1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #define BXE_DRIVER_VERSION "1.78.81" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 /* 61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 62 * for older kernels that don't include this changeset. 63 */ 64 #if __FreeBSD_version < 900035 65 #define pci_find_cap pci_find_extcap 66 #endif 67 68 #define BXE_DEF_SB_ATT_IDX 0x0001 69 #define BXE_DEF_SB_IDX 0x0002 70 71 /* 72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 73 * function HW initialization. 74 */ 75 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 76 #define FLR_WAIT_INTERVAL 50 /* usecs */ 77 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 78 79 struct pbf_pN_buf_regs { 80 int pN; 81 uint32_t init_crd; 82 uint32_t crd; 83 uint32_t crd_freed; 84 }; 85 86 struct pbf_pN_cmd_regs { 87 int pN; 88 uint32_t lines_occup; 89 uint32_t lines_freed; 90 }; 91 92 /* 93 * PCI Device ID Table used by bxe_probe(). 94 */ 95 #define BXE_DEVDESC_MAX 64 96 static struct bxe_device_type bxe_devs[] = { 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57710, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57710 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57711E, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57711E 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57712_MF, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57712 MF 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57800_MF, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57800 MF 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57810_MF, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57810 MF 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57811_MF, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57811 MF 10GbE" 162 }, 163 { 164 BRCM_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_MF, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 MF 10GbE" 174 }, 175 { 176 0, 0, 0, 0, NULL 177 } 178 }; 179 180 MALLOC_DECLARE(M_BXE_ILT); 181 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 182 183 /* 184 * FreeBSD device entry points. 185 */ 186 static int bxe_probe(device_t); 187 static int bxe_attach(device_t); 188 static int bxe_detach(device_t); 189 static int bxe_shutdown(device_t); 190 191 /* 192 * FreeBSD KLD module/device interface event handler method. 193 */ 194 static device_method_t bxe_methods[] = { 195 /* Device interface (device_if.h) */ 196 DEVMETHOD(device_probe, bxe_probe), 197 DEVMETHOD(device_attach, bxe_attach), 198 DEVMETHOD(device_detach, bxe_detach), 199 DEVMETHOD(device_shutdown, bxe_shutdown), 200 /* Bus interface (bus_if.h) */ 201 DEVMETHOD(bus_print_child, bus_generic_print_child), 202 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 203 KOBJMETHOD_END 204 }; 205 206 /* 207 * FreeBSD KLD Module data declaration 208 */ 209 static driver_t bxe_driver = { 210 "bxe", /* module name */ 211 bxe_methods, /* event handler */ 212 sizeof(struct bxe_softc) /* extra data */ 213 }; 214 215 /* 216 * FreeBSD dev class is needed to manage dev instances and 217 * to associate with a bus type 218 */ 219 static devclass_t bxe_devclass; 220 221 MODULE_DEPEND(bxe, pci, 1, 1, 1); 222 MODULE_DEPEND(bxe, ether, 1, 1, 1); 223 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 224 225 /* resources needed for unloading a previously loaded device */ 226 227 #define BXE_PREV_WAIT_NEEDED 1 228 struct mtx bxe_prev_mtx; 229 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 230 struct bxe_prev_list_node { 231 LIST_ENTRY(bxe_prev_list_node) node; 232 uint8_t bus; 233 uint8_t slot; 234 uint8_t path; 235 uint8_t aer; /* XXX automatic error recovery */ 236 uint8_t undi; 237 }; 238 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 239 240 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 241 242 /* Tunable device values... */ 243 244 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 245 246 /* Debug */ 247 unsigned long bxe_debug = 0; 248 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 249 &bxe_debug, 0, "Debug logging mode"); 250 251 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 252 static int bxe_interrupt_mode = INTR_MODE_MSIX; 253 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 254 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 255 256 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 257 static int bxe_queue_count = 4; 258 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 259 &bxe_queue_count, 0, "Multi-Queue queue count"); 260 261 /* max number of buffers per queue (default RX_BD_USABLE) */ 262 static int bxe_max_rx_bufs = 0; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 264 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 265 266 /* Host interrupt coalescing RX tick timer (usecs) */ 267 static int bxe_hc_rx_ticks = 25; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 269 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 270 271 /* Host interrupt coalescing TX tick timer (usecs) */ 272 static int bxe_hc_tx_ticks = 50; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 274 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 275 276 /* Maximum number of Rx packets to process at a time */ 277 static int bxe_rx_budget = 0xffffffff; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 279 &bxe_rx_budget, 0, "Rx processing budget"); 280 281 /* Maximum LRO aggregation size */ 282 static int bxe_max_aggregation_size = 0; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 284 &bxe_max_aggregation_size, 0, "max aggregation size"); 285 286 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 287 static int bxe_mrrs = -1; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 289 &bxe_mrrs, 0, "PCIe maximum read request size"); 290 291 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 292 static int bxe_autogreeen = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 294 &bxe_autogreeen, 0, "AutoGrEEEn support"); 295 296 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 297 static int bxe_udp_rss = 0; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 299 &bxe_udp_rss, 0, "UDP RSS support"); 300 301 302 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 303 304 #define STATS_OFFSET32(stat_name) \ 305 (offsetof(struct bxe_eth_stats, stat_name) / 4) 306 307 #define Q_STATS_OFFSET32(stat_name) \ 308 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 309 310 static const struct { 311 uint32_t offset; 312 uint32_t size; 313 uint32_t flags; 314 #define STATS_FLAGS_PORT 1 315 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 316 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 317 char string[STAT_NAME_LEN]; 318 } bxe_eth_stats_arr[] = { 319 { STATS_OFFSET32(total_bytes_received_hi), 320 8, STATS_FLAGS_BOTH, "rx_bytes" }, 321 { STATS_OFFSET32(error_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 323 { STATS_OFFSET32(total_unicast_packets_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 325 { STATS_OFFSET32(total_multicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 327 { STATS_OFFSET32(total_broadcast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 329 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 330 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 331 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 332 8, STATS_FLAGS_PORT, "rx_align_errors" }, 333 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 334 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 335 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 337 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 338 8, STATS_FLAGS_PORT, "rx_fragments" }, 339 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 340 8, STATS_FLAGS_PORT, "rx_jabbers" }, 341 { STATS_OFFSET32(no_buff_discard_hi), 342 8, STATS_FLAGS_BOTH, "rx_discards" }, 343 { STATS_OFFSET32(mac_filter_discard), 344 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 345 { STATS_OFFSET32(mf_tag_discard), 346 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 347 { STATS_OFFSET32(pfc_frames_received_hi), 348 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 349 { STATS_OFFSET32(pfc_frames_sent_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 351 { STATS_OFFSET32(brb_drop_hi), 352 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 353 { STATS_OFFSET32(brb_truncate_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 355 { STATS_OFFSET32(pause_frames_received_hi), 356 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 357 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 358 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 359 { STATS_OFFSET32(nig_timer_max), 360 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 361 { STATS_OFFSET32(total_bytes_transmitted_hi), 362 8, STATS_FLAGS_BOTH, "tx_bytes" }, 363 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 364 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 365 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 366 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 367 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 369 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 371 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 372 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 373 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 374 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 375 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 376 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 377 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 380 8, STATS_FLAGS_PORT, "tx_deferred" }, 381 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 382 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 383 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 385 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 388 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 390 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 392 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 394 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 396 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 397 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 398 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 399 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 401 { STATS_OFFSET32(pause_frames_sent_hi), 402 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 403 { STATS_OFFSET32(total_tpa_aggregations_hi), 404 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 405 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 407 { STATS_OFFSET32(total_tpa_bytes_hi), 408 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 409 { STATS_OFFSET32(eee_tx_lpi), 410 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 411 { STATS_OFFSET32(rx_calls), 412 4, STATS_FLAGS_FUNC, "rx_calls"}, 413 { STATS_OFFSET32(rx_pkts), 414 4, STATS_FLAGS_FUNC, "rx_pkts"}, 415 { STATS_OFFSET32(rx_tpa_pkts), 416 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 417 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 418 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 419 { STATS_OFFSET32(rx_bxe_service_rxsgl), 420 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 421 { STATS_OFFSET32(rx_jumbo_sge_pkts), 422 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 423 { STATS_OFFSET32(rx_soft_errors), 424 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 425 { STATS_OFFSET32(rx_hw_csum_errors), 426 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 427 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 428 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 431 { STATS_OFFSET32(rx_budget_reached), 432 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 433 { STATS_OFFSET32(tx_pkts), 434 4, STATS_FLAGS_FUNC, "tx_pkts"}, 435 { STATS_OFFSET32(tx_soft_errors), 436 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 437 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 443 { STATS_OFFSET32(tx_ofld_frames_lso), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 447 { STATS_OFFSET32(tx_encap_failures), 448 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 449 { STATS_OFFSET32(tx_hw_queue_full), 450 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 451 { STATS_OFFSET32(tx_hw_max_queue_depth), 452 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 453 { STATS_OFFSET32(tx_dma_mapping_failure), 454 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 455 { STATS_OFFSET32(tx_max_drbr_queue_depth), 456 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 457 { STATS_OFFSET32(tx_window_violation_std), 458 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 459 { STATS_OFFSET32(tx_window_violation_tso), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 461 { STATS_OFFSET32(tx_chain_lost_mbuf), 462 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 463 { STATS_OFFSET32(tx_frames_deferred), 464 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 465 { STATS_OFFSET32(tx_queue_xoff), 466 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 467 { STATS_OFFSET32(mbuf_defrag_attempts), 468 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 469 { STATS_OFFSET32(mbuf_defrag_failures), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 471 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 472 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 473 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 475 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 479 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 483 { STATS_OFFSET32(mbuf_alloc_tx), 484 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 485 { STATS_OFFSET32(mbuf_alloc_rx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 487 { STATS_OFFSET32(mbuf_alloc_sge), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 489 { STATS_OFFSET32(mbuf_alloc_tpa), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 491 { STATS_OFFSET32(tx_queue_full_return), 492 4, STATS_FLAGS_FUNC, "tx_queue_full_return"} 493 }; 494 495 static const struct { 496 uint32_t offset; 497 uint32_t size; 498 char string[STAT_NAME_LEN]; 499 } bxe_eth_q_stats_arr[] = { 500 { Q_STATS_OFFSET32(total_bytes_received_hi), 501 8, "rx_bytes" }, 502 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 503 8, "rx_ucast_packets" }, 504 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 505 8, "rx_mcast_packets" }, 506 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 507 8, "rx_bcast_packets" }, 508 { Q_STATS_OFFSET32(no_buff_discard_hi), 509 8, "rx_discards" }, 510 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 511 8, "tx_bytes" }, 512 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 513 8, "tx_ucast_packets" }, 514 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 515 8, "tx_mcast_packets" }, 516 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 517 8, "tx_bcast_packets" }, 518 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 519 8, "tpa_aggregations" }, 520 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 521 8, "tpa_aggregated_frames"}, 522 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 523 8, "tpa_bytes"}, 524 { Q_STATS_OFFSET32(rx_calls), 525 4, "rx_calls"}, 526 { Q_STATS_OFFSET32(rx_pkts), 527 4, "rx_pkts"}, 528 { Q_STATS_OFFSET32(rx_tpa_pkts), 529 4, "rx_tpa_pkts"}, 530 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 531 4, "rx_erroneous_jumbo_sge_pkts"}, 532 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 533 4, "rx_bxe_service_rxsgl"}, 534 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 535 4, "rx_jumbo_sge_pkts"}, 536 { Q_STATS_OFFSET32(rx_soft_errors), 537 4, "rx_soft_errors"}, 538 { Q_STATS_OFFSET32(rx_hw_csum_errors), 539 4, "rx_hw_csum_errors"}, 540 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 541 4, "rx_ofld_frames_csum_ip"}, 542 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 543 4, "rx_ofld_frames_csum_tcp_udp"}, 544 { Q_STATS_OFFSET32(rx_budget_reached), 545 4, "rx_budget_reached"}, 546 { Q_STATS_OFFSET32(tx_pkts), 547 4, "tx_pkts"}, 548 { Q_STATS_OFFSET32(tx_soft_errors), 549 4, "tx_soft_errors"}, 550 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 551 4, "tx_ofld_frames_csum_ip"}, 552 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 553 4, "tx_ofld_frames_csum_tcp"}, 554 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 555 4, "tx_ofld_frames_csum_udp"}, 556 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 557 4, "tx_ofld_frames_lso"}, 558 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 559 4, "tx_ofld_frames_lso_hdr_splits"}, 560 { Q_STATS_OFFSET32(tx_encap_failures), 561 4, "tx_encap_failures"}, 562 { Q_STATS_OFFSET32(tx_hw_queue_full), 563 4, "tx_hw_queue_full"}, 564 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 565 4, "tx_hw_max_queue_depth"}, 566 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 567 4, "tx_dma_mapping_failure"}, 568 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 569 4, "tx_max_drbr_queue_depth"}, 570 { Q_STATS_OFFSET32(tx_window_violation_std), 571 4, "tx_window_violation_std"}, 572 { Q_STATS_OFFSET32(tx_window_violation_tso), 573 4, "tx_window_violation_tso"}, 574 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 575 4, "tx_chain_lost_mbuf"}, 576 { Q_STATS_OFFSET32(tx_frames_deferred), 577 4, "tx_frames_deferred"}, 578 { Q_STATS_OFFSET32(tx_queue_xoff), 579 4, "tx_queue_xoff"}, 580 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 581 4, "mbuf_defrag_attempts"}, 582 { Q_STATS_OFFSET32(mbuf_defrag_failures), 583 4, "mbuf_defrag_failures"}, 584 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 585 4, "mbuf_rx_bd_alloc_failed"}, 586 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 587 4, "mbuf_rx_bd_mapping_failed"}, 588 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 589 4, "mbuf_rx_tpa_alloc_failed"}, 590 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 591 4, "mbuf_rx_tpa_mapping_failed"}, 592 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 593 4, "mbuf_rx_sge_alloc_failed"}, 594 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 595 4, "mbuf_rx_sge_mapping_failed"}, 596 { Q_STATS_OFFSET32(mbuf_alloc_tx), 597 4, "mbuf_alloc_tx"}, 598 { Q_STATS_OFFSET32(mbuf_alloc_rx), 599 4, "mbuf_alloc_rx"}, 600 { Q_STATS_OFFSET32(mbuf_alloc_sge), 601 4, "mbuf_alloc_sge"}, 602 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 603 4, "mbuf_alloc_tpa"}, 604 { Q_STATS_OFFSET32(tx_queue_full_return), 605 4, "tx_queue_full_return"} 606 }; 607 608 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 609 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 610 611 612 static void bxe_cmng_fns_init(struct bxe_softc *sc, 613 uint8_t read_cfg, 614 uint8_t cmng_type); 615 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 616 static void storm_memset_cmng(struct bxe_softc *sc, 617 struct cmng_init *cmng, 618 uint8_t port); 619 static void bxe_set_reset_global(struct bxe_softc *sc); 620 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 621 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 622 int engine); 623 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 624 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 625 uint8_t *global, 626 uint8_t print); 627 static void bxe_int_disable(struct bxe_softc *sc); 628 static int bxe_release_leader_lock(struct bxe_softc *sc); 629 static void bxe_pf_disable(struct bxe_softc *sc); 630 static void bxe_free_fp_buffers(struct bxe_softc *sc); 631 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 632 struct bxe_fastpath *fp, 633 uint16_t rx_bd_prod, 634 uint16_t rx_cq_prod, 635 uint16_t rx_sge_prod); 636 static void bxe_link_report_locked(struct bxe_softc *sc); 637 static void bxe_link_report(struct bxe_softc *sc); 638 static void bxe_link_status_update(struct bxe_softc *sc); 639 static void bxe_periodic_callout_func(void *xsc); 640 static void bxe_periodic_start(struct bxe_softc *sc); 641 static void bxe_periodic_stop(struct bxe_softc *sc); 642 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 643 uint16_t prev_index, 644 uint16_t index); 645 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 646 int queue); 647 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 648 uint16_t index); 649 static uint8_t bxe_txeof(struct bxe_softc *sc, 650 struct bxe_fastpath *fp); 651 static void bxe_task_fp(struct bxe_fastpath *fp); 652 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 653 struct mbuf *m, 654 uint8_t contents); 655 static int bxe_alloc_mem(struct bxe_softc *sc); 656 static void bxe_free_mem(struct bxe_softc *sc); 657 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 658 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 659 static int bxe_interrupt_attach(struct bxe_softc *sc); 660 static void bxe_interrupt_detach(struct bxe_softc *sc); 661 static void bxe_set_rx_mode(struct bxe_softc *sc); 662 static int bxe_init_locked(struct bxe_softc *sc); 663 static int bxe_stop_locked(struct bxe_softc *sc); 664 static __noinline int bxe_nic_load(struct bxe_softc *sc, 665 int load_mode); 666 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 667 uint32_t unload_mode, 668 uint8_t keep_link); 669 670 static void bxe_handle_sp_tq(void *context, int pending); 671 static void bxe_handle_fp_tq(void *context, int pending); 672 673 static int bxe_add_cdev(struct bxe_softc *sc); 674 static void bxe_del_cdev(struct bxe_softc *sc); 675 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 676 static void bxe_free_buf_rings(struct bxe_softc *sc); 677 678 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 679 uint32_t 680 calc_crc32(uint8_t *crc32_packet, 681 uint32_t crc32_length, 682 uint32_t crc32_seed, 683 uint8_t complement) 684 { 685 uint32_t byte = 0; 686 uint32_t bit = 0; 687 uint8_t msb = 0; 688 uint32_t temp = 0; 689 uint32_t shft = 0; 690 uint8_t current_byte = 0; 691 uint32_t crc32_result = crc32_seed; 692 const uint32_t CRC32_POLY = 0x1edc6f41; 693 694 if ((crc32_packet == NULL) || 695 (crc32_length == 0) || 696 ((crc32_length % 8) != 0)) 697 { 698 return (crc32_result); 699 } 700 701 for (byte = 0; byte < crc32_length; byte = byte + 1) 702 { 703 current_byte = crc32_packet[byte]; 704 for (bit = 0; bit < 8; bit = bit + 1) 705 { 706 /* msb = crc32_result[31]; */ 707 msb = (uint8_t)(crc32_result >> 31); 708 709 crc32_result = crc32_result << 1; 710 711 /* it (msb != current_byte[bit]) */ 712 if (msb != (0x1 & (current_byte >> bit))) 713 { 714 crc32_result = crc32_result ^ CRC32_POLY; 715 /* crc32_result[0] = 1 */ 716 crc32_result |= 1; 717 } 718 } 719 } 720 721 /* Last step is to: 722 * 1. "mirror" every bit 723 * 2. swap the 4 bytes 724 * 3. complement each bit 725 */ 726 727 /* Mirror */ 728 temp = crc32_result; 729 shft = sizeof(crc32_result) * 8 - 1; 730 731 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 732 { 733 temp <<= 1; 734 temp |= crc32_result & 1; 735 shft-- ; 736 } 737 738 /* temp[31-bit] = crc32_result[bit] */ 739 temp <<= shft; 740 741 /* Swap */ 742 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 743 { 744 uint32_t t0, t1, t2, t3; 745 t0 = (0x000000ff & (temp >> 24)); 746 t1 = (0x0000ff00 & (temp >> 8)); 747 t2 = (0x00ff0000 & (temp << 8)); 748 t3 = (0xff000000 & (temp << 24)); 749 crc32_result = t0 | t1 | t2 | t3; 750 } 751 752 /* Complement */ 753 if (complement) 754 { 755 crc32_result = ~crc32_result; 756 } 757 758 return (crc32_result); 759 } 760 761 int 762 bxe_test_bit(int nr, 763 volatile unsigned long *addr) 764 { 765 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 766 } 767 768 void 769 bxe_set_bit(unsigned int nr, 770 volatile unsigned long *addr) 771 { 772 atomic_set_acq_long(addr, (1 << nr)); 773 } 774 775 void 776 bxe_clear_bit(int nr, 777 volatile unsigned long *addr) 778 { 779 atomic_clear_acq_long(addr, (1 << nr)); 780 } 781 782 int 783 bxe_test_and_set_bit(int nr, 784 volatile unsigned long *addr) 785 { 786 unsigned long x; 787 nr = (1 << nr); 788 do { 789 x = *addr; 790 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 791 // if (x & nr) bit_was_set; else bit_was_not_set; 792 return (x & nr); 793 } 794 795 int 796 bxe_test_and_clear_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 unsigned long x; 800 nr = (1 << nr); 801 do { 802 x = *addr; 803 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 804 // if (x & nr) bit_was_set; else bit_was_not_set; 805 return (x & nr); 806 } 807 808 int 809 bxe_cmpxchg(volatile int *addr, 810 int old, 811 int new) 812 { 813 int x; 814 do { 815 x = *addr; 816 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 817 return (x); 818 } 819 820 /* 821 * Get DMA memory from the OS. 822 * 823 * Validates that the OS has provided DMA buffers in response to a 824 * bus_dmamap_load call and saves the physical address of those buffers. 825 * When the callback is used the OS will return 0 for the mapping function 826 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 827 * failures back to the caller. 828 * 829 * Returns: 830 * Nothing. 831 */ 832 static void 833 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 834 { 835 struct bxe_dma *dma = arg; 836 837 if (error) { 838 dma->paddr = 0; 839 dma->nseg = 0; 840 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 841 } else { 842 dma->paddr = segs->ds_addr; 843 dma->nseg = nseg; 844 } 845 } 846 847 /* 848 * Allocate a block of memory and map it for DMA. No partial completions 849 * allowed and release any resources acquired if we can't acquire all 850 * resources. 851 * 852 * Returns: 853 * 0 = Success, !0 = Failure 854 */ 855 int 856 bxe_dma_alloc(struct bxe_softc *sc, 857 bus_size_t size, 858 struct bxe_dma *dma, 859 const char *msg) 860 { 861 int rc; 862 863 if (dma->size > 0) { 864 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 865 (unsigned long)dma->size); 866 return (1); 867 } 868 869 memset(dma, 0, sizeof(*dma)); /* sanity */ 870 dma->sc = sc; 871 dma->size = size; 872 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 873 874 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 875 BCM_PAGE_SIZE, /* alignment */ 876 0, /* boundary limit */ 877 BUS_SPACE_MAXADDR, /* restricted low */ 878 BUS_SPACE_MAXADDR, /* restricted hi */ 879 NULL, /* addr filter() */ 880 NULL, /* addr filter() arg */ 881 size, /* max map size */ 882 1, /* num discontinuous */ 883 size, /* max seg size */ 884 BUS_DMA_ALLOCNOW, /* flags */ 885 NULL, /* lock() */ 886 NULL, /* lock() arg */ 887 &dma->tag); /* returned dma tag */ 888 if (rc != 0) { 889 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 890 memset(dma, 0, sizeof(*dma)); 891 return (1); 892 } 893 894 rc = bus_dmamem_alloc(dma->tag, 895 (void **)&dma->vaddr, 896 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 897 &dma->map); 898 if (rc != 0) { 899 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 900 bus_dma_tag_destroy(dma->tag); 901 memset(dma, 0, sizeof(*dma)); 902 return (1); 903 } 904 905 rc = bus_dmamap_load(dma->tag, 906 dma->map, 907 dma->vaddr, 908 size, 909 bxe_dma_map_addr, /* BLOGD in here */ 910 dma, 911 BUS_DMA_NOWAIT); 912 if (rc != 0) { 913 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 914 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 915 bus_dma_tag_destroy(dma->tag); 916 memset(dma, 0, sizeof(*dma)); 917 return (1); 918 } 919 920 return (0); 921 } 922 923 void 924 bxe_dma_free(struct bxe_softc *sc, 925 struct bxe_dma *dma) 926 { 927 if (dma->size > 0) { 928 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 929 930 bus_dmamap_sync(dma->tag, dma->map, 931 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 932 bus_dmamap_unload(dma->tag, dma->map); 933 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 934 bus_dma_tag_destroy(dma->tag); 935 } 936 937 memset(dma, 0, sizeof(*dma)); 938 } 939 940 /* 941 * These indirect read and write routines are only during init. 942 * The locking is handled by the MCP. 943 */ 944 945 void 946 bxe_reg_wr_ind(struct bxe_softc *sc, 947 uint32_t addr, 948 uint32_t val) 949 { 950 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 951 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 952 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 953 } 954 955 uint32_t 956 bxe_reg_rd_ind(struct bxe_softc *sc, 957 uint32_t addr) 958 { 959 uint32_t val; 960 961 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 962 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 963 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 964 965 return (val); 966 } 967 968 static int 969 bxe_acquire_hw_lock(struct bxe_softc *sc, 970 uint32_t resource) 971 { 972 uint32_t lock_status; 973 uint32_t resource_bit = (1 << resource); 974 int func = SC_FUNC(sc); 975 uint32_t hw_lock_control_reg; 976 int cnt; 977 978 /* validate the resource is within range */ 979 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 980 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 981 " resource_bit 0x%x\n", resource, resource_bit); 982 return (-1); 983 } 984 985 if (func <= 5) { 986 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 987 } else { 988 hw_lock_control_reg = 989 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 990 } 991 992 /* validate the resource is not already taken */ 993 lock_status = REG_RD(sc, hw_lock_control_reg); 994 if (lock_status & resource_bit) { 995 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 996 resource, lock_status, resource_bit); 997 return (-1); 998 } 999 1000 /* try every 5ms for 5 seconds */ 1001 for (cnt = 0; cnt < 1000; cnt++) { 1002 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1003 lock_status = REG_RD(sc, hw_lock_control_reg); 1004 if (lock_status & resource_bit) { 1005 return (0); 1006 } 1007 DELAY(5000); 1008 } 1009 1010 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1011 resource, resource_bit); 1012 return (-1); 1013 } 1014 1015 static int 1016 bxe_release_hw_lock(struct bxe_softc *sc, 1017 uint32_t resource) 1018 { 1019 uint32_t lock_status; 1020 uint32_t resource_bit = (1 << resource); 1021 int func = SC_FUNC(sc); 1022 uint32_t hw_lock_control_reg; 1023 1024 /* validate the resource is within range */ 1025 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1026 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1027 " resource_bit 0x%x\n", resource, resource_bit); 1028 return (-1); 1029 } 1030 1031 if (func <= 5) { 1032 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1033 } else { 1034 hw_lock_control_reg = 1035 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1036 } 1037 1038 /* validate the resource is currently taken */ 1039 lock_status = REG_RD(sc, hw_lock_control_reg); 1040 if (!(lock_status & resource_bit)) { 1041 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1042 resource, lock_status, resource_bit); 1043 return (-1); 1044 } 1045 1046 REG_WR(sc, hw_lock_control_reg, resource_bit); 1047 return (0); 1048 } 1049 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1050 { 1051 BXE_PHY_LOCK(sc); 1052 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1053 } 1054 1055 static void bxe_release_phy_lock(struct bxe_softc *sc) 1056 { 1057 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1058 BXE_PHY_UNLOCK(sc); 1059 } 1060 /* 1061 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1062 * had we done things the other way around, if two pfs from the same port 1063 * would attempt to access nvram at the same time, we could run into a 1064 * scenario such as: 1065 * pf A takes the port lock. 1066 * pf B succeeds in taking the same lock since they are from the same port. 1067 * pf A takes the per pf misc lock. Performs eeprom access. 1068 * pf A finishes. Unlocks the per pf misc lock. 1069 * Pf B takes the lock and proceeds to perform it's own access. 1070 * pf A unlocks the per port lock, while pf B is still working (!). 1071 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1072 * access corrupted by pf B).* 1073 */ 1074 static int 1075 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1076 { 1077 int port = SC_PORT(sc); 1078 int count, i; 1079 uint32_t val = 0; 1080 1081 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1082 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1083 1084 /* adjust timeout for emulation/FPGA */ 1085 count = NVRAM_TIMEOUT_COUNT; 1086 if (CHIP_REV_IS_SLOW(sc)) { 1087 count *= 100; 1088 } 1089 1090 /* request access to nvram interface */ 1091 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1092 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1093 1094 for (i = 0; i < count*10; i++) { 1095 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1096 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1097 break; 1098 } 1099 1100 DELAY(5); 1101 } 1102 1103 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1104 BLOGE(sc, "Cannot get access to nvram interface " 1105 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1106 port, val); 1107 return (-1); 1108 } 1109 1110 return (0); 1111 } 1112 1113 static int 1114 bxe_release_nvram_lock(struct bxe_softc *sc) 1115 { 1116 int port = SC_PORT(sc); 1117 int count, i; 1118 uint32_t val = 0; 1119 1120 /* adjust timeout for emulation/FPGA */ 1121 count = NVRAM_TIMEOUT_COUNT; 1122 if (CHIP_REV_IS_SLOW(sc)) { 1123 count *= 100; 1124 } 1125 1126 /* relinquish nvram interface */ 1127 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1128 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1129 1130 for (i = 0; i < count*10; i++) { 1131 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1132 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1133 break; 1134 } 1135 1136 DELAY(5); 1137 } 1138 1139 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1140 BLOGE(sc, "Cannot free access to nvram interface " 1141 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1142 port, val); 1143 return (-1); 1144 } 1145 1146 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1147 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1148 1149 return (0); 1150 } 1151 1152 static void 1153 bxe_enable_nvram_access(struct bxe_softc *sc) 1154 { 1155 uint32_t val; 1156 1157 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1158 1159 /* enable both bits, even on read */ 1160 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1161 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1162 } 1163 1164 static void 1165 bxe_disable_nvram_access(struct bxe_softc *sc) 1166 { 1167 uint32_t val; 1168 1169 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1170 1171 /* disable both bits, even after read */ 1172 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1173 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1174 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1175 } 1176 1177 static int 1178 bxe_nvram_read_dword(struct bxe_softc *sc, 1179 uint32_t offset, 1180 uint32_t *ret_val, 1181 uint32_t cmd_flags) 1182 { 1183 int count, i, rc; 1184 uint32_t val; 1185 1186 /* build the command word */ 1187 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1188 1189 /* need to clear DONE bit separately */ 1190 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1191 1192 /* address of the NVRAM to read from */ 1193 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1194 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1195 1196 /* issue a read command */ 1197 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1198 1199 /* adjust timeout for emulation/FPGA */ 1200 count = NVRAM_TIMEOUT_COUNT; 1201 if (CHIP_REV_IS_SLOW(sc)) { 1202 count *= 100; 1203 } 1204 1205 /* wait for completion */ 1206 *ret_val = 0; 1207 rc = -1; 1208 for (i = 0; i < count; i++) { 1209 DELAY(5); 1210 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1211 1212 if (val & MCPR_NVM_COMMAND_DONE) { 1213 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1214 /* we read nvram data in cpu order 1215 * but ethtool sees it as an array of bytes 1216 * converting to big-endian will do the work 1217 */ 1218 *ret_val = htobe32(val); 1219 rc = 0; 1220 break; 1221 } 1222 } 1223 1224 if (rc == -1) { 1225 BLOGE(sc, "nvram read timeout expired " 1226 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1227 offset, cmd_flags, val); 1228 } 1229 1230 return (rc); 1231 } 1232 1233 static int 1234 bxe_nvram_read(struct bxe_softc *sc, 1235 uint32_t offset, 1236 uint8_t *ret_buf, 1237 int buf_size) 1238 { 1239 uint32_t cmd_flags; 1240 uint32_t val; 1241 int rc; 1242 1243 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1244 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1245 offset, buf_size); 1246 return (-1); 1247 } 1248 1249 if ((offset + buf_size) > sc->devinfo.flash_size) { 1250 BLOGE(sc, "Invalid parameter, " 1251 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1252 offset, buf_size, sc->devinfo.flash_size); 1253 return (-1); 1254 } 1255 1256 /* request access to nvram interface */ 1257 rc = bxe_acquire_nvram_lock(sc); 1258 if (rc) { 1259 return (rc); 1260 } 1261 1262 /* enable access to nvram interface */ 1263 bxe_enable_nvram_access(sc); 1264 1265 /* read the first word(s) */ 1266 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1267 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1268 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1269 memcpy(ret_buf, &val, 4); 1270 1271 /* advance to the next dword */ 1272 offset += sizeof(uint32_t); 1273 ret_buf += sizeof(uint32_t); 1274 buf_size -= sizeof(uint32_t); 1275 cmd_flags = 0; 1276 } 1277 1278 if (rc == 0) { 1279 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1280 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1281 memcpy(ret_buf, &val, 4); 1282 } 1283 1284 /* disable access to nvram interface */ 1285 bxe_disable_nvram_access(sc); 1286 bxe_release_nvram_lock(sc); 1287 1288 return (rc); 1289 } 1290 1291 static int 1292 bxe_nvram_write_dword(struct bxe_softc *sc, 1293 uint32_t offset, 1294 uint32_t val, 1295 uint32_t cmd_flags) 1296 { 1297 int count, i, rc; 1298 1299 /* build the command word */ 1300 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1301 1302 /* need to clear DONE bit separately */ 1303 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1304 1305 /* write the data */ 1306 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1307 1308 /* address of the NVRAM to write to */ 1309 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1310 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1311 1312 /* issue the write command */ 1313 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1314 1315 /* adjust timeout for emulation/FPGA */ 1316 count = NVRAM_TIMEOUT_COUNT; 1317 if (CHIP_REV_IS_SLOW(sc)) { 1318 count *= 100; 1319 } 1320 1321 /* wait for completion */ 1322 rc = -1; 1323 for (i = 0; i < count; i++) { 1324 DELAY(5); 1325 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1326 if (val & MCPR_NVM_COMMAND_DONE) { 1327 rc = 0; 1328 break; 1329 } 1330 } 1331 1332 if (rc == -1) { 1333 BLOGE(sc, "nvram write timeout expired " 1334 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1335 offset, cmd_flags, val); 1336 } 1337 1338 return (rc); 1339 } 1340 1341 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1342 1343 static int 1344 bxe_nvram_write1(struct bxe_softc *sc, 1345 uint32_t offset, 1346 uint8_t *data_buf, 1347 int buf_size) 1348 { 1349 uint32_t cmd_flags; 1350 uint32_t align_offset; 1351 uint32_t val; 1352 int rc; 1353 1354 if ((offset + buf_size) > sc->devinfo.flash_size) { 1355 BLOGE(sc, "Invalid parameter, " 1356 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1357 offset, buf_size, sc->devinfo.flash_size); 1358 return (-1); 1359 } 1360 1361 /* request access to nvram interface */ 1362 rc = bxe_acquire_nvram_lock(sc); 1363 if (rc) { 1364 return (rc); 1365 } 1366 1367 /* enable access to nvram interface */ 1368 bxe_enable_nvram_access(sc); 1369 1370 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1371 align_offset = (offset & ~0x03); 1372 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1373 1374 if (rc == 0) { 1375 val &= ~(0xff << BYTE_OFFSET(offset)); 1376 val |= (*data_buf << BYTE_OFFSET(offset)); 1377 1378 /* nvram data is returned as an array of bytes 1379 * convert it back to cpu order 1380 */ 1381 val = be32toh(val); 1382 1383 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1384 } 1385 1386 /* disable access to nvram interface */ 1387 bxe_disable_nvram_access(sc); 1388 bxe_release_nvram_lock(sc); 1389 1390 return (rc); 1391 } 1392 1393 static int 1394 bxe_nvram_write(struct bxe_softc *sc, 1395 uint32_t offset, 1396 uint8_t *data_buf, 1397 int buf_size) 1398 { 1399 uint32_t cmd_flags; 1400 uint32_t val; 1401 uint32_t written_so_far; 1402 int rc; 1403 1404 if (buf_size == 1) { 1405 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1406 } 1407 1408 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1409 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1410 offset, buf_size); 1411 return (-1); 1412 } 1413 1414 if (buf_size == 0) { 1415 return (0); /* nothing to do */ 1416 } 1417 1418 if ((offset + buf_size) > sc->devinfo.flash_size) { 1419 BLOGE(sc, "Invalid parameter, " 1420 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1421 offset, buf_size, sc->devinfo.flash_size); 1422 return (-1); 1423 } 1424 1425 /* request access to nvram interface */ 1426 rc = bxe_acquire_nvram_lock(sc); 1427 if (rc) { 1428 return (rc); 1429 } 1430 1431 /* enable access to nvram interface */ 1432 bxe_enable_nvram_access(sc); 1433 1434 written_so_far = 0; 1435 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1436 while ((written_so_far < buf_size) && (rc == 0)) { 1437 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1438 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1439 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1440 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1441 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1442 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1443 } 1444 1445 memcpy(&val, data_buf, 4); 1446 1447 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1448 1449 /* advance to the next dword */ 1450 offset += sizeof(uint32_t); 1451 data_buf += sizeof(uint32_t); 1452 written_so_far += sizeof(uint32_t); 1453 cmd_flags = 0; 1454 } 1455 1456 /* disable access to nvram interface */ 1457 bxe_disable_nvram_access(sc); 1458 bxe_release_nvram_lock(sc); 1459 1460 return (rc); 1461 } 1462 1463 /* copy command into DMAE command memory and set DMAE command Go */ 1464 void 1465 bxe_post_dmae(struct bxe_softc *sc, 1466 struct dmae_cmd *dmae, 1467 int idx) 1468 { 1469 uint32_t cmd_offset; 1470 int i; 1471 1472 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1473 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1474 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1475 } 1476 1477 REG_WR(sc, dmae_reg_go_c[idx], 1); 1478 } 1479 1480 uint32_t 1481 bxe_dmae_opcode_add_comp(uint32_t opcode, 1482 uint8_t comp_type) 1483 { 1484 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1485 DMAE_CMD_C_TYPE_ENABLE)); 1486 } 1487 1488 uint32_t 1489 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1490 { 1491 return (opcode & ~DMAE_CMD_SRC_RESET); 1492 } 1493 1494 uint32_t 1495 bxe_dmae_opcode(struct bxe_softc *sc, 1496 uint8_t src_type, 1497 uint8_t dst_type, 1498 uint8_t with_comp, 1499 uint8_t comp_type) 1500 { 1501 uint32_t opcode = 0; 1502 1503 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1504 (dst_type << DMAE_CMD_DST_SHIFT)); 1505 1506 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1507 1508 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1509 1510 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1511 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1512 1513 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1514 1515 #ifdef __BIG_ENDIAN 1516 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1517 #else 1518 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1519 #endif 1520 1521 if (with_comp) { 1522 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1523 } 1524 1525 return (opcode); 1526 } 1527 1528 static void 1529 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1530 struct dmae_cmd *dmae, 1531 uint8_t src_type, 1532 uint8_t dst_type) 1533 { 1534 memset(dmae, 0, sizeof(struct dmae_cmd)); 1535 1536 /* set the opcode */ 1537 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1538 TRUE, DMAE_COMP_PCI); 1539 1540 /* fill in the completion parameters */ 1541 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1542 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1543 dmae->comp_val = DMAE_COMP_VAL; 1544 } 1545 1546 /* issue a DMAE command over the init channel and wait for completion */ 1547 static int 1548 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1549 struct dmae_cmd *dmae) 1550 { 1551 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1552 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1553 1554 BXE_DMAE_LOCK(sc); 1555 1556 /* reset completion */ 1557 *wb_comp = 0; 1558 1559 /* post the command on the channel used for initializations */ 1560 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1561 1562 /* wait for completion */ 1563 DELAY(5); 1564 1565 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1566 if (!timeout || 1567 (sc->recovery_state != BXE_RECOVERY_DONE && 1568 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1569 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1570 *wb_comp, sc->recovery_state); 1571 BXE_DMAE_UNLOCK(sc); 1572 return (DMAE_TIMEOUT); 1573 } 1574 1575 timeout--; 1576 DELAY(50); 1577 } 1578 1579 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1580 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1581 *wb_comp, sc->recovery_state); 1582 BXE_DMAE_UNLOCK(sc); 1583 return (DMAE_PCI_ERROR); 1584 } 1585 1586 BXE_DMAE_UNLOCK(sc); 1587 return (0); 1588 } 1589 1590 void 1591 bxe_read_dmae(struct bxe_softc *sc, 1592 uint32_t src_addr, 1593 uint32_t len32) 1594 { 1595 struct dmae_cmd dmae; 1596 uint32_t *data; 1597 int i, rc; 1598 1599 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1600 1601 if (!sc->dmae_ready) { 1602 data = BXE_SP(sc, wb_data[0]); 1603 1604 for (i = 0; i < len32; i++) { 1605 data[i] = (CHIP_IS_E1(sc)) ? 1606 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1607 REG_RD(sc, (src_addr + (i * 4))); 1608 } 1609 1610 return; 1611 } 1612 1613 /* set opcode and fixed command fields */ 1614 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1615 1616 /* fill in addresses and len */ 1617 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1618 dmae.src_addr_hi = 0; 1619 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1620 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1621 dmae.len = len32; 1622 1623 /* issue the command and wait for completion */ 1624 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1625 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1626 } 1627 } 1628 1629 void 1630 bxe_write_dmae(struct bxe_softc *sc, 1631 bus_addr_t dma_addr, 1632 uint32_t dst_addr, 1633 uint32_t len32) 1634 { 1635 struct dmae_cmd dmae; 1636 int rc; 1637 1638 if (!sc->dmae_ready) { 1639 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1640 1641 if (CHIP_IS_E1(sc)) { 1642 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1643 } else { 1644 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1645 } 1646 1647 return; 1648 } 1649 1650 /* set opcode and fixed command fields */ 1651 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1652 1653 /* fill in addresses and len */ 1654 dmae.src_addr_lo = U64_LO(dma_addr); 1655 dmae.src_addr_hi = U64_HI(dma_addr); 1656 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1657 dmae.dst_addr_hi = 0; 1658 dmae.len = len32; 1659 1660 /* issue the command and wait for completion */ 1661 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1662 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1663 } 1664 } 1665 1666 void 1667 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1668 bus_addr_t phys_addr, 1669 uint32_t addr, 1670 uint32_t len) 1671 { 1672 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1673 int offset = 0; 1674 1675 while (len > dmae_wr_max) { 1676 bxe_write_dmae(sc, 1677 (phys_addr + offset), /* src DMA address */ 1678 (addr + offset), /* dst GRC address */ 1679 dmae_wr_max); 1680 offset += (dmae_wr_max * 4); 1681 len -= dmae_wr_max; 1682 } 1683 1684 bxe_write_dmae(sc, 1685 (phys_addr + offset), /* src DMA address */ 1686 (addr + offset), /* dst GRC address */ 1687 len); 1688 } 1689 1690 void 1691 bxe_set_ctx_validation(struct bxe_softc *sc, 1692 struct eth_context *cxt, 1693 uint32_t cid) 1694 { 1695 /* ustorm cxt validation */ 1696 cxt->ustorm_ag_context.cdu_usage = 1697 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1698 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1699 /* xcontext validation */ 1700 cxt->xstorm_ag_context.cdu_reserved = 1701 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1702 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1703 } 1704 1705 static void 1706 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1707 uint8_t port, 1708 uint8_t fw_sb_id, 1709 uint8_t sb_index, 1710 uint8_t ticks) 1711 { 1712 uint32_t addr = 1713 (BAR_CSTRORM_INTMEM + 1714 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1715 1716 REG_WR8(sc, addr, ticks); 1717 1718 BLOGD(sc, DBG_LOAD, 1719 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1720 port, fw_sb_id, sb_index, ticks); 1721 } 1722 1723 static void 1724 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1725 uint8_t port, 1726 uint16_t fw_sb_id, 1727 uint8_t sb_index, 1728 uint8_t disable) 1729 { 1730 uint32_t enable_flag = 1731 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1732 uint32_t addr = 1733 (BAR_CSTRORM_INTMEM + 1734 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1735 uint8_t flags; 1736 1737 /* clear and set */ 1738 flags = REG_RD8(sc, addr); 1739 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1740 flags |= enable_flag; 1741 REG_WR8(sc, addr, flags); 1742 1743 BLOGD(sc, DBG_LOAD, 1744 "port %d fw_sb_id %d sb_index %d disable %d\n", 1745 port, fw_sb_id, sb_index, disable); 1746 } 1747 1748 void 1749 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1750 uint8_t fw_sb_id, 1751 uint8_t sb_index, 1752 uint8_t disable, 1753 uint16_t usec) 1754 { 1755 int port = SC_PORT(sc); 1756 uint8_t ticks = (usec / 4); /* XXX ??? */ 1757 1758 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1759 1760 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1761 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1762 } 1763 1764 void 1765 elink_cb_udelay(struct bxe_softc *sc, 1766 uint32_t usecs) 1767 { 1768 DELAY(usecs); 1769 } 1770 1771 uint32_t 1772 elink_cb_reg_read(struct bxe_softc *sc, 1773 uint32_t reg_addr) 1774 { 1775 return (REG_RD(sc, reg_addr)); 1776 } 1777 1778 void 1779 elink_cb_reg_write(struct bxe_softc *sc, 1780 uint32_t reg_addr, 1781 uint32_t val) 1782 { 1783 REG_WR(sc, reg_addr, val); 1784 } 1785 1786 void 1787 elink_cb_reg_wb_write(struct bxe_softc *sc, 1788 uint32_t offset, 1789 uint32_t *wb_write, 1790 uint16_t len) 1791 { 1792 REG_WR_DMAE(sc, offset, wb_write, len); 1793 } 1794 1795 void 1796 elink_cb_reg_wb_read(struct bxe_softc *sc, 1797 uint32_t offset, 1798 uint32_t *wb_write, 1799 uint16_t len) 1800 { 1801 REG_RD_DMAE(sc, offset, wb_write, len); 1802 } 1803 1804 uint8_t 1805 elink_cb_path_id(struct bxe_softc *sc) 1806 { 1807 return (SC_PATH(sc)); 1808 } 1809 1810 void 1811 elink_cb_event_log(struct bxe_softc *sc, 1812 const elink_log_id_t elink_log_id, 1813 ...) 1814 { 1815 /* XXX */ 1816 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1817 } 1818 1819 static int 1820 bxe_set_spio(struct bxe_softc *sc, 1821 int spio, 1822 uint32_t mode) 1823 { 1824 uint32_t spio_reg; 1825 1826 /* Only 2 SPIOs are configurable */ 1827 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1828 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1829 return (-1); 1830 } 1831 1832 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1833 1834 /* read SPIO and mask except the float bits */ 1835 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1836 1837 switch (mode) { 1838 case MISC_SPIO_OUTPUT_LOW: 1839 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1840 /* clear FLOAT and set CLR */ 1841 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1842 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1843 break; 1844 1845 case MISC_SPIO_OUTPUT_HIGH: 1846 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1847 /* clear FLOAT and set SET */ 1848 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1849 spio_reg |= (spio << MISC_SPIO_SET_POS); 1850 break; 1851 1852 case MISC_SPIO_INPUT_HI_Z: 1853 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1854 /* set FLOAT */ 1855 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1856 break; 1857 1858 default: 1859 break; 1860 } 1861 1862 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1863 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1864 1865 return (0); 1866 } 1867 1868 static int 1869 bxe_gpio_read(struct bxe_softc *sc, 1870 int gpio_num, 1871 uint8_t port) 1872 { 1873 /* The GPIO should be swapped if swap register is set and active */ 1874 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1875 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1876 int gpio_shift = (gpio_num + 1877 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1878 uint32_t gpio_mask = (1 << gpio_shift); 1879 uint32_t gpio_reg; 1880 1881 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1882 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1883 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1884 gpio_mask); 1885 return (-1); 1886 } 1887 1888 /* read GPIO value */ 1889 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1890 1891 /* get the requested pin value */ 1892 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1893 } 1894 1895 static int 1896 bxe_gpio_write(struct bxe_softc *sc, 1897 int gpio_num, 1898 uint32_t mode, 1899 uint8_t port) 1900 { 1901 /* The GPIO should be swapped if swap register is set and active */ 1902 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1903 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1904 int gpio_shift = (gpio_num + 1905 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1906 uint32_t gpio_mask = (1 << gpio_shift); 1907 uint32_t gpio_reg; 1908 1909 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1910 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1911 " gpio_shift %d gpio_mask 0x%x\n", 1912 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1913 return (-1); 1914 } 1915 1916 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1917 1918 /* read GPIO and mask except the float bits */ 1919 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1920 1921 switch (mode) { 1922 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1923 BLOGD(sc, DBG_PHY, 1924 "Set GPIO %d (shift %d) -> output low\n", 1925 gpio_num, gpio_shift); 1926 /* clear FLOAT and set CLR */ 1927 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1928 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1929 break; 1930 1931 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1932 BLOGD(sc, DBG_PHY, 1933 "Set GPIO %d (shift %d) -> output high\n", 1934 gpio_num, gpio_shift); 1935 /* clear FLOAT and set SET */ 1936 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1937 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1938 break; 1939 1940 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1941 BLOGD(sc, DBG_PHY, 1942 "Set GPIO %d (shift %d) -> input\n", 1943 gpio_num, gpio_shift); 1944 /* set FLOAT */ 1945 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1946 break; 1947 1948 default: 1949 break; 1950 } 1951 1952 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1953 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1954 1955 return (0); 1956 } 1957 1958 static int 1959 bxe_gpio_mult_write(struct bxe_softc *sc, 1960 uint8_t pins, 1961 uint32_t mode) 1962 { 1963 uint32_t gpio_reg; 1964 1965 /* any port swapping should be handled by caller */ 1966 1967 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1968 1969 /* read GPIO and mask except the float bits */ 1970 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1971 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1972 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 1973 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 1974 1975 switch (mode) { 1976 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1977 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 1978 /* set CLR */ 1979 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 1980 break; 1981 1982 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1983 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 1984 /* set SET */ 1985 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 1986 break; 1987 1988 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1989 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 1990 /* set FLOAT */ 1991 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 1992 break; 1993 1994 default: 1995 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 1996 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 1997 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1998 return (-1); 1999 } 2000 2001 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2002 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2003 2004 return (0); 2005 } 2006 2007 static int 2008 bxe_gpio_int_write(struct bxe_softc *sc, 2009 int gpio_num, 2010 uint32_t mode, 2011 uint8_t port) 2012 { 2013 /* The GPIO should be swapped if swap register is set and active */ 2014 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2015 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2016 int gpio_shift = (gpio_num + 2017 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2018 uint32_t gpio_mask = (1 << gpio_shift); 2019 uint32_t gpio_reg; 2020 2021 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2022 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2023 " gpio_shift %d gpio_mask 0x%x\n", 2024 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2025 return (-1); 2026 } 2027 2028 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2029 2030 /* read GPIO int */ 2031 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2032 2033 switch (mode) { 2034 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2035 BLOGD(sc, DBG_PHY, 2036 "Clear GPIO INT %d (shift %d) -> output low\n", 2037 gpio_num, gpio_shift); 2038 /* clear SET and set CLR */ 2039 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2040 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2041 break; 2042 2043 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2044 BLOGD(sc, DBG_PHY, 2045 "Set GPIO INT %d (shift %d) -> output high\n", 2046 gpio_num, gpio_shift); 2047 /* clear CLR and set SET */ 2048 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2049 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2050 break; 2051 2052 default: 2053 break; 2054 } 2055 2056 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2057 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2058 2059 return (0); 2060 } 2061 2062 uint32_t 2063 elink_cb_gpio_read(struct bxe_softc *sc, 2064 uint16_t gpio_num, 2065 uint8_t port) 2066 { 2067 return (bxe_gpio_read(sc, gpio_num, port)); 2068 } 2069 2070 uint8_t 2071 elink_cb_gpio_write(struct bxe_softc *sc, 2072 uint16_t gpio_num, 2073 uint8_t mode, /* 0=low 1=high */ 2074 uint8_t port) 2075 { 2076 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2077 } 2078 2079 uint8_t 2080 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2081 uint8_t pins, 2082 uint8_t mode) /* 0=low 1=high */ 2083 { 2084 return (bxe_gpio_mult_write(sc, pins, mode)); 2085 } 2086 2087 uint8_t 2088 elink_cb_gpio_int_write(struct bxe_softc *sc, 2089 uint16_t gpio_num, 2090 uint8_t mode, /* 0=low 1=high */ 2091 uint8_t port) 2092 { 2093 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2094 } 2095 2096 void 2097 elink_cb_notify_link_changed(struct bxe_softc *sc) 2098 { 2099 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2100 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2101 } 2102 2103 /* send the MCP a request, block until there is a reply */ 2104 uint32_t 2105 elink_cb_fw_command(struct bxe_softc *sc, 2106 uint32_t command, 2107 uint32_t param) 2108 { 2109 int mb_idx = SC_FW_MB_IDX(sc); 2110 uint32_t seq; 2111 uint32_t rc = 0; 2112 uint32_t cnt = 1; 2113 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2114 2115 BXE_FWMB_LOCK(sc); 2116 2117 seq = ++sc->fw_seq; 2118 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2119 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2120 2121 BLOGD(sc, DBG_PHY, 2122 "wrote command 0x%08x to FW MB param 0x%08x\n", 2123 (command | seq), param); 2124 2125 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2126 do { 2127 DELAY(delay * 1000); 2128 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2129 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2130 2131 BLOGD(sc, DBG_PHY, 2132 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2133 cnt*delay, rc, seq); 2134 2135 /* is this a reply to our command? */ 2136 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2137 rc &= FW_MSG_CODE_MASK; 2138 } else { 2139 /* Ruh-roh! */ 2140 BLOGE(sc, "FW failed to respond!\n"); 2141 // XXX bxe_fw_dump(sc); 2142 rc = 0; 2143 } 2144 2145 BXE_FWMB_UNLOCK(sc); 2146 return (rc); 2147 } 2148 2149 static uint32_t 2150 bxe_fw_command(struct bxe_softc *sc, 2151 uint32_t command, 2152 uint32_t param) 2153 { 2154 return (elink_cb_fw_command(sc, command, param)); 2155 } 2156 2157 static void 2158 __storm_memset_dma_mapping(struct bxe_softc *sc, 2159 uint32_t addr, 2160 bus_addr_t mapping) 2161 { 2162 REG_WR(sc, addr, U64_LO(mapping)); 2163 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2164 } 2165 2166 static void 2167 storm_memset_spq_addr(struct bxe_softc *sc, 2168 bus_addr_t mapping, 2169 uint16_t abs_fid) 2170 { 2171 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2172 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2173 __storm_memset_dma_mapping(sc, addr, mapping); 2174 } 2175 2176 static void 2177 storm_memset_vf_to_pf(struct bxe_softc *sc, 2178 uint16_t abs_fid, 2179 uint16_t pf_id) 2180 { 2181 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2182 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2183 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2184 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2185 } 2186 2187 static void 2188 storm_memset_func_en(struct bxe_softc *sc, 2189 uint16_t abs_fid, 2190 uint8_t enable) 2191 { 2192 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2193 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2194 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2195 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2196 } 2197 2198 static void 2199 storm_memset_eq_data(struct bxe_softc *sc, 2200 struct event_ring_data *eq_data, 2201 uint16_t pfid) 2202 { 2203 uint32_t addr; 2204 size_t size; 2205 2206 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2207 size = sizeof(struct event_ring_data); 2208 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2209 } 2210 2211 static void 2212 storm_memset_eq_prod(struct bxe_softc *sc, 2213 uint16_t eq_prod, 2214 uint16_t pfid) 2215 { 2216 uint32_t addr = (BAR_CSTRORM_INTMEM + 2217 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2218 REG_WR16(sc, addr, eq_prod); 2219 } 2220 2221 /* 2222 * Post a slowpath command. 2223 * 2224 * A slowpath command is used to propagate a configuration change through 2225 * the controller in a controlled manner, allowing each STORM processor and 2226 * other H/W blocks to phase in the change. The commands sent on the 2227 * slowpath are referred to as ramrods. Depending on the ramrod used the 2228 * completion of the ramrod will occur in different ways. Here's a 2229 * breakdown of ramrods and how they complete: 2230 * 2231 * RAMROD_CMD_ID_ETH_PORT_SETUP 2232 * Used to setup the leading connection on a port. Completes on the 2233 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2234 * 2235 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2236 * Used to setup an additional connection on a port. Completes on the 2237 * RCQ of the multi-queue/RSS connection being initialized. 2238 * 2239 * RAMROD_CMD_ID_ETH_STAT_QUERY 2240 * Used to force the storm processors to update the statistics database 2241 * in host memory. This ramrod is send on the leading connection CID and 2242 * completes as an index increment of the CSTORM on the default status 2243 * block. 2244 * 2245 * RAMROD_CMD_ID_ETH_UPDATE 2246 * Used to update the state of the leading connection, usually to udpate 2247 * the RSS indirection table. Completes on the RCQ of the leading 2248 * connection. (Not currently used under FreeBSD until OS support becomes 2249 * available.) 2250 * 2251 * RAMROD_CMD_ID_ETH_HALT 2252 * Used when tearing down a connection prior to driver unload. Completes 2253 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2254 * use this on the leading connection. 2255 * 2256 * RAMROD_CMD_ID_ETH_SET_MAC 2257 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2258 * the RCQ of the leading connection. 2259 * 2260 * RAMROD_CMD_ID_ETH_CFC_DEL 2261 * Used when tearing down a conneciton prior to driver unload. Completes 2262 * on the RCQ of the leading connection (since the current connection 2263 * has been completely removed from controller memory). 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_DEL 2266 * Used to tear down the leading connection prior to driver unload, 2267 * typically fp[0]. Completes as an index increment of the CSTORM on the 2268 * default status block. 2269 * 2270 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2271 * Used for connection offload. Completes on the RCQ of the multi-queue 2272 * RSS connection that is being offloaded. (Not currently used under 2273 * FreeBSD.) 2274 * 2275 * There can only be one command pending per function. 2276 * 2277 * Returns: 2278 * 0 = Success, !0 = Failure. 2279 */ 2280 2281 /* must be called under the spq lock */ 2282 static inline 2283 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2284 { 2285 struct eth_spe *next_spe = sc->spq_prod_bd; 2286 2287 if (sc->spq_prod_bd == sc->spq_last_bd) { 2288 /* wrap back to the first eth_spq */ 2289 sc->spq_prod_bd = sc->spq; 2290 sc->spq_prod_idx = 0; 2291 } else { 2292 sc->spq_prod_bd++; 2293 sc->spq_prod_idx++; 2294 } 2295 2296 return (next_spe); 2297 } 2298 2299 /* must be called under the spq lock */ 2300 static inline 2301 void bxe_sp_prod_update(struct bxe_softc *sc) 2302 { 2303 int func = SC_FUNC(sc); 2304 2305 /* 2306 * Make sure that BD data is updated before writing the producer. 2307 * BD data is written to the memory, the producer is read from the 2308 * memory, thus we need a full memory barrier to ensure the ordering. 2309 */ 2310 mb(); 2311 2312 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2313 sc->spq_prod_idx); 2314 2315 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2316 BUS_SPACE_BARRIER_WRITE); 2317 } 2318 2319 /** 2320 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2321 * 2322 * @cmd: command to check 2323 * @cmd_type: command type 2324 */ 2325 static inline 2326 int bxe_is_contextless_ramrod(int cmd, 2327 int cmd_type) 2328 { 2329 if ((cmd_type == NONE_CONNECTION_TYPE) || 2330 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2331 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2332 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2333 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2334 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2335 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2336 return (TRUE); 2337 } else { 2338 return (FALSE); 2339 } 2340 } 2341 2342 /** 2343 * bxe_sp_post - place a single command on an SP ring 2344 * 2345 * @sc: driver handle 2346 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2347 * @cid: SW CID the command is related to 2348 * @data_hi: command private data address (high 32 bits) 2349 * @data_lo: command private data address (low 32 bits) 2350 * @cmd_type: command type (e.g. NONE, ETH) 2351 * 2352 * SP data is handled as if it's always an address pair, thus data fields are 2353 * not swapped to little endian in upper functions. Instead this function swaps 2354 * data as if it's two uint32 fields. 2355 */ 2356 int 2357 bxe_sp_post(struct bxe_softc *sc, 2358 int command, 2359 int cid, 2360 uint32_t data_hi, 2361 uint32_t data_lo, 2362 int cmd_type) 2363 { 2364 struct eth_spe *spe; 2365 uint16_t type; 2366 int common; 2367 2368 common = bxe_is_contextless_ramrod(command, cmd_type); 2369 2370 BXE_SP_LOCK(sc); 2371 2372 if (common) { 2373 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2374 BLOGE(sc, "EQ ring is full!\n"); 2375 BXE_SP_UNLOCK(sc); 2376 return (-1); 2377 } 2378 } else { 2379 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2380 BLOGE(sc, "SPQ ring is full!\n"); 2381 BXE_SP_UNLOCK(sc); 2382 return (-1); 2383 } 2384 } 2385 2386 spe = bxe_sp_get_next(sc); 2387 2388 /* CID needs port number to be encoded int it */ 2389 spe->hdr.conn_and_cmd_data = 2390 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2391 2392 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2393 2394 /* TBD: Check if it works for VFs */ 2395 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2396 SPE_HDR_T_FUNCTION_ID); 2397 2398 spe->hdr.type = htole16(type); 2399 2400 spe->data.update_data_addr.hi = htole32(data_hi); 2401 spe->data.update_data_addr.lo = htole32(data_lo); 2402 2403 /* 2404 * It's ok if the actual decrement is issued towards the memory 2405 * somewhere between the lock and unlock. Thus no more explict 2406 * memory barrier is needed. 2407 */ 2408 if (common) { 2409 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2410 } else { 2411 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2412 } 2413 2414 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2415 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2416 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2417 BLOGD(sc, DBG_SP, 2418 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2419 sc->spq_prod_idx, 2420 (uint32_t)U64_HI(sc->spq_dma.paddr), 2421 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2422 command, 2423 common, 2424 HW_CID(sc, cid), 2425 data_hi, 2426 data_lo, 2427 type, 2428 atomic_load_acq_long(&sc->cq_spq_left), 2429 atomic_load_acq_long(&sc->eq_spq_left)); 2430 2431 bxe_sp_prod_update(sc); 2432 2433 BXE_SP_UNLOCK(sc); 2434 return (0); 2435 } 2436 2437 /** 2438 * bxe_debug_print_ind_table - prints the indirection table configuration. 2439 * 2440 * @sc: driver hanlde 2441 * @p: pointer to rss configuration 2442 */ 2443 2444 /* 2445 * FreeBSD Device probe function. 2446 * 2447 * Compares the device found to the driver's list of supported devices and 2448 * reports back to the bsd loader whether this is the right driver for the device. 2449 * This is the driver entry function called from the "kldload" command. 2450 * 2451 * Returns: 2452 * BUS_PROBE_DEFAULT on success, positive value on failure. 2453 */ 2454 static int 2455 bxe_probe(device_t dev) 2456 { 2457 struct bxe_device_type *t; 2458 char *descbuf; 2459 uint16_t did, sdid, svid, vid; 2460 2461 /* Find our device structure */ 2462 t = bxe_devs; 2463 2464 /* Get the data for the device to be probed. */ 2465 vid = pci_get_vendor(dev); 2466 did = pci_get_device(dev); 2467 svid = pci_get_subvendor(dev); 2468 sdid = pci_get_subdevice(dev); 2469 2470 /* Look through the list of known devices for a match. */ 2471 while (t->bxe_name != NULL) { 2472 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2473 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2474 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2475 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2476 if (descbuf == NULL) 2477 return (ENOMEM); 2478 2479 /* Print out the device identity. */ 2480 snprintf(descbuf, BXE_DEVDESC_MAX, 2481 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2482 (((pci_read_config(dev, PCIR_REVID, 4) & 2483 0xf0) >> 4) + 'A'), 2484 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2485 BXE_DRIVER_VERSION); 2486 2487 device_set_desc_copy(dev, descbuf); 2488 free(descbuf, M_TEMP); 2489 return (BUS_PROBE_DEFAULT); 2490 } 2491 t++; 2492 } 2493 2494 return (ENXIO); 2495 } 2496 2497 static void 2498 bxe_init_mutexes(struct bxe_softc *sc) 2499 { 2500 #ifdef BXE_CORE_LOCK_SX 2501 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2502 "bxe%d_core_lock", sc->unit); 2503 sx_init(&sc->core_sx, sc->core_sx_name); 2504 #else 2505 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2506 "bxe%d_core_lock", sc->unit); 2507 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2508 #endif 2509 2510 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2511 "bxe%d_sp_lock", sc->unit); 2512 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2513 2514 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2515 "bxe%d_dmae_lock", sc->unit); 2516 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2517 2518 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2519 "bxe%d_phy_lock", sc->unit); 2520 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2521 2522 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2523 "bxe%d_fwmb_lock", sc->unit); 2524 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2525 2526 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2527 "bxe%d_print_lock", sc->unit); 2528 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2529 2530 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2531 "bxe%d_stats_lock", sc->unit); 2532 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2533 2534 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2535 "bxe%d_mcast_lock", sc->unit); 2536 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2537 } 2538 2539 static void 2540 bxe_release_mutexes(struct bxe_softc *sc) 2541 { 2542 #ifdef BXE_CORE_LOCK_SX 2543 sx_destroy(&sc->core_sx); 2544 #else 2545 if (mtx_initialized(&sc->core_mtx)) { 2546 mtx_destroy(&sc->core_mtx); 2547 } 2548 #endif 2549 2550 if (mtx_initialized(&sc->sp_mtx)) { 2551 mtx_destroy(&sc->sp_mtx); 2552 } 2553 2554 if (mtx_initialized(&sc->dmae_mtx)) { 2555 mtx_destroy(&sc->dmae_mtx); 2556 } 2557 2558 if (mtx_initialized(&sc->port.phy_mtx)) { 2559 mtx_destroy(&sc->port.phy_mtx); 2560 } 2561 2562 if (mtx_initialized(&sc->fwmb_mtx)) { 2563 mtx_destroy(&sc->fwmb_mtx); 2564 } 2565 2566 if (mtx_initialized(&sc->print_mtx)) { 2567 mtx_destroy(&sc->print_mtx); 2568 } 2569 2570 if (mtx_initialized(&sc->stats_mtx)) { 2571 mtx_destroy(&sc->stats_mtx); 2572 } 2573 2574 if (mtx_initialized(&sc->mcast_mtx)) { 2575 mtx_destroy(&sc->mcast_mtx); 2576 } 2577 } 2578 2579 static void 2580 bxe_tx_disable(struct bxe_softc* sc) 2581 { 2582 if_t ifp = sc->ifp; 2583 2584 /* tell the stack the driver is stopped and TX queue is full */ 2585 if (ifp != NULL) { 2586 if_setdrvflags(ifp, 0); 2587 } 2588 } 2589 2590 static void 2591 bxe_drv_pulse(struct bxe_softc *sc) 2592 { 2593 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2594 sc->fw_drv_pulse_wr_seq); 2595 } 2596 2597 static inline uint16_t 2598 bxe_tx_avail(struct bxe_softc *sc, 2599 struct bxe_fastpath *fp) 2600 { 2601 int16_t used; 2602 uint16_t prod; 2603 uint16_t cons; 2604 2605 prod = fp->tx_bd_prod; 2606 cons = fp->tx_bd_cons; 2607 2608 used = SUB_S16(prod, cons); 2609 2610 return (int16_t)(sc->tx_ring_size) - used; 2611 } 2612 2613 static inline int 2614 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2615 { 2616 uint16_t hw_cons; 2617 2618 mb(); /* status block fields can change */ 2619 hw_cons = le16toh(*fp->tx_cons_sb); 2620 return (hw_cons != fp->tx_pkt_cons); 2621 } 2622 2623 static inline uint8_t 2624 bxe_has_tx_work(struct bxe_fastpath *fp) 2625 { 2626 /* expand this for multi-cos if ever supported */ 2627 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2628 } 2629 2630 static inline int 2631 bxe_has_rx_work(struct bxe_fastpath *fp) 2632 { 2633 uint16_t rx_cq_cons_sb; 2634 2635 mb(); /* status block fields can change */ 2636 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2637 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2638 rx_cq_cons_sb++; 2639 return (fp->rx_cq_cons != rx_cq_cons_sb); 2640 } 2641 2642 static void 2643 bxe_sp_event(struct bxe_softc *sc, 2644 struct bxe_fastpath *fp, 2645 union eth_rx_cqe *rr_cqe) 2646 { 2647 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2648 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2649 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2650 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2651 2652 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2653 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2654 2655 switch (command) { 2656 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2657 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2658 drv_cmd = ECORE_Q_CMD_UPDATE; 2659 break; 2660 2661 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2662 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2663 drv_cmd = ECORE_Q_CMD_SETUP; 2664 break; 2665 2666 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2667 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2668 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2669 break; 2670 2671 case (RAMROD_CMD_ID_ETH_HALT): 2672 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2673 drv_cmd = ECORE_Q_CMD_HALT; 2674 break; 2675 2676 case (RAMROD_CMD_ID_ETH_TERMINATE): 2677 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2678 drv_cmd = ECORE_Q_CMD_TERMINATE; 2679 break; 2680 2681 case (RAMROD_CMD_ID_ETH_EMPTY): 2682 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2683 drv_cmd = ECORE_Q_CMD_EMPTY; 2684 break; 2685 2686 default: 2687 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2688 command, fp->index); 2689 return; 2690 } 2691 2692 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2693 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2694 /* 2695 * q_obj->complete_cmd() failure means that this was 2696 * an unexpected completion. 2697 * 2698 * In this case we don't want to increase the sc->spq_left 2699 * because apparently we haven't sent this command the first 2700 * place. 2701 */ 2702 // bxe_panic(sc, ("Unexpected SP completion\n")); 2703 return; 2704 } 2705 2706 atomic_add_acq_long(&sc->cq_spq_left, 1); 2707 2708 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2709 atomic_load_acq_long(&sc->cq_spq_left)); 2710 } 2711 2712 /* 2713 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2714 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2715 * the current aggregation queue as in-progress. 2716 */ 2717 static void 2718 bxe_tpa_start(struct bxe_softc *sc, 2719 struct bxe_fastpath *fp, 2720 uint16_t queue, 2721 uint16_t cons, 2722 uint16_t prod, 2723 struct eth_fast_path_rx_cqe *cqe) 2724 { 2725 struct bxe_sw_rx_bd tmp_bd; 2726 struct bxe_sw_rx_bd *rx_buf; 2727 struct eth_rx_bd *rx_bd; 2728 int max_agg_queues; 2729 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2730 uint16_t index; 2731 2732 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2733 "cons=%d prod=%d\n", 2734 fp->index, queue, cons, prod); 2735 2736 max_agg_queues = MAX_AGG_QS(sc); 2737 2738 KASSERT((queue < max_agg_queues), 2739 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2740 fp->index, queue, max_agg_queues)); 2741 2742 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2743 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2744 fp->index, queue)); 2745 2746 /* copy the existing mbuf and mapping from the TPA pool */ 2747 tmp_bd = tpa_info->bd; 2748 2749 if (tmp_bd.m == NULL) { 2750 uint32_t *tmp; 2751 2752 tmp = (uint32_t *)cqe; 2753 2754 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2755 fp->index, queue, cons, prod); 2756 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2757 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2758 2759 /* XXX Error handling? */ 2760 return; 2761 } 2762 2763 /* change the TPA queue to the start state */ 2764 tpa_info->state = BXE_TPA_STATE_START; 2765 tpa_info->placement_offset = cqe->placement_offset; 2766 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2767 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2768 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2769 2770 fp->rx_tpa_queue_used |= (1 << queue); 2771 2772 /* 2773 * If all the buffer descriptors are filled with mbufs then fill in 2774 * the current consumer index with a new BD. Else if a maximum Rx 2775 * buffer limit is imposed then fill in the next producer index. 2776 */ 2777 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2778 prod : cons; 2779 2780 /* move the received mbuf and mapping to TPA pool */ 2781 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2782 2783 /* release any existing RX BD mbuf mappings */ 2784 if (cons != index) { 2785 rx_buf = &fp->rx_mbuf_chain[cons]; 2786 2787 if (rx_buf->m_map != NULL) { 2788 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2789 BUS_DMASYNC_POSTREAD); 2790 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2791 } 2792 2793 /* 2794 * We get here when the maximum number of rx buffers is less than 2795 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2796 * it out here without concern of a memory leak. 2797 */ 2798 fp->rx_mbuf_chain[cons].m = NULL; 2799 } 2800 2801 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2802 fp->rx_mbuf_chain[index] = tmp_bd; 2803 2804 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2805 rx_bd = &fp->rx_chain[index]; 2806 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2807 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2808 } 2809 2810 /* 2811 * When a TPA aggregation is completed, loop through the individual mbufs 2812 * of the aggregation, combining them into a single mbuf which will be sent 2813 * up the stack. Refill all freed SGEs with mbufs as we go along. 2814 */ 2815 static int 2816 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2817 struct bxe_fastpath *fp, 2818 struct bxe_sw_tpa_info *tpa_info, 2819 uint16_t queue, 2820 uint16_t pages, 2821 struct mbuf *m, 2822 struct eth_end_agg_rx_cqe *cqe, 2823 uint16_t cqe_idx) 2824 { 2825 struct mbuf *m_frag; 2826 uint32_t frag_len, frag_size, i; 2827 uint16_t sge_idx; 2828 int rc = 0; 2829 int j; 2830 2831 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2832 2833 BLOGD(sc, DBG_LRO, 2834 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2835 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2836 2837 /* make sure the aggregated frame is not too big to handle */ 2838 if (pages > 8 * PAGES_PER_SGE) { 2839 2840 uint32_t *tmp = (uint32_t *)cqe; 2841 2842 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2843 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2844 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2845 tpa_info->len_on_bd, frag_size); 2846 2847 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2848 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2849 2850 bxe_panic(sc, ("sge page count error\n")); 2851 return (EINVAL); 2852 } 2853 2854 /* 2855 * Scan through the scatter gather list pulling individual mbufs into a 2856 * single mbuf for the host stack. 2857 */ 2858 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2859 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2860 2861 /* 2862 * Firmware gives the indices of the SGE as if the ring is an array 2863 * (meaning that the "next" element will consume 2 indices). 2864 */ 2865 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2866 2867 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2868 "sge_idx=%d frag_size=%d frag_len=%d\n", 2869 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2870 2871 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2872 2873 /* allocate a new mbuf for the SGE */ 2874 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2875 if (rc) { 2876 /* Leave all remaining SGEs in the ring! */ 2877 return (rc); 2878 } 2879 2880 /* update the fragment length */ 2881 m_frag->m_len = frag_len; 2882 2883 /* concatenate the fragment to the head mbuf */ 2884 m_cat(m, m_frag); 2885 fp->eth_q_stats.mbuf_alloc_sge--; 2886 2887 /* update the TPA mbuf size and remaining fragment size */ 2888 m->m_pkthdr.len += frag_len; 2889 frag_size -= frag_len; 2890 } 2891 2892 BLOGD(sc, DBG_LRO, 2893 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2894 fp->index, queue, frag_size); 2895 2896 return (rc); 2897 } 2898 2899 static inline void 2900 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2901 { 2902 int i, j; 2903 2904 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2905 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2906 2907 for (j = 0; j < 2; j++) { 2908 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2909 idx--; 2910 } 2911 } 2912 } 2913 2914 static inline void 2915 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2916 { 2917 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2918 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2919 2920 /* 2921 * Clear the two last indices in the page to 1. These are the indices that 2922 * correspond to the "next" element, hence will never be indicated and 2923 * should be removed from the calculations. 2924 */ 2925 bxe_clear_sge_mask_next_elems(fp); 2926 } 2927 2928 static inline void 2929 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2930 uint16_t idx) 2931 { 2932 uint16_t last_max = fp->last_max_sge; 2933 2934 if (SUB_S16(idx, last_max) > 0) { 2935 fp->last_max_sge = idx; 2936 } 2937 } 2938 2939 static inline void 2940 bxe_update_sge_prod(struct bxe_softc *sc, 2941 struct bxe_fastpath *fp, 2942 uint16_t sge_len, 2943 union eth_sgl_or_raw_data *cqe) 2944 { 2945 uint16_t last_max, last_elem, first_elem; 2946 uint16_t delta = 0; 2947 uint16_t i; 2948 2949 if (!sge_len) { 2950 return; 2951 } 2952 2953 /* first mark all used pages */ 2954 for (i = 0; i < sge_len; i++) { 2955 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2956 RX_SGE(le16toh(cqe->sgl[i]))); 2957 } 2958 2959 BLOGD(sc, DBG_LRO, 2960 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2961 fp->index, sge_len - 1, 2962 le16toh(cqe->sgl[sge_len - 1])); 2963 2964 /* assume that the last SGE index is the biggest */ 2965 bxe_update_last_max_sge(fp, 2966 le16toh(cqe->sgl[sge_len - 1])); 2967 2968 last_max = RX_SGE(fp->last_max_sge); 2969 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 2970 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 2971 2972 /* if ring is not full */ 2973 if (last_elem + 1 != first_elem) { 2974 last_elem++; 2975 } 2976 2977 /* now update the prod */ 2978 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 2979 if (__predict_true(fp->sge_mask[i])) { 2980 break; 2981 } 2982 2983 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 2984 delta += BIT_VEC64_ELEM_SZ; 2985 } 2986 2987 if (delta > 0) { 2988 fp->rx_sge_prod += delta; 2989 /* clear page-end entries */ 2990 bxe_clear_sge_mask_next_elems(fp); 2991 } 2992 2993 BLOGD(sc, DBG_LRO, 2994 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 2995 fp->index, fp->last_max_sge, fp->rx_sge_prod); 2996 } 2997 2998 /* 2999 * The aggregation on the current TPA queue has completed. Pull the individual 3000 * mbuf fragments together into a single mbuf, perform all necessary checksum 3001 * calculations, and send the resuting mbuf to the stack. 3002 */ 3003 static void 3004 bxe_tpa_stop(struct bxe_softc *sc, 3005 struct bxe_fastpath *fp, 3006 struct bxe_sw_tpa_info *tpa_info, 3007 uint16_t queue, 3008 uint16_t pages, 3009 struct eth_end_agg_rx_cqe *cqe, 3010 uint16_t cqe_idx) 3011 { 3012 if_t ifp = sc->ifp; 3013 struct mbuf *m; 3014 int rc = 0; 3015 3016 BLOGD(sc, DBG_LRO, 3017 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3018 fp->index, queue, tpa_info->placement_offset, 3019 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3020 3021 m = tpa_info->bd.m; 3022 3023 /* allocate a replacement before modifying existing mbuf */ 3024 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3025 if (rc) { 3026 /* drop the frame and log an error */ 3027 fp->eth_q_stats.rx_soft_errors++; 3028 goto bxe_tpa_stop_exit; 3029 } 3030 3031 /* we have a replacement, fixup the current mbuf */ 3032 m_adj(m, tpa_info->placement_offset); 3033 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3034 3035 /* mark the checksums valid (taken care of by the firmware) */ 3036 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3037 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3038 m->m_pkthdr.csum_data = 0xffff; 3039 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3040 CSUM_IP_VALID | 3041 CSUM_DATA_VALID | 3042 CSUM_PSEUDO_HDR); 3043 3044 /* aggregate all of the SGEs into a single mbuf */ 3045 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3046 if (rc) { 3047 /* drop the packet and log an error */ 3048 fp->eth_q_stats.rx_soft_errors++; 3049 m_freem(m); 3050 } else { 3051 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3052 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3053 m->m_flags |= M_VLANTAG; 3054 } 3055 3056 /* assign packet to this interface interface */ 3057 if_setrcvif(m, ifp); 3058 3059 #if __FreeBSD_version >= 800000 3060 /* specify what RSS queue was used for this flow */ 3061 m->m_pkthdr.flowid = fp->index; 3062 BXE_SET_FLOWID(m); 3063 #endif 3064 3065 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3066 fp->eth_q_stats.rx_tpa_pkts++; 3067 3068 /* pass the frame to the stack */ 3069 if_input(ifp, m); 3070 } 3071 3072 /* we passed an mbuf up the stack or dropped the frame */ 3073 fp->eth_q_stats.mbuf_alloc_tpa--; 3074 3075 bxe_tpa_stop_exit: 3076 3077 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3078 fp->rx_tpa_queue_used &= ~(1 << queue); 3079 } 3080 3081 static uint8_t 3082 bxe_service_rxsgl( 3083 struct bxe_fastpath *fp, 3084 uint16_t len, 3085 uint16_t lenonbd, 3086 struct mbuf *m, 3087 struct eth_fast_path_rx_cqe *cqe_fp) 3088 { 3089 struct mbuf *m_frag; 3090 uint16_t frags, frag_len; 3091 uint16_t sge_idx = 0; 3092 uint16_t j; 3093 uint8_t i, rc = 0; 3094 uint32_t frag_size; 3095 3096 /* adjust the mbuf */ 3097 m->m_len = lenonbd; 3098 3099 frag_size = len - lenonbd; 3100 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3101 3102 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3103 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3104 3105 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3106 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3107 m_frag->m_len = frag_len; 3108 3109 /* allocate a new mbuf for the SGE */ 3110 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3111 if (rc) { 3112 /* Leave all remaining SGEs in the ring! */ 3113 return (rc); 3114 } 3115 fp->eth_q_stats.mbuf_alloc_sge--; 3116 3117 /* concatenate the fragment to the head mbuf */ 3118 m_cat(m, m_frag); 3119 3120 frag_size -= frag_len; 3121 } 3122 3123 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3124 3125 return rc; 3126 } 3127 3128 static uint8_t 3129 bxe_rxeof(struct bxe_softc *sc, 3130 struct bxe_fastpath *fp) 3131 { 3132 if_t ifp = sc->ifp; 3133 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3134 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3135 int rx_pkts = 0; 3136 int rc = 0; 3137 3138 BXE_FP_RX_LOCK(fp); 3139 3140 /* CQ "next element" is of the size of the regular element */ 3141 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3142 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3143 hw_cq_cons++; 3144 } 3145 3146 bd_cons = fp->rx_bd_cons; 3147 bd_prod = fp->rx_bd_prod; 3148 bd_prod_fw = bd_prod; 3149 sw_cq_cons = fp->rx_cq_cons; 3150 sw_cq_prod = fp->rx_cq_prod; 3151 3152 /* 3153 * Memory barrier necessary as speculative reads of the rx 3154 * buffer can be ahead of the index in the status block 3155 */ 3156 rmb(); 3157 3158 BLOGD(sc, DBG_RX, 3159 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3160 fp->index, hw_cq_cons, sw_cq_cons); 3161 3162 while (sw_cq_cons != hw_cq_cons) { 3163 struct bxe_sw_rx_bd *rx_buf = NULL; 3164 union eth_rx_cqe *cqe; 3165 struct eth_fast_path_rx_cqe *cqe_fp; 3166 uint8_t cqe_fp_flags; 3167 enum eth_rx_cqe_type cqe_fp_type; 3168 uint16_t len, lenonbd, pad; 3169 struct mbuf *m = NULL; 3170 3171 comp_ring_cons = RCQ(sw_cq_cons); 3172 bd_prod = RX_BD(bd_prod); 3173 bd_cons = RX_BD(bd_cons); 3174 3175 cqe = &fp->rcq_chain[comp_ring_cons]; 3176 cqe_fp = &cqe->fast_path_cqe; 3177 cqe_fp_flags = cqe_fp->type_error_flags; 3178 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3179 3180 BLOGD(sc, DBG_RX, 3181 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3182 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3183 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3184 fp->index, 3185 hw_cq_cons, 3186 sw_cq_cons, 3187 bd_prod, 3188 bd_cons, 3189 CQE_TYPE(cqe_fp_flags), 3190 cqe_fp_flags, 3191 cqe_fp->status_flags, 3192 le32toh(cqe_fp->rss_hash_result), 3193 le16toh(cqe_fp->vlan_tag), 3194 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3195 le16toh(cqe_fp->len_on_bd)); 3196 3197 /* is this a slowpath msg? */ 3198 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3199 bxe_sp_event(sc, fp, cqe); 3200 goto next_cqe; 3201 } 3202 3203 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3204 3205 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3206 struct bxe_sw_tpa_info *tpa_info; 3207 uint16_t frag_size, pages; 3208 uint8_t queue; 3209 3210 if (CQE_TYPE_START(cqe_fp_type)) { 3211 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3212 bd_cons, bd_prod, cqe_fp); 3213 m = NULL; /* packet not ready yet */ 3214 goto next_rx; 3215 } 3216 3217 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3218 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3219 3220 queue = cqe->end_agg_cqe.queue_index; 3221 tpa_info = &fp->rx_tpa_info[queue]; 3222 3223 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3224 fp->index, queue); 3225 3226 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3227 tpa_info->len_on_bd); 3228 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3229 3230 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3231 &cqe->end_agg_cqe, comp_ring_cons); 3232 3233 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3234 3235 goto next_cqe; 3236 } 3237 3238 /* non TPA */ 3239 3240 /* is this an error packet? */ 3241 if (__predict_false(cqe_fp_flags & 3242 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3243 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3244 fp->eth_q_stats.rx_soft_errors++; 3245 goto next_rx; 3246 } 3247 3248 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3249 lenonbd = le16toh(cqe_fp->len_on_bd); 3250 pad = cqe_fp->placement_offset; 3251 3252 m = rx_buf->m; 3253 3254 if (__predict_false(m == NULL)) { 3255 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3256 bd_cons, fp->index); 3257 goto next_rx; 3258 } 3259 3260 /* XXX double copy if packet length under a threshold */ 3261 3262 /* 3263 * If all the buffer descriptors are filled with mbufs then fill in 3264 * the current consumer index with a new BD. Else if a maximum Rx 3265 * buffer limit is imposed then fill in the next producer index. 3266 */ 3267 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3268 (sc->max_rx_bufs != RX_BD_USABLE) ? 3269 bd_prod : bd_cons); 3270 if (rc != 0) { 3271 3272 /* we simply reuse the received mbuf and don't post it to the stack */ 3273 m = NULL; 3274 3275 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3276 fp->index, rc); 3277 fp->eth_q_stats.rx_soft_errors++; 3278 3279 if (sc->max_rx_bufs != RX_BD_USABLE) { 3280 /* copy this consumer index to the producer index */ 3281 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3282 sizeof(struct bxe_sw_rx_bd)); 3283 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3284 } 3285 3286 goto next_rx; 3287 } 3288 3289 /* current mbuf was detached from the bd */ 3290 fp->eth_q_stats.mbuf_alloc_rx--; 3291 3292 /* we allocated a replacement mbuf, fixup the current one */ 3293 m_adj(m, pad); 3294 m->m_pkthdr.len = m->m_len = len; 3295 3296 if ((len > 60) && (len > lenonbd)) { 3297 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3298 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3299 if (rc) 3300 break; 3301 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3302 } else if (lenonbd < len) { 3303 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3304 } 3305 3306 /* assign packet to this interface interface */ 3307 if_setrcvif(m, ifp); 3308 3309 /* assume no hardware checksum has complated */ 3310 m->m_pkthdr.csum_flags = 0; 3311 3312 /* validate checksum if offload enabled */ 3313 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3314 /* check for a valid IP frame */ 3315 if (!(cqe->fast_path_cqe.status_flags & 3316 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3317 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3318 if (__predict_false(cqe_fp_flags & 3319 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3320 fp->eth_q_stats.rx_hw_csum_errors++; 3321 } else { 3322 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3323 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3324 } 3325 } 3326 3327 /* check for a valid TCP/UDP frame */ 3328 if (!(cqe->fast_path_cqe.status_flags & 3329 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3330 if (__predict_false(cqe_fp_flags & 3331 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3332 fp->eth_q_stats.rx_hw_csum_errors++; 3333 } else { 3334 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3335 m->m_pkthdr.csum_data = 0xFFFF; 3336 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3337 CSUM_PSEUDO_HDR); 3338 } 3339 } 3340 } 3341 3342 /* if there is a VLAN tag then flag that info */ 3343 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3344 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3345 m->m_flags |= M_VLANTAG; 3346 } 3347 3348 #if __FreeBSD_version >= 800000 3349 /* specify what RSS queue was used for this flow */ 3350 m->m_pkthdr.flowid = fp->index; 3351 BXE_SET_FLOWID(m); 3352 #endif 3353 3354 next_rx: 3355 3356 bd_cons = RX_BD_NEXT(bd_cons); 3357 bd_prod = RX_BD_NEXT(bd_prod); 3358 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3359 3360 /* pass the frame to the stack */ 3361 if (__predict_true(m != NULL)) { 3362 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3363 rx_pkts++; 3364 if_input(ifp, m); 3365 } 3366 3367 next_cqe: 3368 3369 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3370 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3371 3372 /* limit spinning on the queue */ 3373 if (rc != 0) 3374 break; 3375 3376 if (rx_pkts == sc->rx_budget) { 3377 fp->eth_q_stats.rx_budget_reached++; 3378 break; 3379 } 3380 } /* while work to do */ 3381 3382 fp->rx_bd_cons = bd_cons; 3383 fp->rx_bd_prod = bd_prod_fw; 3384 fp->rx_cq_cons = sw_cq_cons; 3385 fp->rx_cq_prod = sw_cq_prod; 3386 3387 /* Update producers */ 3388 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3389 3390 fp->eth_q_stats.rx_pkts += rx_pkts; 3391 fp->eth_q_stats.rx_calls++; 3392 3393 BXE_FP_RX_UNLOCK(fp); 3394 3395 return (sw_cq_cons != hw_cq_cons); 3396 } 3397 3398 static uint16_t 3399 bxe_free_tx_pkt(struct bxe_softc *sc, 3400 struct bxe_fastpath *fp, 3401 uint16_t idx) 3402 { 3403 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3404 struct eth_tx_start_bd *tx_start_bd; 3405 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3406 uint16_t new_cons; 3407 int nbd; 3408 3409 /* unmap the mbuf from non-paged memory */ 3410 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3411 3412 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3413 nbd = le16toh(tx_start_bd->nbd) - 1; 3414 3415 new_cons = (tx_buf->first_bd + nbd); 3416 3417 /* free the mbuf */ 3418 if (__predict_true(tx_buf->m != NULL)) { 3419 m_freem(tx_buf->m); 3420 fp->eth_q_stats.mbuf_alloc_tx--; 3421 } else { 3422 fp->eth_q_stats.tx_chain_lost_mbuf++; 3423 } 3424 3425 tx_buf->m = NULL; 3426 tx_buf->first_bd = 0; 3427 3428 return (new_cons); 3429 } 3430 3431 /* transmit timeout watchdog */ 3432 static int 3433 bxe_watchdog(struct bxe_softc *sc, 3434 struct bxe_fastpath *fp) 3435 { 3436 BXE_FP_TX_LOCK(fp); 3437 3438 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3439 BXE_FP_TX_UNLOCK(fp); 3440 return (0); 3441 } 3442 3443 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3444 if(sc->trigger_grcdump) { 3445 /* taking grcdump */ 3446 bxe_grc_dump(sc); 3447 } 3448 3449 BXE_FP_TX_UNLOCK(fp); 3450 3451 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3452 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3453 3454 return (-1); 3455 } 3456 3457 /* processes transmit completions */ 3458 static uint8_t 3459 bxe_txeof(struct bxe_softc *sc, 3460 struct bxe_fastpath *fp) 3461 { 3462 if_t ifp = sc->ifp; 3463 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3464 uint16_t tx_bd_avail; 3465 3466 BXE_FP_TX_LOCK_ASSERT(fp); 3467 3468 bd_cons = fp->tx_bd_cons; 3469 hw_cons = le16toh(*fp->tx_cons_sb); 3470 sw_cons = fp->tx_pkt_cons; 3471 3472 while (sw_cons != hw_cons) { 3473 pkt_cons = TX_BD(sw_cons); 3474 3475 BLOGD(sc, DBG_TX, 3476 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3477 fp->index, hw_cons, sw_cons, pkt_cons); 3478 3479 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3480 3481 sw_cons++; 3482 } 3483 3484 fp->tx_pkt_cons = sw_cons; 3485 fp->tx_bd_cons = bd_cons; 3486 3487 BLOGD(sc, DBG_TX, 3488 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3489 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3490 3491 mb(); 3492 3493 tx_bd_avail = bxe_tx_avail(sc, fp); 3494 3495 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3496 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3497 } else { 3498 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3499 } 3500 3501 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3502 /* reset the watchdog timer if there are pending transmits */ 3503 fp->watchdog_timer = BXE_TX_TIMEOUT; 3504 return (TRUE); 3505 } else { 3506 /* clear watchdog when there are no pending transmits */ 3507 fp->watchdog_timer = 0; 3508 return (FALSE); 3509 } 3510 } 3511 3512 static void 3513 bxe_drain_tx_queues(struct bxe_softc *sc) 3514 { 3515 struct bxe_fastpath *fp; 3516 int i, count; 3517 3518 /* wait until all TX fastpath tasks have completed */ 3519 for (i = 0; i < sc->num_queues; i++) { 3520 fp = &sc->fp[i]; 3521 3522 count = 1000; 3523 3524 while (bxe_has_tx_work(fp)) { 3525 3526 BXE_FP_TX_LOCK(fp); 3527 bxe_txeof(sc, fp); 3528 BXE_FP_TX_UNLOCK(fp); 3529 3530 if (count == 0) { 3531 BLOGE(sc, "Timeout waiting for fp[%d] " 3532 "transmits to complete!\n", i); 3533 bxe_panic(sc, ("tx drain failure\n")); 3534 return; 3535 } 3536 3537 count--; 3538 DELAY(1000); 3539 rmb(); 3540 } 3541 } 3542 3543 return; 3544 } 3545 3546 static int 3547 bxe_del_all_macs(struct bxe_softc *sc, 3548 struct ecore_vlan_mac_obj *mac_obj, 3549 int mac_type, 3550 uint8_t wait_for_comp) 3551 { 3552 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3553 int rc; 3554 3555 /* wait for completion of requested */ 3556 if (wait_for_comp) { 3557 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3558 } 3559 3560 /* Set the mac type of addresses we want to clear */ 3561 bxe_set_bit(mac_type, &vlan_mac_flags); 3562 3563 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3564 if (rc < 0) { 3565 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3566 rc, mac_type, wait_for_comp); 3567 } 3568 3569 return (rc); 3570 } 3571 3572 static int 3573 bxe_fill_accept_flags(struct bxe_softc *sc, 3574 uint32_t rx_mode, 3575 unsigned long *rx_accept_flags, 3576 unsigned long *tx_accept_flags) 3577 { 3578 /* Clear the flags first */ 3579 *rx_accept_flags = 0; 3580 *tx_accept_flags = 0; 3581 3582 switch (rx_mode) { 3583 case BXE_RX_MODE_NONE: 3584 /* 3585 * 'drop all' supersedes any accept flags that may have been 3586 * passed to the function. 3587 */ 3588 break; 3589 3590 case BXE_RX_MODE_NORMAL: 3591 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3592 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3593 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3594 3595 /* internal switching mode */ 3596 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3597 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3598 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3599 3600 break; 3601 3602 case BXE_RX_MODE_ALLMULTI: 3603 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3604 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3605 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3606 3607 /* internal switching mode */ 3608 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3609 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3610 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3611 3612 break; 3613 3614 case BXE_RX_MODE_PROMISC: 3615 /* 3616 * According to deffinition of SI mode, iface in promisc mode 3617 * should receive matched and unmatched (in resolution of port) 3618 * unicast packets. 3619 */ 3620 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3621 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3622 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3624 3625 /* internal switching mode */ 3626 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3628 3629 if (IS_MF_SI(sc)) { 3630 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3631 } else { 3632 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3633 } 3634 3635 break; 3636 3637 default: 3638 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3639 return (-1); 3640 } 3641 3642 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3643 if (rx_mode != BXE_RX_MODE_NONE) { 3644 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3645 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3646 } 3647 3648 return (0); 3649 } 3650 3651 static int 3652 bxe_set_q_rx_mode(struct bxe_softc *sc, 3653 uint8_t cl_id, 3654 unsigned long rx_mode_flags, 3655 unsigned long rx_accept_flags, 3656 unsigned long tx_accept_flags, 3657 unsigned long ramrod_flags) 3658 { 3659 struct ecore_rx_mode_ramrod_params ramrod_param; 3660 int rc; 3661 3662 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3663 3664 /* Prepare ramrod parameters */ 3665 ramrod_param.cid = 0; 3666 ramrod_param.cl_id = cl_id; 3667 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3668 ramrod_param.func_id = SC_FUNC(sc); 3669 3670 ramrod_param.pstate = &sc->sp_state; 3671 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3672 3673 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3674 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3675 3676 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3677 3678 ramrod_param.ramrod_flags = ramrod_flags; 3679 ramrod_param.rx_mode_flags = rx_mode_flags; 3680 3681 ramrod_param.rx_accept_flags = rx_accept_flags; 3682 ramrod_param.tx_accept_flags = tx_accept_flags; 3683 3684 rc = ecore_config_rx_mode(sc, &ramrod_param); 3685 if (rc < 0) { 3686 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3687 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3688 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3689 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3690 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3691 return (rc); 3692 } 3693 3694 return (0); 3695 } 3696 3697 static int 3698 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3699 { 3700 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3701 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3702 int rc; 3703 3704 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3705 &tx_accept_flags); 3706 if (rc) { 3707 return (rc); 3708 } 3709 3710 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3711 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3712 3713 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3714 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3715 rx_accept_flags, tx_accept_flags, 3716 ramrod_flags)); 3717 } 3718 3719 /* returns the "mcp load_code" according to global load_count array */ 3720 static int 3721 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3722 { 3723 int path = SC_PATH(sc); 3724 int port = SC_PORT(sc); 3725 3726 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3727 path, load_count[path][0], load_count[path][1], 3728 load_count[path][2]); 3729 load_count[path][0]++; 3730 load_count[path][1 + port]++; 3731 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3732 path, load_count[path][0], load_count[path][1], 3733 load_count[path][2]); 3734 if (load_count[path][0] == 1) { 3735 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3736 } else if (load_count[path][1 + port] == 1) { 3737 return (FW_MSG_CODE_DRV_LOAD_PORT); 3738 } else { 3739 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3740 } 3741 } 3742 3743 /* returns the "mcp load_code" according to global load_count array */ 3744 static int 3745 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3746 { 3747 int port = SC_PORT(sc); 3748 int path = SC_PATH(sc); 3749 3750 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3751 path, load_count[path][0], load_count[path][1], 3752 load_count[path][2]); 3753 load_count[path][0]--; 3754 load_count[path][1 + port]--; 3755 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3756 path, load_count[path][0], load_count[path][1], 3757 load_count[path][2]); 3758 if (load_count[path][0] == 0) { 3759 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3760 } else if (load_count[path][1 + port] == 0) { 3761 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3762 } else { 3763 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3764 } 3765 } 3766 3767 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3768 static uint32_t 3769 bxe_send_unload_req(struct bxe_softc *sc, 3770 int unload_mode) 3771 { 3772 uint32_t reset_code = 0; 3773 3774 /* Select the UNLOAD request mode */ 3775 if (unload_mode == UNLOAD_NORMAL) { 3776 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3777 } else { 3778 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3779 } 3780 3781 /* Send the request to the MCP */ 3782 if (!BXE_NOMCP(sc)) { 3783 reset_code = bxe_fw_command(sc, reset_code, 0); 3784 } else { 3785 reset_code = bxe_nic_unload_no_mcp(sc); 3786 } 3787 3788 return (reset_code); 3789 } 3790 3791 /* send UNLOAD_DONE command to the MCP */ 3792 static void 3793 bxe_send_unload_done(struct bxe_softc *sc, 3794 uint8_t keep_link) 3795 { 3796 uint32_t reset_param = 3797 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3798 3799 /* Report UNLOAD_DONE to MCP */ 3800 if (!BXE_NOMCP(sc)) { 3801 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3802 } 3803 } 3804 3805 static int 3806 bxe_func_wait_started(struct bxe_softc *sc) 3807 { 3808 int tout = 50; 3809 3810 if (!sc->port.pmf) { 3811 return (0); 3812 } 3813 3814 /* 3815 * (assumption: No Attention from MCP at this stage) 3816 * PMF probably in the middle of TX disable/enable transaction 3817 * 1. Sync IRS for default SB 3818 * 2. Sync SP queue - this guarantees us that attention handling started 3819 * 3. Wait, that TX disable/enable transaction completes 3820 * 3821 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3822 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3823 * received completion for the transaction the state is TX_STOPPED. 3824 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3825 * transaction. 3826 */ 3827 3828 /* XXX make sure default SB ISR is done */ 3829 /* need a way to synchronize an irq (intr_mtx?) */ 3830 3831 /* XXX flush any work queues */ 3832 3833 while (ecore_func_get_state(sc, &sc->func_obj) != 3834 ECORE_F_STATE_STARTED && tout--) { 3835 DELAY(20000); 3836 } 3837 3838 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3839 /* 3840 * Failed to complete the transaction in a "good way" 3841 * Force both transactions with CLR bit. 3842 */ 3843 struct ecore_func_state_params func_params = { NULL }; 3844 3845 BLOGE(sc, "Unexpected function state! " 3846 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3847 3848 func_params.f_obj = &sc->func_obj; 3849 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3850 3851 /* STARTED-->TX_STOPPED */ 3852 func_params.cmd = ECORE_F_CMD_TX_STOP; 3853 ecore_func_state_change(sc, &func_params); 3854 3855 /* TX_STOPPED-->STARTED */ 3856 func_params.cmd = ECORE_F_CMD_TX_START; 3857 return (ecore_func_state_change(sc, &func_params)); 3858 } 3859 3860 return (0); 3861 } 3862 3863 static int 3864 bxe_stop_queue(struct bxe_softc *sc, 3865 int index) 3866 { 3867 struct bxe_fastpath *fp = &sc->fp[index]; 3868 struct ecore_queue_state_params q_params = { NULL }; 3869 int rc; 3870 3871 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3872 3873 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3874 /* We want to wait for completion in this context */ 3875 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3876 3877 /* Stop the primary connection: */ 3878 3879 /* ...halt the connection */ 3880 q_params.cmd = ECORE_Q_CMD_HALT; 3881 rc = ecore_queue_state_change(sc, &q_params); 3882 if (rc) { 3883 return (rc); 3884 } 3885 3886 /* ...terminate the connection */ 3887 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3888 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3889 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3890 rc = ecore_queue_state_change(sc, &q_params); 3891 if (rc) { 3892 return (rc); 3893 } 3894 3895 /* ...delete cfc entry */ 3896 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3897 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3898 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3899 return (ecore_queue_state_change(sc, &q_params)); 3900 } 3901 3902 /* wait for the outstanding SP commands */ 3903 static inline uint8_t 3904 bxe_wait_sp_comp(struct bxe_softc *sc, 3905 unsigned long mask) 3906 { 3907 unsigned long tmp; 3908 int tout = 5000; /* wait for 5 secs tops */ 3909 3910 while (tout--) { 3911 mb(); 3912 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3913 return (TRUE); 3914 } 3915 3916 DELAY(1000); 3917 } 3918 3919 mb(); 3920 3921 tmp = atomic_load_acq_long(&sc->sp_state); 3922 if (tmp & mask) { 3923 BLOGE(sc, "Filtering completion timed out: " 3924 "sp_state 0x%lx, mask 0x%lx\n", 3925 tmp, mask); 3926 return (FALSE); 3927 } 3928 3929 return (FALSE); 3930 } 3931 3932 static int 3933 bxe_func_stop(struct bxe_softc *sc) 3934 { 3935 struct ecore_func_state_params func_params = { NULL }; 3936 int rc; 3937 3938 /* prepare parameters for function state transitions */ 3939 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3940 func_params.f_obj = &sc->func_obj; 3941 func_params.cmd = ECORE_F_CMD_STOP; 3942 3943 /* 3944 * Try to stop the function the 'good way'. If it fails (in case 3945 * of a parity error during bxe_chip_cleanup()) and we are 3946 * not in a debug mode, perform a state transaction in order to 3947 * enable further HW_RESET transaction. 3948 */ 3949 rc = ecore_func_state_change(sc, &func_params); 3950 if (rc) { 3951 BLOGE(sc, "FUNC_STOP ramrod failed. " 3952 "Running a dry transaction (%d)\n", rc); 3953 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3954 return (ecore_func_state_change(sc, &func_params)); 3955 } 3956 3957 return (0); 3958 } 3959 3960 static int 3961 bxe_reset_hw(struct bxe_softc *sc, 3962 uint32_t load_code) 3963 { 3964 struct ecore_func_state_params func_params = { NULL }; 3965 3966 /* Prepare parameters for function state transitions */ 3967 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3968 3969 func_params.f_obj = &sc->func_obj; 3970 func_params.cmd = ECORE_F_CMD_HW_RESET; 3971 3972 func_params.params.hw_init.load_phase = load_code; 3973 3974 return (ecore_func_state_change(sc, &func_params)); 3975 } 3976 3977 static void 3978 bxe_int_disable_sync(struct bxe_softc *sc, 3979 int disable_hw) 3980 { 3981 if (disable_hw) { 3982 /* prevent the HW from sending interrupts */ 3983 bxe_int_disable(sc); 3984 } 3985 3986 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 3987 /* make sure all ISRs are done */ 3988 3989 /* XXX make sure sp_task is not running */ 3990 /* cancel and flush work queues */ 3991 } 3992 3993 static void 3994 bxe_chip_cleanup(struct bxe_softc *sc, 3995 uint32_t unload_mode, 3996 uint8_t keep_link) 3997 { 3998 int port = SC_PORT(sc); 3999 struct ecore_mcast_ramrod_params rparam = { NULL }; 4000 uint32_t reset_code; 4001 int i, rc = 0; 4002 4003 bxe_drain_tx_queues(sc); 4004 4005 /* give HW time to discard old tx messages */ 4006 DELAY(1000); 4007 4008 /* Clean all ETH MACs */ 4009 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4010 if (rc < 0) { 4011 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4012 } 4013 4014 /* Clean up UC list */ 4015 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4016 if (rc < 0) { 4017 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4018 } 4019 4020 /* Disable LLH */ 4021 if (!CHIP_IS_E1(sc)) { 4022 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4023 } 4024 4025 /* Set "drop all" to stop Rx */ 4026 4027 /* 4028 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4029 * a race between the completion code and this code. 4030 */ 4031 BXE_MCAST_LOCK(sc); 4032 4033 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4034 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4035 } else { 4036 bxe_set_storm_rx_mode(sc); 4037 } 4038 4039 /* Clean up multicast configuration */ 4040 rparam.mcast_obj = &sc->mcast_obj; 4041 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4042 if (rc < 0) { 4043 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4044 } 4045 4046 BXE_MCAST_UNLOCK(sc); 4047 4048 // XXX bxe_iov_chip_cleanup(sc); 4049 4050 /* 4051 * Send the UNLOAD_REQUEST to the MCP. This will return if 4052 * this function should perform FUNCTION, PORT, or COMMON HW 4053 * reset. 4054 */ 4055 reset_code = bxe_send_unload_req(sc, unload_mode); 4056 4057 /* 4058 * (assumption: No Attention from MCP at this stage) 4059 * PMF probably in the middle of TX disable/enable transaction 4060 */ 4061 rc = bxe_func_wait_started(sc); 4062 if (rc) { 4063 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4064 } 4065 4066 /* 4067 * Close multi and leading connections 4068 * Completions for ramrods are collected in a synchronous way 4069 */ 4070 for (i = 0; i < sc->num_queues; i++) { 4071 if (bxe_stop_queue(sc, i)) { 4072 goto unload_error; 4073 } 4074 } 4075 4076 /* 4077 * If SP settings didn't get completed so far - something 4078 * very wrong has happen. 4079 */ 4080 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4081 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4082 } 4083 4084 unload_error: 4085 4086 rc = bxe_func_stop(sc); 4087 if (rc) { 4088 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4089 } 4090 4091 /* disable HW interrupts */ 4092 bxe_int_disable_sync(sc, TRUE); 4093 4094 /* detach interrupts */ 4095 bxe_interrupt_detach(sc); 4096 4097 /* Reset the chip */ 4098 rc = bxe_reset_hw(sc, reset_code); 4099 if (rc) { 4100 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4101 } 4102 4103 /* Report UNLOAD_DONE to MCP */ 4104 bxe_send_unload_done(sc, keep_link); 4105 } 4106 4107 static void 4108 bxe_disable_close_the_gate(struct bxe_softc *sc) 4109 { 4110 uint32_t val; 4111 int port = SC_PORT(sc); 4112 4113 BLOGD(sc, DBG_LOAD, 4114 "Disabling 'close the gates'\n"); 4115 4116 if (CHIP_IS_E1(sc)) { 4117 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4118 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4119 val = REG_RD(sc, addr); 4120 val &= ~(0x300); 4121 REG_WR(sc, addr, val); 4122 } else { 4123 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4124 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4125 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4126 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4127 } 4128 } 4129 4130 /* 4131 * Cleans the object that have internal lists without sending 4132 * ramrods. Should be run when interrutps are disabled. 4133 */ 4134 static void 4135 bxe_squeeze_objects(struct bxe_softc *sc) 4136 { 4137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4138 struct ecore_mcast_ramrod_params rparam = { NULL }; 4139 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4140 int rc; 4141 4142 /* Cleanup MACs' object first... */ 4143 4144 /* Wait for completion of requested */ 4145 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4146 /* Perform a dry cleanup */ 4147 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4148 4149 /* Clean ETH primary MAC */ 4150 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4151 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4152 &ramrod_flags); 4153 if (rc != 0) { 4154 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4155 } 4156 4157 /* Cleanup UC list */ 4158 vlan_mac_flags = 0; 4159 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4160 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4161 &ramrod_flags); 4162 if (rc != 0) { 4163 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4164 } 4165 4166 /* Now clean mcast object... */ 4167 4168 rparam.mcast_obj = &sc->mcast_obj; 4169 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4170 4171 /* Add a DEL command... */ 4172 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4173 if (rc < 0) { 4174 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4175 } 4176 4177 /* now wait until all pending commands are cleared */ 4178 4179 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4180 while (rc != 0) { 4181 if (rc < 0) { 4182 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4183 return; 4184 } 4185 4186 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4187 } 4188 } 4189 4190 /* stop the controller */ 4191 static __noinline int 4192 bxe_nic_unload(struct bxe_softc *sc, 4193 uint32_t unload_mode, 4194 uint8_t keep_link) 4195 { 4196 uint8_t global = FALSE; 4197 uint32_t val; 4198 int i; 4199 4200 BXE_CORE_LOCK_ASSERT(sc); 4201 4202 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4203 4204 for (i = 0; i < sc->num_queues; i++) { 4205 struct bxe_fastpath *fp; 4206 4207 fp = &sc->fp[i]; 4208 BXE_FP_TX_LOCK(fp); 4209 BXE_FP_TX_UNLOCK(fp); 4210 } 4211 4212 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4213 4214 /* mark driver as unloaded in shmem2 */ 4215 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4216 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4217 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4218 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4219 } 4220 4221 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4222 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4223 /* 4224 * We can get here if the driver has been unloaded 4225 * during parity error recovery and is either waiting for a 4226 * leader to complete or for other functions to unload and 4227 * then ifconfig down has been issued. In this case we want to 4228 * unload and let other functions to complete a recovery 4229 * process. 4230 */ 4231 sc->recovery_state = BXE_RECOVERY_DONE; 4232 sc->is_leader = 0; 4233 bxe_release_leader_lock(sc); 4234 mb(); 4235 4236 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4237 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4238 " state = 0x%x\n", sc->recovery_state, sc->state); 4239 return (-1); 4240 } 4241 4242 /* 4243 * Nothing to do during unload if previous bxe_nic_load() 4244 * did not completed successfully - all resourses are released. 4245 */ 4246 if ((sc->state == BXE_STATE_CLOSED) || 4247 (sc->state == BXE_STATE_ERROR)) { 4248 return (0); 4249 } 4250 4251 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4252 mb(); 4253 4254 /* stop tx */ 4255 bxe_tx_disable(sc); 4256 4257 sc->rx_mode = BXE_RX_MODE_NONE; 4258 /* XXX set rx mode ??? */ 4259 4260 if (IS_PF(sc) && !sc->grcdump_done) { 4261 /* set ALWAYS_ALIVE bit in shmem */ 4262 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4263 4264 bxe_drv_pulse(sc); 4265 4266 bxe_stats_handle(sc, STATS_EVENT_STOP); 4267 bxe_save_statistics(sc); 4268 } 4269 4270 /* wait till consumers catch up with producers in all queues */ 4271 bxe_drain_tx_queues(sc); 4272 4273 /* if VF indicate to PF this function is going down (PF will delete sp 4274 * elements and clear initializations 4275 */ 4276 if (IS_VF(sc)) { 4277 ; /* bxe_vfpf_close_vf(sc); */ 4278 } else if (unload_mode != UNLOAD_RECOVERY) { 4279 /* if this is a normal/close unload need to clean up chip */ 4280 if (!sc->grcdump_done) 4281 bxe_chip_cleanup(sc, unload_mode, keep_link); 4282 } else { 4283 /* Send the UNLOAD_REQUEST to the MCP */ 4284 bxe_send_unload_req(sc, unload_mode); 4285 4286 /* 4287 * Prevent transactions to host from the functions on the 4288 * engine that doesn't reset global blocks in case of global 4289 * attention once gloabl blocks are reset and gates are opened 4290 * (the engine which leader will perform the recovery 4291 * last). 4292 */ 4293 if (!CHIP_IS_E1x(sc)) { 4294 bxe_pf_disable(sc); 4295 } 4296 4297 /* disable HW interrupts */ 4298 bxe_int_disable_sync(sc, TRUE); 4299 4300 /* detach interrupts */ 4301 bxe_interrupt_detach(sc); 4302 4303 /* Report UNLOAD_DONE to MCP */ 4304 bxe_send_unload_done(sc, FALSE); 4305 } 4306 4307 /* 4308 * At this stage no more interrupts will arrive so we may safely clean 4309 * the queue'able objects here in case they failed to get cleaned so far. 4310 */ 4311 if (IS_PF(sc)) { 4312 bxe_squeeze_objects(sc); 4313 } 4314 4315 /* There should be no more pending SP commands at this stage */ 4316 sc->sp_state = 0; 4317 4318 sc->port.pmf = 0; 4319 4320 bxe_free_fp_buffers(sc); 4321 4322 if (IS_PF(sc)) { 4323 bxe_free_mem(sc); 4324 } 4325 4326 bxe_free_fw_stats_mem(sc); 4327 4328 sc->state = BXE_STATE_CLOSED; 4329 4330 /* 4331 * Check if there are pending parity attentions. If there are - set 4332 * RECOVERY_IN_PROGRESS. 4333 */ 4334 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4335 bxe_set_reset_in_progress(sc); 4336 4337 /* Set RESET_IS_GLOBAL if needed */ 4338 if (global) { 4339 bxe_set_reset_global(sc); 4340 } 4341 } 4342 4343 /* 4344 * The last driver must disable a "close the gate" if there is no 4345 * parity attention or "process kill" pending. 4346 */ 4347 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4348 bxe_reset_is_done(sc, SC_PATH(sc))) { 4349 bxe_disable_close_the_gate(sc); 4350 } 4351 4352 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4353 4354 return (0); 4355 } 4356 4357 /* 4358 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4359 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4360 */ 4361 static int 4362 bxe_ifmedia_update(struct ifnet *ifp) 4363 { 4364 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4365 struct ifmedia *ifm; 4366 4367 ifm = &sc->ifmedia; 4368 4369 /* We only support Ethernet media type. */ 4370 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4371 return (EINVAL); 4372 } 4373 4374 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4375 case IFM_AUTO: 4376 break; 4377 case IFM_10G_CX4: 4378 case IFM_10G_SR: 4379 case IFM_10G_T: 4380 case IFM_10G_TWINAX: 4381 default: 4382 /* We don't support changing the media type. */ 4383 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4384 IFM_SUBTYPE(ifm->ifm_media)); 4385 return (EINVAL); 4386 } 4387 4388 return (0); 4389 } 4390 4391 /* 4392 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4393 */ 4394 static void 4395 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4396 { 4397 struct bxe_softc *sc = if_getsoftc(ifp); 4398 4399 /* Report link down if the driver isn't running. */ 4400 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4401 ifmr->ifm_active |= IFM_NONE; 4402 return; 4403 } 4404 4405 /* Setup the default interface info. */ 4406 ifmr->ifm_status = IFM_AVALID; 4407 ifmr->ifm_active = IFM_ETHER; 4408 4409 if (sc->link_vars.link_up) { 4410 ifmr->ifm_status |= IFM_ACTIVE; 4411 } else { 4412 ifmr->ifm_active |= IFM_NONE; 4413 return; 4414 } 4415 4416 ifmr->ifm_active |= sc->media; 4417 4418 if (sc->link_vars.duplex == DUPLEX_FULL) { 4419 ifmr->ifm_active |= IFM_FDX; 4420 } else { 4421 ifmr->ifm_active |= IFM_HDX; 4422 } 4423 } 4424 4425 static void 4426 bxe_handle_chip_tq(void *context, 4427 int pending) 4428 { 4429 struct bxe_softc *sc = (struct bxe_softc *)context; 4430 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4431 4432 switch (work) 4433 { 4434 4435 case CHIP_TQ_REINIT: 4436 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4437 /* restart the interface */ 4438 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4439 bxe_periodic_stop(sc); 4440 BXE_CORE_LOCK(sc); 4441 bxe_stop_locked(sc); 4442 bxe_init_locked(sc); 4443 BXE_CORE_UNLOCK(sc); 4444 } 4445 break; 4446 4447 default: 4448 break; 4449 } 4450 } 4451 4452 /* 4453 * Handles any IOCTL calls from the operating system. 4454 * 4455 * Returns: 4456 * 0 = Success, >0 Failure 4457 */ 4458 static int 4459 bxe_ioctl(if_t ifp, 4460 u_long command, 4461 caddr_t data) 4462 { 4463 struct bxe_softc *sc = if_getsoftc(ifp); 4464 struct ifreq *ifr = (struct ifreq *)data; 4465 int mask = 0; 4466 int reinit = 0; 4467 int error = 0; 4468 4469 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4470 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4471 4472 switch (command) 4473 { 4474 case SIOCSIFMTU: 4475 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4476 ifr->ifr_mtu); 4477 4478 if (sc->mtu == ifr->ifr_mtu) { 4479 /* nothing to change */ 4480 break; 4481 } 4482 4483 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4484 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4485 ifr->ifr_mtu, mtu_min, mtu_max); 4486 error = EINVAL; 4487 break; 4488 } 4489 4490 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4491 (unsigned long)ifr->ifr_mtu); 4492 /* 4493 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4494 (unsigned long)ifr->ifr_mtu); 4495 XXX - Not sure why it needs to be atomic 4496 */ 4497 if_setmtu(ifp, ifr->ifr_mtu); 4498 reinit = 1; 4499 break; 4500 4501 case SIOCSIFFLAGS: 4502 /* toggle the interface state up or down */ 4503 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4504 4505 BXE_CORE_LOCK(sc); 4506 /* check if the interface is up */ 4507 if (if_getflags(ifp) & IFF_UP) { 4508 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4509 /* set the receive mode flags */ 4510 bxe_set_rx_mode(sc); 4511 } else if(sc->state != BXE_STATE_DISABLED) { 4512 bxe_init_locked(sc); 4513 } 4514 } else { 4515 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4516 bxe_periodic_stop(sc); 4517 bxe_stop_locked(sc); 4518 } 4519 } 4520 BXE_CORE_UNLOCK(sc); 4521 4522 break; 4523 4524 case SIOCADDMULTI: 4525 case SIOCDELMULTI: 4526 /* add/delete multicast addresses */ 4527 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4528 4529 /* check if the interface is up */ 4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4531 /* set the receive mode flags */ 4532 BXE_CORE_LOCK(sc); 4533 bxe_set_rx_mode(sc); 4534 BXE_CORE_UNLOCK(sc); 4535 } 4536 4537 break; 4538 4539 case SIOCSIFCAP: 4540 /* find out which capabilities have changed */ 4541 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4542 4543 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4544 mask); 4545 4546 /* toggle the LRO capabilites enable flag */ 4547 if (mask & IFCAP_LRO) { 4548 if_togglecapenable(ifp, IFCAP_LRO); 4549 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4550 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4551 reinit = 1; 4552 } 4553 4554 /* toggle the TXCSUM checksum capabilites enable flag */ 4555 if (mask & IFCAP_TXCSUM) { 4556 if_togglecapenable(ifp, IFCAP_TXCSUM); 4557 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4558 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4559 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4560 if_sethwassistbits(ifp, (CSUM_IP | 4561 CSUM_TCP | 4562 CSUM_UDP | 4563 CSUM_TSO | 4564 CSUM_TCP_IPV6 | 4565 CSUM_UDP_IPV6), 0); 4566 } else { 4567 if_clearhwassist(ifp); /* XXX */ 4568 } 4569 } 4570 4571 /* toggle the RXCSUM checksum capabilities enable flag */ 4572 if (mask & IFCAP_RXCSUM) { 4573 if_togglecapenable(ifp, IFCAP_RXCSUM); 4574 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4575 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4576 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4577 if_sethwassistbits(ifp, (CSUM_IP | 4578 CSUM_TCP | 4579 CSUM_UDP | 4580 CSUM_TSO | 4581 CSUM_TCP_IPV6 | 4582 CSUM_UDP_IPV6), 0); 4583 } else { 4584 if_clearhwassist(ifp); /* XXX */ 4585 } 4586 } 4587 4588 /* toggle TSO4 capabilities enabled flag */ 4589 if (mask & IFCAP_TSO4) { 4590 if_togglecapenable(ifp, IFCAP_TSO4); 4591 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4592 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4593 } 4594 4595 /* toggle TSO6 capabilities enabled flag */ 4596 if (mask & IFCAP_TSO6) { 4597 if_togglecapenable(ifp, IFCAP_TSO6); 4598 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4599 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4600 } 4601 4602 /* toggle VLAN_HWTSO capabilities enabled flag */ 4603 if (mask & IFCAP_VLAN_HWTSO) { 4604 4605 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4606 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4607 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4608 } 4609 4610 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4611 if (mask & IFCAP_VLAN_HWCSUM) { 4612 /* XXX investigate this... */ 4613 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4614 error = EINVAL; 4615 } 4616 4617 /* toggle VLAN_MTU capabilities enable flag */ 4618 if (mask & IFCAP_VLAN_MTU) { 4619 /* XXX investigate this... */ 4620 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4621 error = EINVAL; 4622 } 4623 4624 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4625 if (mask & IFCAP_VLAN_HWTAGGING) { 4626 /* XXX investigate this... */ 4627 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4628 error = EINVAL; 4629 } 4630 4631 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4632 if (mask & IFCAP_VLAN_HWFILTER) { 4633 /* XXX investigate this... */ 4634 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4635 error = EINVAL; 4636 } 4637 4638 /* XXX not yet... 4639 * IFCAP_WOL_MAGIC 4640 */ 4641 4642 break; 4643 4644 case SIOCSIFMEDIA: 4645 case SIOCGIFMEDIA: 4646 /* set/get interface media */ 4647 BLOGD(sc, DBG_IOCTL, 4648 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4649 (command & 0xff)); 4650 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4651 break; 4652 4653 default: 4654 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4655 (command & 0xff)); 4656 error = ether_ioctl(ifp, command, data); 4657 break; 4658 } 4659 4660 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4661 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4662 "Re-initializing hardware from IOCTL change\n"); 4663 bxe_periodic_stop(sc); 4664 BXE_CORE_LOCK(sc); 4665 bxe_stop_locked(sc); 4666 bxe_init_locked(sc); 4667 BXE_CORE_UNLOCK(sc); 4668 } 4669 4670 return (error); 4671 } 4672 4673 static __noinline void 4674 bxe_dump_mbuf(struct bxe_softc *sc, 4675 struct mbuf *m, 4676 uint8_t contents) 4677 { 4678 char * type; 4679 int i = 0; 4680 4681 if (!(sc->debug & DBG_MBUF)) { 4682 return; 4683 } 4684 4685 if (m == NULL) { 4686 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4687 return; 4688 } 4689 4690 while (m) { 4691 4692 #if __FreeBSD_version >= 1000000 4693 BLOGD(sc, DBG_MBUF, 4694 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4695 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4696 4697 if (m->m_flags & M_PKTHDR) { 4698 BLOGD(sc, DBG_MBUF, 4699 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4700 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4701 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4702 } 4703 #else 4704 BLOGD(sc, DBG_MBUF, 4705 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4706 i, m, m->m_len, m->m_flags, 4707 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 4708 4709 if (m->m_flags & M_PKTHDR) { 4710 BLOGD(sc, DBG_MBUF, 4711 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4712 i, m->m_pkthdr.len, m->m_flags, 4713 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 4714 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 4715 "\22M_PROMISC\23M_NOFREE", 4716 (int)m->m_pkthdr.csum_flags, 4717 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 4718 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 4719 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 4720 "\14CSUM_PSEUDO_HDR"); 4721 } 4722 #endif /* #if __FreeBSD_version >= 1000000 */ 4723 4724 if (m->m_flags & M_EXT) { 4725 switch (m->m_ext.ext_type) { 4726 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4727 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4728 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4729 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4730 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4731 case EXT_PACKET: type = "EXT_PACKET"; break; 4732 case EXT_MBUF: type = "EXT_MBUF"; break; 4733 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4734 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4735 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4736 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4737 default: type = "UNKNOWN"; break; 4738 } 4739 4740 BLOGD(sc, DBG_MBUF, 4741 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4742 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4743 } 4744 4745 if (contents) { 4746 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4747 } 4748 4749 m = m->m_next; 4750 i++; 4751 } 4752 } 4753 4754 /* 4755 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4756 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4757 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4758 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4759 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4760 */ 4761 static int 4762 bxe_chktso_window(struct bxe_softc *sc, 4763 int nsegs, 4764 bus_dma_segment_t *segs, 4765 struct mbuf *m) 4766 { 4767 uint32_t num_wnds, wnd_size, wnd_sum; 4768 int32_t frag_idx, wnd_idx; 4769 unsigned short lso_mss; 4770 int defrag; 4771 4772 defrag = 0; 4773 wnd_sum = 0; 4774 wnd_size = 10; 4775 num_wnds = nsegs - wnd_size; 4776 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4777 4778 /* 4779 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4780 * first window sum of data while skipping the first assuming it is the 4781 * header in FreeBSD. 4782 */ 4783 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4784 wnd_sum += htole16(segs[frag_idx].ds_len); 4785 } 4786 4787 /* check the first 10 bd window size */ 4788 if (wnd_sum < lso_mss) { 4789 return (1); 4790 } 4791 4792 /* run through the windows */ 4793 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4794 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4795 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4796 /* add the next mbuf len to the len of our new window */ 4797 wnd_sum += htole16(segs[frag_idx].ds_len); 4798 if (wnd_sum < lso_mss) { 4799 return (1); 4800 } 4801 } 4802 4803 return (0); 4804 } 4805 4806 static uint8_t 4807 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4808 struct mbuf *m, 4809 uint32_t *parsing_data) 4810 { 4811 struct ether_vlan_header *eh = NULL; 4812 struct ip *ip4 = NULL; 4813 struct ip6_hdr *ip6 = NULL; 4814 caddr_t ip = NULL; 4815 struct tcphdr *th = NULL; 4816 int e_hlen, ip_hlen, l4_off; 4817 uint16_t proto; 4818 4819 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4820 /* no L4 checksum offload needed */ 4821 return (0); 4822 } 4823 4824 /* get the Ethernet header */ 4825 eh = mtod(m, struct ether_vlan_header *); 4826 4827 /* handle VLAN encapsulation if present */ 4828 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4829 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4830 proto = ntohs(eh->evl_proto); 4831 } else { 4832 e_hlen = ETHER_HDR_LEN; 4833 proto = ntohs(eh->evl_encap_proto); 4834 } 4835 4836 switch (proto) { 4837 case ETHERTYPE_IP: 4838 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4839 ip4 = (m->m_len < sizeof(struct ip)) ? 4840 (struct ip *)m->m_next->m_data : 4841 (struct ip *)(m->m_data + e_hlen); 4842 /* ip_hl is number of 32-bit words */ 4843 ip_hlen = (ip4->ip_hl << 2); 4844 ip = (caddr_t)ip4; 4845 break; 4846 case ETHERTYPE_IPV6: 4847 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4848 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4849 (struct ip6_hdr *)m->m_next->m_data : 4850 (struct ip6_hdr *)(m->m_data + e_hlen); 4851 /* XXX cannot support offload with IPv6 extensions */ 4852 ip_hlen = sizeof(struct ip6_hdr); 4853 ip = (caddr_t)ip6; 4854 break; 4855 default: 4856 /* We can't offload in this case... */ 4857 /* XXX error stat ??? */ 4858 return (0); 4859 } 4860 4861 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4862 l4_off = (e_hlen + ip_hlen); 4863 4864 *parsing_data |= 4865 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4866 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4867 4868 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4869 CSUM_TSO | 4870 CSUM_TCP_IPV6)) { 4871 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4872 th = (struct tcphdr *)(ip + ip_hlen); 4873 /* th_off is number of 32-bit words */ 4874 *parsing_data |= ((th->th_off << 4875 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4876 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4877 return (l4_off + (th->th_off << 2)); /* entire header length */ 4878 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4879 CSUM_UDP_IPV6)) { 4880 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4881 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4882 } else { 4883 /* XXX error stat ??? */ 4884 return (0); 4885 } 4886 } 4887 4888 static uint8_t 4889 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4890 struct mbuf *m, 4891 struct eth_tx_parse_bd_e1x *pbd) 4892 { 4893 struct ether_vlan_header *eh = NULL; 4894 struct ip *ip4 = NULL; 4895 struct ip6_hdr *ip6 = NULL; 4896 caddr_t ip = NULL; 4897 struct tcphdr *th = NULL; 4898 struct udphdr *uh = NULL; 4899 int e_hlen, ip_hlen; 4900 uint16_t proto; 4901 uint8_t hlen; 4902 uint16_t tmp_csum; 4903 uint32_t *tmp_uh; 4904 4905 /* get the Ethernet header */ 4906 eh = mtod(m, struct ether_vlan_header *); 4907 4908 /* handle VLAN encapsulation if present */ 4909 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4910 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4911 proto = ntohs(eh->evl_proto); 4912 } else { 4913 e_hlen = ETHER_HDR_LEN; 4914 proto = ntohs(eh->evl_encap_proto); 4915 } 4916 4917 switch (proto) { 4918 case ETHERTYPE_IP: 4919 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4920 ip4 = (m->m_len < sizeof(struct ip)) ? 4921 (struct ip *)m->m_next->m_data : 4922 (struct ip *)(m->m_data + e_hlen); 4923 /* ip_hl is number of 32-bit words */ 4924 ip_hlen = (ip4->ip_hl << 1); 4925 ip = (caddr_t)ip4; 4926 break; 4927 case ETHERTYPE_IPV6: 4928 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4929 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4930 (struct ip6_hdr *)m->m_next->m_data : 4931 (struct ip6_hdr *)(m->m_data + e_hlen); 4932 /* XXX cannot support offload with IPv6 extensions */ 4933 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4934 ip = (caddr_t)ip6; 4935 break; 4936 default: 4937 /* We can't offload in this case... */ 4938 /* XXX error stat ??? */ 4939 return (0); 4940 } 4941 4942 hlen = (e_hlen >> 1); 4943 4944 /* note that rest of global_data is indirectly zeroed here */ 4945 if (m->m_flags & M_VLANTAG) { 4946 pbd->global_data = 4947 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4948 } else { 4949 pbd->global_data = htole16(hlen); 4950 } 4951 4952 pbd->ip_hlen_w = ip_hlen; 4953 4954 hlen += pbd->ip_hlen_w; 4955 4956 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4957 4958 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4959 CSUM_TSO | 4960 CSUM_TCP_IPV6)) { 4961 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4962 /* th_off is number of 32-bit words */ 4963 hlen += (uint16_t)(th->th_off << 1); 4964 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4965 CSUM_UDP_IPV6)) { 4966 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4967 hlen += (sizeof(struct udphdr) / 2); 4968 } else { 4969 /* valid case as only CSUM_IP was set */ 4970 return (0); 4971 } 4972 4973 pbd->total_hlen_w = htole16(hlen); 4974 4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4976 CSUM_TSO | 4977 CSUM_TCP_IPV6)) { 4978 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4979 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4980 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4981 CSUM_UDP_IPV6)) { 4982 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4983 4984 /* 4985 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 4986 * checksums and does not know anything about the UDP header and where 4987 * the checksum field is located. It only knows about TCP. Therefore 4988 * we "lie" to the hardware for outgoing UDP packets w/ checksum 4989 * offload. Since the checksum field offset for TCP is 16 bytes and 4990 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 4991 * bytes less than the start of the UDP header. This allows the 4992 * hardware to write the checksum in the correct spot. But the 4993 * hardware will compute a checksum which includes the last 10 bytes 4994 * of the IP header. To correct this we tweak the stack computed 4995 * pseudo checksum by folding in the calculation of the inverse 4996 * checksum for those final 10 bytes of the IP header. This allows 4997 * the correct checksum to be computed by the hardware. 4998 */ 4999 5000 /* set pointer 10 bytes before UDP header */ 5001 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5002 5003 /* calculate a pseudo header checksum over the first 10 bytes */ 5004 tmp_csum = in_pseudo(*tmp_uh, 5005 *(tmp_uh + 1), 5006 *(uint16_t *)(tmp_uh + 2)); 5007 5008 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5009 } 5010 5011 return (hlen * 2); /* entire header length, number of bytes */ 5012 } 5013 5014 static void 5015 bxe_set_pbd_lso_e2(struct mbuf *m, 5016 uint32_t *parsing_data) 5017 { 5018 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5019 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5020 ETH_TX_PARSE_BD_E2_LSO_MSS); 5021 5022 /* XXX test for IPv6 with extension header... */ 5023 } 5024 5025 static void 5026 bxe_set_pbd_lso(struct mbuf *m, 5027 struct eth_tx_parse_bd_e1x *pbd) 5028 { 5029 struct ether_vlan_header *eh = NULL; 5030 struct ip *ip = NULL; 5031 struct tcphdr *th = NULL; 5032 int e_hlen; 5033 5034 /* get the Ethernet header */ 5035 eh = mtod(m, struct ether_vlan_header *); 5036 5037 /* handle VLAN encapsulation if present */ 5038 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5039 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5040 5041 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5042 /* XXX assuming IPv4 */ 5043 ip = (struct ip *)(m->m_data + e_hlen); 5044 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5045 5046 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5047 pbd->tcp_send_seq = ntohl(th->th_seq); 5048 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5049 5050 #if 1 5051 /* XXX IPv4 */ 5052 pbd->ip_id = ntohs(ip->ip_id); 5053 pbd->tcp_pseudo_csum = 5054 ntohs(in_pseudo(ip->ip_src.s_addr, 5055 ip->ip_dst.s_addr, 5056 htons(IPPROTO_TCP))); 5057 #else 5058 /* XXX IPv6 */ 5059 pbd->tcp_pseudo_csum = 5060 ntohs(in_pseudo(&ip6->ip6_src, 5061 &ip6->ip6_dst, 5062 htons(IPPROTO_TCP))); 5063 #endif 5064 5065 pbd->global_data |= 5066 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5067 } 5068 5069 /* 5070 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5071 * visible to the controller. 5072 * 5073 * If an mbuf is submitted to this routine and cannot be given to the 5074 * controller (e.g. it has too many fragments) then the function may free 5075 * the mbuf and return to the caller. 5076 * 5077 * Returns: 5078 * 0 = Success, !0 = Failure 5079 * Note the side effect that an mbuf may be freed if it causes a problem. 5080 */ 5081 static int 5082 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5083 { 5084 bus_dma_segment_t segs[32]; 5085 struct mbuf *m0; 5086 struct bxe_sw_tx_bd *tx_buf; 5087 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5088 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5089 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5090 struct eth_tx_bd *tx_data_bd; 5091 struct eth_tx_bd *tx_total_pkt_size_bd; 5092 struct eth_tx_start_bd *tx_start_bd; 5093 uint16_t bd_prod, pkt_prod, total_pkt_size; 5094 uint8_t mac_type; 5095 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5096 struct bxe_softc *sc; 5097 uint16_t tx_bd_avail; 5098 struct ether_vlan_header *eh; 5099 uint32_t pbd_e2_parsing_data = 0; 5100 uint8_t hlen = 0; 5101 int tmp_bd; 5102 int i; 5103 5104 sc = fp->sc; 5105 5106 #if __FreeBSD_version >= 800000 5107 M_ASSERTPKTHDR(*m_head); 5108 #endif /* #if __FreeBSD_version >= 800000 */ 5109 5110 m0 = *m_head; 5111 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5112 tx_start_bd = NULL; 5113 tx_data_bd = NULL; 5114 tx_total_pkt_size_bd = NULL; 5115 5116 /* get the H/W pointer for packets and BDs */ 5117 pkt_prod = fp->tx_pkt_prod; 5118 bd_prod = fp->tx_bd_prod; 5119 5120 mac_type = UNICAST_ADDRESS; 5121 5122 /* map the mbuf into the next open DMAable memory */ 5123 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5124 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5125 tx_buf->m_map, m0, 5126 segs, &nsegs, BUS_DMA_NOWAIT); 5127 5128 /* mapping errors */ 5129 if(__predict_false(error != 0)) { 5130 fp->eth_q_stats.tx_dma_mapping_failure++; 5131 if (error == ENOMEM) { 5132 /* resource issue, try again later */ 5133 rc = ENOMEM; 5134 } else if (error == EFBIG) { 5135 /* possibly recoverable with defragmentation */ 5136 fp->eth_q_stats.mbuf_defrag_attempts++; 5137 m0 = m_defrag(*m_head, M_NOWAIT); 5138 if (m0 == NULL) { 5139 fp->eth_q_stats.mbuf_defrag_failures++; 5140 rc = ENOBUFS; 5141 } else { 5142 /* defrag successful, try mapping again */ 5143 *m_head = m0; 5144 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5145 tx_buf->m_map, m0, 5146 segs, &nsegs, BUS_DMA_NOWAIT); 5147 if (error) { 5148 fp->eth_q_stats.tx_dma_mapping_failure++; 5149 rc = error; 5150 } 5151 } 5152 } else { 5153 /* unknown, unrecoverable mapping error */ 5154 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5155 bxe_dump_mbuf(sc, m0, FALSE); 5156 rc = error; 5157 } 5158 5159 goto bxe_tx_encap_continue; 5160 } 5161 5162 tx_bd_avail = bxe_tx_avail(sc, fp); 5163 5164 /* make sure there is enough room in the send queue */ 5165 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5166 /* Recoverable, try again later. */ 5167 fp->eth_q_stats.tx_hw_queue_full++; 5168 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5169 rc = ENOMEM; 5170 goto bxe_tx_encap_continue; 5171 } 5172 5173 /* capture the current H/W TX chain high watermark */ 5174 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5175 (TX_BD_USABLE - tx_bd_avail))) { 5176 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5177 } 5178 5179 /* make sure it fits in the packet window */ 5180 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5181 /* 5182 * The mbuf may be to big for the controller to handle. If the frame 5183 * is a TSO frame we'll need to do an additional check. 5184 */ 5185 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5186 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5187 goto bxe_tx_encap_continue; /* OK to send */ 5188 } else { 5189 fp->eth_q_stats.tx_window_violation_tso++; 5190 } 5191 } else { 5192 fp->eth_q_stats.tx_window_violation_std++; 5193 } 5194 5195 /* lets try to defragment this mbuf and remap it */ 5196 fp->eth_q_stats.mbuf_defrag_attempts++; 5197 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5198 5199 m0 = m_defrag(*m_head, M_NOWAIT); 5200 if (m0 == NULL) { 5201 fp->eth_q_stats.mbuf_defrag_failures++; 5202 /* Ugh, just drop the frame... :( */ 5203 rc = ENOBUFS; 5204 } else { 5205 /* defrag successful, try mapping again */ 5206 *m_head = m0; 5207 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5208 tx_buf->m_map, m0, 5209 segs, &nsegs, BUS_DMA_NOWAIT); 5210 if (error) { 5211 fp->eth_q_stats.tx_dma_mapping_failure++; 5212 /* No sense in trying to defrag/copy chain, drop it. :( */ 5213 rc = error; 5214 } 5215 else { 5216 /* if the chain is still too long then drop it */ 5217 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5218 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5219 rc = ENODEV; 5220 } 5221 } 5222 } 5223 } 5224 5225 bxe_tx_encap_continue: 5226 5227 /* Check for errors */ 5228 if (rc) { 5229 if (rc == ENOMEM) { 5230 /* recoverable try again later */ 5231 } else { 5232 fp->eth_q_stats.tx_soft_errors++; 5233 fp->eth_q_stats.mbuf_alloc_tx--; 5234 m_freem(*m_head); 5235 *m_head = NULL; 5236 } 5237 5238 return (rc); 5239 } 5240 5241 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5242 if (m0->m_flags & M_BCAST) { 5243 mac_type = BROADCAST_ADDRESS; 5244 } else if (m0->m_flags & M_MCAST) { 5245 mac_type = MULTICAST_ADDRESS; 5246 } 5247 5248 /* store the mbuf into the mbuf ring */ 5249 tx_buf->m = m0; 5250 tx_buf->first_bd = fp->tx_bd_prod; 5251 tx_buf->flags = 0; 5252 5253 /* prepare the first transmit (start) BD for the mbuf */ 5254 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5255 5256 BLOGD(sc, DBG_TX, 5257 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5258 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5259 5260 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5261 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5262 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5263 total_pkt_size += tx_start_bd->nbytes; 5264 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5265 5266 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5267 5268 /* all frames have at least Start BD + Parsing BD */ 5269 nbds = nsegs + 1; 5270 tx_start_bd->nbd = htole16(nbds); 5271 5272 if (m0->m_flags & M_VLANTAG) { 5273 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5274 tx_start_bd->bd_flags.as_bitfield |= 5275 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5276 } else { 5277 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5278 if (IS_VF(sc)) { 5279 /* map ethernet header to find type and header length */ 5280 eh = mtod(m0, struct ether_vlan_header *); 5281 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5282 } else { 5283 /* used by FW for packet accounting */ 5284 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5285 } 5286 } 5287 5288 /* 5289 * add a parsing BD from the chain. The parsing BD is always added 5290 * though it is only used for TSO and chksum 5291 */ 5292 bd_prod = TX_BD_NEXT(bd_prod); 5293 5294 if (m0->m_pkthdr.csum_flags) { 5295 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5296 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5297 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5298 } 5299 5300 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5301 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5302 ETH_TX_BD_FLAGS_L4_CSUM); 5303 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5304 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5305 ETH_TX_BD_FLAGS_IS_UDP | 5306 ETH_TX_BD_FLAGS_L4_CSUM); 5307 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5308 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5309 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5310 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5311 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5312 ETH_TX_BD_FLAGS_IS_UDP); 5313 } 5314 } 5315 5316 if (!CHIP_IS_E1x(sc)) { 5317 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5318 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5319 5320 if (m0->m_pkthdr.csum_flags) { 5321 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5322 } 5323 5324 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5325 mac_type); 5326 } else { 5327 uint16_t global_data = 0; 5328 5329 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5330 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5331 5332 if (m0->m_pkthdr.csum_flags) { 5333 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5334 } 5335 5336 SET_FLAG(global_data, 5337 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5338 pbd_e1x->global_data |= htole16(global_data); 5339 } 5340 5341 /* setup the parsing BD with TSO specific info */ 5342 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5343 fp->eth_q_stats.tx_ofld_frames_lso++; 5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5345 5346 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5347 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5348 5349 /* split the first BD into header/data making the fw job easy */ 5350 nbds++; 5351 tx_start_bd->nbd = htole16(nbds); 5352 tx_start_bd->nbytes = htole16(hlen); 5353 5354 bd_prod = TX_BD_NEXT(bd_prod); 5355 5356 /* new transmit BD after the tx_parse_bd */ 5357 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5358 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5359 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5360 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5361 if (tx_total_pkt_size_bd == NULL) { 5362 tx_total_pkt_size_bd = tx_data_bd; 5363 } 5364 5365 BLOGD(sc, DBG_TX, 5366 "TSO split header size is %d (%x:%x) nbds %d\n", 5367 le16toh(tx_start_bd->nbytes), 5368 le32toh(tx_start_bd->addr_hi), 5369 le32toh(tx_start_bd->addr_lo), 5370 nbds); 5371 } 5372 5373 if (!CHIP_IS_E1x(sc)) { 5374 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5375 } else { 5376 bxe_set_pbd_lso(m0, pbd_e1x); 5377 } 5378 } 5379 5380 if (pbd_e2_parsing_data) { 5381 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5382 } 5383 5384 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5385 for (i = 1; i < nsegs ; i++) { 5386 bd_prod = TX_BD_NEXT(bd_prod); 5387 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5388 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5389 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5390 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5391 if (tx_total_pkt_size_bd == NULL) { 5392 tx_total_pkt_size_bd = tx_data_bd; 5393 } 5394 total_pkt_size += tx_data_bd->nbytes; 5395 } 5396 5397 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5398 5399 if (tx_total_pkt_size_bd != NULL) { 5400 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5401 } 5402 5403 if (__predict_false(sc->debug & DBG_TX)) { 5404 tmp_bd = tx_buf->first_bd; 5405 for (i = 0; i < nbds; i++) 5406 { 5407 if (i == 0) { 5408 BLOGD(sc, DBG_TX, 5409 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5410 "bd_flags=0x%x hdr_nbds=%d\n", 5411 tx_start_bd, 5412 tmp_bd, 5413 le16toh(tx_start_bd->nbd), 5414 le16toh(tx_start_bd->vlan_or_ethertype), 5415 tx_start_bd->bd_flags.as_bitfield, 5416 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5417 } else if (i == 1) { 5418 if (pbd_e1x) { 5419 BLOGD(sc, DBG_TX, 5420 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5421 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5422 "tcp_seq=%u total_hlen_w=%u\n", 5423 pbd_e1x, 5424 tmp_bd, 5425 pbd_e1x->global_data, 5426 pbd_e1x->ip_hlen_w, 5427 pbd_e1x->ip_id, 5428 pbd_e1x->lso_mss, 5429 pbd_e1x->tcp_flags, 5430 pbd_e1x->tcp_pseudo_csum, 5431 pbd_e1x->tcp_send_seq, 5432 le16toh(pbd_e1x->total_hlen_w)); 5433 } else { /* if (pbd_e2) */ 5434 BLOGD(sc, DBG_TX, 5435 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5436 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5437 pbd_e2, 5438 tmp_bd, 5439 pbd_e2->data.mac_addr.dst_hi, 5440 pbd_e2->data.mac_addr.dst_mid, 5441 pbd_e2->data.mac_addr.dst_lo, 5442 pbd_e2->data.mac_addr.src_hi, 5443 pbd_e2->data.mac_addr.src_mid, 5444 pbd_e2->data.mac_addr.src_lo, 5445 pbd_e2->parsing_data); 5446 } 5447 } 5448 5449 if (i != 1) { /* skip parse db as it doesn't hold data */ 5450 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5451 BLOGD(sc, DBG_TX, 5452 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5453 tx_data_bd, 5454 tmp_bd, 5455 le16toh(tx_data_bd->nbytes), 5456 le32toh(tx_data_bd->addr_hi), 5457 le32toh(tx_data_bd->addr_lo)); 5458 } 5459 5460 tmp_bd = TX_BD_NEXT(tmp_bd); 5461 } 5462 } 5463 5464 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5465 5466 /* update TX BD producer index value for next TX */ 5467 bd_prod = TX_BD_NEXT(bd_prod); 5468 5469 /* 5470 * If the chain of tx_bd's describing this frame is adjacent to or spans 5471 * an eth_tx_next_bd element then we need to increment the nbds value. 5472 */ 5473 if (TX_BD_IDX(bd_prod) < nbds) { 5474 nbds++; 5475 } 5476 5477 /* don't allow reordering of writes for nbd and packets */ 5478 mb(); 5479 5480 fp->tx_db.data.prod += nbds; 5481 5482 /* producer points to the next free tx_bd at this point */ 5483 fp->tx_pkt_prod++; 5484 fp->tx_bd_prod = bd_prod; 5485 5486 DOORBELL(sc, fp->index, fp->tx_db.raw); 5487 5488 fp->eth_q_stats.tx_pkts++; 5489 5490 /* Prevent speculative reads from getting ahead of the status block. */ 5491 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5492 0, 0, BUS_SPACE_BARRIER_READ); 5493 5494 /* Prevent speculative reads from getting ahead of the doorbell. */ 5495 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5496 0, 0, BUS_SPACE_BARRIER_READ); 5497 5498 return (0); 5499 } 5500 5501 static void 5502 bxe_tx_start_locked(struct bxe_softc *sc, 5503 if_t ifp, 5504 struct bxe_fastpath *fp) 5505 { 5506 struct mbuf *m = NULL; 5507 int tx_count = 0; 5508 uint16_t tx_bd_avail; 5509 5510 BXE_FP_TX_LOCK_ASSERT(fp); 5511 5512 /* keep adding entries while there are frames to send */ 5513 while (!if_sendq_empty(ifp)) { 5514 5515 /* 5516 * check for any frames to send 5517 * dequeue can still be NULL even if queue is not empty 5518 */ 5519 m = if_dequeue(ifp); 5520 if (__predict_false(m == NULL)) { 5521 break; 5522 } 5523 5524 /* the mbuf now belongs to us */ 5525 fp->eth_q_stats.mbuf_alloc_tx++; 5526 5527 /* 5528 * Put the frame into the transmit ring. If we don't have room, 5529 * place the mbuf back at the head of the TX queue, set the 5530 * OACTIVE flag, and wait for the NIC to drain the chain. 5531 */ 5532 if (__predict_false(bxe_tx_encap(fp, &m))) { 5533 fp->eth_q_stats.tx_encap_failures++; 5534 if (m != NULL) { 5535 /* mark the TX queue as full and return the frame */ 5536 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5537 if_sendq_prepend(ifp, m); 5538 fp->eth_q_stats.mbuf_alloc_tx--; 5539 fp->eth_q_stats.tx_queue_xoff++; 5540 } 5541 5542 /* stop looking for more work */ 5543 break; 5544 } 5545 5546 /* the frame was enqueued successfully */ 5547 tx_count++; 5548 5549 /* send a copy of the frame to any BPF listeners. */ 5550 if_etherbpfmtap(ifp, m); 5551 5552 tx_bd_avail = bxe_tx_avail(sc, fp); 5553 5554 /* handle any completions if we're running low */ 5555 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5556 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5557 bxe_txeof(sc, fp); 5558 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5559 break; 5560 } 5561 } 5562 } 5563 5564 /* all TX packets were dequeued and/or the tx ring is full */ 5565 if (tx_count > 0) { 5566 /* reset the TX watchdog timeout timer */ 5567 fp->watchdog_timer = BXE_TX_TIMEOUT; 5568 } 5569 } 5570 5571 /* Legacy (non-RSS) dispatch routine */ 5572 static void 5573 bxe_tx_start(if_t ifp) 5574 { 5575 struct bxe_softc *sc; 5576 struct bxe_fastpath *fp; 5577 5578 sc = if_getsoftc(ifp); 5579 5580 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5581 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5582 return; 5583 } 5584 5585 if (!sc->link_vars.link_up) { 5586 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5587 return; 5588 } 5589 5590 fp = &sc->fp[0]; 5591 5592 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5593 fp->eth_q_stats.tx_queue_full_return++; 5594 return; 5595 } 5596 5597 BXE_FP_TX_LOCK(fp); 5598 bxe_tx_start_locked(sc, ifp, fp); 5599 BXE_FP_TX_UNLOCK(fp); 5600 } 5601 5602 #if __FreeBSD_version >= 800000 5603 5604 static int 5605 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5606 if_t ifp, 5607 struct bxe_fastpath *fp, 5608 struct mbuf *m) 5609 { 5610 struct buf_ring *tx_br = fp->tx_br; 5611 struct mbuf *next; 5612 int depth, rc, tx_count; 5613 uint16_t tx_bd_avail; 5614 5615 rc = tx_count = 0; 5616 5617 BXE_FP_TX_LOCK_ASSERT(fp); 5618 5619 if (!tx_br) { 5620 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5621 return (EINVAL); 5622 } 5623 5624 if (!sc->link_vars.link_up || 5625 (if_getdrvflags(ifp) & 5626 (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { 5627 if (m != NULL) 5628 rc = drbr_enqueue(ifp, tx_br, m); 5629 goto bxe_tx_mq_start_locked_exit; 5630 } 5631 5632 /* fetch the depth of the driver queue */ 5633 depth = drbr_inuse_drv(ifp, tx_br); 5634 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5635 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5636 } 5637 5638 if (m == NULL) { 5639 /* no new work, check for pending frames */ 5640 next = drbr_dequeue_drv(ifp, tx_br); 5641 } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { 5642 /* have both new and pending work, maintain packet order */ 5643 rc = drbr_enqueue(ifp, tx_br, m); 5644 if (rc != 0) { 5645 fp->eth_q_stats.tx_soft_errors++; 5646 goto bxe_tx_mq_start_locked_exit; 5647 } 5648 next = drbr_dequeue_drv(ifp, tx_br); 5649 } else { 5650 /* new work only and nothing pending */ 5651 next = m; 5652 } 5653 5654 /* keep adding entries while there are frames to send */ 5655 while (next != NULL) { 5656 5657 /* the mbuf now belongs to us */ 5658 fp->eth_q_stats.mbuf_alloc_tx++; 5659 5660 /* 5661 * Put the frame into the transmit ring. If we don't have room, 5662 * place the mbuf back at the head of the TX queue, set the 5663 * OACTIVE flag, and wait for the NIC to drain the chain. 5664 */ 5665 rc = bxe_tx_encap(fp, &next); 5666 if (__predict_false(rc != 0)) { 5667 fp->eth_q_stats.tx_encap_failures++; 5668 if (next != NULL) { 5669 /* mark the TX queue as full and save the frame */ 5670 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5671 /* XXX this may reorder the frame */ 5672 rc = drbr_enqueue(ifp, tx_br, next); 5673 fp->eth_q_stats.mbuf_alloc_tx--; 5674 fp->eth_q_stats.tx_frames_deferred++; 5675 } 5676 5677 /* stop looking for more work */ 5678 break; 5679 } 5680 5681 /* the transmit frame was enqueued successfully */ 5682 tx_count++; 5683 5684 /* send a copy of the frame to any BPF listeners */ 5685 if_etherbpfmtap(ifp, next); 5686 5687 tx_bd_avail = bxe_tx_avail(sc, fp); 5688 5689 /* handle any completions if we're running low */ 5690 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5691 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5692 bxe_txeof(sc, fp); 5693 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5694 break; 5695 } 5696 } 5697 5698 next = drbr_dequeue_drv(ifp, tx_br); 5699 } 5700 5701 /* all TX packets were dequeued and/or the tx ring is full */ 5702 if (tx_count > 0) { 5703 /* reset the TX watchdog timeout timer */ 5704 fp->watchdog_timer = BXE_TX_TIMEOUT; 5705 } 5706 5707 bxe_tx_mq_start_locked_exit: 5708 5709 return (rc); 5710 } 5711 5712 /* Multiqueue (TSS) dispatch routine. */ 5713 static int 5714 bxe_tx_mq_start(struct ifnet *ifp, 5715 struct mbuf *m) 5716 { 5717 struct bxe_softc *sc = if_getsoftc(ifp); 5718 struct bxe_fastpath *fp; 5719 int fp_index, rc; 5720 5721 fp_index = 0; /* default is the first queue */ 5722 5723 /* check if flowid is set */ 5724 5725 if (BXE_VALID_FLOWID(m)) 5726 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5727 5728 fp = &sc->fp[fp_index]; 5729 5730 if (BXE_FP_TX_TRYLOCK(fp)) { 5731 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5732 BXE_FP_TX_UNLOCK(fp); 5733 } else 5734 rc = drbr_enqueue(ifp, fp->tx_br, m); 5735 5736 return (rc); 5737 } 5738 5739 static void 5740 bxe_mq_flush(struct ifnet *ifp) 5741 { 5742 struct bxe_softc *sc = if_getsoftc(ifp); 5743 struct bxe_fastpath *fp; 5744 struct mbuf *m; 5745 int i; 5746 5747 for (i = 0; i < sc->num_queues; i++) { 5748 fp = &sc->fp[i]; 5749 5750 if (fp->state != BXE_FP_STATE_OPEN) { 5751 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5752 fp->index, fp->state); 5753 continue; 5754 } 5755 5756 if (fp->tx_br != NULL) { 5757 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5758 BXE_FP_TX_LOCK(fp); 5759 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5760 m_freem(m); 5761 } 5762 BXE_FP_TX_UNLOCK(fp); 5763 } 5764 } 5765 5766 if_qflush(ifp); 5767 } 5768 5769 #endif /* FreeBSD_version >= 800000 */ 5770 5771 static uint16_t 5772 bxe_cid_ilt_lines(struct bxe_softc *sc) 5773 { 5774 if (IS_SRIOV(sc)) { 5775 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5776 } 5777 return (L2_ILT_LINES(sc)); 5778 } 5779 5780 static void 5781 bxe_ilt_set_info(struct bxe_softc *sc) 5782 { 5783 struct ilt_client_info *ilt_client; 5784 struct ecore_ilt *ilt = sc->ilt; 5785 uint16_t line = 0; 5786 5787 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5788 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5789 5790 /* CDU */ 5791 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5792 ilt_client->client_num = ILT_CLIENT_CDU; 5793 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5794 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5795 ilt_client->start = line; 5796 line += bxe_cid_ilt_lines(sc); 5797 5798 if (CNIC_SUPPORT(sc)) { 5799 line += CNIC_ILT_LINES; 5800 } 5801 5802 ilt_client->end = (line - 1); 5803 5804 BLOGD(sc, DBG_LOAD, 5805 "ilt client[CDU]: start %d, end %d, " 5806 "psz 0x%x, flags 0x%x, hw psz %d\n", 5807 ilt_client->start, ilt_client->end, 5808 ilt_client->page_size, 5809 ilt_client->flags, 5810 ilog2(ilt_client->page_size >> 12)); 5811 5812 /* QM */ 5813 if (QM_INIT(sc->qm_cid_count)) { 5814 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5815 ilt_client->client_num = ILT_CLIENT_QM; 5816 ilt_client->page_size = QM_ILT_PAGE_SZ; 5817 ilt_client->flags = 0; 5818 ilt_client->start = line; 5819 5820 /* 4 bytes for each cid */ 5821 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5822 QM_ILT_PAGE_SZ); 5823 5824 ilt_client->end = (line - 1); 5825 5826 BLOGD(sc, DBG_LOAD, 5827 "ilt client[QM]: start %d, end %d, " 5828 "psz 0x%x, flags 0x%x, hw psz %d\n", 5829 ilt_client->start, ilt_client->end, 5830 ilt_client->page_size, ilt_client->flags, 5831 ilog2(ilt_client->page_size >> 12)); 5832 } 5833 5834 if (CNIC_SUPPORT(sc)) { 5835 /* SRC */ 5836 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5837 ilt_client->client_num = ILT_CLIENT_SRC; 5838 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5839 ilt_client->flags = 0; 5840 ilt_client->start = line; 5841 line += SRC_ILT_LINES; 5842 ilt_client->end = (line - 1); 5843 5844 BLOGD(sc, DBG_LOAD, 5845 "ilt client[SRC]: start %d, end %d, " 5846 "psz 0x%x, flags 0x%x, hw psz %d\n", 5847 ilt_client->start, ilt_client->end, 5848 ilt_client->page_size, ilt_client->flags, 5849 ilog2(ilt_client->page_size >> 12)); 5850 5851 /* TM */ 5852 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5853 ilt_client->client_num = ILT_CLIENT_TM; 5854 ilt_client->page_size = TM_ILT_PAGE_SZ; 5855 ilt_client->flags = 0; 5856 ilt_client->start = line; 5857 line += TM_ILT_LINES; 5858 ilt_client->end = (line - 1); 5859 5860 BLOGD(sc, DBG_LOAD, 5861 "ilt client[TM]: start %d, end %d, " 5862 "psz 0x%x, flags 0x%x, hw psz %d\n", 5863 ilt_client->start, ilt_client->end, 5864 ilt_client->page_size, ilt_client->flags, 5865 ilog2(ilt_client->page_size >> 12)); 5866 } 5867 5868 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5869 } 5870 5871 static void 5872 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5873 { 5874 int i; 5875 uint32_t rx_buf_size; 5876 5877 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5878 5879 for (i = 0; i < sc->num_queues; i++) { 5880 if(rx_buf_size <= MCLBYTES){ 5881 sc->fp[i].rx_buf_size = rx_buf_size; 5882 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5883 }else if (rx_buf_size <= MJUMPAGESIZE){ 5884 sc->fp[i].rx_buf_size = rx_buf_size; 5885 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5886 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5887 sc->fp[i].rx_buf_size = MCLBYTES; 5888 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5889 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5890 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5891 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5892 }else { 5893 sc->fp[i].rx_buf_size = MCLBYTES; 5894 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5895 } 5896 } 5897 } 5898 5899 static int 5900 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5901 { 5902 int rc = 0; 5903 5904 if ((sc->ilt = 5905 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5906 M_BXE_ILT, 5907 (M_NOWAIT | M_ZERO))) == NULL) { 5908 rc = 1; 5909 } 5910 5911 return (rc); 5912 } 5913 5914 static int 5915 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5916 { 5917 int rc = 0; 5918 5919 if ((sc->ilt->lines = 5920 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5921 M_BXE_ILT, 5922 (M_NOWAIT | M_ZERO))) == NULL) { 5923 rc = 1; 5924 } 5925 5926 return (rc); 5927 } 5928 5929 static void 5930 bxe_free_ilt_mem(struct bxe_softc *sc) 5931 { 5932 if (sc->ilt != NULL) { 5933 free(sc->ilt, M_BXE_ILT); 5934 sc->ilt = NULL; 5935 } 5936 } 5937 5938 static void 5939 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5940 { 5941 if (sc->ilt->lines != NULL) { 5942 free(sc->ilt->lines, M_BXE_ILT); 5943 sc->ilt->lines = NULL; 5944 } 5945 } 5946 5947 static void 5948 bxe_free_mem(struct bxe_softc *sc) 5949 { 5950 int i; 5951 5952 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5953 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5954 sc->context[i].vcxt = NULL; 5955 sc->context[i].size = 0; 5956 } 5957 5958 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 5959 5960 bxe_free_ilt_lines_mem(sc); 5961 5962 } 5963 5964 static int 5965 bxe_alloc_mem(struct bxe_softc *sc) 5966 { 5967 int context_size; 5968 int allocated; 5969 int i; 5970 5971 /* 5972 * Allocate memory for CDU context: 5973 * This memory is allocated separately and not in the generic ILT 5974 * functions because CDU differs in few aspects: 5975 * 1. There can be multiple entities allocating memory for context - 5976 * regular L2, CNIC, and SRIOV drivers. Each separately controls 5977 * its own ILT lines. 5978 * 2. Since CDU page-size is not a single 4KB page (which is the case 5979 * for the other ILT clients), to be efficient we want to support 5980 * allocation of sub-page-size in the last entry. 5981 * 3. Context pointers are used by the driver to pass to FW / update 5982 * the context (for the other ILT clients the pointers are used just to 5983 * free the memory during unload). 5984 */ 5985 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 5986 for (i = 0, allocated = 0; allocated < context_size; i++) { 5987 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 5988 (context_size - allocated)); 5989 5990 if (bxe_dma_alloc(sc, sc->context[i].size, 5991 &sc->context[i].vcxt_dma, 5992 "cdu context") != 0) { 5993 bxe_free_mem(sc); 5994 return (-1); 5995 } 5996 5997 sc->context[i].vcxt = 5998 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 5999 6000 allocated += sc->context[i].size; 6001 } 6002 6003 bxe_alloc_ilt_lines_mem(sc); 6004 6005 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6006 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6007 { 6008 for (i = 0; i < 4; i++) { 6009 BLOGD(sc, DBG_LOAD, 6010 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6011 i, 6012 sc->ilt->clients[i].page_size, 6013 sc->ilt->clients[i].start, 6014 sc->ilt->clients[i].end, 6015 sc->ilt->clients[i].client_num, 6016 sc->ilt->clients[i].flags); 6017 } 6018 } 6019 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6020 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6021 bxe_free_mem(sc); 6022 return (-1); 6023 } 6024 6025 return (0); 6026 } 6027 6028 static void 6029 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6030 { 6031 struct bxe_softc *sc; 6032 int i; 6033 6034 sc = fp->sc; 6035 6036 if (fp->rx_mbuf_tag == NULL) { 6037 return; 6038 } 6039 6040 /* free all mbufs and unload all maps */ 6041 for (i = 0; i < RX_BD_TOTAL; i++) { 6042 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6043 bus_dmamap_sync(fp->rx_mbuf_tag, 6044 fp->rx_mbuf_chain[i].m_map, 6045 BUS_DMASYNC_POSTREAD); 6046 bus_dmamap_unload(fp->rx_mbuf_tag, 6047 fp->rx_mbuf_chain[i].m_map); 6048 } 6049 6050 if (fp->rx_mbuf_chain[i].m != NULL) { 6051 m_freem(fp->rx_mbuf_chain[i].m); 6052 fp->rx_mbuf_chain[i].m = NULL; 6053 fp->eth_q_stats.mbuf_alloc_rx--; 6054 } 6055 } 6056 } 6057 6058 static void 6059 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6060 { 6061 struct bxe_softc *sc; 6062 int i, max_agg_queues; 6063 6064 sc = fp->sc; 6065 6066 if (fp->rx_mbuf_tag == NULL) { 6067 return; 6068 } 6069 6070 max_agg_queues = MAX_AGG_QS(sc); 6071 6072 /* release all mbufs and unload all DMA maps in the TPA pool */ 6073 for (i = 0; i < max_agg_queues; i++) { 6074 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6075 bus_dmamap_sync(fp->rx_mbuf_tag, 6076 fp->rx_tpa_info[i].bd.m_map, 6077 BUS_DMASYNC_POSTREAD); 6078 bus_dmamap_unload(fp->rx_mbuf_tag, 6079 fp->rx_tpa_info[i].bd.m_map); 6080 } 6081 6082 if (fp->rx_tpa_info[i].bd.m != NULL) { 6083 m_freem(fp->rx_tpa_info[i].bd.m); 6084 fp->rx_tpa_info[i].bd.m = NULL; 6085 fp->eth_q_stats.mbuf_alloc_tpa--; 6086 } 6087 } 6088 } 6089 6090 static void 6091 bxe_free_sge_chain(struct bxe_fastpath *fp) 6092 { 6093 struct bxe_softc *sc; 6094 int i; 6095 6096 sc = fp->sc; 6097 6098 if (fp->rx_sge_mbuf_tag == NULL) { 6099 return; 6100 } 6101 6102 /* rree all mbufs and unload all maps */ 6103 for (i = 0; i < RX_SGE_TOTAL; i++) { 6104 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6105 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6106 fp->rx_sge_mbuf_chain[i].m_map, 6107 BUS_DMASYNC_POSTREAD); 6108 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6109 fp->rx_sge_mbuf_chain[i].m_map); 6110 } 6111 6112 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6113 m_freem(fp->rx_sge_mbuf_chain[i].m); 6114 fp->rx_sge_mbuf_chain[i].m = NULL; 6115 fp->eth_q_stats.mbuf_alloc_sge--; 6116 } 6117 } 6118 } 6119 6120 static void 6121 bxe_free_fp_buffers(struct bxe_softc *sc) 6122 { 6123 struct bxe_fastpath *fp; 6124 int i; 6125 6126 for (i = 0; i < sc->num_queues; i++) { 6127 fp = &sc->fp[i]; 6128 6129 #if __FreeBSD_version >= 800000 6130 if (fp->tx_br != NULL) { 6131 /* just in case bxe_mq_flush() wasn't called */ 6132 if (mtx_initialized(&fp->tx_mtx)) { 6133 struct mbuf *m; 6134 6135 BXE_FP_TX_LOCK(fp); 6136 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6137 m_freem(m); 6138 BXE_FP_TX_UNLOCK(fp); 6139 } 6140 } 6141 #endif 6142 6143 /* free all RX buffers */ 6144 bxe_free_rx_bd_chain(fp); 6145 bxe_free_tpa_pool(fp); 6146 bxe_free_sge_chain(fp); 6147 6148 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6149 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6150 fp->eth_q_stats.mbuf_alloc_rx); 6151 } 6152 6153 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6154 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6155 fp->eth_q_stats.mbuf_alloc_sge); 6156 } 6157 6158 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6159 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6160 fp->eth_q_stats.mbuf_alloc_tpa); 6161 } 6162 6163 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6164 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6165 fp->eth_q_stats.mbuf_alloc_tx); 6166 } 6167 6168 /* XXX verify all mbufs were reclaimed */ 6169 } 6170 } 6171 6172 static int 6173 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6174 uint16_t prev_index, 6175 uint16_t index) 6176 { 6177 struct bxe_sw_rx_bd *rx_buf; 6178 struct eth_rx_bd *rx_bd; 6179 bus_dma_segment_t segs[1]; 6180 bus_dmamap_t map; 6181 struct mbuf *m; 6182 int nsegs, rc; 6183 6184 rc = 0; 6185 6186 /* allocate the new RX BD mbuf */ 6187 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6188 if (__predict_false(m == NULL)) { 6189 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6190 return (ENOBUFS); 6191 } 6192 6193 fp->eth_q_stats.mbuf_alloc_rx++; 6194 6195 /* initialize the mbuf buffer length */ 6196 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6197 6198 /* map the mbuf into non-paged pool */ 6199 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6200 fp->rx_mbuf_spare_map, 6201 m, segs, &nsegs, BUS_DMA_NOWAIT); 6202 if (__predict_false(rc != 0)) { 6203 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6204 m_freem(m); 6205 fp->eth_q_stats.mbuf_alloc_rx--; 6206 return (rc); 6207 } 6208 6209 /* all mbufs must map to a single segment */ 6210 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6211 6212 /* release any existing RX BD mbuf mappings */ 6213 6214 if (prev_index != index) { 6215 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6216 6217 if (rx_buf->m_map != NULL) { 6218 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6219 BUS_DMASYNC_POSTREAD); 6220 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6221 } 6222 6223 /* 6224 * We only get here from bxe_rxeof() when the maximum number 6225 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6226 * holds the mbuf in the prev_index so it's OK to NULL it out 6227 * here without concern of a memory leak. 6228 */ 6229 fp->rx_mbuf_chain[prev_index].m = NULL; 6230 } 6231 6232 rx_buf = &fp->rx_mbuf_chain[index]; 6233 6234 if (rx_buf->m_map != NULL) { 6235 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6236 BUS_DMASYNC_POSTREAD); 6237 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6238 } 6239 6240 /* save the mbuf and mapping info for a future packet */ 6241 map = (prev_index != index) ? 6242 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6243 rx_buf->m_map = fp->rx_mbuf_spare_map; 6244 fp->rx_mbuf_spare_map = map; 6245 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6246 BUS_DMASYNC_PREREAD); 6247 rx_buf->m = m; 6248 6249 rx_bd = &fp->rx_chain[index]; 6250 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6251 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6252 6253 return (rc); 6254 } 6255 6256 static int 6257 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6258 int queue) 6259 { 6260 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6261 bus_dma_segment_t segs[1]; 6262 bus_dmamap_t map; 6263 struct mbuf *m; 6264 int nsegs; 6265 int rc = 0; 6266 6267 /* allocate the new TPA mbuf */ 6268 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6269 if (__predict_false(m == NULL)) { 6270 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6271 return (ENOBUFS); 6272 } 6273 6274 fp->eth_q_stats.mbuf_alloc_tpa++; 6275 6276 /* initialize the mbuf buffer length */ 6277 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6278 6279 /* map the mbuf into non-paged pool */ 6280 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6281 fp->rx_tpa_info_mbuf_spare_map, 6282 m, segs, &nsegs, BUS_DMA_NOWAIT); 6283 if (__predict_false(rc != 0)) { 6284 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6285 m_free(m); 6286 fp->eth_q_stats.mbuf_alloc_tpa--; 6287 return (rc); 6288 } 6289 6290 /* all mbufs must map to a single segment */ 6291 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6292 6293 /* release any existing TPA mbuf mapping */ 6294 if (tpa_info->bd.m_map != NULL) { 6295 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6296 BUS_DMASYNC_POSTREAD); 6297 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6298 } 6299 6300 /* save the mbuf and mapping info for the TPA mbuf */ 6301 map = tpa_info->bd.m_map; 6302 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6303 fp->rx_tpa_info_mbuf_spare_map = map; 6304 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6305 BUS_DMASYNC_PREREAD); 6306 tpa_info->bd.m = m; 6307 tpa_info->seg = segs[0]; 6308 6309 return (rc); 6310 } 6311 6312 /* 6313 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6314 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6315 * chain. 6316 */ 6317 static int 6318 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6319 uint16_t index) 6320 { 6321 struct bxe_sw_rx_bd *sge_buf; 6322 struct eth_rx_sge *sge; 6323 bus_dma_segment_t segs[1]; 6324 bus_dmamap_t map; 6325 struct mbuf *m; 6326 int nsegs; 6327 int rc = 0; 6328 6329 /* allocate a new SGE mbuf */ 6330 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6331 if (__predict_false(m == NULL)) { 6332 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6333 return (ENOMEM); 6334 } 6335 6336 fp->eth_q_stats.mbuf_alloc_sge++; 6337 6338 /* initialize the mbuf buffer length */ 6339 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6340 6341 /* map the SGE mbuf into non-paged pool */ 6342 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6343 fp->rx_sge_mbuf_spare_map, 6344 m, segs, &nsegs, BUS_DMA_NOWAIT); 6345 if (__predict_false(rc != 0)) { 6346 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6347 m_freem(m); 6348 fp->eth_q_stats.mbuf_alloc_sge--; 6349 return (rc); 6350 } 6351 6352 /* all mbufs must map to a single segment */ 6353 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6354 6355 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6356 6357 /* release any existing SGE mbuf mapping */ 6358 if (sge_buf->m_map != NULL) { 6359 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6360 BUS_DMASYNC_POSTREAD); 6361 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6362 } 6363 6364 /* save the mbuf and mapping info for a future packet */ 6365 map = sge_buf->m_map; 6366 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6367 fp->rx_sge_mbuf_spare_map = map; 6368 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6369 BUS_DMASYNC_PREREAD); 6370 sge_buf->m = m; 6371 6372 sge = &fp->rx_sge_chain[index]; 6373 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6374 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6375 6376 return (rc); 6377 } 6378 6379 static __noinline int 6380 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6381 { 6382 struct bxe_fastpath *fp; 6383 int i, j, rc = 0; 6384 int ring_prod, cqe_ring_prod; 6385 int max_agg_queues; 6386 6387 for (i = 0; i < sc->num_queues; i++) { 6388 fp = &sc->fp[i]; 6389 6390 ring_prod = cqe_ring_prod = 0; 6391 fp->rx_bd_cons = 0; 6392 fp->rx_cq_cons = 0; 6393 6394 /* allocate buffers for the RX BDs in RX BD chain */ 6395 for (j = 0; j < sc->max_rx_bufs; j++) { 6396 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6397 if (rc != 0) { 6398 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6399 i, rc); 6400 goto bxe_alloc_fp_buffers_error; 6401 } 6402 6403 ring_prod = RX_BD_NEXT(ring_prod); 6404 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6405 } 6406 6407 fp->rx_bd_prod = ring_prod; 6408 fp->rx_cq_prod = cqe_ring_prod; 6409 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6410 6411 max_agg_queues = MAX_AGG_QS(sc); 6412 6413 fp->tpa_enable = TRUE; 6414 6415 /* fill the TPA pool */ 6416 for (j = 0; j < max_agg_queues; j++) { 6417 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6418 if (rc != 0) { 6419 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6420 i, j); 6421 fp->tpa_enable = FALSE; 6422 goto bxe_alloc_fp_buffers_error; 6423 } 6424 6425 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6426 } 6427 6428 if (fp->tpa_enable) { 6429 /* fill the RX SGE chain */ 6430 ring_prod = 0; 6431 for (j = 0; j < RX_SGE_USABLE; j++) { 6432 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6433 if (rc != 0) { 6434 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6435 i, ring_prod); 6436 fp->tpa_enable = FALSE; 6437 ring_prod = 0; 6438 goto bxe_alloc_fp_buffers_error; 6439 } 6440 6441 ring_prod = RX_SGE_NEXT(ring_prod); 6442 } 6443 6444 fp->rx_sge_prod = ring_prod; 6445 } 6446 } 6447 6448 return (0); 6449 6450 bxe_alloc_fp_buffers_error: 6451 6452 /* unwind what was already allocated */ 6453 bxe_free_rx_bd_chain(fp); 6454 bxe_free_tpa_pool(fp); 6455 bxe_free_sge_chain(fp); 6456 6457 return (ENOBUFS); 6458 } 6459 6460 static void 6461 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6462 { 6463 bxe_dma_free(sc, &sc->fw_stats_dma); 6464 6465 sc->fw_stats_num = 0; 6466 6467 sc->fw_stats_req_size = 0; 6468 sc->fw_stats_req = NULL; 6469 sc->fw_stats_req_mapping = 0; 6470 6471 sc->fw_stats_data_size = 0; 6472 sc->fw_stats_data = NULL; 6473 sc->fw_stats_data_mapping = 0; 6474 } 6475 6476 static int 6477 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6478 { 6479 uint8_t num_queue_stats; 6480 int num_groups; 6481 6482 /* number of queues for statistics is number of eth queues */ 6483 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6484 6485 /* 6486 * Total number of FW statistics requests = 6487 * 1 for port stats + 1 for PF stats + num of queues 6488 */ 6489 sc->fw_stats_num = (2 + num_queue_stats); 6490 6491 /* 6492 * Request is built from stats_query_header and an array of 6493 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6494 * rules. The real number or requests is configured in the 6495 * stats_query_header. 6496 */ 6497 num_groups = 6498 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6499 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6500 6501 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6502 sc->fw_stats_num, num_groups); 6503 6504 sc->fw_stats_req_size = 6505 (sizeof(struct stats_query_header) + 6506 (num_groups * sizeof(struct stats_query_cmd_group))); 6507 6508 /* 6509 * Data for statistics requests + stats_counter. 6510 * stats_counter holds per-STORM counters that are incremented when 6511 * STORM has finished with the current request. Memory for FCoE 6512 * offloaded statistics are counted anyway, even if they will not be sent. 6513 * VF stats are not accounted for here as the data of VF stats is stored 6514 * in memory allocated by the VF, not here. 6515 */ 6516 sc->fw_stats_data_size = 6517 (sizeof(struct stats_counter) + 6518 sizeof(struct per_port_stats) + 6519 sizeof(struct per_pf_stats) + 6520 /* sizeof(struct fcoe_statistics_params) + */ 6521 (sizeof(struct per_queue_stats) * num_queue_stats)); 6522 6523 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6524 &sc->fw_stats_dma, "fw stats") != 0) { 6525 bxe_free_fw_stats_mem(sc); 6526 return (-1); 6527 } 6528 6529 /* set up the shortcuts */ 6530 6531 sc->fw_stats_req = 6532 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6533 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6534 6535 sc->fw_stats_data = 6536 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6537 sc->fw_stats_req_size); 6538 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6539 sc->fw_stats_req_size); 6540 6541 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6542 (uintmax_t)sc->fw_stats_req_mapping); 6543 6544 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6545 (uintmax_t)sc->fw_stats_data_mapping); 6546 6547 return (0); 6548 } 6549 6550 /* 6551 * Bits map: 6552 * 0-7 - Engine0 load counter. 6553 * 8-15 - Engine1 load counter. 6554 * 16 - Engine0 RESET_IN_PROGRESS bit. 6555 * 17 - Engine1 RESET_IN_PROGRESS bit. 6556 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6557 * function on the engine 6558 * 19 - Engine1 ONE_IS_LOADED. 6559 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6560 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6561 * for just the one belonging to its engine). 6562 */ 6563 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6564 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6565 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6566 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6567 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6568 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6569 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6570 #define BXE_GLOBAL_RESET_BIT 0x00040000 6571 6572 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6573 static void 6574 bxe_set_reset_global(struct bxe_softc *sc) 6575 { 6576 uint32_t val; 6577 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6578 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6579 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6580 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6581 } 6582 6583 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6584 static void 6585 bxe_clear_reset_global(struct bxe_softc *sc) 6586 { 6587 uint32_t val; 6588 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6589 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6590 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6591 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6592 } 6593 6594 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6595 static uint8_t 6596 bxe_reset_is_global(struct bxe_softc *sc) 6597 { 6598 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6599 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6600 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6601 } 6602 6603 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6604 static void 6605 bxe_set_reset_done(struct bxe_softc *sc) 6606 { 6607 uint32_t val; 6608 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6609 BXE_PATH0_RST_IN_PROG_BIT; 6610 6611 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6612 6613 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6614 /* Clear the bit */ 6615 val &= ~bit; 6616 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6617 6618 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6619 } 6620 6621 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6622 static void 6623 bxe_set_reset_in_progress(struct bxe_softc *sc) 6624 { 6625 uint32_t val; 6626 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6627 BXE_PATH0_RST_IN_PROG_BIT; 6628 6629 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6630 6631 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6632 /* Set the bit */ 6633 val |= bit; 6634 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6635 6636 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6637 } 6638 6639 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6640 static uint8_t 6641 bxe_reset_is_done(struct bxe_softc *sc, 6642 int engine) 6643 { 6644 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6645 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6646 BXE_PATH0_RST_IN_PROG_BIT; 6647 6648 /* return false if bit is set */ 6649 return (val & bit) ? FALSE : TRUE; 6650 } 6651 6652 /* get the load status for an engine, should be run under rtnl lock */ 6653 static uint8_t 6654 bxe_get_load_status(struct bxe_softc *sc, 6655 int engine) 6656 { 6657 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6658 BXE_PATH0_LOAD_CNT_MASK; 6659 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6660 BXE_PATH0_LOAD_CNT_SHIFT; 6661 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6662 6663 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6664 6665 val = ((val & mask) >> shift); 6666 6667 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6668 6669 return (val != 0); 6670 } 6671 6672 /* set pf load mark */ 6673 /* XXX needs to be under rtnl lock */ 6674 static void 6675 bxe_set_pf_load(struct bxe_softc *sc) 6676 { 6677 uint32_t val; 6678 uint32_t val1; 6679 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6680 BXE_PATH0_LOAD_CNT_MASK; 6681 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6682 BXE_PATH0_LOAD_CNT_SHIFT; 6683 6684 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6685 6686 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6687 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6688 6689 /* get the current counter value */ 6690 val1 = ((val & mask) >> shift); 6691 6692 /* set bit of this PF */ 6693 val1 |= (1 << SC_ABS_FUNC(sc)); 6694 6695 /* clear the old value */ 6696 val &= ~mask; 6697 6698 /* set the new one */ 6699 val |= ((val1 << shift) & mask); 6700 6701 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6702 6703 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6704 } 6705 6706 /* clear pf load mark */ 6707 /* XXX needs to be under rtnl lock */ 6708 static uint8_t 6709 bxe_clear_pf_load(struct bxe_softc *sc) 6710 { 6711 uint32_t val1, val; 6712 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6713 BXE_PATH0_LOAD_CNT_MASK; 6714 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6715 BXE_PATH0_LOAD_CNT_SHIFT; 6716 6717 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6718 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6719 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6720 6721 /* get the current counter value */ 6722 val1 = (val & mask) >> shift; 6723 6724 /* clear bit of that PF */ 6725 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6726 6727 /* clear the old value */ 6728 val &= ~mask; 6729 6730 /* set the new one */ 6731 val |= ((val1 << shift) & mask); 6732 6733 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6734 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6735 return (val1 != 0); 6736 } 6737 6738 /* send load requrest to mcp and analyze response */ 6739 static int 6740 bxe_nic_load_request(struct bxe_softc *sc, 6741 uint32_t *load_code) 6742 { 6743 /* init fw_seq */ 6744 sc->fw_seq = 6745 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6746 DRV_MSG_SEQ_NUMBER_MASK); 6747 6748 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6749 6750 /* get the current FW pulse sequence */ 6751 sc->fw_drv_pulse_wr_seq = 6752 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6753 DRV_PULSE_SEQ_MASK); 6754 6755 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6756 sc->fw_drv_pulse_wr_seq); 6757 6758 /* load request */ 6759 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6760 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6761 6762 /* if the MCP fails to respond we must abort */ 6763 if (!(*load_code)) { 6764 BLOGE(sc, "MCP response failure!\n"); 6765 return (-1); 6766 } 6767 6768 /* if MCP refused then must abort */ 6769 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6770 BLOGE(sc, "MCP refused load request\n"); 6771 return (-1); 6772 } 6773 6774 return (0); 6775 } 6776 6777 /* 6778 * Check whether another PF has already loaded FW to chip. In virtualized 6779 * environments a pf from anoth VM may have already initialized the device 6780 * including loading FW. 6781 */ 6782 static int 6783 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6784 uint32_t load_code) 6785 { 6786 uint32_t my_fw, loaded_fw; 6787 6788 /* is another pf loaded on this engine? */ 6789 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6790 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6791 /* build my FW version dword */ 6792 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6793 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6794 (BCM_5710_FW_REVISION_VERSION << 16) + 6795 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6796 6797 /* read loaded FW from chip */ 6798 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6799 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6800 loaded_fw, my_fw); 6801 6802 /* abort nic load if version mismatch */ 6803 if (my_fw != loaded_fw) { 6804 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6805 loaded_fw, my_fw); 6806 return (-1); 6807 } 6808 } 6809 6810 return (0); 6811 } 6812 6813 /* mark PMF if applicable */ 6814 static void 6815 bxe_nic_load_pmf(struct bxe_softc *sc, 6816 uint32_t load_code) 6817 { 6818 uint32_t ncsi_oem_data_addr; 6819 6820 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6821 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6822 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6823 /* 6824 * Barrier here for ordering between the writing to sc->port.pmf here 6825 * and reading it from the periodic task. 6826 */ 6827 sc->port.pmf = 1; 6828 mb(); 6829 } else { 6830 sc->port.pmf = 0; 6831 } 6832 6833 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6834 6835 /* XXX needed? */ 6836 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6837 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6838 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6839 if (ncsi_oem_data_addr) { 6840 REG_WR(sc, 6841 (ncsi_oem_data_addr + 6842 offsetof(struct glob_ncsi_oem_data, driver_version)), 6843 0); 6844 } 6845 } 6846 } 6847 } 6848 6849 static void 6850 bxe_read_mf_cfg(struct bxe_softc *sc) 6851 { 6852 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6853 int abs_func; 6854 int vn; 6855 6856 if (BXE_NOMCP(sc)) { 6857 return; /* what should be the default bvalue in this case */ 6858 } 6859 6860 /* 6861 * The formula for computing the absolute function number is... 6862 * For 2 port configuration (4 functions per port): 6863 * abs_func = 2 * vn + SC_PORT + SC_PATH 6864 * For 4 port configuration (2 functions per port): 6865 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6866 */ 6867 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6868 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6869 if (abs_func >= E1H_FUNC_MAX) { 6870 break; 6871 } 6872 sc->devinfo.mf_info.mf_config[vn] = 6873 MFCFG_RD(sc, func_mf_config[abs_func].config); 6874 } 6875 6876 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6877 FUNC_MF_CFG_FUNC_DISABLED) { 6878 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6879 sc->flags |= BXE_MF_FUNC_DIS; 6880 } else { 6881 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6882 sc->flags &= ~BXE_MF_FUNC_DIS; 6883 } 6884 } 6885 6886 /* acquire split MCP access lock register */ 6887 static int bxe_acquire_alr(struct bxe_softc *sc) 6888 { 6889 uint32_t j, val; 6890 6891 for (j = 0; j < 1000; j++) { 6892 val = (1UL << 31); 6893 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6894 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6895 if (val & (1L << 31)) 6896 break; 6897 6898 DELAY(5000); 6899 } 6900 6901 if (!(val & (1L << 31))) { 6902 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6903 return (-1); 6904 } 6905 6906 return (0); 6907 } 6908 6909 /* release split MCP access lock register */ 6910 static void bxe_release_alr(struct bxe_softc *sc) 6911 { 6912 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6913 } 6914 6915 static void 6916 bxe_fan_failure(struct bxe_softc *sc) 6917 { 6918 int port = SC_PORT(sc); 6919 uint32_t ext_phy_config; 6920 6921 /* mark the failure */ 6922 ext_phy_config = 6923 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6924 6925 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6926 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6927 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6928 ext_phy_config); 6929 6930 /* log the failure */ 6931 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6932 "the card to prevent permanent damage. " 6933 "Please contact OEM Support for assistance\n"); 6934 6935 /* XXX */ 6936 #if 1 6937 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6938 #else 6939 /* 6940 * Schedule device reset (unload) 6941 * This is due to some boards consuming sufficient power when driver is 6942 * up to overheat if fan fails. 6943 */ 6944 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6945 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6946 #endif 6947 } 6948 6949 /* this function is called upon a link interrupt */ 6950 static void 6951 bxe_link_attn(struct bxe_softc *sc) 6952 { 6953 uint32_t pause_enabled = 0; 6954 struct host_port_stats *pstats; 6955 int cmng_fns; 6956 6957 /* Make sure that we are synced with the current statistics */ 6958 bxe_stats_handle(sc, STATS_EVENT_STOP); 6959 6960 elink_link_update(&sc->link_params, &sc->link_vars); 6961 6962 if (sc->link_vars.link_up) { 6963 6964 /* dropless flow control */ 6965 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 6966 pause_enabled = 0; 6967 6968 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 6969 pause_enabled = 1; 6970 } 6971 6972 REG_WR(sc, 6973 (BAR_USTRORM_INTMEM + 6974 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 6975 pause_enabled); 6976 } 6977 6978 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 6979 pstats = BXE_SP(sc, port_stats); 6980 /* reset old mac stats */ 6981 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 6982 } 6983 6984 if (sc->state == BXE_STATE_OPEN) { 6985 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 6986 } 6987 } 6988 6989 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 6990 cmng_fns = bxe_get_cmng_fns_mode(sc); 6991 6992 if (cmng_fns != CMNG_FNS_NONE) { 6993 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 6994 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 6995 } else { 6996 /* rate shaping and fairness are disabled */ 6997 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 6998 } 6999 } 7000 7001 bxe_link_report_locked(sc); 7002 7003 if (IS_MF(sc)) { 7004 ; // XXX bxe_link_sync_notify(sc); 7005 } 7006 } 7007 7008 static void 7009 bxe_attn_int_asserted(struct bxe_softc *sc, 7010 uint32_t asserted) 7011 { 7012 int port = SC_PORT(sc); 7013 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7014 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7015 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7016 NIG_REG_MASK_INTERRUPT_PORT0; 7017 uint32_t aeu_mask; 7018 uint32_t nig_mask = 0; 7019 uint32_t reg_addr; 7020 uint32_t igu_acked; 7021 uint32_t cnt; 7022 7023 if (sc->attn_state & asserted) { 7024 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7025 } 7026 7027 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7028 7029 aeu_mask = REG_RD(sc, aeu_addr); 7030 7031 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7032 aeu_mask, asserted); 7033 7034 aeu_mask &= ~(asserted & 0x3ff); 7035 7036 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7037 7038 REG_WR(sc, aeu_addr, aeu_mask); 7039 7040 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7041 7042 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7043 sc->attn_state |= asserted; 7044 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7045 7046 if (asserted & ATTN_HARD_WIRED_MASK) { 7047 if (asserted & ATTN_NIG_FOR_FUNC) { 7048 7049 bxe_acquire_phy_lock(sc); 7050 /* save nig interrupt mask */ 7051 nig_mask = REG_RD(sc, nig_int_mask_addr); 7052 7053 /* If nig_mask is not set, no need to call the update function */ 7054 if (nig_mask) { 7055 REG_WR(sc, nig_int_mask_addr, 0); 7056 7057 bxe_link_attn(sc); 7058 } 7059 7060 /* handle unicore attn? */ 7061 } 7062 7063 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7064 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7065 } 7066 7067 if (asserted & GPIO_2_FUNC) { 7068 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7069 } 7070 7071 if (asserted & GPIO_3_FUNC) { 7072 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7073 } 7074 7075 if (asserted & GPIO_4_FUNC) { 7076 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7077 } 7078 7079 if (port == 0) { 7080 if (asserted & ATTN_GENERAL_ATTN_1) { 7081 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7082 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7083 } 7084 if (asserted & ATTN_GENERAL_ATTN_2) { 7085 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7086 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7087 } 7088 if (asserted & ATTN_GENERAL_ATTN_3) { 7089 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7090 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7091 } 7092 } else { 7093 if (asserted & ATTN_GENERAL_ATTN_4) { 7094 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7095 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7096 } 7097 if (asserted & ATTN_GENERAL_ATTN_5) { 7098 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7099 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7100 } 7101 if (asserted & ATTN_GENERAL_ATTN_6) { 7102 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7103 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7104 } 7105 } 7106 } /* hardwired */ 7107 7108 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7109 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7110 } else { 7111 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7112 } 7113 7114 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7115 asserted, 7116 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7117 REG_WR(sc, reg_addr, asserted); 7118 7119 /* now set back the mask */ 7120 if (asserted & ATTN_NIG_FOR_FUNC) { 7121 /* 7122 * Verify that IGU ack through BAR was written before restoring 7123 * NIG mask. This loop should exit after 2-3 iterations max. 7124 */ 7125 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7126 cnt = 0; 7127 7128 do { 7129 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7130 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7131 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7132 7133 if (!igu_acked) { 7134 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7135 } 7136 7137 mb(); 7138 } 7139 7140 REG_WR(sc, nig_int_mask_addr, nig_mask); 7141 7142 bxe_release_phy_lock(sc); 7143 } 7144 } 7145 7146 static void 7147 bxe_print_next_block(struct bxe_softc *sc, 7148 int idx, 7149 const char *blk) 7150 { 7151 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7152 } 7153 7154 static int 7155 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7156 uint32_t sig, 7157 int par_num, 7158 uint8_t print) 7159 { 7160 uint32_t cur_bit = 0; 7161 int i = 0; 7162 7163 for (i = 0; sig; i++) { 7164 cur_bit = ((uint32_t)0x1 << i); 7165 if (sig & cur_bit) { 7166 switch (cur_bit) { 7167 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7168 if (print) 7169 bxe_print_next_block(sc, par_num++, "BRB"); 7170 break; 7171 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7172 if (print) 7173 bxe_print_next_block(sc, par_num++, "PARSER"); 7174 break; 7175 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7176 if (print) 7177 bxe_print_next_block(sc, par_num++, "TSDM"); 7178 break; 7179 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7180 if (print) 7181 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7182 break; 7183 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7184 if (print) 7185 bxe_print_next_block(sc, par_num++, "TCM"); 7186 break; 7187 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7188 if (print) 7189 bxe_print_next_block(sc, par_num++, "TSEMI"); 7190 break; 7191 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7192 if (print) 7193 bxe_print_next_block(sc, par_num++, "XPB"); 7194 break; 7195 } 7196 7197 /* Clear the bit */ 7198 sig &= ~cur_bit; 7199 } 7200 } 7201 7202 return (par_num); 7203 } 7204 7205 static int 7206 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7207 uint32_t sig, 7208 int par_num, 7209 uint8_t *global, 7210 uint8_t print) 7211 { 7212 int i = 0; 7213 uint32_t cur_bit = 0; 7214 for (i = 0; sig; i++) { 7215 cur_bit = ((uint32_t)0x1 << i); 7216 if (sig & cur_bit) { 7217 switch (cur_bit) { 7218 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7219 if (print) 7220 bxe_print_next_block(sc, par_num++, "PBF"); 7221 break; 7222 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7223 if (print) 7224 bxe_print_next_block(sc, par_num++, "QM"); 7225 break; 7226 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7227 if (print) 7228 bxe_print_next_block(sc, par_num++, "TM"); 7229 break; 7230 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7231 if (print) 7232 bxe_print_next_block(sc, par_num++, "XSDM"); 7233 break; 7234 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7235 if (print) 7236 bxe_print_next_block(sc, par_num++, "XCM"); 7237 break; 7238 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7239 if (print) 7240 bxe_print_next_block(sc, par_num++, "XSEMI"); 7241 break; 7242 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7243 if (print) 7244 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7245 break; 7246 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7247 if (print) 7248 bxe_print_next_block(sc, par_num++, "NIG"); 7249 break; 7250 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7251 if (print) 7252 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7253 *global = TRUE; 7254 break; 7255 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7256 if (print) 7257 bxe_print_next_block(sc, par_num++, "DEBUG"); 7258 break; 7259 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7260 if (print) 7261 bxe_print_next_block(sc, par_num++, "USDM"); 7262 break; 7263 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7264 if (print) 7265 bxe_print_next_block(sc, par_num++, "UCM"); 7266 break; 7267 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7268 if (print) 7269 bxe_print_next_block(sc, par_num++, "USEMI"); 7270 break; 7271 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7272 if (print) 7273 bxe_print_next_block(sc, par_num++, "UPB"); 7274 break; 7275 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7276 if (print) 7277 bxe_print_next_block(sc, par_num++, "CSDM"); 7278 break; 7279 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7280 if (print) 7281 bxe_print_next_block(sc, par_num++, "CCM"); 7282 break; 7283 } 7284 7285 /* Clear the bit */ 7286 sig &= ~cur_bit; 7287 } 7288 } 7289 7290 return (par_num); 7291 } 7292 7293 static int 7294 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7295 uint32_t sig, 7296 int par_num, 7297 uint8_t print) 7298 { 7299 uint32_t cur_bit = 0; 7300 int i = 0; 7301 7302 for (i = 0; sig; i++) { 7303 cur_bit = ((uint32_t)0x1 << i); 7304 if (sig & cur_bit) { 7305 switch (cur_bit) { 7306 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7307 if (print) 7308 bxe_print_next_block(sc, par_num++, "CSEMI"); 7309 break; 7310 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7311 if (print) 7312 bxe_print_next_block(sc, par_num++, "PXP"); 7313 break; 7314 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7315 if (print) 7316 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7317 break; 7318 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7319 if (print) 7320 bxe_print_next_block(sc, par_num++, "CFC"); 7321 break; 7322 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7323 if (print) 7324 bxe_print_next_block(sc, par_num++, "CDU"); 7325 break; 7326 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7327 if (print) 7328 bxe_print_next_block(sc, par_num++, "DMAE"); 7329 break; 7330 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7331 if (print) 7332 bxe_print_next_block(sc, par_num++, "IGU"); 7333 break; 7334 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7335 if (print) 7336 bxe_print_next_block(sc, par_num++, "MISC"); 7337 break; 7338 } 7339 7340 /* Clear the bit */ 7341 sig &= ~cur_bit; 7342 } 7343 } 7344 7345 return (par_num); 7346 } 7347 7348 static int 7349 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7350 uint32_t sig, 7351 int par_num, 7352 uint8_t *global, 7353 uint8_t print) 7354 { 7355 uint32_t cur_bit = 0; 7356 int i = 0; 7357 7358 for (i = 0; sig; i++) { 7359 cur_bit = ((uint32_t)0x1 << i); 7360 if (sig & cur_bit) { 7361 switch (cur_bit) { 7362 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7363 if (print) 7364 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7365 *global = TRUE; 7366 break; 7367 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7368 if (print) 7369 bxe_print_next_block(sc, par_num++, 7370 "MCP UMP RX"); 7371 *global = TRUE; 7372 break; 7373 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7374 if (print) 7375 bxe_print_next_block(sc, par_num++, 7376 "MCP UMP TX"); 7377 *global = TRUE; 7378 break; 7379 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7380 if (print) 7381 bxe_print_next_block(sc, par_num++, 7382 "MCP SCPAD"); 7383 *global = TRUE; 7384 break; 7385 } 7386 7387 /* Clear the bit */ 7388 sig &= ~cur_bit; 7389 } 7390 } 7391 7392 return (par_num); 7393 } 7394 7395 static int 7396 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7397 uint32_t sig, 7398 int par_num, 7399 uint8_t print) 7400 { 7401 uint32_t cur_bit = 0; 7402 int i = 0; 7403 7404 for (i = 0; sig; i++) { 7405 cur_bit = ((uint32_t)0x1 << i); 7406 if (sig & cur_bit) { 7407 switch (cur_bit) { 7408 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7409 if (print) 7410 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7411 break; 7412 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7413 if (print) 7414 bxe_print_next_block(sc, par_num++, "ATC"); 7415 break; 7416 } 7417 7418 /* Clear the bit */ 7419 sig &= ~cur_bit; 7420 } 7421 } 7422 7423 return (par_num); 7424 } 7425 7426 static uint8_t 7427 bxe_parity_attn(struct bxe_softc *sc, 7428 uint8_t *global, 7429 uint8_t print, 7430 uint32_t *sig) 7431 { 7432 int par_num = 0; 7433 7434 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7435 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7436 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7437 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7438 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7439 BLOGE(sc, "Parity error: HW block parity attention:\n" 7440 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7441 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7442 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7443 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7444 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7445 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7446 7447 if (print) 7448 BLOGI(sc, "Parity errors detected in blocks: "); 7449 7450 par_num = 7451 bxe_check_blocks_with_parity0(sc, sig[0] & 7452 HW_PRTY_ASSERT_SET_0, 7453 par_num, print); 7454 par_num = 7455 bxe_check_blocks_with_parity1(sc, sig[1] & 7456 HW_PRTY_ASSERT_SET_1, 7457 par_num, global, print); 7458 par_num = 7459 bxe_check_blocks_with_parity2(sc, sig[2] & 7460 HW_PRTY_ASSERT_SET_2, 7461 par_num, print); 7462 par_num = 7463 bxe_check_blocks_with_parity3(sc, sig[3] & 7464 HW_PRTY_ASSERT_SET_3, 7465 par_num, global, print); 7466 par_num = 7467 bxe_check_blocks_with_parity4(sc, sig[4] & 7468 HW_PRTY_ASSERT_SET_4, 7469 par_num, print); 7470 7471 if (print) 7472 BLOGI(sc, "\n"); 7473 7474 return (TRUE); 7475 } 7476 7477 return (FALSE); 7478 } 7479 7480 static uint8_t 7481 bxe_chk_parity_attn(struct bxe_softc *sc, 7482 uint8_t *global, 7483 uint8_t print) 7484 { 7485 struct attn_route attn = { {0} }; 7486 int port = SC_PORT(sc); 7487 7488 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7489 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7490 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7491 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7492 7493 /* 7494 * Since MCP attentions can't be disabled inside the block, we need to 7495 * read AEU registers to see whether they're currently disabled 7496 */ 7497 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7498 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7499 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7500 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7501 7502 7503 if (!CHIP_IS_E1x(sc)) 7504 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7505 7506 return (bxe_parity_attn(sc, global, print, attn.sig)); 7507 } 7508 7509 static void 7510 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7511 uint32_t attn) 7512 { 7513 uint32_t val; 7514 7515 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7516 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7517 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7518 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7519 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7520 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7521 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7522 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7523 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7524 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7525 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7526 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7527 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7528 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7529 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7530 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7531 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7532 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7533 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7534 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7535 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7536 } 7537 7538 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7539 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7540 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7541 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7542 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7543 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7544 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7545 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7546 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7547 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7548 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7549 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7550 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7551 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7552 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7553 } 7554 7555 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7556 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7557 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7558 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7559 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7560 } 7561 } 7562 7563 static void 7564 bxe_e1h_disable(struct bxe_softc *sc) 7565 { 7566 int port = SC_PORT(sc); 7567 7568 bxe_tx_disable(sc); 7569 7570 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7571 } 7572 7573 static void 7574 bxe_e1h_enable(struct bxe_softc *sc) 7575 { 7576 int port = SC_PORT(sc); 7577 7578 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7579 7580 // XXX bxe_tx_enable(sc); 7581 } 7582 7583 /* 7584 * called due to MCP event (on pmf): 7585 * reread new bandwidth configuration 7586 * configure FW 7587 * notify others function about the change 7588 */ 7589 static void 7590 bxe_config_mf_bw(struct bxe_softc *sc) 7591 { 7592 if (sc->link_vars.link_up) { 7593 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7594 // XXX bxe_link_sync_notify(sc); 7595 } 7596 7597 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7598 } 7599 7600 static void 7601 bxe_set_mf_bw(struct bxe_softc *sc) 7602 { 7603 bxe_config_mf_bw(sc); 7604 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7605 } 7606 7607 static void 7608 bxe_handle_eee_event(struct bxe_softc *sc) 7609 { 7610 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7611 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7612 } 7613 7614 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7615 7616 static void 7617 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7618 { 7619 struct eth_stats_info *ether_stat = 7620 &sc->sp->drv_info_to_mcp.ether_stat; 7621 7622 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7623 ETH_STAT_INFO_VERSION_LEN); 7624 7625 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7626 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7627 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7628 ether_stat->mac_local + MAC_PAD, 7629 MAC_PAD, ETH_ALEN); 7630 7631 ether_stat->mtu_size = sc->mtu; 7632 7633 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7634 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7635 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7636 } 7637 7638 // XXX ether_stat->feature_flags |= ???; 7639 7640 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7641 7642 ether_stat->txq_size = sc->tx_ring_size; 7643 ether_stat->rxq_size = sc->rx_ring_size; 7644 } 7645 7646 static void 7647 bxe_handle_drv_info_req(struct bxe_softc *sc) 7648 { 7649 enum drv_info_opcode op_code; 7650 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7651 7652 /* if drv_info version supported by MFW doesn't match - send NACK */ 7653 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7654 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7655 return; 7656 } 7657 7658 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7659 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7660 7661 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7662 7663 switch (op_code) { 7664 case ETH_STATS_OPCODE: 7665 bxe_drv_info_ether_stat(sc); 7666 break; 7667 case FCOE_STATS_OPCODE: 7668 case ISCSI_STATS_OPCODE: 7669 default: 7670 /* if op code isn't supported - send NACK */ 7671 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7672 return; 7673 } 7674 7675 /* 7676 * If we got drv_info attn from MFW then these fields are defined in 7677 * shmem2 for sure 7678 */ 7679 SHMEM2_WR(sc, drv_info_host_addr_lo, 7680 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7681 SHMEM2_WR(sc, drv_info_host_addr_hi, 7682 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7683 7684 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7685 } 7686 7687 static void 7688 bxe_dcc_event(struct bxe_softc *sc, 7689 uint32_t dcc_event) 7690 { 7691 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7692 7693 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7694 /* 7695 * This is the only place besides the function initialization 7696 * where the sc->flags can change so it is done without any 7697 * locks 7698 */ 7699 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7700 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7701 sc->flags |= BXE_MF_FUNC_DIS; 7702 bxe_e1h_disable(sc); 7703 } else { 7704 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7705 sc->flags &= ~BXE_MF_FUNC_DIS; 7706 bxe_e1h_enable(sc); 7707 } 7708 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7709 } 7710 7711 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7712 bxe_config_mf_bw(sc); 7713 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7714 } 7715 7716 /* Report results to MCP */ 7717 if (dcc_event) 7718 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7719 else 7720 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7721 } 7722 7723 static void 7724 bxe_pmf_update(struct bxe_softc *sc) 7725 { 7726 int port = SC_PORT(sc); 7727 uint32_t val; 7728 7729 sc->port.pmf = 1; 7730 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7731 7732 /* 7733 * We need the mb() to ensure the ordering between the writing to 7734 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7735 */ 7736 mb(); 7737 7738 /* queue a periodic task */ 7739 // XXX schedule task... 7740 7741 // XXX bxe_dcbx_pmf_update(sc); 7742 7743 /* enable nig attention */ 7744 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7745 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7746 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7747 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7748 } else if (!CHIP_IS_E1x(sc)) { 7749 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7750 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7751 } 7752 7753 bxe_stats_handle(sc, STATS_EVENT_PMF); 7754 } 7755 7756 static int 7757 bxe_mc_assert(struct bxe_softc *sc) 7758 { 7759 char last_idx; 7760 int i, rc = 0; 7761 uint32_t row0, row1, row2, row3; 7762 7763 /* XSTORM */ 7764 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7765 if (last_idx) 7766 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7767 7768 /* print the asserts */ 7769 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7770 7771 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7772 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7773 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7774 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7775 7776 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7777 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7778 i, row3, row2, row1, row0); 7779 rc++; 7780 } else { 7781 break; 7782 } 7783 } 7784 7785 /* TSTORM */ 7786 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7787 if (last_idx) { 7788 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7789 } 7790 7791 /* print the asserts */ 7792 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7793 7794 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7795 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7796 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7797 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7798 7799 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7800 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7801 i, row3, row2, row1, row0); 7802 rc++; 7803 } else { 7804 break; 7805 } 7806 } 7807 7808 /* CSTORM */ 7809 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7810 if (last_idx) { 7811 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7812 } 7813 7814 /* print the asserts */ 7815 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7816 7817 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7818 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7819 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7820 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7821 7822 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7823 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7824 i, row3, row2, row1, row0); 7825 rc++; 7826 } else { 7827 break; 7828 } 7829 } 7830 7831 /* USTORM */ 7832 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7833 if (last_idx) { 7834 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7835 } 7836 7837 /* print the asserts */ 7838 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7839 7840 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7841 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7842 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7843 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7844 7845 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7846 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7847 i, row3, row2, row1, row0); 7848 rc++; 7849 } else { 7850 break; 7851 } 7852 } 7853 7854 return (rc); 7855 } 7856 7857 static void 7858 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7859 uint32_t attn) 7860 { 7861 int func = SC_FUNC(sc); 7862 uint32_t val; 7863 7864 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7865 7866 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7867 7868 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7869 bxe_read_mf_cfg(sc); 7870 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7871 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7872 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7873 7874 if (val & DRV_STATUS_DCC_EVENT_MASK) 7875 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7876 7877 if (val & DRV_STATUS_SET_MF_BW) 7878 bxe_set_mf_bw(sc); 7879 7880 if (val & DRV_STATUS_DRV_INFO_REQ) 7881 bxe_handle_drv_info_req(sc); 7882 7883 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7884 bxe_pmf_update(sc); 7885 7886 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7887 bxe_handle_eee_event(sc); 7888 7889 if (sc->link_vars.periodic_flags & 7890 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7891 /* sync with link */ 7892 bxe_acquire_phy_lock(sc); 7893 sc->link_vars.periodic_flags &= 7894 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7895 bxe_release_phy_lock(sc); 7896 if (IS_MF(sc)) 7897 ; // XXX bxe_link_sync_notify(sc); 7898 bxe_link_report(sc); 7899 } 7900 7901 /* 7902 * Always call it here: bxe_link_report() will 7903 * prevent the link indication duplication. 7904 */ 7905 bxe_link_status_update(sc); 7906 7907 } else if (attn & BXE_MC_ASSERT_BITS) { 7908 7909 BLOGE(sc, "MC assert!\n"); 7910 bxe_mc_assert(sc); 7911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7912 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7913 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7914 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7915 bxe_panic(sc, ("MC assert!\n")); 7916 7917 } else if (attn & BXE_MCP_ASSERT) { 7918 7919 BLOGE(sc, "MCP assert!\n"); 7920 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7921 // XXX bxe_fw_dump(sc); 7922 7923 } else { 7924 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7925 } 7926 } 7927 7928 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7929 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 7930 if (attn & BXE_GRC_TIMEOUT) { 7931 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 7932 BLOGE(sc, "GRC time-out 0x%08x\n", val); 7933 } 7934 if (attn & BXE_GRC_RSV) { 7935 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 7936 BLOGE(sc, "GRC reserved 0x%08x\n", val); 7937 } 7938 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 7939 } 7940 } 7941 7942 static void 7943 bxe_attn_int_deasserted2(struct bxe_softc *sc, 7944 uint32_t attn) 7945 { 7946 int port = SC_PORT(sc); 7947 int reg_offset; 7948 uint32_t val0, mask0, val1, mask1; 7949 uint32_t val; 7950 7951 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 7952 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 7953 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 7954 /* CFC error attention */ 7955 if (val & 0x2) { 7956 BLOGE(sc, "FATAL error from CFC\n"); 7957 } 7958 } 7959 7960 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 7961 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 7962 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 7963 /* RQ_USDMDP_FIFO_OVERFLOW */ 7964 if (val & 0x18000) { 7965 BLOGE(sc, "FATAL error from PXP\n"); 7966 } 7967 7968 if (!CHIP_IS_E1x(sc)) { 7969 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 7970 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 7971 } 7972 } 7973 7974 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 7975 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 7976 7977 if (attn & AEU_PXP2_HW_INT_BIT) { 7978 /* CQ47854 workaround do not panic on 7979 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 7980 */ 7981 if (!CHIP_IS_E1x(sc)) { 7982 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 7983 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 7984 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 7985 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 7986 /* 7987 * If the only PXP2_EOP_ERROR_BIT is set in 7988 * STS0 and STS1 - clear it 7989 * 7990 * probably we lose additional attentions between 7991 * STS0 and STS_CLR0, in this case user will not 7992 * be notified about them 7993 */ 7994 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 7995 !(val1 & mask1)) 7996 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 7997 7998 /* print the register, since no one can restore it */ 7999 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8000 8001 /* 8002 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8003 * then notify 8004 */ 8005 if (val0 & PXP2_EOP_ERROR_BIT) { 8006 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8007 8008 /* 8009 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8010 * set then clear attention from PXP2 block without panic 8011 */ 8012 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8013 ((val1 & mask1) == 0)) 8014 attn &= ~AEU_PXP2_HW_INT_BIT; 8015 } 8016 } 8017 } 8018 8019 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8020 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8021 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8022 8023 val = REG_RD(sc, reg_offset); 8024 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8025 REG_WR(sc, reg_offset, val); 8026 8027 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8028 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8029 bxe_panic(sc, ("HW block attention set2\n")); 8030 } 8031 } 8032 8033 static void 8034 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8035 uint32_t attn) 8036 { 8037 int port = SC_PORT(sc); 8038 int reg_offset; 8039 uint32_t val; 8040 8041 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8042 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8043 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8044 /* DORQ discard attention */ 8045 if (val & 0x2) { 8046 BLOGE(sc, "FATAL error from DORQ\n"); 8047 } 8048 } 8049 8050 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8051 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8052 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8053 8054 val = REG_RD(sc, reg_offset); 8055 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8056 REG_WR(sc, reg_offset, val); 8057 8058 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8059 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8060 bxe_panic(sc, ("HW block attention set1\n")); 8061 } 8062 } 8063 8064 static void 8065 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8066 uint32_t attn) 8067 { 8068 int port = SC_PORT(sc); 8069 int reg_offset; 8070 uint32_t val; 8071 8072 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8073 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8074 8075 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8076 val = REG_RD(sc, reg_offset); 8077 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8078 REG_WR(sc, reg_offset, val); 8079 8080 BLOGW(sc, "SPIO5 hw attention\n"); 8081 8082 /* Fan failure attention */ 8083 elink_hw_reset_phy(&sc->link_params); 8084 bxe_fan_failure(sc); 8085 } 8086 8087 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8088 bxe_acquire_phy_lock(sc); 8089 elink_handle_module_detect_int(&sc->link_params); 8090 bxe_release_phy_lock(sc); 8091 } 8092 8093 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8094 val = REG_RD(sc, reg_offset); 8095 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8096 REG_WR(sc, reg_offset, val); 8097 8098 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8099 (attn & HW_INTERRUT_ASSERT_SET_0))); 8100 } 8101 } 8102 8103 static void 8104 bxe_attn_int_deasserted(struct bxe_softc *sc, 8105 uint32_t deasserted) 8106 { 8107 struct attn_route attn; 8108 struct attn_route *group_mask; 8109 int port = SC_PORT(sc); 8110 int index; 8111 uint32_t reg_addr; 8112 uint32_t val; 8113 uint32_t aeu_mask; 8114 uint8_t global = FALSE; 8115 8116 /* 8117 * Need to take HW lock because MCP or other port might also 8118 * try to handle this event. 8119 */ 8120 bxe_acquire_alr(sc); 8121 8122 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8123 /* XXX 8124 * In case of parity errors don't handle attentions so that 8125 * other function would "see" parity errors. 8126 */ 8127 sc->recovery_state = BXE_RECOVERY_INIT; 8128 // XXX schedule a recovery task... 8129 /* disable HW interrupts */ 8130 bxe_int_disable(sc); 8131 bxe_release_alr(sc); 8132 return; 8133 } 8134 8135 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8136 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8137 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8138 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8139 if (!CHIP_IS_E1x(sc)) { 8140 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8141 } else { 8142 attn.sig[4] = 0; 8143 } 8144 8145 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8146 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8147 8148 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8149 if (deasserted & (1 << index)) { 8150 group_mask = &sc->attn_group[index]; 8151 8152 BLOGD(sc, DBG_INTR, 8153 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8154 group_mask->sig[0], group_mask->sig[1], 8155 group_mask->sig[2], group_mask->sig[3], 8156 group_mask->sig[4]); 8157 8158 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8159 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8160 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8161 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8162 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8163 } 8164 } 8165 8166 bxe_release_alr(sc); 8167 8168 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8169 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8170 COMMAND_REG_ATTN_BITS_CLR); 8171 } else { 8172 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8173 } 8174 8175 val = ~deasserted; 8176 BLOGD(sc, DBG_INTR, 8177 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8178 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8179 REG_WR(sc, reg_addr, val); 8180 8181 if (~sc->attn_state & deasserted) { 8182 BLOGE(sc, "IGU error\n"); 8183 } 8184 8185 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8186 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8187 8188 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8189 8190 aeu_mask = REG_RD(sc, reg_addr); 8191 8192 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8193 aeu_mask, deasserted); 8194 aeu_mask |= (deasserted & 0x3ff); 8195 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8196 8197 REG_WR(sc, reg_addr, aeu_mask); 8198 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8199 8200 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8201 sc->attn_state &= ~deasserted; 8202 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8203 } 8204 8205 static void 8206 bxe_attn_int(struct bxe_softc *sc) 8207 { 8208 /* read local copy of bits */ 8209 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8210 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8211 uint32_t attn_state = sc->attn_state; 8212 8213 /* look for changed bits */ 8214 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8215 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8216 8217 BLOGD(sc, DBG_INTR, 8218 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8219 attn_bits, attn_ack, asserted, deasserted); 8220 8221 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8222 BLOGE(sc, "BAD attention state\n"); 8223 } 8224 8225 /* handle bits that were raised */ 8226 if (asserted) { 8227 bxe_attn_int_asserted(sc, asserted); 8228 } 8229 8230 if (deasserted) { 8231 bxe_attn_int_deasserted(sc, deasserted); 8232 } 8233 } 8234 8235 static uint16_t 8236 bxe_update_dsb_idx(struct bxe_softc *sc) 8237 { 8238 struct host_sp_status_block *def_sb = sc->def_sb; 8239 uint16_t rc = 0; 8240 8241 mb(); /* status block is written to by the chip */ 8242 8243 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8244 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8245 rc |= BXE_DEF_SB_ATT_IDX; 8246 } 8247 8248 if (sc->def_idx != def_sb->sp_sb.running_index) { 8249 sc->def_idx = def_sb->sp_sb.running_index; 8250 rc |= BXE_DEF_SB_IDX; 8251 } 8252 8253 mb(); 8254 8255 return (rc); 8256 } 8257 8258 static inline struct ecore_queue_sp_obj * 8259 bxe_cid_to_q_obj(struct bxe_softc *sc, 8260 uint32_t cid) 8261 { 8262 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8263 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8264 } 8265 8266 static void 8267 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8268 { 8269 struct ecore_mcast_ramrod_params rparam; 8270 int rc; 8271 8272 memset(&rparam, 0, sizeof(rparam)); 8273 8274 rparam.mcast_obj = &sc->mcast_obj; 8275 8276 BXE_MCAST_LOCK(sc); 8277 8278 /* clear pending state for the last command */ 8279 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8280 8281 /* if there are pending mcast commands - send them */ 8282 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8283 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8284 if (rc < 0) { 8285 BLOGD(sc, DBG_SP, 8286 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8287 } 8288 } 8289 8290 BXE_MCAST_UNLOCK(sc); 8291 } 8292 8293 static void 8294 bxe_handle_classification_eqe(struct bxe_softc *sc, 8295 union event_ring_elem *elem) 8296 { 8297 unsigned long ramrod_flags = 0; 8298 int rc = 0; 8299 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8300 struct ecore_vlan_mac_obj *vlan_mac_obj; 8301 8302 /* always push next commands out, don't wait here */ 8303 bit_set(&ramrod_flags, RAMROD_CONT); 8304 8305 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8306 case ECORE_FILTER_MAC_PENDING: 8307 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8308 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8309 break; 8310 8311 case ECORE_FILTER_MCAST_PENDING: 8312 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8313 /* 8314 * This is only relevant for 57710 where multicast MACs are 8315 * configured as unicast MACs using the same ramrod. 8316 */ 8317 bxe_handle_mcast_eqe(sc); 8318 return; 8319 8320 default: 8321 BLOGE(sc, "Unsupported classification command: %d\n", 8322 elem->message.data.eth_event.echo); 8323 return; 8324 } 8325 8326 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8327 8328 if (rc < 0) { 8329 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8330 } else if (rc > 0) { 8331 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8332 } 8333 } 8334 8335 static void 8336 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8337 union event_ring_elem *elem) 8338 { 8339 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8340 8341 /* send rx_mode command again if was requested */ 8342 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8343 &sc->sp_state)) { 8344 bxe_set_storm_rx_mode(sc); 8345 } 8346 } 8347 8348 static void 8349 bxe_update_eq_prod(struct bxe_softc *sc, 8350 uint16_t prod) 8351 { 8352 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8353 wmb(); /* keep prod updates ordered */ 8354 } 8355 8356 static void 8357 bxe_eq_int(struct bxe_softc *sc) 8358 { 8359 uint16_t hw_cons, sw_cons, sw_prod; 8360 union event_ring_elem *elem; 8361 uint8_t echo; 8362 uint32_t cid; 8363 uint8_t opcode; 8364 int spqe_cnt = 0; 8365 struct ecore_queue_sp_obj *q_obj; 8366 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8367 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8368 8369 hw_cons = le16toh(*sc->eq_cons_sb); 8370 8371 /* 8372 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8373 * when we get to the next-page we need to adjust so the loop 8374 * condition below will be met. The next element is the size of a 8375 * regular element and hence incrementing by 1 8376 */ 8377 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8378 hw_cons++; 8379 } 8380 8381 /* 8382 * This function may never run in parallel with itself for a 8383 * specific sc and no need for a read memory barrier here. 8384 */ 8385 sw_cons = sc->eq_cons; 8386 sw_prod = sc->eq_prod; 8387 8388 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8389 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8390 8391 for (; 8392 sw_cons != hw_cons; 8393 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8394 8395 elem = &sc->eq[EQ_DESC(sw_cons)]; 8396 8397 /* elem CID originates from FW, actually LE */ 8398 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8399 opcode = elem->message.opcode; 8400 8401 /* handle eq element */ 8402 switch (opcode) { 8403 8404 case EVENT_RING_OPCODE_STAT_QUERY: 8405 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8406 sc->stats_comp++); 8407 /* nothing to do with stats comp */ 8408 goto next_spqe; 8409 8410 case EVENT_RING_OPCODE_CFC_DEL: 8411 /* handle according to cid range */ 8412 /* we may want to verify here that the sc state is HALTING */ 8413 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8414 q_obj = bxe_cid_to_q_obj(sc, cid); 8415 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8416 break; 8417 } 8418 goto next_spqe; 8419 8420 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8421 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8422 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8423 break; 8424 } 8425 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8426 goto next_spqe; 8427 8428 case EVENT_RING_OPCODE_START_TRAFFIC: 8429 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8430 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8431 break; 8432 } 8433 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8434 goto next_spqe; 8435 8436 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8437 echo = elem->message.data.function_update_event.echo; 8438 if (echo == SWITCH_UPDATE) { 8439 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8440 if (f_obj->complete_cmd(sc, f_obj, 8441 ECORE_F_CMD_SWITCH_UPDATE)) { 8442 break; 8443 } 8444 } 8445 else { 8446 BLOGD(sc, DBG_SP, 8447 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8448 } 8449 goto next_spqe; 8450 8451 case EVENT_RING_OPCODE_FORWARD_SETUP: 8452 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8453 if (q_obj->complete_cmd(sc, q_obj, 8454 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8455 break; 8456 } 8457 goto next_spqe; 8458 8459 case EVENT_RING_OPCODE_FUNCTION_START: 8460 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8461 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8462 break; 8463 } 8464 goto next_spqe; 8465 8466 case EVENT_RING_OPCODE_FUNCTION_STOP: 8467 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8468 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8469 break; 8470 } 8471 goto next_spqe; 8472 } 8473 8474 switch (opcode | sc->state) { 8475 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8476 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8477 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8478 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8479 rss_raw->clear_pending(rss_raw); 8480 break; 8481 8482 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8483 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8484 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8485 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8486 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8487 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8488 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8489 bxe_handle_classification_eqe(sc, elem); 8490 break; 8491 8492 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8493 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8494 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8495 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8496 bxe_handle_mcast_eqe(sc); 8497 break; 8498 8499 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8500 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8501 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8502 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8503 bxe_handle_rx_mode_eqe(sc, elem); 8504 break; 8505 8506 default: 8507 /* unknown event log error and continue */ 8508 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8509 elem->message.opcode, sc->state); 8510 } 8511 8512 next_spqe: 8513 spqe_cnt++; 8514 } /* for */ 8515 8516 mb(); 8517 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8518 8519 sc->eq_cons = sw_cons; 8520 sc->eq_prod = sw_prod; 8521 8522 /* make sure that above mem writes were issued towards the memory */ 8523 wmb(); 8524 8525 /* update producer */ 8526 bxe_update_eq_prod(sc, sc->eq_prod); 8527 } 8528 8529 static void 8530 bxe_handle_sp_tq(void *context, 8531 int pending) 8532 { 8533 struct bxe_softc *sc = (struct bxe_softc *)context; 8534 uint16_t status; 8535 8536 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8537 8538 /* what work needs to be performed? */ 8539 status = bxe_update_dsb_idx(sc); 8540 8541 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8542 8543 /* HW attentions */ 8544 if (status & BXE_DEF_SB_ATT_IDX) { 8545 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8546 bxe_attn_int(sc); 8547 status &= ~BXE_DEF_SB_ATT_IDX; 8548 } 8549 8550 /* SP events: STAT_QUERY and others */ 8551 if (status & BXE_DEF_SB_IDX) { 8552 /* handle EQ completions */ 8553 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8554 bxe_eq_int(sc); 8555 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8556 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8557 status &= ~BXE_DEF_SB_IDX; 8558 } 8559 8560 /* if status is non zero then something went wrong */ 8561 if (__predict_false(status)) { 8562 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8563 } 8564 8565 /* ack status block only if something was actually handled */ 8566 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8567 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8568 8569 /* 8570 * Must be called after the EQ processing (since eq leads to sriov 8571 * ramrod completion flows). 8572 * This flow may have been scheduled by the arrival of a ramrod 8573 * completion, or by the sriov code rescheduling itself. 8574 */ 8575 // XXX bxe_iov_sp_task(sc); 8576 8577 } 8578 8579 static void 8580 bxe_handle_fp_tq(void *context, 8581 int pending) 8582 { 8583 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8584 struct bxe_softc *sc = fp->sc; 8585 uint8_t more_tx = FALSE; 8586 uint8_t more_rx = FALSE; 8587 8588 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8589 8590 /* XXX 8591 * IFF_DRV_RUNNING state can't be checked here since we process 8592 * slowpath events on a client queue during setup. Instead 8593 * we need to add a "process/continue" flag here that the driver 8594 * can use to tell the task here not to do anything. 8595 */ 8596 #if 0 8597 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8598 return; 8599 } 8600 #endif 8601 8602 /* update the fastpath index */ 8603 bxe_update_fp_sb_idx(fp); 8604 8605 /* XXX add loop here if ever support multiple tx CoS */ 8606 /* fp->txdata[cos] */ 8607 if (bxe_has_tx_work(fp)) { 8608 BXE_FP_TX_LOCK(fp); 8609 more_tx = bxe_txeof(sc, fp); 8610 BXE_FP_TX_UNLOCK(fp); 8611 } 8612 8613 if (bxe_has_rx_work(fp)) { 8614 more_rx = bxe_rxeof(sc, fp); 8615 } 8616 8617 if (more_rx /*|| more_tx*/) { 8618 /* still more work to do */ 8619 taskqueue_enqueue(fp->tq, &fp->tq_task); 8620 return; 8621 } 8622 8623 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8624 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8625 } 8626 8627 static void 8628 bxe_task_fp(struct bxe_fastpath *fp) 8629 { 8630 struct bxe_softc *sc = fp->sc; 8631 uint8_t more_tx = FALSE; 8632 uint8_t more_rx = FALSE; 8633 8634 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8635 8636 /* update the fastpath index */ 8637 bxe_update_fp_sb_idx(fp); 8638 8639 /* XXX add loop here if ever support multiple tx CoS */ 8640 /* fp->txdata[cos] */ 8641 if (bxe_has_tx_work(fp)) { 8642 BXE_FP_TX_LOCK(fp); 8643 more_tx = bxe_txeof(sc, fp); 8644 BXE_FP_TX_UNLOCK(fp); 8645 } 8646 8647 if (bxe_has_rx_work(fp)) { 8648 more_rx = bxe_rxeof(sc, fp); 8649 } 8650 8651 if (more_rx /*|| more_tx*/) { 8652 /* still more work to do, bail out if this ISR and process later */ 8653 taskqueue_enqueue(fp->tq, &fp->tq_task); 8654 return; 8655 } 8656 8657 /* 8658 * Here we write the fastpath index taken before doing any tx or rx work. 8659 * It is very well possible other hw events occurred up to this point and 8660 * they were actually processed accordingly above. Since we're going to 8661 * write an older fastpath index, an interrupt is coming which we might 8662 * not do any work in. 8663 */ 8664 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8665 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8666 } 8667 8668 /* 8669 * Legacy interrupt entry point. 8670 * 8671 * Verifies that the controller generated the interrupt and 8672 * then calls a separate routine to handle the various 8673 * interrupt causes: link, RX, and TX. 8674 */ 8675 static void 8676 bxe_intr_legacy(void *xsc) 8677 { 8678 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8679 struct bxe_fastpath *fp; 8680 uint16_t status, mask; 8681 int i; 8682 8683 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8684 8685 /* 8686 * 0 for ustorm, 1 for cstorm 8687 * the bits returned from ack_int() are 0-15 8688 * bit 0 = attention status block 8689 * bit 1 = fast path status block 8690 * a mask of 0x2 or more = tx/rx event 8691 * a mask of 1 = slow path event 8692 */ 8693 8694 status = bxe_ack_int(sc); 8695 8696 /* the interrupt is not for us */ 8697 if (__predict_false(status == 0)) { 8698 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8699 return; 8700 } 8701 8702 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8703 8704 FOR_EACH_ETH_QUEUE(sc, i) { 8705 fp = &sc->fp[i]; 8706 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8707 if (status & mask) { 8708 /* acknowledge and disable further fastpath interrupts */ 8709 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8710 bxe_task_fp(fp); 8711 status &= ~mask; 8712 } 8713 } 8714 8715 if (__predict_false(status & 0x1)) { 8716 /* acknowledge and disable further slowpath interrupts */ 8717 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8718 8719 /* schedule slowpath handler */ 8720 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8721 8722 status &= ~0x1; 8723 } 8724 8725 if (__predict_false(status)) { 8726 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8727 } 8728 } 8729 8730 /* slowpath interrupt entry point */ 8731 static void 8732 bxe_intr_sp(void *xsc) 8733 { 8734 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8735 8736 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8737 8738 /* acknowledge and disable further slowpath interrupts */ 8739 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8740 8741 /* schedule slowpath handler */ 8742 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8743 } 8744 8745 /* fastpath interrupt entry point */ 8746 static void 8747 bxe_intr_fp(void *xfp) 8748 { 8749 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8750 struct bxe_softc *sc = fp->sc; 8751 8752 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8753 8754 BLOGD(sc, DBG_INTR, 8755 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8756 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8757 8758 /* acknowledge and disable further fastpath interrupts */ 8759 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8760 8761 bxe_task_fp(fp); 8762 } 8763 8764 /* Release all interrupts allocated by the driver. */ 8765 static void 8766 bxe_interrupt_free(struct bxe_softc *sc) 8767 { 8768 int i; 8769 8770 switch (sc->interrupt_mode) { 8771 case INTR_MODE_INTX: 8772 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8773 if (sc->intr[0].resource != NULL) { 8774 bus_release_resource(sc->dev, 8775 SYS_RES_IRQ, 8776 sc->intr[0].rid, 8777 sc->intr[0].resource); 8778 } 8779 break; 8780 case INTR_MODE_MSI: 8781 for (i = 0; i < sc->intr_count; i++) { 8782 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8783 if (sc->intr[i].resource && sc->intr[i].rid) { 8784 bus_release_resource(sc->dev, 8785 SYS_RES_IRQ, 8786 sc->intr[i].rid, 8787 sc->intr[i].resource); 8788 } 8789 } 8790 pci_release_msi(sc->dev); 8791 break; 8792 case INTR_MODE_MSIX: 8793 for (i = 0; i < sc->intr_count; i++) { 8794 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8795 if (sc->intr[i].resource && sc->intr[i].rid) { 8796 bus_release_resource(sc->dev, 8797 SYS_RES_IRQ, 8798 sc->intr[i].rid, 8799 sc->intr[i].resource); 8800 } 8801 } 8802 pci_release_msi(sc->dev); 8803 break; 8804 default: 8805 /* nothing to do as initial allocation failed */ 8806 break; 8807 } 8808 } 8809 8810 /* 8811 * This function determines and allocates the appropriate 8812 * interrupt based on system capabilites and user request. 8813 * 8814 * The user may force a particular interrupt mode, specify 8815 * the number of receive queues, specify the method for 8816 * distribuitng received frames to receive queues, or use 8817 * the default settings which will automatically select the 8818 * best supported combination. In addition, the OS may or 8819 * may not support certain combinations of these settings. 8820 * This routine attempts to reconcile the settings requested 8821 * by the user with the capabilites available from the system 8822 * to select the optimal combination of features. 8823 * 8824 * Returns: 8825 * 0 = Success, !0 = Failure. 8826 */ 8827 static int 8828 bxe_interrupt_alloc(struct bxe_softc *sc) 8829 { 8830 int msix_count = 0; 8831 int msi_count = 0; 8832 int num_requested = 0; 8833 int num_allocated = 0; 8834 int rid, i, j; 8835 int rc; 8836 8837 /* get the number of available MSI/MSI-X interrupts from the OS */ 8838 if (sc->interrupt_mode > 0) { 8839 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8840 msix_count = pci_msix_count(sc->dev); 8841 } 8842 8843 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8844 msi_count = pci_msi_count(sc->dev); 8845 } 8846 8847 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8848 msi_count, msix_count); 8849 } 8850 8851 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8852 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8853 break; 8854 } 8855 8856 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8857 (msix_count < 2)) { 8858 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8859 break; 8860 } 8861 8862 /* ask for the necessary number of MSI-X vectors */ 8863 num_requested = min((sc->num_queues + 1), msix_count); 8864 8865 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8866 8867 num_allocated = num_requested; 8868 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8869 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8870 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8871 break; 8872 } 8873 8874 if (num_allocated < 2) { /* possible? */ 8875 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8876 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8877 pci_release_msi(sc->dev); 8878 break; 8879 } 8880 8881 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8882 num_requested, num_allocated); 8883 8884 /* best effort so use the number of vectors allocated to us */ 8885 sc->intr_count = num_allocated; 8886 sc->num_queues = num_allocated - 1; 8887 8888 rid = 1; /* initial resource identifier */ 8889 8890 /* allocate the MSI-X vectors */ 8891 for (i = 0; i < num_allocated; i++) { 8892 sc->intr[i].rid = (rid + i); 8893 8894 if ((sc->intr[i].resource = 8895 bus_alloc_resource_any(sc->dev, 8896 SYS_RES_IRQ, 8897 &sc->intr[i].rid, 8898 RF_ACTIVE)) == NULL) { 8899 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8900 i, (rid + i)); 8901 8902 for (j = (i - 1); j >= 0; j--) { 8903 bus_release_resource(sc->dev, 8904 SYS_RES_IRQ, 8905 sc->intr[j].rid, 8906 sc->intr[j].resource); 8907 } 8908 8909 sc->intr_count = 0; 8910 sc->num_queues = 0; 8911 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8912 pci_release_msi(sc->dev); 8913 break; 8914 } 8915 8916 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 8917 } 8918 } while (0); 8919 8920 do { /* try allocating MSI vector resources (at least 2) */ 8921 if (sc->interrupt_mode != INTR_MODE_MSI) { 8922 break; 8923 } 8924 8925 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 8926 (msi_count < 1)) { 8927 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8928 break; 8929 } 8930 8931 /* ask for a single MSI vector */ 8932 num_requested = 1; 8933 8934 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 8935 8936 num_allocated = num_requested; 8937 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 8938 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 8939 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8940 break; 8941 } 8942 8943 if (num_allocated != 1) { /* possible? */ 8944 BLOGE(sc, "MSI allocation is not 1!\n"); 8945 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8946 pci_release_msi(sc->dev); 8947 break; 8948 } 8949 8950 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 8951 num_requested, num_allocated); 8952 8953 /* best effort so use the number of vectors allocated to us */ 8954 sc->intr_count = num_allocated; 8955 sc->num_queues = num_allocated; 8956 8957 rid = 1; /* initial resource identifier */ 8958 8959 sc->intr[0].rid = rid; 8960 8961 if ((sc->intr[0].resource = 8962 bus_alloc_resource_any(sc->dev, 8963 SYS_RES_IRQ, 8964 &sc->intr[0].rid, 8965 RF_ACTIVE)) == NULL) { 8966 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 8967 sc->intr_count = 0; 8968 sc->num_queues = 0; 8969 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 8970 pci_release_msi(sc->dev); 8971 break; 8972 } 8973 8974 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 8975 } while (0); 8976 8977 do { /* try allocating INTx vector resources */ 8978 if (sc->interrupt_mode != INTR_MODE_INTX) { 8979 break; 8980 } 8981 8982 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 8983 8984 /* only one vector for INTx */ 8985 sc->intr_count = 1; 8986 sc->num_queues = 1; 8987 8988 rid = 0; /* initial resource identifier */ 8989 8990 sc->intr[0].rid = rid; 8991 8992 if ((sc->intr[0].resource = 8993 bus_alloc_resource_any(sc->dev, 8994 SYS_RES_IRQ, 8995 &sc->intr[0].rid, 8996 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 8997 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 8998 sc->intr_count = 0; 8999 sc->num_queues = 0; 9000 sc->interrupt_mode = -1; /* Failed! */ 9001 break; 9002 } 9003 9004 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9005 } while (0); 9006 9007 if (sc->interrupt_mode == -1) { 9008 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9009 rc = 1; 9010 } else { 9011 BLOGD(sc, DBG_LOAD, 9012 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9013 sc->interrupt_mode, sc->num_queues); 9014 rc = 0; 9015 } 9016 9017 return (rc); 9018 } 9019 9020 static void 9021 bxe_interrupt_detach(struct bxe_softc *sc) 9022 { 9023 struct bxe_fastpath *fp; 9024 int i; 9025 9026 /* release interrupt resources */ 9027 for (i = 0; i < sc->intr_count; i++) { 9028 if (sc->intr[i].resource && sc->intr[i].tag) { 9029 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9030 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9031 } 9032 } 9033 9034 for (i = 0; i < sc->num_queues; i++) { 9035 fp = &sc->fp[i]; 9036 if (fp->tq) { 9037 taskqueue_drain(fp->tq, &fp->tq_task); 9038 taskqueue_free(fp->tq); 9039 fp->tq = NULL; 9040 } 9041 } 9042 9043 9044 if (sc->sp_tq) { 9045 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9046 taskqueue_free(sc->sp_tq); 9047 sc->sp_tq = NULL; 9048 } 9049 } 9050 9051 /* 9052 * Enables interrupts and attach to the ISR. 9053 * 9054 * When using multiple MSI/MSI-X vectors the first vector 9055 * is used for slowpath operations while all remaining 9056 * vectors are used for fastpath operations. If only a 9057 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9058 * ISR must look for both slowpath and fastpath completions. 9059 */ 9060 static int 9061 bxe_interrupt_attach(struct bxe_softc *sc) 9062 { 9063 struct bxe_fastpath *fp; 9064 int rc = 0; 9065 int i; 9066 9067 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9068 "bxe%d_sp_tq", sc->unit); 9069 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9070 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9071 taskqueue_thread_enqueue, 9072 &sc->sp_tq); 9073 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9074 "%s", sc->sp_tq_name); 9075 9076 9077 for (i = 0; i < sc->num_queues; i++) { 9078 fp = &sc->fp[i]; 9079 snprintf(fp->tq_name, sizeof(fp->tq_name), 9080 "bxe%d_fp%d_tq", sc->unit, i); 9081 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9082 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9083 taskqueue_thread_enqueue, 9084 &fp->tq); 9085 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9086 "%s", fp->tq_name); 9087 } 9088 9089 /* setup interrupt handlers */ 9090 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9091 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9092 9093 /* 9094 * Setup the interrupt handler. Note that we pass the driver instance 9095 * to the interrupt handler for the slowpath. 9096 */ 9097 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9098 (INTR_TYPE_NET | INTR_MPSAFE), 9099 NULL, bxe_intr_sp, sc, 9100 &sc->intr[0].tag)) != 0) { 9101 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9102 goto bxe_interrupt_attach_exit; 9103 } 9104 9105 bus_describe_intr(sc->dev, sc->intr[0].resource, 9106 sc->intr[0].tag, "sp"); 9107 9108 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9109 9110 /* initialize the fastpath vectors (note the first was used for sp) */ 9111 for (i = 0; i < sc->num_queues; i++) { 9112 fp = &sc->fp[i]; 9113 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9114 9115 /* 9116 * Setup the interrupt handler. Note that we pass the 9117 * fastpath context to the interrupt handler in this 9118 * case. 9119 */ 9120 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9121 (INTR_TYPE_NET | INTR_MPSAFE), 9122 NULL, bxe_intr_fp, fp, 9123 &sc->intr[i + 1].tag)) != 0) { 9124 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9125 (i + 1), rc); 9126 goto bxe_interrupt_attach_exit; 9127 } 9128 9129 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9130 sc->intr[i + 1].tag, "fp%02d", i); 9131 9132 /* bind the fastpath instance to a cpu */ 9133 if (sc->num_queues > 1) { 9134 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9135 } 9136 9137 fp->state = BXE_FP_STATE_IRQ; 9138 } 9139 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9140 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9141 9142 /* 9143 * Setup the interrupt handler. Note that we pass the 9144 * driver instance to the interrupt handler which 9145 * will handle both the slowpath and fastpath. 9146 */ 9147 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9148 (INTR_TYPE_NET | INTR_MPSAFE), 9149 NULL, bxe_intr_legacy, sc, 9150 &sc->intr[0].tag)) != 0) { 9151 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9152 goto bxe_interrupt_attach_exit; 9153 } 9154 9155 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9156 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9157 9158 /* 9159 * Setup the interrupt handler. Note that we pass the 9160 * driver instance to the interrupt handler which 9161 * will handle both the slowpath and fastpath. 9162 */ 9163 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9164 (INTR_TYPE_NET | INTR_MPSAFE), 9165 NULL, bxe_intr_legacy, sc, 9166 &sc->intr[0].tag)) != 0) { 9167 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9168 goto bxe_interrupt_attach_exit; 9169 } 9170 } 9171 9172 bxe_interrupt_attach_exit: 9173 9174 return (rc); 9175 } 9176 9177 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9178 static int bxe_init_hw_common(struct bxe_softc *sc); 9179 static int bxe_init_hw_port(struct bxe_softc *sc); 9180 static int bxe_init_hw_func(struct bxe_softc *sc); 9181 static void bxe_reset_common(struct bxe_softc *sc); 9182 static void bxe_reset_port(struct bxe_softc *sc); 9183 static void bxe_reset_func(struct bxe_softc *sc); 9184 static int bxe_gunzip_init(struct bxe_softc *sc); 9185 static void bxe_gunzip_end(struct bxe_softc *sc); 9186 static int bxe_init_firmware(struct bxe_softc *sc); 9187 static void bxe_release_firmware(struct bxe_softc *sc); 9188 9189 static struct 9190 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9191 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9192 .init_hw_cmn = bxe_init_hw_common, 9193 .init_hw_port = bxe_init_hw_port, 9194 .init_hw_func = bxe_init_hw_func, 9195 9196 .reset_hw_cmn = bxe_reset_common, 9197 .reset_hw_port = bxe_reset_port, 9198 .reset_hw_func = bxe_reset_func, 9199 9200 .gunzip_init = bxe_gunzip_init, 9201 .gunzip_end = bxe_gunzip_end, 9202 9203 .init_fw = bxe_init_firmware, 9204 .release_fw = bxe_release_firmware, 9205 }; 9206 9207 static void 9208 bxe_init_func_obj(struct bxe_softc *sc) 9209 { 9210 sc->dmae_ready = 0; 9211 9212 ecore_init_func_obj(sc, 9213 &sc->func_obj, 9214 BXE_SP(sc, func_rdata), 9215 BXE_SP_MAPPING(sc, func_rdata), 9216 BXE_SP(sc, func_afex_rdata), 9217 BXE_SP_MAPPING(sc, func_afex_rdata), 9218 &bxe_func_sp_drv); 9219 } 9220 9221 static int 9222 bxe_init_hw(struct bxe_softc *sc, 9223 uint32_t load_code) 9224 { 9225 struct ecore_func_state_params func_params = { NULL }; 9226 int rc; 9227 9228 /* prepare the parameters for function state transitions */ 9229 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9230 9231 func_params.f_obj = &sc->func_obj; 9232 func_params.cmd = ECORE_F_CMD_HW_INIT; 9233 9234 func_params.params.hw_init.load_phase = load_code; 9235 9236 /* 9237 * Via a plethora of function pointers, we will eventually reach 9238 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9239 */ 9240 rc = ecore_func_state_change(sc, &func_params); 9241 9242 return (rc); 9243 } 9244 9245 static void 9246 bxe_fill(struct bxe_softc *sc, 9247 uint32_t addr, 9248 int fill, 9249 uint32_t len) 9250 { 9251 uint32_t i; 9252 9253 if (!(len % 4) && !(addr % 4)) { 9254 for (i = 0; i < len; i += 4) { 9255 REG_WR(sc, (addr + i), fill); 9256 } 9257 } else { 9258 for (i = 0; i < len; i++) { 9259 REG_WR8(sc, (addr + i), fill); 9260 } 9261 } 9262 } 9263 9264 /* writes FP SP data to FW - data_size in dwords */ 9265 static void 9266 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9267 int fw_sb_id, 9268 uint32_t *sb_data_p, 9269 uint32_t data_size) 9270 { 9271 int index; 9272 9273 for (index = 0; index < data_size; index++) { 9274 REG_WR(sc, 9275 (BAR_CSTRORM_INTMEM + 9276 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9277 (sizeof(uint32_t) * index)), 9278 *(sb_data_p + index)); 9279 } 9280 } 9281 9282 static void 9283 bxe_zero_fp_sb(struct bxe_softc *sc, 9284 int fw_sb_id) 9285 { 9286 struct hc_status_block_data_e2 sb_data_e2; 9287 struct hc_status_block_data_e1x sb_data_e1x; 9288 uint32_t *sb_data_p; 9289 uint32_t data_size = 0; 9290 9291 if (!CHIP_IS_E1x(sc)) { 9292 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9293 sb_data_e2.common.state = SB_DISABLED; 9294 sb_data_e2.common.p_func.vf_valid = FALSE; 9295 sb_data_p = (uint32_t *)&sb_data_e2; 9296 data_size = (sizeof(struct hc_status_block_data_e2) / 9297 sizeof(uint32_t)); 9298 } else { 9299 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9300 sb_data_e1x.common.state = SB_DISABLED; 9301 sb_data_e1x.common.p_func.vf_valid = FALSE; 9302 sb_data_p = (uint32_t *)&sb_data_e1x; 9303 data_size = (sizeof(struct hc_status_block_data_e1x) / 9304 sizeof(uint32_t)); 9305 } 9306 9307 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9308 9309 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9310 0, CSTORM_STATUS_BLOCK_SIZE); 9311 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9312 0, CSTORM_SYNC_BLOCK_SIZE); 9313 } 9314 9315 static void 9316 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9317 struct hc_sp_status_block_data *sp_sb_data) 9318 { 9319 int i; 9320 9321 for (i = 0; 9322 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9323 i++) { 9324 REG_WR(sc, 9325 (BAR_CSTRORM_INTMEM + 9326 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9327 (i * sizeof(uint32_t))), 9328 *((uint32_t *)sp_sb_data + i)); 9329 } 9330 } 9331 9332 static void 9333 bxe_zero_sp_sb(struct bxe_softc *sc) 9334 { 9335 struct hc_sp_status_block_data sp_sb_data; 9336 9337 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9338 9339 sp_sb_data.state = SB_DISABLED; 9340 sp_sb_data.p_func.vf_valid = FALSE; 9341 9342 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9343 9344 bxe_fill(sc, 9345 (BAR_CSTRORM_INTMEM + 9346 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9347 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9348 bxe_fill(sc, 9349 (BAR_CSTRORM_INTMEM + 9350 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9351 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9352 } 9353 9354 static void 9355 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9356 int igu_sb_id, 9357 int igu_seg_id) 9358 { 9359 hc_sm->igu_sb_id = igu_sb_id; 9360 hc_sm->igu_seg_id = igu_seg_id; 9361 hc_sm->timer_value = 0xFF; 9362 hc_sm->time_to_expire = 0xFFFFFFFF; 9363 } 9364 9365 static void 9366 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9367 { 9368 /* zero out state machine indices */ 9369 9370 /* rx indices */ 9371 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9372 9373 /* tx indices */ 9374 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9375 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9376 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9377 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9378 9379 /* map indices */ 9380 9381 /* rx indices */ 9382 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9383 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9384 9385 /* tx indices */ 9386 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9387 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9388 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9389 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9390 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9391 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9392 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9393 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9394 } 9395 9396 static void 9397 bxe_init_sb(struct bxe_softc *sc, 9398 bus_addr_t busaddr, 9399 int vfid, 9400 uint8_t vf_valid, 9401 int fw_sb_id, 9402 int igu_sb_id) 9403 { 9404 struct hc_status_block_data_e2 sb_data_e2; 9405 struct hc_status_block_data_e1x sb_data_e1x; 9406 struct hc_status_block_sm *hc_sm_p; 9407 uint32_t *sb_data_p; 9408 int igu_seg_id; 9409 int data_size; 9410 9411 if (CHIP_INT_MODE_IS_BC(sc)) { 9412 igu_seg_id = HC_SEG_ACCESS_NORM; 9413 } else { 9414 igu_seg_id = IGU_SEG_ACCESS_NORM; 9415 } 9416 9417 bxe_zero_fp_sb(sc, fw_sb_id); 9418 9419 if (!CHIP_IS_E1x(sc)) { 9420 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9421 sb_data_e2.common.state = SB_ENABLED; 9422 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9423 sb_data_e2.common.p_func.vf_id = vfid; 9424 sb_data_e2.common.p_func.vf_valid = vf_valid; 9425 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9426 sb_data_e2.common.same_igu_sb_1b = TRUE; 9427 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9428 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9429 hc_sm_p = sb_data_e2.common.state_machine; 9430 sb_data_p = (uint32_t *)&sb_data_e2; 9431 data_size = (sizeof(struct hc_status_block_data_e2) / 9432 sizeof(uint32_t)); 9433 bxe_map_sb_state_machines(sb_data_e2.index_data); 9434 } else { 9435 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9436 sb_data_e1x.common.state = SB_ENABLED; 9437 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9438 sb_data_e1x.common.p_func.vf_id = 0xff; 9439 sb_data_e1x.common.p_func.vf_valid = FALSE; 9440 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9441 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9442 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9443 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9444 hc_sm_p = sb_data_e1x.common.state_machine; 9445 sb_data_p = (uint32_t *)&sb_data_e1x; 9446 data_size = (sizeof(struct hc_status_block_data_e1x) / 9447 sizeof(uint32_t)); 9448 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9449 } 9450 9451 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9452 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9453 9454 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9455 9456 /* write indices to HW - PCI guarantees endianity of regpairs */ 9457 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9458 } 9459 9460 static inline uint8_t 9461 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9462 { 9463 if (CHIP_IS_E1x(fp->sc)) { 9464 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9465 } else { 9466 return (fp->cl_id); 9467 } 9468 } 9469 9470 static inline uint32_t 9471 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9472 struct bxe_fastpath *fp) 9473 { 9474 uint32_t offset = BAR_USTRORM_INTMEM; 9475 9476 if (!CHIP_IS_E1x(sc)) { 9477 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9478 } else { 9479 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9480 } 9481 9482 return (offset); 9483 } 9484 9485 static void 9486 bxe_init_eth_fp(struct bxe_softc *sc, 9487 int idx) 9488 { 9489 struct bxe_fastpath *fp = &sc->fp[idx]; 9490 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9491 unsigned long q_type = 0; 9492 int cos; 9493 9494 fp->sc = sc; 9495 fp->index = idx; 9496 9497 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9498 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9499 9500 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9501 (SC_L_ID(sc) + idx) : 9502 /* want client ID same as IGU SB ID for non-E1 */ 9503 fp->igu_sb_id; 9504 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9505 9506 /* setup sb indices */ 9507 if (!CHIP_IS_E1x(sc)) { 9508 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9509 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9510 } else { 9511 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9512 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9513 } 9514 9515 /* init shortcut */ 9516 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9517 9518 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9519 9520 /* 9521 * XXX If multiple CoS is ever supported then each fastpath structure 9522 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9523 */ 9524 for (cos = 0; cos < sc->max_cos; cos++) { 9525 cids[cos] = idx; 9526 } 9527 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9528 9529 /* nothing more for a VF to do */ 9530 if (IS_VF(sc)) { 9531 return; 9532 } 9533 9534 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9535 fp->fw_sb_id, fp->igu_sb_id); 9536 9537 bxe_update_fp_sb_idx(fp); 9538 9539 /* Configure Queue State object */ 9540 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9541 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9542 9543 ecore_init_queue_obj(sc, 9544 &sc->sp_objs[idx].q_obj, 9545 fp->cl_id, 9546 cids, 9547 sc->max_cos, 9548 SC_FUNC(sc), 9549 BXE_SP(sc, q_rdata), 9550 BXE_SP_MAPPING(sc, q_rdata), 9551 q_type); 9552 9553 /* configure classification DBs */ 9554 ecore_init_mac_obj(sc, 9555 &sc->sp_objs[idx].mac_obj, 9556 fp->cl_id, 9557 idx, 9558 SC_FUNC(sc), 9559 BXE_SP(sc, mac_rdata), 9560 BXE_SP_MAPPING(sc, mac_rdata), 9561 ECORE_FILTER_MAC_PENDING, 9562 &sc->sp_state, 9563 ECORE_OBJ_TYPE_RX_TX, 9564 &sc->macs_pool); 9565 9566 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9567 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9568 } 9569 9570 static inline void 9571 bxe_update_rx_prod(struct bxe_softc *sc, 9572 struct bxe_fastpath *fp, 9573 uint16_t rx_bd_prod, 9574 uint16_t rx_cq_prod, 9575 uint16_t rx_sge_prod) 9576 { 9577 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9578 uint32_t i; 9579 9580 /* update producers */ 9581 rx_prods.bd_prod = rx_bd_prod; 9582 rx_prods.cqe_prod = rx_cq_prod; 9583 rx_prods.sge_prod = rx_sge_prod; 9584 9585 /* 9586 * Make sure that the BD and SGE data is updated before updating the 9587 * producers since FW might read the BD/SGE right after the producer 9588 * is updated. 9589 * This is only applicable for weak-ordered memory model archs such 9590 * as IA-64. The following barrier is also mandatory since FW will 9591 * assumes BDs must have buffers. 9592 */ 9593 wmb(); 9594 9595 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9596 REG_WR(sc, 9597 (fp->ustorm_rx_prods_offset + (i * 4)), 9598 ((uint32_t *)&rx_prods)[i]); 9599 } 9600 9601 wmb(); /* keep prod updates ordered */ 9602 9603 BLOGD(sc, DBG_RX, 9604 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9605 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9606 } 9607 9608 static void 9609 bxe_init_rx_rings(struct bxe_softc *sc) 9610 { 9611 struct bxe_fastpath *fp; 9612 int i; 9613 9614 for (i = 0; i < sc->num_queues; i++) { 9615 fp = &sc->fp[i]; 9616 9617 fp->rx_bd_cons = 0; 9618 9619 /* 9620 * Activate the BD ring... 9621 * Warning, this will generate an interrupt (to the TSTORM) 9622 * so this can only be done after the chip is initialized 9623 */ 9624 bxe_update_rx_prod(sc, fp, 9625 fp->rx_bd_prod, 9626 fp->rx_cq_prod, 9627 fp->rx_sge_prod); 9628 9629 if (i != 0) { 9630 continue; 9631 } 9632 9633 if (CHIP_IS_E1(sc)) { 9634 REG_WR(sc, 9635 (BAR_USTRORM_INTMEM + 9636 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9637 U64_LO(fp->rcq_dma.paddr)); 9638 REG_WR(sc, 9639 (BAR_USTRORM_INTMEM + 9640 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9641 U64_HI(fp->rcq_dma.paddr)); 9642 } 9643 } 9644 } 9645 9646 static void 9647 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9648 { 9649 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9650 fp->tx_db.data.zero_fill1 = 0; 9651 fp->tx_db.data.prod = 0; 9652 9653 fp->tx_pkt_prod = 0; 9654 fp->tx_pkt_cons = 0; 9655 fp->tx_bd_prod = 0; 9656 fp->tx_bd_cons = 0; 9657 fp->eth_q_stats.tx_pkts = 0; 9658 } 9659 9660 static inline void 9661 bxe_init_tx_rings(struct bxe_softc *sc) 9662 { 9663 int i; 9664 9665 for (i = 0; i < sc->num_queues; i++) { 9666 bxe_init_tx_ring_one(&sc->fp[i]); 9667 } 9668 } 9669 9670 static void 9671 bxe_init_def_sb(struct bxe_softc *sc) 9672 { 9673 struct host_sp_status_block *def_sb = sc->def_sb; 9674 bus_addr_t mapping = sc->def_sb_dma.paddr; 9675 int igu_sp_sb_index; 9676 int igu_seg_id; 9677 int port = SC_PORT(sc); 9678 int func = SC_FUNC(sc); 9679 int reg_offset, reg_offset_en5; 9680 uint64_t section; 9681 int index, sindex; 9682 struct hc_sp_status_block_data sp_sb_data; 9683 9684 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9685 9686 if (CHIP_INT_MODE_IS_BC(sc)) { 9687 igu_sp_sb_index = DEF_SB_IGU_ID; 9688 igu_seg_id = HC_SEG_ACCESS_DEF; 9689 } else { 9690 igu_sp_sb_index = sc->igu_dsb_id; 9691 igu_seg_id = IGU_SEG_ACCESS_DEF; 9692 } 9693 9694 /* attentions */ 9695 section = ((uint64_t)mapping + 9696 offsetof(struct host_sp_status_block, atten_status_block)); 9697 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9698 sc->attn_state = 0; 9699 9700 reg_offset = (port) ? 9701 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9702 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9703 reg_offset_en5 = (port) ? 9704 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9705 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9706 9707 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9708 /* take care of sig[0]..sig[4] */ 9709 for (sindex = 0; sindex < 4; sindex++) { 9710 sc->attn_group[index].sig[sindex] = 9711 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9712 } 9713 9714 if (!CHIP_IS_E1x(sc)) { 9715 /* 9716 * enable5 is separate from the rest of the registers, 9717 * and the address skip is 4 and not 16 between the 9718 * different groups 9719 */ 9720 sc->attn_group[index].sig[4] = 9721 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9722 } else { 9723 sc->attn_group[index].sig[4] = 0; 9724 } 9725 } 9726 9727 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9728 reg_offset = (port) ? 9729 HC_REG_ATTN_MSG1_ADDR_L : 9730 HC_REG_ATTN_MSG0_ADDR_L; 9731 REG_WR(sc, reg_offset, U64_LO(section)); 9732 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9733 } else if (!CHIP_IS_E1x(sc)) { 9734 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9735 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9736 } 9737 9738 section = ((uint64_t)mapping + 9739 offsetof(struct host_sp_status_block, sp_sb)); 9740 9741 bxe_zero_sp_sb(sc); 9742 9743 /* PCI guarantees endianity of regpair */ 9744 sp_sb_data.state = SB_ENABLED; 9745 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9746 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9747 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9748 sp_sb_data.igu_seg_id = igu_seg_id; 9749 sp_sb_data.p_func.pf_id = func; 9750 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9751 sp_sb_data.p_func.vf_id = 0xff; 9752 9753 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9754 9755 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9756 } 9757 9758 static void 9759 bxe_init_sp_ring(struct bxe_softc *sc) 9760 { 9761 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9762 sc->spq_prod_idx = 0; 9763 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9764 sc->spq_prod_bd = sc->spq; 9765 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9766 } 9767 9768 static void 9769 bxe_init_eq_ring(struct bxe_softc *sc) 9770 { 9771 union event_ring_elem *elem; 9772 int i; 9773 9774 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9775 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9776 9777 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9778 BCM_PAGE_SIZE * 9779 (i % NUM_EQ_PAGES))); 9780 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9781 BCM_PAGE_SIZE * 9782 (i % NUM_EQ_PAGES))); 9783 } 9784 9785 sc->eq_cons = 0; 9786 sc->eq_prod = NUM_EQ_DESC; 9787 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9788 9789 atomic_store_rel_long(&sc->eq_spq_left, 9790 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9791 NUM_EQ_DESC) - 1)); 9792 } 9793 9794 static void 9795 bxe_init_internal_common(struct bxe_softc *sc) 9796 { 9797 int i; 9798 9799 /* 9800 * Zero this manually as its initialization is currently missing 9801 * in the initTool. 9802 */ 9803 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9804 REG_WR(sc, 9805 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9806 0); 9807 } 9808 9809 if (!CHIP_IS_E1x(sc)) { 9810 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9811 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9812 } 9813 } 9814 9815 static void 9816 bxe_init_internal(struct bxe_softc *sc, 9817 uint32_t load_code) 9818 { 9819 switch (load_code) { 9820 case FW_MSG_CODE_DRV_LOAD_COMMON: 9821 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9822 bxe_init_internal_common(sc); 9823 /* no break */ 9824 9825 case FW_MSG_CODE_DRV_LOAD_PORT: 9826 /* nothing to do */ 9827 /* no break */ 9828 9829 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9830 /* internal memory per function is initialized inside bxe_pf_init */ 9831 break; 9832 9833 default: 9834 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9835 break; 9836 } 9837 } 9838 9839 static void 9840 storm_memset_func_cfg(struct bxe_softc *sc, 9841 struct tstorm_eth_function_common_config *tcfg, 9842 uint16_t abs_fid) 9843 { 9844 uint32_t addr; 9845 size_t size; 9846 9847 addr = (BAR_TSTRORM_INTMEM + 9848 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9849 size = sizeof(struct tstorm_eth_function_common_config); 9850 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9851 } 9852 9853 static void 9854 bxe_func_init(struct bxe_softc *sc, 9855 struct bxe_func_init_params *p) 9856 { 9857 struct tstorm_eth_function_common_config tcfg = { 0 }; 9858 9859 if (CHIP_IS_E1x(sc)) { 9860 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9861 } 9862 9863 /* Enable the function in the FW */ 9864 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9865 storm_memset_func_en(sc, p->func_id, 1); 9866 9867 /* spq */ 9868 if (p->func_flgs & FUNC_FLG_SPQ) { 9869 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9870 REG_WR(sc, 9871 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9872 p->spq_prod); 9873 } 9874 } 9875 9876 /* 9877 * Calculates the sum of vn_min_rates. 9878 * It's needed for further normalizing of the min_rates. 9879 * Returns: 9880 * sum of vn_min_rates. 9881 * or 9882 * 0 - if all the min_rates are 0. 9883 * In the later case fainess algorithm should be deactivated. 9884 * If all min rates are not zero then those that are zeroes will be set to 1. 9885 */ 9886 static void 9887 bxe_calc_vn_min(struct bxe_softc *sc, 9888 struct cmng_init_input *input) 9889 { 9890 uint32_t vn_cfg; 9891 uint32_t vn_min_rate; 9892 int all_zero = 1; 9893 int vn; 9894 9895 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9896 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9897 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 9898 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 9899 9900 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9901 /* skip hidden VNs */ 9902 vn_min_rate = 0; 9903 } else if (!vn_min_rate) { 9904 /* If min rate is zero - set it to 100 */ 9905 vn_min_rate = DEF_MIN_RATE; 9906 } else { 9907 all_zero = 0; 9908 } 9909 9910 input->vnic_min_rate[vn] = vn_min_rate; 9911 } 9912 9913 /* if ETS or all min rates are zeros - disable fairness */ 9914 if (BXE_IS_ETS_ENABLED(sc)) { 9915 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9916 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 9917 } else if (all_zero) { 9918 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9919 BLOGD(sc, DBG_LOAD, 9920 "Fariness disabled (all MIN values are zeroes)\n"); 9921 } else { 9922 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 9923 } 9924 } 9925 9926 static inline uint16_t 9927 bxe_extract_max_cfg(struct bxe_softc *sc, 9928 uint32_t mf_cfg) 9929 { 9930 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 9931 FUNC_MF_CFG_MAX_BW_SHIFT); 9932 9933 if (!max_cfg) { 9934 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 9935 max_cfg = 100; 9936 } 9937 9938 return (max_cfg); 9939 } 9940 9941 static void 9942 bxe_calc_vn_max(struct bxe_softc *sc, 9943 int vn, 9944 struct cmng_init_input *input) 9945 { 9946 uint16_t vn_max_rate; 9947 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 9948 uint32_t max_cfg; 9949 9950 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 9951 vn_max_rate = 0; 9952 } else { 9953 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 9954 9955 if (IS_MF_SI(sc)) { 9956 /* max_cfg in percents of linkspeed */ 9957 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 9958 } else { /* SD modes */ 9959 /* max_cfg is absolute in 100Mb units */ 9960 vn_max_rate = (max_cfg * 100); 9961 } 9962 } 9963 9964 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 9965 9966 input->vnic_max_rate[vn] = vn_max_rate; 9967 } 9968 9969 static void 9970 bxe_cmng_fns_init(struct bxe_softc *sc, 9971 uint8_t read_cfg, 9972 uint8_t cmng_type) 9973 { 9974 struct cmng_init_input input; 9975 int vn; 9976 9977 memset(&input, 0, sizeof(struct cmng_init_input)); 9978 9979 input.port_rate = sc->link_vars.line_speed; 9980 9981 if (cmng_type == CMNG_FNS_MINMAX) { 9982 /* read mf conf from shmem */ 9983 if (read_cfg) { 9984 bxe_read_mf_cfg(sc); 9985 } 9986 9987 /* get VN min rate and enable fairness if not 0 */ 9988 bxe_calc_vn_min(sc, &input); 9989 9990 /* get VN max rate */ 9991 if (sc->port.pmf) { 9992 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 9993 bxe_calc_vn_max(sc, vn, &input); 9994 } 9995 } 9996 9997 /* always enable rate shaping and fairness */ 9998 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 9999 10000 ecore_init_cmng(&input, &sc->cmng); 10001 return; 10002 } 10003 10004 /* rate shaping and fairness are disabled */ 10005 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10006 } 10007 10008 static int 10009 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10010 { 10011 if (CHIP_REV_IS_SLOW(sc)) { 10012 return (CMNG_FNS_NONE); 10013 } 10014 10015 if (IS_MF(sc)) { 10016 return (CMNG_FNS_MINMAX); 10017 } 10018 10019 return (CMNG_FNS_NONE); 10020 } 10021 10022 static void 10023 storm_memset_cmng(struct bxe_softc *sc, 10024 struct cmng_init *cmng, 10025 uint8_t port) 10026 { 10027 int vn; 10028 int func; 10029 uint32_t addr; 10030 size_t size; 10031 10032 addr = (BAR_XSTRORM_INTMEM + 10033 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10034 size = sizeof(struct cmng_struct_per_port); 10035 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10036 10037 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10038 func = func_by_vn(sc, vn); 10039 10040 addr = (BAR_XSTRORM_INTMEM + 10041 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10042 size = sizeof(struct rate_shaping_vars_per_vn); 10043 ecore_storm_memset_struct(sc, addr, size, 10044 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10045 10046 addr = (BAR_XSTRORM_INTMEM + 10047 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10048 size = sizeof(struct fairness_vars_per_vn); 10049 ecore_storm_memset_struct(sc, addr, size, 10050 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10051 } 10052 } 10053 10054 static void 10055 bxe_pf_init(struct bxe_softc *sc) 10056 { 10057 struct bxe_func_init_params func_init = { 0 }; 10058 struct event_ring_data eq_data = { { 0 } }; 10059 uint16_t flags; 10060 10061 if (!CHIP_IS_E1x(sc)) { 10062 /* reset IGU PF statistics: MSIX + ATTN */ 10063 /* PF */ 10064 REG_WR(sc, 10065 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10066 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10067 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10068 0); 10069 /* ATTN */ 10070 REG_WR(sc, 10071 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10072 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10073 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10074 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10075 0); 10076 } 10077 10078 /* function setup flags */ 10079 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10080 10081 /* 10082 * This flag is relevant for E1x only. 10083 * E2 doesn't have a TPA configuration in a function level. 10084 */ 10085 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10086 10087 func_init.func_flgs = flags; 10088 func_init.pf_id = SC_FUNC(sc); 10089 func_init.func_id = SC_FUNC(sc); 10090 func_init.spq_map = sc->spq_dma.paddr; 10091 func_init.spq_prod = sc->spq_prod_idx; 10092 10093 bxe_func_init(sc, &func_init); 10094 10095 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10096 10097 /* 10098 * Congestion management values depend on the link rate. 10099 * There is no active link so initial link rate is set to 10Gbps. 10100 * When the link comes up the congestion management values are 10101 * re-calculated according to the actual link rate. 10102 */ 10103 sc->link_vars.line_speed = SPEED_10000; 10104 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10105 10106 /* Only the PMF sets the HW */ 10107 if (sc->port.pmf) { 10108 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10109 } 10110 10111 /* init Event Queue - PCI bus guarantees correct endainity */ 10112 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10113 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10114 eq_data.producer = sc->eq_prod; 10115 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10116 eq_data.sb_id = DEF_SB_ID; 10117 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10118 } 10119 10120 static void 10121 bxe_hc_int_enable(struct bxe_softc *sc) 10122 { 10123 int port = SC_PORT(sc); 10124 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10125 uint32_t val = REG_RD(sc, addr); 10126 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10127 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10128 (sc->intr_count == 1)) ? TRUE : FALSE; 10129 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10130 10131 if (msix) { 10132 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10133 HC_CONFIG_0_REG_INT_LINE_EN_0); 10134 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10135 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10136 if (single_msix) { 10137 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10138 } 10139 } else if (msi) { 10140 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10141 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10142 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10143 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10144 } else { 10145 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10146 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10147 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10148 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10149 10150 if (!CHIP_IS_E1(sc)) { 10151 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10152 val, port, addr); 10153 10154 REG_WR(sc, addr, val); 10155 10156 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10157 } 10158 } 10159 10160 if (CHIP_IS_E1(sc)) { 10161 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10162 } 10163 10164 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10165 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10166 10167 REG_WR(sc, addr, val); 10168 10169 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10170 mb(); 10171 10172 if (!CHIP_IS_E1(sc)) { 10173 /* init leading/trailing edge */ 10174 if (IS_MF(sc)) { 10175 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10176 if (sc->port.pmf) { 10177 /* enable nig and gpio3 attention */ 10178 val |= 0x1100; 10179 } 10180 } else { 10181 val = 0xffff; 10182 } 10183 10184 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10185 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10186 } 10187 10188 /* make sure that interrupts are indeed enabled from here on */ 10189 mb(); 10190 } 10191 10192 static void 10193 bxe_igu_int_enable(struct bxe_softc *sc) 10194 { 10195 uint32_t val; 10196 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10197 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10198 (sc->intr_count == 1)) ? TRUE : FALSE; 10199 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10200 10201 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10202 10203 if (msix) { 10204 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10205 IGU_PF_CONF_SINGLE_ISR_EN); 10206 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10207 IGU_PF_CONF_ATTN_BIT_EN); 10208 if (single_msix) { 10209 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10210 } 10211 } else if (msi) { 10212 val &= ~IGU_PF_CONF_INT_LINE_EN; 10213 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10214 IGU_PF_CONF_ATTN_BIT_EN | 10215 IGU_PF_CONF_SINGLE_ISR_EN); 10216 } else { 10217 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10218 val |= (IGU_PF_CONF_INT_LINE_EN | 10219 IGU_PF_CONF_ATTN_BIT_EN | 10220 IGU_PF_CONF_SINGLE_ISR_EN); 10221 } 10222 10223 /* clean previous status - need to configure igu prior to ack*/ 10224 if ((!msix) || single_msix) { 10225 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10226 bxe_ack_int(sc); 10227 } 10228 10229 val |= IGU_PF_CONF_FUNC_EN; 10230 10231 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10232 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10233 10234 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10235 10236 mb(); 10237 10238 /* init leading/trailing edge */ 10239 if (IS_MF(sc)) { 10240 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10241 if (sc->port.pmf) { 10242 /* enable nig and gpio3 attention */ 10243 val |= 0x1100; 10244 } 10245 } else { 10246 val = 0xffff; 10247 } 10248 10249 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10250 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10251 10252 /* make sure that interrupts are indeed enabled from here on */ 10253 mb(); 10254 } 10255 10256 static void 10257 bxe_int_enable(struct bxe_softc *sc) 10258 { 10259 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10260 bxe_hc_int_enable(sc); 10261 } else { 10262 bxe_igu_int_enable(sc); 10263 } 10264 } 10265 10266 static void 10267 bxe_hc_int_disable(struct bxe_softc *sc) 10268 { 10269 int port = SC_PORT(sc); 10270 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10271 uint32_t val = REG_RD(sc, addr); 10272 10273 /* 10274 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10275 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10276 * block 10277 */ 10278 if (CHIP_IS_E1(sc)) { 10279 /* 10280 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10281 * to prevent from HC sending interrupts after we exit the function 10282 */ 10283 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10284 10285 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10286 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10287 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10288 } else { 10289 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10290 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10291 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10292 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10293 } 10294 10295 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10296 10297 /* flush all outstanding writes */ 10298 mb(); 10299 10300 REG_WR(sc, addr, val); 10301 if (REG_RD(sc, addr) != val) { 10302 BLOGE(sc, "proper val not read from HC IGU!\n"); 10303 } 10304 } 10305 10306 static void 10307 bxe_igu_int_disable(struct bxe_softc *sc) 10308 { 10309 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10310 10311 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10312 IGU_PF_CONF_INT_LINE_EN | 10313 IGU_PF_CONF_ATTN_BIT_EN); 10314 10315 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10316 10317 /* flush all outstanding writes */ 10318 mb(); 10319 10320 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10321 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10322 BLOGE(sc, "proper val not read from IGU!\n"); 10323 } 10324 } 10325 10326 static void 10327 bxe_int_disable(struct bxe_softc *sc) 10328 { 10329 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10330 bxe_hc_int_disable(sc); 10331 } else { 10332 bxe_igu_int_disable(sc); 10333 } 10334 } 10335 10336 static void 10337 bxe_nic_init(struct bxe_softc *sc, 10338 int load_code) 10339 { 10340 int i; 10341 10342 for (i = 0; i < sc->num_queues; i++) { 10343 bxe_init_eth_fp(sc, i); 10344 } 10345 10346 rmb(); /* ensure status block indices were read */ 10347 10348 bxe_init_rx_rings(sc); 10349 bxe_init_tx_rings(sc); 10350 10351 if (IS_VF(sc)) { 10352 return; 10353 } 10354 10355 /* initialize MOD_ABS interrupts */ 10356 elink_init_mod_abs_int(sc, &sc->link_vars, 10357 sc->devinfo.chip_id, 10358 sc->devinfo.shmem_base, 10359 sc->devinfo.shmem2_base, 10360 SC_PORT(sc)); 10361 10362 bxe_init_def_sb(sc); 10363 bxe_update_dsb_idx(sc); 10364 bxe_init_sp_ring(sc); 10365 bxe_init_eq_ring(sc); 10366 bxe_init_internal(sc, load_code); 10367 bxe_pf_init(sc); 10368 bxe_stats_init(sc); 10369 10370 /* flush all before enabling interrupts */ 10371 mb(); 10372 10373 bxe_int_enable(sc); 10374 10375 /* check for SPIO5 */ 10376 bxe_attn_int_deasserted0(sc, 10377 REG_RD(sc, 10378 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10379 SC_PORT(sc)*4)) & 10380 AEU_INPUTS_ATTN_BITS_SPIO5); 10381 } 10382 10383 static inline void 10384 bxe_init_objs(struct bxe_softc *sc) 10385 { 10386 /* mcast rules must be added to tx if tx switching is enabled */ 10387 ecore_obj_type o_type = 10388 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10389 ECORE_OBJ_TYPE_RX; 10390 10391 /* RX_MODE controlling object */ 10392 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10393 10394 /* multicast configuration controlling object */ 10395 ecore_init_mcast_obj(sc, 10396 &sc->mcast_obj, 10397 sc->fp[0].cl_id, 10398 sc->fp[0].index, 10399 SC_FUNC(sc), 10400 SC_FUNC(sc), 10401 BXE_SP(sc, mcast_rdata), 10402 BXE_SP_MAPPING(sc, mcast_rdata), 10403 ECORE_FILTER_MCAST_PENDING, 10404 &sc->sp_state, 10405 o_type); 10406 10407 /* Setup CAM credit pools */ 10408 ecore_init_mac_credit_pool(sc, 10409 &sc->macs_pool, 10410 SC_FUNC(sc), 10411 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10412 VNICS_PER_PATH(sc)); 10413 10414 ecore_init_vlan_credit_pool(sc, 10415 &sc->vlans_pool, 10416 SC_ABS_FUNC(sc) >> 1, 10417 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10418 VNICS_PER_PATH(sc)); 10419 10420 /* RSS configuration object */ 10421 ecore_init_rss_config_obj(sc, 10422 &sc->rss_conf_obj, 10423 sc->fp[0].cl_id, 10424 sc->fp[0].index, 10425 SC_FUNC(sc), 10426 SC_FUNC(sc), 10427 BXE_SP(sc, rss_rdata), 10428 BXE_SP_MAPPING(sc, rss_rdata), 10429 ECORE_FILTER_RSS_CONF_PENDING, 10430 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10431 } 10432 10433 /* 10434 * Initialize the function. This must be called before sending CLIENT_SETUP 10435 * for the first client. 10436 */ 10437 static inline int 10438 bxe_func_start(struct bxe_softc *sc) 10439 { 10440 struct ecore_func_state_params func_params = { NULL }; 10441 struct ecore_func_start_params *start_params = &func_params.params.start; 10442 10443 /* Prepare parameters for function state transitions */ 10444 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10445 10446 func_params.f_obj = &sc->func_obj; 10447 func_params.cmd = ECORE_F_CMD_START; 10448 10449 /* Function parameters */ 10450 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10451 start_params->sd_vlan_tag = OVLAN(sc); 10452 10453 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10454 start_params->network_cos_mode = STATIC_COS; 10455 } else { /* CHIP_IS_E1X */ 10456 start_params->network_cos_mode = FW_WRR; 10457 } 10458 10459 //start_params->gre_tunnel_mode = 0; 10460 //start_params->gre_tunnel_rss = 0; 10461 10462 return (ecore_func_state_change(sc, &func_params)); 10463 } 10464 10465 static int 10466 bxe_set_power_state(struct bxe_softc *sc, 10467 uint8_t state) 10468 { 10469 uint16_t pmcsr; 10470 10471 /* If there is no power capability, silently succeed */ 10472 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10473 BLOGW(sc, "No power capability\n"); 10474 return (0); 10475 } 10476 10477 pmcsr = pci_read_config(sc->dev, 10478 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10479 2); 10480 10481 switch (state) { 10482 case PCI_PM_D0: 10483 pci_write_config(sc->dev, 10484 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10485 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10486 10487 if (pmcsr & PCIM_PSTAT_DMASK) { 10488 /* delay required during transition out of D3hot */ 10489 DELAY(20000); 10490 } 10491 10492 break; 10493 10494 case PCI_PM_D3hot: 10495 /* XXX if there are other clients above don't shut down the power */ 10496 10497 /* don't shut down the power for emulation and FPGA */ 10498 if (CHIP_REV_IS_SLOW(sc)) { 10499 return (0); 10500 } 10501 10502 pmcsr &= ~PCIM_PSTAT_DMASK; 10503 pmcsr |= PCIM_PSTAT_D3; 10504 10505 if (sc->wol) { 10506 pmcsr |= PCIM_PSTAT_PMEENABLE; 10507 } 10508 10509 pci_write_config(sc->dev, 10510 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10511 pmcsr, 4); 10512 10513 /* 10514 * No more memory access after this point until device is brought back 10515 * to D0 state. 10516 */ 10517 break; 10518 10519 default: 10520 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10521 state, pmcsr); 10522 return (-1); 10523 } 10524 10525 return (0); 10526 } 10527 10528 10529 /* return true if succeeded to acquire the lock */ 10530 static uint8_t 10531 bxe_trylock_hw_lock(struct bxe_softc *sc, 10532 uint32_t resource) 10533 { 10534 uint32_t lock_status; 10535 uint32_t resource_bit = (1 << resource); 10536 int func = SC_FUNC(sc); 10537 uint32_t hw_lock_control_reg; 10538 10539 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10540 10541 /* Validating that the resource is within range */ 10542 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10543 BLOGD(sc, DBG_LOAD, 10544 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10545 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10546 return (FALSE); 10547 } 10548 10549 if (func <= 5) { 10550 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10551 } else { 10552 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10553 } 10554 10555 /* try to acquire the lock */ 10556 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10557 lock_status = REG_RD(sc, hw_lock_control_reg); 10558 if (lock_status & resource_bit) { 10559 return (TRUE); 10560 } 10561 10562 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10563 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10564 lock_status, resource_bit); 10565 10566 return (FALSE); 10567 } 10568 10569 /* 10570 * Get the recovery leader resource id according to the engine this function 10571 * belongs to. Currently only only 2 engines is supported. 10572 */ 10573 static int 10574 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10575 { 10576 if (SC_PATH(sc)) { 10577 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10578 } else { 10579 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10580 } 10581 } 10582 10583 /* try to acquire a leader lock for current engine */ 10584 static uint8_t 10585 bxe_trylock_leader_lock(struct bxe_softc *sc) 10586 { 10587 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10588 } 10589 10590 static int 10591 bxe_release_leader_lock(struct bxe_softc *sc) 10592 { 10593 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10594 } 10595 10596 /* close gates #2, #3 and #4 */ 10597 static void 10598 bxe_set_234_gates(struct bxe_softc *sc, 10599 uint8_t close) 10600 { 10601 uint32_t val; 10602 10603 /* gates #2 and #4a are closed/opened for "not E1" only */ 10604 if (!CHIP_IS_E1(sc)) { 10605 /* #4 */ 10606 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10607 /* #2 */ 10608 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10609 } 10610 10611 /* #3 */ 10612 if (CHIP_IS_E1x(sc)) { 10613 /* prevent interrupts from HC on both ports */ 10614 val = REG_RD(sc, HC_REG_CONFIG_1); 10615 REG_WR(sc, HC_REG_CONFIG_1, 10616 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10617 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10618 10619 val = REG_RD(sc, HC_REG_CONFIG_0); 10620 REG_WR(sc, HC_REG_CONFIG_0, 10621 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10622 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10623 } else { 10624 /* Prevent incoming interrupts in IGU */ 10625 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10626 10627 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10628 (!close) ? 10629 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10630 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10631 } 10632 10633 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10634 close ? "closing" : "opening"); 10635 10636 wmb(); 10637 } 10638 10639 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10640 static int 10641 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10642 { 10643 uint32_t cnt = 1000; 10644 uint32_t pend_bits = 0; 10645 10646 do { 10647 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10648 10649 if (pend_bits == 0) { 10650 break; 10651 } 10652 10653 DELAY(1000); 10654 } while (--cnt > 0); 10655 10656 if (cnt == 0) { 10657 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10658 return (-1); 10659 } 10660 10661 return (0); 10662 } 10663 10664 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10665 10666 static void 10667 bxe_clp_reset_prep(struct bxe_softc *sc, 10668 uint32_t *magic_val) 10669 { 10670 /* Do some magic... */ 10671 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10672 *magic_val = val & SHARED_MF_CLP_MAGIC; 10673 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10674 } 10675 10676 /* restore the value of the 'magic' bit */ 10677 static void 10678 bxe_clp_reset_done(struct bxe_softc *sc, 10679 uint32_t magic_val) 10680 { 10681 /* Restore the 'magic' bit value... */ 10682 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10683 MFCFG_WR(sc, shared_mf_config.clp_mb, 10684 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10685 } 10686 10687 /* prepare for MCP reset, takes care of CLP configurations */ 10688 static void 10689 bxe_reset_mcp_prep(struct bxe_softc *sc, 10690 uint32_t *magic_val) 10691 { 10692 uint32_t shmem; 10693 uint32_t validity_offset; 10694 10695 /* set `magic' bit in order to save MF config */ 10696 if (!CHIP_IS_E1(sc)) { 10697 bxe_clp_reset_prep(sc, magic_val); 10698 } 10699 10700 /* get shmem offset */ 10701 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10702 validity_offset = 10703 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10704 10705 /* Clear validity map flags */ 10706 if (shmem > 0) { 10707 REG_WR(sc, shmem + validity_offset, 0); 10708 } 10709 } 10710 10711 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10712 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10713 10714 static void 10715 bxe_mcp_wait_one(struct bxe_softc *sc) 10716 { 10717 /* special handling for emulation and FPGA (10 times longer) */ 10718 if (CHIP_REV_IS_SLOW(sc)) { 10719 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10720 } else { 10721 DELAY((MCP_ONE_TIMEOUT) * 1000); 10722 } 10723 } 10724 10725 /* initialize shmem_base and waits for validity signature to appear */ 10726 static int 10727 bxe_init_shmem(struct bxe_softc *sc) 10728 { 10729 int cnt = 0; 10730 uint32_t val = 0; 10731 10732 do { 10733 sc->devinfo.shmem_base = 10734 sc->link_params.shmem_base = 10735 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10736 10737 if (sc->devinfo.shmem_base) { 10738 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10739 if (val & SHR_MEM_VALIDITY_MB) 10740 return (0); 10741 } 10742 10743 bxe_mcp_wait_one(sc); 10744 10745 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10746 10747 BLOGE(sc, "BAD MCP validity signature\n"); 10748 10749 return (-1); 10750 } 10751 10752 static int 10753 bxe_reset_mcp_comp(struct bxe_softc *sc, 10754 uint32_t magic_val) 10755 { 10756 int rc = bxe_init_shmem(sc); 10757 10758 /* Restore the `magic' bit value */ 10759 if (!CHIP_IS_E1(sc)) { 10760 bxe_clp_reset_done(sc, magic_val); 10761 } 10762 10763 return (rc); 10764 } 10765 10766 static void 10767 bxe_pxp_prep(struct bxe_softc *sc) 10768 { 10769 if (!CHIP_IS_E1(sc)) { 10770 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10771 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10772 wmb(); 10773 } 10774 } 10775 10776 /* 10777 * Reset the whole chip except for: 10778 * - PCIE core 10779 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10780 * - IGU 10781 * - MISC (including AEU) 10782 * - GRC 10783 * - RBCN, RBCP 10784 */ 10785 static void 10786 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10787 uint8_t global) 10788 { 10789 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10790 uint32_t global_bits2, stay_reset2; 10791 10792 /* 10793 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10794 * (per chip) blocks. 10795 */ 10796 global_bits2 = 10797 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10798 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10799 10800 /* 10801 * Don't reset the following blocks. 10802 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10803 * reset, as in 4 port device they might still be owned 10804 * by the MCP (there is only one leader per path). 10805 */ 10806 not_reset_mask1 = 10807 MISC_REGISTERS_RESET_REG_1_RST_HC | 10808 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10809 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10810 10811 not_reset_mask2 = 10812 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10813 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10814 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10815 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10816 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10817 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10818 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10819 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10820 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10821 MISC_REGISTERS_RESET_REG_2_PGLC | 10822 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10823 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10824 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10825 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10826 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10827 MISC_REGISTERS_RESET_REG_2_UMAC1; 10828 10829 /* 10830 * Keep the following blocks in reset: 10831 * - all xxMACs are handled by the elink code. 10832 */ 10833 stay_reset2 = 10834 MISC_REGISTERS_RESET_REG_2_XMAC | 10835 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10836 10837 /* Full reset masks according to the chip */ 10838 reset_mask1 = 0xffffffff; 10839 10840 if (CHIP_IS_E1(sc)) 10841 reset_mask2 = 0xffff; 10842 else if (CHIP_IS_E1H(sc)) 10843 reset_mask2 = 0x1ffff; 10844 else if (CHIP_IS_E2(sc)) 10845 reset_mask2 = 0xfffff; 10846 else /* CHIP_IS_E3 */ 10847 reset_mask2 = 0x3ffffff; 10848 10849 /* Don't reset global blocks unless we need to */ 10850 if (!global) 10851 reset_mask2 &= ~global_bits2; 10852 10853 /* 10854 * In case of attention in the QM, we need to reset PXP 10855 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10856 * because otherwise QM reset would release 'close the gates' shortly 10857 * before resetting the PXP, then the PSWRQ would send a write 10858 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10859 * read the payload data from PSWWR, but PSWWR would not 10860 * respond. The write queue in PGLUE would stuck, dmae commands 10861 * would not return. Therefore it's important to reset the second 10862 * reset register (containing the 10863 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10864 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10865 * bit). 10866 */ 10867 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10868 reset_mask2 & (~not_reset_mask2)); 10869 10870 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10871 reset_mask1 & (~not_reset_mask1)); 10872 10873 mb(); 10874 wmb(); 10875 10876 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10877 reset_mask2 & (~stay_reset2)); 10878 10879 mb(); 10880 wmb(); 10881 10882 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10883 wmb(); 10884 } 10885 10886 static int 10887 bxe_process_kill(struct bxe_softc *sc, 10888 uint8_t global) 10889 { 10890 int cnt = 1000; 10891 uint32_t val = 0; 10892 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 10893 uint32_t tags_63_32 = 0; 10894 10895 /* Empty the Tetris buffer, wait for 1s */ 10896 do { 10897 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 10898 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 10899 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 10900 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 10901 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 10902 if (CHIP_IS_E3(sc)) { 10903 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 10904 } 10905 10906 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 10907 ((port_is_idle_0 & 0x1) == 0x1) && 10908 ((port_is_idle_1 & 0x1) == 0x1) && 10909 (pgl_exp_rom2 == 0xffffffff) && 10910 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 10911 break; 10912 DELAY(1000); 10913 } while (cnt-- > 0); 10914 10915 if (cnt <= 0) { 10916 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 10917 "are still outstanding read requests after 1s! " 10918 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 10919 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 10920 sr_cnt, blk_cnt, port_is_idle_0, 10921 port_is_idle_1, pgl_exp_rom2); 10922 return (-1); 10923 } 10924 10925 mb(); 10926 10927 /* Close gates #2, #3 and #4 */ 10928 bxe_set_234_gates(sc, TRUE); 10929 10930 /* Poll for IGU VQs for 57712 and newer chips */ 10931 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 10932 return (-1); 10933 } 10934 10935 /* XXX indicate that "process kill" is in progress to MCP */ 10936 10937 /* clear "unprepared" bit */ 10938 REG_WR(sc, MISC_REG_UNPREPARED, 0); 10939 mb(); 10940 10941 /* Make sure all is written to the chip before the reset */ 10942 wmb(); 10943 10944 /* 10945 * Wait for 1ms to empty GLUE and PCI-E core queues, 10946 * PSWHST, GRC and PSWRD Tetris buffer. 10947 */ 10948 DELAY(1000); 10949 10950 /* Prepare to chip reset: */ 10951 /* MCP */ 10952 if (global) { 10953 bxe_reset_mcp_prep(sc, &val); 10954 } 10955 10956 /* PXP */ 10957 bxe_pxp_prep(sc); 10958 mb(); 10959 10960 /* reset the chip */ 10961 bxe_process_kill_chip_reset(sc, global); 10962 mb(); 10963 10964 /* clear errors in PGB */ 10965 if (!CHIP_IS_E1(sc)) 10966 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 10967 10968 /* Recover after reset: */ 10969 /* MCP */ 10970 if (global && bxe_reset_mcp_comp(sc, val)) { 10971 return (-1); 10972 } 10973 10974 /* XXX add resetting the NO_MCP mode DB here */ 10975 10976 /* Open the gates #2, #3 and #4 */ 10977 bxe_set_234_gates(sc, FALSE); 10978 10979 /* XXX 10980 * IGU/AEU preparation bring back the AEU/IGU to a reset state 10981 * re-enable attentions 10982 */ 10983 10984 return (0); 10985 } 10986 10987 static int 10988 bxe_leader_reset(struct bxe_softc *sc) 10989 { 10990 int rc = 0; 10991 uint8_t global = bxe_reset_is_global(sc); 10992 uint32_t load_code; 10993 10994 /* 10995 * If not going to reset MCP, load "fake" driver to reset HW while 10996 * driver is owner of the HW. 10997 */ 10998 if (!global && !BXE_NOMCP(sc)) { 10999 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11000 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11001 if (!load_code) { 11002 BLOGE(sc, "MCP response failure, aborting\n"); 11003 rc = -1; 11004 goto exit_leader_reset; 11005 } 11006 11007 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11008 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11009 BLOGE(sc, "MCP unexpected response, aborting\n"); 11010 rc = -1; 11011 goto exit_leader_reset2; 11012 } 11013 11014 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11015 if (!load_code) { 11016 BLOGE(sc, "MCP response failure, aborting\n"); 11017 rc = -1; 11018 goto exit_leader_reset2; 11019 } 11020 } 11021 11022 /* try to recover after the failure */ 11023 if (bxe_process_kill(sc, global)) { 11024 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11025 rc = -1; 11026 goto exit_leader_reset2; 11027 } 11028 11029 /* 11030 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11031 * state. 11032 */ 11033 bxe_set_reset_done(sc); 11034 if (global) { 11035 bxe_clear_reset_global(sc); 11036 } 11037 11038 exit_leader_reset2: 11039 11040 /* unload "fake driver" if it was loaded */ 11041 if (!global && !BXE_NOMCP(sc)) { 11042 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11043 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11044 } 11045 11046 exit_leader_reset: 11047 11048 sc->is_leader = 0; 11049 bxe_release_leader_lock(sc); 11050 11051 mb(); 11052 return (rc); 11053 } 11054 11055 /* 11056 * prepare INIT transition, parameters configured: 11057 * - HC configuration 11058 * - Queue's CDU context 11059 */ 11060 static void 11061 bxe_pf_q_prep_init(struct bxe_softc *sc, 11062 struct bxe_fastpath *fp, 11063 struct ecore_queue_init_params *init_params) 11064 { 11065 uint8_t cos; 11066 int cxt_index, cxt_offset; 11067 11068 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11069 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11070 11071 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11072 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11073 11074 /* HC rate */ 11075 init_params->rx.hc_rate = 11076 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11077 init_params->tx.hc_rate = 11078 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11079 11080 /* FW SB ID */ 11081 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11082 11083 /* CQ index among the SB indices */ 11084 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11085 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11086 11087 /* set maximum number of COSs supported by this queue */ 11088 init_params->max_cos = sc->max_cos; 11089 11090 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11091 fp->index, init_params->max_cos); 11092 11093 /* set the context pointers queue object */ 11094 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11095 /* XXX change index/cid here if ever support multiple tx CoS */ 11096 /* fp->txdata[cos]->cid */ 11097 cxt_index = fp->index / ILT_PAGE_CIDS; 11098 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11099 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11100 } 11101 } 11102 11103 /* set flags that are common for the Tx-only and not normal connections */ 11104 static unsigned long 11105 bxe_get_common_flags(struct bxe_softc *sc, 11106 struct bxe_fastpath *fp, 11107 uint8_t zero_stats) 11108 { 11109 unsigned long flags = 0; 11110 11111 /* PF driver will always initialize the Queue to an ACTIVE state */ 11112 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11113 11114 /* 11115 * tx only connections collect statistics (on the same index as the 11116 * parent connection). The statistics are zeroed when the parent 11117 * connection is initialized. 11118 */ 11119 11120 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11121 if (zero_stats) { 11122 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11123 } 11124 11125 /* 11126 * tx only connections can support tx-switching, though their 11127 * CoS-ness doesn't survive the loopback 11128 */ 11129 if (sc->flags & BXE_TX_SWITCHING) { 11130 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11131 } 11132 11133 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11134 11135 return (flags); 11136 } 11137 11138 static unsigned long 11139 bxe_get_q_flags(struct bxe_softc *sc, 11140 struct bxe_fastpath *fp, 11141 uint8_t leading) 11142 { 11143 unsigned long flags = 0; 11144 11145 if (IS_MF_SD(sc)) { 11146 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11147 } 11148 11149 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11150 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11151 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11152 } 11153 11154 if (leading) { 11155 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11156 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11157 } 11158 11159 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11160 11161 /* merge with common flags */ 11162 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11163 } 11164 11165 static void 11166 bxe_pf_q_prep_general(struct bxe_softc *sc, 11167 struct bxe_fastpath *fp, 11168 struct ecore_general_setup_params *gen_init, 11169 uint8_t cos) 11170 { 11171 gen_init->stat_id = bxe_stats_id(fp); 11172 gen_init->spcl_id = fp->cl_id; 11173 gen_init->mtu = sc->mtu; 11174 gen_init->cos = cos; 11175 } 11176 11177 static void 11178 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11179 struct bxe_fastpath *fp, 11180 struct rxq_pause_params *pause, 11181 struct ecore_rxq_setup_params *rxq_init) 11182 { 11183 uint8_t max_sge = 0; 11184 uint16_t sge_sz = 0; 11185 uint16_t tpa_agg_size = 0; 11186 11187 pause->sge_th_lo = SGE_TH_LO(sc); 11188 pause->sge_th_hi = SGE_TH_HI(sc); 11189 11190 /* validate SGE ring has enough to cross high threshold */ 11191 if (sc->dropless_fc && 11192 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11193 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11194 BLOGW(sc, "sge ring threshold limit\n"); 11195 } 11196 11197 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11198 tpa_agg_size = (2 * sc->mtu); 11199 if (tpa_agg_size < sc->max_aggregation_size) { 11200 tpa_agg_size = sc->max_aggregation_size; 11201 } 11202 11203 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11204 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11205 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11206 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11207 11208 /* pause - not for e1 */ 11209 if (!CHIP_IS_E1(sc)) { 11210 pause->bd_th_lo = BD_TH_LO(sc); 11211 pause->bd_th_hi = BD_TH_HI(sc); 11212 11213 pause->rcq_th_lo = RCQ_TH_LO(sc); 11214 pause->rcq_th_hi = RCQ_TH_HI(sc); 11215 11216 /* validate rings have enough entries to cross high thresholds */ 11217 if (sc->dropless_fc && 11218 pause->bd_th_hi + FW_PREFETCH_CNT > 11219 sc->rx_ring_size) { 11220 BLOGW(sc, "rx bd ring threshold limit\n"); 11221 } 11222 11223 if (sc->dropless_fc && 11224 pause->rcq_th_hi + FW_PREFETCH_CNT > 11225 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11226 BLOGW(sc, "rcq ring threshold limit\n"); 11227 } 11228 11229 pause->pri_map = 1; 11230 } 11231 11232 /* rxq setup */ 11233 rxq_init->dscr_map = fp->rx_dma.paddr; 11234 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11235 rxq_init->rcq_map = fp->rcq_dma.paddr; 11236 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11237 11238 /* 11239 * This should be a maximum number of data bytes that may be 11240 * placed on the BD (not including paddings). 11241 */ 11242 rxq_init->buf_sz = (fp->rx_buf_size - 11243 IP_HEADER_ALIGNMENT_PADDING); 11244 11245 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11246 rxq_init->tpa_agg_sz = tpa_agg_size; 11247 rxq_init->sge_buf_sz = sge_sz; 11248 rxq_init->max_sges_pkt = max_sge; 11249 rxq_init->rss_engine_id = SC_FUNC(sc); 11250 rxq_init->mcast_engine_id = SC_FUNC(sc); 11251 11252 /* 11253 * Maximum number or simultaneous TPA aggregation for this Queue. 11254 * For PF Clients it should be the maximum available number. 11255 * VF driver(s) may want to define it to a smaller value. 11256 */ 11257 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11258 11259 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11260 rxq_init->fw_sb_id = fp->fw_sb_id; 11261 11262 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11263 11264 /* 11265 * configure silent vlan removal 11266 * if multi function mode is afex, then mask default vlan 11267 */ 11268 if (IS_MF_AFEX(sc)) { 11269 rxq_init->silent_removal_value = 11270 sc->devinfo.mf_info.afex_def_vlan_tag; 11271 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11272 } 11273 } 11274 11275 static void 11276 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11277 struct bxe_fastpath *fp, 11278 struct ecore_txq_setup_params *txq_init, 11279 uint8_t cos) 11280 { 11281 /* 11282 * XXX If multiple CoS is ever supported then each fastpath structure 11283 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11284 * fp->txdata[cos]->tx_dma.paddr; 11285 */ 11286 txq_init->dscr_map = fp->tx_dma.paddr; 11287 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11288 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11289 txq_init->fw_sb_id = fp->fw_sb_id; 11290 11291 /* 11292 * set the TSS leading client id for TX classfication to the 11293 * leading RSS client id 11294 */ 11295 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11296 } 11297 11298 /* 11299 * This function performs 2 steps in a queue state machine: 11300 * 1) RESET->INIT 11301 * 2) INIT->SETUP 11302 */ 11303 static int 11304 bxe_setup_queue(struct bxe_softc *sc, 11305 struct bxe_fastpath *fp, 11306 uint8_t leading) 11307 { 11308 struct ecore_queue_state_params q_params = { NULL }; 11309 struct ecore_queue_setup_params *setup_params = 11310 &q_params.params.setup; 11311 int rc; 11312 11313 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11314 11315 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11316 11317 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11318 11319 /* we want to wait for completion in this context */ 11320 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11321 11322 /* prepare the INIT parameters */ 11323 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11324 11325 /* Set the command */ 11326 q_params.cmd = ECORE_Q_CMD_INIT; 11327 11328 /* Change the state to INIT */ 11329 rc = ecore_queue_state_change(sc, &q_params); 11330 if (rc) { 11331 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11332 return (rc); 11333 } 11334 11335 BLOGD(sc, DBG_LOAD, "init complete\n"); 11336 11337 /* now move the Queue to the SETUP state */ 11338 memset(setup_params, 0, sizeof(*setup_params)); 11339 11340 /* set Queue flags */ 11341 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11342 11343 /* set general SETUP parameters */ 11344 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11345 FIRST_TX_COS_INDEX); 11346 11347 bxe_pf_rx_q_prep(sc, fp, 11348 &setup_params->pause_params, 11349 &setup_params->rxq_params); 11350 11351 bxe_pf_tx_q_prep(sc, fp, 11352 &setup_params->txq_params, 11353 FIRST_TX_COS_INDEX); 11354 11355 /* Set the command */ 11356 q_params.cmd = ECORE_Q_CMD_SETUP; 11357 11358 /* change the state to SETUP */ 11359 rc = ecore_queue_state_change(sc, &q_params); 11360 if (rc) { 11361 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11362 return (rc); 11363 } 11364 11365 return (rc); 11366 } 11367 11368 static int 11369 bxe_setup_leading(struct bxe_softc *sc) 11370 { 11371 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11372 } 11373 11374 static int 11375 bxe_config_rss_pf(struct bxe_softc *sc, 11376 struct ecore_rss_config_obj *rss_obj, 11377 uint8_t config_hash) 11378 { 11379 struct ecore_config_rss_params params = { NULL }; 11380 int i; 11381 11382 /* 11383 * Although RSS is meaningless when there is a single HW queue we 11384 * still need it enabled in order to have HW Rx hash generated. 11385 */ 11386 11387 params.rss_obj = rss_obj; 11388 11389 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11390 11391 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11392 11393 /* RSS configuration */ 11394 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11395 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11396 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11397 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11398 if (rss_obj->udp_rss_v4) { 11399 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11400 } 11401 if (rss_obj->udp_rss_v6) { 11402 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11403 } 11404 11405 /* Hash bits */ 11406 params.rss_result_mask = MULTI_MASK; 11407 11408 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11409 11410 if (config_hash) { 11411 /* RSS keys */ 11412 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11413 params.rss_key[i] = arc4random(); 11414 } 11415 11416 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11417 } 11418 11419 return (ecore_config_rss(sc, ¶ms)); 11420 } 11421 11422 static int 11423 bxe_config_rss_eth(struct bxe_softc *sc, 11424 uint8_t config_hash) 11425 { 11426 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11427 } 11428 11429 static int 11430 bxe_init_rss_pf(struct bxe_softc *sc) 11431 { 11432 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11433 int i; 11434 11435 /* 11436 * Prepare the initial contents of the indirection table if 11437 * RSS is enabled 11438 */ 11439 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11440 sc->rss_conf_obj.ind_table[i] = 11441 (sc->fp->cl_id + (i % num_eth_queues)); 11442 } 11443 11444 if (sc->udp_rss) { 11445 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11446 } 11447 11448 /* 11449 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11450 * per-port, so if explicit configuration is needed, do it only 11451 * for a PMF. 11452 * 11453 * For 57712 and newer it's a per-function configuration. 11454 */ 11455 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11456 } 11457 11458 static int 11459 bxe_set_mac_one(struct bxe_softc *sc, 11460 uint8_t *mac, 11461 struct ecore_vlan_mac_obj *obj, 11462 uint8_t set, 11463 int mac_type, 11464 unsigned long *ramrod_flags) 11465 { 11466 struct ecore_vlan_mac_ramrod_params ramrod_param; 11467 int rc; 11468 11469 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11470 11471 /* fill in general parameters */ 11472 ramrod_param.vlan_mac_obj = obj; 11473 ramrod_param.ramrod_flags = *ramrod_flags; 11474 11475 /* fill a user request section if needed */ 11476 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11477 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11478 11479 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11480 11481 /* Set the command: ADD or DEL */ 11482 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11483 ECORE_VLAN_MAC_DEL; 11484 } 11485 11486 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11487 11488 if (rc == ECORE_EXISTS) { 11489 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11490 /* do not treat adding same MAC as error */ 11491 rc = 0; 11492 } else if (rc < 0) { 11493 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11494 } 11495 11496 return (rc); 11497 } 11498 11499 static int 11500 bxe_set_eth_mac(struct bxe_softc *sc, 11501 uint8_t set) 11502 { 11503 unsigned long ramrod_flags = 0; 11504 11505 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11506 11507 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11508 11509 /* Eth MAC is set on RSS leading client (fp[0]) */ 11510 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11511 &sc->sp_objs->mac_obj, 11512 set, ECORE_ETH_MAC, &ramrod_flags)); 11513 } 11514 11515 static int 11516 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11517 { 11518 uint32_t sel_phy_idx = 0; 11519 11520 if (sc->link_params.num_phys <= 1) { 11521 return (ELINK_INT_PHY); 11522 } 11523 11524 if (sc->link_vars.link_up) { 11525 sel_phy_idx = ELINK_EXT_PHY1; 11526 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11527 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11528 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11529 ELINK_SUPPORTED_FIBRE)) 11530 sel_phy_idx = ELINK_EXT_PHY2; 11531 } else { 11532 switch (elink_phy_selection(&sc->link_params)) { 11533 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11534 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11535 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11536 sel_phy_idx = ELINK_EXT_PHY1; 11537 break; 11538 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11539 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11540 sel_phy_idx = ELINK_EXT_PHY2; 11541 break; 11542 } 11543 } 11544 11545 return (sel_phy_idx); 11546 } 11547 11548 static int 11549 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11550 { 11551 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11552 11553 /* 11554 * The selected activated PHY is always after swapping (in case PHY 11555 * swapping is enabled). So when swapping is enabled, we need to reverse 11556 * the configuration 11557 */ 11558 11559 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11560 if (sel_phy_idx == ELINK_EXT_PHY1) 11561 sel_phy_idx = ELINK_EXT_PHY2; 11562 else if (sel_phy_idx == ELINK_EXT_PHY2) 11563 sel_phy_idx = ELINK_EXT_PHY1; 11564 } 11565 11566 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11567 } 11568 11569 static void 11570 bxe_set_requested_fc(struct bxe_softc *sc) 11571 { 11572 /* 11573 * Initialize link parameters structure variables 11574 * It is recommended to turn off RX FC for jumbo frames 11575 * for better performance 11576 */ 11577 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11578 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11579 } else { 11580 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11581 } 11582 } 11583 11584 static void 11585 bxe_calc_fc_adv(struct bxe_softc *sc) 11586 { 11587 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11588 switch (sc->link_vars.ieee_fc & 11589 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11590 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 11591 default: 11592 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11593 ADVERTISED_Pause); 11594 break; 11595 11596 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11597 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11598 ADVERTISED_Pause); 11599 break; 11600 11601 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11602 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11603 break; 11604 } 11605 } 11606 11607 static uint16_t 11608 bxe_get_mf_speed(struct bxe_softc *sc) 11609 { 11610 uint16_t line_speed = sc->link_vars.line_speed; 11611 if (IS_MF(sc)) { 11612 uint16_t maxCfg = 11613 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11614 11615 /* calculate the current MAX line speed limit for the MF devices */ 11616 if (IS_MF_SI(sc)) { 11617 line_speed = (line_speed * maxCfg) / 100; 11618 } else { /* SD mode */ 11619 uint16_t vn_max_rate = maxCfg * 100; 11620 11621 if (vn_max_rate < line_speed) { 11622 line_speed = vn_max_rate; 11623 } 11624 } 11625 } 11626 11627 return (line_speed); 11628 } 11629 11630 static void 11631 bxe_fill_report_data(struct bxe_softc *sc, 11632 struct bxe_link_report_data *data) 11633 { 11634 uint16_t line_speed = bxe_get_mf_speed(sc); 11635 11636 memset(data, 0, sizeof(*data)); 11637 11638 /* fill the report data with the effective line speed */ 11639 data->line_speed = line_speed; 11640 11641 /* Link is down */ 11642 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11643 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11644 } 11645 11646 /* Full DUPLEX */ 11647 if (sc->link_vars.duplex == DUPLEX_FULL) { 11648 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11649 } 11650 11651 /* Rx Flow Control is ON */ 11652 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11653 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11654 } 11655 11656 /* Tx Flow Control is ON */ 11657 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11658 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11659 } 11660 } 11661 11662 /* report link status to OS, should be called under phy_lock */ 11663 static void 11664 bxe_link_report_locked(struct bxe_softc *sc) 11665 { 11666 struct bxe_link_report_data cur_data; 11667 11668 /* reread mf_cfg */ 11669 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11670 bxe_read_mf_cfg(sc); 11671 } 11672 11673 /* Read the current link report info */ 11674 bxe_fill_report_data(sc, &cur_data); 11675 11676 /* Don't report link down or exactly the same link status twice */ 11677 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11678 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11679 &sc->last_reported_link.link_report_flags) && 11680 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11681 &cur_data.link_report_flags))) { 11682 return; 11683 } 11684 11685 sc->link_cnt++; 11686 11687 /* report new link params and remember the state for the next time */ 11688 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11689 11690 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11691 &cur_data.link_report_flags)) { 11692 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11693 BLOGI(sc, "NIC Link is Down\n"); 11694 } else { 11695 const char *duplex; 11696 const char *flow; 11697 11698 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11699 &cur_data.link_report_flags)) { 11700 duplex = "full"; 11701 } else { 11702 duplex = "half"; 11703 } 11704 11705 /* 11706 * Handle the FC at the end so that only these flags would be 11707 * possibly set. This way we may easily check if there is no FC 11708 * enabled. 11709 */ 11710 if (cur_data.link_report_flags) { 11711 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11712 &cur_data.link_report_flags) && 11713 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11714 &cur_data.link_report_flags)) { 11715 flow = "ON - receive & transmit"; 11716 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11717 &cur_data.link_report_flags) && 11718 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11719 &cur_data.link_report_flags)) { 11720 flow = "ON - receive"; 11721 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11722 &cur_data.link_report_flags) && 11723 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11724 &cur_data.link_report_flags)) { 11725 flow = "ON - transmit"; 11726 } else { 11727 flow = "none"; /* possible? */ 11728 } 11729 } else { 11730 flow = "none"; 11731 } 11732 11733 if_link_state_change(sc->ifp, LINK_STATE_UP); 11734 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11735 cur_data.line_speed, duplex, flow); 11736 } 11737 } 11738 11739 static void 11740 bxe_link_report(struct bxe_softc *sc) 11741 { 11742 bxe_acquire_phy_lock(sc); 11743 bxe_link_report_locked(sc); 11744 bxe_release_phy_lock(sc); 11745 } 11746 11747 static void 11748 bxe_link_status_update(struct bxe_softc *sc) 11749 { 11750 if (sc->state != BXE_STATE_OPEN) { 11751 return; 11752 } 11753 11754 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11755 elink_link_status_update(&sc->link_params, &sc->link_vars); 11756 } else { 11757 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11758 ELINK_SUPPORTED_10baseT_Full | 11759 ELINK_SUPPORTED_100baseT_Half | 11760 ELINK_SUPPORTED_100baseT_Full | 11761 ELINK_SUPPORTED_1000baseT_Full | 11762 ELINK_SUPPORTED_2500baseX_Full | 11763 ELINK_SUPPORTED_10000baseT_Full | 11764 ELINK_SUPPORTED_TP | 11765 ELINK_SUPPORTED_FIBRE | 11766 ELINK_SUPPORTED_Autoneg | 11767 ELINK_SUPPORTED_Pause | 11768 ELINK_SUPPORTED_Asym_Pause); 11769 sc->port.advertising[0] = sc->port.supported[0]; 11770 11771 sc->link_params.sc = sc; 11772 sc->link_params.port = SC_PORT(sc); 11773 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11774 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11775 sc->link_params.req_line_speed[0] = SPEED_10000; 11776 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11777 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11778 11779 if (CHIP_REV_IS_FPGA(sc)) { 11780 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11781 sc->link_vars.line_speed = ELINK_SPEED_1000; 11782 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11783 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11784 } else { 11785 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11786 sc->link_vars.line_speed = ELINK_SPEED_10000; 11787 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11788 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11789 } 11790 11791 sc->link_vars.link_up = 1; 11792 11793 sc->link_vars.duplex = DUPLEX_FULL; 11794 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11795 11796 if (IS_PF(sc)) { 11797 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11798 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11799 bxe_link_report(sc); 11800 } 11801 } 11802 11803 if (IS_PF(sc)) { 11804 if (sc->link_vars.link_up) { 11805 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11806 } else { 11807 bxe_stats_handle(sc, STATS_EVENT_STOP); 11808 } 11809 bxe_link_report(sc); 11810 } else { 11811 bxe_link_report(sc); 11812 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11813 } 11814 } 11815 11816 static int 11817 bxe_initial_phy_init(struct bxe_softc *sc, 11818 int load_mode) 11819 { 11820 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11821 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11822 struct elink_params *lp = &sc->link_params; 11823 11824 bxe_set_requested_fc(sc); 11825 11826 if (CHIP_REV_IS_SLOW(sc)) { 11827 uint32_t bond = CHIP_BOND_ID(sc); 11828 uint32_t feat = 0; 11829 11830 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11831 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11832 } else if (bond & 0x4) { 11833 if (CHIP_IS_E3(sc)) { 11834 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11835 } else { 11836 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11837 } 11838 } else if (bond & 0x8) { 11839 if (CHIP_IS_E3(sc)) { 11840 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11841 } else { 11842 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11843 } 11844 } 11845 11846 /* disable EMAC for E3 and above */ 11847 if (bond & 0x2) { 11848 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11849 } 11850 11851 sc->link_params.feature_config_flags |= feat; 11852 } 11853 11854 bxe_acquire_phy_lock(sc); 11855 11856 if (load_mode == LOAD_DIAG) { 11857 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11858 /* Prefer doing PHY loopback at 10G speed, if possible */ 11859 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11860 if (lp->speed_cap_mask[cfg_idx] & 11861 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11862 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11863 } else { 11864 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11865 } 11866 } 11867 } 11868 11869 if (load_mode == LOAD_LOOPBACK_EXT) { 11870 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11871 } 11872 11873 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11874 11875 bxe_release_phy_lock(sc); 11876 11877 bxe_calc_fc_adv(sc); 11878 11879 if (sc->link_vars.link_up) { 11880 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11881 bxe_link_report(sc); 11882 } 11883 11884 if (!CHIP_REV_IS_SLOW(sc)) { 11885 bxe_periodic_start(sc); 11886 } 11887 11888 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 11889 return (rc); 11890 } 11891 11892 /* must be called under IF_ADDR_LOCK */ 11893 11894 static int 11895 bxe_set_mc_list(struct bxe_softc *sc) 11896 { 11897 struct ecore_mcast_ramrod_params rparam = { NULL }; 11898 int rc = 0; 11899 int mc_count = 0; 11900 int mcnt, i; 11901 struct ecore_mcast_list_elem *mc_mac, *mc_mac_start; 11902 unsigned char *mta; 11903 if_t ifp = sc->ifp; 11904 11905 mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */ 11906 if (!mc_count) 11907 return (0); 11908 11909 mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * 11910 mc_count, M_DEVBUF, M_NOWAIT); 11911 11912 if(mta == NULL) { 11913 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11914 return (-1); 11915 } 11916 bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count)); 11917 11918 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO)); 11919 mc_mac_start = mc_mac; 11920 11921 if (!mc_mac) { 11922 free(mta, M_DEVBUF); 11923 BLOGE(sc, "Failed to allocate temp mcast list\n"); 11924 return (-1); 11925 } 11926 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 11927 11928 /* mta and mcnt not expected to be different */ 11929 if_multiaddr_array(ifp, mta, &mcnt, mc_count); 11930 11931 11932 rparam.mcast_obj = &sc->mcast_obj; 11933 ECORE_LIST_INIT(&rparam.mcast_list); 11934 11935 for(i=0; i< mcnt; i++) { 11936 11937 mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN)); 11938 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list); 11939 11940 BLOGD(sc, DBG_LOAD, 11941 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 11942 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 11943 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 11944 11945 mc_mac++; 11946 } 11947 rparam.mcast_list_len = mc_count; 11948 11949 BXE_MCAST_LOCK(sc); 11950 11951 /* first, clear all configured multicast MACs */ 11952 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 11953 if (rc < 0) { 11954 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 11955 BXE_MCAST_UNLOCK(sc); 11956 free(mc_mac_start, M_DEVBUF); 11957 free(mta, M_DEVBUF); 11958 return (rc); 11959 } 11960 11961 /* Now add the new MACs */ 11962 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 11963 if (rc < 0) { 11964 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 11965 } 11966 11967 BXE_MCAST_UNLOCK(sc); 11968 11969 free(mc_mac_start, M_DEVBUF); 11970 free(mta, M_DEVBUF); 11971 11972 return (rc); 11973 } 11974 11975 static int 11976 bxe_set_uc_list(struct bxe_softc *sc) 11977 { 11978 if_t ifp = sc->ifp; 11979 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 11980 struct ifaddr *ifa; 11981 unsigned long ramrod_flags = 0; 11982 int rc; 11983 11984 #if __FreeBSD_version < 800000 11985 IF_ADDR_LOCK(ifp); 11986 #else 11987 if_addr_rlock(ifp); 11988 #endif 11989 11990 /* first schedule a cleanup up of old configuration */ 11991 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 11992 if (rc < 0) { 11993 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 11994 #if __FreeBSD_version < 800000 11995 IF_ADDR_UNLOCK(ifp); 11996 #else 11997 if_addr_runlock(ifp); 11998 #endif 11999 return (rc); 12000 } 12001 12002 ifa = if_getifaddr(ifp); /* XXX Is this structure */ 12003 while (ifa) { 12004 if (ifa->ifa_addr->sa_family != AF_LINK) { 12005 ifa = TAILQ_NEXT(ifa, ifa_link); 12006 continue; 12007 } 12008 12009 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12010 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12011 if (rc == -EEXIST) { 12012 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12013 /* do not treat adding same MAC as an error */ 12014 rc = 0; 12015 } else if (rc < 0) { 12016 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12017 #if __FreeBSD_version < 800000 12018 IF_ADDR_UNLOCK(ifp); 12019 #else 12020 if_addr_runlock(ifp); 12021 #endif 12022 return (rc); 12023 } 12024 12025 ifa = TAILQ_NEXT(ifa, ifa_link); 12026 } 12027 12028 #if __FreeBSD_version < 800000 12029 IF_ADDR_UNLOCK(ifp); 12030 #else 12031 if_addr_runlock(ifp); 12032 #endif 12033 12034 /* Execute the pending commands */ 12035 bit_set(&ramrod_flags, RAMROD_CONT); 12036 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12037 ECORE_UC_LIST_MAC, &ramrod_flags)); 12038 } 12039 12040 static void 12041 bxe_set_rx_mode(struct bxe_softc *sc) 12042 { 12043 if_t ifp = sc->ifp; 12044 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12045 12046 if (sc->state != BXE_STATE_OPEN) { 12047 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12048 return; 12049 } 12050 12051 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12052 12053 if (if_getflags(ifp) & IFF_PROMISC) { 12054 rx_mode = BXE_RX_MODE_PROMISC; 12055 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12056 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12057 CHIP_IS_E1(sc))) { 12058 rx_mode = BXE_RX_MODE_ALLMULTI; 12059 } else { 12060 if (IS_PF(sc)) { 12061 /* some multicasts */ 12062 if (bxe_set_mc_list(sc) < 0) { 12063 rx_mode = BXE_RX_MODE_ALLMULTI; 12064 } 12065 if (bxe_set_uc_list(sc) < 0) { 12066 rx_mode = BXE_RX_MODE_PROMISC; 12067 } 12068 } 12069 } 12070 12071 sc->rx_mode = rx_mode; 12072 12073 /* schedule the rx_mode command */ 12074 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12075 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12076 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12077 return; 12078 } 12079 12080 if (IS_PF(sc)) { 12081 bxe_set_storm_rx_mode(sc); 12082 } 12083 } 12084 12085 12086 /* update flags in shmem */ 12087 static void 12088 bxe_update_drv_flags(struct bxe_softc *sc, 12089 uint32_t flags, 12090 uint32_t set) 12091 { 12092 uint32_t drv_flags; 12093 12094 if (SHMEM2_HAS(sc, drv_flags)) { 12095 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12096 drv_flags = SHMEM2_RD(sc, drv_flags); 12097 12098 if (set) { 12099 SET_FLAGS(drv_flags, flags); 12100 } else { 12101 RESET_FLAGS(drv_flags, flags); 12102 } 12103 12104 SHMEM2_WR(sc, drv_flags, drv_flags); 12105 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12106 12107 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12108 } 12109 } 12110 12111 /* periodic timer callout routine, only runs when the interface is up */ 12112 12113 static void 12114 bxe_periodic_callout_func(void *xsc) 12115 { 12116 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12117 struct bxe_fastpath *fp; 12118 uint16_t tx_bd_avail; 12119 int i; 12120 12121 if (!BXE_CORE_TRYLOCK(sc)) { 12122 /* just bail and try again next time */ 12123 12124 if ((sc->state == BXE_STATE_OPEN) && 12125 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12126 /* schedule the next periodic callout */ 12127 callout_reset(&sc->periodic_callout, hz, 12128 bxe_periodic_callout_func, sc); 12129 } 12130 12131 return; 12132 } 12133 12134 if ((sc->state != BXE_STATE_OPEN) || 12135 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12136 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12137 BXE_CORE_UNLOCK(sc); 12138 return; 12139 } 12140 12141 #if __FreeBSD_version >= 800000 12142 12143 FOR_EACH_QUEUE(sc, i) { 12144 fp = &sc->fp[i]; 12145 12146 if (BXE_FP_TX_TRYLOCK(fp)) { 12147 if_t ifp = sc->ifp; 12148 /* 12149 * If interface was stopped due to unavailable 12150 * bds, try to process some tx completions 12151 */ 12152 (void) bxe_txeof(sc, fp); 12153 12154 tx_bd_avail = bxe_tx_avail(sc, fp); 12155 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12156 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 12157 } 12158 BXE_FP_TX_UNLOCK(fp); 12159 } 12160 } 12161 12162 #else 12163 12164 fp = &sc->fp[0]; 12165 if (BXE_FP_TX_TRYLOCK(fp)) { 12166 struct ifnet *ifp = sc->ifnet; 12167 /* 12168 * If interface was stopped due to unavailable 12169 * bds, try to process some tx completions 12170 */ 12171 (void) bxe_txeof(sc, fp); 12172 12173 tx_bd_avail = bxe_tx_avail(sc, fp); 12174 if (tx_bd_avail >= BXE_TX_CLEANUP_THRESHOLD) { 12175 bxe_tx_start_locked(sc, ifp, fp); 12176 } 12177 12178 BXE_FP_TX_UNLOCK(fp); 12179 } 12180 12181 #endif /* #if __FreeBSD_version >= 800000 */ 12182 12183 /* Check for TX timeouts on any fastpath. */ 12184 FOR_EACH_QUEUE(sc, i) { 12185 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12186 /* Ruh-Roh, chip was reset! */ 12187 break; 12188 } 12189 } 12190 12191 if (!CHIP_REV_IS_SLOW(sc)) { 12192 /* 12193 * This barrier is needed to ensure the ordering between the writing 12194 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12195 * the reading here. 12196 */ 12197 mb(); 12198 if (sc->port.pmf) { 12199 bxe_acquire_phy_lock(sc); 12200 elink_period_func(&sc->link_params, &sc->link_vars); 12201 bxe_release_phy_lock(sc); 12202 } 12203 } 12204 12205 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12206 int mb_idx = SC_FW_MB_IDX(sc); 12207 uint32_t drv_pulse; 12208 uint32_t mcp_pulse; 12209 12210 ++sc->fw_drv_pulse_wr_seq; 12211 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12212 12213 drv_pulse = sc->fw_drv_pulse_wr_seq; 12214 bxe_drv_pulse(sc); 12215 12216 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12217 MCP_PULSE_SEQ_MASK); 12218 12219 /* 12220 * The delta between driver pulse and mcp response should 12221 * be 1 (before mcp response) or 0 (after mcp response). 12222 */ 12223 if ((drv_pulse != mcp_pulse) && 12224 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12225 /* someone lost a heartbeat... */ 12226 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12227 drv_pulse, mcp_pulse); 12228 } 12229 } 12230 12231 /* state is BXE_STATE_OPEN */ 12232 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12233 12234 BXE_CORE_UNLOCK(sc); 12235 12236 if ((sc->state == BXE_STATE_OPEN) && 12237 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12238 /* schedule the next periodic callout */ 12239 callout_reset(&sc->periodic_callout, hz, 12240 bxe_periodic_callout_func, sc); 12241 } 12242 } 12243 12244 static void 12245 bxe_periodic_start(struct bxe_softc *sc) 12246 { 12247 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12248 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12249 } 12250 12251 static void 12252 bxe_periodic_stop(struct bxe_softc *sc) 12253 { 12254 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12255 callout_drain(&sc->periodic_callout); 12256 } 12257 12258 /* start the controller */ 12259 static __noinline int 12260 bxe_nic_load(struct bxe_softc *sc, 12261 int load_mode) 12262 { 12263 uint32_t val; 12264 int load_code = 0; 12265 int i, rc = 0; 12266 12267 BXE_CORE_LOCK_ASSERT(sc); 12268 12269 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12270 12271 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12272 12273 if (IS_PF(sc)) { 12274 /* must be called before memory allocation and HW init */ 12275 bxe_ilt_set_info(sc); 12276 } 12277 12278 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12279 12280 bxe_set_fp_rx_buf_size(sc); 12281 12282 if (bxe_alloc_fp_buffers(sc) != 0) { 12283 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12284 sc->state = BXE_STATE_CLOSED; 12285 rc = ENOMEM; 12286 goto bxe_nic_load_error0; 12287 } 12288 12289 if (bxe_alloc_mem(sc) != 0) { 12290 sc->state = BXE_STATE_CLOSED; 12291 rc = ENOMEM; 12292 goto bxe_nic_load_error0; 12293 } 12294 12295 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12296 sc->state = BXE_STATE_CLOSED; 12297 rc = ENOMEM; 12298 goto bxe_nic_load_error0; 12299 } 12300 12301 if (IS_PF(sc)) { 12302 /* set pf load just before approaching the MCP */ 12303 bxe_set_pf_load(sc); 12304 12305 /* if MCP exists send load request and analyze response */ 12306 if (!BXE_NOMCP(sc)) { 12307 /* attempt to load pf */ 12308 if (bxe_nic_load_request(sc, &load_code) != 0) { 12309 sc->state = BXE_STATE_CLOSED; 12310 rc = ENXIO; 12311 goto bxe_nic_load_error1; 12312 } 12313 12314 /* what did the MCP say? */ 12315 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12316 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12317 sc->state = BXE_STATE_CLOSED; 12318 rc = ENXIO; 12319 goto bxe_nic_load_error2; 12320 } 12321 } else { 12322 BLOGI(sc, "Device has no MCP!\n"); 12323 load_code = bxe_nic_load_no_mcp(sc); 12324 } 12325 12326 /* mark PMF if applicable */ 12327 bxe_nic_load_pmf(sc, load_code); 12328 12329 /* Init Function state controlling object */ 12330 bxe_init_func_obj(sc); 12331 12332 /* Initialize HW */ 12333 if (bxe_init_hw(sc, load_code) != 0) { 12334 BLOGE(sc, "HW init failed\n"); 12335 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12336 sc->state = BXE_STATE_CLOSED; 12337 rc = ENXIO; 12338 goto bxe_nic_load_error2; 12339 } 12340 } 12341 12342 /* set ALWAYS_ALIVE bit in shmem */ 12343 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12344 bxe_drv_pulse(sc); 12345 sc->flags |= BXE_NO_PULSE; 12346 12347 /* attach interrupts */ 12348 if (bxe_interrupt_attach(sc) != 0) { 12349 sc->state = BXE_STATE_CLOSED; 12350 rc = ENXIO; 12351 goto bxe_nic_load_error2; 12352 } 12353 12354 bxe_nic_init(sc, load_code); 12355 12356 /* Init per-function objects */ 12357 if (IS_PF(sc)) { 12358 bxe_init_objs(sc); 12359 // XXX bxe_iov_nic_init(sc); 12360 12361 /* set AFEX default VLAN tag to an invalid value */ 12362 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12363 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12364 12365 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12366 rc = bxe_func_start(sc); 12367 if (rc) { 12368 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12369 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12370 sc->state = BXE_STATE_ERROR; 12371 goto bxe_nic_load_error3; 12372 } 12373 12374 /* send LOAD_DONE command to MCP */ 12375 if (!BXE_NOMCP(sc)) { 12376 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12377 if (!load_code) { 12378 BLOGE(sc, "MCP response failure, aborting\n"); 12379 sc->state = BXE_STATE_ERROR; 12380 rc = ENXIO; 12381 goto bxe_nic_load_error3; 12382 } 12383 } 12384 12385 rc = bxe_setup_leading(sc); 12386 if (rc) { 12387 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12388 sc->state = BXE_STATE_ERROR; 12389 goto bxe_nic_load_error3; 12390 } 12391 12392 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12393 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12394 if (rc) { 12395 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12396 sc->state = BXE_STATE_ERROR; 12397 goto bxe_nic_load_error3; 12398 } 12399 } 12400 12401 rc = bxe_init_rss_pf(sc); 12402 if (rc) { 12403 BLOGE(sc, "PF RSS init failed\n"); 12404 sc->state = BXE_STATE_ERROR; 12405 goto bxe_nic_load_error3; 12406 } 12407 } 12408 /* XXX VF */ 12409 12410 /* now when Clients are configured we are ready to work */ 12411 sc->state = BXE_STATE_OPEN; 12412 12413 /* Configure a ucast MAC */ 12414 if (IS_PF(sc)) { 12415 rc = bxe_set_eth_mac(sc, TRUE); 12416 } 12417 if (rc) { 12418 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12419 sc->state = BXE_STATE_ERROR; 12420 goto bxe_nic_load_error3; 12421 } 12422 12423 if (sc->port.pmf) { 12424 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12425 if (rc) { 12426 sc->state = BXE_STATE_ERROR; 12427 goto bxe_nic_load_error3; 12428 } 12429 } 12430 12431 sc->link_params.feature_config_flags &= 12432 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12433 12434 /* start fast path */ 12435 12436 /* Initialize Rx filter */ 12437 bxe_set_rx_mode(sc); 12438 12439 /* start the Tx */ 12440 switch (/* XXX load_mode */LOAD_OPEN) { 12441 case LOAD_NORMAL: 12442 case LOAD_OPEN: 12443 break; 12444 12445 case LOAD_DIAG: 12446 case LOAD_LOOPBACK_EXT: 12447 sc->state = BXE_STATE_DIAG; 12448 break; 12449 12450 default: 12451 break; 12452 } 12453 12454 if (sc->port.pmf) { 12455 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12456 } else { 12457 bxe_link_status_update(sc); 12458 } 12459 12460 /* start the periodic timer callout */ 12461 bxe_periodic_start(sc); 12462 12463 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12464 /* mark driver is loaded in shmem2 */ 12465 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12466 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12467 (val | 12468 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12469 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12470 } 12471 12472 /* wait for all pending SP commands to complete */ 12473 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12474 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12475 bxe_periodic_stop(sc); 12476 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12477 return (ENXIO); 12478 } 12479 12480 /* Tell the stack the driver is running! */ 12481 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12482 12483 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12484 12485 return (0); 12486 12487 bxe_nic_load_error3: 12488 12489 if (IS_PF(sc)) { 12490 bxe_int_disable_sync(sc, 1); 12491 12492 /* clean out queued objects */ 12493 bxe_squeeze_objects(sc); 12494 } 12495 12496 bxe_interrupt_detach(sc); 12497 12498 bxe_nic_load_error2: 12499 12500 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12501 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12502 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12503 } 12504 12505 sc->port.pmf = 0; 12506 12507 bxe_nic_load_error1: 12508 12509 /* clear pf_load status, as it was already set */ 12510 if (IS_PF(sc)) { 12511 bxe_clear_pf_load(sc); 12512 } 12513 12514 bxe_nic_load_error0: 12515 12516 bxe_free_fw_stats_mem(sc); 12517 bxe_free_fp_buffers(sc); 12518 bxe_free_mem(sc); 12519 12520 return (rc); 12521 } 12522 12523 static int 12524 bxe_init_locked(struct bxe_softc *sc) 12525 { 12526 int other_engine = SC_PATH(sc) ? 0 : 1; 12527 uint8_t other_load_status, load_status; 12528 uint8_t global = FALSE; 12529 int rc; 12530 12531 BXE_CORE_LOCK_ASSERT(sc); 12532 12533 /* check if the driver is already running */ 12534 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12535 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12536 return (0); 12537 } 12538 12539 bxe_set_power_state(sc, PCI_PM_D0); 12540 12541 /* 12542 * If parity occurred during the unload, then attentions and/or 12543 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12544 * loaded on the current engine to complete the recovery. Parity recovery 12545 * is only relevant for PF driver. 12546 */ 12547 if (IS_PF(sc)) { 12548 other_load_status = bxe_get_load_status(sc, other_engine); 12549 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12550 12551 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12552 bxe_chk_parity_attn(sc, &global, TRUE)) { 12553 do { 12554 /* 12555 * If there are attentions and they are in global blocks, set 12556 * the GLOBAL_RESET bit regardless whether it will be this 12557 * function that will complete the recovery or not. 12558 */ 12559 if (global) { 12560 bxe_set_reset_global(sc); 12561 } 12562 12563 /* 12564 * Only the first function on the current engine should try 12565 * to recover in open. In case of attentions in global blocks 12566 * only the first in the chip should try to recover. 12567 */ 12568 if ((!load_status && (!global || !other_load_status)) && 12569 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12570 BLOGI(sc, "Recovered during init\n"); 12571 break; 12572 } 12573 12574 /* recovery has failed... */ 12575 bxe_set_power_state(sc, PCI_PM_D3hot); 12576 sc->recovery_state = BXE_RECOVERY_FAILED; 12577 12578 BLOGE(sc, "Recovery flow hasn't properly " 12579 "completed yet, try again later. " 12580 "If you still see this message after a " 12581 "few retries then power cycle is required.\n"); 12582 12583 rc = ENXIO; 12584 goto bxe_init_locked_done; 12585 } while (0); 12586 } 12587 } 12588 12589 sc->recovery_state = BXE_RECOVERY_DONE; 12590 12591 rc = bxe_nic_load(sc, LOAD_OPEN); 12592 12593 bxe_init_locked_done: 12594 12595 if (rc) { 12596 /* Tell the stack the driver is NOT running! */ 12597 BLOGE(sc, "Initialization failed, " 12598 "stack notified driver is NOT running!\n"); 12599 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12600 } 12601 12602 return (rc); 12603 } 12604 12605 static int 12606 bxe_stop_locked(struct bxe_softc *sc) 12607 { 12608 BXE_CORE_LOCK_ASSERT(sc); 12609 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12610 } 12611 12612 /* 12613 * Handles controller initialization when called from an unlocked routine. 12614 * ifconfig calls this function. 12615 * 12616 * Returns: 12617 * void 12618 */ 12619 static void 12620 bxe_init(void *xsc) 12621 { 12622 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12623 12624 BXE_CORE_LOCK(sc); 12625 bxe_init_locked(sc); 12626 BXE_CORE_UNLOCK(sc); 12627 } 12628 12629 static int 12630 bxe_init_ifnet(struct bxe_softc *sc) 12631 { 12632 if_t ifp; 12633 int capabilities; 12634 12635 /* ifconfig entrypoint for media type/status reporting */ 12636 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12637 bxe_ifmedia_update, 12638 bxe_ifmedia_status); 12639 12640 /* set the default interface values */ 12641 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12642 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12643 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12644 12645 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12646 12647 /* allocate the ifnet structure */ 12648 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12649 BLOGE(sc, "Interface allocation failed!\n"); 12650 return (ENXIO); 12651 } 12652 12653 if_setsoftc(ifp, sc); 12654 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 12655 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 12656 if_setioctlfn(ifp, bxe_ioctl); 12657 if_setstartfn(ifp, bxe_tx_start); 12658 if_setgetcounterfn(ifp, bxe_get_counter); 12659 #if __FreeBSD_version >= 800000 12660 if_settransmitfn(ifp, bxe_tx_mq_start); 12661 if_setqflushfn(ifp, bxe_mq_flush); 12662 #endif 12663 #ifdef FreeBSD8_0 12664 if_settimer(ifp, 0); 12665 #endif 12666 if_setinitfn(ifp, bxe_init); 12667 if_setmtu(ifp, sc->mtu); 12668 if_sethwassist(ifp, (CSUM_IP | 12669 CSUM_TCP | 12670 CSUM_UDP | 12671 CSUM_TSO | 12672 CSUM_TCP_IPV6 | 12673 CSUM_UDP_IPV6)); 12674 12675 capabilities = 12676 #if __FreeBSD_version < 700000 12677 (IFCAP_VLAN_MTU | 12678 IFCAP_VLAN_HWTAGGING | 12679 IFCAP_HWCSUM | 12680 IFCAP_JUMBO_MTU | 12681 IFCAP_LRO); 12682 #else 12683 (IFCAP_VLAN_MTU | 12684 IFCAP_VLAN_HWTAGGING | 12685 IFCAP_VLAN_HWTSO | 12686 IFCAP_VLAN_HWFILTER | 12687 IFCAP_VLAN_HWCSUM | 12688 IFCAP_HWCSUM | 12689 IFCAP_JUMBO_MTU | 12690 IFCAP_LRO | 12691 IFCAP_TSO4 | 12692 IFCAP_TSO6 | 12693 IFCAP_WOL_MAGIC); 12694 #endif 12695 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 12696 if_setbaudrate(ifp, IF_Gbps(10)); 12697 /* XXX */ 12698 if_setsendqlen(ifp, sc->tx_ring_size); 12699 if_setsendqready(ifp); 12700 /* XXX */ 12701 12702 sc->ifp = ifp; 12703 12704 /* attach to the Ethernet interface list */ 12705 ether_ifattach(ifp, sc->link_params.mac_addr); 12706 12707 return (0); 12708 } 12709 12710 static void 12711 bxe_deallocate_bars(struct bxe_softc *sc) 12712 { 12713 int i; 12714 12715 for (i = 0; i < MAX_BARS; i++) { 12716 if (sc->bar[i].resource != NULL) { 12717 bus_release_resource(sc->dev, 12718 SYS_RES_MEMORY, 12719 sc->bar[i].rid, 12720 sc->bar[i].resource); 12721 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 12722 i, PCIR_BAR(i)); 12723 } 12724 } 12725 } 12726 12727 static int 12728 bxe_allocate_bars(struct bxe_softc *sc) 12729 { 12730 u_int flags; 12731 int i; 12732 12733 memset(sc->bar, 0, sizeof(sc->bar)); 12734 12735 for (i = 0; i < MAX_BARS; i++) { 12736 12737 /* memory resources reside at BARs 0, 2, 4 */ 12738 /* Run `pciconf -lb` to see mappings */ 12739 if ((i != 0) && (i != 2) && (i != 4)) { 12740 continue; 12741 } 12742 12743 sc->bar[i].rid = PCIR_BAR(i); 12744 12745 flags = RF_ACTIVE; 12746 if (i == 0) { 12747 flags |= RF_SHAREABLE; 12748 } 12749 12750 if ((sc->bar[i].resource = 12751 bus_alloc_resource_any(sc->dev, 12752 SYS_RES_MEMORY, 12753 &sc->bar[i].rid, 12754 flags)) == NULL) { 12755 return (0); 12756 } 12757 12758 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 12759 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 12760 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 12761 12762 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n", 12763 i, PCIR_BAR(i), 12764 (void *)rman_get_start(sc->bar[i].resource), 12765 (void *)rman_get_end(sc->bar[i].resource), 12766 rman_get_size(sc->bar[i].resource), 12767 (void *)sc->bar[i].kva); 12768 } 12769 12770 return (0); 12771 } 12772 12773 static void 12774 bxe_get_function_num(struct bxe_softc *sc) 12775 { 12776 uint32_t val = 0; 12777 12778 /* 12779 * Read the ME register to get the function number. The ME register 12780 * holds the relative-function number and absolute-function number. The 12781 * absolute-function number appears only in E2 and above. Before that 12782 * these bits always contained zero, therefore we cannot blindly use them. 12783 */ 12784 12785 val = REG_RD(sc, BAR_ME_REGISTER); 12786 12787 sc->pfunc_rel = 12788 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 12789 sc->path_id = 12790 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 12791 12792 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 12793 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 12794 } else { 12795 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 12796 } 12797 12798 BLOGD(sc, DBG_LOAD, 12799 "Relative function %d, Absolute function %d, Path %d\n", 12800 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 12801 } 12802 12803 static uint32_t 12804 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 12805 { 12806 uint32_t shmem2_size; 12807 uint32_t offset; 12808 uint32_t mf_cfg_offset_value; 12809 12810 /* Non 57712 */ 12811 offset = (SHMEM_RD(sc, func_mb) + 12812 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 12813 12814 /* 57712 plus */ 12815 if (sc->devinfo.shmem2_base != 0) { 12816 shmem2_size = SHMEM2_RD(sc, size); 12817 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 12818 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 12819 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 12820 offset = mf_cfg_offset_value; 12821 } 12822 } 12823 } 12824 12825 return (offset); 12826 } 12827 12828 static uint32_t 12829 bxe_pcie_capability_read(struct bxe_softc *sc, 12830 int reg, 12831 int width) 12832 { 12833 int pcie_reg; 12834 12835 /* ensure PCIe capability is enabled */ 12836 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 12837 if (pcie_reg != 0) { 12838 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 12839 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 12840 } 12841 } 12842 12843 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 12844 12845 return (0); 12846 } 12847 12848 static uint8_t 12849 bxe_is_pcie_pending(struct bxe_softc *sc) 12850 { 12851 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 12852 PCIM_EXP_STA_TRANSACTION_PND); 12853 } 12854 12855 /* 12856 * Walk the PCI capabiites list for the device to find what features are 12857 * supported. These capabilites may be enabled/disabled by firmware so it's 12858 * best to walk the list rather than make assumptions. 12859 */ 12860 static void 12861 bxe_probe_pci_caps(struct bxe_softc *sc) 12862 { 12863 uint16_t link_status; 12864 int reg; 12865 12866 /* check if PCI Power Management is enabled */ 12867 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 12868 if (reg != 0) { 12869 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 12870 12871 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 12872 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 12873 } 12874 } 12875 12876 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 12877 12878 /* handle PCIe 2.0 workarounds for 57710 */ 12879 if (CHIP_IS_E1(sc)) { 12880 /* workaround for 57710 errata E4_57710_27462 */ 12881 sc->devinfo.pcie_link_speed = 12882 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 12883 12884 /* workaround for 57710 errata E4_57710_27488 */ 12885 sc->devinfo.pcie_link_width = 12886 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12887 if (sc->devinfo.pcie_link_speed > 1) { 12888 sc->devinfo.pcie_link_width = 12889 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 12890 } 12891 } else { 12892 sc->devinfo.pcie_link_speed = 12893 (link_status & PCIM_LINK_STA_SPEED); 12894 sc->devinfo.pcie_link_width = 12895 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 12896 } 12897 12898 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 12899 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 12900 12901 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 12902 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 12903 12904 /* check if MSI capability is enabled */ 12905 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 12906 if (reg != 0) { 12907 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 12908 12909 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 12910 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 12911 } 12912 } 12913 12914 /* check if MSI-X capability is enabled */ 12915 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 12916 if (reg != 0) { 12917 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 12918 12919 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 12920 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 12921 } 12922 } 12923 } 12924 12925 static int 12926 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 12927 { 12928 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12929 uint32_t val; 12930 12931 /* get the outer vlan if we're in switch-dependent mode */ 12932 12933 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 12934 mf_info->ext_id = (uint16_t)val; 12935 12936 mf_info->multi_vnics_mode = 1; 12937 12938 if (!VALID_OVLAN(mf_info->ext_id)) { 12939 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 12940 return (1); 12941 } 12942 12943 /* get the capabilities */ 12944 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12945 FUNC_MF_CFG_PROTOCOL_ISCSI) { 12946 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 12947 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 12948 FUNC_MF_CFG_PROTOCOL_FCOE) { 12949 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 12950 } else { 12951 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 12952 } 12953 12954 mf_info->vnics_per_port = 12955 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 12956 12957 return (0); 12958 } 12959 12960 static uint32_t 12961 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 12962 { 12963 uint32_t retval = 0; 12964 uint32_t val; 12965 12966 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12967 12968 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 12969 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 12970 retval |= MF_PROTO_SUPPORT_ETHERNET; 12971 } 12972 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 12973 retval |= MF_PROTO_SUPPORT_ISCSI; 12974 } 12975 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 12976 retval |= MF_PROTO_SUPPORT_FCOE; 12977 } 12978 } 12979 12980 return (retval); 12981 } 12982 12983 static int 12984 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 12985 { 12986 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 12987 uint32_t val; 12988 12989 /* 12990 * There is no outer vlan if we're in switch-independent mode. 12991 * If the mac is valid then assume multi-function. 12992 */ 12993 12994 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 12995 12996 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 12997 12998 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 12999 13000 mf_info->vnics_per_port = 13001 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13002 13003 return (0); 13004 } 13005 13006 static int 13007 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13008 { 13009 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13010 uint32_t e1hov_tag; 13011 uint32_t func_config; 13012 uint32_t niv_config; 13013 13014 mf_info->multi_vnics_mode = 1; 13015 13016 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13017 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13018 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13019 13020 mf_info->ext_id = 13021 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13022 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13023 13024 mf_info->default_vlan = 13025 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13026 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13027 13028 mf_info->niv_allowed_priorities = 13029 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13030 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13031 13032 mf_info->niv_default_cos = 13033 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13034 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13035 13036 mf_info->afex_vlan_mode = 13037 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13038 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13039 13040 mf_info->niv_mba_enabled = 13041 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13042 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13043 13044 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13045 13046 mf_info->vnics_per_port = 13047 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13048 13049 return (0); 13050 } 13051 13052 static int 13053 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13054 { 13055 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13056 uint32_t mf_cfg1; 13057 uint32_t mf_cfg2; 13058 uint32_t ovlan1; 13059 uint32_t ovlan2; 13060 uint8_t i, j; 13061 13062 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13063 SC_PORT(sc)); 13064 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13065 mf_info->mf_config[SC_VN(sc)]); 13066 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13067 mf_info->multi_vnics_mode); 13068 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13069 mf_info->vnics_per_port); 13070 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13071 mf_info->ext_id); 13072 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13073 mf_info->min_bw[0], mf_info->min_bw[1], 13074 mf_info->min_bw[2], mf_info->min_bw[3]); 13075 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13076 mf_info->max_bw[0], mf_info->max_bw[1], 13077 mf_info->max_bw[2], mf_info->max_bw[3]); 13078 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13079 sc->mac_addr_str); 13080 13081 /* various MF mode sanity checks... */ 13082 13083 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13084 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13085 SC_PORT(sc)); 13086 return (1); 13087 } 13088 13089 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13090 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13091 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13092 return (1); 13093 } 13094 13095 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13096 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13097 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13098 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13099 SC_VN(sc), OVLAN(sc)); 13100 return (1); 13101 } 13102 13103 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13104 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13105 mf_info->multi_vnics_mode, OVLAN(sc)); 13106 return (1); 13107 } 13108 13109 /* 13110 * Verify all functions are either MF or SF mode. If MF, make sure 13111 * sure that all non-hidden functions have a valid ovlan. If SF, 13112 * make sure that all non-hidden functions have an invalid ovlan. 13113 */ 13114 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13115 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13116 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13117 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13118 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13119 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13120 BLOGE(sc, "mf_mode=SD function %d MF config " 13121 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13122 i, mf_info->multi_vnics_mode, ovlan1); 13123 return (1); 13124 } 13125 } 13126 13127 /* Verify all funcs on the same port each have a different ovlan. */ 13128 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13129 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13130 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13131 /* iterate from the next function on the port to the max func */ 13132 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13133 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13134 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13135 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13136 VALID_OVLAN(ovlan1) && 13137 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13138 VALID_OVLAN(ovlan2) && 13139 (ovlan1 == ovlan2)) { 13140 BLOGE(sc, "mf_mode=SD functions %d and %d " 13141 "have the same ovlan (%d)\n", 13142 i, j, ovlan1); 13143 return (1); 13144 } 13145 } 13146 } 13147 } /* MULTI_FUNCTION_SD */ 13148 13149 return (0); 13150 } 13151 13152 static int 13153 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13154 { 13155 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13156 uint32_t val, mac_upper; 13157 uint8_t i, vnic; 13158 13159 /* initialize mf_info defaults */ 13160 mf_info->vnics_per_port = 1; 13161 mf_info->multi_vnics_mode = FALSE; 13162 mf_info->path_has_ovlan = FALSE; 13163 mf_info->mf_mode = SINGLE_FUNCTION; 13164 13165 if (!CHIP_IS_MF_CAP(sc)) { 13166 return (0); 13167 } 13168 13169 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13170 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13171 return (1); 13172 } 13173 13174 /* get the MF mode (switch dependent / independent / single-function) */ 13175 13176 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13177 13178 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13179 { 13180 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13181 13182 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13183 13184 /* check for legal upper mac bytes */ 13185 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13186 mf_info->mf_mode = MULTI_FUNCTION_SI; 13187 } else { 13188 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13189 } 13190 13191 break; 13192 13193 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13194 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13195 13196 /* get outer vlan configuration */ 13197 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13198 13199 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13200 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13201 mf_info->mf_mode = MULTI_FUNCTION_SD; 13202 } else { 13203 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13204 } 13205 13206 break; 13207 13208 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13209 13210 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13211 return (0); 13212 13213 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13214 13215 /* 13216 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13217 * and the MAC address is valid. 13218 */ 13219 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13220 13221 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13222 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13223 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13224 } else { 13225 BLOGE(sc, "Invalid config for AFEX mode\n"); 13226 } 13227 13228 break; 13229 13230 default: 13231 13232 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13233 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13234 13235 return (1); 13236 } 13237 13238 /* set path mf_mode (which could be different than function mf_mode) */ 13239 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13240 mf_info->path_has_ovlan = TRUE; 13241 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13242 /* 13243 * Decide on path multi vnics mode. If we're not in MF mode and in 13244 * 4-port mode, this is good enough to check vnic-0 of the other port 13245 * on the same path 13246 */ 13247 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13248 uint8_t other_port = !(PORT_ID(sc) & 1); 13249 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13250 13251 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13252 13253 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13254 } 13255 } 13256 13257 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13258 /* invalid MF config */ 13259 if (SC_VN(sc) >= 1) { 13260 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13261 return (1); 13262 } 13263 13264 return (0); 13265 } 13266 13267 /* get the MF configuration */ 13268 mf_info->mf_config[SC_VN(sc)] = 13269 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13270 13271 switch(mf_info->mf_mode) 13272 { 13273 case MULTI_FUNCTION_SD: 13274 13275 bxe_get_shmem_mf_cfg_info_sd(sc); 13276 break; 13277 13278 case MULTI_FUNCTION_SI: 13279 13280 bxe_get_shmem_mf_cfg_info_si(sc); 13281 break; 13282 13283 case MULTI_FUNCTION_AFEX: 13284 13285 bxe_get_shmem_mf_cfg_info_niv(sc); 13286 break; 13287 13288 default: 13289 13290 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13291 mf_info->mf_mode); 13292 return (1); 13293 } 13294 13295 /* get the congestion management parameters */ 13296 13297 vnic = 0; 13298 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13299 /* get min/max bw */ 13300 val = MFCFG_RD(sc, func_mf_config[i].config); 13301 mf_info->min_bw[vnic] = 13302 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13303 mf_info->max_bw[vnic] = 13304 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13305 vnic++; 13306 } 13307 13308 return (bxe_check_valid_mf_cfg(sc)); 13309 } 13310 13311 static int 13312 bxe_get_shmem_info(struct bxe_softc *sc) 13313 { 13314 int port; 13315 uint32_t mac_hi, mac_lo, val; 13316 13317 port = SC_PORT(sc); 13318 mac_hi = mac_lo = 0; 13319 13320 sc->link_params.sc = sc; 13321 sc->link_params.port = port; 13322 13323 /* get the hardware config info */ 13324 sc->devinfo.hw_config = 13325 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13326 sc->devinfo.hw_config2 = 13327 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13328 13329 sc->link_params.hw_led_mode = 13330 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13331 SHARED_HW_CFG_LED_MODE_SHIFT); 13332 13333 /* get the port feature config */ 13334 sc->port.config = 13335 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13336 13337 /* get the link params */ 13338 sc->link_params.speed_cap_mask[0] = 13339 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13340 sc->link_params.speed_cap_mask[1] = 13341 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13342 13343 /* get the lane config */ 13344 sc->link_params.lane_config = 13345 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13346 13347 /* get the link config */ 13348 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13349 sc->port.link_config[ELINK_INT_PHY] = val; 13350 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13351 sc->port.link_config[ELINK_EXT_PHY1] = 13352 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13353 13354 /* get the override preemphasis flag and enable it or turn it off */ 13355 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13356 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13357 sc->link_params.feature_config_flags |= 13358 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13359 } else { 13360 sc->link_params.feature_config_flags &= 13361 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13362 } 13363 13364 /* get the initial value of the link params */ 13365 sc->link_params.multi_phy_config = 13366 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13367 13368 /* get external phy info */ 13369 sc->port.ext_phy_config = 13370 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13371 13372 /* get the multifunction configuration */ 13373 bxe_get_mf_cfg_info(sc); 13374 13375 /* get the mac address */ 13376 if (IS_MF(sc)) { 13377 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13378 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13379 } else { 13380 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13381 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13382 } 13383 13384 if ((mac_lo == 0) && (mac_hi == 0)) { 13385 *sc->mac_addr_str = 0; 13386 BLOGE(sc, "No Ethernet address programmed!\n"); 13387 } else { 13388 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13389 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13390 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13391 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13392 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13393 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13394 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13395 "%02x:%02x:%02x:%02x:%02x:%02x", 13396 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13397 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13398 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13399 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13400 } 13401 13402 return (0); 13403 } 13404 13405 static void 13406 bxe_get_tunable_params(struct bxe_softc *sc) 13407 { 13408 /* sanity checks */ 13409 13410 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13411 (bxe_interrupt_mode != INTR_MODE_MSI) && 13412 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13413 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13414 bxe_interrupt_mode = INTR_MODE_MSIX; 13415 } 13416 13417 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13418 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13419 bxe_queue_count = 0; 13420 } 13421 13422 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13423 if (bxe_max_rx_bufs == 0) { 13424 bxe_max_rx_bufs = RX_BD_USABLE; 13425 } else { 13426 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13427 bxe_max_rx_bufs = 2048; 13428 } 13429 } 13430 13431 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13432 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13433 bxe_hc_rx_ticks = 25; 13434 } 13435 13436 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13437 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13438 bxe_hc_tx_ticks = 50; 13439 } 13440 13441 if (bxe_max_aggregation_size == 0) { 13442 bxe_max_aggregation_size = TPA_AGG_SIZE; 13443 } 13444 13445 if (bxe_max_aggregation_size > 0xffff) { 13446 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13447 bxe_max_aggregation_size); 13448 bxe_max_aggregation_size = TPA_AGG_SIZE; 13449 } 13450 13451 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13452 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13453 bxe_mrrs = -1; 13454 } 13455 13456 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13457 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13458 bxe_autogreeen = 0; 13459 } 13460 13461 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13462 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13463 bxe_udp_rss = 0; 13464 } 13465 13466 /* pull in user settings */ 13467 13468 sc->interrupt_mode = bxe_interrupt_mode; 13469 sc->max_rx_bufs = bxe_max_rx_bufs; 13470 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13471 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13472 sc->max_aggregation_size = bxe_max_aggregation_size; 13473 sc->mrrs = bxe_mrrs; 13474 sc->autogreeen = bxe_autogreeen; 13475 sc->udp_rss = bxe_udp_rss; 13476 13477 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13478 sc->num_queues = 1; 13479 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13480 sc->num_queues = 13481 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13482 MAX_RSS_CHAINS); 13483 if (sc->num_queues > mp_ncpus) { 13484 sc->num_queues = mp_ncpus; 13485 } 13486 } 13487 13488 BLOGD(sc, DBG_LOAD, 13489 "User Config: " 13490 "debug=0x%lx " 13491 "interrupt_mode=%d " 13492 "queue_count=%d " 13493 "hc_rx_ticks=%d " 13494 "hc_tx_ticks=%d " 13495 "rx_budget=%d " 13496 "max_aggregation_size=%d " 13497 "mrrs=%d " 13498 "autogreeen=%d " 13499 "udp_rss=%d\n", 13500 bxe_debug, 13501 sc->interrupt_mode, 13502 sc->num_queues, 13503 sc->hc_rx_ticks, 13504 sc->hc_tx_ticks, 13505 bxe_rx_budget, 13506 sc->max_aggregation_size, 13507 sc->mrrs, 13508 sc->autogreeen, 13509 sc->udp_rss); 13510 } 13511 13512 static int 13513 bxe_media_detect(struct bxe_softc *sc) 13514 { 13515 int port_type; 13516 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13517 13518 switch (sc->link_params.phy[phy_idx].media_type) { 13519 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13520 case ELINK_ETH_PHY_XFP_FIBER: 13521 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13522 sc->media = IFM_10G_SR; 13523 port_type = PORT_FIBRE; 13524 break; 13525 case ELINK_ETH_PHY_SFP_1G_FIBER: 13526 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13527 sc->media = IFM_1000_SX; 13528 port_type = PORT_FIBRE; 13529 break; 13530 case ELINK_ETH_PHY_KR: 13531 case ELINK_ETH_PHY_CX4: 13532 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13533 sc->media = IFM_10G_CX4; 13534 port_type = PORT_FIBRE; 13535 break; 13536 case ELINK_ETH_PHY_DA_TWINAX: 13537 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13538 sc->media = IFM_10G_TWINAX; 13539 port_type = PORT_DA; 13540 break; 13541 case ELINK_ETH_PHY_BASE_T: 13542 if (sc->link_params.speed_cap_mask[0] & 13543 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13544 BLOGI(sc, "Found 10GBase-T media.\n"); 13545 sc->media = IFM_10G_T; 13546 port_type = PORT_TP; 13547 } else { 13548 BLOGI(sc, "Found 1000Base-T media.\n"); 13549 sc->media = IFM_1000_T; 13550 port_type = PORT_TP; 13551 } 13552 break; 13553 case ELINK_ETH_PHY_NOT_PRESENT: 13554 BLOGI(sc, "Media not present.\n"); 13555 sc->media = 0; 13556 port_type = PORT_OTHER; 13557 break; 13558 case ELINK_ETH_PHY_UNSPECIFIED: 13559 default: 13560 BLOGI(sc, "Unknown media!\n"); 13561 sc->media = 0; 13562 port_type = PORT_OTHER; 13563 break; 13564 } 13565 return port_type; 13566 } 13567 13568 #define GET_FIELD(value, fname) \ 13569 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13570 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13571 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13572 13573 static int 13574 bxe_get_igu_cam_info(struct bxe_softc *sc) 13575 { 13576 int pfid = SC_FUNC(sc); 13577 int igu_sb_id; 13578 uint32_t val; 13579 uint8_t fid, igu_sb_cnt = 0; 13580 13581 sc->igu_base_sb = 0xff; 13582 13583 if (CHIP_INT_MODE_IS_BC(sc)) { 13584 int vn = SC_VN(sc); 13585 igu_sb_cnt = sc->igu_sb_cnt; 13586 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13587 FP_SB_MAX_E1x); 13588 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13589 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13590 return (0); 13591 } 13592 13593 /* IGU in normal mode - read CAM */ 13594 for (igu_sb_id = 0; 13595 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13596 igu_sb_id++) { 13597 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13598 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13599 continue; 13600 } 13601 fid = IGU_FID(val); 13602 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13603 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13604 continue; 13605 } 13606 if (IGU_VEC(val) == 0) { 13607 /* default status block */ 13608 sc->igu_dsb_id = igu_sb_id; 13609 } else { 13610 if (sc->igu_base_sb == 0xff) { 13611 sc->igu_base_sb = igu_sb_id; 13612 } 13613 igu_sb_cnt++; 13614 } 13615 } 13616 } 13617 13618 /* 13619 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13620 * that number of CAM entries will not be equal to the value advertised in 13621 * PCI. Driver should use the minimal value of both as the actual status 13622 * block count 13623 */ 13624 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13625 13626 if (igu_sb_cnt == 0) { 13627 BLOGE(sc, "CAM configuration error\n"); 13628 return (-1); 13629 } 13630 13631 return (0); 13632 } 13633 13634 /* 13635 * Gather various information from the device config space, the device itself, 13636 * shmem, and the user input. 13637 */ 13638 static int 13639 bxe_get_device_info(struct bxe_softc *sc) 13640 { 13641 uint32_t val; 13642 int rc; 13643 13644 /* Get the data for the device */ 13645 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13646 sc->devinfo.device_id = pci_get_device(sc->dev); 13647 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13648 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13649 13650 /* get the chip revision (chip metal comes from pci config space) */ 13651 sc->devinfo.chip_id = 13652 sc->link_params.chip_id = 13653 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13654 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13655 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13656 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13657 13658 /* force 57811 according to MISC register */ 13659 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 13660 if (CHIP_IS_57810(sc)) { 13661 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 13662 (sc->devinfo.chip_id & 0x0000ffff)); 13663 } else if (CHIP_IS_57810_MF(sc)) { 13664 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 13665 (sc->devinfo.chip_id & 0x0000ffff)); 13666 } 13667 sc->devinfo.chip_id |= 0x1; 13668 } 13669 13670 BLOGD(sc, DBG_LOAD, 13671 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 13672 sc->devinfo.chip_id, 13673 ((sc->devinfo.chip_id >> 16) & 0xffff), 13674 ((sc->devinfo.chip_id >> 12) & 0xf), 13675 ((sc->devinfo.chip_id >> 4) & 0xff), 13676 ((sc->devinfo.chip_id >> 0) & 0xf)); 13677 13678 val = (REG_RD(sc, 0x2874) & 0x55); 13679 if ((sc->devinfo.chip_id & 0x1) || 13680 (CHIP_IS_E1(sc) && val) || 13681 (CHIP_IS_E1H(sc) && (val == 0x55))) { 13682 sc->flags |= BXE_ONE_PORT_FLAG; 13683 BLOGD(sc, DBG_LOAD, "single port device\n"); 13684 } 13685 13686 /* set the doorbell size */ 13687 sc->doorbell_size = (1 << BXE_DB_SHIFT); 13688 13689 /* determine whether the device is in 2 port or 4 port mode */ 13690 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 13691 if (CHIP_IS_E2E3(sc)) { 13692 /* 13693 * Read port4mode_en_ovwr[0]: 13694 * If 1, four port mode is in port4mode_en_ovwr[1]. 13695 * If 0, four port mode is in port4mode_en[0]. 13696 */ 13697 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 13698 if (val & 1) { 13699 val = ((val >> 1) & 1); 13700 } else { 13701 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 13702 } 13703 13704 sc->devinfo.chip_port_mode = 13705 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 13706 13707 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 13708 } 13709 13710 /* get the function and path info for the device */ 13711 bxe_get_function_num(sc); 13712 13713 /* get the shared memory base address */ 13714 sc->devinfo.shmem_base = 13715 sc->link_params.shmem_base = 13716 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 13717 sc->devinfo.shmem2_base = 13718 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 13719 MISC_REG_GENERIC_CR_0)); 13720 13721 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 13722 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 13723 13724 if (!sc->devinfo.shmem_base) { 13725 /* this should ONLY prevent upcoming shmem reads */ 13726 BLOGI(sc, "MCP not active\n"); 13727 sc->flags |= BXE_NO_MCP_FLAG; 13728 return (0); 13729 } 13730 13731 /* make sure the shared memory contents are valid */ 13732 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 13733 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 13734 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 13735 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 13736 return (0); 13737 } 13738 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 13739 13740 /* get the bootcode version */ 13741 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 13742 snprintf(sc->devinfo.bc_ver_str, 13743 sizeof(sc->devinfo.bc_ver_str), 13744 "%d.%d.%d", 13745 ((sc->devinfo.bc_ver >> 24) & 0xff), 13746 ((sc->devinfo.bc_ver >> 16) & 0xff), 13747 ((sc->devinfo.bc_ver >> 8) & 0xff)); 13748 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 13749 13750 /* get the bootcode shmem address */ 13751 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 13752 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 13753 13754 /* clean indirect addresses as they're not used */ 13755 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 13756 if (IS_PF(sc)) { 13757 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 13758 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 13759 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 13760 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 13761 if (CHIP_IS_E1x(sc)) { 13762 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 13763 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 13764 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 13765 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 13766 } 13767 13768 /* 13769 * Enable internal target-read (in case we are probed after PF 13770 * FLR). Must be done prior to any BAR read access. Only for 13771 * 57712 and up 13772 */ 13773 if (!CHIP_IS_E1x(sc)) { 13774 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13775 } 13776 } 13777 13778 /* get the nvram size */ 13779 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 13780 sc->devinfo.flash_size = 13781 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 13782 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 13783 13784 /* get PCI capabilites */ 13785 bxe_probe_pci_caps(sc); 13786 13787 bxe_set_power_state(sc, PCI_PM_D0); 13788 13789 /* get various configuration parameters from shmem */ 13790 bxe_get_shmem_info(sc); 13791 13792 if (sc->devinfo.pcie_msix_cap_reg != 0) { 13793 val = pci_read_config(sc->dev, 13794 (sc->devinfo.pcie_msix_cap_reg + 13795 PCIR_MSIX_CTRL), 13796 2); 13797 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 13798 } else { 13799 sc->igu_sb_cnt = 1; 13800 } 13801 13802 sc->igu_base_addr = BAR_IGU_INTMEM; 13803 13804 /* initialize IGU parameters */ 13805 if (CHIP_IS_E1x(sc)) { 13806 sc->devinfo.int_block = INT_BLOCK_HC; 13807 sc->igu_dsb_id = DEF_SB_IGU_ID; 13808 sc->igu_base_sb = 0; 13809 } else { 13810 sc->devinfo.int_block = INT_BLOCK_IGU; 13811 13812 /* do not allow device reset during IGU info preocessing */ 13813 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13814 13815 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 13816 13817 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13818 int tout = 5000; 13819 13820 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 13821 13822 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 13823 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 13824 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 13825 13826 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13827 tout--; 13828 DELAY(1000); 13829 } 13830 13831 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 13832 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 13833 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13834 return (-1); 13835 } 13836 } 13837 13838 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 13839 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 13840 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 13841 } else { 13842 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 13843 } 13844 13845 rc = bxe_get_igu_cam_info(sc); 13846 13847 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 13848 13849 if (rc) { 13850 return (rc); 13851 } 13852 } 13853 13854 /* 13855 * Get base FW non-default (fast path) status block ID. This value is 13856 * used to initialize the fw_sb_id saved on the fp/queue structure to 13857 * determine the id used by the FW. 13858 */ 13859 if (CHIP_IS_E1x(sc)) { 13860 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 13861 } else { 13862 /* 13863 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 13864 * the same queue are indicated on the same IGU SB). So we prefer 13865 * FW and IGU SBs to be the same value. 13866 */ 13867 sc->base_fw_ndsb = sc->igu_base_sb; 13868 } 13869 13870 BLOGD(sc, DBG_LOAD, 13871 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 13872 sc->igu_dsb_id, sc->igu_base_sb, 13873 sc->igu_sb_cnt, sc->base_fw_ndsb); 13874 13875 elink_phy_probe(&sc->link_params); 13876 13877 return (0); 13878 } 13879 13880 static void 13881 bxe_link_settings_supported(struct bxe_softc *sc, 13882 uint32_t switch_cfg) 13883 { 13884 uint32_t cfg_size = 0; 13885 uint32_t idx; 13886 uint8_t port = SC_PORT(sc); 13887 13888 /* aggregation of supported attributes of all external phys */ 13889 sc->port.supported[0] = 0; 13890 sc->port.supported[1] = 0; 13891 13892 switch (sc->link_params.num_phys) { 13893 case 1: 13894 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 13895 cfg_size = 1; 13896 break; 13897 case 2: 13898 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 13899 cfg_size = 1; 13900 break; 13901 case 3: 13902 if (sc->link_params.multi_phy_config & 13903 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 13904 sc->port.supported[1] = 13905 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13906 sc->port.supported[0] = 13907 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13908 } else { 13909 sc->port.supported[0] = 13910 sc->link_params.phy[ELINK_EXT_PHY1].supported; 13911 sc->port.supported[1] = 13912 sc->link_params.phy[ELINK_EXT_PHY2].supported; 13913 } 13914 cfg_size = 2; 13915 break; 13916 } 13917 13918 if (!(sc->port.supported[0] || sc->port.supported[1])) { 13919 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 13920 SHMEM_RD(sc, 13921 dev_info.port_hw_config[port].external_phy_config), 13922 SHMEM_RD(sc, 13923 dev_info.port_hw_config[port].external_phy_config2)); 13924 return; 13925 } 13926 13927 if (CHIP_IS_E3(sc)) 13928 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 13929 else { 13930 switch (switch_cfg) { 13931 case ELINK_SWITCH_CFG_1G: 13932 sc->port.phy_addr = 13933 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 13934 break; 13935 case ELINK_SWITCH_CFG_10G: 13936 sc->port.phy_addr = 13937 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 13938 break; 13939 default: 13940 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 13941 sc->port.link_config[0]); 13942 return; 13943 } 13944 } 13945 13946 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 13947 13948 /* mask what we support according to speed_cap_mask per configuration */ 13949 for (idx = 0; idx < cfg_size; idx++) { 13950 if (!(sc->link_params.speed_cap_mask[idx] & 13951 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 13952 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 13953 } 13954 13955 if (!(sc->link_params.speed_cap_mask[idx] & 13956 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 13957 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 13958 } 13959 13960 if (!(sc->link_params.speed_cap_mask[idx] & 13961 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 13962 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 13963 } 13964 13965 if (!(sc->link_params.speed_cap_mask[idx] & 13966 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 13967 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 13968 } 13969 13970 if (!(sc->link_params.speed_cap_mask[idx] & 13971 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 13972 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 13973 } 13974 13975 if (!(sc->link_params.speed_cap_mask[idx] & 13976 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 13977 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 13978 } 13979 13980 if (!(sc->link_params.speed_cap_mask[idx] & 13981 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 13982 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 13983 } 13984 13985 if (!(sc->link_params.speed_cap_mask[idx] & 13986 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 13987 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 13988 } 13989 } 13990 13991 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 13992 sc->port.supported[0], sc->port.supported[1]); 13993 } 13994 13995 static void 13996 bxe_link_settings_requested(struct bxe_softc *sc) 13997 { 13998 uint32_t link_config; 13999 uint32_t idx; 14000 uint32_t cfg_size = 0; 14001 14002 sc->port.advertising[0] = 0; 14003 sc->port.advertising[1] = 0; 14004 14005 switch (sc->link_params.num_phys) { 14006 case 1: 14007 case 2: 14008 cfg_size = 1; 14009 break; 14010 case 3: 14011 cfg_size = 2; 14012 break; 14013 } 14014 14015 for (idx = 0; idx < cfg_size; idx++) { 14016 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14017 link_config = sc->port.link_config[idx]; 14018 14019 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14020 case PORT_FEATURE_LINK_SPEED_AUTO: 14021 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14022 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14023 sc->port.advertising[idx] |= sc->port.supported[idx]; 14024 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14025 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14026 sc->port.advertising[idx] |= 14027 (ELINK_SUPPORTED_100baseT_Half | 14028 ELINK_SUPPORTED_100baseT_Full); 14029 } else { 14030 /* force 10G, no AN */ 14031 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14032 sc->port.advertising[idx] |= 14033 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14034 continue; 14035 } 14036 break; 14037 14038 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14039 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14040 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14041 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14042 ADVERTISED_TP); 14043 } else { 14044 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14045 "speed_cap_mask=0x%08x\n", 14046 link_config, sc->link_params.speed_cap_mask[idx]); 14047 return; 14048 } 14049 break; 14050 14051 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14052 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14053 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14054 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14055 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14056 ADVERTISED_TP); 14057 } else { 14058 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14059 "speed_cap_mask=0x%08x\n", 14060 link_config, sc->link_params.speed_cap_mask[idx]); 14061 return; 14062 } 14063 break; 14064 14065 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14066 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14067 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14068 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14069 ADVERTISED_TP); 14070 } else { 14071 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14072 "speed_cap_mask=0x%08x\n", 14073 link_config, sc->link_params.speed_cap_mask[idx]); 14074 return; 14075 } 14076 break; 14077 14078 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14079 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14080 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14081 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14082 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14083 ADVERTISED_TP); 14084 } else { 14085 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14086 "speed_cap_mask=0x%08x\n", 14087 link_config, sc->link_params.speed_cap_mask[idx]); 14088 return; 14089 } 14090 break; 14091 14092 case PORT_FEATURE_LINK_SPEED_1G: 14093 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14094 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14095 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14096 ADVERTISED_TP); 14097 } else { 14098 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14099 "speed_cap_mask=0x%08x\n", 14100 link_config, sc->link_params.speed_cap_mask[idx]); 14101 return; 14102 } 14103 break; 14104 14105 case PORT_FEATURE_LINK_SPEED_2_5G: 14106 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14107 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14108 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14109 ADVERTISED_TP); 14110 } else { 14111 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14112 "speed_cap_mask=0x%08x\n", 14113 link_config, sc->link_params.speed_cap_mask[idx]); 14114 return; 14115 } 14116 break; 14117 14118 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14119 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14120 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14121 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14122 ADVERTISED_FIBRE); 14123 } else { 14124 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14125 "speed_cap_mask=0x%08x\n", 14126 link_config, sc->link_params.speed_cap_mask[idx]); 14127 return; 14128 } 14129 break; 14130 14131 case PORT_FEATURE_LINK_SPEED_20G: 14132 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14133 break; 14134 14135 default: 14136 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14137 "speed_cap_mask=0x%08x\n", 14138 link_config, sc->link_params.speed_cap_mask[idx]); 14139 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14140 sc->port.advertising[idx] = sc->port.supported[idx]; 14141 break; 14142 } 14143 14144 sc->link_params.req_flow_ctrl[idx] = 14145 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14146 14147 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14148 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14149 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14150 } else { 14151 bxe_set_requested_fc(sc); 14152 } 14153 } 14154 14155 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14156 "req_flow_ctrl=0x%x advertising=0x%x\n", 14157 sc->link_params.req_line_speed[idx], 14158 sc->link_params.req_duplex[idx], 14159 sc->link_params.req_flow_ctrl[idx], 14160 sc->port.advertising[idx]); 14161 } 14162 } 14163 14164 static void 14165 bxe_get_phy_info(struct bxe_softc *sc) 14166 { 14167 uint8_t port = SC_PORT(sc); 14168 uint32_t config = sc->port.config; 14169 uint32_t eee_mode; 14170 14171 /* shmem data already read in bxe_get_shmem_info() */ 14172 14173 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14174 "link_config0=0x%08x\n", 14175 sc->link_params.lane_config, 14176 sc->link_params.speed_cap_mask[0], 14177 sc->port.link_config[0]); 14178 14179 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14180 bxe_link_settings_requested(sc); 14181 14182 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14183 sc->link_params.feature_config_flags |= 14184 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14185 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14186 sc->link_params.feature_config_flags &= 14187 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14188 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14189 sc->link_params.feature_config_flags |= 14190 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14191 } 14192 14193 /* configure link feature according to nvram value */ 14194 eee_mode = 14195 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14196 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14197 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14198 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14199 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14200 ELINK_EEE_MODE_ENABLE_LPI | 14201 ELINK_EEE_MODE_OUTPUT_TIME); 14202 } else { 14203 sc->link_params.eee_mode = 0; 14204 } 14205 14206 /* get the media type */ 14207 bxe_media_detect(sc); 14208 } 14209 14210 static void 14211 bxe_get_params(struct bxe_softc *sc) 14212 { 14213 /* get user tunable params */ 14214 bxe_get_tunable_params(sc); 14215 14216 /* select the RX and TX ring sizes */ 14217 sc->tx_ring_size = TX_BD_USABLE; 14218 sc->rx_ring_size = RX_BD_USABLE; 14219 14220 /* XXX disable WoL */ 14221 sc->wol = 0; 14222 } 14223 14224 static void 14225 bxe_set_modes_bitmap(struct bxe_softc *sc) 14226 { 14227 uint32_t flags = 0; 14228 14229 if (CHIP_REV_IS_FPGA(sc)) { 14230 SET_FLAGS(flags, MODE_FPGA); 14231 } else if (CHIP_REV_IS_EMUL(sc)) { 14232 SET_FLAGS(flags, MODE_EMUL); 14233 } else { 14234 SET_FLAGS(flags, MODE_ASIC); 14235 } 14236 14237 if (CHIP_IS_MODE_4_PORT(sc)) { 14238 SET_FLAGS(flags, MODE_PORT4); 14239 } else { 14240 SET_FLAGS(flags, MODE_PORT2); 14241 } 14242 14243 if (CHIP_IS_E2(sc)) { 14244 SET_FLAGS(flags, MODE_E2); 14245 } else if (CHIP_IS_E3(sc)) { 14246 SET_FLAGS(flags, MODE_E3); 14247 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14248 SET_FLAGS(flags, MODE_E3_A0); 14249 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14250 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14251 } 14252 } 14253 14254 if (IS_MF(sc)) { 14255 SET_FLAGS(flags, MODE_MF); 14256 switch (sc->devinfo.mf_info.mf_mode) { 14257 case MULTI_FUNCTION_SD: 14258 SET_FLAGS(flags, MODE_MF_SD); 14259 break; 14260 case MULTI_FUNCTION_SI: 14261 SET_FLAGS(flags, MODE_MF_SI); 14262 break; 14263 case MULTI_FUNCTION_AFEX: 14264 SET_FLAGS(flags, MODE_MF_AFEX); 14265 break; 14266 } 14267 } else { 14268 SET_FLAGS(flags, MODE_SF); 14269 } 14270 14271 #if defined(__LITTLE_ENDIAN) 14272 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14273 #else /* __BIG_ENDIAN */ 14274 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14275 #endif 14276 14277 INIT_MODE_FLAGS(sc) = flags; 14278 } 14279 14280 static int 14281 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14282 { 14283 struct bxe_fastpath *fp; 14284 bus_addr_t busaddr; 14285 int max_agg_queues; 14286 int max_segments; 14287 bus_size_t max_size; 14288 bus_size_t max_seg_size; 14289 char buf[32]; 14290 int rc; 14291 int i, j; 14292 14293 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14294 14295 /* allocate the parent bus DMA tag */ 14296 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14297 1, /* alignment */ 14298 0, /* boundary limit */ 14299 BUS_SPACE_MAXADDR, /* restricted low */ 14300 BUS_SPACE_MAXADDR, /* restricted hi */ 14301 NULL, /* addr filter() */ 14302 NULL, /* addr filter() arg */ 14303 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14304 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14305 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14306 0, /* flags */ 14307 NULL, /* lock() */ 14308 NULL, /* lock() arg */ 14309 &sc->parent_dma_tag); /* returned dma tag */ 14310 if (rc != 0) { 14311 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14312 return (1); 14313 } 14314 14315 /************************/ 14316 /* DEFAULT STATUS BLOCK */ 14317 /************************/ 14318 14319 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14320 &sc->def_sb_dma, "default status block") != 0) { 14321 /* XXX */ 14322 bus_dma_tag_destroy(sc->parent_dma_tag); 14323 return (1); 14324 } 14325 14326 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14327 14328 /***************/ 14329 /* EVENT QUEUE */ 14330 /***************/ 14331 14332 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14333 &sc->eq_dma, "event queue") != 0) { 14334 /* XXX */ 14335 bxe_dma_free(sc, &sc->def_sb_dma); 14336 sc->def_sb = NULL; 14337 bus_dma_tag_destroy(sc->parent_dma_tag); 14338 return (1); 14339 } 14340 14341 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14342 14343 /*************/ 14344 /* SLOW PATH */ 14345 /*************/ 14346 14347 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14348 &sc->sp_dma, "slow path") != 0) { 14349 /* XXX */ 14350 bxe_dma_free(sc, &sc->eq_dma); 14351 sc->eq = NULL; 14352 bxe_dma_free(sc, &sc->def_sb_dma); 14353 sc->def_sb = NULL; 14354 bus_dma_tag_destroy(sc->parent_dma_tag); 14355 return (1); 14356 } 14357 14358 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14359 14360 /*******************/ 14361 /* SLOW PATH QUEUE */ 14362 /*******************/ 14363 14364 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14365 &sc->spq_dma, "slow path queue") != 0) { 14366 /* XXX */ 14367 bxe_dma_free(sc, &sc->sp_dma); 14368 sc->sp = NULL; 14369 bxe_dma_free(sc, &sc->eq_dma); 14370 sc->eq = NULL; 14371 bxe_dma_free(sc, &sc->def_sb_dma); 14372 sc->def_sb = NULL; 14373 bus_dma_tag_destroy(sc->parent_dma_tag); 14374 return (1); 14375 } 14376 14377 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14378 14379 /***************************/ 14380 /* FW DECOMPRESSION BUFFER */ 14381 /***************************/ 14382 14383 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14384 "fw decompression buffer") != 0) { 14385 /* XXX */ 14386 bxe_dma_free(sc, &sc->spq_dma); 14387 sc->spq = NULL; 14388 bxe_dma_free(sc, &sc->sp_dma); 14389 sc->sp = NULL; 14390 bxe_dma_free(sc, &sc->eq_dma); 14391 sc->eq = NULL; 14392 bxe_dma_free(sc, &sc->def_sb_dma); 14393 sc->def_sb = NULL; 14394 bus_dma_tag_destroy(sc->parent_dma_tag); 14395 return (1); 14396 } 14397 14398 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14399 14400 if ((sc->gz_strm = 14401 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14402 /* XXX */ 14403 bxe_dma_free(sc, &sc->gz_buf_dma); 14404 sc->gz_buf = NULL; 14405 bxe_dma_free(sc, &sc->spq_dma); 14406 sc->spq = NULL; 14407 bxe_dma_free(sc, &sc->sp_dma); 14408 sc->sp = NULL; 14409 bxe_dma_free(sc, &sc->eq_dma); 14410 sc->eq = NULL; 14411 bxe_dma_free(sc, &sc->def_sb_dma); 14412 sc->def_sb = NULL; 14413 bus_dma_tag_destroy(sc->parent_dma_tag); 14414 return (1); 14415 } 14416 14417 /*************/ 14418 /* FASTPATHS */ 14419 /*************/ 14420 14421 /* allocate DMA memory for each fastpath structure */ 14422 for (i = 0; i < sc->num_queues; i++) { 14423 fp = &sc->fp[i]; 14424 fp->sc = sc; 14425 fp->index = i; 14426 14427 /*******************/ 14428 /* FP STATUS BLOCK */ 14429 /*******************/ 14430 14431 snprintf(buf, sizeof(buf), "fp %d status block", i); 14432 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14433 &fp->sb_dma, buf) != 0) { 14434 /* XXX unwind and free previous fastpath allocations */ 14435 BLOGE(sc, "Failed to alloc %s\n", buf); 14436 return (1); 14437 } else { 14438 if (CHIP_IS_E2E3(sc)) { 14439 fp->status_block.e2_sb = 14440 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14441 } else { 14442 fp->status_block.e1x_sb = 14443 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14444 } 14445 } 14446 14447 /******************/ 14448 /* FP TX BD CHAIN */ 14449 /******************/ 14450 14451 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14452 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14453 &fp->tx_dma, buf) != 0) { 14454 /* XXX unwind and free previous fastpath allocations */ 14455 BLOGE(sc, "Failed to alloc %s\n", buf); 14456 return (1); 14457 } else { 14458 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14459 } 14460 14461 /* link together the tx bd chain pages */ 14462 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14463 /* index into the tx bd chain array to last entry per page */ 14464 struct eth_tx_next_bd *tx_next_bd = 14465 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14466 /* point to the next page and wrap from last page */ 14467 busaddr = (fp->tx_dma.paddr + 14468 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14469 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14470 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14471 } 14472 14473 /******************/ 14474 /* FP RX BD CHAIN */ 14475 /******************/ 14476 14477 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14478 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14479 &fp->rx_dma, buf) != 0) { 14480 /* XXX unwind and free previous fastpath allocations */ 14481 BLOGE(sc, "Failed to alloc %s\n", buf); 14482 return (1); 14483 } else { 14484 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14485 } 14486 14487 /* link together the rx bd chain pages */ 14488 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14489 /* index into the rx bd chain array to last entry per page */ 14490 struct eth_rx_bd *rx_bd = 14491 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14492 /* point to the next page and wrap from last page */ 14493 busaddr = (fp->rx_dma.paddr + 14494 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14495 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14496 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14497 } 14498 14499 /*******************/ 14500 /* FP RX RCQ CHAIN */ 14501 /*******************/ 14502 14503 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14504 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14505 &fp->rcq_dma, buf) != 0) { 14506 /* XXX unwind and free previous fastpath allocations */ 14507 BLOGE(sc, "Failed to alloc %s\n", buf); 14508 return (1); 14509 } else { 14510 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14511 } 14512 14513 /* link together the rcq chain pages */ 14514 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14515 /* index into the rcq chain array to last entry per page */ 14516 struct eth_rx_cqe_next_page *rx_cqe_next = 14517 (struct eth_rx_cqe_next_page *) 14518 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14519 /* point to the next page and wrap from last page */ 14520 busaddr = (fp->rcq_dma.paddr + 14521 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14522 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14523 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14524 } 14525 14526 /*******************/ 14527 /* FP RX SGE CHAIN */ 14528 /*******************/ 14529 14530 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14531 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14532 &fp->rx_sge_dma, buf) != 0) { 14533 /* XXX unwind and free previous fastpath allocations */ 14534 BLOGE(sc, "Failed to alloc %s\n", buf); 14535 return (1); 14536 } else { 14537 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14538 } 14539 14540 /* link together the sge chain pages */ 14541 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14542 /* index into the rcq chain array to last entry per page */ 14543 struct eth_rx_sge *rx_sge = 14544 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14545 /* point to the next page and wrap from last page */ 14546 busaddr = (fp->rx_sge_dma.paddr + 14547 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14548 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14549 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14550 } 14551 14552 /***********************/ 14553 /* FP TX MBUF DMA MAPS */ 14554 /***********************/ 14555 14556 /* set required sizes before mapping to conserve resources */ 14557 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14558 max_size = BXE_TSO_MAX_SIZE; 14559 max_segments = BXE_TSO_MAX_SEGMENTS; 14560 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14561 } else { 14562 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14563 max_segments = BXE_MAX_SEGMENTS; 14564 max_seg_size = MCLBYTES; 14565 } 14566 14567 /* create a dma tag for the tx mbufs */ 14568 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14569 1, /* alignment */ 14570 0, /* boundary limit */ 14571 BUS_SPACE_MAXADDR, /* restricted low */ 14572 BUS_SPACE_MAXADDR, /* restricted hi */ 14573 NULL, /* addr filter() */ 14574 NULL, /* addr filter() arg */ 14575 max_size, /* max map size */ 14576 max_segments, /* num discontinuous */ 14577 max_seg_size, /* max seg size */ 14578 0, /* flags */ 14579 NULL, /* lock() */ 14580 NULL, /* lock() arg */ 14581 &fp->tx_mbuf_tag); /* returned dma tag */ 14582 if (rc != 0) { 14583 /* XXX unwind and free previous fastpath allocations */ 14584 BLOGE(sc, "Failed to create dma tag for " 14585 "'fp %d tx mbufs' (%d)\n", i, rc); 14586 return (1); 14587 } 14588 14589 /* create dma maps for each of the tx mbuf clusters */ 14590 for (j = 0; j < TX_BD_TOTAL; j++) { 14591 if (bus_dmamap_create(fp->tx_mbuf_tag, 14592 BUS_DMA_NOWAIT, 14593 &fp->tx_mbuf_chain[j].m_map)) { 14594 /* XXX unwind and free previous fastpath allocations */ 14595 BLOGE(sc, "Failed to create dma map for " 14596 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14597 return (1); 14598 } 14599 } 14600 14601 /***********************/ 14602 /* FP RX MBUF DMA MAPS */ 14603 /***********************/ 14604 14605 /* create a dma tag for the rx mbufs */ 14606 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14607 1, /* alignment */ 14608 0, /* boundary limit */ 14609 BUS_SPACE_MAXADDR, /* restricted low */ 14610 BUS_SPACE_MAXADDR, /* restricted hi */ 14611 NULL, /* addr filter() */ 14612 NULL, /* addr filter() arg */ 14613 MJUM9BYTES, /* max map size */ 14614 1, /* num discontinuous */ 14615 MJUM9BYTES, /* max seg size */ 14616 0, /* flags */ 14617 NULL, /* lock() */ 14618 NULL, /* lock() arg */ 14619 &fp->rx_mbuf_tag); /* returned dma tag */ 14620 if (rc != 0) { 14621 /* XXX unwind and free previous fastpath allocations */ 14622 BLOGE(sc, "Failed to create dma tag for " 14623 "'fp %d rx mbufs' (%d)\n", i, rc); 14624 return (1); 14625 } 14626 14627 /* create dma maps for each of the rx mbuf clusters */ 14628 for (j = 0; j < RX_BD_TOTAL; j++) { 14629 if (bus_dmamap_create(fp->rx_mbuf_tag, 14630 BUS_DMA_NOWAIT, 14631 &fp->rx_mbuf_chain[j].m_map)) { 14632 /* XXX unwind and free previous fastpath allocations */ 14633 BLOGE(sc, "Failed to create dma map for " 14634 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14635 return (1); 14636 } 14637 } 14638 14639 /* create dma map for the spare rx mbuf cluster */ 14640 if (bus_dmamap_create(fp->rx_mbuf_tag, 14641 BUS_DMA_NOWAIT, 14642 &fp->rx_mbuf_spare_map)) { 14643 /* XXX unwind and free previous fastpath allocations */ 14644 BLOGE(sc, "Failed to create dma map for " 14645 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14646 return (1); 14647 } 14648 14649 /***************************/ 14650 /* FP RX SGE MBUF DMA MAPS */ 14651 /***************************/ 14652 14653 /* create a dma tag for the rx sge mbufs */ 14654 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14655 1, /* alignment */ 14656 0, /* boundary limit */ 14657 BUS_SPACE_MAXADDR, /* restricted low */ 14658 BUS_SPACE_MAXADDR, /* restricted hi */ 14659 NULL, /* addr filter() */ 14660 NULL, /* addr filter() arg */ 14661 BCM_PAGE_SIZE, /* max map size */ 14662 1, /* num discontinuous */ 14663 BCM_PAGE_SIZE, /* max seg size */ 14664 0, /* flags */ 14665 NULL, /* lock() */ 14666 NULL, /* lock() arg */ 14667 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 14668 if (rc != 0) { 14669 /* XXX unwind and free previous fastpath allocations */ 14670 BLOGE(sc, "Failed to create dma tag for " 14671 "'fp %d rx sge mbufs' (%d)\n", i, rc); 14672 return (1); 14673 } 14674 14675 /* create dma maps for the rx sge mbuf clusters */ 14676 for (j = 0; j < RX_SGE_TOTAL; j++) { 14677 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14678 BUS_DMA_NOWAIT, 14679 &fp->rx_sge_mbuf_chain[j].m_map)) { 14680 /* XXX unwind and free previous fastpath allocations */ 14681 BLOGE(sc, "Failed to create dma map for " 14682 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 14683 return (1); 14684 } 14685 } 14686 14687 /* create dma map for the spare rx sge mbuf cluster */ 14688 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 14689 BUS_DMA_NOWAIT, 14690 &fp->rx_sge_mbuf_spare_map)) { 14691 /* XXX unwind and free previous fastpath allocations */ 14692 BLOGE(sc, "Failed to create dma map for " 14693 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 14694 return (1); 14695 } 14696 14697 /***************************/ 14698 /* FP RX TPA MBUF DMA MAPS */ 14699 /***************************/ 14700 14701 /* create dma maps for the rx tpa mbuf clusters */ 14702 max_agg_queues = MAX_AGG_QS(sc); 14703 14704 for (j = 0; j < max_agg_queues; j++) { 14705 if (bus_dmamap_create(fp->rx_mbuf_tag, 14706 BUS_DMA_NOWAIT, 14707 &fp->rx_tpa_info[j].bd.m_map)) { 14708 /* XXX unwind and free previous fastpath allocations */ 14709 BLOGE(sc, "Failed to create dma map for " 14710 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 14711 return (1); 14712 } 14713 } 14714 14715 /* create dma map for the spare rx tpa mbuf cluster */ 14716 if (bus_dmamap_create(fp->rx_mbuf_tag, 14717 BUS_DMA_NOWAIT, 14718 &fp->rx_tpa_info_mbuf_spare_map)) { 14719 /* XXX unwind and free previous fastpath allocations */ 14720 BLOGE(sc, "Failed to create dma map for " 14721 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 14722 return (1); 14723 } 14724 14725 bxe_init_sge_ring_bit_mask(fp); 14726 } 14727 14728 return (0); 14729 } 14730 14731 static void 14732 bxe_free_hsi_mem(struct bxe_softc *sc) 14733 { 14734 struct bxe_fastpath *fp; 14735 int max_agg_queues; 14736 int i, j; 14737 14738 if (sc->parent_dma_tag == NULL) { 14739 return; /* assume nothing was allocated */ 14740 } 14741 14742 for (i = 0; i < sc->num_queues; i++) { 14743 fp = &sc->fp[i]; 14744 14745 /*******************/ 14746 /* FP STATUS BLOCK */ 14747 /*******************/ 14748 14749 bxe_dma_free(sc, &fp->sb_dma); 14750 memset(&fp->status_block, 0, sizeof(fp->status_block)); 14751 14752 /******************/ 14753 /* FP TX BD CHAIN */ 14754 /******************/ 14755 14756 bxe_dma_free(sc, &fp->tx_dma); 14757 fp->tx_chain = NULL; 14758 14759 /******************/ 14760 /* FP RX BD CHAIN */ 14761 /******************/ 14762 14763 bxe_dma_free(sc, &fp->rx_dma); 14764 fp->rx_chain = NULL; 14765 14766 /*******************/ 14767 /* FP RX RCQ CHAIN */ 14768 /*******************/ 14769 14770 bxe_dma_free(sc, &fp->rcq_dma); 14771 fp->rcq_chain = NULL; 14772 14773 /*******************/ 14774 /* FP RX SGE CHAIN */ 14775 /*******************/ 14776 14777 bxe_dma_free(sc, &fp->rx_sge_dma); 14778 fp->rx_sge_chain = NULL; 14779 14780 /***********************/ 14781 /* FP TX MBUF DMA MAPS */ 14782 /***********************/ 14783 14784 if (fp->tx_mbuf_tag != NULL) { 14785 for (j = 0; j < TX_BD_TOTAL; j++) { 14786 if (fp->tx_mbuf_chain[j].m_map != NULL) { 14787 bus_dmamap_unload(fp->tx_mbuf_tag, 14788 fp->tx_mbuf_chain[j].m_map); 14789 bus_dmamap_destroy(fp->tx_mbuf_tag, 14790 fp->tx_mbuf_chain[j].m_map); 14791 } 14792 } 14793 14794 bus_dma_tag_destroy(fp->tx_mbuf_tag); 14795 fp->tx_mbuf_tag = NULL; 14796 } 14797 14798 /***********************/ 14799 /* FP RX MBUF DMA MAPS */ 14800 /***********************/ 14801 14802 if (fp->rx_mbuf_tag != NULL) { 14803 for (j = 0; j < RX_BD_TOTAL; j++) { 14804 if (fp->rx_mbuf_chain[j].m_map != NULL) { 14805 bus_dmamap_unload(fp->rx_mbuf_tag, 14806 fp->rx_mbuf_chain[j].m_map); 14807 bus_dmamap_destroy(fp->rx_mbuf_tag, 14808 fp->rx_mbuf_chain[j].m_map); 14809 } 14810 } 14811 14812 if (fp->rx_mbuf_spare_map != NULL) { 14813 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14814 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 14815 } 14816 14817 /***************************/ 14818 /* FP RX TPA MBUF DMA MAPS */ 14819 /***************************/ 14820 14821 max_agg_queues = MAX_AGG_QS(sc); 14822 14823 for (j = 0; j < max_agg_queues; j++) { 14824 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 14825 bus_dmamap_unload(fp->rx_mbuf_tag, 14826 fp->rx_tpa_info[j].bd.m_map); 14827 bus_dmamap_destroy(fp->rx_mbuf_tag, 14828 fp->rx_tpa_info[j].bd.m_map); 14829 } 14830 } 14831 14832 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 14833 bus_dmamap_unload(fp->rx_mbuf_tag, 14834 fp->rx_tpa_info_mbuf_spare_map); 14835 bus_dmamap_destroy(fp->rx_mbuf_tag, 14836 fp->rx_tpa_info_mbuf_spare_map); 14837 } 14838 14839 bus_dma_tag_destroy(fp->rx_mbuf_tag); 14840 fp->rx_mbuf_tag = NULL; 14841 } 14842 14843 /***************************/ 14844 /* FP RX SGE MBUF DMA MAPS */ 14845 /***************************/ 14846 14847 if (fp->rx_sge_mbuf_tag != NULL) { 14848 for (j = 0; j < RX_SGE_TOTAL; j++) { 14849 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 14850 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14851 fp->rx_sge_mbuf_chain[j].m_map); 14852 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14853 fp->rx_sge_mbuf_chain[j].m_map); 14854 } 14855 } 14856 14857 if (fp->rx_sge_mbuf_spare_map != NULL) { 14858 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 14859 fp->rx_sge_mbuf_spare_map); 14860 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 14861 fp->rx_sge_mbuf_spare_map); 14862 } 14863 14864 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 14865 fp->rx_sge_mbuf_tag = NULL; 14866 } 14867 } 14868 14869 /***************************/ 14870 /* FW DECOMPRESSION BUFFER */ 14871 /***************************/ 14872 14873 bxe_dma_free(sc, &sc->gz_buf_dma); 14874 sc->gz_buf = NULL; 14875 free(sc->gz_strm, M_DEVBUF); 14876 sc->gz_strm = NULL; 14877 14878 /*******************/ 14879 /* SLOW PATH QUEUE */ 14880 /*******************/ 14881 14882 bxe_dma_free(sc, &sc->spq_dma); 14883 sc->spq = NULL; 14884 14885 /*************/ 14886 /* SLOW PATH */ 14887 /*************/ 14888 14889 bxe_dma_free(sc, &sc->sp_dma); 14890 sc->sp = NULL; 14891 14892 /***************/ 14893 /* EVENT QUEUE */ 14894 /***************/ 14895 14896 bxe_dma_free(sc, &sc->eq_dma); 14897 sc->eq = NULL; 14898 14899 /************************/ 14900 /* DEFAULT STATUS BLOCK */ 14901 /************************/ 14902 14903 bxe_dma_free(sc, &sc->def_sb_dma); 14904 sc->def_sb = NULL; 14905 14906 bus_dma_tag_destroy(sc->parent_dma_tag); 14907 sc->parent_dma_tag = NULL; 14908 } 14909 14910 /* 14911 * Previous driver DMAE transaction may have occurred when pre-boot stage 14912 * ended and boot began. This would invalidate the addresses of the 14913 * transaction, resulting in was-error bit set in the PCI causing all 14914 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 14915 * the interrupt which detected this from the pglueb and the was-done bit 14916 */ 14917 static void 14918 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 14919 { 14920 uint32_t val; 14921 14922 if (!CHIP_IS_E1x(sc)) { 14923 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 14924 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 14925 BLOGD(sc, DBG_LOAD, 14926 "Clearing 'was-error' bit that was set in pglueb"); 14927 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 14928 } 14929 } 14930 } 14931 14932 static int 14933 bxe_prev_mcp_done(struct bxe_softc *sc) 14934 { 14935 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 14936 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 14937 if (!rc) { 14938 BLOGE(sc, "MCP response failure, aborting\n"); 14939 return (-1); 14940 } 14941 14942 return (0); 14943 } 14944 14945 static struct bxe_prev_list_node * 14946 bxe_prev_path_get_entry(struct bxe_softc *sc) 14947 { 14948 struct bxe_prev_list_node *tmp; 14949 14950 LIST_FOREACH(tmp, &bxe_prev_list, node) { 14951 if ((sc->pcie_bus == tmp->bus) && 14952 (sc->pcie_device == tmp->slot) && 14953 (SC_PATH(sc) == tmp->path)) { 14954 return (tmp); 14955 } 14956 } 14957 14958 return (NULL); 14959 } 14960 14961 static uint8_t 14962 bxe_prev_is_path_marked(struct bxe_softc *sc) 14963 { 14964 struct bxe_prev_list_node *tmp; 14965 int rc = FALSE; 14966 14967 mtx_lock(&bxe_prev_mtx); 14968 14969 tmp = bxe_prev_path_get_entry(sc); 14970 if (tmp) { 14971 if (tmp->aer) { 14972 BLOGD(sc, DBG_LOAD, 14973 "Path %d/%d/%d was marked by AER\n", 14974 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14975 } else { 14976 rc = TRUE; 14977 BLOGD(sc, DBG_LOAD, 14978 "Path %d/%d/%d was already cleaned from previous drivers\n", 14979 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 14980 } 14981 } 14982 14983 mtx_unlock(&bxe_prev_mtx); 14984 14985 return (rc); 14986 } 14987 14988 static int 14989 bxe_prev_mark_path(struct bxe_softc *sc, 14990 uint8_t after_undi) 14991 { 14992 struct bxe_prev_list_node *tmp; 14993 14994 mtx_lock(&bxe_prev_mtx); 14995 14996 /* Check whether the entry for this path already exists */ 14997 tmp = bxe_prev_path_get_entry(sc); 14998 if (tmp) { 14999 if (!tmp->aer) { 15000 BLOGD(sc, DBG_LOAD, 15001 "Re-marking AER in path %d/%d/%d\n", 15002 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15003 } else { 15004 BLOGD(sc, DBG_LOAD, 15005 "Removing AER indication from path %d/%d/%d\n", 15006 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15007 tmp->aer = 0; 15008 } 15009 15010 mtx_unlock(&bxe_prev_mtx); 15011 return (0); 15012 } 15013 15014 mtx_unlock(&bxe_prev_mtx); 15015 15016 /* Create an entry for this path and add it */ 15017 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15018 (M_NOWAIT | M_ZERO)); 15019 if (!tmp) { 15020 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15021 return (-1); 15022 } 15023 15024 tmp->bus = sc->pcie_bus; 15025 tmp->slot = sc->pcie_device; 15026 tmp->path = SC_PATH(sc); 15027 tmp->aer = 0; 15028 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15029 15030 mtx_lock(&bxe_prev_mtx); 15031 15032 BLOGD(sc, DBG_LOAD, 15033 "Marked path %d/%d/%d - finished previous unload\n", 15034 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15035 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15036 15037 mtx_unlock(&bxe_prev_mtx); 15038 15039 return (0); 15040 } 15041 15042 static int 15043 bxe_do_flr(struct bxe_softc *sc) 15044 { 15045 int i; 15046 15047 /* only E2 and onwards support FLR */ 15048 if (CHIP_IS_E1x(sc)) { 15049 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15050 return (-1); 15051 } 15052 15053 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15054 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15055 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15056 sc->devinfo.bc_ver); 15057 return (-1); 15058 } 15059 15060 /* Wait for Transaction Pending bit clean */ 15061 for (i = 0; i < 4; i++) { 15062 if (i) { 15063 DELAY(((1 << (i - 1)) * 100) * 1000); 15064 } 15065 15066 if (!bxe_is_pcie_pending(sc)) { 15067 goto clear; 15068 } 15069 } 15070 15071 BLOGE(sc, "PCIE transaction is not cleared, " 15072 "proceeding with reset anyway\n"); 15073 15074 clear: 15075 15076 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15077 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15078 15079 return (0); 15080 } 15081 15082 struct bxe_mac_vals { 15083 uint32_t xmac_addr; 15084 uint32_t xmac_val; 15085 uint32_t emac_addr; 15086 uint32_t emac_val; 15087 uint32_t umac_addr; 15088 uint32_t umac_val; 15089 uint32_t bmac_addr; 15090 uint32_t bmac_val[2]; 15091 }; 15092 15093 static void 15094 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15095 struct bxe_mac_vals *vals) 15096 { 15097 uint32_t val, base_addr, offset, mask, reset_reg; 15098 uint8_t mac_stopped = FALSE; 15099 uint8_t port = SC_PORT(sc); 15100 uint32_t wb_data[2]; 15101 15102 /* reset addresses as they also mark which values were changed */ 15103 vals->bmac_addr = 0; 15104 vals->umac_addr = 0; 15105 vals->xmac_addr = 0; 15106 vals->emac_addr = 0; 15107 15108 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15109 15110 if (!CHIP_IS_E3(sc)) { 15111 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15112 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15113 if ((mask & reset_reg) && val) { 15114 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15115 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15116 : NIG_REG_INGRESS_BMAC0_MEM; 15117 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15118 : BIGMAC_REGISTER_BMAC_CONTROL; 15119 15120 /* 15121 * use rd/wr since we cannot use dmae. This is safe 15122 * since MCP won't access the bus due to the request 15123 * to unload, and no function on the path can be 15124 * loaded at this time. 15125 */ 15126 wb_data[0] = REG_RD(sc, base_addr + offset); 15127 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15128 vals->bmac_addr = base_addr + offset; 15129 vals->bmac_val[0] = wb_data[0]; 15130 vals->bmac_val[1] = wb_data[1]; 15131 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15132 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15133 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15134 } 15135 15136 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15137 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15138 vals->emac_val = REG_RD(sc, vals->emac_addr); 15139 REG_WR(sc, vals->emac_addr, 0); 15140 mac_stopped = TRUE; 15141 } else { 15142 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15143 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15144 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15145 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15146 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15147 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15148 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15149 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15150 REG_WR(sc, vals->xmac_addr, 0); 15151 mac_stopped = TRUE; 15152 } 15153 15154 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15155 if (mask & reset_reg) { 15156 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15157 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15158 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15159 vals->umac_val = REG_RD(sc, vals->umac_addr); 15160 REG_WR(sc, vals->umac_addr, 0); 15161 mac_stopped = TRUE; 15162 } 15163 } 15164 15165 if (mac_stopped) { 15166 DELAY(20000); 15167 } 15168 } 15169 15170 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15171 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15172 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15173 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15174 15175 static void 15176 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15177 uint8_t port, 15178 uint8_t inc) 15179 { 15180 uint16_t rcq, bd; 15181 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15182 15183 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15184 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15185 15186 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15187 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15188 15189 BLOGD(sc, DBG_LOAD, 15190 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15191 port, bd, rcq); 15192 } 15193 15194 static int 15195 bxe_prev_unload_common(struct bxe_softc *sc) 15196 { 15197 uint32_t reset_reg, tmp_reg = 0, rc; 15198 uint8_t prev_undi = FALSE; 15199 struct bxe_mac_vals mac_vals; 15200 uint32_t timer_count = 1000; 15201 uint32_t prev_brb; 15202 15203 /* 15204 * It is possible a previous function received 'common' answer, 15205 * but hasn't loaded yet, therefore creating a scenario of 15206 * multiple functions receiving 'common' on the same path. 15207 */ 15208 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15209 15210 memset(&mac_vals, 0, sizeof(mac_vals)); 15211 15212 if (bxe_prev_is_path_marked(sc)) { 15213 return (bxe_prev_mcp_done(sc)); 15214 } 15215 15216 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15217 15218 /* Reset should be performed after BRB is emptied */ 15219 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15220 /* Close the MAC Rx to prevent BRB from filling up */ 15221 bxe_prev_unload_close_mac(sc, &mac_vals); 15222 15223 /* close LLH filters towards the BRB */ 15224 elink_set_rx_filter(&sc->link_params, 0); 15225 15226 /* 15227 * Check if the UNDI driver was previously loaded. 15228 * UNDI driver initializes CID offset for normal bell to 0x7 15229 */ 15230 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15231 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15232 if (tmp_reg == 0x7) { 15233 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15234 prev_undi = TRUE; 15235 /* clear the UNDI indication */ 15236 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15237 /* clear possible idle check errors */ 15238 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15239 } 15240 } 15241 15242 /* wait until BRB is empty */ 15243 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15244 while (timer_count) { 15245 prev_brb = tmp_reg; 15246 15247 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15248 if (!tmp_reg) { 15249 break; 15250 } 15251 15252 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15253 15254 /* reset timer as long as BRB actually gets emptied */ 15255 if (prev_brb > tmp_reg) { 15256 timer_count = 1000; 15257 } else { 15258 timer_count--; 15259 } 15260 15261 /* If UNDI resides in memory, manually increment it */ 15262 if (prev_undi) { 15263 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15264 } 15265 15266 DELAY(10); 15267 } 15268 15269 if (!timer_count) { 15270 BLOGE(sc, "Failed to empty BRB\n"); 15271 } 15272 } 15273 15274 /* No packets are in the pipeline, path is ready for reset */ 15275 bxe_reset_common(sc); 15276 15277 if (mac_vals.xmac_addr) { 15278 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15279 } 15280 if (mac_vals.umac_addr) { 15281 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15282 } 15283 if (mac_vals.emac_addr) { 15284 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15285 } 15286 if (mac_vals.bmac_addr) { 15287 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15288 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15289 } 15290 15291 rc = bxe_prev_mark_path(sc, prev_undi); 15292 if (rc) { 15293 bxe_prev_mcp_done(sc); 15294 return (rc); 15295 } 15296 15297 return (bxe_prev_mcp_done(sc)); 15298 } 15299 15300 static int 15301 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15302 { 15303 int rc; 15304 15305 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15306 15307 /* Test if previous unload process was already finished for this path */ 15308 if (bxe_prev_is_path_marked(sc)) { 15309 return (bxe_prev_mcp_done(sc)); 15310 } 15311 15312 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15313 15314 /* 15315 * If function has FLR capabilities, and existing FW version matches 15316 * the one required, then FLR will be sufficient to clean any residue 15317 * left by previous driver 15318 */ 15319 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15320 if (!rc) { 15321 /* fw version is good */ 15322 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15323 rc = bxe_do_flr(sc); 15324 } 15325 15326 if (!rc) { 15327 /* FLR was performed */ 15328 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15329 return (0); 15330 } 15331 15332 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15333 15334 /* Close the MCP request, return failure*/ 15335 rc = bxe_prev_mcp_done(sc); 15336 if (!rc) { 15337 rc = BXE_PREV_WAIT_NEEDED; 15338 } 15339 15340 return (rc); 15341 } 15342 15343 static int 15344 bxe_prev_unload(struct bxe_softc *sc) 15345 { 15346 int time_counter = 10; 15347 uint32_t fw, hw_lock_reg, hw_lock_val; 15348 uint32_t rc = 0; 15349 15350 /* 15351 * Clear HW from errors which may have resulted from an interrupted 15352 * DMAE transaction. 15353 */ 15354 bxe_prev_interrupted_dmae(sc); 15355 15356 /* Release previously held locks */ 15357 hw_lock_reg = 15358 (SC_FUNC(sc) <= 5) ? 15359 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15360 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15361 15362 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15363 if (hw_lock_val) { 15364 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15365 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15366 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15367 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15368 } 15369 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15370 REG_WR(sc, hw_lock_reg, 0xffffffff); 15371 } else { 15372 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15373 } 15374 15375 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15376 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15377 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15378 } 15379 15380 do { 15381 /* Lock MCP using an unload request */ 15382 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15383 if (!fw) { 15384 BLOGE(sc, "MCP response failure, aborting\n"); 15385 rc = -1; 15386 break; 15387 } 15388 15389 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15390 rc = bxe_prev_unload_common(sc); 15391 break; 15392 } 15393 15394 /* non-common reply from MCP night require looping */ 15395 rc = bxe_prev_unload_uncommon(sc); 15396 if (rc != BXE_PREV_WAIT_NEEDED) { 15397 break; 15398 } 15399 15400 DELAY(20000); 15401 } while (--time_counter); 15402 15403 if (!time_counter || rc) { 15404 BLOGE(sc, "Failed to unload previous driver!" 15405 " time_counter %d rc %d\n", time_counter, rc); 15406 rc = -1; 15407 } 15408 15409 return (rc); 15410 } 15411 15412 void 15413 bxe_dcbx_set_state(struct bxe_softc *sc, 15414 uint8_t dcb_on, 15415 uint32_t dcbx_enabled) 15416 { 15417 if (!CHIP_IS_E1x(sc)) { 15418 sc->dcb_state = dcb_on; 15419 sc->dcbx_enabled = dcbx_enabled; 15420 } else { 15421 sc->dcb_state = FALSE; 15422 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15423 } 15424 BLOGD(sc, DBG_LOAD, 15425 "DCB state [%s:%s]\n", 15426 dcb_on ? "ON" : "OFF", 15427 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15428 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15429 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15430 "on-chip with negotiation" : "invalid"); 15431 } 15432 15433 /* must be called after sriov-enable */ 15434 static int 15435 bxe_set_qm_cid_count(struct bxe_softc *sc) 15436 { 15437 int cid_count = BXE_L2_MAX_CID(sc); 15438 15439 if (IS_SRIOV(sc)) { 15440 cid_count += BXE_VF_CIDS; 15441 } 15442 15443 if (CNIC_SUPPORT(sc)) { 15444 cid_count += CNIC_CID_MAX; 15445 } 15446 15447 return (roundup(cid_count, QM_CID_ROUND)); 15448 } 15449 15450 static void 15451 bxe_init_multi_cos(struct bxe_softc *sc) 15452 { 15453 int pri, cos; 15454 15455 uint32_t pri_map = 0; /* XXX change to user config */ 15456 15457 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15458 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15459 if (cos < sc->max_cos) { 15460 sc->prio_to_cos[pri] = cos; 15461 } else { 15462 BLOGW(sc, "Invalid COS %d for priority %d " 15463 "(max COS is %d), setting to 0\n", 15464 cos, pri, (sc->max_cos - 1)); 15465 sc->prio_to_cos[pri] = 0; 15466 } 15467 } 15468 } 15469 15470 static int 15471 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15472 { 15473 struct bxe_softc *sc; 15474 int error, result; 15475 15476 result = 0; 15477 error = sysctl_handle_int(oidp, &result, 0, req); 15478 15479 if (error || !req->newptr) { 15480 return (error); 15481 } 15482 15483 if (result == 1) { 15484 uint32_t temp; 15485 sc = (struct bxe_softc *)arg1; 15486 15487 BLOGI(sc, "... dumping driver state ...\n"); 15488 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15489 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15490 } 15491 15492 return (error); 15493 } 15494 15495 static int 15496 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15497 { 15498 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15499 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15500 uint32_t *offset; 15501 uint64_t value = 0; 15502 int index = (int)arg2; 15503 15504 if (index >= BXE_NUM_ETH_STATS) { 15505 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15506 return (-1); 15507 } 15508 15509 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15510 15511 switch (bxe_eth_stats_arr[index].size) { 15512 case 4: 15513 value = (uint64_t)*offset; 15514 break; 15515 case 8: 15516 value = HILO_U64(*offset, *(offset + 1)); 15517 break; 15518 default: 15519 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15520 index, bxe_eth_stats_arr[index].size); 15521 return (-1); 15522 } 15523 15524 return (sysctl_handle_64(oidp, &value, 0, req)); 15525 } 15526 15527 static int 15528 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15529 { 15530 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15531 uint32_t *eth_stats; 15532 uint32_t *offset; 15533 uint64_t value = 0; 15534 uint32_t q_stat = (uint32_t)arg2; 15535 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15536 uint32_t index = (q_stat & 0xffff); 15537 15538 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15539 15540 if (index >= BXE_NUM_ETH_Q_STATS) { 15541 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15542 return (-1); 15543 } 15544 15545 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15546 15547 switch (bxe_eth_q_stats_arr[index].size) { 15548 case 4: 15549 value = (uint64_t)*offset; 15550 break; 15551 case 8: 15552 value = HILO_U64(*offset, *(offset + 1)); 15553 break; 15554 default: 15555 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15556 index, bxe_eth_q_stats_arr[index].size); 15557 return (-1); 15558 } 15559 15560 return (sysctl_handle_64(oidp, &value, 0, req)); 15561 } 15562 15563 static void 15564 bxe_add_sysctls(struct bxe_softc *sc) 15565 { 15566 struct sysctl_ctx_list *ctx; 15567 struct sysctl_oid_list *children; 15568 struct sysctl_oid *queue_top, *queue; 15569 struct sysctl_oid_list *queue_top_children, *queue_children; 15570 char queue_num_buf[32]; 15571 uint32_t q_stat; 15572 int i, j; 15573 15574 ctx = device_get_sysctl_ctx(sc->dev); 15575 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 15576 15577 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 15578 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 15579 "version"); 15580 15581 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 15582 BCM_5710_FW_MAJOR_VERSION, 15583 BCM_5710_FW_MINOR_VERSION, 15584 BCM_5710_FW_REVISION_VERSION, 15585 BCM_5710_FW_ENGINEERING_VERSION); 15586 15587 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 15588 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 15589 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 15590 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 15591 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 15592 "Unknown")); 15593 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 15594 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 15595 "multifunction vnics per port"); 15596 15597 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 15598 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 15599 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 15600 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 15601 "???GT/s"), 15602 sc->devinfo.pcie_link_width); 15603 15604 sc->debug = bxe_debug; 15605 15606 #if __FreeBSD_version >= 900000 15607 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15608 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 15609 "bootcode version"); 15610 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15611 CTLFLAG_RD, sc->fw_ver_str, 0, 15612 "firmware version"); 15613 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15614 CTLFLAG_RD, sc->mf_mode_str, 0, 15615 "multifunction mode"); 15616 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15617 CTLFLAG_RD, sc->mac_addr_str, 0, 15618 "mac address"); 15619 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15620 CTLFLAG_RD, sc->pci_link_str, 0, 15621 "pci link status"); 15622 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 15623 CTLFLAG_RW, &sc->debug, 15624 "debug logging mode"); 15625 #else 15626 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 15627 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 15628 "bootcode version"); 15629 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 15630 CTLFLAG_RD, &sc->fw_ver_str, 0, 15631 "firmware version"); 15632 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 15633 CTLFLAG_RD, &sc->mf_mode_str, 0, 15634 "multifunction mode"); 15635 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 15636 CTLFLAG_RD, &sc->mac_addr_str, 0, 15637 "mac address"); 15638 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 15639 CTLFLAG_RD, &sc->pci_link_str, 0, 15640 "pci link status"); 15641 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 15642 CTLFLAG_RW, &sc->debug, 0, 15643 "debug logging mode"); 15644 #endif /* #if __FreeBSD_version >= 900000 */ 15645 15646 sc->trigger_grcdump = 0; 15647 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 15648 CTLFLAG_RW, &sc->trigger_grcdump, 0, 15649 "trigger grcdump should be invoked" 15650 " before collecting grcdump"); 15651 15652 sc->grcdump_started = 0; 15653 sc->grcdump_done = 0; 15654 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 15655 CTLFLAG_RD, &sc->grcdump_done, 0, 15656 "set by driver when grcdump is done"); 15657 15658 sc->rx_budget = bxe_rx_budget; 15659 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 15660 CTLFLAG_RW, &sc->rx_budget, 0, 15661 "rx processing budget"); 15662 15663 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 15664 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 15665 bxe_sysctl_state, "IU", "dump driver state"); 15666 15667 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 15668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 15669 bxe_eth_stats_arr[i].string, 15670 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 15671 bxe_sysctl_eth_stat, "LU", 15672 bxe_eth_stats_arr[i].string); 15673 } 15674 15675 /* add a new parent node for all queues "dev.bxe.#.queue" */ 15676 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 15677 CTLFLAG_RD, NULL, "queue"); 15678 queue_top_children = SYSCTL_CHILDREN(queue_top); 15679 15680 for (i = 0; i < sc->num_queues; i++) { 15681 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 15682 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 15683 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 15684 queue_num_buf, CTLFLAG_RD, NULL, 15685 "single queue"); 15686 queue_children = SYSCTL_CHILDREN(queue); 15687 15688 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 15689 q_stat = ((i << 16) | j); 15690 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 15691 bxe_eth_q_stats_arr[j].string, 15692 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 15693 bxe_sysctl_eth_q_stat, "LU", 15694 bxe_eth_q_stats_arr[j].string); 15695 } 15696 } 15697 } 15698 15699 static int 15700 bxe_alloc_buf_rings(struct bxe_softc *sc) 15701 { 15702 #if __FreeBSD_version >= 800000 15703 15704 int i; 15705 struct bxe_fastpath *fp; 15706 15707 for (i = 0; i < sc->num_queues; i++) { 15708 15709 fp = &sc->fp[i]; 15710 15711 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 15712 M_NOWAIT, &fp->tx_mtx); 15713 if (fp->tx_br == NULL) 15714 return (-1); 15715 } 15716 #endif 15717 return (0); 15718 } 15719 15720 static void 15721 bxe_free_buf_rings(struct bxe_softc *sc) 15722 { 15723 #if __FreeBSD_version >= 800000 15724 15725 int i; 15726 struct bxe_fastpath *fp; 15727 15728 for (i = 0; i < sc->num_queues; i++) { 15729 15730 fp = &sc->fp[i]; 15731 15732 if (fp->tx_br) { 15733 buf_ring_free(fp->tx_br, M_DEVBUF); 15734 fp->tx_br = NULL; 15735 } 15736 } 15737 15738 #endif 15739 } 15740 15741 static void 15742 bxe_init_fp_mutexs(struct bxe_softc *sc) 15743 { 15744 int i; 15745 struct bxe_fastpath *fp; 15746 15747 for (i = 0; i < sc->num_queues; i++) { 15748 15749 fp = &sc->fp[i]; 15750 15751 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 15752 "bxe%d_fp%d_tx_lock", sc->unit, i); 15753 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 15754 15755 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 15756 "bxe%d_fp%d_rx_lock", sc->unit, i); 15757 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 15758 } 15759 } 15760 15761 static void 15762 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 15763 { 15764 int i; 15765 struct bxe_fastpath *fp; 15766 15767 for (i = 0; i < sc->num_queues; i++) { 15768 15769 fp = &sc->fp[i]; 15770 15771 if (mtx_initialized(&fp->tx_mtx)) { 15772 mtx_destroy(&fp->tx_mtx); 15773 } 15774 15775 if (mtx_initialized(&fp->rx_mtx)) { 15776 mtx_destroy(&fp->rx_mtx); 15777 } 15778 } 15779 } 15780 15781 15782 /* 15783 * Device attach function. 15784 * 15785 * Allocates device resources, performs secondary chip identification, and 15786 * initializes driver instance variables. This function is called from driver 15787 * load after a successful probe. 15788 * 15789 * Returns: 15790 * 0 = Success, >0 = Failure 15791 */ 15792 static int 15793 bxe_attach(device_t dev) 15794 { 15795 struct bxe_softc *sc; 15796 15797 sc = device_get_softc(dev); 15798 15799 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 15800 15801 sc->state = BXE_STATE_CLOSED; 15802 15803 sc->dev = dev; 15804 sc->unit = device_get_unit(dev); 15805 15806 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 15807 15808 sc->pcie_bus = pci_get_bus(dev); 15809 sc->pcie_device = pci_get_slot(dev); 15810 sc->pcie_func = pci_get_function(dev); 15811 15812 /* enable bus master capability */ 15813 pci_enable_busmaster(dev); 15814 15815 /* get the BARs */ 15816 if (bxe_allocate_bars(sc) != 0) { 15817 return (ENXIO); 15818 } 15819 15820 /* initialize the mutexes */ 15821 bxe_init_mutexes(sc); 15822 15823 /* prepare the periodic callout */ 15824 callout_init(&sc->periodic_callout, 0); 15825 15826 /* prepare the chip taskqueue */ 15827 sc->chip_tq_flags = CHIP_TQ_NONE; 15828 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 15829 "bxe%d_chip_tq", sc->unit); 15830 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 15831 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 15832 taskqueue_thread_enqueue, 15833 &sc->chip_tq); 15834 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 15835 "%s", sc->chip_tq_name); 15836 15837 /* get device info and set params */ 15838 if (bxe_get_device_info(sc) != 0) { 15839 BLOGE(sc, "getting device info\n"); 15840 bxe_deallocate_bars(sc); 15841 pci_disable_busmaster(dev); 15842 return (ENXIO); 15843 } 15844 15845 /* get final misc params */ 15846 bxe_get_params(sc); 15847 15848 /* set the default MTU (changed via ifconfig) */ 15849 sc->mtu = ETHERMTU; 15850 15851 bxe_set_modes_bitmap(sc); 15852 15853 /* XXX 15854 * If in AFEX mode and the function is configured for FCoE 15855 * then bail... no L2 allowed. 15856 */ 15857 15858 /* get phy settings from shmem and 'and' against admin settings */ 15859 bxe_get_phy_info(sc); 15860 15861 /* initialize the FreeBSD ifnet interface */ 15862 if (bxe_init_ifnet(sc) != 0) { 15863 bxe_release_mutexes(sc); 15864 bxe_deallocate_bars(sc); 15865 pci_disable_busmaster(dev); 15866 return (ENXIO); 15867 } 15868 15869 if (bxe_add_cdev(sc) != 0) { 15870 if (sc->ifp != NULL) { 15871 ether_ifdetach(sc->ifp); 15872 } 15873 ifmedia_removeall(&sc->ifmedia); 15874 bxe_release_mutexes(sc); 15875 bxe_deallocate_bars(sc); 15876 pci_disable_busmaster(dev); 15877 return (ENXIO); 15878 } 15879 15880 /* allocate device interrupts */ 15881 if (bxe_interrupt_alloc(sc) != 0) { 15882 bxe_del_cdev(sc); 15883 if (sc->ifp != NULL) { 15884 ether_ifdetach(sc->ifp); 15885 } 15886 ifmedia_removeall(&sc->ifmedia); 15887 bxe_release_mutexes(sc); 15888 bxe_deallocate_bars(sc); 15889 pci_disable_busmaster(dev); 15890 return (ENXIO); 15891 } 15892 15893 bxe_init_fp_mutexs(sc); 15894 15895 if (bxe_alloc_buf_rings(sc) != 0) { 15896 bxe_free_buf_rings(sc); 15897 bxe_interrupt_free(sc); 15898 bxe_del_cdev(sc); 15899 if (sc->ifp != NULL) { 15900 ether_ifdetach(sc->ifp); 15901 } 15902 ifmedia_removeall(&sc->ifmedia); 15903 bxe_release_mutexes(sc); 15904 bxe_deallocate_bars(sc); 15905 pci_disable_busmaster(dev); 15906 return (ENXIO); 15907 } 15908 15909 /* allocate ilt */ 15910 if (bxe_alloc_ilt_mem(sc) != 0) { 15911 bxe_free_buf_rings(sc); 15912 bxe_interrupt_free(sc); 15913 bxe_del_cdev(sc); 15914 if (sc->ifp != NULL) { 15915 ether_ifdetach(sc->ifp); 15916 } 15917 ifmedia_removeall(&sc->ifmedia); 15918 bxe_release_mutexes(sc); 15919 bxe_deallocate_bars(sc); 15920 pci_disable_busmaster(dev); 15921 return (ENXIO); 15922 } 15923 15924 /* allocate the host hardware/software hsi structures */ 15925 if (bxe_alloc_hsi_mem(sc) != 0) { 15926 bxe_free_ilt_mem(sc); 15927 bxe_free_buf_rings(sc); 15928 bxe_interrupt_free(sc); 15929 bxe_del_cdev(sc); 15930 if (sc->ifp != NULL) { 15931 ether_ifdetach(sc->ifp); 15932 } 15933 ifmedia_removeall(&sc->ifmedia); 15934 bxe_release_mutexes(sc); 15935 bxe_deallocate_bars(sc); 15936 pci_disable_busmaster(dev); 15937 return (ENXIO); 15938 } 15939 15940 /* need to reset chip if UNDI was active */ 15941 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 15942 /* init fw_seq */ 15943 sc->fw_seq = 15944 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 15945 DRV_MSG_SEQ_NUMBER_MASK); 15946 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 15947 bxe_prev_unload(sc); 15948 } 15949 15950 #if 1 15951 /* XXX */ 15952 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15953 #else 15954 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 15955 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 15956 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 15957 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 15958 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 15959 bxe_dcbx_init_params(sc); 15960 } else { 15961 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 15962 } 15963 #endif 15964 15965 /* calculate qm_cid_count */ 15966 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 15967 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 15968 15969 sc->max_cos = 1; 15970 bxe_init_multi_cos(sc); 15971 15972 bxe_add_sysctls(sc); 15973 15974 return (0); 15975 } 15976 15977 /* 15978 * Device detach function. 15979 * 15980 * Stops the controller, resets the controller, and releases resources. 15981 * 15982 * Returns: 15983 * 0 = Success, >0 = Failure 15984 */ 15985 static int 15986 bxe_detach(device_t dev) 15987 { 15988 struct bxe_softc *sc; 15989 if_t ifp; 15990 15991 sc = device_get_softc(dev); 15992 15993 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 15994 15995 ifp = sc->ifp; 15996 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 15997 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 15998 return(EBUSY); 15999 } 16000 16001 bxe_del_cdev(sc); 16002 16003 /* stop the periodic callout */ 16004 bxe_periodic_stop(sc); 16005 16006 /* stop the chip taskqueue */ 16007 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16008 if (sc->chip_tq) { 16009 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16010 taskqueue_free(sc->chip_tq); 16011 sc->chip_tq = NULL; 16012 } 16013 16014 /* stop and reset the controller if it was open */ 16015 if (sc->state != BXE_STATE_CLOSED) { 16016 BXE_CORE_LOCK(sc); 16017 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16018 sc->state = BXE_STATE_DISABLED; 16019 BXE_CORE_UNLOCK(sc); 16020 } 16021 16022 /* release the network interface */ 16023 if (ifp != NULL) { 16024 ether_ifdetach(ifp); 16025 } 16026 ifmedia_removeall(&sc->ifmedia); 16027 16028 /* XXX do the following based on driver state... */ 16029 16030 /* free the host hardware/software hsi structures */ 16031 bxe_free_hsi_mem(sc); 16032 16033 /* free ilt */ 16034 bxe_free_ilt_mem(sc); 16035 16036 bxe_free_buf_rings(sc); 16037 16038 /* release the interrupts */ 16039 bxe_interrupt_free(sc); 16040 16041 /* Release the mutexes*/ 16042 bxe_destroy_fp_mutexs(sc); 16043 bxe_release_mutexes(sc); 16044 16045 16046 /* Release the PCIe BAR mapped memory */ 16047 bxe_deallocate_bars(sc); 16048 16049 /* Release the FreeBSD interface. */ 16050 if (sc->ifp != NULL) { 16051 if_free(sc->ifp); 16052 } 16053 16054 pci_disable_busmaster(dev); 16055 16056 return (0); 16057 } 16058 16059 /* 16060 * Device shutdown function. 16061 * 16062 * Stops and resets the controller. 16063 * 16064 * Returns: 16065 * Nothing 16066 */ 16067 static int 16068 bxe_shutdown(device_t dev) 16069 { 16070 struct bxe_softc *sc; 16071 16072 sc = device_get_softc(dev); 16073 16074 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16075 16076 /* stop the periodic callout */ 16077 bxe_periodic_stop(sc); 16078 16079 BXE_CORE_LOCK(sc); 16080 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16081 BXE_CORE_UNLOCK(sc); 16082 16083 return (0); 16084 } 16085 16086 void 16087 bxe_igu_ack_sb(struct bxe_softc *sc, 16088 uint8_t igu_sb_id, 16089 uint8_t segment, 16090 uint16_t index, 16091 uint8_t op, 16092 uint8_t update) 16093 { 16094 uint32_t igu_addr = sc->igu_base_addr; 16095 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16096 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16097 } 16098 16099 static void 16100 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16101 uint8_t func, 16102 uint8_t idu_sb_id, 16103 uint8_t is_pf) 16104 { 16105 uint32_t data, ctl, cnt = 100; 16106 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16107 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16108 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16109 uint32_t sb_bit = 1 << (idu_sb_id%32); 16110 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16111 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16112 16113 /* Not supported in BC mode */ 16114 if (CHIP_INT_MODE_IS_BC(sc)) { 16115 return; 16116 } 16117 16118 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16119 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16120 IGU_REGULAR_CLEANUP_SET | 16121 IGU_REGULAR_BCLEANUP); 16122 16123 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16124 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16125 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16126 16127 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16128 data, igu_addr_data); 16129 REG_WR(sc, igu_addr_data, data); 16130 16131 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16132 BUS_SPACE_BARRIER_WRITE); 16133 mb(); 16134 16135 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16136 ctl, igu_addr_ctl); 16137 REG_WR(sc, igu_addr_ctl, ctl); 16138 16139 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16140 BUS_SPACE_BARRIER_WRITE); 16141 mb(); 16142 16143 /* wait for clean up to finish */ 16144 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16145 DELAY(20000); 16146 } 16147 16148 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16149 BLOGD(sc, DBG_LOAD, 16150 "Unable to finish IGU cleanup: " 16151 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16152 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16153 } 16154 } 16155 16156 static void 16157 bxe_igu_clear_sb(struct bxe_softc *sc, 16158 uint8_t idu_sb_id) 16159 { 16160 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16161 } 16162 16163 16164 16165 16166 16167 16168 16169 /*******************/ 16170 /* ECORE CALLBACKS */ 16171 /*******************/ 16172 16173 static void 16174 bxe_reset_common(struct bxe_softc *sc) 16175 { 16176 uint32_t val = 0x1400; 16177 16178 /* reset_common */ 16179 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16180 16181 if (CHIP_IS_E3(sc)) { 16182 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16183 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16184 } 16185 16186 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16187 } 16188 16189 static void 16190 bxe_common_init_phy(struct bxe_softc *sc) 16191 { 16192 uint32_t shmem_base[2]; 16193 uint32_t shmem2_base[2]; 16194 16195 /* Avoid common init in case MFW supports LFA */ 16196 if (SHMEM2_RD(sc, size) > 16197 (uint32_t)offsetof(struct shmem2_region, 16198 lfa_host_addr[SC_PORT(sc)])) { 16199 return; 16200 } 16201 16202 shmem_base[0] = sc->devinfo.shmem_base; 16203 shmem2_base[0] = sc->devinfo.shmem2_base; 16204 16205 if (!CHIP_IS_E1x(sc)) { 16206 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16207 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16208 } 16209 16210 bxe_acquire_phy_lock(sc); 16211 elink_common_init_phy(sc, shmem_base, shmem2_base, 16212 sc->devinfo.chip_id, 0); 16213 bxe_release_phy_lock(sc); 16214 } 16215 16216 static void 16217 bxe_pf_disable(struct bxe_softc *sc) 16218 { 16219 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16220 16221 val &= ~IGU_PF_CONF_FUNC_EN; 16222 16223 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16224 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16225 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16226 } 16227 16228 static void 16229 bxe_init_pxp(struct bxe_softc *sc) 16230 { 16231 uint16_t devctl; 16232 int r_order, w_order; 16233 16234 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16235 16236 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16237 16238 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16239 16240 if (sc->mrrs == -1) { 16241 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16242 } else { 16243 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16244 r_order = sc->mrrs; 16245 } 16246 16247 ecore_init_pxp_arb(sc, r_order, w_order); 16248 } 16249 16250 static uint32_t 16251 bxe_get_pretend_reg(struct bxe_softc *sc) 16252 { 16253 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16254 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16255 return (base + (SC_ABS_FUNC(sc)) * stride); 16256 } 16257 16258 /* 16259 * Called only on E1H or E2. 16260 * When pretending to be PF, the pretend value is the function number 0..7. 16261 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16262 * combination. 16263 */ 16264 static int 16265 bxe_pretend_func(struct bxe_softc *sc, 16266 uint16_t pretend_func_val) 16267 { 16268 uint32_t pretend_reg; 16269 16270 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16271 return (-1); 16272 } 16273 16274 /* get my own pretend register */ 16275 pretend_reg = bxe_get_pretend_reg(sc); 16276 REG_WR(sc, pretend_reg, pretend_func_val); 16277 REG_RD(sc, pretend_reg); 16278 return (0); 16279 } 16280 16281 static void 16282 bxe_iov_init_dmae(struct bxe_softc *sc) 16283 { 16284 return; 16285 } 16286 16287 static void 16288 bxe_iov_init_dq(struct bxe_softc *sc) 16289 { 16290 return; 16291 } 16292 16293 /* send a NIG loopback debug packet */ 16294 static void 16295 bxe_lb_pckt(struct bxe_softc *sc) 16296 { 16297 uint32_t wb_write[3]; 16298 16299 /* Ethernet source and destination addresses */ 16300 wb_write[0] = 0x55555555; 16301 wb_write[1] = 0x55555555; 16302 wb_write[2] = 0x20; /* SOP */ 16303 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16304 16305 /* NON-IP protocol */ 16306 wb_write[0] = 0x09000000; 16307 wb_write[1] = 0x55555555; 16308 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16309 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16310 } 16311 16312 /* 16313 * Some of the internal memories are not directly readable from the driver. 16314 * To test them we send debug packets. 16315 */ 16316 static int 16317 bxe_int_mem_test(struct bxe_softc *sc) 16318 { 16319 int factor; 16320 int count, i; 16321 uint32_t val = 0; 16322 16323 if (CHIP_REV_IS_FPGA(sc)) { 16324 factor = 120; 16325 } else if (CHIP_REV_IS_EMUL(sc)) { 16326 factor = 200; 16327 } else { 16328 factor = 1; 16329 } 16330 16331 /* disable inputs of parser neighbor blocks */ 16332 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16333 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16334 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16335 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16336 16337 /* write 0 to parser credits for CFC search request */ 16338 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16339 16340 /* send Ethernet packet */ 16341 bxe_lb_pckt(sc); 16342 16343 /* TODO do i reset NIG statistic? */ 16344 /* Wait until NIG register shows 1 packet of size 0x10 */ 16345 count = 1000 * factor; 16346 while (count) { 16347 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16348 val = *BXE_SP(sc, wb_data[0]); 16349 if (val == 0x10) { 16350 break; 16351 } 16352 16353 DELAY(10000); 16354 count--; 16355 } 16356 16357 if (val != 0x10) { 16358 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16359 return (-1); 16360 } 16361 16362 /* wait until PRS register shows 1 packet */ 16363 count = (1000 * factor); 16364 while (count) { 16365 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16366 if (val == 1) { 16367 break; 16368 } 16369 16370 DELAY(10000); 16371 count--; 16372 } 16373 16374 if (val != 0x1) { 16375 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16376 return (-2); 16377 } 16378 16379 /* Reset and init BRB, PRS */ 16380 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16381 DELAY(50000); 16382 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16383 DELAY(50000); 16384 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16385 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16386 16387 /* Disable inputs of parser neighbor blocks */ 16388 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16389 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16390 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16391 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16392 16393 /* Write 0 to parser credits for CFC search request */ 16394 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16395 16396 /* send 10 Ethernet packets */ 16397 for (i = 0; i < 10; i++) { 16398 bxe_lb_pckt(sc); 16399 } 16400 16401 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16402 count = (1000 * factor); 16403 while (count) { 16404 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16405 val = *BXE_SP(sc, wb_data[0]); 16406 if (val == 0xb0) { 16407 break; 16408 } 16409 16410 DELAY(10000); 16411 count--; 16412 } 16413 16414 if (val != 0xb0) { 16415 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16416 return (-3); 16417 } 16418 16419 /* Wait until PRS register shows 2 packets */ 16420 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16421 if (val != 2) { 16422 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16423 } 16424 16425 /* Write 1 to parser credits for CFC search request */ 16426 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16427 16428 /* Wait until PRS register shows 3 packets */ 16429 DELAY(10000 * factor); 16430 16431 /* Wait until NIG register shows 1 packet of size 0x10 */ 16432 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16433 if (val != 3) { 16434 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16435 } 16436 16437 /* clear NIG EOP FIFO */ 16438 for (i = 0; i < 11; i++) { 16439 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16440 } 16441 16442 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16443 if (val != 1) { 16444 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16445 return (-4); 16446 } 16447 16448 /* Reset and init BRB, PRS, NIG */ 16449 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16450 DELAY(50000); 16451 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16452 DELAY(50000); 16453 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16454 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16455 if (!CNIC_SUPPORT(sc)) { 16456 /* set NIC mode */ 16457 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16458 } 16459 16460 /* Enable inputs of parser neighbor blocks */ 16461 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16462 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16463 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16464 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16465 16466 return (0); 16467 } 16468 16469 static void 16470 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16471 { 16472 int is_required; 16473 uint32_t val; 16474 int port; 16475 16476 is_required = 0; 16477 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16478 SHARED_HW_CFG_FAN_FAILURE_MASK); 16479 16480 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16481 is_required = 1; 16482 } 16483 /* 16484 * The fan failure mechanism is usually related to the PHY type since 16485 * the power consumption of the board is affected by the PHY. Currently, 16486 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16487 */ 16488 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16489 for (port = PORT_0; port < PORT_MAX; port++) { 16490 is_required |= elink_fan_failure_det_req(sc, 16491 sc->devinfo.shmem_base, 16492 sc->devinfo.shmem2_base, 16493 port); 16494 } 16495 } 16496 16497 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16498 16499 if (is_required == 0) { 16500 return; 16501 } 16502 16503 /* Fan failure is indicated by SPIO 5 */ 16504 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16505 16506 /* set to active low mode */ 16507 val = REG_RD(sc, MISC_REG_SPIO_INT); 16508 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16509 REG_WR(sc, MISC_REG_SPIO_INT, val); 16510 16511 /* enable interrupt to signal the IGU */ 16512 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16513 val |= MISC_SPIO_SPIO5; 16514 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16515 } 16516 16517 static void 16518 bxe_enable_blocks_attention(struct bxe_softc *sc) 16519 { 16520 uint32_t val; 16521 16522 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16523 if (!CHIP_IS_E1x(sc)) { 16524 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16525 } else { 16526 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16527 } 16528 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16529 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16530 /* 16531 * mask read length error interrupts in brb for parser 16532 * (parsing unit and 'checksum and crc' unit) 16533 * these errors are legal (PU reads fixed length and CAC can cause 16534 * read length error on truncated packets) 16535 */ 16536 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16537 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16538 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16539 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16540 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16541 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16542 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16543 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16544 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16545 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16546 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16547 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16548 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16549 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16550 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16551 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16552 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16553 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16554 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16555 16556 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16557 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16558 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16559 if (!CHIP_IS_E1x(sc)) { 16560 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16561 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16562 } 16563 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16564 16565 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16566 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16567 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16568 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16569 16570 if (!CHIP_IS_E1x(sc)) { 16571 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16572 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16573 } 16574 16575 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16576 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16577 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16578 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16579 } 16580 16581 /** 16582 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16583 * 16584 * @sc: driver handle 16585 */ 16586 static int 16587 bxe_init_hw_common(struct bxe_softc *sc) 16588 { 16589 uint8_t abs_func_id; 16590 uint32_t val; 16591 16592 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 16593 SC_ABS_FUNC(sc)); 16594 16595 /* 16596 * take the RESET lock to protect undi_unload flow from accessing 16597 * registers while we are resetting the chip 16598 */ 16599 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16600 16601 bxe_reset_common(sc); 16602 16603 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 16604 16605 val = 0xfffc; 16606 if (CHIP_IS_E3(sc)) { 16607 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16608 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16609 } 16610 16611 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 16612 16613 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 16614 16615 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 16616 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 16617 16618 if (!CHIP_IS_E1x(sc)) { 16619 /* 16620 * 4-port mode or 2-port mode we need to turn off master-enable for 16621 * everyone. After that we turn it back on for self. So, we disregard 16622 * multi-function, and always disable all functions on the given path, 16623 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 16624 */ 16625 for (abs_func_id = SC_PATH(sc); 16626 abs_func_id < (E2_FUNC_MAX * 2); 16627 abs_func_id += 2) { 16628 if (abs_func_id == SC_ABS_FUNC(sc)) { 16629 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 16630 continue; 16631 } 16632 16633 bxe_pretend_func(sc, abs_func_id); 16634 16635 /* clear pf enable */ 16636 bxe_pf_disable(sc); 16637 16638 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16639 } 16640 } 16641 16642 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 16643 16644 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 16645 16646 if (CHIP_IS_E1(sc)) { 16647 /* 16648 * enable HW interrupt from PXP on USDM overflow 16649 * bit 16 on INT_MASK_0 16650 */ 16651 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16652 } 16653 16654 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 16655 bxe_init_pxp(sc); 16656 16657 #ifdef __BIG_ENDIAN 16658 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 16659 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 16660 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 16661 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 16662 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 16663 /* make sure this value is 0 */ 16664 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 16665 16666 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 16667 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 16668 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 16669 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 16670 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 16671 #endif 16672 16673 ecore_ilt_init_page_size(sc, INITOP_SET); 16674 16675 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 16676 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 16677 } 16678 16679 /* let the HW do it's magic... */ 16680 DELAY(100000); 16681 16682 /* finish PXP init */ 16683 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 16684 if (val != 1) { 16685 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 16686 val); 16687 return (-1); 16688 } 16689 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 16690 if (val != 1) { 16691 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 16692 return (-1); 16693 } 16694 16695 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 16696 16697 /* 16698 * Timer bug workaround for E2 only. We need to set the entire ILT to have 16699 * entries with value "0" and valid bit on. This needs to be done by the 16700 * first PF that is loaded in a path (i.e. common phase) 16701 */ 16702 if (!CHIP_IS_E1x(sc)) { 16703 /* 16704 * In E2 there is a bug in the timers block that can cause function 6 / 7 16705 * (i.e. vnic3) to start even if it is marked as "scan-off". 16706 * This occurs when a different function (func2,3) is being marked 16707 * as "scan-off". Real-life scenario for example: if a driver is being 16708 * load-unloaded while func6,7 are down. This will cause the timer to access 16709 * the ilt, translate to a logical address and send a request to read/write. 16710 * Since the ilt for the function that is down is not valid, this will cause 16711 * a translation error which is unrecoverable. 16712 * The Workaround is intended to make sure that when this happens nothing 16713 * fatal will occur. The workaround: 16714 * 1. First PF driver which loads on a path will: 16715 * a. After taking the chip out of reset, by using pretend, 16716 * it will write "0" to the following registers of 16717 * the other vnics. 16718 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16719 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 16720 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 16721 * And for itself it will write '1' to 16722 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 16723 * dmae-operations (writing to pram for example.) 16724 * note: can be done for only function 6,7 but cleaner this 16725 * way. 16726 * b. Write zero+valid to the entire ILT. 16727 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 16728 * VNIC3 (of that port). The range allocated will be the 16729 * entire ILT. This is needed to prevent ILT range error. 16730 * 2. Any PF driver load flow: 16731 * a. ILT update with the physical addresses of the allocated 16732 * logical pages. 16733 * b. Wait 20msec. - note that this timeout is needed to make 16734 * sure there are no requests in one of the PXP internal 16735 * queues with "old" ILT addresses. 16736 * c. PF enable in the PGLC. 16737 * d. Clear the was_error of the PF in the PGLC. (could have 16738 * occurred while driver was down) 16739 * e. PF enable in the CFC (WEAK + STRONG) 16740 * f. Timers scan enable 16741 * 3. PF driver unload flow: 16742 * a. Clear the Timers scan_en. 16743 * b. Polling for scan_on=0 for that PF. 16744 * c. Clear the PF enable bit in the PXP. 16745 * d. Clear the PF enable in the CFC (WEAK + STRONG) 16746 * e. Write zero+valid to all ILT entries (The valid bit must 16747 * stay set) 16748 * f. If this is VNIC 3 of a port then also init 16749 * first_timers_ilt_entry to zero and last_timers_ilt_entry 16750 * to the last enrty in the ILT. 16751 * 16752 * Notes: 16753 * Currently the PF error in the PGLC is non recoverable. 16754 * In the future the there will be a recovery routine for this error. 16755 * Currently attention is masked. 16756 * Having an MCP lock on the load/unload process does not guarantee that 16757 * there is no Timer disable during Func6/7 enable. This is because the 16758 * Timers scan is currently being cleared by the MCP on FLR. 16759 * Step 2.d can be done only for PF6/7 and the driver can also check if 16760 * there is error before clearing it. But the flow above is simpler and 16761 * more general. 16762 * All ILT entries are written by zero+valid and not just PF6/7 16763 * ILT entries since in the future the ILT entries allocation for 16764 * PF-s might be dynamic. 16765 */ 16766 struct ilt_client_info ilt_cli; 16767 struct ecore_ilt ilt; 16768 16769 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 16770 memset(&ilt, 0, sizeof(struct ecore_ilt)); 16771 16772 /* initialize dummy TM client */ 16773 ilt_cli.start = 0; 16774 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 16775 ilt_cli.client_num = ILT_CLIENT_TM; 16776 16777 /* 16778 * Step 1: set zeroes to all ilt page entries with valid bit on 16779 * Step 2: set the timers first/last ilt entry to point 16780 * to the entire range to prevent ILT range error for 3rd/4th 16781 * vnic (this code assumes existence of the vnic) 16782 * 16783 * both steps performed by call to ecore_ilt_client_init_op() 16784 * with dummy TM client 16785 * 16786 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 16787 * and his brother are split registers 16788 */ 16789 16790 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 16791 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 16792 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 16793 16794 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 16795 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 16796 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 16797 } 16798 16799 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 16800 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 16801 16802 if (!CHIP_IS_E1x(sc)) { 16803 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 16804 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 16805 16806 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 16807 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 16808 16809 /* let the HW do it's magic... */ 16810 do { 16811 DELAY(200000); 16812 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 16813 } while (factor-- && (val != 1)); 16814 16815 if (val != 1) { 16816 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 16817 return (-1); 16818 } 16819 } 16820 16821 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 16822 16823 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 16824 16825 bxe_iov_init_dmae(sc); 16826 16827 /* clean the DMAE memory */ 16828 sc->dmae_ready = 1; 16829 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 16830 16831 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 16832 16833 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 16834 16835 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 16836 16837 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 16838 16839 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 16840 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 16841 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 16842 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 16843 16844 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 16845 16846 /* QM queues pointers table */ 16847 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 16848 16849 /* soft reset pulse */ 16850 REG_WR(sc, QM_REG_SOFT_RESET, 1); 16851 REG_WR(sc, QM_REG_SOFT_RESET, 0); 16852 16853 if (CNIC_SUPPORT(sc)) 16854 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 16855 16856 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 16857 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 16858 if (!CHIP_REV_IS_SLOW(sc)) { 16859 /* enable hw interrupt from doorbell Q */ 16860 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16861 } 16862 16863 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16864 16865 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16866 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 16867 16868 if (!CHIP_IS_E1(sc)) { 16869 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 16870 } 16871 16872 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 16873 if (IS_MF_AFEX(sc)) { 16874 /* 16875 * configure that AFEX and VLAN headers must be 16876 * received in AFEX mode 16877 */ 16878 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 16879 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 16880 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 16881 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 16882 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 16883 } else { 16884 /* 16885 * Bit-map indicating which L2 hdrs may appear 16886 * after the basic Ethernet header 16887 */ 16888 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 16889 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16890 } 16891 } 16892 16893 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 16894 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 16895 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 16896 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 16897 16898 if (!CHIP_IS_E1x(sc)) { 16899 /* reset VFC memories */ 16900 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16901 VFC_MEMORIES_RST_REG_CAM_RST | 16902 VFC_MEMORIES_RST_REG_RAM_RST); 16903 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 16904 VFC_MEMORIES_RST_REG_CAM_RST | 16905 VFC_MEMORIES_RST_REG_RAM_RST); 16906 16907 DELAY(20000); 16908 } 16909 16910 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 16911 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 16912 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 16913 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 16914 16915 /* sync semi rtc */ 16916 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 16917 0x80000000); 16918 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 16919 0x80000000); 16920 16921 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 16922 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 16923 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 16924 16925 if (!CHIP_IS_E1x(sc)) { 16926 if (IS_MF_AFEX(sc)) { 16927 /* 16928 * configure that AFEX and VLAN headers must be 16929 * sent in AFEX mode 16930 */ 16931 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 16932 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 16933 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 16934 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 16935 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 16936 } else { 16937 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 16938 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 16939 } 16940 } 16941 16942 REG_WR(sc, SRC_REG_SOFT_RST, 1); 16943 16944 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 16945 16946 if (CNIC_SUPPORT(sc)) { 16947 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 16948 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 16949 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 16950 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 16951 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 16952 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 16953 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 16954 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 16955 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 16956 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 16957 } 16958 REG_WR(sc, SRC_REG_SOFT_RST, 0); 16959 16960 if (sizeof(union cdu_context) != 1024) { 16961 /* we currently assume that a context is 1024 bytes */ 16962 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 16963 (long)sizeof(union cdu_context)); 16964 } 16965 16966 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 16967 val = (4 << 24) + (0 << 12) + 1024; 16968 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 16969 16970 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 16971 16972 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 16973 /* enable context validation interrupt from CFC */ 16974 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16975 16976 /* set the thresholds to prevent CFC/CDU race */ 16977 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 16978 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 16979 16980 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 16981 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 16982 } 16983 16984 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 16985 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 16986 16987 /* Reset PCIE errors for debug */ 16988 REG_WR(sc, 0x2814, 0xffffffff); 16989 REG_WR(sc, 0x3820, 0xffffffff); 16990 16991 if (!CHIP_IS_E1x(sc)) { 16992 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 16993 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 16994 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 16995 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 16996 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 16997 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 16998 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 16999 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17000 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17001 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17002 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17003 } 17004 17005 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17006 17007 if (!CHIP_IS_E1(sc)) { 17008 /* in E3 this done in per-port section */ 17009 if (!CHIP_IS_E3(sc)) 17010 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17011 } 17012 17013 if (CHIP_IS_E1H(sc)) { 17014 /* not applicable for E2 (and above ...) */ 17015 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17016 } 17017 17018 if (CHIP_REV_IS_SLOW(sc)) { 17019 DELAY(200000); 17020 } 17021 17022 /* finish CFC init */ 17023 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17024 if (val != 1) { 17025 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17026 return (-1); 17027 } 17028 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17029 if (val != 1) { 17030 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17031 return (-1); 17032 } 17033 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17034 if (val != 1) { 17035 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17036 return (-1); 17037 } 17038 REG_WR(sc, CFC_REG_DEBUG0, 0); 17039 17040 if (CHIP_IS_E1(sc)) { 17041 /* read NIG statistic to see if this is our first up since powerup */ 17042 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17043 val = *BXE_SP(sc, wb_data[0]); 17044 17045 /* do internal memory self test */ 17046 if ((val == 0) && bxe_int_mem_test(sc)) { 17047 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17048 return (-1); 17049 } 17050 } 17051 17052 bxe_setup_fan_failure_detection(sc); 17053 17054 /* clear PXP2 attentions */ 17055 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17056 17057 bxe_enable_blocks_attention(sc); 17058 17059 if (!CHIP_REV_IS_SLOW(sc)) { 17060 ecore_enable_blocks_parity(sc); 17061 } 17062 17063 if (!BXE_NOMCP(sc)) { 17064 if (CHIP_IS_E1x(sc)) { 17065 bxe_common_init_phy(sc); 17066 } 17067 } 17068 17069 return (0); 17070 } 17071 17072 /** 17073 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17074 * 17075 * @sc: driver handle 17076 */ 17077 static int 17078 bxe_init_hw_common_chip(struct bxe_softc *sc) 17079 { 17080 int rc = bxe_init_hw_common(sc); 17081 17082 if (rc) { 17083 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17084 return (rc); 17085 } 17086 17087 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17088 if (!BXE_NOMCP(sc)) { 17089 bxe_common_init_phy(sc); 17090 } 17091 17092 return (0); 17093 } 17094 17095 static int 17096 bxe_init_hw_port(struct bxe_softc *sc) 17097 { 17098 int port = SC_PORT(sc); 17099 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17100 uint32_t low, high; 17101 uint32_t val; 17102 17103 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17104 17105 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17106 17107 ecore_init_block(sc, BLOCK_MISC, init_phase); 17108 ecore_init_block(sc, BLOCK_PXP, init_phase); 17109 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17110 17111 /* 17112 * Timers bug workaround: disables the pf_master bit in pglue at 17113 * common phase, we need to enable it here before any dmae access are 17114 * attempted. Therefore we manually added the enable-master to the 17115 * port phase (it also happens in the function phase) 17116 */ 17117 if (!CHIP_IS_E1x(sc)) { 17118 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17119 } 17120 17121 ecore_init_block(sc, BLOCK_ATC, init_phase); 17122 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17123 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17124 ecore_init_block(sc, BLOCK_QM, init_phase); 17125 17126 ecore_init_block(sc, BLOCK_TCM, init_phase); 17127 ecore_init_block(sc, BLOCK_UCM, init_phase); 17128 ecore_init_block(sc, BLOCK_CCM, init_phase); 17129 ecore_init_block(sc, BLOCK_XCM, init_phase); 17130 17131 /* QM cid (connection) count */ 17132 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17133 17134 if (CNIC_SUPPORT(sc)) { 17135 ecore_init_block(sc, BLOCK_TM, init_phase); 17136 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17137 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17138 } 17139 17140 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17141 17142 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17143 17144 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17145 if (IS_MF(sc)) { 17146 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17147 } else if (sc->mtu > 4096) { 17148 if (BXE_ONE_PORT(sc)) { 17149 low = 160; 17150 } else { 17151 val = sc->mtu; 17152 /* (24*1024 + val*4)/256 */ 17153 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17154 } 17155 } else { 17156 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17157 } 17158 high = (low + 56); /* 14*1024/256 */ 17159 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17160 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17161 } 17162 17163 if (CHIP_IS_MODE_4_PORT(sc)) { 17164 REG_WR(sc, SC_PORT(sc) ? 17165 BRB1_REG_MAC_GUARANTIED_1 : 17166 BRB1_REG_MAC_GUARANTIED_0, 40); 17167 } 17168 17169 ecore_init_block(sc, BLOCK_PRS, init_phase); 17170 if (CHIP_IS_E3B0(sc)) { 17171 if (IS_MF_AFEX(sc)) { 17172 /* configure headers for AFEX mode */ 17173 REG_WR(sc, SC_PORT(sc) ? 17174 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17175 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17176 REG_WR(sc, SC_PORT(sc) ? 17177 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17178 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17179 REG_WR(sc, SC_PORT(sc) ? 17180 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17181 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17182 } else { 17183 /* Ovlan exists only if we are in multi-function + 17184 * switch-dependent mode, in switch-independent there 17185 * is no ovlan headers 17186 */ 17187 REG_WR(sc, SC_PORT(sc) ? 17188 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17189 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17190 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17191 } 17192 } 17193 17194 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17195 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17196 ecore_init_block(sc, BLOCK_USDM, init_phase); 17197 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17198 17199 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17200 ecore_init_block(sc, BLOCK_USEM, init_phase); 17201 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17202 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17203 17204 ecore_init_block(sc, BLOCK_UPB, init_phase); 17205 ecore_init_block(sc, BLOCK_XPB, init_phase); 17206 17207 ecore_init_block(sc, BLOCK_PBF, init_phase); 17208 17209 if (CHIP_IS_E1x(sc)) { 17210 /* configure PBF to work without PAUSE mtu 9000 */ 17211 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17212 17213 /* update threshold */ 17214 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17215 /* update init credit */ 17216 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17217 17218 /* probe changes */ 17219 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17220 DELAY(50); 17221 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17222 } 17223 17224 if (CNIC_SUPPORT(sc)) { 17225 ecore_init_block(sc, BLOCK_SRC, init_phase); 17226 } 17227 17228 ecore_init_block(sc, BLOCK_CDU, init_phase); 17229 ecore_init_block(sc, BLOCK_CFC, init_phase); 17230 17231 if (CHIP_IS_E1(sc)) { 17232 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17233 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17234 } 17235 ecore_init_block(sc, BLOCK_HC, init_phase); 17236 17237 ecore_init_block(sc, BLOCK_IGU, init_phase); 17238 17239 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17240 /* init aeu_mask_attn_func_0/1: 17241 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17242 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17243 * bits 4-7 are used for "per vn group attention" */ 17244 val = IS_MF(sc) ? 0xF7 : 0x7; 17245 /* Enable DCBX attention for all but E1 */ 17246 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17247 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17248 17249 ecore_init_block(sc, BLOCK_NIG, init_phase); 17250 17251 if (!CHIP_IS_E1x(sc)) { 17252 /* Bit-map indicating which L2 hdrs may appear after the 17253 * basic Ethernet header 17254 */ 17255 if (IS_MF_AFEX(sc)) { 17256 REG_WR(sc, SC_PORT(sc) ? 17257 NIG_REG_P1_HDRS_AFTER_BASIC : 17258 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17259 } else { 17260 REG_WR(sc, SC_PORT(sc) ? 17261 NIG_REG_P1_HDRS_AFTER_BASIC : 17262 NIG_REG_P0_HDRS_AFTER_BASIC, 17263 IS_MF_SD(sc) ? 7 : 6); 17264 } 17265 17266 if (CHIP_IS_E3(sc)) { 17267 REG_WR(sc, SC_PORT(sc) ? 17268 NIG_REG_LLH1_MF_MODE : 17269 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17270 } 17271 } 17272 if (!CHIP_IS_E3(sc)) { 17273 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17274 } 17275 17276 if (!CHIP_IS_E1(sc)) { 17277 /* 0x2 disable mf_ov, 0x1 enable */ 17278 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17279 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17280 17281 if (!CHIP_IS_E1x(sc)) { 17282 val = 0; 17283 switch (sc->devinfo.mf_info.mf_mode) { 17284 case MULTI_FUNCTION_SD: 17285 val = 1; 17286 break; 17287 case MULTI_FUNCTION_SI: 17288 case MULTI_FUNCTION_AFEX: 17289 val = 2; 17290 break; 17291 } 17292 17293 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17294 NIG_REG_LLH0_CLS_TYPE), val); 17295 } 17296 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17297 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17298 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17299 } 17300 17301 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17302 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17303 if (val & MISC_SPIO_SPIO5) { 17304 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17305 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17306 val = REG_RD(sc, reg_addr); 17307 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17308 REG_WR(sc, reg_addr, val); 17309 } 17310 17311 return (0); 17312 } 17313 17314 static uint32_t 17315 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17316 uint32_t reg, 17317 uint32_t expected, 17318 uint32_t poll_count) 17319 { 17320 uint32_t cur_cnt = poll_count; 17321 uint32_t val; 17322 17323 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17324 DELAY(FLR_WAIT_INTERVAL); 17325 } 17326 17327 return (val); 17328 } 17329 17330 static int 17331 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17332 uint32_t reg, 17333 char *msg, 17334 uint32_t poll_cnt) 17335 { 17336 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17337 17338 if (val != 0) { 17339 BLOGE(sc, "%s usage count=%d\n", msg, val); 17340 return (1); 17341 } 17342 17343 return (0); 17344 } 17345 17346 /* Common routines with VF FLR cleanup */ 17347 static uint32_t 17348 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17349 { 17350 /* adjust polling timeout */ 17351 if (CHIP_REV_IS_EMUL(sc)) { 17352 return (FLR_POLL_CNT * 2000); 17353 } 17354 17355 if (CHIP_REV_IS_FPGA(sc)) { 17356 return (FLR_POLL_CNT * 120); 17357 } 17358 17359 return (FLR_POLL_CNT); 17360 } 17361 17362 static int 17363 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17364 uint32_t poll_cnt) 17365 { 17366 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17367 if (bxe_flr_clnup_poll_hw_counter(sc, 17368 CFC_REG_NUM_LCIDS_INSIDE_PF, 17369 "CFC PF usage counter timed out", 17370 poll_cnt)) { 17371 return (1); 17372 } 17373 17374 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17375 if (bxe_flr_clnup_poll_hw_counter(sc, 17376 DORQ_REG_PF_USAGE_CNT, 17377 "DQ PF usage counter timed out", 17378 poll_cnt)) { 17379 return (1); 17380 } 17381 17382 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17383 if (bxe_flr_clnup_poll_hw_counter(sc, 17384 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17385 "QM PF usage counter timed out", 17386 poll_cnt)) { 17387 return (1); 17388 } 17389 17390 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17391 if (bxe_flr_clnup_poll_hw_counter(sc, 17392 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17393 "Timers VNIC usage counter timed out", 17394 poll_cnt)) { 17395 return (1); 17396 } 17397 17398 if (bxe_flr_clnup_poll_hw_counter(sc, 17399 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17400 "Timers NUM_SCANS usage counter timed out", 17401 poll_cnt)) { 17402 return (1); 17403 } 17404 17405 /* Wait DMAE PF usage counter to zero */ 17406 if (bxe_flr_clnup_poll_hw_counter(sc, 17407 dmae_reg_go_c[INIT_DMAE_C(sc)], 17408 "DMAE dommand register timed out", 17409 poll_cnt)) { 17410 return (1); 17411 } 17412 17413 return (0); 17414 } 17415 17416 #define OP_GEN_PARAM(param) \ 17417 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17418 #define OP_GEN_TYPE(type) \ 17419 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17420 #define OP_GEN_AGG_VECT(index) \ 17421 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17422 17423 static int 17424 bxe_send_final_clnup(struct bxe_softc *sc, 17425 uint8_t clnup_func, 17426 uint32_t poll_cnt) 17427 { 17428 uint32_t op_gen_command = 0; 17429 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17430 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17431 int ret = 0; 17432 17433 if (REG_RD(sc, comp_addr)) { 17434 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17435 return (1); 17436 } 17437 17438 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17439 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17440 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17441 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17442 17443 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17444 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17445 17446 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17447 BLOGE(sc, "FW final cleanup did not succeed\n"); 17448 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17449 (REG_RD(sc, comp_addr))); 17450 bxe_panic(sc, ("FLR cleanup failed\n")); 17451 return (1); 17452 } 17453 17454 /* Zero completion for nxt FLR */ 17455 REG_WR(sc, comp_addr, 0); 17456 17457 return (ret); 17458 } 17459 17460 static void 17461 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17462 struct pbf_pN_buf_regs *regs, 17463 uint32_t poll_count) 17464 { 17465 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17466 uint32_t cur_cnt = poll_count; 17467 17468 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17469 crd = crd_start = REG_RD(sc, regs->crd); 17470 init_crd = REG_RD(sc, regs->init_crd); 17471 17472 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17473 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17474 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17475 17476 while ((crd != init_crd) && 17477 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17478 (init_crd - crd_start))) { 17479 if (cur_cnt--) { 17480 DELAY(FLR_WAIT_INTERVAL); 17481 crd = REG_RD(sc, regs->crd); 17482 crd_freed = REG_RD(sc, regs->crd_freed); 17483 } else { 17484 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17485 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17486 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17487 break; 17488 } 17489 } 17490 17491 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17492 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17493 } 17494 17495 static void 17496 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17497 struct pbf_pN_cmd_regs *regs, 17498 uint32_t poll_count) 17499 { 17500 uint32_t occup, to_free, freed, freed_start; 17501 uint32_t cur_cnt = poll_count; 17502 17503 occup = to_free = REG_RD(sc, regs->lines_occup); 17504 freed = freed_start = REG_RD(sc, regs->lines_freed); 17505 17506 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17507 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17508 17509 while (occup && 17510 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17511 if (cur_cnt--) { 17512 DELAY(FLR_WAIT_INTERVAL); 17513 occup = REG_RD(sc, regs->lines_occup); 17514 freed = REG_RD(sc, regs->lines_freed); 17515 } else { 17516 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17517 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17518 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17519 break; 17520 } 17521 } 17522 17523 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17524 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17525 } 17526 17527 static void 17528 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17529 { 17530 struct pbf_pN_cmd_regs cmd_regs[] = { 17531 {0, (CHIP_IS_E3B0(sc)) ? 17532 PBF_REG_TQ_OCCUPANCY_Q0 : 17533 PBF_REG_P0_TQ_OCCUPANCY, 17534 (CHIP_IS_E3B0(sc)) ? 17535 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17536 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17537 {1, (CHIP_IS_E3B0(sc)) ? 17538 PBF_REG_TQ_OCCUPANCY_Q1 : 17539 PBF_REG_P1_TQ_OCCUPANCY, 17540 (CHIP_IS_E3B0(sc)) ? 17541 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17542 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17543 {4, (CHIP_IS_E3B0(sc)) ? 17544 PBF_REG_TQ_OCCUPANCY_LB_Q : 17545 PBF_REG_P4_TQ_OCCUPANCY, 17546 (CHIP_IS_E3B0(sc)) ? 17547 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17548 PBF_REG_P4_TQ_LINES_FREED_CNT} 17549 }; 17550 17551 struct pbf_pN_buf_regs buf_regs[] = { 17552 {0, (CHIP_IS_E3B0(sc)) ? 17553 PBF_REG_INIT_CRD_Q0 : 17554 PBF_REG_P0_INIT_CRD , 17555 (CHIP_IS_E3B0(sc)) ? 17556 PBF_REG_CREDIT_Q0 : 17557 PBF_REG_P0_CREDIT, 17558 (CHIP_IS_E3B0(sc)) ? 17559 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17560 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17561 {1, (CHIP_IS_E3B0(sc)) ? 17562 PBF_REG_INIT_CRD_Q1 : 17563 PBF_REG_P1_INIT_CRD, 17564 (CHIP_IS_E3B0(sc)) ? 17565 PBF_REG_CREDIT_Q1 : 17566 PBF_REG_P1_CREDIT, 17567 (CHIP_IS_E3B0(sc)) ? 17568 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17569 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17570 {4, (CHIP_IS_E3B0(sc)) ? 17571 PBF_REG_INIT_CRD_LB_Q : 17572 PBF_REG_P4_INIT_CRD, 17573 (CHIP_IS_E3B0(sc)) ? 17574 PBF_REG_CREDIT_LB_Q : 17575 PBF_REG_P4_CREDIT, 17576 (CHIP_IS_E3B0(sc)) ? 17577 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17578 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17579 }; 17580 17581 int i; 17582 17583 /* Verify the command queues are flushed P0, P1, P4 */ 17584 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 17585 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 17586 } 17587 17588 /* Verify the transmission buffers are flushed P0, P1, P4 */ 17589 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 17590 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 17591 } 17592 } 17593 17594 static void 17595 bxe_hw_enable_status(struct bxe_softc *sc) 17596 { 17597 uint32_t val; 17598 17599 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 17600 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 17601 17602 val = REG_RD(sc, PBF_REG_DISABLE_PF); 17603 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 17604 17605 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 17606 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 17607 17608 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 17609 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 17610 17611 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 17612 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 17613 17614 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 17615 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 17616 17617 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 17618 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 17619 17620 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 17621 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 17622 } 17623 17624 static int 17625 bxe_pf_flr_clnup(struct bxe_softc *sc) 17626 { 17627 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 17628 17629 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 17630 17631 /* Re-enable PF target read access */ 17632 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 17633 17634 /* Poll HW usage counters */ 17635 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 17636 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 17637 return (-1); 17638 } 17639 17640 /* Zero the igu 'trailing edge' and 'leading edge' */ 17641 17642 /* Send the FW cleanup command */ 17643 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 17644 return (-1); 17645 } 17646 17647 /* ATC cleanup */ 17648 17649 /* Verify TX hw is flushed */ 17650 bxe_tx_hw_flushed(sc, poll_cnt); 17651 17652 /* Wait 100ms (not adjusted according to platform) */ 17653 DELAY(100000); 17654 17655 /* Verify no pending pci transactions */ 17656 if (bxe_is_pcie_pending(sc)) { 17657 BLOGE(sc, "PCIE Transactions still pending\n"); 17658 } 17659 17660 /* Debug */ 17661 bxe_hw_enable_status(sc); 17662 17663 /* 17664 * Master enable - Due to WB DMAE writes performed before this 17665 * register is re-initialized as part of the regular function init 17666 */ 17667 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17668 17669 return (0); 17670 } 17671 17672 static int 17673 bxe_init_hw_func(struct bxe_softc *sc) 17674 { 17675 int port = SC_PORT(sc); 17676 int func = SC_FUNC(sc); 17677 int init_phase = PHASE_PF0 + func; 17678 struct ecore_ilt *ilt = sc->ilt; 17679 uint16_t cdu_ilt_start; 17680 uint32_t addr, val; 17681 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 17682 int i, main_mem_width, rc; 17683 17684 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 17685 17686 /* FLR cleanup */ 17687 if (!CHIP_IS_E1x(sc)) { 17688 rc = bxe_pf_flr_clnup(sc); 17689 if (rc) { 17690 BLOGE(sc, "FLR cleanup failed!\n"); 17691 // XXX bxe_fw_dump(sc); 17692 // XXX bxe_idle_chk(sc); 17693 return (rc); 17694 } 17695 } 17696 17697 /* set MSI reconfigure capability */ 17698 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17699 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 17700 val = REG_RD(sc, addr); 17701 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 17702 REG_WR(sc, addr, val); 17703 } 17704 17705 ecore_init_block(sc, BLOCK_PXP, init_phase); 17706 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17707 17708 ilt = sc->ilt; 17709 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 17710 17711 for (i = 0; i < L2_ILT_LINES(sc); i++) { 17712 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 17713 ilt->lines[cdu_ilt_start + i].page_mapping = 17714 sc->context[i].vcxt_dma.paddr; 17715 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 17716 } 17717 ecore_ilt_init_op(sc, INITOP_SET); 17718 17719 /* Set NIC mode */ 17720 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17721 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 17722 17723 if (!CHIP_IS_E1x(sc)) { 17724 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 17725 17726 /* Turn on a single ISR mode in IGU if driver is going to use 17727 * INT#x or MSI 17728 */ 17729 if (sc->interrupt_mode != INTR_MODE_MSIX) { 17730 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 17731 } 17732 17733 /* 17734 * Timers workaround bug: function init part. 17735 * Need to wait 20msec after initializing ILT, 17736 * needed to make sure there are no requests in 17737 * one of the PXP internal queues with "old" ILT addresses 17738 */ 17739 DELAY(20000); 17740 17741 /* 17742 * Master enable - Due to WB DMAE writes performed before this 17743 * register is re-initialized as part of the regular function 17744 * init 17745 */ 17746 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17747 /* Enable the function in IGU */ 17748 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 17749 } 17750 17751 sc->dmae_ready = 1; 17752 17753 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17754 17755 if (!CHIP_IS_E1x(sc)) 17756 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 17757 17758 ecore_init_block(sc, BLOCK_ATC, init_phase); 17759 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17760 ecore_init_block(sc, BLOCK_NIG, init_phase); 17761 ecore_init_block(sc, BLOCK_SRC, init_phase); 17762 ecore_init_block(sc, BLOCK_MISC, init_phase); 17763 ecore_init_block(sc, BLOCK_TCM, init_phase); 17764 ecore_init_block(sc, BLOCK_UCM, init_phase); 17765 ecore_init_block(sc, BLOCK_CCM, init_phase); 17766 ecore_init_block(sc, BLOCK_XCM, init_phase); 17767 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17768 ecore_init_block(sc, BLOCK_USEM, init_phase); 17769 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17770 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17771 17772 if (!CHIP_IS_E1x(sc)) 17773 REG_WR(sc, QM_REG_PF_EN, 1); 17774 17775 if (!CHIP_IS_E1x(sc)) { 17776 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17777 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17778 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17779 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 17780 } 17781 ecore_init_block(sc, BLOCK_QM, init_phase); 17782 17783 ecore_init_block(sc, BLOCK_TM, init_phase); 17784 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17785 17786 bxe_iov_init_dq(sc); 17787 17788 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17789 ecore_init_block(sc, BLOCK_PRS, init_phase); 17790 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17791 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17792 ecore_init_block(sc, BLOCK_USDM, init_phase); 17793 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17794 ecore_init_block(sc, BLOCK_UPB, init_phase); 17795 ecore_init_block(sc, BLOCK_XPB, init_phase); 17796 ecore_init_block(sc, BLOCK_PBF, init_phase); 17797 if (!CHIP_IS_E1x(sc)) 17798 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 17799 17800 ecore_init_block(sc, BLOCK_CDU, init_phase); 17801 17802 ecore_init_block(sc, BLOCK_CFC, init_phase); 17803 17804 if (!CHIP_IS_E1x(sc)) 17805 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 17806 17807 if (IS_MF(sc)) { 17808 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 17809 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 17810 } 17811 17812 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17813 17814 /* HC init per function */ 17815 if (sc->devinfo.int_block == INT_BLOCK_HC) { 17816 if (CHIP_IS_E1H(sc)) { 17817 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17818 17819 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17820 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17821 } 17822 ecore_init_block(sc, BLOCK_HC, init_phase); 17823 17824 } else { 17825 int num_segs, sb_idx, prod_offset; 17826 17827 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 17828 17829 if (!CHIP_IS_E1x(sc)) { 17830 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 17831 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 17832 } 17833 17834 ecore_init_block(sc, BLOCK_IGU, init_phase); 17835 17836 if (!CHIP_IS_E1x(sc)) { 17837 int dsb_idx = 0; 17838 /** 17839 * Producer memory: 17840 * E2 mode: address 0-135 match to the mapping memory; 17841 * 136 - PF0 default prod; 137 - PF1 default prod; 17842 * 138 - PF2 default prod; 139 - PF3 default prod; 17843 * 140 - PF0 attn prod; 141 - PF1 attn prod; 17844 * 142 - PF2 attn prod; 143 - PF3 attn prod; 17845 * 144-147 reserved. 17846 * 17847 * E1.5 mode - In backward compatible mode; 17848 * for non default SB; each even line in the memory 17849 * holds the U producer and each odd line hold 17850 * the C producer. The first 128 producers are for 17851 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 17852 * producers are for the DSB for each PF. 17853 * Each PF has five segments: (the order inside each 17854 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 17855 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 17856 * 144-147 attn prods; 17857 */ 17858 /* non-default-status-blocks */ 17859 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17860 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 17861 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 17862 prod_offset = (sc->igu_base_sb + sb_idx) * 17863 num_segs; 17864 17865 for (i = 0; i < num_segs; i++) { 17866 addr = IGU_REG_PROD_CONS_MEMORY + 17867 (prod_offset + i) * 4; 17868 REG_WR(sc, addr, 0); 17869 } 17870 /* send consumer update with value 0 */ 17871 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 17872 USTORM_ID, 0, IGU_INT_NOP, 1); 17873 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 17874 } 17875 17876 /* default-status-blocks */ 17877 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 17878 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 17879 17880 if (CHIP_IS_MODE_4_PORT(sc)) 17881 dsb_idx = SC_FUNC(sc); 17882 else 17883 dsb_idx = SC_VN(sc); 17884 17885 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 17886 IGU_BC_BASE_DSB_PROD + dsb_idx : 17887 IGU_NORM_BASE_DSB_PROD + dsb_idx); 17888 17889 /* 17890 * igu prods come in chunks of E1HVN_MAX (4) - 17891 * does not matters what is the current chip mode 17892 */ 17893 for (i = 0; i < (num_segs * E1HVN_MAX); 17894 i += E1HVN_MAX) { 17895 addr = IGU_REG_PROD_CONS_MEMORY + 17896 (prod_offset + i)*4; 17897 REG_WR(sc, addr, 0); 17898 } 17899 /* send consumer update with 0 */ 17900 if (CHIP_INT_MODE_IS_BC(sc)) { 17901 bxe_ack_sb(sc, sc->igu_dsb_id, 17902 USTORM_ID, 0, IGU_INT_NOP, 1); 17903 bxe_ack_sb(sc, sc->igu_dsb_id, 17904 CSTORM_ID, 0, IGU_INT_NOP, 1); 17905 bxe_ack_sb(sc, sc->igu_dsb_id, 17906 XSTORM_ID, 0, IGU_INT_NOP, 1); 17907 bxe_ack_sb(sc, sc->igu_dsb_id, 17908 TSTORM_ID, 0, IGU_INT_NOP, 1); 17909 bxe_ack_sb(sc, sc->igu_dsb_id, 17910 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17911 } else { 17912 bxe_ack_sb(sc, sc->igu_dsb_id, 17913 USTORM_ID, 0, IGU_INT_NOP, 1); 17914 bxe_ack_sb(sc, sc->igu_dsb_id, 17915 ATTENTION_ID, 0, IGU_INT_NOP, 1); 17916 } 17917 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 17918 17919 /* !!! these should become driver const once 17920 rf-tool supports split-68 const */ 17921 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 17922 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 17923 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 17924 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 17925 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 17926 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 17927 } 17928 } 17929 17930 /* Reset PCIE errors for debug */ 17931 REG_WR(sc, 0x2114, 0xffffffff); 17932 REG_WR(sc, 0x2120, 0xffffffff); 17933 17934 if (CHIP_IS_E1x(sc)) { 17935 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 17936 main_mem_base = HC_REG_MAIN_MEMORY + 17937 SC_PORT(sc) * (main_mem_size * 4); 17938 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 17939 main_mem_width = 8; 17940 17941 val = REG_RD(sc, main_mem_prty_clr); 17942 if (val) { 17943 BLOGD(sc, DBG_LOAD, 17944 "Parity errors in HC block during function init (0x%x)!\n", 17945 val); 17946 } 17947 17948 /* Clear "false" parity errors in MSI-X table */ 17949 for (i = main_mem_base; 17950 i < main_mem_base + main_mem_size * 4; 17951 i += main_mem_width) { 17952 bxe_read_dmae(sc, i, main_mem_width / 4); 17953 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 17954 i, main_mem_width / 4); 17955 } 17956 /* Clear HC parity attention */ 17957 REG_RD(sc, main_mem_prty_clr); 17958 } 17959 17960 #if 1 17961 /* Enable STORMs SP logging */ 17962 REG_WR8(sc, BAR_USTRORM_INTMEM + 17963 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17964 REG_WR8(sc, BAR_TSTRORM_INTMEM + 17965 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17966 REG_WR8(sc, BAR_CSTRORM_INTMEM + 17967 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17968 REG_WR8(sc, BAR_XSTRORM_INTMEM + 17969 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 17970 #endif 17971 17972 elink_phy_probe(&sc->link_params); 17973 17974 return (0); 17975 } 17976 17977 static void 17978 bxe_link_reset(struct bxe_softc *sc) 17979 { 17980 if (!BXE_NOMCP(sc)) { 17981 bxe_acquire_phy_lock(sc); 17982 elink_lfa_reset(&sc->link_params, &sc->link_vars); 17983 bxe_release_phy_lock(sc); 17984 } else { 17985 if (!CHIP_REV_IS_SLOW(sc)) { 17986 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 17987 } 17988 } 17989 } 17990 17991 static void 17992 bxe_reset_port(struct bxe_softc *sc) 17993 { 17994 int port = SC_PORT(sc); 17995 uint32_t val; 17996 17997 /* reset physical Link */ 17998 bxe_link_reset(sc); 17999 18000 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18001 18002 /* Do not rcv packets to BRB */ 18003 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18004 /* Do not direct rcv packets that are not for MCP to the BRB */ 18005 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18006 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18007 18008 /* Configure AEU */ 18009 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18010 18011 DELAY(100000); 18012 18013 /* Check for BRB port occupancy */ 18014 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18015 if (val) { 18016 BLOGD(sc, DBG_LOAD, 18017 "BRB1 is not empty, %d blocks are occupied\n", val); 18018 } 18019 18020 /* TODO: Close Doorbell port? */ 18021 } 18022 18023 static void 18024 bxe_ilt_wr(struct bxe_softc *sc, 18025 uint32_t index, 18026 bus_addr_t addr) 18027 { 18028 int reg; 18029 uint32_t wb_write[2]; 18030 18031 if (CHIP_IS_E1(sc)) { 18032 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18033 } else { 18034 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18035 } 18036 18037 wb_write[0] = ONCHIP_ADDR1(addr); 18038 wb_write[1] = ONCHIP_ADDR2(addr); 18039 REG_WR_DMAE(sc, reg, wb_write, 2); 18040 } 18041 18042 static void 18043 bxe_clear_func_ilt(struct bxe_softc *sc, 18044 uint32_t func) 18045 { 18046 uint32_t i, base = FUNC_ILT_BASE(func); 18047 for (i = base; i < base + ILT_PER_FUNC; i++) { 18048 bxe_ilt_wr(sc, i, 0); 18049 } 18050 } 18051 18052 static void 18053 bxe_reset_func(struct bxe_softc *sc) 18054 { 18055 struct bxe_fastpath *fp; 18056 int port = SC_PORT(sc); 18057 int func = SC_FUNC(sc); 18058 int i; 18059 18060 /* Disable the function in the FW */ 18061 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18062 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18063 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18064 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18065 18066 /* FP SBs */ 18067 FOR_EACH_ETH_QUEUE(sc, i) { 18068 fp = &sc->fp[i]; 18069 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18070 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18071 SB_DISABLED); 18072 } 18073 18074 /* SP SB */ 18075 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18076 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18077 SB_DISABLED); 18078 18079 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18080 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18081 } 18082 18083 /* Configure IGU */ 18084 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18085 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18086 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18087 } else { 18088 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18089 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18090 } 18091 18092 if (CNIC_LOADED(sc)) { 18093 /* Disable Timer scan */ 18094 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18095 /* 18096 * Wait for at least 10ms and up to 2 second for the timers 18097 * scan to complete 18098 */ 18099 for (i = 0; i < 200; i++) { 18100 DELAY(10000); 18101 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18102 break; 18103 } 18104 } 18105 18106 /* Clear ILT */ 18107 bxe_clear_func_ilt(sc, func); 18108 18109 /* 18110 * Timers workaround bug for E2: if this is vnic-3, 18111 * we need to set the entire ilt range for this timers. 18112 */ 18113 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18114 struct ilt_client_info ilt_cli; 18115 /* use dummy TM client */ 18116 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18117 ilt_cli.start = 0; 18118 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18119 ilt_cli.client_num = ILT_CLIENT_TM; 18120 18121 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18122 } 18123 18124 /* this assumes that reset_port() called before reset_func()*/ 18125 if (!CHIP_IS_E1x(sc)) { 18126 bxe_pf_disable(sc); 18127 } 18128 18129 sc->dmae_ready = 0; 18130 } 18131 18132 static int 18133 bxe_gunzip_init(struct bxe_softc *sc) 18134 { 18135 return (0); 18136 } 18137 18138 static void 18139 bxe_gunzip_end(struct bxe_softc *sc) 18140 { 18141 return; 18142 } 18143 18144 static int 18145 bxe_init_firmware(struct bxe_softc *sc) 18146 { 18147 if (CHIP_IS_E1(sc)) { 18148 ecore_init_e1_firmware(sc); 18149 sc->iro_array = e1_iro_arr; 18150 } else if (CHIP_IS_E1H(sc)) { 18151 ecore_init_e1h_firmware(sc); 18152 sc->iro_array = e1h_iro_arr; 18153 } else if (!CHIP_IS_E1x(sc)) { 18154 ecore_init_e2_firmware(sc); 18155 sc->iro_array = e2_iro_arr; 18156 } else { 18157 BLOGE(sc, "Unsupported chip revision\n"); 18158 return (-1); 18159 } 18160 18161 return (0); 18162 } 18163 18164 static void 18165 bxe_release_firmware(struct bxe_softc *sc) 18166 { 18167 /* Do nothing */ 18168 return; 18169 } 18170 18171 static int 18172 ecore_gunzip(struct bxe_softc *sc, 18173 const uint8_t *zbuf, 18174 int len) 18175 { 18176 /* XXX : Implement... */ 18177 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18178 return (FALSE); 18179 } 18180 18181 static void 18182 ecore_reg_wr_ind(struct bxe_softc *sc, 18183 uint32_t addr, 18184 uint32_t val) 18185 { 18186 bxe_reg_wr_ind(sc, addr, val); 18187 } 18188 18189 static void 18190 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18191 bus_addr_t phys_addr, 18192 uint32_t addr, 18193 uint32_t len) 18194 { 18195 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18196 } 18197 18198 void 18199 ecore_storm_memset_struct(struct bxe_softc *sc, 18200 uint32_t addr, 18201 size_t size, 18202 uint32_t *data) 18203 { 18204 uint8_t i; 18205 for (i = 0; i < size/4; i++) { 18206 REG_WR(sc, addr + (i * 4), data[i]); 18207 } 18208 } 18209 18210 18211 /* 18212 * character device - ioctl interface definitions 18213 */ 18214 18215 18216 #include "bxe_dump.h" 18217 #include "bxe_ioctl.h" 18218 #include <sys/conf.h> 18219 18220 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18221 struct thread *td); 18222 18223 static struct cdevsw bxe_cdevsw = { 18224 .d_version = D_VERSION, 18225 .d_ioctl = bxe_eioctl, 18226 .d_name = "bxecnic", 18227 }; 18228 18229 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18230 18231 18232 #define DUMP_ALL_PRESETS 0x1FFF 18233 #define DUMP_MAX_PRESETS 13 18234 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18235 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18236 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18237 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18238 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18239 18240 #define IS_REG_IN_PRESET(presets, idx) \ 18241 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18242 18243 18244 static int 18245 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18246 { 18247 if (CHIP_IS_E1(sc)) 18248 return dump_num_registers[0][preset-1]; 18249 else if (CHIP_IS_E1H(sc)) 18250 return dump_num_registers[1][preset-1]; 18251 else if (CHIP_IS_E2(sc)) 18252 return dump_num_registers[2][preset-1]; 18253 else if (CHIP_IS_E3A0(sc)) 18254 return dump_num_registers[3][preset-1]; 18255 else if (CHIP_IS_E3B0(sc)) 18256 return dump_num_registers[4][preset-1]; 18257 else 18258 return 0; 18259 } 18260 18261 static int 18262 bxe_get_total_regs_len32(struct bxe_softc *sc) 18263 { 18264 uint32_t preset_idx; 18265 int regdump_len32 = 0; 18266 18267 18268 /* Calculate the total preset regs length */ 18269 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18270 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18271 } 18272 18273 return regdump_len32; 18274 } 18275 18276 static const uint32_t * 18277 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18278 { 18279 if (CHIP_IS_E2(sc)) 18280 return page_vals_e2; 18281 else if (CHIP_IS_E3(sc)) 18282 return page_vals_e3; 18283 else 18284 return NULL; 18285 } 18286 18287 static uint32_t 18288 __bxe_get_page_reg_num(struct bxe_softc *sc) 18289 { 18290 if (CHIP_IS_E2(sc)) 18291 return PAGE_MODE_VALUES_E2; 18292 else if (CHIP_IS_E3(sc)) 18293 return PAGE_MODE_VALUES_E3; 18294 else 18295 return 0; 18296 } 18297 18298 static const uint32_t * 18299 __bxe_get_page_write_ar(struct bxe_softc *sc) 18300 { 18301 if (CHIP_IS_E2(sc)) 18302 return page_write_regs_e2; 18303 else if (CHIP_IS_E3(sc)) 18304 return page_write_regs_e3; 18305 else 18306 return NULL; 18307 } 18308 18309 static uint32_t 18310 __bxe_get_page_write_num(struct bxe_softc *sc) 18311 { 18312 if (CHIP_IS_E2(sc)) 18313 return PAGE_WRITE_REGS_E2; 18314 else if (CHIP_IS_E3(sc)) 18315 return PAGE_WRITE_REGS_E3; 18316 else 18317 return 0; 18318 } 18319 18320 static const struct reg_addr * 18321 __bxe_get_page_read_ar(struct bxe_softc *sc) 18322 { 18323 if (CHIP_IS_E2(sc)) 18324 return page_read_regs_e2; 18325 else if (CHIP_IS_E3(sc)) 18326 return page_read_regs_e3; 18327 else 18328 return NULL; 18329 } 18330 18331 static uint32_t 18332 __bxe_get_page_read_num(struct bxe_softc *sc) 18333 { 18334 if (CHIP_IS_E2(sc)) 18335 return PAGE_READ_REGS_E2; 18336 else if (CHIP_IS_E3(sc)) 18337 return PAGE_READ_REGS_E3; 18338 else 18339 return 0; 18340 } 18341 18342 static bool 18343 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18344 { 18345 if (CHIP_IS_E1(sc)) 18346 return IS_E1_REG(reg_info->chips); 18347 else if (CHIP_IS_E1H(sc)) 18348 return IS_E1H_REG(reg_info->chips); 18349 else if (CHIP_IS_E2(sc)) 18350 return IS_E2_REG(reg_info->chips); 18351 else if (CHIP_IS_E3A0(sc)) 18352 return IS_E3A0_REG(reg_info->chips); 18353 else if (CHIP_IS_E3B0(sc)) 18354 return IS_E3B0_REG(reg_info->chips); 18355 else 18356 return 0; 18357 } 18358 18359 static bool 18360 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18361 { 18362 if (CHIP_IS_E1(sc)) 18363 return IS_E1_REG(wreg_info->chips); 18364 else if (CHIP_IS_E1H(sc)) 18365 return IS_E1H_REG(wreg_info->chips); 18366 else if (CHIP_IS_E2(sc)) 18367 return IS_E2_REG(wreg_info->chips); 18368 else if (CHIP_IS_E3A0(sc)) 18369 return IS_E3A0_REG(wreg_info->chips); 18370 else if (CHIP_IS_E3B0(sc)) 18371 return IS_E3B0_REG(wreg_info->chips); 18372 else 18373 return 0; 18374 } 18375 18376 /** 18377 * bxe_read_pages_regs - read "paged" registers 18378 * 18379 * @bp device handle 18380 * @p output buffer 18381 * 18382 * Reads "paged" memories: memories that may only be read by first writing to a 18383 * specific address ("write address") and then reading from a specific address 18384 * ("read address"). There may be more than one write address per "page" and 18385 * more than one read address per write address. 18386 */ 18387 static void 18388 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18389 { 18390 uint32_t i, j, k, n; 18391 18392 /* addresses of the paged registers */ 18393 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18394 /* number of paged registers */ 18395 int num_pages = __bxe_get_page_reg_num(sc); 18396 /* write addresses */ 18397 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18398 /* number of write addresses */ 18399 int write_num = __bxe_get_page_write_num(sc); 18400 /* read addresses info */ 18401 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18402 /* number of read addresses */ 18403 int read_num = __bxe_get_page_read_num(sc); 18404 uint32_t addr, size; 18405 18406 for (i = 0; i < num_pages; i++) { 18407 for (j = 0; j < write_num; j++) { 18408 REG_WR(sc, write_addr[j], page_addr[i]); 18409 18410 for (k = 0; k < read_num; k++) { 18411 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18412 size = read_addr[k].size; 18413 for (n = 0; n < size; n++) { 18414 addr = read_addr[k].addr + n*4; 18415 *p++ = REG_RD(sc, addr); 18416 } 18417 } 18418 } 18419 } 18420 } 18421 return; 18422 } 18423 18424 18425 static int 18426 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18427 { 18428 uint32_t i, j, addr; 18429 const struct wreg_addr *wreg_addr_p = NULL; 18430 18431 if (CHIP_IS_E1(sc)) 18432 wreg_addr_p = &wreg_addr_e1; 18433 else if (CHIP_IS_E1H(sc)) 18434 wreg_addr_p = &wreg_addr_e1h; 18435 else if (CHIP_IS_E2(sc)) 18436 wreg_addr_p = &wreg_addr_e2; 18437 else if (CHIP_IS_E3A0(sc)) 18438 wreg_addr_p = &wreg_addr_e3; 18439 else if (CHIP_IS_E3B0(sc)) 18440 wreg_addr_p = &wreg_addr_e3b0; 18441 else 18442 return (-1); 18443 18444 /* Read the idle_chk registers */ 18445 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18446 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18447 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18448 for (j = 0; j < idle_reg_addrs[i].size; j++) 18449 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18450 } 18451 } 18452 18453 /* Read the regular registers */ 18454 for (i = 0; i < REGS_COUNT; i++) { 18455 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18456 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18457 for (j = 0; j < reg_addrs[i].size; j++) 18458 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18459 } 18460 } 18461 18462 /* Read the CAM registers */ 18463 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18464 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18465 for (i = 0; i < wreg_addr_p->size; i++) { 18466 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18467 18468 /* In case of wreg_addr register, read additional 18469 registers from read_regs array 18470 */ 18471 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18472 addr = *(wreg_addr_p->read_regs); 18473 *p++ = REG_RD(sc, addr + j*4); 18474 } 18475 } 18476 } 18477 18478 /* Paged registers are supported in E2 & E3 only */ 18479 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18480 /* Read "paged" registers */ 18481 bxe_read_pages_regs(sc, p, preset); 18482 } 18483 18484 return 0; 18485 } 18486 18487 int 18488 bxe_grc_dump(struct bxe_softc *sc) 18489 { 18490 int rval = 0; 18491 uint32_t preset_idx; 18492 uint8_t *buf; 18493 uint32_t size; 18494 struct dump_header *d_hdr; 18495 uint32_t i; 18496 uint32_t reg_val; 18497 uint32_t reg_addr; 18498 uint32_t cmd_offset; 18499 int context_size; 18500 int allocated; 18501 struct ecore_ilt *ilt = SC_ILT(sc); 18502 struct bxe_fastpath *fp; 18503 struct ilt_client_info *ilt_cli; 18504 int grc_dump_size; 18505 18506 18507 if (sc->grcdump_done || sc->grcdump_started) 18508 return (rval); 18509 18510 sc->grcdump_started = 1; 18511 BLOGI(sc, "Started collecting grcdump\n"); 18512 18513 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18514 sizeof(struct dump_header); 18515 18516 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18517 18518 if (sc->grc_dump == NULL) { 18519 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18520 return(ENOMEM); 18521 } 18522 18523 18524 18525 /* Disable parity attentions as long as following dump may 18526 * cause false alarms by reading never written registers. We 18527 * will re-enable parity attentions right after the dump. 18528 */ 18529 18530 /* Disable parity on path 0 */ 18531 bxe_pretend_func(sc, 0); 18532 18533 ecore_disable_blocks_parity(sc); 18534 18535 /* Disable parity on path 1 */ 18536 bxe_pretend_func(sc, 1); 18537 ecore_disable_blocks_parity(sc); 18538 18539 /* Return to current function */ 18540 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18541 18542 buf = sc->grc_dump; 18543 d_hdr = sc->grc_dump; 18544 18545 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18546 d_hdr->version = BNX2X_DUMP_VERSION; 18547 d_hdr->preset = DUMP_ALL_PRESETS; 18548 18549 if (CHIP_IS_E1(sc)) { 18550 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18551 } else if (CHIP_IS_E1H(sc)) { 18552 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18553 } else if (CHIP_IS_E2(sc)) { 18554 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18555 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18556 } else if (CHIP_IS_E3A0(sc)) { 18557 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18558 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18559 } else if (CHIP_IS_E3B0(sc)) { 18560 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18561 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18562 } 18563 18564 buf += sizeof(struct dump_header); 18565 18566 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18567 18568 /* Skip presets with IOR */ 18569 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18570 (preset_idx == 11)) 18571 continue; 18572 18573 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18574 18575 if (rval) 18576 break; 18577 18578 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18579 18580 buf += size; 18581 } 18582 18583 bxe_pretend_func(sc, 0); 18584 ecore_clear_blocks_parity(sc); 18585 ecore_enable_blocks_parity(sc); 18586 18587 bxe_pretend_func(sc, 1); 18588 ecore_clear_blocks_parity(sc); 18589 ecore_enable_blocks_parity(sc); 18590 18591 /* Return to current function */ 18592 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18593 18594 18595 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 18596 for (i = 0, allocated = 0; allocated < context_size; i++) { 18597 18598 BLOGI(sc, "cdu_context i %d paddr %#jx vaddr %p size 0x%zx\n", i, 18599 (uintmax_t)sc->context[i].vcxt_dma.paddr, 18600 sc->context[i].vcxt_dma.vaddr, 18601 sc->context[i].size); 18602 allocated += sc->context[i].size; 18603 } 18604 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 18605 (uintmax_t)sc->fw_stats_req_mapping, 18606 (uintmax_t)sc->fw_stats_data_mapping, 18607 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 18608 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 18609 (void *)sc->def_sb_dma.paddr, sc->def_sb, 18610 sizeof(struct host_sp_status_block)); 18611 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 18612 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 18613 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 18614 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 18615 sizeof(struct bxe_slowpath)); 18616 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 18617 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 18618 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 18619 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 18620 FW_BUF_SIZE); 18621 for (i = 0; i < sc->num_queues; i++) { 18622 fp = &sc->fp[i]; 18623 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18624 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 18625 sizeof(union bxe_host_hc_status_block)); 18626 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18627 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 18628 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 18629 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18630 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 18631 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 18632 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 18633 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 18634 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 18635 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 18636 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 18637 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 18638 } 18639 18640 ilt_cli = &ilt->clients[1]; 18641 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 18642 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 18643 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 18644 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 18645 } 18646 18647 18648 cmd_offset = DMAE_REG_CMD_MEM; 18649 for (i = 0; i < 224; i++) { 18650 reg_addr = (cmd_offset +(i * 4)); 18651 reg_val = REG_RD(sc, reg_addr); 18652 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 18653 reg_addr, reg_val); 18654 } 18655 18656 18657 BLOGI(sc, "Collection of grcdump done\n"); 18658 sc->grcdump_done = 1; 18659 return(rval); 18660 } 18661 18662 static int 18663 bxe_add_cdev(struct bxe_softc *sc) 18664 { 18665 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 18666 18667 if (sc->eeprom == NULL) { 18668 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 18669 return (-1); 18670 } 18671 18672 sc->ioctl_dev = make_dev(&bxe_cdevsw, 18673 sc->ifp->if_dunit, 18674 UID_ROOT, 18675 GID_WHEEL, 18676 0600, 18677 "%s", 18678 if_name(sc->ifp)); 18679 18680 if (sc->ioctl_dev == NULL) { 18681 free(sc->eeprom, M_DEVBUF); 18682 sc->eeprom = NULL; 18683 return (-1); 18684 } 18685 18686 sc->ioctl_dev->si_drv1 = sc; 18687 18688 return (0); 18689 } 18690 18691 static void 18692 bxe_del_cdev(struct bxe_softc *sc) 18693 { 18694 if (sc->ioctl_dev != NULL) 18695 destroy_dev(sc->ioctl_dev); 18696 18697 if (sc->eeprom != NULL) { 18698 free(sc->eeprom, M_DEVBUF); 18699 sc->eeprom = NULL; 18700 } 18701 sc->ioctl_dev = NULL; 18702 18703 return; 18704 } 18705 18706 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 18707 { 18708 18709 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 18710 return FALSE; 18711 18712 return TRUE; 18713 } 18714 18715 18716 static int 18717 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18718 { 18719 int rval = 0; 18720 18721 if(!bxe_is_nvram_accessible(sc)) { 18722 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18723 return (-EAGAIN); 18724 } 18725 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 18726 18727 18728 return (rval); 18729 } 18730 18731 static int 18732 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 18733 { 18734 int rval = 0; 18735 18736 if(!bxe_is_nvram_accessible(sc)) { 18737 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 18738 return (-EAGAIN); 18739 } 18740 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 18741 18742 return (rval); 18743 } 18744 18745 static int 18746 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 18747 { 18748 int rval = 0; 18749 18750 switch (eeprom->eeprom_cmd) { 18751 18752 case BXE_EEPROM_CMD_SET_EEPROM: 18753 18754 rval = copyin(eeprom->eeprom_data, sc->eeprom, 18755 eeprom->eeprom_data_len); 18756 18757 if (rval) 18758 break; 18759 18760 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18761 eeprom->eeprom_data_len); 18762 break; 18763 18764 case BXE_EEPROM_CMD_GET_EEPROM: 18765 18766 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 18767 eeprom->eeprom_data_len); 18768 18769 if (rval) { 18770 break; 18771 } 18772 18773 rval = copyout(sc->eeprom, eeprom->eeprom_data, 18774 eeprom->eeprom_data_len); 18775 break; 18776 18777 default: 18778 rval = EINVAL; 18779 break; 18780 } 18781 18782 if (rval) { 18783 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 18784 } 18785 18786 return (rval); 18787 } 18788 18789 static int 18790 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 18791 { 18792 uint32_t ext_phy_config; 18793 int port = SC_PORT(sc); 18794 int cfg_idx = bxe_get_link_cfg_idx(sc); 18795 18796 dev_p->supported = sc->port.supported[cfg_idx] | 18797 (sc->port.supported[cfg_idx ^ 1] & 18798 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 18799 dev_p->advertising = sc->port.advertising[cfg_idx]; 18800 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 18801 ELINK_ETH_PHY_SFP_1G_FIBER) { 18802 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 18803 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 18804 } 18805 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 18806 !(sc->flags & BXE_MF_FUNC_DIS)) { 18807 dev_p->duplex = sc->link_vars.duplex; 18808 if (IS_MF(sc) && !BXE_NOMCP(sc)) 18809 dev_p->speed = bxe_get_mf_speed(sc); 18810 else 18811 dev_p->speed = sc->link_vars.line_speed; 18812 } else { 18813 dev_p->duplex = DUPLEX_UNKNOWN; 18814 dev_p->speed = SPEED_UNKNOWN; 18815 } 18816 18817 dev_p->port = bxe_media_detect(sc); 18818 18819 ext_phy_config = SHMEM_RD(sc, 18820 dev_info.port_hw_config[port].external_phy_config); 18821 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 18822 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 18823 dev_p->phy_address = sc->port.phy_addr; 18824 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18825 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 18826 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 18827 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 18828 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 18829 else 18830 dev_p->phy_address = 0; 18831 18832 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 18833 dev_p->autoneg = AUTONEG_ENABLE; 18834 else 18835 dev_p->autoneg = AUTONEG_DISABLE; 18836 18837 18838 return 0; 18839 } 18840 18841 static int 18842 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18843 struct thread *td) 18844 { 18845 struct bxe_softc *sc; 18846 int rval = 0; 18847 device_t pci_dev; 18848 bxe_grcdump_t *dump = NULL; 18849 int grc_dump_size; 18850 bxe_drvinfo_t *drv_infop = NULL; 18851 bxe_dev_setting_t *dev_p; 18852 bxe_dev_setting_t dev_set; 18853 bxe_get_regs_t *reg_p; 18854 bxe_reg_rdw_t *reg_rdw_p; 18855 bxe_pcicfg_rdw_t *cfg_rdw_p; 18856 bxe_perm_mac_addr_t *mac_addr_p; 18857 18858 18859 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 18860 return ENXIO; 18861 18862 pci_dev= sc->dev; 18863 18864 dump = (bxe_grcdump_t *)data; 18865 18866 switch(cmd) { 18867 18868 case BXE_GRC_DUMP_SIZE: 18869 dump->pci_func = sc->pcie_func; 18870 dump->grcdump_size = 18871 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18872 sizeof(struct dump_header); 18873 break; 18874 18875 case BXE_GRC_DUMP: 18876 18877 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18878 sizeof(struct dump_header); 18879 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 18880 (dump->grcdump_size < grc_dump_size)) { 18881 rval = EINVAL; 18882 break; 18883 } 18884 18885 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 18886 (!sc->grcdump_started)) { 18887 rval = bxe_grc_dump(sc); 18888 } 18889 18890 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 18891 (sc->grc_dump != NULL)) { 18892 dump->grcdump_dwords = grc_dump_size >> 2; 18893 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 18894 free(sc->grc_dump, M_DEVBUF); 18895 sc->grc_dump = NULL; 18896 sc->grcdump_started = 0; 18897 sc->grcdump_done = 0; 18898 } 18899 18900 break; 18901 18902 case BXE_DRV_INFO: 18903 drv_infop = (bxe_drvinfo_t *)data; 18904 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 18905 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 18906 BXE_DRIVER_VERSION); 18907 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 18908 sc->devinfo.bc_ver_str); 18909 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 18910 "%s", sc->fw_ver_str); 18911 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 18912 drv_infop->reg_dump_len = 18913 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 18914 + sizeof(struct dump_header); 18915 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 18916 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 18917 break; 18918 18919 case BXE_DEV_SETTING: 18920 dev_p = (bxe_dev_setting_t *)data; 18921 bxe_get_settings(sc, &dev_set); 18922 dev_p->supported = dev_set.supported; 18923 dev_p->advertising = dev_set.advertising; 18924 dev_p->speed = dev_set.speed; 18925 dev_p->duplex = dev_set.duplex; 18926 dev_p->port = dev_set.port; 18927 dev_p->phy_address = dev_set.phy_address; 18928 dev_p->autoneg = dev_set.autoneg; 18929 18930 break; 18931 18932 case BXE_GET_REGS: 18933 18934 reg_p = (bxe_get_regs_t *)data; 18935 grc_dump_size = reg_p->reg_buf_len; 18936 18937 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 18938 bxe_grc_dump(sc); 18939 } 18940 if((sc->grcdump_done) && (sc->grcdump_started) && 18941 (sc->grc_dump != NULL)) { 18942 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 18943 free(sc->grc_dump, M_DEVBUF); 18944 sc->grc_dump = NULL; 18945 sc->grcdump_started = 0; 18946 sc->grcdump_done = 0; 18947 } 18948 18949 break; 18950 18951 case BXE_RDW_REG: 18952 reg_rdw_p = (bxe_reg_rdw_t *)data; 18953 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 18954 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18955 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 18956 18957 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 18958 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 18959 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 18960 18961 break; 18962 18963 case BXE_RDW_PCICFG: 18964 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 18965 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 18966 18967 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 18968 cfg_rdw_p->cfg_width); 18969 18970 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 18971 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 18972 cfg_rdw_p->cfg_width); 18973 } else { 18974 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 18975 } 18976 break; 18977 18978 case BXE_MAC_ADDR: 18979 mac_addr_p = (bxe_perm_mac_addr_t *)data; 18980 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 18981 sc->mac_addr_str); 18982 break; 18983 18984 case BXE_EEPROM: 18985 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 18986 break; 18987 18988 18989 default: 18990 break; 18991 } 18992 18993 return (rval); 18994 } 18995