xref: /freebsd/sys/dev/bxe/bxe.c (revision 23833df4831a6f41aa39e952fba524edfb8cec6d)
1 /*-
2  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24  * THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #define BXE_DRIVER_VERSION "1.78.90"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 /*
61  * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62  * for older kernels that don't include this changeset.
63  */
64 #if __FreeBSD_version < 900035
65 #define pci_find_cap pci_find_extcap
66 #endif
67 
68 #define BXE_DEF_SB_ATT_IDX 0x0001
69 #define BXE_DEF_SB_IDX     0x0002
70 
71 /*
72  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73  * function HW initialization.
74  */
75 #define FLR_WAIT_USEC     10000 /* 10 msecs */
76 #define FLR_WAIT_INTERVAL 50    /* usecs */
77 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78 
79 struct pbf_pN_buf_regs {
80     int pN;
81     uint32_t init_crd;
82     uint32_t crd;
83     uint32_t crd_freed;
84 };
85 
86 struct pbf_pN_cmd_regs {
87     int pN;
88     uint32_t lines_occup;
89     uint32_t lines_freed;
90 };
91 
92 /*
93  * PCI Device ID Table used by bxe_probe().
94  */
95 #define BXE_DEVDESC_MAX 64
96 static struct bxe_device_type bxe_devs[] = {
97     {
98         BRCM_VENDORID,
99         CHIP_NUM_57710,
100         PCI_ANY_ID, PCI_ANY_ID,
101         "QLogic NetXtreme II BCM57710 10GbE"
102     },
103     {
104         BRCM_VENDORID,
105         CHIP_NUM_57711,
106         PCI_ANY_ID, PCI_ANY_ID,
107         "QLogic NetXtreme II BCM57711 10GbE"
108     },
109     {
110         BRCM_VENDORID,
111         CHIP_NUM_57711E,
112         PCI_ANY_ID, PCI_ANY_ID,
113         "QLogic NetXtreme II BCM57711E 10GbE"
114     },
115     {
116         BRCM_VENDORID,
117         CHIP_NUM_57712,
118         PCI_ANY_ID, PCI_ANY_ID,
119         "QLogic NetXtreme II BCM57712 10GbE"
120     },
121     {
122         BRCM_VENDORID,
123         CHIP_NUM_57712_MF,
124         PCI_ANY_ID, PCI_ANY_ID,
125         "QLogic NetXtreme II BCM57712 MF 10GbE"
126     },
127     {
128         BRCM_VENDORID,
129         CHIP_NUM_57800,
130         PCI_ANY_ID, PCI_ANY_ID,
131         "QLogic NetXtreme II BCM57800 10GbE"
132     },
133     {
134         BRCM_VENDORID,
135         CHIP_NUM_57800_MF,
136         PCI_ANY_ID, PCI_ANY_ID,
137         "QLogic NetXtreme II BCM57800 MF 10GbE"
138     },
139     {
140         BRCM_VENDORID,
141         CHIP_NUM_57810,
142         PCI_ANY_ID, PCI_ANY_ID,
143         "QLogic NetXtreme II BCM57810 10GbE"
144     },
145     {
146         BRCM_VENDORID,
147         CHIP_NUM_57810_MF,
148         PCI_ANY_ID, PCI_ANY_ID,
149         "QLogic NetXtreme II BCM57810 MF 10GbE"
150     },
151     {
152         BRCM_VENDORID,
153         CHIP_NUM_57811,
154         PCI_ANY_ID, PCI_ANY_ID,
155         "QLogic NetXtreme II BCM57811 10GbE"
156     },
157     {
158         BRCM_VENDORID,
159         CHIP_NUM_57811_MF,
160         PCI_ANY_ID, PCI_ANY_ID,
161         "QLogic NetXtreme II BCM57811 MF 10GbE"
162     },
163     {
164         BRCM_VENDORID,
165         CHIP_NUM_57840_4_10,
166         PCI_ANY_ID, PCI_ANY_ID,
167         "QLogic NetXtreme II BCM57840 4x10GbE"
168     },
169     {
170         QLOGIC_VENDORID,
171         CHIP_NUM_57840_4_10,
172         PCI_ANY_ID, PCI_ANY_ID,
173         "QLogic NetXtreme II BCM57840 4x10GbE"
174     },
175     {
176         BRCM_VENDORID,
177         CHIP_NUM_57840_2_20,
178         PCI_ANY_ID, PCI_ANY_ID,
179         "QLogic NetXtreme II BCM57840 2x20GbE"
180     },
181     {
182         BRCM_VENDORID,
183         CHIP_NUM_57840_MF,
184         PCI_ANY_ID, PCI_ANY_ID,
185         "QLogic NetXtreme II BCM57840 MF 10GbE"
186     },
187     {
188         0, 0, 0, 0, NULL
189     }
190 };
191 
192 MALLOC_DECLARE(M_BXE_ILT);
193 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
194 
195 /*
196  * FreeBSD device entry points.
197  */
198 static int bxe_probe(device_t);
199 static int bxe_attach(device_t);
200 static int bxe_detach(device_t);
201 static int bxe_shutdown(device_t);
202 
203 /*
204  * FreeBSD KLD module/device interface event handler method.
205  */
206 static device_method_t bxe_methods[] = {
207     /* Device interface (device_if.h) */
208     DEVMETHOD(device_probe,     bxe_probe),
209     DEVMETHOD(device_attach,    bxe_attach),
210     DEVMETHOD(device_detach,    bxe_detach),
211     DEVMETHOD(device_shutdown,  bxe_shutdown),
212     /* Bus interface (bus_if.h) */
213     DEVMETHOD(bus_print_child,  bus_generic_print_child),
214     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
215     KOBJMETHOD_END
216 };
217 
218 /*
219  * FreeBSD KLD Module data declaration
220  */
221 static driver_t bxe_driver = {
222     "bxe",                   /* module name */
223     bxe_methods,             /* event handler */
224     sizeof(struct bxe_softc) /* extra data */
225 };
226 
227 /*
228  * FreeBSD dev class is needed to manage dev instances and
229  * to associate with a bus type
230  */
231 static devclass_t bxe_devclass;
232 
233 MODULE_DEPEND(bxe, pci, 1, 1, 1);
234 MODULE_DEPEND(bxe, ether, 1, 1, 1);
235 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
236 
237 /* resources needed for unloading a previously loaded device */
238 
239 #define BXE_PREV_WAIT_NEEDED 1
240 struct mtx bxe_prev_mtx;
241 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
242 struct bxe_prev_list_node {
243     LIST_ENTRY(bxe_prev_list_node) node;
244     uint8_t bus;
245     uint8_t slot;
246     uint8_t path;
247     uint8_t aer; /* XXX automatic error recovery */
248     uint8_t undi;
249 };
250 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
251 
252 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
253 
254 /* Tunable device values... */
255 
256 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
257 
258 /* Debug */
259 unsigned long bxe_debug = 0;
260 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
261              &bxe_debug, 0, "Debug logging mode");
262 
263 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
264 static int bxe_interrupt_mode = INTR_MODE_MSIX;
265 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
266            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
267 
268 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
269 static int bxe_queue_count = 4;
270 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
271            &bxe_queue_count, 0, "Multi-Queue queue count");
272 
273 /* max number of buffers per queue (default RX_BD_USABLE) */
274 static int bxe_max_rx_bufs = 0;
275 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
276            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
277 
278 /* Host interrupt coalescing RX tick timer (usecs) */
279 static int bxe_hc_rx_ticks = 25;
280 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
281            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
282 
283 /* Host interrupt coalescing TX tick timer (usecs) */
284 static int bxe_hc_tx_ticks = 50;
285 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
286            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
287 
288 /* Maximum number of Rx packets to process at a time */
289 static int bxe_rx_budget = 0xffffffff;
290 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
291            &bxe_rx_budget, 0, "Rx processing budget");
292 
293 /* Maximum LRO aggregation size */
294 static int bxe_max_aggregation_size = 0;
295 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
296            &bxe_max_aggregation_size, 0, "max aggregation size");
297 
298 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
299 static int bxe_mrrs = -1;
300 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
301            &bxe_mrrs, 0, "PCIe maximum read request size");
302 
303 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
304 static int bxe_autogreeen = 0;
305 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
306            &bxe_autogreeen, 0, "AutoGrEEEn support");
307 
308 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
309 static int bxe_udp_rss = 0;
310 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
311            &bxe_udp_rss, 0, "UDP RSS support");
312 
313 
314 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
315 
316 #define STATS_OFFSET32(stat_name)                   \
317     (offsetof(struct bxe_eth_stats, stat_name) / 4)
318 
319 #define Q_STATS_OFFSET32(stat_name)                   \
320     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
321 
322 static const struct {
323     uint32_t offset;
324     uint32_t size;
325     uint32_t flags;
326 #define STATS_FLAGS_PORT  1
327 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
328 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
329     char string[STAT_NAME_LEN];
330 } bxe_eth_stats_arr[] = {
331     { STATS_OFFSET32(total_bytes_received_hi),
332                 8, STATS_FLAGS_BOTH, "rx_bytes" },
333     { STATS_OFFSET32(error_bytes_received_hi),
334                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
335     { STATS_OFFSET32(total_unicast_packets_received_hi),
336                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
337     { STATS_OFFSET32(total_multicast_packets_received_hi),
338                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
339     { STATS_OFFSET32(total_broadcast_packets_received_hi),
340                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
341     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
342                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
343     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
344                 8, STATS_FLAGS_PORT, "rx_align_errors" },
345     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
346                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
347     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
348                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
349     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
350                 8, STATS_FLAGS_PORT, "rx_fragments" },
351     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
352                 8, STATS_FLAGS_PORT, "rx_jabbers" },
353     { STATS_OFFSET32(no_buff_discard_hi),
354                 8, STATS_FLAGS_BOTH, "rx_discards" },
355     { STATS_OFFSET32(mac_filter_discard),
356                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
357     { STATS_OFFSET32(mf_tag_discard),
358                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
359     { STATS_OFFSET32(pfc_frames_received_hi),
360                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
361     { STATS_OFFSET32(pfc_frames_sent_hi),
362                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
363     { STATS_OFFSET32(brb_drop_hi),
364                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
365     { STATS_OFFSET32(brb_truncate_hi),
366                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
367     { STATS_OFFSET32(pause_frames_received_hi),
368                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
369     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
370                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
371     { STATS_OFFSET32(nig_timer_max),
372                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
373     { STATS_OFFSET32(total_bytes_transmitted_hi),
374                 8, STATS_FLAGS_BOTH, "tx_bytes" },
375     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
376                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
377     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
378                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
379     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
380                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
381     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
382                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
383     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
384                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
385     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
386                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
387     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
388                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
389     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
390                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
391     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
392                 8, STATS_FLAGS_PORT, "tx_deferred" },
393     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
394                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
395     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
396                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
397     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
398                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
399     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
401     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
402                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
403     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
404                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
405     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
406                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
407     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
408                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
409     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
410                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
411     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
412                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
413     { STATS_OFFSET32(pause_frames_sent_hi),
414                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
415     { STATS_OFFSET32(total_tpa_aggregations_hi),
416                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
417     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
418                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
419     { STATS_OFFSET32(total_tpa_bytes_hi),
420                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
421     { STATS_OFFSET32(eee_tx_lpi),
422                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
423     { STATS_OFFSET32(rx_calls),
424                 4, STATS_FLAGS_FUNC, "rx_calls"},
425     { STATS_OFFSET32(rx_pkts),
426                 4, STATS_FLAGS_FUNC, "rx_pkts"},
427     { STATS_OFFSET32(rx_tpa_pkts),
428                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
429     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
430                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
431     { STATS_OFFSET32(rx_bxe_service_rxsgl),
432                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
433     { STATS_OFFSET32(rx_jumbo_sge_pkts),
434                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
435     { STATS_OFFSET32(rx_soft_errors),
436                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
437     { STATS_OFFSET32(rx_hw_csum_errors),
438                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
439     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
440                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
441     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
442                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
443     { STATS_OFFSET32(rx_budget_reached),
444                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
445     { STATS_OFFSET32(tx_pkts),
446                 4, STATS_FLAGS_FUNC, "tx_pkts"},
447     { STATS_OFFSET32(tx_soft_errors),
448                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
449     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
450                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
451     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
452                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
453     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
454                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
455     { STATS_OFFSET32(tx_ofld_frames_lso),
456                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
457     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
458                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
459     { STATS_OFFSET32(tx_encap_failures),
460                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
461     { STATS_OFFSET32(tx_hw_queue_full),
462                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
463     { STATS_OFFSET32(tx_hw_max_queue_depth),
464                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
465     { STATS_OFFSET32(tx_dma_mapping_failure),
466                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
467     { STATS_OFFSET32(tx_max_drbr_queue_depth),
468                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
469     { STATS_OFFSET32(tx_window_violation_std),
470                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
471     { STATS_OFFSET32(tx_window_violation_tso),
472                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
473     { STATS_OFFSET32(tx_chain_lost_mbuf),
474                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
475     { STATS_OFFSET32(tx_frames_deferred),
476                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
477     { STATS_OFFSET32(tx_queue_xoff),
478                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
479     { STATS_OFFSET32(mbuf_defrag_attempts),
480                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
481     { STATS_OFFSET32(mbuf_defrag_failures),
482                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
483     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
484                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
485     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
486                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
487     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
488                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
489     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
490                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
491     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
492                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
493     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
494                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
495     { STATS_OFFSET32(mbuf_alloc_tx),
496                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
497     { STATS_OFFSET32(mbuf_alloc_rx),
498                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
499     { STATS_OFFSET32(mbuf_alloc_sge),
500                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
501     { STATS_OFFSET32(mbuf_alloc_tpa),
502                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
503     { STATS_OFFSET32(tx_queue_full_return),
504                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
505     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
506                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
507     { STATS_OFFSET32(tx_request_link_down_failures),
508                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
509     { STATS_OFFSET32(bd_avail_too_less_failures),
510                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
511     { STATS_OFFSET32(tx_mq_not_empty),
512                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
513     { STATS_OFFSET32(nsegs_path1_errors),
514                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
515     { STATS_OFFSET32(nsegs_path2_errors),
516                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
517 
518 
519 };
520 
521 static const struct {
522     uint32_t offset;
523     uint32_t size;
524     char string[STAT_NAME_LEN];
525 } bxe_eth_q_stats_arr[] = {
526     { Q_STATS_OFFSET32(total_bytes_received_hi),
527                 8, "rx_bytes" },
528     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
529                 8, "rx_ucast_packets" },
530     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
531                 8, "rx_mcast_packets" },
532     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
533                 8, "rx_bcast_packets" },
534     { Q_STATS_OFFSET32(no_buff_discard_hi),
535                 8, "rx_discards" },
536     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
537                 8, "tx_bytes" },
538     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
539                 8, "tx_ucast_packets" },
540     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
541                 8, "tx_mcast_packets" },
542     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
543                 8, "tx_bcast_packets" },
544     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
545                 8, "tpa_aggregations" },
546     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
547                 8, "tpa_aggregated_frames"},
548     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
549                 8, "tpa_bytes"},
550     { Q_STATS_OFFSET32(rx_calls),
551                 4, "rx_calls"},
552     { Q_STATS_OFFSET32(rx_pkts),
553                 4, "rx_pkts"},
554     { Q_STATS_OFFSET32(rx_tpa_pkts),
555                 4, "rx_tpa_pkts"},
556     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
557                 4, "rx_erroneous_jumbo_sge_pkts"},
558     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
559                 4, "rx_bxe_service_rxsgl"},
560     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
561                 4, "rx_jumbo_sge_pkts"},
562     { Q_STATS_OFFSET32(rx_soft_errors),
563                 4, "rx_soft_errors"},
564     { Q_STATS_OFFSET32(rx_hw_csum_errors),
565                 4, "rx_hw_csum_errors"},
566     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
567                 4, "rx_ofld_frames_csum_ip"},
568     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
569                 4, "rx_ofld_frames_csum_tcp_udp"},
570     { Q_STATS_OFFSET32(rx_budget_reached),
571                 4, "rx_budget_reached"},
572     { Q_STATS_OFFSET32(tx_pkts),
573                 4, "tx_pkts"},
574     { Q_STATS_OFFSET32(tx_soft_errors),
575                 4, "tx_soft_errors"},
576     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
577                 4, "tx_ofld_frames_csum_ip"},
578     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
579                 4, "tx_ofld_frames_csum_tcp"},
580     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
581                 4, "tx_ofld_frames_csum_udp"},
582     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
583                 4, "tx_ofld_frames_lso"},
584     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
585                 4, "tx_ofld_frames_lso_hdr_splits"},
586     { Q_STATS_OFFSET32(tx_encap_failures),
587                 4, "tx_encap_failures"},
588     { Q_STATS_OFFSET32(tx_hw_queue_full),
589                 4, "tx_hw_queue_full"},
590     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
591                 4, "tx_hw_max_queue_depth"},
592     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
593                 4, "tx_dma_mapping_failure"},
594     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
595                 4, "tx_max_drbr_queue_depth"},
596     { Q_STATS_OFFSET32(tx_window_violation_std),
597                 4, "tx_window_violation_std"},
598     { Q_STATS_OFFSET32(tx_window_violation_tso),
599                 4, "tx_window_violation_tso"},
600     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
601                 4, "tx_chain_lost_mbuf"},
602     { Q_STATS_OFFSET32(tx_frames_deferred),
603                 4, "tx_frames_deferred"},
604     { Q_STATS_OFFSET32(tx_queue_xoff),
605                 4, "tx_queue_xoff"},
606     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
607                 4, "mbuf_defrag_attempts"},
608     { Q_STATS_OFFSET32(mbuf_defrag_failures),
609                 4, "mbuf_defrag_failures"},
610     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
611                 4, "mbuf_rx_bd_alloc_failed"},
612     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
613                 4, "mbuf_rx_bd_mapping_failed"},
614     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
615                 4, "mbuf_rx_tpa_alloc_failed"},
616     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
617                 4, "mbuf_rx_tpa_mapping_failed"},
618     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
619                 4, "mbuf_rx_sge_alloc_failed"},
620     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
621                 4, "mbuf_rx_sge_mapping_failed"},
622     { Q_STATS_OFFSET32(mbuf_alloc_tx),
623                 4, "mbuf_alloc_tx"},
624     { Q_STATS_OFFSET32(mbuf_alloc_rx),
625                 4, "mbuf_alloc_rx"},
626     { Q_STATS_OFFSET32(mbuf_alloc_sge),
627                 4, "mbuf_alloc_sge"},
628     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
629                 4, "mbuf_alloc_tpa"},
630     { Q_STATS_OFFSET32(tx_queue_full_return),
631                 4, "tx_queue_full_return"},
632     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
633                 4, "bxe_tx_mq_sc_state_failures"},
634     { Q_STATS_OFFSET32(tx_request_link_down_failures),
635                 4, "tx_request_link_down_failures"},
636     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
637                 4, "bd_avail_too_less_failures"},
638     { Q_STATS_OFFSET32(tx_mq_not_empty),
639                 4, "tx_mq_not_empty"},
640     { Q_STATS_OFFSET32(nsegs_path1_errors),
641                 4, "nsegs_path1_errors"},
642     { Q_STATS_OFFSET32(nsegs_path2_errors),
643                 4, "nsegs_path2_errors"}
644 
645 
646 };
647 
648 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
649 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
650 
651 
652 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
653                                  uint8_t          read_cfg,
654                                  uint8_t          cmng_type);
655 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
656 static void    storm_memset_cmng(struct bxe_softc *sc,
657                                  struct cmng_init *cmng,
658                                  uint8_t          port);
659 static void    bxe_set_reset_global(struct bxe_softc *sc);
660 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
661 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
662                                  int              engine);
663 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
664 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
665                                    uint8_t          *global,
666                                    uint8_t          print);
667 static void    bxe_int_disable(struct bxe_softc *sc);
668 static int     bxe_release_leader_lock(struct bxe_softc *sc);
669 static void    bxe_pf_disable(struct bxe_softc *sc);
670 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
671 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
672                                       struct bxe_fastpath *fp,
673                                       uint16_t            rx_bd_prod,
674                                       uint16_t            rx_cq_prod,
675                                       uint16_t            rx_sge_prod);
676 static void    bxe_link_report_locked(struct bxe_softc *sc);
677 static void    bxe_link_report(struct bxe_softc *sc);
678 static void    bxe_link_status_update(struct bxe_softc *sc);
679 static void    bxe_periodic_callout_func(void *xsc);
680 static void    bxe_periodic_start(struct bxe_softc *sc);
681 static void    bxe_periodic_stop(struct bxe_softc *sc);
682 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
683                                     uint16_t prev_index,
684                                     uint16_t index);
685 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
686                                      int                 queue);
687 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
688                                      uint16_t            index);
689 static uint8_t bxe_txeof(struct bxe_softc *sc,
690                          struct bxe_fastpath *fp);
691 static void    bxe_task_fp(struct bxe_fastpath *fp);
692 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
693                                      struct mbuf      *m,
694                                      uint8_t          contents);
695 static int     bxe_alloc_mem(struct bxe_softc *sc);
696 static void    bxe_free_mem(struct bxe_softc *sc);
697 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
698 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
699 static int     bxe_interrupt_attach(struct bxe_softc *sc);
700 static void    bxe_interrupt_detach(struct bxe_softc *sc);
701 static void    bxe_set_rx_mode(struct bxe_softc *sc);
702 static int     bxe_init_locked(struct bxe_softc *sc);
703 static int     bxe_stop_locked(struct bxe_softc *sc);
704 static __noinline int bxe_nic_load(struct bxe_softc *sc,
705                                    int              load_mode);
706 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
707                                      uint32_t         unload_mode,
708                                      uint8_t          keep_link);
709 
710 static void bxe_handle_sp_tq(void *context, int pending);
711 static void bxe_handle_fp_tq(void *context, int pending);
712 
713 static int bxe_add_cdev(struct bxe_softc *sc);
714 static void bxe_del_cdev(struct bxe_softc *sc);
715 int bxe_grc_dump(struct bxe_softc *sc);
716 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
717 static void bxe_free_buf_rings(struct bxe_softc *sc);
718 
719 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
720 uint32_t
721 calc_crc32(uint8_t  *crc32_packet,
722            uint32_t crc32_length,
723            uint32_t crc32_seed,
724            uint8_t  complement)
725 {
726    uint32_t byte         = 0;
727    uint32_t bit          = 0;
728    uint8_t  msb          = 0;
729    uint32_t temp         = 0;
730    uint32_t shft         = 0;
731    uint8_t  current_byte = 0;
732    uint32_t crc32_result = crc32_seed;
733    const uint32_t CRC32_POLY = 0x1edc6f41;
734 
735    if ((crc32_packet == NULL) ||
736        (crc32_length == 0) ||
737        ((crc32_length % 8) != 0))
738     {
739         return (crc32_result);
740     }
741 
742     for (byte = 0; byte < crc32_length; byte = byte + 1)
743     {
744         current_byte = crc32_packet[byte];
745         for (bit = 0; bit < 8; bit = bit + 1)
746         {
747             /* msb = crc32_result[31]; */
748             msb = (uint8_t)(crc32_result >> 31);
749 
750             crc32_result = crc32_result << 1;
751 
752             /* it (msb != current_byte[bit]) */
753             if (msb != (0x1 & (current_byte >> bit)))
754             {
755                 crc32_result = crc32_result ^ CRC32_POLY;
756                 /* crc32_result[0] = 1 */
757                 crc32_result |= 1;
758             }
759         }
760     }
761 
762     /* Last step is to:
763      * 1. "mirror" every bit
764      * 2. swap the 4 bytes
765      * 3. complement each bit
766      */
767 
768     /* Mirror */
769     temp = crc32_result;
770     shft = sizeof(crc32_result) * 8 - 1;
771 
772     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
773     {
774         temp <<= 1;
775         temp |= crc32_result & 1;
776         shft-- ;
777     }
778 
779     /* temp[31-bit] = crc32_result[bit] */
780     temp <<= shft;
781 
782     /* Swap */
783     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
784     {
785         uint32_t t0, t1, t2, t3;
786         t0 = (0x000000ff & (temp >> 24));
787         t1 = (0x0000ff00 & (temp >> 8));
788         t2 = (0x00ff0000 & (temp << 8));
789         t3 = (0xff000000 & (temp << 24));
790         crc32_result = t0 | t1 | t2 | t3;
791     }
792 
793     /* Complement */
794     if (complement)
795     {
796         crc32_result = ~crc32_result;
797     }
798 
799     return (crc32_result);
800 }
801 
802 int
803 bxe_test_bit(int                    nr,
804              volatile unsigned long *addr)
805 {
806     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
807 }
808 
809 void
810 bxe_set_bit(unsigned int           nr,
811             volatile unsigned long *addr)
812 {
813     atomic_set_acq_long(addr, (1 << nr));
814 }
815 
816 void
817 bxe_clear_bit(int                    nr,
818               volatile unsigned long *addr)
819 {
820     atomic_clear_acq_long(addr, (1 << nr));
821 }
822 
823 int
824 bxe_test_and_set_bit(int                    nr,
825                        volatile unsigned long *addr)
826 {
827     unsigned long x;
828     nr = (1 << nr);
829     do {
830         x = *addr;
831     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
832     // if (x & nr) bit_was_set; else bit_was_not_set;
833     return (x & nr);
834 }
835 
836 int
837 bxe_test_and_clear_bit(int                    nr,
838                        volatile unsigned long *addr)
839 {
840     unsigned long x;
841     nr = (1 << nr);
842     do {
843         x = *addr;
844     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
845     // if (x & nr) bit_was_set; else bit_was_not_set;
846     return (x & nr);
847 }
848 
849 int
850 bxe_cmpxchg(volatile int *addr,
851             int          old,
852             int          new)
853 {
854     int x;
855     do {
856         x = *addr;
857     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
858     return (x);
859 }
860 
861 /*
862  * Get DMA memory from the OS.
863  *
864  * Validates that the OS has provided DMA buffers in response to a
865  * bus_dmamap_load call and saves the physical address of those buffers.
866  * When the callback is used the OS will return 0 for the mapping function
867  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
868  * failures back to the caller.
869  *
870  * Returns:
871  *   Nothing.
872  */
873 static void
874 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
875 {
876     struct bxe_dma *dma = arg;
877 
878     if (error) {
879         dma->paddr = 0;
880         dma->nseg  = 0;
881         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
882     } else {
883         dma->paddr = segs->ds_addr;
884         dma->nseg  = nseg;
885     }
886 }
887 
888 /*
889  * Allocate a block of memory and map it for DMA. No partial completions
890  * allowed and release any resources acquired if we can't acquire all
891  * resources.
892  *
893  * Returns:
894  *   0 = Success, !0 = Failure
895  */
896 int
897 bxe_dma_alloc(struct bxe_softc *sc,
898               bus_size_t       size,
899               struct bxe_dma   *dma,
900               const char       *msg)
901 {
902     int rc;
903 
904     if (dma->size > 0) {
905         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
906               (unsigned long)dma->size);
907         return (1);
908     }
909 
910     memset(dma, 0, sizeof(*dma)); /* sanity */
911     dma->sc   = sc;
912     dma->size = size;
913     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
914 
915     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
916                             BCM_PAGE_SIZE,      /* alignment */
917                             0,                  /* boundary limit */
918                             BUS_SPACE_MAXADDR,  /* restricted low */
919                             BUS_SPACE_MAXADDR,  /* restricted hi */
920                             NULL,               /* addr filter() */
921                             NULL,               /* addr filter() arg */
922                             size,               /* max map size */
923                             1,                  /* num discontinuous */
924                             size,               /* max seg size */
925                             BUS_DMA_ALLOCNOW,   /* flags */
926                             NULL,               /* lock() */
927                             NULL,               /* lock() arg */
928                             &dma->tag);         /* returned dma tag */
929     if (rc != 0) {
930         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
931         memset(dma, 0, sizeof(*dma));
932         return (1);
933     }
934 
935     rc = bus_dmamem_alloc(dma->tag,
936                           (void **)&dma->vaddr,
937                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
938                           &dma->map);
939     if (rc != 0) {
940         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
941         bus_dma_tag_destroy(dma->tag);
942         memset(dma, 0, sizeof(*dma));
943         return (1);
944     }
945 
946     rc = bus_dmamap_load(dma->tag,
947                          dma->map,
948                          dma->vaddr,
949                          size,
950                          bxe_dma_map_addr, /* BLOGD in here */
951                          dma,
952                          BUS_DMA_NOWAIT);
953     if (rc != 0) {
954         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
955         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
956         bus_dma_tag_destroy(dma->tag);
957         memset(dma, 0, sizeof(*dma));
958         return (1);
959     }
960 
961     return (0);
962 }
963 
964 void
965 bxe_dma_free(struct bxe_softc *sc,
966              struct bxe_dma   *dma)
967 {
968     if (dma->size > 0) {
969         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
970 
971         bus_dmamap_sync(dma->tag, dma->map,
972                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
973         bus_dmamap_unload(dma->tag, dma->map);
974         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
975         bus_dma_tag_destroy(dma->tag);
976     }
977 
978     memset(dma, 0, sizeof(*dma));
979 }
980 
981 /*
982  * These indirect read and write routines are only during init.
983  * The locking is handled by the MCP.
984  */
985 
986 void
987 bxe_reg_wr_ind(struct bxe_softc *sc,
988                uint32_t         addr,
989                uint32_t         val)
990 {
991     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
992     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
993     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
994 }
995 
996 uint32_t
997 bxe_reg_rd_ind(struct bxe_softc *sc,
998                uint32_t         addr)
999 {
1000     uint32_t val;
1001 
1002     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1003     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1004     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1005 
1006     return (val);
1007 }
1008 
1009 static int
1010 bxe_acquire_hw_lock(struct bxe_softc *sc,
1011                     uint32_t         resource)
1012 {
1013     uint32_t lock_status;
1014     uint32_t resource_bit = (1 << resource);
1015     int func = SC_FUNC(sc);
1016     uint32_t hw_lock_control_reg;
1017     int cnt;
1018 
1019     /* validate the resource is within range */
1020     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1021         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1022             " resource_bit 0x%x\n", resource, resource_bit);
1023         return (-1);
1024     }
1025 
1026     if (func <= 5) {
1027         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1028     } else {
1029         hw_lock_control_reg =
1030                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1031     }
1032 
1033     /* validate the resource is not already taken */
1034     lock_status = REG_RD(sc, hw_lock_control_reg);
1035     if (lock_status & resource_bit) {
1036         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1037               resource, lock_status, resource_bit);
1038         return (-1);
1039     }
1040 
1041     /* try every 5ms for 5 seconds */
1042     for (cnt = 0; cnt < 1000; cnt++) {
1043         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1044         lock_status = REG_RD(sc, hw_lock_control_reg);
1045         if (lock_status & resource_bit) {
1046             return (0);
1047         }
1048         DELAY(5000);
1049     }
1050 
1051     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1052         resource, resource_bit);
1053     return (-1);
1054 }
1055 
1056 static int
1057 bxe_release_hw_lock(struct bxe_softc *sc,
1058                     uint32_t         resource)
1059 {
1060     uint32_t lock_status;
1061     uint32_t resource_bit = (1 << resource);
1062     int func = SC_FUNC(sc);
1063     uint32_t hw_lock_control_reg;
1064 
1065     /* validate the resource is within range */
1066     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1067         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1068             " resource_bit 0x%x\n", resource, resource_bit);
1069         return (-1);
1070     }
1071 
1072     if (func <= 5) {
1073         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1074     } else {
1075         hw_lock_control_reg =
1076                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1077     }
1078 
1079     /* validate the resource is currently taken */
1080     lock_status = REG_RD(sc, hw_lock_control_reg);
1081     if (!(lock_status & resource_bit)) {
1082         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1083               resource, lock_status, resource_bit);
1084         return (-1);
1085     }
1086 
1087     REG_WR(sc, hw_lock_control_reg, resource_bit);
1088     return (0);
1089 }
1090 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1091 {
1092 	BXE_PHY_LOCK(sc);
1093 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1094 }
1095 
1096 static void bxe_release_phy_lock(struct bxe_softc *sc)
1097 {
1098 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1099 	BXE_PHY_UNLOCK(sc);
1100 }
1101 /*
1102  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1103  * had we done things the other way around, if two pfs from the same port
1104  * would attempt to access nvram at the same time, we could run into a
1105  * scenario such as:
1106  * pf A takes the port lock.
1107  * pf B succeeds in taking the same lock since they are from the same port.
1108  * pf A takes the per pf misc lock. Performs eeprom access.
1109  * pf A finishes. Unlocks the per pf misc lock.
1110  * Pf B takes the lock and proceeds to perform it's own access.
1111  * pf A unlocks the per port lock, while pf B is still working (!).
1112  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1113  * access corrupted by pf B).*
1114  */
1115 static int
1116 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1117 {
1118     int port = SC_PORT(sc);
1119     int count, i;
1120     uint32_t val = 0;
1121 
1122     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1123     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1124 
1125     /* adjust timeout for emulation/FPGA */
1126     count = NVRAM_TIMEOUT_COUNT;
1127     if (CHIP_REV_IS_SLOW(sc)) {
1128         count *= 100;
1129     }
1130 
1131     /* request access to nvram interface */
1132     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1133            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1134 
1135     for (i = 0; i < count*10; i++) {
1136         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1137         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1138             break;
1139         }
1140 
1141         DELAY(5);
1142     }
1143 
1144     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1145         BLOGE(sc, "Cannot get access to nvram interface "
1146             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1147             port, val);
1148         return (-1);
1149     }
1150 
1151     return (0);
1152 }
1153 
1154 static int
1155 bxe_release_nvram_lock(struct bxe_softc *sc)
1156 {
1157     int port = SC_PORT(sc);
1158     int count, i;
1159     uint32_t val = 0;
1160 
1161     /* adjust timeout for emulation/FPGA */
1162     count = NVRAM_TIMEOUT_COUNT;
1163     if (CHIP_REV_IS_SLOW(sc)) {
1164         count *= 100;
1165     }
1166 
1167     /* relinquish nvram interface */
1168     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1169            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1170 
1171     for (i = 0; i < count*10; i++) {
1172         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1173         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1174             break;
1175         }
1176 
1177         DELAY(5);
1178     }
1179 
1180     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1181         BLOGE(sc, "Cannot free access to nvram interface "
1182             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1183             port, val);
1184         return (-1);
1185     }
1186 
1187     /* release HW lock: protect against other PFs in PF Direct Assignment */
1188     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1189 
1190     return (0);
1191 }
1192 
1193 static void
1194 bxe_enable_nvram_access(struct bxe_softc *sc)
1195 {
1196     uint32_t val;
1197 
1198     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1199 
1200     /* enable both bits, even on read */
1201     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1202            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1203 }
1204 
1205 static void
1206 bxe_disable_nvram_access(struct bxe_softc *sc)
1207 {
1208     uint32_t val;
1209 
1210     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1211 
1212     /* disable both bits, even after read */
1213     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1214            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1215                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1216 }
1217 
1218 static int
1219 bxe_nvram_read_dword(struct bxe_softc *sc,
1220                      uint32_t         offset,
1221                      uint32_t         *ret_val,
1222                      uint32_t         cmd_flags)
1223 {
1224     int count, i, rc;
1225     uint32_t val;
1226 
1227     /* build the command word */
1228     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1229 
1230     /* need to clear DONE bit separately */
1231     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1232 
1233     /* address of the NVRAM to read from */
1234     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1235            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1236 
1237     /* issue a read command */
1238     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1239 
1240     /* adjust timeout for emulation/FPGA */
1241     count = NVRAM_TIMEOUT_COUNT;
1242     if (CHIP_REV_IS_SLOW(sc)) {
1243         count *= 100;
1244     }
1245 
1246     /* wait for completion */
1247     *ret_val = 0;
1248     rc = -1;
1249     for (i = 0; i < count; i++) {
1250         DELAY(5);
1251         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1252 
1253         if (val & MCPR_NVM_COMMAND_DONE) {
1254             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1255             /* we read nvram data in cpu order
1256              * but ethtool sees it as an array of bytes
1257              * converting to big-endian will do the work
1258              */
1259             *ret_val = htobe32(val);
1260             rc = 0;
1261             break;
1262         }
1263     }
1264 
1265     if (rc == -1) {
1266         BLOGE(sc, "nvram read timeout expired "
1267             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1268             offset, cmd_flags, val);
1269     }
1270 
1271     return (rc);
1272 }
1273 
1274 static int
1275 bxe_nvram_read(struct bxe_softc *sc,
1276                uint32_t         offset,
1277                uint8_t          *ret_buf,
1278                int              buf_size)
1279 {
1280     uint32_t cmd_flags;
1281     uint32_t val;
1282     int rc;
1283 
1284     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1285         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1286               offset, buf_size);
1287         return (-1);
1288     }
1289 
1290     if ((offset + buf_size) > sc->devinfo.flash_size) {
1291         BLOGE(sc, "Invalid parameter, "
1292                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1293               offset, buf_size, sc->devinfo.flash_size);
1294         return (-1);
1295     }
1296 
1297     /* request access to nvram interface */
1298     rc = bxe_acquire_nvram_lock(sc);
1299     if (rc) {
1300         return (rc);
1301     }
1302 
1303     /* enable access to nvram interface */
1304     bxe_enable_nvram_access(sc);
1305 
1306     /* read the first word(s) */
1307     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1308     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1309         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1310         memcpy(ret_buf, &val, 4);
1311 
1312         /* advance to the next dword */
1313         offset += sizeof(uint32_t);
1314         ret_buf += sizeof(uint32_t);
1315         buf_size -= sizeof(uint32_t);
1316         cmd_flags = 0;
1317     }
1318 
1319     if (rc == 0) {
1320         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1321         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1322         memcpy(ret_buf, &val, 4);
1323     }
1324 
1325     /* disable access to nvram interface */
1326     bxe_disable_nvram_access(sc);
1327     bxe_release_nvram_lock(sc);
1328 
1329     return (rc);
1330 }
1331 
1332 static int
1333 bxe_nvram_write_dword(struct bxe_softc *sc,
1334                       uint32_t         offset,
1335                       uint32_t         val,
1336                       uint32_t         cmd_flags)
1337 {
1338     int count, i, rc;
1339 
1340     /* build the command word */
1341     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1342 
1343     /* need to clear DONE bit separately */
1344     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1345 
1346     /* write the data */
1347     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1348 
1349     /* address of the NVRAM to write to */
1350     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1351            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1352 
1353     /* issue the write command */
1354     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1355 
1356     /* adjust timeout for emulation/FPGA */
1357     count = NVRAM_TIMEOUT_COUNT;
1358     if (CHIP_REV_IS_SLOW(sc)) {
1359         count *= 100;
1360     }
1361 
1362     /* wait for completion */
1363     rc = -1;
1364     for (i = 0; i < count; i++) {
1365         DELAY(5);
1366         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1367         if (val & MCPR_NVM_COMMAND_DONE) {
1368             rc = 0;
1369             break;
1370         }
1371     }
1372 
1373     if (rc == -1) {
1374         BLOGE(sc, "nvram write timeout expired "
1375             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1376             offset, cmd_flags, val);
1377     }
1378 
1379     return (rc);
1380 }
1381 
1382 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1383 
1384 static int
1385 bxe_nvram_write1(struct bxe_softc *sc,
1386                  uint32_t         offset,
1387                  uint8_t          *data_buf,
1388                  int              buf_size)
1389 {
1390     uint32_t cmd_flags;
1391     uint32_t align_offset;
1392     uint32_t val;
1393     int rc;
1394 
1395     if ((offset + buf_size) > sc->devinfo.flash_size) {
1396         BLOGE(sc, "Invalid parameter, "
1397                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1398               offset, buf_size, sc->devinfo.flash_size);
1399         return (-1);
1400     }
1401 
1402     /* request access to nvram interface */
1403     rc = bxe_acquire_nvram_lock(sc);
1404     if (rc) {
1405         return (rc);
1406     }
1407 
1408     /* enable access to nvram interface */
1409     bxe_enable_nvram_access(sc);
1410 
1411     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1412     align_offset = (offset & ~0x03);
1413     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1414 
1415     if (rc == 0) {
1416         val &= ~(0xff << BYTE_OFFSET(offset));
1417         val |= (*data_buf << BYTE_OFFSET(offset));
1418 
1419         /* nvram data is returned as an array of bytes
1420          * convert it back to cpu order
1421          */
1422         val = be32toh(val);
1423 
1424         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1425     }
1426 
1427     /* disable access to nvram interface */
1428     bxe_disable_nvram_access(sc);
1429     bxe_release_nvram_lock(sc);
1430 
1431     return (rc);
1432 }
1433 
1434 static int
1435 bxe_nvram_write(struct bxe_softc *sc,
1436                 uint32_t         offset,
1437                 uint8_t          *data_buf,
1438                 int              buf_size)
1439 {
1440     uint32_t cmd_flags;
1441     uint32_t val;
1442     uint32_t written_so_far;
1443     int rc;
1444 
1445     if (buf_size == 1) {
1446         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1447     }
1448 
1449     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1450         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1451               offset, buf_size);
1452         return (-1);
1453     }
1454 
1455     if (buf_size == 0) {
1456         return (0); /* nothing to do */
1457     }
1458 
1459     if ((offset + buf_size) > sc->devinfo.flash_size) {
1460         BLOGE(sc, "Invalid parameter, "
1461                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1462               offset, buf_size, sc->devinfo.flash_size);
1463         return (-1);
1464     }
1465 
1466     /* request access to nvram interface */
1467     rc = bxe_acquire_nvram_lock(sc);
1468     if (rc) {
1469         return (rc);
1470     }
1471 
1472     /* enable access to nvram interface */
1473     bxe_enable_nvram_access(sc);
1474 
1475     written_so_far = 0;
1476     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1477     while ((written_so_far < buf_size) && (rc == 0)) {
1478         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1479             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1480         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1481             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1482         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1483             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1484         }
1485 
1486         memcpy(&val, data_buf, 4);
1487 
1488         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1489 
1490         /* advance to the next dword */
1491         offset += sizeof(uint32_t);
1492         data_buf += sizeof(uint32_t);
1493         written_so_far += sizeof(uint32_t);
1494         cmd_flags = 0;
1495     }
1496 
1497     /* disable access to nvram interface */
1498     bxe_disable_nvram_access(sc);
1499     bxe_release_nvram_lock(sc);
1500 
1501     return (rc);
1502 }
1503 
1504 /* copy command into DMAE command memory and set DMAE command Go */
1505 void
1506 bxe_post_dmae(struct bxe_softc    *sc,
1507               struct dmae_cmd *dmae,
1508               int                 idx)
1509 {
1510     uint32_t cmd_offset;
1511     int i;
1512 
1513     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1514     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1515         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1516     }
1517 
1518     REG_WR(sc, dmae_reg_go_c[idx], 1);
1519 }
1520 
1521 uint32_t
1522 bxe_dmae_opcode_add_comp(uint32_t opcode,
1523                          uint8_t  comp_type)
1524 {
1525     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1526                       DMAE_CMD_C_TYPE_ENABLE));
1527 }
1528 
1529 uint32_t
1530 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1531 {
1532     return (opcode & ~DMAE_CMD_SRC_RESET);
1533 }
1534 
1535 uint32_t
1536 bxe_dmae_opcode(struct bxe_softc *sc,
1537                 uint8_t          src_type,
1538                 uint8_t          dst_type,
1539                 uint8_t          with_comp,
1540                 uint8_t          comp_type)
1541 {
1542     uint32_t opcode = 0;
1543 
1544     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1545                (dst_type << DMAE_CMD_DST_SHIFT));
1546 
1547     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1548 
1549     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1550 
1551     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1552                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1553 
1554     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1555 
1556 #ifdef __BIG_ENDIAN
1557     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1558 #else
1559     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1560 #endif
1561 
1562     if (with_comp) {
1563         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1564     }
1565 
1566     return (opcode);
1567 }
1568 
1569 static void
1570 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1571                         struct dmae_cmd *dmae,
1572                         uint8_t             src_type,
1573                         uint8_t             dst_type)
1574 {
1575     memset(dmae, 0, sizeof(struct dmae_cmd));
1576 
1577     /* set the opcode */
1578     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1579                                    TRUE, DMAE_COMP_PCI);
1580 
1581     /* fill in the completion parameters */
1582     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1583     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1584     dmae->comp_val     = DMAE_COMP_VAL;
1585 }
1586 
1587 /* issue a DMAE command over the init channel and wait for completion */
1588 static int
1589 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1590                          struct dmae_cmd *dmae)
1591 {
1592     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1593     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1594 
1595     BXE_DMAE_LOCK(sc);
1596 
1597     /* reset completion */
1598     *wb_comp = 0;
1599 
1600     /* post the command on the channel used for initializations */
1601     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1602 
1603     /* wait for completion */
1604     DELAY(5);
1605 
1606     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1607         if (!timeout ||
1608             (sc->recovery_state != BXE_RECOVERY_DONE &&
1609              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1610             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1611                 *wb_comp, sc->recovery_state);
1612             BXE_DMAE_UNLOCK(sc);
1613             return (DMAE_TIMEOUT);
1614         }
1615 
1616         timeout--;
1617         DELAY(50);
1618     }
1619 
1620     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1621         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1622                 *wb_comp, sc->recovery_state);
1623         BXE_DMAE_UNLOCK(sc);
1624         return (DMAE_PCI_ERROR);
1625     }
1626 
1627     BXE_DMAE_UNLOCK(sc);
1628     return (0);
1629 }
1630 
1631 void
1632 bxe_read_dmae(struct bxe_softc *sc,
1633               uint32_t         src_addr,
1634               uint32_t         len32)
1635 {
1636     struct dmae_cmd dmae;
1637     uint32_t *data;
1638     int i, rc;
1639 
1640     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1641 
1642     if (!sc->dmae_ready) {
1643         data = BXE_SP(sc, wb_data[0]);
1644 
1645         for (i = 0; i < len32; i++) {
1646             data[i] = (CHIP_IS_E1(sc)) ?
1647                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1648                           REG_RD(sc, (src_addr + (i * 4)));
1649         }
1650 
1651         return;
1652     }
1653 
1654     /* set opcode and fixed command fields */
1655     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1656 
1657     /* fill in addresses and len */
1658     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1659     dmae.src_addr_hi = 0;
1660     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1661     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1662     dmae.len         = len32;
1663 
1664     /* issue the command and wait for completion */
1665     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1666         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1667     }
1668 }
1669 
1670 void
1671 bxe_write_dmae(struct bxe_softc *sc,
1672                bus_addr_t       dma_addr,
1673                uint32_t         dst_addr,
1674                uint32_t         len32)
1675 {
1676     struct dmae_cmd dmae;
1677     int rc;
1678 
1679     if (!sc->dmae_ready) {
1680         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1681 
1682         if (CHIP_IS_E1(sc)) {
1683             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1684         } else {
1685             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1686         }
1687 
1688         return;
1689     }
1690 
1691     /* set opcode and fixed command fields */
1692     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1693 
1694     /* fill in addresses and len */
1695     dmae.src_addr_lo = U64_LO(dma_addr);
1696     dmae.src_addr_hi = U64_HI(dma_addr);
1697     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1698     dmae.dst_addr_hi = 0;
1699     dmae.len         = len32;
1700 
1701     /* issue the command and wait for completion */
1702     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1703         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1704     }
1705 }
1706 
1707 void
1708 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1709                         bus_addr_t       phys_addr,
1710                         uint32_t         addr,
1711                         uint32_t         len)
1712 {
1713     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1714     int offset = 0;
1715 
1716     while (len > dmae_wr_max) {
1717         bxe_write_dmae(sc,
1718                        (phys_addr + offset), /* src DMA address */
1719                        (addr + offset),      /* dst GRC address */
1720                        dmae_wr_max);
1721         offset += (dmae_wr_max * 4);
1722         len -= dmae_wr_max;
1723     }
1724 
1725     bxe_write_dmae(sc,
1726                    (phys_addr + offset), /* src DMA address */
1727                    (addr + offset),      /* dst GRC address */
1728                    len);
1729 }
1730 
1731 void
1732 bxe_set_ctx_validation(struct bxe_softc   *sc,
1733                        struct eth_context *cxt,
1734                        uint32_t           cid)
1735 {
1736     /* ustorm cxt validation */
1737     cxt->ustorm_ag_context.cdu_usage =
1738         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1739             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1740     /* xcontext validation */
1741     cxt->xstorm_ag_context.cdu_reserved =
1742         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1743             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1744 }
1745 
1746 static void
1747 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1748                             uint8_t          port,
1749                             uint8_t          fw_sb_id,
1750                             uint8_t          sb_index,
1751                             uint8_t          ticks)
1752 {
1753     uint32_t addr =
1754         (BAR_CSTRORM_INTMEM +
1755          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1756 
1757     REG_WR8(sc, addr, ticks);
1758 
1759     BLOGD(sc, DBG_LOAD,
1760           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1761           port, fw_sb_id, sb_index, ticks);
1762 }
1763 
1764 static void
1765 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1766                             uint8_t          port,
1767                             uint16_t         fw_sb_id,
1768                             uint8_t          sb_index,
1769                             uint8_t          disable)
1770 {
1771     uint32_t enable_flag =
1772         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1773     uint32_t addr =
1774         (BAR_CSTRORM_INTMEM +
1775          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1776     uint8_t flags;
1777 
1778     /* clear and set */
1779     flags = REG_RD8(sc, addr);
1780     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1781     flags |= enable_flag;
1782     REG_WR8(sc, addr, flags);
1783 
1784     BLOGD(sc, DBG_LOAD,
1785           "port %d fw_sb_id %d sb_index %d disable %d\n",
1786           port, fw_sb_id, sb_index, disable);
1787 }
1788 
1789 void
1790 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1791                              uint8_t          fw_sb_id,
1792                              uint8_t          sb_index,
1793                              uint8_t          disable,
1794                              uint16_t         usec)
1795 {
1796     int port = SC_PORT(sc);
1797     uint8_t ticks = (usec / 4); /* XXX ??? */
1798 
1799     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1800 
1801     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1802     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1803 }
1804 
1805 void
1806 elink_cb_udelay(struct bxe_softc *sc,
1807                 uint32_t         usecs)
1808 {
1809     DELAY(usecs);
1810 }
1811 
1812 uint32_t
1813 elink_cb_reg_read(struct bxe_softc *sc,
1814                   uint32_t         reg_addr)
1815 {
1816     return (REG_RD(sc, reg_addr));
1817 }
1818 
1819 void
1820 elink_cb_reg_write(struct bxe_softc *sc,
1821                    uint32_t         reg_addr,
1822                    uint32_t         val)
1823 {
1824     REG_WR(sc, reg_addr, val);
1825 }
1826 
1827 void
1828 elink_cb_reg_wb_write(struct bxe_softc *sc,
1829                       uint32_t         offset,
1830                       uint32_t         *wb_write,
1831                       uint16_t         len)
1832 {
1833     REG_WR_DMAE(sc, offset, wb_write, len);
1834 }
1835 
1836 void
1837 elink_cb_reg_wb_read(struct bxe_softc *sc,
1838                      uint32_t         offset,
1839                      uint32_t         *wb_write,
1840                      uint16_t         len)
1841 {
1842     REG_RD_DMAE(sc, offset, wb_write, len);
1843 }
1844 
1845 uint8_t
1846 elink_cb_path_id(struct bxe_softc *sc)
1847 {
1848     return (SC_PATH(sc));
1849 }
1850 
1851 void
1852 elink_cb_event_log(struct bxe_softc     *sc,
1853                    const elink_log_id_t elink_log_id,
1854                    ...)
1855 {
1856     /* XXX */
1857     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1858 }
1859 
1860 static int
1861 bxe_set_spio(struct bxe_softc *sc,
1862              int              spio,
1863              uint32_t         mode)
1864 {
1865     uint32_t spio_reg;
1866 
1867     /* Only 2 SPIOs are configurable */
1868     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1869         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1870         return (-1);
1871     }
1872 
1873     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1874 
1875     /* read SPIO and mask except the float bits */
1876     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1877 
1878     switch (mode) {
1879     case MISC_SPIO_OUTPUT_LOW:
1880         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1881         /* clear FLOAT and set CLR */
1882         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1883         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1884         break;
1885 
1886     case MISC_SPIO_OUTPUT_HIGH:
1887         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1888         /* clear FLOAT and set SET */
1889         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1890         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1891         break;
1892 
1893     case MISC_SPIO_INPUT_HI_Z:
1894         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1895         /* set FLOAT */
1896         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1897         break;
1898 
1899     default:
1900         break;
1901     }
1902 
1903     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1904     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1905 
1906     return (0);
1907 }
1908 
1909 static int
1910 bxe_gpio_read(struct bxe_softc *sc,
1911               int              gpio_num,
1912               uint8_t          port)
1913 {
1914     /* The GPIO should be swapped if swap register is set and active */
1915     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1916                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1917     int gpio_shift = (gpio_num +
1918                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1919     uint32_t gpio_mask = (1 << gpio_shift);
1920     uint32_t gpio_reg;
1921 
1922     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1923         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1924             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1925             gpio_mask);
1926         return (-1);
1927     }
1928 
1929     /* read GPIO value */
1930     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1931 
1932     /* get the requested pin value */
1933     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1934 }
1935 
1936 static int
1937 bxe_gpio_write(struct bxe_softc *sc,
1938                int              gpio_num,
1939                uint32_t         mode,
1940                uint8_t          port)
1941 {
1942     /* The GPIO should be swapped if swap register is set and active */
1943     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1944                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1945     int gpio_shift = (gpio_num +
1946                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1947     uint32_t gpio_mask = (1 << gpio_shift);
1948     uint32_t gpio_reg;
1949 
1950     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1951         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1952             " gpio_shift %d gpio_mask 0x%x\n",
1953             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1954         return (-1);
1955     }
1956 
1957     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1958 
1959     /* read GPIO and mask except the float bits */
1960     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1961 
1962     switch (mode) {
1963     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1964         BLOGD(sc, DBG_PHY,
1965               "Set GPIO %d (shift %d) -> output low\n",
1966               gpio_num, gpio_shift);
1967         /* clear FLOAT and set CLR */
1968         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1969         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1970         break;
1971 
1972     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1973         BLOGD(sc, DBG_PHY,
1974               "Set GPIO %d (shift %d) -> output high\n",
1975               gpio_num, gpio_shift);
1976         /* clear FLOAT and set SET */
1977         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1978         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1979         break;
1980 
1981     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1982         BLOGD(sc, DBG_PHY,
1983               "Set GPIO %d (shift %d) -> input\n",
1984               gpio_num, gpio_shift);
1985         /* set FLOAT */
1986         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1987         break;
1988 
1989     default:
1990         break;
1991     }
1992 
1993     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1994     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1995 
1996     return (0);
1997 }
1998 
1999 static int
2000 bxe_gpio_mult_write(struct bxe_softc *sc,
2001                     uint8_t          pins,
2002                     uint32_t         mode)
2003 {
2004     uint32_t gpio_reg;
2005 
2006     /* any port swapping should be handled by caller */
2007 
2008     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2009 
2010     /* read GPIO and mask except the float bits */
2011     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2012     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2013     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2014     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2015 
2016     switch (mode) {
2017     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2018         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2019         /* set CLR */
2020         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2021         break;
2022 
2023     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2024         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2025         /* set SET */
2026         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2027         break;
2028 
2029     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2030         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2031         /* set FLOAT */
2032         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2033         break;
2034 
2035     default:
2036         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2037             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2038         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2039         return (-1);
2040     }
2041 
2042     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2043     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2044 
2045     return (0);
2046 }
2047 
2048 static int
2049 bxe_gpio_int_write(struct bxe_softc *sc,
2050                    int              gpio_num,
2051                    uint32_t         mode,
2052                    uint8_t          port)
2053 {
2054     /* The GPIO should be swapped if swap register is set and active */
2055     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2056                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2057     int gpio_shift = (gpio_num +
2058                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2059     uint32_t gpio_mask = (1 << gpio_shift);
2060     uint32_t gpio_reg;
2061 
2062     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2063         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2064             " gpio_shift %d gpio_mask 0x%x\n",
2065             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2066         return (-1);
2067     }
2068 
2069     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2070 
2071     /* read GPIO int */
2072     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2073 
2074     switch (mode) {
2075     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2076         BLOGD(sc, DBG_PHY,
2077               "Clear GPIO INT %d (shift %d) -> output low\n",
2078               gpio_num, gpio_shift);
2079         /* clear SET and set CLR */
2080         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2081         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2082         break;
2083 
2084     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2085         BLOGD(sc, DBG_PHY,
2086               "Set GPIO INT %d (shift %d) -> output high\n",
2087               gpio_num, gpio_shift);
2088         /* clear CLR and set SET */
2089         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2090         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2091         break;
2092 
2093     default:
2094         break;
2095     }
2096 
2097     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2098     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2099 
2100     return (0);
2101 }
2102 
2103 uint32_t
2104 elink_cb_gpio_read(struct bxe_softc *sc,
2105                    uint16_t         gpio_num,
2106                    uint8_t          port)
2107 {
2108     return (bxe_gpio_read(sc, gpio_num, port));
2109 }
2110 
2111 uint8_t
2112 elink_cb_gpio_write(struct bxe_softc *sc,
2113                     uint16_t         gpio_num,
2114                     uint8_t          mode, /* 0=low 1=high */
2115                     uint8_t          port)
2116 {
2117     return (bxe_gpio_write(sc, gpio_num, mode, port));
2118 }
2119 
2120 uint8_t
2121 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2122                          uint8_t          pins,
2123                          uint8_t          mode) /* 0=low 1=high */
2124 {
2125     return (bxe_gpio_mult_write(sc, pins, mode));
2126 }
2127 
2128 uint8_t
2129 elink_cb_gpio_int_write(struct bxe_softc *sc,
2130                         uint16_t         gpio_num,
2131                         uint8_t          mode, /* 0=low 1=high */
2132                         uint8_t          port)
2133 {
2134     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2135 }
2136 
2137 void
2138 elink_cb_notify_link_changed(struct bxe_softc *sc)
2139 {
2140     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2141                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2142 }
2143 
2144 /* send the MCP a request, block until there is a reply */
2145 uint32_t
2146 elink_cb_fw_command(struct bxe_softc *sc,
2147                     uint32_t         command,
2148                     uint32_t         param)
2149 {
2150     int mb_idx = SC_FW_MB_IDX(sc);
2151     uint32_t seq;
2152     uint32_t rc = 0;
2153     uint32_t cnt = 1;
2154     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2155 
2156     BXE_FWMB_LOCK(sc);
2157 
2158     seq = ++sc->fw_seq;
2159     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2160     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2161 
2162     BLOGD(sc, DBG_PHY,
2163           "wrote command 0x%08x to FW MB param 0x%08x\n",
2164           (command | seq), param);
2165 
2166     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2167     do {
2168         DELAY(delay * 1000);
2169         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2170     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2171 
2172     BLOGD(sc, DBG_PHY,
2173           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2174           cnt*delay, rc, seq);
2175 
2176     /* is this a reply to our command? */
2177     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2178         rc &= FW_MSG_CODE_MASK;
2179     } else {
2180         /* Ruh-roh! */
2181         BLOGE(sc, "FW failed to respond!\n");
2182         // XXX bxe_fw_dump(sc);
2183         rc = 0;
2184     }
2185 
2186     BXE_FWMB_UNLOCK(sc);
2187     return (rc);
2188 }
2189 
2190 static uint32_t
2191 bxe_fw_command(struct bxe_softc *sc,
2192                uint32_t         command,
2193                uint32_t         param)
2194 {
2195     return (elink_cb_fw_command(sc, command, param));
2196 }
2197 
2198 static void
2199 __storm_memset_dma_mapping(struct bxe_softc *sc,
2200                            uint32_t         addr,
2201                            bus_addr_t       mapping)
2202 {
2203     REG_WR(sc, addr, U64_LO(mapping));
2204     REG_WR(sc, (addr + 4), U64_HI(mapping));
2205 }
2206 
2207 static void
2208 storm_memset_spq_addr(struct bxe_softc *sc,
2209                       bus_addr_t       mapping,
2210                       uint16_t         abs_fid)
2211 {
2212     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2213                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2214     __storm_memset_dma_mapping(sc, addr, mapping);
2215 }
2216 
2217 static void
2218 storm_memset_vf_to_pf(struct bxe_softc *sc,
2219                       uint16_t         abs_fid,
2220                       uint16_t         pf_id)
2221 {
2222     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2223     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2224     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2225     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2226 }
2227 
2228 static void
2229 storm_memset_func_en(struct bxe_softc *sc,
2230                      uint16_t         abs_fid,
2231                      uint8_t          enable)
2232 {
2233     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2234     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2235     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2236     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2237 }
2238 
2239 static void
2240 storm_memset_eq_data(struct bxe_softc       *sc,
2241                      struct event_ring_data *eq_data,
2242                      uint16_t               pfid)
2243 {
2244     uint32_t addr;
2245     size_t size;
2246 
2247     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2248     size = sizeof(struct event_ring_data);
2249     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2250 }
2251 
2252 static void
2253 storm_memset_eq_prod(struct bxe_softc *sc,
2254                      uint16_t         eq_prod,
2255                      uint16_t         pfid)
2256 {
2257     uint32_t addr = (BAR_CSTRORM_INTMEM +
2258                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2259     REG_WR16(sc, addr, eq_prod);
2260 }
2261 
2262 /*
2263  * Post a slowpath command.
2264  *
2265  * A slowpath command is used to propagate a configuration change through
2266  * the controller in a controlled manner, allowing each STORM processor and
2267  * other H/W blocks to phase in the change.  The commands sent on the
2268  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2269  * completion of the ramrod will occur in different ways.  Here's a
2270  * breakdown of ramrods and how they complete:
2271  *
2272  * RAMROD_CMD_ID_ETH_PORT_SETUP
2273  *   Used to setup the leading connection on a port.  Completes on the
2274  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2275  *
2276  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2277  *   Used to setup an additional connection on a port.  Completes on the
2278  *   RCQ of the multi-queue/RSS connection being initialized.
2279  *
2280  * RAMROD_CMD_ID_ETH_STAT_QUERY
2281  *   Used to force the storm processors to update the statistics database
2282  *   in host memory.  This ramrod is send on the leading connection CID and
2283  *   completes as an index increment of the CSTORM on the default status
2284  *   block.
2285  *
2286  * RAMROD_CMD_ID_ETH_UPDATE
2287  *   Used to update the state of the leading connection, usually to udpate
2288  *   the RSS indirection table.  Completes on the RCQ of the leading
2289  *   connection. (Not currently used under FreeBSD until OS support becomes
2290  *   available.)
2291  *
2292  * RAMROD_CMD_ID_ETH_HALT
2293  *   Used when tearing down a connection prior to driver unload.  Completes
2294  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2295  *   use this on the leading connection.
2296  *
2297  * RAMROD_CMD_ID_ETH_SET_MAC
2298  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2299  *   the RCQ of the leading connection.
2300  *
2301  * RAMROD_CMD_ID_ETH_CFC_DEL
2302  *   Used when tearing down a conneciton prior to driver unload.  Completes
2303  *   on the RCQ of the leading connection (since the current connection
2304  *   has been completely removed from controller memory).
2305  *
2306  * RAMROD_CMD_ID_ETH_PORT_DEL
2307  *   Used to tear down the leading connection prior to driver unload,
2308  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2309  *   default status block.
2310  *
2311  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2312  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2313  *   RSS connection that is being offloaded.  (Not currently used under
2314  *   FreeBSD.)
2315  *
2316  * There can only be one command pending per function.
2317  *
2318  * Returns:
2319  *   0 = Success, !0 = Failure.
2320  */
2321 
2322 /* must be called under the spq lock */
2323 static inline
2324 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2325 {
2326     struct eth_spe *next_spe = sc->spq_prod_bd;
2327 
2328     if (sc->spq_prod_bd == sc->spq_last_bd) {
2329         /* wrap back to the first eth_spq */
2330         sc->spq_prod_bd = sc->spq;
2331         sc->spq_prod_idx = 0;
2332     } else {
2333         sc->spq_prod_bd++;
2334         sc->spq_prod_idx++;
2335     }
2336 
2337     return (next_spe);
2338 }
2339 
2340 /* must be called under the spq lock */
2341 static inline
2342 void bxe_sp_prod_update(struct bxe_softc *sc)
2343 {
2344     int func = SC_FUNC(sc);
2345 
2346     /*
2347      * Make sure that BD data is updated before writing the producer.
2348      * BD data is written to the memory, the producer is read from the
2349      * memory, thus we need a full memory barrier to ensure the ordering.
2350      */
2351     mb();
2352 
2353     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2354              sc->spq_prod_idx);
2355 
2356     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2357                       BUS_SPACE_BARRIER_WRITE);
2358 }
2359 
2360 /**
2361  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2362  *
2363  * @cmd:      command to check
2364  * @cmd_type: command type
2365  */
2366 static inline
2367 int bxe_is_contextless_ramrod(int cmd,
2368                               int cmd_type)
2369 {
2370     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2371         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2372         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2373         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2374         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2375         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2376         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2377         return (TRUE);
2378     } else {
2379         return (FALSE);
2380     }
2381 }
2382 
2383 /**
2384  * bxe_sp_post - place a single command on an SP ring
2385  *
2386  * @sc:         driver handle
2387  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2388  * @cid:        SW CID the command is related to
2389  * @data_hi:    command private data address (high 32 bits)
2390  * @data_lo:    command private data address (low 32 bits)
2391  * @cmd_type:   command type (e.g. NONE, ETH)
2392  *
2393  * SP data is handled as if it's always an address pair, thus data fields are
2394  * not swapped to little endian in upper functions. Instead this function swaps
2395  * data as if it's two uint32 fields.
2396  */
2397 int
2398 bxe_sp_post(struct bxe_softc *sc,
2399             int              command,
2400             int              cid,
2401             uint32_t         data_hi,
2402             uint32_t         data_lo,
2403             int              cmd_type)
2404 {
2405     struct eth_spe *spe;
2406     uint16_t type;
2407     int common;
2408 
2409     common = bxe_is_contextless_ramrod(command, cmd_type);
2410 
2411     BXE_SP_LOCK(sc);
2412 
2413     if (common) {
2414         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2415             BLOGE(sc, "EQ ring is full!\n");
2416             BXE_SP_UNLOCK(sc);
2417             return (-1);
2418         }
2419     } else {
2420         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2421             BLOGE(sc, "SPQ ring is full!\n");
2422             BXE_SP_UNLOCK(sc);
2423             return (-1);
2424         }
2425     }
2426 
2427     spe = bxe_sp_get_next(sc);
2428 
2429     /* CID needs port number to be encoded int it */
2430     spe->hdr.conn_and_cmd_data =
2431         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2432 
2433     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2434 
2435     /* TBD: Check if it works for VFs */
2436     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2437              SPE_HDR_T_FUNCTION_ID);
2438 
2439     spe->hdr.type = htole16(type);
2440 
2441     spe->data.update_data_addr.hi = htole32(data_hi);
2442     spe->data.update_data_addr.lo = htole32(data_lo);
2443 
2444     /*
2445      * It's ok if the actual decrement is issued towards the memory
2446      * somewhere between the lock and unlock. Thus no more explict
2447      * memory barrier is needed.
2448      */
2449     if (common) {
2450         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2451     } else {
2452         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2453     }
2454 
2455     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2456     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2457           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2458     BLOGD(sc, DBG_SP,
2459           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2460           sc->spq_prod_idx,
2461           (uint32_t)U64_HI(sc->spq_dma.paddr),
2462           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2463           command,
2464           common,
2465           HW_CID(sc, cid),
2466           data_hi,
2467           data_lo,
2468           type,
2469           atomic_load_acq_long(&sc->cq_spq_left),
2470           atomic_load_acq_long(&sc->eq_spq_left));
2471 
2472     bxe_sp_prod_update(sc);
2473 
2474     BXE_SP_UNLOCK(sc);
2475     return (0);
2476 }
2477 
2478 /**
2479  * bxe_debug_print_ind_table - prints the indirection table configuration.
2480  *
2481  * @sc: driver hanlde
2482  * @p:  pointer to rss configuration
2483  */
2484 
2485 /*
2486  * FreeBSD Device probe function.
2487  *
2488  * Compares the device found to the driver's list of supported devices and
2489  * reports back to the bsd loader whether this is the right driver for the device.
2490  * This is the driver entry function called from the "kldload" command.
2491  *
2492  * Returns:
2493  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2494  */
2495 static int
2496 bxe_probe(device_t dev)
2497 {
2498     struct bxe_device_type *t;
2499     char *descbuf;
2500     uint16_t did, sdid, svid, vid;
2501 
2502     /* Find our device structure */
2503     t = bxe_devs;
2504 
2505     /* Get the data for the device to be probed. */
2506     vid  = pci_get_vendor(dev);
2507     did  = pci_get_device(dev);
2508     svid = pci_get_subvendor(dev);
2509     sdid = pci_get_subdevice(dev);
2510 
2511     /* Look through the list of known devices for a match. */
2512     while (t->bxe_name != NULL) {
2513         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2514             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2515             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2516             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2517             if (descbuf == NULL)
2518                 return (ENOMEM);
2519 
2520             /* Print out the device identity. */
2521             snprintf(descbuf, BXE_DEVDESC_MAX,
2522                      "%s (%c%d) BXE v:%s\n", t->bxe_name,
2523                      (((pci_read_config(dev, PCIR_REVID, 4) &
2524                         0xf0) >> 4) + 'A'),
2525                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2526                      BXE_DRIVER_VERSION);
2527 
2528             device_set_desc_copy(dev, descbuf);
2529             free(descbuf, M_TEMP);
2530             return (BUS_PROBE_DEFAULT);
2531         }
2532         t++;
2533     }
2534 
2535     return (ENXIO);
2536 }
2537 
2538 static void
2539 bxe_init_mutexes(struct bxe_softc *sc)
2540 {
2541 #ifdef BXE_CORE_LOCK_SX
2542     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2543              "bxe%d_core_lock", sc->unit);
2544     sx_init(&sc->core_sx, sc->core_sx_name);
2545 #else
2546     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2547              "bxe%d_core_lock", sc->unit);
2548     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2549 #endif
2550 
2551     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2552              "bxe%d_sp_lock", sc->unit);
2553     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2554 
2555     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2556              "bxe%d_dmae_lock", sc->unit);
2557     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2558 
2559     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2560              "bxe%d_phy_lock", sc->unit);
2561     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2562 
2563     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2564              "bxe%d_fwmb_lock", sc->unit);
2565     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2566 
2567     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2568              "bxe%d_print_lock", sc->unit);
2569     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2570 
2571     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2572              "bxe%d_stats_lock", sc->unit);
2573     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2574 
2575     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2576              "bxe%d_mcast_lock", sc->unit);
2577     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2578 }
2579 
2580 static void
2581 bxe_release_mutexes(struct bxe_softc *sc)
2582 {
2583 #ifdef BXE_CORE_LOCK_SX
2584     sx_destroy(&sc->core_sx);
2585 #else
2586     if (mtx_initialized(&sc->core_mtx)) {
2587         mtx_destroy(&sc->core_mtx);
2588     }
2589 #endif
2590 
2591     if (mtx_initialized(&sc->sp_mtx)) {
2592         mtx_destroy(&sc->sp_mtx);
2593     }
2594 
2595     if (mtx_initialized(&sc->dmae_mtx)) {
2596         mtx_destroy(&sc->dmae_mtx);
2597     }
2598 
2599     if (mtx_initialized(&sc->port.phy_mtx)) {
2600         mtx_destroy(&sc->port.phy_mtx);
2601     }
2602 
2603     if (mtx_initialized(&sc->fwmb_mtx)) {
2604         mtx_destroy(&sc->fwmb_mtx);
2605     }
2606 
2607     if (mtx_initialized(&sc->print_mtx)) {
2608         mtx_destroy(&sc->print_mtx);
2609     }
2610 
2611     if (mtx_initialized(&sc->stats_mtx)) {
2612         mtx_destroy(&sc->stats_mtx);
2613     }
2614 
2615     if (mtx_initialized(&sc->mcast_mtx)) {
2616         mtx_destroy(&sc->mcast_mtx);
2617     }
2618 }
2619 
2620 static void
2621 bxe_tx_disable(struct bxe_softc* sc)
2622 {
2623     if_t ifp = sc->ifp;
2624 
2625     /* tell the stack the driver is stopped and TX queue is full */
2626     if (ifp !=  NULL) {
2627         if_setdrvflags(ifp, 0);
2628     }
2629 }
2630 
2631 static void
2632 bxe_drv_pulse(struct bxe_softc *sc)
2633 {
2634     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2635              sc->fw_drv_pulse_wr_seq);
2636 }
2637 
2638 static inline uint16_t
2639 bxe_tx_avail(struct bxe_softc *sc,
2640              struct bxe_fastpath *fp)
2641 {
2642     int16_t  used;
2643     uint16_t prod;
2644     uint16_t cons;
2645 
2646     prod = fp->tx_bd_prod;
2647     cons = fp->tx_bd_cons;
2648 
2649     used = SUB_S16(prod, cons);
2650 
2651     return (int16_t)(sc->tx_ring_size) - used;
2652 }
2653 
2654 static inline int
2655 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2656 {
2657     uint16_t hw_cons;
2658 
2659     mb(); /* status block fields can change */
2660     hw_cons = le16toh(*fp->tx_cons_sb);
2661     return (hw_cons != fp->tx_pkt_cons);
2662 }
2663 
2664 static inline uint8_t
2665 bxe_has_tx_work(struct bxe_fastpath *fp)
2666 {
2667     /* expand this for multi-cos if ever supported */
2668     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2669 }
2670 
2671 static inline int
2672 bxe_has_rx_work(struct bxe_fastpath *fp)
2673 {
2674     uint16_t rx_cq_cons_sb;
2675 
2676     mb(); /* status block fields can change */
2677     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2678     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2679         rx_cq_cons_sb++;
2680     return (fp->rx_cq_cons != rx_cq_cons_sb);
2681 }
2682 
2683 static void
2684 bxe_sp_event(struct bxe_softc    *sc,
2685              struct bxe_fastpath *fp,
2686              union eth_rx_cqe    *rr_cqe)
2687 {
2688     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2689     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2690     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2691     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2692 
2693     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2694           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2695 
2696     switch (command) {
2697     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2698         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2699         drv_cmd = ECORE_Q_CMD_UPDATE;
2700         break;
2701 
2702     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2703         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2704         drv_cmd = ECORE_Q_CMD_SETUP;
2705         break;
2706 
2707     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2708         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2709         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2710         break;
2711 
2712     case (RAMROD_CMD_ID_ETH_HALT):
2713         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2714         drv_cmd = ECORE_Q_CMD_HALT;
2715         break;
2716 
2717     case (RAMROD_CMD_ID_ETH_TERMINATE):
2718         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2719         drv_cmd = ECORE_Q_CMD_TERMINATE;
2720         break;
2721 
2722     case (RAMROD_CMD_ID_ETH_EMPTY):
2723         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2724         drv_cmd = ECORE_Q_CMD_EMPTY;
2725         break;
2726 
2727     default:
2728         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2729               command, fp->index);
2730         return;
2731     }
2732 
2733     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2734         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2735         /*
2736          * q_obj->complete_cmd() failure means that this was
2737          * an unexpected completion.
2738          *
2739          * In this case we don't want to increase the sc->spq_left
2740          * because apparently we haven't sent this command the first
2741          * place.
2742          */
2743         // bxe_panic(sc, ("Unexpected SP completion\n"));
2744         return;
2745     }
2746 
2747     atomic_add_acq_long(&sc->cq_spq_left, 1);
2748 
2749     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2750           atomic_load_acq_long(&sc->cq_spq_left));
2751 }
2752 
2753 /*
2754  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2755  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2756  * the current aggregation queue as in-progress.
2757  */
2758 static void
2759 bxe_tpa_start(struct bxe_softc            *sc,
2760               struct bxe_fastpath         *fp,
2761               uint16_t                    queue,
2762               uint16_t                    cons,
2763               uint16_t                    prod,
2764               struct eth_fast_path_rx_cqe *cqe)
2765 {
2766     struct bxe_sw_rx_bd tmp_bd;
2767     struct bxe_sw_rx_bd *rx_buf;
2768     struct eth_rx_bd *rx_bd;
2769     int max_agg_queues;
2770     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2771     uint16_t index;
2772 
2773     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2774                        "cons=%d prod=%d\n",
2775           fp->index, queue, cons, prod);
2776 
2777     max_agg_queues = MAX_AGG_QS(sc);
2778 
2779     KASSERT((queue < max_agg_queues),
2780             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2781              fp->index, queue, max_agg_queues));
2782 
2783     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2784             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2785              fp->index, queue));
2786 
2787     /* copy the existing mbuf and mapping from the TPA pool */
2788     tmp_bd = tpa_info->bd;
2789 
2790     if (tmp_bd.m == NULL) {
2791         uint32_t *tmp;
2792 
2793         tmp = (uint32_t *)cqe;
2794 
2795         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2796               fp->index, queue, cons, prod);
2797         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2798             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2799 
2800         /* XXX Error handling? */
2801         return;
2802     }
2803 
2804     /* change the TPA queue to the start state */
2805     tpa_info->state            = BXE_TPA_STATE_START;
2806     tpa_info->placement_offset = cqe->placement_offset;
2807     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2808     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2809     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2810 
2811     fp->rx_tpa_queue_used |= (1 << queue);
2812 
2813     /*
2814      * If all the buffer descriptors are filled with mbufs then fill in
2815      * the current consumer index with a new BD. Else if a maximum Rx
2816      * buffer limit is imposed then fill in the next producer index.
2817      */
2818     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2819                 prod : cons;
2820 
2821     /* move the received mbuf and mapping to TPA pool */
2822     tpa_info->bd = fp->rx_mbuf_chain[cons];
2823 
2824     /* release any existing RX BD mbuf mappings */
2825     if (cons != index) {
2826         rx_buf = &fp->rx_mbuf_chain[cons];
2827 
2828         if (rx_buf->m_map != NULL) {
2829             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2830                             BUS_DMASYNC_POSTREAD);
2831             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2832         }
2833 
2834         /*
2835          * We get here when the maximum number of rx buffers is less than
2836          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2837          * it out here without concern of a memory leak.
2838          */
2839         fp->rx_mbuf_chain[cons].m = NULL;
2840     }
2841 
2842     /* update the Rx SW BD with the mbuf info from the TPA pool */
2843     fp->rx_mbuf_chain[index] = tmp_bd;
2844 
2845     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2846     rx_bd = &fp->rx_chain[index];
2847     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2848     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2849 }
2850 
2851 /*
2852  * When a TPA aggregation is completed, loop through the individual mbufs
2853  * of the aggregation, combining them into a single mbuf which will be sent
2854  * up the stack. Refill all freed SGEs with mbufs as we go along.
2855  */
2856 static int
2857 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2858                    struct bxe_fastpath       *fp,
2859                    struct bxe_sw_tpa_info    *tpa_info,
2860                    uint16_t                  queue,
2861                    uint16_t                  pages,
2862                    struct mbuf               *m,
2863 			       struct eth_end_agg_rx_cqe *cqe,
2864                    uint16_t                  cqe_idx)
2865 {
2866     struct mbuf *m_frag;
2867     uint32_t frag_len, frag_size, i;
2868     uint16_t sge_idx;
2869     int rc = 0;
2870     int j;
2871 
2872     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2873 
2874     BLOGD(sc, DBG_LRO,
2875           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2876           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2877 
2878     /* make sure the aggregated frame is not too big to handle */
2879     if (pages > 8 * PAGES_PER_SGE) {
2880 
2881         uint32_t *tmp = (uint32_t *)cqe;
2882 
2883         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2884                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2885               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2886               tpa_info->len_on_bd, frag_size);
2887 
2888         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2889             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2890 
2891         bxe_panic(sc, ("sge page count error\n"));
2892         return (EINVAL);
2893     }
2894 
2895     /*
2896      * Scan through the scatter gather list pulling individual mbufs into a
2897      * single mbuf for the host stack.
2898      */
2899     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2900         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2901 
2902         /*
2903          * Firmware gives the indices of the SGE as if the ring is an array
2904          * (meaning that the "next" element will consume 2 indices).
2905          */
2906         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2907 
2908         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2909                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2910               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2911 
2912         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2913 
2914         /* allocate a new mbuf for the SGE */
2915         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2916         if (rc) {
2917             /* Leave all remaining SGEs in the ring! */
2918             return (rc);
2919         }
2920 
2921         /* update the fragment length */
2922         m_frag->m_len = frag_len;
2923 
2924         /* concatenate the fragment to the head mbuf */
2925         m_cat(m, m_frag);
2926         fp->eth_q_stats.mbuf_alloc_sge--;
2927 
2928         /* update the TPA mbuf size and remaining fragment size */
2929         m->m_pkthdr.len += frag_len;
2930         frag_size -= frag_len;
2931     }
2932 
2933     BLOGD(sc, DBG_LRO,
2934           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2935           fp->index, queue, frag_size);
2936 
2937     return (rc);
2938 }
2939 
2940 static inline void
2941 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2942 {
2943     int i, j;
2944 
2945     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2946         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2947 
2948         for (j = 0; j < 2; j++) {
2949             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2950             idx--;
2951         }
2952     }
2953 }
2954 
2955 static inline void
2956 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2957 {
2958     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2959     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2960 
2961     /*
2962      * Clear the two last indices in the page to 1. These are the indices that
2963      * correspond to the "next" element, hence will never be indicated and
2964      * should be removed from the calculations.
2965      */
2966     bxe_clear_sge_mask_next_elems(fp);
2967 }
2968 
2969 static inline void
2970 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2971                         uint16_t            idx)
2972 {
2973     uint16_t last_max = fp->last_max_sge;
2974 
2975     if (SUB_S16(idx, last_max) > 0) {
2976         fp->last_max_sge = idx;
2977     }
2978 }
2979 
2980 static inline void
2981 bxe_update_sge_prod(struct bxe_softc          *sc,
2982                     struct bxe_fastpath       *fp,
2983                     uint16_t                  sge_len,
2984                     union eth_sgl_or_raw_data *cqe)
2985 {
2986     uint16_t last_max, last_elem, first_elem;
2987     uint16_t delta = 0;
2988     uint16_t i;
2989 
2990     if (!sge_len) {
2991         return;
2992     }
2993 
2994     /* first mark all used pages */
2995     for (i = 0; i < sge_len; i++) {
2996         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2997                             RX_SGE(le16toh(cqe->sgl[i])));
2998     }
2999 
3000     BLOGD(sc, DBG_LRO,
3001           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3002           fp->index, sge_len - 1,
3003           le16toh(cqe->sgl[sge_len - 1]));
3004 
3005     /* assume that the last SGE index is the biggest */
3006     bxe_update_last_max_sge(fp,
3007                             le16toh(cqe->sgl[sge_len - 1]));
3008 
3009     last_max = RX_SGE(fp->last_max_sge);
3010     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3011     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3012 
3013     /* if ring is not full */
3014     if (last_elem + 1 != first_elem) {
3015         last_elem++;
3016     }
3017 
3018     /* now update the prod */
3019     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3020         if (__predict_true(fp->sge_mask[i])) {
3021             break;
3022         }
3023 
3024         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3025         delta += BIT_VEC64_ELEM_SZ;
3026     }
3027 
3028     if (delta > 0) {
3029         fp->rx_sge_prod += delta;
3030         /* clear page-end entries */
3031         bxe_clear_sge_mask_next_elems(fp);
3032     }
3033 
3034     BLOGD(sc, DBG_LRO,
3035           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3036           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3037 }
3038 
3039 /*
3040  * The aggregation on the current TPA queue has completed. Pull the individual
3041  * mbuf fragments together into a single mbuf, perform all necessary checksum
3042  * calculations, and send the resuting mbuf to the stack.
3043  */
3044 static void
3045 bxe_tpa_stop(struct bxe_softc          *sc,
3046              struct bxe_fastpath       *fp,
3047              struct bxe_sw_tpa_info    *tpa_info,
3048              uint16_t                  queue,
3049              uint16_t                  pages,
3050 			 struct eth_end_agg_rx_cqe *cqe,
3051              uint16_t                  cqe_idx)
3052 {
3053     if_t ifp = sc->ifp;
3054     struct mbuf *m;
3055     int rc = 0;
3056 
3057     BLOGD(sc, DBG_LRO,
3058           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3059           fp->index, queue, tpa_info->placement_offset,
3060           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3061 
3062     m = tpa_info->bd.m;
3063 
3064     /* allocate a replacement before modifying existing mbuf */
3065     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3066     if (rc) {
3067         /* drop the frame and log an error */
3068         fp->eth_q_stats.rx_soft_errors++;
3069         goto bxe_tpa_stop_exit;
3070     }
3071 
3072     /* we have a replacement, fixup the current mbuf */
3073     m_adj(m, tpa_info->placement_offset);
3074     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3075 
3076     /* mark the checksums valid (taken care of by the firmware) */
3077     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3078     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3079     m->m_pkthdr.csum_data = 0xffff;
3080     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3081                                CSUM_IP_VALID   |
3082                                CSUM_DATA_VALID |
3083                                CSUM_PSEUDO_HDR);
3084 
3085     /* aggregate all of the SGEs into a single mbuf */
3086     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3087     if (rc) {
3088         /* drop the packet and log an error */
3089         fp->eth_q_stats.rx_soft_errors++;
3090         m_freem(m);
3091     } else {
3092         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3093             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3094             m->m_flags |= M_VLANTAG;
3095         }
3096 
3097         /* assign packet to this interface interface */
3098         if_setrcvif(m, ifp);
3099 
3100 #if __FreeBSD_version >= 800000
3101         /* specify what RSS queue was used for this flow */
3102         m->m_pkthdr.flowid = fp->index;
3103         BXE_SET_FLOWID(m);
3104 #endif
3105 
3106         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3107         fp->eth_q_stats.rx_tpa_pkts++;
3108 
3109         /* pass the frame to the stack */
3110         if_input(ifp, m);
3111     }
3112 
3113     /* we passed an mbuf up the stack or dropped the frame */
3114     fp->eth_q_stats.mbuf_alloc_tpa--;
3115 
3116 bxe_tpa_stop_exit:
3117 
3118     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3119     fp->rx_tpa_queue_used &= ~(1 << queue);
3120 }
3121 
3122 static uint8_t
3123 bxe_service_rxsgl(
3124                  struct bxe_fastpath *fp,
3125                  uint16_t len,
3126                  uint16_t lenonbd,
3127                  struct mbuf *m,
3128                  struct eth_fast_path_rx_cqe *cqe_fp)
3129 {
3130     struct mbuf *m_frag;
3131     uint16_t frags, frag_len;
3132     uint16_t sge_idx = 0;
3133     uint16_t j;
3134     uint8_t i, rc = 0;
3135     uint32_t frag_size;
3136 
3137     /* adjust the mbuf */
3138     m->m_len = lenonbd;
3139 
3140     frag_size =  len - lenonbd;
3141     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3142 
3143     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3144         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3145 
3146         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3147         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3148         m_frag->m_len = frag_len;
3149 
3150        /* allocate a new mbuf for the SGE */
3151         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3152         if (rc) {
3153             /* Leave all remaining SGEs in the ring! */
3154             return (rc);
3155         }
3156         fp->eth_q_stats.mbuf_alloc_sge--;
3157 
3158         /* concatenate the fragment to the head mbuf */
3159         m_cat(m, m_frag);
3160 
3161         frag_size -= frag_len;
3162     }
3163 
3164     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3165 
3166     return rc;
3167 }
3168 
3169 static uint8_t
3170 bxe_rxeof(struct bxe_softc    *sc,
3171           struct bxe_fastpath *fp)
3172 {
3173     if_t ifp = sc->ifp;
3174     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3175     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3176     int rx_pkts = 0;
3177     int rc = 0;
3178 
3179     BXE_FP_RX_LOCK(fp);
3180 
3181     /* CQ "next element" is of the size of the regular element */
3182     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3183     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3184         hw_cq_cons++;
3185     }
3186 
3187     bd_cons = fp->rx_bd_cons;
3188     bd_prod = fp->rx_bd_prod;
3189     bd_prod_fw = bd_prod;
3190     sw_cq_cons = fp->rx_cq_cons;
3191     sw_cq_prod = fp->rx_cq_prod;
3192 
3193     /*
3194      * Memory barrier necessary as speculative reads of the rx
3195      * buffer can be ahead of the index in the status block
3196      */
3197     rmb();
3198 
3199     BLOGD(sc, DBG_RX,
3200           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3201           fp->index, hw_cq_cons, sw_cq_cons);
3202 
3203     while (sw_cq_cons != hw_cq_cons) {
3204         struct bxe_sw_rx_bd *rx_buf = NULL;
3205         union eth_rx_cqe *cqe;
3206         struct eth_fast_path_rx_cqe *cqe_fp;
3207         uint8_t cqe_fp_flags;
3208         enum eth_rx_cqe_type cqe_fp_type;
3209         uint16_t len, lenonbd,  pad;
3210         struct mbuf *m = NULL;
3211 
3212         comp_ring_cons = RCQ(sw_cq_cons);
3213         bd_prod = RX_BD(bd_prod);
3214         bd_cons = RX_BD(bd_cons);
3215 
3216         cqe          = &fp->rcq_chain[comp_ring_cons];
3217         cqe_fp       = &cqe->fast_path_cqe;
3218         cqe_fp_flags = cqe_fp->type_error_flags;
3219         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3220 
3221         BLOGD(sc, DBG_RX,
3222               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3223               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3224               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3225               fp->index,
3226               hw_cq_cons,
3227               sw_cq_cons,
3228               bd_prod,
3229               bd_cons,
3230               CQE_TYPE(cqe_fp_flags),
3231               cqe_fp_flags,
3232               cqe_fp->status_flags,
3233               le32toh(cqe_fp->rss_hash_result),
3234               le16toh(cqe_fp->vlan_tag),
3235               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3236               le16toh(cqe_fp->len_on_bd));
3237 
3238         /* is this a slowpath msg? */
3239         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3240             bxe_sp_event(sc, fp, cqe);
3241             goto next_cqe;
3242         }
3243 
3244         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3245 
3246         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3247             struct bxe_sw_tpa_info *tpa_info;
3248             uint16_t frag_size, pages;
3249             uint8_t queue;
3250 
3251             if (CQE_TYPE_START(cqe_fp_type)) {
3252                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3253                               bd_cons, bd_prod, cqe_fp);
3254                 m = NULL; /* packet not ready yet */
3255                 goto next_rx;
3256             }
3257 
3258             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3259                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3260 
3261             queue = cqe->end_agg_cqe.queue_index;
3262             tpa_info = &fp->rx_tpa_info[queue];
3263 
3264             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3265                   fp->index, queue);
3266 
3267             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3268                          tpa_info->len_on_bd);
3269             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3270 
3271             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3272                          &cqe->end_agg_cqe, comp_ring_cons);
3273 
3274             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3275 
3276             goto next_cqe;
3277         }
3278 
3279         /* non TPA */
3280 
3281         /* is this an error packet? */
3282         if (__predict_false(cqe_fp_flags &
3283                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3284             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3285             fp->eth_q_stats.rx_soft_errors++;
3286             goto next_rx;
3287         }
3288 
3289         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3290         lenonbd = le16toh(cqe_fp->len_on_bd);
3291         pad = cqe_fp->placement_offset;
3292 
3293         m = rx_buf->m;
3294 
3295         if (__predict_false(m == NULL)) {
3296             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3297                   bd_cons, fp->index);
3298             goto next_rx;
3299         }
3300 
3301         /* XXX double copy if packet length under a threshold */
3302 
3303         /*
3304          * If all the buffer descriptors are filled with mbufs then fill in
3305          * the current consumer index with a new BD. Else if a maximum Rx
3306          * buffer limit is imposed then fill in the next producer index.
3307          */
3308         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3309                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3310                                       bd_prod : bd_cons);
3311         if (rc != 0) {
3312 
3313             /* we simply reuse the received mbuf and don't post it to the stack */
3314             m = NULL;
3315 
3316             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3317                   fp->index, rc);
3318             fp->eth_q_stats.rx_soft_errors++;
3319 
3320             if (sc->max_rx_bufs != RX_BD_USABLE) {
3321                 /* copy this consumer index to the producer index */
3322                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3323                        sizeof(struct bxe_sw_rx_bd));
3324                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3325             }
3326 
3327             goto next_rx;
3328         }
3329 
3330         /* current mbuf was detached from the bd */
3331         fp->eth_q_stats.mbuf_alloc_rx--;
3332 
3333         /* we allocated a replacement mbuf, fixup the current one */
3334         m_adj(m, pad);
3335         m->m_pkthdr.len = m->m_len = len;
3336 
3337         if ((len > 60) && (len > lenonbd)) {
3338             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3339             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3340             if (rc)
3341                 break;
3342             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3343         } else if (lenonbd < len) {
3344             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3345         }
3346 
3347         /* assign packet to this interface interface */
3348 	if_setrcvif(m, ifp);
3349 
3350         /* assume no hardware checksum has complated */
3351         m->m_pkthdr.csum_flags = 0;
3352 
3353         /* validate checksum if offload enabled */
3354         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3355             /* check for a valid IP frame */
3356             if (!(cqe->fast_path_cqe.status_flags &
3357                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3358                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3359                 if (__predict_false(cqe_fp_flags &
3360                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3361                     fp->eth_q_stats.rx_hw_csum_errors++;
3362                 } else {
3363                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3364                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3365                 }
3366             }
3367 
3368             /* check for a valid TCP/UDP frame */
3369             if (!(cqe->fast_path_cqe.status_flags &
3370                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3371                 if (__predict_false(cqe_fp_flags &
3372                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3373                     fp->eth_q_stats.rx_hw_csum_errors++;
3374                 } else {
3375                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3376                     m->m_pkthdr.csum_data = 0xFFFF;
3377                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3378                                                CSUM_PSEUDO_HDR);
3379                 }
3380             }
3381         }
3382 
3383         /* if there is a VLAN tag then flag that info */
3384         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3385             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3386             m->m_flags |= M_VLANTAG;
3387         }
3388 
3389 #if __FreeBSD_version >= 800000
3390         /* specify what RSS queue was used for this flow */
3391         m->m_pkthdr.flowid = fp->index;
3392         BXE_SET_FLOWID(m);
3393 #endif
3394 
3395 next_rx:
3396 
3397         bd_cons    = RX_BD_NEXT(bd_cons);
3398         bd_prod    = RX_BD_NEXT(bd_prod);
3399         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3400 
3401         /* pass the frame to the stack */
3402         if (__predict_true(m != NULL)) {
3403             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3404             rx_pkts++;
3405             if_input(ifp, m);
3406         }
3407 
3408 next_cqe:
3409 
3410         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3411         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3412 
3413         /* limit spinning on the queue */
3414         if (rc != 0)
3415             break;
3416 
3417         if (rx_pkts == sc->rx_budget) {
3418             fp->eth_q_stats.rx_budget_reached++;
3419             break;
3420         }
3421     } /* while work to do */
3422 
3423     fp->rx_bd_cons = bd_cons;
3424     fp->rx_bd_prod = bd_prod_fw;
3425     fp->rx_cq_cons = sw_cq_cons;
3426     fp->rx_cq_prod = sw_cq_prod;
3427 
3428     /* Update producers */
3429     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3430 
3431     fp->eth_q_stats.rx_pkts += rx_pkts;
3432     fp->eth_q_stats.rx_calls++;
3433 
3434     BXE_FP_RX_UNLOCK(fp);
3435 
3436     return (sw_cq_cons != hw_cq_cons);
3437 }
3438 
3439 static uint16_t
3440 bxe_free_tx_pkt(struct bxe_softc    *sc,
3441                 struct bxe_fastpath *fp,
3442                 uint16_t            idx)
3443 {
3444     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3445     struct eth_tx_start_bd *tx_start_bd;
3446     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3447     uint16_t new_cons;
3448     int nbd;
3449 
3450     /* unmap the mbuf from non-paged memory */
3451     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3452 
3453     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3454     nbd = le16toh(tx_start_bd->nbd) - 1;
3455 
3456     new_cons = (tx_buf->first_bd + nbd);
3457 
3458     /* free the mbuf */
3459     if (__predict_true(tx_buf->m != NULL)) {
3460         m_freem(tx_buf->m);
3461         fp->eth_q_stats.mbuf_alloc_tx--;
3462     } else {
3463         fp->eth_q_stats.tx_chain_lost_mbuf++;
3464     }
3465 
3466     tx_buf->m = NULL;
3467     tx_buf->first_bd = 0;
3468 
3469     return (new_cons);
3470 }
3471 
3472 /* transmit timeout watchdog */
3473 static int
3474 bxe_watchdog(struct bxe_softc    *sc,
3475              struct bxe_fastpath *fp)
3476 {
3477     BXE_FP_TX_LOCK(fp);
3478 
3479     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3480         BXE_FP_TX_UNLOCK(fp);
3481         return (0);
3482     }
3483 
3484     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3485     if(sc->trigger_grcdump) {
3486          /* taking grcdump */
3487          bxe_grc_dump(sc);
3488     }
3489 
3490     BXE_FP_TX_UNLOCK(fp);
3491 
3492     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3493     taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3494 
3495     return (-1);
3496 }
3497 
3498 /* processes transmit completions */
3499 static uint8_t
3500 bxe_txeof(struct bxe_softc    *sc,
3501           struct bxe_fastpath *fp)
3502 {
3503     if_t ifp = sc->ifp;
3504     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3505     uint16_t tx_bd_avail;
3506 
3507     BXE_FP_TX_LOCK_ASSERT(fp);
3508 
3509     bd_cons = fp->tx_bd_cons;
3510     hw_cons = le16toh(*fp->tx_cons_sb);
3511     sw_cons = fp->tx_pkt_cons;
3512 
3513     while (sw_cons != hw_cons) {
3514         pkt_cons = TX_BD(sw_cons);
3515 
3516         BLOGD(sc, DBG_TX,
3517               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3518               fp->index, hw_cons, sw_cons, pkt_cons);
3519 
3520         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3521 
3522         sw_cons++;
3523     }
3524 
3525     fp->tx_pkt_cons = sw_cons;
3526     fp->tx_bd_cons  = bd_cons;
3527 
3528     BLOGD(sc, DBG_TX,
3529           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3530           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3531 
3532     mb();
3533 
3534     tx_bd_avail = bxe_tx_avail(sc, fp);
3535 
3536     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3537         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3538     } else {
3539         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3540     }
3541 
3542     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3543         /* reset the watchdog timer if there are pending transmits */
3544         fp->watchdog_timer = BXE_TX_TIMEOUT;
3545         return (TRUE);
3546     } else {
3547         /* clear watchdog when there are no pending transmits */
3548         fp->watchdog_timer = 0;
3549         return (FALSE);
3550     }
3551 }
3552 
3553 static void
3554 bxe_drain_tx_queues(struct bxe_softc *sc)
3555 {
3556     struct bxe_fastpath *fp;
3557     int i, count;
3558 
3559     /* wait until all TX fastpath tasks have completed */
3560     for (i = 0; i < sc->num_queues; i++) {
3561         fp = &sc->fp[i];
3562 
3563         count = 1000;
3564 
3565         while (bxe_has_tx_work(fp)) {
3566 
3567             BXE_FP_TX_LOCK(fp);
3568             bxe_txeof(sc, fp);
3569             BXE_FP_TX_UNLOCK(fp);
3570 
3571             if (count == 0) {
3572                 BLOGE(sc, "Timeout waiting for fp[%d] "
3573                           "transmits to complete!\n", i);
3574                 bxe_panic(sc, ("tx drain failure\n"));
3575                 return;
3576             }
3577 
3578             count--;
3579             DELAY(1000);
3580             rmb();
3581         }
3582     }
3583 
3584     return;
3585 }
3586 
3587 static int
3588 bxe_del_all_macs(struct bxe_softc          *sc,
3589                  struct ecore_vlan_mac_obj *mac_obj,
3590                  int                       mac_type,
3591                  uint8_t                   wait_for_comp)
3592 {
3593     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3594     int rc;
3595 
3596     /* wait for completion of requested */
3597     if (wait_for_comp) {
3598         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3599     }
3600 
3601     /* Set the mac type of addresses we want to clear */
3602     bxe_set_bit(mac_type, &vlan_mac_flags);
3603 
3604     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3605     if (rc < 0) {
3606         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3607             rc, mac_type, wait_for_comp);
3608     }
3609 
3610     return (rc);
3611 }
3612 
3613 static int
3614 bxe_fill_accept_flags(struct bxe_softc *sc,
3615                       uint32_t         rx_mode,
3616                       unsigned long    *rx_accept_flags,
3617                       unsigned long    *tx_accept_flags)
3618 {
3619     /* Clear the flags first */
3620     *rx_accept_flags = 0;
3621     *tx_accept_flags = 0;
3622 
3623     switch (rx_mode) {
3624     case BXE_RX_MODE_NONE:
3625         /*
3626          * 'drop all' supersedes any accept flags that may have been
3627          * passed to the function.
3628          */
3629         break;
3630 
3631     case BXE_RX_MODE_NORMAL:
3632         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3633         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3634         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3635 
3636         /* internal switching mode */
3637         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3638         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3639         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3640 
3641         break;
3642 
3643     case BXE_RX_MODE_ALLMULTI:
3644         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3645         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3646         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3647 
3648         /* internal switching mode */
3649         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3650         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3651         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3652 
3653         break;
3654 
3655     case BXE_RX_MODE_PROMISC:
3656         /*
3657          * According to deffinition of SI mode, iface in promisc mode
3658          * should receive matched and unmatched (in resolution of port)
3659          * unicast packets.
3660          */
3661         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3662         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3663         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3664         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3665 
3666         /* internal switching mode */
3667         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3668         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3669 
3670         if (IS_MF_SI(sc)) {
3671             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3672         } else {
3673             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3674         }
3675 
3676         break;
3677 
3678     default:
3679         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3680         return (-1);
3681     }
3682 
3683     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3684     if (rx_mode != BXE_RX_MODE_NONE) {
3685         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3686         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3687     }
3688 
3689     return (0);
3690 }
3691 
3692 static int
3693 bxe_set_q_rx_mode(struct bxe_softc *sc,
3694                   uint8_t          cl_id,
3695                   unsigned long    rx_mode_flags,
3696                   unsigned long    rx_accept_flags,
3697                   unsigned long    tx_accept_flags,
3698                   unsigned long    ramrod_flags)
3699 {
3700     struct ecore_rx_mode_ramrod_params ramrod_param;
3701     int rc;
3702 
3703     memset(&ramrod_param, 0, sizeof(ramrod_param));
3704 
3705     /* Prepare ramrod parameters */
3706     ramrod_param.cid = 0;
3707     ramrod_param.cl_id = cl_id;
3708     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3709     ramrod_param.func_id = SC_FUNC(sc);
3710 
3711     ramrod_param.pstate = &sc->sp_state;
3712     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3713 
3714     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3715     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3716 
3717     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3718 
3719     ramrod_param.ramrod_flags = ramrod_flags;
3720     ramrod_param.rx_mode_flags = rx_mode_flags;
3721 
3722     ramrod_param.rx_accept_flags = rx_accept_flags;
3723     ramrod_param.tx_accept_flags = tx_accept_flags;
3724 
3725     rc = ecore_config_rx_mode(sc, &ramrod_param);
3726     if (rc < 0) {
3727         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3728             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3729             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3730             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3731             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3732         return (rc);
3733     }
3734 
3735     return (0);
3736 }
3737 
3738 static int
3739 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3740 {
3741     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3742     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3743     int rc;
3744 
3745     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3746                                &tx_accept_flags);
3747     if (rc) {
3748         return (rc);
3749     }
3750 
3751     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3752     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3753 
3754     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3755     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3756                               rx_accept_flags, tx_accept_flags,
3757                               ramrod_flags));
3758 }
3759 
3760 /* returns the "mcp load_code" according to global load_count array */
3761 static int
3762 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3763 {
3764     int path = SC_PATH(sc);
3765     int port = SC_PORT(sc);
3766 
3767     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3768           path, load_count[path][0], load_count[path][1],
3769           load_count[path][2]);
3770     load_count[path][0]++;
3771     load_count[path][1 + port]++;
3772     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3773           path, load_count[path][0], load_count[path][1],
3774           load_count[path][2]);
3775     if (load_count[path][0] == 1) {
3776         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3777     } else if (load_count[path][1 + port] == 1) {
3778         return (FW_MSG_CODE_DRV_LOAD_PORT);
3779     } else {
3780         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3781     }
3782 }
3783 
3784 /* returns the "mcp load_code" according to global load_count array */
3785 static int
3786 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3787 {
3788     int port = SC_PORT(sc);
3789     int path = SC_PATH(sc);
3790 
3791     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3792           path, load_count[path][0], load_count[path][1],
3793           load_count[path][2]);
3794     load_count[path][0]--;
3795     load_count[path][1 + port]--;
3796     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3797           path, load_count[path][0], load_count[path][1],
3798           load_count[path][2]);
3799     if (load_count[path][0] == 0) {
3800         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3801     } else if (load_count[path][1 + port] == 0) {
3802         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3803     } else {
3804         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3805     }
3806 }
3807 
3808 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3809 static uint32_t
3810 bxe_send_unload_req(struct bxe_softc *sc,
3811                     int              unload_mode)
3812 {
3813     uint32_t reset_code = 0;
3814 
3815     /* Select the UNLOAD request mode */
3816     if (unload_mode == UNLOAD_NORMAL) {
3817         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3818     } else {
3819         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3820     }
3821 
3822     /* Send the request to the MCP */
3823     if (!BXE_NOMCP(sc)) {
3824         reset_code = bxe_fw_command(sc, reset_code, 0);
3825     } else {
3826         reset_code = bxe_nic_unload_no_mcp(sc);
3827     }
3828 
3829     return (reset_code);
3830 }
3831 
3832 /* send UNLOAD_DONE command to the MCP */
3833 static void
3834 bxe_send_unload_done(struct bxe_softc *sc,
3835                      uint8_t          keep_link)
3836 {
3837     uint32_t reset_param =
3838         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3839 
3840     /* Report UNLOAD_DONE to MCP */
3841     if (!BXE_NOMCP(sc)) {
3842         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3843     }
3844 }
3845 
3846 static int
3847 bxe_func_wait_started(struct bxe_softc *sc)
3848 {
3849     int tout = 50;
3850 
3851     if (!sc->port.pmf) {
3852         return (0);
3853     }
3854 
3855     /*
3856      * (assumption: No Attention from MCP at this stage)
3857      * PMF probably in the middle of TX disable/enable transaction
3858      * 1. Sync IRS for default SB
3859      * 2. Sync SP queue - this guarantees us that attention handling started
3860      * 3. Wait, that TX disable/enable transaction completes
3861      *
3862      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3863      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3864      * received completion for the transaction the state is TX_STOPPED.
3865      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3866      * transaction.
3867      */
3868 
3869     /* XXX make sure default SB ISR is done */
3870     /* need a way to synchronize an irq (intr_mtx?) */
3871 
3872     /* XXX flush any work queues */
3873 
3874     while (ecore_func_get_state(sc, &sc->func_obj) !=
3875            ECORE_F_STATE_STARTED && tout--) {
3876         DELAY(20000);
3877     }
3878 
3879     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3880         /*
3881          * Failed to complete the transaction in a "good way"
3882          * Force both transactions with CLR bit.
3883          */
3884         struct ecore_func_state_params func_params = { NULL };
3885 
3886         BLOGE(sc, "Unexpected function state! "
3887                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3888 
3889         func_params.f_obj = &sc->func_obj;
3890         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3891 
3892         /* STARTED-->TX_STOPPED */
3893         func_params.cmd = ECORE_F_CMD_TX_STOP;
3894         ecore_func_state_change(sc, &func_params);
3895 
3896         /* TX_STOPPED-->STARTED */
3897         func_params.cmd = ECORE_F_CMD_TX_START;
3898         return (ecore_func_state_change(sc, &func_params));
3899     }
3900 
3901     return (0);
3902 }
3903 
3904 static int
3905 bxe_stop_queue(struct bxe_softc *sc,
3906                int              index)
3907 {
3908     struct bxe_fastpath *fp = &sc->fp[index];
3909     struct ecore_queue_state_params q_params = { NULL };
3910     int rc;
3911 
3912     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3913 
3914     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3915     /* We want to wait for completion in this context */
3916     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3917 
3918     /* Stop the primary connection: */
3919 
3920     /* ...halt the connection */
3921     q_params.cmd = ECORE_Q_CMD_HALT;
3922     rc = ecore_queue_state_change(sc, &q_params);
3923     if (rc) {
3924         return (rc);
3925     }
3926 
3927     /* ...terminate the connection */
3928     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3929     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3930     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3931     rc = ecore_queue_state_change(sc, &q_params);
3932     if (rc) {
3933         return (rc);
3934     }
3935 
3936     /* ...delete cfc entry */
3937     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3938     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3939     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3940     return (ecore_queue_state_change(sc, &q_params));
3941 }
3942 
3943 /* wait for the outstanding SP commands */
3944 static inline uint8_t
3945 bxe_wait_sp_comp(struct bxe_softc *sc,
3946                  unsigned long    mask)
3947 {
3948     unsigned long tmp;
3949     int tout = 5000; /* wait for 5 secs tops */
3950 
3951     while (tout--) {
3952         mb();
3953         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3954             return (TRUE);
3955         }
3956 
3957         DELAY(1000);
3958     }
3959 
3960     mb();
3961 
3962     tmp = atomic_load_acq_long(&sc->sp_state);
3963     if (tmp & mask) {
3964         BLOGE(sc, "Filtering completion timed out: "
3965                   "sp_state 0x%lx, mask 0x%lx\n",
3966               tmp, mask);
3967         return (FALSE);
3968     }
3969 
3970     return (FALSE);
3971 }
3972 
3973 static int
3974 bxe_func_stop(struct bxe_softc *sc)
3975 {
3976     struct ecore_func_state_params func_params = { NULL };
3977     int rc;
3978 
3979     /* prepare parameters for function state transitions */
3980     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3981     func_params.f_obj = &sc->func_obj;
3982     func_params.cmd = ECORE_F_CMD_STOP;
3983 
3984     /*
3985      * Try to stop the function the 'good way'. If it fails (in case
3986      * of a parity error during bxe_chip_cleanup()) and we are
3987      * not in a debug mode, perform a state transaction in order to
3988      * enable further HW_RESET transaction.
3989      */
3990     rc = ecore_func_state_change(sc, &func_params);
3991     if (rc) {
3992         BLOGE(sc, "FUNC_STOP ramrod failed. "
3993                   "Running a dry transaction (%d)\n", rc);
3994         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3995         return (ecore_func_state_change(sc, &func_params));
3996     }
3997 
3998     return (0);
3999 }
4000 
4001 static int
4002 bxe_reset_hw(struct bxe_softc *sc,
4003              uint32_t         load_code)
4004 {
4005     struct ecore_func_state_params func_params = { NULL };
4006 
4007     /* Prepare parameters for function state transitions */
4008     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4009 
4010     func_params.f_obj = &sc->func_obj;
4011     func_params.cmd = ECORE_F_CMD_HW_RESET;
4012 
4013     func_params.params.hw_init.load_phase = load_code;
4014 
4015     return (ecore_func_state_change(sc, &func_params));
4016 }
4017 
4018 static void
4019 bxe_int_disable_sync(struct bxe_softc *sc,
4020                      int              disable_hw)
4021 {
4022     if (disable_hw) {
4023         /* prevent the HW from sending interrupts */
4024         bxe_int_disable(sc);
4025     }
4026 
4027     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4028     /* make sure all ISRs are done */
4029 
4030     /* XXX make sure sp_task is not running */
4031     /* cancel and flush work queues */
4032 }
4033 
4034 static void
4035 bxe_chip_cleanup(struct bxe_softc *sc,
4036                  uint32_t         unload_mode,
4037                  uint8_t          keep_link)
4038 {
4039     int port = SC_PORT(sc);
4040     struct ecore_mcast_ramrod_params rparam = { NULL };
4041     uint32_t reset_code;
4042     int i, rc = 0;
4043 
4044     bxe_drain_tx_queues(sc);
4045 
4046     /* give HW time to discard old tx messages */
4047     DELAY(1000);
4048 
4049     /* Clean all ETH MACs */
4050     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4051     if (rc < 0) {
4052         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4053     }
4054 
4055     /* Clean up UC list  */
4056     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4057     if (rc < 0) {
4058         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4059     }
4060 
4061     /* Disable LLH */
4062     if (!CHIP_IS_E1(sc)) {
4063         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4064     }
4065 
4066     /* Set "drop all" to stop Rx */
4067 
4068     /*
4069      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4070      * a race between the completion code and this code.
4071      */
4072     BXE_MCAST_LOCK(sc);
4073 
4074     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4075         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4076     } else {
4077         bxe_set_storm_rx_mode(sc);
4078     }
4079 
4080     /* Clean up multicast configuration */
4081     rparam.mcast_obj = &sc->mcast_obj;
4082     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4083     if (rc < 0) {
4084         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4085     }
4086 
4087     BXE_MCAST_UNLOCK(sc);
4088 
4089     // XXX bxe_iov_chip_cleanup(sc);
4090 
4091     /*
4092      * Send the UNLOAD_REQUEST to the MCP. This will return if
4093      * this function should perform FUNCTION, PORT, or COMMON HW
4094      * reset.
4095      */
4096     reset_code = bxe_send_unload_req(sc, unload_mode);
4097 
4098     /*
4099      * (assumption: No Attention from MCP at this stage)
4100      * PMF probably in the middle of TX disable/enable transaction
4101      */
4102     rc = bxe_func_wait_started(sc);
4103     if (rc) {
4104         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4105     }
4106 
4107     /*
4108      * Close multi and leading connections
4109      * Completions for ramrods are collected in a synchronous way
4110      */
4111     for (i = 0; i < sc->num_queues; i++) {
4112         if (bxe_stop_queue(sc, i)) {
4113             goto unload_error;
4114         }
4115     }
4116 
4117     /*
4118      * If SP settings didn't get completed so far - something
4119      * very wrong has happen.
4120      */
4121     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4122         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4123     }
4124 
4125 unload_error:
4126 
4127     rc = bxe_func_stop(sc);
4128     if (rc) {
4129         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4130     }
4131 
4132     /* disable HW interrupts */
4133     bxe_int_disable_sync(sc, TRUE);
4134 
4135     /* detach interrupts */
4136     bxe_interrupt_detach(sc);
4137 
4138     /* Reset the chip */
4139     rc = bxe_reset_hw(sc, reset_code);
4140     if (rc) {
4141         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4142     }
4143 
4144     /* Report UNLOAD_DONE to MCP */
4145     bxe_send_unload_done(sc, keep_link);
4146 }
4147 
4148 static void
4149 bxe_disable_close_the_gate(struct bxe_softc *sc)
4150 {
4151     uint32_t val;
4152     int port = SC_PORT(sc);
4153 
4154     BLOGD(sc, DBG_LOAD,
4155           "Disabling 'close the gates'\n");
4156 
4157     if (CHIP_IS_E1(sc)) {
4158         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4159                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4160         val = REG_RD(sc, addr);
4161         val &= ~(0x300);
4162         REG_WR(sc, addr, val);
4163     } else {
4164         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4165         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4166                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4167         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4168     }
4169 }
4170 
4171 /*
4172  * Cleans the object that have internal lists without sending
4173  * ramrods. Should be run when interrutps are disabled.
4174  */
4175 static void
4176 bxe_squeeze_objects(struct bxe_softc *sc)
4177 {
4178     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4179     struct ecore_mcast_ramrod_params rparam = { NULL };
4180     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4181     int rc;
4182 
4183     /* Cleanup MACs' object first... */
4184 
4185     /* Wait for completion of requested */
4186     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4187     /* Perform a dry cleanup */
4188     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4189 
4190     /* Clean ETH primary MAC */
4191     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4192     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4193                              &ramrod_flags);
4194     if (rc != 0) {
4195         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4196     }
4197 
4198     /* Cleanup UC list */
4199     vlan_mac_flags = 0;
4200     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4201     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4202                              &ramrod_flags);
4203     if (rc != 0) {
4204         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4205     }
4206 
4207     /* Now clean mcast object... */
4208 
4209     rparam.mcast_obj = &sc->mcast_obj;
4210     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4211 
4212     /* Add a DEL command... */
4213     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4214     if (rc < 0) {
4215         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4216     }
4217 
4218     /* now wait until all pending commands are cleared */
4219 
4220     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4221     while (rc != 0) {
4222         if (rc < 0) {
4223             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4224             return;
4225         }
4226 
4227         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4228     }
4229 }
4230 
4231 /* stop the controller */
4232 static __noinline int
4233 bxe_nic_unload(struct bxe_softc *sc,
4234                uint32_t         unload_mode,
4235                uint8_t          keep_link)
4236 {
4237     uint8_t global = FALSE;
4238     uint32_t val;
4239     int i;
4240 
4241     BXE_CORE_LOCK_ASSERT(sc);
4242 
4243     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4244 
4245     for (i = 0; i < sc->num_queues; i++) {
4246         struct bxe_fastpath *fp;
4247 
4248         fp = &sc->fp[i];
4249         BXE_FP_TX_LOCK(fp);
4250         BXE_FP_TX_UNLOCK(fp);
4251     }
4252 
4253     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4254 
4255     /* mark driver as unloaded in shmem2 */
4256     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4257         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4258         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4259                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4260     }
4261 
4262     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4263         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4264         /*
4265          * We can get here if the driver has been unloaded
4266          * during parity error recovery and is either waiting for a
4267          * leader to complete or for other functions to unload and
4268          * then ifconfig down has been issued. In this case we want to
4269          * unload and let other functions to complete a recovery
4270          * process.
4271          */
4272         sc->recovery_state = BXE_RECOVERY_DONE;
4273         sc->is_leader = 0;
4274         bxe_release_leader_lock(sc);
4275         mb();
4276 
4277         BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4278         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4279             " state = 0x%x\n", sc->recovery_state, sc->state);
4280         return (-1);
4281     }
4282 
4283     /*
4284      * Nothing to do during unload if previous bxe_nic_load()
4285      * did not completed successfully - all resourses are released.
4286      */
4287     if ((sc->state == BXE_STATE_CLOSED) ||
4288         (sc->state == BXE_STATE_ERROR)) {
4289         return (0);
4290     }
4291 
4292     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4293     mb();
4294 
4295     /* stop tx */
4296     bxe_tx_disable(sc);
4297 
4298     sc->rx_mode = BXE_RX_MODE_NONE;
4299     /* XXX set rx mode ??? */
4300 
4301     if (IS_PF(sc) && !sc->grcdump_done) {
4302         /* set ALWAYS_ALIVE bit in shmem */
4303         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4304 
4305         bxe_drv_pulse(sc);
4306 
4307         bxe_stats_handle(sc, STATS_EVENT_STOP);
4308         bxe_save_statistics(sc);
4309     }
4310 
4311     /* wait till consumers catch up with producers in all queues */
4312     bxe_drain_tx_queues(sc);
4313 
4314     /* if VF indicate to PF this function is going down (PF will delete sp
4315      * elements and clear initializations
4316      */
4317     if (IS_VF(sc)) {
4318         ; /* bxe_vfpf_close_vf(sc); */
4319     } else if (unload_mode != UNLOAD_RECOVERY) {
4320         /* if this is a normal/close unload need to clean up chip */
4321         if (!sc->grcdump_done)
4322             bxe_chip_cleanup(sc, unload_mode, keep_link);
4323     } else {
4324         /* Send the UNLOAD_REQUEST to the MCP */
4325         bxe_send_unload_req(sc, unload_mode);
4326 
4327         /*
4328          * Prevent transactions to host from the functions on the
4329          * engine that doesn't reset global blocks in case of global
4330          * attention once gloabl blocks are reset and gates are opened
4331          * (the engine which leader will perform the recovery
4332          * last).
4333          */
4334         if (!CHIP_IS_E1x(sc)) {
4335             bxe_pf_disable(sc);
4336         }
4337 
4338         /* disable HW interrupts */
4339         bxe_int_disable_sync(sc, TRUE);
4340 
4341         /* detach interrupts */
4342         bxe_interrupt_detach(sc);
4343 
4344         /* Report UNLOAD_DONE to MCP */
4345         bxe_send_unload_done(sc, FALSE);
4346     }
4347 
4348     /*
4349      * At this stage no more interrupts will arrive so we may safely clean
4350      * the queue'able objects here in case they failed to get cleaned so far.
4351      */
4352     if (IS_PF(sc)) {
4353         bxe_squeeze_objects(sc);
4354     }
4355 
4356     /* There should be no more pending SP commands at this stage */
4357     sc->sp_state = 0;
4358 
4359     sc->port.pmf = 0;
4360 
4361     bxe_free_fp_buffers(sc);
4362 
4363     if (IS_PF(sc)) {
4364         bxe_free_mem(sc);
4365     }
4366 
4367     bxe_free_fw_stats_mem(sc);
4368 
4369     sc->state = BXE_STATE_CLOSED;
4370 
4371     /*
4372      * Check if there are pending parity attentions. If there are - set
4373      * RECOVERY_IN_PROGRESS.
4374      */
4375     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4376         bxe_set_reset_in_progress(sc);
4377 
4378         /* Set RESET_IS_GLOBAL if needed */
4379         if (global) {
4380             bxe_set_reset_global(sc);
4381         }
4382     }
4383 
4384     /*
4385      * The last driver must disable a "close the gate" if there is no
4386      * parity attention or "process kill" pending.
4387      */
4388     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4389         bxe_reset_is_done(sc, SC_PATH(sc))) {
4390         bxe_disable_close_the_gate(sc);
4391     }
4392 
4393     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4394 
4395     return (0);
4396 }
4397 
4398 /*
4399  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4400  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4401  */
4402 static int
4403 bxe_ifmedia_update(struct ifnet  *ifp)
4404 {
4405     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4406     struct ifmedia *ifm;
4407 
4408     ifm = &sc->ifmedia;
4409 
4410     /* We only support Ethernet media type. */
4411     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4412         return (EINVAL);
4413     }
4414 
4415     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4416     case IFM_AUTO:
4417          break;
4418     case IFM_10G_CX4:
4419     case IFM_10G_SR:
4420     case IFM_10G_T:
4421     case IFM_10G_TWINAX:
4422     default:
4423         /* We don't support changing the media type. */
4424         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4425               IFM_SUBTYPE(ifm->ifm_media));
4426         return (EINVAL);
4427     }
4428 
4429     return (0);
4430 }
4431 
4432 /*
4433  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4434  */
4435 static void
4436 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4437 {
4438     struct bxe_softc *sc = if_getsoftc(ifp);
4439 
4440     /* Report link down if the driver isn't running. */
4441     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4442         ifmr->ifm_active |= IFM_NONE;
4443         return;
4444     }
4445 
4446     /* Setup the default interface info. */
4447     ifmr->ifm_status = IFM_AVALID;
4448     ifmr->ifm_active = IFM_ETHER;
4449 
4450     if (sc->link_vars.link_up) {
4451         ifmr->ifm_status |= IFM_ACTIVE;
4452     } else {
4453         ifmr->ifm_active |= IFM_NONE;
4454         return;
4455     }
4456 
4457     ifmr->ifm_active |= sc->media;
4458 
4459     if (sc->link_vars.duplex == DUPLEX_FULL) {
4460         ifmr->ifm_active |= IFM_FDX;
4461     } else {
4462         ifmr->ifm_active |= IFM_HDX;
4463     }
4464 }
4465 
4466 static void
4467 bxe_handle_chip_tq(void *context,
4468                    int  pending)
4469 {
4470     struct bxe_softc *sc = (struct bxe_softc *)context;
4471     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4472 
4473     switch (work)
4474     {
4475 
4476     case CHIP_TQ_REINIT:
4477         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4478             /* restart the interface */
4479             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4480             bxe_periodic_stop(sc);
4481             BXE_CORE_LOCK(sc);
4482             bxe_stop_locked(sc);
4483             bxe_init_locked(sc);
4484             BXE_CORE_UNLOCK(sc);
4485         }
4486         break;
4487 
4488     default:
4489         break;
4490     }
4491 }
4492 
4493 /*
4494  * Handles any IOCTL calls from the operating system.
4495  *
4496  * Returns:
4497  *   0 = Success, >0 Failure
4498  */
4499 static int
4500 bxe_ioctl(if_t ifp,
4501           u_long       command,
4502           caddr_t      data)
4503 {
4504     struct bxe_softc *sc = if_getsoftc(ifp);
4505     struct ifreq *ifr = (struct ifreq *)data;
4506     int mask = 0;
4507     int reinit = 0;
4508     int error = 0;
4509 
4510     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4511     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4512 
4513     switch (command)
4514     {
4515     case SIOCSIFMTU:
4516         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4517               ifr->ifr_mtu);
4518 
4519         if (sc->mtu == ifr->ifr_mtu) {
4520             /* nothing to change */
4521             break;
4522         }
4523 
4524         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4525             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4526                   ifr->ifr_mtu, mtu_min, mtu_max);
4527             error = EINVAL;
4528             break;
4529         }
4530 
4531         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4532                              (unsigned long)ifr->ifr_mtu);
4533 	/*
4534         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4535                               (unsigned long)ifr->ifr_mtu);
4536 	XXX - Not sure why it needs to be atomic
4537 	*/
4538 	if_setmtu(ifp, ifr->ifr_mtu);
4539         reinit = 1;
4540         break;
4541 
4542     case SIOCSIFFLAGS:
4543         /* toggle the interface state up or down */
4544         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4545 
4546 	BXE_CORE_LOCK(sc);
4547         /* check if the interface is up */
4548         if (if_getflags(ifp) & IFF_UP) {
4549             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4550                 /* set the receive mode flags */
4551                 bxe_set_rx_mode(sc);
4552             } else if(sc->state != BXE_STATE_DISABLED) {
4553 		bxe_init_locked(sc);
4554             }
4555         } else {
4556             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4557 		bxe_periodic_stop(sc);
4558 		bxe_stop_locked(sc);
4559             }
4560         }
4561 	BXE_CORE_UNLOCK(sc);
4562 
4563         break;
4564 
4565     case SIOCADDMULTI:
4566     case SIOCDELMULTI:
4567         /* add/delete multicast addresses */
4568         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4569 
4570         /* check if the interface is up */
4571         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4572             /* set the receive mode flags */
4573 	    BXE_CORE_LOCK(sc);
4574             bxe_set_rx_mode(sc);
4575 	    BXE_CORE_UNLOCK(sc);
4576         }
4577 
4578         break;
4579 
4580     case SIOCSIFCAP:
4581         /* find out which capabilities have changed */
4582         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4583 
4584         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4585               mask);
4586 
4587         /* toggle the LRO capabilites enable flag */
4588         if (mask & IFCAP_LRO) {
4589 	    if_togglecapenable(ifp, IFCAP_LRO);
4590             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4591                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4592             reinit = 1;
4593         }
4594 
4595         /* toggle the TXCSUM checksum capabilites enable flag */
4596         if (mask & IFCAP_TXCSUM) {
4597 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4598             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4599                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4600             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4601                 if_sethwassistbits(ifp, (CSUM_IP      |
4602                                     CSUM_TCP      |
4603                                     CSUM_UDP      |
4604                                     CSUM_TSO      |
4605                                     CSUM_TCP_IPV6 |
4606                                     CSUM_UDP_IPV6), 0);
4607             } else {
4608 		if_clearhwassist(ifp); /* XXX */
4609             }
4610         }
4611 
4612         /* toggle the RXCSUM checksum capabilities enable flag */
4613         if (mask & IFCAP_RXCSUM) {
4614 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4615             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4616                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4617             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4618                 if_sethwassistbits(ifp, (CSUM_IP      |
4619                                     CSUM_TCP      |
4620                                     CSUM_UDP      |
4621                                     CSUM_TSO      |
4622                                     CSUM_TCP_IPV6 |
4623                                     CSUM_UDP_IPV6), 0);
4624             } else {
4625 		if_clearhwassist(ifp); /* XXX */
4626             }
4627         }
4628 
4629         /* toggle TSO4 capabilities enabled flag */
4630         if (mask & IFCAP_TSO4) {
4631             if_togglecapenable(ifp, IFCAP_TSO4);
4632             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4633                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4634         }
4635 
4636         /* toggle TSO6 capabilities enabled flag */
4637         if (mask & IFCAP_TSO6) {
4638 	    if_togglecapenable(ifp, IFCAP_TSO6);
4639             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4640                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4641         }
4642 
4643         /* toggle VLAN_HWTSO capabilities enabled flag */
4644         if (mask & IFCAP_VLAN_HWTSO) {
4645 
4646 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4647             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4648                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4649         }
4650 
4651         /* toggle VLAN_HWCSUM capabilities enabled flag */
4652         if (mask & IFCAP_VLAN_HWCSUM) {
4653             /* XXX investigate this... */
4654             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4655             error = EINVAL;
4656         }
4657 
4658         /* toggle VLAN_MTU capabilities enable flag */
4659         if (mask & IFCAP_VLAN_MTU) {
4660             /* XXX investigate this... */
4661             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4662             error = EINVAL;
4663         }
4664 
4665         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4666         if (mask & IFCAP_VLAN_HWTAGGING) {
4667             /* XXX investigate this... */
4668             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4669             error = EINVAL;
4670         }
4671 
4672         /* toggle VLAN_HWFILTER capabilities enabled flag */
4673         if (mask & IFCAP_VLAN_HWFILTER) {
4674             /* XXX investigate this... */
4675             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4676             error = EINVAL;
4677         }
4678 
4679         /* XXX not yet...
4680          * IFCAP_WOL_MAGIC
4681          */
4682 
4683         break;
4684 
4685     case SIOCSIFMEDIA:
4686     case SIOCGIFMEDIA:
4687         /* set/get interface media */
4688         BLOGD(sc, DBG_IOCTL,
4689               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4690               (command & 0xff));
4691         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4692         break;
4693 
4694     default:
4695         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4696               (command & 0xff));
4697         error = ether_ioctl(ifp, command, data);
4698         break;
4699     }
4700 
4701     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4702         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4703               "Re-initializing hardware from IOCTL change\n");
4704 	bxe_periodic_stop(sc);
4705 	BXE_CORE_LOCK(sc);
4706 	bxe_stop_locked(sc);
4707 	bxe_init_locked(sc);
4708 	BXE_CORE_UNLOCK(sc);
4709     }
4710 
4711     return (error);
4712 }
4713 
4714 static __noinline void
4715 bxe_dump_mbuf(struct bxe_softc *sc,
4716               struct mbuf      *m,
4717               uint8_t          contents)
4718 {
4719     char * type;
4720     int i = 0;
4721 
4722     if (!(sc->debug & DBG_MBUF)) {
4723         return;
4724     }
4725 
4726     if (m == NULL) {
4727         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4728         return;
4729     }
4730 
4731     while (m) {
4732 
4733 #if __FreeBSD_version >= 1000000
4734         BLOGD(sc, DBG_MBUF,
4735               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4736               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4737 
4738         if (m->m_flags & M_PKTHDR) {
4739              BLOGD(sc, DBG_MBUF,
4740                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4741                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4742                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4743         }
4744 #else
4745         BLOGD(sc, DBG_MBUF,
4746               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4747               i, m, m->m_len, m->m_flags,
4748               "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
4749 
4750         if (m->m_flags & M_PKTHDR) {
4751              BLOGD(sc, DBG_MBUF,
4752                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4753                    i, m->m_pkthdr.len, m->m_flags,
4754                    "\20\12M_BCAST\13M_MCAST\14M_FRAG"
4755                    "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
4756                    "\22M_PROMISC\23M_NOFREE",
4757                    (int)m->m_pkthdr.csum_flags,
4758                    "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
4759                    "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
4760                    "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
4761                    "\14CSUM_PSEUDO_HDR");
4762         }
4763 #endif /* #if __FreeBSD_version >= 1000000 */
4764 
4765         if (m->m_flags & M_EXT) {
4766             switch (m->m_ext.ext_type) {
4767             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4768             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4769             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4770             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4771             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4772             case EXT_PACKET:     type = "EXT_PACKET";     break;
4773             case EXT_MBUF:       type = "EXT_MBUF";       break;
4774             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4775             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4776             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4777             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4778             default:             type = "UNKNOWN";        break;
4779             }
4780 
4781             BLOGD(sc, DBG_MBUF,
4782                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4783                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4784         }
4785 
4786         if (contents) {
4787             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4788         }
4789 
4790         m = m->m_next;
4791         i++;
4792     }
4793 }
4794 
4795 /*
4796  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4797  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4798  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4799  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4800  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4801  */
4802 static int
4803 bxe_chktso_window(struct bxe_softc  *sc,
4804                   int               nsegs,
4805                   bus_dma_segment_t *segs,
4806                   struct mbuf       *m)
4807 {
4808     uint32_t num_wnds, wnd_size, wnd_sum;
4809     int32_t frag_idx, wnd_idx;
4810     unsigned short lso_mss;
4811     int defrag;
4812 
4813     defrag = 0;
4814     wnd_sum = 0;
4815     wnd_size = 10;
4816     num_wnds = nsegs - wnd_size;
4817     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4818 
4819     /*
4820      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4821      * first window sum of data while skipping the first assuming it is the
4822      * header in FreeBSD.
4823      */
4824     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4825         wnd_sum += htole16(segs[frag_idx].ds_len);
4826     }
4827 
4828     /* check the first 10 bd window size */
4829     if (wnd_sum < lso_mss) {
4830         return (1);
4831     }
4832 
4833     /* run through the windows */
4834     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4835         /* subtract the first mbuf->m_len of the last wndw(-header) */
4836         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4837         /* add the next mbuf len to the len of our new window */
4838         wnd_sum += htole16(segs[frag_idx].ds_len);
4839         if (wnd_sum < lso_mss) {
4840             return (1);
4841         }
4842     }
4843 
4844     return (0);
4845 }
4846 
4847 static uint8_t
4848 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4849                     struct mbuf         *m,
4850                     uint32_t            *parsing_data)
4851 {
4852     struct ether_vlan_header *eh = NULL;
4853     struct ip *ip4 = NULL;
4854     struct ip6_hdr *ip6 = NULL;
4855     caddr_t ip = NULL;
4856     struct tcphdr *th = NULL;
4857     int e_hlen, ip_hlen, l4_off;
4858     uint16_t proto;
4859 
4860     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4861         /* no L4 checksum offload needed */
4862         return (0);
4863     }
4864 
4865     /* get the Ethernet header */
4866     eh = mtod(m, struct ether_vlan_header *);
4867 
4868     /* handle VLAN encapsulation if present */
4869     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4870         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4871         proto  = ntohs(eh->evl_proto);
4872     } else {
4873         e_hlen = ETHER_HDR_LEN;
4874         proto  = ntohs(eh->evl_encap_proto);
4875     }
4876 
4877     switch (proto) {
4878     case ETHERTYPE_IP:
4879         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4880         ip4 = (m->m_len < sizeof(struct ip)) ?
4881                   (struct ip *)m->m_next->m_data :
4882                   (struct ip *)(m->m_data + e_hlen);
4883         /* ip_hl is number of 32-bit words */
4884         ip_hlen = (ip4->ip_hl << 2);
4885         ip = (caddr_t)ip4;
4886         break;
4887     case ETHERTYPE_IPV6:
4888         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4889         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4890                   (struct ip6_hdr *)m->m_next->m_data :
4891                   (struct ip6_hdr *)(m->m_data + e_hlen);
4892         /* XXX cannot support offload with IPv6 extensions */
4893         ip_hlen = sizeof(struct ip6_hdr);
4894         ip = (caddr_t)ip6;
4895         break;
4896     default:
4897         /* We can't offload in this case... */
4898         /* XXX error stat ??? */
4899         return (0);
4900     }
4901 
4902     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4903     l4_off = (e_hlen + ip_hlen);
4904 
4905     *parsing_data |=
4906         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4907          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4908 
4909     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4910                                   CSUM_TSO |
4911                                   CSUM_TCP_IPV6)) {
4912         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4913         th = (struct tcphdr *)(ip + ip_hlen);
4914         /* th_off is number of 32-bit words */
4915         *parsing_data |= ((th->th_off <<
4916                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4917                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4918         return (l4_off + (th->th_off << 2)); /* entire header length */
4919     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4920                                          CSUM_UDP_IPV6)) {
4921         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4922         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4923     } else {
4924         /* XXX error stat ??? */
4925         return (0);
4926     }
4927 }
4928 
4929 static uint8_t
4930 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4931                  struct mbuf                *m,
4932                  struct eth_tx_parse_bd_e1x *pbd)
4933 {
4934     struct ether_vlan_header *eh = NULL;
4935     struct ip *ip4 = NULL;
4936     struct ip6_hdr *ip6 = NULL;
4937     caddr_t ip = NULL;
4938     struct tcphdr *th = NULL;
4939     struct udphdr *uh = NULL;
4940     int e_hlen, ip_hlen;
4941     uint16_t proto;
4942     uint8_t hlen;
4943     uint16_t tmp_csum;
4944     uint32_t *tmp_uh;
4945 
4946     /* get the Ethernet header */
4947     eh = mtod(m, struct ether_vlan_header *);
4948 
4949     /* handle VLAN encapsulation if present */
4950     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4951         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4952         proto  = ntohs(eh->evl_proto);
4953     } else {
4954         e_hlen = ETHER_HDR_LEN;
4955         proto  = ntohs(eh->evl_encap_proto);
4956     }
4957 
4958     switch (proto) {
4959     case ETHERTYPE_IP:
4960         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4961         ip4 = (m->m_len < sizeof(struct ip)) ?
4962                   (struct ip *)m->m_next->m_data :
4963                   (struct ip *)(m->m_data + e_hlen);
4964         /* ip_hl is number of 32-bit words */
4965         ip_hlen = (ip4->ip_hl << 1);
4966         ip = (caddr_t)ip4;
4967         break;
4968     case ETHERTYPE_IPV6:
4969         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4970         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4971                   (struct ip6_hdr *)m->m_next->m_data :
4972                   (struct ip6_hdr *)(m->m_data + e_hlen);
4973         /* XXX cannot support offload with IPv6 extensions */
4974         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4975         ip = (caddr_t)ip6;
4976         break;
4977     default:
4978         /* We can't offload in this case... */
4979         /* XXX error stat ??? */
4980         return (0);
4981     }
4982 
4983     hlen = (e_hlen >> 1);
4984 
4985     /* note that rest of global_data is indirectly zeroed here */
4986     if (m->m_flags & M_VLANTAG) {
4987         pbd->global_data =
4988             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4989     } else {
4990         pbd->global_data = htole16(hlen);
4991     }
4992 
4993     pbd->ip_hlen_w = ip_hlen;
4994 
4995     hlen += pbd->ip_hlen_w;
4996 
4997     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4998 
4999     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5000                                   CSUM_TSO |
5001                                   CSUM_TCP_IPV6)) {
5002         th = (struct tcphdr *)(ip + (ip_hlen << 1));
5003         /* th_off is number of 32-bit words */
5004         hlen += (uint16_t)(th->th_off << 1);
5005     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5006                                          CSUM_UDP_IPV6)) {
5007         uh = (struct udphdr *)(ip + (ip_hlen << 1));
5008         hlen += (sizeof(struct udphdr) / 2);
5009     } else {
5010         /* valid case as only CSUM_IP was set */
5011         return (0);
5012     }
5013 
5014     pbd->total_hlen_w = htole16(hlen);
5015 
5016     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5017                                   CSUM_TSO |
5018                                   CSUM_TCP_IPV6)) {
5019         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5020         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5021     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5022                                          CSUM_UDP_IPV6)) {
5023         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5024 
5025         /*
5026          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5027          * checksums and does not know anything about the UDP header and where
5028          * the checksum field is located. It only knows about TCP. Therefore
5029          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5030          * offload. Since the checksum field offset for TCP is 16 bytes and
5031          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5032          * bytes less than the start of the UDP header. This allows the
5033          * hardware to write the checksum in the correct spot. But the
5034          * hardware will compute a checksum which includes the last 10 bytes
5035          * of the IP header. To correct this we tweak the stack computed
5036          * pseudo checksum by folding in the calculation of the inverse
5037          * checksum for those final 10 bytes of the IP header. This allows
5038          * the correct checksum to be computed by the hardware.
5039          */
5040 
5041         /* set pointer 10 bytes before UDP header */
5042         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5043 
5044         /* calculate a pseudo header checksum over the first 10 bytes */
5045         tmp_csum = in_pseudo(*tmp_uh,
5046                              *(tmp_uh + 1),
5047                              *(uint16_t *)(tmp_uh + 2));
5048 
5049         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5050     }
5051 
5052     return (hlen * 2); /* entire header length, number of bytes */
5053 }
5054 
5055 static void
5056 bxe_set_pbd_lso_e2(struct mbuf *m,
5057                    uint32_t    *parsing_data)
5058 {
5059     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5060                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5061                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5062 
5063     /* XXX test for IPv6 with extension header... */
5064 }
5065 
5066 static void
5067 bxe_set_pbd_lso(struct mbuf                *m,
5068                 struct eth_tx_parse_bd_e1x *pbd)
5069 {
5070     struct ether_vlan_header *eh = NULL;
5071     struct ip *ip = NULL;
5072     struct tcphdr *th = NULL;
5073     int e_hlen;
5074 
5075     /* get the Ethernet header */
5076     eh = mtod(m, struct ether_vlan_header *);
5077 
5078     /* handle VLAN encapsulation if present */
5079     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5080                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5081 
5082     /* get the IP and TCP header, with LSO entire header in first mbuf */
5083     /* XXX assuming IPv4 */
5084     ip = (struct ip *)(m->m_data + e_hlen);
5085     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5086 
5087     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5088     pbd->tcp_send_seq = ntohl(th->th_seq);
5089     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5090 
5091 #if 1
5092         /* XXX IPv4 */
5093         pbd->ip_id = ntohs(ip->ip_id);
5094         pbd->tcp_pseudo_csum =
5095             ntohs(in_pseudo(ip->ip_src.s_addr,
5096                             ip->ip_dst.s_addr,
5097                             htons(IPPROTO_TCP)));
5098 #else
5099         /* XXX IPv6 */
5100         pbd->tcp_pseudo_csum =
5101             ntohs(in_pseudo(&ip6->ip6_src,
5102                             &ip6->ip6_dst,
5103                             htons(IPPROTO_TCP)));
5104 #endif
5105 
5106     pbd->global_data |=
5107         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5108 }
5109 
5110 /*
5111  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5112  * visible to the controller.
5113  *
5114  * If an mbuf is submitted to this routine and cannot be given to the
5115  * controller (e.g. it has too many fragments) then the function may free
5116  * the mbuf and return to the caller.
5117  *
5118  * Returns:
5119  *   0 = Success, !0 = Failure
5120  *   Note the side effect that an mbuf may be freed if it causes a problem.
5121  */
5122 static int
5123 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5124 {
5125     bus_dma_segment_t segs[32];
5126     struct mbuf *m0;
5127     struct bxe_sw_tx_bd *tx_buf;
5128     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5129     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5130     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5131     struct eth_tx_bd *tx_data_bd;
5132     struct eth_tx_bd *tx_total_pkt_size_bd;
5133     struct eth_tx_start_bd *tx_start_bd;
5134     uint16_t bd_prod, pkt_prod, total_pkt_size;
5135     uint8_t mac_type;
5136     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5137     struct bxe_softc *sc;
5138     uint16_t tx_bd_avail;
5139     struct ether_vlan_header *eh;
5140     uint32_t pbd_e2_parsing_data = 0;
5141     uint8_t hlen = 0;
5142     int tmp_bd;
5143     int i;
5144 
5145     sc = fp->sc;
5146 
5147 #if __FreeBSD_version >= 800000
5148     M_ASSERTPKTHDR(*m_head);
5149 #endif /* #if __FreeBSD_version >= 800000 */
5150 
5151     m0 = *m_head;
5152     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5153     tx_start_bd = NULL;
5154     tx_data_bd = NULL;
5155     tx_total_pkt_size_bd = NULL;
5156 
5157     /* get the H/W pointer for packets and BDs */
5158     pkt_prod = fp->tx_pkt_prod;
5159     bd_prod = fp->tx_bd_prod;
5160 
5161     mac_type = UNICAST_ADDRESS;
5162 
5163     /* map the mbuf into the next open DMAable memory */
5164     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5165     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5166                                     tx_buf->m_map, m0,
5167                                     segs, &nsegs, BUS_DMA_NOWAIT);
5168 
5169     /* mapping errors */
5170     if(__predict_false(error != 0)) {
5171         fp->eth_q_stats.tx_dma_mapping_failure++;
5172         if (error == ENOMEM) {
5173             /* resource issue, try again later */
5174             rc = ENOMEM;
5175         } else if (error == EFBIG) {
5176             /* possibly recoverable with defragmentation */
5177             fp->eth_q_stats.mbuf_defrag_attempts++;
5178             m0 = m_defrag(*m_head, M_NOWAIT);
5179             if (m0 == NULL) {
5180                 fp->eth_q_stats.mbuf_defrag_failures++;
5181                 rc = ENOBUFS;
5182             } else {
5183                 /* defrag successful, try mapping again */
5184                 *m_head = m0;
5185                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5186                                                 tx_buf->m_map, m0,
5187                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5188                 if (error) {
5189                     fp->eth_q_stats.tx_dma_mapping_failure++;
5190                     rc = error;
5191                 }
5192             }
5193         } else {
5194             /* unknown, unrecoverable mapping error */
5195             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5196             bxe_dump_mbuf(sc, m0, FALSE);
5197             rc = error;
5198         }
5199 
5200         goto bxe_tx_encap_continue;
5201     }
5202 
5203     tx_bd_avail = bxe_tx_avail(sc, fp);
5204 
5205     /* make sure there is enough room in the send queue */
5206     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5207         /* Recoverable, try again later. */
5208         fp->eth_q_stats.tx_hw_queue_full++;
5209         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5210         rc = ENOMEM;
5211         goto bxe_tx_encap_continue;
5212     }
5213 
5214     /* capture the current H/W TX chain high watermark */
5215     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5216                         (TX_BD_USABLE - tx_bd_avail))) {
5217         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5218     }
5219 
5220     /* make sure it fits in the packet window */
5221     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5222         /*
5223          * The mbuf may be to big for the controller to handle. If the frame
5224          * is a TSO frame we'll need to do an additional check.
5225          */
5226         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5227             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5228                 goto bxe_tx_encap_continue; /* OK to send */
5229             } else {
5230                 fp->eth_q_stats.tx_window_violation_tso++;
5231             }
5232         } else {
5233             fp->eth_q_stats.tx_window_violation_std++;
5234         }
5235 
5236         /* lets try to defragment this mbuf and remap it */
5237         fp->eth_q_stats.mbuf_defrag_attempts++;
5238         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5239 
5240         m0 = m_defrag(*m_head, M_NOWAIT);
5241         if (m0 == NULL) {
5242             fp->eth_q_stats.mbuf_defrag_failures++;
5243             /* Ugh, just drop the frame... :( */
5244             rc = ENOBUFS;
5245         } else {
5246             /* defrag successful, try mapping again */
5247             *m_head = m0;
5248             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5249                                             tx_buf->m_map, m0,
5250                                             segs, &nsegs, BUS_DMA_NOWAIT);
5251             if (error) {
5252                 fp->eth_q_stats.tx_dma_mapping_failure++;
5253                 /* No sense in trying to defrag/copy chain, drop it. :( */
5254                 rc = error;
5255             } else {
5256                /* if the chain is still too long then drop it */
5257                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5258                     /*
5259                      * in case TSO is enabled nsegs should be checked against
5260                      * BXE_TSO_MAX_SEGMENTS
5261                      */
5262                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5263                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5264                         fp->eth_q_stats.nsegs_path1_errors++;
5265                         rc = ENODEV;
5266                     }
5267                 } else {
5268                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5269                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5270                         fp->eth_q_stats.nsegs_path2_errors++;
5271                         rc = ENODEV;
5272                     }
5273                 }
5274             }
5275         }
5276     }
5277 
5278 bxe_tx_encap_continue:
5279 
5280     /* Check for errors */
5281     if (rc) {
5282         if (rc == ENOMEM) {
5283             /* recoverable try again later  */
5284         } else {
5285             fp->eth_q_stats.tx_soft_errors++;
5286             fp->eth_q_stats.mbuf_alloc_tx--;
5287             m_freem(*m_head);
5288             *m_head = NULL;
5289         }
5290 
5291         return (rc);
5292     }
5293 
5294     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5295     if (m0->m_flags & M_BCAST) {
5296         mac_type = BROADCAST_ADDRESS;
5297     } else if (m0->m_flags & M_MCAST) {
5298         mac_type = MULTICAST_ADDRESS;
5299     }
5300 
5301     /* store the mbuf into the mbuf ring */
5302     tx_buf->m        = m0;
5303     tx_buf->first_bd = fp->tx_bd_prod;
5304     tx_buf->flags    = 0;
5305 
5306     /* prepare the first transmit (start) BD for the mbuf */
5307     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5308 
5309     BLOGD(sc, DBG_TX,
5310           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5311           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5312 
5313     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5314     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5315     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5316     total_pkt_size += tx_start_bd->nbytes;
5317     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5318 
5319     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5320 
5321     /* all frames have at least Start BD + Parsing BD */
5322     nbds = nsegs + 1;
5323     tx_start_bd->nbd = htole16(nbds);
5324 
5325     if (m0->m_flags & M_VLANTAG) {
5326         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5327         tx_start_bd->bd_flags.as_bitfield |=
5328             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5329     } else {
5330         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5331         if (IS_VF(sc)) {
5332             /* map ethernet header to find type and header length */
5333             eh = mtod(m0, struct ether_vlan_header *);
5334             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5335         } else {
5336             /* used by FW for packet accounting */
5337             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5338         }
5339     }
5340 
5341     /*
5342      * add a parsing BD from the chain. The parsing BD is always added
5343      * though it is only used for TSO and chksum
5344      */
5345     bd_prod = TX_BD_NEXT(bd_prod);
5346 
5347     if (m0->m_pkthdr.csum_flags) {
5348         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5349             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5350             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5351         }
5352 
5353         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5354             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5355                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5356         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5357             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5358                                                   ETH_TX_BD_FLAGS_IS_UDP |
5359                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5360         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5361                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5362             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5363         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5364             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5365                                                   ETH_TX_BD_FLAGS_IS_UDP);
5366         }
5367     }
5368 
5369     if (!CHIP_IS_E1x(sc)) {
5370         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5371         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5372 
5373         if (m0->m_pkthdr.csum_flags) {
5374             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5375         }
5376 
5377         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5378                  mac_type);
5379     } else {
5380         uint16_t global_data = 0;
5381 
5382         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5383         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5384 
5385         if (m0->m_pkthdr.csum_flags) {
5386             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5387         }
5388 
5389         SET_FLAG(global_data,
5390                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5391         pbd_e1x->global_data |= htole16(global_data);
5392     }
5393 
5394     /* setup the parsing BD with TSO specific info */
5395     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5396         fp->eth_q_stats.tx_ofld_frames_lso++;
5397         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5398 
5399         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5400             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5401 
5402             /* split the first BD into header/data making the fw job easy */
5403             nbds++;
5404             tx_start_bd->nbd = htole16(nbds);
5405             tx_start_bd->nbytes = htole16(hlen);
5406 
5407             bd_prod = TX_BD_NEXT(bd_prod);
5408 
5409             /* new transmit BD after the tx_parse_bd */
5410             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5411             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5412             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5413             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5414             if (tx_total_pkt_size_bd == NULL) {
5415                 tx_total_pkt_size_bd = tx_data_bd;
5416             }
5417 
5418             BLOGD(sc, DBG_TX,
5419                   "TSO split header size is %d (%x:%x) nbds %d\n",
5420                   le16toh(tx_start_bd->nbytes),
5421                   le32toh(tx_start_bd->addr_hi),
5422                   le32toh(tx_start_bd->addr_lo),
5423                   nbds);
5424         }
5425 
5426         if (!CHIP_IS_E1x(sc)) {
5427             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5428         } else {
5429             bxe_set_pbd_lso(m0, pbd_e1x);
5430         }
5431     }
5432 
5433     if (pbd_e2_parsing_data) {
5434         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5435     }
5436 
5437     /* prepare remaining BDs, start tx bd contains first seg/frag */
5438     for (i = 1; i < nsegs ; i++) {
5439         bd_prod = TX_BD_NEXT(bd_prod);
5440         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5441         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5442         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5443         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5444         if (tx_total_pkt_size_bd == NULL) {
5445             tx_total_pkt_size_bd = tx_data_bd;
5446         }
5447         total_pkt_size += tx_data_bd->nbytes;
5448     }
5449 
5450     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5451 
5452     if (tx_total_pkt_size_bd != NULL) {
5453         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5454     }
5455 
5456     if (__predict_false(sc->debug & DBG_TX)) {
5457         tmp_bd = tx_buf->first_bd;
5458         for (i = 0; i < nbds; i++)
5459         {
5460             if (i == 0) {
5461                 BLOGD(sc, DBG_TX,
5462                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5463                       "bd_flags=0x%x hdr_nbds=%d\n",
5464                       tx_start_bd,
5465                       tmp_bd,
5466                       le16toh(tx_start_bd->nbd),
5467                       le16toh(tx_start_bd->vlan_or_ethertype),
5468                       tx_start_bd->bd_flags.as_bitfield,
5469                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5470             } else if (i == 1) {
5471                 if (pbd_e1x) {
5472                     BLOGD(sc, DBG_TX,
5473                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5474                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5475                           "tcp_seq=%u total_hlen_w=%u\n",
5476                           pbd_e1x,
5477                           tmp_bd,
5478                           pbd_e1x->global_data,
5479                           pbd_e1x->ip_hlen_w,
5480                           pbd_e1x->ip_id,
5481                           pbd_e1x->lso_mss,
5482                           pbd_e1x->tcp_flags,
5483                           pbd_e1x->tcp_pseudo_csum,
5484                           pbd_e1x->tcp_send_seq,
5485                           le16toh(pbd_e1x->total_hlen_w));
5486                 } else { /* if (pbd_e2) */
5487                     BLOGD(sc, DBG_TX,
5488                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5489                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5490                           pbd_e2,
5491                           tmp_bd,
5492                           pbd_e2->data.mac_addr.dst_hi,
5493                           pbd_e2->data.mac_addr.dst_mid,
5494                           pbd_e2->data.mac_addr.dst_lo,
5495                           pbd_e2->data.mac_addr.src_hi,
5496                           pbd_e2->data.mac_addr.src_mid,
5497                           pbd_e2->data.mac_addr.src_lo,
5498                           pbd_e2->parsing_data);
5499                 }
5500             }
5501 
5502             if (i != 1) { /* skip parse db as it doesn't hold data */
5503                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5504                 BLOGD(sc, DBG_TX,
5505                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5506                       tx_data_bd,
5507                       tmp_bd,
5508                       le16toh(tx_data_bd->nbytes),
5509                       le32toh(tx_data_bd->addr_hi),
5510                       le32toh(tx_data_bd->addr_lo));
5511             }
5512 
5513             tmp_bd = TX_BD_NEXT(tmp_bd);
5514         }
5515     }
5516 
5517     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5518 
5519     /* update TX BD producer index value for next TX */
5520     bd_prod = TX_BD_NEXT(bd_prod);
5521 
5522     /*
5523      * If the chain of tx_bd's describing this frame is adjacent to or spans
5524      * an eth_tx_next_bd element then we need to increment the nbds value.
5525      */
5526     if (TX_BD_IDX(bd_prod) < nbds) {
5527         nbds++;
5528     }
5529 
5530     /* don't allow reordering of writes for nbd and packets */
5531     mb();
5532 
5533     fp->tx_db.data.prod += nbds;
5534 
5535     /* producer points to the next free tx_bd at this point */
5536     fp->tx_pkt_prod++;
5537     fp->tx_bd_prod = bd_prod;
5538 
5539     DOORBELL(sc, fp->index, fp->tx_db.raw);
5540 
5541     fp->eth_q_stats.tx_pkts++;
5542 
5543     /* Prevent speculative reads from getting ahead of the status block. */
5544     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5545                       0, 0, BUS_SPACE_BARRIER_READ);
5546 
5547     /* Prevent speculative reads from getting ahead of the doorbell. */
5548     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5549                       0, 0, BUS_SPACE_BARRIER_READ);
5550 
5551     return (0);
5552 }
5553 
5554 static void
5555 bxe_tx_start_locked(struct bxe_softc *sc,
5556                     if_t ifp,
5557                     struct bxe_fastpath *fp)
5558 {
5559     struct mbuf *m = NULL;
5560     int tx_count = 0;
5561     uint16_t tx_bd_avail;
5562 
5563     BXE_FP_TX_LOCK_ASSERT(fp);
5564 
5565     /* keep adding entries while there are frames to send */
5566     while (!if_sendq_empty(ifp)) {
5567 
5568         /*
5569          * check for any frames to send
5570          * dequeue can still be NULL even if queue is not empty
5571          */
5572         m = if_dequeue(ifp);
5573         if (__predict_false(m == NULL)) {
5574             break;
5575         }
5576 
5577         /* the mbuf now belongs to us */
5578         fp->eth_q_stats.mbuf_alloc_tx++;
5579 
5580         /*
5581          * Put the frame into the transmit ring. If we don't have room,
5582          * place the mbuf back at the head of the TX queue, set the
5583          * OACTIVE flag, and wait for the NIC to drain the chain.
5584          */
5585         if (__predict_false(bxe_tx_encap(fp, &m))) {
5586             fp->eth_q_stats.tx_encap_failures++;
5587             if (m != NULL) {
5588                 /* mark the TX queue as full and return the frame */
5589                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5590 		if_sendq_prepend(ifp, m);
5591                 fp->eth_q_stats.mbuf_alloc_tx--;
5592                 fp->eth_q_stats.tx_queue_xoff++;
5593             }
5594 
5595             /* stop looking for more work */
5596             break;
5597         }
5598 
5599         /* the frame was enqueued successfully */
5600         tx_count++;
5601 
5602         /* send a copy of the frame to any BPF listeners. */
5603         if_etherbpfmtap(ifp, m);
5604 
5605         tx_bd_avail = bxe_tx_avail(sc, fp);
5606 
5607         /* handle any completions if we're running low */
5608         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5609             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5610             bxe_txeof(sc, fp);
5611             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5612                 break;
5613             }
5614         }
5615     }
5616 
5617     /* all TX packets were dequeued and/or the tx ring is full */
5618     if (tx_count > 0) {
5619         /* reset the TX watchdog timeout timer */
5620         fp->watchdog_timer = BXE_TX_TIMEOUT;
5621     }
5622 }
5623 
5624 /* Legacy (non-RSS) dispatch routine */
5625 static void
5626 bxe_tx_start(if_t ifp)
5627 {
5628     struct bxe_softc *sc;
5629     struct bxe_fastpath *fp;
5630 
5631     sc = if_getsoftc(ifp);
5632 
5633     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5634         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5635         return;
5636     }
5637 
5638     if (!sc->link_vars.link_up) {
5639         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5640         return;
5641     }
5642 
5643     fp = &sc->fp[0];
5644 
5645     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5646         fp->eth_q_stats.tx_queue_full_return++;
5647         return;
5648     }
5649 
5650     BXE_FP_TX_LOCK(fp);
5651     bxe_tx_start_locked(sc, ifp, fp);
5652     BXE_FP_TX_UNLOCK(fp);
5653 }
5654 
5655 #if __FreeBSD_version >= 901504
5656 
5657 static int
5658 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5659                        if_t                ifp,
5660                        struct bxe_fastpath *fp,
5661                        struct mbuf         *m)
5662 {
5663     struct buf_ring *tx_br = fp->tx_br;
5664     struct mbuf *next;
5665     int depth, rc, tx_count;
5666     uint16_t tx_bd_avail;
5667 
5668     rc = tx_count = 0;
5669 
5670     BXE_FP_TX_LOCK_ASSERT(fp);
5671 
5672     if (sc->state != BXE_STATE_OPEN)  {
5673         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5674         return ENETDOWN;
5675     }
5676 
5677     if (!tx_br) {
5678         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5679         return (EINVAL);
5680     }
5681 
5682     if (m != NULL) {
5683         rc = drbr_enqueue(ifp, tx_br, m);
5684         if (rc != 0) {
5685             fp->eth_q_stats.tx_soft_errors++;
5686             goto bxe_tx_mq_start_locked_exit;
5687         }
5688     }
5689 
5690     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5691         fp->eth_q_stats.tx_request_link_down_failures++;
5692         goto bxe_tx_mq_start_locked_exit;
5693     }
5694 
5695     /* fetch the depth of the driver queue */
5696     depth = drbr_inuse_drv(ifp, tx_br);
5697     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5698         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5699     }
5700 
5701     /* keep adding entries while there are frames to send */
5702     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5703         /* handle any completions if we're running low */
5704         tx_bd_avail = bxe_tx_avail(sc, fp);
5705         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5706             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5707             bxe_txeof(sc, fp);
5708             tx_bd_avail = bxe_tx_avail(sc, fp);
5709             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5710                 fp->eth_q_stats.bd_avail_too_less_failures++;
5711                 m_freem(next);
5712                 drbr_advance(ifp, tx_br);
5713                 rc = ENOBUFS;
5714                 break;
5715             }
5716         }
5717 
5718         /* the mbuf now belongs to us */
5719         fp->eth_q_stats.mbuf_alloc_tx++;
5720 
5721         /*
5722          * Put the frame into the transmit ring. If we don't have room,
5723          * place the mbuf back at the head of the TX queue, set the
5724          * OACTIVE flag, and wait for the NIC to drain the chain.
5725          */
5726         rc = bxe_tx_encap(fp, &next);
5727         if (__predict_false(rc != 0)) {
5728             fp->eth_q_stats.tx_encap_failures++;
5729             if (next != NULL) {
5730                 /* mark the TX queue as full and save the frame */
5731                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5732                 drbr_putback(ifp, tx_br, next);
5733                 fp->eth_q_stats.mbuf_alloc_tx--;
5734                 fp->eth_q_stats.tx_frames_deferred++;
5735             } else
5736                 drbr_advance(ifp, tx_br);
5737 
5738             /* stop looking for more work */
5739             break;
5740         }
5741 
5742         /* the transmit frame was enqueued successfully */
5743         tx_count++;
5744 
5745         /* send a copy of the frame to any BPF listeners */
5746 	if_etherbpfmtap(ifp, next);
5747 
5748         drbr_advance(ifp, tx_br);
5749     }
5750 
5751     /* all TX packets were dequeued and/or the tx ring is full */
5752     if (tx_count > 0) {
5753         /* reset the TX watchdog timeout timer */
5754         fp->watchdog_timer = BXE_TX_TIMEOUT;
5755     }
5756 
5757 bxe_tx_mq_start_locked_exit:
5758     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5759     if (!drbr_empty(ifp, tx_br)) {
5760         fp->eth_q_stats.tx_mq_not_empty++;
5761         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5762     }
5763 
5764     return (rc);
5765 }
5766 
5767 static void
5768 bxe_tx_mq_start_deferred(void *arg,
5769                          int pending)
5770 {
5771     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5772     struct bxe_softc *sc = fp->sc;
5773     if_t ifp = sc->ifp;
5774 
5775     BXE_FP_TX_LOCK(fp);
5776     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5777     BXE_FP_TX_UNLOCK(fp);
5778 }
5779 
5780 /* Multiqueue (TSS) dispatch routine. */
5781 static int
5782 bxe_tx_mq_start(struct ifnet *ifp,
5783                 struct mbuf  *m)
5784 {
5785     struct bxe_softc *sc = if_getsoftc(ifp);
5786     struct bxe_fastpath *fp;
5787     int fp_index, rc;
5788 
5789     fp_index = 0; /* default is the first queue */
5790 
5791     /* check if flowid is set */
5792 
5793     if (BXE_VALID_FLOWID(m))
5794         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5795 
5796     fp = &sc->fp[fp_index];
5797 
5798     if (sc->state != BXE_STATE_OPEN)  {
5799         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5800         return ENETDOWN;
5801     }
5802 
5803     if (BXE_FP_TX_TRYLOCK(fp)) {
5804         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5805         BXE_FP_TX_UNLOCK(fp);
5806     } else {
5807         rc = drbr_enqueue(ifp, fp->tx_br, m);
5808         taskqueue_enqueue(fp->tq, &fp->tx_task);
5809     }
5810 
5811     return (rc);
5812 }
5813 
5814 static void
5815 bxe_mq_flush(struct ifnet *ifp)
5816 {
5817     struct bxe_softc *sc = if_getsoftc(ifp);
5818     struct bxe_fastpath *fp;
5819     struct mbuf *m;
5820     int i;
5821 
5822     for (i = 0; i < sc->num_queues; i++) {
5823         fp = &sc->fp[i];
5824 
5825         if (fp->state != BXE_FP_STATE_IRQ) {
5826             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5827                   fp->index, fp->state);
5828             continue;
5829         }
5830 
5831         if (fp->tx_br != NULL) {
5832             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5833             BXE_FP_TX_LOCK(fp);
5834             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5835                 m_freem(m);
5836             }
5837             BXE_FP_TX_UNLOCK(fp);
5838         }
5839     }
5840 
5841     if_qflush(ifp);
5842 }
5843 
5844 #endif /* FreeBSD_version >= 901504 */
5845 
5846 static uint16_t
5847 bxe_cid_ilt_lines(struct bxe_softc *sc)
5848 {
5849     if (IS_SRIOV(sc)) {
5850         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5851     }
5852     return (L2_ILT_LINES(sc));
5853 }
5854 
5855 static void
5856 bxe_ilt_set_info(struct bxe_softc *sc)
5857 {
5858     struct ilt_client_info *ilt_client;
5859     struct ecore_ilt *ilt = sc->ilt;
5860     uint16_t line = 0;
5861 
5862     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5863     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5864 
5865     /* CDU */
5866     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5867     ilt_client->client_num = ILT_CLIENT_CDU;
5868     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5869     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5870     ilt_client->start = line;
5871     line += bxe_cid_ilt_lines(sc);
5872 
5873     if (CNIC_SUPPORT(sc)) {
5874         line += CNIC_ILT_LINES;
5875     }
5876 
5877     ilt_client->end = (line - 1);
5878 
5879     BLOGD(sc, DBG_LOAD,
5880           "ilt client[CDU]: start %d, end %d, "
5881           "psz 0x%x, flags 0x%x, hw psz %d\n",
5882           ilt_client->start, ilt_client->end,
5883           ilt_client->page_size,
5884           ilt_client->flags,
5885           ilog2(ilt_client->page_size >> 12));
5886 
5887     /* QM */
5888     if (QM_INIT(sc->qm_cid_count)) {
5889         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5890         ilt_client->client_num = ILT_CLIENT_QM;
5891         ilt_client->page_size = QM_ILT_PAGE_SZ;
5892         ilt_client->flags = 0;
5893         ilt_client->start = line;
5894 
5895         /* 4 bytes for each cid */
5896         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5897                              QM_ILT_PAGE_SZ);
5898 
5899         ilt_client->end = (line - 1);
5900 
5901         BLOGD(sc, DBG_LOAD,
5902               "ilt client[QM]: start %d, end %d, "
5903               "psz 0x%x, flags 0x%x, hw psz %d\n",
5904               ilt_client->start, ilt_client->end,
5905               ilt_client->page_size, ilt_client->flags,
5906               ilog2(ilt_client->page_size >> 12));
5907     }
5908 
5909     if (CNIC_SUPPORT(sc)) {
5910         /* SRC */
5911         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5912         ilt_client->client_num = ILT_CLIENT_SRC;
5913         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5914         ilt_client->flags = 0;
5915         ilt_client->start = line;
5916         line += SRC_ILT_LINES;
5917         ilt_client->end = (line - 1);
5918 
5919         BLOGD(sc, DBG_LOAD,
5920               "ilt client[SRC]: start %d, end %d, "
5921               "psz 0x%x, flags 0x%x, hw psz %d\n",
5922               ilt_client->start, ilt_client->end,
5923               ilt_client->page_size, ilt_client->flags,
5924               ilog2(ilt_client->page_size >> 12));
5925 
5926         /* TM */
5927         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5928         ilt_client->client_num = ILT_CLIENT_TM;
5929         ilt_client->page_size = TM_ILT_PAGE_SZ;
5930         ilt_client->flags = 0;
5931         ilt_client->start = line;
5932         line += TM_ILT_LINES;
5933         ilt_client->end = (line - 1);
5934 
5935         BLOGD(sc, DBG_LOAD,
5936               "ilt client[TM]: start %d, end %d, "
5937               "psz 0x%x, flags 0x%x, hw psz %d\n",
5938               ilt_client->start, ilt_client->end,
5939               ilt_client->page_size, ilt_client->flags,
5940               ilog2(ilt_client->page_size >> 12));
5941     }
5942 
5943     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5944 }
5945 
5946 static void
5947 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5948 {
5949     int i;
5950     uint32_t rx_buf_size;
5951 
5952     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5953 
5954     for (i = 0; i < sc->num_queues; i++) {
5955         if(rx_buf_size <= MCLBYTES){
5956             sc->fp[i].rx_buf_size = rx_buf_size;
5957             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5958         }else if (rx_buf_size <= MJUMPAGESIZE){
5959             sc->fp[i].rx_buf_size = rx_buf_size;
5960             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5961         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5962             sc->fp[i].rx_buf_size = MCLBYTES;
5963             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5964         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5965             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5966             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5967         }else {
5968             sc->fp[i].rx_buf_size = MCLBYTES;
5969             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5970         }
5971     }
5972 }
5973 
5974 static int
5975 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5976 {
5977     int rc = 0;
5978 
5979     if ((sc->ilt =
5980          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5981                                     M_BXE_ILT,
5982                                     (M_NOWAIT | M_ZERO))) == NULL) {
5983         rc = 1;
5984     }
5985 
5986     return (rc);
5987 }
5988 
5989 static int
5990 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5991 {
5992     int rc = 0;
5993 
5994     if ((sc->ilt->lines =
5995          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5996                                     M_BXE_ILT,
5997                                     (M_NOWAIT | M_ZERO))) == NULL) {
5998         rc = 1;
5999     }
6000 
6001     return (rc);
6002 }
6003 
6004 static void
6005 bxe_free_ilt_mem(struct bxe_softc *sc)
6006 {
6007     if (sc->ilt != NULL) {
6008         free(sc->ilt, M_BXE_ILT);
6009         sc->ilt = NULL;
6010     }
6011 }
6012 
6013 static void
6014 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6015 {
6016     if (sc->ilt->lines != NULL) {
6017         free(sc->ilt->lines, M_BXE_ILT);
6018         sc->ilt->lines = NULL;
6019     }
6020 }
6021 
6022 static void
6023 bxe_free_mem(struct bxe_softc *sc)
6024 {
6025     int i;
6026 
6027     for (i = 0; i < L2_ILT_LINES(sc); i++) {
6028         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6029         sc->context[i].vcxt = NULL;
6030         sc->context[i].size = 0;
6031     }
6032 
6033     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6034 
6035     bxe_free_ilt_lines_mem(sc);
6036 
6037 }
6038 
6039 static int
6040 bxe_alloc_mem(struct bxe_softc *sc)
6041 {
6042 
6043     int context_size;
6044     int allocated;
6045     int i;
6046 
6047     /*
6048      * Allocate memory for CDU context:
6049      * This memory is allocated separately and not in the generic ILT
6050      * functions because CDU differs in few aspects:
6051      * 1. There can be multiple entities allocating memory for context -
6052      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6053      * its own ILT lines.
6054      * 2. Since CDU page-size is not a single 4KB page (which is the case
6055      * for the other ILT clients), to be efficient we want to support
6056      * allocation of sub-page-size in the last entry.
6057      * 3. Context pointers are used by the driver to pass to FW / update
6058      * the context (for the other ILT clients the pointers are used just to
6059      * free the memory during unload).
6060      */
6061     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6062     for (i = 0, allocated = 0; allocated < context_size; i++) {
6063         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6064                                   (context_size - allocated));
6065 
6066         if (bxe_dma_alloc(sc, sc->context[i].size,
6067                           &sc->context[i].vcxt_dma,
6068                           "cdu context") != 0) {
6069             bxe_free_mem(sc);
6070             return (-1);
6071         }
6072 
6073         sc->context[i].vcxt =
6074             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6075 
6076         allocated += sc->context[i].size;
6077     }
6078 
6079     bxe_alloc_ilt_lines_mem(sc);
6080 
6081     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6082           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6083     {
6084         for (i = 0; i < 4; i++) {
6085             BLOGD(sc, DBG_LOAD,
6086                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6087                   i,
6088                   sc->ilt->clients[i].page_size,
6089                   sc->ilt->clients[i].start,
6090                   sc->ilt->clients[i].end,
6091                   sc->ilt->clients[i].client_num,
6092                   sc->ilt->clients[i].flags);
6093         }
6094     }
6095     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6096         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6097         bxe_free_mem(sc);
6098         return (-1);
6099     }
6100 
6101     return (0);
6102 }
6103 
6104 static void
6105 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6106 {
6107     struct bxe_softc *sc;
6108     int i;
6109 
6110     sc = fp->sc;
6111 
6112     if (fp->rx_mbuf_tag == NULL) {
6113         return;
6114     }
6115 
6116     /* free all mbufs and unload all maps */
6117     for (i = 0; i < RX_BD_TOTAL; i++) {
6118         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6119             bus_dmamap_sync(fp->rx_mbuf_tag,
6120                             fp->rx_mbuf_chain[i].m_map,
6121                             BUS_DMASYNC_POSTREAD);
6122             bus_dmamap_unload(fp->rx_mbuf_tag,
6123                               fp->rx_mbuf_chain[i].m_map);
6124         }
6125 
6126         if (fp->rx_mbuf_chain[i].m != NULL) {
6127             m_freem(fp->rx_mbuf_chain[i].m);
6128             fp->rx_mbuf_chain[i].m = NULL;
6129             fp->eth_q_stats.mbuf_alloc_rx--;
6130         }
6131     }
6132 }
6133 
6134 static void
6135 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6136 {
6137     struct bxe_softc *sc;
6138     int i, max_agg_queues;
6139 
6140     sc = fp->sc;
6141 
6142     if (fp->rx_mbuf_tag == NULL) {
6143         return;
6144     }
6145 
6146     max_agg_queues = MAX_AGG_QS(sc);
6147 
6148     /* release all mbufs and unload all DMA maps in the TPA pool */
6149     for (i = 0; i < max_agg_queues; i++) {
6150         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6151             bus_dmamap_sync(fp->rx_mbuf_tag,
6152                             fp->rx_tpa_info[i].bd.m_map,
6153                             BUS_DMASYNC_POSTREAD);
6154             bus_dmamap_unload(fp->rx_mbuf_tag,
6155                               fp->rx_tpa_info[i].bd.m_map);
6156         }
6157 
6158         if (fp->rx_tpa_info[i].bd.m != NULL) {
6159             m_freem(fp->rx_tpa_info[i].bd.m);
6160             fp->rx_tpa_info[i].bd.m = NULL;
6161             fp->eth_q_stats.mbuf_alloc_tpa--;
6162         }
6163     }
6164 }
6165 
6166 static void
6167 bxe_free_sge_chain(struct bxe_fastpath *fp)
6168 {
6169     struct bxe_softc *sc;
6170     int i;
6171 
6172     sc = fp->sc;
6173 
6174     if (fp->rx_sge_mbuf_tag == NULL) {
6175         return;
6176     }
6177 
6178     /* rree all mbufs and unload all maps */
6179     for (i = 0; i < RX_SGE_TOTAL; i++) {
6180         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6181             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6182                             fp->rx_sge_mbuf_chain[i].m_map,
6183                             BUS_DMASYNC_POSTREAD);
6184             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6185                               fp->rx_sge_mbuf_chain[i].m_map);
6186         }
6187 
6188         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6189             m_freem(fp->rx_sge_mbuf_chain[i].m);
6190             fp->rx_sge_mbuf_chain[i].m = NULL;
6191             fp->eth_q_stats.mbuf_alloc_sge--;
6192         }
6193     }
6194 }
6195 
6196 static void
6197 bxe_free_fp_buffers(struct bxe_softc *sc)
6198 {
6199     struct bxe_fastpath *fp;
6200     int i;
6201 
6202     for (i = 0; i < sc->num_queues; i++) {
6203         fp = &sc->fp[i];
6204 
6205 #if __FreeBSD_version >= 901504
6206         if (fp->tx_br != NULL) {
6207             /* just in case bxe_mq_flush() wasn't called */
6208             if (mtx_initialized(&fp->tx_mtx)) {
6209                 struct mbuf *m;
6210 
6211                 BXE_FP_TX_LOCK(fp);
6212                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6213                     m_freem(m);
6214                 BXE_FP_TX_UNLOCK(fp);
6215             }
6216         }
6217 #endif
6218 
6219         /* free all RX buffers */
6220         bxe_free_rx_bd_chain(fp);
6221         bxe_free_tpa_pool(fp);
6222         bxe_free_sge_chain(fp);
6223 
6224         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6225             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6226                   fp->eth_q_stats.mbuf_alloc_rx);
6227         }
6228 
6229         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6230             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6231                   fp->eth_q_stats.mbuf_alloc_sge);
6232         }
6233 
6234         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6235             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6236                   fp->eth_q_stats.mbuf_alloc_tpa);
6237         }
6238 
6239         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6240             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6241                   fp->eth_q_stats.mbuf_alloc_tx);
6242         }
6243 
6244         /* XXX verify all mbufs were reclaimed */
6245     }
6246 }
6247 
6248 static int
6249 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6250                      uint16_t            prev_index,
6251                      uint16_t            index)
6252 {
6253     struct bxe_sw_rx_bd *rx_buf;
6254     struct eth_rx_bd *rx_bd;
6255     bus_dma_segment_t segs[1];
6256     bus_dmamap_t map;
6257     struct mbuf *m;
6258     int nsegs, rc;
6259 
6260     rc = 0;
6261 
6262     /* allocate the new RX BD mbuf */
6263     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6264     if (__predict_false(m == NULL)) {
6265         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6266         return (ENOBUFS);
6267     }
6268 
6269     fp->eth_q_stats.mbuf_alloc_rx++;
6270 
6271     /* initialize the mbuf buffer length */
6272     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6273 
6274     /* map the mbuf into non-paged pool */
6275     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6276                                  fp->rx_mbuf_spare_map,
6277                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6278     if (__predict_false(rc != 0)) {
6279         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6280         m_freem(m);
6281         fp->eth_q_stats.mbuf_alloc_rx--;
6282         return (rc);
6283     }
6284 
6285     /* all mbufs must map to a single segment */
6286     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6287 
6288     /* release any existing RX BD mbuf mappings */
6289 
6290     if (prev_index != index) {
6291         rx_buf = &fp->rx_mbuf_chain[prev_index];
6292 
6293         if (rx_buf->m_map != NULL) {
6294             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6295                             BUS_DMASYNC_POSTREAD);
6296             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6297         }
6298 
6299         /*
6300          * We only get here from bxe_rxeof() when the maximum number
6301          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6302          * holds the mbuf in the prev_index so it's OK to NULL it out
6303          * here without concern of a memory leak.
6304          */
6305         fp->rx_mbuf_chain[prev_index].m = NULL;
6306     }
6307 
6308     rx_buf = &fp->rx_mbuf_chain[index];
6309 
6310     if (rx_buf->m_map != NULL) {
6311         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6312                         BUS_DMASYNC_POSTREAD);
6313         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6314     }
6315 
6316     /* save the mbuf and mapping info for a future packet */
6317     map = (prev_index != index) ?
6318               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6319     rx_buf->m_map = fp->rx_mbuf_spare_map;
6320     fp->rx_mbuf_spare_map = map;
6321     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6322                     BUS_DMASYNC_PREREAD);
6323     rx_buf->m = m;
6324 
6325     rx_bd = &fp->rx_chain[index];
6326     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6327     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6328 
6329     return (rc);
6330 }
6331 
6332 static int
6333 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6334                       int                 queue)
6335 {
6336     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6337     bus_dma_segment_t segs[1];
6338     bus_dmamap_t map;
6339     struct mbuf *m;
6340     int nsegs;
6341     int rc = 0;
6342 
6343     /* allocate the new TPA mbuf */
6344     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6345     if (__predict_false(m == NULL)) {
6346         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6347         return (ENOBUFS);
6348     }
6349 
6350     fp->eth_q_stats.mbuf_alloc_tpa++;
6351 
6352     /* initialize the mbuf buffer length */
6353     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6354 
6355     /* map the mbuf into non-paged pool */
6356     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6357                                  fp->rx_tpa_info_mbuf_spare_map,
6358                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6359     if (__predict_false(rc != 0)) {
6360         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6361         m_free(m);
6362         fp->eth_q_stats.mbuf_alloc_tpa--;
6363         return (rc);
6364     }
6365 
6366     /* all mbufs must map to a single segment */
6367     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6368 
6369     /* release any existing TPA mbuf mapping */
6370     if (tpa_info->bd.m_map != NULL) {
6371         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6372                         BUS_DMASYNC_POSTREAD);
6373         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6374     }
6375 
6376     /* save the mbuf and mapping info for the TPA mbuf */
6377     map = tpa_info->bd.m_map;
6378     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6379     fp->rx_tpa_info_mbuf_spare_map = map;
6380     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6381                     BUS_DMASYNC_PREREAD);
6382     tpa_info->bd.m = m;
6383     tpa_info->seg = segs[0];
6384 
6385     return (rc);
6386 }
6387 
6388 /*
6389  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6390  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6391  * chain.
6392  */
6393 static int
6394 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6395                       uint16_t            index)
6396 {
6397     struct bxe_sw_rx_bd *sge_buf;
6398     struct eth_rx_sge *sge;
6399     bus_dma_segment_t segs[1];
6400     bus_dmamap_t map;
6401     struct mbuf *m;
6402     int nsegs;
6403     int rc = 0;
6404 
6405     /* allocate a new SGE mbuf */
6406     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6407     if (__predict_false(m == NULL)) {
6408         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6409         return (ENOMEM);
6410     }
6411 
6412     fp->eth_q_stats.mbuf_alloc_sge++;
6413 
6414     /* initialize the mbuf buffer length */
6415     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6416 
6417     /* map the SGE mbuf into non-paged pool */
6418     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6419                                  fp->rx_sge_mbuf_spare_map,
6420                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6421     if (__predict_false(rc != 0)) {
6422         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6423         m_freem(m);
6424         fp->eth_q_stats.mbuf_alloc_sge--;
6425         return (rc);
6426     }
6427 
6428     /* all mbufs must map to a single segment */
6429     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6430 
6431     sge_buf = &fp->rx_sge_mbuf_chain[index];
6432 
6433     /* release any existing SGE mbuf mapping */
6434     if (sge_buf->m_map != NULL) {
6435         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6436                         BUS_DMASYNC_POSTREAD);
6437         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6438     }
6439 
6440     /* save the mbuf and mapping info for a future packet */
6441     map = sge_buf->m_map;
6442     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6443     fp->rx_sge_mbuf_spare_map = map;
6444     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6445                     BUS_DMASYNC_PREREAD);
6446     sge_buf->m = m;
6447 
6448     sge = &fp->rx_sge_chain[index];
6449     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6450     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6451 
6452     return (rc);
6453 }
6454 
6455 static __noinline int
6456 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6457 {
6458     struct bxe_fastpath *fp;
6459     int i, j, rc = 0;
6460     int ring_prod, cqe_ring_prod;
6461     int max_agg_queues;
6462 
6463     for (i = 0; i < sc->num_queues; i++) {
6464         fp = &sc->fp[i];
6465 
6466         ring_prod = cqe_ring_prod = 0;
6467         fp->rx_bd_cons = 0;
6468         fp->rx_cq_cons = 0;
6469 
6470         /* allocate buffers for the RX BDs in RX BD chain */
6471         for (j = 0; j < sc->max_rx_bufs; j++) {
6472             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6473             if (rc != 0) {
6474                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6475                       i, rc);
6476                 goto bxe_alloc_fp_buffers_error;
6477             }
6478 
6479             ring_prod     = RX_BD_NEXT(ring_prod);
6480             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6481         }
6482 
6483         fp->rx_bd_prod = ring_prod;
6484         fp->rx_cq_prod = cqe_ring_prod;
6485         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6486 
6487         max_agg_queues = MAX_AGG_QS(sc);
6488 
6489         fp->tpa_enable = TRUE;
6490 
6491         /* fill the TPA pool */
6492         for (j = 0; j < max_agg_queues; j++) {
6493             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6494             if (rc != 0) {
6495                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6496                           i, j);
6497                 fp->tpa_enable = FALSE;
6498                 goto bxe_alloc_fp_buffers_error;
6499             }
6500 
6501             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6502         }
6503 
6504         if (fp->tpa_enable) {
6505             /* fill the RX SGE chain */
6506             ring_prod = 0;
6507             for (j = 0; j < RX_SGE_USABLE; j++) {
6508                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6509                 if (rc != 0) {
6510                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6511                               i, ring_prod);
6512                     fp->tpa_enable = FALSE;
6513                     ring_prod = 0;
6514                     goto bxe_alloc_fp_buffers_error;
6515                 }
6516 
6517                 ring_prod = RX_SGE_NEXT(ring_prod);
6518             }
6519 
6520             fp->rx_sge_prod = ring_prod;
6521         }
6522     }
6523 
6524     return (0);
6525 
6526 bxe_alloc_fp_buffers_error:
6527 
6528     /* unwind what was already allocated */
6529     bxe_free_rx_bd_chain(fp);
6530     bxe_free_tpa_pool(fp);
6531     bxe_free_sge_chain(fp);
6532 
6533     return (ENOBUFS);
6534 }
6535 
6536 static void
6537 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6538 {
6539     bxe_dma_free(sc, &sc->fw_stats_dma);
6540 
6541     sc->fw_stats_num = 0;
6542 
6543     sc->fw_stats_req_size = 0;
6544     sc->fw_stats_req = NULL;
6545     sc->fw_stats_req_mapping = 0;
6546 
6547     sc->fw_stats_data_size = 0;
6548     sc->fw_stats_data = NULL;
6549     sc->fw_stats_data_mapping = 0;
6550 }
6551 
6552 static int
6553 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6554 {
6555     uint8_t num_queue_stats;
6556     int num_groups;
6557 
6558     /* number of queues for statistics is number of eth queues */
6559     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6560 
6561     /*
6562      * Total number of FW statistics requests =
6563      *   1 for port stats + 1 for PF stats + num of queues
6564      */
6565     sc->fw_stats_num = (2 + num_queue_stats);
6566 
6567     /*
6568      * Request is built from stats_query_header and an array of
6569      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6570      * rules. The real number or requests is configured in the
6571      * stats_query_header.
6572      */
6573     num_groups =
6574         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6575          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6576 
6577     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6578           sc->fw_stats_num, num_groups);
6579 
6580     sc->fw_stats_req_size =
6581         (sizeof(struct stats_query_header) +
6582          (num_groups * sizeof(struct stats_query_cmd_group)));
6583 
6584     /*
6585      * Data for statistics requests + stats_counter.
6586      * stats_counter holds per-STORM counters that are incremented when
6587      * STORM has finished with the current request. Memory for FCoE
6588      * offloaded statistics are counted anyway, even if they will not be sent.
6589      * VF stats are not accounted for here as the data of VF stats is stored
6590      * in memory allocated by the VF, not here.
6591      */
6592     sc->fw_stats_data_size =
6593         (sizeof(struct stats_counter) +
6594          sizeof(struct per_port_stats) +
6595          sizeof(struct per_pf_stats) +
6596          /* sizeof(struct fcoe_statistics_params) + */
6597          (sizeof(struct per_queue_stats) * num_queue_stats));
6598 
6599     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6600                       &sc->fw_stats_dma, "fw stats") != 0) {
6601         bxe_free_fw_stats_mem(sc);
6602         return (-1);
6603     }
6604 
6605     /* set up the shortcuts */
6606 
6607     sc->fw_stats_req =
6608         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6609     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6610 
6611     sc->fw_stats_data =
6612         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6613                                      sc->fw_stats_req_size);
6614     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6615                                  sc->fw_stats_req_size);
6616 
6617     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6618           (uintmax_t)sc->fw_stats_req_mapping);
6619 
6620     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6621           (uintmax_t)sc->fw_stats_data_mapping);
6622 
6623     return (0);
6624 }
6625 
6626 /*
6627  * Bits map:
6628  * 0-7  - Engine0 load counter.
6629  * 8-15 - Engine1 load counter.
6630  * 16   - Engine0 RESET_IN_PROGRESS bit.
6631  * 17   - Engine1 RESET_IN_PROGRESS bit.
6632  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6633  *        function on the engine
6634  * 19   - Engine1 ONE_IS_LOADED.
6635  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6636  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6637  *        for just the one belonging to its engine).
6638  */
6639 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6640 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6641 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6642 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6643 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6644 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6645 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6646 #define BXE_GLOBAL_RESET_BIT      0x00040000
6647 
6648 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6649 static void
6650 bxe_set_reset_global(struct bxe_softc *sc)
6651 {
6652     uint32_t val;
6653     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6654     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6655     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6656     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6657 }
6658 
6659 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6660 static void
6661 bxe_clear_reset_global(struct bxe_softc *sc)
6662 {
6663     uint32_t val;
6664     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6665     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6666     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6667     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6668 }
6669 
6670 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6671 static uint8_t
6672 bxe_reset_is_global(struct bxe_softc *sc)
6673 {
6674     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6675     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6676     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6677 }
6678 
6679 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6680 static void
6681 bxe_set_reset_done(struct bxe_softc *sc)
6682 {
6683     uint32_t val;
6684     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6685                                  BXE_PATH0_RST_IN_PROG_BIT;
6686 
6687     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6688 
6689     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6690     /* Clear the bit */
6691     val &= ~bit;
6692     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6693 
6694     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6695 }
6696 
6697 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6698 static void
6699 bxe_set_reset_in_progress(struct bxe_softc *sc)
6700 {
6701     uint32_t val;
6702     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6703                                  BXE_PATH0_RST_IN_PROG_BIT;
6704 
6705     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6706 
6707     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6708     /* Set the bit */
6709     val |= bit;
6710     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6711 
6712     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6713 }
6714 
6715 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6716 static uint8_t
6717 bxe_reset_is_done(struct bxe_softc *sc,
6718                   int              engine)
6719 {
6720     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6721     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6722                             BXE_PATH0_RST_IN_PROG_BIT;
6723 
6724     /* return false if bit is set */
6725     return (val & bit) ? FALSE : TRUE;
6726 }
6727 
6728 /* get the load status for an engine, should be run under rtnl lock */
6729 static uint8_t
6730 bxe_get_load_status(struct bxe_softc *sc,
6731                     int              engine)
6732 {
6733     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6734                              BXE_PATH0_LOAD_CNT_MASK;
6735     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6736                               BXE_PATH0_LOAD_CNT_SHIFT;
6737     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6738 
6739     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6740 
6741     val = ((val & mask) >> shift);
6742 
6743     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6744 
6745     return (val != 0);
6746 }
6747 
6748 /* set pf load mark */
6749 /* XXX needs to be under rtnl lock */
6750 static void
6751 bxe_set_pf_load(struct bxe_softc *sc)
6752 {
6753     uint32_t val;
6754     uint32_t val1;
6755     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6756                                   BXE_PATH0_LOAD_CNT_MASK;
6757     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6758                                    BXE_PATH0_LOAD_CNT_SHIFT;
6759 
6760     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6761 
6762     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6763     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6764 
6765     /* get the current counter value */
6766     val1 = ((val & mask) >> shift);
6767 
6768     /* set bit of this PF */
6769     val1 |= (1 << SC_ABS_FUNC(sc));
6770 
6771     /* clear the old value */
6772     val &= ~mask;
6773 
6774     /* set the new one */
6775     val |= ((val1 << shift) & mask);
6776 
6777     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6778 
6779     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6780 }
6781 
6782 /* clear pf load mark */
6783 /* XXX needs to be under rtnl lock */
6784 static uint8_t
6785 bxe_clear_pf_load(struct bxe_softc *sc)
6786 {
6787     uint32_t val1, val;
6788     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6789                                   BXE_PATH0_LOAD_CNT_MASK;
6790     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6791                                    BXE_PATH0_LOAD_CNT_SHIFT;
6792 
6793     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6794     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6795     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6796 
6797     /* get the current counter value */
6798     val1 = (val & mask) >> shift;
6799 
6800     /* clear bit of that PF */
6801     val1 &= ~(1 << SC_ABS_FUNC(sc));
6802 
6803     /* clear the old value */
6804     val &= ~mask;
6805 
6806     /* set the new one */
6807     val |= ((val1 << shift) & mask);
6808 
6809     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6810     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6811     return (val1 != 0);
6812 }
6813 
6814 /* send load requrest to mcp and analyze response */
6815 static int
6816 bxe_nic_load_request(struct bxe_softc *sc,
6817                      uint32_t         *load_code)
6818 {
6819     /* init fw_seq */
6820     sc->fw_seq =
6821         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6822          DRV_MSG_SEQ_NUMBER_MASK);
6823 
6824     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6825 
6826     /* get the current FW pulse sequence */
6827     sc->fw_drv_pulse_wr_seq =
6828         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6829          DRV_PULSE_SEQ_MASK);
6830 
6831     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6832           sc->fw_drv_pulse_wr_seq);
6833 
6834     /* load request */
6835     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6836                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6837 
6838     /* if the MCP fails to respond we must abort */
6839     if (!(*load_code)) {
6840         BLOGE(sc, "MCP response failure!\n");
6841         return (-1);
6842     }
6843 
6844     /* if MCP refused then must abort */
6845     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6846         BLOGE(sc, "MCP refused load request\n");
6847         return (-1);
6848     }
6849 
6850     return (0);
6851 }
6852 
6853 /*
6854  * Check whether another PF has already loaded FW to chip. In virtualized
6855  * environments a pf from anoth VM may have already initialized the device
6856  * including loading FW.
6857  */
6858 static int
6859 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6860                          uint32_t         load_code)
6861 {
6862     uint32_t my_fw, loaded_fw;
6863 
6864     /* is another pf loaded on this engine? */
6865     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6866         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6867         /* build my FW version dword */
6868         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6869                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6870                  (BCM_5710_FW_REVISION_VERSION << 16) +
6871                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6872 
6873         /* read loaded FW from chip */
6874         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6875         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6876               loaded_fw, my_fw);
6877 
6878         /* abort nic load if version mismatch */
6879         if (my_fw != loaded_fw) {
6880             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6881                   loaded_fw, my_fw);
6882             return (-1);
6883         }
6884     }
6885 
6886     return (0);
6887 }
6888 
6889 /* mark PMF if applicable */
6890 static void
6891 bxe_nic_load_pmf(struct bxe_softc *sc,
6892                  uint32_t         load_code)
6893 {
6894     uint32_t ncsi_oem_data_addr;
6895 
6896     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6897         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6898         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6899         /*
6900          * Barrier here for ordering between the writing to sc->port.pmf here
6901          * and reading it from the periodic task.
6902          */
6903         sc->port.pmf = 1;
6904         mb();
6905     } else {
6906         sc->port.pmf = 0;
6907     }
6908 
6909     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6910 
6911     /* XXX needed? */
6912     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6913         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6914             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6915             if (ncsi_oem_data_addr) {
6916                 REG_WR(sc,
6917                        (ncsi_oem_data_addr +
6918                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6919                        0);
6920             }
6921         }
6922     }
6923 }
6924 
6925 static void
6926 bxe_read_mf_cfg(struct bxe_softc *sc)
6927 {
6928     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6929     int abs_func;
6930     int vn;
6931 
6932     if (BXE_NOMCP(sc)) {
6933         return; /* what should be the default bvalue in this case */
6934     }
6935 
6936     /*
6937      * The formula for computing the absolute function number is...
6938      * For 2 port configuration (4 functions per port):
6939      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6940      * For 4 port configuration (2 functions per port):
6941      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6942      */
6943     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6944         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6945         if (abs_func >= E1H_FUNC_MAX) {
6946             break;
6947         }
6948         sc->devinfo.mf_info.mf_config[vn] =
6949             MFCFG_RD(sc, func_mf_config[abs_func].config);
6950     }
6951 
6952     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6953         FUNC_MF_CFG_FUNC_DISABLED) {
6954         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6955         sc->flags |= BXE_MF_FUNC_DIS;
6956     } else {
6957         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6958         sc->flags &= ~BXE_MF_FUNC_DIS;
6959     }
6960 }
6961 
6962 /* acquire split MCP access lock register */
6963 static int bxe_acquire_alr(struct bxe_softc *sc)
6964 {
6965     uint32_t j, val;
6966 
6967     for (j = 0; j < 1000; j++) {
6968         val = (1UL << 31);
6969         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6970         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6971         if (val & (1L << 31))
6972             break;
6973 
6974         DELAY(5000);
6975     }
6976 
6977     if (!(val & (1L << 31))) {
6978         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6979         return (-1);
6980     }
6981 
6982     return (0);
6983 }
6984 
6985 /* release split MCP access lock register */
6986 static void bxe_release_alr(struct bxe_softc *sc)
6987 {
6988     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6989 }
6990 
6991 static void
6992 bxe_fan_failure(struct bxe_softc *sc)
6993 {
6994     int port = SC_PORT(sc);
6995     uint32_t ext_phy_config;
6996 
6997     /* mark the failure */
6998     ext_phy_config =
6999         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7000 
7001     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7002     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7003     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7004              ext_phy_config);
7005 
7006     /* log the failure */
7007     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7008               "the card to prevent permanent damage. "
7009               "Please contact OEM Support for assistance\n");
7010 
7011     /* XXX */
7012 #if 1
7013     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7014 #else
7015     /*
7016      * Schedule device reset (unload)
7017      * This is due to some boards consuming sufficient power when driver is
7018      * up to overheat if fan fails.
7019      */
7020     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7021     schedule_delayed_work(&sc->sp_rtnl_task, 0);
7022 #endif
7023 }
7024 
7025 /* this function is called upon a link interrupt */
7026 static void
7027 bxe_link_attn(struct bxe_softc *sc)
7028 {
7029     uint32_t pause_enabled = 0;
7030     struct host_port_stats *pstats;
7031     int cmng_fns;
7032     struct bxe_fastpath *fp;
7033     int i;
7034 
7035     /* Make sure that we are synced with the current statistics */
7036     bxe_stats_handle(sc, STATS_EVENT_STOP);
7037 	BLOGI(sc, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7038     elink_link_update(&sc->link_params, &sc->link_vars);
7039 
7040     if (sc->link_vars.link_up) {
7041 
7042         /* dropless flow control */
7043         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7044             pause_enabled = 0;
7045 
7046             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7047                 pause_enabled = 1;
7048             }
7049 
7050             REG_WR(sc,
7051                    (BAR_USTRORM_INTMEM +
7052                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7053                    pause_enabled);
7054         }
7055 
7056         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7057             pstats = BXE_SP(sc, port_stats);
7058             /* reset old mac stats */
7059             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7060         }
7061 
7062         if (sc->state == BXE_STATE_OPEN) {
7063             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7064         }
7065 
7066 	/* Restart tx when the link comes back. */
7067         FOR_EACH_ETH_QUEUE(sc, i) {
7068             fp = &sc->fp[i];
7069             taskqueue_enqueue(fp->tq, &fp->tx_task);
7070 	}
7071     }
7072 
7073     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7074         cmng_fns = bxe_get_cmng_fns_mode(sc);
7075 
7076         if (cmng_fns != CMNG_FNS_NONE) {
7077             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7078             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7079         } else {
7080             /* rate shaping and fairness are disabled */
7081             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7082         }
7083     }
7084 
7085     bxe_link_report_locked(sc);
7086 
7087     if (IS_MF(sc)) {
7088         ; // XXX bxe_link_sync_notify(sc);
7089     }
7090 }
7091 
7092 static void
7093 bxe_attn_int_asserted(struct bxe_softc *sc,
7094                       uint32_t         asserted)
7095 {
7096     int port = SC_PORT(sc);
7097     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7098                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7099     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7100                                         NIG_REG_MASK_INTERRUPT_PORT0;
7101     uint32_t aeu_mask;
7102     uint32_t nig_mask = 0;
7103     uint32_t reg_addr;
7104     uint32_t igu_acked;
7105     uint32_t cnt;
7106 
7107     if (sc->attn_state & asserted) {
7108         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7109     }
7110 
7111     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7112 
7113     aeu_mask = REG_RD(sc, aeu_addr);
7114 
7115     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7116           aeu_mask, asserted);
7117 
7118     aeu_mask &= ~(asserted & 0x3ff);
7119 
7120     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7121 
7122     REG_WR(sc, aeu_addr, aeu_mask);
7123 
7124     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7125 
7126     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7127     sc->attn_state |= asserted;
7128     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7129 
7130     if (asserted & ATTN_HARD_WIRED_MASK) {
7131         if (asserted & ATTN_NIG_FOR_FUNC) {
7132 
7133 	    bxe_acquire_phy_lock(sc);
7134             /* save nig interrupt mask */
7135             nig_mask = REG_RD(sc, nig_int_mask_addr);
7136 
7137             /* If nig_mask is not set, no need to call the update function */
7138             if (nig_mask) {
7139                 REG_WR(sc, nig_int_mask_addr, 0);
7140 
7141                 bxe_link_attn(sc);
7142             }
7143 
7144             /* handle unicore attn? */
7145         }
7146 
7147         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7148             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7149         }
7150 
7151         if (asserted & GPIO_2_FUNC) {
7152             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7153         }
7154 
7155         if (asserted & GPIO_3_FUNC) {
7156             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7157         }
7158 
7159         if (asserted & GPIO_4_FUNC) {
7160             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7161         }
7162 
7163         if (port == 0) {
7164             if (asserted & ATTN_GENERAL_ATTN_1) {
7165                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7166                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7167             }
7168             if (asserted & ATTN_GENERAL_ATTN_2) {
7169                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7170                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7171             }
7172             if (asserted & ATTN_GENERAL_ATTN_3) {
7173                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7174                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7175             }
7176         } else {
7177             if (asserted & ATTN_GENERAL_ATTN_4) {
7178                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7179                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7180             }
7181             if (asserted & ATTN_GENERAL_ATTN_5) {
7182                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7183                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7184             }
7185             if (asserted & ATTN_GENERAL_ATTN_6) {
7186                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7187                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7188             }
7189         }
7190     } /* hardwired */
7191 
7192     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7193         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7194     } else {
7195         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7196     }
7197 
7198     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7199           asserted,
7200           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7201     REG_WR(sc, reg_addr, asserted);
7202 
7203     /* now set back the mask */
7204     if (asserted & ATTN_NIG_FOR_FUNC) {
7205         /*
7206          * Verify that IGU ack through BAR was written before restoring
7207          * NIG mask. This loop should exit after 2-3 iterations max.
7208          */
7209         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7210             cnt = 0;
7211 
7212             do {
7213                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7214             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7215                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7216 
7217             if (!igu_acked) {
7218                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7219             }
7220 
7221             mb();
7222         }
7223 
7224         REG_WR(sc, nig_int_mask_addr, nig_mask);
7225 
7226 	bxe_release_phy_lock(sc);
7227     }
7228 }
7229 
7230 static void
7231 bxe_print_next_block(struct bxe_softc *sc,
7232                      int              idx,
7233                      const char       *blk)
7234 {
7235     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7236 }
7237 
7238 static int
7239 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7240                               uint32_t         sig,
7241                               int              par_num,
7242                               uint8_t          print)
7243 {
7244     uint32_t cur_bit = 0;
7245     int i = 0;
7246 
7247     for (i = 0; sig; i++) {
7248         cur_bit = ((uint32_t)0x1 << i);
7249         if (sig & cur_bit) {
7250             switch (cur_bit) {
7251             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7252                 if (print)
7253                     bxe_print_next_block(sc, par_num++, "BRB");
7254                 break;
7255             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7256                 if (print)
7257                     bxe_print_next_block(sc, par_num++, "PARSER");
7258                 break;
7259             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7260                 if (print)
7261                     bxe_print_next_block(sc, par_num++, "TSDM");
7262                 break;
7263             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7264                 if (print)
7265                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7266                 break;
7267             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7268                 if (print)
7269                     bxe_print_next_block(sc, par_num++, "TCM");
7270                 break;
7271             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7272                 if (print)
7273                     bxe_print_next_block(sc, par_num++, "TSEMI");
7274                 break;
7275             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7276                 if (print)
7277                     bxe_print_next_block(sc, par_num++, "XPB");
7278                 break;
7279             }
7280 
7281             /* Clear the bit */
7282             sig &= ~cur_bit;
7283         }
7284     }
7285 
7286     return (par_num);
7287 }
7288 
7289 static int
7290 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7291                               uint32_t         sig,
7292                               int              par_num,
7293                               uint8_t          *global,
7294                               uint8_t          print)
7295 {
7296     int i = 0;
7297     uint32_t cur_bit = 0;
7298     for (i = 0; sig; i++) {
7299         cur_bit = ((uint32_t)0x1 << i);
7300         if (sig & cur_bit) {
7301             switch (cur_bit) {
7302             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7303                 if (print)
7304                     bxe_print_next_block(sc, par_num++, "PBF");
7305                 break;
7306             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7307                 if (print)
7308                     bxe_print_next_block(sc, par_num++, "QM");
7309                 break;
7310             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7311                 if (print)
7312                     bxe_print_next_block(sc, par_num++, "TM");
7313                 break;
7314             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7315                 if (print)
7316                     bxe_print_next_block(sc, par_num++, "XSDM");
7317                 break;
7318             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7319                 if (print)
7320                     bxe_print_next_block(sc, par_num++, "XCM");
7321                 break;
7322             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7323                 if (print)
7324                     bxe_print_next_block(sc, par_num++, "XSEMI");
7325                 break;
7326             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7327                 if (print)
7328                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7329                 break;
7330             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7331                 if (print)
7332                     bxe_print_next_block(sc, par_num++, "NIG");
7333                 break;
7334             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7335                 if (print)
7336                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7337                 *global = TRUE;
7338                 break;
7339             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7340                 if (print)
7341                     bxe_print_next_block(sc, par_num++, "DEBUG");
7342                 break;
7343             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7344                 if (print)
7345                     bxe_print_next_block(sc, par_num++, "USDM");
7346                 break;
7347             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7348                 if (print)
7349                     bxe_print_next_block(sc, par_num++, "UCM");
7350                 break;
7351             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7352                 if (print)
7353                     bxe_print_next_block(sc, par_num++, "USEMI");
7354                 break;
7355             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7356                 if (print)
7357                     bxe_print_next_block(sc, par_num++, "UPB");
7358                 break;
7359             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7360                 if (print)
7361                     bxe_print_next_block(sc, par_num++, "CSDM");
7362                 break;
7363             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7364                 if (print)
7365                     bxe_print_next_block(sc, par_num++, "CCM");
7366                 break;
7367             }
7368 
7369             /* Clear the bit */
7370             sig &= ~cur_bit;
7371         }
7372     }
7373 
7374     return (par_num);
7375 }
7376 
7377 static int
7378 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7379                               uint32_t         sig,
7380                               int              par_num,
7381                               uint8_t          print)
7382 {
7383     uint32_t cur_bit = 0;
7384     int i = 0;
7385 
7386     for (i = 0; sig; i++) {
7387         cur_bit = ((uint32_t)0x1 << i);
7388         if (sig & cur_bit) {
7389             switch (cur_bit) {
7390             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7391                 if (print)
7392                     bxe_print_next_block(sc, par_num++, "CSEMI");
7393                 break;
7394             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7395                 if (print)
7396                     bxe_print_next_block(sc, par_num++, "PXP");
7397                 break;
7398             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7399                 if (print)
7400                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7401                 break;
7402             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7403                 if (print)
7404                     bxe_print_next_block(sc, par_num++, "CFC");
7405                 break;
7406             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7407                 if (print)
7408                     bxe_print_next_block(sc, par_num++, "CDU");
7409                 break;
7410             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7411                 if (print)
7412                     bxe_print_next_block(sc, par_num++, "DMAE");
7413                 break;
7414             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7415                 if (print)
7416                     bxe_print_next_block(sc, par_num++, "IGU");
7417                 break;
7418             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7419                 if (print)
7420                     bxe_print_next_block(sc, par_num++, "MISC");
7421                 break;
7422             }
7423 
7424             /* Clear the bit */
7425             sig &= ~cur_bit;
7426         }
7427     }
7428 
7429     return (par_num);
7430 }
7431 
7432 static int
7433 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7434                               uint32_t         sig,
7435                               int              par_num,
7436                               uint8_t          *global,
7437                               uint8_t          print)
7438 {
7439     uint32_t cur_bit = 0;
7440     int i = 0;
7441 
7442     for (i = 0; sig; i++) {
7443         cur_bit = ((uint32_t)0x1 << i);
7444         if (sig & cur_bit) {
7445             switch (cur_bit) {
7446             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7447                 if (print)
7448                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7449                 *global = TRUE;
7450                 break;
7451             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7452                 if (print)
7453                     bxe_print_next_block(sc, par_num++,
7454                               "MCP UMP RX");
7455                 *global = TRUE;
7456                 break;
7457             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7458                 if (print)
7459                     bxe_print_next_block(sc, par_num++,
7460                               "MCP UMP TX");
7461                 *global = TRUE;
7462                 break;
7463             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7464                 if (print)
7465                     bxe_print_next_block(sc, par_num++,
7466                               "MCP SCPAD");
7467                 *global = TRUE;
7468                 break;
7469             }
7470 
7471             /* Clear the bit */
7472             sig &= ~cur_bit;
7473         }
7474     }
7475 
7476     return (par_num);
7477 }
7478 
7479 static int
7480 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7481                               uint32_t         sig,
7482                               int              par_num,
7483                               uint8_t          print)
7484 {
7485     uint32_t cur_bit = 0;
7486     int i = 0;
7487 
7488     for (i = 0; sig; i++) {
7489         cur_bit = ((uint32_t)0x1 << i);
7490         if (sig & cur_bit) {
7491             switch (cur_bit) {
7492             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7493                 if (print)
7494                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7495                 break;
7496             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7497                 if (print)
7498                     bxe_print_next_block(sc, par_num++, "ATC");
7499                 break;
7500             }
7501 
7502             /* Clear the bit */
7503             sig &= ~cur_bit;
7504         }
7505     }
7506 
7507     return (par_num);
7508 }
7509 
7510 static uint8_t
7511 bxe_parity_attn(struct bxe_softc *sc,
7512                 uint8_t          *global,
7513                 uint8_t          print,
7514                 uint32_t         *sig)
7515 {
7516     int par_num = 0;
7517 
7518     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7519         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7520         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7521         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7522         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7523         BLOGE(sc, "Parity error: HW block parity attention:\n"
7524                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7525               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7526               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7527               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7528               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7529               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7530 
7531         if (print)
7532             BLOGI(sc, "Parity errors detected in blocks: ");
7533 
7534         par_num =
7535             bxe_check_blocks_with_parity0(sc, sig[0] &
7536                                           HW_PRTY_ASSERT_SET_0,
7537                                           par_num, print);
7538         par_num =
7539             bxe_check_blocks_with_parity1(sc, sig[1] &
7540                                           HW_PRTY_ASSERT_SET_1,
7541                                           par_num, global, print);
7542         par_num =
7543             bxe_check_blocks_with_parity2(sc, sig[2] &
7544                                           HW_PRTY_ASSERT_SET_2,
7545                                           par_num, print);
7546         par_num =
7547             bxe_check_blocks_with_parity3(sc, sig[3] &
7548                                           HW_PRTY_ASSERT_SET_3,
7549                                           par_num, global, print);
7550         par_num =
7551             bxe_check_blocks_with_parity4(sc, sig[4] &
7552                                           HW_PRTY_ASSERT_SET_4,
7553                                           par_num, print);
7554 
7555         if (print)
7556             BLOGI(sc, "\n");
7557 
7558         return (TRUE);
7559     }
7560 
7561     return (FALSE);
7562 }
7563 
7564 static uint8_t
7565 bxe_chk_parity_attn(struct bxe_softc *sc,
7566                     uint8_t          *global,
7567                     uint8_t          print)
7568 {
7569     struct attn_route attn = { {0} };
7570     int port = SC_PORT(sc);
7571 
7572     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7573     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7574     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7575     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7576 
7577     /*
7578      * Since MCP attentions can't be disabled inside the block, we need to
7579      * read AEU registers to see whether they're currently disabled
7580      */
7581     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7582                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7583                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7584                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7585 
7586 
7587     if (!CHIP_IS_E1x(sc))
7588         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7589 
7590     return (bxe_parity_attn(sc, global, print, attn.sig));
7591 }
7592 
7593 static void
7594 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7595                          uint32_t         attn)
7596 {
7597     uint32_t val;
7598 
7599     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7600         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7601         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7602         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7603             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7604         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7605             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7606         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7607             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7608         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7609             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7610         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7611             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7612         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7613             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7614         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7615             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7616         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7617             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7618         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7619             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7620     }
7621 
7622     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7623         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7624         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7625         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7626             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7627         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7628             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7629         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7630             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7631         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7632             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7633         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7634             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7635         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7636             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7637     }
7638 
7639     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7640                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7641         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7642               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7643                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7644     }
7645 }
7646 
7647 static void
7648 bxe_e1h_disable(struct bxe_softc *sc)
7649 {
7650     int port = SC_PORT(sc);
7651 
7652     bxe_tx_disable(sc);
7653 
7654     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7655 }
7656 
7657 static void
7658 bxe_e1h_enable(struct bxe_softc *sc)
7659 {
7660     int port = SC_PORT(sc);
7661 
7662     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7663 
7664     // XXX bxe_tx_enable(sc);
7665 }
7666 
7667 /*
7668  * called due to MCP event (on pmf):
7669  *   reread new bandwidth configuration
7670  *   configure FW
7671  *   notify others function about the change
7672  */
7673 static void
7674 bxe_config_mf_bw(struct bxe_softc *sc)
7675 {
7676     if (sc->link_vars.link_up) {
7677         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7678         // XXX bxe_link_sync_notify(sc);
7679     }
7680 
7681     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7682 }
7683 
7684 static void
7685 bxe_set_mf_bw(struct bxe_softc *sc)
7686 {
7687     bxe_config_mf_bw(sc);
7688     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7689 }
7690 
7691 static void
7692 bxe_handle_eee_event(struct bxe_softc *sc)
7693 {
7694     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7695     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7696 }
7697 
7698 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7699 
7700 static void
7701 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7702 {
7703     struct eth_stats_info *ether_stat =
7704         &sc->sp->drv_info_to_mcp.ether_stat;
7705 
7706     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7707             ETH_STAT_INFO_VERSION_LEN);
7708 
7709     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7710     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7711                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7712                                           ether_stat->mac_local + MAC_PAD,
7713                                           MAC_PAD, ETH_ALEN);
7714 
7715     ether_stat->mtu_size = sc->mtu;
7716 
7717     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7718     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7719         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7720     }
7721 
7722     // XXX ether_stat->feature_flags |= ???;
7723 
7724     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7725 
7726     ether_stat->txq_size = sc->tx_ring_size;
7727     ether_stat->rxq_size = sc->rx_ring_size;
7728 }
7729 
7730 static void
7731 bxe_handle_drv_info_req(struct bxe_softc *sc)
7732 {
7733     enum drv_info_opcode op_code;
7734     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7735 
7736     /* if drv_info version supported by MFW doesn't match - send NACK */
7737     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7738         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7739         return;
7740     }
7741 
7742     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7743                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7744 
7745     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7746 
7747     switch (op_code) {
7748     case ETH_STATS_OPCODE:
7749         bxe_drv_info_ether_stat(sc);
7750         break;
7751     case FCOE_STATS_OPCODE:
7752     case ISCSI_STATS_OPCODE:
7753     default:
7754         /* if op code isn't supported - send NACK */
7755         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7756         return;
7757     }
7758 
7759     /*
7760      * If we got drv_info attn from MFW then these fields are defined in
7761      * shmem2 for sure
7762      */
7763     SHMEM2_WR(sc, drv_info_host_addr_lo,
7764               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7765     SHMEM2_WR(sc, drv_info_host_addr_hi,
7766               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7767 
7768     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7769 }
7770 
7771 static void
7772 bxe_dcc_event(struct bxe_softc *sc,
7773               uint32_t         dcc_event)
7774 {
7775     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7776 
7777     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7778         /*
7779          * This is the only place besides the function initialization
7780          * where the sc->flags can change so it is done without any
7781          * locks
7782          */
7783         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7784             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7785             sc->flags |= BXE_MF_FUNC_DIS;
7786             bxe_e1h_disable(sc);
7787         } else {
7788             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7789             sc->flags &= ~BXE_MF_FUNC_DIS;
7790             bxe_e1h_enable(sc);
7791         }
7792         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7793     }
7794 
7795     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7796         bxe_config_mf_bw(sc);
7797         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7798     }
7799 
7800     /* Report results to MCP */
7801     if (dcc_event)
7802         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7803     else
7804         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7805 }
7806 
7807 static void
7808 bxe_pmf_update(struct bxe_softc *sc)
7809 {
7810     int port = SC_PORT(sc);
7811     uint32_t val;
7812 
7813     sc->port.pmf = 1;
7814     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7815 
7816     /*
7817      * We need the mb() to ensure the ordering between the writing to
7818      * sc->port.pmf here and reading it from the bxe_periodic_task().
7819      */
7820     mb();
7821 
7822     /* queue a periodic task */
7823     // XXX schedule task...
7824 
7825     // XXX bxe_dcbx_pmf_update(sc);
7826 
7827     /* enable nig attention */
7828     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7829     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7830         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7831         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7832     } else if (!CHIP_IS_E1x(sc)) {
7833         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7834         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7835     }
7836 
7837     bxe_stats_handle(sc, STATS_EVENT_PMF);
7838 }
7839 
7840 static int
7841 bxe_mc_assert(struct bxe_softc *sc)
7842 {
7843     char last_idx;
7844     int i, rc = 0;
7845     uint32_t row0, row1, row2, row3;
7846 
7847     /* XSTORM */
7848     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7849     if (last_idx)
7850         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7851 
7852     /* print the asserts */
7853     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7854 
7855         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7856         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7857         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7858         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7859 
7860         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7861             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7862                   i, row3, row2, row1, row0);
7863             rc++;
7864         } else {
7865             break;
7866         }
7867     }
7868 
7869     /* TSTORM */
7870     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7871     if (last_idx) {
7872         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7873     }
7874 
7875     /* print the asserts */
7876     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7877 
7878         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7879         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7880         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7881         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7882 
7883         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7884             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7885                   i, row3, row2, row1, row0);
7886             rc++;
7887         } else {
7888             break;
7889         }
7890     }
7891 
7892     /* CSTORM */
7893     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7894     if (last_idx) {
7895         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7896     }
7897 
7898     /* print the asserts */
7899     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7900 
7901         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7902         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7903         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7904         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7905 
7906         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7907             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7908                   i, row3, row2, row1, row0);
7909             rc++;
7910         } else {
7911             break;
7912         }
7913     }
7914 
7915     /* USTORM */
7916     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7917     if (last_idx) {
7918         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7919     }
7920 
7921     /* print the asserts */
7922     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7923 
7924         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7925         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7926         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7927         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7928 
7929         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7930             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7931                   i, row3, row2, row1, row0);
7932             rc++;
7933         } else {
7934             break;
7935         }
7936     }
7937 
7938     return (rc);
7939 }
7940 
7941 static void
7942 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7943                          uint32_t         attn)
7944 {
7945     int func = SC_FUNC(sc);
7946     uint32_t val;
7947 
7948     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7949 
7950         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7951 
7952             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7953             bxe_read_mf_cfg(sc);
7954             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7955                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7956             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7957 
7958             if (val & DRV_STATUS_DCC_EVENT_MASK)
7959                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7960 
7961             if (val & DRV_STATUS_SET_MF_BW)
7962                 bxe_set_mf_bw(sc);
7963 
7964             if (val & DRV_STATUS_DRV_INFO_REQ)
7965                 bxe_handle_drv_info_req(sc);
7966 
7967             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7968                 bxe_pmf_update(sc);
7969 
7970             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7971                 bxe_handle_eee_event(sc);
7972 
7973             if (sc->link_vars.periodic_flags &
7974                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7975                 /* sync with link */
7976 		bxe_acquire_phy_lock(sc);
7977                 sc->link_vars.periodic_flags &=
7978                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7979 		bxe_release_phy_lock(sc);
7980                 if (IS_MF(sc))
7981                     ; // XXX bxe_link_sync_notify(sc);
7982                 bxe_link_report(sc);
7983             }
7984 
7985             /*
7986              * Always call it here: bxe_link_report() will
7987              * prevent the link indication duplication.
7988              */
7989             bxe_link_status_update(sc);
7990 
7991         } else if (attn & BXE_MC_ASSERT_BITS) {
7992 
7993             BLOGE(sc, "MC assert!\n");
7994             bxe_mc_assert(sc);
7995             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7996             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7997             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7998             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7999             bxe_panic(sc, ("MC assert!\n"));
8000 
8001         } else if (attn & BXE_MCP_ASSERT) {
8002 
8003             BLOGE(sc, "MCP assert!\n");
8004             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8005             // XXX bxe_fw_dump(sc);
8006 
8007         } else {
8008             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8009         }
8010     }
8011 
8012     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8013         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8014         if (attn & BXE_GRC_TIMEOUT) {
8015             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8016             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8017         }
8018         if (attn & BXE_GRC_RSV) {
8019             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8020             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8021         }
8022         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8023     }
8024 }
8025 
8026 static void
8027 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8028                          uint32_t         attn)
8029 {
8030     int port = SC_PORT(sc);
8031     int reg_offset;
8032     uint32_t val0, mask0, val1, mask1;
8033     uint32_t val;
8034 
8035     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8036         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8037         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8038         /* CFC error attention */
8039         if (val & 0x2) {
8040             BLOGE(sc, "FATAL error from CFC\n");
8041         }
8042     }
8043 
8044     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8045         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8046         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8047         /* RQ_USDMDP_FIFO_OVERFLOW */
8048         if (val & 0x18000) {
8049             BLOGE(sc, "FATAL error from PXP\n");
8050         }
8051 
8052         if (!CHIP_IS_E1x(sc)) {
8053             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8054             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8055         }
8056     }
8057 
8058 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8059 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8060 
8061     if (attn & AEU_PXP2_HW_INT_BIT) {
8062         /*  CQ47854 workaround do not panic on
8063          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8064          */
8065         if (!CHIP_IS_E1x(sc)) {
8066             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8067             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8068             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8069             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8070             /*
8071              * If the only PXP2_EOP_ERROR_BIT is set in
8072              * STS0 and STS1 - clear it
8073              *
8074              * probably we lose additional attentions between
8075              * STS0 and STS_CLR0, in this case user will not
8076              * be notified about them
8077              */
8078             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8079                 !(val1 & mask1))
8080                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8081 
8082             /* print the register, since no one can restore it */
8083             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8084 
8085             /*
8086              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8087              * then notify
8088              */
8089             if (val0 & PXP2_EOP_ERROR_BIT) {
8090                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8091 
8092                 /*
8093                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8094                  * set then clear attention from PXP2 block without panic
8095                  */
8096                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8097                     ((val1 & mask1) == 0))
8098                     attn &= ~AEU_PXP2_HW_INT_BIT;
8099             }
8100         }
8101     }
8102 
8103     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8104         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8105                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8106 
8107         val = REG_RD(sc, reg_offset);
8108         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8109         REG_WR(sc, reg_offset, val);
8110 
8111         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8112               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8113         bxe_panic(sc, ("HW block attention set2\n"));
8114     }
8115 }
8116 
8117 static void
8118 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8119                          uint32_t         attn)
8120 {
8121     int port = SC_PORT(sc);
8122     int reg_offset;
8123     uint32_t val;
8124 
8125     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8126         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8127         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8128         /* DORQ discard attention */
8129         if (val & 0x2) {
8130             BLOGE(sc, "FATAL error from DORQ\n");
8131         }
8132     }
8133 
8134     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8135         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8136                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8137 
8138         val = REG_RD(sc, reg_offset);
8139         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8140         REG_WR(sc, reg_offset, val);
8141 
8142         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8143               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8144         bxe_panic(sc, ("HW block attention set1\n"));
8145     }
8146 }
8147 
8148 static void
8149 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8150                          uint32_t         attn)
8151 {
8152     int port = SC_PORT(sc);
8153     int reg_offset;
8154     uint32_t val;
8155 
8156     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8157                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8158 
8159     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8160         val = REG_RD(sc, reg_offset);
8161         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8162         REG_WR(sc, reg_offset, val);
8163 
8164         BLOGW(sc, "SPIO5 hw attention\n");
8165 
8166         /* Fan failure attention */
8167         elink_hw_reset_phy(&sc->link_params);
8168         bxe_fan_failure(sc);
8169     }
8170 
8171     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8172 	bxe_acquire_phy_lock(sc);
8173         elink_handle_module_detect_int(&sc->link_params);
8174 	bxe_release_phy_lock(sc);
8175     }
8176 
8177     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8178         val = REG_RD(sc, reg_offset);
8179         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8180         REG_WR(sc, reg_offset, val);
8181 
8182         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8183                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8184     }
8185 }
8186 
8187 static void
8188 bxe_attn_int_deasserted(struct bxe_softc *sc,
8189                         uint32_t         deasserted)
8190 {
8191     struct attn_route attn;
8192     struct attn_route *group_mask;
8193     int port = SC_PORT(sc);
8194     int index;
8195     uint32_t reg_addr;
8196     uint32_t val;
8197     uint32_t aeu_mask;
8198     uint8_t global = FALSE;
8199 
8200     /*
8201      * Need to take HW lock because MCP or other port might also
8202      * try to handle this event.
8203      */
8204     bxe_acquire_alr(sc);
8205 
8206     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8207         /* XXX
8208          * In case of parity errors don't handle attentions so that
8209          * other function would "see" parity errors.
8210          */
8211         sc->recovery_state = BXE_RECOVERY_INIT;
8212         // XXX schedule a recovery task...
8213         /* disable HW interrupts */
8214         bxe_int_disable(sc);
8215         bxe_release_alr(sc);
8216         return;
8217     }
8218 
8219     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8220     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8221     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8222     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8223     if (!CHIP_IS_E1x(sc)) {
8224         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8225     } else {
8226         attn.sig[4] = 0;
8227     }
8228 
8229     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8230           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8231 
8232     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8233         if (deasserted & (1 << index)) {
8234             group_mask = &sc->attn_group[index];
8235 
8236             BLOGD(sc, DBG_INTR,
8237                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8238                   group_mask->sig[0], group_mask->sig[1],
8239                   group_mask->sig[2], group_mask->sig[3],
8240                   group_mask->sig[4]);
8241 
8242             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8243             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8244             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8245             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8246             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8247         }
8248     }
8249 
8250     bxe_release_alr(sc);
8251 
8252     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8253         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8254                     COMMAND_REG_ATTN_BITS_CLR);
8255     } else {
8256         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8257     }
8258 
8259     val = ~deasserted;
8260     BLOGD(sc, DBG_INTR,
8261           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8262           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8263     REG_WR(sc, reg_addr, val);
8264 
8265     if (~sc->attn_state & deasserted) {
8266         BLOGE(sc, "IGU error\n");
8267     }
8268 
8269     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8270                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8271 
8272     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8273 
8274     aeu_mask = REG_RD(sc, reg_addr);
8275 
8276     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8277           aeu_mask, deasserted);
8278     aeu_mask |= (deasserted & 0x3ff);
8279     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8280 
8281     REG_WR(sc, reg_addr, aeu_mask);
8282     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8283 
8284     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8285     sc->attn_state &= ~deasserted;
8286     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8287 }
8288 
8289 static void
8290 bxe_attn_int(struct bxe_softc *sc)
8291 {
8292     /* read local copy of bits */
8293     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8294     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8295     uint32_t attn_state = sc->attn_state;
8296 
8297     /* look for changed bits */
8298     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8299     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8300 
8301     BLOGD(sc, DBG_INTR,
8302           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8303           attn_bits, attn_ack, asserted, deasserted);
8304 
8305     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8306         BLOGE(sc, "BAD attention state\n");
8307     }
8308 
8309     /* handle bits that were raised */
8310     if (asserted) {
8311         bxe_attn_int_asserted(sc, asserted);
8312     }
8313 
8314     if (deasserted) {
8315         bxe_attn_int_deasserted(sc, deasserted);
8316     }
8317 }
8318 
8319 static uint16_t
8320 bxe_update_dsb_idx(struct bxe_softc *sc)
8321 {
8322     struct host_sp_status_block *def_sb = sc->def_sb;
8323     uint16_t rc = 0;
8324 
8325     mb(); /* status block is written to by the chip */
8326 
8327     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8328         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8329         rc |= BXE_DEF_SB_ATT_IDX;
8330     }
8331 
8332     if (sc->def_idx != def_sb->sp_sb.running_index) {
8333         sc->def_idx = def_sb->sp_sb.running_index;
8334         rc |= BXE_DEF_SB_IDX;
8335     }
8336 
8337     mb();
8338 
8339     return (rc);
8340 }
8341 
8342 static inline struct ecore_queue_sp_obj *
8343 bxe_cid_to_q_obj(struct bxe_softc *sc,
8344                  uint32_t         cid)
8345 {
8346     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8347     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8348 }
8349 
8350 static void
8351 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8352 {
8353     struct ecore_mcast_ramrod_params rparam;
8354     int rc;
8355 
8356     memset(&rparam, 0, sizeof(rparam));
8357 
8358     rparam.mcast_obj = &sc->mcast_obj;
8359 
8360     BXE_MCAST_LOCK(sc);
8361 
8362     /* clear pending state for the last command */
8363     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8364 
8365     /* if there are pending mcast commands - send them */
8366     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8367         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8368         if (rc < 0) {
8369             BLOGD(sc, DBG_SP,
8370                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8371         }
8372     }
8373 
8374     BXE_MCAST_UNLOCK(sc);
8375 }
8376 
8377 static void
8378 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8379                               union event_ring_elem *elem)
8380 {
8381     unsigned long ramrod_flags = 0;
8382     int rc = 0;
8383     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8384     struct ecore_vlan_mac_obj *vlan_mac_obj;
8385 
8386     /* always push next commands out, don't wait here */
8387     bit_set(&ramrod_flags, RAMROD_CONT);
8388 
8389     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8390     case ECORE_FILTER_MAC_PENDING:
8391         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8392         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8393         break;
8394 
8395     case ECORE_FILTER_MCAST_PENDING:
8396         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8397         /*
8398          * This is only relevant for 57710 where multicast MACs are
8399          * configured as unicast MACs using the same ramrod.
8400          */
8401         bxe_handle_mcast_eqe(sc);
8402         return;
8403 
8404     default:
8405         BLOGE(sc, "Unsupported classification command: %d\n",
8406               elem->message.data.eth_event.echo);
8407         return;
8408     }
8409 
8410     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8411 
8412     if (rc < 0) {
8413         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8414     } else if (rc > 0) {
8415         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8416     }
8417 }
8418 
8419 static void
8420 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8421                        union event_ring_elem *elem)
8422 {
8423     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8424 
8425     /* send rx_mode command again if was requested */
8426     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8427                                &sc->sp_state)) {
8428         bxe_set_storm_rx_mode(sc);
8429     }
8430 }
8431 
8432 static void
8433 bxe_update_eq_prod(struct bxe_softc *sc,
8434                    uint16_t         prod)
8435 {
8436     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8437     wmb(); /* keep prod updates ordered */
8438 }
8439 
8440 static void
8441 bxe_eq_int(struct bxe_softc *sc)
8442 {
8443     uint16_t hw_cons, sw_cons, sw_prod;
8444     union event_ring_elem *elem;
8445     uint8_t echo;
8446     uint32_t cid;
8447     uint8_t opcode;
8448     int spqe_cnt = 0;
8449     struct ecore_queue_sp_obj *q_obj;
8450     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8451     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8452 
8453     hw_cons = le16toh(*sc->eq_cons_sb);
8454 
8455     /*
8456      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8457      * when we get to the next-page we need to adjust so the loop
8458      * condition below will be met. The next element is the size of a
8459      * regular element and hence incrementing by 1
8460      */
8461     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8462         hw_cons++;
8463     }
8464 
8465     /*
8466      * This function may never run in parallel with itself for a
8467      * specific sc and no need for a read memory barrier here.
8468      */
8469     sw_cons = sc->eq_cons;
8470     sw_prod = sc->eq_prod;
8471 
8472     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8473           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8474 
8475     for (;
8476          sw_cons != hw_cons;
8477          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8478 
8479         elem = &sc->eq[EQ_DESC(sw_cons)];
8480 
8481         /* elem CID originates from FW, actually LE */
8482         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8483         opcode = elem->message.opcode;
8484 
8485         /* handle eq element */
8486         switch (opcode) {
8487 
8488         case EVENT_RING_OPCODE_STAT_QUERY:
8489             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8490                   sc->stats_comp++);
8491             /* nothing to do with stats comp */
8492             goto next_spqe;
8493 
8494         case EVENT_RING_OPCODE_CFC_DEL:
8495             /* handle according to cid range */
8496             /* we may want to verify here that the sc state is HALTING */
8497             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8498             q_obj = bxe_cid_to_q_obj(sc, cid);
8499             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8500                 break;
8501             }
8502             goto next_spqe;
8503 
8504         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8505             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8506             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8507                 break;
8508             }
8509             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8510             goto next_spqe;
8511 
8512         case EVENT_RING_OPCODE_START_TRAFFIC:
8513             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8514             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8515                 break;
8516             }
8517             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8518             goto next_spqe;
8519 
8520         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8521             echo = elem->message.data.function_update_event.echo;
8522             if (echo == SWITCH_UPDATE) {
8523                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8524                 if (f_obj->complete_cmd(sc, f_obj,
8525                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8526                     break;
8527                 }
8528             }
8529             else {
8530                 BLOGD(sc, DBG_SP,
8531                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8532             }
8533             goto next_spqe;
8534 
8535         case EVENT_RING_OPCODE_FORWARD_SETUP:
8536             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8537             if (q_obj->complete_cmd(sc, q_obj,
8538                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8539                 break;
8540             }
8541             goto next_spqe;
8542 
8543         case EVENT_RING_OPCODE_FUNCTION_START:
8544             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8545             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8546                 break;
8547             }
8548             goto next_spqe;
8549 
8550         case EVENT_RING_OPCODE_FUNCTION_STOP:
8551             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8552             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8553                 break;
8554             }
8555             goto next_spqe;
8556         }
8557 
8558         switch (opcode | sc->state) {
8559         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8560         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8561             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8562             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8563             rss_raw->clear_pending(rss_raw);
8564             break;
8565 
8566         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8567         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8568         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8569         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8570         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8571         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8572             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8573             bxe_handle_classification_eqe(sc, elem);
8574             break;
8575 
8576         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8577         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8578         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8579             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8580             bxe_handle_mcast_eqe(sc);
8581             break;
8582 
8583         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8584         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8585         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8586             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8587             bxe_handle_rx_mode_eqe(sc, elem);
8588             break;
8589 
8590         default:
8591             /* unknown event log error and continue */
8592             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8593                   elem->message.opcode, sc->state);
8594         }
8595 
8596 next_spqe:
8597         spqe_cnt++;
8598     } /* for */
8599 
8600     mb();
8601     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8602 
8603     sc->eq_cons = sw_cons;
8604     sc->eq_prod = sw_prod;
8605 
8606     /* make sure that above mem writes were issued towards the memory */
8607     wmb();
8608 
8609     /* update producer */
8610     bxe_update_eq_prod(sc, sc->eq_prod);
8611 }
8612 
8613 static void
8614 bxe_handle_sp_tq(void *context,
8615                  int  pending)
8616 {
8617     struct bxe_softc *sc = (struct bxe_softc *)context;
8618     uint16_t status;
8619 
8620     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8621 
8622     /* what work needs to be performed? */
8623     status = bxe_update_dsb_idx(sc);
8624 
8625     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8626 
8627     /* HW attentions */
8628     if (status & BXE_DEF_SB_ATT_IDX) {
8629         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8630         bxe_attn_int(sc);
8631         status &= ~BXE_DEF_SB_ATT_IDX;
8632     }
8633 
8634     /* SP events: STAT_QUERY and others */
8635     if (status & BXE_DEF_SB_IDX) {
8636         /* handle EQ completions */
8637         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8638         bxe_eq_int(sc);
8639         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8640                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8641         status &= ~BXE_DEF_SB_IDX;
8642     }
8643 
8644     /* if status is non zero then something went wrong */
8645     if (__predict_false(status)) {
8646         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8647     }
8648 
8649     /* ack status block only if something was actually handled */
8650     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8651                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8652 
8653     /*
8654      * Must be called after the EQ processing (since eq leads to sriov
8655      * ramrod completion flows).
8656      * This flow may have been scheduled by the arrival of a ramrod
8657      * completion, or by the sriov code rescheduling itself.
8658      */
8659     // XXX bxe_iov_sp_task(sc);
8660 
8661 }
8662 
8663 static void
8664 bxe_handle_fp_tq(void *context,
8665                  int  pending)
8666 {
8667     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8668     struct bxe_softc *sc = fp->sc;
8669     uint8_t more_tx = FALSE;
8670     uint8_t more_rx = FALSE;
8671 
8672     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8673 
8674     /* XXX
8675      * IFF_DRV_RUNNING state can't be checked here since we process
8676      * slowpath events on a client queue during setup. Instead
8677      * we need to add a "process/continue" flag here that the driver
8678      * can use to tell the task here not to do anything.
8679      */
8680 #if 0
8681     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8682         return;
8683     }
8684 #endif
8685 
8686     /* update the fastpath index */
8687     bxe_update_fp_sb_idx(fp);
8688 
8689     /* XXX add loop here if ever support multiple tx CoS */
8690     /* fp->txdata[cos] */
8691     if (bxe_has_tx_work(fp)) {
8692         BXE_FP_TX_LOCK(fp);
8693         more_tx = bxe_txeof(sc, fp);
8694         BXE_FP_TX_UNLOCK(fp);
8695     }
8696 
8697     if (bxe_has_rx_work(fp)) {
8698         more_rx = bxe_rxeof(sc, fp);
8699     }
8700 
8701     if (more_rx /*|| more_tx*/) {
8702         /* still more work to do */
8703         taskqueue_enqueue(fp->tq, &fp->tq_task);
8704         return;
8705     }
8706 
8707     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8708                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8709 }
8710 
8711 static void
8712 bxe_task_fp(struct bxe_fastpath *fp)
8713 {
8714     struct bxe_softc *sc = fp->sc;
8715     uint8_t more_tx = FALSE;
8716     uint8_t more_rx = FALSE;
8717 
8718     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8719 
8720     /* update the fastpath index */
8721     bxe_update_fp_sb_idx(fp);
8722 
8723     /* XXX add loop here if ever support multiple tx CoS */
8724     /* fp->txdata[cos] */
8725     if (bxe_has_tx_work(fp)) {
8726         BXE_FP_TX_LOCK(fp);
8727         more_tx = bxe_txeof(sc, fp);
8728         BXE_FP_TX_UNLOCK(fp);
8729     }
8730 
8731     if (bxe_has_rx_work(fp)) {
8732         more_rx = bxe_rxeof(sc, fp);
8733     }
8734 
8735     if (more_rx /*|| more_tx*/) {
8736         /* still more work to do, bail out if this ISR and process later */
8737         taskqueue_enqueue(fp->tq, &fp->tq_task);
8738         return;
8739     }
8740 
8741     /*
8742      * Here we write the fastpath index taken before doing any tx or rx work.
8743      * It is very well possible other hw events occurred up to this point and
8744      * they were actually processed accordingly above. Since we're going to
8745      * write an older fastpath index, an interrupt is coming which we might
8746      * not do any work in.
8747      */
8748     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8749                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8750 }
8751 
8752 /*
8753  * Legacy interrupt entry point.
8754  *
8755  * Verifies that the controller generated the interrupt and
8756  * then calls a separate routine to handle the various
8757  * interrupt causes: link, RX, and TX.
8758  */
8759 static void
8760 bxe_intr_legacy(void *xsc)
8761 {
8762     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8763     struct bxe_fastpath *fp;
8764     uint16_t status, mask;
8765     int i;
8766 
8767     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8768 
8769     /*
8770      * 0 for ustorm, 1 for cstorm
8771      * the bits returned from ack_int() are 0-15
8772      * bit 0 = attention status block
8773      * bit 1 = fast path status block
8774      * a mask of 0x2 or more = tx/rx event
8775      * a mask of 1 = slow path event
8776      */
8777 
8778     status = bxe_ack_int(sc);
8779 
8780     /* the interrupt is not for us */
8781     if (__predict_false(status == 0)) {
8782         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8783         return;
8784     }
8785 
8786     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8787 
8788     FOR_EACH_ETH_QUEUE(sc, i) {
8789         fp = &sc->fp[i];
8790         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8791         if (status & mask) {
8792             /* acknowledge and disable further fastpath interrupts */
8793             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8794             bxe_task_fp(fp);
8795             status &= ~mask;
8796         }
8797     }
8798 
8799     if (__predict_false(status & 0x1)) {
8800         /* acknowledge and disable further slowpath interrupts */
8801         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8802 
8803         /* schedule slowpath handler */
8804         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8805 
8806         status &= ~0x1;
8807     }
8808 
8809     if (__predict_false(status)) {
8810         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8811     }
8812 }
8813 
8814 /* slowpath interrupt entry point */
8815 static void
8816 bxe_intr_sp(void *xsc)
8817 {
8818     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8819 
8820     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8821 
8822     /* acknowledge and disable further slowpath interrupts */
8823     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8824 
8825     /* schedule slowpath handler */
8826     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8827 }
8828 
8829 /* fastpath interrupt entry point */
8830 static void
8831 bxe_intr_fp(void *xfp)
8832 {
8833     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8834     struct bxe_softc *sc = fp->sc;
8835 
8836     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8837 
8838     BLOGD(sc, DBG_INTR,
8839           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8840           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8841 
8842     /* acknowledge and disable further fastpath interrupts */
8843     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8844 
8845     bxe_task_fp(fp);
8846 }
8847 
8848 /* Release all interrupts allocated by the driver. */
8849 static void
8850 bxe_interrupt_free(struct bxe_softc *sc)
8851 {
8852     int i;
8853 
8854     switch (sc->interrupt_mode) {
8855     case INTR_MODE_INTX:
8856         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8857         if (sc->intr[0].resource != NULL) {
8858             bus_release_resource(sc->dev,
8859                                  SYS_RES_IRQ,
8860                                  sc->intr[0].rid,
8861                                  sc->intr[0].resource);
8862         }
8863         break;
8864     case INTR_MODE_MSI:
8865         for (i = 0; i < sc->intr_count; i++) {
8866             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8867             if (sc->intr[i].resource && sc->intr[i].rid) {
8868                 bus_release_resource(sc->dev,
8869                                      SYS_RES_IRQ,
8870                                      sc->intr[i].rid,
8871                                      sc->intr[i].resource);
8872             }
8873         }
8874         pci_release_msi(sc->dev);
8875         break;
8876     case INTR_MODE_MSIX:
8877         for (i = 0; i < sc->intr_count; i++) {
8878             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8879             if (sc->intr[i].resource && sc->intr[i].rid) {
8880                 bus_release_resource(sc->dev,
8881                                      SYS_RES_IRQ,
8882                                      sc->intr[i].rid,
8883                                      sc->intr[i].resource);
8884             }
8885         }
8886         pci_release_msi(sc->dev);
8887         break;
8888     default:
8889         /* nothing to do as initial allocation failed */
8890         break;
8891     }
8892 }
8893 
8894 /*
8895  * This function determines and allocates the appropriate
8896  * interrupt based on system capabilites and user request.
8897  *
8898  * The user may force a particular interrupt mode, specify
8899  * the number of receive queues, specify the method for
8900  * distribuitng received frames to receive queues, or use
8901  * the default settings which will automatically select the
8902  * best supported combination.  In addition, the OS may or
8903  * may not support certain combinations of these settings.
8904  * This routine attempts to reconcile the settings requested
8905  * by the user with the capabilites available from the system
8906  * to select the optimal combination of features.
8907  *
8908  * Returns:
8909  *   0 = Success, !0 = Failure.
8910  */
8911 static int
8912 bxe_interrupt_alloc(struct bxe_softc *sc)
8913 {
8914     int msix_count = 0;
8915     int msi_count = 0;
8916     int num_requested = 0;
8917     int num_allocated = 0;
8918     int rid, i, j;
8919     int rc;
8920 
8921     /* get the number of available MSI/MSI-X interrupts from the OS */
8922     if (sc->interrupt_mode > 0) {
8923         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8924             msix_count = pci_msix_count(sc->dev);
8925         }
8926 
8927         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8928             msi_count = pci_msi_count(sc->dev);
8929         }
8930 
8931         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8932               msi_count, msix_count);
8933     }
8934 
8935     do { /* try allocating MSI-X interrupt resources (at least 2) */
8936         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8937             break;
8938         }
8939 
8940         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8941             (msix_count < 2)) {
8942             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8943             break;
8944         }
8945 
8946         /* ask for the necessary number of MSI-X vectors */
8947         num_requested = min((sc->num_queues + 1), msix_count);
8948 
8949         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8950 
8951         num_allocated = num_requested;
8952         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8953             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8954             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8955             break;
8956         }
8957 
8958         if (num_allocated < 2) { /* possible? */
8959             BLOGE(sc, "MSI-X allocation less than 2!\n");
8960             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8961             pci_release_msi(sc->dev);
8962             break;
8963         }
8964 
8965         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8966               num_requested, num_allocated);
8967 
8968         /* best effort so use the number of vectors allocated to us */
8969         sc->intr_count = num_allocated;
8970         sc->num_queues = num_allocated - 1;
8971 
8972         rid = 1; /* initial resource identifier */
8973 
8974         /* allocate the MSI-X vectors */
8975         for (i = 0; i < num_allocated; i++) {
8976             sc->intr[i].rid = (rid + i);
8977 
8978             if ((sc->intr[i].resource =
8979                  bus_alloc_resource_any(sc->dev,
8980                                         SYS_RES_IRQ,
8981                                         &sc->intr[i].rid,
8982                                         RF_ACTIVE)) == NULL) {
8983                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8984                       i, (rid + i));
8985 
8986                 for (j = (i - 1); j >= 0; j--) {
8987                     bus_release_resource(sc->dev,
8988                                          SYS_RES_IRQ,
8989                                          sc->intr[j].rid,
8990                                          sc->intr[j].resource);
8991                 }
8992 
8993                 sc->intr_count = 0;
8994                 sc->num_queues = 0;
8995                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8996                 pci_release_msi(sc->dev);
8997                 break;
8998             }
8999 
9000             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9001         }
9002     } while (0);
9003 
9004     do { /* try allocating MSI vector resources (at least 2) */
9005         if (sc->interrupt_mode != INTR_MODE_MSI) {
9006             break;
9007         }
9008 
9009         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9010             (msi_count < 1)) {
9011             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9012             break;
9013         }
9014 
9015         /* ask for a single MSI vector */
9016         num_requested = 1;
9017 
9018         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9019 
9020         num_allocated = num_requested;
9021         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9022             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9023             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9024             break;
9025         }
9026 
9027         if (num_allocated != 1) { /* possible? */
9028             BLOGE(sc, "MSI allocation is not 1!\n");
9029             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9030             pci_release_msi(sc->dev);
9031             break;
9032         }
9033 
9034         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9035               num_requested, num_allocated);
9036 
9037         /* best effort so use the number of vectors allocated to us */
9038         sc->intr_count = num_allocated;
9039         sc->num_queues = num_allocated;
9040 
9041         rid = 1; /* initial resource identifier */
9042 
9043         sc->intr[0].rid = rid;
9044 
9045         if ((sc->intr[0].resource =
9046              bus_alloc_resource_any(sc->dev,
9047                                     SYS_RES_IRQ,
9048                                     &sc->intr[0].rid,
9049                                     RF_ACTIVE)) == NULL) {
9050             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9051             sc->intr_count = 0;
9052             sc->num_queues = 0;
9053             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9054             pci_release_msi(sc->dev);
9055             break;
9056         }
9057 
9058         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9059     } while (0);
9060 
9061     do { /* try allocating INTx vector resources */
9062         if (sc->interrupt_mode != INTR_MODE_INTX) {
9063             break;
9064         }
9065 
9066         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9067 
9068         /* only one vector for INTx */
9069         sc->intr_count = 1;
9070         sc->num_queues = 1;
9071 
9072         rid = 0; /* initial resource identifier */
9073 
9074         sc->intr[0].rid = rid;
9075 
9076         if ((sc->intr[0].resource =
9077              bus_alloc_resource_any(sc->dev,
9078                                     SYS_RES_IRQ,
9079                                     &sc->intr[0].rid,
9080                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9081             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9082             sc->intr_count = 0;
9083             sc->num_queues = 0;
9084             sc->interrupt_mode = -1; /* Failed! */
9085             break;
9086         }
9087 
9088         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9089     } while (0);
9090 
9091     if (sc->interrupt_mode == -1) {
9092         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9093         rc = 1;
9094     } else {
9095         BLOGD(sc, DBG_LOAD,
9096               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9097               sc->interrupt_mode, sc->num_queues);
9098         rc = 0;
9099     }
9100 
9101     return (rc);
9102 }
9103 
9104 static void
9105 bxe_interrupt_detach(struct bxe_softc *sc)
9106 {
9107     struct bxe_fastpath *fp;
9108     int i;
9109 
9110     /* release interrupt resources */
9111     for (i = 0; i < sc->intr_count; i++) {
9112         if (sc->intr[i].resource && sc->intr[i].tag) {
9113             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9114             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9115         }
9116     }
9117 
9118     for (i = 0; i < sc->num_queues; i++) {
9119         fp = &sc->fp[i];
9120         if (fp->tq) {
9121             taskqueue_drain(fp->tq, &fp->tq_task);
9122             taskqueue_drain(fp->tq, &fp->tx_task);
9123             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9124                 NULL))
9125                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9126             taskqueue_free(fp->tq);
9127             fp->tq = NULL;
9128         }
9129     }
9130 
9131 
9132     if (sc->sp_tq) {
9133         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9134         taskqueue_free(sc->sp_tq);
9135         sc->sp_tq = NULL;
9136     }
9137 }
9138 
9139 /*
9140  * Enables interrupts and attach to the ISR.
9141  *
9142  * When using multiple MSI/MSI-X vectors the first vector
9143  * is used for slowpath operations while all remaining
9144  * vectors are used for fastpath operations.  If only a
9145  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9146  * ISR must look for both slowpath and fastpath completions.
9147  */
9148 static int
9149 bxe_interrupt_attach(struct bxe_softc *sc)
9150 {
9151     struct bxe_fastpath *fp;
9152     int rc = 0;
9153     int i;
9154 
9155     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9156              "bxe%d_sp_tq", sc->unit);
9157     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9158     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9159                                  taskqueue_thread_enqueue,
9160                                  &sc->sp_tq);
9161     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9162                             "%s", sc->sp_tq_name);
9163 
9164 
9165     for (i = 0; i < sc->num_queues; i++) {
9166         fp = &sc->fp[i];
9167         snprintf(fp->tq_name, sizeof(fp->tq_name),
9168                  "bxe%d_fp%d_tq", sc->unit, i);
9169         TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9170         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9171         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9172                                   taskqueue_thread_enqueue,
9173                                   &fp->tq);
9174         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9175                           bxe_tx_mq_start_deferred, fp);
9176         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9177                                 "%s", fp->tq_name);
9178     }
9179 
9180     /* setup interrupt handlers */
9181     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9182         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9183 
9184         /*
9185          * Setup the interrupt handler. Note that we pass the driver instance
9186          * to the interrupt handler for the slowpath.
9187          */
9188         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9189                                  (INTR_TYPE_NET | INTR_MPSAFE),
9190                                  NULL, bxe_intr_sp, sc,
9191                                  &sc->intr[0].tag)) != 0) {
9192             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9193             goto bxe_interrupt_attach_exit;
9194         }
9195 
9196         bus_describe_intr(sc->dev, sc->intr[0].resource,
9197                           sc->intr[0].tag, "sp");
9198 
9199         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9200 
9201         /* initialize the fastpath vectors (note the first was used for sp) */
9202         for (i = 0; i < sc->num_queues; i++) {
9203             fp = &sc->fp[i];
9204             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9205 
9206             /*
9207              * Setup the interrupt handler. Note that we pass the
9208              * fastpath context to the interrupt handler in this
9209              * case.
9210              */
9211             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9212                                      (INTR_TYPE_NET | INTR_MPSAFE),
9213                                      NULL, bxe_intr_fp, fp,
9214                                      &sc->intr[i + 1].tag)) != 0) {
9215                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9216                       (i + 1), rc);
9217                 goto bxe_interrupt_attach_exit;
9218             }
9219 
9220             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9221                               sc->intr[i + 1].tag, "fp%02d", i);
9222 
9223             /* bind the fastpath instance to a cpu */
9224             if (sc->num_queues > 1) {
9225                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9226             }
9227 
9228             fp->state = BXE_FP_STATE_IRQ;
9229         }
9230     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9231         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9232 
9233         /*
9234          * Setup the interrupt handler. Note that we pass the
9235          * driver instance to the interrupt handler which
9236          * will handle both the slowpath and fastpath.
9237          */
9238         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9239                                  (INTR_TYPE_NET | INTR_MPSAFE),
9240                                  NULL, bxe_intr_legacy, sc,
9241                                  &sc->intr[0].tag)) != 0) {
9242             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9243             goto bxe_interrupt_attach_exit;
9244         }
9245 
9246     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9247         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9248 
9249         /*
9250          * Setup the interrupt handler. Note that we pass the
9251          * driver instance to the interrupt handler which
9252          * will handle both the slowpath and fastpath.
9253          */
9254         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9255                                  (INTR_TYPE_NET | INTR_MPSAFE),
9256                                  NULL, bxe_intr_legacy, sc,
9257                                  &sc->intr[0].tag)) != 0) {
9258             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9259             goto bxe_interrupt_attach_exit;
9260         }
9261     }
9262 
9263 bxe_interrupt_attach_exit:
9264 
9265     return (rc);
9266 }
9267 
9268 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9269 static int  bxe_init_hw_common(struct bxe_softc *sc);
9270 static int  bxe_init_hw_port(struct bxe_softc *sc);
9271 static int  bxe_init_hw_func(struct bxe_softc *sc);
9272 static void bxe_reset_common(struct bxe_softc *sc);
9273 static void bxe_reset_port(struct bxe_softc *sc);
9274 static void bxe_reset_func(struct bxe_softc *sc);
9275 static int  bxe_gunzip_init(struct bxe_softc *sc);
9276 static void bxe_gunzip_end(struct bxe_softc *sc);
9277 static int  bxe_init_firmware(struct bxe_softc *sc);
9278 static void bxe_release_firmware(struct bxe_softc *sc);
9279 
9280 static struct
9281 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9282     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9283     .init_hw_cmn      = bxe_init_hw_common,
9284     .init_hw_port     = bxe_init_hw_port,
9285     .init_hw_func     = bxe_init_hw_func,
9286 
9287     .reset_hw_cmn     = bxe_reset_common,
9288     .reset_hw_port    = bxe_reset_port,
9289     .reset_hw_func    = bxe_reset_func,
9290 
9291     .gunzip_init      = bxe_gunzip_init,
9292     .gunzip_end       = bxe_gunzip_end,
9293 
9294     .init_fw          = bxe_init_firmware,
9295     .release_fw       = bxe_release_firmware,
9296 };
9297 
9298 static void
9299 bxe_init_func_obj(struct bxe_softc *sc)
9300 {
9301     sc->dmae_ready = 0;
9302 
9303     ecore_init_func_obj(sc,
9304                         &sc->func_obj,
9305                         BXE_SP(sc, func_rdata),
9306                         BXE_SP_MAPPING(sc, func_rdata),
9307                         BXE_SP(sc, func_afex_rdata),
9308                         BXE_SP_MAPPING(sc, func_afex_rdata),
9309                         &bxe_func_sp_drv);
9310 }
9311 
9312 static int
9313 bxe_init_hw(struct bxe_softc *sc,
9314             uint32_t         load_code)
9315 {
9316     struct ecore_func_state_params func_params = { NULL };
9317     int rc;
9318 
9319     /* prepare the parameters for function state transitions */
9320     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9321 
9322     func_params.f_obj = &sc->func_obj;
9323     func_params.cmd = ECORE_F_CMD_HW_INIT;
9324 
9325     func_params.params.hw_init.load_phase = load_code;
9326 
9327     /*
9328      * Via a plethora of function pointers, we will eventually reach
9329      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9330      */
9331     rc = ecore_func_state_change(sc, &func_params);
9332 
9333     return (rc);
9334 }
9335 
9336 static void
9337 bxe_fill(struct bxe_softc *sc,
9338          uint32_t         addr,
9339          int              fill,
9340          uint32_t         len)
9341 {
9342     uint32_t i;
9343 
9344     if (!(len % 4) && !(addr % 4)) {
9345         for (i = 0; i < len; i += 4) {
9346             REG_WR(sc, (addr + i), fill);
9347         }
9348     } else {
9349         for (i = 0; i < len; i++) {
9350             REG_WR8(sc, (addr + i), fill);
9351         }
9352     }
9353 }
9354 
9355 /* writes FP SP data to FW - data_size in dwords */
9356 static void
9357 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9358                   int              fw_sb_id,
9359                   uint32_t         *sb_data_p,
9360                   uint32_t         data_size)
9361 {
9362     int index;
9363 
9364     for (index = 0; index < data_size; index++) {
9365         REG_WR(sc,
9366                (BAR_CSTRORM_INTMEM +
9367                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9368                 (sizeof(uint32_t) * index)),
9369                *(sb_data_p + index));
9370     }
9371 }
9372 
9373 static void
9374 bxe_zero_fp_sb(struct bxe_softc *sc,
9375                int              fw_sb_id)
9376 {
9377     struct hc_status_block_data_e2 sb_data_e2;
9378     struct hc_status_block_data_e1x sb_data_e1x;
9379     uint32_t *sb_data_p;
9380     uint32_t data_size = 0;
9381 
9382     if (!CHIP_IS_E1x(sc)) {
9383         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9384         sb_data_e2.common.state = SB_DISABLED;
9385         sb_data_e2.common.p_func.vf_valid = FALSE;
9386         sb_data_p = (uint32_t *)&sb_data_e2;
9387         data_size = (sizeof(struct hc_status_block_data_e2) /
9388                      sizeof(uint32_t));
9389     } else {
9390         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9391         sb_data_e1x.common.state = SB_DISABLED;
9392         sb_data_e1x.common.p_func.vf_valid = FALSE;
9393         sb_data_p = (uint32_t *)&sb_data_e1x;
9394         data_size = (sizeof(struct hc_status_block_data_e1x) /
9395                      sizeof(uint32_t));
9396     }
9397 
9398     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9399 
9400     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9401              0, CSTORM_STATUS_BLOCK_SIZE);
9402     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9403              0, CSTORM_SYNC_BLOCK_SIZE);
9404 }
9405 
9406 static void
9407 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9408                   struct hc_sp_status_block_data *sp_sb_data)
9409 {
9410     int i;
9411 
9412     for (i = 0;
9413          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9414          i++) {
9415         REG_WR(sc,
9416                (BAR_CSTRORM_INTMEM +
9417                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9418                 (i * sizeof(uint32_t))),
9419                *((uint32_t *)sp_sb_data + i));
9420     }
9421 }
9422 
9423 static void
9424 bxe_zero_sp_sb(struct bxe_softc *sc)
9425 {
9426     struct hc_sp_status_block_data sp_sb_data;
9427 
9428     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9429 
9430     sp_sb_data.state           = SB_DISABLED;
9431     sp_sb_data.p_func.vf_valid = FALSE;
9432 
9433     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9434 
9435     bxe_fill(sc,
9436              (BAR_CSTRORM_INTMEM +
9437               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9438               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9439     bxe_fill(sc,
9440              (BAR_CSTRORM_INTMEM +
9441               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9442               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9443 }
9444 
9445 static void
9446 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9447                              int                       igu_sb_id,
9448                              int                       igu_seg_id)
9449 {
9450     hc_sm->igu_sb_id      = igu_sb_id;
9451     hc_sm->igu_seg_id     = igu_seg_id;
9452     hc_sm->timer_value    = 0xFF;
9453     hc_sm->time_to_expire = 0xFFFFFFFF;
9454 }
9455 
9456 static void
9457 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9458 {
9459     /* zero out state machine indices */
9460 
9461     /* rx indices */
9462     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9463 
9464     /* tx indices */
9465     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9466     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9467     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9468     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9469 
9470     /* map indices */
9471 
9472     /* rx indices */
9473     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9474         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9475 
9476     /* tx indices */
9477     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9478         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9479     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9480         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9481     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9482         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9483     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9484         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9485 }
9486 
9487 static void
9488 bxe_init_sb(struct bxe_softc *sc,
9489             bus_addr_t       busaddr,
9490             int              vfid,
9491             uint8_t          vf_valid,
9492             int              fw_sb_id,
9493             int              igu_sb_id)
9494 {
9495     struct hc_status_block_data_e2  sb_data_e2;
9496     struct hc_status_block_data_e1x sb_data_e1x;
9497     struct hc_status_block_sm       *hc_sm_p;
9498     uint32_t *sb_data_p;
9499     int igu_seg_id;
9500     int data_size;
9501 
9502     if (CHIP_INT_MODE_IS_BC(sc)) {
9503         igu_seg_id = HC_SEG_ACCESS_NORM;
9504     } else {
9505         igu_seg_id = IGU_SEG_ACCESS_NORM;
9506     }
9507 
9508     bxe_zero_fp_sb(sc, fw_sb_id);
9509 
9510     if (!CHIP_IS_E1x(sc)) {
9511         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9512         sb_data_e2.common.state = SB_ENABLED;
9513         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9514         sb_data_e2.common.p_func.vf_id = vfid;
9515         sb_data_e2.common.p_func.vf_valid = vf_valid;
9516         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9517         sb_data_e2.common.same_igu_sb_1b = TRUE;
9518         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9519         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9520         hc_sm_p = sb_data_e2.common.state_machine;
9521         sb_data_p = (uint32_t *)&sb_data_e2;
9522         data_size = (sizeof(struct hc_status_block_data_e2) /
9523                      sizeof(uint32_t));
9524         bxe_map_sb_state_machines(sb_data_e2.index_data);
9525     } else {
9526         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9527         sb_data_e1x.common.state = SB_ENABLED;
9528         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9529         sb_data_e1x.common.p_func.vf_id = 0xff;
9530         sb_data_e1x.common.p_func.vf_valid = FALSE;
9531         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9532         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9533         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9534         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9535         hc_sm_p = sb_data_e1x.common.state_machine;
9536         sb_data_p = (uint32_t *)&sb_data_e1x;
9537         data_size = (sizeof(struct hc_status_block_data_e1x) /
9538                      sizeof(uint32_t));
9539         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9540     }
9541 
9542     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9543     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9544 
9545     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9546 
9547     /* write indices to HW - PCI guarantees endianity of regpairs */
9548     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9549 }
9550 
9551 static inline uint8_t
9552 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9553 {
9554     if (CHIP_IS_E1x(fp->sc)) {
9555         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9556     } else {
9557         return (fp->cl_id);
9558     }
9559 }
9560 
9561 static inline uint32_t
9562 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9563                            struct bxe_fastpath *fp)
9564 {
9565     uint32_t offset = BAR_USTRORM_INTMEM;
9566 
9567     if (!CHIP_IS_E1x(sc)) {
9568         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9569     } else {
9570         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9571     }
9572 
9573     return (offset);
9574 }
9575 
9576 static void
9577 bxe_init_eth_fp(struct bxe_softc *sc,
9578                 int              idx)
9579 {
9580     struct bxe_fastpath *fp = &sc->fp[idx];
9581     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9582     unsigned long q_type = 0;
9583     int cos;
9584 
9585     fp->sc    = sc;
9586     fp->index = idx;
9587 
9588     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9589     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9590 
9591     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9592                     (SC_L_ID(sc) + idx) :
9593                     /* want client ID same as IGU SB ID for non-E1 */
9594                     fp->igu_sb_id;
9595     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9596 
9597     /* setup sb indices */
9598     if (!CHIP_IS_E1x(sc)) {
9599         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9600         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9601     } else {
9602         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9603         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9604     }
9605 
9606     /* init shortcut */
9607     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9608 
9609     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9610 
9611     /*
9612      * XXX If multiple CoS is ever supported then each fastpath structure
9613      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9614      */
9615     for (cos = 0; cos < sc->max_cos; cos++) {
9616         cids[cos] = idx;
9617     }
9618     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9619 
9620     /* nothing more for a VF to do */
9621     if (IS_VF(sc)) {
9622         return;
9623     }
9624 
9625     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9626                 fp->fw_sb_id, fp->igu_sb_id);
9627 
9628     bxe_update_fp_sb_idx(fp);
9629 
9630     /* Configure Queue State object */
9631     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9632     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9633 
9634     ecore_init_queue_obj(sc,
9635                          &sc->sp_objs[idx].q_obj,
9636                          fp->cl_id,
9637                          cids,
9638                          sc->max_cos,
9639                          SC_FUNC(sc),
9640                          BXE_SP(sc, q_rdata),
9641                          BXE_SP_MAPPING(sc, q_rdata),
9642                          q_type);
9643 
9644     /* configure classification DBs */
9645     ecore_init_mac_obj(sc,
9646                        &sc->sp_objs[idx].mac_obj,
9647                        fp->cl_id,
9648                        idx,
9649                        SC_FUNC(sc),
9650                        BXE_SP(sc, mac_rdata),
9651                        BXE_SP_MAPPING(sc, mac_rdata),
9652                        ECORE_FILTER_MAC_PENDING,
9653                        &sc->sp_state,
9654                        ECORE_OBJ_TYPE_RX_TX,
9655                        &sc->macs_pool);
9656 
9657     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9658           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9659 }
9660 
9661 static inline void
9662 bxe_update_rx_prod(struct bxe_softc    *sc,
9663                    struct bxe_fastpath *fp,
9664                    uint16_t            rx_bd_prod,
9665                    uint16_t            rx_cq_prod,
9666                    uint16_t            rx_sge_prod)
9667 {
9668     struct ustorm_eth_rx_producers rx_prods = { 0 };
9669     uint32_t i;
9670 
9671     /* update producers */
9672     rx_prods.bd_prod  = rx_bd_prod;
9673     rx_prods.cqe_prod = rx_cq_prod;
9674     rx_prods.sge_prod = rx_sge_prod;
9675 
9676     /*
9677      * Make sure that the BD and SGE data is updated before updating the
9678      * producers since FW might read the BD/SGE right after the producer
9679      * is updated.
9680      * This is only applicable for weak-ordered memory model archs such
9681      * as IA-64. The following barrier is also mandatory since FW will
9682      * assumes BDs must have buffers.
9683      */
9684     wmb();
9685 
9686     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9687         REG_WR(sc,
9688                (fp->ustorm_rx_prods_offset + (i * 4)),
9689                ((uint32_t *)&rx_prods)[i]);
9690     }
9691 
9692     wmb(); /* keep prod updates ordered */
9693 
9694     BLOGD(sc, DBG_RX,
9695           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9696           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9697 }
9698 
9699 static void
9700 bxe_init_rx_rings(struct bxe_softc *sc)
9701 {
9702     struct bxe_fastpath *fp;
9703     int i;
9704 
9705     for (i = 0; i < sc->num_queues; i++) {
9706         fp = &sc->fp[i];
9707 
9708         fp->rx_bd_cons = 0;
9709 
9710         /*
9711          * Activate the BD ring...
9712          * Warning, this will generate an interrupt (to the TSTORM)
9713          * so this can only be done after the chip is initialized
9714          */
9715         bxe_update_rx_prod(sc, fp,
9716                            fp->rx_bd_prod,
9717                            fp->rx_cq_prod,
9718                            fp->rx_sge_prod);
9719 
9720         if (i != 0) {
9721             continue;
9722         }
9723 
9724         if (CHIP_IS_E1(sc)) {
9725             REG_WR(sc,
9726                    (BAR_USTRORM_INTMEM +
9727                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9728                    U64_LO(fp->rcq_dma.paddr));
9729             REG_WR(sc,
9730                    (BAR_USTRORM_INTMEM +
9731                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9732                    U64_HI(fp->rcq_dma.paddr));
9733         }
9734     }
9735 }
9736 
9737 static void
9738 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9739 {
9740     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9741     fp->tx_db.data.zero_fill1 = 0;
9742     fp->tx_db.data.prod = 0;
9743 
9744     fp->tx_pkt_prod = 0;
9745     fp->tx_pkt_cons = 0;
9746     fp->tx_bd_prod = 0;
9747     fp->tx_bd_cons = 0;
9748     fp->eth_q_stats.tx_pkts = 0;
9749 }
9750 
9751 static inline void
9752 bxe_init_tx_rings(struct bxe_softc *sc)
9753 {
9754     int i;
9755 
9756     for (i = 0; i < sc->num_queues; i++) {
9757         bxe_init_tx_ring_one(&sc->fp[i]);
9758     }
9759 }
9760 
9761 static void
9762 bxe_init_def_sb(struct bxe_softc *sc)
9763 {
9764     struct host_sp_status_block *def_sb = sc->def_sb;
9765     bus_addr_t mapping = sc->def_sb_dma.paddr;
9766     int igu_sp_sb_index;
9767     int igu_seg_id;
9768     int port = SC_PORT(sc);
9769     int func = SC_FUNC(sc);
9770     int reg_offset, reg_offset_en5;
9771     uint64_t section;
9772     int index, sindex;
9773     struct hc_sp_status_block_data sp_sb_data;
9774 
9775     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9776 
9777     if (CHIP_INT_MODE_IS_BC(sc)) {
9778         igu_sp_sb_index = DEF_SB_IGU_ID;
9779         igu_seg_id = HC_SEG_ACCESS_DEF;
9780     } else {
9781         igu_sp_sb_index = sc->igu_dsb_id;
9782         igu_seg_id = IGU_SEG_ACCESS_DEF;
9783     }
9784 
9785     /* attentions */
9786     section = ((uint64_t)mapping +
9787                offsetof(struct host_sp_status_block, atten_status_block));
9788     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9789     sc->attn_state = 0;
9790 
9791     reg_offset = (port) ?
9792                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9793                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9794     reg_offset_en5 = (port) ?
9795                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9796                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9797 
9798     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9799         /* take care of sig[0]..sig[4] */
9800         for (sindex = 0; sindex < 4; sindex++) {
9801             sc->attn_group[index].sig[sindex] =
9802                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9803         }
9804 
9805         if (!CHIP_IS_E1x(sc)) {
9806             /*
9807              * enable5 is separate from the rest of the registers,
9808              * and the address skip is 4 and not 16 between the
9809              * different groups
9810              */
9811             sc->attn_group[index].sig[4] =
9812                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9813         } else {
9814             sc->attn_group[index].sig[4] = 0;
9815         }
9816     }
9817 
9818     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9819         reg_offset = (port) ?
9820                          HC_REG_ATTN_MSG1_ADDR_L :
9821                          HC_REG_ATTN_MSG0_ADDR_L;
9822         REG_WR(sc, reg_offset, U64_LO(section));
9823         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9824     } else if (!CHIP_IS_E1x(sc)) {
9825         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9826         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9827     }
9828 
9829     section = ((uint64_t)mapping +
9830                offsetof(struct host_sp_status_block, sp_sb));
9831 
9832     bxe_zero_sp_sb(sc);
9833 
9834     /* PCI guarantees endianity of regpair */
9835     sp_sb_data.state           = SB_ENABLED;
9836     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9837     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9838     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9839     sp_sb_data.igu_seg_id      = igu_seg_id;
9840     sp_sb_data.p_func.pf_id    = func;
9841     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9842     sp_sb_data.p_func.vf_id    = 0xff;
9843 
9844     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9845 
9846     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9847 }
9848 
9849 static void
9850 bxe_init_sp_ring(struct bxe_softc *sc)
9851 {
9852     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9853     sc->spq_prod_idx = 0;
9854     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9855     sc->spq_prod_bd = sc->spq;
9856     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9857 }
9858 
9859 static void
9860 bxe_init_eq_ring(struct bxe_softc *sc)
9861 {
9862     union event_ring_elem *elem;
9863     int i;
9864 
9865     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9866         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9867 
9868         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9869                                                  BCM_PAGE_SIZE *
9870                                                  (i % NUM_EQ_PAGES)));
9871         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9872                                                  BCM_PAGE_SIZE *
9873                                                  (i % NUM_EQ_PAGES)));
9874     }
9875 
9876     sc->eq_cons    = 0;
9877     sc->eq_prod    = NUM_EQ_DESC;
9878     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9879 
9880     atomic_store_rel_long(&sc->eq_spq_left,
9881                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9882                                NUM_EQ_DESC) - 1));
9883 }
9884 
9885 static void
9886 bxe_init_internal_common(struct bxe_softc *sc)
9887 {
9888     int i;
9889 
9890     /*
9891      * Zero this manually as its initialization is currently missing
9892      * in the initTool.
9893      */
9894     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9895         REG_WR(sc,
9896                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9897                0);
9898     }
9899 
9900     if (!CHIP_IS_E1x(sc)) {
9901         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9902                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9903     }
9904 }
9905 
9906 static void
9907 bxe_init_internal(struct bxe_softc *sc,
9908                   uint32_t         load_code)
9909 {
9910     switch (load_code) {
9911     case FW_MSG_CODE_DRV_LOAD_COMMON:
9912     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9913         bxe_init_internal_common(sc);
9914         /* no break */
9915 
9916     case FW_MSG_CODE_DRV_LOAD_PORT:
9917         /* nothing to do */
9918         /* no break */
9919 
9920     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9921         /* internal memory per function is initialized inside bxe_pf_init */
9922         break;
9923 
9924     default:
9925         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9926         break;
9927     }
9928 }
9929 
9930 static void
9931 storm_memset_func_cfg(struct bxe_softc                         *sc,
9932                       struct tstorm_eth_function_common_config *tcfg,
9933                       uint16_t                                  abs_fid)
9934 {
9935     uint32_t addr;
9936     size_t size;
9937 
9938     addr = (BAR_TSTRORM_INTMEM +
9939             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9940     size = sizeof(struct tstorm_eth_function_common_config);
9941     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9942 }
9943 
9944 static void
9945 bxe_func_init(struct bxe_softc            *sc,
9946               struct bxe_func_init_params *p)
9947 {
9948     struct tstorm_eth_function_common_config tcfg = { 0 };
9949 
9950     if (CHIP_IS_E1x(sc)) {
9951         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9952     }
9953 
9954     /* Enable the function in the FW */
9955     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9956     storm_memset_func_en(sc, p->func_id, 1);
9957 
9958     /* spq */
9959     if (p->func_flgs & FUNC_FLG_SPQ) {
9960         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9961         REG_WR(sc,
9962                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9963                p->spq_prod);
9964     }
9965 }
9966 
9967 /*
9968  * Calculates the sum of vn_min_rates.
9969  * It's needed for further normalizing of the min_rates.
9970  * Returns:
9971  *   sum of vn_min_rates.
9972  *     or
9973  *   0 - if all the min_rates are 0.
9974  * In the later case fainess algorithm should be deactivated.
9975  * If all min rates are not zero then those that are zeroes will be set to 1.
9976  */
9977 static void
9978 bxe_calc_vn_min(struct bxe_softc       *sc,
9979                 struct cmng_init_input *input)
9980 {
9981     uint32_t vn_cfg;
9982     uint32_t vn_min_rate;
9983     int all_zero = 1;
9984     int vn;
9985 
9986     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9987         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9988         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9989                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
9990 
9991         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
9992             /* skip hidden VNs */
9993             vn_min_rate = 0;
9994         } else if (!vn_min_rate) {
9995             /* If min rate is zero - set it to 100 */
9996             vn_min_rate = DEF_MIN_RATE;
9997         } else {
9998             all_zero = 0;
9999         }
10000 
10001         input->vnic_min_rate[vn] = vn_min_rate;
10002     }
10003 
10004     /* if ETS or all min rates are zeros - disable fairness */
10005     if (BXE_IS_ETS_ENABLED(sc)) {
10006         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10007         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10008     } else if (all_zero) {
10009         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10010         BLOGD(sc, DBG_LOAD,
10011               "Fariness disabled (all MIN values are zeroes)\n");
10012     } else {
10013         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10014     }
10015 }
10016 
10017 static inline uint16_t
10018 bxe_extract_max_cfg(struct bxe_softc *sc,
10019                     uint32_t         mf_cfg)
10020 {
10021     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10022                         FUNC_MF_CFG_MAX_BW_SHIFT);
10023 
10024     if (!max_cfg) {
10025         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10026         max_cfg = 100;
10027     }
10028 
10029     return (max_cfg);
10030 }
10031 
10032 static void
10033 bxe_calc_vn_max(struct bxe_softc       *sc,
10034                 int                    vn,
10035                 struct cmng_init_input *input)
10036 {
10037     uint16_t vn_max_rate;
10038     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10039     uint32_t max_cfg;
10040 
10041     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10042         vn_max_rate = 0;
10043     } else {
10044         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10045 
10046         if (IS_MF_SI(sc)) {
10047             /* max_cfg in percents of linkspeed */
10048             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10049         } else { /* SD modes */
10050             /* max_cfg is absolute in 100Mb units */
10051             vn_max_rate = (max_cfg * 100);
10052         }
10053     }
10054 
10055     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10056 
10057     input->vnic_max_rate[vn] = vn_max_rate;
10058 }
10059 
10060 static void
10061 bxe_cmng_fns_init(struct bxe_softc *sc,
10062                   uint8_t          read_cfg,
10063                   uint8_t          cmng_type)
10064 {
10065     struct cmng_init_input input;
10066     int vn;
10067 
10068     memset(&input, 0, sizeof(struct cmng_init_input));
10069 
10070     input.port_rate = sc->link_vars.line_speed;
10071 
10072     if (cmng_type == CMNG_FNS_MINMAX) {
10073         /* read mf conf from shmem */
10074         if (read_cfg) {
10075             bxe_read_mf_cfg(sc);
10076         }
10077 
10078         /* get VN min rate and enable fairness if not 0 */
10079         bxe_calc_vn_min(sc, &input);
10080 
10081         /* get VN max rate */
10082         if (sc->port.pmf) {
10083             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10084                 bxe_calc_vn_max(sc, vn, &input);
10085             }
10086         }
10087 
10088         /* always enable rate shaping and fairness */
10089         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10090 
10091         ecore_init_cmng(&input, &sc->cmng);
10092         return;
10093     }
10094 
10095     /* rate shaping and fairness are disabled */
10096     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10097 }
10098 
10099 static int
10100 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10101 {
10102     if (CHIP_REV_IS_SLOW(sc)) {
10103         return (CMNG_FNS_NONE);
10104     }
10105 
10106     if (IS_MF(sc)) {
10107         return (CMNG_FNS_MINMAX);
10108     }
10109 
10110     return (CMNG_FNS_NONE);
10111 }
10112 
10113 static void
10114 storm_memset_cmng(struct bxe_softc *sc,
10115                   struct cmng_init *cmng,
10116                   uint8_t          port)
10117 {
10118     int vn;
10119     int func;
10120     uint32_t addr;
10121     size_t size;
10122 
10123     addr = (BAR_XSTRORM_INTMEM +
10124             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10125     size = sizeof(struct cmng_struct_per_port);
10126     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10127 
10128     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10129         func = func_by_vn(sc, vn);
10130 
10131         addr = (BAR_XSTRORM_INTMEM +
10132                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10133         size = sizeof(struct rate_shaping_vars_per_vn);
10134         ecore_storm_memset_struct(sc, addr, size,
10135                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10136 
10137         addr = (BAR_XSTRORM_INTMEM +
10138                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10139         size = sizeof(struct fairness_vars_per_vn);
10140         ecore_storm_memset_struct(sc, addr, size,
10141                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10142     }
10143 }
10144 
10145 static void
10146 bxe_pf_init(struct bxe_softc *sc)
10147 {
10148     struct bxe_func_init_params func_init = { 0 };
10149     struct event_ring_data eq_data = { { 0 } };
10150     uint16_t flags;
10151 
10152     if (!CHIP_IS_E1x(sc)) {
10153         /* reset IGU PF statistics: MSIX + ATTN */
10154         /* PF */
10155         REG_WR(sc,
10156                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10157                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10158                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10159                0);
10160         /* ATTN */
10161         REG_WR(sc,
10162                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10163                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10164                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10165                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10166                0);
10167     }
10168 
10169     /* function setup flags */
10170     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10171 
10172     /*
10173      * This flag is relevant for E1x only.
10174      * E2 doesn't have a TPA configuration in a function level.
10175      */
10176     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10177 
10178     func_init.func_flgs = flags;
10179     func_init.pf_id     = SC_FUNC(sc);
10180     func_init.func_id   = SC_FUNC(sc);
10181     func_init.spq_map   = sc->spq_dma.paddr;
10182     func_init.spq_prod  = sc->spq_prod_idx;
10183 
10184     bxe_func_init(sc, &func_init);
10185 
10186     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10187 
10188     /*
10189      * Congestion management values depend on the link rate.
10190      * There is no active link so initial link rate is set to 10Gbps.
10191      * When the link comes up the congestion management values are
10192      * re-calculated according to the actual link rate.
10193      */
10194     sc->link_vars.line_speed = SPEED_10000;
10195     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10196 
10197     /* Only the PMF sets the HW */
10198     if (sc->port.pmf) {
10199         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10200     }
10201 
10202     /* init Event Queue - PCI bus guarantees correct endainity */
10203     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10204     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10205     eq_data.producer     = sc->eq_prod;
10206     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10207     eq_data.sb_id        = DEF_SB_ID;
10208     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10209 }
10210 
10211 static void
10212 bxe_hc_int_enable(struct bxe_softc *sc)
10213 {
10214     int port = SC_PORT(sc);
10215     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10216     uint32_t val = REG_RD(sc, addr);
10217     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10218     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10219                            (sc->intr_count == 1)) ? TRUE : FALSE;
10220     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10221 
10222     if (msix) {
10223         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10224                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10225         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10226                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10227         if (single_msix) {
10228             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10229         }
10230     } else if (msi) {
10231         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10232         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10233                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10234                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10235     } else {
10236         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10237                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10238                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10239                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10240 
10241         if (!CHIP_IS_E1(sc)) {
10242             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10243                   val, port, addr);
10244 
10245             REG_WR(sc, addr, val);
10246 
10247             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10248         }
10249     }
10250 
10251     if (CHIP_IS_E1(sc)) {
10252         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10253     }
10254 
10255     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10256           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10257 
10258     REG_WR(sc, addr, val);
10259 
10260     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10261     mb();
10262 
10263     if (!CHIP_IS_E1(sc)) {
10264         /* init leading/trailing edge */
10265         if (IS_MF(sc)) {
10266             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10267             if (sc->port.pmf) {
10268                 /* enable nig and gpio3 attention */
10269                 val |= 0x1100;
10270             }
10271         } else {
10272             val = 0xffff;
10273         }
10274 
10275         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10276         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10277     }
10278 
10279     /* make sure that interrupts are indeed enabled from here on */
10280     mb();
10281 }
10282 
10283 static void
10284 bxe_igu_int_enable(struct bxe_softc *sc)
10285 {
10286     uint32_t val;
10287     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10288     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10289                            (sc->intr_count == 1)) ? TRUE : FALSE;
10290     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10291 
10292     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10293 
10294     if (msix) {
10295         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10296                  IGU_PF_CONF_SINGLE_ISR_EN);
10297         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10298                 IGU_PF_CONF_ATTN_BIT_EN);
10299         if (single_msix) {
10300             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10301         }
10302     } else if (msi) {
10303         val &= ~IGU_PF_CONF_INT_LINE_EN;
10304         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10305                 IGU_PF_CONF_ATTN_BIT_EN |
10306                 IGU_PF_CONF_SINGLE_ISR_EN);
10307     } else {
10308         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10309         val |= (IGU_PF_CONF_INT_LINE_EN |
10310                 IGU_PF_CONF_ATTN_BIT_EN |
10311                 IGU_PF_CONF_SINGLE_ISR_EN);
10312     }
10313 
10314     /* clean previous status - need to configure igu prior to ack*/
10315     if ((!msix) || single_msix) {
10316         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10317         bxe_ack_int(sc);
10318     }
10319 
10320     val |= IGU_PF_CONF_FUNC_EN;
10321 
10322     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10323           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10324 
10325     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10326 
10327     mb();
10328 
10329     /* init leading/trailing edge */
10330     if (IS_MF(sc)) {
10331         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10332         if (sc->port.pmf) {
10333             /* enable nig and gpio3 attention */
10334             val |= 0x1100;
10335         }
10336     } else {
10337         val = 0xffff;
10338     }
10339 
10340     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10341     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10342 
10343     /* make sure that interrupts are indeed enabled from here on */
10344     mb();
10345 }
10346 
10347 static void
10348 bxe_int_enable(struct bxe_softc *sc)
10349 {
10350     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10351         bxe_hc_int_enable(sc);
10352     } else {
10353         bxe_igu_int_enable(sc);
10354     }
10355 }
10356 
10357 static void
10358 bxe_hc_int_disable(struct bxe_softc *sc)
10359 {
10360     int port = SC_PORT(sc);
10361     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10362     uint32_t val = REG_RD(sc, addr);
10363 
10364     /*
10365      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10366      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10367      * block
10368      */
10369     if (CHIP_IS_E1(sc)) {
10370         /*
10371          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10372          * to prevent from HC sending interrupts after we exit the function
10373          */
10374         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10375 
10376         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10377                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10378                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10379     } else {
10380         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10381                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10382                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10383                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10384     }
10385 
10386     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10387 
10388     /* flush all outstanding writes */
10389     mb();
10390 
10391     REG_WR(sc, addr, val);
10392     if (REG_RD(sc, addr) != val) {
10393         BLOGE(sc, "proper val not read from HC IGU!\n");
10394     }
10395 }
10396 
10397 static void
10398 bxe_igu_int_disable(struct bxe_softc *sc)
10399 {
10400     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10401 
10402     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10403              IGU_PF_CONF_INT_LINE_EN |
10404              IGU_PF_CONF_ATTN_BIT_EN);
10405 
10406     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10407 
10408     /* flush all outstanding writes */
10409     mb();
10410 
10411     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10412     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10413         BLOGE(sc, "proper val not read from IGU!\n");
10414     }
10415 }
10416 
10417 static void
10418 bxe_int_disable(struct bxe_softc *sc)
10419 {
10420     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10421         bxe_hc_int_disable(sc);
10422     } else {
10423         bxe_igu_int_disable(sc);
10424     }
10425 }
10426 
10427 static void
10428 bxe_nic_init(struct bxe_softc *sc,
10429              int              load_code)
10430 {
10431     int i;
10432 
10433     for (i = 0; i < sc->num_queues; i++) {
10434         bxe_init_eth_fp(sc, i);
10435     }
10436 
10437     rmb(); /* ensure status block indices were read */
10438 
10439     bxe_init_rx_rings(sc);
10440     bxe_init_tx_rings(sc);
10441 
10442     if (IS_VF(sc)) {
10443         return;
10444     }
10445 
10446     /* initialize MOD_ABS interrupts */
10447     elink_init_mod_abs_int(sc, &sc->link_vars,
10448                            sc->devinfo.chip_id,
10449                            sc->devinfo.shmem_base,
10450                            sc->devinfo.shmem2_base,
10451                            SC_PORT(sc));
10452 
10453     bxe_init_def_sb(sc);
10454     bxe_update_dsb_idx(sc);
10455     bxe_init_sp_ring(sc);
10456     bxe_init_eq_ring(sc);
10457     bxe_init_internal(sc, load_code);
10458     bxe_pf_init(sc);
10459     bxe_stats_init(sc);
10460 
10461     /* flush all before enabling interrupts */
10462     mb();
10463 
10464     bxe_int_enable(sc);
10465 
10466     /* check for SPIO5 */
10467     bxe_attn_int_deasserted0(sc,
10468                              REG_RD(sc,
10469                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10470                                      SC_PORT(sc)*4)) &
10471                              AEU_INPUTS_ATTN_BITS_SPIO5);
10472 }
10473 
10474 static inline void
10475 bxe_init_objs(struct bxe_softc *sc)
10476 {
10477     /* mcast rules must be added to tx if tx switching is enabled */
10478     ecore_obj_type o_type =
10479         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10480                                          ECORE_OBJ_TYPE_RX;
10481 
10482     /* RX_MODE controlling object */
10483     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10484 
10485     /* multicast configuration controlling object */
10486     ecore_init_mcast_obj(sc,
10487                          &sc->mcast_obj,
10488                          sc->fp[0].cl_id,
10489                          sc->fp[0].index,
10490                          SC_FUNC(sc),
10491                          SC_FUNC(sc),
10492                          BXE_SP(sc, mcast_rdata),
10493                          BXE_SP_MAPPING(sc, mcast_rdata),
10494                          ECORE_FILTER_MCAST_PENDING,
10495                          &sc->sp_state,
10496                          o_type);
10497 
10498     /* Setup CAM credit pools */
10499     ecore_init_mac_credit_pool(sc,
10500                                &sc->macs_pool,
10501                                SC_FUNC(sc),
10502                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10503                                                  VNICS_PER_PATH(sc));
10504 
10505     ecore_init_vlan_credit_pool(sc,
10506                                 &sc->vlans_pool,
10507                                 SC_ABS_FUNC(sc) >> 1,
10508                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10509                                                   VNICS_PER_PATH(sc));
10510 
10511     /* RSS configuration object */
10512     ecore_init_rss_config_obj(sc,
10513                               &sc->rss_conf_obj,
10514                               sc->fp[0].cl_id,
10515                               sc->fp[0].index,
10516                               SC_FUNC(sc),
10517                               SC_FUNC(sc),
10518                               BXE_SP(sc, rss_rdata),
10519                               BXE_SP_MAPPING(sc, rss_rdata),
10520                               ECORE_FILTER_RSS_CONF_PENDING,
10521                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10522 }
10523 
10524 /*
10525  * Initialize the function. This must be called before sending CLIENT_SETUP
10526  * for the first client.
10527  */
10528 static inline int
10529 bxe_func_start(struct bxe_softc *sc)
10530 {
10531     struct ecore_func_state_params func_params = { NULL };
10532     struct ecore_func_start_params *start_params = &func_params.params.start;
10533 
10534     /* Prepare parameters for function state transitions */
10535     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10536 
10537     func_params.f_obj = &sc->func_obj;
10538     func_params.cmd = ECORE_F_CMD_START;
10539 
10540     /* Function parameters */
10541     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10542     start_params->sd_vlan_tag = OVLAN(sc);
10543 
10544     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10545         start_params->network_cos_mode = STATIC_COS;
10546     } else { /* CHIP_IS_E1X */
10547         start_params->network_cos_mode = FW_WRR;
10548     }
10549 
10550     //start_params->gre_tunnel_mode = 0;
10551     //start_params->gre_tunnel_rss  = 0;
10552 
10553     return (ecore_func_state_change(sc, &func_params));
10554 }
10555 
10556 static int
10557 bxe_set_power_state(struct bxe_softc *sc,
10558                     uint8_t          state)
10559 {
10560     uint16_t pmcsr;
10561 
10562     /* If there is no power capability, silently succeed */
10563     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10564         BLOGW(sc, "No power capability\n");
10565         return (0);
10566     }
10567 
10568     pmcsr = pci_read_config(sc->dev,
10569                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10570                             2);
10571 
10572     switch (state) {
10573     case PCI_PM_D0:
10574         pci_write_config(sc->dev,
10575                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10576                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10577 
10578         if (pmcsr & PCIM_PSTAT_DMASK) {
10579             /* delay required during transition out of D3hot */
10580             DELAY(20000);
10581         }
10582 
10583         break;
10584 
10585     case PCI_PM_D3hot:
10586         /* XXX if there are other clients above don't shut down the power */
10587 
10588         /* don't shut down the power for emulation and FPGA */
10589         if (CHIP_REV_IS_SLOW(sc)) {
10590             return (0);
10591         }
10592 
10593         pmcsr &= ~PCIM_PSTAT_DMASK;
10594         pmcsr |= PCIM_PSTAT_D3;
10595 
10596         if (sc->wol) {
10597             pmcsr |= PCIM_PSTAT_PMEENABLE;
10598         }
10599 
10600         pci_write_config(sc->dev,
10601                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10602                          pmcsr, 4);
10603 
10604         /*
10605          * No more memory access after this point until device is brought back
10606          * to D0 state.
10607          */
10608         break;
10609 
10610     default:
10611         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10612             state, pmcsr);
10613         return (-1);
10614     }
10615 
10616     return (0);
10617 }
10618 
10619 
10620 /* return true if succeeded to acquire the lock */
10621 static uint8_t
10622 bxe_trylock_hw_lock(struct bxe_softc *sc,
10623                     uint32_t         resource)
10624 {
10625     uint32_t lock_status;
10626     uint32_t resource_bit = (1 << resource);
10627     int func = SC_FUNC(sc);
10628     uint32_t hw_lock_control_reg;
10629 
10630     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10631 
10632     /* Validating that the resource is within range */
10633     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10634         BLOGD(sc, DBG_LOAD,
10635               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10636               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10637         return (FALSE);
10638     }
10639 
10640     if (func <= 5) {
10641         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10642     } else {
10643         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10644     }
10645 
10646     /* try to acquire the lock */
10647     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10648     lock_status = REG_RD(sc, hw_lock_control_reg);
10649     if (lock_status & resource_bit) {
10650         return (TRUE);
10651     }
10652 
10653     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10654         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10655         lock_status, resource_bit);
10656 
10657     return (FALSE);
10658 }
10659 
10660 /*
10661  * Get the recovery leader resource id according to the engine this function
10662  * belongs to. Currently only only 2 engines is supported.
10663  */
10664 static int
10665 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10666 {
10667     if (SC_PATH(sc)) {
10668         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10669     } else {
10670         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10671     }
10672 }
10673 
10674 /* try to acquire a leader lock for current engine */
10675 static uint8_t
10676 bxe_trylock_leader_lock(struct bxe_softc *sc)
10677 {
10678     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10679 }
10680 
10681 static int
10682 bxe_release_leader_lock(struct bxe_softc *sc)
10683 {
10684     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10685 }
10686 
10687 /* close gates #2, #3 and #4 */
10688 static void
10689 bxe_set_234_gates(struct bxe_softc *sc,
10690                   uint8_t          close)
10691 {
10692     uint32_t val;
10693 
10694     /* gates #2 and #4a are closed/opened for "not E1" only */
10695     if (!CHIP_IS_E1(sc)) {
10696         /* #4 */
10697         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10698         /* #2 */
10699         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10700     }
10701 
10702     /* #3 */
10703     if (CHIP_IS_E1x(sc)) {
10704         /* prevent interrupts from HC on both ports */
10705         val = REG_RD(sc, HC_REG_CONFIG_1);
10706         REG_WR(sc, HC_REG_CONFIG_1,
10707                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10708                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10709 
10710         val = REG_RD(sc, HC_REG_CONFIG_0);
10711         REG_WR(sc, HC_REG_CONFIG_0,
10712                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10713                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10714     } else {
10715         /* Prevent incoming interrupts in IGU */
10716         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10717 
10718         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10719                (!close) ?
10720                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10721                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10722     }
10723 
10724     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10725           close ? "closing" : "opening");
10726 
10727     wmb();
10728 }
10729 
10730 /* poll for pending writes bit, it should get cleared in no more than 1s */
10731 static int
10732 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10733 {
10734     uint32_t cnt = 1000;
10735     uint32_t pend_bits = 0;
10736 
10737     do {
10738         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10739 
10740         if (pend_bits == 0) {
10741             break;
10742         }
10743 
10744         DELAY(1000);
10745     } while (--cnt > 0);
10746 
10747     if (cnt == 0) {
10748         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10749         return (-1);
10750     }
10751 
10752     return (0);
10753 }
10754 
10755 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10756 
10757 static void
10758 bxe_clp_reset_prep(struct bxe_softc *sc,
10759                    uint32_t         *magic_val)
10760 {
10761     /* Do some magic... */
10762     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10763     *magic_val = val & SHARED_MF_CLP_MAGIC;
10764     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10765 }
10766 
10767 /* restore the value of the 'magic' bit */
10768 static void
10769 bxe_clp_reset_done(struct bxe_softc *sc,
10770                    uint32_t         magic_val)
10771 {
10772     /* Restore the 'magic' bit value... */
10773     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10774     MFCFG_WR(sc, shared_mf_config.clp_mb,
10775               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10776 }
10777 
10778 /* prepare for MCP reset, takes care of CLP configurations */
10779 static void
10780 bxe_reset_mcp_prep(struct bxe_softc *sc,
10781                    uint32_t         *magic_val)
10782 {
10783     uint32_t shmem;
10784     uint32_t validity_offset;
10785 
10786     /* set `magic' bit in order to save MF config */
10787     if (!CHIP_IS_E1(sc)) {
10788         bxe_clp_reset_prep(sc, magic_val);
10789     }
10790 
10791     /* get shmem offset */
10792     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10793     validity_offset =
10794         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10795 
10796     /* Clear validity map flags */
10797     if (shmem > 0) {
10798         REG_WR(sc, shmem + validity_offset, 0);
10799     }
10800 }
10801 
10802 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10803 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10804 
10805 static void
10806 bxe_mcp_wait_one(struct bxe_softc *sc)
10807 {
10808     /* special handling for emulation and FPGA (10 times longer) */
10809     if (CHIP_REV_IS_SLOW(sc)) {
10810         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10811     } else {
10812         DELAY((MCP_ONE_TIMEOUT) * 1000);
10813     }
10814 }
10815 
10816 /* initialize shmem_base and waits for validity signature to appear */
10817 static int
10818 bxe_init_shmem(struct bxe_softc *sc)
10819 {
10820     int cnt = 0;
10821     uint32_t val = 0;
10822 
10823     do {
10824         sc->devinfo.shmem_base     =
10825         sc->link_params.shmem_base =
10826             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10827 
10828         if (sc->devinfo.shmem_base) {
10829             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10830             if (val & SHR_MEM_VALIDITY_MB)
10831                 return (0);
10832         }
10833 
10834         bxe_mcp_wait_one(sc);
10835 
10836     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10837 
10838     BLOGE(sc, "BAD MCP validity signature\n");
10839 
10840     return (-1);
10841 }
10842 
10843 static int
10844 bxe_reset_mcp_comp(struct bxe_softc *sc,
10845                    uint32_t         magic_val)
10846 {
10847     int rc = bxe_init_shmem(sc);
10848 
10849     /* Restore the `magic' bit value */
10850     if (!CHIP_IS_E1(sc)) {
10851         bxe_clp_reset_done(sc, magic_val);
10852     }
10853 
10854     return (rc);
10855 }
10856 
10857 static void
10858 bxe_pxp_prep(struct bxe_softc *sc)
10859 {
10860     if (!CHIP_IS_E1(sc)) {
10861         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10862         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10863         wmb();
10864     }
10865 }
10866 
10867 /*
10868  * Reset the whole chip except for:
10869  *      - PCIE core
10870  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10871  *      - IGU
10872  *      - MISC (including AEU)
10873  *      - GRC
10874  *      - RBCN, RBCP
10875  */
10876 static void
10877 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10878                             uint8_t          global)
10879 {
10880     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10881     uint32_t global_bits2, stay_reset2;
10882 
10883     /*
10884      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10885      * (per chip) blocks.
10886      */
10887     global_bits2 =
10888         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10889         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10890 
10891     /*
10892      * Don't reset the following blocks.
10893      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10894      *            reset, as in 4 port device they might still be owned
10895      *            by the MCP (there is only one leader per path).
10896      */
10897     not_reset_mask1 =
10898         MISC_REGISTERS_RESET_REG_1_RST_HC |
10899         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10900         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10901 
10902     not_reset_mask2 =
10903         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10904         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10905         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10906         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10907         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10908         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10909         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10910         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10911         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10912         MISC_REGISTERS_RESET_REG_2_PGLC |
10913         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10914         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10915         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10916         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10917         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10918         MISC_REGISTERS_RESET_REG_2_UMAC1;
10919 
10920     /*
10921      * Keep the following blocks in reset:
10922      *  - all xxMACs are handled by the elink code.
10923      */
10924     stay_reset2 =
10925         MISC_REGISTERS_RESET_REG_2_XMAC |
10926         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10927 
10928     /* Full reset masks according to the chip */
10929     reset_mask1 = 0xffffffff;
10930 
10931     if (CHIP_IS_E1(sc))
10932         reset_mask2 = 0xffff;
10933     else if (CHIP_IS_E1H(sc))
10934         reset_mask2 = 0x1ffff;
10935     else if (CHIP_IS_E2(sc))
10936         reset_mask2 = 0xfffff;
10937     else /* CHIP_IS_E3 */
10938         reset_mask2 = 0x3ffffff;
10939 
10940     /* Don't reset global blocks unless we need to */
10941     if (!global)
10942         reset_mask2 &= ~global_bits2;
10943 
10944     /*
10945      * In case of attention in the QM, we need to reset PXP
10946      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10947      * because otherwise QM reset would release 'close the gates' shortly
10948      * before resetting the PXP, then the PSWRQ would send a write
10949      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10950      * read the payload data from PSWWR, but PSWWR would not
10951      * respond. The write queue in PGLUE would stuck, dmae commands
10952      * would not return. Therefore it's important to reset the second
10953      * reset register (containing the
10954      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10955      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10956      * bit).
10957      */
10958     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10959            reset_mask2 & (~not_reset_mask2));
10960 
10961     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10962            reset_mask1 & (~not_reset_mask1));
10963 
10964     mb();
10965     wmb();
10966 
10967     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10968            reset_mask2 & (~stay_reset2));
10969 
10970     mb();
10971     wmb();
10972 
10973     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10974     wmb();
10975 }
10976 
10977 static int
10978 bxe_process_kill(struct bxe_softc *sc,
10979                  uint8_t          global)
10980 {
10981     int cnt = 1000;
10982     uint32_t val = 0;
10983     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10984     uint32_t tags_63_32 = 0;
10985 
10986     /* Empty the Tetris buffer, wait for 1s */
10987     do {
10988         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10989         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
10990         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
10991         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
10992         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
10993         if (CHIP_IS_E3(sc)) {
10994             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
10995         }
10996 
10997         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
10998             ((port_is_idle_0 & 0x1) == 0x1) &&
10999             ((port_is_idle_1 & 0x1) == 0x1) &&
11000             (pgl_exp_rom2 == 0xffffffff) &&
11001             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11002             break;
11003         DELAY(1000);
11004     } while (cnt-- > 0);
11005 
11006     if (cnt <= 0) {
11007         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11008                   "are still outstanding read requests after 1s! "
11009                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11010                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11011               sr_cnt, blk_cnt, port_is_idle_0,
11012               port_is_idle_1, pgl_exp_rom2);
11013         return (-1);
11014     }
11015 
11016     mb();
11017 
11018     /* Close gates #2, #3 and #4 */
11019     bxe_set_234_gates(sc, TRUE);
11020 
11021     /* Poll for IGU VQs for 57712 and newer chips */
11022     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11023         return (-1);
11024     }
11025 
11026     /* XXX indicate that "process kill" is in progress to MCP */
11027 
11028     /* clear "unprepared" bit */
11029     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11030     mb();
11031 
11032     /* Make sure all is written to the chip before the reset */
11033     wmb();
11034 
11035     /*
11036      * Wait for 1ms to empty GLUE and PCI-E core queues,
11037      * PSWHST, GRC and PSWRD Tetris buffer.
11038      */
11039     DELAY(1000);
11040 
11041     /* Prepare to chip reset: */
11042     /* MCP */
11043     if (global) {
11044         bxe_reset_mcp_prep(sc, &val);
11045     }
11046 
11047     /* PXP */
11048     bxe_pxp_prep(sc);
11049     mb();
11050 
11051     /* reset the chip */
11052     bxe_process_kill_chip_reset(sc, global);
11053     mb();
11054 
11055     /* clear errors in PGB */
11056     if (!CHIP_IS_E1(sc))
11057         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11058 
11059     /* Recover after reset: */
11060     /* MCP */
11061     if (global && bxe_reset_mcp_comp(sc, val)) {
11062         return (-1);
11063     }
11064 
11065     /* XXX add resetting the NO_MCP mode DB here */
11066 
11067     /* Open the gates #2, #3 and #4 */
11068     bxe_set_234_gates(sc, FALSE);
11069 
11070     /* XXX
11071      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11072      * re-enable attentions
11073      */
11074 
11075     return (0);
11076 }
11077 
11078 static int
11079 bxe_leader_reset(struct bxe_softc *sc)
11080 {
11081     int rc = 0;
11082     uint8_t global = bxe_reset_is_global(sc);
11083     uint32_t load_code;
11084 
11085     /*
11086      * If not going to reset MCP, load "fake" driver to reset HW while
11087      * driver is owner of the HW.
11088      */
11089     if (!global && !BXE_NOMCP(sc)) {
11090         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11091                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11092         if (!load_code) {
11093             BLOGE(sc, "MCP response failure, aborting\n");
11094             rc = -1;
11095             goto exit_leader_reset;
11096         }
11097 
11098         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11099             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11100             BLOGE(sc, "MCP unexpected response, aborting\n");
11101             rc = -1;
11102             goto exit_leader_reset2;
11103         }
11104 
11105         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11106         if (!load_code) {
11107             BLOGE(sc, "MCP response failure, aborting\n");
11108             rc = -1;
11109             goto exit_leader_reset2;
11110         }
11111     }
11112 
11113     /* try to recover after the failure */
11114     if (bxe_process_kill(sc, global)) {
11115         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11116         rc = -1;
11117         goto exit_leader_reset2;
11118     }
11119 
11120     /*
11121      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11122      * state.
11123      */
11124     bxe_set_reset_done(sc);
11125     if (global) {
11126         bxe_clear_reset_global(sc);
11127     }
11128 
11129 exit_leader_reset2:
11130 
11131     /* unload "fake driver" if it was loaded */
11132     if (!global && !BXE_NOMCP(sc)) {
11133         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11134         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11135     }
11136 
11137 exit_leader_reset:
11138 
11139     sc->is_leader = 0;
11140     bxe_release_leader_lock(sc);
11141 
11142     mb();
11143     return (rc);
11144 }
11145 
11146 /*
11147  * prepare INIT transition, parameters configured:
11148  *   - HC configuration
11149  *   - Queue's CDU context
11150  */
11151 static void
11152 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11153                    struct bxe_fastpath            *fp,
11154                    struct ecore_queue_init_params *init_params)
11155 {
11156     uint8_t cos;
11157     int cxt_index, cxt_offset;
11158 
11159     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11160     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11161 
11162     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11163     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11164 
11165     /* HC rate */
11166     init_params->rx.hc_rate =
11167         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11168     init_params->tx.hc_rate =
11169         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11170 
11171     /* FW SB ID */
11172     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11173 
11174     /* CQ index among the SB indices */
11175     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11176     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11177 
11178     /* set maximum number of COSs supported by this queue */
11179     init_params->max_cos = sc->max_cos;
11180 
11181     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11182           fp->index, init_params->max_cos);
11183 
11184     /* set the context pointers queue object */
11185     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11186         /* XXX change index/cid here if ever support multiple tx CoS */
11187         /* fp->txdata[cos]->cid */
11188         cxt_index = fp->index / ILT_PAGE_CIDS;
11189         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11190         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11191     }
11192 }
11193 
11194 /* set flags that are common for the Tx-only and not normal connections */
11195 static unsigned long
11196 bxe_get_common_flags(struct bxe_softc    *sc,
11197                      struct bxe_fastpath *fp,
11198                      uint8_t             zero_stats)
11199 {
11200     unsigned long flags = 0;
11201 
11202     /* PF driver will always initialize the Queue to an ACTIVE state */
11203     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11204 
11205     /*
11206      * tx only connections collect statistics (on the same index as the
11207      * parent connection). The statistics are zeroed when the parent
11208      * connection is initialized.
11209      */
11210 
11211     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11212     if (zero_stats) {
11213         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11214     }
11215 
11216     /*
11217      * tx only connections can support tx-switching, though their
11218      * CoS-ness doesn't survive the loopback
11219      */
11220     if (sc->flags & BXE_TX_SWITCHING) {
11221         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11222     }
11223 
11224     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11225 
11226     return (flags);
11227 }
11228 
11229 static unsigned long
11230 bxe_get_q_flags(struct bxe_softc    *sc,
11231                 struct bxe_fastpath *fp,
11232                 uint8_t             leading)
11233 {
11234     unsigned long flags = 0;
11235 
11236     if (IS_MF_SD(sc)) {
11237         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11238     }
11239 
11240     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11241         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11242 #if __FreeBSD_version >= 800000
11243         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11244 #endif
11245     }
11246 
11247     if (leading) {
11248         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11249         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11250     }
11251 
11252     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11253 
11254     /* merge with common flags */
11255     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11256 }
11257 
11258 static void
11259 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11260                       struct bxe_fastpath               *fp,
11261                       struct ecore_general_setup_params *gen_init,
11262                       uint8_t                           cos)
11263 {
11264     gen_init->stat_id = bxe_stats_id(fp);
11265     gen_init->spcl_id = fp->cl_id;
11266     gen_init->mtu = sc->mtu;
11267     gen_init->cos = cos;
11268 }
11269 
11270 static void
11271 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11272                  struct bxe_fastpath           *fp,
11273                  struct rxq_pause_params       *pause,
11274                  struct ecore_rxq_setup_params *rxq_init)
11275 {
11276     uint8_t max_sge = 0;
11277     uint16_t sge_sz = 0;
11278     uint16_t tpa_agg_size = 0;
11279 
11280     pause->sge_th_lo = SGE_TH_LO(sc);
11281     pause->sge_th_hi = SGE_TH_HI(sc);
11282 
11283     /* validate SGE ring has enough to cross high threshold */
11284     if (sc->dropless_fc &&
11285             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11286             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11287         BLOGW(sc, "sge ring threshold limit\n");
11288     }
11289 
11290     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11291     tpa_agg_size = (2 * sc->mtu);
11292     if (tpa_agg_size < sc->max_aggregation_size) {
11293         tpa_agg_size = sc->max_aggregation_size;
11294     }
11295 
11296     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11297     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11298                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11299     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11300 
11301     /* pause - not for e1 */
11302     if (!CHIP_IS_E1(sc)) {
11303         pause->bd_th_lo = BD_TH_LO(sc);
11304         pause->bd_th_hi = BD_TH_HI(sc);
11305 
11306         pause->rcq_th_lo = RCQ_TH_LO(sc);
11307         pause->rcq_th_hi = RCQ_TH_HI(sc);
11308 
11309         /* validate rings have enough entries to cross high thresholds */
11310         if (sc->dropless_fc &&
11311             pause->bd_th_hi + FW_PREFETCH_CNT >
11312             sc->rx_ring_size) {
11313             BLOGW(sc, "rx bd ring threshold limit\n");
11314         }
11315 
11316         if (sc->dropless_fc &&
11317             pause->rcq_th_hi + FW_PREFETCH_CNT >
11318             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11319             BLOGW(sc, "rcq ring threshold limit\n");
11320         }
11321 
11322         pause->pri_map = 1;
11323     }
11324 
11325     /* rxq setup */
11326     rxq_init->dscr_map   = fp->rx_dma.paddr;
11327     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11328     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11329     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11330 
11331     /*
11332      * This should be a maximum number of data bytes that may be
11333      * placed on the BD (not including paddings).
11334      */
11335     rxq_init->buf_sz = (fp->rx_buf_size -
11336                         IP_HEADER_ALIGNMENT_PADDING);
11337 
11338     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11339     rxq_init->tpa_agg_sz      = tpa_agg_size;
11340     rxq_init->sge_buf_sz      = sge_sz;
11341     rxq_init->max_sges_pkt    = max_sge;
11342     rxq_init->rss_engine_id   = SC_FUNC(sc);
11343     rxq_init->mcast_engine_id = SC_FUNC(sc);
11344 
11345     /*
11346      * Maximum number or simultaneous TPA aggregation for this Queue.
11347      * For PF Clients it should be the maximum available number.
11348      * VF driver(s) may want to define it to a smaller value.
11349      */
11350     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11351 
11352     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11353     rxq_init->fw_sb_id = fp->fw_sb_id;
11354 
11355     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11356 
11357     /*
11358      * configure silent vlan removal
11359      * if multi function mode is afex, then mask default vlan
11360      */
11361     if (IS_MF_AFEX(sc)) {
11362         rxq_init->silent_removal_value =
11363             sc->devinfo.mf_info.afex_def_vlan_tag;
11364         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11365     }
11366 }
11367 
11368 static void
11369 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11370                  struct bxe_fastpath           *fp,
11371                  struct ecore_txq_setup_params *txq_init,
11372                  uint8_t                       cos)
11373 {
11374     /*
11375      * XXX If multiple CoS is ever supported then each fastpath structure
11376      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11377      * fp->txdata[cos]->tx_dma.paddr;
11378      */
11379     txq_init->dscr_map     = fp->tx_dma.paddr;
11380     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11381     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11382     txq_init->fw_sb_id     = fp->fw_sb_id;
11383 
11384     /*
11385      * set the TSS leading client id for TX classfication to the
11386      * leading RSS client id
11387      */
11388     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11389 }
11390 
11391 /*
11392  * This function performs 2 steps in a queue state machine:
11393  *   1) RESET->INIT
11394  *   2) INIT->SETUP
11395  */
11396 static int
11397 bxe_setup_queue(struct bxe_softc    *sc,
11398                 struct bxe_fastpath *fp,
11399                 uint8_t             leading)
11400 {
11401     struct ecore_queue_state_params q_params = { NULL };
11402     struct ecore_queue_setup_params *setup_params =
11403                         &q_params.params.setup;
11404     int rc;
11405 
11406     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11407 
11408     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11409 
11410     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11411 
11412     /* we want to wait for completion in this context */
11413     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11414 
11415     /* prepare the INIT parameters */
11416     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11417 
11418     /* Set the command */
11419     q_params.cmd = ECORE_Q_CMD_INIT;
11420 
11421     /* Change the state to INIT */
11422     rc = ecore_queue_state_change(sc, &q_params);
11423     if (rc) {
11424         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11425         return (rc);
11426     }
11427 
11428     BLOGD(sc, DBG_LOAD, "init complete\n");
11429 
11430     /* now move the Queue to the SETUP state */
11431     memset(setup_params, 0, sizeof(*setup_params));
11432 
11433     /* set Queue flags */
11434     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11435 
11436     /* set general SETUP parameters */
11437     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11438                           FIRST_TX_COS_INDEX);
11439 
11440     bxe_pf_rx_q_prep(sc, fp,
11441                      &setup_params->pause_params,
11442                      &setup_params->rxq_params);
11443 
11444     bxe_pf_tx_q_prep(sc, fp,
11445                      &setup_params->txq_params,
11446                      FIRST_TX_COS_INDEX);
11447 
11448     /* Set the command */
11449     q_params.cmd = ECORE_Q_CMD_SETUP;
11450 
11451     /* change the state to SETUP */
11452     rc = ecore_queue_state_change(sc, &q_params);
11453     if (rc) {
11454         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11455         return (rc);
11456     }
11457 
11458     return (rc);
11459 }
11460 
11461 static int
11462 bxe_setup_leading(struct bxe_softc *sc)
11463 {
11464     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11465 }
11466 
11467 static int
11468 bxe_config_rss_pf(struct bxe_softc            *sc,
11469                   struct ecore_rss_config_obj *rss_obj,
11470                   uint8_t                     config_hash)
11471 {
11472     struct ecore_config_rss_params params = { NULL };
11473     int i;
11474 
11475     /*
11476      * Although RSS is meaningless when there is a single HW queue we
11477      * still need it enabled in order to have HW Rx hash generated.
11478      */
11479 
11480     params.rss_obj = rss_obj;
11481 
11482     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11483 
11484     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11485 
11486     /* RSS configuration */
11487     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11488     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11489     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11490     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11491     if (rss_obj->udp_rss_v4) {
11492         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11493     }
11494     if (rss_obj->udp_rss_v6) {
11495         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11496     }
11497 
11498     /* Hash bits */
11499     params.rss_result_mask = MULTI_MASK;
11500 
11501     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11502 
11503     if (config_hash) {
11504         /* RSS keys */
11505         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11506             params.rss_key[i] = arc4random();
11507         }
11508 
11509         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11510     }
11511 
11512     return (ecore_config_rss(sc, &params));
11513 }
11514 
11515 static int
11516 bxe_config_rss_eth(struct bxe_softc *sc,
11517                    uint8_t          config_hash)
11518 {
11519     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11520 }
11521 
11522 static int
11523 bxe_init_rss_pf(struct bxe_softc *sc)
11524 {
11525     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11526     int i;
11527 
11528     /*
11529      * Prepare the initial contents of the indirection table if
11530      * RSS is enabled
11531      */
11532     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11533         sc->rss_conf_obj.ind_table[i] =
11534             (sc->fp->cl_id + (i % num_eth_queues));
11535     }
11536 
11537     if (sc->udp_rss) {
11538         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11539     }
11540 
11541     /*
11542      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11543      * per-port, so if explicit configuration is needed, do it only
11544      * for a PMF.
11545      *
11546      * For 57712 and newer it's a per-function configuration.
11547      */
11548     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11549 }
11550 
11551 static int
11552 bxe_set_mac_one(struct bxe_softc          *sc,
11553                 uint8_t                   *mac,
11554                 struct ecore_vlan_mac_obj *obj,
11555                 uint8_t                   set,
11556                 int                       mac_type,
11557                 unsigned long             *ramrod_flags)
11558 {
11559     struct ecore_vlan_mac_ramrod_params ramrod_param;
11560     int rc;
11561 
11562     memset(&ramrod_param, 0, sizeof(ramrod_param));
11563 
11564     /* fill in general parameters */
11565     ramrod_param.vlan_mac_obj = obj;
11566     ramrod_param.ramrod_flags = *ramrod_flags;
11567 
11568     /* fill a user request section if needed */
11569     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11570         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11571 
11572         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11573 
11574         /* Set the command: ADD or DEL */
11575         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11576                                             ECORE_VLAN_MAC_DEL;
11577     }
11578 
11579     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11580 
11581     if (rc == ECORE_EXISTS) {
11582         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11583         /* do not treat adding same MAC as error */
11584         rc = 0;
11585     } else if (rc < 0) {
11586         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11587     }
11588 
11589     return (rc);
11590 }
11591 
11592 static int
11593 bxe_set_eth_mac(struct bxe_softc *sc,
11594                 uint8_t          set)
11595 {
11596     unsigned long ramrod_flags = 0;
11597 
11598     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11599 
11600     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11601 
11602     /* Eth MAC is set on RSS leading client (fp[0]) */
11603     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11604                             &sc->sp_objs->mac_obj,
11605                             set, ECORE_ETH_MAC, &ramrod_flags));
11606 }
11607 
11608 static int
11609 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11610 {
11611     uint32_t sel_phy_idx = 0;
11612 
11613     if (sc->link_params.num_phys <= 1) {
11614         return (ELINK_INT_PHY);
11615     }
11616 
11617     if (sc->link_vars.link_up) {
11618         sel_phy_idx = ELINK_EXT_PHY1;
11619         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11620         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11621             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11622              ELINK_SUPPORTED_FIBRE))
11623             sel_phy_idx = ELINK_EXT_PHY2;
11624     } else {
11625         switch (elink_phy_selection(&sc->link_params)) {
11626         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11627         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11628         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11629                sel_phy_idx = ELINK_EXT_PHY1;
11630                break;
11631         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11632         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11633                sel_phy_idx = ELINK_EXT_PHY2;
11634                break;
11635         }
11636     }
11637 
11638     return (sel_phy_idx);
11639 }
11640 
11641 static int
11642 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11643 {
11644     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11645 
11646     /*
11647      * The selected activated PHY is always after swapping (in case PHY
11648      * swapping is enabled). So when swapping is enabled, we need to reverse
11649      * the configuration
11650      */
11651 
11652     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11653         if (sel_phy_idx == ELINK_EXT_PHY1)
11654             sel_phy_idx = ELINK_EXT_PHY2;
11655         else if (sel_phy_idx == ELINK_EXT_PHY2)
11656             sel_phy_idx = ELINK_EXT_PHY1;
11657     }
11658 
11659     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11660 }
11661 
11662 static void
11663 bxe_set_requested_fc(struct bxe_softc *sc)
11664 {
11665     /*
11666      * Initialize link parameters structure variables
11667      * It is recommended to turn off RX FC for jumbo frames
11668      * for better performance
11669      */
11670     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11671         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11672     } else {
11673         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11674     }
11675 }
11676 
11677 static void
11678 bxe_calc_fc_adv(struct bxe_softc *sc)
11679 {
11680     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11681 
11682 
11683     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11684                                            ADVERTISED_Pause);
11685 
11686     switch (sc->link_vars.ieee_fc &
11687             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11688 
11689     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11690         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11691                                           ADVERTISED_Pause);
11692         break;
11693 
11694     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11695         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11696         break;
11697 
11698     default:
11699         break;
11700 
11701     }
11702 }
11703 
11704 static uint16_t
11705 bxe_get_mf_speed(struct bxe_softc *sc)
11706 {
11707     uint16_t line_speed = sc->link_vars.line_speed;
11708     if (IS_MF(sc)) {
11709         uint16_t maxCfg =
11710             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11711 
11712         /* calculate the current MAX line speed limit for the MF devices */
11713         if (IS_MF_SI(sc)) {
11714             line_speed = (line_speed * maxCfg) / 100;
11715         } else { /* SD mode */
11716             uint16_t vn_max_rate = maxCfg * 100;
11717 
11718             if (vn_max_rate < line_speed) {
11719                 line_speed = vn_max_rate;
11720             }
11721         }
11722     }
11723 
11724     return (line_speed);
11725 }
11726 
11727 static void
11728 bxe_fill_report_data(struct bxe_softc            *sc,
11729                      struct bxe_link_report_data *data)
11730 {
11731     uint16_t line_speed = bxe_get_mf_speed(sc);
11732 
11733     memset(data, 0, sizeof(*data));
11734 
11735     /* fill the report data with the effective line speed */
11736     data->line_speed = line_speed;
11737 
11738     /* Link is down */
11739     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11740         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11741     }
11742 
11743     /* Full DUPLEX */
11744     if (sc->link_vars.duplex == DUPLEX_FULL) {
11745         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11746     }
11747 
11748     /* Rx Flow Control is ON */
11749     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11750         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11751     }
11752 
11753     /* Tx Flow Control is ON */
11754     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11755         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11756     }
11757 }
11758 
11759 /* report link status to OS, should be called under phy_lock */
11760 static void
11761 bxe_link_report_locked(struct bxe_softc *sc)
11762 {
11763     struct bxe_link_report_data cur_data;
11764 
11765     /* reread mf_cfg */
11766     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11767         bxe_read_mf_cfg(sc);
11768     }
11769 
11770     /* Read the current link report info */
11771     bxe_fill_report_data(sc, &cur_data);
11772 
11773     /* Don't report link down or exactly the same link status twice */
11774     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11775         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11776                       &sc->last_reported_link.link_report_flags) &&
11777          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11778                       &cur_data.link_report_flags))) {
11779         return;
11780     }
11781 
11782 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11783 					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11784     sc->link_cnt++;
11785 
11786 	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11787     /* report new link params and remember the state for the next time */
11788     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11789 
11790     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11791                      &cur_data.link_report_flags)) {
11792         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11793     } else {
11794         const char *duplex;
11795         const char *flow;
11796 
11797         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11798                                    &cur_data.link_report_flags)) {
11799             duplex = "full";
11800 			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11801         } else {
11802             duplex = "half";
11803 			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11804         }
11805 
11806         /*
11807          * Handle the FC at the end so that only these flags would be
11808          * possibly set. This way we may easily check if there is no FC
11809          * enabled.
11810          */
11811         if (cur_data.link_report_flags) {
11812             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11813                              &cur_data.link_report_flags) &&
11814                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11815                              &cur_data.link_report_flags)) {
11816                 flow = "ON - receive & transmit";
11817             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11818                                     &cur_data.link_report_flags) &&
11819                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11820                                      &cur_data.link_report_flags)) {
11821                 flow = "ON - receive";
11822             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11823                                      &cur_data.link_report_flags) &&
11824                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11825                                     &cur_data.link_report_flags)) {
11826                 flow = "ON - transmit";
11827             } else {
11828                 flow = "none"; /* possible? */
11829             }
11830         } else {
11831             flow = "none";
11832         }
11833 
11834         if_link_state_change(sc->ifp, LINK_STATE_UP);
11835         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11836               cur_data.line_speed, duplex, flow);
11837     }
11838 }
11839 
11840 static void
11841 bxe_link_report(struct bxe_softc *sc)
11842 {
11843     bxe_acquire_phy_lock(sc);
11844     bxe_link_report_locked(sc);
11845     bxe_release_phy_lock(sc);
11846 }
11847 
11848 static void
11849 bxe_link_status_update(struct bxe_softc *sc)
11850 {
11851     if (sc->state != BXE_STATE_OPEN) {
11852         return;
11853     }
11854 
11855     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11856         elink_link_status_update(&sc->link_params, &sc->link_vars);
11857     } else {
11858         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11859                                   ELINK_SUPPORTED_10baseT_Full |
11860                                   ELINK_SUPPORTED_100baseT_Half |
11861                                   ELINK_SUPPORTED_100baseT_Full |
11862                                   ELINK_SUPPORTED_1000baseT_Full |
11863                                   ELINK_SUPPORTED_2500baseX_Full |
11864                                   ELINK_SUPPORTED_10000baseT_Full |
11865                                   ELINK_SUPPORTED_TP |
11866                                   ELINK_SUPPORTED_FIBRE |
11867                                   ELINK_SUPPORTED_Autoneg |
11868                                   ELINK_SUPPORTED_Pause |
11869                                   ELINK_SUPPORTED_Asym_Pause);
11870         sc->port.advertising[0] = sc->port.supported[0];
11871 
11872         sc->link_params.sc                = sc;
11873         sc->link_params.port              = SC_PORT(sc);
11874         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11875         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11876         sc->link_params.req_line_speed[0] = SPEED_10000;
11877         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11878         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11879 
11880         if (CHIP_REV_IS_FPGA(sc)) {
11881             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11882             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11883             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11884                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11885         } else {
11886             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11887             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11888             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11889                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11890         }
11891 
11892         sc->link_vars.link_up = 1;
11893 
11894         sc->link_vars.duplex    = DUPLEX_FULL;
11895         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11896 
11897         if (IS_PF(sc)) {
11898             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11899             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11900             bxe_link_report(sc);
11901         }
11902     }
11903 
11904     if (IS_PF(sc)) {
11905         if (sc->link_vars.link_up) {
11906             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11907         } else {
11908             bxe_stats_handle(sc, STATS_EVENT_STOP);
11909         }
11910         bxe_link_report(sc);
11911     } else {
11912         bxe_link_report(sc);
11913         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11914     }
11915 }
11916 
11917 static int
11918 bxe_initial_phy_init(struct bxe_softc *sc,
11919                      int              load_mode)
11920 {
11921     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11922     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11923     struct elink_params *lp = &sc->link_params;
11924 
11925     bxe_set_requested_fc(sc);
11926 
11927     if (CHIP_REV_IS_SLOW(sc)) {
11928         uint32_t bond = CHIP_BOND_ID(sc);
11929         uint32_t feat = 0;
11930 
11931         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11932             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11933         } else if (bond & 0x4) {
11934             if (CHIP_IS_E3(sc)) {
11935                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11936             } else {
11937                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11938             }
11939         } else if (bond & 0x8) {
11940             if (CHIP_IS_E3(sc)) {
11941                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11942             } else {
11943                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11944             }
11945         }
11946 
11947         /* disable EMAC for E3 and above */
11948         if (bond & 0x2) {
11949             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11950         }
11951 
11952         sc->link_params.feature_config_flags |= feat;
11953     }
11954 
11955     bxe_acquire_phy_lock(sc);
11956 
11957     if (load_mode == LOAD_DIAG) {
11958         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11959         /* Prefer doing PHY loopback at 10G speed, if possible */
11960         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11961             if (lp->speed_cap_mask[cfg_idx] &
11962                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11963                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11964             } else {
11965                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11966             }
11967         }
11968     }
11969 
11970     if (load_mode == LOAD_LOOPBACK_EXT) {
11971         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11972     }
11973 
11974     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11975 
11976     bxe_release_phy_lock(sc);
11977 
11978     bxe_calc_fc_adv(sc);
11979 
11980     if (sc->link_vars.link_up) {
11981         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11982         bxe_link_report(sc);
11983     }
11984 
11985     if (!CHIP_REV_IS_SLOW(sc)) {
11986         bxe_periodic_start(sc);
11987     }
11988 
11989     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11990     return (rc);
11991 }
11992 
11993 /* must be called under IF_ADDR_LOCK */
11994 
11995 static int
11996 bxe_set_mc_list(struct bxe_softc *sc)
11997 {
11998     struct ecore_mcast_ramrod_params rparam = { NULL };
11999     int rc = 0;
12000     int mc_count = 0;
12001     int mcnt, i;
12002     struct ecore_mcast_list_elem *mc_mac, *mc_mac_start;
12003     unsigned char *mta;
12004     if_t ifp = sc->ifp;
12005 
12006     mc_count = if_multiaddr_count(ifp, -1);/* XXX they don't have a limit */
12007     if (!mc_count)
12008         return (0);
12009 
12010     mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN *
12011             mc_count, M_DEVBUF, M_NOWAIT);
12012 
12013     if(mta == NULL) {
12014         BLOGE(sc, "Failed to allocate temp mcast list\n");
12015         return (-1);
12016     }
12017     bzero(mta, (sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count));
12018 
12019     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, (M_NOWAIT | M_ZERO));
12020     mc_mac_start = mc_mac;
12021 
12022     if (!mc_mac) {
12023         free(mta, M_DEVBUF);
12024         BLOGE(sc, "Failed to allocate temp mcast list\n");
12025         return (-1);
12026     }
12027     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12028 
12029     /* mta and mcnt not expected to be  different */
12030     if_multiaddr_array(ifp, mta, &mcnt, mc_count);
12031 
12032 
12033     rparam.mcast_obj = &sc->mcast_obj;
12034     ECORE_LIST_INIT(&rparam.mcast_list);
12035 
12036     for(i=0; i< mcnt; i++) {
12037 
12038         mc_mac->mac = (uint8_t *)(mta + (i * ETHER_ADDR_LEN));
12039         ECORE_LIST_PUSH_TAIL(&mc_mac->link, &rparam.mcast_list);
12040 
12041         BLOGD(sc, DBG_LOAD,
12042               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12043               mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12044               mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12045 
12046         mc_mac++;
12047     }
12048     rparam.mcast_list_len = mc_count;
12049 
12050     BXE_MCAST_LOCK(sc);
12051 
12052     /* first, clear all configured multicast MACs */
12053     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12054     if (rc < 0) {
12055         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12056         BXE_MCAST_UNLOCK(sc);
12057     	free(mc_mac_start, M_DEVBUF);
12058         free(mta, M_DEVBUF);
12059         return (rc);
12060     }
12061 
12062     /* Now add the new MACs */
12063     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12064     if (rc < 0) {
12065         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12066     }
12067 
12068     BXE_MCAST_UNLOCK(sc);
12069 
12070     free(mc_mac_start, M_DEVBUF);
12071     free(mta, M_DEVBUF);
12072 
12073     return (rc);
12074 }
12075 
12076 static int
12077 bxe_set_uc_list(struct bxe_softc *sc)
12078 {
12079     if_t ifp = sc->ifp;
12080     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12081     struct ifaddr *ifa;
12082     unsigned long ramrod_flags = 0;
12083     int rc;
12084 
12085 #if __FreeBSD_version < 800000
12086     IF_ADDR_LOCK(ifp);
12087 #else
12088     if_addr_rlock(ifp);
12089 #endif
12090 
12091     /* first schedule a cleanup up of old configuration */
12092     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12093     if (rc < 0) {
12094         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12095 #if __FreeBSD_version < 800000
12096         IF_ADDR_UNLOCK(ifp);
12097 #else
12098         if_addr_runlock(ifp);
12099 #endif
12100         return (rc);
12101     }
12102 
12103     ifa = if_getifaddr(ifp); /* XXX Is this structure */
12104     while (ifa) {
12105         if (ifa->ifa_addr->sa_family != AF_LINK) {
12106             ifa = TAILQ_NEXT(ifa, ifa_link);
12107             continue;
12108         }
12109 
12110         rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12111                              mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12112         if (rc == -EEXIST) {
12113             BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12114             /* do not treat adding same MAC as an error */
12115             rc = 0;
12116         } else if (rc < 0) {
12117             BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12118 #if __FreeBSD_version < 800000
12119             IF_ADDR_UNLOCK(ifp);
12120 #else
12121             if_addr_runlock(ifp);
12122 #endif
12123             return (rc);
12124         }
12125 
12126         ifa = TAILQ_NEXT(ifa, ifa_link);
12127     }
12128 
12129 #if __FreeBSD_version < 800000
12130     IF_ADDR_UNLOCK(ifp);
12131 #else
12132     if_addr_runlock(ifp);
12133 #endif
12134 
12135     /* Execute the pending commands */
12136     bit_set(&ramrod_flags, RAMROD_CONT);
12137     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12138                             ECORE_UC_LIST_MAC, &ramrod_flags));
12139 }
12140 
12141 static void
12142 bxe_set_rx_mode(struct bxe_softc *sc)
12143 {
12144     if_t ifp = sc->ifp;
12145     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12146 
12147     if (sc->state != BXE_STATE_OPEN) {
12148         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12149         return;
12150     }
12151 
12152     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12153 
12154     if (if_getflags(ifp) & IFF_PROMISC) {
12155         rx_mode = BXE_RX_MODE_PROMISC;
12156     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12157                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12158                 CHIP_IS_E1(sc))) {
12159         rx_mode = BXE_RX_MODE_ALLMULTI;
12160     } else {
12161         if (IS_PF(sc)) {
12162             /* some multicasts */
12163             if (bxe_set_mc_list(sc) < 0) {
12164                 rx_mode = BXE_RX_MODE_ALLMULTI;
12165             }
12166             if (bxe_set_uc_list(sc) < 0) {
12167                 rx_mode = BXE_RX_MODE_PROMISC;
12168             }
12169         }
12170     }
12171 
12172     sc->rx_mode = rx_mode;
12173 
12174     /* schedule the rx_mode command */
12175     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12176         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12177         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12178         return;
12179     }
12180 
12181     if (IS_PF(sc)) {
12182         bxe_set_storm_rx_mode(sc);
12183     }
12184 }
12185 
12186 
12187 /* update flags in shmem */
12188 static void
12189 bxe_update_drv_flags(struct bxe_softc *sc,
12190                      uint32_t         flags,
12191                      uint32_t         set)
12192 {
12193     uint32_t drv_flags;
12194 
12195     if (SHMEM2_HAS(sc, drv_flags)) {
12196         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12197         drv_flags = SHMEM2_RD(sc, drv_flags);
12198 
12199         if (set) {
12200             SET_FLAGS(drv_flags, flags);
12201         } else {
12202             RESET_FLAGS(drv_flags, flags);
12203         }
12204 
12205         SHMEM2_WR(sc, drv_flags, drv_flags);
12206         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12207 
12208         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12209     }
12210 }
12211 
12212 /* periodic timer callout routine, only runs when the interface is up */
12213 
12214 static void
12215 bxe_periodic_callout_func(void *xsc)
12216 {
12217     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12218     int i;
12219 
12220     if (!BXE_CORE_TRYLOCK(sc)) {
12221         /* just bail and try again next time */
12222 
12223         if ((sc->state == BXE_STATE_OPEN) &&
12224             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12225             /* schedule the next periodic callout */
12226             callout_reset(&sc->periodic_callout, hz,
12227                           bxe_periodic_callout_func, sc);
12228         }
12229 
12230         return;
12231     }
12232 
12233     if ((sc->state != BXE_STATE_OPEN) ||
12234         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12235         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12236         BXE_CORE_UNLOCK(sc);
12237         return;
12238         }
12239 
12240 
12241     /* Check for TX timeouts on any fastpath. */
12242     FOR_EACH_QUEUE(sc, i) {
12243         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12244             /* Ruh-Roh, chip was reset! */
12245             break;
12246         }
12247     }
12248 
12249     if (!CHIP_REV_IS_SLOW(sc)) {
12250         /*
12251          * This barrier is needed to ensure the ordering between the writing
12252          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12253          * the reading here.
12254          */
12255         mb();
12256         if (sc->port.pmf) {
12257 	    bxe_acquire_phy_lock(sc);
12258             elink_period_func(&sc->link_params, &sc->link_vars);
12259 	    bxe_release_phy_lock(sc);
12260         }
12261     }
12262 
12263     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12264         int mb_idx = SC_FW_MB_IDX(sc);
12265         uint32_t drv_pulse;
12266         uint32_t mcp_pulse;
12267 
12268         ++sc->fw_drv_pulse_wr_seq;
12269         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12270 
12271         drv_pulse = sc->fw_drv_pulse_wr_seq;
12272         bxe_drv_pulse(sc);
12273 
12274         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12275                      MCP_PULSE_SEQ_MASK);
12276 
12277         /*
12278          * The delta between driver pulse and mcp response should
12279          * be 1 (before mcp response) or 0 (after mcp response).
12280          */
12281         if ((drv_pulse != mcp_pulse) &&
12282             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12283             /* someone lost a heartbeat... */
12284             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12285                   drv_pulse, mcp_pulse);
12286         }
12287     }
12288 
12289     /* state is BXE_STATE_OPEN */
12290     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12291 
12292     BXE_CORE_UNLOCK(sc);
12293 
12294     if ((sc->state == BXE_STATE_OPEN) &&
12295         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12296         /* schedule the next periodic callout */
12297         callout_reset(&sc->periodic_callout, hz,
12298                       bxe_periodic_callout_func, sc);
12299     }
12300 }
12301 
12302 static void
12303 bxe_periodic_start(struct bxe_softc *sc)
12304 {
12305     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12306     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12307 }
12308 
12309 static void
12310 bxe_periodic_stop(struct bxe_softc *sc)
12311 {
12312     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12313     callout_drain(&sc->periodic_callout);
12314 }
12315 
12316 /* start the controller */
12317 static __noinline int
12318 bxe_nic_load(struct bxe_softc *sc,
12319              int              load_mode)
12320 {
12321     uint32_t val;
12322     int load_code = 0;
12323     int i, rc = 0;
12324 
12325     BXE_CORE_LOCK_ASSERT(sc);
12326 
12327     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12328 
12329     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12330 
12331     if (IS_PF(sc)) {
12332         /* must be called before memory allocation and HW init */
12333         bxe_ilt_set_info(sc);
12334     }
12335 
12336     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12337 
12338     bxe_set_fp_rx_buf_size(sc);
12339 
12340     if (bxe_alloc_fp_buffers(sc) != 0) {
12341         BLOGE(sc, "Failed to allocate fastpath memory\n");
12342         sc->state = BXE_STATE_CLOSED;
12343         rc = ENOMEM;
12344         goto bxe_nic_load_error0;
12345     }
12346 
12347     if (bxe_alloc_mem(sc) != 0) {
12348         sc->state = BXE_STATE_CLOSED;
12349         rc = ENOMEM;
12350         goto bxe_nic_load_error0;
12351     }
12352 
12353     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12354         sc->state = BXE_STATE_CLOSED;
12355         rc = ENOMEM;
12356         goto bxe_nic_load_error0;
12357     }
12358 
12359     if (IS_PF(sc)) {
12360         /* set pf load just before approaching the MCP */
12361         bxe_set_pf_load(sc);
12362 
12363         /* if MCP exists send load request and analyze response */
12364         if (!BXE_NOMCP(sc)) {
12365             /* attempt to load pf */
12366             if (bxe_nic_load_request(sc, &load_code) != 0) {
12367                 sc->state = BXE_STATE_CLOSED;
12368                 rc = ENXIO;
12369                 goto bxe_nic_load_error1;
12370             }
12371 
12372             /* what did the MCP say? */
12373             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12374                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12375                 sc->state = BXE_STATE_CLOSED;
12376                 rc = ENXIO;
12377                 goto bxe_nic_load_error2;
12378             }
12379         } else {
12380             BLOGI(sc, "Device has no MCP!\n");
12381             load_code = bxe_nic_load_no_mcp(sc);
12382         }
12383 
12384         /* mark PMF if applicable */
12385         bxe_nic_load_pmf(sc, load_code);
12386 
12387         /* Init Function state controlling object */
12388         bxe_init_func_obj(sc);
12389 
12390         /* Initialize HW */
12391         if (bxe_init_hw(sc, load_code) != 0) {
12392             BLOGE(sc, "HW init failed\n");
12393             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12394             sc->state = BXE_STATE_CLOSED;
12395             rc = ENXIO;
12396             goto bxe_nic_load_error2;
12397         }
12398     }
12399 
12400     /* set ALWAYS_ALIVE bit in shmem */
12401     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12402     bxe_drv_pulse(sc);
12403     sc->flags |= BXE_NO_PULSE;
12404 
12405     /* attach interrupts */
12406     if (bxe_interrupt_attach(sc) != 0) {
12407         sc->state = BXE_STATE_CLOSED;
12408         rc = ENXIO;
12409         goto bxe_nic_load_error2;
12410     }
12411 
12412     bxe_nic_init(sc, load_code);
12413 
12414     /* Init per-function objects */
12415     if (IS_PF(sc)) {
12416         bxe_init_objs(sc);
12417         // XXX bxe_iov_nic_init(sc);
12418 
12419         /* set AFEX default VLAN tag to an invalid value */
12420         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12421         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12422 
12423         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12424         rc = bxe_func_start(sc);
12425         if (rc) {
12426             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12427             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12428             sc->state = BXE_STATE_ERROR;
12429             goto bxe_nic_load_error3;
12430         }
12431 
12432         /* send LOAD_DONE command to MCP */
12433         if (!BXE_NOMCP(sc)) {
12434             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12435             if (!load_code) {
12436                 BLOGE(sc, "MCP response failure, aborting\n");
12437                 sc->state = BXE_STATE_ERROR;
12438                 rc = ENXIO;
12439                 goto bxe_nic_load_error3;
12440             }
12441         }
12442 
12443         rc = bxe_setup_leading(sc);
12444         if (rc) {
12445             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12446             sc->state = BXE_STATE_ERROR;
12447             goto bxe_nic_load_error3;
12448         }
12449 
12450         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12451             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12452             if (rc) {
12453                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12454                 sc->state = BXE_STATE_ERROR;
12455                 goto bxe_nic_load_error3;
12456             }
12457         }
12458 
12459         rc = bxe_init_rss_pf(sc);
12460         if (rc) {
12461             BLOGE(sc, "PF RSS init failed\n");
12462             sc->state = BXE_STATE_ERROR;
12463             goto bxe_nic_load_error3;
12464         }
12465     }
12466     /* XXX VF */
12467 
12468     /* now when Clients are configured we are ready to work */
12469     sc->state = BXE_STATE_OPEN;
12470 
12471     /* Configure a ucast MAC */
12472     if (IS_PF(sc)) {
12473         rc = bxe_set_eth_mac(sc, TRUE);
12474     }
12475     if (rc) {
12476         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12477         sc->state = BXE_STATE_ERROR;
12478         goto bxe_nic_load_error3;
12479     }
12480 
12481     if (sc->port.pmf) {
12482         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12483         if (rc) {
12484             sc->state = BXE_STATE_ERROR;
12485             goto bxe_nic_load_error3;
12486         }
12487     }
12488 
12489     sc->link_params.feature_config_flags &=
12490         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12491 
12492     /* start fast path */
12493 
12494     /* Initialize Rx filter */
12495     bxe_set_rx_mode(sc);
12496 
12497     /* start the Tx */
12498     switch (/* XXX load_mode */LOAD_OPEN) {
12499     case LOAD_NORMAL:
12500     case LOAD_OPEN:
12501         break;
12502 
12503     case LOAD_DIAG:
12504     case LOAD_LOOPBACK_EXT:
12505         sc->state = BXE_STATE_DIAG;
12506         break;
12507 
12508     default:
12509         break;
12510     }
12511 
12512     if (sc->port.pmf) {
12513         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12514     } else {
12515         bxe_link_status_update(sc);
12516     }
12517 
12518     /* start the periodic timer callout */
12519     bxe_periodic_start(sc);
12520 
12521     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12522         /* mark driver is loaded in shmem2 */
12523         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12524         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12525                   (val |
12526                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12527                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12528     }
12529 
12530     /* wait for all pending SP commands to complete */
12531     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12532         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12533         bxe_periodic_stop(sc);
12534         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12535         return (ENXIO);
12536     }
12537 
12538     /* Tell the stack the driver is running! */
12539     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12540 
12541     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12542 
12543     return (0);
12544 
12545 bxe_nic_load_error3:
12546 
12547     if (IS_PF(sc)) {
12548         bxe_int_disable_sync(sc, 1);
12549 
12550         /* clean out queued objects */
12551         bxe_squeeze_objects(sc);
12552     }
12553 
12554     bxe_interrupt_detach(sc);
12555 
12556 bxe_nic_load_error2:
12557 
12558     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12559         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12560         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12561     }
12562 
12563     sc->port.pmf = 0;
12564 
12565 bxe_nic_load_error1:
12566 
12567     /* clear pf_load status, as it was already set */
12568     if (IS_PF(sc)) {
12569         bxe_clear_pf_load(sc);
12570     }
12571 
12572 bxe_nic_load_error0:
12573 
12574     bxe_free_fw_stats_mem(sc);
12575     bxe_free_fp_buffers(sc);
12576     bxe_free_mem(sc);
12577 
12578     return (rc);
12579 }
12580 
12581 static int
12582 bxe_init_locked(struct bxe_softc *sc)
12583 {
12584     int other_engine = SC_PATH(sc) ? 0 : 1;
12585     uint8_t other_load_status, load_status;
12586     uint8_t global = FALSE;
12587     int rc;
12588 
12589     BXE_CORE_LOCK_ASSERT(sc);
12590 
12591     /* check if the driver is already running */
12592     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12593         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12594         return (0);
12595     }
12596 
12597     bxe_set_power_state(sc, PCI_PM_D0);
12598 
12599     /*
12600      * If parity occurred during the unload, then attentions and/or
12601      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12602      * loaded on the current engine to complete the recovery. Parity recovery
12603      * is only relevant for PF driver.
12604      */
12605     if (IS_PF(sc)) {
12606         other_load_status = bxe_get_load_status(sc, other_engine);
12607         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12608 
12609         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12610             bxe_chk_parity_attn(sc, &global, TRUE)) {
12611             do {
12612                 /*
12613                  * If there are attentions and they are in global blocks, set
12614                  * the GLOBAL_RESET bit regardless whether it will be this
12615                  * function that will complete the recovery or not.
12616                  */
12617                 if (global) {
12618                     bxe_set_reset_global(sc);
12619                 }
12620 
12621                 /*
12622                  * Only the first function on the current engine should try
12623                  * to recover in open. In case of attentions in global blocks
12624                  * only the first in the chip should try to recover.
12625                  */
12626                 if ((!load_status && (!global || !other_load_status)) &&
12627                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12628                     BLOGI(sc, "Recovered during init\n");
12629                     break;
12630                 }
12631 
12632                 /* recovery has failed... */
12633                 bxe_set_power_state(sc, PCI_PM_D3hot);
12634                 sc->recovery_state = BXE_RECOVERY_FAILED;
12635 
12636                 BLOGE(sc, "Recovery flow hasn't properly "
12637                           "completed yet, try again later. "
12638                           "If you still see this message after a "
12639                           "few retries then power cycle is required.\n");
12640 
12641                 rc = ENXIO;
12642                 goto bxe_init_locked_done;
12643             } while (0);
12644         }
12645     }
12646 
12647     sc->recovery_state = BXE_RECOVERY_DONE;
12648 
12649     rc = bxe_nic_load(sc, LOAD_OPEN);
12650 
12651 bxe_init_locked_done:
12652 
12653     if (rc) {
12654         /* Tell the stack the driver is NOT running! */
12655         BLOGE(sc, "Initialization failed, "
12656                   "stack notified driver is NOT running!\n");
12657 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12658     }
12659 
12660     return (rc);
12661 }
12662 
12663 static int
12664 bxe_stop_locked(struct bxe_softc *sc)
12665 {
12666     BXE_CORE_LOCK_ASSERT(sc);
12667     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12668 }
12669 
12670 /*
12671  * Handles controller initialization when called from an unlocked routine.
12672  * ifconfig calls this function.
12673  *
12674  * Returns:
12675  *   void
12676  */
12677 static void
12678 bxe_init(void *xsc)
12679 {
12680     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12681 
12682     BXE_CORE_LOCK(sc);
12683     bxe_init_locked(sc);
12684     BXE_CORE_UNLOCK(sc);
12685 }
12686 
12687 static int
12688 bxe_init_ifnet(struct bxe_softc *sc)
12689 {
12690     if_t ifp;
12691     int capabilities;
12692 
12693     /* ifconfig entrypoint for media type/status reporting */
12694     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12695                  bxe_ifmedia_update,
12696                  bxe_ifmedia_status);
12697 
12698     /* set the default interface values */
12699     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12700     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12701     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12702 
12703     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12704 	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12705 
12706     /* allocate the ifnet structure */
12707     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12708         BLOGE(sc, "Interface allocation failed!\n");
12709         return (ENXIO);
12710     }
12711 
12712     if_setsoftc(ifp, sc);
12713     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12714     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12715     if_setioctlfn(ifp, bxe_ioctl);
12716     if_setstartfn(ifp, bxe_tx_start);
12717     if_setgetcounterfn(ifp, bxe_get_counter);
12718 #if __FreeBSD_version >= 901504
12719     if_settransmitfn(ifp, bxe_tx_mq_start);
12720     if_setqflushfn(ifp, bxe_mq_flush);
12721 #endif
12722 #ifdef FreeBSD8_0
12723     if_settimer(ifp, 0);
12724 #endif
12725     if_setinitfn(ifp, bxe_init);
12726     if_setmtu(ifp, sc->mtu);
12727     if_sethwassist(ifp, (CSUM_IP      |
12728                         CSUM_TCP      |
12729                         CSUM_UDP      |
12730                         CSUM_TSO      |
12731                         CSUM_TCP_IPV6 |
12732                         CSUM_UDP_IPV6));
12733 
12734     capabilities =
12735 #if __FreeBSD_version < 700000
12736         (IFCAP_VLAN_MTU       |
12737          IFCAP_VLAN_HWTAGGING |
12738          IFCAP_HWCSUM         |
12739          IFCAP_JUMBO_MTU      |
12740          IFCAP_LRO);
12741 #else
12742         (IFCAP_VLAN_MTU       |
12743          IFCAP_VLAN_HWTAGGING |
12744          IFCAP_VLAN_HWTSO     |
12745          IFCAP_VLAN_HWFILTER  |
12746          IFCAP_VLAN_HWCSUM    |
12747          IFCAP_HWCSUM         |
12748          IFCAP_JUMBO_MTU      |
12749          IFCAP_LRO            |
12750          IFCAP_TSO4           |
12751          IFCAP_TSO6           |
12752          IFCAP_WOL_MAGIC);
12753 #endif
12754     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
12755     if_setcapenable(ifp, if_getcapabilities(ifp));
12756     if_setbaudrate(ifp, IF_Gbps(10));
12757 /* XXX */
12758     if_setsendqlen(ifp, sc->tx_ring_size);
12759     if_setsendqready(ifp);
12760 /* XXX */
12761 
12762     sc->ifp = ifp;
12763 
12764     /* attach to the Ethernet interface list */
12765     ether_ifattach(ifp, sc->link_params.mac_addr);
12766 
12767     return (0);
12768 }
12769 
12770 static void
12771 bxe_deallocate_bars(struct bxe_softc *sc)
12772 {
12773     int i;
12774 
12775     for (i = 0; i < MAX_BARS; i++) {
12776         if (sc->bar[i].resource != NULL) {
12777             bus_release_resource(sc->dev,
12778                                  SYS_RES_MEMORY,
12779                                  sc->bar[i].rid,
12780                                  sc->bar[i].resource);
12781             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
12782                   i, PCIR_BAR(i));
12783         }
12784     }
12785 }
12786 
12787 static int
12788 bxe_allocate_bars(struct bxe_softc *sc)
12789 {
12790     u_int flags;
12791     int i;
12792 
12793     memset(sc->bar, 0, sizeof(sc->bar));
12794 
12795     for (i = 0; i < MAX_BARS; i++) {
12796 
12797         /* memory resources reside at BARs 0, 2, 4 */
12798         /* Run `pciconf -lb` to see mappings */
12799         if ((i != 0) && (i != 2) && (i != 4)) {
12800             continue;
12801         }
12802 
12803         sc->bar[i].rid = PCIR_BAR(i);
12804 
12805         flags = RF_ACTIVE;
12806         if (i == 0) {
12807             flags |= RF_SHAREABLE;
12808         }
12809 
12810         if ((sc->bar[i].resource =
12811              bus_alloc_resource_any(sc->dev,
12812                                     SYS_RES_MEMORY,
12813                                     &sc->bar[i].rid,
12814                                     flags)) == NULL) {
12815             return (0);
12816         }
12817 
12818         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
12819         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
12820         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
12821 
12822         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%jd) -> %p\n",
12823               i, PCIR_BAR(i),
12824               (void *)rman_get_start(sc->bar[i].resource),
12825               (void *)rman_get_end(sc->bar[i].resource),
12826               rman_get_size(sc->bar[i].resource),
12827               (void *)sc->bar[i].kva);
12828     }
12829 
12830     return (0);
12831 }
12832 
12833 static void
12834 bxe_get_function_num(struct bxe_softc *sc)
12835 {
12836     uint32_t val = 0;
12837 
12838     /*
12839      * Read the ME register to get the function number. The ME register
12840      * holds the relative-function number and absolute-function number. The
12841      * absolute-function number appears only in E2 and above. Before that
12842      * these bits always contained zero, therefore we cannot blindly use them.
12843      */
12844 
12845     val = REG_RD(sc, BAR_ME_REGISTER);
12846 
12847     sc->pfunc_rel =
12848         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
12849     sc->path_id =
12850         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
12851 
12852     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
12853         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
12854     } else {
12855         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
12856     }
12857 
12858     BLOGD(sc, DBG_LOAD,
12859           "Relative function %d, Absolute function %d, Path %d\n",
12860           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
12861 }
12862 
12863 static uint32_t
12864 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
12865 {
12866     uint32_t shmem2_size;
12867     uint32_t offset;
12868     uint32_t mf_cfg_offset_value;
12869 
12870     /* Non 57712 */
12871     offset = (SHMEM_RD(sc, func_mb) +
12872               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
12873 
12874     /* 57712 plus */
12875     if (sc->devinfo.shmem2_base != 0) {
12876         shmem2_size = SHMEM2_RD(sc, size);
12877         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
12878             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
12879             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
12880                 offset = mf_cfg_offset_value;
12881             }
12882         }
12883     }
12884 
12885     return (offset);
12886 }
12887 
12888 static uint32_t
12889 bxe_pcie_capability_read(struct bxe_softc *sc,
12890                          int    reg,
12891                          int    width)
12892 {
12893     int pcie_reg;
12894 
12895     /* ensure PCIe capability is enabled */
12896     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
12897         if (pcie_reg != 0) {
12898             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
12899             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
12900         }
12901     }
12902 
12903     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
12904 
12905     return (0);
12906 }
12907 
12908 static uint8_t
12909 bxe_is_pcie_pending(struct bxe_softc *sc)
12910 {
12911     return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
12912             PCIM_EXP_STA_TRANSACTION_PND);
12913 }
12914 
12915 /*
12916  * Walk the PCI capabiites list for the device to find what features are
12917  * supported. These capabilites may be enabled/disabled by firmware so it's
12918  * best to walk the list rather than make assumptions.
12919  */
12920 static void
12921 bxe_probe_pci_caps(struct bxe_softc *sc)
12922 {
12923     uint16_t link_status;
12924     int reg;
12925 
12926     /* check if PCI Power Management is enabled */
12927     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
12928         if (reg != 0) {
12929             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
12930 
12931             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
12932             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
12933         }
12934     }
12935 
12936     link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
12937 
12938     /* handle PCIe 2.0 workarounds for 57710 */
12939     if (CHIP_IS_E1(sc)) {
12940         /* workaround for 57710 errata E4_57710_27462 */
12941         sc->devinfo.pcie_link_speed =
12942             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
12943 
12944         /* workaround for 57710 errata E4_57710_27488 */
12945         sc->devinfo.pcie_link_width =
12946             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12947         if (sc->devinfo.pcie_link_speed > 1) {
12948             sc->devinfo.pcie_link_width =
12949                 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
12950         }
12951     } else {
12952         sc->devinfo.pcie_link_speed =
12953             (link_status & PCIM_LINK_STA_SPEED);
12954         sc->devinfo.pcie_link_width =
12955             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
12956     }
12957 
12958     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
12959           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
12960 
12961     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
12962     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
12963 
12964     /* check if MSI capability is enabled */
12965     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
12966         if (reg != 0) {
12967             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
12968 
12969             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
12970             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
12971         }
12972     }
12973 
12974     /* check if MSI-X capability is enabled */
12975     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
12976         if (reg != 0) {
12977             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
12978 
12979             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
12980             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
12981         }
12982     }
12983 }
12984 
12985 static int
12986 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
12987 {
12988     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
12989     uint32_t val;
12990 
12991     /* get the outer vlan if we're in switch-dependent mode */
12992 
12993     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
12994     mf_info->ext_id = (uint16_t)val;
12995 
12996     mf_info->multi_vnics_mode = 1;
12997 
12998     if (!VALID_OVLAN(mf_info->ext_id)) {
12999         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13000         return (1);
13001     }
13002 
13003     /* get the capabilities */
13004     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13005         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13006         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13007     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13008                FUNC_MF_CFG_PROTOCOL_FCOE) {
13009         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13010     } else {
13011         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13012     }
13013 
13014     mf_info->vnics_per_port =
13015         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13016 
13017     return (0);
13018 }
13019 
13020 static uint32_t
13021 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13022 {
13023     uint32_t retval = 0;
13024     uint32_t val;
13025 
13026     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13027 
13028     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13029         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13030             retval |= MF_PROTO_SUPPORT_ETHERNET;
13031         }
13032         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13033             retval |= MF_PROTO_SUPPORT_ISCSI;
13034         }
13035         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13036             retval |= MF_PROTO_SUPPORT_FCOE;
13037         }
13038     }
13039 
13040     return (retval);
13041 }
13042 
13043 static int
13044 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13045 {
13046     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13047     uint32_t val;
13048 
13049     /*
13050      * There is no outer vlan if we're in switch-independent mode.
13051      * If the mac is valid then assume multi-function.
13052      */
13053 
13054     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13055 
13056     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13057 
13058     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13059 
13060     mf_info->vnics_per_port =
13061         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13062 
13063     return (0);
13064 }
13065 
13066 static int
13067 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13068 {
13069     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13070     uint32_t e1hov_tag;
13071     uint32_t func_config;
13072     uint32_t niv_config;
13073 
13074     mf_info->multi_vnics_mode = 1;
13075 
13076     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13077     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13078     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13079 
13080     mf_info->ext_id =
13081         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13082                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13083 
13084     mf_info->default_vlan =
13085         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13086                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13087 
13088     mf_info->niv_allowed_priorities =
13089         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13090                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13091 
13092     mf_info->niv_default_cos =
13093         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13094                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13095 
13096     mf_info->afex_vlan_mode =
13097         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13098          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13099 
13100     mf_info->niv_mba_enabled =
13101         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13102          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13103 
13104     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13105 
13106     mf_info->vnics_per_port =
13107         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13108 
13109     return (0);
13110 }
13111 
13112 static int
13113 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13114 {
13115     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13116     uint32_t mf_cfg1;
13117     uint32_t mf_cfg2;
13118     uint32_t ovlan1;
13119     uint32_t ovlan2;
13120     uint8_t i, j;
13121 
13122     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13123           SC_PORT(sc));
13124     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13125           mf_info->mf_config[SC_VN(sc)]);
13126     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13127           mf_info->multi_vnics_mode);
13128     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13129           mf_info->vnics_per_port);
13130     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13131           mf_info->ext_id);
13132     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13133           mf_info->min_bw[0], mf_info->min_bw[1],
13134           mf_info->min_bw[2], mf_info->min_bw[3]);
13135     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13136           mf_info->max_bw[0], mf_info->max_bw[1],
13137           mf_info->max_bw[2], mf_info->max_bw[3]);
13138     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13139           sc->mac_addr_str);
13140 
13141     /* various MF mode sanity checks... */
13142 
13143     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13144         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13145               SC_PORT(sc));
13146         return (1);
13147     }
13148 
13149     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13150         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13151               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13152         return (1);
13153     }
13154 
13155     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13156         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13157         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13158             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13159                   SC_VN(sc), OVLAN(sc));
13160             return (1);
13161         }
13162 
13163         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13164             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13165                   mf_info->multi_vnics_mode, OVLAN(sc));
13166             return (1);
13167         }
13168 
13169         /*
13170          * Verify all functions are either MF or SF mode. If MF, make sure
13171          * sure that all non-hidden functions have a valid ovlan. If SF,
13172          * make sure that all non-hidden functions have an invalid ovlan.
13173          */
13174         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13175             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13176             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13177             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13178                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13179                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13180                 BLOGE(sc, "mf_mode=SD function %d MF config "
13181                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13182                       i, mf_info->multi_vnics_mode, ovlan1);
13183                 return (1);
13184             }
13185         }
13186 
13187         /* Verify all funcs on the same port each have a different ovlan. */
13188         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13189             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13190             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13191             /* iterate from the next function on the port to the max func */
13192             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13193                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13194                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13195                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13196                     VALID_OVLAN(ovlan1) &&
13197                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13198                     VALID_OVLAN(ovlan2) &&
13199                     (ovlan1 == ovlan2)) {
13200                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13201                               "have the same ovlan (%d)\n",
13202                           i, j, ovlan1);
13203                     return (1);
13204                 }
13205             }
13206         }
13207     } /* MULTI_FUNCTION_SD */
13208 
13209     return (0);
13210 }
13211 
13212 static int
13213 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13214 {
13215     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13216     uint32_t val, mac_upper;
13217     uint8_t i, vnic;
13218 
13219     /* initialize mf_info defaults */
13220     mf_info->vnics_per_port   = 1;
13221     mf_info->multi_vnics_mode = FALSE;
13222     mf_info->path_has_ovlan   = FALSE;
13223     mf_info->mf_mode          = SINGLE_FUNCTION;
13224 
13225     if (!CHIP_IS_MF_CAP(sc)) {
13226         return (0);
13227     }
13228 
13229     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13230         BLOGE(sc, "Invalid mf_cfg_base!\n");
13231         return (1);
13232     }
13233 
13234     /* get the MF mode (switch dependent / independent / single-function) */
13235 
13236     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13237 
13238     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13239     {
13240     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13241 
13242         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13243 
13244         /* check for legal upper mac bytes */
13245         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13246             mf_info->mf_mode = MULTI_FUNCTION_SI;
13247         } else {
13248             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13249         }
13250 
13251         break;
13252 
13253     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13254     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13255 
13256         /* get outer vlan configuration */
13257         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13258 
13259         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13260             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13261             mf_info->mf_mode = MULTI_FUNCTION_SD;
13262         } else {
13263             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13264         }
13265 
13266         break;
13267 
13268     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13269 
13270         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13271         return (0);
13272 
13273     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13274 
13275         /*
13276          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13277          * and the MAC address is valid.
13278          */
13279         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13280 
13281         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13282             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13283             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13284         } else {
13285             BLOGE(sc, "Invalid config for AFEX mode\n");
13286         }
13287 
13288         break;
13289 
13290     default:
13291 
13292         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13293               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13294 
13295         return (1);
13296     }
13297 
13298     /* set path mf_mode (which could be different than function mf_mode) */
13299     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13300         mf_info->path_has_ovlan = TRUE;
13301     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13302         /*
13303          * Decide on path multi vnics mode. If we're not in MF mode and in
13304          * 4-port mode, this is good enough to check vnic-0 of the other port
13305          * on the same path
13306          */
13307         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13308             uint8_t other_port = !(PORT_ID(sc) & 1);
13309             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13310 
13311             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13312 
13313             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13314         }
13315     }
13316 
13317     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13318         /* invalid MF config */
13319         if (SC_VN(sc) >= 1) {
13320             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13321             return (1);
13322         }
13323 
13324         return (0);
13325     }
13326 
13327     /* get the MF configuration */
13328     mf_info->mf_config[SC_VN(sc)] =
13329         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13330 
13331     switch(mf_info->mf_mode)
13332     {
13333     case MULTI_FUNCTION_SD:
13334 
13335         bxe_get_shmem_mf_cfg_info_sd(sc);
13336         break;
13337 
13338     case MULTI_FUNCTION_SI:
13339 
13340         bxe_get_shmem_mf_cfg_info_si(sc);
13341         break;
13342 
13343     case MULTI_FUNCTION_AFEX:
13344 
13345         bxe_get_shmem_mf_cfg_info_niv(sc);
13346         break;
13347 
13348     default:
13349 
13350         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13351               mf_info->mf_mode);
13352         return (1);
13353     }
13354 
13355     /* get the congestion management parameters */
13356 
13357     vnic = 0;
13358     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13359         /* get min/max bw */
13360         val = MFCFG_RD(sc, func_mf_config[i].config);
13361         mf_info->min_bw[vnic] =
13362             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13363         mf_info->max_bw[vnic] =
13364             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13365         vnic++;
13366     }
13367 
13368     return (bxe_check_valid_mf_cfg(sc));
13369 }
13370 
13371 static int
13372 bxe_get_shmem_info(struct bxe_softc *sc)
13373 {
13374     int port;
13375     uint32_t mac_hi, mac_lo, val;
13376 
13377     port = SC_PORT(sc);
13378     mac_hi = mac_lo = 0;
13379 
13380     sc->link_params.sc   = sc;
13381     sc->link_params.port = port;
13382 
13383     /* get the hardware config info */
13384     sc->devinfo.hw_config =
13385         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13386     sc->devinfo.hw_config2 =
13387         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13388 
13389     sc->link_params.hw_led_mode =
13390         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13391          SHARED_HW_CFG_LED_MODE_SHIFT);
13392 
13393     /* get the port feature config */
13394     sc->port.config =
13395         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13396 
13397     /* get the link params */
13398     sc->link_params.speed_cap_mask[0] =
13399         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13400     sc->link_params.speed_cap_mask[1] =
13401         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13402 
13403     /* get the lane config */
13404     sc->link_params.lane_config =
13405         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13406 
13407     /* get the link config */
13408     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13409     sc->port.link_config[ELINK_INT_PHY] = val;
13410     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13411     sc->port.link_config[ELINK_EXT_PHY1] =
13412         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13413 
13414     /* get the override preemphasis flag and enable it or turn it off */
13415     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13416     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13417         sc->link_params.feature_config_flags |=
13418             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13419     } else {
13420         sc->link_params.feature_config_flags &=
13421             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13422     }
13423 
13424     /* get the initial value of the link params */
13425     sc->link_params.multi_phy_config =
13426         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13427 
13428     /* get external phy info */
13429     sc->port.ext_phy_config =
13430         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13431 
13432     /* get the multifunction configuration */
13433     bxe_get_mf_cfg_info(sc);
13434 
13435     /* get the mac address */
13436     if (IS_MF(sc)) {
13437         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13438         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13439     } else {
13440         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13441         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13442     }
13443 
13444     if ((mac_lo == 0) && (mac_hi == 0)) {
13445         *sc->mac_addr_str = 0;
13446         BLOGE(sc, "No Ethernet address programmed!\n");
13447     } else {
13448         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13449         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13450         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13451         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13452         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13453         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13454         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13455                  "%02x:%02x:%02x:%02x:%02x:%02x",
13456                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13457                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13458                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13459         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13460     }
13461 
13462     return (0);
13463 }
13464 
13465 static void
13466 bxe_get_tunable_params(struct bxe_softc *sc)
13467 {
13468     /* sanity checks */
13469 
13470     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13471         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13472         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13473         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13474         bxe_interrupt_mode = INTR_MODE_MSIX;
13475     }
13476 
13477     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13478         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13479         bxe_queue_count = 0;
13480     }
13481 
13482     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13483         if (bxe_max_rx_bufs == 0) {
13484             bxe_max_rx_bufs = RX_BD_USABLE;
13485         } else {
13486             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13487             bxe_max_rx_bufs = 2048;
13488         }
13489     }
13490 
13491     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13492         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13493         bxe_hc_rx_ticks = 25;
13494     }
13495 
13496     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13497         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13498         bxe_hc_tx_ticks = 50;
13499     }
13500 
13501     if (bxe_max_aggregation_size == 0) {
13502         bxe_max_aggregation_size = TPA_AGG_SIZE;
13503     }
13504 
13505     if (bxe_max_aggregation_size > 0xffff) {
13506         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13507               bxe_max_aggregation_size);
13508         bxe_max_aggregation_size = TPA_AGG_SIZE;
13509     }
13510 
13511     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13512         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13513         bxe_mrrs = -1;
13514     }
13515 
13516     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13517         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13518         bxe_autogreeen = 0;
13519     }
13520 
13521     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13522         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13523         bxe_udp_rss = 0;
13524     }
13525 
13526     /* pull in user settings */
13527 
13528     sc->interrupt_mode       = bxe_interrupt_mode;
13529     sc->max_rx_bufs          = bxe_max_rx_bufs;
13530     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13531     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13532     sc->max_aggregation_size = bxe_max_aggregation_size;
13533     sc->mrrs                 = bxe_mrrs;
13534     sc->autogreeen           = bxe_autogreeen;
13535     sc->udp_rss              = bxe_udp_rss;
13536 
13537     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13538         sc->num_queues = 1;
13539     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13540         sc->num_queues =
13541             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13542                 MAX_RSS_CHAINS);
13543         if (sc->num_queues > mp_ncpus) {
13544             sc->num_queues = mp_ncpus;
13545         }
13546     }
13547 
13548     BLOGD(sc, DBG_LOAD,
13549           "User Config: "
13550           "debug=0x%lx "
13551           "interrupt_mode=%d "
13552           "queue_count=%d "
13553           "hc_rx_ticks=%d "
13554           "hc_tx_ticks=%d "
13555           "rx_budget=%d "
13556           "max_aggregation_size=%d "
13557           "mrrs=%d "
13558           "autogreeen=%d "
13559           "udp_rss=%d\n",
13560           bxe_debug,
13561           sc->interrupt_mode,
13562           sc->num_queues,
13563           sc->hc_rx_ticks,
13564           sc->hc_tx_ticks,
13565           bxe_rx_budget,
13566           sc->max_aggregation_size,
13567           sc->mrrs,
13568           sc->autogreeen,
13569           sc->udp_rss);
13570 }
13571 
13572 static int
13573 bxe_media_detect(struct bxe_softc *sc)
13574 {
13575     int port_type;
13576     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13577 
13578     switch (sc->link_params.phy[phy_idx].media_type) {
13579     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13580     case ELINK_ETH_PHY_XFP_FIBER:
13581         BLOGI(sc, "Found 10Gb Fiber media.\n");
13582         sc->media = IFM_10G_SR;
13583         port_type = PORT_FIBRE;
13584         break;
13585     case ELINK_ETH_PHY_SFP_1G_FIBER:
13586         BLOGI(sc, "Found 1Gb Fiber media.\n");
13587         sc->media = IFM_1000_SX;
13588         port_type = PORT_FIBRE;
13589         break;
13590     case ELINK_ETH_PHY_KR:
13591     case ELINK_ETH_PHY_CX4:
13592         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13593         sc->media = IFM_10G_CX4;
13594         port_type = PORT_FIBRE;
13595         break;
13596     case ELINK_ETH_PHY_DA_TWINAX:
13597         BLOGI(sc, "Found 10Gb Twinax media.\n");
13598         sc->media = IFM_10G_TWINAX;
13599         port_type = PORT_DA;
13600         break;
13601     case ELINK_ETH_PHY_BASE_T:
13602         if (sc->link_params.speed_cap_mask[0] &
13603             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13604             BLOGI(sc, "Found 10GBase-T media.\n");
13605             sc->media = IFM_10G_T;
13606             port_type = PORT_TP;
13607         } else {
13608             BLOGI(sc, "Found 1000Base-T media.\n");
13609             sc->media = IFM_1000_T;
13610             port_type = PORT_TP;
13611         }
13612         break;
13613     case ELINK_ETH_PHY_NOT_PRESENT:
13614         BLOGI(sc, "Media not present.\n");
13615         sc->media = 0;
13616         port_type = PORT_OTHER;
13617         break;
13618     case ELINK_ETH_PHY_UNSPECIFIED:
13619     default:
13620         BLOGI(sc, "Unknown media!\n");
13621         sc->media = 0;
13622         port_type = PORT_OTHER;
13623         break;
13624     }
13625     return port_type;
13626 }
13627 
13628 #define GET_FIELD(value, fname)                     \
13629     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13630 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13631 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13632 
13633 static int
13634 bxe_get_igu_cam_info(struct bxe_softc *sc)
13635 {
13636     int pfid = SC_FUNC(sc);
13637     int igu_sb_id;
13638     uint32_t val;
13639     uint8_t fid, igu_sb_cnt = 0;
13640 
13641     sc->igu_base_sb = 0xff;
13642 
13643     if (CHIP_INT_MODE_IS_BC(sc)) {
13644         int vn = SC_VN(sc);
13645         igu_sb_cnt = sc->igu_sb_cnt;
13646         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13647                            FP_SB_MAX_E1x);
13648         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13649                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13650         return (0);
13651     }
13652 
13653     /* IGU in normal mode - read CAM */
13654     for (igu_sb_id = 0;
13655          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13656          igu_sb_id++) {
13657         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13658         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13659             continue;
13660         }
13661         fid = IGU_FID(val);
13662         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13663             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13664                 continue;
13665             }
13666             if (IGU_VEC(val) == 0) {
13667                 /* default status block */
13668                 sc->igu_dsb_id = igu_sb_id;
13669             } else {
13670                 if (sc->igu_base_sb == 0xff) {
13671                     sc->igu_base_sb = igu_sb_id;
13672                 }
13673                 igu_sb_cnt++;
13674             }
13675         }
13676     }
13677 
13678     /*
13679      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13680      * that number of CAM entries will not be equal to the value advertised in
13681      * PCI. Driver should use the minimal value of both as the actual status
13682      * block count
13683      */
13684     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13685 
13686     if (igu_sb_cnt == 0) {
13687         BLOGE(sc, "CAM configuration error\n");
13688         return (-1);
13689     }
13690 
13691     return (0);
13692 }
13693 
13694 /*
13695  * Gather various information from the device config space, the device itself,
13696  * shmem, and the user input.
13697  */
13698 static int
13699 bxe_get_device_info(struct bxe_softc *sc)
13700 {
13701     uint32_t val;
13702     int rc;
13703 
13704     /* Get the data for the device */
13705     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13706     sc->devinfo.device_id    = pci_get_device(sc->dev);
13707     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13708     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13709 
13710     /* get the chip revision (chip metal comes from pci config space) */
13711     sc->devinfo.chip_id     =
13712     sc->link_params.chip_id =
13713         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13714          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13715          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13716          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13717 
13718     /* force 57811 according to MISC register */
13719     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13720         if (CHIP_IS_57810(sc)) {
13721             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13722                                    (sc->devinfo.chip_id & 0x0000ffff));
13723         } else if (CHIP_IS_57810_MF(sc)) {
13724             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13725                                    (sc->devinfo.chip_id & 0x0000ffff));
13726         }
13727         sc->devinfo.chip_id |= 0x1;
13728     }
13729 
13730     BLOGD(sc, DBG_LOAD,
13731           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13732           sc->devinfo.chip_id,
13733           ((sc->devinfo.chip_id >> 16) & 0xffff),
13734           ((sc->devinfo.chip_id >> 12) & 0xf),
13735           ((sc->devinfo.chip_id >>  4) & 0xff),
13736           ((sc->devinfo.chip_id >>  0) & 0xf));
13737 
13738     val = (REG_RD(sc, 0x2874) & 0x55);
13739     if ((sc->devinfo.chip_id & 0x1) ||
13740         (CHIP_IS_E1(sc) && val) ||
13741         (CHIP_IS_E1H(sc) && (val == 0x55))) {
13742         sc->flags |= BXE_ONE_PORT_FLAG;
13743         BLOGD(sc, DBG_LOAD, "single port device\n");
13744     }
13745 
13746     /* set the doorbell size */
13747     sc->doorbell_size = (1 << BXE_DB_SHIFT);
13748 
13749     /* determine whether the device is in 2 port or 4 port mode */
13750     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
13751     if (CHIP_IS_E2E3(sc)) {
13752         /*
13753          * Read port4mode_en_ovwr[0]:
13754          *   If 1, four port mode is in port4mode_en_ovwr[1].
13755          *   If 0, four port mode is in port4mode_en[0].
13756          */
13757         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
13758         if (val & 1) {
13759             val = ((val >> 1) & 1);
13760         } else {
13761             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
13762         }
13763 
13764         sc->devinfo.chip_port_mode =
13765             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
13766 
13767         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
13768     }
13769 
13770     /* get the function and path info for the device */
13771     bxe_get_function_num(sc);
13772 
13773     /* get the shared memory base address */
13774     sc->devinfo.shmem_base     =
13775     sc->link_params.shmem_base =
13776         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
13777     sc->devinfo.shmem2_base =
13778         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
13779                                   MISC_REG_GENERIC_CR_0));
13780 
13781     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
13782           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
13783 
13784     if (!sc->devinfo.shmem_base) {
13785         /* this should ONLY prevent upcoming shmem reads */
13786         BLOGI(sc, "MCP not active\n");
13787         sc->flags |= BXE_NO_MCP_FLAG;
13788         return (0);
13789     }
13790 
13791     /* make sure the shared memory contents are valid */
13792     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
13793     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
13794         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
13795         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
13796         return (0);
13797     }
13798     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
13799 
13800     /* get the bootcode version */
13801     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
13802     snprintf(sc->devinfo.bc_ver_str,
13803              sizeof(sc->devinfo.bc_ver_str),
13804              "%d.%d.%d",
13805              ((sc->devinfo.bc_ver >> 24) & 0xff),
13806              ((sc->devinfo.bc_ver >> 16) & 0xff),
13807              ((sc->devinfo.bc_ver >>  8) & 0xff));
13808     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
13809 
13810     /* get the bootcode shmem address */
13811     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
13812     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
13813 
13814     /* clean indirect addresses as they're not used */
13815     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
13816     if (IS_PF(sc)) {
13817         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
13818         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
13819         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
13820         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
13821         if (CHIP_IS_E1x(sc)) {
13822             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
13823             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
13824             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
13825             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
13826         }
13827 
13828         /*
13829          * Enable internal target-read (in case we are probed after PF
13830          * FLR). Must be done prior to any BAR read access. Only for
13831          * 57712 and up
13832          */
13833         if (!CHIP_IS_E1x(sc)) {
13834             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13835         }
13836     }
13837 
13838     /* get the nvram size */
13839     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
13840     sc->devinfo.flash_size =
13841         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
13842     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
13843 
13844     /* get PCI capabilites */
13845     bxe_probe_pci_caps(sc);
13846 
13847     bxe_set_power_state(sc, PCI_PM_D0);
13848 
13849     /* get various configuration parameters from shmem */
13850     bxe_get_shmem_info(sc);
13851 
13852     if (sc->devinfo.pcie_msix_cap_reg != 0) {
13853         val = pci_read_config(sc->dev,
13854                               (sc->devinfo.pcie_msix_cap_reg +
13855                                PCIR_MSIX_CTRL),
13856                               2);
13857         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
13858     } else {
13859         sc->igu_sb_cnt = 1;
13860     }
13861 
13862     sc->igu_base_addr = BAR_IGU_INTMEM;
13863 
13864     /* initialize IGU parameters */
13865     if (CHIP_IS_E1x(sc)) {
13866         sc->devinfo.int_block = INT_BLOCK_HC;
13867         sc->igu_dsb_id = DEF_SB_IGU_ID;
13868         sc->igu_base_sb = 0;
13869     } else {
13870         sc->devinfo.int_block = INT_BLOCK_IGU;
13871 
13872         /* do not allow device reset during IGU info preocessing */
13873         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13874 
13875         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
13876 
13877         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13878             int tout = 5000;
13879 
13880             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
13881 
13882             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
13883             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
13884             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
13885 
13886             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13887                 tout--;
13888                 DELAY(1000);
13889             }
13890 
13891             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
13892                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
13893                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13894                 return (-1);
13895             }
13896         }
13897 
13898         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
13899             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
13900             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
13901         } else {
13902             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
13903         }
13904 
13905         rc = bxe_get_igu_cam_info(sc);
13906 
13907         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
13908 
13909         if (rc) {
13910             return (rc);
13911         }
13912     }
13913 
13914     /*
13915      * Get base FW non-default (fast path) status block ID. This value is
13916      * used to initialize the fw_sb_id saved on the fp/queue structure to
13917      * determine the id used by the FW.
13918      */
13919     if (CHIP_IS_E1x(sc)) {
13920         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
13921     } else {
13922         /*
13923          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
13924          * the same queue are indicated on the same IGU SB). So we prefer
13925          * FW and IGU SBs to be the same value.
13926          */
13927         sc->base_fw_ndsb = sc->igu_base_sb;
13928     }
13929 
13930     BLOGD(sc, DBG_LOAD,
13931           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
13932           sc->igu_dsb_id, sc->igu_base_sb,
13933           sc->igu_sb_cnt, sc->base_fw_ndsb);
13934 
13935     elink_phy_probe(&sc->link_params);
13936 
13937     return (0);
13938 }
13939 
13940 static void
13941 bxe_link_settings_supported(struct bxe_softc *sc,
13942                             uint32_t         switch_cfg)
13943 {
13944     uint32_t cfg_size = 0;
13945     uint32_t idx;
13946     uint8_t port = SC_PORT(sc);
13947 
13948     /* aggregation of supported attributes of all external phys */
13949     sc->port.supported[0] = 0;
13950     sc->port.supported[1] = 0;
13951 
13952     switch (sc->link_params.num_phys) {
13953     case 1:
13954         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
13955         cfg_size = 1;
13956         break;
13957     case 2:
13958         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
13959         cfg_size = 1;
13960         break;
13961     case 3:
13962         if (sc->link_params.multi_phy_config &
13963             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
13964             sc->port.supported[1] =
13965                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13966             sc->port.supported[0] =
13967                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13968         } else {
13969             sc->port.supported[0] =
13970                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
13971             sc->port.supported[1] =
13972                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
13973         }
13974         cfg_size = 2;
13975         break;
13976     }
13977 
13978     if (!(sc->port.supported[0] || sc->port.supported[1])) {
13979         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
13980               SHMEM_RD(sc,
13981                        dev_info.port_hw_config[port].external_phy_config),
13982               SHMEM_RD(sc,
13983                        dev_info.port_hw_config[port].external_phy_config2));
13984         return;
13985     }
13986 
13987     if (CHIP_IS_E3(sc))
13988         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
13989     else {
13990         switch (switch_cfg) {
13991         case ELINK_SWITCH_CFG_1G:
13992             sc->port.phy_addr =
13993                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
13994             break;
13995         case ELINK_SWITCH_CFG_10G:
13996             sc->port.phy_addr =
13997                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
13998             break;
13999         default:
14000             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14001                   sc->port.link_config[0]);
14002             return;
14003         }
14004     }
14005 
14006     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14007 
14008     /* mask what we support according to speed_cap_mask per configuration */
14009     for (idx = 0; idx < cfg_size; idx++) {
14010         if (!(sc->link_params.speed_cap_mask[idx] &
14011               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14012             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14013         }
14014 
14015         if (!(sc->link_params.speed_cap_mask[idx] &
14016               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14017             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14018         }
14019 
14020         if (!(sc->link_params.speed_cap_mask[idx] &
14021               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14022             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14023         }
14024 
14025         if (!(sc->link_params.speed_cap_mask[idx] &
14026               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14027             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14028         }
14029 
14030         if (!(sc->link_params.speed_cap_mask[idx] &
14031               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14032             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14033         }
14034 
14035         if (!(sc->link_params.speed_cap_mask[idx] &
14036               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14037             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14038         }
14039 
14040         if (!(sc->link_params.speed_cap_mask[idx] &
14041               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14042             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14043         }
14044 
14045         if (!(sc->link_params.speed_cap_mask[idx] &
14046               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14047             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14048         }
14049     }
14050 
14051     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14052           sc->port.supported[0], sc->port.supported[1]);
14053 	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14054 					sc->port.supported[0], sc->port.supported[1]);
14055 }
14056 
14057 static void
14058 bxe_link_settings_requested(struct bxe_softc *sc)
14059 {
14060     uint32_t link_config;
14061     uint32_t idx;
14062     uint32_t cfg_size = 0;
14063 
14064     sc->port.advertising[0] = 0;
14065     sc->port.advertising[1] = 0;
14066 
14067     switch (sc->link_params.num_phys) {
14068     case 1:
14069     case 2:
14070         cfg_size = 1;
14071         break;
14072     case 3:
14073         cfg_size = 2;
14074         break;
14075     }
14076 
14077     for (idx = 0; idx < cfg_size; idx++) {
14078         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14079         link_config = sc->port.link_config[idx];
14080 
14081         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14082         case PORT_FEATURE_LINK_SPEED_AUTO:
14083             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14084                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14085                 sc->port.advertising[idx] |= sc->port.supported[idx];
14086                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14087                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14088                     sc->port.advertising[idx] |=
14089                         (ELINK_SUPPORTED_100baseT_Half |
14090                          ELINK_SUPPORTED_100baseT_Full);
14091             } else {
14092                 /* force 10G, no AN */
14093                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14094                 sc->port.advertising[idx] |=
14095                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14096                 continue;
14097             }
14098             break;
14099 
14100         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14101             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14102                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14103                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14104                                               ADVERTISED_TP);
14105             } else {
14106                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14107                           "speed_cap_mask=0x%08x\n",
14108                       link_config, sc->link_params.speed_cap_mask[idx]);
14109                 return;
14110             }
14111             break;
14112 
14113         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14114             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14115                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14116                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14117                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14118                                               ADVERTISED_TP);
14119 				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14120 								sc->link_params.req_duplex[idx]);
14121             } else {
14122                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14123                           "speed_cap_mask=0x%08x\n",
14124                       link_config, sc->link_params.speed_cap_mask[idx]);
14125                 return;
14126             }
14127             break;
14128 
14129         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14130             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14131                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14132                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14133                                               ADVERTISED_TP);
14134             } else {
14135                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14136                           "speed_cap_mask=0x%08x\n",
14137                       link_config, sc->link_params.speed_cap_mask[idx]);
14138                 return;
14139             }
14140             break;
14141 
14142         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14143             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14144                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14145                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14146                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14147                                               ADVERTISED_TP);
14148             } else {
14149                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14150                           "speed_cap_mask=0x%08x\n",
14151                       link_config, sc->link_params.speed_cap_mask[idx]);
14152                 return;
14153             }
14154             break;
14155 
14156         case PORT_FEATURE_LINK_SPEED_1G:
14157             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14158                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14159                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14160                                               ADVERTISED_TP);
14161             } else {
14162                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14163                           "speed_cap_mask=0x%08x\n",
14164                       link_config, sc->link_params.speed_cap_mask[idx]);
14165                 return;
14166             }
14167             break;
14168 
14169         case PORT_FEATURE_LINK_SPEED_2_5G:
14170             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14171                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14172                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14173                                               ADVERTISED_TP);
14174             } else {
14175                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14176                           "speed_cap_mask=0x%08x\n",
14177                       link_config, sc->link_params.speed_cap_mask[idx]);
14178                 return;
14179             }
14180             break;
14181 
14182         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14183             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14184                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14185                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14186                                               ADVERTISED_FIBRE);
14187             } else {
14188                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14189                           "speed_cap_mask=0x%08x\n",
14190                       link_config, sc->link_params.speed_cap_mask[idx]);
14191                 return;
14192             }
14193             break;
14194 
14195         case PORT_FEATURE_LINK_SPEED_20G:
14196             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14197             break;
14198 
14199         default:
14200             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14201                       "speed_cap_mask=0x%08x\n",
14202                   link_config, sc->link_params.speed_cap_mask[idx]);
14203             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14204             sc->port.advertising[idx] = sc->port.supported[idx];
14205             break;
14206         }
14207 
14208         sc->link_params.req_flow_ctrl[idx] =
14209             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14210 
14211         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14212             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14213                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14214             } else {
14215                 bxe_set_requested_fc(sc);
14216             }
14217         }
14218 
14219         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14220                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14221               sc->link_params.req_line_speed[idx],
14222               sc->link_params.req_duplex[idx],
14223               sc->link_params.req_flow_ctrl[idx],
14224               sc->port.advertising[idx]);
14225 		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14226 						"advertising=0x%x\n",
14227 						sc->link_params.req_line_speed[idx],
14228 						sc->link_params.req_duplex[idx],
14229 						sc->port.advertising[idx]);
14230     }
14231 }
14232 
14233 static void
14234 bxe_get_phy_info(struct bxe_softc *sc)
14235 {
14236     uint8_t port = SC_PORT(sc);
14237     uint32_t config = sc->port.config;
14238     uint32_t eee_mode;
14239 
14240     /* shmem data already read in bxe_get_shmem_info() */
14241 
14242     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14243                         "link_config0=0x%08x\n",
14244                sc->link_params.lane_config,
14245                sc->link_params.speed_cap_mask[0],
14246                sc->port.link_config[0]);
14247 
14248 
14249     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14250     bxe_link_settings_requested(sc);
14251 
14252     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14253         sc->link_params.feature_config_flags |=
14254             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14255     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14256         sc->link_params.feature_config_flags &=
14257             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14258     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14259         sc->link_params.feature_config_flags |=
14260             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14261     }
14262 
14263     /* configure link feature according to nvram value */
14264     eee_mode =
14265         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14266           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14267          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14268     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14269         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14270                                     ELINK_EEE_MODE_ENABLE_LPI |
14271                                     ELINK_EEE_MODE_OUTPUT_TIME);
14272     } else {
14273         sc->link_params.eee_mode = 0;
14274     }
14275 
14276     /* get the media type */
14277     bxe_media_detect(sc);
14278 	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14279 }
14280 
14281 static void
14282 bxe_get_params(struct bxe_softc *sc)
14283 {
14284     /* get user tunable params */
14285     bxe_get_tunable_params(sc);
14286 
14287     /* select the RX and TX ring sizes */
14288     sc->tx_ring_size = TX_BD_USABLE;
14289     sc->rx_ring_size = RX_BD_USABLE;
14290 
14291     /* XXX disable WoL */
14292     sc->wol = 0;
14293 }
14294 
14295 static void
14296 bxe_set_modes_bitmap(struct bxe_softc *sc)
14297 {
14298     uint32_t flags = 0;
14299 
14300     if (CHIP_REV_IS_FPGA(sc)) {
14301         SET_FLAGS(flags, MODE_FPGA);
14302     } else if (CHIP_REV_IS_EMUL(sc)) {
14303         SET_FLAGS(flags, MODE_EMUL);
14304     } else {
14305         SET_FLAGS(flags, MODE_ASIC);
14306     }
14307 
14308     if (CHIP_IS_MODE_4_PORT(sc)) {
14309         SET_FLAGS(flags, MODE_PORT4);
14310     } else {
14311         SET_FLAGS(flags, MODE_PORT2);
14312     }
14313 
14314     if (CHIP_IS_E2(sc)) {
14315         SET_FLAGS(flags, MODE_E2);
14316     } else if (CHIP_IS_E3(sc)) {
14317         SET_FLAGS(flags, MODE_E3);
14318         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14319             SET_FLAGS(flags, MODE_E3_A0);
14320         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14321             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14322         }
14323     }
14324 
14325     if (IS_MF(sc)) {
14326         SET_FLAGS(flags, MODE_MF);
14327         switch (sc->devinfo.mf_info.mf_mode) {
14328         case MULTI_FUNCTION_SD:
14329             SET_FLAGS(flags, MODE_MF_SD);
14330             break;
14331         case MULTI_FUNCTION_SI:
14332             SET_FLAGS(flags, MODE_MF_SI);
14333             break;
14334         case MULTI_FUNCTION_AFEX:
14335             SET_FLAGS(flags, MODE_MF_AFEX);
14336             break;
14337         }
14338     } else {
14339         SET_FLAGS(flags, MODE_SF);
14340     }
14341 
14342 #if defined(__LITTLE_ENDIAN)
14343     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14344 #else /* __BIG_ENDIAN */
14345     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14346 #endif
14347 
14348     INIT_MODE_FLAGS(sc) = flags;
14349 }
14350 
14351 static int
14352 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14353 {
14354     struct bxe_fastpath *fp;
14355     bus_addr_t busaddr;
14356     int max_agg_queues;
14357     int max_segments;
14358     bus_size_t max_size;
14359     bus_size_t max_seg_size;
14360     char buf[32];
14361     int rc;
14362     int i, j;
14363 
14364     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14365 
14366     /* allocate the parent bus DMA tag */
14367     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14368                             1,                        /* alignment */
14369                             0,                        /* boundary limit */
14370                             BUS_SPACE_MAXADDR,        /* restricted low */
14371                             BUS_SPACE_MAXADDR,        /* restricted hi */
14372                             NULL,                     /* addr filter() */
14373                             NULL,                     /* addr filter() arg */
14374                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14375                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14376                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14377                             0,                        /* flags */
14378                             NULL,                     /* lock() */
14379                             NULL,                     /* lock() arg */
14380                             &sc->parent_dma_tag);     /* returned dma tag */
14381     if (rc != 0) {
14382         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14383         return (1);
14384     }
14385 
14386     /************************/
14387     /* DEFAULT STATUS BLOCK */
14388     /************************/
14389 
14390     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14391                       &sc->def_sb_dma, "default status block") != 0) {
14392         /* XXX */
14393         bus_dma_tag_destroy(sc->parent_dma_tag);
14394         return (1);
14395     }
14396 
14397     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14398 
14399     /***************/
14400     /* EVENT QUEUE */
14401     /***************/
14402 
14403     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14404                       &sc->eq_dma, "event queue") != 0) {
14405         /* XXX */
14406         bxe_dma_free(sc, &sc->def_sb_dma);
14407         sc->def_sb = NULL;
14408         bus_dma_tag_destroy(sc->parent_dma_tag);
14409         return (1);
14410     }
14411 
14412     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14413 
14414     /*************/
14415     /* SLOW PATH */
14416     /*************/
14417 
14418     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14419                       &sc->sp_dma, "slow path") != 0) {
14420         /* XXX */
14421         bxe_dma_free(sc, &sc->eq_dma);
14422         sc->eq = NULL;
14423         bxe_dma_free(sc, &sc->def_sb_dma);
14424         sc->def_sb = NULL;
14425         bus_dma_tag_destroy(sc->parent_dma_tag);
14426         return (1);
14427     }
14428 
14429     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14430 
14431     /*******************/
14432     /* SLOW PATH QUEUE */
14433     /*******************/
14434 
14435     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14436                       &sc->spq_dma, "slow path queue") != 0) {
14437         /* XXX */
14438         bxe_dma_free(sc, &sc->sp_dma);
14439         sc->sp = NULL;
14440         bxe_dma_free(sc, &sc->eq_dma);
14441         sc->eq = NULL;
14442         bxe_dma_free(sc, &sc->def_sb_dma);
14443         sc->def_sb = NULL;
14444         bus_dma_tag_destroy(sc->parent_dma_tag);
14445         return (1);
14446     }
14447 
14448     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14449 
14450     /***************************/
14451     /* FW DECOMPRESSION BUFFER */
14452     /***************************/
14453 
14454     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14455                       "fw decompression buffer") != 0) {
14456         /* XXX */
14457         bxe_dma_free(sc, &sc->spq_dma);
14458         sc->spq = NULL;
14459         bxe_dma_free(sc, &sc->sp_dma);
14460         sc->sp = NULL;
14461         bxe_dma_free(sc, &sc->eq_dma);
14462         sc->eq = NULL;
14463         bxe_dma_free(sc, &sc->def_sb_dma);
14464         sc->def_sb = NULL;
14465         bus_dma_tag_destroy(sc->parent_dma_tag);
14466         return (1);
14467     }
14468 
14469     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14470 
14471     if ((sc->gz_strm =
14472          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14473         /* XXX */
14474         bxe_dma_free(sc, &sc->gz_buf_dma);
14475         sc->gz_buf = NULL;
14476         bxe_dma_free(sc, &sc->spq_dma);
14477         sc->spq = NULL;
14478         bxe_dma_free(sc, &sc->sp_dma);
14479         sc->sp = NULL;
14480         bxe_dma_free(sc, &sc->eq_dma);
14481         sc->eq = NULL;
14482         bxe_dma_free(sc, &sc->def_sb_dma);
14483         sc->def_sb = NULL;
14484         bus_dma_tag_destroy(sc->parent_dma_tag);
14485         return (1);
14486     }
14487 
14488     /*************/
14489     /* FASTPATHS */
14490     /*************/
14491 
14492     /* allocate DMA memory for each fastpath structure */
14493     for (i = 0; i < sc->num_queues; i++) {
14494         fp = &sc->fp[i];
14495         fp->sc    = sc;
14496         fp->index = i;
14497 
14498         /*******************/
14499         /* FP STATUS BLOCK */
14500         /*******************/
14501 
14502         snprintf(buf, sizeof(buf), "fp %d status block", i);
14503         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14504                           &fp->sb_dma, buf) != 0) {
14505             /* XXX unwind and free previous fastpath allocations */
14506             BLOGE(sc, "Failed to alloc %s\n", buf);
14507             return (1);
14508         } else {
14509             if (CHIP_IS_E2E3(sc)) {
14510                 fp->status_block.e2_sb =
14511                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14512             } else {
14513                 fp->status_block.e1x_sb =
14514                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14515             }
14516         }
14517 
14518         /******************/
14519         /* FP TX BD CHAIN */
14520         /******************/
14521 
14522         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14523         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14524                           &fp->tx_dma, buf) != 0) {
14525             /* XXX unwind and free previous fastpath allocations */
14526             BLOGE(sc, "Failed to alloc %s\n", buf);
14527             return (1);
14528         } else {
14529             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14530         }
14531 
14532         /* link together the tx bd chain pages */
14533         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14534             /* index into the tx bd chain array to last entry per page */
14535             struct eth_tx_next_bd *tx_next_bd =
14536                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14537             /* point to the next page and wrap from last page */
14538             busaddr = (fp->tx_dma.paddr +
14539                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14540             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14541             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14542         }
14543 
14544         /******************/
14545         /* FP RX BD CHAIN */
14546         /******************/
14547 
14548         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14549         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14550                           &fp->rx_dma, buf) != 0) {
14551             /* XXX unwind and free previous fastpath allocations */
14552             BLOGE(sc, "Failed to alloc %s\n", buf);
14553             return (1);
14554         } else {
14555             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14556         }
14557 
14558         /* link together the rx bd chain pages */
14559         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14560             /* index into the rx bd chain array to last entry per page */
14561             struct eth_rx_bd *rx_bd =
14562                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14563             /* point to the next page and wrap from last page */
14564             busaddr = (fp->rx_dma.paddr +
14565                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14566             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14567             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14568         }
14569 
14570         /*******************/
14571         /* FP RX RCQ CHAIN */
14572         /*******************/
14573 
14574         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14575         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14576                           &fp->rcq_dma, buf) != 0) {
14577             /* XXX unwind and free previous fastpath allocations */
14578             BLOGE(sc, "Failed to alloc %s\n", buf);
14579             return (1);
14580         } else {
14581             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14582         }
14583 
14584         /* link together the rcq chain pages */
14585         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14586             /* index into the rcq chain array to last entry per page */
14587             struct eth_rx_cqe_next_page *rx_cqe_next =
14588                 (struct eth_rx_cqe_next_page *)
14589                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14590             /* point to the next page and wrap from last page */
14591             busaddr = (fp->rcq_dma.paddr +
14592                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14593             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14594             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14595         }
14596 
14597         /*******************/
14598         /* FP RX SGE CHAIN */
14599         /*******************/
14600 
14601         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14602         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14603                           &fp->rx_sge_dma, buf) != 0) {
14604             /* XXX unwind and free previous fastpath allocations */
14605             BLOGE(sc, "Failed to alloc %s\n", buf);
14606             return (1);
14607         } else {
14608             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14609         }
14610 
14611         /* link together the sge chain pages */
14612         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14613             /* index into the rcq chain array to last entry per page */
14614             struct eth_rx_sge *rx_sge =
14615                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14616             /* point to the next page and wrap from last page */
14617             busaddr = (fp->rx_sge_dma.paddr +
14618                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14619             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14620             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14621         }
14622 
14623         /***********************/
14624         /* FP TX MBUF DMA MAPS */
14625         /***********************/
14626 
14627         /* set required sizes before mapping to conserve resources */
14628         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14629             max_size     = BXE_TSO_MAX_SIZE;
14630             max_segments = BXE_TSO_MAX_SEGMENTS;
14631             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14632         } else {
14633             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14634             max_segments = BXE_MAX_SEGMENTS;
14635             max_seg_size = MCLBYTES;
14636         }
14637 
14638         /* create a dma tag for the tx mbufs */
14639         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14640                                 1,                  /* alignment */
14641                                 0,                  /* boundary limit */
14642                                 BUS_SPACE_MAXADDR,  /* restricted low */
14643                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14644                                 NULL,               /* addr filter() */
14645                                 NULL,               /* addr filter() arg */
14646                                 max_size,           /* max map size */
14647                                 max_segments,       /* num discontinuous */
14648                                 max_seg_size,       /* max seg size */
14649                                 0,                  /* flags */
14650                                 NULL,               /* lock() */
14651                                 NULL,               /* lock() arg */
14652                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14653         if (rc != 0) {
14654             /* XXX unwind and free previous fastpath allocations */
14655             BLOGE(sc, "Failed to create dma tag for "
14656                       "'fp %d tx mbufs' (%d)\n", i, rc);
14657             return (1);
14658         }
14659 
14660         /* create dma maps for each of the tx mbuf clusters */
14661         for (j = 0; j < TX_BD_TOTAL; j++) {
14662             if (bus_dmamap_create(fp->tx_mbuf_tag,
14663                                   BUS_DMA_NOWAIT,
14664                                   &fp->tx_mbuf_chain[j].m_map)) {
14665                 /* XXX unwind and free previous fastpath allocations */
14666                 BLOGE(sc, "Failed to create dma map for "
14667                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14668                 return (1);
14669             }
14670         }
14671 
14672         /***********************/
14673         /* FP RX MBUF DMA MAPS */
14674         /***********************/
14675 
14676         /* create a dma tag for the rx mbufs */
14677         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14678                                 1,                  /* alignment */
14679                                 0,                  /* boundary limit */
14680                                 BUS_SPACE_MAXADDR,  /* restricted low */
14681                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14682                                 NULL,               /* addr filter() */
14683                                 NULL,               /* addr filter() arg */
14684                                 MJUM9BYTES,         /* max map size */
14685                                 1,                  /* num discontinuous */
14686                                 MJUM9BYTES,         /* max seg size */
14687                                 0,                  /* flags */
14688                                 NULL,               /* lock() */
14689                                 NULL,               /* lock() arg */
14690                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14691         if (rc != 0) {
14692             /* XXX unwind and free previous fastpath allocations */
14693             BLOGE(sc, "Failed to create dma tag for "
14694                       "'fp %d rx mbufs' (%d)\n", i, rc);
14695             return (1);
14696         }
14697 
14698         /* create dma maps for each of the rx mbuf clusters */
14699         for (j = 0; j < RX_BD_TOTAL; j++) {
14700             if (bus_dmamap_create(fp->rx_mbuf_tag,
14701                                   BUS_DMA_NOWAIT,
14702                                   &fp->rx_mbuf_chain[j].m_map)) {
14703                 /* XXX unwind and free previous fastpath allocations */
14704                 BLOGE(sc, "Failed to create dma map for "
14705                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14706                 return (1);
14707             }
14708         }
14709 
14710         /* create dma map for the spare rx mbuf cluster */
14711         if (bus_dmamap_create(fp->rx_mbuf_tag,
14712                               BUS_DMA_NOWAIT,
14713                               &fp->rx_mbuf_spare_map)) {
14714             /* XXX unwind and free previous fastpath allocations */
14715             BLOGE(sc, "Failed to create dma map for "
14716                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14717             return (1);
14718         }
14719 
14720         /***************************/
14721         /* FP RX SGE MBUF DMA MAPS */
14722         /***************************/
14723 
14724         /* create a dma tag for the rx sge mbufs */
14725         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14726                                 1,                  /* alignment */
14727                                 0,                  /* boundary limit */
14728                                 BUS_SPACE_MAXADDR,  /* restricted low */
14729                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14730                                 NULL,               /* addr filter() */
14731                                 NULL,               /* addr filter() arg */
14732                                 BCM_PAGE_SIZE,      /* max map size */
14733                                 1,                  /* num discontinuous */
14734                                 BCM_PAGE_SIZE,      /* max seg size */
14735                                 0,                  /* flags */
14736                                 NULL,               /* lock() */
14737                                 NULL,               /* lock() arg */
14738                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
14739         if (rc != 0) {
14740             /* XXX unwind and free previous fastpath allocations */
14741             BLOGE(sc, "Failed to create dma tag for "
14742                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
14743             return (1);
14744         }
14745 
14746         /* create dma maps for the rx sge mbuf clusters */
14747         for (j = 0; j < RX_SGE_TOTAL; j++) {
14748             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14749                                   BUS_DMA_NOWAIT,
14750                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
14751                 /* XXX unwind and free previous fastpath allocations */
14752                 BLOGE(sc, "Failed to create dma map for "
14753                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
14754                 return (1);
14755             }
14756         }
14757 
14758         /* create dma map for the spare rx sge mbuf cluster */
14759         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
14760                               BUS_DMA_NOWAIT,
14761                               &fp->rx_sge_mbuf_spare_map)) {
14762             /* XXX unwind and free previous fastpath allocations */
14763             BLOGE(sc, "Failed to create dma map for "
14764                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
14765             return (1);
14766         }
14767 
14768         /***************************/
14769         /* FP RX TPA MBUF DMA MAPS */
14770         /***************************/
14771 
14772         /* create dma maps for the rx tpa mbuf clusters */
14773         max_agg_queues = MAX_AGG_QS(sc);
14774 
14775         for (j = 0; j < max_agg_queues; j++) {
14776             if (bus_dmamap_create(fp->rx_mbuf_tag,
14777                                   BUS_DMA_NOWAIT,
14778                                   &fp->rx_tpa_info[j].bd.m_map)) {
14779                 /* XXX unwind and free previous fastpath allocations */
14780                 BLOGE(sc, "Failed to create dma map for "
14781                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
14782                 return (1);
14783             }
14784         }
14785 
14786         /* create dma map for the spare rx tpa mbuf cluster */
14787         if (bus_dmamap_create(fp->rx_mbuf_tag,
14788                               BUS_DMA_NOWAIT,
14789                               &fp->rx_tpa_info_mbuf_spare_map)) {
14790             /* XXX unwind and free previous fastpath allocations */
14791             BLOGE(sc, "Failed to create dma map for "
14792                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
14793             return (1);
14794         }
14795 
14796         bxe_init_sge_ring_bit_mask(fp);
14797     }
14798 
14799     return (0);
14800 }
14801 
14802 static void
14803 bxe_free_hsi_mem(struct bxe_softc *sc)
14804 {
14805     struct bxe_fastpath *fp;
14806     int max_agg_queues;
14807     int i, j;
14808 
14809     if (sc->parent_dma_tag == NULL) {
14810         return; /* assume nothing was allocated */
14811     }
14812 
14813     for (i = 0; i < sc->num_queues; i++) {
14814         fp = &sc->fp[i];
14815 
14816         /*******************/
14817         /* FP STATUS BLOCK */
14818         /*******************/
14819 
14820         bxe_dma_free(sc, &fp->sb_dma);
14821         memset(&fp->status_block, 0, sizeof(fp->status_block));
14822 
14823         /******************/
14824         /* FP TX BD CHAIN */
14825         /******************/
14826 
14827         bxe_dma_free(sc, &fp->tx_dma);
14828         fp->tx_chain = NULL;
14829 
14830         /******************/
14831         /* FP RX BD CHAIN */
14832         /******************/
14833 
14834         bxe_dma_free(sc, &fp->rx_dma);
14835         fp->rx_chain = NULL;
14836 
14837         /*******************/
14838         /* FP RX RCQ CHAIN */
14839         /*******************/
14840 
14841         bxe_dma_free(sc, &fp->rcq_dma);
14842         fp->rcq_chain = NULL;
14843 
14844         /*******************/
14845         /* FP RX SGE CHAIN */
14846         /*******************/
14847 
14848         bxe_dma_free(sc, &fp->rx_sge_dma);
14849         fp->rx_sge_chain = NULL;
14850 
14851         /***********************/
14852         /* FP TX MBUF DMA MAPS */
14853         /***********************/
14854 
14855         if (fp->tx_mbuf_tag != NULL) {
14856             for (j = 0; j < TX_BD_TOTAL; j++) {
14857                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
14858                     bus_dmamap_unload(fp->tx_mbuf_tag,
14859                                       fp->tx_mbuf_chain[j].m_map);
14860                     bus_dmamap_destroy(fp->tx_mbuf_tag,
14861                                        fp->tx_mbuf_chain[j].m_map);
14862                 }
14863             }
14864 
14865             bus_dma_tag_destroy(fp->tx_mbuf_tag);
14866             fp->tx_mbuf_tag = NULL;
14867         }
14868 
14869         /***********************/
14870         /* FP RX MBUF DMA MAPS */
14871         /***********************/
14872 
14873         if (fp->rx_mbuf_tag != NULL) {
14874             for (j = 0; j < RX_BD_TOTAL; j++) {
14875                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
14876                     bus_dmamap_unload(fp->rx_mbuf_tag,
14877                                       fp->rx_mbuf_chain[j].m_map);
14878                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14879                                        fp->rx_mbuf_chain[j].m_map);
14880                 }
14881             }
14882 
14883             if (fp->rx_mbuf_spare_map != NULL) {
14884                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14885                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
14886             }
14887 
14888             /***************************/
14889             /* FP RX TPA MBUF DMA MAPS */
14890             /***************************/
14891 
14892             max_agg_queues = MAX_AGG_QS(sc);
14893 
14894             for (j = 0; j < max_agg_queues; j++) {
14895                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
14896                     bus_dmamap_unload(fp->rx_mbuf_tag,
14897                                       fp->rx_tpa_info[j].bd.m_map);
14898                     bus_dmamap_destroy(fp->rx_mbuf_tag,
14899                                        fp->rx_tpa_info[j].bd.m_map);
14900                 }
14901             }
14902 
14903             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
14904                 bus_dmamap_unload(fp->rx_mbuf_tag,
14905                                   fp->rx_tpa_info_mbuf_spare_map);
14906                 bus_dmamap_destroy(fp->rx_mbuf_tag,
14907                                    fp->rx_tpa_info_mbuf_spare_map);
14908             }
14909 
14910             bus_dma_tag_destroy(fp->rx_mbuf_tag);
14911             fp->rx_mbuf_tag = NULL;
14912         }
14913 
14914         /***************************/
14915         /* FP RX SGE MBUF DMA MAPS */
14916         /***************************/
14917 
14918         if (fp->rx_sge_mbuf_tag != NULL) {
14919             for (j = 0; j < RX_SGE_TOTAL; j++) {
14920                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
14921                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14922                                       fp->rx_sge_mbuf_chain[j].m_map);
14923                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14924                                        fp->rx_sge_mbuf_chain[j].m_map);
14925                 }
14926             }
14927 
14928             if (fp->rx_sge_mbuf_spare_map != NULL) {
14929                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
14930                                   fp->rx_sge_mbuf_spare_map);
14931                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
14932                                    fp->rx_sge_mbuf_spare_map);
14933             }
14934 
14935             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
14936             fp->rx_sge_mbuf_tag = NULL;
14937         }
14938     }
14939 
14940     /***************************/
14941     /* FW DECOMPRESSION BUFFER */
14942     /***************************/
14943 
14944     bxe_dma_free(sc, &sc->gz_buf_dma);
14945     sc->gz_buf = NULL;
14946     free(sc->gz_strm, M_DEVBUF);
14947     sc->gz_strm = NULL;
14948 
14949     /*******************/
14950     /* SLOW PATH QUEUE */
14951     /*******************/
14952 
14953     bxe_dma_free(sc, &sc->spq_dma);
14954     sc->spq = NULL;
14955 
14956     /*************/
14957     /* SLOW PATH */
14958     /*************/
14959 
14960     bxe_dma_free(sc, &sc->sp_dma);
14961     sc->sp = NULL;
14962 
14963     /***************/
14964     /* EVENT QUEUE */
14965     /***************/
14966 
14967     bxe_dma_free(sc, &sc->eq_dma);
14968     sc->eq = NULL;
14969 
14970     /************************/
14971     /* DEFAULT STATUS BLOCK */
14972     /************************/
14973 
14974     bxe_dma_free(sc, &sc->def_sb_dma);
14975     sc->def_sb = NULL;
14976 
14977     bus_dma_tag_destroy(sc->parent_dma_tag);
14978     sc->parent_dma_tag = NULL;
14979 }
14980 
14981 /*
14982  * Previous driver DMAE transaction may have occurred when pre-boot stage
14983  * ended and boot began. This would invalidate the addresses of the
14984  * transaction, resulting in was-error bit set in the PCI causing all
14985  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
14986  * the interrupt which detected this from the pglueb and the was-done bit
14987  */
14988 static void
14989 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
14990 {
14991     uint32_t val;
14992 
14993     if (!CHIP_IS_E1x(sc)) {
14994         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
14995         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
14996             BLOGD(sc, DBG_LOAD,
14997                   "Clearing 'was-error' bit that was set in pglueb");
14998             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
14999         }
15000     }
15001 }
15002 
15003 static int
15004 bxe_prev_mcp_done(struct bxe_softc *sc)
15005 {
15006     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15007                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15008     if (!rc) {
15009         BLOGE(sc, "MCP response failure, aborting\n");
15010         return (-1);
15011     }
15012 
15013     return (0);
15014 }
15015 
15016 static struct bxe_prev_list_node *
15017 bxe_prev_path_get_entry(struct bxe_softc *sc)
15018 {
15019     struct bxe_prev_list_node *tmp;
15020 
15021     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15022         if ((sc->pcie_bus == tmp->bus) &&
15023             (sc->pcie_device == tmp->slot) &&
15024             (SC_PATH(sc) == tmp->path)) {
15025             return (tmp);
15026         }
15027     }
15028 
15029     return (NULL);
15030 }
15031 
15032 static uint8_t
15033 bxe_prev_is_path_marked(struct bxe_softc *sc)
15034 {
15035     struct bxe_prev_list_node *tmp;
15036     int rc = FALSE;
15037 
15038     mtx_lock(&bxe_prev_mtx);
15039 
15040     tmp = bxe_prev_path_get_entry(sc);
15041     if (tmp) {
15042         if (tmp->aer) {
15043             BLOGD(sc, DBG_LOAD,
15044                   "Path %d/%d/%d was marked by AER\n",
15045                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15046         } else {
15047             rc = TRUE;
15048             BLOGD(sc, DBG_LOAD,
15049                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15050                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15051         }
15052     }
15053 
15054     mtx_unlock(&bxe_prev_mtx);
15055 
15056     return (rc);
15057 }
15058 
15059 static int
15060 bxe_prev_mark_path(struct bxe_softc *sc,
15061                    uint8_t          after_undi)
15062 {
15063     struct bxe_prev_list_node *tmp;
15064 
15065     mtx_lock(&bxe_prev_mtx);
15066 
15067     /* Check whether the entry for this path already exists */
15068     tmp = bxe_prev_path_get_entry(sc);
15069     if (tmp) {
15070         if (!tmp->aer) {
15071             BLOGD(sc, DBG_LOAD,
15072                   "Re-marking AER in path %d/%d/%d\n",
15073                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15074         } else {
15075             BLOGD(sc, DBG_LOAD,
15076                   "Removing AER indication from path %d/%d/%d\n",
15077                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15078             tmp->aer = 0;
15079         }
15080 
15081         mtx_unlock(&bxe_prev_mtx);
15082         return (0);
15083     }
15084 
15085     mtx_unlock(&bxe_prev_mtx);
15086 
15087     /* Create an entry for this path and add it */
15088     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15089                  (M_NOWAIT | M_ZERO));
15090     if (!tmp) {
15091         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15092         return (-1);
15093     }
15094 
15095     tmp->bus  = sc->pcie_bus;
15096     tmp->slot = sc->pcie_device;
15097     tmp->path = SC_PATH(sc);
15098     tmp->aer  = 0;
15099     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15100 
15101     mtx_lock(&bxe_prev_mtx);
15102 
15103     BLOGD(sc, DBG_LOAD,
15104           "Marked path %d/%d/%d - finished previous unload\n",
15105           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15106     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15107 
15108     mtx_unlock(&bxe_prev_mtx);
15109 
15110     return (0);
15111 }
15112 
15113 static int
15114 bxe_do_flr(struct bxe_softc *sc)
15115 {
15116     int i;
15117 
15118     /* only E2 and onwards support FLR */
15119     if (CHIP_IS_E1x(sc)) {
15120         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15121         return (-1);
15122     }
15123 
15124     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15125     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15126         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15127               sc->devinfo.bc_ver);
15128         return (-1);
15129     }
15130 
15131     /* Wait for Transaction Pending bit clean */
15132     for (i = 0; i < 4; i++) {
15133         if (i) {
15134             DELAY(((1 << (i - 1)) * 100) * 1000);
15135         }
15136 
15137         if (!bxe_is_pcie_pending(sc)) {
15138             goto clear;
15139         }
15140     }
15141 
15142     BLOGE(sc, "PCIE transaction is not cleared, "
15143               "proceeding with reset anyway\n");
15144 
15145 clear:
15146 
15147     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15148     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15149 
15150     return (0);
15151 }
15152 
15153 struct bxe_mac_vals {
15154     uint32_t xmac_addr;
15155     uint32_t xmac_val;
15156     uint32_t emac_addr;
15157     uint32_t emac_val;
15158     uint32_t umac_addr;
15159     uint32_t umac_val;
15160     uint32_t bmac_addr;
15161     uint32_t bmac_val[2];
15162 };
15163 
15164 static void
15165 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15166                           struct bxe_mac_vals *vals)
15167 {
15168     uint32_t val, base_addr, offset, mask, reset_reg;
15169     uint8_t mac_stopped = FALSE;
15170     uint8_t port = SC_PORT(sc);
15171     uint32_t wb_data[2];
15172 
15173     /* reset addresses as they also mark which values were changed */
15174     vals->bmac_addr = 0;
15175     vals->umac_addr = 0;
15176     vals->xmac_addr = 0;
15177     vals->emac_addr = 0;
15178 
15179     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15180 
15181     if (!CHIP_IS_E3(sc)) {
15182         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15183         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15184         if ((mask & reset_reg) && val) {
15185             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15186             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15187                                     : NIG_REG_INGRESS_BMAC0_MEM;
15188             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15189                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15190 
15191             /*
15192              * use rd/wr since we cannot use dmae. This is safe
15193              * since MCP won't access the bus due to the request
15194              * to unload, and no function on the path can be
15195              * loaded at this time.
15196              */
15197             wb_data[0] = REG_RD(sc, base_addr + offset);
15198             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15199             vals->bmac_addr = base_addr + offset;
15200             vals->bmac_val[0] = wb_data[0];
15201             vals->bmac_val[1] = wb_data[1];
15202             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15203             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15204             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15205         }
15206 
15207         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15208         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15209         vals->emac_val = REG_RD(sc, vals->emac_addr);
15210         REG_WR(sc, vals->emac_addr, 0);
15211         mac_stopped = TRUE;
15212     } else {
15213         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15214             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15215             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15216             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15217             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15218             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15219             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15220             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15221             REG_WR(sc, vals->xmac_addr, 0);
15222             mac_stopped = TRUE;
15223         }
15224 
15225         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15226         if (mask & reset_reg) {
15227             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15228             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15229             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15230             vals->umac_val = REG_RD(sc, vals->umac_addr);
15231             REG_WR(sc, vals->umac_addr, 0);
15232             mac_stopped = TRUE;
15233         }
15234     }
15235 
15236     if (mac_stopped) {
15237         DELAY(20000);
15238     }
15239 }
15240 
15241 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15242 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15243 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15244 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15245 
15246 static void
15247 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15248                          uint8_t          port,
15249                          uint8_t          inc)
15250 {
15251     uint16_t rcq, bd;
15252     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15253 
15254     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15255     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15256 
15257     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15258     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15259 
15260     BLOGD(sc, DBG_LOAD,
15261           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15262           port, bd, rcq);
15263 }
15264 
15265 static int
15266 bxe_prev_unload_common(struct bxe_softc *sc)
15267 {
15268     uint32_t reset_reg, tmp_reg = 0, rc;
15269     uint8_t prev_undi = FALSE;
15270     struct bxe_mac_vals mac_vals;
15271     uint32_t timer_count = 1000;
15272     uint32_t prev_brb;
15273 
15274     /*
15275      * It is possible a previous function received 'common' answer,
15276      * but hasn't loaded yet, therefore creating a scenario of
15277      * multiple functions receiving 'common' on the same path.
15278      */
15279     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15280 
15281     memset(&mac_vals, 0, sizeof(mac_vals));
15282 
15283     if (bxe_prev_is_path_marked(sc)) {
15284         return (bxe_prev_mcp_done(sc));
15285     }
15286 
15287     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15288 
15289     /* Reset should be performed after BRB is emptied */
15290     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15291         /* Close the MAC Rx to prevent BRB from filling up */
15292         bxe_prev_unload_close_mac(sc, &mac_vals);
15293 
15294         /* close LLH filters towards the BRB */
15295         elink_set_rx_filter(&sc->link_params, 0);
15296 
15297         /*
15298          * Check if the UNDI driver was previously loaded.
15299          * UNDI driver initializes CID offset for normal bell to 0x7
15300          */
15301         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15302             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15303             if (tmp_reg == 0x7) {
15304                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15305                 prev_undi = TRUE;
15306                 /* clear the UNDI indication */
15307                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15308                 /* clear possible idle check errors */
15309                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15310             }
15311         }
15312 
15313         /* wait until BRB is empty */
15314         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15315         while (timer_count) {
15316             prev_brb = tmp_reg;
15317 
15318             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15319             if (!tmp_reg) {
15320                 break;
15321             }
15322 
15323             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15324 
15325             /* reset timer as long as BRB actually gets emptied */
15326             if (prev_brb > tmp_reg) {
15327                 timer_count = 1000;
15328             } else {
15329                 timer_count--;
15330             }
15331 
15332             /* If UNDI resides in memory, manually increment it */
15333             if (prev_undi) {
15334                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15335             }
15336 
15337             DELAY(10);
15338         }
15339 
15340         if (!timer_count) {
15341             BLOGE(sc, "Failed to empty BRB\n");
15342         }
15343     }
15344 
15345     /* No packets are in the pipeline, path is ready for reset */
15346     bxe_reset_common(sc);
15347 
15348     if (mac_vals.xmac_addr) {
15349         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15350     }
15351     if (mac_vals.umac_addr) {
15352         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15353     }
15354     if (mac_vals.emac_addr) {
15355         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15356     }
15357     if (mac_vals.bmac_addr) {
15358         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15359         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15360     }
15361 
15362     rc = bxe_prev_mark_path(sc, prev_undi);
15363     if (rc) {
15364         bxe_prev_mcp_done(sc);
15365         return (rc);
15366     }
15367 
15368     return (bxe_prev_mcp_done(sc));
15369 }
15370 
15371 static int
15372 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15373 {
15374     int rc;
15375 
15376     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15377 
15378     /* Test if previous unload process was already finished for this path */
15379     if (bxe_prev_is_path_marked(sc)) {
15380         return (bxe_prev_mcp_done(sc));
15381     }
15382 
15383     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15384 
15385     /*
15386      * If function has FLR capabilities, and existing FW version matches
15387      * the one required, then FLR will be sufficient to clean any residue
15388      * left by previous driver
15389      */
15390     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15391     if (!rc) {
15392         /* fw version is good */
15393         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15394         rc = bxe_do_flr(sc);
15395     }
15396 
15397     if (!rc) {
15398         /* FLR was performed */
15399         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15400         return (0);
15401     }
15402 
15403     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15404 
15405     /* Close the MCP request, return failure*/
15406     rc = bxe_prev_mcp_done(sc);
15407     if (!rc) {
15408         rc = BXE_PREV_WAIT_NEEDED;
15409     }
15410 
15411     return (rc);
15412 }
15413 
15414 static int
15415 bxe_prev_unload(struct bxe_softc *sc)
15416 {
15417     int time_counter = 10;
15418     uint32_t fw, hw_lock_reg, hw_lock_val;
15419     uint32_t rc = 0;
15420 
15421     /*
15422      * Clear HW from errors which may have resulted from an interrupted
15423      * DMAE transaction.
15424      */
15425     bxe_prev_interrupted_dmae(sc);
15426 
15427     /* Release previously held locks */
15428     hw_lock_reg =
15429         (SC_FUNC(sc) <= 5) ?
15430             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15431             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15432 
15433     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15434     if (hw_lock_val) {
15435         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15436             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15437             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15438                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15439         }
15440         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15441         REG_WR(sc, hw_lock_reg, 0xffffffff);
15442     } else {
15443         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15444     }
15445 
15446     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15447         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15448         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15449     }
15450 
15451     do {
15452         /* Lock MCP using an unload request */
15453         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15454         if (!fw) {
15455             BLOGE(sc, "MCP response failure, aborting\n");
15456             rc = -1;
15457             break;
15458         }
15459 
15460         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15461             rc = bxe_prev_unload_common(sc);
15462             break;
15463         }
15464 
15465         /* non-common reply from MCP night require looping */
15466         rc = bxe_prev_unload_uncommon(sc);
15467         if (rc != BXE_PREV_WAIT_NEEDED) {
15468             break;
15469         }
15470 
15471         DELAY(20000);
15472     } while (--time_counter);
15473 
15474     if (!time_counter || rc) {
15475         BLOGE(sc, "Failed to unload previous driver!"
15476             " time_counter %d rc %d\n", time_counter, rc);
15477         rc = -1;
15478     }
15479 
15480     return (rc);
15481 }
15482 
15483 void
15484 bxe_dcbx_set_state(struct bxe_softc *sc,
15485                    uint8_t          dcb_on,
15486                    uint32_t         dcbx_enabled)
15487 {
15488     if (!CHIP_IS_E1x(sc)) {
15489         sc->dcb_state = dcb_on;
15490         sc->dcbx_enabled = dcbx_enabled;
15491     } else {
15492         sc->dcb_state = FALSE;
15493         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15494     }
15495     BLOGD(sc, DBG_LOAD,
15496           "DCB state [%s:%s]\n",
15497           dcb_on ? "ON" : "OFF",
15498           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15499           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15500           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15501           "on-chip with negotiation" : "invalid");
15502 }
15503 
15504 /* must be called after sriov-enable */
15505 static int
15506 bxe_set_qm_cid_count(struct bxe_softc *sc)
15507 {
15508     int cid_count = BXE_L2_MAX_CID(sc);
15509 
15510     if (IS_SRIOV(sc)) {
15511         cid_count += BXE_VF_CIDS;
15512     }
15513 
15514     if (CNIC_SUPPORT(sc)) {
15515         cid_count += CNIC_CID_MAX;
15516     }
15517 
15518     return (roundup(cid_count, QM_CID_ROUND));
15519 }
15520 
15521 static void
15522 bxe_init_multi_cos(struct bxe_softc *sc)
15523 {
15524     int pri, cos;
15525 
15526     uint32_t pri_map = 0; /* XXX change to user config */
15527 
15528     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15529         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15530         if (cos < sc->max_cos) {
15531             sc->prio_to_cos[pri] = cos;
15532         } else {
15533             BLOGW(sc, "Invalid COS %d for priority %d "
15534                       "(max COS is %d), setting to 0\n",
15535                   cos, pri, (sc->max_cos - 1));
15536             sc->prio_to_cos[pri] = 0;
15537         }
15538     }
15539 }
15540 
15541 static int
15542 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15543 {
15544     struct bxe_softc *sc;
15545     int error, result;
15546 
15547     result = 0;
15548     error = sysctl_handle_int(oidp, &result, 0, req);
15549 
15550     if (error || !req->newptr) {
15551         return (error);
15552     }
15553 
15554     if (result == 1) {
15555         uint32_t  temp;
15556         sc = (struct bxe_softc *)arg1;
15557 
15558         BLOGI(sc, "... dumping driver state ...\n");
15559         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15560         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15561     }
15562 
15563     return (error);
15564 }
15565 
15566 static int
15567 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15568 {
15569     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15570     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15571     uint32_t *offset;
15572     uint64_t value = 0;
15573     int index = (int)arg2;
15574 
15575     if (index >= BXE_NUM_ETH_STATS) {
15576         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15577         return (-1);
15578     }
15579 
15580     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15581 
15582     switch (bxe_eth_stats_arr[index].size) {
15583     case 4:
15584         value = (uint64_t)*offset;
15585         break;
15586     case 8:
15587         value = HILO_U64(*offset, *(offset + 1));
15588         break;
15589     default:
15590         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15591               index, bxe_eth_stats_arr[index].size);
15592         return (-1);
15593     }
15594 
15595     return (sysctl_handle_64(oidp, &value, 0, req));
15596 }
15597 
15598 static int
15599 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15600 {
15601     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15602     uint32_t *eth_stats;
15603     uint32_t *offset;
15604     uint64_t value = 0;
15605     uint32_t q_stat = (uint32_t)arg2;
15606     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15607     uint32_t index = (q_stat & 0xffff);
15608 
15609     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15610 
15611     if (index >= BXE_NUM_ETH_Q_STATS) {
15612         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15613         return (-1);
15614     }
15615 
15616     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15617 
15618     switch (bxe_eth_q_stats_arr[index].size) {
15619     case 4:
15620         value = (uint64_t)*offset;
15621         break;
15622     case 8:
15623         value = HILO_U64(*offset, *(offset + 1));
15624         break;
15625     default:
15626         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15627               index, bxe_eth_q_stats_arr[index].size);
15628         return (-1);
15629     }
15630 
15631     return (sysctl_handle_64(oidp, &value, 0, req));
15632 }
15633 
15634 static void bxe_force_link_reset(struct bxe_softc *sc)
15635 {
15636 
15637         bxe_acquire_phy_lock(sc);
15638         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15639         bxe_release_phy_lock(sc);
15640 }
15641 
15642 static int
15643 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15644 {
15645         struct bxe_softc *sc = (struct bxe_softc *)arg1;;
15646         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15647         int rc = 0;
15648         int error;
15649         int result;
15650 
15651 
15652         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15653 
15654         if (error || !req->newptr) {
15655                 return (error);
15656         }
15657         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15658                 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param);
15659                 sc->bxe_pause_param = 8;
15660         }
15661 
15662         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15663 
15664 
15665         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15666                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15667                         return -EINVAL;
15668         }
15669 
15670         if(IS_MF(sc))
15671                 return 0;
15672        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15673         if(result & ELINK_FLOW_CTRL_RX)
15674                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15675 
15676         if(result & ELINK_FLOW_CTRL_TX)
15677                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15678         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15679                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15680 
15681         if(result & 0x400) {
15682                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15683                         sc->link_params.req_flow_ctrl[cfg_idx] =
15684                                 ELINK_FLOW_CTRL_AUTO;
15685                 }
15686                 sc->link_params.req_fc_auto_adv = 0;
15687                 if (result & ELINK_FLOW_CTRL_RX)
15688                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15689 
15690                 if (result & ELINK_FLOW_CTRL_TX)
15691                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15692                 if (!sc->link_params.req_fc_auto_adv)
15693                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15694         }
15695          if (IS_PF(sc)) {
15696                         if (sc->link_vars.link_up) {
15697                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15698                         }
15699 			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15700                         bxe_force_link_reset(sc);
15701                         bxe_acquire_phy_lock(sc);
15702 
15703                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15704 
15705                         bxe_release_phy_lock(sc);
15706 
15707                         bxe_calc_fc_adv(sc);
15708                         }
15709         }
15710         return rc;
15711 }
15712 
15713 
15714 static void
15715 bxe_add_sysctls(struct bxe_softc *sc)
15716 {
15717     struct sysctl_ctx_list *ctx;
15718     struct sysctl_oid_list *children;
15719     struct sysctl_oid *queue_top, *queue;
15720     struct sysctl_oid_list *queue_top_children, *queue_children;
15721     char queue_num_buf[32];
15722     uint32_t q_stat;
15723     int i, j;
15724 
15725     ctx = device_get_sysctl_ctx(sc->dev);
15726     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15727 
15728     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15729                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15730                       "version");
15731 
15732     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15733              BCM_5710_FW_MAJOR_VERSION,
15734              BCM_5710_FW_MINOR_VERSION,
15735              BCM_5710_FW_REVISION_VERSION,
15736              BCM_5710_FW_ENGINEERING_VERSION);
15737 
15738     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
15739         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
15740          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
15741          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
15742          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
15743                                                                 "Unknown"));
15744     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
15745                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
15746                     "multifunction vnics per port");
15747 
15748     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
15749         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
15750          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
15751          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
15752                                               "???GT/s"),
15753         sc->devinfo.pcie_link_width);
15754 
15755     sc->debug = bxe_debug;
15756 
15757 #if __FreeBSD_version >= 900000
15758     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15759                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
15760                       "bootcode version");
15761     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15762                       CTLFLAG_RD, sc->fw_ver_str, 0,
15763                       "firmware version");
15764     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15765                       CTLFLAG_RD, sc->mf_mode_str, 0,
15766                       "multifunction mode");
15767     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15768                       CTLFLAG_RD, sc->mac_addr_str, 0,
15769                       "mac address");
15770     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15771                       CTLFLAG_RD, sc->pci_link_str, 0,
15772                       "pci link status");
15773     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
15774                     CTLFLAG_RW, &sc->debug,
15775                     "debug logging mode");
15776 #else
15777     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
15778                       CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
15779                       "bootcode version");
15780     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
15781                       CTLFLAG_RD, &sc->fw_ver_str, 0,
15782                       "firmware version");
15783     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
15784                       CTLFLAG_RD, &sc->mf_mode_str, 0,
15785                       "multifunction mode");
15786     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
15787                       CTLFLAG_RD, &sc->mac_addr_str, 0,
15788                       "mac address");
15789     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
15790                       CTLFLAG_RD, &sc->pci_link_str, 0,
15791                       "pci link status");
15792     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
15793                     CTLFLAG_RW, &sc->debug, 0,
15794                     "debug logging mode");
15795 #endif /* #if __FreeBSD_version >= 900000 */
15796 
15797     sc->trigger_grcdump = 0;
15798     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
15799                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
15800                    "trigger grcdump should be invoked"
15801                    "  before collecting grcdump");
15802 
15803     sc->grcdump_started = 0;
15804     sc->grcdump_done = 0;
15805     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
15806                    CTLFLAG_RD, &sc->grcdump_done, 0,
15807                    "set by driver when grcdump is done");
15808 
15809     sc->rx_budget = bxe_rx_budget;
15810     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
15811                     CTLFLAG_RW, &sc->rx_budget, 0,
15812                     "rx processing budget");
15813 
15814    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
15815                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15816                     bxe_sysctl_pauseparam, "IU",
15817                     "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
15818 
15819 
15820     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
15821                     CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
15822                     bxe_sysctl_state, "IU", "dump driver state");
15823 
15824     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
15825         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
15826                         bxe_eth_stats_arr[i].string,
15827                         CTLTYPE_U64 | CTLFLAG_RD, sc, i,
15828                         bxe_sysctl_eth_stat, "LU",
15829                         bxe_eth_stats_arr[i].string);
15830     }
15831 
15832     /* add a new parent node for all queues "dev.bxe.#.queue" */
15833     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
15834                                 CTLFLAG_RD, NULL, "queue");
15835     queue_top_children = SYSCTL_CHILDREN(queue_top);
15836 
15837     for (i = 0; i < sc->num_queues; i++) {
15838         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
15839         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
15840         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
15841                                 queue_num_buf, CTLFLAG_RD, NULL,
15842                                 "single queue");
15843         queue_children = SYSCTL_CHILDREN(queue);
15844 
15845         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
15846             q_stat = ((i << 16) | j);
15847             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
15848                             bxe_eth_q_stats_arr[j].string,
15849                             CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
15850                             bxe_sysctl_eth_q_stat, "LU",
15851                             bxe_eth_q_stats_arr[j].string);
15852         }
15853     }
15854 }
15855 
15856 static int
15857 bxe_alloc_buf_rings(struct bxe_softc *sc)
15858 {
15859 #if __FreeBSD_version >= 901504
15860 
15861     int i;
15862     struct bxe_fastpath *fp;
15863 
15864     for (i = 0; i < sc->num_queues; i++) {
15865 
15866         fp = &sc->fp[i];
15867 
15868         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
15869                                    M_NOWAIT, &fp->tx_mtx);
15870         if (fp->tx_br == NULL)
15871             return (-1);
15872     }
15873 #endif
15874     return (0);
15875 }
15876 
15877 static void
15878 bxe_free_buf_rings(struct bxe_softc *sc)
15879 {
15880 #if __FreeBSD_version >= 901504
15881 
15882     int i;
15883     struct bxe_fastpath *fp;
15884 
15885     for (i = 0; i < sc->num_queues; i++) {
15886 
15887         fp = &sc->fp[i];
15888 
15889         if (fp->tx_br) {
15890             buf_ring_free(fp->tx_br, M_DEVBUF);
15891             fp->tx_br = NULL;
15892         }
15893     }
15894 
15895 #endif
15896 }
15897 
15898 static void
15899 bxe_init_fp_mutexs(struct bxe_softc *sc)
15900 {
15901     int i;
15902     struct bxe_fastpath *fp;
15903 
15904     for (i = 0; i < sc->num_queues; i++) {
15905 
15906         fp = &sc->fp[i];
15907 
15908         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
15909             "bxe%d_fp%d_tx_lock", sc->unit, i);
15910         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
15911 
15912         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
15913             "bxe%d_fp%d_rx_lock", sc->unit, i);
15914         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
15915     }
15916 }
15917 
15918 static void
15919 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
15920 {
15921     int i;
15922     struct bxe_fastpath *fp;
15923 
15924     for (i = 0; i < sc->num_queues; i++) {
15925 
15926         fp = &sc->fp[i];
15927 
15928         if (mtx_initialized(&fp->tx_mtx)) {
15929             mtx_destroy(&fp->tx_mtx);
15930         }
15931 
15932         if (mtx_initialized(&fp->rx_mtx)) {
15933             mtx_destroy(&fp->rx_mtx);
15934         }
15935     }
15936 }
15937 
15938 
15939 /*
15940  * Device attach function.
15941  *
15942  * Allocates device resources, performs secondary chip identification, and
15943  * initializes driver instance variables. This function is called from driver
15944  * load after a successful probe.
15945  *
15946  * Returns:
15947  *   0 = Success, >0 = Failure
15948  */
15949 static int
15950 bxe_attach(device_t dev)
15951 {
15952     struct bxe_softc *sc;
15953 
15954     sc = device_get_softc(dev);
15955 
15956     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
15957 
15958     sc->state = BXE_STATE_CLOSED;
15959 
15960     sc->dev  = dev;
15961     sc->unit = device_get_unit(dev);
15962 
15963     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
15964 
15965     sc->pcie_bus    = pci_get_bus(dev);
15966     sc->pcie_device = pci_get_slot(dev);
15967     sc->pcie_func   = pci_get_function(dev);
15968 
15969     /* enable bus master capability */
15970     pci_enable_busmaster(dev);
15971 
15972     /* get the BARs */
15973     if (bxe_allocate_bars(sc) != 0) {
15974         return (ENXIO);
15975     }
15976 
15977     /* initialize the mutexes */
15978     bxe_init_mutexes(sc);
15979 
15980     /* prepare the periodic callout */
15981     callout_init(&sc->periodic_callout, 0);
15982 
15983     /* prepare the chip taskqueue */
15984     sc->chip_tq_flags = CHIP_TQ_NONE;
15985     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
15986              "bxe%d_chip_tq", sc->unit);
15987     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
15988     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
15989                                    taskqueue_thread_enqueue,
15990                                    &sc->chip_tq);
15991     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
15992                             "%s", sc->chip_tq_name);
15993 
15994     /* get device info and set params */
15995     if (bxe_get_device_info(sc) != 0) {
15996         BLOGE(sc, "getting device info\n");
15997         bxe_deallocate_bars(sc);
15998         pci_disable_busmaster(dev);
15999         return (ENXIO);
16000     }
16001 
16002     /* get final misc params */
16003     bxe_get_params(sc);
16004 
16005     /* set the default MTU (changed via ifconfig) */
16006     sc->mtu = ETHERMTU;
16007 
16008     bxe_set_modes_bitmap(sc);
16009 
16010     /* XXX
16011      * If in AFEX mode and the function is configured for FCoE
16012      * then bail... no L2 allowed.
16013      */
16014 
16015     /* get phy settings from shmem and 'and' against admin settings */
16016     bxe_get_phy_info(sc);
16017 
16018     /* initialize the FreeBSD ifnet interface */
16019     if (bxe_init_ifnet(sc) != 0) {
16020         bxe_release_mutexes(sc);
16021         bxe_deallocate_bars(sc);
16022         pci_disable_busmaster(dev);
16023         return (ENXIO);
16024     }
16025 
16026     if (bxe_add_cdev(sc) != 0) {
16027         if (sc->ifp != NULL) {
16028             ether_ifdetach(sc->ifp);
16029         }
16030         ifmedia_removeall(&sc->ifmedia);
16031         bxe_release_mutexes(sc);
16032         bxe_deallocate_bars(sc);
16033         pci_disable_busmaster(dev);
16034         return (ENXIO);
16035     }
16036 
16037     /* allocate device interrupts */
16038     if (bxe_interrupt_alloc(sc) != 0) {
16039         bxe_del_cdev(sc);
16040         if (sc->ifp != NULL) {
16041             ether_ifdetach(sc->ifp);
16042         }
16043         ifmedia_removeall(&sc->ifmedia);
16044         bxe_release_mutexes(sc);
16045         bxe_deallocate_bars(sc);
16046         pci_disable_busmaster(dev);
16047         return (ENXIO);
16048     }
16049 
16050     bxe_init_fp_mutexs(sc);
16051 
16052     if (bxe_alloc_buf_rings(sc) != 0) {
16053 	bxe_free_buf_rings(sc);
16054         bxe_interrupt_free(sc);
16055         bxe_del_cdev(sc);
16056         if (sc->ifp != NULL) {
16057             ether_ifdetach(sc->ifp);
16058         }
16059         ifmedia_removeall(&sc->ifmedia);
16060         bxe_release_mutexes(sc);
16061         bxe_deallocate_bars(sc);
16062         pci_disable_busmaster(dev);
16063         return (ENXIO);
16064     }
16065 
16066     /* allocate ilt */
16067     if (bxe_alloc_ilt_mem(sc) != 0) {
16068 	bxe_free_buf_rings(sc);
16069         bxe_interrupt_free(sc);
16070         bxe_del_cdev(sc);
16071         if (sc->ifp != NULL) {
16072             ether_ifdetach(sc->ifp);
16073         }
16074         ifmedia_removeall(&sc->ifmedia);
16075         bxe_release_mutexes(sc);
16076         bxe_deallocate_bars(sc);
16077         pci_disable_busmaster(dev);
16078         return (ENXIO);
16079     }
16080 
16081     /* allocate the host hardware/software hsi structures */
16082     if (bxe_alloc_hsi_mem(sc) != 0) {
16083         bxe_free_ilt_mem(sc);
16084 	bxe_free_buf_rings(sc);
16085         bxe_interrupt_free(sc);
16086         bxe_del_cdev(sc);
16087         if (sc->ifp != NULL) {
16088             ether_ifdetach(sc->ifp);
16089         }
16090         ifmedia_removeall(&sc->ifmedia);
16091         bxe_release_mutexes(sc);
16092         bxe_deallocate_bars(sc);
16093         pci_disable_busmaster(dev);
16094         return (ENXIO);
16095     }
16096 
16097     /* need to reset chip if UNDI was active */
16098     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16099         /* init fw_seq */
16100         sc->fw_seq =
16101             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16102              DRV_MSG_SEQ_NUMBER_MASK);
16103         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16104         bxe_prev_unload(sc);
16105     }
16106 
16107 #if 1
16108     /* XXX */
16109     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16110 #else
16111     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16112         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16113         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16114         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16115         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16116         bxe_dcbx_init_params(sc);
16117     } else {
16118         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16119     }
16120 #endif
16121 
16122     /* calculate qm_cid_count */
16123     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16124     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16125 
16126     sc->max_cos = 1;
16127     bxe_init_multi_cos(sc);
16128 
16129     bxe_add_sysctls(sc);
16130 
16131     return (0);
16132 }
16133 
16134 /*
16135  * Device detach function.
16136  *
16137  * Stops the controller, resets the controller, and releases resources.
16138  *
16139  * Returns:
16140  *   0 = Success, >0 = Failure
16141  */
16142 static int
16143 bxe_detach(device_t dev)
16144 {
16145     struct bxe_softc *sc;
16146     if_t ifp;
16147 
16148     sc = device_get_softc(dev);
16149 
16150     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16151 
16152     ifp = sc->ifp;
16153     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16154         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16155         return(EBUSY);
16156     }
16157 
16158     bxe_del_cdev(sc);
16159 
16160     /* stop the periodic callout */
16161     bxe_periodic_stop(sc);
16162 
16163     /* stop the chip taskqueue */
16164     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16165     if (sc->chip_tq) {
16166         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16167         taskqueue_free(sc->chip_tq);
16168         sc->chip_tq = NULL;
16169     }
16170 
16171     /* stop and reset the controller if it was open */
16172     if (sc->state != BXE_STATE_CLOSED) {
16173         BXE_CORE_LOCK(sc);
16174         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16175         sc->state = BXE_STATE_DISABLED;
16176         BXE_CORE_UNLOCK(sc);
16177     }
16178 
16179     /* release the network interface */
16180     if (ifp != NULL) {
16181         ether_ifdetach(ifp);
16182     }
16183     ifmedia_removeall(&sc->ifmedia);
16184 
16185     /* XXX do the following based on driver state... */
16186 
16187     /* free the host hardware/software hsi structures */
16188     bxe_free_hsi_mem(sc);
16189 
16190     /* free ilt */
16191     bxe_free_ilt_mem(sc);
16192 
16193     bxe_free_buf_rings(sc);
16194 
16195     /* release the interrupts */
16196     bxe_interrupt_free(sc);
16197 
16198     /* Release the mutexes*/
16199     bxe_destroy_fp_mutexs(sc);
16200     bxe_release_mutexes(sc);
16201 
16202 
16203     /* Release the PCIe BAR mapped memory */
16204     bxe_deallocate_bars(sc);
16205 
16206     /* Release the FreeBSD interface. */
16207     if (sc->ifp != NULL) {
16208         if_free(sc->ifp);
16209     }
16210 
16211     pci_disable_busmaster(dev);
16212 
16213     return (0);
16214 }
16215 
16216 /*
16217  * Device shutdown function.
16218  *
16219  * Stops and resets the controller.
16220  *
16221  * Returns:
16222  *   Nothing
16223  */
16224 static int
16225 bxe_shutdown(device_t dev)
16226 {
16227     struct bxe_softc *sc;
16228 
16229     sc = device_get_softc(dev);
16230 
16231     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16232 
16233     /* stop the periodic callout */
16234     bxe_periodic_stop(sc);
16235 
16236     BXE_CORE_LOCK(sc);
16237     bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16238     BXE_CORE_UNLOCK(sc);
16239 
16240     return (0);
16241 }
16242 
16243 void
16244 bxe_igu_ack_sb(struct bxe_softc *sc,
16245                uint8_t          igu_sb_id,
16246                uint8_t          segment,
16247                uint16_t         index,
16248                uint8_t          op,
16249                uint8_t          update)
16250 {
16251     uint32_t igu_addr = sc->igu_base_addr;
16252     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16253     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16254 }
16255 
16256 static void
16257 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16258                      uint8_t          func,
16259                      uint8_t          idu_sb_id,
16260                      uint8_t          is_pf)
16261 {
16262     uint32_t data, ctl, cnt = 100;
16263     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16264     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16265     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16266     uint32_t sb_bit =  1 << (idu_sb_id%32);
16267     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16268     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16269 
16270     /* Not supported in BC mode */
16271     if (CHIP_INT_MODE_IS_BC(sc)) {
16272         return;
16273     }
16274 
16275     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16276              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16277             IGU_REGULAR_CLEANUP_SET |
16278             IGU_REGULAR_BCLEANUP);
16279 
16280     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16281            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16282            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16283 
16284     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16285             data, igu_addr_data);
16286     REG_WR(sc, igu_addr_data, data);
16287 
16288     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16289                       BUS_SPACE_BARRIER_WRITE);
16290     mb();
16291 
16292     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16293             ctl, igu_addr_ctl);
16294     REG_WR(sc, igu_addr_ctl, ctl);
16295 
16296     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16297                       BUS_SPACE_BARRIER_WRITE);
16298     mb();
16299 
16300     /* wait for clean up to finish */
16301     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16302         DELAY(20000);
16303     }
16304 
16305     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16306         BLOGD(sc, DBG_LOAD,
16307               "Unable to finish IGU cleanup: "
16308               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16309               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16310     }
16311 }
16312 
16313 static void
16314 bxe_igu_clear_sb(struct bxe_softc *sc,
16315                  uint8_t          idu_sb_id)
16316 {
16317     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16318 }
16319 
16320 
16321 
16322 
16323 
16324 
16325 
16326 /*******************/
16327 /* ECORE CALLBACKS */
16328 /*******************/
16329 
16330 static void
16331 bxe_reset_common(struct bxe_softc *sc)
16332 {
16333     uint32_t val = 0x1400;
16334 
16335     /* reset_common */
16336     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16337 
16338     if (CHIP_IS_E3(sc)) {
16339         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16340         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16341     }
16342 
16343     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16344 }
16345 
16346 static void
16347 bxe_common_init_phy(struct bxe_softc *sc)
16348 {
16349     uint32_t shmem_base[2];
16350     uint32_t shmem2_base[2];
16351 
16352     /* Avoid common init in case MFW supports LFA */
16353     if (SHMEM2_RD(sc, size) >
16354         (uint32_t)offsetof(struct shmem2_region,
16355                            lfa_host_addr[SC_PORT(sc)])) {
16356         return;
16357     }
16358 
16359     shmem_base[0]  = sc->devinfo.shmem_base;
16360     shmem2_base[0] = sc->devinfo.shmem2_base;
16361 
16362     if (!CHIP_IS_E1x(sc)) {
16363         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16364         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16365     }
16366 
16367     bxe_acquire_phy_lock(sc);
16368     elink_common_init_phy(sc, shmem_base, shmem2_base,
16369                           sc->devinfo.chip_id, 0);
16370     bxe_release_phy_lock(sc);
16371 }
16372 
16373 static void
16374 bxe_pf_disable(struct bxe_softc *sc)
16375 {
16376     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16377 
16378     val &= ~IGU_PF_CONF_FUNC_EN;
16379 
16380     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16381     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16382     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16383 }
16384 
16385 static void
16386 bxe_init_pxp(struct bxe_softc *sc)
16387 {
16388     uint16_t devctl;
16389     int r_order, w_order;
16390 
16391     devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16392 
16393     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16394 
16395     w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16396 
16397     if (sc->mrrs == -1) {
16398         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16399     } else {
16400         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16401         r_order = sc->mrrs;
16402     }
16403 
16404     ecore_init_pxp_arb(sc, r_order, w_order);
16405 }
16406 
16407 static uint32_t
16408 bxe_get_pretend_reg(struct bxe_softc *sc)
16409 {
16410     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16411     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16412     return (base + (SC_ABS_FUNC(sc)) * stride);
16413 }
16414 
16415 /*
16416  * Called only on E1H or E2.
16417  * When pretending to be PF, the pretend value is the function number 0..7.
16418  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16419  * combination.
16420  */
16421 static int
16422 bxe_pretend_func(struct bxe_softc *sc,
16423                  uint16_t         pretend_func_val)
16424 {
16425     uint32_t pretend_reg;
16426 
16427     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16428         return (-1);
16429     }
16430 
16431     /* get my own pretend register */
16432     pretend_reg = bxe_get_pretend_reg(sc);
16433     REG_WR(sc, pretend_reg, pretend_func_val);
16434     REG_RD(sc, pretend_reg);
16435     return (0);
16436 }
16437 
16438 static void
16439 bxe_iov_init_dmae(struct bxe_softc *sc)
16440 {
16441     return;
16442 }
16443 
16444 static void
16445 bxe_iov_init_dq(struct bxe_softc *sc)
16446 {
16447     return;
16448 }
16449 
16450 /* send a NIG loopback debug packet */
16451 static void
16452 bxe_lb_pckt(struct bxe_softc *sc)
16453 {
16454     uint32_t wb_write[3];
16455 
16456     /* Ethernet source and destination addresses */
16457     wb_write[0] = 0x55555555;
16458     wb_write[1] = 0x55555555;
16459     wb_write[2] = 0x20;     /* SOP */
16460     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16461 
16462     /* NON-IP protocol */
16463     wb_write[0] = 0x09000000;
16464     wb_write[1] = 0x55555555;
16465     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16466     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16467 }
16468 
16469 /*
16470  * Some of the internal memories are not directly readable from the driver.
16471  * To test them we send debug packets.
16472  */
16473 static int
16474 bxe_int_mem_test(struct bxe_softc *sc)
16475 {
16476     int factor;
16477     int count, i;
16478     uint32_t val = 0;
16479 
16480     if (CHIP_REV_IS_FPGA(sc)) {
16481         factor = 120;
16482     } else if (CHIP_REV_IS_EMUL(sc)) {
16483         factor = 200;
16484     } else {
16485         factor = 1;
16486     }
16487 
16488     /* disable inputs of parser neighbor blocks */
16489     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16490     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16491     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16492     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16493 
16494     /*  write 0 to parser credits for CFC search request */
16495     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16496 
16497     /* send Ethernet packet */
16498     bxe_lb_pckt(sc);
16499 
16500     /* TODO do i reset NIG statistic? */
16501     /* Wait until NIG register shows 1 packet of size 0x10 */
16502     count = 1000 * factor;
16503     while (count) {
16504         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16505         val = *BXE_SP(sc, wb_data[0]);
16506         if (val == 0x10) {
16507             break;
16508         }
16509 
16510         DELAY(10000);
16511         count--;
16512     }
16513 
16514     if (val != 0x10) {
16515         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16516         return (-1);
16517     }
16518 
16519     /* wait until PRS register shows 1 packet */
16520     count = (1000 * factor);
16521     while (count) {
16522         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16523         if (val == 1) {
16524             break;
16525         }
16526 
16527         DELAY(10000);
16528         count--;
16529     }
16530 
16531     if (val != 0x1) {
16532         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16533         return (-2);
16534     }
16535 
16536     /* Reset and init BRB, PRS */
16537     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16538     DELAY(50000);
16539     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16540     DELAY(50000);
16541     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16542     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16543 
16544     /* Disable inputs of parser neighbor blocks */
16545     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16546     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16547     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16548     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16549 
16550     /* Write 0 to parser credits for CFC search request */
16551     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16552 
16553     /* send 10 Ethernet packets */
16554     for (i = 0; i < 10; i++) {
16555         bxe_lb_pckt(sc);
16556     }
16557 
16558     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16559     count = (1000 * factor);
16560     while (count) {
16561         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16562         val = *BXE_SP(sc, wb_data[0]);
16563         if (val == 0xb0) {
16564             break;
16565         }
16566 
16567         DELAY(10000);
16568         count--;
16569     }
16570 
16571     if (val != 0xb0) {
16572         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16573         return (-3);
16574     }
16575 
16576     /* Wait until PRS register shows 2 packets */
16577     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16578     if (val != 2) {
16579         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16580     }
16581 
16582     /* Write 1 to parser credits for CFC search request */
16583     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16584 
16585     /* Wait until PRS register shows 3 packets */
16586     DELAY(10000 * factor);
16587 
16588     /* Wait until NIG register shows 1 packet of size 0x10 */
16589     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16590     if (val != 3) {
16591         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16592     }
16593 
16594     /* clear NIG EOP FIFO */
16595     for (i = 0; i < 11; i++) {
16596         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16597     }
16598 
16599     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16600     if (val != 1) {
16601         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16602         return (-4);
16603     }
16604 
16605     /* Reset and init BRB, PRS, NIG */
16606     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16607     DELAY(50000);
16608     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16609     DELAY(50000);
16610     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16611     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16612     if (!CNIC_SUPPORT(sc)) {
16613         /* set NIC mode */
16614         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16615     }
16616 
16617     /* Enable inputs of parser neighbor blocks */
16618     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16619     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16620     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16621     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16622 
16623     return (0);
16624 }
16625 
16626 static void
16627 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16628 {
16629     int is_required;
16630     uint32_t val;
16631     int port;
16632 
16633     is_required = 0;
16634     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16635            SHARED_HW_CFG_FAN_FAILURE_MASK);
16636 
16637     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16638         is_required = 1;
16639     }
16640     /*
16641      * The fan failure mechanism is usually related to the PHY type since
16642      * the power consumption of the board is affected by the PHY. Currently,
16643      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16644      */
16645     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16646         for (port = PORT_0; port < PORT_MAX; port++) {
16647             is_required |= elink_fan_failure_det_req(sc,
16648                                                      sc->devinfo.shmem_base,
16649                                                      sc->devinfo.shmem2_base,
16650                                                      port);
16651         }
16652     }
16653 
16654     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16655 
16656     if (is_required == 0) {
16657         return;
16658     }
16659 
16660     /* Fan failure is indicated by SPIO 5 */
16661     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16662 
16663     /* set to active low mode */
16664     val = REG_RD(sc, MISC_REG_SPIO_INT);
16665     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16666     REG_WR(sc, MISC_REG_SPIO_INT, val);
16667 
16668     /* enable interrupt to signal the IGU */
16669     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16670     val |= MISC_SPIO_SPIO5;
16671     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16672 }
16673 
16674 static void
16675 bxe_enable_blocks_attention(struct bxe_softc *sc)
16676 {
16677     uint32_t val;
16678 
16679     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16680     if (!CHIP_IS_E1x(sc)) {
16681         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16682     } else {
16683         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16684     }
16685     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16686     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16687     /*
16688      * mask read length error interrupts in brb for parser
16689      * (parsing unit and 'checksum and crc' unit)
16690      * these errors are legal (PU reads fixed length and CAC can cause
16691      * read length error on truncated packets)
16692      */
16693     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16694     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16695     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16696     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16697     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16698     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16699 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16700 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16701     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16702     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16703     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16704 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16705 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16706     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16707     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16708     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16709     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16710 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16711 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16712 
16713     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16714            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16715            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16716     if (!CHIP_IS_E1x(sc)) {
16717         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16718                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16719     }
16720     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16721 
16722     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16723     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16724     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16725 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16726 
16727     if (!CHIP_IS_E1x(sc)) {
16728         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16729         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16730     }
16731 
16732     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16733     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16734 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16735     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16736 }
16737 
16738 /**
16739  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16740  *
16741  * @sc:     driver handle
16742  */
16743 static int
16744 bxe_init_hw_common(struct bxe_softc *sc)
16745 {
16746     uint8_t abs_func_id;
16747     uint32_t val;
16748 
16749     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16750           SC_ABS_FUNC(sc));
16751 
16752     /*
16753      * take the RESET lock to protect undi_unload flow from accessing
16754      * registers while we are resetting the chip
16755      */
16756     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16757 
16758     bxe_reset_common(sc);
16759 
16760     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
16761 
16762     val = 0xfffc;
16763     if (CHIP_IS_E3(sc)) {
16764         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16765         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16766     }
16767 
16768     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
16769 
16770     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16771 
16772     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
16773     BLOGD(sc, DBG_LOAD, "after misc block init\n");
16774 
16775     if (!CHIP_IS_E1x(sc)) {
16776         /*
16777          * 4-port mode or 2-port mode we need to turn off master-enable for
16778          * everyone. After that we turn it back on for self. So, we disregard
16779          * multi-function, and always disable all functions on the given path,
16780          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
16781          */
16782         for (abs_func_id = SC_PATH(sc);
16783              abs_func_id < (E2_FUNC_MAX * 2);
16784              abs_func_id += 2) {
16785             if (abs_func_id == SC_ABS_FUNC(sc)) {
16786                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
16787                 continue;
16788             }
16789 
16790             bxe_pretend_func(sc, abs_func_id);
16791 
16792             /* clear pf enable */
16793             bxe_pf_disable(sc);
16794 
16795             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16796         }
16797     }
16798 
16799     BLOGD(sc, DBG_LOAD, "after pf disable\n");
16800 
16801     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
16802 
16803     if (CHIP_IS_E1(sc)) {
16804         /*
16805          * enable HW interrupt from PXP on USDM overflow
16806          * bit 16 on INT_MASK_0
16807          */
16808         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16809     }
16810 
16811     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
16812     bxe_init_pxp(sc);
16813 
16814 #ifdef __BIG_ENDIAN
16815     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
16816     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
16817     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
16818     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
16819     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
16820     /* make sure this value is 0 */
16821     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
16822 
16823     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
16824     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
16825     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
16826     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
16827     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
16828 #endif
16829 
16830     ecore_ilt_init_page_size(sc, INITOP_SET);
16831 
16832     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
16833         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
16834     }
16835 
16836     /* let the HW do it's magic... */
16837     DELAY(100000);
16838 
16839     /* finish PXP init */
16840     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
16841     if (val != 1) {
16842         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
16843             val);
16844         return (-1);
16845     }
16846     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
16847     if (val != 1) {
16848         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
16849         return (-1);
16850     }
16851 
16852     BLOGD(sc, DBG_LOAD, "after pxp init\n");
16853 
16854     /*
16855      * Timer bug workaround for E2 only. We need to set the entire ILT to have
16856      * entries with value "0" and valid bit on. This needs to be done by the
16857      * first PF that is loaded in a path (i.e. common phase)
16858      */
16859     if (!CHIP_IS_E1x(sc)) {
16860 /*
16861  * In E2 there is a bug in the timers block that can cause function 6 / 7
16862  * (i.e. vnic3) to start even if it is marked as "scan-off".
16863  * This occurs when a different function (func2,3) is being marked
16864  * as "scan-off". Real-life scenario for example: if a driver is being
16865  * load-unloaded while func6,7 are down. This will cause the timer to access
16866  * the ilt, translate to a logical address and send a request to read/write.
16867  * Since the ilt for the function that is down is not valid, this will cause
16868  * a translation error which is unrecoverable.
16869  * The Workaround is intended to make sure that when this happens nothing
16870  * fatal will occur. The workaround:
16871  *  1.  First PF driver which loads on a path will:
16872  *      a.  After taking the chip out of reset, by using pretend,
16873  *          it will write "0" to the following registers of
16874  *          the other vnics.
16875  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16876  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
16877  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
16878  *          And for itself it will write '1' to
16879  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
16880  *          dmae-operations (writing to pram for example.)
16881  *          note: can be done for only function 6,7 but cleaner this
16882  *            way.
16883  *      b.  Write zero+valid to the entire ILT.
16884  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
16885  *          VNIC3 (of that port). The range allocated will be the
16886  *          entire ILT. This is needed to prevent  ILT range error.
16887  *  2.  Any PF driver load flow:
16888  *      a.  ILT update with the physical addresses of the allocated
16889  *          logical pages.
16890  *      b.  Wait 20msec. - note that this timeout is needed to make
16891  *          sure there are no requests in one of the PXP internal
16892  *          queues with "old" ILT addresses.
16893  *      c.  PF enable in the PGLC.
16894  *      d.  Clear the was_error of the PF in the PGLC. (could have
16895  *          occurred while driver was down)
16896  *      e.  PF enable in the CFC (WEAK + STRONG)
16897  *      f.  Timers scan enable
16898  *  3.  PF driver unload flow:
16899  *      a.  Clear the Timers scan_en.
16900  *      b.  Polling for scan_on=0 for that PF.
16901  *      c.  Clear the PF enable bit in the PXP.
16902  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
16903  *      e.  Write zero+valid to all ILT entries (The valid bit must
16904  *          stay set)
16905  *      f.  If this is VNIC 3 of a port then also init
16906  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
16907  *          to the last enrty in the ILT.
16908  *
16909  *      Notes:
16910  *      Currently the PF error in the PGLC is non recoverable.
16911  *      In the future the there will be a recovery routine for this error.
16912  *      Currently attention is masked.
16913  *      Having an MCP lock on the load/unload process does not guarantee that
16914  *      there is no Timer disable during Func6/7 enable. This is because the
16915  *      Timers scan is currently being cleared by the MCP on FLR.
16916  *      Step 2.d can be done only for PF6/7 and the driver can also check if
16917  *      there is error before clearing it. But the flow above is simpler and
16918  *      more general.
16919  *      All ILT entries are written by zero+valid and not just PF6/7
16920  *      ILT entries since in the future the ILT entries allocation for
16921  *      PF-s might be dynamic.
16922  */
16923         struct ilt_client_info ilt_cli;
16924         struct ecore_ilt ilt;
16925 
16926         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
16927         memset(&ilt, 0, sizeof(struct ecore_ilt));
16928 
16929         /* initialize dummy TM client */
16930         ilt_cli.start      = 0;
16931         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
16932         ilt_cli.client_num = ILT_CLIENT_TM;
16933 
16934         /*
16935          * Step 1: set zeroes to all ilt page entries with valid bit on
16936          * Step 2: set the timers first/last ilt entry to point
16937          * to the entire range to prevent ILT range error for 3rd/4th
16938          * vnic (this code assumes existence of the vnic)
16939          *
16940          * both steps performed by call to ecore_ilt_client_init_op()
16941          * with dummy TM client
16942          *
16943          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
16944          * and his brother are split registers
16945          */
16946 
16947         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
16948         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
16949         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
16950 
16951         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
16952         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
16953         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
16954     }
16955 
16956     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
16957     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
16958 
16959     if (!CHIP_IS_E1x(sc)) {
16960         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
16961                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
16962 
16963         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
16964         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
16965 
16966         /* let the HW do it's magic... */
16967         do {
16968             DELAY(200000);
16969             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
16970         } while (factor-- && (val != 1));
16971 
16972         if (val != 1) {
16973             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
16974             return (-1);
16975         }
16976     }
16977 
16978     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
16979 
16980     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
16981 
16982     bxe_iov_init_dmae(sc);
16983 
16984     /* clean the DMAE memory */
16985     sc->dmae_ready = 1;
16986     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
16987 
16988     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
16989 
16990     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
16991 
16992     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
16993 
16994     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
16995 
16996     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
16997     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
16998     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
16999     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17000 
17001     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17002 
17003     /* QM queues pointers table */
17004     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17005 
17006     /* soft reset pulse */
17007     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17008     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17009 
17010     if (CNIC_SUPPORT(sc))
17011         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17012 
17013     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17014     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17015     if (!CHIP_REV_IS_SLOW(sc)) {
17016         /* enable hw interrupt from doorbell Q */
17017         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17018     }
17019 
17020     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17021 
17022     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17023     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17024 
17025     if (!CHIP_IS_E1(sc)) {
17026         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17027     }
17028 
17029     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17030         if (IS_MF_AFEX(sc)) {
17031             /*
17032              * configure that AFEX and VLAN headers must be
17033              * received in AFEX mode
17034              */
17035             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17036             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17037             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17038             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17039             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17040         } else {
17041             /*
17042              * Bit-map indicating which L2 hdrs may appear
17043              * after the basic Ethernet header
17044              */
17045             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17046                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17047         }
17048     }
17049 
17050     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17051     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17052     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17053     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17054 
17055     if (!CHIP_IS_E1x(sc)) {
17056         /* reset VFC memories */
17057         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17058                VFC_MEMORIES_RST_REG_CAM_RST |
17059                VFC_MEMORIES_RST_REG_RAM_RST);
17060         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17061                VFC_MEMORIES_RST_REG_CAM_RST |
17062                VFC_MEMORIES_RST_REG_RAM_RST);
17063 
17064         DELAY(20000);
17065     }
17066 
17067     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17068     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17069     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17070     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17071 
17072     /* sync semi rtc */
17073     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17074            0x80000000);
17075     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17076            0x80000000);
17077 
17078     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17079     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17080     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17081 
17082     if (!CHIP_IS_E1x(sc)) {
17083         if (IS_MF_AFEX(sc)) {
17084             /*
17085              * configure that AFEX and VLAN headers must be
17086              * sent in AFEX mode
17087              */
17088             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17089             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17090             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17091             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17092             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17093         } else {
17094             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17095                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17096         }
17097     }
17098 
17099     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17100 
17101     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17102 
17103     if (CNIC_SUPPORT(sc)) {
17104         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17105         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17106         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17107         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17108         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17109         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17110         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17111         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17112         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17113         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17114     }
17115     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17116 
17117     if (sizeof(union cdu_context) != 1024) {
17118         /* we currently assume that a context is 1024 bytes */
17119         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17120               (long)sizeof(union cdu_context));
17121     }
17122 
17123     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17124     val = (4 << 24) + (0 << 12) + 1024;
17125     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17126 
17127     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17128 
17129     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17130     /* enable context validation interrupt from CFC */
17131     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17132 
17133     /* set the thresholds to prevent CFC/CDU race */
17134     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17135     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17136 
17137     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17138         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17139     }
17140 
17141     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17142     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17143 
17144     /* Reset PCIE errors for debug */
17145     REG_WR(sc, 0x2814, 0xffffffff);
17146     REG_WR(sc, 0x3820, 0xffffffff);
17147 
17148     if (!CHIP_IS_E1x(sc)) {
17149         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17150                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17151                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17152         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17153                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17154                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17155                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17156         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17157                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17158                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17159                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17160     }
17161 
17162     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17163 
17164     if (!CHIP_IS_E1(sc)) {
17165         /* in E3 this done in per-port section */
17166         if (!CHIP_IS_E3(sc))
17167             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17168     }
17169 
17170     if (CHIP_IS_E1H(sc)) {
17171         /* not applicable for E2 (and above ...) */
17172         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17173     }
17174 
17175     if (CHIP_REV_IS_SLOW(sc)) {
17176         DELAY(200000);
17177     }
17178 
17179     /* finish CFC init */
17180     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17181     if (val != 1) {
17182         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17183         return (-1);
17184     }
17185     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17186     if (val != 1) {
17187         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17188         return (-1);
17189     }
17190     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17191     if (val != 1) {
17192         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17193         return (-1);
17194     }
17195     REG_WR(sc, CFC_REG_DEBUG0, 0);
17196 
17197     if (CHIP_IS_E1(sc)) {
17198         /* read NIG statistic to see if this is our first up since powerup */
17199         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17200         val = *BXE_SP(sc, wb_data[0]);
17201 
17202         /* do internal memory self test */
17203         if ((val == 0) && bxe_int_mem_test(sc)) {
17204             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17205             return (-1);
17206         }
17207     }
17208 
17209     bxe_setup_fan_failure_detection(sc);
17210 
17211     /* clear PXP2 attentions */
17212     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17213 
17214     bxe_enable_blocks_attention(sc);
17215 
17216     if (!CHIP_REV_IS_SLOW(sc)) {
17217         ecore_enable_blocks_parity(sc);
17218     }
17219 
17220     if (!BXE_NOMCP(sc)) {
17221         if (CHIP_IS_E1x(sc)) {
17222             bxe_common_init_phy(sc);
17223         }
17224     }
17225 
17226     return (0);
17227 }
17228 
17229 /**
17230  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17231  *
17232  * @sc:     driver handle
17233  */
17234 static int
17235 bxe_init_hw_common_chip(struct bxe_softc *sc)
17236 {
17237     int rc = bxe_init_hw_common(sc);
17238 
17239     if (rc) {
17240         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17241         return (rc);
17242     }
17243 
17244     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17245     if (!BXE_NOMCP(sc)) {
17246         bxe_common_init_phy(sc);
17247     }
17248 
17249     return (0);
17250 }
17251 
17252 static int
17253 bxe_init_hw_port(struct bxe_softc *sc)
17254 {
17255     int port = SC_PORT(sc);
17256     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17257     uint32_t low, high;
17258     uint32_t val;
17259 
17260     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17261 
17262     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17263 
17264     ecore_init_block(sc, BLOCK_MISC, init_phase);
17265     ecore_init_block(sc, BLOCK_PXP, init_phase);
17266     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17267 
17268     /*
17269      * Timers bug workaround: disables the pf_master bit in pglue at
17270      * common phase, we need to enable it here before any dmae access are
17271      * attempted. Therefore we manually added the enable-master to the
17272      * port phase (it also happens in the function phase)
17273      */
17274     if (!CHIP_IS_E1x(sc)) {
17275         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17276     }
17277 
17278     ecore_init_block(sc, BLOCK_ATC, init_phase);
17279     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17280     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17281     ecore_init_block(sc, BLOCK_QM, init_phase);
17282 
17283     ecore_init_block(sc, BLOCK_TCM, init_phase);
17284     ecore_init_block(sc, BLOCK_UCM, init_phase);
17285     ecore_init_block(sc, BLOCK_CCM, init_phase);
17286     ecore_init_block(sc, BLOCK_XCM, init_phase);
17287 
17288     /* QM cid (connection) count */
17289     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17290 
17291     if (CNIC_SUPPORT(sc)) {
17292         ecore_init_block(sc, BLOCK_TM, init_phase);
17293         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17294         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17295     }
17296 
17297     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17298 
17299     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17300 
17301     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17302         if (IS_MF(sc)) {
17303             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17304         } else if (sc->mtu > 4096) {
17305             if (BXE_ONE_PORT(sc)) {
17306                 low = 160;
17307             } else {
17308                 val = sc->mtu;
17309                 /* (24*1024 + val*4)/256 */
17310                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17311             }
17312         } else {
17313             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17314         }
17315         high = (low + 56); /* 14*1024/256 */
17316         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17317         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17318     }
17319 
17320     if (CHIP_IS_MODE_4_PORT(sc)) {
17321         REG_WR(sc, SC_PORT(sc) ?
17322                BRB1_REG_MAC_GUARANTIED_1 :
17323                BRB1_REG_MAC_GUARANTIED_0, 40);
17324     }
17325 
17326     ecore_init_block(sc, BLOCK_PRS, init_phase);
17327     if (CHIP_IS_E3B0(sc)) {
17328         if (IS_MF_AFEX(sc)) {
17329             /* configure headers for AFEX mode */
17330             REG_WR(sc, SC_PORT(sc) ?
17331                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17332                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17333             REG_WR(sc, SC_PORT(sc) ?
17334                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17335                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17336             REG_WR(sc, SC_PORT(sc) ?
17337                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17338                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17339         } else {
17340             /* Ovlan exists only if we are in multi-function +
17341              * switch-dependent mode, in switch-independent there
17342              * is no ovlan headers
17343              */
17344             REG_WR(sc, SC_PORT(sc) ?
17345                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17346                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17347                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17348         }
17349     }
17350 
17351     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17352     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17353     ecore_init_block(sc, BLOCK_USDM, init_phase);
17354     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17355 
17356     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17357     ecore_init_block(sc, BLOCK_USEM, init_phase);
17358     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17359     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17360 
17361     ecore_init_block(sc, BLOCK_UPB, init_phase);
17362     ecore_init_block(sc, BLOCK_XPB, init_phase);
17363 
17364     ecore_init_block(sc, BLOCK_PBF, init_phase);
17365 
17366     if (CHIP_IS_E1x(sc)) {
17367         /* configure PBF to work without PAUSE mtu 9000 */
17368         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17369 
17370         /* update threshold */
17371         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17372         /* update init credit */
17373         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17374 
17375         /* probe changes */
17376         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17377         DELAY(50);
17378         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17379     }
17380 
17381     if (CNIC_SUPPORT(sc)) {
17382         ecore_init_block(sc, BLOCK_SRC, init_phase);
17383     }
17384 
17385     ecore_init_block(sc, BLOCK_CDU, init_phase);
17386     ecore_init_block(sc, BLOCK_CFC, init_phase);
17387 
17388     if (CHIP_IS_E1(sc)) {
17389         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17390         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17391     }
17392     ecore_init_block(sc, BLOCK_HC, init_phase);
17393 
17394     ecore_init_block(sc, BLOCK_IGU, init_phase);
17395 
17396     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17397     /* init aeu_mask_attn_func_0/1:
17398      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17399      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17400      *             bits 4-7 are used for "per vn group attention" */
17401     val = IS_MF(sc) ? 0xF7 : 0x7;
17402     /* Enable DCBX attention for all but E1 */
17403     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17404     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17405 
17406     ecore_init_block(sc, BLOCK_NIG, init_phase);
17407 
17408     if (!CHIP_IS_E1x(sc)) {
17409         /* Bit-map indicating which L2 hdrs may appear after the
17410          * basic Ethernet header
17411          */
17412         if (IS_MF_AFEX(sc)) {
17413             REG_WR(sc, SC_PORT(sc) ?
17414                    NIG_REG_P1_HDRS_AFTER_BASIC :
17415                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17416         } else {
17417             REG_WR(sc, SC_PORT(sc) ?
17418                    NIG_REG_P1_HDRS_AFTER_BASIC :
17419                    NIG_REG_P0_HDRS_AFTER_BASIC,
17420                    IS_MF_SD(sc) ? 7 : 6);
17421         }
17422 
17423         if (CHIP_IS_E3(sc)) {
17424             REG_WR(sc, SC_PORT(sc) ?
17425                    NIG_REG_LLH1_MF_MODE :
17426                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17427         }
17428     }
17429     if (!CHIP_IS_E3(sc)) {
17430         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17431     }
17432 
17433     if (!CHIP_IS_E1(sc)) {
17434         /* 0x2 disable mf_ov, 0x1 enable */
17435         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17436                (IS_MF_SD(sc) ? 0x1 : 0x2));
17437 
17438         if (!CHIP_IS_E1x(sc)) {
17439             val = 0;
17440             switch (sc->devinfo.mf_info.mf_mode) {
17441             case MULTI_FUNCTION_SD:
17442                 val = 1;
17443                 break;
17444             case MULTI_FUNCTION_SI:
17445             case MULTI_FUNCTION_AFEX:
17446                 val = 2;
17447                 break;
17448             }
17449 
17450             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17451                         NIG_REG_LLH0_CLS_TYPE), val);
17452         }
17453         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17454         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17455         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17456     }
17457 
17458     /* If SPIO5 is set to generate interrupts, enable it for this port */
17459     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17460     if (val & MISC_SPIO_SPIO5) {
17461         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17462                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17463         val = REG_RD(sc, reg_addr);
17464         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17465         REG_WR(sc, reg_addr, val);
17466     }
17467 
17468     return (0);
17469 }
17470 
17471 static uint32_t
17472 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17473                        uint32_t         reg,
17474                        uint32_t         expected,
17475                        uint32_t         poll_count)
17476 {
17477     uint32_t cur_cnt = poll_count;
17478     uint32_t val;
17479 
17480     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17481         DELAY(FLR_WAIT_INTERVAL);
17482     }
17483 
17484     return (val);
17485 }
17486 
17487 static int
17488 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17489                               uint32_t         reg,
17490                               char             *msg,
17491                               uint32_t         poll_cnt)
17492 {
17493     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17494 
17495     if (val != 0) {
17496         BLOGE(sc, "%s usage count=%d\n", msg, val);
17497         return (1);
17498     }
17499 
17500     return (0);
17501 }
17502 
17503 /* Common routines with VF FLR cleanup */
17504 static uint32_t
17505 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17506 {
17507     /* adjust polling timeout */
17508     if (CHIP_REV_IS_EMUL(sc)) {
17509         return (FLR_POLL_CNT * 2000);
17510     }
17511 
17512     if (CHIP_REV_IS_FPGA(sc)) {
17513         return (FLR_POLL_CNT * 120);
17514     }
17515 
17516     return (FLR_POLL_CNT);
17517 }
17518 
17519 static int
17520 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17521                            uint32_t         poll_cnt)
17522 {
17523     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17524     if (bxe_flr_clnup_poll_hw_counter(sc,
17525                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17526                                       "CFC PF usage counter timed out",
17527                                       poll_cnt)) {
17528         return (1);
17529     }
17530 
17531     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17532     if (bxe_flr_clnup_poll_hw_counter(sc,
17533                                       DORQ_REG_PF_USAGE_CNT,
17534                                       "DQ PF usage counter timed out",
17535                                       poll_cnt)) {
17536         return (1);
17537     }
17538 
17539     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17540     if (bxe_flr_clnup_poll_hw_counter(sc,
17541                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17542                                       "QM PF usage counter timed out",
17543                                       poll_cnt)) {
17544         return (1);
17545     }
17546 
17547     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17548     if (bxe_flr_clnup_poll_hw_counter(sc,
17549                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17550                                       "Timers VNIC usage counter timed out",
17551                                       poll_cnt)) {
17552         return (1);
17553     }
17554 
17555     if (bxe_flr_clnup_poll_hw_counter(sc,
17556                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17557                                       "Timers NUM_SCANS usage counter timed out",
17558                                       poll_cnt)) {
17559         return (1);
17560     }
17561 
17562     /* Wait DMAE PF usage counter to zero */
17563     if (bxe_flr_clnup_poll_hw_counter(sc,
17564                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17565                                       "DMAE dommand register timed out",
17566                                       poll_cnt)) {
17567         return (1);
17568     }
17569 
17570     return (0);
17571 }
17572 
17573 #define OP_GEN_PARAM(param)                                            \
17574     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17575 #define OP_GEN_TYPE(type)                                           \
17576     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17577 #define OP_GEN_AGG_VECT(index)                                             \
17578     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17579 
17580 static int
17581 bxe_send_final_clnup(struct bxe_softc *sc,
17582                      uint8_t          clnup_func,
17583                      uint32_t         poll_cnt)
17584 {
17585     uint32_t op_gen_command = 0;
17586     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17587                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17588     int ret = 0;
17589 
17590     if (REG_RD(sc, comp_addr)) {
17591         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17592         return (1);
17593     }
17594 
17595     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17596     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17597     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17598     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17599 
17600     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17601     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17602 
17603     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17604         BLOGE(sc, "FW final cleanup did not succeed\n");
17605         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17606               (REG_RD(sc, comp_addr)));
17607         bxe_panic(sc, ("FLR cleanup failed\n"));
17608         return (1);
17609     }
17610 
17611     /* Zero completion for nxt FLR */
17612     REG_WR(sc, comp_addr, 0);
17613 
17614     return (ret);
17615 }
17616 
17617 static void
17618 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17619                        struct pbf_pN_buf_regs *regs,
17620                        uint32_t               poll_count)
17621 {
17622     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17623     uint32_t cur_cnt = poll_count;
17624 
17625     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17626     crd = crd_start = REG_RD(sc, regs->crd);
17627     init_crd = REG_RD(sc, regs->init_crd);
17628 
17629     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17630     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17631     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17632 
17633     while ((crd != init_crd) &&
17634            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17635             (init_crd - crd_start))) {
17636         if (cur_cnt--) {
17637             DELAY(FLR_WAIT_INTERVAL);
17638             crd = REG_RD(sc, regs->crd);
17639             crd_freed = REG_RD(sc, regs->crd_freed);
17640         } else {
17641             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17642             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17643             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17644             break;
17645         }
17646     }
17647 
17648     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17649           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17650 }
17651 
17652 static void
17653 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17654                        struct pbf_pN_cmd_regs *regs,
17655                        uint32_t               poll_count)
17656 {
17657     uint32_t occup, to_free, freed, freed_start;
17658     uint32_t cur_cnt = poll_count;
17659 
17660     occup = to_free = REG_RD(sc, regs->lines_occup);
17661     freed = freed_start = REG_RD(sc, regs->lines_freed);
17662 
17663     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17664     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17665 
17666     while (occup &&
17667            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17668         if (cur_cnt--) {
17669             DELAY(FLR_WAIT_INTERVAL);
17670             occup = REG_RD(sc, regs->lines_occup);
17671             freed = REG_RD(sc, regs->lines_freed);
17672         } else {
17673             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17674             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17675             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17676             break;
17677         }
17678     }
17679 
17680     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17681           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17682 }
17683 
17684 static void
17685 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17686 {
17687     struct pbf_pN_cmd_regs cmd_regs[] = {
17688         {0, (CHIP_IS_E3B0(sc)) ?
17689             PBF_REG_TQ_OCCUPANCY_Q0 :
17690             PBF_REG_P0_TQ_OCCUPANCY,
17691             (CHIP_IS_E3B0(sc)) ?
17692             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17693             PBF_REG_P0_TQ_LINES_FREED_CNT},
17694         {1, (CHIP_IS_E3B0(sc)) ?
17695             PBF_REG_TQ_OCCUPANCY_Q1 :
17696             PBF_REG_P1_TQ_OCCUPANCY,
17697             (CHIP_IS_E3B0(sc)) ?
17698             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17699             PBF_REG_P1_TQ_LINES_FREED_CNT},
17700         {4, (CHIP_IS_E3B0(sc)) ?
17701             PBF_REG_TQ_OCCUPANCY_LB_Q :
17702             PBF_REG_P4_TQ_OCCUPANCY,
17703             (CHIP_IS_E3B0(sc)) ?
17704             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17705             PBF_REG_P4_TQ_LINES_FREED_CNT}
17706     };
17707 
17708     struct pbf_pN_buf_regs buf_regs[] = {
17709         {0, (CHIP_IS_E3B0(sc)) ?
17710             PBF_REG_INIT_CRD_Q0 :
17711             PBF_REG_P0_INIT_CRD ,
17712             (CHIP_IS_E3B0(sc)) ?
17713             PBF_REG_CREDIT_Q0 :
17714             PBF_REG_P0_CREDIT,
17715             (CHIP_IS_E3B0(sc)) ?
17716             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17717             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17718         {1, (CHIP_IS_E3B0(sc)) ?
17719             PBF_REG_INIT_CRD_Q1 :
17720             PBF_REG_P1_INIT_CRD,
17721             (CHIP_IS_E3B0(sc)) ?
17722             PBF_REG_CREDIT_Q1 :
17723             PBF_REG_P1_CREDIT,
17724             (CHIP_IS_E3B0(sc)) ?
17725             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17726             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17727         {4, (CHIP_IS_E3B0(sc)) ?
17728             PBF_REG_INIT_CRD_LB_Q :
17729             PBF_REG_P4_INIT_CRD,
17730             (CHIP_IS_E3B0(sc)) ?
17731             PBF_REG_CREDIT_LB_Q :
17732             PBF_REG_P4_CREDIT,
17733             (CHIP_IS_E3B0(sc)) ?
17734             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17735             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17736     };
17737 
17738     int i;
17739 
17740     /* Verify the command queues are flushed P0, P1, P4 */
17741     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17742         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17743     }
17744 
17745     /* Verify the transmission buffers are flushed P0, P1, P4 */
17746     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17747         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17748     }
17749 }
17750 
17751 static void
17752 bxe_hw_enable_status(struct bxe_softc *sc)
17753 {
17754     uint32_t val;
17755 
17756     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17757     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17758 
17759     val = REG_RD(sc, PBF_REG_DISABLE_PF);
17760     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
17761 
17762     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
17763     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
17764 
17765     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
17766     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
17767 
17768     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
17769     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
17770 
17771     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
17772     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
17773 
17774     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
17775     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
17776 
17777     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
17778     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
17779 }
17780 
17781 static int
17782 bxe_pf_flr_clnup(struct bxe_softc *sc)
17783 {
17784     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
17785 
17786     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
17787 
17788     /* Re-enable PF target read access */
17789     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
17790 
17791     /* Poll HW usage counters */
17792     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
17793     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
17794         return (-1);
17795     }
17796 
17797     /* Zero the igu 'trailing edge' and 'leading edge' */
17798 
17799     /* Send the FW cleanup command */
17800     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
17801         return (-1);
17802     }
17803 
17804     /* ATC cleanup */
17805 
17806     /* Verify TX hw is flushed */
17807     bxe_tx_hw_flushed(sc, poll_cnt);
17808 
17809     /* Wait 100ms (not adjusted according to platform) */
17810     DELAY(100000);
17811 
17812     /* Verify no pending pci transactions */
17813     if (bxe_is_pcie_pending(sc)) {
17814         BLOGE(sc, "PCIE Transactions still pending\n");
17815     }
17816 
17817     /* Debug */
17818     bxe_hw_enable_status(sc);
17819 
17820     /*
17821      * Master enable - Due to WB DMAE writes performed before this
17822      * register is re-initialized as part of the regular function init
17823      */
17824     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17825 
17826     return (0);
17827 }
17828 
17829 static int
17830 bxe_init_hw_func(struct bxe_softc *sc)
17831 {
17832     int port = SC_PORT(sc);
17833     int func = SC_FUNC(sc);
17834     int init_phase = PHASE_PF0 + func;
17835     struct ecore_ilt *ilt = sc->ilt;
17836     uint16_t cdu_ilt_start;
17837     uint32_t addr, val;
17838     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
17839     int i, main_mem_width, rc;
17840 
17841     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
17842 
17843     /* FLR cleanup */
17844     if (!CHIP_IS_E1x(sc)) {
17845         rc = bxe_pf_flr_clnup(sc);
17846         if (rc) {
17847             BLOGE(sc, "FLR cleanup failed!\n");
17848             // XXX bxe_fw_dump(sc);
17849             // XXX bxe_idle_chk(sc);
17850             return (rc);
17851         }
17852     }
17853 
17854     /* set MSI reconfigure capability */
17855     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17856         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
17857         val = REG_RD(sc, addr);
17858         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
17859         REG_WR(sc, addr, val);
17860     }
17861 
17862     ecore_init_block(sc, BLOCK_PXP, init_phase);
17863     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17864 
17865     ilt = sc->ilt;
17866     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
17867 
17868     for (i = 0; i < L2_ILT_LINES(sc); i++) {
17869         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
17870         ilt->lines[cdu_ilt_start + i].page_mapping =
17871             sc->context[i].vcxt_dma.paddr;
17872         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
17873     }
17874     ecore_ilt_init_op(sc, INITOP_SET);
17875 
17876     /* Set NIC mode */
17877     REG_WR(sc, PRS_REG_NIC_MODE, 1);
17878     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
17879 
17880     if (!CHIP_IS_E1x(sc)) {
17881         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
17882 
17883         /* Turn on a single ISR mode in IGU if driver is going to use
17884          * INT#x or MSI
17885          */
17886         if (sc->interrupt_mode != INTR_MODE_MSIX) {
17887             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
17888         }
17889 
17890         /*
17891          * Timers workaround bug: function init part.
17892          * Need to wait 20msec after initializing ILT,
17893          * needed to make sure there are no requests in
17894          * one of the PXP internal queues with "old" ILT addresses
17895          */
17896         DELAY(20000);
17897 
17898         /*
17899          * Master enable - Due to WB DMAE writes performed before this
17900          * register is re-initialized as part of the regular function
17901          * init
17902          */
17903         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17904         /* Enable the function in IGU */
17905         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
17906     }
17907 
17908     sc->dmae_ready = 1;
17909 
17910     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17911 
17912     if (!CHIP_IS_E1x(sc))
17913         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
17914 
17915     ecore_init_block(sc, BLOCK_ATC, init_phase);
17916     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17917     ecore_init_block(sc, BLOCK_NIG, init_phase);
17918     ecore_init_block(sc, BLOCK_SRC, init_phase);
17919     ecore_init_block(sc, BLOCK_MISC, init_phase);
17920     ecore_init_block(sc, BLOCK_TCM, init_phase);
17921     ecore_init_block(sc, BLOCK_UCM, init_phase);
17922     ecore_init_block(sc, BLOCK_CCM, init_phase);
17923     ecore_init_block(sc, BLOCK_XCM, init_phase);
17924     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17925     ecore_init_block(sc, BLOCK_USEM, init_phase);
17926     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17927     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17928 
17929     if (!CHIP_IS_E1x(sc))
17930         REG_WR(sc, QM_REG_PF_EN, 1);
17931 
17932     if (!CHIP_IS_E1x(sc)) {
17933         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17934         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17935         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17936         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
17937     }
17938     ecore_init_block(sc, BLOCK_QM, init_phase);
17939 
17940     ecore_init_block(sc, BLOCK_TM, init_phase);
17941     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17942 
17943     bxe_iov_init_dq(sc);
17944 
17945     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17946     ecore_init_block(sc, BLOCK_PRS, init_phase);
17947     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17948     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17949     ecore_init_block(sc, BLOCK_USDM, init_phase);
17950     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17951     ecore_init_block(sc, BLOCK_UPB, init_phase);
17952     ecore_init_block(sc, BLOCK_XPB, init_phase);
17953     ecore_init_block(sc, BLOCK_PBF, init_phase);
17954     if (!CHIP_IS_E1x(sc))
17955         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
17956 
17957     ecore_init_block(sc, BLOCK_CDU, init_phase);
17958 
17959     ecore_init_block(sc, BLOCK_CFC, init_phase);
17960 
17961     if (!CHIP_IS_E1x(sc))
17962         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
17963 
17964     if (IS_MF(sc)) {
17965         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
17966         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
17967     }
17968 
17969     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17970 
17971     /* HC init per function */
17972     if (sc->devinfo.int_block == INT_BLOCK_HC) {
17973         if (CHIP_IS_E1H(sc)) {
17974             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17975 
17976             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17977             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17978         }
17979         ecore_init_block(sc, BLOCK_HC, init_phase);
17980 
17981     } else {
17982         int num_segs, sb_idx, prod_offset;
17983 
17984         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
17985 
17986         if (!CHIP_IS_E1x(sc)) {
17987             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
17988             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
17989         }
17990 
17991         ecore_init_block(sc, BLOCK_IGU, init_phase);
17992 
17993         if (!CHIP_IS_E1x(sc)) {
17994             int dsb_idx = 0;
17995             /**
17996              * Producer memory:
17997              * E2 mode: address 0-135 match to the mapping memory;
17998              * 136 - PF0 default prod; 137 - PF1 default prod;
17999              * 138 - PF2 default prod; 139 - PF3 default prod;
18000              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18001              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18002              * 144-147 reserved.
18003              *
18004              * E1.5 mode - In backward compatible mode;
18005              * for non default SB; each even line in the memory
18006              * holds the U producer and each odd line hold
18007              * the C producer. The first 128 producers are for
18008              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18009              * producers are for the DSB for each PF.
18010              * Each PF has five segments: (the order inside each
18011              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18012              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18013              * 144-147 attn prods;
18014              */
18015             /* non-default-status-blocks */
18016             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18017                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18018             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18019                 prod_offset = (sc->igu_base_sb + sb_idx) *
18020                     num_segs;
18021 
18022                 for (i = 0; i < num_segs; i++) {
18023                     addr = IGU_REG_PROD_CONS_MEMORY +
18024                             (prod_offset + i) * 4;
18025                     REG_WR(sc, addr, 0);
18026                 }
18027                 /* send consumer update with value 0 */
18028                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18029                            USTORM_ID, 0, IGU_INT_NOP, 1);
18030                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18031             }
18032 
18033             /* default-status-blocks */
18034             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18035                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18036 
18037             if (CHIP_IS_MODE_4_PORT(sc))
18038                 dsb_idx = SC_FUNC(sc);
18039             else
18040                 dsb_idx = SC_VN(sc);
18041 
18042             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18043                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18044                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18045 
18046             /*
18047              * igu prods come in chunks of E1HVN_MAX (4) -
18048              * does not matters what is the current chip mode
18049              */
18050             for (i = 0; i < (num_segs * E1HVN_MAX);
18051                  i += E1HVN_MAX) {
18052                 addr = IGU_REG_PROD_CONS_MEMORY +
18053                             (prod_offset + i)*4;
18054                 REG_WR(sc, addr, 0);
18055             }
18056             /* send consumer update with 0 */
18057             if (CHIP_INT_MODE_IS_BC(sc)) {
18058                 bxe_ack_sb(sc, sc->igu_dsb_id,
18059                            USTORM_ID, 0, IGU_INT_NOP, 1);
18060                 bxe_ack_sb(sc, sc->igu_dsb_id,
18061                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18062                 bxe_ack_sb(sc, sc->igu_dsb_id,
18063                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18064                 bxe_ack_sb(sc, sc->igu_dsb_id,
18065                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18066                 bxe_ack_sb(sc, sc->igu_dsb_id,
18067                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18068             } else {
18069                 bxe_ack_sb(sc, sc->igu_dsb_id,
18070                            USTORM_ID, 0, IGU_INT_NOP, 1);
18071                 bxe_ack_sb(sc, sc->igu_dsb_id,
18072                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18073             }
18074             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18075 
18076             /* !!! these should become driver const once
18077                rf-tool supports split-68 const */
18078             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18079             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18080             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18081             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18082             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18083             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18084         }
18085     }
18086 
18087     /* Reset PCIE errors for debug */
18088     REG_WR(sc, 0x2114, 0xffffffff);
18089     REG_WR(sc, 0x2120, 0xffffffff);
18090 
18091     if (CHIP_IS_E1x(sc)) {
18092         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18093         main_mem_base = HC_REG_MAIN_MEMORY +
18094                 SC_PORT(sc) * (main_mem_size * 4);
18095         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18096         main_mem_width = 8;
18097 
18098         val = REG_RD(sc, main_mem_prty_clr);
18099         if (val) {
18100             BLOGD(sc, DBG_LOAD,
18101                   "Parity errors in HC block during function init (0x%x)!\n",
18102                   val);
18103         }
18104 
18105         /* Clear "false" parity errors in MSI-X table */
18106         for (i = main_mem_base;
18107              i < main_mem_base + main_mem_size * 4;
18108              i += main_mem_width) {
18109             bxe_read_dmae(sc, i, main_mem_width / 4);
18110             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18111                            i, main_mem_width / 4);
18112         }
18113         /* Clear HC parity attention */
18114         REG_RD(sc, main_mem_prty_clr);
18115     }
18116 
18117 #if 1
18118     /* Enable STORMs SP logging */
18119     REG_WR8(sc, BAR_USTRORM_INTMEM +
18120            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18121     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18122            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18123     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18124            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18125     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18126            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18127 #endif
18128 
18129     elink_phy_probe(&sc->link_params);
18130 
18131     return (0);
18132 }
18133 
18134 static void
18135 bxe_link_reset(struct bxe_softc *sc)
18136 {
18137     if (!BXE_NOMCP(sc)) {
18138 	bxe_acquire_phy_lock(sc);
18139         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18140 	bxe_release_phy_lock(sc);
18141     } else {
18142         if (!CHIP_REV_IS_SLOW(sc)) {
18143             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18144         }
18145     }
18146 }
18147 
18148 static void
18149 bxe_reset_port(struct bxe_softc *sc)
18150 {
18151     int port = SC_PORT(sc);
18152     uint32_t val;
18153 
18154 	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18155     /* reset physical Link */
18156     bxe_link_reset(sc);
18157 
18158     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18159 
18160     /* Do not rcv packets to BRB */
18161     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18162     /* Do not direct rcv packets that are not for MCP to the BRB */
18163     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18164                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18165 
18166     /* Configure AEU */
18167     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18168 
18169     DELAY(100000);
18170 
18171     /* Check for BRB port occupancy */
18172     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18173     if (val) {
18174         BLOGD(sc, DBG_LOAD,
18175               "BRB1 is not empty, %d blocks are occupied\n", val);
18176     }
18177 
18178     /* TODO: Close Doorbell port? */
18179 }
18180 
18181 static void
18182 bxe_ilt_wr(struct bxe_softc *sc,
18183            uint32_t         index,
18184            bus_addr_t       addr)
18185 {
18186     int reg;
18187     uint32_t wb_write[2];
18188 
18189     if (CHIP_IS_E1(sc)) {
18190         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18191     } else {
18192         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18193     }
18194 
18195     wb_write[0] = ONCHIP_ADDR1(addr);
18196     wb_write[1] = ONCHIP_ADDR2(addr);
18197     REG_WR_DMAE(sc, reg, wb_write, 2);
18198 }
18199 
18200 static void
18201 bxe_clear_func_ilt(struct bxe_softc *sc,
18202                    uint32_t         func)
18203 {
18204     uint32_t i, base = FUNC_ILT_BASE(func);
18205     for (i = base; i < base + ILT_PER_FUNC; i++) {
18206         bxe_ilt_wr(sc, i, 0);
18207     }
18208 }
18209 
18210 static void
18211 bxe_reset_func(struct bxe_softc *sc)
18212 {
18213     struct bxe_fastpath *fp;
18214     int port = SC_PORT(sc);
18215     int func = SC_FUNC(sc);
18216     int i;
18217 
18218     /* Disable the function in the FW */
18219     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18220     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18221     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18222     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18223 
18224     /* FP SBs */
18225     FOR_EACH_ETH_QUEUE(sc, i) {
18226         fp = &sc->fp[i];
18227         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18228                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18229                 SB_DISABLED);
18230     }
18231 
18232     /* SP SB */
18233     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18234             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18235             SB_DISABLED);
18236 
18237     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18238         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18239     }
18240 
18241     /* Configure IGU */
18242     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18243         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18244         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18245     } else {
18246         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18247         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18248     }
18249 
18250     if (CNIC_LOADED(sc)) {
18251         /* Disable Timer scan */
18252         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18253         /*
18254          * Wait for at least 10ms and up to 2 second for the timers
18255          * scan to complete
18256          */
18257         for (i = 0; i < 200; i++) {
18258             DELAY(10000);
18259             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18260                 break;
18261         }
18262     }
18263 
18264     /* Clear ILT */
18265     bxe_clear_func_ilt(sc, func);
18266 
18267     /*
18268      * Timers workaround bug for E2: if this is vnic-3,
18269      * we need to set the entire ilt range for this timers.
18270      */
18271     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18272         struct ilt_client_info ilt_cli;
18273         /* use dummy TM client */
18274         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18275         ilt_cli.start = 0;
18276         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18277         ilt_cli.client_num = ILT_CLIENT_TM;
18278 
18279         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18280     }
18281 
18282     /* this assumes that reset_port() called before reset_func()*/
18283     if (!CHIP_IS_E1x(sc)) {
18284         bxe_pf_disable(sc);
18285     }
18286 
18287     sc->dmae_ready = 0;
18288 }
18289 
18290 static int
18291 bxe_gunzip_init(struct bxe_softc *sc)
18292 {
18293     return (0);
18294 }
18295 
18296 static void
18297 bxe_gunzip_end(struct bxe_softc *sc)
18298 {
18299     return;
18300 }
18301 
18302 static int
18303 bxe_init_firmware(struct bxe_softc *sc)
18304 {
18305     if (CHIP_IS_E1(sc)) {
18306         ecore_init_e1_firmware(sc);
18307         sc->iro_array = e1_iro_arr;
18308     } else if (CHIP_IS_E1H(sc)) {
18309         ecore_init_e1h_firmware(sc);
18310         sc->iro_array = e1h_iro_arr;
18311     } else if (!CHIP_IS_E1x(sc)) {
18312         ecore_init_e2_firmware(sc);
18313         sc->iro_array = e2_iro_arr;
18314     } else {
18315         BLOGE(sc, "Unsupported chip revision\n");
18316         return (-1);
18317     }
18318 
18319     return (0);
18320 }
18321 
18322 static void
18323 bxe_release_firmware(struct bxe_softc *sc)
18324 {
18325     /* Do nothing */
18326     return;
18327 }
18328 
18329 static int
18330 ecore_gunzip(struct bxe_softc *sc,
18331              const uint8_t    *zbuf,
18332              int              len)
18333 {
18334     /* XXX : Implement... */
18335     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18336     return (FALSE);
18337 }
18338 
18339 static void
18340 ecore_reg_wr_ind(struct bxe_softc *sc,
18341                  uint32_t         addr,
18342                  uint32_t         val)
18343 {
18344     bxe_reg_wr_ind(sc, addr, val);
18345 }
18346 
18347 static void
18348 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18349                           bus_addr_t       phys_addr,
18350                           uint32_t         addr,
18351                           uint32_t         len)
18352 {
18353     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18354 }
18355 
18356 void
18357 ecore_storm_memset_struct(struct bxe_softc *sc,
18358                           uint32_t         addr,
18359                           size_t           size,
18360                           uint32_t         *data)
18361 {
18362     uint8_t i;
18363     for (i = 0; i < size/4; i++) {
18364         REG_WR(sc, addr + (i * 4), data[i]);
18365     }
18366 }
18367 
18368 
18369 /*
18370  * character device - ioctl interface definitions
18371  */
18372 
18373 
18374 #include "bxe_dump.h"
18375 #include "bxe_ioctl.h"
18376 #include <sys/conf.h>
18377 
18378 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18379                 struct thread *td);
18380 
18381 static struct cdevsw bxe_cdevsw = {
18382     .d_version = D_VERSION,
18383     .d_ioctl = bxe_eioctl,
18384     .d_name = "bxecnic",
18385 };
18386 
18387 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18388 
18389 
18390 #define DUMP_ALL_PRESETS        0x1FFF
18391 #define DUMP_MAX_PRESETS        13
18392 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18393 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18394 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18395 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18396 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18397 
18398 #define IS_REG_IN_PRESET(presets, idx)  \
18399                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18400 
18401 
18402 static int
18403 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18404 {
18405     if (CHIP_IS_E1(sc))
18406         return dump_num_registers[0][preset-1];
18407     else if (CHIP_IS_E1H(sc))
18408         return dump_num_registers[1][preset-1];
18409     else if (CHIP_IS_E2(sc))
18410         return dump_num_registers[2][preset-1];
18411     else if (CHIP_IS_E3A0(sc))
18412         return dump_num_registers[3][preset-1];
18413     else if (CHIP_IS_E3B0(sc))
18414         return dump_num_registers[4][preset-1];
18415     else
18416         return 0;
18417 }
18418 
18419 static int
18420 bxe_get_total_regs_len32(struct bxe_softc *sc)
18421 {
18422     uint32_t preset_idx;
18423     int regdump_len32 = 0;
18424 
18425 
18426     /* Calculate the total preset regs length */
18427     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18428         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18429     }
18430 
18431     return regdump_len32;
18432 }
18433 
18434 static const uint32_t *
18435 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18436 {
18437     if (CHIP_IS_E2(sc))
18438         return page_vals_e2;
18439     else if (CHIP_IS_E3(sc))
18440         return page_vals_e3;
18441     else
18442         return NULL;
18443 }
18444 
18445 static uint32_t
18446 __bxe_get_page_reg_num(struct bxe_softc *sc)
18447 {
18448     if (CHIP_IS_E2(sc))
18449         return PAGE_MODE_VALUES_E2;
18450     else if (CHIP_IS_E3(sc))
18451         return PAGE_MODE_VALUES_E3;
18452     else
18453         return 0;
18454 }
18455 
18456 static const uint32_t *
18457 __bxe_get_page_write_ar(struct bxe_softc *sc)
18458 {
18459     if (CHIP_IS_E2(sc))
18460         return page_write_regs_e2;
18461     else if (CHIP_IS_E3(sc))
18462         return page_write_regs_e3;
18463     else
18464         return NULL;
18465 }
18466 
18467 static uint32_t
18468 __bxe_get_page_write_num(struct bxe_softc *sc)
18469 {
18470     if (CHIP_IS_E2(sc))
18471         return PAGE_WRITE_REGS_E2;
18472     else if (CHIP_IS_E3(sc))
18473         return PAGE_WRITE_REGS_E3;
18474     else
18475         return 0;
18476 }
18477 
18478 static const struct reg_addr *
18479 __bxe_get_page_read_ar(struct bxe_softc *sc)
18480 {
18481     if (CHIP_IS_E2(sc))
18482         return page_read_regs_e2;
18483     else if (CHIP_IS_E3(sc))
18484         return page_read_regs_e3;
18485     else
18486         return NULL;
18487 }
18488 
18489 static uint32_t
18490 __bxe_get_page_read_num(struct bxe_softc *sc)
18491 {
18492     if (CHIP_IS_E2(sc))
18493         return PAGE_READ_REGS_E2;
18494     else if (CHIP_IS_E3(sc))
18495         return PAGE_READ_REGS_E3;
18496     else
18497         return 0;
18498 }
18499 
18500 static bool
18501 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18502 {
18503     if (CHIP_IS_E1(sc))
18504         return IS_E1_REG(reg_info->chips);
18505     else if (CHIP_IS_E1H(sc))
18506         return IS_E1H_REG(reg_info->chips);
18507     else if (CHIP_IS_E2(sc))
18508         return IS_E2_REG(reg_info->chips);
18509     else if (CHIP_IS_E3A0(sc))
18510         return IS_E3A0_REG(reg_info->chips);
18511     else if (CHIP_IS_E3B0(sc))
18512         return IS_E3B0_REG(reg_info->chips);
18513     else
18514         return 0;
18515 }
18516 
18517 static bool
18518 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18519 {
18520     if (CHIP_IS_E1(sc))
18521         return IS_E1_REG(wreg_info->chips);
18522     else if (CHIP_IS_E1H(sc))
18523         return IS_E1H_REG(wreg_info->chips);
18524     else if (CHIP_IS_E2(sc))
18525         return IS_E2_REG(wreg_info->chips);
18526     else if (CHIP_IS_E3A0(sc))
18527         return IS_E3A0_REG(wreg_info->chips);
18528     else if (CHIP_IS_E3B0(sc))
18529         return IS_E3B0_REG(wreg_info->chips);
18530     else
18531         return 0;
18532 }
18533 
18534 /**
18535  * bxe_read_pages_regs - read "paged" registers
18536  *
18537  * @bp          device handle
18538  * @p           output buffer
18539  *
18540  * Reads "paged" memories: memories that may only be read by first writing to a
18541  * specific address ("write address") and then reading from a specific address
18542  * ("read address"). There may be more than one write address per "page" and
18543  * more than one read address per write address.
18544  */
18545 static void
18546 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18547 {
18548     uint32_t i, j, k, n;
18549 
18550     /* addresses of the paged registers */
18551     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18552     /* number of paged registers */
18553     int num_pages = __bxe_get_page_reg_num(sc);
18554     /* write addresses */
18555     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18556     /* number of write addresses */
18557     int write_num = __bxe_get_page_write_num(sc);
18558     /* read addresses info */
18559     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18560     /* number of read addresses */
18561     int read_num = __bxe_get_page_read_num(sc);
18562     uint32_t addr, size;
18563 
18564     for (i = 0; i < num_pages; i++) {
18565         for (j = 0; j < write_num; j++) {
18566             REG_WR(sc, write_addr[j], page_addr[i]);
18567 
18568             for (k = 0; k < read_num; k++) {
18569                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18570                     size = read_addr[k].size;
18571                     for (n = 0; n < size; n++) {
18572                         addr = read_addr[k].addr + n*4;
18573                         *p++ = REG_RD(sc, addr);
18574                     }
18575                 }
18576             }
18577         }
18578     }
18579     return;
18580 }
18581 
18582 
18583 static int
18584 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18585 {
18586     uint32_t i, j, addr;
18587     const struct wreg_addr *wreg_addr_p = NULL;
18588 
18589     if (CHIP_IS_E1(sc))
18590         wreg_addr_p = &wreg_addr_e1;
18591     else if (CHIP_IS_E1H(sc))
18592         wreg_addr_p = &wreg_addr_e1h;
18593     else if (CHIP_IS_E2(sc))
18594         wreg_addr_p = &wreg_addr_e2;
18595     else if (CHIP_IS_E3A0(sc))
18596         wreg_addr_p = &wreg_addr_e3;
18597     else if (CHIP_IS_E3B0(sc))
18598         wreg_addr_p = &wreg_addr_e3b0;
18599     else
18600         return (-1);
18601 
18602     /* Read the idle_chk registers */
18603     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18604         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18605             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18606             for (j = 0; j < idle_reg_addrs[i].size; j++)
18607                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18608         }
18609     }
18610 
18611     /* Read the regular registers */
18612     for (i = 0; i < REGS_COUNT; i++) {
18613         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18614             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18615             for (j = 0; j < reg_addrs[i].size; j++)
18616                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18617         }
18618     }
18619 
18620     /* Read the CAM registers */
18621     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18622         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18623         for (i = 0; i < wreg_addr_p->size; i++) {
18624             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18625 
18626             /* In case of wreg_addr register, read additional
18627                registers from read_regs array
18628              */
18629             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18630                 addr = *(wreg_addr_p->read_regs);
18631                 *p++ = REG_RD(sc, addr + j*4);
18632             }
18633         }
18634     }
18635 
18636     /* Paged registers are supported in E2 & E3 only */
18637     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18638         /* Read "paged" registers */
18639         bxe_read_pages_regs(sc, p, preset);
18640     }
18641 
18642     return 0;
18643 }
18644 
18645 int
18646 bxe_grc_dump(struct bxe_softc *sc)
18647 {
18648     int rval = 0;
18649     uint32_t preset_idx;
18650     uint8_t *buf;
18651     uint32_t size;
18652     struct  dump_header *d_hdr;
18653     uint32_t i;
18654     uint32_t reg_val;
18655     uint32_t reg_addr;
18656     uint32_t cmd_offset;
18657     struct ecore_ilt *ilt = SC_ILT(sc);
18658     struct bxe_fastpath *fp;
18659     struct ilt_client_info *ilt_cli;
18660     int grc_dump_size;
18661 
18662 
18663     if (sc->grcdump_done || sc->grcdump_started)
18664 	return (rval);
18665 
18666     sc->grcdump_started = 1;
18667     BLOGI(sc, "Started collecting grcdump\n");
18668 
18669     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18670                 sizeof(struct  dump_header);
18671 
18672     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18673 
18674     if (sc->grc_dump == NULL) {
18675         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18676         return(ENOMEM);
18677     }
18678 
18679 
18680 
18681     /* Disable parity attentions as long as following dump may
18682      * cause false alarms by reading never written registers. We
18683      * will re-enable parity attentions right after the dump.
18684      */
18685 
18686     /* Disable parity on path 0 */
18687     bxe_pretend_func(sc, 0);
18688 
18689     ecore_disable_blocks_parity(sc);
18690 
18691     /* Disable parity on path 1 */
18692     bxe_pretend_func(sc, 1);
18693     ecore_disable_blocks_parity(sc);
18694 
18695     /* Return to current function */
18696     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18697 
18698     buf = sc->grc_dump;
18699     d_hdr = sc->grc_dump;
18700 
18701     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18702     d_hdr->version = BNX2X_DUMP_VERSION;
18703     d_hdr->preset = DUMP_ALL_PRESETS;
18704 
18705     if (CHIP_IS_E1(sc)) {
18706         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18707     } else if (CHIP_IS_E1H(sc)) {
18708         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18709     } else if (CHIP_IS_E2(sc)) {
18710         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18711                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18712     } else if (CHIP_IS_E3A0(sc)) {
18713         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18714                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18715     } else if (CHIP_IS_E3B0(sc)) {
18716         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18717                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18718     }
18719 
18720     buf += sizeof(struct  dump_header);
18721 
18722     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18723 
18724         /* Skip presets with IOR */
18725         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18726             (preset_idx == 11))
18727             continue;
18728 
18729         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18730 
18731 	if (rval)
18732             break;
18733 
18734         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18735 
18736         buf += size;
18737     }
18738 
18739     bxe_pretend_func(sc, 0);
18740     ecore_clear_blocks_parity(sc);
18741     ecore_enable_blocks_parity(sc);
18742 
18743     bxe_pretend_func(sc, 1);
18744     ecore_clear_blocks_parity(sc);
18745     ecore_enable_blocks_parity(sc);
18746 
18747     /* Return to current function */
18748     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18749 
18750 
18751 
18752     if(sc->state == BXE_STATE_OPEN) {
18753         if(sc->fw_stats_req  != NULL) {
18754     		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18755         			(uintmax_t)sc->fw_stats_req_mapping,
18756         			(uintmax_t)sc->fw_stats_data_mapping,
18757         			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18758 		}
18759 		if(sc->def_sb != NULL) {
18760 			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
18761         			(void *)sc->def_sb_dma.paddr, sc->def_sb,
18762         			sizeof(struct host_sp_status_block));
18763 		}
18764 		if(sc->eq_dma.vaddr != NULL) {
18765     		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
18766         			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
18767 		}
18768 		if(sc->sp_dma.vaddr != NULL) {
18769     		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
18770         			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
18771         			sizeof(struct bxe_slowpath));
18772 		}
18773 		if(sc->spq_dma.vaddr != NULL) {
18774     		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
18775         			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
18776 		}
18777 		if(sc->gz_buf_dma.vaddr != NULL) {
18778     		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
18779         			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
18780         			FW_BUF_SIZE);
18781 		}
18782     	for (i = 0; i < sc->num_queues; i++) {
18783         	fp = &sc->fp[i];
18784 			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
18785                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
18786                         fp->rx_sge_dma.vaddr != NULL) {
18787 
18788 				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18789             			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
18790             			sizeof(union bxe_host_hc_status_block));
18791 				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18792             			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
18793             			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
18794         		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18795             			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
18796             			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
18797         		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
18798             			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
18799             			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
18800         		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
18801             			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
18802             			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
18803     		}
18804 		}
18805 		if(ilt != NULL ) {
18806     		ilt_cli = &ilt->clients[1];
18807 			if(ilt->lines != NULL) {
18808     		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
18809         		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
18810             			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
18811             			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
18812     		}
18813 			}
18814 		}
18815 
18816 
18817     	cmd_offset = DMAE_REG_CMD_MEM;
18818     	for (i = 0; i < 224; i++) {
18819         	reg_addr = (cmd_offset +(i * 4));
18820         	reg_val = REG_RD(sc, reg_addr);
18821         	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
18822             			reg_addr, reg_val);
18823     	}
18824 	}
18825 
18826     BLOGI(sc, "Collection of grcdump done\n");
18827     sc->grcdump_done = 1;
18828     return(rval);
18829 }
18830 
18831 static int
18832 bxe_add_cdev(struct bxe_softc *sc)
18833 {
18834     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
18835 
18836     if (sc->eeprom == NULL) {
18837         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
18838         return (-1);
18839     }
18840 
18841     sc->ioctl_dev = make_dev(&bxe_cdevsw,
18842                             sc->ifp->if_dunit,
18843                             UID_ROOT,
18844                             GID_WHEEL,
18845                             0600,
18846                             "%s",
18847                             if_name(sc->ifp));
18848 
18849     if (sc->ioctl_dev == NULL) {
18850         free(sc->eeprom, M_DEVBUF);
18851         sc->eeprom = NULL;
18852         return (-1);
18853     }
18854 
18855     sc->ioctl_dev->si_drv1 = sc;
18856 
18857     return (0);
18858 }
18859 
18860 static void
18861 bxe_del_cdev(struct bxe_softc *sc)
18862 {
18863     if (sc->ioctl_dev != NULL)
18864         destroy_dev(sc->ioctl_dev);
18865 
18866     if (sc->eeprom != NULL) {
18867         free(sc->eeprom, M_DEVBUF);
18868         sc->eeprom = NULL;
18869     }
18870     sc->ioctl_dev = NULL;
18871 
18872     return;
18873 }
18874 
18875 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
18876 {
18877 
18878     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
18879         return FALSE;
18880 
18881     return TRUE;
18882 }
18883 
18884 
18885 static int
18886 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18887 {
18888     int rval = 0;
18889 
18890     if(!bxe_is_nvram_accessible(sc)) {
18891         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18892         return (-EAGAIN);
18893     }
18894     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
18895 
18896 
18897    return (rval);
18898 }
18899 
18900 static int
18901 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
18902 {
18903     int rval = 0;
18904 
18905     if(!bxe_is_nvram_accessible(sc)) {
18906         BLOGW(sc, "Cannot access eeprom when interface is down\n");
18907         return (-EAGAIN);
18908     }
18909     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
18910 
18911    return (rval);
18912 }
18913 
18914 static int
18915 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
18916 {
18917     int rval = 0;
18918 
18919     switch (eeprom->eeprom_cmd) {
18920 
18921     case BXE_EEPROM_CMD_SET_EEPROM:
18922 
18923         rval = copyin(eeprom->eeprom_data, sc->eeprom,
18924                        eeprom->eeprom_data_len);
18925 
18926         if (rval)
18927             break;
18928 
18929         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18930                        eeprom->eeprom_data_len);
18931         break;
18932 
18933     case BXE_EEPROM_CMD_GET_EEPROM:
18934 
18935         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
18936                        eeprom->eeprom_data_len);
18937 
18938         if (rval) {
18939             break;
18940         }
18941 
18942         rval = copyout(sc->eeprom, eeprom->eeprom_data,
18943                        eeprom->eeprom_data_len);
18944         break;
18945 
18946     default:
18947             rval = EINVAL;
18948             break;
18949     }
18950 
18951     if (rval) {
18952         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
18953     }
18954 
18955     return (rval);
18956 }
18957 
18958 static int
18959 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
18960 {
18961     uint32_t ext_phy_config;
18962     int port = SC_PORT(sc);
18963     int cfg_idx = bxe_get_link_cfg_idx(sc);
18964 
18965     dev_p->supported = sc->port.supported[cfg_idx] |
18966             (sc->port.supported[cfg_idx ^ 1] &
18967             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
18968     dev_p->advertising = sc->port.advertising[cfg_idx];
18969     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
18970         ELINK_ETH_PHY_SFP_1G_FIBER) {
18971         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
18972         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
18973     }
18974     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
18975         !(sc->flags & BXE_MF_FUNC_DIS)) {
18976         dev_p->duplex = sc->link_vars.duplex;
18977         if (IS_MF(sc) && !BXE_NOMCP(sc))
18978             dev_p->speed = bxe_get_mf_speed(sc);
18979         else
18980             dev_p->speed = sc->link_vars.line_speed;
18981     } else {
18982         dev_p->duplex = DUPLEX_UNKNOWN;
18983         dev_p->speed = SPEED_UNKNOWN;
18984     }
18985 
18986     dev_p->port = bxe_media_detect(sc);
18987 
18988     ext_phy_config = SHMEM_RD(sc,
18989                          dev_info.port_hw_config[port].external_phy_config);
18990     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
18991         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
18992         dev_p->phy_address =  sc->port.phy_addr;
18993     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18994             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
18995         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
18996             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
18997         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
18998     else
18999         dev_p->phy_address = 0;
19000 
19001     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19002         dev_p->autoneg = AUTONEG_ENABLE;
19003     else
19004        dev_p->autoneg = AUTONEG_DISABLE;
19005 
19006 
19007     return 0;
19008 }
19009 
19010 static int
19011 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19012         struct thread *td)
19013 {
19014     struct bxe_softc    *sc;
19015     int                 rval = 0;
19016     device_t            pci_dev;
19017     bxe_grcdump_t       *dump = NULL;
19018     int grc_dump_size;
19019     bxe_drvinfo_t   *drv_infop = NULL;
19020     bxe_dev_setting_t  *dev_p;
19021     bxe_dev_setting_t  dev_set;
19022     bxe_get_regs_t  *reg_p;
19023     bxe_reg_rdw_t *reg_rdw_p;
19024     bxe_pcicfg_rdw_t *cfg_rdw_p;
19025     bxe_perm_mac_addr_t *mac_addr_p;
19026 
19027 
19028     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19029         return ENXIO;
19030 
19031     pci_dev= sc->dev;
19032 
19033     dump = (bxe_grcdump_t *)data;
19034 
19035     switch(cmd) {
19036 
19037         case BXE_GRC_DUMP_SIZE:
19038             dump->pci_func = sc->pcie_func;
19039             dump->grcdump_size =
19040                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19041                      sizeof(struct  dump_header);
19042             break;
19043 
19044         case BXE_GRC_DUMP:
19045 
19046             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19047                                 sizeof(struct  dump_header);
19048             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19049                 (dump->grcdump_size < grc_dump_size)) {
19050                 rval = EINVAL;
19051                 break;
19052             }
19053 
19054             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19055                 (!sc->grcdump_started)) {
19056                 rval =  bxe_grc_dump(sc);
19057             }
19058 
19059             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19060                 (sc->grc_dump != NULL))  {
19061                 dump->grcdump_dwords = grc_dump_size >> 2;
19062                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19063                 free(sc->grc_dump, M_DEVBUF);
19064                 sc->grc_dump = NULL;
19065                 sc->grcdump_started = 0;
19066                 sc->grcdump_done = 0;
19067             }
19068 
19069             break;
19070 
19071         case BXE_DRV_INFO:
19072             drv_infop = (bxe_drvinfo_t *)data;
19073             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19074             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19075                 BXE_DRIVER_VERSION);
19076             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19077                 sc->devinfo.bc_ver_str);
19078             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19079                 "%s", sc->fw_ver_str);
19080             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19081             drv_infop->reg_dump_len =
19082                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19083                     + sizeof(struct  dump_header);
19084             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19085                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19086             break;
19087 
19088         case BXE_DEV_SETTING:
19089             dev_p = (bxe_dev_setting_t *)data;
19090             bxe_get_settings(sc, &dev_set);
19091             dev_p->supported = dev_set.supported;
19092             dev_p->advertising = dev_set.advertising;
19093             dev_p->speed = dev_set.speed;
19094             dev_p->duplex = dev_set.duplex;
19095             dev_p->port = dev_set.port;
19096             dev_p->phy_address = dev_set.phy_address;
19097             dev_p->autoneg = dev_set.autoneg;
19098 
19099             break;
19100 
19101         case BXE_GET_REGS:
19102 
19103             reg_p = (bxe_get_regs_t *)data;
19104             grc_dump_size = reg_p->reg_buf_len;
19105 
19106             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19107                 bxe_grc_dump(sc);
19108             }
19109             if((sc->grcdump_done) && (sc->grcdump_started) &&
19110                 (sc->grc_dump != NULL))  {
19111                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19112                 free(sc->grc_dump, M_DEVBUF);
19113                 sc->grc_dump = NULL;
19114                 sc->grcdump_started = 0;
19115                 sc->grcdump_done = 0;
19116             }
19117 
19118             break;
19119 
19120         case BXE_RDW_REG:
19121             reg_rdw_p = (bxe_reg_rdw_t *)data;
19122             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19123                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19124                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19125 
19126             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19127                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19128                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19129 
19130             break;
19131 
19132         case BXE_RDW_PCICFG:
19133             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19134             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19135 
19136                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19137                                          cfg_rdw_p->cfg_width);
19138 
19139             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19140                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19141                             cfg_rdw_p->cfg_width);
19142             } else {
19143                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19144             }
19145             break;
19146 
19147         case BXE_MAC_ADDR:
19148             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19149             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19150                 sc->mac_addr_str);
19151             break;
19152 
19153         case BXE_EEPROM:
19154             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19155             break;
19156 
19157 
19158         default:
19159             break;
19160     }
19161 
19162     return (rval);
19163 }
19164