = 0;
17338         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17339         ilt_cli.client_num = ILT_CLIENT_TM;
17340 
17341         /*
17342          * Step 1: set zeroes to all ilt page entries with valid bit on
17343          * Step 2: set the timers first/last ilt entry to point
17344          * to the entire range to prevent ILT range error for 3rd/4th
17345          * vnic (this code assumes existence of the vnic)
17346          *
17347          * both steps performed by call to ecore_ilt_client_init_op()
17348          * with dummy TM client
17349          *
17350          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17351          * and his brother are split registers
17352          */
17353 
17354         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17355         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17356         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17357 
17358         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17359         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17360         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17361     }
17362 
17363     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17364     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17365 
17366     if (!CHIP_IS_E1x(sc)) {
17367         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17368                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17369 
17370         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17371         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17372 
17373         /* let the HW do it's magic... */
17374         do {
17375             DELAY(200000);
17376             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17377         } while (factor-- && (val != 1));
17378 
17379         if (val != 1) {
17380             BLOGE(sc, "ATC_INIT failed\n");
17381             return (-1);
17382         }
17383     }
17384 
17385     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17386 
17387     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17388 
17389     bxe_iov_init_dmae(sc);
17390 
17391     /* clean the DMAE memory */
17392     sc->dmae_ready = 1;
17393     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17394 
17395     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17396 
17397     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17398 
17399     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17400 
17401     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17402 
17403     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17404     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17405     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17406     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17407 
17408     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17409 
17410     /* QM queues pointers table */
17411     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17412 
17413     /* soft reset pulse */
17414     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17415     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17416 
17417     if (CNIC_SUPPORT(sc))
17418         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17419 
17420     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17421     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17422     if (!CHIP_REV_IS_SLOW(sc)) {
17423         /* enable hw interrupt from doorbell Q */
17424         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17425     }
17426 
17427     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17428 
17429     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17430     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17431 
17432     if (!CHIP_IS_E1(sc)) {
17433         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17434     }
17435 
17436     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17437         if (IS_MF_AFEX(sc)) {
17438             /*
17439              * configure that AFEX and VLAN headers must be
17440              * received in AFEX mode
17441              */
17442             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17443             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17444             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17445             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17446             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17447         } else {
17448             /*
17449              * Bit-map indicating which L2 hdrs may appear
17450              * after the basic Ethernet header
17451              */
17452             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17453                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17454         }
17455     }
17456 
17457     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17458     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17459     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17460     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17461 
17462     if (!CHIP_IS_E1x(sc)) {
17463         /* reset VFC memories */
17464         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17465                VFC_MEMORIES_RST_REG_CAM_RST |
17466                VFC_MEMORIES_RST_REG_RAM_RST);
17467         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17468                VFC_MEMORIES_RST_REG_CAM_RST |
17469                VFC_MEMORIES_RST_REG_RAM_RST);
17470 
17471         DELAY(20000);
17472     }
17473 
17474     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17475     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17476     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17477     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17478 
17479     /* sync semi rtc */
17480     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17481            0x80000000);
17482     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17483            0x80000000);
17484 
17485     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17486     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17487     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17488 
17489     if (!CHIP_IS_E1x(sc)) {
17490         if (IS_MF_AFEX(sc)) {
17491             /*
17492              * configure that AFEX and VLAN headers must be
17493              * sent in AFEX mode
17494              */
17495             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17496             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17497             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17498             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17499             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17500         } else {
17501             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17502                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17503         }
17504     }
17505 
17506     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17507 
17508     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17509 
17510     if (CNIC_SUPPORT(sc)) {
17511         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17512         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17513         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17514         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17515         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17516         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17517         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17518         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17519         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17520         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17521     }
17522     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17523 
17524     if (sizeof(union cdu_context) != 1024) {
17525         /* we currently assume that a context is 1024 bytes */
17526         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17527               (long)sizeof(union cdu_context));
17528     }
17529 
17530     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17531     val = (4 << 24) + (0 << 12) + 1024;
17532     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17533 
17534     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17535 
17536     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17537     /* enable context validation interrupt from CFC */
17538     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17539 
17540     /* set the thresholds to prevent CFC/CDU race */
17541     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17542     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17543 
17544     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17545         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17546     }
17547 
17548     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17549     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17550 
17551     /* Reset PCIE errors for debug */
17552     REG_WR(sc, 0x2814, 0xffffffff);
17553     REG_WR(sc, 0x3820, 0xffffffff);
17554 
17555     if (!CHIP_IS_E1x(sc)) {
17556         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17557                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17558                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17559         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17560                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17561                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17562                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17563         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17564                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17565                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17566                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17567     }
17568 
17569     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17570 
17571     if (!CHIP_IS_E1(sc)) {
17572         /* in E3 this done in per-port section */
17573         if (!CHIP_IS_E3(sc))
17574             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17575     }
17576 
17577     if (CHIP_IS_E1H(sc)) {
17578         /* not applicable for E2 (and above ...) */
17579         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17580     }
17581 
17582     if (CHIP_REV_IS_SLOW(sc)) {
17583         DELAY(200000);
17584     }
17585 
17586     /* finish CFC init */
17587     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17588     if (val != 1) {
17589         BLOGE(sc, "CFC LL_INIT failed\n");
17590         return (-1);
17591     }
17592     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17593     if (val != 1) {
17594         BLOGE(sc, "CFC AC_INIT failed\n");
17595         return (-1);
17596     }
17597     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17598     if (val != 1) {
17599         BLOGE(sc, "CFC CAM_INIT failed\n");
17600         return (-1);
17601     }
17602     REG_WR(sc, CFC_REG_DEBUG0, 0);
17603 
17604     if (CHIP_IS_E1(sc)) {
17605         /* read NIG statistic to see if this is our first up since powerup */
17606         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17607         val = *BXE_SP(sc, wb_data[0]);
17608 
17609         /* do internal memory self test */
17610         if ((val == 0) && bxe_int_mem_test(sc)) {
17611             BLOGE(sc, "internal mem self test failed\n");
17612             return (-1);
17613         }
17614     }
17615 
17616     bxe_setup_fan_failure_detection(sc);
17617 
17618     /* clear PXP2 attentions */
17619     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17620 
17621     bxe_enable_blocks_attention(sc);
17622 
17623     if (!CHIP_REV_IS_SLOW(sc)) {
17624         ecore_enable_blocks_parity(sc);
17625     }
17626 
17627     if (!BXE_NOMCP(sc)) {
17628         if (CHIP_IS_E1x(sc)) {
17629             bxe_common_init_phy(sc);
17630         }
17631     }
17632 
17633     return (0);
17634 }
17635 
17636 /**
17637  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17638  *
17639  * @sc:     driver handle
17640  */
17641 static int
17642 bxe_init_hw_common_chip(struct bxe_softc *sc)
17643 {
17644     int rc = bxe_init_hw_common(sc);
17645 
17646     if (rc) {
17647         return (rc);
17648     }
17649 
17650     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17651     if (!BXE_NOMCP(sc)) {
17652         bxe_common_init_phy(sc);
17653     }
17654 
17655     return (0);
17656 }
17657 
17658 static int
17659 bxe_init_hw_port(struct bxe_softc *sc)
17660 {
17661     int port = SC_PORT(sc);
17662     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17663     uint32_t low, high;
17664     uint32_t val;
17665 
17666     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17667 
17668     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17669 
17670     ecore_init_block(sc, BLOCK_MISC, init_phase);
17671     ecore_init_block(sc, BLOCK_PXP, init_phase);
17672     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17673 
17674     /*
17675      * Timers bug workaround: disables the pf_master bit in pglue at
17676      * common phase, we need to enable it here before any dmae access are
17677      * attempted. Therefore we manually added the enable-master to the
17678      * port phase (it also happens in the function phase)
17679      */
17680     if (!CHIP_IS_E1x(sc)) {
17681         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17682     }
17683 
17684     ecore_init_block(sc, BLOCK_ATC, init_phase);
17685     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17686     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17687     ecore_init_block(sc, BLOCK_QM, init_phase);
17688 
17689     ecore_init_block(sc, BLOCK_TCM, init_phase);
17690     ecore_init_block(sc, BLOCK_UCM, init_phase);
17691     ecore_init_block(sc, BLOCK_CCM, init_phase);
17692     ecore_init_block(sc, BLOCK_XCM, init_phase);
17693 
17694     /* QM cid (connection) count */
17695     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17696 
17697     if (CNIC_SUPPORT(sc)) {
17698         ecore_init_block(sc, BLOCK_TM, init_phase);
17699         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17700         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17701     }
17702 
17703     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17704 
17705     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17706 
17707     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17708         if (IS_MF(sc)) {
17709             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17710         } else if (sc->mtu > 4096) {
17711             if (BXE_ONE_PORT(sc)) {
17712                 low = 160;
17713             } else {
17714                 val = sc->mtu;
17715                 /* (24*1024 + val*4)/256 */
17716                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17717             }
17718         } else {
17719             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17720         }
17721         high = (low + 56); /* 14*1024/256 */
17722         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17723         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17724     }
17725 
17726     if (CHIP_IS_MODE_4_PORT(sc)) {
17727         REG_WR(sc, SC_PORT(sc) ?
17728                BRB1_REG_MAC_GUARANTIED_1 :
17729                BRB1_REG_MAC_GUARANTIED_0, 40);
17730     }
17731 
17732     ecore_init_block(sc, BLOCK_PRS, init_phase);
17733     if (CHIP_IS_E3B0(sc)) {
17734         if (IS_MF_AFEX(sc)) {
17735             /* configure headers for AFEX mode */
17736             REG_WR(sc, SC_PORT(sc) ?
17737                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17738                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17739             REG_WR(sc, SC_PORT(sc) ?
17740                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17741                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17742             REG_WR(sc, SC_PORT(sc) ?
17743                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17744                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17745         } else {
17746             /* Ovlan exists only if we are in multi-function +
17747              * switch-dependent mode, in switch-independent there
17748              * is no ovlan headers
17749              */
17750             REG_WR(sc, SC_PORT(sc) ?
17751                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17752                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17753                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17754         }
17755     }
17756 
17757     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17758     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17759     ecore_init_block(sc, BLOCK_USDM, init_phase);
17760     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17761 
17762     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17763     ecore_init_block(sc, BLOCK_USEM, init_phase);
17764     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17765     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17766 
17767     ecore_init_block(sc, BLOCK_UPB, init_phase);
17768     ecore_init_block(sc, BLOCK_XPB, init_phase);
17769 
17770     ecore_init_block(sc, BLOCK_PBF, init_phase);
17771 
17772     if (CHIP_IS_E1x(sc)) {
17773         /* configure PBF to work without PAUSE mtu 9000 */
17774         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17775 
17776         /* update threshold */
17777         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17778         /* update init credit */
17779         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17780 
17781         /* probe changes */
17782         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17783         DELAY(50);
17784         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17785     }
17786 
17787     if (CNIC_SUPPORT(sc)) {
17788         ecore_init_block(sc, BLOCK_SRC, init_phase);
17789     }
17790 
17791     ecore_init_block(sc, BLOCK_CDU, init_phase);
17792     ecore_init_block(sc, BLOCK_CFC, init_phase);
17793 
17794     if (CHIP_IS_E1(sc)) {
17795         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17796         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17797     }
17798     ecore_init_block(sc, BLOCK_HC, init_phase);
17799 
17800     ecore_init_block(sc, BLOCK_IGU, init_phase);
17801 
17802     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17803     /* init aeu_mask_attn_func_0/1:
17804      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17805      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17806      *             bits 4-7 are used for "per vn group attention" */
17807     val = IS_MF(sc) ? 0xF7 : 0x7;
17808     /* Enable DCBX attention for all but E1 */
17809     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17810     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17811 
17812     ecore_init_block(sc, BLOCK_NIG, init_phase);
17813 
17814     if (!CHIP_IS_E1x(sc)) {
17815         /* Bit-map indicating which L2 hdrs may appear after the
17816          * basic Ethernet header
17817          */
17818         if (IS_MF_AFEX(sc)) {
17819             REG_WR(sc, SC_PORT(sc) ?
17820                    NIG_REG_P1_HDRS_AFTER_BASIC :
17821                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17822         } else {
17823             REG_WR(sc, SC_PORT(sc) ?
17824                    NIG_REG_P1_HDRS_AFTER_BASIC :
17825                    NIG_REG_P0_HDRS_AFTER_BASIC,
17826                    IS_MF_SD(sc) ? 7 : 6);
17827         }
17828 
17829         if (CHIP_IS_E3(sc)) {
17830             REG_WR(sc, SC_PORT(sc) ?
17831                    NIG_REG_LLH1_MF_MODE :
17832                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17833         }
17834     }
17835     if (!CHIP_IS_E3(sc)) {
17836         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17837     }
17838 
17839     if (!CHIP_IS_E1(sc)) {
17840         /* 0x2 disable mf_ov, 0x1 enable */
17841         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17842                (IS_MF_SD(sc) ? 0x1 : 0x2));
17843 
17844         if (!CHIP_IS_E1x(sc)) {
17845             val = 0;
17846             switch (sc->devinfo.mf_info.mf_mode) {
17847             case MULTI_FUNCTION_SD:
17848                 val = 1;
17849                 break;
17850             case MULTI_FUNCTION_SI:
17851             case MULTI_FUNCTION_AFEX:
17852                 val = 2;
17853                 break;
17854             }
17855 
17856             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17857                         NIG_REG_LLH0_CLS_TYPE), val);
17858         }
17859         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17860         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17861         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17862     }
17863 
17864     /* If SPIO5 is set to generate interrupts, enable it for this port */
17865     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17866     if (val & MISC_SPIO_SPIO5) {
17867         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17868                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17869         val = REG_RD(sc, reg_addr);
17870         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17871         REG_WR(sc, reg_addr, val);
17872     }
17873 
17874     return (0);
17875 }
17876 
17877 static uint32_t
17878 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17879                        uint32_t         reg,
17880                        uint32_t         expected,
17881                        uint32_t         poll_count)
17882 {
17883     uint32_t cur_cnt = poll_count;
17884     uint32_t val;
17885 
17886     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17887         DELAY(FLR_WAIT_INTERVAL);
17888     }
17889 
17890     return (val);
17891 }
17892 
17893 static int
17894 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17895                               uint32_t         reg,
17896                               char             *msg,
17897                               uint32_t         poll_cnt)
17898 {
17899     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17900 
17901     if (val != 0) {
17902         BLOGE(sc, "%s usage count=%d\n", msg, val);
17903         return (1);
17904     }
17905 
17906     return (0);
17907 }
17908 
17909 /* Common routines with VF FLR cleanup */
17910 static uint32_t
17911 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17912 {
17913     /* adjust polling timeout */
17914     if (CHIP_REV_IS_EMUL(sc)) {
17915         return (FLR_POLL_CNT * 2000);
17916     }
17917 
17918     if (CHIP_REV_IS_FPGA(sc)) {
17919         return (FLR_POLL_CNT * 120);
17920     }
17921 
17922     return (FLR_POLL_CNT);
17923 }
17924 
17925 static int
17926 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17927                            uint32_t         poll_cnt)
17928 {
17929     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17930     if (bxe_flr_clnup_poll_hw_counter(sc,
17931                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17932                                       "CFC PF usage counter timed out",
17933                                       poll_cnt)) {
17934         return (1);
17935     }
17936 
17937     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17938     if (bxe_flr_clnup_poll_hw_counter(sc,
17939                                       DORQ_REG_PF_USAGE_CNT,
17940                                       "DQ PF usage counter timed out",
17941                                       poll_cnt)) {
17942         return (1);
17943     }
17944 
17945     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17946     if (bxe_flr_clnup_poll_hw_counter(sc,
17947                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17948                                       "QM PF usage counter timed out",
17949                                       poll_cnt)) {
17950         return (1);
17951     }
17952 
17953     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17954     if (bxe_flr_clnup_poll_hw_counter(sc,
17955                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17956                                       "Timers VNIC usage counter timed out",
17957                                       poll_cnt)) {
17958         return (1);
17959     }
17960 
17961     if (bxe_flr_clnup_poll_hw_counter(sc,
17962                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17963                                       "Timers NUM_SCANS usage counter timed out",
17964                                       poll_cnt)) {
17965         return (1);
17966     }
17967 
17968     /* Wait DMAE PF usage counter to zero */
17969     if (bxe_flr_clnup_poll_hw_counter(sc,
17970                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17971                                       "DMAE dommand register timed out",
17972                                       poll_cnt)) {
17973         return (1);
17974     }
17975 
17976     return (0);
17977 }
17978 
17979 #define OP_GEN_PARAM(param)                                            \
17980     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17981 #define OP_GEN_TYPE(type)                                           \
17982     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17983 #define OP_GEN_AGG_VECT(index)                                             \
17984     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17985 
17986 static int
17987 bxe_send_final_clnup(struct bxe_softc *sc,
17988                      uint8_t          clnup_func,
17989                      uint32_t         poll_cnt)
17990 {
17991     uint32_t op_gen_command = 0;
17992     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17993                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17994     int ret = 0;
17995 
17996     if (REG_RD(sc, comp_addr)) {
17997         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17998         return (1);
17999     }
18000 
18001     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18002     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18003     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18004     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18005 
18006     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18007     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18008 
18009     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18010         BLOGE(sc, "FW final cleanup did not succeed\n");
18011         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18012               (REG_RD(sc, comp_addr)));
18013         bxe_panic(sc, ("FLR cleanup failed\n"));
18014         return (1);
18015     }
18016 
18017     /* Zero completion for nxt FLR */
18018     REG_WR(sc, comp_addr, 0);
18019 
18020     return (ret);
18021 }
18022 
18023 static void
18024 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18025                        struct pbf_pN_buf_regs *regs,
18026                        uint32_t               poll_count)
18027 {
18028     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18029     uint32_t cur_cnt = poll_count;
18030 
18031     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18032     crd = crd_start = REG_RD(sc, regs->crd);
18033     init_crd = REG_RD(sc, regs->init_crd);
18034 
18035     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18036     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18037     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18038 
18039     while ((crd != init_crd) &&
18040            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18041             (init_crd - crd_start))) {
18042         if (cur_cnt--) {
18043             DELAY(FLR_WAIT_INTERVAL);
18044             crd = REG_RD(sc, regs->crd);
18045             crd_freed = REG_RD(sc, regs->crd_freed);
18046         } else {
18047             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18048             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18049             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18050             break;
18051         }
18052     }
18053 
18054     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18055           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18056 }
18057 
18058 static void
18059 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18060                        struct pbf_pN_cmd_regs *regs,
18061                        uint32_t               poll_count)
18062 {
18063     uint32_t occup, to_free, freed, freed_start;
18064     uint32_t cur_cnt = poll_count;
18065 
18066     occup = to_free = REG_RD(sc, regs->lines_occup);
18067     freed = freed_start = REG_RD(sc, regs->lines_freed);
18068 
18069     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18070     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18071 
18072     while (occup &&
18073            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18074         if (cur_cnt--) {
18075             DELAY(FLR_WAIT_INTERVAL);
18076             occup = REG_RD(sc, regs->lines_occup);
18077             freed = REG_RD(sc, regs->lines_freed);
18078         } else {
18079             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18080             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18081             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18082             break;
18083         }
18084     }
18085 
18086     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18087           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18088 }
18089 
18090 static void
18091 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18092 {
18093     struct pbf_pN_cmd_regs cmd_regs[] = {
18094         {0, (CHIP_IS_E3B0(sc)) ?
18095             PBF_REG_TQ_OCCUPANCY_Q0 :
18096             PBF_REG_P0_TQ_OCCUPANCY,
18097             (CHIP_IS_E3B0(sc)) ?
18098             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18099             PBF_REG_P0_TQ_LINES_FREED_CNT},
18100         {1, (CHIP_IS_E3B0(sc)) ?
18101             PBF_REG_TQ_OCCUPANCY_Q1 :
18102             PBF_REG_P1_TQ_OCCUPANCY,
18103             (CHIP_IS_E3B0(sc)) ?
18104             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18105             PBF_REG_P1_TQ_LINES_FREED_CNT},
18106         {4, (CHIP_IS_E3B0(sc)) ?
18107             PBF_REG_TQ_OCCUPANCY_LB_Q :
18108             PBF_REG_P4_TQ_OCCUPANCY,
18109             (CHIP_IS_E3B0(sc)) ?
18110             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18111             PBF_REG_P4_TQ_LINES_FREED_CNT}
18112     };
18113 
18114     struct pbf_pN_buf_regs buf_regs[] = {
18115         {0, (CHIP_IS_E3B0(sc)) ?
18116             PBF_REG_INIT_CRD_Q0 :
18117             PBF_REG_P0_INIT_CRD ,
18118             (CHIP_IS_E3B0(sc)) ?
18119             PBF_REG_CREDIT_Q0 :
18120             PBF_REG_P0_CREDIT,
18121             (CHIP_IS_E3B0(sc)) ?
18122             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18123             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18124         {1, (CHIP_IS_E3B0(sc)) ?
18125             PBF_REG_INIT_CRD_Q1 :
18126             PBF_REG_P1_INIT_CRD,
18127             (CHIP_IS_E3B0(sc)) ?
18128             PBF_REG_CREDIT_Q1 :
18129             PBF_REG_P1_CREDIT,
18130             (CHIP_IS_E3B0(sc)) ?
18131             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18132             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18133         {4, (CHIP_IS_E3B0(sc)) ?
18134             PBF_REG_INIT_CRD_LB_Q :
18135             PBF_REG_P4_INIT_CRD,
18136             (CHIP_IS_E3B0(sc)) ?
18137             PBF_REG_CREDIT_LB_Q :
18138             PBF_REG_P4_CREDIT,
18139             (CHIP_IS_E3B0(sc)) ?
18140             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18141             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18142     };
18143 
18144     int i;
18145 
18146     /* Verify the command queues are flushed P0, P1, P4 */
18147     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18148         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18149     }
18150 
18151     /* Verify the transmission buffers are flushed P0, P1, P4 */
18152     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18153         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18154     }
18155 }
18156 
18157 static void
18158 bxe_hw_enable_status(struct bxe_softc *sc)
18159 {
18160     uint32_t val;
18161 
18162     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18163     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18164 
18165     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18166     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18167 
18168     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18169     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18170 
18171     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18172     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18173 
18174     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18175     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18176 
18177     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18178     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18179 
18180     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18181     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18182 
18183     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18184     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18185 }
18186 
18187 static int
18188 bxe_pf_flr_clnup(struct bxe_softc *sc)
18189 {
18190     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18191 
18192     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18193 
18194     /* Re-enable PF target read access */
18195     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18196 
18197     /* Poll HW usage counters */
18198     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18199     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18200         return (-1);
18201     }
18202 
18203     /* Zero the igu 'trailing edge' and 'leading edge' */
18204 
18205     /* Send the FW cleanup command */
18206     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18207         return (-1);
18208     }
18209 
18210     /* ATC cleanup */
18211 
18212     /* Verify TX hw is flushed */
18213     bxe_tx_hw_flushed(sc, poll_cnt);
18214 
18215     /* Wait 100ms (not adjusted according to platform) */
18216     DELAY(100000);
18217 
18218     /* Verify no pending pci transactions */
18219     if (bxe_is_pcie_pending(sc)) {
18220         BLOGE(sc, "PCIE Transactions still pending\n");
18221     }
18222 
18223     /* Debug */
18224     bxe_hw_enable_status(sc);
18225 
18226     /*
18227      * Master enable - Due to WB DMAE writes performed before this
18228      * register is re-initialized as part of the regular function init
18229      */
18230     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18231 
18232     return (0);
18233 }
18234 
18235 #if 0
18236 static void
18237 bxe_init_searcher(struct bxe_softc *sc)
18238 {
18239     int port = SC_PORT(sc);
18240     ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18241     /* T1 hash bits value determines the T1 number of entries */
18242     REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18243 }
18244 #endif
18245 
18246 static int
18247 bxe_init_hw_func(struct bxe_softc *sc)
18248 {
18249     int port = SC_PORT(sc);
18250     int func = SC_FUNC(sc);
18251     int init_phase = PHASE_PF0 + func;
18252     struct ecore_ilt *ilt = sc->ilt;
18253     uint16_t cdu_ilt_start;
18254     uint32_t addr, val;
18255     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18256     int i, main_mem_width, rc;
18257 
18258     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18259 
18260     /* FLR cleanup */
18261     if (!CHIP_IS_E1x(sc)) {
18262         rc = bxe_pf_flr_clnup(sc);
18263         if (rc) {
18264             BLOGE(sc, "FLR cleanup failed!\n");
18265             // XXX bxe_fw_dump(sc);
18266             // XXX bxe_idle_chk(sc);
18267             return (rc);
18268         }
18269     }
18270 
18271     /* set MSI reconfigure capability */
18272     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18273         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18274         val = REG_RD(sc, addr);
18275         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18276         REG_WR(sc, addr, val);
18277     }
18278 
18279     ecore_init_block(sc, BLOCK_PXP, init_phase);
18280     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18281 
18282     ilt = sc->ilt;
18283     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18284 
18285 #if 0
18286     if (IS_SRIOV(sc)) {
18287         cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18288     }
18289     cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18290 
18291 #if (BXE_FIRST_VF_CID > 0)
18292     /*
18293      * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18294      * those of the VFs, so start line should be reset
18295      */
18296     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18297 #endif
18298 #endif
18299 
18300     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18301         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18302         ilt->lines[cdu_ilt_start + i].page_mapping =
18303             sc->context[i].vcxt_dma.paddr;
18304         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18305     }
18306     ecore_ilt_init_op(sc, INITOP_SET);
18307 
18308 #if 0
18309     if (!CONFIGURE_NIC_MODE(sc)) {
18310         bxe_init_searcher(sc);
18311         REG_WR(sc, PRS_REG_NIC_MODE, 0);
18312         BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18313     } else
18314 #endif
18315     {
18316         /* Set NIC mode */
18317         REG_WR(sc, PRS_REG_NIC_MODE, 1);
18318         BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18319     }
18320 
18321     if (!CHIP_IS_E1x(sc)) {
18322         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18323 
18324         /* Turn on a single ISR mode in IGU if driver is going to use
18325          * INT#x or MSI
18326          */
18327         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18328             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18329         }
18330 
18331         /*
18332          * Timers workaround bug: function init part.
18333          * Need to wait 20msec after initializing ILT,
18334          * needed to make sure there are no requests in
18335          * one of the PXP internal queues with "old" ILT addresses
18336          */
18337         DELAY(20000);
18338 
18339         /*
18340          * Master enable - Due to WB DMAE writes performed before this
18341          * register is re-initialized as part of the regular function
18342          * init
18343          */
18344         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18345         /* Enable the function in IGU */
18346         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18347     }
18348 
18349     sc->dmae_ready = 1;
18350 
18351     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18352 
18353     if (!CHIP_IS_E1x(sc))
18354         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18355 
18356     ecore_init_block(sc, BLOCK_ATC, init_phase);
18357     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18358     ecore_init_block(sc, BLOCK_NIG, init_phase);
18359     ecore_init_block(sc, BLOCK_SRC, init_phase);
18360     ecore_init_block(sc, BLOCK_MISC, init_phase);
18361     ecore_init_block(sc, BLOCK_TCM, init_phase);
18362     ecore_init_block(sc, BLOCK_UCM, init_phase);
18363     ecore_init_block(sc, BLOCK_CCM, init_phase);
18364     ecore_init_block(sc, BLOCK_XCM, init_phase);
18365     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18366     ecore_init_block(sc, BLOCK_USEM, init_phase);
18367     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18368     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18369 
18370     if (!CHIP_IS_E1x(sc))
18371         REG_WR(sc, QM_REG_PF_EN, 1);
18372 
18373     if (!CHIP_IS_E1x(sc)) {
18374         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18375         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18376         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18377         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18378     }
18379     ecore_init_block(sc, BLOCK_QM, init_phase);
18380 
18381     ecore_init_block(sc, BLOCK_TM, init_phase);
18382     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18383 
18384     bxe_iov_init_dq(sc);
18385 
18386     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18387     ecore_init_block(sc, BLOCK_PRS, init_phase);
18388     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18389     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18390     ecore_init_block(sc, BLOCK_USDM, init_phase);
18391     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18392     ecore_init_block(sc, BLOCK_UPB, init_phase);
18393     ecore_init_block(sc, BLOCK_XPB, init_phase);
18394     ecore_init_block(sc, BLOCK_PBF, init_phase);
18395     if (!CHIP_IS_E1x(sc))
18396         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18397 
18398     ecore_init_block(sc, BLOCK_CDU, init_phase);
18399 
18400     ecore_init_block(sc, BLOCK_CFC, init_phase);
18401 
18402     if (!CHIP_IS_E1x(sc))
18403         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18404 
18405     if (IS_MF(sc)) {
18406         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18407         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18408     }
18409 
18410     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18411 
18412     /* HC init per function */
18413     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18414         if (CHIP_IS_E1H(sc)) {
18415             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18416 
18417             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18418             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18419         }
18420         ecore_init_block(sc, BLOCK_HC, init_phase);
18421 
18422     } else {
18423         int num_segs, sb_idx, prod_offset;
18424 
18425         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18426 
18427         if (!CHIP_IS_E1x(sc)) {
18428             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18429             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18430         }
18431 
18432         ecore_init_block(sc, BLOCK_IGU, init_phase);
18433 
18434         if (!CHIP_IS_E1x(sc)) {
18435             int dsb_idx = 0;
18436             /**
18437              * Producer memory:
18438              * E2 mode: address 0-135 match to the mapping memory;
18439              * 136 - PF0 default prod; 137 - PF1 default prod;
18440              * 138 - PF2 default prod; 139 - PF3 default prod;
18441              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18442              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18443              * 144-147 reserved.
18444              *
18445              * E1.5 mode - In backward compatible mode;
18446              * for non default SB; each even line in the memory
18447              * holds the U producer and each odd line hold
18448              * the C producer. The first 128 producers are for
18449              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18450              * producers are for the DSB for each PF.
18451              * Each PF has five segments: (the order inside each
18452              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18453              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18454              * 144-147 attn prods;
18455              */
18456             /* non-default-status-blocks */
18457             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18458                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18459             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18460                 prod_offset = (sc->igu_base_sb + sb_idx) *
18461                     num_segs;
18462 
18463                 for (i = 0; i < num_segs; i++) {
18464                     addr = IGU_REG_PROD_CONS_MEMORY +
18465                             (prod_offset + i) * 4;
18466                     REG_WR(sc, addr, 0);
18467                 }
18468                 /* send consumer update with value 0 */
18469                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18470                            USTORM_ID, 0, IGU_INT_NOP, 1);
18471                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18472             }
18473 
18474             /* default-status-blocks */
18475             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18476                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18477 
18478             if (CHIP_IS_MODE_4_PORT(sc))
18479                 dsb_idx = SC_FUNC(sc);
18480             else
18481                 dsb_idx = SC_VN(sc);
18482 
18483             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18484                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18485                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18486 
18487             /*
18488              * igu prods come in chunks of E1HVN_MAX (4) -
18489              * does not matters what is the current chip mode
18490              */
18491             for (i = 0; i < (num_segs * E1HVN_MAX);
18492                  i += E1HVN_MAX) {
18493                 addr = IGU_REG_PROD_CONS_MEMORY +
18494                             (prod_offset + i)*4;
18495                 REG_WR(sc, addr, 0);
18496             }
18497             /* send consumer update with 0 */
18498             if (CHIP_INT_MODE_IS_BC(sc)) {
18499                 bxe_ack_sb(sc, sc->igu_dsb_id,
18500                            USTORM_ID, 0, IGU_INT_NOP, 1);
18501                 bxe_ack_sb(sc, sc->igu_dsb_id,
18502                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18503                 bxe_ack_sb(sc, sc->igu_dsb_id,
18504                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18505                 bxe_ack_sb(sc, sc->igu_dsb_id,
18506                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18507                 bxe_ack_sb(sc, sc->igu_dsb_id,
18508                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18509             } else {
18510                 bxe_ack_sb(sc, sc->igu_dsb_id,
18511                            USTORM_ID, 0, IGU_INT_NOP, 1);
18512                 bxe_ack_sb(sc, sc->igu_dsb_id,
18513                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18514             }
18515             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18516 
18517             /* !!! these should become driver const once
18518                rf-tool supports split-68 const */
18519             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18520             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18521             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18522             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18523             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18524             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18525         }
18526     }
18527 
18528     /* Reset PCIE errors for debug */
18529     REG_WR(sc, 0x2114, 0xffffffff);
18530     REG_WR(sc, 0x2120, 0xffffffff);
18531 
18532     if (CHIP_IS_E1x(sc)) {
18533         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18534         main_mem_base = HC_REG_MAIN_MEMORY +
18535                 SC_PORT(sc) * (main_mem_size * 4);
18536         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18537         main_mem_width = 8;
18538 
18539         val = REG_RD(sc, main_mem_prty_clr);
18540         if (val) {
18541             BLOGD(sc, DBG_LOAD,
18542                   "Parity errors in HC block during function init (0x%x)!\n",
18543                   val);
18544         }
18545 
18546         /* Clear "false" parity errors in MSI-X table */
18547         for (i = main_mem_base;
18548              i < main_mem_base + main_mem_size * 4;
18549              i += main_mem_width) {
18550             bxe_read_dmae(sc, i, main_mem_width / 4);
18551             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18552                            i, main_mem_width / 4);
18553         }
18554         /* Clear HC parity attention */
18555         REG_RD(sc, main_mem_prty_clr);
18556     }
18557 
18558 #if 1
18559     /* Enable STORMs SP logging */
18560     REG_WR8(sc, BAR_USTRORM_INTMEM +
18561            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18562     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18563            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18564     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18565            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18566     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18567            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568 #endif
18569 
18570     elink_phy_probe(&sc->link_params);
18571 
18572     return (0);
18573 }
18574 
18575 static void
18576 bxe_link_reset(struct bxe_softc *sc)
18577 {
18578     if (!BXE_NOMCP(sc)) {
18579 	bxe_acquire_phy_lock(sc);
18580         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18581 	bxe_release_phy_lock(sc);
18582     } else {
18583         if (!CHIP_REV_IS_SLOW(sc)) {
18584             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18585         }
18586     }
18587 }
18588 
18589 static void
18590 bxe_reset_port(struct bxe_softc *sc)
18591 {
18592     int port = SC_PORT(sc);
18593     uint32_t val;
18594 
18595     /* reset physical Link */
18596     bxe_link_reset(sc);
18597 
18598     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18599 
18600     /* Do not rcv packets to BRB */
18601     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18602     /* Do not direct rcv packets that are not for MCP to the BRB */
18603     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18604                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18605 
18606     /* Configure AEU */
18607     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18608 
18609     DELAY(100000);
18610 
18611     /* Check for BRB port occupancy */
18612     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18613     if (val) {
18614         BLOGD(sc, DBG_LOAD,
18615               "BRB1 is not empty, %d blocks are occupied\n", val);
18616     }
18617 
18618     /* TODO: Close Doorbell port? */
18619 }
18620 
18621 static void
18622 bxe_ilt_wr(struct bxe_softc *sc,
18623            uint32_t         index,
18624            bus_addr_t       addr)
18625 {
18626     int reg;
18627     uint32_t wb_write[2];
18628 
18629     if (CHIP_IS_E1(sc)) {
18630         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18631     } else {
18632         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18633     }
18634 
18635     wb_write[0] = ONCHIP_ADDR1(addr);
18636     wb_write[1] = ONCHIP_ADDR2(addr);
18637     REG_WR_DMAE(sc, reg, wb_write, 2);
18638 }
18639 
18640 static void
18641 bxe_clear_func_ilt(struct bxe_softc *sc,
18642                    uint32_t         func)
18643 {
18644     uint32_t i, base = FUNC_ILT_BASE(func);
18645     for (i = base; i < base + ILT_PER_FUNC; i++) {
18646         bxe_ilt_wr(sc, i, 0);
18647     }
18648 }
18649 
18650 static void
18651 bxe_reset_func(struct bxe_softc *sc)
18652 {
18653     struct bxe_fastpath *fp;
18654     int port = SC_PORT(sc);
18655     int func = SC_FUNC(sc);
18656     int i;
18657 
18658     /* Disable the function in the FW */
18659     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18660     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18661     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18662     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18663 
18664     /* FP SBs */
18665     FOR_EACH_ETH_QUEUE(sc, i) {
18666         fp = &sc->fp[i];
18667         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18668                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18669                 SB_DISABLED);
18670     }
18671 
18672 #if 0
18673     if (CNIC_LOADED(sc)) {
18674         /* CNIC SB */
18675         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18676                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18677                 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18678     }
18679 #endif
18680 
18681     /* SP SB */
18682     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18683             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18684             SB_DISABLED);
18685 
18686     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18687         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18688     }
18689 
18690     /* Configure IGU */
18691     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18692         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18693         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18694     } else {
18695         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18696         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18697     }
18698 
18699     if (CNIC_LOADED(sc)) {
18700         /* Disable Timer scan */
18701         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18702         /*
18703          * Wait for at least 10ms and up to 2 second for the timers
18704          * scan to complete
18705          */
18706         for (i = 0; i < 200; i++) {
18707             DELAY(10000);
18708             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18709                 break;
18710         }
18711     }
18712 
18713     /* Clear ILT */
18714     bxe_clear_func_ilt(sc, func);
18715 
18716     /*
18717      * Timers workaround bug for E2: if this is vnic-3,
18718      * we need to set the entire ilt range for this timers.
18719      */
18720     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18721         struct ilt_client_info ilt_cli;
18722         /* use dummy TM client */
18723         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18724         ilt_cli.start = 0;
18725         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18726         ilt_cli.client_num = ILT_CLIENT_TM;
18727 
18728         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18729     }
18730 
18731     /* this assumes that reset_port() called before reset_func()*/
18732     if (!CHIP_IS_E1x(sc)) {
18733         bxe_pf_disable(sc);
18734     }
18735 
18736     sc->dmae_ready = 0;
18737 }
18738 
18739 static int
18740 bxe_gunzip_init(struct bxe_softc *sc)
18741 {
18742     return (0);
18743 }
18744 
18745 static void
18746 bxe_gunzip_end(struct bxe_softc *sc)
18747 {
18748     return;
18749 }
18750 
18751 static int
18752 bxe_init_firmware(struct bxe_softc *sc)
18753 {
18754     if (CHIP_IS_E1(sc)) {
18755         ecore_init_e1_firmware(sc);
18756         sc->iro_array = e1_iro_arr;
18757     } else if (CHIP_IS_E1H(sc)) {
18758         ecore_init_e1h_firmware(sc);
18759         sc->iro_array = e1h_iro_arr;
18760     } else if (!CHIP_IS_E1x(sc)) {
18761         ecore_init_e2_firmware(sc);
18762         sc->iro_array = e2_iro_arr;
18763     } else {
18764         BLOGE(sc, "Unsupported chip revision\n");
18765         return (-1);
18766     }
18767 
18768     return (0);
18769 }
18770 
18771 static void
18772 bxe_release_firmware(struct bxe_softc *sc)
18773 {
18774     /* Do nothing */
18775     return;
18776 }
18777 
18778 static int
18779 ecore_gunzip(struct bxe_softc *sc,
18780              const uint8_t    *zbuf,
18781              int              len)
18782 {
18783     /* XXX : Implement... */
18784     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18785     return (FALSE);
18786 }
18787 
18788 static void
18789 ecore_reg_wr_ind(struct bxe_softc *sc,
18790                  uint32_t         addr,
18791                  uint32_t         val)
18792 {
18793     bxe_reg_wr_ind(sc, addr, val);
18794 }
18795 
18796 static void
18797 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18798                           bus_addr_t       phys_addr,
18799                           uint32_t         addr,
18800                           uint32_t         len)
18801 {
18802     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18803 }
18804 
18805 void
18806 ecore_storm_memset_struct(struct bxe_softc *sc,
18807                           uint32_t         addr,
18808                           size_t           size,
18809                           uint32_t         *data)
18810 {
18811     uint8_t i;
18812     for (i = 0; i < size/4; i++) {
18813         REG_WR(sc, addr + (i * 4), data[i]);
18814     }
18815 }
18816 
18817