1 /*- 2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved. 3 * 4 * Eric Davis <edavis@broadcom.com> 5 * David Christensen <davidch@broadcom.com> 6 * Gary Zambrano <zambrano@broadcom.com> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #define BXE_DRIVER_VERSION "1.78.75" 38 39 #include "bxe.h" 40 #include "ecore_sp.h" 41 #include "ecore_init.h" 42 #include "ecore_init_ops.h" 43 44 #include "57710_int_offsets.h" 45 #include "57711_int_offsets.h" 46 #include "57712_int_offsets.h" 47 48 /* 49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 50 * explicitly here for older kernels that don't include this changeset. 51 */ 52 #ifndef CTLTYPE_U64 53 #define CTLTYPE_U64 CTLTYPE_QUAD 54 #define sysctl_handle_64 sysctl_handle_quad 55 #endif 56 57 /* 58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 59 * here as zero(0) for older kernels that don't include this changeset 60 * thereby masking the functionality. 61 */ 62 #ifndef CSUM_TCP_IPV6 63 #define CSUM_TCP_IPV6 0 64 #define CSUM_UDP_IPV6 0 65 #endif 66 67 /* 68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap 69 * for older kernels that don't include this changeset. 70 */ 71 #if __FreeBSD_version < 900035 72 #define pci_find_cap pci_find_extcap 73 #endif 74 75 #define BXE_DEF_SB_ATT_IDX 0x0001 76 #define BXE_DEF_SB_IDX 0x0002 77 78 /* 79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 80 * function HW initialization. 81 */ 82 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 83 #define FLR_WAIT_INTERVAL 50 /* usecs */ 84 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 85 86 struct pbf_pN_buf_regs { 87 int pN; 88 uint32_t init_crd; 89 uint32_t crd; 90 uint32_t crd_freed; 91 }; 92 93 struct pbf_pN_cmd_regs { 94 int pN; 95 uint32_t lines_occup; 96 uint32_t lines_freed; 97 }; 98 99 /* 100 * PCI Device ID Table used by bxe_probe(). 101 */ 102 #define BXE_DEVDESC_MAX 64 103 static struct bxe_device_type bxe_devs[] = { 104 { 105 BRCM_VENDORID, 106 CHIP_NUM_57710, 107 PCI_ANY_ID, PCI_ANY_ID, 108 "Broadcom NetXtreme II BCM57710 10GbE" 109 }, 110 { 111 BRCM_VENDORID, 112 CHIP_NUM_57711, 113 PCI_ANY_ID, PCI_ANY_ID, 114 "Broadcom NetXtreme II BCM57711 10GbE" 115 }, 116 { 117 BRCM_VENDORID, 118 CHIP_NUM_57711E, 119 PCI_ANY_ID, PCI_ANY_ID, 120 "Broadcom NetXtreme II BCM57711E 10GbE" 121 }, 122 { 123 BRCM_VENDORID, 124 CHIP_NUM_57712, 125 PCI_ANY_ID, PCI_ANY_ID, 126 "Broadcom NetXtreme II BCM57712 10GbE" 127 }, 128 { 129 BRCM_VENDORID, 130 CHIP_NUM_57712_MF, 131 PCI_ANY_ID, PCI_ANY_ID, 132 "Broadcom NetXtreme II BCM57712 MF 10GbE" 133 }, 134 #if 0 135 { 136 BRCM_VENDORID, 137 CHIP_NUM_57712_VF, 138 PCI_ANY_ID, PCI_ANY_ID, 139 "Broadcom NetXtreme II BCM57712 VF 10GbE" 140 }, 141 #endif 142 { 143 BRCM_VENDORID, 144 CHIP_NUM_57800, 145 PCI_ANY_ID, PCI_ANY_ID, 146 "Broadcom NetXtreme II BCM57800 10GbE" 147 }, 148 { 149 BRCM_VENDORID, 150 CHIP_NUM_57800_MF, 151 PCI_ANY_ID, PCI_ANY_ID, 152 "Broadcom NetXtreme II BCM57800 MF 10GbE" 153 }, 154 #if 0 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57800_VF, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "Broadcom NetXtreme II BCM57800 VF 10GbE" 160 }, 161 #endif 162 { 163 BRCM_VENDORID, 164 CHIP_NUM_57810, 165 PCI_ANY_ID, PCI_ANY_ID, 166 "Broadcom NetXtreme II BCM57810 10GbE" 167 }, 168 { 169 BRCM_VENDORID, 170 CHIP_NUM_57810_MF, 171 PCI_ANY_ID, PCI_ANY_ID, 172 "Broadcom NetXtreme II BCM57810 MF 10GbE" 173 }, 174 #if 0 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57810_VF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "Broadcom NetXtreme II BCM57810 VF 10GbE" 180 }, 181 #endif 182 { 183 BRCM_VENDORID, 184 CHIP_NUM_57811, 185 PCI_ANY_ID, PCI_ANY_ID, 186 "Broadcom NetXtreme II BCM57811 10GbE" 187 }, 188 { 189 BRCM_VENDORID, 190 CHIP_NUM_57811_MF, 191 PCI_ANY_ID, PCI_ANY_ID, 192 "Broadcom NetXtreme II BCM57811 MF 10GbE" 193 }, 194 #if 0 195 { 196 BRCM_VENDORID, 197 CHIP_NUM_57811_VF, 198 PCI_ANY_ID, PCI_ANY_ID, 199 "Broadcom NetXtreme II BCM57811 VF 10GbE" 200 }, 201 #endif 202 { 203 BRCM_VENDORID, 204 CHIP_NUM_57840_4_10, 205 PCI_ANY_ID, PCI_ANY_ID, 206 "Broadcom NetXtreme II BCM57840 4x10GbE" 207 }, 208 #if 0 209 { 210 BRCM_VENDORID, 211 CHIP_NUM_57840_2_20, 212 PCI_ANY_ID, PCI_ANY_ID, 213 "Broadcom NetXtreme II BCM57840 2x20GbE" 214 }, 215 #endif 216 { 217 BRCM_VENDORID, 218 CHIP_NUM_57840_MF, 219 PCI_ANY_ID, PCI_ANY_ID, 220 "Broadcom NetXtreme II BCM57840 MF 10GbE" 221 }, 222 #if 0 223 { 224 BRCM_VENDORID, 225 CHIP_NUM_57840_VF, 226 PCI_ANY_ID, PCI_ANY_ID, 227 "Broadcom NetXtreme II BCM57840 VF 10GbE" 228 }, 229 #endif 230 { 231 0, 0, 0, 0, NULL 232 } 233 }; 234 235 MALLOC_DECLARE(M_BXE_ILT); 236 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 237 238 /* 239 * FreeBSD device entry points. 240 */ 241 static int bxe_probe(device_t); 242 static int bxe_attach(device_t); 243 static int bxe_detach(device_t); 244 static int bxe_shutdown(device_t); 245 246 /* 247 * FreeBSD KLD module/device interface event handler method. 248 */ 249 static device_method_t bxe_methods[] = { 250 /* Device interface (device_if.h) */ 251 DEVMETHOD(device_probe, bxe_probe), 252 DEVMETHOD(device_attach, bxe_attach), 253 DEVMETHOD(device_detach, bxe_detach), 254 DEVMETHOD(device_shutdown, bxe_shutdown), 255 #if 0 256 DEVMETHOD(device_suspend, bxe_suspend), 257 DEVMETHOD(device_resume, bxe_resume), 258 #endif 259 /* Bus interface (bus_if.h) */ 260 DEVMETHOD(bus_print_child, bus_generic_print_child), 261 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 262 KOBJMETHOD_END 263 }; 264 265 /* 266 * FreeBSD KLD Module data declaration 267 */ 268 static driver_t bxe_driver = { 269 "bxe", /* module name */ 270 bxe_methods, /* event handler */ 271 sizeof(struct bxe_softc) /* extra data */ 272 }; 273 274 /* 275 * FreeBSD dev class is needed to manage dev instances and 276 * to associate with a bus type 277 */ 278 static devclass_t bxe_devclass; 279 280 MODULE_DEPEND(bxe, pci, 1, 1, 1); 281 MODULE_DEPEND(bxe, ether, 1, 1, 1); 282 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 283 284 /* resources needed for unloading a previously loaded device */ 285 286 #define BXE_PREV_WAIT_NEEDED 1 287 struct mtx bxe_prev_mtx; 288 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 289 struct bxe_prev_list_node { 290 LIST_ENTRY(bxe_prev_list_node) node; 291 uint8_t bus; 292 uint8_t slot; 293 uint8_t path; 294 uint8_t aer; /* XXX automatic error recovery */ 295 uint8_t undi; 296 }; 297 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 298 299 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 300 301 /* Tunable device values... */ 302 303 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); 304 305 /* Debug */ 306 unsigned long bxe_debug = 0; 307 TUNABLE_ULONG("hw.bxe.debug", &bxe_debug); 308 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN), 309 &bxe_debug, 0, "Debug logging mode"); 310 311 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 312 static int bxe_interrupt_mode = INTR_MODE_MSIX; 313 TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode); 314 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 315 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 316 317 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 318 static int bxe_queue_count = 4; 319 TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count); 320 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 321 &bxe_queue_count, 0, "Multi-Queue queue count"); 322 323 /* max number of buffers per queue (default RX_BD_USABLE) */ 324 static int bxe_max_rx_bufs = 0; 325 TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs); 326 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 327 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 328 329 /* Host interrupt coalescing RX tick timer (usecs) */ 330 static int bxe_hc_rx_ticks = 25; 331 TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks); 332 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 333 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 334 335 /* Host interrupt coalescing TX tick timer (usecs) */ 336 static int bxe_hc_tx_ticks = 50; 337 TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks); 338 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 339 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 340 341 /* Maximum number of Rx packets to process at a time */ 342 static int bxe_rx_budget = 0xffffffff; 343 TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget); 344 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 345 &bxe_rx_budget, 0, "Rx processing budget"); 346 347 /* Maximum LRO aggregation size */ 348 static int bxe_max_aggregation_size = 0; 349 TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size); 350 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 351 &bxe_max_aggregation_size, 0, "max aggregation size"); 352 353 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 354 static int bxe_mrrs = -1; 355 TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs); 356 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 357 &bxe_mrrs, 0, "PCIe maximum read request size"); 358 359 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 360 static int bxe_autogreeen = 0; 361 TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen); 362 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 363 &bxe_autogreeen, 0, "AutoGrEEEn support"); 364 365 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 366 static int bxe_udp_rss = 0; 367 TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss); 368 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 369 &bxe_udp_rss, 0, "UDP RSS support"); 370 371 372 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 373 374 #define STATS_OFFSET32(stat_name) \ 375 (offsetof(struct bxe_eth_stats, stat_name) / 4) 376 377 #define Q_STATS_OFFSET32(stat_name) \ 378 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 379 380 static const struct { 381 uint32_t offset; 382 uint32_t size; 383 uint32_t flags; 384 #define STATS_FLAGS_PORT 1 385 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 386 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 387 char string[STAT_NAME_LEN]; 388 } bxe_eth_stats_arr[] = { 389 { STATS_OFFSET32(total_bytes_received_hi), 390 8, STATS_FLAGS_BOTH, "rx_bytes" }, 391 { STATS_OFFSET32(error_bytes_received_hi), 392 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 393 { STATS_OFFSET32(total_unicast_packets_received_hi), 394 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 395 { STATS_OFFSET32(total_multicast_packets_received_hi), 396 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 397 { STATS_OFFSET32(total_broadcast_packets_received_hi), 398 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 399 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 400 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 401 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 402 8, STATS_FLAGS_PORT, "rx_align_errors" }, 403 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 404 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 405 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 406 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 407 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 408 8, STATS_FLAGS_PORT, "rx_fragments" }, 409 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 410 8, STATS_FLAGS_PORT, "rx_jabbers" }, 411 { STATS_OFFSET32(no_buff_discard_hi), 412 8, STATS_FLAGS_BOTH, "rx_discards" }, 413 { STATS_OFFSET32(mac_filter_discard), 414 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 415 { STATS_OFFSET32(mf_tag_discard), 416 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 417 { STATS_OFFSET32(pfc_frames_received_hi), 418 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 419 { STATS_OFFSET32(pfc_frames_sent_hi), 420 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 421 { STATS_OFFSET32(brb_drop_hi), 422 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 423 { STATS_OFFSET32(brb_truncate_hi), 424 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 425 { STATS_OFFSET32(pause_frames_received_hi), 426 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 427 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 428 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 429 { STATS_OFFSET32(nig_timer_max), 430 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 431 { STATS_OFFSET32(total_bytes_transmitted_hi), 432 8, STATS_FLAGS_BOTH, "tx_bytes" }, 433 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 434 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 435 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 436 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 437 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 438 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 439 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 440 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 441 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 442 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 443 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 444 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 445 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 446 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 447 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 448 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 449 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 450 8, STATS_FLAGS_PORT, "tx_deferred" }, 451 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 452 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 453 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 454 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 455 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 456 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 457 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 458 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 459 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 460 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 461 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 462 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 463 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 464 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 465 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 466 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 467 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 468 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 469 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 470 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 471 { STATS_OFFSET32(pause_frames_sent_hi), 472 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 473 { STATS_OFFSET32(total_tpa_aggregations_hi), 474 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 475 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 476 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 477 { STATS_OFFSET32(total_tpa_bytes_hi), 478 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 479 #if 0 480 { STATS_OFFSET32(recoverable_error), 481 4, STATS_FLAGS_FUNC, "recoverable_errors" }, 482 { STATS_OFFSET32(unrecoverable_error), 483 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, 484 #endif 485 { STATS_OFFSET32(eee_tx_lpi), 486 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 487 { STATS_OFFSET32(rx_calls), 488 4, STATS_FLAGS_FUNC, "rx_calls"}, 489 { STATS_OFFSET32(rx_pkts), 490 4, STATS_FLAGS_FUNC, "rx_pkts"}, 491 { STATS_OFFSET32(rx_tpa_pkts), 492 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 493 { STATS_OFFSET32(rx_soft_errors), 494 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 495 { STATS_OFFSET32(rx_hw_csum_errors), 496 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 497 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 498 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 499 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 500 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 501 { STATS_OFFSET32(rx_budget_reached), 502 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 503 { STATS_OFFSET32(tx_pkts), 504 4, STATS_FLAGS_FUNC, "tx_pkts"}, 505 { STATS_OFFSET32(tx_soft_errors), 506 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 507 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 508 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 509 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 510 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 511 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 512 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 513 { STATS_OFFSET32(tx_ofld_frames_lso), 514 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 515 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 516 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 517 { STATS_OFFSET32(tx_encap_failures), 518 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 519 { STATS_OFFSET32(tx_hw_queue_full), 520 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 521 { STATS_OFFSET32(tx_hw_max_queue_depth), 522 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 523 { STATS_OFFSET32(tx_dma_mapping_failure), 524 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 525 { STATS_OFFSET32(tx_max_drbr_queue_depth), 526 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 527 { STATS_OFFSET32(tx_window_violation_std), 528 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 529 { STATS_OFFSET32(tx_window_violation_tso), 530 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 531 #if 0 532 { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 533 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, 534 { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 535 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, 536 #endif 537 { STATS_OFFSET32(tx_chain_lost_mbuf), 538 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 539 { STATS_OFFSET32(tx_frames_deferred), 540 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 541 { STATS_OFFSET32(tx_queue_xoff), 542 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 543 { STATS_OFFSET32(mbuf_defrag_attempts), 544 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 545 { STATS_OFFSET32(mbuf_defrag_failures), 546 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 547 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 548 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 549 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 550 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 551 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 552 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 553 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 554 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 555 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 556 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 557 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 558 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 559 { STATS_OFFSET32(mbuf_alloc_tx), 560 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 561 { STATS_OFFSET32(mbuf_alloc_rx), 562 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 563 { STATS_OFFSET32(mbuf_alloc_sge), 564 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 565 { STATS_OFFSET32(mbuf_alloc_tpa), 566 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} 567 }; 568 569 static const struct { 570 uint32_t offset; 571 uint32_t size; 572 char string[STAT_NAME_LEN]; 573 } bxe_eth_q_stats_arr[] = { 574 { Q_STATS_OFFSET32(total_bytes_received_hi), 575 8, "rx_bytes" }, 576 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 577 8, "rx_ucast_packets" }, 578 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 579 8, "rx_mcast_packets" }, 580 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 581 8, "rx_bcast_packets" }, 582 { Q_STATS_OFFSET32(no_buff_discard_hi), 583 8, "rx_discards" }, 584 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 585 8, "tx_bytes" }, 586 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 587 8, "tx_ucast_packets" }, 588 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 589 8, "tx_mcast_packets" }, 590 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 591 8, "tx_bcast_packets" }, 592 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 593 8, "tpa_aggregations" }, 594 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 595 8, "tpa_aggregated_frames"}, 596 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 597 8, "tpa_bytes"}, 598 { Q_STATS_OFFSET32(rx_calls), 599 4, "rx_calls"}, 600 { Q_STATS_OFFSET32(rx_pkts), 601 4, "rx_pkts"}, 602 { Q_STATS_OFFSET32(rx_tpa_pkts), 603 4, "rx_tpa_pkts"}, 604 { Q_STATS_OFFSET32(rx_soft_errors), 605 4, "rx_soft_errors"}, 606 { Q_STATS_OFFSET32(rx_hw_csum_errors), 607 4, "rx_hw_csum_errors"}, 608 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 609 4, "rx_ofld_frames_csum_ip"}, 610 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 611 4, "rx_ofld_frames_csum_tcp_udp"}, 612 { Q_STATS_OFFSET32(rx_budget_reached), 613 4, "rx_budget_reached"}, 614 { Q_STATS_OFFSET32(tx_pkts), 615 4, "tx_pkts"}, 616 { Q_STATS_OFFSET32(tx_soft_errors), 617 4, "tx_soft_errors"}, 618 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 619 4, "tx_ofld_frames_csum_ip"}, 620 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 621 4, "tx_ofld_frames_csum_tcp"}, 622 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 623 4, "tx_ofld_frames_csum_udp"}, 624 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 625 4, "tx_ofld_frames_lso"}, 626 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 627 4, "tx_ofld_frames_lso_hdr_splits"}, 628 { Q_STATS_OFFSET32(tx_encap_failures), 629 4, "tx_encap_failures"}, 630 { Q_STATS_OFFSET32(tx_hw_queue_full), 631 4, "tx_hw_queue_full"}, 632 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 633 4, "tx_hw_max_queue_depth"}, 634 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 635 4, "tx_dma_mapping_failure"}, 636 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 637 4, "tx_max_drbr_queue_depth"}, 638 { Q_STATS_OFFSET32(tx_window_violation_std), 639 4, "tx_window_violation_std"}, 640 { Q_STATS_OFFSET32(tx_window_violation_tso), 641 4, "tx_window_violation_tso"}, 642 #if 0 643 { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), 644 4, "tx_unsupported_tso_request_ipv6"}, 645 { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), 646 4, "tx_unsupported_tso_request_not_tcp"}, 647 #endif 648 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 649 4, "tx_chain_lost_mbuf"}, 650 { Q_STATS_OFFSET32(tx_frames_deferred), 651 4, "tx_frames_deferred"}, 652 { Q_STATS_OFFSET32(tx_queue_xoff), 653 4, "tx_queue_xoff"}, 654 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 655 4, "mbuf_defrag_attempts"}, 656 { Q_STATS_OFFSET32(mbuf_defrag_failures), 657 4, "mbuf_defrag_failures"}, 658 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 659 4, "mbuf_rx_bd_alloc_failed"}, 660 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 661 4, "mbuf_rx_bd_mapping_failed"}, 662 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 663 4, "mbuf_rx_tpa_alloc_failed"}, 664 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 665 4, "mbuf_rx_tpa_mapping_failed"}, 666 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 667 4, "mbuf_rx_sge_alloc_failed"}, 668 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 669 4, "mbuf_rx_sge_mapping_failed"}, 670 { Q_STATS_OFFSET32(mbuf_alloc_tx), 671 4, "mbuf_alloc_tx"}, 672 { Q_STATS_OFFSET32(mbuf_alloc_rx), 673 4, "mbuf_alloc_rx"}, 674 { Q_STATS_OFFSET32(mbuf_alloc_sge), 675 4, "mbuf_alloc_sge"}, 676 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 677 4, "mbuf_alloc_tpa"} 678 }; 679 680 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 681 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 682 683 684 static void bxe_cmng_fns_init(struct bxe_softc *sc, 685 uint8_t read_cfg, 686 uint8_t cmng_type); 687 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 688 static void storm_memset_cmng(struct bxe_softc *sc, 689 struct cmng_init *cmng, 690 uint8_t port); 691 static void bxe_set_reset_global(struct bxe_softc *sc); 692 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 693 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 694 int engine); 695 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 696 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 697 uint8_t *global, 698 uint8_t print); 699 static void bxe_int_disable(struct bxe_softc *sc); 700 static int bxe_release_leader_lock(struct bxe_softc *sc); 701 static void bxe_pf_disable(struct bxe_softc *sc); 702 static void bxe_free_fp_buffers(struct bxe_softc *sc); 703 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 704 struct bxe_fastpath *fp, 705 uint16_t rx_bd_prod, 706 uint16_t rx_cq_prod, 707 uint16_t rx_sge_prod); 708 static void bxe_link_report_locked(struct bxe_softc *sc); 709 static void bxe_link_report(struct bxe_softc *sc); 710 static void bxe_link_status_update(struct bxe_softc *sc); 711 static void bxe_periodic_callout_func(void *xsc); 712 static void bxe_periodic_start(struct bxe_softc *sc); 713 static void bxe_periodic_stop(struct bxe_softc *sc); 714 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 715 uint16_t prev_index, 716 uint16_t index); 717 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 718 int queue); 719 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 720 uint16_t index); 721 static uint8_t bxe_txeof(struct bxe_softc *sc, 722 struct bxe_fastpath *fp); 723 static void bxe_task_fp(struct bxe_fastpath *fp); 724 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 725 struct mbuf *m, 726 uint8_t contents); 727 static int bxe_alloc_mem(struct bxe_softc *sc); 728 static void bxe_free_mem(struct bxe_softc *sc); 729 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 730 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 731 static int bxe_interrupt_attach(struct bxe_softc *sc); 732 static void bxe_interrupt_detach(struct bxe_softc *sc); 733 static void bxe_set_rx_mode(struct bxe_softc *sc); 734 static int bxe_init_locked(struct bxe_softc *sc); 735 static int bxe_stop_locked(struct bxe_softc *sc); 736 static __noinline int bxe_nic_load(struct bxe_softc *sc, 737 int load_mode); 738 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 739 uint32_t unload_mode, 740 uint8_t keep_link); 741 742 static void bxe_handle_sp_tq(void *context, int pending); 743 static void bxe_handle_rx_mode_tq(void *context, int pending); 744 static void bxe_handle_fp_tq(void *context, int pending); 745 746 747 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 748 uint32_t 749 calc_crc32(uint8_t *crc32_packet, 750 uint32_t crc32_length, 751 uint32_t crc32_seed, 752 uint8_t complement) 753 { 754 uint32_t byte = 0; 755 uint32_t bit = 0; 756 uint8_t msb = 0; 757 uint32_t temp = 0; 758 uint32_t shft = 0; 759 uint8_t current_byte = 0; 760 uint32_t crc32_result = crc32_seed; 761 const uint32_t CRC32_POLY = 0x1edc6f41; 762 763 if ((crc32_packet == NULL) || 764 (crc32_length == 0) || 765 ((crc32_length % 8) != 0)) 766 { 767 return (crc32_result); 768 } 769 770 for (byte = 0; byte < crc32_length; byte = byte + 1) 771 { 772 current_byte = crc32_packet[byte]; 773 for (bit = 0; bit < 8; bit = bit + 1) 774 { 775 /* msb = crc32_result[31]; */ 776 msb = (uint8_t)(crc32_result >> 31); 777 778 crc32_result = crc32_result << 1; 779 780 /* it (msb != current_byte[bit]) */ 781 if (msb != (0x1 & (current_byte >> bit))) 782 { 783 crc32_result = crc32_result ^ CRC32_POLY; 784 /* crc32_result[0] = 1 */ 785 crc32_result |= 1; 786 } 787 } 788 } 789 790 /* Last step is to: 791 * 1. "mirror" every bit 792 * 2. swap the 4 bytes 793 * 3. complement each bit 794 */ 795 796 /* Mirror */ 797 temp = crc32_result; 798 shft = sizeof(crc32_result) * 8 - 1; 799 800 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 801 { 802 temp <<= 1; 803 temp |= crc32_result & 1; 804 shft-- ; 805 } 806 807 /* temp[31-bit] = crc32_result[bit] */ 808 temp <<= shft; 809 810 /* Swap */ 811 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 812 { 813 uint32_t t0, t1, t2, t3; 814 t0 = (0x000000ff & (temp >> 24)); 815 t1 = (0x0000ff00 & (temp >> 8)); 816 t2 = (0x00ff0000 & (temp << 8)); 817 t3 = (0xff000000 & (temp << 24)); 818 crc32_result = t0 | t1 | t2 | t3; 819 } 820 821 /* Complement */ 822 if (complement) 823 { 824 crc32_result = ~crc32_result; 825 } 826 827 return (crc32_result); 828 } 829 830 int 831 bxe_test_bit(int nr, 832 volatile unsigned long *addr) 833 { 834 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 835 } 836 837 void 838 bxe_set_bit(unsigned int nr, 839 volatile unsigned long *addr) 840 { 841 atomic_set_acq_long(addr, (1 << nr)); 842 } 843 844 void 845 bxe_clear_bit(int nr, 846 volatile unsigned long *addr) 847 { 848 atomic_clear_acq_long(addr, (1 << nr)); 849 } 850 851 int 852 bxe_test_and_set_bit(int nr, 853 volatile unsigned long *addr) 854 { 855 unsigned long x; 856 nr = (1 << nr); 857 do { 858 x = *addr; 859 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 860 // if (x & nr) bit_was_set; else bit_was_not_set; 861 return (x & nr); 862 } 863 864 int 865 bxe_test_and_clear_bit(int nr, 866 volatile unsigned long *addr) 867 { 868 unsigned long x; 869 nr = (1 << nr); 870 do { 871 x = *addr; 872 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 873 // if (x & nr) bit_was_set; else bit_was_not_set; 874 return (x & nr); 875 } 876 877 int 878 bxe_cmpxchg(volatile int *addr, 879 int old, 880 int new) 881 { 882 int x; 883 do { 884 x = *addr; 885 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 886 return (x); 887 } 888 889 /* 890 * Get DMA memory from the OS. 891 * 892 * Validates that the OS has provided DMA buffers in response to a 893 * bus_dmamap_load call and saves the physical address of those buffers. 894 * When the callback is used the OS will return 0 for the mapping function 895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 896 * failures back to the caller. 897 * 898 * Returns: 899 * Nothing. 900 */ 901 static void 902 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 903 { 904 struct bxe_dma *dma = arg; 905 906 if (error) { 907 dma->paddr = 0; 908 dma->nseg = 0; 909 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 910 } else { 911 dma->paddr = segs->ds_addr; 912 dma->nseg = nseg; 913 #if 0 914 BLOGD(dma->sc, DBG_LOAD,, 915 "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 916 dma->msg, dma->vaddr, (void *)dma->paddr, 917 dma->nseg, dma->size); 918 #endif 919 } 920 } 921 922 /* 923 * Allocate a block of memory and map it for DMA. No partial completions 924 * allowed and release any resources acquired if we can't acquire all 925 * resources. 926 * 927 * Returns: 928 * 0 = Success, !0 = Failure 929 */ 930 int 931 bxe_dma_alloc(struct bxe_softc *sc, 932 bus_size_t size, 933 struct bxe_dma *dma, 934 const char *msg) 935 { 936 int rc; 937 938 if (dma->size > 0) { 939 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 940 (unsigned long)dma->size); 941 return (1); 942 } 943 944 memset(dma, 0, sizeof(*dma)); /* sanity */ 945 dma->sc = sc; 946 dma->size = size; 947 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 948 949 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 950 BCM_PAGE_SIZE, /* alignment */ 951 0, /* boundary limit */ 952 BUS_SPACE_MAXADDR, /* restricted low */ 953 BUS_SPACE_MAXADDR, /* restricted hi */ 954 NULL, /* addr filter() */ 955 NULL, /* addr filter() arg */ 956 size, /* max map size */ 957 1, /* num discontinuous */ 958 size, /* max seg size */ 959 BUS_DMA_ALLOCNOW, /* flags */ 960 NULL, /* lock() */ 961 NULL, /* lock() arg */ 962 &dma->tag); /* returned dma tag */ 963 if (rc != 0) { 964 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 965 memset(dma, 0, sizeof(*dma)); 966 return (1); 967 } 968 969 rc = bus_dmamem_alloc(dma->tag, 970 (void **)&dma->vaddr, 971 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 972 &dma->map); 973 if (rc != 0) { 974 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 975 bus_dma_tag_destroy(dma->tag); 976 memset(dma, 0, sizeof(*dma)); 977 return (1); 978 } 979 980 rc = bus_dmamap_load(dma->tag, 981 dma->map, 982 dma->vaddr, 983 size, 984 bxe_dma_map_addr, /* BLOGD in here */ 985 dma, 986 BUS_DMA_NOWAIT); 987 if (rc != 0) { 988 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 989 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 990 bus_dma_tag_destroy(dma->tag); 991 memset(dma, 0, sizeof(*dma)); 992 return (1); 993 } 994 995 return (0); 996 } 997 998 void 999 bxe_dma_free(struct bxe_softc *sc, 1000 struct bxe_dma *dma) 1001 { 1002 if (dma->size > 0) { 1003 #if 0 1004 BLOGD(sc, DBG_LOAD, 1005 "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", 1006 dma->msg, dma->vaddr, (void *)dma->paddr, 1007 dma->nseg, dma->size); 1008 #endif 1009 1010 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 1011 1012 bus_dmamap_sync(dma->tag, dma->map, 1013 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 1014 bus_dmamap_unload(dma->tag, dma->map); 1015 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1016 bus_dma_tag_destroy(dma->tag); 1017 } 1018 1019 memset(dma, 0, sizeof(*dma)); 1020 } 1021 1022 /* 1023 * These indirect read and write routines are only during init. 1024 * The locking is handled by the MCP. 1025 */ 1026 1027 void 1028 bxe_reg_wr_ind(struct bxe_softc *sc, 1029 uint32_t addr, 1030 uint32_t val) 1031 { 1032 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1033 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 1034 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1035 } 1036 1037 uint32_t 1038 bxe_reg_rd_ind(struct bxe_softc *sc, 1039 uint32_t addr) 1040 { 1041 uint32_t val; 1042 1043 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1044 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1045 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1046 1047 return (val); 1048 } 1049 1050 #if 0 1051 void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl) 1052 { 1053 uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; 1054 1055 switch (dmae->opcode & DMAE_COMMAND_DST) { 1056 case DMAE_CMD_DST_PCI: 1057 if (src_type == DMAE_CMD_SRC_PCI) 1058 DP(msglvl, "DMAE: opcode 0x%08x\n" 1059 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 1060 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1061 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1062 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1063 dmae->comp_addr_hi, dmae->comp_addr_lo, 1064 dmae->comp_val); 1065 else 1066 DP(msglvl, "DMAE: opcode 0x%08x\n" 1067 "src [%08x], len [%d*4], dst [%x:%08x]\n" 1068 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1069 dmae->opcode, dmae->src_addr_lo >> 2, 1070 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 1071 dmae->comp_addr_hi, dmae->comp_addr_lo, 1072 dmae->comp_val); 1073 break; 1074 case DMAE_CMD_DST_GRC: 1075 if (src_type == DMAE_CMD_SRC_PCI) 1076 DP(msglvl, "DMAE: opcode 0x%08x\n" 1077 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 1078 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1079 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1080 dmae->len, dmae->dst_addr_lo >> 2, 1081 dmae->comp_addr_hi, dmae->comp_addr_lo, 1082 dmae->comp_val); 1083 else 1084 DP(msglvl, "DMAE: opcode 0x%08x\n" 1085 "src [%08x], len [%d*4], dst [%08x]\n" 1086 "comp_addr [%x:%08x], comp_val 0x%08x\n", 1087 dmae->opcode, dmae->src_addr_lo >> 2, 1088 dmae->len, dmae->dst_addr_lo >> 2, 1089 dmae->comp_addr_hi, dmae->comp_addr_lo, 1090 dmae->comp_val); 1091 break; 1092 default: 1093 if (src_type == DMAE_CMD_SRC_PCI) 1094 DP(msglvl, "DMAE: opcode 0x%08x\n" 1095 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 1096 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1097 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 1098 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1099 dmae->comp_val); 1100 else 1101 DP(msglvl, "DMAE: opcode 0x%08x\n" 1102 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 1103 "comp_addr [%x:%08x] comp_val 0x%08x\n", 1104 dmae->opcode, dmae->src_addr_lo >> 2, 1105 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 1106 dmae->comp_val); 1107 break; 1108 } 1109 1110 } 1111 #endif 1112 1113 static int 1114 bxe_acquire_hw_lock(struct bxe_softc *sc, 1115 uint32_t resource) 1116 { 1117 uint32_t lock_status; 1118 uint32_t resource_bit = (1 << resource); 1119 int func = SC_FUNC(sc); 1120 uint32_t hw_lock_control_reg; 1121 int cnt; 1122 1123 /* validate the resource is within range */ 1124 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1125 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1126 return (-1); 1127 } 1128 1129 if (func <= 5) { 1130 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1131 } else { 1132 hw_lock_control_reg = 1133 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1134 } 1135 1136 /* validate the resource is not already taken */ 1137 lock_status = REG_RD(sc, hw_lock_control_reg); 1138 if (lock_status & resource_bit) { 1139 BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", 1140 lock_status, resource_bit); 1141 return (-1); 1142 } 1143 1144 /* try every 5ms for 5 seconds */ 1145 for (cnt = 0; cnt < 1000; cnt++) { 1146 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1147 lock_status = REG_RD(sc, hw_lock_control_reg); 1148 if (lock_status & resource_bit) { 1149 return (0); 1150 } 1151 DELAY(5000); 1152 } 1153 1154 BLOGE(sc, "Resource lock timeout!\n"); 1155 return (-1); 1156 } 1157 1158 static int 1159 bxe_release_hw_lock(struct bxe_softc *sc, 1160 uint32_t resource) 1161 { 1162 uint32_t lock_status; 1163 uint32_t resource_bit = (1 << resource); 1164 int func = SC_FUNC(sc); 1165 uint32_t hw_lock_control_reg; 1166 1167 /* validate the resource is within range */ 1168 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1169 BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); 1170 return (-1); 1171 } 1172 1173 if (func <= 5) { 1174 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1175 } else { 1176 hw_lock_control_reg = 1177 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1178 } 1179 1180 /* validate the resource is currently taken */ 1181 lock_status = REG_RD(sc, hw_lock_control_reg); 1182 if (!(lock_status & resource_bit)) { 1183 BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", 1184 lock_status, resource_bit); 1185 return (-1); 1186 } 1187 1188 REG_WR(sc, hw_lock_control_reg, resource_bit); 1189 return (0); 1190 } 1191 1192 /* 1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1194 * had we done things the other way around, if two pfs from the same port 1195 * would attempt to access nvram at the same time, we could run into a 1196 * scenario such as: 1197 * pf A takes the port lock. 1198 * pf B succeeds in taking the same lock since they are from the same port. 1199 * pf A takes the per pf misc lock. Performs eeprom access. 1200 * pf A finishes. Unlocks the per pf misc lock. 1201 * Pf B takes the lock and proceeds to perform it's own access. 1202 * pf A unlocks the per port lock, while pf B is still working (!). 1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1204 * access corrupted by pf B).* 1205 */ 1206 static int 1207 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1208 { 1209 int port = SC_PORT(sc); 1210 int count, i; 1211 uint32_t val = 0; 1212 1213 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1214 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1215 1216 /* adjust timeout for emulation/FPGA */ 1217 count = NVRAM_TIMEOUT_COUNT; 1218 if (CHIP_REV_IS_SLOW(sc)) { 1219 count *= 100; 1220 } 1221 1222 /* request access to nvram interface */ 1223 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1224 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1225 1226 for (i = 0; i < count*10; i++) { 1227 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1228 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1229 break; 1230 } 1231 1232 DELAY(5); 1233 } 1234 1235 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1236 BLOGE(sc, "Cannot get access to nvram interface\n"); 1237 return (-1); 1238 } 1239 1240 return (0); 1241 } 1242 1243 static int 1244 bxe_release_nvram_lock(struct bxe_softc *sc) 1245 { 1246 int port = SC_PORT(sc); 1247 int count, i; 1248 uint32_t val = 0; 1249 1250 /* adjust timeout for emulation/FPGA */ 1251 count = NVRAM_TIMEOUT_COUNT; 1252 if (CHIP_REV_IS_SLOW(sc)) { 1253 count *= 100; 1254 } 1255 1256 /* relinquish nvram interface */ 1257 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1258 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1259 1260 for (i = 0; i < count*10; i++) { 1261 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1262 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1263 break; 1264 } 1265 1266 DELAY(5); 1267 } 1268 1269 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1270 BLOGE(sc, "Cannot free access to nvram interface\n"); 1271 return (-1); 1272 } 1273 1274 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1275 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1276 1277 return (0); 1278 } 1279 1280 static void 1281 bxe_enable_nvram_access(struct bxe_softc *sc) 1282 { 1283 uint32_t val; 1284 1285 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1286 1287 /* enable both bits, even on read */ 1288 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1289 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1290 } 1291 1292 static void 1293 bxe_disable_nvram_access(struct bxe_softc *sc) 1294 { 1295 uint32_t val; 1296 1297 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1298 1299 /* disable both bits, even after read */ 1300 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1301 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1302 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1303 } 1304 1305 static int 1306 bxe_nvram_read_dword(struct bxe_softc *sc, 1307 uint32_t offset, 1308 uint32_t *ret_val, 1309 uint32_t cmd_flags) 1310 { 1311 int count, i, rc; 1312 uint32_t val; 1313 1314 /* build the command word */ 1315 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1316 1317 /* need to clear DONE bit separately */ 1318 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1319 1320 /* address of the NVRAM to read from */ 1321 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1322 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1323 1324 /* issue a read command */ 1325 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1326 1327 /* adjust timeout for emulation/FPGA */ 1328 count = NVRAM_TIMEOUT_COUNT; 1329 if (CHIP_REV_IS_SLOW(sc)) { 1330 count *= 100; 1331 } 1332 1333 /* wait for completion */ 1334 *ret_val = 0; 1335 rc = -1; 1336 for (i = 0; i < count; i++) { 1337 DELAY(5); 1338 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1339 1340 if (val & MCPR_NVM_COMMAND_DONE) { 1341 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1342 /* we read nvram data in cpu order 1343 * but ethtool sees it as an array of bytes 1344 * converting to big-endian will do the work 1345 */ 1346 *ret_val = htobe32(val); 1347 rc = 0; 1348 break; 1349 } 1350 } 1351 1352 if (rc == -1) { 1353 BLOGE(sc, "nvram read timeout expired\n"); 1354 } 1355 1356 return (rc); 1357 } 1358 1359 static int 1360 bxe_nvram_read(struct bxe_softc *sc, 1361 uint32_t offset, 1362 uint8_t *ret_buf, 1363 int buf_size) 1364 { 1365 uint32_t cmd_flags; 1366 uint32_t val; 1367 int rc; 1368 1369 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1370 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1371 offset, buf_size); 1372 return (-1); 1373 } 1374 1375 if ((offset + buf_size) > sc->devinfo.flash_size) { 1376 BLOGE(sc, "Invalid parameter, " 1377 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1378 offset, buf_size, sc->devinfo.flash_size); 1379 return (-1); 1380 } 1381 1382 /* request access to nvram interface */ 1383 rc = bxe_acquire_nvram_lock(sc); 1384 if (rc) { 1385 return (rc); 1386 } 1387 1388 /* enable access to nvram interface */ 1389 bxe_enable_nvram_access(sc); 1390 1391 /* read the first word(s) */ 1392 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1393 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1394 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1395 memcpy(ret_buf, &val, 4); 1396 1397 /* advance to the next dword */ 1398 offset += sizeof(uint32_t); 1399 ret_buf += sizeof(uint32_t); 1400 buf_size -= sizeof(uint32_t); 1401 cmd_flags = 0; 1402 } 1403 1404 if (rc == 0) { 1405 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1406 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1407 memcpy(ret_buf, &val, 4); 1408 } 1409 1410 /* disable access to nvram interface */ 1411 bxe_disable_nvram_access(sc); 1412 bxe_release_nvram_lock(sc); 1413 1414 return (rc); 1415 } 1416 1417 static int 1418 bxe_nvram_write_dword(struct bxe_softc *sc, 1419 uint32_t offset, 1420 uint32_t val, 1421 uint32_t cmd_flags) 1422 { 1423 int count, i, rc; 1424 1425 /* build the command word */ 1426 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1427 1428 /* need to clear DONE bit separately */ 1429 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1430 1431 /* write the data */ 1432 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1433 1434 /* address of the NVRAM to write to */ 1435 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1436 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1437 1438 /* issue the write command */ 1439 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1440 1441 /* adjust timeout for emulation/FPGA */ 1442 count = NVRAM_TIMEOUT_COUNT; 1443 if (CHIP_REV_IS_SLOW(sc)) { 1444 count *= 100; 1445 } 1446 1447 /* wait for completion */ 1448 rc = -1; 1449 for (i = 0; i < count; i++) { 1450 DELAY(5); 1451 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1452 if (val & MCPR_NVM_COMMAND_DONE) { 1453 rc = 0; 1454 break; 1455 } 1456 } 1457 1458 if (rc == -1) { 1459 BLOGE(sc, "nvram write timeout expired\n"); 1460 } 1461 1462 return (rc); 1463 } 1464 1465 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1466 1467 static int 1468 bxe_nvram_write1(struct bxe_softc *sc, 1469 uint32_t offset, 1470 uint8_t *data_buf, 1471 int buf_size) 1472 { 1473 uint32_t cmd_flags; 1474 uint32_t align_offset; 1475 uint32_t val; 1476 int rc; 1477 1478 if ((offset + buf_size) > sc->devinfo.flash_size) { 1479 BLOGE(sc, "Invalid parameter, " 1480 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1481 offset, buf_size, sc->devinfo.flash_size); 1482 return (-1); 1483 } 1484 1485 /* request access to nvram interface */ 1486 rc = bxe_acquire_nvram_lock(sc); 1487 if (rc) { 1488 return (rc); 1489 } 1490 1491 /* enable access to nvram interface */ 1492 bxe_enable_nvram_access(sc); 1493 1494 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1495 align_offset = (offset & ~0x03); 1496 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1497 1498 if (rc == 0) { 1499 val &= ~(0xff << BYTE_OFFSET(offset)); 1500 val |= (*data_buf << BYTE_OFFSET(offset)); 1501 1502 /* nvram data is returned as an array of bytes 1503 * convert it back to cpu order 1504 */ 1505 val = be32toh(val); 1506 1507 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1508 } 1509 1510 /* disable access to nvram interface */ 1511 bxe_disable_nvram_access(sc); 1512 bxe_release_nvram_lock(sc); 1513 1514 return (rc); 1515 } 1516 1517 static int 1518 bxe_nvram_write(struct bxe_softc *sc, 1519 uint32_t offset, 1520 uint8_t *data_buf, 1521 int buf_size) 1522 { 1523 uint32_t cmd_flags; 1524 uint32_t val; 1525 uint32_t written_so_far; 1526 int rc; 1527 1528 if (buf_size == 1) { 1529 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1530 } 1531 1532 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1533 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1534 offset, buf_size); 1535 return (-1); 1536 } 1537 1538 if (buf_size == 0) { 1539 return (0); /* nothing to do */ 1540 } 1541 1542 if ((offset + buf_size) > sc->devinfo.flash_size) { 1543 BLOGE(sc, "Invalid parameter, " 1544 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1545 offset, buf_size, sc->devinfo.flash_size); 1546 return (-1); 1547 } 1548 1549 /* request access to nvram interface */ 1550 rc = bxe_acquire_nvram_lock(sc); 1551 if (rc) { 1552 return (rc); 1553 } 1554 1555 /* enable access to nvram interface */ 1556 bxe_enable_nvram_access(sc); 1557 1558 written_so_far = 0; 1559 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1560 while ((written_so_far < buf_size) && (rc == 0)) { 1561 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1562 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1563 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1564 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1565 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1566 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1567 } 1568 1569 memcpy(&val, data_buf, 4); 1570 1571 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1572 1573 /* advance to the next dword */ 1574 offset += sizeof(uint32_t); 1575 data_buf += sizeof(uint32_t); 1576 written_so_far += sizeof(uint32_t); 1577 cmd_flags = 0; 1578 } 1579 1580 /* disable access to nvram interface */ 1581 bxe_disable_nvram_access(sc); 1582 bxe_release_nvram_lock(sc); 1583 1584 return (rc); 1585 } 1586 1587 /* copy command into DMAE command memory and set DMAE command Go */ 1588 void 1589 bxe_post_dmae(struct bxe_softc *sc, 1590 struct dmae_command *dmae, 1591 int idx) 1592 { 1593 uint32_t cmd_offset; 1594 int i; 1595 1596 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); 1597 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { 1598 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1599 } 1600 1601 REG_WR(sc, dmae_reg_go_c[idx], 1); 1602 } 1603 1604 uint32_t 1605 bxe_dmae_opcode_add_comp(uint32_t opcode, 1606 uint8_t comp_type) 1607 { 1608 return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 1609 DMAE_COMMAND_C_TYPE_ENABLE)); 1610 } 1611 1612 uint32_t 1613 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1614 { 1615 return (opcode & ~DMAE_COMMAND_SRC_RESET); 1616 } 1617 1618 uint32_t 1619 bxe_dmae_opcode(struct bxe_softc *sc, 1620 uint8_t src_type, 1621 uint8_t dst_type, 1622 uint8_t with_comp, 1623 uint8_t comp_type) 1624 { 1625 uint32_t opcode = 0; 1626 1627 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 1628 (dst_type << DMAE_COMMAND_DST_SHIFT)); 1629 1630 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); 1631 1632 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1633 1634 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | 1635 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); 1636 1637 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 1638 1639 #ifdef __BIG_ENDIAN 1640 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1641 #else 1642 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1643 #endif 1644 1645 if (with_comp) { 1646 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1647 } 1648 1649 return (opcode); 1650 } 1651 1652 static void 1653 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1654 struct dmae_command *dmae, 1655 uint8_t src_type, 1656 uint8_t dst_type) 1657 { 1658 memset(dmae, 0, sizeof(struct dmae_command)); 1659 1660 /* set the opcode */ 1661 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1662 TRUE, DMAE_COMP_PCI); 1663 1664 /* fill in the completion parameters */ 1665 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1666 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1667 dmae->comp_val = DMAE_COMP_VAL; 1668 } 1669 1670 /* issue a DMAE command over the init channel and wait for completion */ 1671 static int 1672 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1673 struct dmae_command *dmae) 1674 { 1675 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1676 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1677 1678 BXE_DMAE_LOCK(sc); 1679 1680 /* reset completion */ 1681 *wb_comp = 0; 1682 1683 /* post the command on the channel used for initializations */ 1684 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1685 1686 /* wait for completion */ 1687 DELAY(5); 1688 1689 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1690 if (!timeout || 1691 (sc->recovery_state != BXE_RECOVERY_DONE && 1692 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1693 BLOGE(sc, "DMAE timeout!\n"); 1694 BXE_DMAE_UNLOCK(sc); 1695 return (DMAE_TIMEOUT); 1696 } 1697 1698 timeout--; 1699 DELAY(50); 1700 } 1701 1702 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1703 BLOGE(sc, "DMAE PCI error!\n"); 1704 BXE_DMAE_UNLOCK(sc); 1705 return (DMAE_PCI_ERROR); 1706 } 1707 1708 BXE_DMAE_UNLOCK(sc); 1709 return (0); 1710 } 1711 1712 void 1713 bxe_read_dmae(struct bxe_softc *sc, 1714 uint32_t src_addr, 1715 uint32_t len32) 1716 { 1717 struct dmae_command dmae; 1718 uint32_t *data; 1719 int i, rc; 1720 1721 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1722 1723 if (!sc->dmae_ready) { 1724 data = BXE_SP(sc, wb_data[0]); 1725 1726 for (i = 0; i < len32; i++) { 1727 data[i] = (CHIP_IS_E1(sc)) ? 1728 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1729 REG_RD(sc, (src_addr + (i * 4))); 1730 } 1731 1732 return; 1733 } 1734 1735 /* set opcode and fixed command fields */ 1736 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1737 1738 /* fill in addresses and len */ 1739 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1740 dmae.src_addr_hi = 0; 1741 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1742 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1743 dmae.len = len32; 1744 1745 /* issue the command and wait for completion */ 1746 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1747 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1748 }; 1749 } 1750 1751 void 1752 bxe_write_dmae(struct bxe_softc *sc, 1753 bus_addr_t dma_addr, 1754 uint32_t dst_addr, 1755 uint32_t len32) 1756 { 1757 struct dmae_command dmae; 1758 int rc; 1759 1760 if (!sc->dmae_ready) { 1761 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1762 1763 if (CHIP_IS_E1(sc)) { 1764 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1765 } else { 1766 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1767 } 1768 1769 return; 1770 } 1771 1772 /* set opcode and fixed command fields */ 1773 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1774 1775 /* fill in addresses and len */ 1776 dmae.src_addr_lo = U64_LO(dma_addr); 1777 dmae.src_addr_hi = U64_HI(dma_addr); 1778 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1779 dmae.dst_addr_hi = 0; 1780 dmae.len = len32; 1781 1782 /* issue the command and wait for completion */ 1783 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1784 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1785 } 1786 } 1787 1788 void 1789 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1790 bus_addr_t phys_addr, 1791 uint32_t addr, 1792 uint32_t len) 1793 { 1794 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1795 int offset = 0; 1796 1797 while (len > dmae_wr_max) { 1798 bxe_write_dmae(sc, 1799 (phys_addr + offset), /* src DMA address */ 1800 (addr + offset), /* dst GRC address */ 1801 dmae_wr_max); 1802 offset += (dmae_wr_max * 4); 1803 len -= dmae_wr_max; 1804 } 1805 1806 bxe_write_dmae(sc, 1807 (phys_addr + offset), /* src DMA address */ 1808 (addr + offset), /* dst GRC address */ 1809 len); 1810 } 1811 1812 void 1813 bxe_set_ctx_validation(struct bxe_softc *sc, 1814 struct eth_context *cxt, 1815 uint32_t cid) 1816 { 1817 /* ustorm cxt validation */ 1818 cxt->ustorm_ag_context.cdu_usage = 1819 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1820 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1821 /* xcontext validation */ 1822 cxt->xstorm_ag_context.cdu_reserved = 1823 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1824 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1825 } 1826 1827 static void 1828 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1829 uint8_t port, 1830 uint8_t fw_sb_id, 1831 uint8_t sb_index, 1832 uint8_t ticks) 1833 { 1834 uint32_t addr = 1835 (BAR_CSTRORM_INTMEM + 1836 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1837 1838 REG_WR8(sc, addr, ticks); 1839 1840 BLOGD(sc, DBG_LOAD, 1841 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1842 port, fw_sb_id, sb_index, ticks); 1843 } 1844 1845 static void 1846 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1847 uint8_t port, 1848 uint16_t fw_sb_id, 1849 uint8_t sb_index, 1850 uint8_t disable) 1851 { 1852 uint32_t enable_flag = 1853 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1854 uint32_t addr = 1855 (BAR_CSTRORM_INTMEM + 1856 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1857 uint8_t flags; 1858 1859 /* clear and set */ 1860 flags = REG_RD8(sc, addr); 1861 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1862 flags |= enable_flag; 1863 REG_WR8(sc, addr, flags); 1864 1865 BLOGD(sc, DBG_LOAD, 1866 "port %d fw_sb_id %d sb_index %d disable %d\n", 1867 port, fw_sb_id, sb_index, disable); 1868 } 1869 1870 void 1871 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1872 uint8_t fw_sb_id, 1873 uint8_t sb_index, 1874 uint8_t disable, 1875 uint16_t usec) 1876 { 1877 int port = SC_PORT(sc); 1878 uint8_t ticks = (usec / 4); /* XXX ??? */ 1879 1880 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1881 1882 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1883 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1884 } 1885 1886 void 1887 elink_cb_udelay(struct bxe_softc *sc, 1888 uint32_t usecs) 1889 { 1890 DELAY(usecs); 1891 } 1892 1893 uint32_t 1894 elink_cb_reg_read(struct bxe_softc *sc, 1895 uint32_t reg_addr) 1896 { 1897 return (REG_RD(sc, reg_addr)); 1898 } 1899 1900 void 1901 elink_cb_reg_write(struct bxe_softc *sc, 1902 uint32_t reg_addr, 1903 uint32_t val) 1904 { 1905 REG_WR(sc, reg_addr, val); 1906 } 1907 1908 void 1909 elink_cb_reg_wb_write(struct bxe_softc *sc, 1910 uint32_t offset, 1911 uint32_t *wb_write, 1912 uint16_t len) 1913 { 1914 REG_WR_DMAE(sc, offset, wb_write, len); 1915 } 1916 1917 void 1918 elink_cb_reg_wb_read(struct bxe_softc *sc, 1919 uint32_t offset, 1920 uint32_t *wb_write, 1921 uint16_t len) 1922 { 1923 REG_RD_DMAE(sc, offset, wb_write, len); 1924 } 1925 1926 uint8_t 1927 elink_cb_path_id(struct bxe_softc *sc) 1928 { 1929 return (SC_PATH(sc)); 1930 } 1931 1932 void 1933 elink_cb_event_log(struct bxe_softc *sc, 1934 const elink_log_id_t elink_log_id, 1935 ...) 1936 { 1937 /* XXX */ 1938 #if 0 1939 //va_list ap; 1940 va_start(ap, elink_log_id); 1941 _XXX_(sc, lm_log_id, ap); 1942 va_end(ap); 1943 #endif 1944 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1945 } 1946 1947 static int 1948 bxe_set_spio(struct bxe_softc *sc, 1949 int spio, 1950 uint32_t mode) 1951 { 1952 uint32_t spio_reg; 1953 1954 /* Only 2 SPIOs are configurable */ 1955 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1956 BLOGE(sc, "Invalid SPIO 0x%x\n", spio); 1957 return (-1); 1958 } 1959 1960 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1961 1962 /* read SPIO and mask except the float bits */ 1963 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1964 1965 switch (mode) { 1966 case MISC_SPIO_OUTPUT_LOW: 1967 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1968 /* clear FLOAT and set CLR */ 1969 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1970 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1971 break; 1972 1973 case MISC_SPIO_OUTPUT_HIGH: 1974 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1975 /* clear FLOAT and set SET */ 1976 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1977 spio_reg |= (spio << MISC_SPIO_SET_POS); 1978 break; 1979 1980 case MISC_SPIO_INPUT_HI_Z: 1981 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1982 /* set FLOAT */ 1983 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1984 break; 1985 1986 default: 1987 break; 1988 } 1989 1990 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1991 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1992 1993 return (0); 1994 } 1995 1996 static int 1997 bxe_gpio_read(struct bxe_softc *sc, 1998 int gpio_num, 1999 uint8_t port) 2000 { 2001 /* The GPIO should be swapped if swap register is set and active */ 2002 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2003 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2004 int gpio_shift = (gpio_num + 2005 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2006 uint32_t gpio_mask = (1 << gpio_shift); 2007 uint32_t gpio_reg; 2008 2009 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2010 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2011 return (-1); 2012 } 2013 2014 /* read GPIO value */ 2015 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2016 2017 /* get the requested pin value */ 2018 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 2019 } 2020 2021 static int 2022 bxe_gpio_write(struct bxe_softc *sc, 2023 int gpio_num, 2024 uint32_t mode, 2025 uint8_t port) 2026 { 2027 /* The GPIO should be swapped if swap register is set and active */ 2028 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2029 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2030 int gpio_shift = (gpio_num + 2031 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2032 uint32_t gpio_mask = (1 << gpio_shift); 2033 uint32_t gpio_reg; 2034 2035 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2036 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2037 return (-1); 2038 } 2039 2040 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2041 2042 /* read GPIO and mask except the float bits */ 2043 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2044 2045 switch (mode) { 2046 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2047 BLOGD(sc, DBG_PHY, 2048 "Set GPIO %d (shift %d) -> output low\n", 2049 gpio_num, gpio_shift); 2050 /* clear FLOAT and set CLR */ 2051 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2052 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2053 break; 2054 2055 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2056 BLOGD(sc, DBG_PHY, 2057 "Set GPIO %d (shift %d) -> output high\n", 2058 gpio_num, gpio_shift); 2059 /* clear FLOAT and set SET */ 2060 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2061 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2062 break; 2063 2064 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2065 BLOGD(sc, DBG_PHY, 2066 "Set GPIO %d (shift %d) -> input\n", 2067 gpio_num, gpio_shift); 2068 /* set FLOAT */ 2069 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2070 break; 2071 2072 default: 2073 break; 2074 } 2075 2076 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2077 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2078 2079 return (0); 2080 } 2081 2082 static int 2083 bxe_gpio_mult_write(struct bxe_softc *sc, 2084 uint8_t pins, 2085 uint32_t mode) 2086 { 2087 uint32_t gpio_reg; 2088 2089 /* any port swapping should be handled by caller */ 2090 2091 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 /* read GPIO and mask except the float bits */ 2094 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2095 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2096 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2097 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2098 2099 switch (mode) { 2100 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2101 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2102 /* set CLR */ 2103 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2104 break; 2105 2106 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2107 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2108 /* set SET */ 2109 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2110 break; 2111 2112 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2113 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2114 /* set FLOAT */ 2115 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2116 break; 2117 2118 default: 2119 BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); 2120 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2121 return (-1); 2122 } 2123 2124 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2125 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2126 2127 return (0); 2128 } 2129 2130 static int 2131 bxe_gpio_int_write(struct bxe_softc *sc, 2132 int gpio_num, 2133 uint32_t mode, 2134 uint8_t port) 2135 { 2136 /* The GPIO should be swapped if swap register is set and active */ 2137 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2138 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2139 int gpio_shift = (gpio_num + 2140 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2141 uint32_t gpio_mask = (1 << gpio_shift); 2142 uint32_t gpio_reg; 2143 2144 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2145 BLOGE(sc, "Invalid GPIO %d\n", gpio_num); 2146 return (-1); 2147 } 2148 2149 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2150 2151 /* read GPIO int */ 2152 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2153 2154 switch (mode) { 2155 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2156 BLOGD(sc, DBG_PHY, 2157 "Clear GPIO INT %d (shift %d) -> output low\n", 2158 gpio_num, gpio_shift); 2159 /* clear SET and set CLR */ 2160 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2161 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2162 break; 2163 2164 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2165 BLOGD(sc, DBG_PHY, 2166 "Set GPIO INT %d (shift %d) -> output high\n", 2167 gpio_num, gpio_shift); 2168 /* clear CLR and set SET */ 2169 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2170 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2171 break; 2172 2173 default: 2174 break; 2175 } 2176 2177 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2178 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2179 2180 return (0); 2181 } 2182 2183 uint32_t 2184 elink_cb_gpio_read(struct bxe_softc *sc, 2185 uint16_t gpio_num, 2186 uint8_t port) 2187 { 2188 return (bxe_gpio_read(sc, gpio_num, port)); 2189 } 2190 2191 uint8_t 2192 elink_cb_gpio_write(struct bxe_softc *sc, 2193 uint16_t gpio_num, 2194 uint8_t mode, /* 0=low 1=high */ 2195 uint8_t port) 2196 { 2197 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2198 } 2199 2200 uint8_t 2201 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2202 uint8_t pins, 2203 uint8_t mode) /* 0=low 1=high */ 2204 { 2205 return (bxe_gpio_mult_write(sc, pins, mode)); 2206 } 2207 2208 uint8_t 2209 elink_cb_gpio_int_write(struct bxe_softc *sc, 2210 uint16_t gpio_num, 2211 uint8_t mode, /* 0=low 1=high */ 2212 uint8_t port) 2213 { 2214 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2215 } 2216 2217 void 2218 elink_cb_notify_link_changed(struct bxe_softc *sc) 2219 { 2220 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2221 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2222 } 2223 2224 /* send the MCP a request, block until there is a reply */ 2225 uint32_t 2226 elink_cb_fw_command(struct bxe_softc *sc, 2227 uint32_t command, 2228 uint32_t param) 2229 { 2230 int mb_idx = SC_FW_MB_IDX(sc); 2231 uint32_t seq; 2232 uint32_t rc = 0; 2233 uint32_t cnt = 1; 2234 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2235 2236 BXE_FWMB_LOCK(sc); 2237 2238 seq = ++sc->fw_seq; 2239 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2240 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2241 2242 BLOGD(sc, DBG_PHY, 2243 "wrote command 0x%08x to FW MB param 0x%08x\n", 2244 (command | seq), param); 2245 2246 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2247 do { 2248 DELAY(delay * 1000); 2249 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2250 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2251 2252 BLOGD(sc, DBG_PHY, 2253 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2254 cnt*delay, rc, seq); 2255 2256 /* is this a reply to our command? */ 2257 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2258 rc &= FW_MSG_CODE_MASK; 2259 } else { 2260 /* Ruh-roh! */ 2261 BLOGE(sc, "FW failed to respond!\n"); 2262 // XXX bxe_fw_dump(sc); 2263 rc = 0; 2264 } 2265 2266 BXE_FWMB_UNLOCK(sc); 2267 return (rc); 2268 } 2269 2270 static uint32_t 2271 bxe_fw_command(struct bxe_softc *sc, 2272 uint32_t command, 2273 uint32_t param) 2274 { 2275 return (elink_cb_fw_command(sc, command, param)); 2276 } 2277 2278 static void 2279 __storm_memset_dma_mapping(struct bxe_softc *sc, 2280 uint32_t addr, 2281 bus_addr_t mapping) 2282 { 2283 REG_WR(sc, addr, U64_LO(mapping)); 2284 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2285 } 2286 2287 static void 2288 storm_memset_spq_addr(struct bxe_softc *sc, 2289 bus_addr_t mapping, 2290 uint16_t abs_fid) 2291 { 2292 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2293 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2294 __storm_memset_dma_mapping(sc, addr, mapping); 2295 } 2296 2297 static void 2298 storm_memset_vf_to_pf(struct bxe_softc *sc, 2299 uint16_t abs_fid, 2300 uint16_t pf_id) 2301 { 2302 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2303 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2304 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2305 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2306 } 2307 2308 static void 2309 storm_memset_func_en(struct bxe_softc *sc, 2310 uint16_t abs_fid, 2311 uint8_t enable) 2312 { 2313 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2314 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2315 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2316 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2317 } 2318 2319 static void 2320 storm_memset_eq_data(struct bxe_softc *sc, 2321 struct event_ring_data *eq_data, 2322 uint16_t pfid) 2323 { 2324 uint32_t addr; 2325 size_t size; 2326 2327 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2328 size = sizeof(struct event_ring_data); 2329 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2330 } 2331 2332 static void 2333 storm_memset_eq_prod(struct bxe_softc *sc, 2334 uint16_t eq_prod, 2335 uint16_t pfid) 2336 { 2337 uint32_t addr = (BAR_CSTRORM_INTMEM + 2338 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2339 REG_WR16(sc, addr, eq_prod); 2340 } 2341 2342 /* 2343 * Post a slowpath command. 2344 * 2345 * A slowpath command is used to propogate a configuration change through 2346 * the controller in a controlled manner, allowing each STORM processor and 2347 * other H/W blocks to phase in the change. The commands sent on the 2348 * slowpath are referred to as ramrods. Depending on the ramrod used the 2349 * completion of the ramrod will occur in different ways. Here's a 2350 * breakdown of ramrods and how they complete: 2351 * 2352 * RAMROD_CMD_ID_ETH_PORT_SETUP 2353 * Used to setup the leading connection on a port. Completes on the 2354 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2355 * 2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2357 * Used to setup an additional connection on a port. Completes on the 2358 * RCQ of the multi-queue/RSS connection being initialized. 2359 * 2360 * RAMROD_CMD_ID_ETH_STAT_QUERY 2361 * Used to force the storm processors to update the statistics database 2362 * in host memory. This ramrod is send on the leading connection CID and 2363 * completes as an index increment of the CSTORM on the default status 2364 * block. 2365 * 2366 * RAMROD_CMD_ID_ETH_UPDATE 2367 * Used to update the state of the leading connection, usually to udpate 2368 * the RSS indirection table. Completes on the RCQ of the leading 2369 * connection. (Not currently used under FreeBSD until OS support becomes 2370 * available.) 2371 * 2372 * RAMROD_CMD_ID_ETH_HALT 2373 * Used when tearing down a connection prior to driver unload. Completes 2374 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2375 * use this on the leading connection. 2376 * 2377 * RAMROD_CMD_ID_ETH_SET_MAC 2378 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2379 * the RCQ of the leading connection. 2380 * 2381 * RAMROD_CMD_ID_ETH_CFC_DEL 2382 * Used when tearing down a conneciton prior to driver unload. Completes 2383 * on the RCQ of the leading connection (since the current connection 2384 * has been completely removed from controller memory). 2385 * 2386 * RAMROD_CMD_ID_ETH_PORT_DEL 2387 * Used to tear down the leading connection prior to driver unload, 2388 * typically fp[0]. Completes as an index increment of the CSTORM on the 2389 * default status block. 2390 * 2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2392 * Used for connection offload. Completes on the RCQ of the multi-queue 2393 * RSS connection that is being offloaded. (Not currently used under 2394 * FreeBSD.) 2395 * 2396 * There can only be one command pending per function. 2397 * 2398 * Returns: 2399 * 0 = Success, !0 = Failure. 2400 */ 2401 2402 /* must be called under the spq lock */ 2403 static inline 2404 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2405 { 2406 struct eth_spe *next_spe = sc->spq_prod_bd; 2407 2408 if (sc->spq_prod_bd == sc->spq_last_bd) { 2409 /* wrap back to the first eth_spq */ 2410 sc->spq_prod_bd = sc->spq; 2411 sc->spq_prod_idx = 0; 2412 } else { 2413 sc->spq_prod_bd++; 2414 sc->spq_prod_idx++; 2415 } 2416 2417 return (next_spe); 2418 } 2419 2420 /* must be called under the spq lock */ 2421 static inline 2422 void bxe_sp_prod_update(struct bxe_softc *sc) 2423 { 2424 int func = SC_FUNC(sc); 2425 2426 /* 2427 * Make sure that BD data is updated before writing the producer. 2428 * BD data is written to the memory, the producer is read from the 2429 * memory, thus we need a full memory barrier to ensure the ordering. 2430 */ 2431 mb(); 2432 2433 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2434 sc->spq_prod_idx); 2435 2436 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2437 BUS_SPACE_BARRIER_WRITE); 2438 } 2439 2440 /** 2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2442 * 2443 * @cmd: command to check 2444 * @cmd_type: command type 2445 */ 2446 static inline 2447 int bxe_is_contextless_ramrod(int cmd, 2448 int cmd_type) 2449 { 2450 if ((cmd_type == NONE_CONNECTION_TYPE) || 2451 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2452 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2453 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2454 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2455 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2456 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2457 return (TRUE); 2458 } else { 2459 return (FALSE); 2460 } 2461 } 2462 2463 /** 2464 * bxe_sp_post - place a single command on an SP ring 2465 * 2466 * @sc: driver handle 2467 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2468 * @cid: SW CID the command is related to 2469 * @data_hi: command private data address (high 32 bits) 2470 * @data_lo: command private data address (low 32 bits) 2471 * @cmd_type: command type (e.g. NONE, ETH) 2472 * 2473 * SP data is handled as if it's always an address pair, thus data fields are 2474 * not swapped to little endian in upper functions. Instead this function swaps 2475 * data as if it's two uint32 fields. 2476 */ 2477 int 2478 bxe_sp_post(struct bxe_softc *sc, 2479 int command, 2480 int cid, 2481 uint32_t data_hi, 2482 uint32_t data_lo, 2483 int cmd_type) 2484 { 2485 struct eth_spe *spe; 2486 uint16_t type; 2487 int common; 2488 2489 common = bxe_is_contextless_ramrod(command, cmd_type); 2490 2491 BXE_SP_LOCK(sc); 2492 2493 if (common) { 2494 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2495 BLOGE(sc, "EQ ring is full!\n"); 2496 BXE_SP_UNLOCK(sc); 2497 return (-1); 2498 } 2499 } else { 2500 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2501 BLOGE(sc, "SPQ ring is full!\n"); 2502 BXE_SP_UNLOCK(sc); 2503 return (-1); 2504 } 2505 } 2506 2507 spe = bxe_sp_get_next(sc); 2508 2509 /* CID needs port number to be encoded int it */ 2510 spe->hdr.conn_and_cmd_data = 2511 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2512 2513 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; 2514 2515 /* TBD: Check if it works for VFs */ 2516 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & 2517 SPE_HDR_FUNCTION_ID); 2518 2519 spe->hdr.type = htole16(type); 2520 2521 spe->data.update_data_addr.hi = htole32(data_hi); 2522 spe->data.update_data_addr.lo = htole32(data_lo); 2523 2524 /* 2525 * It's ok if the actual decrement is issued towards the memory 2526 * somewhere between the lock and unlock. Thus no more explict 2527 * memory barrier is needed. 2528 */ 2529 if (common) { 2530 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2531 } else { 2532 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2533 } 2534 2535 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2536 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2537 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2538 BLOGD(sc, DBG_SP, 2539 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2540 sc->spq_prod_idx, 2541 (uint32_t)U64_HI(sc->spq_dma.paddr), 2542 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2543 command, 2544 common, 2545 HW_CID(sc, cid), 2546 data_hi, 2547 data_lo, 2548 type, 2549 atomic_load_acq_long(&sc->cq_spq_left), 2550 atomic_load_acq_long(&sc->eq_spq_left)); 2551 2552 bxe_sp_prod_update(sc); 2553 2554 BXE_SP_UNLOCK(sc); 2555 return (0); 2556 } 2557 2558 /** 2559 * bxe_debug_print_ind_table - prints the indirection table configuration. 2560 * 2561 * @sc: driver hanlde 2562 * @p: pointer to rss configuration 2563 */ 2564 #if 0 2565 static void 2566 bxe_debug_print_ind_table(struct bxe_softc *sc, 2567 struct ecore_config_rss_params *p) 2568 { 2569 int i; 2570 2571 BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); 2572 BLOGD(sc, DBG_LOAD, " 0x0000: "); 2573 for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { 2574 BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); 2575 2576 /* Print 4 bytes in a line */ 2577 if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && 2578 (((i + 1) & 0x3) == 0)) { 2579 BLOGD(sc, DBG_LOAD, "\n"); 2580 BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); 2581 } 2582 } 2583 2584 BLOGD(sc, DBG_LOAD, "\n"); 2585 } 2586 #endif 2587 2588 /* 2589 * FreeBSD Device probe function. 2590 * 2591 * Compares the device found to the driver's list of supported devices and 2592 * reports back to the bsd loader whether this is the right driver for the device. 2593 * This is the driver entry function called from the "kldload" command. 2594 * 2595 * Returns: 2596 * BUS_PROBE_DEFAULT on success, positive value on failure. 2597 */ 2598 static int 2599 bxe_probe(device_t dev) 2600 { 2601 struct bxe_softc *sc; 2602 struct bxe_device_type *t; 2603 char *descbuf; 2604 uint16_t did, sdid, svid, vid; 2605 2606 /* Find our device structure */ 2607 sc = device_get_softc(dev); 2608 sc->dev = dev; 2609 t = bxe_devs; 2610 2611 /* Get the data for the device to be probed. */ 2612 vid = pci_get_vendor(dev); 2613 did = pci_get_device(dev); 2614 svid = pci_get_subvendor(dev); 2615 sdid = pci_get_subdevice(dev); 2616 2617 BLOGD(sc, DBG_LOAD, 2618 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, " 2619 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid); 2620 2621 /* Look through the list of known devices for a match. */ 2622 while (t->bxe_name != NULL) { 2623 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2624 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2625 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2626 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2627 if (descbuf == NULL) 2628 return (ENOMEM); 2629 2630 /* Print out the device identity. */ 2631 snprintf(descbuf, BXE_DEVDESC_MAX, 2632 "%s (%c%d) BXE v:%s\n", t->bxe_name, 2633 (((pci_read_config(dev, PCIR_REVID, 4) & 2634 0xf0) >> 4) + 'A'), 2635 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2636 BXE_DRIVER_VERSION); 2637 2638 device_set_desc_copy(dev, descbuf); 2639 free(descbuf, M_TEMP); 2640 return (BUS_PROBE_DEFAULT); 2641 } 2642 t++; 2643 } 2644 2645 return (ENXIO); 2646 } 2647 2648 static void 2649 bxe_init_mutexes(struct bxe_softc *sc) 2650 { 2651 #ifdef BXE_CORE_LOCK_SX 2652 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2653 "bxe%d_core_lock", sc->unit); 2654 sx_init(&sc->core_sx, sc->core_sx_name); 2655 #else 2656 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2657 "bxe%d_core_lock", sc->unit); 2658 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2659 #endif 2660 2661 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2662 "bxe%d_sp_lock", sc->unit); 2663 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2664 2665 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2666 "bxe%d_dmae_lock", sc->unit); 2667 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2668 2669 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2670 "bxe%d_phy_lock", sc->unit); 2671 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2672 2673 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2674 "bxe%d_fwmb_lock", sc->unit); 2675 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2676 2677 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2678 "bxe%d_print_lock", sc->unit); 2679 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2680 2681 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2682 "bxe%d_stats_lock", sc->unit); 2683 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2684 2685 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2686 "bxe%d_mcast_lock", sc->unit); 2687 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2688 } 2689 2690 static void 2691 bxe_release_mutexes(struct bxe_softc *sc) 2692 { 2693 #ifdef BXE_CORE_LOCK_SX 2694 sx_destroy(&sc->core_sx); 2695 #else 2696 if (mtx_initialized(&sc->core_mtx)) { 2697 mtx_destroy(&sc->core_mtx); 2698 } 2699 #endif 2700 2701 if (mtx_initialized(&sc->sp_mtx)) { 2702 mtx_destroy(&sc->sp_mtx); 2703 } 2704 2705 if (mtx_initialized(&sc->dmae_mtx)) { 2706 mtx_destroy(&sc->dmae_mtx); 2707 } 2708 2709 if (mtx_initialized(&sc->port.phy_mtx)) { 2710 mtx_destroy(&sc->port.phy_mtx); 2711 } 2712 2713 if (mtx_initialized(&sc->fwmb_mtx)) { 2714 mtx_destroy(&sc->fwmb_mtx); 2715 } 2716 2717 if (mtx_initialized(&sc->print_mtx)) { 2718 mtx_destroy(&sc->print_mtx); 2719 } 2720 2721 if (mtx_initialized(&sc->stats_mtx)) { 2722 mtx_destroy(&sc->stats_mtx); 2723 } 2724 2725 if (mtx_initialized(&sc->mcast_mtx)) { 2726 mtx_destroy(&sc->mcast_mtx); 2727 } 2728 } 2729 2730 static void 2731 bxe_tx_disable(struct bxe_softc* sc) 2732 { 2733 struct ifnet *ifp = sc->ifnet; 2734 2735 /* tell the stack the driver is stopped and TX queue is full */ 2736 if (ifp != NULL) { 2737 ifp->if_drv_flags = 0; 2738 } 2739 } 2740 2741 static void 2742 bxe_drv_pulse(struct bxe_softc *sc) 2743 { 2744 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2745 sc->fw_drv_pulse_wr_seq); 2746 } 2747 2748 static inline int 2749 bxe_has_tx_work_unload(struct bxe_fastpath *fp) 2750 { 2751 mb(); /* consumer and producer can change */ 2752 return (fp->tx_pkt_prod != fp->tx_pkt_cons); 2753 } 2754 2755 static inline uint16_t 2756 bxe_tx_avail(struct bxe_softc *sc, 2757 struct bxe_fastpath *fp) 2758 { 2759 int16_t used; 2760 uint16_t prod; 2761 uint16_t cons; 2762 2763 prod = fp->tx_bd_prod; 2764 cons = fp->tx_bd_cons; 2765 2766 used = SUB_S16(prod, cons); 2767 2768 #if 0 2769 KASSERT((used < 0), ("used tx bds < 0")); 2770 KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); 2771 KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), 2772 ("invalid number of tx bds used")); 2773 #endif 2774 2775 return (int16_t)(sc->tx_ring_size) - used; 2776 } 2777 2778 static inline int 2779 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2780 { 2781 uint16_t hw_cons; 2782 2783 mb(); /* status block fields can change */ 2784 hw_cons = le16toh(*fp->tx_cons_sb); 2785 return (hw_cons != fp->tx_pkt_cons); 2786 } 2787 2788 static inline uint8_t 2789 bxe_has_tx_work(struct bxe_fastpath *fp) 2790 { 2791 /* expand this for multi-cos if ever supported */ 2792 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2793 } 2794 2795 static inline int 2796 bxe_has_rx_work(struct bxe_fastpath *fp) 2797 { 2798 uint16_t rx_cq_cons_sb; 2799 2800 mb(); /* status block fields can change */ 2801 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2802 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2803 rx_cq_cons_sb++; 2804 return (fp->rx_cq_cons != rx_cq_cons_sb); 2805 } 2806 2807 static void 2808 bxe_sp_event(struct bxe_softc *sc, 2809 struct bxe_fastpath *fp, 2810 union eth_rx_cqe *rr_cqe) 2811 { 2812 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2813 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2814 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2815 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2816 2817 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2818 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2819 2820 #if 0 2821 /* 2822 * If cid is within VF range, replace the slowpath object with the 2823 * one corresponding to this VF 2824 */ 2825 if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { 2826 bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); 2827 } 2828 #endif 2829 2830 switch (command) { 2831 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2832 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2833 drv_cmd = ECORE_Q_CMD_UPDATE; 2834 break; 2835 2836 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2837 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2838 drv_cmd = ECORE_Q_CMD_SETUP; 2839 break; 2840 2841 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2842 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2843 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2844 break; 2845 2846 case (RAMROD_CMD_ID_ETH_HALT): 2847 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2848 drv_cmd = ECORE_Q_CMD_HALT; 2849 break; 2850 2851 case (RAMROD_CMD_ID_ETH_TERMINATE): 2852 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2853 drv_cmd = ECORE_Q_CMD_TERMINATE; 2854 break; 2855 2856 case (RAMROD_CMD_ID_ETH_EMPTY): 2857 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2858 drv_cmd = ECORE_Q_CMD_EMPTY; 2859 break; 2860 2861 default: 2862 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2863 command, fp->index); 2864 return; 2865 } 2866 2867 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2868 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2869 /* 2870 * q_obj->complete_cmd() failure means that this was 2871 * an unexpected completion. 2872 * 2873 * In this case we don't want to increase the sc->spq_left 2874 * because apparently we haven't sent this command the first 2875 * place. 2876 */ 2877 // bxe_panic(sc, ("Unexpected SP completion\n")); 2878 return; 2879 } 2880 2881 #if 0 2882 /* SRIOV: reschedule any 'in_progress' operations */ 2883 bxe_iov_sp_event(sc, cid, TRUE); 2884 #endif 2885 2886 atomic_add_acq_long(&sc->cq_spq_left, 1); 2887 2888 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2889 atomic_load_acq_long(&sc->cq_spq_left)); 2890 2891 #if 0 2892 if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 2893 (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { 2894 /* 2895 * If Queue update ramrod is completed for last Queue in AFEX VIF set 2896 * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to 2897 * prevent case that both bits are cleared. At the end of load/unload 2898 * driver checks that sp_state is cleared and this order prevents 2899 * races. 2900 */ 2901 bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); 2902 wmb(); 2903 bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); 2904 2905 /* schedule the sp task as MCP ack is required */ 2906 bxe_schedule_sp_task(sc); 2907 } 2908 #endif 2909 } 2910 2911 /* 2912 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2913 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2914 * the current aggregation queue as in-progress. 2915 */ 2916 static void 2917 bxe_tpa_start(struct bxe_softc *sc, 2918 struct bxe_fastpath *fp, 2919 uint16_t queue, 2920 uint16_t cons, 2921 uint16_t prod, 2922 struct eth_fast_path_rx_cqe *cqe) 2923 { 2924 struct bxe_sw_rx_bd tmp_bd; 2925 struct bxe_sw_rx_bd *rx_buf; 2926 struct eth_rx_bd *rx_bd; 2927 int max_agg_queues; 2928 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2929 uint16_t index; 2930 2931 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2932 "cons=%d prod=%d\n", 2933 fp->index, queue, cons, prod); 2934 2935 max_agg_queues = MAX_AGG_QS(sc); 2936 2937 KASSERT((queue < max_agg_queues), 2938 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2939 fp->index, queue, max_agg_queues)); 2940 2941 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2942 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2943 fp->index, queue)); 2944 2945 /* copy the existing mbuf and mapping from the TPA pool */ 2946 tmp_bd = tpa_info->bd; 2947 2948 if (tmp_bd.m == NULL) { 2949 BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", 2950 fp->index, queue); 2951 /* XXX Error handling? */ 2952 return; 2953 } 2954 2955 /* change the TPA queue to the start state */ 2956 tpa_info->state = BXE_TPA_STATE_START; 2957 tpa_info->placement_offset = cqe->placement_offset; 2958 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2959 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2960 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2961 2962 fp->rx_tpa_queue_used |= (1 << queue); 2963 2964 /* 2965 * If all the buffer descriptors are filled with mbufs then fill in 2966 * the current consumer index with a new BD. Else if a maximum Rx 2967 * buffer limit is imposed then fill in the next producer index. 2968 */ 2969 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2970 prod : cons; 2971 2972 /* move the received mbuf and mapping to TPA pool */ 2973 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2974 2975 /* release any existing RX BD mbuf mappings */ 2976 if (cons != index) { 2977 rx_buf = &fp->rx_mbuf_chain[cons]; 2978 2979 if (rx_buf->m_map != NULL) { 2980 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2981 BUS_DMASYNC_POSTREAD); 2982 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2983 } 2984 2985 /* 2986 * We get here when the maximum number of rx buffers is less than 2987 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2988 * it out here without concern of a memory leak. 2989 */ 2990 fp->rx_mbuf_chain[cons].m = NULL; 2991 } 2992 2993 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2994 fp->rx_mbuf_chain[index] = tmp_bd; 2995 2996 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2997 rx_bd = &fp->rx_chain[index]; 2998 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2999 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 3000 } 3001 3002 /* 3003 * When a TPA aggregation is completed, loop through the individual mbufs 3004 * of the aggregation, combining them into a single mbuf which will be sent 3005 * up the stack. Refill all freed SGEs with mbufs as we go along. 3006 */ 3007 static int 3008 bxe_fill_frag_mbuf(struct bxe_softc *sc, 3009 struct bxe_fastpath *fp, 3010 struct bxe_sw_tpa_info *tpa_info, 3011 uint16_t queue, 3012 uint16_t pages, 3013 struct mbuf *m, 3014 struct eth_end_agg_rx_cqe *cqe, 3015 uint16_t cqe_idx) 3016 { 3017 struct mbuf *m_frag; 3018 uint32_t frag_len, frag_size, i; 3019 uint16_t sge_idx; 3020 int rc = 0; 3021 int j; 3022 3023 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 3024 3025 BLOGD(sc, DBG_LRO, 3026 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 3027 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 3028 3029 /* make sure the aggregated frame is not too big to handle */ 3030 if (pages > 8 * PAGES_PER_SGE) { 3031 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 3032 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 3033 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 3034 tpa_info->len_on_bd, frag_size); 3035 bxe_panic(sc, ("sge page count error\n")); 3036 return (EINVAL); 3037 } 3038 3039 /* 3040 * Scan through the scatter gather list pulling individual mbufs into a 3041 * single mbuf for the host stack. 3042 */ 3043 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 3044 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 3045 3046 /* 3047 * Firmware gives the indices of the SGE as if the ring is an array 3048 * (meaning that the "next" element will consume 2 indices). 3049 */ 3050 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 3051 3052 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 3053 "sge_idx=%d frag_size=%d frag_len=%d\n", 3054 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 3055 3056 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3057 3058 /* allocate a new mbuf for the SGE */ 3059 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3060 if (rc) { 3061 /* Leave all remaining SGEs in the ring! */ 3062 return (rc); 3063 } 3064 3065 /* update the fragment length */ 3066 m_frag->m_len = frag_len; 3067 3068 /* concatenate the fragment to the head mbuf */ 3069 m_cat(m, m_frag); 3070 fp->eth_q_stats.mbuf_alloc_sge--; 3071 3072 /* update the TPA mbuf size and remaining fragment size */ 3073 m->m_pkthdr.len += frag_len; 3074 frag_size -= frag_len; 3075 } 3076 3077 BLOGD(sc, DBG_LRO, 3078 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 3079 fp->index, queue, frag_size); 3080 3081 return (rc); 3082 } 3083 3084 static inline void 3085 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 3086 { 3087 int i, j; 3088 3089 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 3090 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 3091 3092 for (j = 0; j < 2; j++) { 3093 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 3094 idx--; 3095 } 3096 } 3097 } 3098 3099 static inline void 3100 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 3101 { 3102 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 3103 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 3104 3105 /* 3106 * Clear the two last indices in the page to 1. These are the indices that 3107 * correspond to the "next" element, hence will never be indicated and 3108 * should be removed from the calculations. 3109 */ 3110 bxe_clear_sge_mask_next_elems(fp); 3111 } 3112 3113 static inline void 3114 bxe_update_last_max_sge(struct bxe_fastpath *fp, 3115 uint16_t idx) 3116 { 3117 uint16_t last_max = fp->last_max_sge; 3118 3119 if (SUB_S16(idx, last_max) > 0) { 3120 fp->last_max_sge = idx; 3121 } 3122 } 3123 3124 static inline void 3125 bxe_update_sge_prod(struct bxe_softc *sc, 3126 struct bxe_fastpath *fp, 3127 uint16_t sge_len, 3128 struct eth_end_agg_rx_cqe *cqe) 3129 { 3130 uint16_t last_max, last_elem, first_elem; 3131 uint16_t delta = 0; 3132 uint16_t i; 3133 3134 if (!sge_len) { 3135 return; 3136 } 3137 3138 /* first mark all used pages */ 3139 for (i = 0; i < sge_len; i++) { 3140 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 3141 RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i]))); 3142 } 3143 3144 BLOGD(sc, DBG_LRO, 3145 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3146 fp->index, sge_len - 1, 3147 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3148 3149 /* assume that the last SGE index is the biggest */ 3150 bxe_update_last_max_sge(fp, 3151 le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 3152 3153 last_max = RX_SGE(fp->last_max_sge); 3154 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3155 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3156 3157 /* if ring is not full */ 3158 if (last_elem + 1 != first_elem) { 3159 last_elem++; 3160 } 3161 3162 /* now update the prod */ 3163 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3164 if (__predict_true(fp->sge_mask[i])) { 3165 break; 3166 } 3167 3168 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3169 delta += BIT_VEC64_ELEM_SZ; 3170 } 3171 3172 if (delta > 0) { 3173 fp->rx_sge_prod += delta; 3174 /* clear page-end entries */ 3175 bxe_clear_sge_mask_next_elems(fp); 3176 } 3177 3178 BLOGD(sc, DBG_LRO, 3179 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3180 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3181 } 3182 3183 /* 3184 * The aggregation on the current TPA queue has completed. Pull the individual 3185 * mbuf fragments together into a single mbuf, perform all necessary checksum 3186 * calculations, and send the resuting mbuf to the stack. 3187 */ 3188 static void 3189 bxe_tpa_stop(struct bxe_softc *sc, 3190 struct bxe_fastpath *fp, 3191 struct bxe_sw_tpa_info *tpa_info, 3192 uint16_t queue, 3193 uint16_t pages, 3194 struct eth_end_agg_rx_cqe *cqe, 3195 uint16_t cqe_idx) 3196 { 3197 struct ifnet *ifp = sc->ifnet; 3198 struct mbuf *m; 3199 int rc = 0; 3200 3201 BLOGD(sc, DBG_LRO, 3202 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3203 fp->index, queue, tpa_info->placement_offset, 3204 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3205 3206 m = tpa_info->bd.m; 3207 3208 /* allocate a replacement before modifying existing mbuf */ 3209 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3210 if (rc) { 3211 /* drop the frame and log an error */ 3212 fp->eth_q_stats.rx_soft_errors++; 3213 goto bxe_tpa_stop_exit; 3214 } 3215 3216 /* we have a replacement, fixup the current mbuf */ 3217 m_adj(m, tpa_info->placement_offset); 3218 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3219 3220 /* mark the checksums valid (taken care of by the firmware) */ 3221 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3222 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3223 m->m_pkthdr.csum_data = 0xffff; 3224 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3225 CSUM_IP_VALID | 3226 CSUM_DATA_VALID | 3227 CSUM_PSEUDO_HDR); 3228 3229 /* aggregate all of the SGEs into a single mbuf */ 3230 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3231 if (rc) { 3232 /* drop the packet and log an error */ 3233 fp->eth_q_stats.rx_soft_errors++; 3234 m_freem(m); 3235 } else { 3236 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { 3237 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3238 m->m_flags |= M_VLANTAG; 3239 } 3240 3241 /* assign packet to this interface interface */ 3242 m->m_pkthdr.rcvif = ifp; 3243 3244 #if __FreeBSD_version >= 800000 3245 /* specify what RSS queue was used for this flow */ 3246 m->m_pkthdr.flowid = fp->index; 3247 m->m_flags |= M_FLOWID; 3248 #endif 3249 3250 ifp->if_ipackets++; 3251 fp->eth_q_stats.rx_tpa_pkts++; 3252 3253 /* pass the frame to the stack */ 3254 (*ifp->if_input)(ifp, m); 3255 } 3256 3257 /* we passed an mbuf up the stack or dropped the frame */ 3258 fp->eth_q_stats.mbuf_alloc_tpa--; 3259 3260 bxe_tpa_stop_exit: 3261 3262 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3263 fp->rx_tpa_queue_used &= ~(1 << queue); 3264 } 3265 3266 static uint8_t 3267 bxe_rxeof(struct bxe_softc *sc, 3268 struct bxe_fastpath *fp) 3269 { 3270 struct ifnet *ifp = sc->ifnet; 3271 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3272 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3273 int rx_pkts = 0; 3274 int rc; 3275 3276 BXE_FP_RX_LOCK(fp); 3277 3278 /* CQ "next element" is of the size of the regular element */ 3279 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3280 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3281 hw_cq_cons++; 3282 } 3283 3284 bd_cons = fp->rx_bd_cons; 3285 bd_prod = fp->rx_bd_prod; 3286 bd_prod_fw = bd_prod; 3287 sw_cq_cons = fp->rx_cq_cons; 3288 sw_cq_prod = fp->rx_cq_prod; 3289 3290 /* 3291 * Memory barrier necessary as speculative reads of the rx 3292 * buffer can be ahead of the index in the status block 3293 */ 3294 rmb(); 3295 3296 BLOGD(sc, DBG_RX, 3297 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3298 fp->index, hw_cq_cons, sw_cq_cons); 3299 3300 while (sw_cq_cons != hw_cq_cons) { 3301 struct bxe_sw_rx_bd *rx_buf = NULL; 3302 union eth_rx_cqe *cqe; 3303 struct eth_fast_path_rx_cqe *cqe_fp; 3304 uint8_t cqe_fp_flags; 3305 enum eth_rx_cqe_type cqe_fp_type; 3306 uint16_t len, pad; 3307 struct mbuf *m = NULL; 3308 3309 comp_ring_cons = RCQ(sw_cq_cons); 3310 bd_prod = RX_BD(bd_prod); 3311 bd_cons = RX_BD(bd_cons); 3312 3313 cqe = &fp->rcq_chain[comp_ring_cons]; 3314 cqe_fp = &cqe->fast_path_cqe; 3315 cqe_fp_flags = cqe_fp->type_error_flags; 3316 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3317 3318 BLOGD(sc, DBG_RX, 3319 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3320 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3321 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", 3322 fp->index, 3323 hw_cq_cons, 3324 sw_cq_cons, 3325 bd_prod, 3326 bd_cons, 3327 CQE_TYPE(cqe_fp_flags), 3328 cqe_fp_flags, 3329 cqe_fp->status_flags, 3330 le32toh(cqe_fp->rss_hash_result), 3331 le16toh(cqe_fp->vlan_tag), 3332 le16toh(cqe_fp->pkt_len_or_gro_seg_len)); 3333 3334 /* is this a slowpath msg? */ 3335 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3336 bxe_sp_event(sc, fp, cqe); 3337 goto next_cqe; 3338 } 3339 3340 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3341 3342 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3343 struct bxe_sw_tpa_info *tpa_info; 3344 uint16_t frag_size, pages; 3345 uint8_t queue; 3346 3347 #if 0 3348 /* sanity check */ 3349 if (!fp->tpa_enable && 3350 (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { 3351 BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", 3352 CQE_TYPE(cqe_fp_type)); 3353 } 3354 #endif 3355 3356 if (CQE_TYPE_START(cqe_fp_type)) { 3357 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3358 bd_cons, bd_prod, cqe_fp); 3359 m = NULL; /* packet not ready yet */ 3360 goto next_rx; 3361 } 3362 3363 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3364 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3365 3366 queue = cqe->end_agg_cqe.queue_index; 3367 tpa_info = &fp->rx_tpa_info[queue]; 3368 3369 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3370 fp->index, queue); 3371 3372 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3373 tpa_info->len_on_bd); 3374 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3375 3376 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3377 &cqe->end_agg_cqe, comp_ring_cons); 3378 3379 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); 3380 3381 goto next_cqe; 3382 } 3383 3384 /* non TPA */ 3385 3386 /* is this an error packet? */ 3387 if (__predict_false(cqe_fp_flags & 3388 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3389 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3390 fp->eth_q_stats.rx_soft_errors++; 3391 goto next_rx; 3392 } 3393 3394 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3395 pad = cqe_fp->placement_offset; 3396 3397 m = rx_buf->m; 3398 3399 if (__predict_false(m == NULL)) { 3400 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3401 bd_cons, fp->index); 3402 goto next_rx; 3403 } 3404 3405 /* XXX double copy if packet length under a threshold */ 3406 3407 /* 3408 * If all the buffer descriptors are filled with mbufs then fill in 3409 * the current consumer index with a new BD. Else if a maximum Rx 3410 * buffer limit is imposed then fill in the next producer index. 3411 */ 3412 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3413 (sc->max_rx_bufs != RX_BD_USABLE) ? 3414 bd_prod : bd_cons); 3415 if (rc != 0) { 3416 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3417 fp->index, rc); 3418 fp->eth_q_stats.rx_soft_errors++; 3419 3420 if (sc->max_rx_bufs != RX_BD_USABLE) { 3421 /* copy this consumer index to the producer index */ 3422 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3423 sizeof(struct bxe_sw_rx_bd)); 3424 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3425 } 3426 3427 goto next_rx; 3428 } 3429 3430 /* current mbuf was detached from the bd */ 3431 fp->eth_q_stats.mbuf_alloc_rx--; 3432 3433 /* we allocated a replacement mbuf, fixup the current one */ 3434 m_adj(m, pad); 3435 m->m_pkthdr.len = m->m_len = len; 3436 3437 /* assign packet to this interface interface */ 3438 m->m_pkthdr.rcvif = ifp; 3439 3440 /* assume no hardware checksum has complated */ 3441 m->m_pkthdr.csum_flags = 0; 3442 3443 /* validate checksum if offload enabled */ 3444 if (ifp->if_capenable & IFCAP_RXCSUM) { 3445 /* check for a valid IP frame */ 3446 if (!(cqe->fast_path_cqe.status_flags & 3447 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3448 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3449 if (__predict_false(cqe_fp_flags & 3450 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3451 fp->eth_q_stats.rx_hw_csum_errors++; 3452 } else { 3453 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3454 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3455 } 3456 } 3457 3458 /* check for a valid TCP/UDP frame */ 3459 if (!(cqe->fast_path_cqe.status_flags & 3460 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3461 if (__predict_false(cqe_fp_flags & 3462 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3463 fp->eth_q_stats.rx_hw_csum_errors++; 3464 } else { 3465 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3466 m->m_pkthdr.csum_data = 0xFFFF; 3467 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3468 CSUM_PSEUDO_HDR); 3469 } 3470 } 3471 } 3472 3473 /* if there is a VLAN tag then flag that info */ 3474 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { 3475 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3476 m->m_flags |= M_VLANTAG; 3477 } 3478 3479 #if __FreeBSD_version >= 800000 3480 /* specify what RSS queue was used for this flow */ 3481 m->m_pkthdr.flowid = fp->index; 3482 m->m_flags |= M_FLOWID; 3483 #endif 3484 3485 next_rx: 3486 3487 bd_cons = RX_BD_NEXT(bd_cons); 3488 bd_prod = RX_BD_NEXT(bd_prod); 3489 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3490 3491 /* pass the frame to the stack */ 3492 if (__predict_true(m != NULL)) { 3493 ifp->if_ipackets++; 3494 rx_pkts++; 3495 (*ifp->if_input)(ifp, m); 3496 } 3497 3498 next_cqe: 3499 3500 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3501 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3502 3503 /* limit spinning on the queue */ 3504 if (rx_pkts == sc->rx_budget) { 3505 fp->eth_q_stats.rx_budget_reached++; 3506 break; 3507 } 3508 } /* while work to do */ 3509 3510 fp->rx_bd_cons = bd_cons; 3511 fp->rx_bd_prod = bd_prod_fw; 3512 fp->rx_cq_cons = sw_cq_cons; 3513 fp->rx_cq_prod = sw_cq_prod; 3514 3515 /* Update producers */ 3516 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3517 3518 fp->eth_q_stats.rx_pkts += rx_pkts; 3519 fp->eth_q_stats.rx_calls++; 3520 3521 BXE_FP_RX_UNLOCK(fp); 3522 3523 return (sw_cq_cons != hw_cq_cons); 3524 } 3525 3526 static uint16_t 3527 bxe_free_tx_pkt(struct bxe_softc *sc, 3528 struct bxe_fastpath *fp, 3529 uint16_t idx) 3530 { 3531 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3532 struct eth_tx_start_bd *tx_start_bd; 3533 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3534 uint16_t new_cons; 3535 int nbd; 3536 3537 /* unmap the mbuf from non-paged memory */ 3538 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3539 3540 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3541 nbd = le16toh(tx_start_bd->nbd) - 1; 3542 3543 #if 0 3544 if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { 3545 bxe_panic(sc, ("BAD nbd!\n")); 3546 } 3547 #endif 3548 3549 new_cons = (tx_buf->first_bd + nbd); 3550 3551 #if 0 3552 struct eth_tx_bd *tx_data_bd; 3553 3554 /* 3555 * The following code doesn't do anything but is left here 3556 * for clarity on what the new value of new_cons skipped. 3557 */ 3558 3559 /* get the next bd */ 3560 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3561 3562 /* skip the parse bd */ 3563 --nbd; 3564 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3565 3566 /* skip the TSO split header bd since they have no mapping */ 3567 if (tx_buf->flags & BXE_TSO_SPLIT_BD) { 3568 --nbd; 3569 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3570 } 3571 3572 /* now free frags */ 3573 while (nbd > 0) { 3574 tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; 3575 if (--nbd) { 3576 bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); 3577 } 3578 } 3579 #endif 3580 3581 /* free the mbuf */ 3582 if (__predict_true(tx_buf->m != NULL)) { 3583 m_freem(tx_buf->m); 3584 fp->eth_q_stats.mbuf_alloc_tx--; 3585 } else { 3586 fp->eth_q_stats.tx_chain_lost_mbuf++; 3587 } 3588 3589 tx_buf->m = NULL; 3590 tx_buf->first_bd = 0; 3591 3592 return (new_cons); 3593 } 3594 3595 /* transmit timeout watchdog */ 3596 static int 3597 bxe_watchdog(struct bxe_softc *sc, 3598 struct bxe_fastpath *fp) 3599 { 3600 BXE_FP_TX_LOCK(fp); 3601 3602 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3603 BXE_FP_TX_UNLOCK(fp); 3604 return (0); 3605 } 3606 3607 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3608 3609 BXE_FP_TX_UNLOCK(fp); 3610 3611 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 3612 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 3613 3614 return (-1); 3615 } 3616 3617 /* processes transmit completions */ 3618 static uint8_t 3619 bxe_txeof(struct bxe_softc *sc, 3620 struct bxe_fastpath *fp) 3621 { 3622 struct ifnet *ifp = sc->ifnet; 3623 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3624 uint16_t tx_bd_avail; 3625 3626 BXE_FP_TX_LOCK_ASSERT(fp); 3627 3628 bd_cons = fp->tx_bd_cons; 3629 hw_cons = le16toh(*fp->tx_cons_sb); 3630 sw_cons = fp->tx_pkt_cons; 3631 3632 while (sw_cons != hw_cons) { 3633 pkt_cons = TX_BD(sw_cons); 3634 3635 BLOGD(sc, DBG_TX, 3636 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3637 fp->index, hw_cons, sw_cons, pkt_cons); 3638 3639 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3640 3641 sw_cons++; 3642 } 3643 3644 fp->tx_pkt_cons = sw_cons; 3645 fp->tx_bd_cons = bd_cons; 3646 3647 BLOGD(sc, DBG_TX, 3648 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3649 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3650 3651 mb(); 3652 3653 tx_bd_avail = bxe_tx_avail(sc, fp); 3654 3655 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3656 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3657 } else { 3658 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3659 } 3660 3661 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3662 /* reset the watchdog timer if there are pending transmits */ 3663 fp->watchdog_timer = BXE_TX_TIMEOUT; 3664 return (TRUE); 3665 } else { 3666 /* clear watchdog when there are no pending transmits */ 3667 fp->watchdog_timer = 0; 3668 return (FALSE); 3669 } 3670 } 3671 3672 static void 3673 bxe_drain_tx_queues(struct bxe_softc *sc) 3674 { 3675 struct bxe_fastpath *fp; 3676 int i, count; 3677 3678 /* wait until all TX fastpath tasks have completed */ 3679 for (i = 0; i < sc->num_queues; i++) { 3680 fp = &sc->fp[i]; 3681 3682 count = 1000; 3683 3684 while (bxe_has_tx_work(fp)) { 3685 3686 BXE_FP_TX_LOCK(fp); 3687 bxe_txeof(sc, fp); 3688 BXE_FP_TX_UNLOCK(fp); 3689 3690 if (count == 0) { 3691 BLOGE(sc, "Timeout waiting for fp[%d] " 3692 "transmits to complete!\n", i); 3693 bxe_panic(sc, ("tx drain failure\n")); 3694 return; 3695 } 3696 3697 count--; 3698 DELAY(1000); 3699 rmb(); 3700 } 3701 } 3702 3703 return; 3704 } 3705 3706 static int 3707 bxe_del_all_macs(struct bxe_softc *sc, 3708 struct ecore_vlan_mac_obj *mac_obj, 3709 int mac_type, 3710 uint8_t wait_for_comp) 3711 { 3712 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3713 int rc; 3714 3715 /* wait for completion of requested */ 3716 if (wait_for_comp) { 3717 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3718 } 3719 3720 /* Set the mac type of addresses we want to clear */ 3721 bxe_set_bit(mac_type, &vlan_mac_flags); 3722 3723 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3724 if (rc < 0) { 3725 BLOGE(sc, "Failed to delete MACs (%d)\n", rc); 3726 } 3727 3728 return (rc); 3729 } 3730 3731 static int 3732 bxe_fill_accept_flags(struct bxe_softc *sc, 3733 uint32_t rx_mode, 3734 unsigned long *rx_accept_flags, 3735 unsigned long *tx_accept_flags) 3736 { 3737 /* Clear the flags first */ 3738 *rx_accept_flags = 0; 3739 *tx_accept_flags = 0; 3740 3741 switch (rx_mode) { 3742 case BXE_RX_MODE_NONE: 3743 /* 3744 * 'drop all' supersedes any accept flags that may have been 3745 * passed to the function. 3746 */ 3747 break; 3748 3749 case BXE_RX_MODE_NORMAL: 3750 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3751 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3752 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3753 3754 /* internal switching mode */ 3755 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3756 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3757 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3758 3759 break; 3760 3761 case BXE_RX_MODE_ALLMULTI: 3762 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3763 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3764 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3765 3766 /* internal switching mode */ 3767 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3768 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3769 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3770 3771 break; 3772 3773 case BXE_RX_MODE_PROMISC: 3774 /* 3775 * According to deffinition of SI mode, iface in promisc mode 3776 * should receive matched and unmatched (in resolution of port) 3777 * unicast packets. 3778 */ 3779 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3780 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3781 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3782 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3783 3784 /* internal switching mode */ 3785 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3786 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3787 3788 if (IS_MF_SI(sc)) { 3789 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3790 } else { 3791 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3792 } 3793 3794 break; 3795 3796 default: 3797 BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); 3798 return (-1); 3799 } 3800 3801 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3802 if (rx_mode != BXE_RX_MODE_NONE) { 3803 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3804 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3805 } 3806 3807 return (0); 3808 } 3809 3810 static int 3811 bxe_set_q_rx_mode(struct bxe_softc *sc, 3812 uint8_t cl_id, 3813 unsigned long rx_mode_flags, 3814 unsigned long rx_accept_flags, 3815 unsigned long tx_accept_flags, 3816 unsigned long ramrod_flags) 3817 { 3818 struct ecore_rx_mode_ramrod_params ramrod_param; 3819 int rc; 3820 3821 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3822 3823 /* Prepare ramrod parameters */ 3824 ramrod_param.cid = 0; 3825 ramrod_param.cl_id = cl_id; 3826 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3827 ramrod_param.func_id = SC_FUNC(sc); 3828 3829 ramrod_param.pstate = &sc->sp_state; 3830 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3831 3832 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3833 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3834 3835 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3836 3837 ramrod_param.ramrod_flags = ramrod_flags; 3838 ramrod_param.rx_mode_flags = rx_mode_flags; 3839 3840 ramrod_param.rx_accept_flags = rx_accept_flags; 3841 ramrod_param.tx_accept_flags = tx_accept_flags; 3842 3843 rc = ecore_config_rx_mode(sc, &ramrod_param); 3844 if (rc < 0) { 3845 BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); 3846 return (rc); 3847 } 3848 3849 return (0); 3850 } 3851 3852 static int 3853 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3854 { 3855 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3856 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3857 int rc; 3858 3859 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3860 &tx_accept_flags); 3861 if (rc) { 3862 return (rc); 3863 } 3864 3865 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3866 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3867 3868 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3869 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3870 rx_accept_flags, tx_accept_flags, 3871 ramrod_flags)); 3872 } 3873 3874 /* returns the "mcp load_code" according to global load_count array */ 3875 static int 3876 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3877 { 3878 int path = SC_PATH(sc); 3879 int port = SC_PORT(sc); 3880 3881 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3882 path, load_count[path][0], load_count[path][1], 3883 load_count[path][2]); 3884 load_count[path][0]++; 3885 load_count[path][1 + port]++; 3886 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3887 path, load_count[path][0], load_count[path][1], 3888 load_count[path][2]); 3889 if (load_count[path][0] == 1) { 3890 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3891 } else if (load_count[path][1 + port] == 1) { 3892 return (FW_MSG_CODE_DRV_LOAD_PORT); 3893 } else { 3894 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3895 } 3896 } 3897 3898 /* returns the "mcp load_code" according to global load_count array */ 3899 static int 3900 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3901 { 3902 int port = SC_PORT(sc); 3903 int path = SC_PATH(sc); 3904 3905 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3906 path, load_count[path][0], load_count[path][1], 3907 load_count[path][2]); 3908 load_count[path][0]--; 3909 load_count[path][1 + port]--; 3910 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3911 path, load_count[path][0], load_count[path][1], 3912 load_count[path][2]); 3913 if (load_count[path][0] == 0) { 3914 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3915 } else if (load_count[path][1 + port] == 0) { 3916 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3917 } else { 3918 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3919 } 3920 } 3921 3922 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3923 static uint32_t 3924 bxe_send_unload_req(struct bxe_softc *sc, 3925 int unload_mode) 3926 { 3927 uint32_t reset_code = 0; 3928 #if 0 3929 int port = SC_PORT(sc); 3930 int path = SC_PATH(sc); 3931 #endif 3932 3933 /* Select the UNLOAD request mode */ 3934 if (unload_mode == UNLOAD_NORMAL) { 3935 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3936 } 3937 #if 0 3938 else if (sc->flags & BXE_NO_WOL_FLAG) { 3939 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 3940 } else if (sc->wol) { 3941 uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 3942 uint8_t *mac_addr = sc->dev->dev_addr; 3943 uint32_t val; 3944 uint16_t pmc; 3945 3946 /* 3947 * The mac address is written to entries 1-4 to 3948 * preserve entry 0 which is used by the PMF 3949 */ 3950 uint8_t entry = (SC_VN(sc) + 1)*8; 3951 3952 val = (mac_addr[0] << 8) | mac_addr[1]; 3953 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); 3954 3955 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3956 (mac_addr[4] << 8) | mac_addr[5]; 3957 EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 3958 3959 /* Enable the PME and clear the status */ 3960 pmc = pci_read_config(sc->dev, 3961 (sc->devinfo.pcie_pm_cap_reg + 3962 PCIR_POWER_STATUS), 3963 2); 3964 pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; 3965 pci_write_config(sc->dev, 3966 (sc->devinfo.pcie_pm_cap_reg + 3967 PCIR_POWER_STATUS), 3968 pmc, 4); 3969 3970 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 3971 } 3972 #endif 3973 else { 3974 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3975 } 3976 3977 /* Send the request to the MCP */ 3978 if (!BXE_NOMCP(sc)) { 3979 reset_code = bxe_fw_command(sc, reset_code, 0); 3980 } else { 3981 reset_code = bxe_nic_unload_no_mcp(sc); 3982 } 3983 3984 return (reset_code); 3985 } 3986 3987 /* send UNLOAD_DONE command to the MCP */ 3988 static void 3989 bxe_send_unload_done(struct bxe_softc *sc, 3990 uint8_t keep_link) 3991 { 3992 uint32_t reset_param = 3993 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3994 3995 /* Report UNLOAD_DONE to MCP */ 3996 if (!BXE_NOMCP(sc)) { 3997 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3998 } 3999 } 4000 4001 static int 4002 bxe_func_wait_started(struct bxe_softc *sc) 4003 { 4004 int tout = 50; 4005 4006 if (!sc->port.pmf) { 4007 return (0); 4008 } 4009 4010 /* 4011 * (assumption: No Attention from MCP at this stage) 4012 * PMF probably in the middle of TX disable/enable transaction 4013 * 1. Sync IRS for default SB 4014 * 2. Sync SP queue - this guarantees us that attention handling started 4015 * 3. Wait, that TX disable/enable transaction completes 4016 * 4017 * 1+2 guarantee that if DCBX attention was scheduled it already changed 4018 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 4019 * received completion for the transaction the state is TX_STOPPED. 4020 * State will return to STARTED after completion of TX_STOPPED-->STARTED 4021 * transaction. 4022 */ 4023 4024 /* XXX make sure default SB ISR is done */ 4025 /* need a way to synchronize an irq (intr_mtx?) */ 4026 4027 /* XXX flush any work queues */ 4028 4029 while (ecore_func_get_state(sc, &sc->func_obj) != 4030 ECORE_F_STATE_STARTED && tout--) { 4031 DELAY(20000); 4032 } 4033 4034 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 4035 /* 4036 * Failed to complete the transaction in a "good way" 4037 * Force both transactions with CLR bit. 4038 */ 4039 struct ecore_func_state_params func_params = { NULL }; 4040 4041 BLOGE(sc, "Unexpected function state! " 4042 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 4043 4044 func_params.f_obj = &sc->func_obj; 4045 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4046 4047 /* STARTED-->TX_STOPPED */ 4048 func_params.cmd = ECORE_F_CMD_TX_STOP; 4049 ecore_func_state_change(sc, &func_params); 4050 4051 /* TX_STOPPED-->STARTED */ 4052 func_params.cmd = ECORE_F_CMD_TX_START; 4053 return (ecore_func_state_change(sc, &func_params)); 4054 } 4055 4056 return (0); 4057 } 4058 4059 static int 4060 bxe_stop_queue(struct bxe_softc *sc, 4061 int index) 4062 { 4063 struct bxe_fastpath *fp = &sc->fp[index]; 4064 struct ecore_queue_state_params q_params = { NULL }; 4065 int rc; 4066 4067 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 4068 4069 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 4070 /* We want to wait for completion in this context */ 4071 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 4072 4073 /* Stop the primary connection: */ 4074 4075 /* ...halt the connection */ 4076 q_params.cmd = ECORE_Q_CMD_HALT; 4077 rc = ecore_queue_state_change(sc, &q_params); 4078 if (rc) { 4079 return (rc); 4080 } 4081 4082 /* ...terminate the connection */ 4083 q_params.cmd = ECORE_Q_CMD_TERMINATE; 4084 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 4085 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 4086 rc = ecore_queue_state_change(sc, &q_params); 4087 if (rc) { 4088 return (rc); 4089 } 4090 4091 /* ...delete cfc entry */ 4092 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 4093 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 4094 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 4095 return (ecore_queue_state_change(sc, &q_params)); 4096 } 4097 4098 /* wait for the outstanding SP commands */ 4099 static inline uint8_t 4100 bxe_wait_sp_comp(struct bxe_softc *sc, 4101 unsigned long mask) 4102 { 4103 unsigned long tmp; 4104 int tout = 5000; /* wait for 5 secs tops */ 4105 4106 while (tout--) { 4107 mb(); 4108 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 4109 return (TRUE); 4110 } 4111 4112 DELAY(1000); 4113 } 4114 4115 mb(); 4116 4117 tmp = atomic_load_acq_long(&sc->sp_state); 4118 if (tmp & mask) { 4119 BLOGE(sc, "Filtering completion timed out: " 4120 "sp_state 0x%lx, mask 0x%lx\n", 4121 tmp, mask); 4122 return (FALSE); 4123 } 4124 4125 return (FALSE); 4126 } 4127 4128 static int 4129 bxe_func_stop(struct bxe_softc *sc) 4130 { 4131 struct ecore_func_state_params func_params = { NULL }; 4132 int rc; 4133 4134 /* prepare parameters for function state transitions */ 4135 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4136 func_params.f_obj = &sc->func_obj; 4137 func_params.cmd = ECORE_F_CMD_STOP; 4138 4139 /* 4140 * Try to stop the function the 'good way'. If it fails (in case 4141 * of a parity error during bxe_chip_cleanup()) and we are 4142 * not in a debug mode, perform a state transaction in order to 4143 * enable further HW_RESET transaction. 4144 */ 4145 rc = ecore_func_state_change(sc, &func_params); 4146 if (rc) { 4147 BLOGE(sc, "FUNC_STOP ramrod failed. " 4148 "Running a dry transaction\n"); 4149 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 4150 return (ecore_func_state_change(sc, &func_params)); 4151 } 4152 4153 return (0); 4154 } 4155 4156 static int 4157 bxe_reset_hw(struct bxe_softc *sc, 4158 uint32_t load_code) 4159 { 4160 struct ecore_func_state_params func_params = { NULL }; 4161 4162 /* Prepare parameters for function state transitions */ 4163 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4164 4165 func_params.f_obj = &sc->func_obj; 4166 func_params.cmd = ECORE_F_CMD_HW_RESET; 4167 4168 func_params.params.hw_init.load_phase = load_code; 4169 4170 return (ecore_func_state_change(sc, &func_params)); 4171 } 4172 4173 static void 4174 bxe_int_disable_sync(struct bxe_softc *sc, 4175 int disable_hw) 4176 { 4177 if (disable_hw) { 4178 /* prevent the HW from sending interrupts */ 4179 bxe_int_disable(sc); 4180 } 4181 4182 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4183 /* make sure all ISRs are done */ 4184 4185 /* XXX make sure sp_task is not running */ 4186 /* cancel and flush work queues */ 4187 } 4188 4189 static void 4190 bxe_chip_cleanup(struct bxe_softc *sc, 4191 uint32_t unload_mode, 4192 uint8_t keep_link) 4193 { 4194 int port = SC_PORT(sc); 4195 struct ecore_mcast_ramrod_params rparam = { NULL }; 4196 uint32_t reset_code; 4197 int i, rc = 0; 4198 4199 bxe_drain_tx_queues(sc); 4200 4201 /* give HW time to discard old tx messages */ 4202 DELAY(1000); 4203 4204 /* Clean all ETH MACs */ 4205 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4206 if (rc < 0) { 4207 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4208 } 4209 4210 /* Clean up UC list */ 4211 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4212 if (rc < 0) { 4213 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4214 } 4215 4216 /* Disable LLH */ 4217 if (!CHIP_IS_E1(sc)) { 4218 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4219 } 4220 4221 /* Set "drop all" to stop Rx */ 4222 4223 /* 4224 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4225 * a race between the completion code and this code. 4226 */ 4227 BXE_MCAST_LOCK(sc); 4228 4229 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4230 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4231 } else { 4232 bxe_set_storm_rx_mode(sc); 4233 } 4234 4235 /* Clean up multicast configuration */ 4236 rparam.mcast_obj = &sc->mcast_obj; 4237 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4238 if (rc < 0) { 4239 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4240 } 4241 4242 BXE_MCAST_UNLOCK(sc); 4243 4244 // XXX bxe_iov_chip_cleanup(sc); 4245 4246 /* 4247 * Send the UNLOAD_REQUEST to the MCP. This will return if 4248 * this function should perform FUNCTION, PORT, or COMMON HW 4249 * reset. 4250 */ 4251 reset_code = bxe_send_unload_req(sc, unload_mode); 4252 4253 /* 4254 * (assumption: No Attention from MCP at this stage) 4255 * PMF probably in the middle of TX disable/enable transaction 4256 */ 4257 rc = bxe_func_wait_started(sc); 4258 if (rc) { 4259 BLOGE(sc, "bxe_func_wait_started failed\n"); 4260 } 4261 4262 /* 4263 * Close multi and leading connections 4264 * Completions for ramrods are collected in a synchronous way 4265 */ 4266 for (i = 0; i < sc->num_queues; i++) { 4267 if (bxe_stop_queue(sc, i)) { 4268 goto unload_error; 4269 } 4270 } 4271 4272 /* 4273 * If SP settings didn't get completed so far - something 4274 * very wrong has happen. 4275 */ 4276 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4277 BLOGE(sc, "Common slow path ramrods got stuck!\n"); 4278 } 4279 4280 unload_error: 4281 4282 rc = bxe_func_stop(sc); 4283 if (rc) { 4284 BLOGE(sc, "Function stop failed!\n"); 4285 } 4286 4287 /* disable HW interrupts */ 4288 bxe_int_disable_sync(sc, TRUE); 4289 4290 /* detach interrupts */ 4291 bxe_interrupt_detach(sc); 4292 4293 /* Reset the chip */ 4294 rc = bxe_reset_hw(sc, reset_code); 4295 if (rc) { 4296 BLOGE(sc, "Hardware reset failed\n"); 4297 } 4298 4299 /* Report UNLOAD_DONE to MCP */ 4300 bxe_send_unload_done(sc, keep_link); 4301 } 4302 4303 static void 4304 bxe_disable_close_the_gate(struct bxe_softc *sc) 4305 { 4306 uint32_t val; 4307 int port = SC_PORT(sc); 4308 4309 BLOGD(sc, DBG_LOAD, 4310 "Disabling 'close the gates'\n"); 4311 4312 if (CHIP_IS_E1(sc)) { 4313 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4314 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4315 val = REG_RD(sc, addr); 4316 val &= ~(0x300); 4317 REG_WR(sc, addr, val); 4318 } else { 4319 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4320 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4321 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4322 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4323 } 4324 } 4325 4326 /* 4327 * Cleans the object that have internal lists without sending 4328 * ramrods. Should be run when interrutps are disabled. 4329 */ 4330 static void 4331 bxe_squeeze_objects(struct bxe_softc *sc) 4332 { 4333 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4334 struct ecore_mcast_ramrod_params rparam = { NULL }; 4335 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4336 int rc; 4337 4338 /* Cleanup MACs' object first... */ 4339 4340 /* Wait for completion of requested */ 4341 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4342 /* Perform a dry cleanup */ 4343 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4344 4345 /* Clean ETH primary MAC */ 4346 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4347 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4348 &ramrod_flags); 4349 if (rc != 0) { 4350 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4351 } 4352 4353 /* Cleanup UC list */ 4354 vlan_mac_flags = 0; 4355 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4356 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4357 &ramrod_flags); 4358 if (rc != 0) { 4359 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4360 } 4361 4362 /* Now clean mcast object... */ 4363 4364 rparam.mcast_obj = &sc->mcast_obj; 4365 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4366 4367 /* Add a DEL command... */ 4368 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4369 if (rc < 0) { 4370 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4371 } 4372 4373 /* now wait until all pending commands are cleared */ 4374 4375 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4376 while (rc != 0) { 4377 if (rc < 0) { 4378 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4379 return; 4380 } 4381 4382 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4383 } 4384 } 4385 4386 /* stop the controller */ 4387 static __noinline int 4388 bxe_nic_unload(struct bxe_softc *sc, 4389 uint32_t unload_mode, 4390 uint8_t keep_link) 4391 { 4392 uint8_t global = FALSE; 4393 uint32_t val; 4394 4395 BXE_CORE_LOCK_ASSERT(sc); 4396 4397 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4398 4399 /* mark driver as unloaded in shmem2 */ 4400 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4401 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4402 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4403 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4404 } 4405 4406 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4407 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4408 /* 4409 * We can get here if the driver has been unloaded 4410 * during parity error recovery and is either waiting for a 4411 * leader to complete or for other functions to unload and 4412 * then ifconfig down has been issued. In this case we want to 4413 * unload and let other functions to complete a recovery 4414 * process. 4415 */ 4416 sc->recovery_state = BXE_RECOVERY_DONE; 4417 sc->is_leader = 0; 4418 bxe_release_leader_lock(sc); 4419 mb(); 4420 4421 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4422 BLOGE(sc, "Can't unload in closed or error state\n"); 4423 return (-1); 4424 } 4425 4426 /* 4427 * Nothing to do during unload if previous bxe_nic_load() 4428 * did not completed succesfully - all resourses are released. 4429 */ 4430 if ((sc->state == BXE_STATE_CLOSED) || 4431 (sc->state == BXE_STATE_ERROR)) { 4432 return (0); 4433 } 4434 4435 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4436 mb(); 4437 4438 /* stop tx */ 4439 bxe_tx_disable(sc); 4440 4441 sc->rx_mode = BXE_RX_MODE_NONE; 4442 /* XXX set rx mode ??? */ 4443 4444 if (IS_PF(sc)) { 4445 /* set ALWAYS_ALIVE bit in shmem */ 4446 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4447 4448 bxe_drv_pulse(sc); 4449 4450 bxe_stats_handle(sc, STATS_EVENT_STOP); 4451 bxe_save_statistics(sc); 4452 } 4453 4454 /* wait till consumers catch up with producers in all queues */ 4455 bxe_drain_tx_queues(sc); 4456 4457 /* if VF indicate to PF this function is going down (PF will delete sp 4458 * elements and clear initializations 4459 */ 4460 if (IS_VF(sc)) { 4461 ; /* bxe_vfpf_close_vf(sc); */ 4462 } else if (unload_mode != UNLOAD_RECOVERY) { 4463 /* if this is a normal/close unload need to clean up chip */ 4464 bxe_chip_cleanup(sc, unload_mode, keep_link); 4465 } else { 4466 /* Send the UNLOAD_REQUEST to the MCP */ 4467 bxe_send_unload_req(sc, unload_mode); 4468 4469 /* 4470 * Prevent transactions to host from the functions on the 4471 * engine that doesn't reset global blocks in case of global 4472 * attention once gloabl blocks are reset and gates are opened 4473 * (the engine which leader will perform the recovery 4474 * last). 4475 */ 4476 if (!CHIP_IS_E1x(sc)) { 4477 bxe_pf_disable(sc); 4478 } 4479 4480 /* disable HW interrupts */ 4481 bxe_int_disable_sync(sc, TRUE); 4482 4483 /* detach interrupts */ 4484 bxe_interrupt_detach(sc); 4485 4486 /* Report UNLOAD_DONE to MCP */ 4487 bxe_send_unload_done(sc, FALSE); 4488 } 4489 4490 /* 4491 * At this stage no more interrupts will arrive so we may safely clean 4492 * the queue'able objects here in case they failed to get cleaned so far. 4493 */ 4494 if (IS_PF(sc)) { 4495 bxe_squeeze_objects(sc); 4496 } 4497 4498 /* There should be no more pending SP commands at this stage */ 4499 sc->sp_state = 0; 4500 4501 sc->port.pmf = 0; 4502 4503 bxe_free_fp_buffers(sc); 4504 4505 if (IS_PF(sc)) { 4506 bxe_free_mem(sc); 4507 } 4508 4509 bxe_free_fw_stats_mem(sc); 4510 4511 sc->state = BXE_STATE_CLOSED; 4512 4513 /* 4514 * Check if there are pending parity attentions. If there are - set 4515 * RECOVERY_IN_PROGRESS. 4516 */ 4517 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4518 bxe_set_reset_in_progress(sc); 4519 4520 /* Set RESET_IS_GLOBAL if needed */ 4521 if (global) { 4522 bxe_set_reset_global(sc); 4523 } 4524 } 4525 4526 /* 4527 * The last driver must disable a "close the gate" if there is no 4528 * parity attention or "process kill" pending. 4529 */ 4530 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4531 bxe_reset_is_done(sc, SC_PATH(sc))) { 4532 bxe_disable_close_the_gate(sc); 4533 } 4534 4535 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4536 4537 return (0); 4538 } 4539 4540 /* 4541 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4542 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4543 */ 4544 static int 4545 bxe_ifmedia_update(struct ifnet *ifp) 4546 { 4547 struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc; 4548 struct ifmedia *ifm; 4549 4550 ifm = &sc->ifmedia; 4551 4552 /* We only support Ethernet media type. */ 4553 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4554 return (EINVAL); 4555 } 4556 4557 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4558 case IFM_AUTO: 4559 break; 4560 case IFM_10G_CX4: 4561 case IFM_10G_SR: 4562 case IFM_10G_T: 4563 case IFM_10G_TWINAX: 4564 default: 4565 /* We don't support changing the media type. */ 4566 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4567 IFM_SUBTYPE(ifm->ifm_media)); 4568 return (EINVAL); 4569 } 4570 4571 return (0); 4572 } 4573 4574 /* 4575 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4576 */ 4577 static void 4578 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4579 { 4580 struct bxe_softc *sc = ifp->if_softc; 4581 4582 /* Report link down if the driver isn't running. */ 4583 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4584 ifmr->ifm_active |= IFM_NONE; 4585 return; 4586 } 4587 4588 /* Setup the default interface info. */ 4589 ifmr->ifm_status = IFM_AVALID; 4590 ifmr->ifm_active = IFM_ETHER; 4591 4592 if (sc->link_vars.link_up) { 4593 ifmr->ifm_status |= IFM_ACTIVE; 4594 } else { 4595 ifmr->ifm_active |= IFM_NONE; 4596 return; 4597 } 4598 4599 ifmr->ifm_active |= sc->media; 4600 4601 if (sc->link_vars.duplex == DUPLEX_FULL) { 4602 ifmr->ifm_active |= IFM_FDX; 4603 } else { 4604 ifmr->ifm_active |= IFM_HDX; 4605 } 4606 } 4607 4608 static int 4609 bxe_ioctl_nvram(struct bxe_softc *sc, 4610 uint32_t priv_op, 4611 struct ifreq *ifr) 4612 { 4613 struct bxe_nvram_data nvdata_base; 4614 struct bxe_nvram_data *nvdata; 4615 int len; 4616 int error = 0; 4617 4618 copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base)); 4619 4620 len = (sizeof(struct bxe_nvram_data) + 4621 nvdata_base.len - 4622 sizeof(uint32_t)); 4623 4624 if (len > sizeof(struct bxe_nvram_data)) { 4625 if ((nvdata = (struct bxe_nvram_data *) 4626 malloc(len, M_DEVBUF, 4627 (M_NOWAIT | M_ZERO))) == NULL) { 4628 BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); 4629 return (1); 4630 } 4631 memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); 4632 } else { 4633 nvdata = &nvdata_base; 4634 } 4635 4636 if (priv_op == BXE_IOC_RD_NVRAM) { 4637 BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", 4638 nvdata->offset, nvdata->len); 4639 error = bxe_nvram_read(sc, 4640 nvdata->offset, 4641 (uint8_t *)nvdata->value, 4642 nvdata->len); 4643 copyout(nvdata, ifr->ifr_data, len); 4644 } else { /* BXE_IOC_WR_NVRAM */ 4645 BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", 4646 nvdata->offset, nvdata->len); 4647 copyin(ifr->ifr_data, nvdata, len); 4648 error = bxe_nvram_write(sc, 4649 nvdata->offset, 4650 (uint8_t *)nvdata->value, 4651 nvdata->len); 4652 } 4653 4654 if (len > sizeof(struct bxe_nvram_data)) { 4655 free(nvdata, M_DEVBUF); 4656 } 4657 4658 return (error); 4659 } 4660 4661 static int 4662 bxe_ioctl_stats_show(struct bxe_softc *sc, 4663 uint32_t priv_op, 4664 struct ifreq *ifr) 4665 { 4666 const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); 4667 const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); 4668 caddr_t p_tmp; 4669 uint32_t *offset; 4670 int i; 4671 4672 switch (priv_op) 4673 { 4674 case BXE_IOC_STATS_SHOW_NUM: 4675 memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); 4676 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = 4677 BXE_NUM_ETH_STATS; 4678 ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = 4679 STAT_NAME_LEN; 4680 return (0); 4681 4682 case BXE_IOC_STATS_SHOW_STR: 4683 memset(ifr->ifr_data, 0, str_size); 4684 p_tmp = ifr->ifr_data; 4685 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4686 strcpy(p_tmp, bxe_eth_stats_arr[i].string); 4687 p_tmp += STAT_NAME_LEN; 4688 } 4689 return (0); 4690 4691 case BXE_IOC_STATS_SHOW_CNT: 4692 memset(ifr->ifr_data, 0, stats_size); 4693 p_tmp = ifr->ifr_data; 4694 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 4695 offset = ((uint32_t *)&sc->eth_stats + 4696 bxe_eth_stats_arr[i].offset); 4697 switch (bxe_eth_stats_arr[i].size) { 4698 case 4: 4699 *((uint64_t *)p_tmp) = (uint64_t)*offset; 4700 break; 4701 case 8: 4702 *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); 4703 break; 4704 default: 4705 *((uint64_t *)p_tmp) = 0; 4706 } 4707 p_tmp += sizeof(uint64_t); 4708 } 4709 return (0); 4710 4711 default: 4712 return (-1); 4713 } 4714 } 4715 4716 static void 4717 bxe_handle_chip_tq(void *context, 4718 int pending) 4719 { 4720 struct bxe_softc *sc = (struct bxe_softc *)context; 4721 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4722 4723 switch (work) 4724 { 4725 case CHIP_TQ_START: 4726 if ((sc->ifnet->if_flags & IFF_UP) && 4727 !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4728 /* start the interface */ 4729 BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); 4730 BXE_CORE_LOCK(sc); 4731 bxe_init_locked(sc); 4732 BXE_CORE_UNLOCK(sc); 4733 } 4734 break; 4735 4736 case CHIP_TQ_STOP: 4737 if (!(sc->ifnet->if_flags & IFF_UP) && 4738 (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4739 /* bring down the interface */ 4740 BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); 4741 bxe_periodic_stop(sc); 4742 BXE_CORE_LOCK(sc); 4743 bxe_stop_locked(sc); 4744 BXE_CORE_UNLOCK(sc); 4745 } 4746 break; 4747 4748 case CHIP_TQ_REINIT: 4749 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 4750 /* restart the interface */ 4751 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4752 bxe_periodic_stop(sc); 4753 BXE_CORE_LOCK(sc); 4754 bxe_stop_locked(sc); 4755 bxe_init_locked(sc); 4756 BXE_CORE_UNLOCK(sc); 4757 } 4758 break; 4759 4760 default: 4761 break; 4762 } 4763 } 4764 4765 /* 4766 * Handles any IOCTL calls from the operating system. 4767 * 4768 * Returns: 4769 * 0 = Success, >0 Failure 4770 */ 4771 static int 4772 bxe_ioctl(struct ifnet *ifp, 4773 u_long command, 4774 caddr_t data) 4775 { 4776 struct bxe_softc *sc = ifp->if_softc; 4777 struct ifreq *ifr = (struct ifreq *)data; 4778 struct bxe_nvram_data *nvdata; 4779 uint32_t priv_op; 4780 int mask = 0; 4781 int reinit = 0; 4782 int error = 0; 4783 4784 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4785 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4786 4787 switch (command) 4788 { 4789 case SIOCSIFMTU: 4790 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4791 ifr->ifr_mtu); 4792 4793 if (sc->mtu == ifr->ifr_mtu) { 4794 /* nothing to change */ 4795 break; 4796 } 4797 4798 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4799 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4800 ifr->ifr_mtu, mtu_min, mtu_max); 4801 error = EINVAL; 4802 break; 4803 } 4804 4805 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4806 (unsigned long)ifr->ifr_mtu); 4807 atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu, 4808 (unsigned long)ifr->ifr_mtu); 4809 4810 reinit = 1; 4811 break; 4812 4813 case SIOCSIFFLAGS: 4814 /* toggle the interface state up or down */ 4815 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4816 4817 /* check if the interface is up */ 4818 if (ifp->if_flags & IFF_UP) { 4819 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4820 /* set the receive mode flags */ 4821 bxe_set_rx_mode(sc); 4822 } else { 4823 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START); 4824 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4825 } 4826 } else { 4827 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4828 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP); 4829 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 4830 } 4831 } 4832 4833 break; 4834 4835 case SIOCADDMULTI: 4836 case SIOCDELMULTI: 4837 /* add/delete multicast addresses */ 4838 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4839 4840 /* check if the interface is up */ 4841 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4842 /* set the receive mode flags */ 4843 bxe_set_rx_mode(sc); 4844 } 4845 4846 break; 4847 4848 case SIOCSIFCAP: 4849 /* find out which capabilities have changed */ 4850 mask = (ifr->ifr_reqcap ^ ifp->if_capenable); 4851 4852 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4853 mask); 4854 4855 /* toggle the LRO capabilites enable flag */ 4856 if (mask & IFCAP_LRO) { 4857 ifp->if_capenable ^= IFCAP_LRO; 4858 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4859 (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF"); 4860 reinit = 1; 4861 } 4862 4863 /* toggle the TXCSUM checksum capabilites enable flag */ 4864 if (mask & IFCAP_TXCSUM) { 4865 ifp->if_capenable ^= IFCAP_TXCSUM; 4866 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4867 (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF"); 4868 if (ifp->if_capenable & IFCAP_TXCSUM) { 4869 ifp->if_hwassist = (CSUM_IP | 4870 CSUM_TCP | 4871 CSUM_UDP | 4872 CSUM_TSO | 4873 CSUM_TCP_IPV6 | 4874 CSUM_UDP_IPV6); 4875 } else { 4876 ifp->if_hwassist = 0; 4877 } 4878 } 4879 4880 /* toggle the RXCSUM checksum capabilities enable flag */ 4881 if (mask & IFCAP_RXCSUM) { 4882 ifp->if_capenable ^= IFCAP_RXCSUM; 4883 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4884 (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF"); 4885 if (ifp->if_capenable & IFCAP_RXCSUM) { 4886 ifp->if_hwassist = (CSUM_IP | 4887 CSUM_TCP | 4888 CSUM_UDP | 4889 CSUM_TSO | 4890 CSUM_TCP_IPV6 | 4891 CSUM_UDP_IPV6); 4892 } else { 4893 ifp->if_hwassist = 0; 4894 } 4895 } 4896 4897 /* toggle TSO4 capabilities enabled flag */ 4898 if (mask & IFCAP_TSO4) { 4899 ifp->if_capenable ^= IFCAP_TSO4; 4900 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4901 (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF"); 4902 } 4903 4904 /* toggle TSO6 capabilities enabled flag */ 4905 if (mask & IFCAP_TSO6) { 4906 ifp->if_capenable ^= IFCAP_TSO6; 4907 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4908 (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF"); 4909 } 4910 4911 /* toggle VLAN_HWTSO capabilities enabled flag */ 4912 if (mask & IFCAP_VLAN_HWTSO) { 4913 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 4914 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4915 (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4916 } 4917 4918 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4919 if (mask & IFCAP_VLAN_HWCSUM) { 4920 /* XXX investigate this... */ 4921 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4922 error = EINVAL; 4923 } 4924 4925 /* toggle VLAN_MTU capabilities enable flag */ 4926 if (mask & IFCAP_VLAN_MTU) { 4927 /* XXX investigate this... */ 4928 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4929 error = EINVAL; 4930 } 4931 4932 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4933 if (mask & IFCAP_VLAN_HWTAGGING) { 4934 /* XXX investigate this... */ 4935 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4936 error = EINVAL; 4937 } 4938 4939 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4940 if (mask & IFCAP_VLAN_HWFILTER) { 4941 /* XXX investigate this... */ 4942 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4943 error = EINVAL; 4944 } 4945 4946 /* XXX not yet... 4947 * IFCAP_WOL_MAGIC 4948 */ 4949 4950 break; 4951 4952 case SIOCSIFMEDIA: 4953 case SIOCGIFMEDIA: 4954 /* set/get interface media */ 4955 BLOGD(sc, DBG_IOCTL, 4956 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4957 (command & 0xff)); 4958 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4959 break; 4960 4961 case SIOCGPRIVATE_0: 4962 copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); 4963 4964 switch (priv_op) 4965 { 4966 case BXE_IOC_RD_NVRAM: 4967 case BXE_IOC_WR_NVRAM: 4968 nvdata = (struct bxe_nvram_data *)ifr->ifr_data; 4969 BLOGD(sc, DBG_IOCTL, 4970 "Received Private NVRAM ioctl addr=0x%x size=%u\n", 4971 nvdata->offset, nvdata->len); 4972 error = bxe_ioctl_nvram(sc, priv_op, ifr); 4973 break; 4974 4975 case BXE_IOC_STATS_SHOW_NUM: 4976 case BXE_IOC_STATS_SHOW_STR: 4977 case BXE_IOC_STATS_SHOW_CNT: 4978 BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", 4979 priv_op); 4980 error = bxe_ioctl_stats_show(sc, priv_op, ifr); 4981 break; 4982 4983 default: 4984 BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); 4985 error = EINVAL; 4986 break; 4987 } 4988 4989 break; 4990 4991 default: 4992 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4993 (command & 0xff)); 4994 error = ether_ioctl(ifp, command, data); 4995 break; 4996 } 4997 4998 if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 4999 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 5000 "Re-initializing hardware from IOCTL change\n"); 5001 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT); 5002 taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); 5003 } 5004 5005 return (error); 5006 } 5007 5008 static __noinline void 5009 bxe_dump_mbuf(struct bxe_softc *sc, 5010 struct mbuf *m, 5011 uint8_t contents) 5012 { 5013 char * type; 5014 5015 if (!(sc->debug & DBG_MBUF)) { 5016 return; 5017 } 5018 5019 if (m == NULL) { 5020 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 5021 return; 5022 } 5023 5024 while (m) { 5025 BLOGD(sc, DBG_MBUF, 5026 "mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 5027 m, m->m_len, m->m_flags, 5028 "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data); 5029 5030 if (m->m_flags & M_PKTHDR) { 5031 BLOGD(sc, DBG_MBUF, 5032 "- m_pkthdr: len=%d flags=0x%b csum_flags=%b\n", 5033 m->m_pkthdr.len, m->m_flags, 5034 "\20\12M_BCAST\13M_MCAST\14M_FRAG" 5035 "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG" 5036 "\22M_PROMISC\23M_NOFREE", 5037 (int)m->m_pkthdr.csum_flags, 5038 "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS" 5039 "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED" 5040 "\12CSUM_IP_VALID\13CSUM_DATA_VALID" 5041 "\14CSUM_PSEUDO_HDR"); 5042 } 5043 5044 if (m->m_flags & M_EXT) { 5045 switch (m->m_ext.ext_type) { 5046 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 5047 case EXT_SFBUF: type = "EXT_SFBUF"; break; 5048 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 5049 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 5050 case EXT_PACKET: type = "EXT_PACKET"; break; 5051 case EXT_MBUF: type = "EXT_MBUF"; break; 5052 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 5053 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 5054 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 5055 case EXT_EXTREF: type = "EXT_EXTREF"; break; 5056 default: type = "UNKNOWN"; break; 5057 } 5058 5059 BLOGD(sc, DBG_MBUF, 5060 "- m_ext: %p ext_size=%d, type=%s\n", 5061 m->m_ext.ext_buf, m->m_ext.ext_size, type); 5062 } 5063 5064 if (contents) { 5065 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 5066 } 5067 5068 m = m->m_next; 5069 } 5070 } 5071 5072 /* 5073 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 5074 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 5075 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 5076 * The headers comes in a seperate bd in FreeBSD so 13-3=10. 5077 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 5078 */ 5079 static int 5080 bxe_chktso_window(struct bxe_softc *sc, 5081 int nsegs, 5082 bus_dma_segment_t *segs, 5083 struct mbuf *m) 5084 { 5085 uint32_t num_wnds, wnd_size, wnd_sum; 5086 int32_t frag_idx, wnd_idx; 5087 unsigned short lso_mss; 5088 int defrag; 5089 5090 defrag = 0; 5091 wnd_sum = 0; 5092 wnd_size = 10; 5093 num_wnds = nsegs - wnd_size; 5094 lso_mss = htole16(m->m_pkthdr.tso_segsz); 5095 5096 /* 5097 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 5098 * first window sum of data while skipping the first assuming it is the 5099 * header in FreeBSD. 5100 */ 5101 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 5102 wnd_sum += htole16(segs[frag_idx].ds_len); 5103 } 5104 5105 /* check the first 10 bd window size */ 5106 if (wnd_sum < lso_mss) { 5107 return (1); 5108 } 5109 5110 /* run through the windows */ 5111 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 5112 /* subtract the first mbuf->m_len of the last wndw(-header) */ 5113 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 5114 /* add the next mbuf len to the len of our new window */ 5115 wnd_sum += htole16(segs[frag_idx].ds_len); 5116 if (wnd_sum < lso_mss) { 5117 return (1); 5118 } 5119 } 5120 5121 return (0); 5122 } 5123 5124 static uint8_t 5125 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 5126 struct mbuf *m, 5127 uint32_t *parsing_data) 5128 { 5129 struct ether_vlan_header *eh = NULL; 5130 struct ip *ip4 = NULL; 5131 struct ip6_hdr *ip6 = NULL; 5132 caddr_t ip = NULL; 5133 struct tcphdr *th = NULL; 5134 int e_hlen, ip_hlen, l4_off; 5135 uint16_t proto; 5136 5137 if (m->m_pkthdr.csum_flags == CSUM_IP) { 5138 /* no L4 checksum offload needed */ 5139 return (0); 5140 } 5141 5142 /* get the Ethernet header */ 5143 eh = mtod(m, struct ether_vlan_header *); 5144 5145 /* handle VLAN encapsulation if present */ 5146 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5147 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5148 proto = ntohs(eh->evl_proto); 5149 } else { 5150 e_hlen = ETHER_HDR_LEN; 5151 proto = ntohs(eh->evl_encap_proto); 5152 } 5153 5154 switch (proto) { 5155 case ETHERTYPE_IP: 5156 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5157 ip4 = (m->m_len < sizeof(struct ip)) ? 5158 (struct ip *)m->m_next->m_data : 5159 (struct ip *)(m->m_data + e_hlen); 5160 /* ip_hl is number of 32-bit words */ 5161 ip_hlen = (ip4->ip_hl << 2); 5162 ip = (caddr_t)ip4; 5163 break; 5164 case ETHERTYPE_IPV6: 5165 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5166 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5167 (struct ip6_hdr *)m->m_next->m_data : 5168 (struct ip6_hdr *)(m->m_data + e_hlen); 5169 /* XXX cannot support offload with IPv6 extensions */ 5170 ip_hlen = sizeof(struct ip6_hdr); 5171 ip = (caddr_t)ip6; 5172 break; 5173 default: 5174 /* We can't offload in this case... */ 5175 /* XXX error stat ??? */ 5176 return (0); 5177 } 5178 5179 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5180 l4_off = (e_hlen + ip_hlen); 5181 5182 *parsing_data |= 5183 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 5184 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 5185 5186 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5187 CSUM_TSO | 5188 CSUM_TCP_IPV6)) { 5189 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5190 th = (struct tcphdr *)(ip + ip_hlen); 5191 /* th_off is number of 32-bit words */ 5192 *parsing_data |= ((th->th_off << 5193 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 5194 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 5195 return (l4_off + (th->th_off << 2)); /* entire header length */ 5196 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5197 CSUM_UDP_IPV6)) { 5198 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5199 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 5200 } else { 5201 /* XXX error stat ??? */ 5202 return (0); 5203 } 5204 } 5205 5206 static uint8_t 5207 bxe_set_pbd_csum(struct bxe_fastpath *fp, 5208 struct mbuf *m, 5209 struct eth_tx_parse_bd_e1x *pbd) 5210 { 5211 struct ether_vlan_header *eh = NULL; 5212 struct ip *ip4 = NULL; 5213 struct ip6_hdr *ip6 = NULL; 5214 caddr_t ip = NULL; 5215 struct tcphdr *th = NULL; 5216 struct udphdr *uh = NULL; 5217 int e_hlen, ip_hlen; 5218 uint16_t proto; 5219 uint8_t hlen; 5220 uint16_t tmp_csum; 5221 uint32_t *tmp_uh; 5222 5223 /* get the Ethernet header */ 5224 eh = mtod(m, struct ether_vlan_header *); 5225 5226 /* handle VLAN encapsulation if present */ 5227 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 5228 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 5229 proto = ntohs(eh->evl_proto); 5230 } else { 5231 e_hlen = ETHER_HDR_LEN; 5232 proto = ntohs(eh->evl_encap_proto); 5233 } 5234 5235 switch (proto) { 5236 case ETHERTYPE_IP: 5237 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 5238 ip4 = (m->m_len < sizeof(struct ip)) ? 5239 (struct ip *)m->m_next->m_data : 5240 (struct ip *)(m->m_data + e_hlen); 5241 /* ip_hl is number of 32-bit words */ 5242 ip_hlen = (ip4->ip_hl << 1); 5243 ip = (caddr_t)ip4; 5244 break; 5245 case ETHERTYPE_IPV6: 5246 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 5247 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 5248 (struct ip6_hdr *)m->m_next->m_data : 5249 (struct ip6_hdr *)(m->m_data + e_hlen); 5250 /* XXX cannot support offload with IPv6 extensions */ 5251 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 5252 ip = (caddr_t)ip6; 5253 break; 5254 default: 5255 /* We can't offload in this case... */ 5256 /* XXX error stat ??? */ 5257 return (0); 5258 } 5259 5260 hlen = (e_hlen >> 1); 5261 5262 /* note that rest of global_data is indirectly zeroed here */ 5263 if (m->m_flags & M_VLANTAG) { 5264 pbd->global_data = 5265 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 5266 } else { 5267 pbd->global_data = htole16(hlen); 5268 } 5269 5270 pbd->ip_hlen_w = ip_hlen; 5271 5272 hlen += pbd->ip_hlen_w; 5273 5274 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 5275 5276 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5277 CSUM_TSO | 5278 CSUM_TCP_IPV6)) { 5279 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 5280 /* th_off is number of 32-bit words */ 5281 hlen += (uint16_t)(th->th_off << 1); 5282 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5283 CSUM_UDP_IPV6)) { 5284 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 5285 hlen += (sizeof(struct udphdr) / 2); 5286 } else { 5287 /* valid case as only CSUM_IP was set */ 5288 return (0); 5289 } 5290 5291 pbd->total_hlen_w = htole16(hlen); 5292 5293 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5294 CSUM_TSO | 5295 CSUM_TCP_IPV6)) { 5296 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5297 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5298 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5299 CSUM_UDP_IPV6)) { 5300 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5301 5302 /* 5303 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5304 * checksums and does not know anything about the UDP header and where 5305 * the checksum field is located. It only knows about TCP. Therefore 5306 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5307 * offload. Since the checksum field offset for TCP is 16 bytes and 5308 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5309 * bytes less than the start of the UDP header. This allows the 5310 * hardware to write the checksum in the correct spot. But the 5311 * hardware will compute a checksum which includes the last 10 bytes 5312 * of the IP header. To correct this we tweak the stack computed 5313 * pseudo checksum by folding in the calculation of the inverse 5314 * checksum for those final 10 bytes of the IP header. This allows 5315 * the correct checksum to be computed by the hardware. 5316 */ 5317 5318 /* set pointer 10 bytes before UDP header */ 5319 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5320 5321 /* calculate a pseudo header checksum over the first 10 bytes */ 5322 tmp_csum = in_pseudo(*tmp_uh, 5323 *(tmp_uh + 1), 5324 *(uint16_t *)(tmp_uh + 2)); 5325 5326 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5327 } 5328 5329 return (hlen * 2); /* entire header length, number of bytes */ 5330 } 5331 5332 static void 5333 bxe_set_pbd_lso_e2(struct mbuf *m, 5334 uint32_t *parsing_data) 5335 { 5336 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5337 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5338 ETH_TX_PARSE_BD_E2_LSO_MSS); 5339 5340 /* XXX test for IPv6 with extension header... */ 5341 #if 0 5342 struct ip6_hdr *ip6; 5343 if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') 5344 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 5345 #endif 5346 } 5347 5348 static void 5349 bxe_set_pbd_lso(struct mbuf *m, 5350 struct eth_tx_parse_bd_e1x *pbd) 5351 { 5352 struct ether_vlan_header *eh = NULL; 5353 struct ip *ip = NULL; 5354 struct tcphdr *th = NULL; 5355 int e_hlen; 5356 5357 /* get the Ethernet header */ 5358 eh = mtod(m, struct ether_vlan_header *); 5359 5360 /* handle VLAN encapsulation if present */ 5361 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5362 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5363 5364 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5365 /* XXX assuming IPv4 */ 5366 ip = (struct ip *)(m->m_data + e_hlen); 5367 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5368 5369 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5370 pbd->tcp_send_seq = ntohl(th->th_seq); 5371 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5372 5373 #if 1 5374 /* XXX IPv4 */ 5375 pbd->ip_id = ntohs(ip->ip_id); 5376 pbd->tcp_pseudo_csum = 5377 ntohs(in_pseudo(ip->ip_src.s_addr, 5378 ip->ip_dst.s_addr, 5379 htons(IPPROTO_TCP))); 5380 #else 5381 /* XXX IPv6 */ 5382 pbd->tcp_pseudo_csum = 5383 ntohs(in_pseudo(&ip6->ip6_src, 5384 &ip6->ip6_dst, 5385 htons(IPPROTO_TCP))); 5386 #endif 5387 5388 pbd->global_data |= 5389 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5390 } 5391 5392 /* 5393 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5394 * visible to the controller. 5395 * 5396 * If an mbuf is submitted to this routine and cannot be given to the 5397 * controller (e.g. it has too many fragments) then the function may free 5398 * the mbuf and return to the caller. 5399 * 5400 * Returns: 5401 * 0 = Success, !0 = Failure 5402 * Note the side effect that an mbuf may be freed if it causes a problem. 5403 */ 5404 static int 5405 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5406 { 5407 bus_dma_segment_t segs[32]; 5408 struct mbuf *m0; 5409 struct bxe_sw_tx_bd *tx_buf; 5410 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5411 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5412 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5413 struct eth_tx_bd *tx_data_bd; 5414 struct eth_tx_bd *tx_total_pkt_size_bd; 5415 struct eth_tx_start_bd *tx_start_bd; 5416 uint16_t bd_prod, pkt_prod, total_pkt_size; 5417 uint8_t mac_type; 5418 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5419 struct bxe_softc *sc; 5420 uint16_t tx_bd_avail; 5421 struct ether_vlan_header *eh; 5422 uint32_t pbd_e2_parsing_data = 0; 5423 uint8_t hlen = 0; 5424 int tmp_bd; 5425 int i; 5426 5427 sc = fp->sc; 5428 5429 M_ASSERTPKTHDR(*m_head); 5430 5431 m0 = *m_head; 5432 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5433 tx_start_bd = NULL; 5434 tx_data_bd = NULL; 5435 tx_total_pkt_size_bd = NULL; 5436 5437 /* get the H/W pointer for packets and BDs */ 5438 pkt_prod = fp->tx_pkt_prod; 5439 bd_prod = fp->tx_bd_prod; 5440 5441 mac_type = UNICAST_ADDRESS; 5442 5443 /* map the mbuf into the next open DMAable memory */ 5444 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5445 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5446 tx_buf->m_map, m0, 5447 segs, &nsegs, BUS_DMA_NOWAIT); 5448 5449 /* mapping errors */ 5450 if(__predict_false(error != 0)) { 5451 fp->eth_q_stats.tx_dma_mapping_failure++; 5452 if (error == ENOMEM) { 5453 /* resource issue, try again later */ 5454 rc = ENOMEM; 5455 } else if (error == EFBIG) { 5456 /* possibly recoverable with defragmentation */ 5457 fp->eth_q_stats.mbuf_defrag_attempts++; 5458 m0 = m_defrag(*m_head, M_DONTWAIT); 5459 if (m0 == NULL) { 5460 fp->eth_q_stats.mbuf_defrag_failures++; 5461 rc = ENOBUFS; 5462 } else { 5463 /* defrag successful, try mapping again */ 5464 *m_head = m0; 5465 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5466 tx_buf->m_map, m0, 5467 segs, &nsegs, BUS_DMA_NOWAIT); 5468 if (error) { 5469 fp->eth_q_stats.tx_dma_mapping_failure++; 5470 rc = error; 5471 } 5472 } 5473 } else { 5474 /* unknown, unrecoverable mapping error */ 5475 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5476 bxe_dump_mbuf(sc, m0, FALSE); 5477 rc = error; 5478 } 5479 5480 goto bxe_tx_encap_continue; 5481 } 5482 5483 tx_bd_avail = bxe_tx_avail(sc, fp); 5484 5485 /* make sure there is enough room in the send queue */ 5486 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5487 /* Recoverable, try again later. */ 5488 fp->eth_q_stats.tx_hw_queue_full++; 5489 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5490 rc = ENOMEM; 5491 goto bxe_tx_encap_continue; 5492 } 5493 5494 /* capture the current H/W TX chain high watermark */ 5495 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5496 (TX_BD_USABLE - tx_bd_avail))) { 5497 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5498 } 5499 5500 /* make sure it fits in the packet window */ 5501 if (__predict_false(nsegs > 12)) { 5502 /* 5503 * The mbuf may be to big for the controller to handle. If the frame 5504 * is a TSO frame we'll need to do an additional check. 5505 */ 5506 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5507 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5508 goto bxe_tx_encap_continue; /* OK to send */ 5509 } else { 5510 fp->eth_q_stats.tx_window_violation_tso++; 5511 } 5512 } else { 5513 fp->eth_q_stats.tx_window_violation_std++; 5514 } 5515 5516 /* XXX I don't like this, change to double copy packet */ 5517 5518 /* no sense trying to defrag again, just drop the frame */ 5519 rc = ENODEV; 5520 } 5521 5522 bxe_tx_encap_continue: 5523 5524 /* Check for errors */ 5525 if (rc) { 5526 if (rc == ENOMEM) { 5527 /* recoverable try again later */ 5528 } else { 5529 fp->eth_q_stats.tx_soft_errors++; 5530 fp->eth_q_stats.mbuf_alloc_tx--; 5531 m_freem(*m_head); 5532 *m_head = NULL; 5533 } 5534 5535 return (rc); 5536 } 5537 5538 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5539 if (m0->m_flags & M_BCAST) { 5540 mac_type = BROADCAST_ADDRESS; 5541 } else if (m0->m_flags & M_MCAST) { 5542 mac_type = MULTICAST_ADDRESS; 5543 } 5544 5545 /* store the mbuf into the mbuf ring */ 5546 tx_buf->m = m0; 5547 tx_buf->first_bd = fp->tx_bd_prod; 5548 tx_buf->flags = 0; 5549 5550 /* prepare the first transmit (start) BD for the mbuf */ 5551 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5552 5553 BLOGD(sc, DBG_TX, 5554 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5555 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5556 5557 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5558 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5559 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5560 total_pkt_size += tx_start_bd->nbytes; 5561 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5562 5563 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5564 5565 /* all frames have at least Start BD + Parsing BD */ 5566 nbds = nsegs + 1; 5567 tx_start_bd->nbd = htole16(nbds); 5568 5569 if (m0->m_flags & M_VLANTAG) { 5570 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5571 tx_start_bd->bd_flags.as_bitfield |= 5572 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5573 } else { 5574 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5575 if (IS_VF(sc)) { 5576 /* map ethernet header to find type and header length */ 5577 eh = mtod(m0, struct ether_vlan_header *); 5578 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5579 } else { 5580 /* used by FW for packet accounting */ 5581 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5582 #if 0 5583 /* 5584 * If NPAR-SD is active then FW should do the tagging regardless 5585 * of value of priority. Otherwise, if priority indicates this is 5586 * a control packet we need to indicate to FW to avoid tagging. 5587 */ 5588 if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { 5589 SET_FLAG(tx_start_bd->general_data, 5590 ETH_TX_START_BD_FORCE_VLAN_MODE, 1); 5591 } 5592 #endif 5593 } 5594 } 5595 5596 /* 5597 * add a parsing BD from the chain. The parsing BD is always added 5598 * though it is only used for TSO and chksum 5599 */ 5600 bd_prod = TX_BD_NEXT(bd_prod); 5601 5602 if (m0->m_pkthdr.csum_flags) { 5603 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5604 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5605 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5606 } 5607 5608 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5609 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5610 ETH_TX_BD_FLAGS_L4_CSUM); 5611 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5612 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5613 ETH_TX_BD_FLAGS_IS_UDP | 5614 ETH_TX_BD_FLAGS_L4_CSUM); 5615 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5616 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5617 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5618 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5619 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5620 ETH_TX_BD_FLAGS_IS_UDP); 5621 } 5622 } 5623 5624 if (!CHIP_IS_E1x(sc)) { 5625 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5626 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5627 5628 if (m0->m_pkthdr.csum_flags) { 5629 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5630 } 5631 5632 #if 0 5633 /* 5634 * Add the MACs to the parsing BD if the module param was 5635 * explicitly set, if this is a vf, or in switch independent 5636 * mode. 5637 */ 5638 if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { 5639 eh = mtod(m0, struct ether_vlan_header *); 5640 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 5641 &pbd_e2->data.mac_addr.src_mid, 5642 &pbd_e2->data.mac_addr.src_lo, 5643 eh->evl_shost); 5644 bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 5645 &pbd_e2->data.mac_addr.dst_mid, 5646 &pbd_e2->data.mac_addr.dst_lo, 5647 eh->evl_dhost); 5648 } 5649 #endif 5650 5651 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5652 mac_type); 5653 } else { 5654 uint16_t global_data = 0; 5655 5656 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5657 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5658 5659 if (m0->m_pkthdr.csum_flags) { 5660 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5661 } 5662 5663 SET_FLAG(global_data, 5664 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5665 pbd_e1x->global_data |= htole16(global_data); 5666 } 5667 5668 /* setup the parsing BD with TSO specific info */ 5669 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5670 fp->eth_q_stats.tx_ofld_frames_lso++; 5671 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5672 5673 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5674 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5675 5676 /* split the first BD into header/data making the fw job easy */ 5677 nbds++; 5678 tx_start_bd->nbd = htole16(nbds); 5679 5680 bd_prod = TX_BD_NEXT(bd_prod); 5681 5682 /* new transmit BD after the tx_parse_bd */ 5683 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5684 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5685 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5686 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5687 if (tx_total_pkt_size_bd == NULL) { 5688 tx_total_pkt_size_bd = tx_data_bd; 5689 } 5690 5691 BLOGD(sc, DBG_TX, 5692 "TSO split header size is %d (%x:%x) nbds %d\n", 5693 le16toh(tx_start_bd->nbytes), 5694 le32toh(tx_start_bd->addr_hi), 5695 le32toh(tx_start_bd->addr_lo), 5696 nbds); 5697 } 5698 5699 if (!CHIP_IS_E1x(sc)) { 5700 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5701 } else { 5702 bxe_set_pbd_lso(m0, pbd_e1x); 5703 } 5704 } 5705 5706 if (pbd_e2_parsing_data) { 5707 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5708 } 5709 5710 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5711 for (i = 1; i < nsegs ; i++) { 5712 bd_prod = TX_BD_NEXT(bd_prod); 5713 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5714 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5715 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5716 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5717 if (tx_total_pkt_size_bd == NULL) { 5718 tx_total_pkt_size_bd = tx_data_bd; 5719 } 5720 total_pkt_size += tx_data_bd->nbytes; 5721 } 5722 5723 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5724 5725 if (tx_total_pkt_size_bd != NULL) { 5726 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5727 } 5728 5729 if (__predict_false(sc->debug & DBG_TX)) { 5730 tmp_bd = tx_buf->first_bd; 5731 for (i = 0; i < nbds; i++) 5732 { 5733 if (i == 0) { 5734 BLOGD(sc, DBG_TX, 5735 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5736 "bd_flags=0x%x hdr_nbds=%d\n", 5737 tx_start_bd, 5738 tmp_bd, 5739 le16toh(tx_start_bd->nbd), 5740 le16toh(tx_start_bd->vlan_or_ethertype), 5741 tx_start_bd->bd_flags.as_bitfield, 5742 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5743 } else if (i == 1) { 5744 if (pbd_e1x) { 5745 BLOGD(sc, DBG_TX, 5746 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5747 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5748 "tcp_seq=%u total_hlen_w=%u\n", 5749 pbd_e1x, 5750 tmp_bd, 5751 pbd_e1x->global_data, 5752 pbd_e1x->ip_hlen_w, 5753 pbd_e1x->ip_id, 5754 pbd_e1x->lso_mss, 5755 pbd_e1x->tcp_flags, 5756 pbd_e1x->tcp_pseudo_csum, 5757 pbd_e1x->tcp_send_seq, 5758 le16toh(pbd_e1x->total_hlen_w)); 5759 } else { /* if (pbd_e2) */ 5760 BLOGD(sc, DBG_TX, 5761 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5762 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5763 pbd_e2, 5764 tmp_bd, 5765 pbd_e2->data.mac_addr.dst_hi, 5766 pbd_e2->data.mac_addr.dst_mid, 5767 pbd_e2->data.mac_addr.dst_lo, 5768 pbd_e2->data.mac_addr.src_hi, 5769 pbd_e2->data.mac_addr.src_mid, 5770 pbd_e2->data.mac_addr.src_lo, 5771 pbd_e2->parsing_data); 5772 } 5773 } 5774 5775 if (i != 1) { /* skip parse db as it doesn't hold data */ 5776 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5777 BLOGD(sc, DBG_TX, 5778 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5779 tx_data_bd, 5780 tmp_bd, 5781 le16toh(tx_data_bd->nbytes), 5782 le32toh(tx_data_bd->addr_hi), 5783 le32toh(tx_data_bd->addr_lo)); 5784 } 5785 5786 tmp_bd = TX_BD_NEXT(tmp_bd); 5787 } 5788 } 5789 5790 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5791 5792 /* update TX BD producer index value for next TX */ 5793 bd_prod = TX_BD_NEXT(bd_prod); 5794 5795 /* 5796 * If the chain of tx_bd's describing this frame is adjacent to or spans 5797 * an eth_tx_next_bd element then we need to increment the nbds value. 5798 */ 5799 if (TX_BD_IDX(bd_prod) < nbds) { 5800 nbds++; 5801 } 5802 5803 /* don't allow reordering of writes for nbd and packets */ 5804 mb(); 5805 5806 fp->tx_db.data.prod += nbds; 5807 5808 /* producer points to the next free tx_bd at this point */ 5809 fp->tx_pkt_prod++; 5810 fp->tx_bd_prod = bd_prod; 5811 5812 DOORBELL(sc, fp->index, fp->tx_db.raw); 5813 5814 fp->eth_q_stats.tx_pkts++; 5815 5816 /* Prevent speculative reads from getting ahead of the status block. */ 5817 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5818 0, 0, BUS_SPACE_BARRIER_READ); 5819 5820 /* Prevent speculative reads from getting ahead of the doorbell. */ 5821 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5822 0, 0, BUS_SPACE_BARRIER_READ); 5823 5824 return (0); 5825 } 5826 5827 static void 5828 bxe_tx_start_locked(struct bxe_softc *sc, 5829 struct ifnet *ifp, 5830 struct bxe_fastpath *fp) 5831 { 5832 struct mbuf *m = NULL; 5833 int tx_count = 0; 5834 uint16_t tx_bd_avail; 5835 5836 BXE_FP_TX_LOCK_ASSERT(fp); 5837 5838 /* keep adding entries while there are frames to send */ 5839 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 5840 5841 /* 5842 * check for any frames to send 5843 * dequeue can still be NULL even if queue is not empty 5844 */ 5845 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 5846 if (__predict_false(m == NULL)) { 5847 break; 5848 } 5849 5850 /* the mbuf now belongs to us */ 5851 fp->eth_q_stats.mbuf_alloc_tx++; 5852 5853 /* 5854 * Put the frame into the transmit ring. If we don't have room, 5855 * place the mbuf back at the head of the TX queue, set the 5856 * OACTIVE flag, and wait for the NIC to drain the chain. 5857 */ 5858 if (__predict_false(bxe_tx_encap(fp, &m))) { 5859 fp->eth_q_stats.tx_encap_failures++; 5860 if (m != NULL) { 5861 /* mark the TX queue as full and return the frame */ 5862 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5863 IFQ_DRV_PREPEND(&ifp->if_snd, m); 5864 fp->eth_q_stats.mbuf_alloc_tx--; 5865 fp->eth_q_stats.tx_queue_xoff++; 5866 } 5867 5868 /* stop looking for more work */ 5869 break; 5870 } 5871 5872 /* the frame was enqueued successfully */ 5873 tx_count++; 5874 5875 /* send a copy of the frame to any BPF listeners. */ 5876 BPF_MTAP(ifp, m); 5877 5878 tx_bd_avail = bxe_tx_avail(sc, fp); 5879 5880 /* handle any completions if we're running low */ 5881 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5882 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5883 bxe_txeof(sc, fp); 5884 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5885 break; 5886 } 5887 } 5888 } 5889 5890 /* all TX packets were dequeued and/or the tx ring is full */ 5891 if (tx_count > 0) { 5892 /* reset the TX watchdog timeout timer */ 5893 fp->watchdog_timer = BXE_TX_TIMEOUT; 5894 } 5895 } 5896 5897 /* Legacy (non-RSS) dispatch routine */ 5898 static void 5899 bxe_tx_start(struct ifnet *ifp) 5900 { 5901 struct bxe_softc *sc; 5902 struct bxe_fastpath *fp; 5903 5904 sc = ifp->if_softc; 5905 5906 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5907 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5908 return; 5909 } 5910 5911 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 5912 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 5913 return; 5914 } 5915 5916 if (!sc->link_vars.link_up) { 5917 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5918 return; 5919 } 5920 5921 fp = &sc->fp[0]; 5922 5923 BXE_FP_TX_LOCK(fp); 5924 bxe_tx_start_locked(sc, ifp, fp); 5925 BXE_FP_TX_UNLOCK(fp); 5926 } 5927 5928 #if __FreeBSD_version >= 800000 5929 5930 static int 5931 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5932 struct ifnet *ifp, 5933 struct bxe_fastpath *fp, 5934 struct mbuf *m) 5935 { 5936 struct buf_ring *tx_br = fp->tx_br; 5937 struct mbuf *next; 5938 int depth, rc, tx_count; 5939 uint16_t tx_bd_avail; 5940 5941 rc = tx_count = 0; 5942 5943 if (!tx_br) { 5944 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5945 return (EINVAL); 5946 } 5947 5948 /* fetch the depth of the driver queue */ 5949 depth = drbr_inuse(ifp, tx_br); 5950 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5951 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5952 } 5953 5954 BXE_FP_TX_LOCK_ASSERT(fp); 5955 5956 if (m == NULL) { 5957 /* no new work, check for pending frames */ 5958 next = drbr_dequeue(ifp, tx_br); 5959 } else if (drbr_needs_enqueue(ifp, tx_br)) { 5960 /* have both new and pending work, maintain packet order */ 5961 rc = drbr_enqueue(ifp, tx_br, m); 5962 if (rc != 0) { 5963 fp->eth_q_stats.tx_soft_errors++; 5964 goto bxe_tx_mq_start_locked_exit; 5965 } 5966 next = drbr_dequeue(ifp, tx_br); 5967 } else { 5968 /* new work only and nothing pending */ 5969 next = m; 5970 } 5971 5972 /* keep adding entries while there are frames to send */ 5973 while (next != NULL) { 5974 5975 /* the mbuf now belongs to us */ 5976 fp->eth_q_stats.mbuf_alloc_tx++; 5977 5978 /* 5979 * Put the frame into the transmit ring. If we don't have room, 5980 * place the mbuf back at the head of the TX queue, set the 5981 * OACTIVE flag, and wait for the NIC to drain the chain. 5982 */ 5983 rc = bxe_tx_encap(fp, &next); 5984 if (__predict_false(rc != 0)) { 5985 fp->eth_q_stats.tx_encap_failures++; 5986 if (next != NULL) { 5987 /* mark the TX queue as full and save the frame */ 5988 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5989 /* XXX this may reorder the frame */ 5990 rc = drbr_enqueue(ifp, tx_br, next); 5991 fp->eth_q_stats.mbuf_alloc_tx--; 5992 fp->eth_q_stats.tx_frames_deferred++; 5993 } 5994 5995 /* stop looking for more work */ 5996 break; 5997 } 5998 5999 /* the transmit frame was enqueued successfully */ 6000 tx_count++; 6001 6002 /* send a copy of the frame to any BPF listeners */ 6003 BPF_MTAP(ifp, next); 6004 6005 tx_bd_avail = bxe_tx_avail(sc, fp); 6006 6007 /* handle any completions if we're running low */ 6008 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 6009 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 6010 bxe_txeof(sc, fp); 6011 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6012 break; 6013 } 6014 } 6015 6016 next = drbr_dequeue(ifp, tx_br); 6017 } 6018 6019 /* all TX packets were dequeued and/or the tx ring is full */ 6020 if (tx_count > 0) { 6021 /* reset the TX watchdog timeout timer */ 6022 fp->watchdog_timer = BXE_TX_TIMEOUT; 6023 } 6024 6025 bxe_tx_mq_start_locked_exit: 6026 6027 return (rc); 6028 } 6029 6030 /* Multiqueue (TSS) dispatch routine. */ 6031 static int 6032 bxe_tx_mq_start(struct ifnet *ifp, 6033 struct mbuf *m) 6034 { 6035 struct bxe_softc *sc = ifp->if_softc; 6036 struct bxe_fastpath *fp; 6037 int fp_index, rc; 6038 6039 fp_index = 0; /* default is the first queue */ 6040 6041 /* change the queue if using flow ID */ 6042 if ((m->m_flags & M_FLOWID) != 0) { 6043 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 6044 } 6045 6046 fp = &sc->fp[fp_index]; 6047 6048 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 6049 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 6050 return (ENETDOWN); 6051 } 6052 6053 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 6054 BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); 6055 return (EBUSY); 6056 } 6057 6058 if (!sc->link_vars.link_up) { 6059 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 6060 return (ENETDOWN); 6061 } 6062 6063 /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ 6064 6065 BXE_FP_TX_LOCK(fp); 6066 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 6067 BXE_FP_TX_UNLOCK(fp); 6068 6069 return (rc); 6070 } 6071 6072 static void 6073 bxe_mq_flush(struct ifnet *ifp) 6074 { 6075 struct bxe_softc *sc = ifp->if_softc; 6076 struct bxe_fastpath *fp; 6077 struct mbuf *m; 6078 int i; 6079 6080 for (i = 0; i < sc->num_queues; i++) { 6081 fp = &sc->fp[i]; 6082 6083 if (fp->state != BXE_FP_STATE_OPEN) { 6084 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 6085 fp->index, fp->state); 6086 continue; 6087 } 6088 6089 if (fp->tx_br != NULL) { 6090 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 6091 BXE_FP_TX_LOCK(fp); 6092 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6093 m_freem(m); 6094 } 6095 BXE_FP_TX_UNLOCK(fp); 6096 } 6097 } 6098 6099 if_qflush(ifp); 6100 } 6101 6102 #endif /* FreeBSD_version >= 800000 */ 6103 6104 static uint16_t 6105 bxe_cid_ilt_lines(struct bxe_softc *sc) 6106 { 6107 if (IS_SRIOV(sc)) { 6108 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 6109 } 6110 return (L2_ILT_LINES(sc)); 6111 } 6112 6113 static void 6114 bxe_ilt_set_info(struct bxe_softc *sc) 6115 { 6116 struct ilt_client_info *ilt_client; 6117 struct ecore_ilt *ilt = sc->ilt; 6118 uint16_t line = 0; 6119 6120 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 6121 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 6122 6123 /* CDU */ 6124 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 6125 ilt_client->client_num = ILT_CLIENT_CDU; 6126 ilt_client->page_size = CDU_ILT_PAGE_SZ; 6127 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 6128 ilt_client->start = line; 6129 line += bxe_cid_ilt_lines(sc); 6130 6131 if (CNIC_SUPPORT(sc)) { 6132 line += CNIC_ILT_LINES; 6133 } 6134 6135 ilt_client->end = (line - 1); 6136 6137 BLOGD(sc, DBG_LOAD, 6138 "ilt client[CDU]: start %d, end %d, " 6139 "psz 0x%x, flags 0x%x, hw psz %d\n", 6140 ilt_client->start, ilt_client->end, 6141 ilt_client->page_size, 6142 ilt_client->flags, 6143 ilog2(ilt_client->page_size >> 12)); 6144 6145 /* QM */ 6146 if (QM_INIT(sc->qm_cid_count)) { 6147 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 6148 ilt_client->client_num = ILT_CLIENT_QM; 6149 ilt_client->page_size = QM_ILT_PAGE_SZ; 6150 ilt_client->flags = 0; 6151 ilt_client->start = line; 6152 6153 /* 4 bytes for each cid */ 6154 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 6155 QM_ILT_PAGE_SZ); 6156 6157 ilt_client->end = (line - 1); 6158 6159 BLOGD(sc, DBG_LOAD, 6160 "ilt client[QM]: start %d, end %d, " 6161 "psz 0x%x, flags 0x%x, hw psz %d\n", 6162 ilt_client->start, ilt_client->end, 6163 ilt_client->page_size, ilt_client->flags, 6164 ilog2(ilt_client->page_size >> 12)); 6165 } 6166 6167 if (CNIC_SUPPORT(sc)) { 6168 /* SRC */ 6169 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 6170 ilt_client->client_num = ILT_CLIENT_SRC; 6171 ilt_client->page_size = SRC_ILT_PAGE_SZ; 6172 ilt_client->flags = 0; 6173 ilt_client->start = line; 6174 line += SRC_ILT_LINES; 6175 ilt_client->end = (line - 1); 6176 6177 BLOGD(sc, DBG_LOAD, 6178 "ilt client[SRC]: start %d, end %d, " 6179 "psz 0x%x, flags 0x%x, hw psz %d\n", 6180 ilt_client->start, ilt_client->end, 6181 ilt_client->page_size, ilt_client->flags, 6182 ilog2(ilt_client->page_size >> 12)); 6183 6184 /* TM */ 6185 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 6186 ilt_client->client_num = ILT_CLIENT_TM; 6187 ilt_client->page_size = TM_ILT_PAGE_SZ; 6188 ilt_client->flags = 0; 6189 ilt_client->start = line; 6190 line += TM_ILT_LINES; 6191 ilt_client->end = (line - 1); 6192 6193 BLOGD(sc, DBG_LOAD, 6194 "ilt client[TM]: start %d, end %d, " 6195 "psz 0x%x, flags 0x%x, hw psz %d\n", 6196 ilt_client->start, ilt_client->end, 6197 ilt_client->page_size, ilt_client->flags, 6198 ilog2(ilt_client->page_size >> 12)); 6199 } 6200 6201 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 6202 } 6203 6204 static void 6205 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 6206 { 6207 int i; 6208 6209 BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); 6210 6211 for (i = 0; i < sc->num_queues; i++) { 6212 /* get the Rx buffer size for RX frames */ 6213 sc->fp[i].rx_buf_size = 6214 (IP_HEADER_ALIGNMENT_PADDING + 6215 ETH_OVERHEAD + 6216 sc->mtu); 6217 6218 BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", 6219 i, sc->fp[i].rx_buf_size); 6220 6221 /* get the mbuf allocation size for RX frames */ 6222 if (sc->fp[i].rx_buf_size <= MCLBYTES) { 6223 sc->fp[i].mbuf_alloc_size = MCLBYTES; 6224 } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { 6225 sc->fp[i].mbuf_alloc_size = PAGE_SIZE; 6226 } else { 6227 sc->fp[i].mbuf_alloc_size = MJUM9BYTES; 6228 } 6229 6230 BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", 6231 i, sc->fp[i].mbuf_alloc_size); 6232 } 6233 } 6234 6235 static int 6236 bxe_alloc_ilt_mem(struct bxe_softc *sc) 6237 { 6238 int rc = 0; 6239 6240 if ((sc->ilt = 6241 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 6242 M_BXE_ILT, 6243 (M_NOWAIT | M_ZERO))) == NULL) { 6244 rc = 1; 6245 } 6246 6247 return (rc); 6248 } 6249 6250 static int 6251 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 6252 { 6253 int rc = 0; 6254 6255 if ((sc->ilt->lines = 6256 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 6257 M_BXE_ILT, 6258 (M_NOWAIT | M_ZERO))) == NULL) { 6259 rc = 1; 6260 } 6261 6262 return (rc); 6263 } 6264 6265 static void 6266 bxe_free_ilt_mem(struct bxe_softc *sc) 6267 { 6268 if (sc->ilt != NULL) { 6269 free(sc->ilt, M_BXE_ILT); 6270 sc->ilt = NULL; 6271 } 6272 } 6273 6274 static void 6275 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 6276 { 6277 if (sc->ilt->lines != NULL) { 6278 free(sc->ilt->lines, M_BXE_ILT); 6279 sc->ilt->lines = NULL; 6280 } 6281 } 6282 6283 static void 6284 bxe_free_mem(struct bxe_softc *sc) 6285 { 6286 int i; 6287 6288 #if 0 6289 if (!CONFIGURE_NIC_MODE(sc)) { 6290 /* free searcher T2 table */ 6291 bxe_dma_free(sc, &sc->t2); 6292 } 6293 #endif 6294 6295 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6296 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6297 sc->context[i].vcxt = NULL; 6298 sc->context[i].size = 0; 6299 } 6300 6301 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6302 6303 bxe_free_ilt_lines_mem(sc); 6304 6305 #if 0 6306 bxe_iov_free_mem(sc); 6307 #endif 6308 } 6309 6310 static int 6311 bxe_alloc_mem(struct bxe_softc *sc) 6312 { 6313 int context_size; 6314 int allocated; 6315 int i; 6316 6317 #if 0 6318 if (!CONFIGURE_NIC_MODE(sc)) { 6319 /* allocate searcher T2 table */ 6320 if (bxe_dma_alloc(sc, SRC_T2_SZ, 6321 &sc->t2, "searcher t2 table") != 0) { 6322 return (-1); 6323 } 6324 } 6325 #endif 6326 6327 /* 6328 * Allocate memory for CDU context: 6329 * This memory is allocated separately and not in the generic ILT 6330 * functions because CDU differs in few aspects: 6331 * 1. There can be multiple entities allocating memory for context - 6332 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6333 * its own ILT lines. 6334 * 2. Since CDU page-size is not a single 4KB page (which is the case 6335 * for the other ILT clients), to be efficient we want to support 6336 * allocation of sub-page-size in the last entry. 6337 * 3. Context pointers are used by the driver to pass to FW / update 6338 * the context (for the other ILT clients the pointers are used just to 6339 * free the memory during unload). 6340 */ 6341 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6342 for (i = 0, allocated = 0; allocated < context_size; i++) { 6343 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6344 (context_size - allocated)); 6345 6346 if (bxe_dma_alloc(sc, sc->context[i].size, 6347 &sc->context[i].vcxt_dma, 6348 "cdu context") != 0) { 6349 bxe_free_mem(sc); 6350 return (-1); 6351 } 6352 6353 sc->context[i].vcxt = 6354 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6355 6356 allocated += sc->context[i].size; 6357 } 6358 6359 bxe_alloc_ilt_lines_mem(sc); 6360 6361 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6362 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6363 { 6364 for (i = 0; i < 4; i++) { 6365 BLOGD(sc, DBG_LOAD, 6366 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6367 i, 6368 sc->ilt->clients[i].page_size, 6369 sc->ilt->clients[i].start, 6370 sc->ilt->clients[i].end, 6371 sc->ilt->clients[i].client_num, 6372 sc->ilt->clients[i].flags); 6373 } 6374 } 6375 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6376 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6377 bxe_free_mem(sc); 6378 return (-1); 6379 } 6380 6381 #if 0 6382 if (bxe_iov_alloc_mem(sc)) { 6383 BLOGE(sc, "Failed to allocate memory for SRIOV\n"); 6384 bxe_free_mem(sc); 6385 return (-1); 6386 } 6387 #endif 6388 6389 return (0); 6390 } 6391 6392 static void 6393 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6394 { 6395 struct bxe_softc *sc; 6396 int i; 6397 6398 sc = fp->sc; 6399 6400 if (fp->rx_mbuf_tag == NULL) { 6401 return; 6402 } 6403 6404 /* free all mbufs and unload all maps */ 6405 for (i = 0; i < RX_BD_TOTAL; i++) { 6406 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6407 bus_dmamap_sync(fp->rx_mbuf_tag, 6408 fp->rx_mbuf_chain[i].m_map, 6409 BUS_DMASYNC_POSTREAD); 6410 bus_dmamap_unload(fp->rx_mbuf_tag, 6411 fp->rx_mbuf_chain[i].m_map); 6412 } 6413 6414 if (fp->rx_mbuf_chain[i].m != NULL) { 6415 m_freem(fp->rx_mbuf_chain[i].m); 6416 fp->rx_mbuf_chain[i].m = NULL; 6417 fp->eth_q_stats.mbuf_alloc_rx--; 6418 } 6419 } 6420 } 6421 6422 static void 6423 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6424 { 6425 struct bxe_softc *sc; 6426 int i, max_agg_queues; 6427 6428 sc = fp->sc; 6429 6430 if (fp->rx_mbuf_tag == NULL) { 6431 return; 6432 } 6433 6434 max_agg_queues = MAX_AGG_QS(sc); 6435 6436 /* release all mbufs and unload all DMA maps in the TPA pool */ 6437 for (i = 0; i < max_agg_queues; i++) { 6438 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6439 bus_dmamap_sync(fp->rx_mbuf_tag, 6440 fp->rx_tpa_info[i].bd.m_map, 6441 BUS_DMASYNC_POSTREAD); 6442 bus_dmamap_unload(fp->rx_mbuf_tag, 6443 fp->rx_tpa_info[i].bd.m_map); 6444 } 6445 6446 if (fp->rx_tpa_info[i].bd.m != NULL) { 6447 m_freem(fp->rx_tpa_info[i].bd.m); 6448 fp->rx_tpa_info[i].bd.m = NULL; 6449 fp->eth_q_stats.mbuf_alloc_tpa--; 6450 } 6451 } 6452 } 6453 6454 static void 6455 bxe_free_sge_chain(struct bxe_fastpath *fp) 6456 { 6457 struct bxe_softc *sc; 6458 int i; 6459 6460 sc = fp->sc; 6461 6462 if (fp->rx_sge_mbuf_tag == NULL) { 6463 return; 6464 } 6465 6466 /* rree all mbufs and unload all maps */ 6467 for (i = 0; i < RX_SGE_TOTAL; i++) { 6468 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6469 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6470 fp->rx_sge_mbuf_chain[i].m_map, 6471 BUS_DMASYNC_POSTREAD); 6472 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6473 fp->rx_sge_mbuf_chain[i].m_map); 6474 } 6475 6476 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6477 m_freem(fp->rx_sge_mbuf_chain[i].m); 6478 fp->rx_sge_mbuf_chain[i].m = NULL; 6479 fp->eth_q_stats.mbuf_alloc_sge--; 6480 } 6481 } 6482 } 6483 6484 static void 6485 bxe_free_fp_buffers(struct bxe_softc *sc) 6486 { 6487 struct bxe_fastpath *fp; 6488 int i; 6489 6490 for (i = 0; i < sc->num_queues; i++) { 6491 fp = &sc->fp[i]; 6492 6493 #if __FreeBSD_version >= 800000 6494 if (fp->tx_br != NULL) { 6495 struct mbuf *m; 6496 /* just in case bxe_mq_flush() wasn't called */ 6497 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 6498 m_freem(m); 6499 } 6500 buf_ring_free(fp->tx_br, M_DEVBUF); 6501 fp->tx_br = NULL; 6502 } 6503 #endif 6504 6505 /* free all RX buffers */ 6506 bxe_free_rx_bd_chain(fp); 6507 bxe_free_tpa_pool(fp); 6508 bxe_free_sge_chain(fp); 6509 6510 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6511 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6512 fp->eth_q_stats.mbuf_alloc_rx); 6513 } 6514 6515 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6516 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6517 fp->eth_q_stats.mbuf_alloc_sge); 6518 } 6519 6520 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6521 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6522 fp->eth_q_stats.mbuf_alloc_tpa); 6523 } 6524 6525 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6526 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6527 fp->eth_q_stats.mbuf_alloc_tx); 6528 } 6529 6530 /* XXX verify all mbufs were reclaimed */ 6531 6532 if (mtx_initialized(&fp->tx_mtx)) { 6533 mtx_destroy(&fp->tx_mtx); 6534 } 6535 6536 if (mtx_initialized(&fp->rx_mtx)) { 6537 mtx_destroy(&fp->rx_mtx); 6538 } 6539 } 6540 } 6541 6542 static int 6543 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6544 uint16_t prev_index, 6545 uint16_t index) 6546 { 6547 struct bxe_sw_rx_bd *rx_buf; 6548 struct eth_rx_bd *rx_bd; 6549 bus_dma_segment_t segs[1]; 6550 bus_dmamap_t map; 6551 struct mbuf *m; 6552 int nsegs, rc; 6553 6554 rc = 0; 6555 6556 /* allocate the new RX BD mbuf */ 6557 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6558 if (__predict_false(m == NULL)) { 6559 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6560 return (ENOBUFS); 6561 } 6562 6563 fp->eth_q_stats.mbuf_alloc_rx++; 6564 6565 /* initialize the mbuf buffer length */ 6566 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6567 6568 /* map the mbuf into non-paged pool */ 6569 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6570 fp->rx_mbuf_spare_map, 6571 m, segs, &nsegs, BUS_DMA_NOWAIT); 6572 if (__predict_false(rc != 0)) { 6573 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6574 m_freem(m); 6575 fp->eth_q_stats.mbuf_alloc_rx--; 6576 return (rc); 6577 } 6578 6579 /* all mbufs must map to a single segment */ 6580 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6581 6582 /* release any existing RX BD mbuf mappings */ 6583 6584 if (prev_index != index) { 6585 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6586 6587 if (rx_buf->m_map != NULL) { 6588 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6589 BUS_DMASYNC_POSTREAD); 6590 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6591 } 6592 6593 /* 6594 * We only get here from bxe_rxeof() when the maximum number 6595 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6596 * holds the mbuf in the prev_index so it's OK to NULL it out 6597 * here without concern of a memory leak. 6598 */ 6599 fp->rx_mbuf_chain[prev_index].m = NULL; 6600 } 6601 6602 rx_buf = &fp->rx_mbuf_chain[index]; 6603 6604 if (rx_buf->m_map != NULL) { 6605 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6606 BUS_DMASYNC_POSTREAD); 6607 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6608 } 6609 6610 /* save the mbuf and mapping info for a future packet */ 6611 map = (prev_index != index) ? 6612 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6613 rx_buf->m_map = fp->rx_mbuf_spare_map; 6614 fp->rx_mbuf_spare_map = map; 6615 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6616 BUS_DMASYNC_PREREAD); 6617 rx_buf->m = m; 6618 6619 rx_bd = &fp->rx_chain[index]; 6620 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6621 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6622 6623 return (rc); 6624 } 6625 6626 static int 6627 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6628 int queue) 6629 { 6630 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6631 bus_dma_segment_t segs[1]; 6632 bus_dmamap_t map; 6633 struct mbuf *m; 6634 int nsegs; 6635 int rc = 0; 6636 6637 /* allocate the new TPA mbuf */ 6638 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6639 if (__predict_false(m == NULL)) { 6640 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6641 return (ENOBUFS); 6642 } 6643 6644 fp->eth_q_stats.mbuf_alloc_tpa++; 6645 6646 /* initialize the mbuf buffer length */ 6647 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6648 6649 /* map the mbuf into non-paged pool */ 6650 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6651 fp->rx_tpa_info_mbuf_spare_map, 6652 m, segs, &nsegs, BUS_DMA_NOWAIT); 6653 if (__predict_false(rc != 0)) { 6654 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6655 m_free(m); 6656 fp->eth_q_stats.mbuf_alloc_tpa--; 6657 return (rc); 6658 } 6659 6660 /* all mbufs must map to a single segment */ 6661 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6662 6663 /* release any existing TPA mbuf mapping */ 6664 if (tpa_info->bd.m_map != NULL) { 6665 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6666 BUS_DMASYNC_POSTREAD); 6667 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6668 } 6669 6670 /* save the mbuf and mapping info for the TPA mbuf */ 6671 map = tpa_info->bd.m_map; 6672 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6673 fp->rx_tpa_info_mbuf_spare_map = map; 6674 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6675 BUS_DMASYNC_PREREAD); 6676 tpa_info->bd.m = m; 6677 tpa_info->seg = segs[0]; 6678 6679 return (rc); 6680 } 6681 6682 /* 6683 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6684 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6685 * chain. 6686 */ 6687 static int 6688 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6689 uint16_t index) 6690 { 6691 struct bxe_sw_rx_bd *sge_buf; 6692 struct eth_rx_sge *sge; 6693 bus_dma_segment_t segs[1]; 6694 bus_dmamap_t map; 6695 struct mbuf *m; 6696 int nsegs; 6697 int rc = 0; 6698 6699 /* allocate a new SGE mbuf */ 6700 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6701 if (__predict_false(m == NULL)) { 6702 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6703 return (ENOMEM); 6704 } 6705 6706 fp->eth_q_stats.mbuf_alloc_sge++; 6707 6708 /* initialize the mbuf buffer length */ 6709 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6710 6711 /* map the SGE mbuf into non-paged pool */ 6712 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6713 fp->rx_sge_mbuf_spare_map, 6714 m, segs, &nsegs, BUS_DMA_NOWAIT); 6715 if (__predict_false(rc != 0)) { 6716 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6717 m_freem(m); 6718 fp->eth_q_stats.mbuf_alloc_sge--; 6719 return (rc); 6720 } 6721 6722 /* all mbufs must map to a single segment */ 6723 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6724 6725 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6726 6727 /* release any existing SGE mbuf mapping */ 6728 if (sge_buf->m_map != NULL) { 6729 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6730 BUS_DMASYNC_POSTREAD); 6731 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6732 } 6733 6734 /* save the mbuf and mapping info for a future packet */ 6735 map = sge_buf->m_map; 6736 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6737 fp->rx_sge_mbuf_spare_map = map; 6738 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6739 BUS_DMASYNC_PREREAD); 6740 sge_buf->m = m; 6741 6742 sge = &fp->rx_sge_chain[index]; 6743 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6744 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6745 6746 return (rc); 6747 } 6748 6749 static __noinline int 6750 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6751 { 6752 struct bxe_fastpath *fp; 6753 int i, j, rc = 0; 6754 int ring_prod, cqe_ring_prod; 6755 int max_agg_queues; 6756 6757 for (i = 0; i < sc->num_queues; i++) { 6758 fp = &sc->fp[i]; 6759 6760 #if __FreeBSD_version >= 800000 6761 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 6762 M_DONTWAIT, &fp->tx_mtx); 6763 if (fp->tx_br == NULL) { 6764 BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); 6765 goto bxe_alloc_fp_buffers_error; 6766 } 6767 #endif 6768 6769 ring_prod = cqe_ring_prod = 0; 6770 fp->rx_bd_cons = 0; 6771 fp->rx_cq_cons = 0; 6772 6773 /* allocate buffers for the RX BDs in RX BD chain */ 6774 for (j = 0; j < sc->max_rx_bufs; j++) { 6775 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6776 if (rc != 0) { 6777 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6778 i, rc); 6779 goto bxe_alloc_fp_buffers_error; 6780 } 6781 6782 ring_prod = RX_BD_NEXT(ring_prod); 6783 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6784 } 6785 6786 fp->rx_bd_prod = ring_prod; 6787 fp->rx_cq_prod = cqe_ring_prod; 6788 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6789 6790 if (sc->ifnet->if_capenable & IFCAP_LRO) { 6791 max_agg_queues = MAX_AGG_QS(sc); 6792 6793 fp->tpa_enable = TRUE; 6794 6795 /* fill the TPA pool */ 6796 for (j = 0; j < max_agg_queues; j++) { 6797 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6798 if (rc != 0) { 6799 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6800 i, j); 6801 fp->tpa_enable = FALSE; 6802 goto bxe_alloc_fp_buffers_error; 6803 } 6804 6805 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6806 } 6807 6808 if (fp->tpa_enable) { 6809 /* fill the RX SGE chain */ 6810 ring_prod = 0; 6811 for (j = 0; j < RX_SGE_USABLE; j++) { 6812 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6813 if (rc != 0) { 6814 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6815 i, ring_prod); 6816 fp->tpa_enable = FALSE; 6817 ring_prod = 0; 6818 goto bxe_alloc_fp_buffers_error; 6819 } 6820 6821 ring_prod = RX_SGE_NEXT(ring_prod); 6822 } 6823 6824 fp->rx_sge_prod = ring_prod; 6825 } 6826 } 6827 } 6828 6829 return (0); 6830 6831 bxe_alloc_fp_buffers_error: 6832 6833 /* unwind what was already allocated */ 6834 bxe_free_rx_bd_chain(fp); 6835 bxe_free_tpa_pool(fp); 6836 bxe_free_sge_chain(fp); 6837 6838 return (ENOBUFS); 6839 } 6840 6841 static void 6842 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6843 { 6844 bxe_dma_free(sc, &sc->fw_stats_dma); 6845 6846 sc->fw_stats_num = 0; 6847 6848 sc->fw_stats_req_size = 0; 6849 sc->fw_stats_req = NULL; 6850 sc->fw_stats_req_mapping = 0; 6851 6852 sc->fw_stats_data_size = 0; 6853 sc->fw_stats_data = NULL; 6854 sc->fw_stats_data_mapping = 0; 6855 } 6856 6857 static int 6858 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6859 { 6860 uint8_t num_queue_stats; 6861 int num_groups; 6862 6863 /* number of queues for statistics is number of eth queues */ 6864 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6865 6866 /* 6867 * Total number of FW statistics requests = 6868 * 1 for port stats + 1 for PF stats + num of queues 6869 */ 6870 sc->fw_stats_num = (2 + num_queue_stats); 6871 6872 /* 6873 * Request is built from stats_query_header and an array of 6874 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6875 * rules. The real number or requests is configured in the 6876 * stats_query_header. 6877 */ 6878 num_groups = 6879 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6880 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6881 6882 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6883 sc->fw_stats_num, num_groups); 6884 6885 sc->fw_stats_req_size = 6886 (sizeof(struct stats_query_header) + 6887 (num_groups * sizeof(struct stats_query_cmd_group))); 6888 6889 /* 6890 * Data for statistics requests + stats_counter. 6891 * stats_counter holds per-STORM counters that are incremented when 6892 * STORM has finished with the current request. Memory for FCoE 6893 * offloaded statistics are counted anyway, even if they will not be sent. 6894 * VF stats are not accounted for here as the data of VF stats is stored 6895 * in memory allocated by the VF, not here. 6896 */ 6897 sc->fw_stats_data_size = 6898 (sizeof(struct stats_counter) + 6899 sizeof(struct per_port_stats) + 6900 sizeof(struct per_pf_stats) + 6901 /* sizeof(struct fcoe_statistics_params) + */ 6902 (sizeof(struct per_queue_stats) * num_queue_stats)); 6903 6904 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6905 &sc->fw_stats_dma, "fw stats") != 0) { 6906 bxe_free_fw_stats_mem(sc); 6907 return (-1); 6908 } 6909 6910 /* set up the shortcuts */ 6911 6912 sc->fw_stats_req = 6913 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6914 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6915 6916 sc->fw_stats_data = 6917 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6918 sc->fw_stats_req_size); 6919 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6920 sc->fw_stats_req_size); 6921 6922 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6923 (uintmax_t)sc->fw_stats_req_mapping); 6924 6925 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6926 (uintmax_t)sc->fw_stats_data_mapping); 6927 6928 return (0); 6929 } 6930 6931 /* 6932 * Bits map: 6933 * 0-7 - Engine0 load counter. 6934 * 8-15 - Engine1 load counter. 6935 * 16 - Engine0 RESET_IN_PROGRESS bit. 6936 * 17 - Engine1 RESET_IN_PROGRESS bit. 6937 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6938 * function on the engine 6939 * 19 - Engine1 ONE_IS_LOADED. 6940 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6941 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6942 * for just the one belonging to its engine). 6943 */ 6944 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6945 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6946 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6947 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6948 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6949 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6950 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6951 #define BXE_GLOBAL_RESET_BIT 0x00040000 6952 6953 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6954 static void 6955 bxe_set_reset_global(struct bxe_softc *sc) 6956 { 6957 uint32_t val; 6958 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6959 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6960 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6961 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6962 } 6963 6964 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6965 static void 6966 bxe_clear_reset_global(struct bxe_softc *sc) 6967 { 6968 uint32_t val; 6969 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6970 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6971 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6972 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6973 } 6974 6975 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6976 static uint8_t 6977 bxe_reset_is_global(struct bxe_softc *sc) 6978 { 6979 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6980 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6981 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6982 } 6983 6984 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6985 static void 6986 bxe_set_reset_done(struct bxe_softc *sc) 6987 { 6988 uint32_t val; 6989 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6990 BXE_PATH0_RST_IN_PROG_BIT; 6991 6992 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6993 6994 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6995 /* Clear the bit */ 6996 val &= ~bit; 6997 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6998 6999 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7000 } 7001 7002 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 7003 static void 7004 bxe_set_reset_in_progress(struct bxe_softc *sc) 7005 { 7006 uint32_t val; 7007 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 7008 BXE_PATH0_RST_IN_PROG_BIT; 7009 7010 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7011 7012 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7013 /* Set the bit */ 7014 val |= bit; 7015 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7016 7017 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7018 } 7019 7020 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 7021 static uint8_t 7022 bxe_reset_is_done(struct bxe_softc *sc, 7023 int engine) 7024 { 7025 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7026 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 7027 BXE_PATH0_RST_IN_PROG_BIT; 7028 7029 /* return false if bit is set */ 7030 return (val & bit) ? FALSE : TRUE; 7031 } 7032 7033 /* get the load status for an engine, should be run under rtnl lock */ 7034 static uint8_t 7035 bxe_get_load_status(struct bxe_softc *sc, 7036 int engine) 7037 { 7038 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 7039 BXE_PATH0_LOAD_CNT_MASK; 7040 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 7041 BXE_PATH0_LOAD_CNT_SHIFT; 7042 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7043 7044 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7045 7046 val = ((val & mask) >> shift); 7047 7048 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 7049 7050 return (val != 0); 7051 } 7052 7053 /* set pf load mark */ 7054 /* XXX needs to be under rtnl lock */ 7055 static void 7056 bxe_set_pf_load(struct bxe_softc *sc) 7057 { 7058 uint32_t val; 7059 uint32_t val1; 7060 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7061 BXE_PATH0_LOAD_CNT_MASK; 7062 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7063 BXE_PATH0_LOAD_CNT_SHIFT; 7064 7065 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7066 7067 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7068 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 7069 7070 /* get the current counter value */ 7071 val1 = ((val & mask) >> shift); 7072 7073 /* set bit of this PF */ 7074 val1 |= (1 << SC_ABS_FUNC(sc)); 7075 7076 /* clear the old value */ 7077 val &= ~mask; 7078 7079 /* set the new one */ 7080 val |= ((val1 << shift) & mask); 7081 7082 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7083 7084 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7085 } 7086 7087 /* clear pf load mark */ 7088 /* XXX needs to be under rtnl lock */ 7089 static uint8_t 7090 bxe_clear_pf_load(struct bxe_softc *sc) 7091 { 7092 uint32_t val1, val; 7093 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 7094 BXE_PATH0_LOAD_CNT_MASK; 7095 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 7096 BXE_PATH0_LOAD_CNT_SHIFT; 7097 7098 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7099 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 7100 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 7101 7102 /* get the current counter value */ 7103 val1 = (val & mask) >> shift; 7104 7105 /* clear bit of that PF */ 7106 val1 &= ~(1 << SC_ABS_FUNC(sc)); 7107 7108 /* clear the old value */ 7109 val &= ~mask; 7110 7111 /* set the new one */ 7112 val |= ((val1 << shift) & mask); 7113 7114 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 7115 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 7116 return (val1 != 0); 7117 } 7118 7119 /* send load requrest to mcp and analyze response */ 7120 static int 7121 bxe_nic_load_request(struct bxe_softc *sc, 7122 uint32_t *load_code) 7123 { 7124 /* init fw_seq */ 7125 sc->fw_seq = 7126 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 7127 DRV_MSG_SEQ_NUMBER_MASK); 7128 7129 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 7130 7131 /* get the current FW pulse sequence */ 7132 sc->fw_drv_pulse_wr_seq = 7133 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 7134 DRV_PULSE_SEQ_MASK); 7135 7136 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 7137 sc->fw_drv_pulse_wr_seq); 7138 7139 /* load request */ 7140 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 7141 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 7142 7143 /* if the MCP fails to respond we must abort */ 7144 if (!(*load_code)) { 7145 BLOGE(sc, "MCP response failure!\n"); 7146 return (-1); 7147 } 7148 7149 /* if MCP refused then must abort */ 7150 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 7151 BLOGE(sc, "MCP refused load request\n"); 7152 return (-1); 7153 } 7154 7155 return (0); 7156 } 7157 7158 /* 7159 * Check whether another PF has already loaded FW to chip. In virtualized 7160 * environments a pf from anoth VM may have already initialized the device 7161 * including loading FW. 7162 */ 7163 static int 7164 bxe_nic_load_analyze_req(struct bxe_softc *sc, 7165 uint32_t load_code) 7166 { 7167 uint32_t my_fw, loaded_fw; 7168 7169 /* is another pf loaded on this engine? */ 7170 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 7171 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 7172 /* build my FW version dword */ 7173 my_fw = (BCM_5710_FW_MAJOR_VERSION + 7174 (BCM_5710_FW_MINOR_VERSION << 8 ) + 7175 (BCM_5710_FW_REVISION_VERSION << 16) + 7176 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 7177 7178 /* read loaded FW from chip */ 7179 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 7180 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 7181 loaded_fw, my_fw); 7182 7183 /* abort nic load if version mismatch */ 7184 if (my_fw != loaded_fw) { 7185 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 7186 loaded_fw, my_fw); 7187 return (-1); 7188 } 7189 } 7190 7191 return (0); 7192 } 7193 7194 /* mark PMF if applicable */ 7195 static void 7196 bxe_nic_load_pmf(struct bxe_softc *sc, 7197 uint32_t load_code) 7198 { 7199 uint32_t ncsi_oem_data_addr; 7200 7201 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 7202 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 7203 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 7204 /* 7205 * Barrier here for ordering between the writing to sc->port.pmf here 7206 * and reading it from the periodic task. 7207 */ 7208 sc->port.pmf = 1; 7209 mb(); 7210 } else { 7211 sc->port.pmf = 0; 7212 } 7213 7214 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 7215 7216 /* XXX needed? */ 7217 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 7218 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 7219 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 7220 if (ncsi_oem_data_addr) { 7221 REG_WR(sc, 7222 (ncsi_oem_data_addr + 7223 offsetof(struct glob_ncsi_oem_data, driver_version)), 7224 0); 7225 } 7226 } 7227 } 7228 } 7229 7230 static void 7231 bxe_read_mf_cfg(struct bxe_softc *sc) 7232 { 7233 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 7234 int abs_func; 7235 int vn; 7236 7237 if (BXE_NOMCP(sc)) { 7238 return; /* what should be the default bvalue in this case */ 7239 } 7240 7241 /* 7242 * The formula for computing the absolute function number is... 7243 * For 2 port configuration (4 functions per port): 7244 * abs_func = 2 * vn + SC_PORT + SC_PATH 7245 * For 4 port configuration (2 functions per port): 7246 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 7247 */ 7248 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 7249 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 7250 if (abs_func >= E1H_FUNC_MAX) { 7251 break; 7252 } 7253 sc->devinfo.mf_info.mf_config[vn] = 7254 MFCFG_RD(sc, func_mf_config[abs_func].config); 7255 } 7256 7257 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 7258 FUNC_MF_CFG_FUNC_DISABLED) { 7259 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 7260 sc->flags |= BXE_MF_FUNC_DIS; 7261 } else { 7262 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 7263 sc->flags &= ~BXE_MF_FUNC_DIS; 7264 } 7265 } 7266 7267 /* acquire split MCP access lock register */ 7268 static int bxe_acquire_alr(struct bxe_softc *sc) 7269 { 7270 uint32_t j, val; 7271 7272 for (j = 0; j < 1000; j++) { 7273 val = (1UL << 31); 7274 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 7275 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 7276 if (val & (1L << 31)) 7277 break; 7278 7279 DELAY(5000); 7280 } 7281 7282 if (!(val & (1L << 31))) { 7283 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 7284 return (-1); 7285 } 7286 7287 return (0); 7288 } 7289 7290 /* release split MCP access lock register */ 7291 static void bxe_release_alr(struct bxe_softc *sc) 7292 { 7293 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 7294 } 7295 7296 static void 7297 bxe_fan_failure(struct bxe_softc *sc) 7298 { 7299 int port = SC_PORT(sc); 7300 uint32_t ext_phy_config; 7301 7302 /* mark the failure */ 7303 ext_phy_config = 7304 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 7305 7306 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 7307 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 7308 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 7309 ext_phy_config); 7310 7311 /* log the failure */ 7312 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 7313 "the card to prevent permanent damage. " 7314 "Please contact OEM Support for assistance\n"); 7315 7316 /* XXX */ 7317 #if 1 7318 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 7319 #else 7320 /* 7321 * Schedule device reset (unload) 7322 * This is due to some boards consuming sufficient power when driver is 7323 * up to overheat if fan fails. 7324 */ 7325 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 7326 schedule_delayed_work(&sc->sp_rtnl_task, 0); 7327 #endif 7328 } 7329 7330 /* this function is called upon a link interrupt */ 7331 static void 7332 bxe_link_attn(struct bxe_softc *sc) 7333 { 7334 uint32_t pause_enabled = 0; 7335 struct host_port_stats *pstats; 7336 int cmng_fns; 7337 7338 /* Make sure that we are synced with the current statistics */ 7339 bxe_stats_handle(sc, STATS_EVENT_STOP); 7340 7341 elink_link_update(&sc->link_params, &sc->link_vars); 7342 7343 if (sc->link_vars.link_up) { 7344 7345 /* dropless flow control */ 7346 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7347 pause_enabled = 0; 7348 7349 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7350 pause_enabled = 1; 7351 } 7352 7353 REG_WR(sc, 7354 (BAR_USTRORM_INTMEM + 7355 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7356 pause_enabled); 7357 } 7358 7359 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7360 pstats = BXE_SP(sc, port_stats); 7361 /* reset old mac stats */ 7362 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7363 } 7364 7365 if (sc->state == BXE_STATE_OPEN) { 7366 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7367 } 7368 } 7369 7370 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7371 cmng_fns = bxe_get_cmng_fns_mode(sc); 7372 7373 if (cmng_fns != CMNG_FNS_NONE) { 7374 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7375 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7376 } else { 7377 /* rate shaping and fairness are disabled */ 7378 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7379 } 7380 } 7381 7382 bxe_link_report_locked(sc); 7383 7384 if (IS_MF(sc)) { 7385 ; // XXX bxe_link_sync_notify(sc); 7386 } 7387 } 7388 7389 static void 7390 bxe_attn_int_asserted(struct bxe_softc *sc, 7391 uint32_t asserted) 7392 { 7393 int port = SC_PORT(sc); 7394 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7395 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7396 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7397 NIG_REG_MASK_INTERRUPT_PORT0; 7398 uint32_t aeu_mask; 7399 uint32_t nig_mask = 0; 7400 uint32_t reg_addr; 7401 uint32_t igu_acked; 7402 uint32_t cnt; 7403 7404 if (sc->attn_state & asserted) { 7405 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7406 } 7407 7408 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7409 7410 aeu_mask = REG_RD(sc, aeu_addr); 7411 7412 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7413 aeu_mask, asserted); 7414 7415 aeu_mask &= ~(asserted & 0x3ff); 7416 7417 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7418 7419 REG_WR(sc, aeu_addr, aeu_mask); 7420 7421 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7422 7423 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7424 sc->attn_state |= asserted; 7425 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7426 7427 if (asserted & ATTN_HARD_WIRED_MASK) { 7428 if (asserted & ATTN_NIG_FOR_FUNC) { 7429 7430 BXE_PHY_LOCK(sc); 7431 7432 /* save nig interrupt mask */ 7433 nig_mask = REG_RD(sc, nig_int_mask_addr); 7434 7435 /* If nig_mask is not set, no need to call the update function */ 7436 if (nig_mask) { 7437 REG_WR(sc, nig_int_mask_addr, 0); 7438 7439 bxe_link_attn(sc); 7440 } 7441 7442 /* handle unicore attn? */ 7443 } 7444 7445 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7446 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7447 } 7448 7449 if (asserted & GPIO_2_FUNC) { 7450 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7451 } 7452 7453 if (asserted & GPIO_3_FUNC) { 7454 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7455 } 7456 7457 if (asserted & GPIO_4_FUNC) { 7458 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7459 } 7460 7461 if (port == 0) { 7462 if (asserted & ATTN_GENERAL_ATTN_1) { 7463 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7464 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7465 } 7466 if (asserted & ATTN_GENERAL_ATTN_2) { 7467 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7468 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7469 } 7470 if (asserted & ATTN_GENERAL_ATTN_3) { 7471 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7472 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7473 } 7474 } else { 7475 if (asserted & ATTN_GENERAL_ATTN_4) { 7476 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7477 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7478 } 7479 if (asserted & ATTN_GENERAL_ATTN_5) { 7480 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7481 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7482 } 7483 if (asserted & ATTN_GENERAL_ATTN_6) { 7484 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7485 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7486 } 7487 } 7488 } /* hardwired */ 7489 7490 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7491 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7492 } else { 7493 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7494 } 7495 7496 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7497 asserted, 7498 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7499 REG_WR(sc, reg_addr, asserted); 7500 7501 /* now set back the mask */ 7502 if (asserted & ATTN_NIG_FOR_FUNC) { 7503 /* 7504 * Verify that IGU ack through BAR was written before restoring 7505 * NIG mask. This loop should exit after 2-3 iterations max. 7506 */ 7507 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7508 cnt = 0; 7509 7510 do { 7511 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7512 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7513 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7514 7515 if (!igu_acked) { 7516 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7517 } 7518 7519 mb(); 7520 } 7521 7522 REG_WR(sc, nig_int_mask_addr, nig_mask); 7523 7524 BXE_PHY_UNLOCK(sc); 7525 } 7526 } 7527 7528 static void 7529 bxe_print_next_block(struct bxe_softc *sc, 7530 int idx, 7531 const char *blk) 7532 { 7533 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7534 } 7535 7536 static int 7537 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7538 uint32_t sig, 7539 int par_num, 7540 uint8_t print) 7541 { 7542 uint32_t cur_bit = 0; 7543 int i = 0; 7544 7545 for (i = 0; sig; i++) { 7546 cur_bit = ((uint32_t)0x1 << i); 7547 if (sig & cur_bit) { 7548 switch (cur_bit) { 7549 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7550 if (print) 7551 bxe_print_next_block(sc, par_num++, "BRB"); 7552 break; 7553 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7554 if (print) 7555 bxe_print_next_block(sc, par_num++, "PARSER"); 7556 break; 7557 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7558 if (print) 7559 bxe_print_next_block(sc, par_num++, "TSDM"); 7560 break; 7561 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7562 if (print) 7563 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7564 break; 7565 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7566 if (print) 7567 bxe_print_next_block(sc, par_num++, "TCM"); 7568 break; 7569 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7570 if (print) 7571 bxe_print_next_block(sc, par_num++, "TSEMI"); 7572 break; 7573 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7574 if (print) 7575 bxe_print_next_block(sc, par_num++, "XPB"); 7576 break; 7577 } 7578 7579 /* Clear the bit */ 7580 sig &= ~cur_bit; 7581 } 7582 } 7583 7584 return (par_num); 7585 } 7586 7587 static int 7588 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7589 uint32_t sig, 7590 int par_num, 7591 uint8_t *global, 7592 uint8_t print) 7593 { 7594 int i = 0; 7595 uint32_t cur_bit = 0; 7596 for (i = 0; sig; i++) { 7597 cur_bit = ((uint32_t)0x1 << i); 7598 if (sig & cur_bit) { 7599 switch (cur_bit) { 7600 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7601 if (print) 7602 bxe_print_next_block(sc, par_num++, "PBF"); 7603 break; 7604 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7605 if (print) 7606 bxe_print_next_block(sc, par_num++, "QM"); 7607 break; 7608 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7609 if (print) 7610 bxe_print_next_block(sc, par_num++, "TM"); 7611 break; 7612 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7613 if (print) 7614 bxe_print_next_block(sc, par_num++, "XSDM"); 7615 break; 7616 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7617 if (print) 7618 bxe_print_next_block(sc, par_num++, "XCM"); 7619 break; 7620 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7621 if (print) 7622 bxe_print_next_block(sc, par_num++, "XSEMI"); 7623 break; 7624 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7625 if (print) 7626 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7627 break; 7628 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7629 if (print) 7630 bxe_print_next_block(sc, par_num++, "NIG"); 7631 break; 7632 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7633 if (print) 7634 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7635 *global = TRUE; 7636 break; 7637 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7638 if (print) 7639 bxe_print_next_block(sc, par_num++, "DEBUG"); 7640 break; 7641 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7642 if (print) 7643 bxe_print_next_block(sc, par_num++, "USDM"); 7644 break; 7645 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7646 if (print) 7647 bxe_print_next_block(sc, par_num++, "UCM"); 7648 break; 7649 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7650 if (print) 7651 bxe_print_next_block(sc, par_num++, "USEMI"); 7652 break; 7653 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7654 if (print) 7655 bxe_print_next_block(sc, par_num++, "UPB"); 7656 break; 7657 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7658 if (print) 7659 bxe_print_next_block(sc, par_num++, "CSDM"); 7660 break; 7661 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7662 if (print) 7663 bxe_print_next_block(sc, par_num++, "CCM"); 7664 break; 7665 } 7666 7667 /* Clear the bit */ 7668 sig &= ~cur_bit; 7669 } 7670 } 7671 7672 return (par_num); 7673 } 7674 7675 static int 7676 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7677 uint32_t sig, 7678 int par_num, 7679 uint8_t print) 7680 { 7681 uint32_t cur_bit = 0; 7682 int i = 0; 7683 7684 for (i = 0; sig; i++) { 7685 cur_bit = ((uint32_t)0x1 << i); 7686 if (sig & cur_bit) { 7687 switch (cur_bit) { 7688 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7689 if (print) 7690 bxe_print_next_block(sc, par_num++, "CSEMI"); 7691 break; 7692 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7693 if (print) 7694 bxe_print_next_block(sc, par_num++, "PXP"); 7695 break; 7696 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7697 if (print) 7698 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7699 break; 7700 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7701 if (print) 7702 bxe_print_next_block(sc, par_num++, "CFC"); 7703 break; 7704 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7705 if (print) 7706 bxe_print_next_block(sc, par_num++, "CDU"); 7707 break; 7708 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7709 if (print) 7710 bxe_print_next_block(sc, par_num++, "DMAE"); 7711 break; 7712 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7713 if (print) 7714 bxe_print_next_block(sc, par_num++, "IGU"); 7715 break; 7716 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7717 if (print) 7718 bxe_print_next_block(sc, par_num++, "MISC"); 7719 break; 7720 } 7721 7722 /* Clear the bit */ 7723 sig &= ~cur_bit; 7724 } 7725 } 7726 7727 return (par_num); 7728 } 7729 7730 static int 7731 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7732 uint32_t sig, 7733 int par_num, 7734 uint8_t *global, 7735 uint8_t print) 7736 { 7737 uint32_t cur_bit = 0; 7738 int i = 0; 7739 7740 for (i = 0; sig; i++) { 7741 cur_bit = ((uint32_t)0x1 << i); 7742 if (sig & cur_bit) { 7743 switch (cur_bit) { 7744 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7745 if (print) 7746 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7747 *global = TRUE; 7748 break; 7749 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7750 if (print) 7751 bxe_print_next_block(sc, par_num++, 7752 "MCP UMP RX"); 7753 *global = TRUE; 7754 break; 7755 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7756 if (print) 7757 bxe_print_next_block(sc, par_num++, 7758 "MCP UMP TX"); 7759 *global = TRUE; 7760 break; 7761 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7762 if (print) 7763 bxe_print_next_block(sc, par_num++, 7764 "MCP SCPAD"); 7765 *global = TRUE; 7766 break; 7767 } 7768 7769 /* Clear the bit */ 7770 sig &= ~cur_bit; 7771 } 7772 } 7773 7774 return (par_num); 7775 } 7776 7777 static int 7778 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7779 uint32_t sig, 7780 int par_num, 7781 uint8_t print) 7782 { 7783 uint32_t cur_bit = 0; 7784 int i = 0; 7785 7786 for (i = 0; sig; i++) { 7787 cur_bit = ((uint32_t)0x1 << i); 7788 if (sig & cur_bit) { 7789 switch (cur_bit) { 7790 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7791 if (print) 7792 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7793 break; 7794 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7795 if (print) 7796 bxe_print_next_block(sc, par_num++, "ATC"); 7797 break; 7798 } 7799 7800 /* Clear the bit */ 7801 sig &= ~cur_bit; 7802 } 7803 } 7804 7805 return (par_num); 7806 } 7807 7808 static uint8_t 7809 bxe_parity_attn(struct bxe_softc *sc, 7810 uint8_t *global, 7811 uint8_t print, 7812 uint32_t *sig) 7813 { 7814 int par_num = 0; 7815 7816 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7817 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7818 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7819 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7820 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7821 BLOGE(sc, "Parity error: HW block parity attention:\n" 7822 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7823 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7824 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7825 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7826 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7827 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7828 7829 if (print) 7830 BLOGI(sc, "Parity errors detected in blocks: "); 7831 7832 par_num = 7833 bxe_check_blocks_with_parity0(sc, sig[0] & 7834 HW_PRTY_ASSERT_SET_0, 7835 par_num, print); 7836 par_num = 7837 bxe_check_blocks_with_parity1(sc, sig[1] & 7838 HW_PRTY_ASSERT_SET_1, 7839 par_num, global, print); 7840 par_num = 7841 bxe_check_blocks_with_parity2(sc, sig[2] & 7842 HW_PRTY_ASSERT_SET_2, 7843 par_num, print); 7844 par_num = 7845 bxe_check_blocks_with_parity3(sc, sig[3] & 7846 HW_PRTY_ASSERT_SET_3, 7847 par_num, global, print); 7848 par_num = 7849 bxe_check_blocks_with_parity4(sc, sig[4] & 7850 HW_PRTY_ASSERT_SET_4, 7851 par_num, print); 7852 7853 if (print) 7854 BLOGI(sc, "\n"); 7855 7856 return (TRUE); 7857 } 7858 7859 return (FALSE); 7860 } 7861 7862 static uint8_t 7863 bxe_chk_parity_attn(struct bxe_softc *sc, 7864 uint8_t *global, 7865 uint8_t print) 7866 { 7867 struct attn_route attn = { {0} }; 7868 int port = SC_PORT(sc); 7869 7870 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7871 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7872 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7873 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7874 7875 if (!CHIP_IS_E1x(sc)) 7876 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7877 7878 return (bxe_parity_attn(sc, global, print, attn.sig)); 7879 } 7880 7881 static void 7882 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7883 uint32_t attn) 7884 { 7885 uint32_t val; 7886 7887 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7888 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7889 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7890 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7891 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7892 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7893 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7894 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7895 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7896 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7897 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7898 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7899 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7900 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7901 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7902 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7903 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7904 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7905 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7906 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7907 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7908 } 7909 7910 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7911 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7912 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7913 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7914 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7915 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7916 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7917 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7918 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7919 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7920 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7921 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7922 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7923 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7924 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7925 } 7926 7927 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7928 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7929 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7930 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7931 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7932 } 7933 } 7934 7935 static void 7936 bxe_e1h_disable(struct bxe_softc *sc) 7937 { 7938 int port = SC_PORT(sc); 7939 7940 bxe_tx_disable(sc); 7941 7942 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7943 } 7944 7945 static void 7946 bxe_e1h_enable(struct bxe_softc *sc) 7947 { 7948 int port = SC_PORT(sc); 7949 7950 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7951 7952 // XXX bxe_tx_enable(sc); 7953 } 7954 7955 /* 7956 * called due to MCP event (on pmf): 7957 * reread new bandwidth configuration 7958 * configure FW 7959 * notify others function about the change 7960 */ 7961 static void 7962 bxe_config_mf_bw(struct bxe_softc *sc) 7963 { 7964 if (sc->link_vars.link_up) { 7965 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7966 // XXX bxe_link_sync_notify(sc); 7967 } 7968 7969 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7970 } 7971 7972 static void 7973 bxe_set_mf_bw(struct bxe_softc *sc) 7974 { 7975 bxe_config_mf_bw(sc); 7976 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7977 } 7978 7979 static void 7980 bxe_handle_eee_event(struct bxe_softc *sc) 7981 { 7982 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7983 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7984 } 7985 7986 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7987 7988 static void 7989 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7990 { 7991 struct eth_stats_info *ether_stat = 7992 &sc->sp->drv_info_to_mcp.ether_stat; 7993 7994 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7995 ETH_STAT_INFO_VERSION_LEN); 7996 7997 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7998 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7999 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 8000 ether_stat->mac_local + MAC_PAD, 8001 MAC_PAD, ETH_ALEN); 8002 8003 ether_stat->mtu_size = sc->mtu; 8004 8005 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 8006 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 8007 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 8008 } 8009 8010 // XXX ether_stat->feature_flags |= ???; 8011 8012 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 8013 8014 ether_stat->txq_size = sc->tx_ring_size; 8015 ether_stat->rxq_size = sc->rx_ring_size; 8016 } 8017 8018 static void 8019 bxe_handle_drv_info_req(struct bxe_softc *sc) 8020 { 8021 enum drv_info_opcode op_code; 8022 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 8023 8024 /* if drv_info version supported by MFW doesn't match - send NACK */ 8025 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 8026 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8027 return; 8028 } 8029 8030 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 8031 DRV_INFO_CONTROL_OP_CODE_SHIFT); 8032 8033 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 8034 8035 switch (op_code) { 8036 case ETH_STATS_OPCODE: 8037 bxe_drv_info_ether_stat(sc); 8038 break; 8039 case FCOE_STATS_OPCODE: 8040 case ISCSI_STATS_OPCODE: 8041 default: 8042 /* if op code isn't supported - send NACK */ 8043 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 8044 return; 8045 } 8046 8047 /* 8048 * If we got drv_info attn from MFW then these fields are defined in 8049 * shmem2 for sure 8050 */ 8051 SHMEM2_WR(sc, drv_info_host_addr_lo, 8052 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8053 SHMEM2_WR(sc, drv_info_host_addr_hi, 8054 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 8055 8056 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 8057 } 8058 8059 static void 8060 bxe_dcc_event(struct bxe_softc *sc, 8061 uint32_t dcc_event) 8062 { 8063 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 8064 8065 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 8066 /* 8067 * This is the only place besides the function initialization 8068 * where the sc->flags can change so it is done without any 8069 * locks 8070 */ 8071 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 8072 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 8073 sc->flags |= BXE_MF_FUNC_DIS; 8074 bxe_e1h_disable(sc); 8075 } else { 8076 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 8077 sc->flags &= ~BXE_MF_FUNC_DIS; 8078 bxe_e1h_enable(sc); 8079 } 8080 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 8081 } 8082 8083 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 8084 bxe_config_mf_bw(sc); 8085 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 8086 } 8087 8088 /* Report results to MCP */ 8089 if (dcc_event) 8090 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 8091 else 8092 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 8093 } 8094 8095 static void 8096 bxe_pmf_update(struct bxe_softc *sc) 8097 { 8098 int port = SC_PORT(sc); 8099 uint32_t val; 8100 8101 sc->port.pmf = 1; 8102 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 8103 8104 /* 8105 * We need the mb() to ensure the ordering between the writing to 8106 * sc->port.pmf here and reading it from the bxe_periodic_task(). 8107 */ 8108 mb(); 8109 8110 /* queue a periodic task */ 8111 // XXX schedule task... 8112 8113 // XXX bxe_dcbx_pmf_update(sc); 8114 8115 /* enable nig attention */ 8116 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 8117 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8118 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 8119 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 8120 } else if (!CHIP_IS_E1x(sc)) { 8121 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 8122 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 8123 } 8124 8125 bxe_stats_handle(sc, STATS_EVENT_PMF); 8126 } 8127 8128 static int 8129 bxe_mc_assert(struct bxe_softc *sc) 8130 { 8131 char last_idx; 8132 int i, rc = 0; 8133 uint32_t row0, row1, row2, row3; 8134 8135 /* XSTORM */ 8136 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 8137 if (last_idx) 8138 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8139 8140 /* print the asserts */ 8141 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8142 8143 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 8144 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 8145 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 8146 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 8147 8148 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8149 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8150 i, row3, row2, row1, row0); 8151 rc++; 8152 } else { 8153 break; 8154 } 8155 } 8156 8157 /* TSTORM */ 8158 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 8159 if (last_idx) { 8160 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8161 } 8162 8163 /* print the asserts */ 8164 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8165 8166 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 8167 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 8168 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 8169 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 8170 8171 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8172 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8173 i, row3, row2, row1, row0); 8174 rc++; 8175 } else { 8176 break; 8177 } 8178 } 8179 8180 /* CSTORM */ 8181 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 8182 if (last_idx) { 8183 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8184 } 8185 8186 /* print the asserts */ 8187 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8188 8189 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 8190 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 8191 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 8192 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 8193 8194 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8195 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8196 i, row3, row2, row1, row0); 8197 rc++; 8198 } else { 8199 break; 8200 } 8201 } 8202 8203 /* USTORM */ 8204 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 8205 if (last_idx) { 8206 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 8207 } 8208 8209 /* print the asserts */ 8210 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 8211 8212 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 8213 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 8214 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 8215 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 8216 8217 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 8218 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 8219 i, row3, row2, row1, row0); 8220 rc++; 8221 } else { 8222 break; 8223 } 8224 } 8225 8226 return (rc); 8227 } 8228 8229 static void 8230 bxe_attn_int_deasserted3(struct bxe_softc *sc, 8231 uint32_t attn) 8232 { 8233 int func = SC_FUNC(sc); 8234 uint32_t val; 8235 8236 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 8237 8238 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 8239 8240 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8241 bxe_read_mf_cfg(sc); 8242 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 8243 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 8244 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 8245 8246 if (val & DRV_STATUS_DCC_EVENT_MASK) 8247 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 8248 8249 if (val & DRV_STATUS_SET_MF_BW) 8250 bxe_set_mf_bw(sc); 8251 8252 if (val & DRV_STATUS_DRV_INFO_REQ) 8253 bxe_handle_drv_info_req(sc); 8254 8255 #if 0 8256 if (val & DRV_STATUS_VF_DISABLED) 8257 bxe_vf_handle_flr_event(sc); 8258 #endif 8259 8260 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 8261 bxe_pmf_update(sc); 8262 8263 #if 0 8264 if (sc->port.pmf && 8265 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 8266 (sc->dcbx_enabled > 0)) 8267 /* start dcbx state machine */ 8268 bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); 8269 #endif 8270 8271 #if 0 8272 if (val & DRV_STATUS_AFEX_EVENT_MASK) 8273 bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); 8274 #endif 8275 8276 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 8277 bxe_handle_eee_event(sc); 8278 8279 if (sc->link_vars.periodic_flags & 8280 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 8281 /* sync with link */ 8282 BXE_PHY_LOCK(sc); 8283 sc->link_vars.periodic_flags &= 8284 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 8285 BXE_PHY_UNLOCK(sc); 8286 if (IS_MF(sc)) 8287 ; // XXX bxe_link_sync_notify(sc); 8288 bxe_link_report(sc); 8289 } 8290 8291 /* 8292 * Always call it here: bxe_link_report() will 8293 * prevent the link indication duplication. 8294 */ 8295 bxe_link_status_update(sc); 8296 8297 } else if (attn & BXE_MC_ASSERT_BITS) { 8298 8299 BLOGE(sc, "MC assert!\n"); 8300 bxe_mc_assert(sc); 8301 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 8302 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 8303 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 8304 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 8305 bxe_panic(sc, ("MC assert!\n")); 8306 8307 } else if (attn & BXE_MCP_ASSERT) { 8308 8309 BLOGE(sc, "MCP assert!\n"); 8310 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 8311 // XXX bxe_fw_dump(sc); 8312 8313 } else { 8314 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8315 } 8316 } 8317 8318 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8319 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8320 if (attn & BXE_GRC_TIMEOUT) { 8321 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8322 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8323 } 8324 if (attn & BXE_GRC_RSV) { 8325 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8326 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8327 } 8328 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8329 } 8330 } 8331 8332 static void 8333 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8334 uint32_t attn) 8335 { 8336 int port = SC_PORT(sc); 8337 int reg_offset; 8338 uint32_t val0, mask0, val1, mask1; 8339 uint32_t val; 8340 8341 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8342 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8343 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8344 /* CFC error attention */ 8345 if (val & 0x2) { 8346 BLOGE(sc, "FATAL error from CFC\n"); 8347 } 8348 } 8349 8350 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8351 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8352 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8353 /* RQ_USDMDP_FIFO_OVERFLOW */ 8354 if (val & 0x18000) { 8355 BLOGE(sc, "FATAL error from PXP\n"); 8356 } 8357 8358 if (!CHIP_IS_E1x(sc)) { 8359 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8360 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8361 } 8362 } 8363 8364 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8365 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8366 8367 if (attn & AEU_PXP2_HW_INT_BIT) { 8368 /* CQ47854 workaround do not panic on 8369 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8370 */ 8371 if (!CHIP_IS_E1x(sc)) { 8372 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8373 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8374 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8375 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8376 /* 8377 * If the olny PXP2_EOP_ERROR_BIT is set in 8378 * STS0 and STS1 - clear it 8379 * 8380 * probably we lose additional attentions between 8381 * STS0 and STS_CLR0, in this case user will not 8382 * be notified about them 8383 */ 8384 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8385 !(val1 & mask1)) 8386 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8387 8388 /* print the register, since no one can restore it */ 8389 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8390 8391 /* 8392 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8393 * then notify 8394 */ 8395 if (val0 & PXP2_EOP_ERROR_BIT) { 8396 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8397 8398 /* 8399 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8400 * set then clear attention from PXP2 block without panic 8401 */ 8402 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8403 ((val1 & mask1) == 0)) 8404 attn &= ~AEU_PXP2_HW_INT_BIT; 8405 } 8406 } 8407 } 8408 8409 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8410 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8411 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8412 8413 val = REG_RD(sc, reg_offset); 8414 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8415 REG_WR(sc, reg_offset, val); 8416 8417 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8418 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8419 bxe_panic(sc, ("HW block attention set2\n")); 8420 } 8421 } 8422 8423 static void 8424 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8425 uint32_t attn) 8426 { 8427 int port = SC_PORT(sc); 8428 int reg_offset; 8429 uint32_t val; 8430 8431 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8432 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8433 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8434 /* DORQ discard attention */ 8435 if (val & 0x2) { 8436 BLOGE(sc, "FATAL error from DORQ\n"); 8437 } 8438 } 8439 8440 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8441 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8442 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8443 8444 val = REG_RD(sc, reg_offset); 8445 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8446 REG_WR(sc, reg_offset, val); 8447 8448 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8449 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8450 bxe_panic(sc, ("HW block attention set1\n")); 8451 } 8452 } 8453 8454 static void 8455 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8456 uint32_t attn) 8457 { 8458 int port = SC_PORT(sc); 8459 int reg_offset; 8460 uint32_t val; 8461 8462 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8463 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8464 8465 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8466 val = REG_RD(sc, reg_offset); 8467 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8468 REG_WR(sc, reg_offset, val); 8469 8470 BLOGW(sc, "SPIO5 hw attention\n"); 8471 8472 /* Fan failure attention */ 8473 elink_hw_reset_phy(&sc->link_params); 8474 bxe_fan_failure(sc); 8475 } 8476 8477 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8478 BXE_PHY_LOCK(sc); 8479 elink_handle_module_detect_int(&sc->link_params); 8480 BXE_PHY_UNLOCK(sc); 8481 } 8482 8483 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8484 val = REG_RD(sc, reg_offset); 8485 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8486 REG_WR(sc, reg_offset, val); 8487 8488 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8489 (attn & HW_INTERRUT_ASSERT_SET_0))); 8490 } 8491 } 8492 8493 static void 8494 bxe_attn_int_deasserted(struct bxe_softc *sc, 8495 uint32_t deasserted) 8496 { 8497 struct attn_route attn; 8498 struct attn_route *group_mask; 8499 int port = SC_PORT(sc); 8500 int index; 8501 uint32_t reg_addr; 8502 uint32_t val; 8503 uint32_t aeu_mask; 8504 uint8_t global = FALSE; 8505 8506 /* 8507 * Need to take HW lock because MCP or other port might also 8508 * try to handle this event. 8509 */ 8510 bxe_acquire_alr(sc); 8511 8512 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8513 /* XXX 8514 * In case of parity errors don't handle attentions so that 8515 * other function would "see" parity errors. 8516 */ 8517 sc->recovery_state = BXE_RECOVERY_INIT; 8518 // XXX schedule a recovery task... 8519 /* disable HW interrupts */ 8520 bxe_int_disable(sc); 8521 bxe_release_alr(sc); 8522 return; 8523 } 8524 8525 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8526 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8527 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8528 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8529 if (!CHIP_IS_E1x(sc)) { 8530 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8531 } else { 8532 attn.sig[4] = 0; 8533 } 8534 8535 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8536 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8537 8538 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8539 if (deasserted & (1 << index)) { 8540 group_mask = &sc->attn_group[index]; 8541 8542 BLOGD(sc, DBG_INTR, 8543 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8544 group_mask->sig[0], group_mask->sig[1], 8545 group_mask->sig[2], group_mask->sig[3], 8546 group_mask->sig[4]); 8547 8548 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8549 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8550 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8551 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8552 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8553 } 8554 } 8555 8556 bxe_release_alr(sc); 8557 8558 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8559 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8560 COMMAND_REG_ATTN_BITS_CLR); 8561 } else { 8562 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8563 } 8564 8565 val = ~deasserted; 8566 BLOGD(sc, DBG_INTR, 8567 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8568 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8569 REG_WR(sc, reg_addr, val); 8570 8571 if (~sc->attn_state & deasserted) { 8572 BLOGE(sc, "IGU error\n"); 8573 } 8574 8575 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8576 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8577 8578 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8579 8580 aeu_mask = REG_RD(sc, reg_addr); 8581 8582 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8583 aeu_mask, deasserted); 8584 aeu_mask |= (deasserted & 0x3ff); 8585 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8586 8587 REG_WR(sc, reg_addr, aeu_mask); 8588 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8589 8590 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8591 sc->attn_state &= ~deasserted; 8592 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8593 } 8594 8595 static void 8596 bxe_attn_int(struct bxe_softc *sc) 8597 { 8598 /* read local copy of bits */ 8599 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8600 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8601 uint32_t attn_state = sc->attn_state; 8602 8603 /* look for changed bits */ 8604 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8605 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8606 8607 BLOGD(sc, DBG_INTR, 8608 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8609 attn_bits, attn_ack, asserted, deasserted); 8610 8611 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8612 BLOGE(sc, "BAD attention state\n"); 8613 } 8614 8615 /* handle bits that were raised */ 8616 if (asserted) { 8617 bxe_attn_int_asserted(sc, asserted); 8618 } 8619 8620 if (deasserted) { 8621 bxe_attn_int_deasserted(sc, deasserted); 8622 } 8623 } 8624 8625 static uint16_t 8626 bxe_update_dsb_idx(struct bxe_softc *sc) 8627 { 8628 struct host_sp_status_block *def_sb = sc->def_sb; 8629 uint16_t rc = 0; 8630 8631 mb(); /* status block is written to by the chip */ 8632 8633 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8634 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8635 rc |= BXE_DEF_SB_ATT_IDX; 8636 } 8637 8638 if (sc->def_idx != def_sb->sp_sb.running_index) { 8639 sc->def_idx = def_sb->sp_sb.running_index; 8640 rc |= BXE_DEF_SB_IDX; 8641 } 8642 8643 mb(); 8644 8645 return (rc); 8646 } 8647 8648 static inline struct ecore_queue_sp_obj * 8649 bxe_cid_to_q_obj(struct bxe_softc *sc, 8650 uint32_t cid) 8651 { 8652 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8653 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8654 } 8655 8656 static void 8657 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8658 { 8659 struct ecore_mcast_ramrod_params rparam; 8660 int rc; 8661 8662 memset(&rparam, 0, sizeof(rparam)); 8663 8664 rparam.mcast_obj = &sc->mcast_obj; 8665 8666 BXE_MCAST_LOCK(sc); 8667 8668 /* clear pending state for the last command */ 8669 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8670 8671 /* if there are pending mcast commands - send them */ 8672 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8673 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8674 if (rc < 0) { 8675 BLOGD(sc, DBG_SP, 8676 "ERROR: Failed to send pending mcast commands (%d)\n", 8677 rc); 8678 } 8679 } 8680 8681 BXE_MCAST_UNLOCK(sc); 8682 } 8683 8684 static void 8685 bxe_handle_classification_eqe(struct bxe_softc *sc, 8686 union event_ring_elem *elem) 8687 { 8688 unsigned long ramrod_flags = 0; 8689 int rc = 0; 8690 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8691 struct ecore_vlan_mac_obj *vlan_mac_obj; 8692 8693 /* always push next commands out, don't wait here */ 8694 bit_set(&ramrod_flags, RAMROD_CONT); 8695 8696 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8697 case ECORE_FILTER_MAC_PENDING: 8698 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8699 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8700 break; 8701 8702 case ECORE_FILTER_MCAST_PENDING: 8703 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8704 /* 8705 * This is only relevant for 57710 where multicast MACs are 8706 * configured as unicast MACs using the same ramrod. 8707 */ 8708 bxe_handle_mcast_eqe(sc); 8709 return; 8710 8711 default: 8712 BLOGE(sc, "Unsupported classification command: %d\n", 8713 elem->message.data.eth_event.echo); 8714 return; 8715 } 8716 8717 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8718 8719 if (rc < 0) { 8720 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8721 } else if (rc > 0) { 8722 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8723 } 8724 } 8725 8726 static void 8727 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8728 union event_ring_elem *elem) 8729 { 8730 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8731 8732 /* send rx_mode command again if was requested */ 8733 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8734 &sc->sp_state)) { 8735 bxe_set_storm_rx_mode(sc); 8736 } 8737 #if 0 8738 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, 8739 &sc->sp_state)) { 8740 bxe_set_iscsi_eth_rx_mode(sc, TRUE); 8741 } 8742 else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, 8743 &sc->sp_state)) { 8744 bxe_set_iscsi_eth_rx_mode(sc, FALSE); 8745 } 8746 #endif 8747 } 8748 8749 static void 8750 bxe_update_eq_prod(struct bxe_softc *sc, 8751 uint16_t prod) 8752 { 8753 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8754 wmb(); /* keep prod updates ordered */ 8755 } 8756 8757 static void 8758 bxe_eq_int(struct bxe_softc *sc) 8759 { 8760 uint16_t hw_cons, sw_cons, sw_prod; 8761 union event_ring_elem *elem; 8762 uint8_t echo; 8763 uint32_t cid; 8764 uint8_t opcode; 8765 int spqe_cnt = 0; 8766 struct ecore_queue_sp_obj *q_obj; 8767 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8768 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8769 8770 hw_cons = le16toh(*sc->eq_cons_sb); 8771 8772 /* 8773 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8774 * when we get to the next-page we need to adjust so the loop 8775 * condition below will be met. The next element is the size of a 8776 * regular element and hence incrementing by 1 8777 */ 8778 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8779 hw_cons++; 8780 } 8781 8782 /* 8783 * This function may never run in parallel with itself for a 8784 * specific sc and no need for a read memory barrier here. 8785 */ 8786 sw_cons = sc->eq_cons; 8787 sw_prod = sc->eq_prod; 8788 8789 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8790 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8791 8792 for (; 8793 sw_cons != hw_cons; 8794 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8795 8796 elem = &sc->eq[EQ_DESC(sw_cons)]; 8797 8798 #if 0 8799 int rc; 8800 rc = bxe_iov_eq_sp_event(sc, elem); 8801 if (!rc) { 8802 BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); 8803 goto next_spqe; 8804 } 8805 #endif 8806 8807 /* elem CID originates from FW, actually LE */ 8808 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8809 opcode = elem->message.opcode; 8810 8811 /* handle eq element */ 8812 switch (opcode) { 8813 #if 0 8814 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 8815 BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); 8816 bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); 8817 continue; 8818 #endif 8819 8820 case EVENT_RING_OPCODE_STAT_QUERY: 8821 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8822 sc->stats_comp++); 8823 /* nothing to do with stats comp */ 8824 goto next_spqe; 8825 8826 case EVENT_RING_OPCODE_CFC_DEL: 8827 /* handle according to cid range */ 8828 /* we may want to verify here that the sc state is HALTING */ 8829 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8830 q_obj = bxe_cid_to_q_obj(sc, cid); 8831 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8832 break; 8833 } 8834 goto next_spqe; 8835 8836 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8837 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8838 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8839 break; 8840 } 8841 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8842 goto next_spqe; 8843 8844 case EVENT_RING_OPCODE_START_TRAFFIC: 8845 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8846 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8847 break; 8848 } 8849 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8850 goto next_spqe; 8851 8852 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8853 echo = elem->message.data.function_update_event.echo; 8854 if (echo == SWITCH_UPDATE) { 8855 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8856 if (f_obj->complete_cmd(sc, f_obj, 8857 ECORE_F_CMD_SWITCH_UPDATE)) { 8858 break; 8859 } 8860 } 8861 else { 8862 BLOGD(sc, DBG_SP, 8863 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8864 #if 0 8865 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); 8866 /* 8867 * We will perform the queues update from the sp_core_task as 8868 * all queue SP operations should run with CORE_LOCK. 8869 */ 8870 bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); 8871 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8872 #endif 8873 } 8874 goto next_spqe; 8875 8876 #if 0 8877 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 8878 f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); 8879 bxe_after_afex_vif_lists(sc, elem); 8880 goto next_spqe; 8881 #endif 8882 8883 case EVENT_RING_OPCODE_FORWARD_SETUP: 8884 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8885 if (q_obj->complete_cmd(sc, q_obj, 8886 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8887 break; 8888 } 8889 goto next_spqe; 8890 8891 case EVENT_RING_OPCODE_FUNCTION_START: 8892 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8893 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8894 break; 8895 } 8896 goto next_spqe; 8897 8898 case EVENT_RING_OPCODE_FUNCTION_STOP: 8899 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8900 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8901 break; 8902 } 8903 goto next_spqe; 8904 } 8905 8906 switch (opcode | sc->state) { 8907 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8908 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8909 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8910 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8911 rss_raw->clear_pending(rss_raw); 8912 break; 8913 8914 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8915 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8916 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8917 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8918 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8919 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8920 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8921 bxe_handle_classification_eqe(sc, elem); 8922 break; 8923 8924 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8925 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8926 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8927 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8928 bxe_handle_mcast_eqe(sc); 8929 break; 8930 8931 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8932 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8933 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8934 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8935 bxe_handle_rx_mode_eqe(sc, elem); 8936 break; 8937 8938 default: 8939 /* unknown event log error and continue */ 8940 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8941 elem->message.opcode, sc->state); 8942 } 8943 8944 next_spqe: 8945 spqe_cnt++; 8946 } /* for */ 8947 8948 mb(); 8949 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8950 8951 sc->eq_cons = sw_cons; 8952 sc->eq_prod = sw_prod; 8953 8954 /* make sure that above mem writes were issued towards the memory */ 8955 wmb(); 8956 8957 /* update producer */ 8958 bxe_update_eq_prod(sc, sc->eq_prod); 8959 } 8960 8961 static void 8962 bxe_handle_sp_tq(void *context, 8963 int pending) 8964 { 8965 struct bxe_softc *sc = (struct bxe_softc *)context; 8966 uint16_t status; 8967 8968 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8969 8970 /* what work needs to be performed? */ 8971 status = bxe_update_dsb_idx(sc); 8972 8973 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8974 8975 /* HW attentions */ 8976 if (status & BXE_DEF_SB_ATT_IDX) { 8977 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8978 bxe_attn_int(sc); 8979 status &= ~BXE_DEF_SB_ATT_IDX; 8980 } 8981 8982 /* SP events: STAT_QUERY and others */ 8983 if (status & BXE_DEF_SB_IDX) { 8984 /* handle EQ completions */ 8985 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8986 bxe_eq_int(sc); 8987 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8988 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8989 status &= ~BXE_DEF_SB_IDX; 8990 } 8991 8992 /* if status is non zero then something went wrong */ 8993 if (__predict_false(status)) { 8994 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8995 } 8996 8997 /* ack status block only if something was actually handled */ 8998 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8999 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 9000 9001 /* 9002 * Must be called after the EQ processing (since eq leads to sriov 9003 * ramrod completion flows). 9004 * This flow may have been scheduled by the arrival of a ramrod 9005 * completion, or by the sriov code rescheduling itself. 9006 */ 9007 // XXX bxe_iov_sp_task(sc); 9008 9009 #if 0 9010 /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ 9011 if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, 9012 &sc->sp_state)) { 9013 bxe_link_report(sc); 9014 bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 9015 } 9016 #endif 9017 } 9018 9019 static void 9020 bxe_handle_fp_tq(void *context, 9021 int pending) 9022 { 9023 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 9024 struct bxe_softc *sc = fp->sc; 9025 uint8_t more_tx = FALSE; 9026 uint8_t more_rx = FALSE; 9027 9028 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 9029 9030 /* XXX 9031 * IFF_DRV_RUNNING state can't be checked here since we process 9032 * slowpath events on a client queue during setup. Instead 9033 * we need to add a "process/continue" flag here that the driver 9034 * can use to tell the task here not to do anything. 9035 */ 9036 #if 0 9037 if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) { 9038 return; 9039 } 9040 #endif 9041 9042 /* update the fastpath index */ 9043 bxe_update_fp_sb_idx(fp); 9044 9045 /* XXX add loop here if ever support multiple tx CoS */ 9046 /* fp->txdata[cos] */ 9047 if (bxe_has_tx_work(fp)) { 9048 BXE_FP_TX_LOCK(fp); 9049 more_tx = bxe_txeof(sc, fp); 9050 BXE_FP_TX_UNLOCK(fp); 9051 } 9052 9053 if (bxe_has_rx_work(fp)) { 9054 more_rx = bxe_rxeof(sc, fp); 9055 } 9056 9057 if (more_rx /*|| more_tx*/) { 9058 /* still more work to do */ 9059 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9060 return; 9061 } 9062 9063 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9064 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9065 } 9066 9067 static void 9068 bxe_task_fp(struct bxe_fastpath *fp) 9069 { 9070 struct bxe_softc *sc = fp->sc; 9071 uint8_t more_tx = FALSE; 9072 uint8_t more_rx = FALSE; 9073 9074 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 9075 9076 /* update the fastpath index */ 9077 bxe_update_fp_sb_idx(fp); 9078 9079 /* XXX add loop here if ever support multiple tx CoS */ 9080 /* fp->txdata[cos] */ 9081 if (bxe_has_tx_work(fp)) { 9082 BXE_FP_TX_LOCK(fp); 9083 more_tx = bxe_txeof(sc, fp); 9084 BXE_FP_TX_UNLOCK(fp); 9085 } 9086 9087 if (bxe_has_rx_work(fp)) { 9088 more_rx = bxe_rxeof(sc, fp); 9089 } 9090 9091 if (more_rx /*|| more_tx*/) { 9092 /* still more work to do, bail out if this ISR and process later */ 9093 taskqueue_enqueue_fast(fp->tq, &fp->tq_task); 9094 return; 9095 } 9096 9097 /* 9098 * Here we write the fastpath index taken before doing any tx or rx work. 9099 * It is very well possible other hw events occurred up to this point and 9100 * they were actually processed accordingly above. Since we're going to 9101 * write an older fastpath index, an interrupt is coming which we might 9102 * not do any work in. 9103 */ 9104 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 9105 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 9106 } 9107 9108 /* 9109 * Legacy interrupt entry point. 9110 * 9111 * Verifies that the controller generated the interrupt and 9112 * then calls a separate routine to handle the various 9113 * interrupt causes: link, RX, and TX. 9114 */ 9115 static void 9116 bxe_intr_legacy(void *xsc) 9117 { 9118 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9119 struct bxe_fastpath *fp; 9120 uint16_t status, mask; 9121 int i; 9122 9123 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 9124 9125 #if 0 9126 /* Don't handle any interrupts if we're not ready. */ 9127 if (__predict_false(sc->intr_sem != 0)) { 9128 return; 9129 } 9130 #endif 9131 9132 /* 9133 * 0 for ustorm, 1 for cstorm 9134 * the bits returned from ack_int() are 0-15 9135 * bit 0 = attention status block 9136 * bit 1 = fast path status block 9137 * a mask of 0x2 or more = tx/rx event 9138 * a mask of 1 = slow path event 9139 */ 9140 9141 status = bxe_ack_int(sc); 9142 9143 /* the interrupt is not for us */ 9144 if (__predict_false(status == 0)) { 9145 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 9146 return; 9147 } 9148 9149 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 9150 9151 FOR_EACH_ETH_QUEUE(sc, i) { 9152 fp = &sc->fp[i]; 9153 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 9154 if (status & mask) { 9155 /* acknowledge and disable further fastpath interrupts */ 9156 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9157 bxe_task_fp(fp); 9158 status &= ~mask; 9159 } 9160 } 9161 9162 #if 0 9163 if (CNIC_SUPPORT(sc)) { 9164 mask = 0x2; 9165 if (status & (mask | 0x1)) { 9166 ... 9167 status &= ~mask; 9168 } 9169 } 9170 #endif 9171 9172 if (__predict_false(status & 0x1)) { 9173 /* acknowledge and disable further slowpath interrupts */ 9174 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9175 9176 /* schedule slowpath handler */ 9177 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9178 9179 status &= ~0x1; 9180 } 9181 9182 if (__predict_false(status)) { 9183 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 9184 } 9185 } 9186 9187 /* slowpath interrupt entry point */ 9188 static void 9189 bxe_intr_sp(void *xsc) 9190 { 9191 struct bxe_softc *sc = (struct bxe_softc *)xsc; 9192 9193 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 9194 9195 /* acknowledge and disable further slowpath interrupts */ 9196 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9197 9198 /* schedule slowpath handler */ 9199 taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); 9200 } 9201 9202 /* fastpath interrupt entry point */ 9203 static void 9204 bxe_intr_fp(void *xfp) 9205 { 9206 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 9207 struct bxe_softc *sc = fp->sc; 9208 9209 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 9210 9211 BLOGD(sc, DBG_INTR, 9212 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 9213 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 9214 9215 #if 0 9216 /* Don't handle any interrupts if we're not ready. */ 9217 if (__predict_false(sc->intr_sem != 0)) { 9218 return; 9219 } 9220 #endif 9221 9222 /* acknowledge and disable further fastpath interrupts */ 9223 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 9224 9225 bxe_task_fp(fp); 9226 } 9227 9228 /* Release all interrupts allocated by the driver. */ 9229 static void 9230 bxe_interrupt_free(struct bxe_softc *sc) 9231 { 9232 int i; 9233 9234 switch (sc->interrupt_mode) { 9235 case INTR_MODE_INTX: 9236 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 9237 if (sc->intr[0].resource != NULL) { 9238 bus_release_resource(sc->dev, 9239 SYS_RES_IRQ, 9240 sc->intr[0].rid, 9241 sc->intr[0].resource); 9242 } 9243 break; 9244 case INTR_MODE_MSI: 9245 for (i = 0; i < sc->intr_count; i++) { 9246 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 9247 if (sc->intr[i].resource && sc->intr[i].rid) { 9248 bus_release_resource(sc->dev, 9249 SYS_RES_IRQ, 9250 sc->intr[i].rid, 9251 sc->intr[i].resource); 9252 } 9253 } 9254 pci_release_msi(sc->dev); 9255 break; 9256 case INTR_MODE_MSIX: 9257 for (i = 0; i < sc->intr_count; i++) { 9258 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 9259 if (sc->intr[i].resource && sc->intr[i].rid) { 9260 bus_release_resource(sc->dev, 9261 SYS_RES_IRQ, 9262 sc->intr[i].rid, 9263 sc->intr[i].resource); 9264 } 9265 } 9266 pci_release_msi(sc->dev); 9267 break; 9268 default: 9269 /* nothing to do as initial allocation failed */ 9270 break; 9271 } 9272 } 9273 9274 /* 9275 * This function determines and allocates the appropriate 9276 * interrupt based on system capabilites and user request. 9277 * 9278 * The user may force a particular interrupt mode, specify 9279 * the number of receive queues, specify the method for 9280 * distribuitng received frames to receive queues, or use 9281 * the default settings which will automatically select the 9282 * best supported combination. In addition, the OS may or 9283 * may not support certain combinations of these settings. 9284 * This routine attempts to reconcile the settings requested 9285 * by the user with the capabilites available from the system 9286 * to select the optimal combination of features. 9287 * 9288 * Returns: 9289 * 0 = Success, !0 = Failure. 9290 */ 9291 static int 9292 bxe_interrupt_alloc(struct bxe_softc *sc) 9293 { 9294 int msix_count = 0; 9295 int msi_count = 0; 9296 int num_requested = 0; 9297 int num_allocated = 0; 9298 int rid, i, j; 9299 int rc; 9300 9301 /* get the number of available MSI/MSI-X interrupts from the OS */ 9302 if (sc->interrupt_mode > 0) { 9303 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 9304 msix_count = pci_msix_count(sc->dev); 9305 } 9306 9307 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 9308 msi_count = pci_msi_count(sc->dev); 9309 } 9310 9311 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 9312 msi_count, msix_count); 9313 } 9314 9315 do { /* try allocating MSI-X interrupt resources (at least 2) */ 9316 if (sc->interrupt_mode != INTR_MODE_MSIX) { 9317 break; 9318 } 9319 9320 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 9321 (msix_count < 2)) { 9322 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9323 break; 9324 } 9325 9326 /* ask for the necessary number of MSI-X vectors */ 9327 num_requested = min((sc->num_queues + 1), msix_count); 9328 9329 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 9330 9331 num_allocated = num_requested; 9332 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 9333 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 9334 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9335 break; 9336 } 9337 9338 if (num_allocated < 2) { /* possible? */ 9339 BLOGE(sc, "MSI-X allocation less than 2!\n"); 9340 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9341 pci_release_msi(sc->dev); 9342 break; 9343 } 9344 9345 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 9346 num_requested, num_allocated); 9347 9348 /* best effort so use the number of vectors allocated to us */ 9349 sc->intr_count = num_allocated; 9350 sc->num_queues = num_allocated - 1; 9351 9352 rid = 1; /* initial resource identifier */ 9353 9354 /* allocate the MSI-X vectors */ 9355 for (i = 0; i < num_allocated; i++) { 9356 sc->intr[i].rid = (rid + i); 9357 9358 if ((sc->intr[i].resource = 9359 bus_alloc_resource_any(sc->dev, 9360 SYS_RES_IRQ, 9361 &sc->intr[i].rid, 9362 RF_ACTIVE)) == NULL) { 9363 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9364 i, (rid + i)); 9365 9366 for (j = (i - 1); j >= 0; j--) { 9367 bus_release_resource(sc->dev, 9368 SYS_RES_IRQ, 9369 sc->intr[j].rid, 9370 sc->intr[j].resource); 9371 } 9372 9373 sc->intr_count = 0; 9374 sc->num_queues = 0; 9375 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9376 pci_release_msi(sc->dev); 9377 break; 9378 } 9379 9380 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9381 } 9382 } while (0); 9383 9384 do { /* try allocating MSI vector resources (at least 2) */ 9385 if (sc->interrupt_mode != INTR_MODE_MSI) { 9386 break; 9387 } 9388 9389 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9390 (msi_count < 2)) { 9391 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9392 break; 9393 } 9394 9395 /* ask for the necessary number of MSI vectors */ 9396 num_requested = min((sc->num_queues + 1), msi_count); 9397 9398 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9399 9400 num_allocated = num_requested; 9401 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9402 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9403 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9404 break; 9405 } 9406 9407 if (num_allocated < 2) { /* possible? */ 9408 BLOGE(sc, "MSI allocation less than 2!\n"); 9409 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9410 pci_release_msi(sc->dev); 9411 break; 9412 } 9413 9414 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9415 num_requested, num_allocated); 9416 9417 /* best effort so use the number of vectors allocated to us */ 9418 sc->intr_count = num_allocated; 9419 sc->num_queues = num_allocated - 1; 9420 9421 rid = 1; /* initial resource identifier */ 9422 9423 /* allocate the MSI vectors */ 9424 for (i = 0; i < num_allocated; i++) { 9425 sc->intr[i].rid = (rid + i); 9426 9427 if ((sc->intr[i].resource = 9428 bus_alloc_resource_any(sc->dev, 9429 SYS_RES_IRQ, 9430 &sc->intr[i].rid, 9431 RF_ACTIVE)) == NULL) { 9432 BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n", 9433 i, (rid + i)); 9434 9435 for (j = (i - 1); j >= 0; j--) { 9436 bus_release_resource(sc->dev, 9437 SYS_RES_IRQ, 9438 sc->intr[j].rid, 9439 sc->intr[j].resource); 9440 } 9441 9442 sc->intr_count = 0; 9443 sc->num_queues = 0; 9444 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9445 pci_release_msi(sc->dev); 9446 break; 9447 } 9448 9449 BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i)); 9450 } 9451 } while (0); 9452 9453 do { /* try allocating INTx vector resources */ 9454 if (sc->interrupt_mode != INTR_MODE_INTX) { 9455 break; 9456 } 9457 9458 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9459 9460 /* only one vector for INTx */ 9461 sc->intr_count = 1; 9462 sc->num_queues = 1; 9463 9464 rid = 0; /* initial resource identifier */ 9465 9466 sc->intr[0].rid = rid; 9467 9468 if ((sc->intr[0].resource = 9469 bus_alloc_resource_any(sc->dev, 9470 SYS_RES_IRQ, 9471 &sc->intr[0].rid, 9472 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9473 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9474 sc->intr_count = 0; 9475 sc->num_queues = 0; 9476 sc->interrupt_mode = -1; /* Failed! */ 9477 break; 9478 } 9479 9480 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9481 } while (0); 9482 9483 if (sc->interrupt_mode == -1) { 9484 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9485 rc = 1; 9486 } else { 9487 BLOGD(sc, DBG_LOAD, 9488 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9489 sc->interrupt_mode, sc->num_queues); 9490 rc = 0; 9491 } 9492 9493 return (rc); 9494 } 9495 9496 static void 9497 bxe_interrupt_detach(struct bxe_softc *sc) 9498 { 9499 struct bxe_fastpath *fp; 9500 int i; 9501 9502 /* release interrupt resources */ 9503 for (i = 0; i < sc->intr_count; i++) { 9504 if (sc->intr[i].resource && sc->intr[i].tag) { 9505 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9506 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9507 } 9508 } 9509 9510 for (i = 0; i < sc->num_queues; i++) { 9511 fp = &sc->fp[i]; 9512 if (fp->tq) { 9513 taskqueue_drain(fp->tq, &fp->tq_task); 9514 taskqueue_free(fp->tq); 9515 fp->tq = NULL; 9516 } 9517 } 9518 9519 if (sc->rx_mode_tq) { 9520 taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); 9521 taskqueue_free(sc->rx_mode_tq); 9522 sc->rx_mode_tq = NULL; 9523 } 9524 9525 if (sc->sp_tq) { 9526 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9527 taskqueue_free(sc->sp_tq); 9528 sc->sp_tq = NULL; 9529 } 9530 } 9531 9532 /* 9533 * Enables interrupts and attach to the ISR. 9534 * 9535 * When using multiple MSI/MSI-X vectors the first vector 9536 * is used for slowpath operations while all remaining 9537 * vectors are used for fastpath operations. If only a 9538 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9539 * ISR must look for both slowpath and fastpath completions. 9540 */ 9541 static int 9542 bxe_interrupt_attach(struct bxe_softc *sc) 9543 { 9544 struct bxe_fastpath *fp; 9545 int rc = 0; 9546 int i; 9547 9548 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9549 "bxe%d_sp_tq", sc->unit); 9550 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9551 sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, 9552 taskqueue_thread_enqueue, 9553 &sc->sp_tq); 9554 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9555 "%s", sc->sp_tq_name); 9556 9557 snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), 9558 "bxe%d_rx_mode_tq", sc->unit); 9559 TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); 9560 sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, 9561 taskqueue_thread_enqueue, 9562 &sc->rx_mode_tq); 9563 taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ 9564 "%s", sc->rx_mode_tq_name); 9565 9566 for (i = 0; i < sc->num_queues; i++) { 9567 fp = &sc->fp[i]; 9568 snprintf(fp->tq_name, sizeof(fp->tq_name), 9569 "bxe%d_fp%d_tq", sc->unit, i); 9570 TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9571 fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, 9572 taskqueue_thread_enqueue, 9573 &fp->tq); 9574 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9575 "%s", fp->tq_name); 9576 } 9577 9578 /* setup interrupt handlers */ 9579 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9580 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9581 9582 /* 9583 * Setup the interrupt handler. Note that we pass the driver instance 9584 * to the interrupt handler for the slowpath. 9585 */ 9586 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9587 (INTR_TYPE_NET | INTR_MPSAFE), 9588 NULL, bxe_intr_sp, sc, 9589 &sc->intr[0].tag)) != 0) { 9590 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9591 goto bxe_interrupt_attach_exit; 9592 } 9593 9594 bus_describe_intr(sc->dev, sc->intr[0].resource, 9595 sc->intr[0].tag, "sp"); 9596 9597 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9598 9599 /* initialize the fastpath vectors (note the first was used for sp) */ 9600 for (i = 0; i < sc->num_queues; i++) { 9601 fp = &sc->fp[i]; 9602 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9603 9604 /* 9605 * Setup the interrupt handler. Note that we pass the 9606 * fastpath context to the interrupt handler in this 9607 * case. 9608 */ 9609 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9610 (INTR_TYPE_NET | INTR_MPSAFE), 9611 NULL, bxe_intr_fp, fp, 9612 &sc->intr[i + 1].tag)) != 0) { 9613 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9614 (i + 1), rc); 9615 goto bxe_interrupt_attach_exit; 9616 } 9617 9618 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9619 sc->intr[i + 1].tag, "fp%02d", i); 9620 9621 /* bind the fastpath instance to a cpu */ 9622 if (sc->num_queues > 1) { 9623 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9624 } 9625 9626 fp->state = BXE_FP_STATE_IRQ; 9627 } 9628 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9629 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n"); 9630 9631 /* 9632 * Setup the interrupt handler. Note that we pass the driver instance 9633 * to the interrupt handler for the slowpath. 9634 */ 9635 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9636 (INTR_TYPE_NET | INTR_MPSAFE), 9637 NULL, bxe_intr_sp, sc, 9638 &sc->intr[0].tag)) != 0) { 9639 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9640 goto bxe_interrupt_attach_exit; 9641 } 9642 9643 bus_describe_intr(sc->dev, sc->intr[0].resource, 9644 sc->intr[0].tag, "sp"); 9645 9646 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9647 9648 /* initialize the fastpath vectors (note the first was used for sp) */ 9649 for (i = 0; i < sc->num_queues; i++) { 9650 fp = &sc->fp[i]; 9651 BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1)); 9652 9653 /* 9654 * Setup the interrupt handler. Note that we pass the 9655 * fastpath context to the interrupt handler in this 9656 * case. 9657 */ 9658 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9659 (INTR_TYPE_NET | INTR_MPSAFE), 9660 NULL, bxe_intr_fp, fp, 9661 &sc->intr[i + 1].tag)) != 0) { 9662 BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n", 9663 (i + 1), rc); 9664 goto bxe_interrupt_attach_exit; 9665 } 9666 9667 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9668 sc->intr[i + 1].tag, "fp%02d", i); 9669 9670 /* bind the fastpath instance to a cpu */ 9671 if (sc->num_queues > 1) { 9672 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9673 } 9674 9675 fp->state = BXE_FP_STATE_IRQ; 9676 } 9677 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9678 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9679 9680 /* 9681 * Setup the interrupt handler. Note that we pass the 9682 * driver instance to the interrupt handler which 9683 * will handle both the slowpath and fastpath. 9684 */ 9685 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9686 (INTR_TYPE_NET | INTR_MPSAFE), 9687 NULL, bxe_intr_legacy, sc, 9688 &sc->intr[0].tag)) != 0) { 9689 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9690 goto bxe_interrupt_attach_exit; 9691 } 9692 } 9693 9694 bxe_interrupt_attach_exit: 9695 9696 return (rc); 9697 } 9698 9699 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9700 static int bxe_init_hw_common(struct bxe_softc *sc); 9701 static int bxe_init_hw_port(struct bxe_softc *sc); 9702 static int bxe_init_hw_func(struct bxe_softc *sc); 9703 static void bxe_reset_common(struct bxe_softc *sc); 9704 static void bxe_reset_port(struct bxe_softc *sc); 9705 static void bxe_reset_func(struct bxe_softc *sc); 9706 static int bxe_gunzip_init(struct bxe_softc *sc); 9707 static void bxe_gunzip_end(struct bxe_softc *sc); 9708 static int bxe_init_firmware(struct bxe_softc *sc); 9709 static void bxe_release_firmware(struct bxe_softc *sc); 9710 9711 static struct 9712 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9713 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9714 .init_hw_cmn = bxe_init_hw_common, 9715 .init_hw_port = bxe_init_hw_port, 9716 .init_hw_func = bxe_init_hw_func, 9717 9718 .reset_hw_cmn = bxe_reset_common, 9719 .reset_hw_port = bxe_reset_port, 9720 .reset_hw_func = bxe_reset_func, 9721 9722 .gunzip_init = bxe_gunzip_init, 9723 .gunzip_end = bxe_gunzip_end, 9724 9725 .init_fw = bxe_init_firmware, 9726 .release_fw = bxe_release_firmware, 9727 }; 9728 9729 static void 9730 bxe_init_func_obj(struct bxe_softc *sc) 9731 { 9732 sc->dmae_ready = 0; 9733 9734 ecore_init_func_obj(sc, 9735 &sc->func_obj, 9736 BXE_SP(sc, func_rdata), 9737 BXE_SP_MAPPING(sc, func_rdata), 9738 BXE_SP(sc, func_afex_rdata), 9739 BXE_SP_MAPPING(sc, func_afex_rdata), 9740 &bxe_func_sp_drv); 9741 } 9742 9743 static int 9744 bxe_init_hw(struct bxe_softc *sc, 9745 uint32_t load_code) 9746 { 9747 struct ecore_func_state_params func_params = { NULL }; 9748 int rc; 9749 9750 /* prepare the parameters for function state transitions */ 9751 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9752 9753 func_params.f_obj = &sc->func_obj; 9754 func_params.cmd = ECORE_F_CMD_HW_INIT; 9755 9756 func_params.params.hw_init.load_phase = load_code; 9757 9758 /* 9759 * Via a plethora of function pointers, we will eventually reach 9760 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9761 */ 9762 rc = ecore_func_state_change(sc, &func_params); 9763 9764 return (rc); 9765 } 9766 9767 static void 9768 bxe_fill(struct bxe_softc *sc, 9769 uint32_t addr, 9770 int fill, 9771 uint32_t len) 9772 { 9773 uint32_t i; 9774 9775 if (!(len % 4) && !(addr % 4)) { 9776 for (i = 0; i < len; i += 4) { 9777 REG_WR(sc, (addr + i), fill); 9778 } 9779 } else { 9780 for (i = 0; i < len; i++) { 9781 REG_WR8(sc, (addr + i), fill); 9782 } 9783 } 9784 } 9785 9786 /* writes FP SP data to FW - data_size in dwords */ 9787 static void 9788 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9789 int fw_sb_id, 9790 uint32_t *sb_data_p, 9791 uint32_t data_size) 9792 { 9793 int index; 9794 9795 for (index = 0; index < data_size; index++) { 9796 REG_WR(sc, 9797 (BAR_CSTRORM_INTMEM + 9798 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9799 (sizeof(uint32_t) * index)), 9800 *(sb_data_p + index)); 9801 } 9802 } 9803 9804 static void 9805 bxe_zero_fp_sb(struct bxe_softc *sc, 9806 int fw_sb_id) 9807 { 9808 struct hc_status_block_data_e2 sb_data_e2; 9809 struct hc_status_block_data_e1x sb_data_e1x; 9810 uint32_t *sb_data_p; 9811 uint32_t data_size = 0; 9812 9813 if (!CHIP_IS_E1x(sc)) { 9814 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9815 sb_data_e2.common.state = SB_DISABLED; 9816 sb_data_e2.common.p_func.vf_valid = FALSE; 9817 sb_data_p = (uint32_t *)&sb_data_e2; 9818 data_size = (sizeof(struct hc_status_block_data_e2) / 9819 sizeof(uint32_t)); 9820 } else { 9821 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9822 sb_data_e1x.common.state = SB_DISABLED; 9823 sb_data_e1x.common.p_func.vf_valid = FALSE; 9824 sb_data_p = (uint32_t *)&sb_data_e1x; 9825 data_size = (sizeof(struct hc_status_block_data_e1x) / 9826 sizeof(uint32_t)); 9827 } 9828 9829 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9830 9831 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9832 0, CSTORM_STATUS_BLOCK_SIZE); 9833 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9834 0, CSTORM_SYNC_BLOCK_SIZE); 9835 } 9836 9837 static void 9838 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9839 struct hc_sp_status_block_data *sp_sb_data) 9840 { 9841 int i; 9842 9843 for (i = 0; 9844 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9845 i++) { 9846 REG_WR(sc, 9847 (BAR_CSTRORM_INTMEM + 9848 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9849 (i * sizeof(uint32_t))), 9850 *((uint32_t *)sp_sb_data + i)); 9851 } 9852 } 9853 9854 static void 9855 bxe_zero_sp_sb(struct bxe_softc *sc) 9856 { 9857 struct hc_sp_status_block_data sp_sb_data; 9858 9859 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9860 9861 sp_sb_data.state = SB_DISABLED; 9862 sp_sb_data.p_func.vf_valid = FALSE; 9863 9864 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9865 9866 bxe_fill(sc, 9867 (BAR_CSTRORM_INTMEM + 9868 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9869 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9870 bxe_fill(sc, 9871 (BAR_CSTRORM_INTMEM + 9872 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9873 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9874 } 9875 9876 static void 9877 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9878 int igu_sb_id, 9879 int igu_seg_id) 9880 { 9881 hc_sm->igu_sb_id = igu_sb_id; 9882 hc_sm->igu_seg_id = igu_seg_id; 9883 hc_sm->timer_value = 0xFF; 9884 hc_sm->time_to_expire = 0xFFFFFFFF; 9885 } 9886 9887 static void 9888 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9889 { 9890 /* zero out state machine indices */ 9891 9892 /* rx indices */ 9893 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9894 9895 /* tx indices */ 9896 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9897 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9898 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9899 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9900 9901 /* map indices */ 9902 9903 /* rx indices */ 9904 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9905 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9906 9907 /* tx indices */ 9908 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9909 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9910 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9911 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9912 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9913 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9914 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9915 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9916 } 9917 9918 static void 9919 bxe_init_sb(struct bxe_softc *sc, 9920 bus_addr_t busaddr, 9921 int vfid, 9922 uint8_t vf_valid, 9923 int fw_sb_id, 9924 int igu_sb_id) 9925 { 9926 struct hc_status_block_data_e2 sb_data_e2; 9927 struct hc_status_block_data_e1x sb_data_e1x; 9928 struct hc_status_block_sm *hc_sm_p; 9929 uint32_t *sb_data_p; 9930 int igu_seg_id; 9931 int data_size; 9932 9933 if (CHIP_INT_MODE_IS_BC(sc)) { 9934 igu_seg_id = HC_SEG_ACCESS_NORM; 9935 } else { 9936 igu_seg_id = IGU_SEG_ACCESS_NORM; 9937 } 9938 9939 bxe_zero_fp_sb(sc, fw_sb_id); 9940 9941 if (!CHIP_IS_E1x(sc)) { 9942 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9943 sb_data_e2.common.state = SB_ENABLED; 9944 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9945 sb_data_e2.common.p_func.vf_id = vfid; 9946 sb_data_e2.common.p_func.vf_valid = vf_valid; 9947 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9948 sb_data_e2.common.same_igu_sb_1b = TRUE; 9949 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9950 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9951 hc_sm_p = sb_data_e2.common.state_machine; 9952 sb_data_p = (uint32_t *)&sb_data_e2; 9953 data_size = (sizeof(struct hc_status_block_data_e2) / 9954 sizeof(uint32_t)); 9955 bxe_map_sb_state_machines(sb_data_e2.index_data); 9956 } else { 9957 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9958 sb_data_e1x.common.state = SB_ENABLED; 9959 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9960 sb_data_e1x.common.p_func.vf_id = 0xff; 9961 sb_data_e1x.common.p_func.vf_valid = FALSE; 9962 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9963 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9964 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9965 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9966 hc_sm_p = sb_data_e1x.common.state_machine; 9967 sb_data_p = (uint32_t *)&sb_data_e1x; 9968 data_size = (sizeof(struct hc_status_block_data_e1x) / 9969 sizeof(uint32_t)); 9970 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9971 } 9972 9973 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9974 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9975 9976 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9977 9978 /* write indices to HW - PCI guarantees endianity of regpairs */ 9979 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9980 } 9981 9982 static inline uint8_t 9983 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9984 { 9985 if (CHIP_IS_E1x(fp->sc)) { 9986 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9987 } else { 9988 return (fp->cl_id); 9989 } 9990 } 9991 9992 static inline uint32_t 9993 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9994 struct bxe_fastpath *fp) 9995 { 9996 uint32_t offset = BAR_USTRORM_INTMEM; 9997 9998 #if 0 9999 if (IS_VF(sc)) { 10000 return (PXP_VF_ADDR_USDM_QUEUES_START + 10001 (sc->acquire_resp.resc.hw_qid[fp->index] * 10002 sizeof(struct ustorm_queue_zone_data))); 10003 } else 10004 #endif 10005 if (!CHIP_IS_E1x(sc)) { 10006 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 10007 } else { 10008 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 10009 } 10010 10011 return (offset); 10012 } 10013 10014 static void 10015 bxe_init_eth_fp(struct bxe_softc *sc, 10016 int idx) 10017 { 10018 struct bxe_fastpath *fp = &sc->fp[idx]; 10019 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 10020 unsigned long q_type = 0; 10021 int cos; 10022 10023 fp->sc = sc; 10024 fp->index = idx; 10025 10026 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 10027 "bxe%d_fp%d_tx_lock", sc->unit, idx); 10028 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 10029 10030 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 10031 "bxe%d_fp%d_rx_lock", sc->unit, idx); 10032 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 10033 10034 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 10035 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 10036 10037 fp->cl_id = (CHIP_IS_E1x(sc)) ? 10038 (SC_L_ID(sc) + idx) : 10039 /* want client ID same as IGU SB ID for non-E1 */ 10040 fp->igu_sb_id; 10041 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 10042 10043 /* setup sb indices */ 10044 if (!CHIP_IS_E1x(sc)) { 10045 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 10046 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 10047 } else { 10048 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 10049 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 10050 } 10051 10052 /* init shortcut */ 10053 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 10054 10055 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 10056 10057 /* 10058 * XXX If multiple CoS is ever supported then each fastpath structure 10059 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 10060 */ 10061 for (cos = 0; cos < sc->max_cos; cos++) { 10062 cids[cos] = idx; 10063 } 10064 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 10065 10066 /* nothing more for a VF to do */ 10067 if (IS_VF(sc)) { 10068 return; 10069 } 10070 10071 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 10072 fp->fw_sb_id, fp->igu_sb_id); 10073 10074 bxe_update_fp_sb_idx(fp); 10075 10076 /* Configure Queue State object */ 10077 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 10078 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 10079 10080 ecore_init_queue_obj(sc, 10081 &sc->sp_objs[idx].q_obj, 10082 fp->cl_id, 10083 cids, 10084 sc->max_cos, 10085 SC_FUNC(sc), 10086 BXE_SP(sc, q_rdata), 10087 BXE_SP_MAPPING(sc, q_rdata), 10088 q_type); 10089 10090 /* configure classification DBs */ 10091 ecore_init_mac_obj(sc, 10092 &sc->sp_objs[idx].mac_obj, 10093 fp->cl_id, 10094 idx, 10095 SC_FUNC(sc), 10096 BXE_SP(sc, mac_rdata), 10097 BXE_SP_MAPPING(sc, mac_rdata), 10098 ECORE_FILTER_MAC_PENDING, 10099 &sc->sp_state, 10100 ECORE_OBJ_TYPE_RX_TX, 10101 &sc->macs_pool); 10102 10103 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 10104 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 10105 } 10106 10107 static inline void 10108 bxe_update_rx_prod(struct bxe_softc *sc, 10109 struct bxe_fastpath *fp, 10110 uint16_t rx_bd_prod, 10111 uint16_t rx_cq_prod, 10112 uint16_t rx_sge_prod) 10113 { 10114 struct ustorm_eth_rx_producers rx_prods = { 0 }; 10115 uint32_t i; 10116 10117 /* update producers */ 10118 rx_prods.bd_prod = rx_bd_prod; 10119 rx_prods.cqe_prod = rx_cq_prod; 10120 rx_prods.sge_prod = rx_sge_prod; 10121 10122 /* 10123 * Make sure that the BD and SGE data is updated before updating the 10124 * producers since FW might read the BD/SGE right after the producer 10125 * is updated. 10126 * This is only applicable for weak-ordered memory model archs such 10127 * as IA-64. The following barrier is also mandatory since FW will 10128 * assumes BDs must have buffers. 10129 */ 10130 wmb(); 10131 10132 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 10133 REG_WR(sc, 10134 (fp->ustorm_rx_prods_offset + (i * 4)), 10135 ((uint32_t *)&rx_prods)[i]); 10136 } 10137 10138 wmb(); /* keep prod updates ordered */ 10139 10140 BLOGD(sc, DBG_RX, 10141 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 10142 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 10143 } 10144 10145 static void 10146 bxe_init_rx_rings(struct bxe_softc *sc) 10147 { 10148 struct bxe_fastpath *fp; 10149 int i; 10150 10151 for (i = 0; i < sc->num_queues; i++) { 10152 fp = &sc->fp[i]; 10153 10154 fp->rx_bd_cons = 0; 10155 10156 /* 10157 * Activate the BD ring... 10158 * Warning, this will generate an interrupt (to the TSTORM) 10159 * so this can only be done after the chip is initialized 10160 */ 10161 bxe_update_rx_prod(sc, fp, 10162 fp->rx_bd_prod, 10163 fp->rx_cq_prod, 10164 fp->rx_sge_prod); 10165 10166 if (i != 0) { 10167 continue; 10168 } 10169 10170 if (CHIP_IS_E1(sc)) { 10171 REG_WR(sc, 10172 (BAR_USTRORM_INTMEM + 10173 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 10174 U64_LO(fp->rcq_dma.paddr)); 10175 REG_WR(sc, 10176 (BAR_USTRORM_INTMEM + 10177 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 10178 U64_HI(fp->rcq_dma.paddr)); 10179 } 10180 } 10181 } 10182 10183 static void 10184 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 10185 { 10186 SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 10187 fp->tx_db.data.zero_fill1 = 0; 10188 fp->tx_db.data.prod = 0; 10189 10190 fp->tx_pkt_prod = 0; 10191 fp->tx_pkt_cons = 0; 10192 fp->tx_bd_prod = 0; 10193 fp->tx_bd_cons = 0; 10194 fp->eth_q_stats.tx_pkts = 0; 10195 } 10196 10197 static inline void 10198 bxe_init_tx_rings(struct bxe_softc *sc) 10199 { 10200 int i; 10201 10202 for (i = 0; i < sc->num_queues; i++) { 10203 #if 0 10204 uint8_t cos; 10205 for (cos = 0; cos < sc->max_cos; cos++) { 10206 bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); 10207 } 10208 #else 10209 bxe_init_tx_ring_one(&sc->fp[i]); 10210 #endif 10211 } 10212 } 10213 10214 static void 10215 bxe_init_def_sb(struct bxe_softc *sc) 10216 { 10217 struct host_sp_status_block *def_sb = sc->def_sb; 10218 bus_addr_t mapping = sc->def_sb_dma.paddr; 10219 int igu_sp_sb_index; 10220 int igu_seg_id; 10221 int port = SC_PORT(sc); 10222 int func = SC_FUNC(sc); 10223 int reg_offset, reg_offset_en5; 10224 uint64_t section; 10225 int index, sindex; 10226 struct hc_sp_status_block_data sp_sb_data; 10227 10228 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 10229 10230 if (CHIP_INT_MODE_IS_BC(sc)) { 10231 igu_sp_sb_index = DEF_SB_IGU_ID; 10232 igu_seg_id = HC_SEG_ACCESS_DEF; 10233 } else { 10234 igu_sp_sb_index = sc->igu_dsb_id; 10235 igu_seg_id = IGU_SEG_ACCESS_DEF; 10236 } 10237 10238 /* attentions */ 10239 section = ((uint64_t)mapping + 10240 offsetof(struct host_sp_status_block, atten_status_block)); 10241 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 10242 sc->attn_state = 0; 10243 10244 reg_offset = (port) ? 10245 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 10246 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 10247 reg_offset_en5 = (port) ? 10248 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 10249 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 10250 10251 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 10252 /* take care of sig[0]..sig[4] */ 10253 for (sindex = 0; sindex < 4; sindex++) { 10254 sc->attn_group[index].sig[sindex] = 10255 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 10256 } 10257 10258 if (!CHIP_IS_E1x(sc)) { 10259 /* 10260 * enable5 is separate from the rest of the registers, 10261 * and the address skip is 4 and not 16 between the 10262 * different groups 10263 */ 10264 sc->attn_group[index].sig[4] = 10265 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 10266 } else { 10267 sc->attn_group[index].sig[4] = 0; 10268 } 10269 } 10270 10271 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10272 reg_offset = (port) ? 10273 HC_REG_ATTN_MSG1_ADDR_L : 10274 HC_REG_ATTN_MSG0_ADDR_L; 10275 REG_WR(sc, reg_offset, U64_LO(section)); 10276 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 10277 } else if (!CHIP_IS_E1x(sc)) { 10278 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 10279 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 10280 } 10281 10282 section = ((uint64_t)mapping + 10283 offsetof(struct host_sp_status_block, sp_sb)); 10284 10285 bxe_zero_sp_sb(sc); 10286 10287 /* PCI guarantees endianity of regpair */ 10288 sp_sb_data.state = SB_ENABLED; 10289 sp_sb_data.host_sb_addr.lo = U64_LO(section); 10290 sp_sb_data.host_sb_addr.hi = U64_HI(section); 10291 sp_sb_data.igu_sb_id = igu_sp_sb_index; 10292 sp_sb_data.igu_seg_id = igu_seg_id; 10293 sp_sb_data.p_func.pf_id = func; 10294 sp_sb_data.p_func.vnic_id = SC_VN(sc); 10295 sp_sb_data.p_func.vf_id = 0xff; 10296 10297 bxe_wr_sp_sb_data(sc, &sp_sb_data); 10298 10299 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 10300 } 10301 10302 static void 10303 bxe_init_sp_ring(struct bxe_softc *sc) 10304 { 10305 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 10306 sc->spq_prod_idx = 0; 10307 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 10308 sc->spq_prod_bd = sc->spq; 10309 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 10310 } 10311 10312 static void 10313 bxe_init_eq_ring(struct bxe_softc *sc) 10314 { 10315 union event_ring_elem *elem; 10316 int i; 10317 10318 for (i = 1; i <= NUM_EQ_PAGES; i++) { 10319 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 10320 10321 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 10322 BCM_PAGE_SIZE * 10323 (i % NUM_EQ_PAGES))); 10324 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 10325 BCM_PAGE_SIZE * 10326 (i % NUM_EQ_PAGES))); 10327 } 10328 10329 sc->eq_cons = 0; 10330 sc->eq_prod = NUM_EQ_DESC; 10331 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 10332 10333 atomic_store_rel_long(&sc->eq_spq_left, 10334 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 10335 NUM_EQ_DESC) - 1)); 10336 } 10337 10338 static void 10339 bxe_init_internal_common(struct bxe_softc *sc) 10340 { 10341 int i; 10342 10343 if (IS_MF_SI(sc)) { 10344 /* 10345 * In switch independent mode, the TSTORM needs to accept 10346 * packets that failed classification, since approximate match 10347 * mac addresses aren't written to NIG LLH. 10348 */ 10349 REG_WR8(sc, 10350 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10351 2); 10352 } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ 10353 REG_WR8(sc, 10354 (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 10355 0); 10356 } 10357 10358 /* 10359 * Zero this manually as its initialization is currently missing 10360 * in the initTool. 10361 */ 10362 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 10363 REG_WR(sc, 10364 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 10365 0); 10366 } 10367 10368 if (!CHIP_IS_E1x(sc)) { 10369 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 10370 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 10371 } 10372 } 10373 10374 static void 10375 bxe_init_internal(struct bxe_softc *sc, 10376 uint32_t load_code) 10377 { 10378 switch (load_code) { 10379 case FW_MSG_CODE_DRV_LOAD_COMMON: 10380 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 10381 bxe_init_internal_common(sc); 10382 /* no break */ 10383 10384 case FW_MSG_CODE_DRV_LOAD_PORT: 10385 /* nothing to do */ 10386 /* no break */ 10387 10388 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 10389 /* internal memory per function is initialized inside bxe_pf_init */ 10390 break; 10391 10392 default: 10393 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 10394 break; 10395 } 10396 } 10397 10398 static void 10399 storm_memset_func_cfg(struct bxe_softc *sc, 10400 struct tstorm_eth_function_common_config *tcfg, 10401 uint16_t abs_fid) 10402 { 10403 uint32_t addr; 10404 size_t size; 10405 10406 addr = (BAR_TSTRORM_INTMEM + 10407 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 10408 size = sizeof(struct tstorm_eth_function_common_config); 10409 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 10410 } 10411 10412 static void 10413 bxe_func_init(struct bxe_softc *sc, 10414 struct bxe_func_init_params *p) 10415 { 10416 struct tstorm_eth_function_common_config tcfg = { 0 }; 10417 10418 if (CHIP_IS_E1x(sc)) { 10419 storm_memset_func_cfg(sc, &tcfg, p->func_id); 10420 } 10421 10422 /* Enable the function in the FW */ 10423 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 10424 storm_memset_func_en(sc, p->func_id, 1); 10425 10426 /* spq */ 10427 if (p->func_flgs & FUNC_FLG_SPQ) { 10428 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 10429 REG_WR(sc, 10430 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 10431 p->spq_prod); 10432 } 10433 } 10434 10435 /* 10436 * Calculates the sum of vn_min_rates. 10437 * It's needed for further normalizing of the min_rates. 10438 * Returns: 10439 * sum of vn_min_rates. 10440 * or 10441 * 0 - if all the min_rates are 0. 10442 * In the later case fainess algorithm should be deactivated. 10443 * If all min rates are not zero then those that are zeroes will be set to 1. 10444 */ 10445 static void 10446 bxe_calc_vn_min(struct bxe_softc *sc, 10447 struct cmng_init_input *input) 10448 { 10449 uint32_t vn_cfg; 10450 uint32_t vn_min_rate; 10451 int all_zero = 1; 10452 int vn; 10453 10454 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10455 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10456 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10457 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10458 10459 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10460 /* skip hidden VNs */ 10461 vn_min_rate = 0; 10462 } else if (!vn_min_rate) { 10463 /* If min rate is zero - set it to 100 */ 10464 vn_min_rate = DEF_MIN_RATE; 10465 } else { 10466 all_zero = 0; 10467 } 10468 10469 input->vnic_min_rate[vn] = vn_min_rate; 10470 } 10471 10472 /* if ETS or all min rates are zeros - disable fairness */ 10473 if (BXE_IS_ETS_ENABLED(sc)) { 10474 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10475 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10476 } else if (all_zero) { 10477 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10478 BLOGD(sc, DBG_LOAD, 10479 "Fariness disabled (all MIN values are zeroes)\n"); 10480 } else { 10481 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10482 } 10483 } 10484 10485 static inline uint16_t 10486 bxe_extract_max_cfg(struct bxe_softc *sc, 10487 uint32_t mf_cfg) 10488 { 10489 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10490 FUNC_MF_CFG_MAX_BW_SHIFT); 10491 10492 if (!max_cfg) { 10493 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10494 max_cfg = 100; 10495 } 10496 10497 return (max_cfg); 10498 } 10499 10500 static void 10501 bxe_calc_vn_max(struct bxe_softc *sc, 10502 int vn, 10503 struct cmng_init_input *input) 10504 { 10505 uint16_t vn_max_rate; 10506 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10507 uint32_t max_cfg; 10508 10509 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10510 vn_max_rate = 0; 10511 } else { 10512 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10513 10514 if (IS_MF_SI(sc)) { 10515 /* max_cfg in percents of linkspeed */ 10516 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10517 } else { /* SD modes */ 10518 /* max_cfg is absolute in 100Mb units */ 10519 vn_max_rate = (max_cfg * 100); 10520 } 10521 } 10522 10523 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10524 10525 input->vnic_max_rate[vn] = vn_max_rate; 10526 } 10527 10528 static void 10529 bxe_cmng_fns_init(struct bxe_softc *sc, 10530 uint8_t read_cfg, 10531 uint8_t cmng_type) 10532 { 10533 struct cmng_init_input input; 10534 int vn; 10535 10536 memset(&input, 0, sizeof(struct cmng_init_input)); 10537 10538 input.port_rate = sc->link_vars.line_speed; 10539 10540 if (cmng_type == CMNG_FNS_MINMAX) { 10541 /* read mf conf from shmem */ 10542 if (read_cfg) { 10543 bxe_read_mf_cfg(sc); 10544 } 10545 10546 /* get VN min rate and enable fairness if not 0 */ 10547 bxe_calc_vn_min(sc, &input); 10548 10549 /* get VN max rate */ 10550 if (sc->port.pmf) { 10551 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10552 bxe_calc_vn_max(sc, vn, &input); 10553 } 10554 } 10555 10556 /* always enable rate shaping and fairness */ 10557 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10558 10559 ecore_init_cmng(&input, &sc->cmng); 10560 return; 10561 } 10562 10563 /* rate shaping and fairness are disabled */ 10564 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10565 } 10566 10567 static int 10568 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10569 { 10570 if (CHIP_REV_IS_SLOW(sc)) { 10571 return (CMNG_FNS_NONE); 10572 } 10573 10574 if (IS_MF(sc)) { 10575 return (CMNG_FNS_MINMAX); 10576 } 10577 10578 return (CMNG_FNS_NONE); 10579 } 10580 10581 static void 10582 storm_memset_cmng(struct bxe_softc *sc, 10583 struct cmng_init *cmng, 10584 uint8_t port) 10585 { 10586 int vn; 10587 int func; 10588 uint32_t addr; 10589 size_t size; 10590 10591 addr = (BAR_XSTRORM_INTMEM + 10592 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10593 size = sizeof(struct cmng_struct_per_port); 10594 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10595 10596 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10597 func = func_by_vn(sc, vn); 10598 10599 addr = (BAR_XSTRORM_INTMEM + 10600 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10601 size = sizeof(struct rate_shaping_vars_per_vn); 10602 ecore_storm_memset_struct(sc, addr, size, 10603 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10604 10605 addr = (BAR_XSTRORM_INTMEM + 10606 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10607 size = sizeof(struct fairness_vars_per_vn); 10608 ecore_storm_memset_struct(sc, addr, size, 10609 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10610 } 10611 } 10612 10613 static void 10614 bxe_pf_init(struct bxe_softc *sc) 10615 { 10616 struct bxe_func_init_params func_init = { 0 }; 10617 struct event_ring_data eq_data = { { 0 } }; 10618 uint16_t flags; 10619 10620 if (!CHIP_IS_E1x(sc)) { 10621 /* reset IGU PF statistics: MSIX + ATTN */ 10622 /* PF */ 10623 REG_WR(sc, 10624 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10625 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10626 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10627 0); 10628 /* ATTN */ 10629 REG_WR(sc, 10630 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10631 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10632 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10633 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10634 0); 10635 } 10636 10637 /* function setup flags */ 10638 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10639 10640 /* 10641 * This flag is relevant for E1x only. 10642 * E2 doesn't have a TPA configuration in a function level. 10643 */ 10644 flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10645 10646 func_init.func_flgs = flags; 10647 func_init.pf_id = SC_FUNC(sc); 10648 func_init.func_id = SC_FUNC(sc); 10649 func_init.spq_map = sc->spq_dma.paddr; 10650 func_init.spq_prod = sc->spq_prod_idx; 10651 10652 bxe_func_init(sc, &func_init); 10653 10654 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10655 10656 /* 10657 * Congestion management values depend on the link rate. 10658 * There is no active link so initial link rate is set to 10Gbps. 10659 * When the link comes up the congestion management values are 10660 * re-calculated according to the actual link rate. 10661 */ 10662 sc->link_vars.line_speed = SPEED_10000; 10663 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10664 10665 /* Only the PMF sets the HW */ 10666 if (sc->port.pmf) { 10667 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10668 } 10669 10670 /* init Event Queue - PCI bus guarantees correct endainity */ 10671 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10672 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10673 eq_data.producer = sc->eq_prod; 10674 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10675 eq_data.sb_id = DEF_SB_ID; 10676 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10677 } 10678 10679 static void 10680 bxe_hc_int_enable(struct bxe_softc *sc) 10681 { 10682 int port = SC_PORT(sc); 10683 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10684 uint32_t val = REG_RD(sc, addr); 10685 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10686 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10687 (sc->intr_count == 1)) ? TRUE : FALSE; 10688 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10689 10690 if (msix) { 10691 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10692 HC_CONFIG_0_REG_INT_LINE_EN_0); 10693 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10694 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10695 if (single_msix) { 10696 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10697 } 10698 } else if (msi) { 10699 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10700 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10701 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10702 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10703 } else { 10704 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10705 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10706 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10707 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10708 10709 if (!CHIP_IS_E1(sc)) { 10710 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10711 val, port, addr); 10712 10713 REG_WR(sc, addr, val); 10714 10715 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10716 } 10717 } 10718 10719 if (CHIP_IS_E1(sc)) { 10720 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10721 } 10722 10723 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10724 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10725 10726 REG_WR(sc, addr, val); 10727 10728 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10729 mb(); 10730 10731 if (!CHIP_IS_E1(sc)) { 10732 /* init leading/trailing edge */ 10733 if (IS_MF(sc)) { 10734 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10735 if (sc->port.pmf) { 10736 /* enable nig and gpio3 attention */ 10737 val |= 0x1100; 10738 } 10739 } else { 10740 val = 0xffff; 10741 } 10742 10743 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10744 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10745 } 10746 10747 /* make sure that interrupts are indeed enabled from here on */ 10748 mb(); 10749 } 10750 10751 static void 10752 bxe_igu_int_enable(struct bxe_softc *sc) 10753 { 10754 uint32_t val; 10755 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10756 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10757 (sc->intr_count == 1)) ? TRUE : FALSE; 10758 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10759 10760 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10761 10762 if (msix) { 10763 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10764 IGU_PF_CONF_SINGLE_ISR_EN); 10765 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10766 IGU_PF_CONF_ATTN_BIT_EN); 10767 if (single_msix) { 10768 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10769 } 10770 } else if (msi) { 10771 val &= ~IGU_PF_CONF_INT_LINE_EN; 10772 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10773 IGU_PF_CONF_ATTN_BIT_EN | 10774 IGU_PF_CONF_SINGLE_ISR_EN); 10775 } else { 10776 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10777 val |= (IGU_PF_CONF_INT_LINE_EN | 10778 IGU_PF_CONF_ATTN_BIT_EN | 10779 IGU_PF_CONF_SINGLE_ISR_EN); 10780 } 10781 10782 /* clean previous status - need to configure igu prior to ack*/ 10783 if ((!msix) || single_msix) { 10784 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10785 bxe_ack_int(sc); 10786 } 10787 10788 val |= IGU_PF_CONF_FUNC_EN; 10789 10790 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10791 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10792 10793 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10794 10795 mb(); 10796 10797 /* init leading/trailing edge */ 10798 if (IS_MF(sc)) { 10799 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10800 if (sc->port.pmf) { 10801 /* enable nig and gpio3 attention */ 10802 val |= 0x1100; 10803 } 10804 } else { 10805 val = 0xffff; 10806 } 10807 10808 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10809 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10810 10811 /* make sure that interrupts are indeed enabled from here on */ 10812 mb(); 10813 } 10814 10815 static void 10816 bxe_int_enable(struct bxe_softc *sc) 10817 { 10818 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10819 bxe_hc_int_enable(sc); 10820 } else { 10821 bxe_igu_int_enable(sc); 10822 } 10823 } 10824 10825 static void 10826 bxe_hc_int_disable(struct bxe_softc *sc) 10827 { 10828 int port = SC_PORT(sc); 10829 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10830 uint32_t val = REG_RD(sc, addr); 10831 10832 /* 10833 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10834 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10835 * block 10836 */ 10837 if (CHIP_IS_E1(sc)) { 10838 /* 10839 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10840 * to prevent from HC sending interrupts after we exit the function 10841 */ 10842 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10843 10844 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10845 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10846 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10847 } else { 10848 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10849 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10850 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10851 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10852 } 10853 10854 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10855 10856 /* flush all outstanding writes */ 10857 mb(); 10858 10859 REG_WR(sc, addr, val); 10860 if (REG_RD(sc, addr) != val) { 10861 BLOGE(sc, "proper val not read from HC IGU!\n"); 10862 } 10863 } 10864 10865 static void 10866 bxe_igu_int_disable(struct bxe_softc *sc) 10867 { 10868 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10869 10870 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10871 IGU_PF_CONF_INT_LINE_EN | 10872 IGU_PF_CONF_ATTN_BIT_EN); 10873 10874 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10875 10876 /* flush all outstanding writes */ 10877 mb(); 10878 10879 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10880 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10881 BLOGE(sc, "proper val not read from IGU!\n"); 10882 } 10883 } 10884 10885 static void 10886 bxe_int_disable(struct bxe_softc *sc) 10887 { 10888 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10889 bxe_hc_int_disable(sc); 10890 } else { 10891 bxe_igu_int_disable(sc); 10892 } 10893 } 10894 10895 static void 10896 bxe_nic_init(struct bxe_softc *sc, 10897 int load_code) 10898 { 10899 int i; 10900 10901 for (i = 0; i < sc->num_queues; i++) { 10902 bxe_init_eth_fp(sc, i); 10903 } 10904 10905 rmb(); /* ensure status block indices were read */ 10906 10907 bxe_init_rx_rings(sc); 10908 bxe_init_tx_rings(sc); 10909 10910 if (IS_VF(sc)) { 10911 return; 10912 } 10913 10914 /* initialize MOD_ABS interrupts */ 10915 elink_init_mod_abs_int(sc, &sc->link_vars, 10916 sc->devinfo.chip_id, 10917 sc->devinfo.shmem_base, 10918 sc->devinfo.shmem2_base, 10919 SC_PORT(sc)); 10920 10921 bxe_init_def_sb(sc); 10922 bxe_update_dsb_idx(sc); 10923 bxe_init_sp_ring(sc); 10924 bxe_init_eq_ring(sc); 10925 bxe_init_internal(sc, load_code); 10926 bxe_pf_init(sc); 10927 bxe_stats_init(sc); 10928 10929 /* flush all before enabling interrupts */ 10930 mb(); 10931 10932 bxe_int_enable(sc); 10933 10934 /* check for SPIO5 */ 10935 bxe_attn_int_deasserted0(sc, 10936 REG_RD(sc, 10937 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10938 SC_PORT(sc)*4)) & 10939 AEU_INPUTS_ATTN_BITS_SPIO5); 10940 } 10941 10942 static inline void 10943 bxe_init_objs(struct bxe_softc *sc) 10944 { 10945 /* mcast rules must be added to tx if tx switching is enabled */ 10946 ecore_obj_type o_type = 10947 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10948 ECORE_OBJ_TYPE_RX; 10949 10950 /* RX_MODE controlling object */ 10951 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10952 10953 /* multicast configuration controlling object */ 10954 ecore_init_mcast_obj(sc, 10955 &sc->mcast_obj, 10956 sc->fp[0].cl_id, 10957 sc->fp[0].index, 10958 SC_FUNC(sc), 10959 SC_FUNC(sc), 10960 BXE_SP(sc, mcast_rdata), 10961 BXE_SP_MAPPING(sc, mcast_rdata), 10962 ECORE_FILTER_MCAST_PENDING, 10963 &sc->sp_state, 10964 o_type); 10965 10966 /* Setup CAM credit pools */ 10967 ecore_init_mac_credit_pool(sc, 10968 &sc->macs_pool, 10969 SC_FUNC(sc), 10970 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10971 VNICS_PER_PATH(sc)); 10972 10973 ecore_init_vlan_credit_pool(sc, 10974 &sc->vlans_pool, 10975 SC_ABS_FUNC(sc) >> 1, 10976 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10977 VNICS_PER_PATH(sc)); 10978 10979 /* RSS configuration object */ 10980 ecore_init_rss_config_obj(sc, 10981 &sc->rss_conf_obj, 10982 sc->fp[0].cl_id, 10983 sc->fp[0].index, 10984 SC_FUNC(sc), 10985 SC_FUNC(sc), 10986 BXE_SP(sc, rss_rdata), 10987 BXE_SP_MAPPING(sc, rss_rdata), 10988 ECORE_FILTER_RSS_CONF_PENDING, 10989 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10990 } 10991 10992 /* 10993 * Initialize the function. This must be called before sending CLIENT_SETUP 10994 * for the first client. 10995 */ 10996 static inline int 10997 bxe_func_start(struct bxe_softc *sc) 10998 { 10999 struct ecore_func_state_params func_params = { NULL }; 11000 struct ecore_func_start_params *start_params = &func_params.params.start; 11001 11002 /* Prepare parameters for function state transitions */ 11003 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 11004 11005 func_params.f_obj = &sc->func_obj; 11006 func_params.cmd = ECORE_F_CMD_START; 11007 11008 /* Function parameters */ 11009 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 11010 start_params->sd_vlan_tag = OVLAN(sc); 11011 11012 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 11013 start_params->network_cos_mode = STATIC_COS; 11014 } else { /* CHIP_IS_E1X */ 11015 start_params->network_cos_mode = FW_WRR; 11016 } 11017 11018 start_params->gre_tunnel_mode = 0; 11019 start_params->gre_tunnel_rss = 0; 11020 11021 return (ecore_func_state_change(sc, &func_params)); 11022 } 11023 11024 static int 11025 bxe_set_power_state(struct bxe_softc *sc, 11026 uint8_t state) 11027 { 11028 uint16_t pmcsr; 11029 11030 /* If there is no power capability, silently succeed */ 11031 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 11032 BLOGW(sc, "No power capability\n"); 11033 return (0); 11034 } 11035 11036 pmcsr = pci_read_config(sc->dev, 11037 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11038 2); 11039 11040 switch (state) { 11041 case PCI_PM_D0: 11042 pci_write_config(sc->dev, 11043 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11044 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 11045 11046 if (pmcsr & PCIM_PSTAT_DMASK) { 11047 /* delay required during transition out of D3hot */ 11048 DELAY(20000); 11049 } 11050 11051 break; 11052 11053 case PCI_PM_D3hot: 11054 /* XXX if there are other clients above don't shut down the power */ 11055 11056 /* don't shut down the power for emulation and FPGA */ 11057 if (CHIP_REV_IS_SLOW(sc)) { 11058 return (0); 11059 } 11060 11061 pmcsr &= ~PCIM_PSTAT_DMASK; 11062 pmcsr |= PCIM_PSTAT_D3; 11063 11064 if (sc->wol) { 11065 pmcsr |= PCIM_PSTAT_PMEENABLE; 11066 } 11067 11068 pci_write_config(sc->dev, 11069 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 11070 pmcsr, 4); 11071 11072 /* 11073 * No more memory access after this point until device is brought back 11074 * to D0 state. 11075 */ 11076 break; 11077 11078 default: 11079 BLOGE(sc, "Can't support PCI power state = %d\n", state); 11080 return (-1); 11081 } 11082 11083 return (0); 11084 } 11085 11086 11087 /* return true if succeeded to acquire the lock */ 11088 static uint8_t 11089 bxe_trylock_hw_lock(struct bxe_softc *sc, 11090 uint32_t resource) 11091 { 11092 uint32_t lock_status; 11093 uint32_t resource_bit = (1 << resource); 11094 int func = SC_FUNC(sc); 11095 uint32_t hw_lock_control_reg; 11096 11097 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 11098 11099 /* Validating that the resource is within range */ 11100 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 11101 BLOGD(sc, DBG_LOAD, 11102 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 11103 resource, HW_LOCK_MAX_RESOURCE_VALUE); 11104 return (FALSE); 11105 } 11106 11107 if (func <= 5) { 11108 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 11109 } else { 11110 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 11111 } 11112 11113 /* try to acquire the lock */ 11114 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 11115 lock_status = REG_RD(sc, hw_lock_control_reg); 11116 if (lock_status & resource_bit) { 11117 return (TRUE); 11118 } 11119 11120 BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); 11121 11122 return (FALSE); 11123 } 11124 11125 /* 11126 * Get the recovery leader resource id according to the engine this function 11127 * belongs to. Currently only only 2 engines is supported. 11128 */ 11129 static int 11130 bxe_get_leader_lock_resource(struct bxe_softc *sc) 11131 { 11132 if (SC_PATH(sc)) { 11133 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 11134 } else { 11135 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 11136 } 11137 } 11138 11139 /* try to acquire a leader lock for current engine */ 11140 static uint8_t 11141 bxe_trylock_leader_lock(struct bxe_softc *sc) 11142 { 11143 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11144 } 11145 11146 static int 11147 bxe_release_leader_lock(struct bxe_softc *sc) 11148 { 11149 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 11150 } 11151 11152 /* close gates #2, #3 and #4 */ 11153 static void 11154 bxe_set_234_gates(struct bxe_softc *sc, 11155 uint8_t close) 11156 { 11157 uint32_t val; 11158 11159 /* gates #2 and #4a are closed/opened for "not E1" only */ 11160 if (!CHIP_IS_E1(sc)) { 11161 /* #4 */ 11162 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 11163 /* #2 */ 11164 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 11165 } 11166 11167 /* #3 */ 11168 if (CHIP_IS_E1x(sc)) { 11169 /* prevent interrupts from HC on both ports */ 11170 val = REG_RD(sc, HC_REG_CONFIG_1); 11171 REG_WR(sc, HC_REG_CONFIG_1, 11172 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 11173 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 11174 11175 val = REG_RD(sc, HC_REG_CONFIG_0); 11176 REG_WR(sc, HC_REG_CONFIG_0, 11177 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 11178 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 11179 } else { 11180 /* Prevent incomming interrupts in IGU */ 11181 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 11182 11183 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 11184 (!close) ? 11185 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 11186 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 11187 } 11188 11189 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 11190 close ? "closing" : "opening"); 11191 11192 wmb(); 11193 } 11194 11195 /* poll for pending writes bit, it should get cleared in no more than 1s */ 11196 static int 11197 bxe_er_poll_igu_vq(struct bxe_softc *sc) 11198 { 11199 uint32_t cnt = 1000; 11200 uint32_t pend_bits = 0; 11201 11202 do { 11203 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 11204 11205 if (pend_bits == 0) { 11206 break; 11207 } 11208 11209 DELAY(1000); 11210 } while (--cnt > 0); 11211 11212 if (cnt == 0) { 11213 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 11214 return (-1); 11215 } 11216 11217 return (0); 11218 } 11219 11220 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 11221 11222 static void 11223 bxe_clp_reset_prep(struct bxe_softc *sc, 11224 uint32_t *magic_val) 11225 { 11226 /* Do some magic... */ 11227 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11228 *magic_val = val & SHARED_MF_CLP_MAGIC; 11229 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 11230 } 11231 11232 /* restore the value of the 'magic' bit */ 11233 static void 11234 bxe_clp_reset_done(struct bxe_softc *sc, 11235 uint32_t magic_val) 11236 { 11237 /* Restore the 'magic' bit value... */ 11238 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 11239 MFCFG_WR(sc, shared_mf_config.clp_mb, 11240 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 11241 } 11242 11243 /* prepare for MCP reset, takes care of CLP configurations */ 11244 static void 11245 bxe_reset_mcp_prep(struct bxe_softc *sc, 11246 uint32_t *magic_val) 11247 { 11248 uint32_t shmem; 11249 uint32_t validity_offset; 11250 11251 /* set `magic' bit in order to save MF config */ 11252 if (!CHIP_IS_E1(sc)) { 11253 bxe_clp_reset_prep(sc, magic_val); 11254 } 11255 11256 /* get shmem offset */ 11257 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11258 validity_offset = 11259 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 11260 11261 /* Clear validity map flags */ 11262 if (shmem > 0) { 11263 REG_WR(sc, shmem + validity_offset, 0); 11264 } 11265 } 11266 11267 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 11268 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 11269 11270 static void 11271 bxe_mcp_wait_one(struct bxe_softc *sc) 11272 { 11273 /* special handling for emulation and FPGA (10 times longer) */ 11274 if (CHIP_REV_IS_SLOW(sc)) { 11275 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 11276 } else { 11277 DELAY((MCP_ONE_TIMEOUT) * 1000); 11278 } 11279 } 11280 11281 /* initialize shmem_base and waits for validity signature to appear */ 11282 static int 11283 bxe_init_shmem(struct bxe_softc *sc) 11284 { 11285 int cnt = 0; 11286 uint32_t val = 0; 11287 11288 do { 11289 sc->devinfo.shmem_base = 11290 sc->link_params.shmem_base = 11291 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 11292 11293 if (sc->devinfo.shmem_base) { 11294 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 11295 if (val & SHR_MEM_VALIDITY_MB) 11296 return (0); 11297 } 11298 11299 bxe_mcp_wait_one(sc); 11300 11301 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 11302 11303 BLOGE(sc, "BAD MCP validity signature\n"); 11304 11305 return (-1); 11306 } 11307 11308 static int 11309 bxe_reset_mcp_comp(struct bxe_softc *sc, 11310 uint32_t magic_val) 11311 { 11312 int rc = bxe_init_shmem(sc); 11313 11314 /* Restore the `magic' bit value */ 11315 if (!CHIP_IS_E1(sc)) { 11316 bxe_clp_reset_done(sc, magic_val); 11317 } 11318 11319 return (rc); 11320 } 11321 11322 static void 11323 bxe_pxp_prep(struct bxe_softc *sc) 11324 { 11325 if (!CHIP_IS_E1(sc)) { 11326 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 11327 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 11328 wmb(); 11329 } 11330 } 11331 11332 /* 11333 * Reset the whole chip except for: 11334 * - PCIE core 11335 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 11336 * - IGU 11337 * - MISC (including AEU) 11338 * - GRC 11339 * - RBCN, RBCP 11340 */ 11341 static void 11342 bxe_process_kill_chip_reset(struct bxe_softc *sc, 11343 uint8_t global) 11344 { 11345 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 11346 uint32_t global_bits2, stay_reset2; 11347 11348 /* 11349 * Bits that have to be set in reset_mask2 if we want to reset 'global' 11350 * (per chip) blocks. 11351 */ 11352 global_bits2 = 11353 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 11354 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 11355 11356 /* 11357 * Don't reset the following blocks. 11358 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 11359 * reset, as in 4 port device they might still be owned 11360 * by the MCP (there is only one leader per path). 11361 */ 11362 not_reset_mask1 = 11363 MISC_REGISTERS_RESET_REG_1_RST_HC | 11364 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 11365 MISC_REGISTERS_RESET_REG_1_RST_PXP; 11366 11367 not_reset_mask2 = 11368 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 11369 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 11370 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 11371 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 11372 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 11373 MISC_REGISTERS_RESET_REG_2_RST_GRC | 11374 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 11375 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 11376 MISC_REGISTERS_RESET_REG_2_RST_ATC | 11377 MISC_REGISTERS_RESET_REG_2_PGLC | 11378 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 11379 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 11380 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 11381 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 11382 MISC_REGISTERS_RESET_REG_2_UMAC0 | 11383 MISC_REGISTERS_RESET_REG_2_UMAC1; 11384 11385 /* 11386 * Keep the following blocks in reset: 11387 * - all xxMACs are handled by the elink code. 11388 */ 11389 stay_reset2 = 11390 MISC_REGISTERS_RESET_REG_2_XMAC | 11391 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 11392 11393 /* Full reset masks according to the chip */ 11394 reset_mask1 = 0xffffffff; 11395 11396 if (CHIP_IS_E1(sc)) 11397 reset_mask2 = 0xffff; 11398 else if (CHIP_IS_E1H(sc)) 11399 reset_mask2 = 0x1ffff; 11400 else if (CHIP_IS_E2(sc)) 11401 reset_mask2 = 0xfffff; 11402 else /* CHIP_IS_E3 */ 11403 reset_mask2 = 0x3ffffff; 11404 11405 /* Don't reset global blocks unless we need to */ 11406 if (!global) 11407 reset_mask2 &= ~global_bits2; 11408 11409 /* 11410 * In case of attention in the QM, we need to reset PXP 11411 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 11412 * because otherwise QM reset would release 'close the gates' shortly 11413 * before resetting the PXP, then the PSWRQ would send a write 11414 * request to PGLUE. Then when PXP is reset, PGLUE would try to 11415 * read the payload data from PSWWR, but PSWWR would not 11416 * respond. The write queue in PGLUE would stuck, dmae commands 11417 * would not return. Therefore it's important to reset the second 11418 * reset register (containing the 11419 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 11420 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 11421 * bit). 11422 */ 11423 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 11424 reset_mask2 & (~not_reset_mask2)); 11425 11426 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 11427 reset_mask1 & (~not_reset_mask1)); 11428 11429 mb(); 11430 wmb(); 11431 11432 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 11433 reset_mask2 & (~stay_reset2)); 11434 11435 mb(); 11436 wmb(); 11437 11438 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11439 wmb(); 11440 } 11441 11442 static int 11443 bxe_process_kill(struct bxe_softc *sc, 11444 uint8_t global) 11445 { 11446 int cnt = 1000; 11447 uint32_t val = 0; 11448 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11449 uint32_t tags_63_32 = 0; 11450 11451 /* Empty the Tetris buffer, wait for 1s */ 11452 do { 11453 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11454 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11455 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11456 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11457 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11458 if (CHIP_IS_E3(sc)) { 11459 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11460 } 11461 11462 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11463 ((port_is_idle_0 & 0x1) == 0x1) && 11464 ((port_is_idle_1 & 0x1) == 0x1) && 11465 (pgl_exp_rom2 == 0xffffffff) && 11466 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11467 break; 11468 DELAY(1000); 11469 } while (cnt-- > 0); 11470 11471 if (cnt <= 0) { 11472 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11473 "are still outstanding read requests after 1s! " 11474 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11475 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11476 sr_cnt, blk_cnt, port_is_idle_0, 11477 port_is_idle_1, pgl_exp_rom2); 11478 return (-1); 11479 } 11480 11481 mb(); 11482 11483 /* Close gates #2, #3 and #4 */ 11484 bxe_set_234_gates(sc, TRUE); 11485 11486 /* Poll for IGU VQs for 57712 and newer chips */ 11487 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11488 return (-1); 11489 } 11490 11491 /* XXX indicate that "process kill" is in progress to MCP */ 11492 11493 /* clear "unprepared" bit */ 11494 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11495 mb(); 11496 11497 /* Make sure all is written to the chip before the reset */ 11498 wmb(); 11499 11500 /* 11501 * Wait for 1ms to empty GLUE and PCI-E core queues, 11502 * PSWHST, GRC and PSWRD Tetris buffer. 11503 */ 11504 DELAY(1000); 11505 11506 /* Prepare to chip reset: */ 11507 /* MCP */ 11508 if (global) { 11509 bxe_reset_mcp_prep(sc, &val); 11510 } 11511 11512 /* PXP */ 11513 bxe_pxp_prep(sc); 11514 mb(); 11515 11516 /* reset the chip */ 11517 bxe_process_kill_chip_reset(sc, global); 11518 mb(); 11519 11520 /* Recover after reset: */ 11521 /* MCP */ 11522 if (global && bxe_reset_mcp_comp(sc, val)) { 11523 return (-1); 11524 } 11525 11526 /* XXX add resetting the NO_MCP mode DB here */ 11527 11528 /* Open the gates #2, #3 and #4 */ 11529 bxe_set_234_gates(sc, FALSE); 11530 11531 /* XXX 11532 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11533 * re-enable attentions 11534 */ 11535 11536 return (0); 11537 } 11538 11539 static int 11540 bxe_leader_reset(struct bxe_softc *sc) 11541 { 11542 int rc = 0; 11543 uint8_t global = bxe_reset_is_global(sc); 11544 uint32_t load_code; 11545 11546 /* 11547 * If not going to reset MCP, load "fake" driver to reset HW while 11548 * driver is owner of the HW. 11549 */ 11550 if (!global && !BXE_NOMCP(sc)) { 11551 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11552 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11553 if (!load_code) { 11554 BLOGE(sc, "MCP response failure, aborting\n"); 11555 rc = -1; 11556 goto exit_leader_reset; 11557 } 11558 11559 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11560 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11561 BLOGE(sc, "MCP unexpected response, aborting\n"); 11562 rc = -1; 11563 goto exit_leader_reset2; 11564 } 11565 11566 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11567 if (!load_code) { 11568 BLOGE(sc, "MCP response failure, aborting\n"); 11569 rc = -1; 11570 goto exit_leader_reset2; 11571 } 11572 } 11573 11574 /* try to recover after the failure */ 11575 if (bxe_process_kill(sc, global)) { 11576 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11577 rc = -1; 11578 goto exit_leader_reset2; 11579 } 11580 11581 /* 11582 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11583 * state. 11584 */ 11585 bxe_set_reset_done(sc); 11586 if (global) { 11587 bxe_clear_reset_global(sc); 11588 } 11589 11590 exit_leader_reset2: 11591 11592 /* unload "fake driver" if it was loaded */ 11593 if (!global && !BXE_NOMCP(sc)) { 11594 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11595 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11596 } 11597 11598 exit_leader_reset: 11599 11600 sc->is_leader = 0; 11601 bxe_release_leader_lock(sc); 11602 11603 mb(); 11604 return (rc); 11605 } 11606 11607 /* 11608 * prepare INIT transition, parameters configured: 11609 * - HC configuration 11610 * - Queue's CDU context 11611 */ 11612 static void 11613 bxe_pf_q_prep_init(struct bxe_softc *sc, 11614 struct bxe_fastpath *fp, 11615 struct ecore_queue_init_params *init_params) 11616 { 11617 uint8_t cos; 11618 int cxt_index, cxt_offset; 11619 11620 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11621 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11622 11623 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11624 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11625 11626 /* HC rate */ 11627 init_params->rx.hc_rate = 11628 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11629 init_params->tx.hc_rate = 11630 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11631 11632 /* FW SB ID */ 11633 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11634 11635 /* CQ index among the SB indices */ 11636 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11637 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11638 11639 /* set maximum number of COSs supported by this queue */ 11640 init_params->max_cos = sc->max_cos; 11641 11642 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11643 fp->index, init_params->max_cos); 11644 11645 /* set the context pointers queue object */ 11646 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11647 /* XXX change index/cid here if ever support multiple tx CoS */ 11648 /* fp->txdata[cos]->cid */ 11649 cxt_index = fp->index / ILT_PAGE_CIDS; 11650 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11651 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11652 } 11653 } 11654 11655 /* set flags that are common for the Tx-only and not normal connections */ 11656 static unsigned long 11657 bxe_get_common_flags(struct bxe_softc *sc, 11658 struct bxe_fastpath *fp, 11659 uint8_t zero_stats) 11660 { 11661 unsigned long flags = 0; 11662 11663 /* PF driver will always initialize the Queue to an ACTIVE state */ 11664 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11665 11666 /* 11667 * tx only connections collect statistics (on the same index as the 11668 * parent connection). The statistics are zeroed when the parent 11669 * connection is initialized. 11670 */ 11671 11672 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11673 if (zero_stats) { 11674 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11675 } 11676 11677 /* 11678 * tx only connections can support tx-switching, though their 11679 * CoS-ness doesn't survive the loopback 11680 */ 11681 if (sc->flags & BXE_TX_SWITCHING) { 11682 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11683 } 11684 11685 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11686 11687 return (flags); 11688 } 11689 11690 static unsigned long 11691 bxe_get_q_flags(struct bxe_softc *sc, 11692 struct bxe_fastpath *fp, 11693 uint8_t leading) 11694 { 11695 unsigned long flags = 0; 11696 11697 if (IS_MF_SD(sc)) { 11698 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11699 } 11700 11701 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11702 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11703 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11704 #if 0 11705 if (fp->mode == TPA_MODE_GRO) 11706 __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); 11707 #endif 11708 } 11709 11710 if (leading) { 11711 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11712 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11713 } 11714 11715 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11716 11717 #if 0 11718 /* configure silent vlan removal */ 11719 if (IS_MF_AFEX(sc)) { 11720 bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); 11721 } 11722 #endif 11723 11724 /* merge with common flags */ 11725 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11726 } 11727 11728 static void 11729 bxe_pf_q_prep_general(struct bxe_softc *sc, 11730 struct bxe_fastpath *fp, 11731 struct ecore_general_setup_params *gen_init, 11732 uint8_t cos) 11733 { 11734 gen_init->stat_id = bxe_stats_id(fp); 11735 gen_init->spcl_id = fp->cl_id; 11736 gen_init->mtu = sc->mtu; 11737 gen_init->cos = cos; 11738 } 11739 11740 static void 11741 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11742 struct bxe_fastpath *fp, 11743 struct rxq_pause_params *pause, 11744 struct ecore_rxq_setup_params *rxq_init) 11745 { 11746 uint8_t max_sge = 0; 11747 uint16_t sge_sz = 0; 11748 uint16_t tpa_agg_size = 0; 11749 11750 if (sc->ifnet->if_capenable & IFCAP_LRO) { 11751 pause->sge_th_lo = SGE_TH_LO(sc); 11752 pause->sge_th_hi = SGE_TH_HI(sc); 11753 11754 /* validate SGE ring has enough to cross high threshold */ 11755 if (sc->dropless_fc && 11756 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11757 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11758 BLOGW(sc, "sge ring threshold limit\n"); 11759 } 11760 11761 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11762 tpa_agg_size = (2 * sc->mtu); 11763 if (tpa_agg_size < sc->max_aggregation_size) { 11764 tpa_agg_size = sc->max_aggregation_size; 11765 } 11766 11767 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11768 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11769 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11770 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11771 } 11772 11773 /* pause - not for e1 */ 11774 if (!CHIP_IS_E1(sc)) { 11775 pause->bd_th_lo = BD_TH_LO(sc); 11776 pause->bd_th_hi = BD_TH_HI(sc); 11777 11778 pause->rcq_th_lo = RCQ_TH_LO(sc); 11779 pause->rcq_th_hi = RCQ_TH_HI(sc); 11780 11781 /* validate rings have enough entries to cross high thresholds */ 11782 if (sc->dropless_fc && 11783 pause->bd_th_hi + FW_PREFETCH_CNT > 11784 sc->rx_ring_size) { 11785 BLOGW(sc, "rx bd ring threshold limit\n"); 11786 } 11787 11788 if (sc->dropless_fc && 11789 pause->rcq_th_hi + FW_PREFETCH_CNT > 11790 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11791 BLOGW(sc, "rcq ring threshold limit\n"); 11792 } 11793 11794 pause->pri_map = 1; 11795 } 11796 11797 /* rxq setup */ 11798 rxq_init->dscr_map = fp->rx_dma.paddr; 11799 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11800 rxq_init->rcq_map = fp->rcq_dma.paddr; 11801 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11802 11803 /* 11804 * This should be a maximum number of data bytes that may be 11805 * placed on the BD (not including paddings). 11806 */ 11807 rxq_init->buf_sz = (fp->rx_buf_size - 11808 IP_HEADER_ALIGNMENT_PADDING); 11809 11810 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11811 rxq_init->tpa_agg_sz = tpa_agg_size; 11812 rxq_init->sge_buf_sz = sge_sz; 11813 rxq_init->max_sges_pkt = max_sge; 11814 rxq_init->rss_engine_id = SC_FUNC(sc); 11815 rxq_init->mcast_engine_id = SC_FUNC(sc); 11816 11817 /* 11818 * Maximum number or simultaneous TPA aggregation for this Queue. 11819 * For PF Clients it should be the maximum available number. 11820 * VF driver(s) may want to define it to a smaller value. 11821 */ 11822 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11823 11824 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11825 rxq_init->fw_sb_id = fp->fw_sb_id; 11826 11827 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11828 11829 /* 11830 * configure silent vlan removal 11831 * if multi function mode is afex, then mask default vlan 11832 */ 11833 if (IS_MF_AFEX(sc)) { 11834 rxq_init->silent_removal_value = 11835 sc->devinfo.mf_info.afex_def_vlan_tag; 11836 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11837 } 11838 } 11839 11840 static void 11841 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11842 struct bxe_fastpath *fp, 11843 struct ecore_txq_setup_params *txq_init, 11844 uint8_t cos) 11845 { 11846 /* 11847 * XXX If multiple CoS is ever supported then each fastpath structure 11848 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11849 * fp->txdata[cos]->tx_dma.paddr; 11850 */ 11851 txq_init->dscr_map = fp->tx_dma.paddr; 11852 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11853 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11854 txq_init->fw_sb_id = fp->fw_sb_id; 11855 11856 /* 11857 * set the TSS leading client id for TX classfication to the 11858 * leading RSS client id 11859 */ 11860 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11861 } 11862 11863 /* 11864 * This function performs 2 steps in a queue state machine: 11865 * 1) RESET->INIT 11866 * 2) INIT->SETUP 11867 */ 11868 static int 11869 bxe_setup_queue(struct bxe_softc *sc, 11870 struct bxe_fastpath *fp, 11871 uint8_t leading) 11872 { 11873 struct ecore_queue_state_params q_params = { NULL }; 11874 struct ecore_queue_setup_params *setup_params = 11875 &q_params.params.setup; 11876 #if 0 11877 struct ecore_queue_setup_tx_only_params *tx_only_params = 11878 &q_params.params.tx_only; 11879 uint8_t tx_index; 11880 #endif 11881 int rc; 11882 11883 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11884 11885 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11886 11887 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11888 11889 /* we want to wait for completion in this context */ 11890 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11891 11892 /* prepare the INIT parameters */ 11893 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11894 11895 /* Set the command */ 11896 q_params.cmd = ECORE_Q_CMD_INIT; 11897 11898 /* Change the state to INIT */ 11899 rc = ecore_queue_state_change(sc, &q_params); 11900 if (rc) { 11901 BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); 11902 return (rc); 11903 } 11904 11905 BLOGD(sc, DBG_LOAD, "init complete\n"); 11906 11907 /* now move the Queue to the SETUP state */ 11908 memset(setup_params, 0, sizeof(*setup_params)); 11909 11910 /* set Queue flags */ 11911 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11912 11913 /* set general SETUP parameters */ 11914 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11915 FIRST_TX_COS_INDEX); 11916 11917 bxe_pf_rx_q_prep(sc, fp, 11918 &setup_params->pause_params, 11919 &setup_params->rxq_params); 11920 11921 bxe_pf_tx_q_prep(sc, fp, 11922 &setup_params->txq_params, 11923 FIRST_TX_COS_INDEX); 11924 11925 /* Set the command */ 11926 q_params.cmd = ECORE_Q_CMD_SETUP; 11927 11928 /* change the state to SETUP */ 11929 rc = ecore_queue_state_change(sc, &q_params); 11930 if (rc) { 11931 BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); 11932 return (rc); 11933 } 11934 11935 #if 0 11936 /* loop through the relevant tx-only indices */ 11937 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 11938 tx_index < sc->max_cos; 11939 tx_index++) { 11940 /* prepare and send tx-only ramrod*/ 11941 rc = bxe_setup_tx_only(sc, fp, &q_params, 11942 tx_only_params, tx_index, leading); 11943 if (rc) { 11944 BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", 11945 fp->index, tx_index); 11946 return (rc); 11947 } 11948 } 11949 #endif 11950 11951 return (rc); 11952 } 11953 11954 static int 11955 bxe_setup_leading(struct bxe_softc *sc) 11956 { 11957 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11958 } 11959 11960 static int 11961 bxe_config_rss_pf(struct bxe_softc *sc, 11962 struct ecore_rss_config_obj *rss_obj, 11963 uint8_t config_hash) 11964 { 11965 struct ecore_config_rss_params params = { NULL }; 11966 int i; 11967 11968 /* 11969 * Although RSS is meaningless when there is a single HW queue we 11970 * still need it enabled in order to have HW Rx hash generated. 11971 */ 11972 11973 params.rss_obj = rss_obj; 11974 11975 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11976 11977 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11978 11979 /* RSS configuration */ 11980 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11981 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11982 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11983 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11984 if (rss_obj->udp_rss_v4) { 11985 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11986 } 11987 if (rss_obj->udp_rss_v6) { 11988 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11989 } 11990 11991 /* Hash bits */ 11992 params.rss_result_mask = MULTI_MASK; 11993 11994 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11995 11996 if (config_hash) { 11997 /* RSS keys */ 11998 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11999 params.rss_key[i] = arc4random(); 12000 } 12001 12002 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 12003 } 12004 12005 return (ecore_config_rss(sc, ¶ms)); 12006 } 12007 12008 static int 12009 bxe_config_rss_eth(struct bxe_softc *sc, 12010 uint8_t config_hash) 12011 { 12012 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 12013 } 12014 12015 static int 12016 bxe_init_rss_pf(struct bxe_softc *sc) 12017 { 12018 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 12019 int i; 12020 12021 /* 12022 * Prepare the initial contents of the indirection table if 12023 * RSS is enabled 12024 */ 12025 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 12026 sc->rss_conf_obj.ind_table[i] = 12027 (sc->fp->cl_id + (i % num_eth_queues)); 12028 } 12029 12030 if (sc->udp_rss) { 12031 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 12032 } 12033 12034 /* 12035 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 12036 * per-port, so if explicit configuration is needed, do it only 12037 * for a PMF. 12038 * 12039 * For 57712 and newer it's a per-function configuration. 12040 */ 12041 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 12042 } 12043 12044 static int 12045 bxe_set_mac_one(struct bxe_softc *sc, 12046 uint8_t *mac, 12047 struct ecore_vlan_mac_obj *obj, 12048 uint8_t set, 12049 int mac_type, 12050 unsigned long *ramrod_flags) 12051 { 12052 struct ecore_vlan_mac_ramrod_params ramrod_param; 12053 int rc; 12054 12055 memset(&ramrod_param, 0, sizeof(ramrod_param)); 12056 12057 /* fill in general parameters */ 12058 ramrod_param.vlan_mac_obj = obj; 12059 ramrod_param.ramrod_flags = *ramrod_flags; 12060 12061 /* fill a user request section if needed */ 12062 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 12063 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 12064 12065 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 12066 12067 /* Set the command: ADD or DEL */ 12068 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 12069 ECORE_VLAN_MAC_DEL; 12070 } 12071 12072 rc = ecore_config_vlan_mac(sc, &ramrod_param); 12073 12074 if (rc == ECORE_EXISTS) { 12075 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12076 /* do not treat adding same MAC as error */ 12077 rc = 0; 12078 } else if (rc < 0) { 12079 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 12080 } 12081 12082 return (rc); 12083 } 12084 12085 static int 12086 bxe_set_eth_mac(struct bxe_softc *sc, 12087 uint8_t set) 12088 { 12089 unsigned long ramrod_flags = 0; 12090 12091 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 12092 12093 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12094 12095 /* Eth MAC is set on RSS leading client (fp[0]) */ 12096 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 12097 &sc->sp_objs->mac_obj, 12098 set, ECORE_ETH_MAC, &ramrod_flags)); 12099 } 12100 12101 #if 0 12102 static void 12103 bxe_update_max_mf_config(struct bxe_softc *sc, 12104 uint32_t value) 12105 { 12106 /* load old values */ 12107 uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; 12108 12109 if (value != bxe_extract_max_cfg(sc, mf_cfg)) { 12110 /* leave all but MAX value */ 12111 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 12112 12113 /* set new MAX value */ 12114 mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & 12115 FUNC_MF_CFG_MAX_BW_MASK); 12116 12117 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 12118 } 12119 } 12120 #endif 12121 12122 static int 12123 bxe_get_cur_phy_idx(struct bxe_softc *sc) 12124 { 12125 uint32_t sel_phy_idx = 0; 12126 12127 if (sc->link_params.num_phys <= 1) { 12128 return (ELINK_INT_PHY); 12129 } 12130 12131 if (sc->link_vars.link_up) { 12132 sel_phy_idx = ELINK_EXT_PHY1; 12133 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 12134 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 12135 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 12136 ELINK_SUPPORTED_FIBRE)) 12137 sel_phy_idx = ELINK_EXT_PHY2; 12138 } else { 12139 switch (elink_phy_selection(&sc->link_params)) { 12140 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 12141 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 12142 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 12143 sel_phy_idx = ELINK_EXT_PHY1; 12144 break; 12145 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 12146 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 12147 sel_phy_idx = ELINK_EXT_PHY2; 12148 break; 12149 } 12150 } 12151 12152 return (sel_phy_idx); 12153 } 12154 12155 static int 12156 bxe_get_link_cfg_idx(struct bxe_softc *sc) 12157 { 12158 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 12159 12160 /* 12161 * The selected activated PHY is always after swapping (in case PHY 12162 * swapping is enabled). So when swapping is enabled, we need to reverse 12163 * the configuration 12164 */ 12165 12166 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 12167 if (sel_phy_idx == ELINK_EXT_PHY1) 12168 sel_phy_idx = ELINK_EXT_PHY2; 12169 else if (sel_phy_idx == ELINK_EXT_PHY2) 12170 sel_phy_idx = ELINK_EXT_PHY1; 12171 } 12172 12173 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 12174 } 12175 12176 static void 12177 bxe_set_requested_fc(struct bxe_softc *sc) 12178 { 12179 /* 12180 * Initialize link parameters structure variables 12181 * It is recommended to turn off RX FC for jumbo frames 12182 * for better performance 12183 */ 12184 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 12185 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 12186 } else { 12187 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 12188 } 12189 } 12190 12191 static void 12192 bxe_calc_fc_adv(struct bxe_softc *sc) 12193 { 12194 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 12195 switch (sc->link_vars.ieee_fc & 12196 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 12197 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: 12198 default: 12199 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 12200 ADVERTISED_Pause); 12201 break; 12202 12203 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 12204 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 12205 ADVERTISED_Pause); 12206 break; 12207 12208 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 12209 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 12210 break; 12211 } 12212 } 12213 12214 static uint16_t 12215 bxe_get_mf_speed(struct bxe_softc *sc) 12216 { 12217 uint16_t line_speed = sc->link_vars.line_speed; 12218 if (IS_MF(sc)) { 12219 uint16_t maxCfg = 12220 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 12221 12222 /* calculate the current MAX line speed limit for the MF devices */ 12223 if (IS_MF_SI(sc)) { 12224 line_speed = (line_speed * maxCfg) / 100; 12225 } else { /* SD mode */ 12226 uint16_t vn_max_rate = maxCfg * 100; 12227 12228 if (vn_max_rate < line_speed) { 12229 line_speed = vn_max_rate; 12230 } 12231 } 12232 } 12233 12234 return (line_speed); 12235 } 12236 12237 static void 12238 bxe_fill_report_data(struct bxe_softc *sc, 12239 struct bxe_link_report_data *data) 12240 { 12241 uint16_t line_speed = bxe_get_mf_speed(sc); 12242 12243 memset(data, 0, sizeof(*data)); 12244 12245 /* fill the report data with the effective line speed */ 12246 data->line_speed = line_speed; 12247 12248 /* Link is down */ 12249 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 12250 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 12251 } 12252 12253 /* Full DUPLEX */ 12254 if (sc->link_vars.duplex == DUPLEX_FULL) { 12255 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 12256 } 12257 12258 /* Rx Flow Control is ON */ 12259 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 12260 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 12261 } 12262 12263 /* Tx Flow Control is ON */ 12264 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 12265 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 12266 } 12267 } 12268 12269 /* report link status to OS, should be called under phy_lock */ 12270 static void 12271 bxe_link_report_locked(struct bxe_softc *sc) 12272 { 12273 struct bxe_link_report_data cur_data; 12274 12275 /* reread mf_cfg */ 12276 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 12277 bxe_read_mf_cfg(sc); 12278 } 12279 12280 /* Read the current link report info */ 12281 bxe_fill_report_data(sc, &cur_data); 12282 12283 /* Don't report link down or exactly the same link status twice */ 12284 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 12285 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12286 &sc->last_reported_link.link_report_flags) && 12287 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12288 &cur_data.link_report_flags))) { 12289 return; 12290 } 12291 12292 sc->link_cnt++; 12293 12294 /* report new link params and remember the state for the next time */ 12295 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 12296 12297 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 12298 &cur_data.link_report_flags)) { 12299 if_link_state_change(sc->ifnet, LINK_STATE_DOWN); 12300 BLOGI(sc, "NIC Link is Down\n"); 12301 } else { 12302 const char *duplex; 12303 const char *flow; 12304 12305 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 12306 &cur_data.link_report_flags)) { 12307 duplex = "full"; 12308 } else { 12309 duplex = "half"; 12310 } 12311 12312 /* 12313 * Handle the FC at the end so that only these flags would be 12314 * possibly set. This way we may easily check if there is no FC 12315 * enabled. 12316 */ 12317 if (cur_data.link_report_flags) { 12318 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12319 &cur_data.link_report_flags) && 12320 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12321 &cur_data.link_report_flags)) { 12322 flow = "ON - receive & transmit"; 12323 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12324 &cur_data.link_report_flags) && 12325 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12326 &cur_data.link_report_flags)) { 12327 flow = "ON - receive"; 12328 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 12329 &cur_data.link_report_flags) && 12330 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 12331 &cur_data.link_report_flags)) { 12332 flow = "ON - transmit"; 12333 } else { 12334 flow = "none"; /* possible? */ 12335 } 12336 } else { 12337 flow = "none"; 12338 } 12339 12340 if_link_state_change(sc->ifnet, LINK_STATE_UP); 12341 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 12342 cur_data.line_speed, duplex, flow); 12343 } 12344 } 12345 12346 static void 12347 bxe_link_report(struct bxe_softc *sc) 12348 { 12349 BXE_PHY_LOCK(sc); 12350 bxe_link_report_locked(sc); 12351 BXE_PHY_UNLOCK(sc); 12352 } 12353 12354 static void 12355 bxe_link_status_update(struct bxe_softc *sc) 12356 { 12357 if (sc->state != BXE_STATE_OPEN) { 12358 return; 12359 } 12360 12361 #if 0 12362 /* read updated dcb configuration */ 12363 if (IS_PF(sc)) 12364 bxe_dcbx_pmf_update(sc); 12365 #endif 12366 12367 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 12368 elink_link_status_update(&sc->link_params, &sc->link_vars); 12369 } else { 12370 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 12371 ELINK_SUPPORTED_10baseT_Full | 12372 ELINK_SUPPORTED_100baseT_Half | 12373 ELINK_SUPPORTED_100baseT_Full | 12374 ELINK_SUPPORTED_1000baseT_Full | 12375 ELINK_SUPPORTED_2500baseX_Full | 12376 ELINK_SUPPORTED_10000baseT_Full | 12377 ELINK_SUPPORTED_TP | 12378 ELINK_SUPPORTED_FIBRE | 12379 ELINK_SUPPORTED_Autoneg | 12380 ELINK_SUPPORTED_Pause | 12381 ELINK_SUPPORTED_Asym_Pause); 12382 sc->port.advertising[0] = sc->port.supported[0]; 12383 12384 sc->link_params.sc = sc; 12385 sc->link_params.port = SC_PORT(sc); 12386 sc->link_params.req_duplex[0] = DUPLEX_FULL; 12387 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 12388 sc->link_params.req_line_speed[0] = SPEED_10000; 12389 sc->link_params.speed_cap_mask[0] = 0x7f0000; 12390 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 12391 12392 if (CHIP_REV_IS_FPGA(sc)) { 12393 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 12394 sc->link_vars.line_speed = ELINK_SPEED_1000; 12395 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12396 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 12397 } else { 12398 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 12399 sc->link_vars.line_speed = ELINK_SPEED_10000; 12400 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 12401 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 12402 } 12403 12404 sc->link_vars.link_up = 1; 12405 12406 sc->link_vars.duplex = DUPLEX_FULL; 12407 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 12408 12409 if (IS_PF(sc)) { 12410 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 12411 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12412 bxe_link_report(sc); 12413 } 12414 } 12415 12416 if (IS_PF(sc)) { 12417 if (sc->link_vars.link_up) { 12418 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12419 } else { 12420 bxe_stats_handle(sc, STATS_EVENT_STOP); 12421 } 12422 bxe_link_report(sc); 12423 } else { 12424 bxe_link_report(sc); 12425 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12426 } 12427 } 12428 12429 static int 12430 bxe_initial_phy_init(struct bxe_softc *sc, 12431 int load_mode) 12432 { 12433 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 12434 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 12435 struct elink_params *lp = &sc->link_params; 12436 12437 bxe_set_requested_fc(sc); 12438 12439 if (CHIP_REV_IS_SLOW(sc)) { 12440 uint32_t bond = CHIP_BOND_ID(sc); 12441 uint32_t feat = 0; 12442 12443 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 12444 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12445 } else if (bond & 0x4) { 12446 if (CHIP_IS_E3(sc)) { 12447 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 12448 } else { 12449 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 12450 } 12451 } else if (bond & 0x8) { 12452 if (CHIP_IS_E3(sc)) { 12453 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 12454 } else { 12455 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12456 } 12457 } 12458 12459 /* disable EMAC for E3 and above */ 12460 if (bond & 0x2) { 12461 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 12462 } 12463 12464 sc->link_params.feature_config_flags |= feat; 12465 } 12466 12467 BXE_PHY_LOCK(sc); 12468 12469 if (load_mode == LOAD_DIAG) { 12470 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 12471 /* Prefer doing PHY loopback at 10G speed, if possible */ 12472 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 12473 if (lp->speed_cap_mask[cfg_idx] & 12474 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 12475 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 12476 } else { 12477 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 12478 } 12479 } 12480 } 12481 12482 if (load_mode == LOAD_LOOPBACK_EXT) { 12483 lp->loopback_mode = ELINK_LOOPBACK_EXT; 12484 } 12485 12486 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12487 12488 BXE_PHY_UNLOCK(sc); 12489 12490 bxe_calc_fc_adv(sc); 12491 12492 if (sc->link_vars.link_up) { 12493 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12494 bxe_link_report(sc); 12495 } 12496 12497 if (!CHIP_REV_IS_SLOW(sc)) { 12498 bxe_periodic_start(sc); 12499 } 12500 12501 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12502 return (rc); 12503 } 12504 12505 /* must be called under IF_ADDR_LOCK */ 12506 static int 12507 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12508 struct ecore_mcast_ramrod_params *p) 12509 { 12510 struct ifnet *ifp = sc->ifnet; 12511 int mc_count = 0; 12512 struct ifmultiaddr *ifma; 12513 struct ecore_mcast_list_elem *mc_mac; 12514 12515 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12516 if (ifma->ifma_addr->sa_family != AF_LINK) { 12517 continue; 12518 } 12519 12520 mc_count++; 12521 } 12522 12523 ECORE_LIST_INIT(&p->mcast_list); 12524 p->mcast_list_len = 0; 12525 12526 if (!mc_count) { 12527 return (0); 12528 } 12529 12530 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12531 (M_NOWAIT | M_ZERO)); 12532 if (!mc_mac) { 12533 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12534 return (-1); 12535 } 12536 12537 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 12538 if (ifma->ifma_addr->sa_family != AF_LINK) { 12539 continue; 12540 } 12541 12542 mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr); 12543 ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); 12544 12545 BLOGD(sc, DBG_LOAD, 12546 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", 12547 mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], 12548 mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); 12549 12550 mc_mac++; 12551 } 12552 12553 p->mcast_list_len = mc_count; 12554 12555 return (0); 12556 } 12557 12558 static void 12559 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12560 { 12561 struct ecore_mcast_list_elem *mc_mac = 12562 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12563 struct ecore_mcast_list_elem, 12564 link); 12565 12566 if (mc_mac) { 12567 /* only a single free as all mc_macs are in the same heap array */ 12568 free(mc_mac, M_DEVBUF); 12569 } 12570 } 12571 12572 static int 12573 bxe_set_mc_list(struct bxe_softc *sc) 12574 { 12575 struct ecore_mcast_ramrod_params rparam = { NULL }; 12576 int rc = 0; 12577 12578 rparam.mcast_obj = &sc->mcast_obj; 12579 12580 BXE_MCAST_LOCK(sc); 12581 12582 /* first, clear all configured multicast MACs */ 12583 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12584 if (rc < 0) { 12585 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12586 return (rc); 12587 } 12588 12589 /* configure a new MACs list */ 12590 rc = bxe_init_mcast_macs_list(sc, &rparam); 12591 if (rc) { 12592 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12593 BXE_MCAST_UNLOCK(sc); 12594 return (rc); 12595 } 12596 12597 /* Now add the new MACs */ 12598 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12599 if (rc < 0) { 12600 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12601 } 12602 12603 bxe_free_mcast_macs_list(&rparam); 12604 12605 BXE_MCAST_UNLOCK(sc); 12606 12607 return (rc); 12608 } 12609 12610 static int 12611 bxe_set_uc_list(struct bxe_softc *sc) 12612 { 12613 struct ifnet *ifp = sc->ifnet; 12614 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12615 struct ifaddr *ifa; 12616 unsigned long ramrod_flags = 0; 12617 int rc; 12618 12619 #if __FreeBSD_version < 800000 12620 IF_ADDR_LOCK(ifp); 12621 #else 12622 if_addr_rlock(ifp); 12623 #endif 12624 12625 /* first schedule a cleanup up of old configuration */ 12626 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12627 if (rc < 0) { 12628 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12629 #if __FreeBSD_version < 800000 12630 IF_ADDR_UNLOCK(ifp); 12631 #else 12632 if_addr_runlock(ifp); 12633 #endif 12634 return (rc); 12635 } 12636 12637 ifa = ifp->if_addr; 12638 while (ifa) { 12639 if (ifa->ifa_addr->sa_family != AF_LINK) { 12640 ifa = TAILQ_NEXT(ifa, ifa_link); 12641 continue; 12642 } 12643 12644 rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), 12645 mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); 12646 if (rc == -EEXIST) { 12647 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12648 /* do not treat adding same MAC as an error */ 12649 rc = 0; 12650 } else if (rc < 0) { 12651 BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); 12652 #if __FreeBSD_version < 800000 12653 IF_ADDR_UNLOCK(ifp); 12654 #else 12655 if_addr_runlock(ifp); 12656 #endif 12657 return (rc); 12658 } 12659 12660 ifa = TAILQ_NEXT(ifa, ifa_link); 12661 } 12662 12663 #if __FreeBSD_version < 800000 12664 IF_ADDR_UNLOCK(ifp); 12665 #else 12666 if_addr_runlock(ifp); 12667 #endif 12668 12669 /* Execute the pending commands */ 12670 bit_set(&ramrod_flags, RAMROD_CONT); 12671 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12672 ECORE_UC_LIST_MAC, &ramrod_flags)); 12673 } 12674 12675 static void 12676 bxe_handle_rx_mode_tq(void *context, 12677 int pending) 12678 { 12679 struct bxe_softc *sc = (struct bxe_softc *)context; 12680 struct ifnet *ifp = sc->ifnet; 12681 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12682 12683 BXE_CORE_LOCK(sc); 12684 12685 if (sc->state != BXE_STATE_OPEN) { 12686 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12687 BXE_CORE_UNLOCK(sc); 12688 return; 12689 } 12690 12691 BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags); 12692 12693 if (ifp->if_flags & IFF_PROMISC) { 12694 rx_mode = BXE_RX_MODE_PROMISC; 12695 } else if ((ifp->if_flags & IFF_ALLMULTI) || 12696 ((ifp->if_amcount > BXE_MAX_MULTICAST) && 12697 CHIP_IS_E1(sc))) { 12698 rx_mode = BXE_RX_MODE_ALLMULTI; 12699 } else { 12700 if (IS_PF(sc)) { 12701 /* some multicasts */ 12702 if (bxe_set_mc_list(sc) < 0) { 12703 rx_mode = BXE_RX_MODE_ALLMULTI; 12704 } 12705 if (bxe_set_uc_list(sc) < 0) { 12706 rx_mode = BXE_RX_MODE_PROMISC; 12707 } 12708 } 12709 #if 0 12710 else { 12711 /* 12712 * Configuring mcast to a VF involves sleeping (when we 12713 * wait for the PF's response). Since this function is 12714 * called from a non sleepable context we must schedule 12715 * a work item for this purpose 12716 */ 12717 bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); 12718 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12719 } 12720 #endif 12721 } 12722 12723 sc->rx_mode = rx_mode; 12724 12725 /* schedule the rx_mode command */ 12726 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12727 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12728 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12729 BXE_CORE_UNLOCK(sc); 12730 return; 12731 } 12732 12733 if (IS_PF(sc)) { 12734 bxe_set_storm_rx_mode(sc); 12735 } 12736 #if 0 12737 else { 12738 /* 12739 * Configuring mcast to a VF involves sleeping (when we 12740 * wait for the PF's response). Since this function is 12741 * called from a non sleepable context we must schedule 12742 * a work item for this purpose 12743 */ 12744 bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); 12745 schedule_delayed_work(&sc->sp_rtnl_task, 0); 12746 } 12747 #endif 12748 12749 BXE_CORE_UNLOCK(sc); 12750 } 12751 12752 static void 12753 bxe_set_rx_mode(struct bxe_softc *sc) 12754 { 12755 taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); 12756 } 12757 12758 /* update flags in shmem */ 12759 static void 12760 bxe_update_drv_flags(struct bxe_softc *sc, 12761 uint32_t flags, 12762 uint32_t set) 12763 { 12764 uint32_t drv_flags; 12765 12766 if (SHMEM2_HAS(sc, drv_flags)) { 12767 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12768 drv_flags = SHMEM2_RD(sc, drv_flags); 12769 12770 if (set) { 12771 SET_FLAGS(drv_flags, flags); 12772 } else { 12773 RESET_FLAGS(drv_flags, flags); 12774 } 12775 12776 SHMEM2_WR(sc, drv_flags, drv_flags); 12777 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12778 12779 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12780 } 12781 } 12782 12783 /* periodic timer callout routine, only runs when the interface is up */ 12784 12785 static void 12786 bxe_periodic_callout_func(void *xsc) 12787 { 12788 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12789 int i; 12790 12791 if (!BXE_CORE_TRYLOCK(sc)) { 12792 /* just bail and try again next time */ 12793 12794 if ((sc->state == BXE_STATE_OPEN) && 12795 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12796 /* schedule the next periodic callout */ 12797 callout_reset(&sc->periodic_callout, hz, 12798 bxe_periodic_callout_func, sc); 12799 } 12800 12801 return; 12802 } 12803 12804 if ((sc->state != BXE_STATE_OPEN) || 12805 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12806 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12807 BXE_CORE_UNLOCK(sc); 12808 return; 12809 } 12810 12811 /* Check for TX timeouts on any fastpath. */ 12812 FOR_EACH_QUEUE(sc, i) { 12813 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12814 /* Ruh-Roh, chip was reset! */ 12815 break; 12816 } 12817 } 12818 12819 if (!CHIP_REV_IS_SLOW(sc)) { 12820 /* 12821 * This barrier is needed to ensure the ordering between the writing 12822 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12823 * the reading here. 12824 */ 12825 mb(); 12826 if (sc->port.pmf) { 12827 BXE_PHY_LOCK(sc); 12828 elink_period_func(&sc->link_params, &sc->link_vars); 12829 BXE_PHY_UNLOCK(sc); 12830 } 12831 } 12832 12833 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12834 int mb_idx = SC_FW_MB_IDX(sc); 12835 uint32_t drv_pulse; 12836 uint32_t mcp_pulse; 12837 12838 ++sc->fw_drv_pulse_wr_seq; 12839 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12840 12841 drv_pulse = sc->fw_drv_pulse_wr_seq; 12842 bxe_drv_pulse(sc); 12843 12844 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12845 MCP_PULSE_SEQ_MASK); 12846 12847 /* 12848 * The delta between driver pulse and mcp response should 12849 * be 1 (before mcp response) or 0 (after mcp response). 12850 */ 12851 if ((drv_pulse != mcp_pulse) && 12852 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12853 /* someone lost a heartbeat... */ 12854 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12855 drv_pulse, mcp_pulse); 12856 } 12857 } 12858 12859 /* state is BXE_STATE_OPEN */ 12860 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12861 12862 #if 0 12863 /* sample VF bulletin board for new posts from PF */ 12864 if (IS_VF(sc)) { 12865 bxe_sample_bulletin(sc); 12866 } 12867 #endif 12868 12869 BXE_CORE_UNLOCK(sc); 12870 12871 if ((sc->state == BXE_STATE_OPEN) && 12872 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12873 /* schedule the next periodic callout */ 12874 callout_reset(&sc->periodic_callout, hz, 12875 bxe_periodic_callout_func, sc); 12876 } 12877 } 12878 12879 static void 12880 bxe_periodic_start(struct bxe_softc *sc) 12881 { 12882 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12883 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12884 } 12885 12886 static void 12887 bxe_periodic_stop(struct bxe_softc *sc) 12888 { 12889 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12890 callout_drain(&sc->periodic_callout); 12891 } 12892 12893 /* start the controller */ 12894 static __noinline int 12895 bxe_nic_load(struct bxe_softc *sc, 12896 int load_mode) 12897 { 12898 uint32_t val; 12899 int load_code = 0; 12900 int i, rc = 0; 12901 12902 BXE_CORE_LOCK_ASSERT(sc); 12903 12904 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12905 12906 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12907 12908 if (IS_PF(sc)) { 12909 /* must be called before memory allocation and HW init */ 12910 bxe_ilt_set_info(sc); 12911 } 12912 12913 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12914 12915 bxe_set_fp_rx_buf_size(sc); 12916 12917 if (bxe_alloc_fp_buffers(sc) != 0) { 12918 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12919 sc->state = BXE_STATE_CLOSED; 12920 rc = ENOMEM; 12921 goto bxe_nic_load_error0; 12922 } 12923 12924 if (bxe_alloc_mem(sc) != 0) { 12925 sc->state = BXE_STATE_CLOSED; 12926 rc = ENOMEM; 12927 goto bxe_nic_load_error0; 12928 } 12929 12930 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12931 sc->state = BXE_STATE_CLOSED; 12932 rc = ENOMEM; 12933 goto bxe_nic_load_error0; 12934 } 12935 12936 if (IS_PF(sc)) { 12937 /* set pf load just before approaching the MCP */ 12938 bxe_set_pf_load(sc); 12939 12940 /* if MCP exists send load request and analyze response */ 12941 if (!BXE_NOMCP(sc)) { 12942 /* attempt to load pf */ 12943 if (bxe_nic_load_request(sc, &load_code) != 0) { 12944 sc->state = BXE_STATE_CLOSED; 12945 rc = ENXIO; 12946 goto bxe_nic_load_error1; 12947 } 12948 12949 /* what did the MCP say? */ 12950 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12951 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12952 sc->state = BXE_STATE_CLOSED; 12953 rc = ENXIO; 12954 goto bxe_nic_load_error2; 12955 } 12956 } else { 12957 BLOGI(sc, "Device has no MCP!\n"); 12958 load_code = bxe_nic_load_no_mcp(sc); 12959 } 12960 12961 /* mark PMF if applicable */ 12962 bxe_nic_load_pmf(sc, load_code); 12963 12964 /* Init Function state controlling object */ 12965 bxe_init_func_obj(sc); 12966 12967 /* Initialize HW */ 12968 if (bxe_init_hw(sc, load_code) != 0) { 12969 BLOGE(sc, "HW init failed\n"); 12970 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12971 sc->state = BXE_STATE_CLOSED; 12972 rc = ENXIO; 12973 goto bxe_nic_load_error2; 12974 } 12975 } 12976 12977 /* attach interrupts */ 12978 if (bxe_interrupt_attach(sc) != 0) { 12979 sc->state = BXE_STATE_CLOSED; 12980 rc = ENXIO; 12981 goto bxe_nic_load_error2; 12982 } 12983 12984 bxe_nic_init(sc, load_code); 12985 12986 /* Init per-function objects */ 12987 if (IS_PF(sc)) { 12988 bxe_init_objs(sc); 12989 // XXX bxe_iov_nic_init(sc); 12990 12991 /* set AFEX default VLAN tag to an invalid value */ 12992 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12993 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12994 12995 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12996 rc = bxe_func_start(sc); 12997 if (rc) { 12998 BLOGE(sc, "Function start failed!\n"); 12999 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 13000 sc->state = BXE_STATE_ERROR; 13001 goto bxe_nic_load_error3; 13002 } 13003 13004 /* send LOAD_DONE command to MCP */ 13005 if (!BXE_NOMCP(sc)) { 13006 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 13007 if (!load_code) { 13008 BLOGE(sc, "MCP response failure, aborting\n"); 13009 sc->state = BXE_STATE_ERROR; 13010 rc = ENXIO; 13011 goto bxe_nic_load_error3; 13012 } 13013 } 13014 13015 rc = bxe_setup_leading(sc); 13016 if (rc) { 13017 BLOGE(sc, "Setup leading failed!\n"); 13018 sc->state = BXE_STATE_ERROR; 13019 goto bxe_nic_load_error3; 13020 } 13021 13022 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 13023 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 13024 if (rc) { 13025 BLOGE(sc, "Queue(%d) setup failed\n", i); 13026 sc->state = BXE_STATE_ERROR; 13027 goto bxe_nic_load_error3; 13028 } 13029 } 13030 13031 rc = bxe_init_rss_pf(sc); 13032 if (rc) { 13033 BLOGE(sc, "PF RSS init failed\n"); 13034 sc->state = BXE_STATE_ERROR; 13035 goto bxe_nic_load_error3; 13036 } 13037 } 13038 /* XXX VF */ 13039 #if 0 13040 else { /* VF */ 13041 FOR_EACH_ETH_QUEUE(sc, i) { 13042 rc = bxe_vfpf_setup_q(sc, i); 13043 if (rc) { 13044 BLOGE(sc, "Queue(%d) setup failed\n", i); 13045 sc->state = BXE_STATE_ERROR; 13046 goto bxe_nic_load_error3; 13047 } 13048 } 13049 } 13050 #endif 13051 13052 /* now when Clients are configured we are ready to work */ 13053 sc->state = BXE_STATE_OPEN; 13054 13055 /* Configure a ucast MAC */ 13056 if (IS_PF(sc)) { 13057 rc = bxe_set_eth_mac(sc, TRUE); 13058 } 13059 #if 0 13060 else { /* IS_VF(sc) */ 13061 rc = bxe_vfpf_set_mac(sc); 13062 } 13063 #endif 13064 if (rc) { 13065 BLOGE(sc, "Setting Ethernet MAC failed\n"); 13066 sc->state = BXE_STATE_ERROR; 13067 goto bxe_nic_load_error3; 13068 } 13069 13070 #if 0 13071 if (IS_PF(sc) && sc->pending_max) { 13072 /* for AFEX */ 13073 bxe_update_max_mf_config(sc, sc->pending_max); 13074 sc->pending_max = 0; 13075 } 13076 #endif 13077 13078 if (sc->port.pmf) { 13079 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 13080 if (rc) { 13081 sc->state = BXE_STATE_ERROR; 13082 goto bxe_nic_load_error3; 13083 } 13084 } 13085 13086 sc->link_params.feature_config_flags &= 13087 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 13088 13089 /* start fast path */ 13090 13091 /* Initialize Rx filter */ 13092 bxe_set_rx_mode(sc); 13093 13094 /* start the Tx */ 13095 switch (/* XXX load_mode */LOAD_OPEN) { 13096 case LOAD_NORMAL: 13097 case LOAD_OPEN: 13098 break; 13099 13100 case LOAD_DIAG: 13101 case LOAD_LOOPBACK_EXT: 13102 sc->state = BXE_STATE_DIAG; 13103 break; 13104 13105 default: 13106 break; 13107 } 13108 13109 if (sc->port.pmf) { 13110 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 13111 } else { 13112 bxe_link_status_update(sc); 13113 } 13114 13115 /* start the periodic timer callout */ 13116 bxe_periodic_start(sc); 13117 13118 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 13119 /* mark driver is loaded in shmem2 */ 13120 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 13121 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 13122 (val | 13123 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 13124 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 13125 } 13126 13127 /* wait for all pending SP commands to complete */ 13128 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 13129 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 13130 bxe_periodic_stop(sc); 13131 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 13132 return (ENXIO); 13133 } 13134 13135 #if 0 13136 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 13137 if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { 13138 bxe_dcbx_init(sc, FALSE); 13139 } 13140 #endif 13141 13142 /* Tell the stack the driver is running! */ 13143 sc->ifnet->if_drv_flags = IFF_DRV_RUNNING; 13144 13145 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 13146 13147 return (0); 13148 13149 bxe_nic_load_error3: 13150 13151 if (IS_PF(sc)) { 13152 bxe_int_disable_sync(sc, 1); 13153 13154 /* clean out queued objects */ 13155 bxe_squeeze_objects(sc); 13156 } 13157 13158 bxe_interrupt_detach(sc); 13159 13160 bxe_nic_load_error2: 13161 13162 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 13163 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 13164 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 13165 } 13166 13167 sc->port.pmf = 0; 13168 13169 bxe_nic_load_error1: 13170 13171 /* clear pf_load status, as it was already set */ 13172 if (IS_PF(sc)) { 13173 bxe_clear_pf_load(sc); 13174 } 13175 13176 bxe_nic_load_error0: 13177 13178 bxe_free_fw_stats_mem(sc); 13179 bxe_free_fp_buffers(sc); 13180 bxe_free_mem(sc); 13181 13182 return (rc); 13183 } 13184 13185 static int 13186 bxe_init_locked(struct bxe_softc *sc) 13187 { 13188 int other_engine = SC_PATH(sc) ? 0 : 1; 13189 uint8_t other_load_status, load_status; 13190 uint8_t global = FALSE; 13191 int rc; 13192 13193 BXE_CORE_LOCK_ASSERT(sc); 13194 13195 /* check if the driver is already running */ 13196 if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) { 13197 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 13198 return (0); 13199 } 13200 13201 bxe_set_power_state(sc, PCI_PM_D0); 13202 13203 /* 13204 * If parity occurred during the unload, then attentions and/or 13205 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 13206 * loaded on the current engine to complete the recovery. Parity recovery 13207 * is only relevant for PF driver. 13208 */ 13209 if (IS_PF(sc)) { 13210 other_load_status = bxe_get_load_status(sc, other_engine); 13211 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 13212 13213 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 13214 bxe_chk_parity_attn(sc, &global, TRUE)) { 13215 do { 13216 /* 13217 * If there are attentions and they are in global blocks, set 13218 * the GLOBAL_RESET bit regardless whether it will be this 13219 * function that will complete the recovery or not. 13220 */ 13221 if (global) { 13222 bxe_set_reset_global(sc); 13223 } 13224 13225 /* 13226 * Only the first function on the current engine should try 13227 * to recover in open. In case of attentions in global blocks 13228 * only the first in the chip should try to recover. 13229 */ 13230 if ((!load_status && (!global || !other_load_status)) && 13231 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 13232 BLOGI(sc, "Recovered during init\n"); 13233 break; 13234 } 13235 13236 /* recovery has failed... */ 13237 bxe_set_power_state(sc, PCI_PM_D3hot); 13238 sc->recovery_state = BXE_RECOVERY_FAILED; 13239 13240 BLOGE(sc, "Recovery flow hasn't properly " 13241 "completed yet, try again later. " 13242 "If you still see this message after a " 13243 "few retries then power cycle is required.\n"); 13244 13245 rc = ENXIO; 13246 goto bxe_init_locked_done; 13247 } while (0); 13248 } 13249 } 13250 13251 sc->recovery_state = BXE_RECOVERY_DONE; 13252 13253 rc = bxe_nic_load(sc, LOAD_OPEN); 13254 13255 bxe_init_locked_done: 13256 13257 if (rc) { 13258 /* Tell the stack the driver is NOT running! */ 13259 BLOGE(sc, "Initialization failed, " 13260 "stack notified driver is NOT running!\n"); 13261 sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING; 13262 } 13263 13264 return (rc); 13265 } 13266 13267 static int 13268 bxe_stop_locked(struct bxe_softc *sc) 13269 { 13270 BXE_CORE_LOCK_ASSERT(sc); 13271 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 13272 } 13273 13274 /* 13275 * Handles controller initialization when called from an unlocked routine. 13276 * ifconfig calls this function. 13277 * 13278 * Returns: 13279 * void 13280 */ 13281 static void 13282 bxe_init(void *xsc) 13283 { 13284 struct bxe_softc *sc = (struct bxe_softc *)xsc; 13285 13286 BXE_CORE_LOCK(sc); 13287 bxe_init_locked(sc); 13288 BXE_CORE_UNLOCK(sc); 13289 } 13290 13291 static int 13292 bxe_init_ifnet(struct bxe_softc *sc) 13293 { 13294 struct ifnet *ifp; 13295 13296 /* ifconfig entrypoint for media type/status reporting */ 13297 ifmedia_init(&sc->ifmedia, IFM_IMASK, 13298 bxe_ifmedia_update, 13299 bxe_ifmedia_status); 13300 13301 /* set the default interface values */ 13302 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 13303 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13304 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13305 13306 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13307 13308 /* allocate the ifnet structure */ 13309 if ((ifp = if_alloc(IFT_ETHER)) == NULL) { 13310 BLOGE(sc, "Interface allocation failed!\n"); 13311 return (ENXIO); 13312 } 13313 13314 ifp->if_softc = sc; 13315 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13316 ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 13317 ifp->if_ioctl = bxe_ioctl; 13318 ifp->if_start = bxe_tx_start; 13319 #if __FreeBSD_version >= 800000 13320 ifp->if_transmit = bxe_tx_mq_start; 13321 ifp->if_qflush = bxe_mq_flush; 13322 #endif 13323 #ifdef FreeBSD8_0 13324 ifp->if_timer = 0; 13325 #endif 13326 ifp->if_init = bxe_init; 13327 ifp->if_mtu = sc->mtu; 13328 ifp->if_hwassist = (CSUM_IP | 13329 CSUM_TCP | 13330 CSUM_UDP | 13331 CSUM_TSO | 13332 CSUM_TCP_IPV6 | 13333 CSUM_UDP_IPV6); 13334 ifp->if_capabilities = 13335 #if __FreeBSD_version < 700000 13336 (IFCAP_VLAN_MTU | 13337 IFCAP_VLAN_HWTAGGING | 13338 IFCAP_HWCSUM | 13339 IFCAP_JUMBO_MTU | 13340 IFCAP_LRO); 13341 #else 13342 (IFCAP_VLAN_MTU | 13343 IFCAP_VLAN_HWTAGGING | 13344 IFCAP_VLAN_HWTSO | 13345 IFCAP_VLAN_HWFILTER | 13346 IFCAP_VLAN_HWCSUM | 13347 IFCAP_HWCSUM | 13348 IFCAP_JUMBO_MTU | 13349 IFCAP_LRO | 13350 IFCAP_TSO4 | 13351 IFCAP_TSO6 | 13352 IFCAP_WOL_MAGIC); 13353 #endif 13354 ifp->if_capenable = ifp->if_capabilities; 13355 ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */ 13356 #if __FreeBSD_version < 1000025 13357 ifp->if_baudrate = 1000000000; 13358 #else 13359 if_initbaudrate(ifp, IF_Gbps(10)); 13360 #endif 13361 ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size; 13362 13363 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 13364 IFQ_SET_READY(&ifp->if_snd); 13365 13366 sc->ifnet = ifp; 13367 13368 /* attach to the Ethernet interface list */ 13369 ether_ifattach(ifp, sc->link_params.mac_addr); 13370 13371 return (0); 13372 } 13373 13374 static void 13375 bxe_deallocate_bars(struct bxe_softc *sc) 13376 { 13377 int i; 13378 13379 for (i = 0; i < MAX_BARS; i++) { 13380 if (sc->bar[i].resource != NULL) { 13381 bus_release_resource(sc->dev, 13382 SYS_RES_MEMORY, 13383 sc->bar[i].rid, 13384 sc->bar[i].resource); 13385 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13386 i, PCIR_BAR(i)); 13387 } 13388 } 13389 } 13390 13391 static int 13392 bxe_allocate_bars(struct bxe_softc *sc) 13393 { 13394 u_int flags; 13395 int i; 13396 13397 memset(sc->bar, 0, sizeof(sc->bar)); 13398 13399 for (i = 0; i < MAX_BARS; i++) { 13400 13401 /* memory resources reside at BARs 0, 2, 4 */ 13402 /* Run `pciconf -lb` to see mappings */ 13403 if ((i != 0) && (i != 2) && (i != 4)) { 13404 continue; 13405 } 13406 13407 sc->bar[i].rid = PCIR_BAR(i); 13408 13409 flags = RF_ACTIVE; 13410 if (i == 0) { 13411 flags |= RF_SHAREABLE; 13412 } 13413 13414 if ((sc->bar[i].resource = 13415 bus_alloc_resource_any(sc->dev, 13416 SYS_RES_MEMORY, 13417 &sc->bar[i].rid, 13418 flags)) == NULL) { 13419 #if 0 13420 /* BAR4 doesn't exist for E1 */ 13421 BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", 13422 i, PCIR_BAR(i)); 13423 #endif 13424 return (0); 13425 } 13426 13427 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13428 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13429 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13430 13431 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", 13432 i, PCIR_BAR(i), 13433 (void *)rman_get_start(sc->bar[i].resource), 13434 (void *)rman_get_end(sc->bar[i].resource), 13435 rman_get_size(sc->bar[i].resource), 13436 (void *)sc->bar[i].kva); 13437 } 13438 13439 return (0); 13440 } 13441 13442 static void 13443 bxe_get_function_num(struct bxe_softc *sc) 13444 { 13445 uint32_t val = 0; 13446 13447 /* 13448 * Read the ME register to get the function number. The ME register 13449 * holds the relative-function number and absolute-function number. The 13450 * absolute-function number appears only in E2 and above. Before that 13451 * these bits always contained zero, therefore we cannot blindly use them. 13452 */ 13453 13454 val = REG_RD(sc, BAR_ME_REGISTER); 13455 13456 sc->pfunc_rel = 13457 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13458 sc->path_id = 13459 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13460 13461 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13462 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13463 } else { 13464 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13465 } 13466 13467 BLOGD(sc, DBG_LOAD, 13468 "Relative function %d, Absolute function %d, Path %d\n", 13469 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13470 } 13471 13472 static uint32_t 13473 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13474 { 13475 uint32_t shmem2_size; 13476 uint32_t offset; 13477 uint32_t mf_cfg_offset_value; 13478 13479 /* Non 57712 */ 13480 offset = (SHMEM_RD(sc, func_mb) + 13481 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13482 13483 /* 57712 plus */ 13484 if (sc->devinfo.shmem2_base != 0) { 13485 shmem2_size = SHMEM2_RD(sc, size); 13486 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13487 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13488 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13489 offset = mf_cfg_offset_value; 13490 } 13491 } 13492 } 13493 13494 return (offset); 13495 } 13496 13497 static uint32_t 13498 bxe_pcie_capability_read(struct bxe_softc *sc, 13499 int reg, 13500 int width) 13501 { 13502 int pcie_reg; 13503 13504 /* ensure PCIe capability is enabled */ 13505 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13506 if (pcie_reg != 0) { 13507 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13508 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13509 } 13510 } 13511 13512 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13513 13514 return (0); 13515 } 13516 13517 static uint8_t 13518 bxe_is_pcie_pending(struct bxe_softc *sc) 13519 { 13520 return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & 13521 PCIM_EXP_STA_TRANSACTION_PND); 13522 } 13523 13524 /* 13525 * Walk the PCI capabiites list for the device to find what features are 13526 * supported. These capabilites may be enabled/disabled by firmware so it's 13527 * best to walk the list rather than make assumptions. 13528 */ 13529 static void 13530 bxe_probe_pci_caps(struct bxe_softc *sc) 13531 { 13532 uint16_t link_status; 13533 int reg; 13534 13535 /* check if PCI Power Management is enabled */ 13536 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13537 if (reg != 0) { 13538 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13539 13540 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13541 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13542 } 13543 } 13544 13545 link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); 13546 13547 /* handle PCIe 2.0 workarounds for 57710 */ 13548 if (CHIP_IS_E1(sc)) { 13549 /* workaround for 57710 errata E4_57710_27462 */ 13550 sc->devinfo.pcie_link_speed = 13551 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13552 13553 /* workaround for 57710 errata E4_57710_27488 */ 13554 sc->devinfo.pcie_link_width = 13555 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13556 if (sc->devinfo.pcie_link_speed > 1) { 13557 sc->devinfo.pcie_link_width = 13558 ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; 13559 } 13560 } else { 13561 sc->devinfo.pcie_link_speed = 13562 (link_status & PCIM_LINK_STA_SPEED); 13563 sc->devinfo.pcie_link_width = 13564 ((link_status & PCIM_LINK_STA_WIDTH) >> 4); 13565 } 13566 13567 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13568 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13569 13570 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13571 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13572 13573 /* check if MSI capability is enabled */ 13574 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13575 if (reg != 0) { 13576 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13577 13578 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13579 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13580 } 13581 } 13582 13583 /* check if MSI-X capability is enabled */ 13584 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13585 if (reg != 0) { 13586 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13587 13588 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13589 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13590 } 13591 } 13592 } 13593 13594 static int 13595 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13596 { 13597 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13598 uint32_t val; 13599 13600 /* get the outer vlan if we're in switch-dependent mode */ 13601 13602 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13603 mf_info->ext_id = (uint16_t)val; 13604 13605 mf_info->multi_vnics_mode = 1; 13606 13607 if (!VALID_OVLAN(mf_info->ext_id)) { 13608 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13609 return (1); 13610 } 13611 13612 /* get the capabilities */ 13613 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13614 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13615 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13616 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13617 FUNC_MF_CFG_PROTOCOL_FCOE) { 13618 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13619 } else { 13620 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13621 } 13622 13623 mf_info->vnics_per_port = 13624 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13625 13626 return (0); 13627 } 13628 13629 static uint32_t 13630 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13631 { 13632 uint32_t retval = 0; 13633 uint32_t val; 13634 13635 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13636 13637 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13638 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13639 retval |= MF_PROTO_SUPPORT_ETHERNET; 13640 } 13641 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13642 retval |= MF_PROTO_SUPPORT_ISCSI; 13643 } 13644 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13645 retval |= MF_PROTO_SUPPORT_FCOE; 13646 } 13647 } 13648 13649 return (retval); 13650 } 13651 13652 static int 13653 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13654 { 13655 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13656 uint32_t val; 13657 13658 /* 13659 * There is no outer vlan if we're in switch-independent mode. 13660 * If the mac is valid then assume multi-function. 13661 */ 13662 13663 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13664 13665 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13666 13667 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13668 13669 mf_info->vnics_per_port = 13670 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13671 13672 return (0); 13673 } 13674 13675 static int 13676 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13677 { 13678 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13679 uint32_t e1hov_tag; 13680 uint32_t func_config; 13681 uint32_t niv_config; 13682 13683 mf_info->multi_vnics_mode = 1; 13684 13685 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13686 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13687 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13688 13689 mf_info->ext_id = 13690 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13691 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13692 13693 mf_info->default_vlan = 13694 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13695 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13696 13697 mf_info->niv_allowed_priorities = 13698 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13699 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13700 13701 mf_info->niv_default_cos = 13702 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13703 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13704 13705 mf_info->afex_vlan_mode = 13706 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13707 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13708 13709 mf_info->niv_mba_enabled = 13710 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13711 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13712 13713 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13714 13715 mf_info->vnics_per_port = 13716 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13717 13718 return (0); 13719 } 13720 13721 static int 13722 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13723 { 13724 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13725 uint32_t mf_cfg1; 13726 uint32_t mf_cfg2; 13727 uint32_t ovlan1; 13728 uint32_t ovlan2; 13729 uint8_t i, j; 13730 13731 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13732 SC_PORT(sc)); 13733 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13734 mf_info->mf_config[SC_VN(sc)]); 13735 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13736 mf_info->multi_vnics_mode); 13737 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13738 mf_info->vnics_per_port); 13739 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13740 mf_info->ext_id); 13741 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13742 mf_info->min_bw[0], mf_info->min_bw[1], 13743 mf_info->min_bw[2], mf_info->min_bw[3]); 13744 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13745 mf_info->max_bw[0], mf_info->max_bw[1], 13746 mf_info->max_bw[2], mf_info->max_bw[3]); 13747 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13748 sc->mac_addr_str); 13749 13750 /* various MF mode sanity checks... */ 13751 13752 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13753 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13754 SC_PORT(sc)); 13755 return (1); 13756 } 13757 13758 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13759 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13760 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13761 return (1); 13762 } 13763 13764 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13765 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13766 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13767 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13768 SC_VN(sc), OVLAN(sc)); 13769 return (1); 13770 } 13771 13772 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13773 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13774 mf_info->multi_vnics_mode, OVLAN(sc)); 13775 return (1); 13776 } 13777 13778 /* 13779 * Verify all functions are either MF or SF mode. If MF, make sure 13780 * sure that all non-hidden functions have a valid ovlan. If SF, 13781 * make sure that all non-hidden functions have an invalid ovlan. 13782 */ 13783 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13784 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13785 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13786 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13787 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13788 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13789 BLOGE(sc, "mf_mode=SD function %d MF config " 13790 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13791 i, mf_info->multi_vnics_mode, ovlan1); 13792 return (1); 13793 } 13794 } 13795 13796 /* Verify all funcs on the same port each have a different ovlan. */ 13797 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13798 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13799 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13800 /* iterate from the next function on the port to the max func */ 13801 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13802 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13803 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13804 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13805 VALID_OVLAN(ovlan1) && 13806 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13807 VALID_OVLAN(ovlan2) && 13808 (ovlan1 == ovlan2)) { 13809 BLOGE(sc, "mf_mode=SD functions %d and %d " 13810 "have the same ovlan (%d)\n", 13811 i, j, ovlan1); 13812 return (1); 13813 } 13814 } 13815 } 13816 } /* MULTI_FUNCTION_SD */ 13817 13818 return (0); 13819 } 13820 13821 static int 13822 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13823 { 13824 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13825 uint32_t val, mac_upper; 13826 uint8_t i, vnic; 13827 13828 /* initialize mf_info defaults */ 13829 mf_info->vnics_per_port = 1; 13830 mf_info->multi_vnics_mode = FALSE; 13831 mf_info->path_has_ovlan = FALSE; 13832 mf_info->mf_mode = SINGLE_FUNCTION; 13833 13834 if (!CHIP_IS_MF_CAP(sc)) { 13835 return (0); 13836 } 13837 13838 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13839 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13840 return (1); 13841 } 13842 13843 /* get the MF mode (switch dependent / independent / single-function) */ 13844 13845 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13846 13847 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13848 { 13849 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13850 13851 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13852 13853 /* check for legal upper mac bytes */ 13854 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13855 mf_info->mf_mode = MULTI_FUNCTION_SI; 13856 } else { 13857 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13858 } 13859 13860 break; 13861 13862 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13863 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13864 13865 /* get outer vlan configuration */ 13866 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13867 13868 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13869 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13870 mf_info->mf_mode = MULTI_FUNCTION_SD; 13871 } else { 13872 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13873 } 13874 13875 break; 13876 13877 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13878 13879 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13880 return (0); 13881 13882 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13883 13884 /* 13885 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13886 * and the MAC address is valid. 13887 */ 13888 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13889 13890 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13891 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13892 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13893 } else { 13894 BLOGE(sc, "Invalid config for AFEX mode\n"); 13895 } 13896 13897 break; 13898 13899 default: 13900 13901 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13902 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13903 13904 return (1); 13905 } 13906 13907 /* set path mf_mode (which could be different than function mf_mode) */ 13908 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13909 mf_info->path_has_ovlan = TRUE; 13910 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13911 /* 13912 * Decide on path multi vnics mode. If we're not in MF mode and in 13913 * 4-port mode, this is good enough to check vnic-0 of the other port 13914 * on the same path 13915 */ 13916 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13917 uint8_t other_port = !(PORT_ID(sc) & 1); 13918 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13919 13920 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13921 13922 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13923 } 13924 } 13925 13926 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13927 /* invalid MF config */ 13928 if (SC_VN(sc) >= 1) { 13929 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13930 return (1); 13931 } 13932 13933 return (0); 13934 } 13935 13936 /* get the MF configuration */ 13937 mf_info->mf_config[SC_VN(sc)] = 13938 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13939 13940 switch(mf_info->mf_mode) 13941 { 13942 case MULTI_FUNCTION_SD: 13943 13944 bxe_get_shmem_mf_cfg_info_sd(sc); 13945 break; 13946 13947 case MULTI_FUNCTION_SI: 13948 13949 bxe_get_shmem_mf_cfg_info_si(sc); 13950 break; 13951 13952 case MULTI_FUNCTION_AFEX: 13953 13954 bxe_get_shmem_mf_cfg_info_niv(sc); 13955 break; 13956 13957 default: 13958 13959 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13960 mf_info->mf_mode); 13961 return (1); 13962 } 13963 13964 /* get the congestion management parameters */ 13965 13966 vnic = 0; 13967 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13968 /* get min/max bw */ 13969 val = MFCFG_RD(sc, func_mf_config[i].config); 13970 mf_info->min_bw[vnic] = 13971 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13972 mf_info->max_bw[vnic] = 13973 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13974 vnic++; 13975 } 13976 13977 return (bxe_check_valid_mf_cfg(sc)); 13978 } 13979 13980 static int 13981 bxe_get_shmem_info(struct bxe_softc *sc) 13982 { 13983 int port; 13984 uint32_t mac_hi, mac_lo, val; 13985 13986 port = SC_PORT(sc); 13987 mac_hi = mac_lo = 0; 13988 13989 sc->link_params.sc = sc; 13990 sc->link_params.port = port; 13991 13992 /* get the hardware config info */ 13993 sc->devinfo.hw_config = 13994 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13995 sc->devinfo.hw_config2 = 13996 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13997 13998 sc->link_params.hw_led_mode = 13999 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 14000 SHARED_HW_CFG_LED_MODE_SHIFT); 14001 14002 /* get the port feature config */ 14003 sc->port.config = 14004 SHMEM_RD(sc, dev_info.port_feature_config[port].config), 14005 14006 /* get the link params */ 14007 sc->link_params.speed_cap_mask[0] = 14008 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 14009 sc->link_params.speed_cap_mask[1] = 14010 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 14011 14012 /* get the lane config */ 14013 sc->link_params.lane_config = 14014 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 14015 14016 /* get the link config */ 14017 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 14018 sc->port.link_config[ELINK_INT_PHY] = val; 14019 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 14020 sc->port.link_config[ELINK_EXT_PHY1] = 14021 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 14022 14023 /* get the override preemphasis flag and enable it or turn it off */ 14024 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 14025 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 14026 sc->link_params.feature_config_flags |= 14027 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14028 } else { 14029 sc->link_params.feature_config_flags &= 14030 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 14031 } 14032 14033 /* get the initial value of the link params */ 14034 sc->link_params.multi_phy_config = 14035 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 14036 14037 /* get external phy info */ 14038 sc->port.ext_phy_config = 14039 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 14040 14041 /* get the multifunction configuration */ 14042 bxe_get_mf_cfg_info(sc); 14043 14044 /* get the mac address */ 14045 if (IS_MF(sc)) { 14046 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 14047 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 14048 } else { 14049 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 14050 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 14051 } 14052 14053 if ((mac_lo == 0) && (mac_hi == 0)) { 14054 *sc->mac_addr_str = 0; 14055 BLOGE(sc, "No Ethernet address programmed!\n"); 14056 } else { 14057 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 14058 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 14059 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 14060 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 14061 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 14062 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 14063 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 14064 "%02x:%02x:%02x:%02x:%02x:%02x", 14065 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 14066 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 14067 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 14068 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 14069 } 14070 14071 #if 0 14072 if (!IS_MF(sc) && 14073 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14074 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { 14075 sc->flags |= BXE_NO_ISCSI; 14076 } 14077 if (!IS_MF(sc) && 14078 ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 14079 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { 14080 sc->flags |= BXE_NO_FCOE_FLAG; 14081 } 14082 #endif 14083 14084 return (0); 14085 } 14086 14087 static void 14088 bxe_get_tunable_params(struct bxe_softc *sc) 14089 { 14090 /* sanity checks */ 14091 14092 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 14093 (bxe_interrupt_mode != INTR_MODE_MSI) && 14094 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 14095 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 14096 bxe_interrupt_mode = INTR_MODE_MSIX; 14097 } 14098 14099 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 14100 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 14101 bxe_queue_count = 0; 14102 } 14103 14104 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 14105 if (bxe_max_rx_bufs == 0) { 14106 bxe_max_rx_bufs = RX_BD_USABLE; 14107 } else { 14108 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 14109 bxe_max_rx_bufs = 2048; 14110 } 14111 } 14112 14113 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 14114 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 14115 bxe_hc_rx_ticks = 25; 14116 } 14117 14118 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 14119 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 14120 bxe_hc_tx_ticks = 50; 14121 } 14122 14123 if (bxe_max_aggregation_size == 0) { 14124 bxe_max_aggregation_size = TPA_AGG_SIZE; 14125 } 14126 14127 if (bxe_max_aggregation_size > 0xffff) { 14128 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 14129 bxe_max_aggregation_size); 14130 bxe_max_aggregation_size = TPA_AGG_SIZE; 14131 } 14132 14133 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 14134 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 14135 bxe_mrrs = -1; 14136 } 14137 14138 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 14139 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 14140 bxe_autogreeen = 0; 14141 } 14142 14143 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 14144 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 14145 bxe_udp_rss = 0; 14146 } 14147 14148 /* pull in user settings */ 14149 14150 sc->interrupt_mode = bxe_interrupt_mode; 14151 sc->max_rx_bufs = bxe_max_rx_bufs; 14152 sc->hc_rx_ticks = bxe_hc_rx_ticks; 14153 sc->hc_tx_ticks = bxe_hc_tx_ticks; 14154 sc->max_aggregation_size = bxe_max_aggregation_size; 14155 sc->mrrs = bxe_mrrs; 14156 sc->autogreeen = bxe_autogreeen; 14157 sc->udp_rss = bxe_udp_rss; 14158 14159 if (bxe_interrupt_mode == INTR_MODE_INTX) { 14160 sc->num_queues = 1; 14161 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 14162 sc->num_queues = 14163 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 14164 MAX_RSS_CHAINS); 14165 if (sc->num_queues > mp_ncpus) { 14166 sc->num_queues = mp_ncpus; 14167 } 14168 } 14169 14170 BLOGD(sc, DBG_LOAD, 14171 "User Config: " 14172 "debug=0x%lx " 14173 "interrupt_mode=%d " 14174 "queue_count=%d " 14175 "hc_rx_ticks=%d " 14176 "hc_tx_ticks=%d " 14177 "rx_budget=%d " 14178 "max_aggregation_size=%d " 14179 "mrrs=%d " 14180 "autogreeen=%d " 14181 "udp_rss=%d\n", 14182 bxe_debug, 14183 sc->interrupt_mode, 14184 sc->num_queues, 14185 sc->hc_rx_ticks, 14186 sc->hc_tx_ticks, 14187 bxe_rx_budget, 14188 sc->max_aggregation_size, 14189 sc->mrrs, 14190 sc->autogreeen, 14191 sc->udp_rss); 14192 } 14193 14194 static void 14195 bxe_media_detect(struct bxe_softc *sc) 14196 { 14197 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 14198 switch (sc->link_params.phy[phy_idx].media_type) { 14199 case ELINK_ETH_PHY_SFPP_10G_FIBER: 14200 case ELINK_ETH_PHY_XFP_FIBER: 14201 BLOGI(sc, "Found 10Gb Fiber media.\n"); 14202 sc->media = IFM_10G_SR; 14203 break; 14204 case ELINK_ETH_PHY_SFP_1G_FIBER: 14205 BLOGI(sc, "Found 1Gb Fiber media.\n"); 14206 sc->media = IFM_1000_SX; 14207 break; 14208 case ELINK_ETH_PHY_KR: 14209 case ELINK_ETH_PHY_CX4: 14210 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 14211 sc->media = IFM_10G_CX4; 14212 break; 14213 case ELINK_ETH_PHY_DA_TWINAX: 14214 BLOGI(sc, "Found 10Gb Twinax media.\n"); 14215 sc->media = IFM_10G_TWINAX; 14216 break; 14217 case ELINK_ETH_PHY_BASE_T: 14218 if (sc->link_params.speed_cap_mask[0] & 14219 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 14220 BLOGI(sc, "Found 10GBase-T media.\n"); 14221 sc->media = IFM_10G_T; 14222 } else { 14223 BLOGI(sc, "Found 1000Base-T media.\n"); 14224 sc->media = IFM_1000_T; 14225 } 14226 break; 14227 case ELINK_ETH_PHY_NOT_PRESENT: 14228 BLOGI(sc, "Media not present.\n"); 14229 sc->media = 0; 14230 break; 14231 case ELINK_ETH_PHY_UNSPECIFIED: 14232 default: 14233 BLOGI(sc, "Unknown media!\n"); 14234 sc->media = 0; 14235 break; 14236 } 14237 } 14238 14239 #define GET_FIELD(value, fname) \ 14240 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 14241 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 14242 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 14243 14244 static int 14245 bxe_get_igu_cam_info(struct bxe_softc *sc) 14246 { 14247 int pfid = SC_FUNC(sc); 14248 int igu_sb_id; 14249 uint32_t val; 14250 uint8_t fid, igu_sb_cnt = 0; 14251 14252 sc->igu_base_sb = 0xff; 14253 14254 if (CHIP_INT_MODE_IS_BC(sc)) { 14255 int vn = SC_VN(sc); 14256 igu_sb_cnt = sc->igu_sb_cnt; 14257 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 14258 FP_SB_MAX_E1x); 14259 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 14260 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 14261 return (0); 14262 } 14263 14264 /* IGU in normal mode - read CAM */ 14265 for (igu_sb_id = 0; 14266 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 14267 igu_sb_id++) { 14268 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 14269 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 14270 continue; 14271 } 14272 fid = IGU_FID(val); 14273 if ((fid & IGU_FID_ENCODE_IS_PF)) { 14274 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 14275 continue; 14276 } 14277 if (IGU_VEC(val) == 0) { 14278 /* default status block */ 14279 sc->igu_dsb_id = igu_sb_id; 14280 } else { 14281 if (sc->igu_base_sb == 0xff) { 14282 sc->igu_base_sb = igu_sb_id; 14283 } 14284 igu_sb_cnt++; 14285 } 14286 } 14287 } 14288 14289 /* 14290 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 14291 * that number of CAM entries will not be equal to the value advertised in 14292 * PCI. Driver should use the minimal value of both as the actual status 14293 * block count 14294 */ 14295 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 14296 14297 if (igu_sb_cnt == 0) { 14298 BLOGE(sc, "CAM configuration error\n"); 14299 return (-1); 14300 } 14301 14302 return (0); 14303 } 14304 14305 /* 14306 * Gather various information from the device config space, the device itself, 14307 * shmem, and the user input. 14308 */ 14309 static int 14310 bxe_get_device_info(struct bxe_softc *sc) 14311 { 14312 uint32_t val; 14313 int rc; 14314 14315 /* Get the data for the device */ 14316 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 14317 sc->devinfo.device_id = pci_get_device(sc->dev); 14318 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 14319 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 14320 14321 /* get the chip revision (chip metal comes from pci config space) */ 14322 sc->devinfo.chip_id = 14323 sc->link_params.chip_id = 14324 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14325 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14326 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14327 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14328 14329 /* force 57811 according to MISC register */ 14330 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14331 if (CHIP_IS_57810(sc)) { 14332 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14333 (sc->devinfo.chip_id & 0x0000ffff)); 14334 } else if (CHIP_IS_57810_MF(sc)) { 14335 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14336 (sc->devinfo.chip_id & 0x0000ffff)); 14337 } 14338 sc->devinfo.chip_id |= 0x1; 14339 } 14340 14341 BLOGD(sc, DBG_LOAD, 14342 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14343 sc->devinfo.chip_id, 14344 ((sc->devinfo.chip_id >> 16) & 0xffff), 14345 ((sc->devinfo.chip_id >> 12) & 0xf), 14346 ((sc->devinfo.chip_id >> 4) & 0xff), 14347 ((sc->devinfo.chip_id >> 0) & 0xf)); 14348 14349 val = (REG_RD(sc, 0x2874) & 0x55); 14350 if ((sc->devinfo.chip_id & 0x1) || 14351 (CHIP_IS_E1(sc) && val) || 14352 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14353 sc->flags |= BXE_ONE_PORT_FLAG; 14354 BLOGD(sc, DBG_LOAD, "single port device\n"); 14355 } 14356 14357 /* set the doorbell size */ 14358 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14359 14360 /* determine whether the device is in 2 port or 4 port mode */ 14361 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14362 if (CHIP_IS_E2E3(sc)) { 14363 /* 14364 * Read port4mode_en_ovwr[0]: 14365 * If 1, four port mode is in port4mode_en_ovwr[1]. 14366 * If 0, four port mode is in port4mode_en[0]. 14367 */ 14368 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14369 if (val & 1) { 14370 val = ((val >> 1) & 1); 14371 } else { 14372 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14373 } 14374 14375 sc->devinfo.chip_port_mode = 14376 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14377 14378 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14379 } 14380 14381 /* get the function and path info for the device */ 14382 bxe_get_function_num(sc); 14383 14384 /* get the shared memory base address */ 14385 sc->devinfo.shmem_base = 14386 sc->link_params.shmem_base = 14387 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14388 sc->devinfo.shmem2_base = 14389 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14390 MISC_REG_GENERIC_CR_0)); 14391 14392 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14393 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14394 14395 if (!sc->devinfo.shmem_base) { 14396 /* this should ONLY prevent upcoming shmem reads */ 14397 BLOGI(sc, "MCP not active\n"); 14398 sc->flags |= BXE_NO_MCP_FLAG; 14399 return (0); 14400 } 14401 14402 /* make sure the shared memory contents are valid */ 14403 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14404 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14405 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14406 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14407 return (0); 14408 } 14409 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14410 14411 /* get the bootcode version */ 14412 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14413 snprintf(sc->devinfo.bc_ver_str, 14414 sizeof(sc->devinfo.bc_ver_str), 14415 "%d.%d.%d", 14416 ((sc->devinfo.bc_ver >> 24) & 0xff), 14417 ((sc->devinfo.bc_ver >> 16) & 0xff), 14418 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14419 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14420 14421 /* get the bootcode shmem address */ 14422 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14423 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14424 14425 /* clean indirect addresses as they're not used */ 14426 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14427 if (IS_PF(sc)) { 14428 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14429 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14430 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14431 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14432 if (CHIP_IS_E1x(sc)) { 14433 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14434 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14435 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14436 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14437 } 14438 14439 /* 14440 * Enable internal target-read (in case we are probed after PF 14441 * FLR). Must be done prior to any BAR read access. Only for 14442 * 57712 and up 14443 */ 14444 if (!CHIP_IS_E1x(sc)) { 14445 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14446 } 14447 } 14448 14449 /* get the nvram size */ 14450 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14451 sc->devinfo.flash_size = 14452 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14453 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14454 14455 /* get PCI capabilites */ 14456 bxe_probe_pci_caps(sc); 14457 14458 bxe_set_power_state(sc, PCI_PM_D0); 14459 14460 /* get various configuration parameters from shmem */ 14461 bxe_get_shmem_info(sc); 14462 14463 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14464 val = pci_read_config(sc->dev, 14465 (sc->devinfo.pcie_msix_cap_reg + 14466 PCIR_MSIX_CTRL), 14467 2); 14468 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14469 } else { 14470 sc->igu_sb_cnt = 1; 14471 } 14472 14473 sc->igu_base_addr = BAR_IGU_INTMEM; 14474 14475 /* initialize IGU parameters */ 14476 if (CHIP_IS_E1x(sc)) { 14477 sc->devinfo.int_block = INT_BLOCK_HC; 14478 sc->igu_dsb_id = DEF_SB_IGU_ID; 14479 sc->igu_base_sb = 0; 14480 } else { 14481 sc->devinfo.int_block = INT_BLOCK_IGU; 14482 14483 /* do not allow device reset during IGU info preocessing */ 14484 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14485 14486 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14487 14488 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14489 int tout = 5000; 14490 14491 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14492 14493 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14494 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14495 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14496 14497 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14498 tout--; 14499 DELAY(1000); 14500 } 14501 14502 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14503 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14504 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14505 return (-1); 14506 } 14507 } 14508 14509 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14510 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14511 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14512 } else { 14513 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14514 } 14515 14516 rc = bxe_get_igu_cam_info(sc); 14517 14518 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14519 14520 if (rc) { 14521 return (rc); 14522 } 14523 } 14524 14525 /* 14526 * Get base FW non-default (fast path) status block ID. This value is 14527 * used to initialize the fw_sb_id saved on the fp/queue structure to 14528 * determine the id used by the FW. 14529 */ 14530 if (CHIP_IS_E1x(sc)) { 14531 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14532 } else { 14533 /* 14534 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14535 * the same queue are indicated on the same IGU SB). So we prefer 14536 * FW and IGU SBs to be the same value. 14537 */ 14538 sc->base_fw_ndsb = sc->igu_base_sb; 14539 } 14540 14541 BLOGD(sc, DBG_LOAD, 14542 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14543 sc->igu_dsb_id, sc->igu_base_sb, 14544 sc->igu_sb_cnt, sc->base_fw_ndsb); 14545 14546 elink_phy_probe(&sc->link_params); 14547 14548 return (0); 14549 } 14550 14551 static void 14552 bxe_link_settings_supported(struct bxe_softc *sc, 14553 uint32_t switch_cfg) 14554 { 14555 uint32_t cfg_size = 0; 14556 uint32_t idx; 14557 uint8_t port = SC_PORT(sc); 14558 14559 /* aggregation of supported attributes of all external phys */ 14560 sc->port.supported[0] = 0; 14561 sc->port.supported[1] = 0; 14562 14563 switch (sc->link_params.num_phys) { 14564 case 1: 14565 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14566 cfg_size = 1; 14567 break; 14568 case 2: 14569 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14570 cfg_size = 1; 14571 break; 14572 case 3: 14573 if (sc->link_params.multi_phy_config & 14574 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14575 sc->port.supported[1] = 14576 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14577 sc->port.supported[0] = 14578 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14579 } else { 14580 sc->port.supported[0] = 14581 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14582 sc->port.supported[1] = 14583 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14584 } 14585 cfg_size = 2; 14586 break; 14587 } 14588 14589 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14590 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14591 SHMEM_RD(sc, 14592 dev_info.port_hw_config[port].external_phy_config), 14593 SHMEM_RD(sc, 14594 dev_info.port_hw_config[port].external_phy_config2)); 14595 return; 14596 } 14597 14598 if (CHIP_IS_E3(sc)) 14599 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14600 else { 14601 switch (switch_cfg) { 14602 case ELINK_SWITCH_CFG_1G: 14603 sc->port.phy_addr = 14604 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14605 break; 14606 case ELINK_SWITCH_CFG_10G: 14607 sc->port.phy_addr = 14608 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14609 break; 14610 default: 14611 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14612 sc->port.link_config[0]); 14613 return; 14614 } 14615 } 14616 14617 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14618 14619 /* mask what we support according to speed_cap_mask per configuration */ 14620 for (idx = 0; idx < cfg_size; idx++) { 14621 if (!(sc->link_params.speed_cap_mask[idx] & 14622 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14623 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14624 } 14625 14626 if (!(sc->link_params.speed_cap_mask[idx] & 14627 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14628 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14629 } 14630 14631 if (!(sc->link_params.speed_cap_mask[idx] & 14632 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14633 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14634 } 14635 14636 if (!(sc->link_params.speed_cap_mask[idx] & 14637 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14638 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14639 } 14640 14641 if (!(sc->link_params.speed_cap_mask[idx] & 14642 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14643 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14644 } 14645 14646 if (!(sc->link_params.speed_cap_mask[idx] & 14647 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14648 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14649 } 14650 14651 if (!(sc->link_params.speed_cap_mask[idx] & 14652 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14653 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14654 } 14655 14656 if (!(sc->link_params.speed_cap_mask[idx] & 14657 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14658 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14659 } 14660 } 14661 14662 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14663 sc->port.supported[0], sc->port.supported[1]); 14664 } 14665 14666 static void 14667 bxe_link_settings_requested(struct bxe_softc *sc) 14668 { 14669 uint32_t link_config; 14670 uint32_t idx; 14671 uint32_t cfg_size = 0; 14672 14673 sc->port.advertising[0] = 0; 14674 sc->port.advertising[1] = 0; 14675 14676 switch (sc->link_params.num_phys) { 14677 case 1: 14678 case 2: 14679 cfg_size = 1; 14680 break; 14681 case 3: 14682 cfg_size = 2; 14683 break; 14684 } 14685 14686 for (idx = 0; idx < cfg_size; idx++) { 14687 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14688 link_config = sc->port.link_config[idx]; 14689 14690 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14691 case PORT_FEATURE_LINK_SPEED_AUTO: 14692 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14693 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14694 sc->port.advertising[idx] |= sc->port.supported[idx]; 14695 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14696 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14697 sc->port.advertising[idx] |= 14698 (ELINK_SUPPORTED_100baseT_Half | 14699 ELINK_SUPPORTED_100baseT_Full); 14700 } else { 14701 /* force 10G, no AN */ 14702 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14703 sc->port.advertising[idx] |= 14704 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14705 continue; 14706 } 14707 break; 14708 14709 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14710 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14711 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14712 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14713 ADVERTISED_TP); 14714 } else { 14715 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14716 "speed_cap_mask=0x%08x\n", 14717 link_config, sc->link_params.speed_cap_mask[idx]); 14718 return; 14719 } 14720 break; 14721 14722 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14723 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14724 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14725 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14726 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14727 ADVERTISED_TP); 14728 } else { 14729 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14730 "speed_cap_mask=0x%08x\n", 14731 link_config, sc->link_params.speed_cap_mask[idx]); 14732 return; 14733 } 14734 break; 14735 14736 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14737 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14738 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14739 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14740 ADVERTISED_TP); 14741 } else { 14742 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14743 "speed_cap_mask=0x%08x\n", 14744 link_config, sc->link_params.speed_cap_mask[idx]); 14745 return; 14746 } 14747 break; 14748 14749 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14750 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14751 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14752 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14753 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14754 ADVERTISED_TP); 14755 } else { 14756 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14757 "speed_cap_mask=0x%08x\n", 14758 link_config, sc->link_params.speed_cap_mask[idx]); 14759 return; 14760 } 14761 break; 14762 14763 case PORT_FEATURE_LINK_SPEED_1G: 14764 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14765 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14766 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14767 ADVERTISED_TP); 14768 } else { 14769 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14770 "speed_cap_mask=0x%08x\n", 14771 link_config, sc->link_params.speed_cap_mask[idx]); 14772 return; 14773 } 14774 break; 14775 14776 case PORT_FEATURE_LINK_SPEED_2_5G: 14777 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14778 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14779 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14780 ADVERTISED_TP); 14781 } else { 14782 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14783 "speed_cap_mask=0x%08x\n", 14784 link_config, sc->link_params.speed_cap_mask[idx]); 14785 return; 14786 } 14787 break; 14788 14789 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14790 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14791 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14792 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14793 ADVERTISED_FIBRE); 14794 } else { 14795 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14796 "speed_cap_mask=0x%08x\n", 14797 link_config, sc->link_params.speed_cap_mask[idx]); 14798 return; 14799 } 14800 break; 14801 14802 case PORT_FEATURE_LINK_SPEED_20G: 14803 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14804 break; 14805 14806 default: 14807 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14808 "speed_cap_mask=0x%08x\n", 14809 link_config, sc->link_params.speed_cap_mask[idx]); 14810 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14811 sc->port.advertising[idx] = sc->port.supported[idx]; 14812 break; 14813 } 14814 14815 sc->link_params.req_flow_ctrl[idx] = 14816 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14817 14818 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14819 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14820 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14821 } else { 14822 bxe_set_requested_fc(sc); 14823 } 14824 } 14825 14826 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14827 "req_flow_ctrl=0x%x advertising=0x%x\n", 14828 sc->link_params.req_line_speed[idx], 14829 sc->link_params.req_duplex[idx], 14830 sc->link_params.req_flow_ctrl[idx], 14831 sc->port.advertising[idx]); 14832 } 14833 } 14834 14835 static void 14836 bxe_get_phy_info(struct bxe_softc *sc) 14837 { 14838 uint8_t port = SC_PORT(sc); 14839 uint32_t config = sc->port.config; 14840 uint32_t eee_mode; 14841 14842 /* shmem data already read in bxe_get_shmem_info() */ 14843 14844 BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14845 "link_config0=0x%08x\n", 14846 sc->link_params.lane_config, 14847 sc->link_params.speed_cap_mask[0], 14848 sc->port.link_config[0]); 14849 14850 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14851 bxe_link_settings_requested(sc); 14852 14853 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14854 sc->link_params.feature_config_flags |= 14855 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14856 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14857 sc->link_params.feature_config_flags &= 14858 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14859 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14860 sc->link_params.feature_config_flags |= 14861 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14862 } 14863 14864 /* configure link feature according to nvram value */ 14865 eee_mode = 14866 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14867 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14868 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14869 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14870 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14871 ELINK_EEE_MODE_ENABLE_LPI | 14872 ELINK_EEE_MODE_OUTPUT_TIME); 14873 } else { 14874 sc->link_params.eee_mode = 0; 14875 } 14876 14877 /* get the media type */ 14878 bxe_media_detect(sc); 14879 } 14880 14881 static void 14882 bxe_get_params(struct bxe_softc *sc) 14883 { 14884 /* get user tunable params */ 14885 bxe_get_tunable_params(sc); 14886 14887 /* select the RX and TX ring sizes */ 14888 sc->tx_ring_size = TX_BD_USABLE; 14889 sc->rx_ring_size = RX_BD_USABLE; 14890 14891 /* XXX disable WoL */ 14892 sc->wol = 0; 14893 } 14894 14895 static void 14896 bxe_set_modes_bitmap(struct bxe_softc *sc) 14897 { 14898 uint32_t flags = 0; 14899 14900 if (CHIP_REV_IS_FPGA(sc)) { 14901 SET_FLAGS(flags, MODE_FPGA); 14902 } else if (CHIP_REV_IS_EMUL(sc)) { 14903 SET_FLAGS(flags, MODE_EMUL); 14904 } else { 14905 SET_FLAGS(flags, MODE_ASIC); 14906 } 14907 14908 if (CHIP_IS_MODE_4_PORT(sc)) { 14909 SET_FLAGS(flags, MODE_PORT4); 14910 } else { 14911 SET_FLAGS(flags, MODE_PORT2); 14912 } 14913 14914 if (CHIP_IS_E2(sc)) { 14915 SET_FLAGS(flags, MODE_E2); 14916 } else if (CHIP_IS_E3(sc)) { 14917 SET_FLAGS(flags, MODE_E3); 14918 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14919 SET_FLAGS(flags, MODE_E3_A0); 14920 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14921 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14922 } 14923 } 14924 14925 if (IS_MF(sc)) { 14926 SET_FLAGS(flags, MODE_MF); 14927 switch (sc->devinfo.mf_info.mf_mode) { 14928 case MULTI_FUNCTION_SD: 14929 SET_FLAGS(flags, MODE_MF_SD); 14930 break; 14931 case MULTI_FUNCTION_SI: 14932 SET_FLAGS(flags, MODE_MF_SI); 14933 break; 14934 case MULTI_FUNCTION_AFEX: 14935 SET_FLAGS(flags, MODE_MF_AFEX); 14936 break; 14937 } 14938 } else { 14939 SET_FLAGS(flags, MODE_SF); 14940 } 14941 14942 #if defined(__LITTLE_ENDIAN) 14943 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14944 #else /* __BIG_ENDIAN */ 14945 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14946 #endif 14947 14948 INIT_MODE_FLAGS(sc) = flags; 14949 } 14950 14951 static int 14952 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14953 { 14954 struct bxe_fastpath *fp; 14955 bus_addr_t busaddr; 14956 int max_agg_queues; 14957 int max_segments; 14958 bus_size_t max_size; 14959 bus_size_t max_seg_size; 14960 char buf[32]; 14961 int rc; 14962 int i, j; 14963 14964 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14965 14966 /* allocate the parent bus DMA tag */ 14967 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14968 1, /* alignment */ 14969 0, /* boundary limit */ 14970 BUS_SPACE_MAXADDR, /* restricted low */ 14971 BUS_SPACE_MAXADDR, /* restricted hi */ 14972 NULL, /* addr filter() */ 14973 NULL, /* addr filter() arg */ 14974 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14975 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14976 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14977 0, /* flags */ 14978 NULL, /* lock() */ 14979 NULL, /* lock() arg */ 14980 &sc->parent_dma_tag); /* returned dma tag */ 14981 if (rc != 0) { 14982 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14983 return (1); 14984 } 14985 14986 /************************/ 14987 /* DEFAULT STATUS BLOCK */ 14988 /************************/ 14989 14990 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14991 &sc->def_sb_dma, "default status block") != 0) { 14992 /* XXX */ 14993 bus_dma_tag_destroy(sc->parent_dma_tag); 14994 return (1); 14995 } 14996 14997 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14998 14999 /***************/ 15000 /* EVENT QUEUE */ 15001 /***************/ 15002 15003 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15004 &sc->eq_dma, "event queue") != 0) { 15005 /* XXX */ 15006 bxe_dma_free(sc, &sc->def_sb_dma); 15007 sc->def_sb = NULL; 15008 bus_dma_tag_destroy(sc->parent_dma_tag); 15009 return (1); 15010 } 15011 15012 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 15013 15014 /*************/ 15015 /* SLOW PATH */ 15016 /*************/ 15017 15018 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 15019 &sc->sp_dma, "slow path") != 0) { 15020 /* XXX */ 15021 bxe_dma_free(sc, &sc->eq_dma); 15022 sc->eq = NULL; 15023 bxe_dma_free(sc, &sc->def_sb_dma); 15024 sc->def_sb = NULL; 15025 bus_dma_tag_destroy(sc->parent_dma_tag); 15026 return (1); 15027 } 15028 15029 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 15030 15031 /*******************/ 15032 /* SLOW PATH QUEUE */ 15033 /*******************/ 15034 15035 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 15036 &sc->spq_dma, "slow path queue") != 0) { 15037 /* XXX */ 15038 bxe_dma_free(sc, &sc->sp_dma); 15039 sc->sp = NULL; 15040 bxe_dma_free(sc, &sc->eq_dma); 15041 sc->eq = NULL; 15042 bxe_dma_free(sc, &sc->def_sb_dma); 15043 sc->def_sb = NULL; 15044 bus_dma_tag_destroy(sc->parent_dma_tag); 15045 return (1); 15046 } 15047 15048 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 15049 15050 /***************************/ 15051 /* FW DECOMPRESSION BUFFER */ 15052 /***************************/ 15053 15054 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 15055 "fw decompression buffer") != 0) { 15056 /* XXX */ 15057 bxe_dma_free(sc, &sc->spq_dma); 15058 sc->spq = NULL; 15059 bxe_dma_free(sc, &sc->sp_dma); 15060 sc->sp = NULL; 15061 bxe_dma_free(sc, &sc->eq_dma); 15062 sc->eq = NULL; 15063 bxe_dma_free(sc, &sc->def_sb_dma); 15064 sc->def_sb = NULL; 15065 bus_dma_tag_destroy(sc->parent_dma_tag); 15066 return (1); 15067 } 15068 15069 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 15070 15071 if ((sc->gz_strm = 15072 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 15073 /* XXX */ 15074 bxe_dma_free(sc, &sc->gz_buf_dma); 15075 sc->gz_buf = NULL; 15076 bxe_dma_free(sc, &sc->spq_dma); 15077 sc->spq = NULL; 15078 bxe_dma_free(sc, &sc->sp_dma); 15079 sc->sp = NULL; 15080 bxe_dma_free(sc, &sc->eq_dma); 15081 sc->eq = NULL; 15082 bxe_dma_free(sc, &sc->def_sb_dma); 15083 sc->def_sb = NULL; 15084 bus_dma_tag_destroy(sc->parent_dma_tag); 15085 return (1); 15086 } 15087 15088 /*************/ 15089 /* FASTPATHS */ 15090 /*************/ 15091 15092 /* allocate DMA memory for each fastpath structure */ 15093 for (i = 0; i < sc->num_queues; i++) { 15094 fp = &sc->fp[i]; 15095 fp->sc = sc; 15096 fp->index = i; 15097 15098 /*******************/ 15099 /* FP STATUS BLOCK */ 15100 /*******************/ 15101 15102 snprintf(buf, sizeof(buf), "fp %d status block", i); 15103 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 15104 &fp->sb_dma, buf) != 0) { 15105 /* XXX unwind and free previous fastpath allocations */ 15106 BLOGE(sc, "Failed to alloc %s\n", buf); 15107 return (1); 15108 } else { 15109 if (CHIP_IS_E2E3(sc)) { 15110 fp->status_block.e2_sb = 15111 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 15112 } else { 15113 fp->status_block.e1x_sb = 15114 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 15115 } 15116 } 15117 15118 /******************/ 15119 /* FP TX BD CHAIN */ 15120 /******************/ 15121 15122 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 15123 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 15124 &fp->tx_dma, buf) != 0) { 15125 /* XXX unwind and free previous fastpath allocations */ 15126 BLOGE(sc, "Failed to alloc %s\n", buf); 15127 return (1); 15128 } else { 15129 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 15130 } 15131 15132 /* link together the tx bd chain pages */ 15133 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 15134 /* index into the tx bd chain array to last entry per page */ 15135 struct eth_tx_next_bd *tx_next_bd = 15136 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 15137 /* point to the next page and wrap from last page */ 15138 busaddr = (fp->tx_dma.paddr + 15139 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 15140 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 15141 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 15142 } 15143 15144 /******************/ 15145 /* FP RX BD CHAIN */ 15146 /******************/ 15147 15148 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 15149 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 15150 &fp->rx_dma, buf) != 0) { 15151 /* XXX unwind and free previous fastpath allocations */ 15152 BLOGE(sc, "Failed to alloc %s\n", buf); 15153 return (1); 15154 } else { 15155 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 15156 } 15157 15158 /* link together the rx bd chain pages */ 15159 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 15160 /* index into the rx bd chain array to last entry per page */ 15161 struct eth_rx_bd *rx_bd = 15162 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 15163 /* point to the next page and wrap from last page */ 15164 busaddr = (fp->rx_dma.paddr + 15165 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 15166 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 15167 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 15168 } 15169 15170 /*******************/ 15171 /* FP RX RCQ CHAIN */ 15172 /*******************/ 15173 15174 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 15175 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 15176 &fp->rcq_dma, buf) != 0) { 15177 /* XXX unwind and free previous fastpath allocations */ 15178 BLOGE(sc, "Failed to alloc %s\n", buf); 15179 return (1); 15180 } else { 15181 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 15182 } 15183 15184 /* link together the rcq chain pages */ 15185 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 15186 /* index into the rcq chain array to last entry per page */ 15187 struct eth_rx_cqe_next_page *rx_cqe_next = 15188 (struct eth_rx_cqe_next_page *) 15189 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 15190 /* point to the next page and wrap from last page */ 15191 busaddr = (fp->rcq_dma.paddr + 15192 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 15193 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 15194 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 15195 } 15196 15197 /*******************/ 15198 /* FP RX SGE CHAIN */ 15199 /*******************/ 15200 15201 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 15202 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 15203 &fp->rx_sge_dma, buf) != 0) { 15204 /* XXX unwind and free previous fastpath allocations */ 15205 BLOGE(sc, "Failed to alloc %s\n", buf); 15206 return (1); 15207 } else { 15208 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 15209 } 15210 15211 /* link together the sge chain pages */ 15212 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 15213 /* index into the rcq chain array to last entry per page */ 15214 struct eth_rx_sge *rx_sge = 15215 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 15216 /* point to the next page and wrap from last page */ 15217 busaddr = (fp->rx_sge_dma.paddr + 15218 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 15219 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 15220 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 15221 } 15222 15223 /***********************/ 15224 /* FP TX MBUF DMA MAPS */ 15225 /***********************/ 15226 15227 /* set required sizes before mapping to conserve resources */ 15228 if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) { 15229 max_size = BXE_TSO_MAX_SIZE; 15230 max_segments = BXE_TSO_MAX_SEGMENTS; 15231 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 15232 } else { 15233 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 15234 max_segments = BXE_MAX_SEGMENTS; 15235 max_seg_size = MCLBYTES; 15236 } 15237 15238 /* create a dma tag for the tx mbufs */ 15239 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15240 1, /* alignment */ 15241 0, /* boundary limit */ 15242 BUS_SPACE_MAXADDR, /* restricted low */ 15243 BUS_SPACE_MAXADDR, /* restricted hi */ 15244 NULL, /* addr filter() */ 15245 NULL, /* addr filter() arg */ 15246 max_size, /* max map size */ 15247 max_segments, /* num discontinuous */ 15248 max_seg_size, /* max seg size */ 15249 0, /* flags */ 15250 NULL, /* lock() */ 15251 NULL, /* lock() arg */ 15252 &fp->tx_mbuf_tag); /* returned dma tag */ 15253 if (rc != 0) { 15254 /* XXX unwind and free previous fastpath allocations */ 15255 BLOGE(sc, "Failed to create dma tag for " 15256 "'fp %d tx mbufs' (%d)\n", 15257 i, rc); 15258 return (1); 15259 } 15260 15261 /* create dma maps for each of the tx mbuf clusters */ 15262 for (j = 0; j < TX_BD_TOTAL; j++) { 15263 if (bus_dmamap_create(fp->tx_mbuf_tag, 15264 BUS_DMA_NOWAIT, 15265 &fp->tx_mbuf_chain[j].m_map)) { 15266 /* XXX unwind and free previous fastpath allocations */ 15267 BLOGE(sc, "Failed to create dma map for " 15268 "'fp %d tx mbuf %d' (%d)\n", 15269 i, j, rc); 15270 return (1); 15271 } 15272 } 15273 15274 /***********************/ 15275 /* FP RX MBUF DMA MAPS */ 15276 /***********************/ 15277 15278 /* create a dma tag for the rx mbufs */ 15279 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15280 1, /* alignment */ 15281 0, /* boundary limit */ 15282 BUS_SPACE_MAXADDR, /* restricted low */ 15283 BUS_SPACE_MAXADDR, /* restricted hi */ 15284 NULL, /* addr filter() */ 15285 NULL, /* addr filter() arg */ 15286 MJUM9BYTES, /* max map size */ 15287 1, /* num discontinuous */ 15288 MJUM9BYTES, /* max seg size */ 15289 0, /* flags */ 15290 NULL, /* lock() */ 15291 NULL, /* lock() arg */ 15292 &fp->rx_mbuf_tag); /* returned dma tag */ 15293 if (rc != 0) { 15294 /* XXX unwind and free previous fastpath allocations */ 15295 BLOGE(sc, "Failed to create dma tag for " 15296 "'fp %d rx mbufs' (%d)\n", 15297 i, rc); 15298 return (1); 15299 } 15300 15301 /* create dma maps for each of the rx mbuf clusters */ 15302 for (j = 0; j < RX_BD_TOTAL; j++) { 15303 if (bus_dmamap_create(fp->rx_mbuf_tag, 15304 BUS_DMA_NOWAIT, 15305 &fp->rx_mbuf_chain[j].m_map)) { 15306 /* XXX unwind and free previous fastpath allocations */ 15307 BLOGE(sc, "Failed to create dma map for " 15308 "'fp %d rx mbuf %d' (%d)\n", 15309 i, j, rc); 15310 return (1); 15311 } 15312 } 15313 15314 /* create dma map for the spare rx mbuf cluster */ 15315 if (bus_dmamap_create(fp->rx_mbuf_tag, 15316 BUS_DMA_NOWAIT, 15317 &fp->rx_mbuf_spare_map)) { 15318 /* XXX unwind and free previous fastpath allocations */ 15319 BLOGE(sc, "Failed to create dma map for " 15320 "'fp %d spare rx mbuf' (%d)\n", 15321 i, rc); 15322 return (1); 15323 } 15324 15325 /***************************/ 15326 /* FP RX SGE MBUF DMA MAPS */ 15327 /***************************/ 15328 15329 /* create a dma tag for the rx sge mbufs */ 15330 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15331 1, /* alignment */ 15332 0, /* boundary limit */ 15333 BUS_SPACE_MAXADDR, /* restricted low */ 15334 BUS_SPACE_MAXADDR, /* restricted hi */ 15335 NULL, /* addr filter() */ 15336 NULL, /* addr filter() arg */ 15337 BCM_PAGE_SIZE, /* max map size */ 15338 1, /* num discontinuous */ 15339 BCM_PAGE_SIZE, /* max seg size */ 15340 0, /* flags */ 15341 NULL, /* lock() */ 15342 NULL, /* lock() arg */ 15343 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15344 if (rc != 0) { 15345 /* XXX unwind and free previous fastpath allocations */ 15346 BLOGE(sc, "Failed to create dma tag for " 15347 "'fp %d rx sge mbufs' (%d)\n", 15348 i, rc); 15349 return (1); 15350 } 15351 15352 /* create dma maps for the rx sge mbuf clusters */ 15353 for (j = 0; j < RX_SGE_TOTAL; j++) { 15354 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15355 BUS_DMA_NOWAIT, 15356 &fp->rx_sge_mbuf_chain[j].m_map)) { 15357 /* XXX unwind and free previous fastpath allocations */ 15358 BLOGE(sc, "Failed to create dma map for " 15359 "'fp %d rx sge mbuf %d' (%d)\n", 15360 i, j, rc); 15361 return (1); 15362 } 15363 } 15364 15365 /* create dma map for the spare rx sge mbuf cluster */ 15366 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15367 BUS_DMA_NOWAIT, 15368 &fp->rx_sge_mbuf_spare_map)) { 15369 /* XXX unwind and free previous fastpath allocations */ 15370 BLOGE(sc, "Failed to create dma map for " 15371 "'fp %d spare rx sge mbuf' (%d)\n", 15372 i, rc); 15373 return (1); 15374 } 15375 15376 /***************************/ 15377 /* FP RX TPA MBUF DMA MAPS */ 15378 /***************************/ 15379 15380 /* create dma maps for the rx tpa mbuf clusters */ 15381 max_agg_queues = MAX_AGG_QS(sc); 15382 15383 for (j = 0; j < max_agg_queues; j++) { 15384 if (bus_dmamap_create(fp->rx_mbuf_tag, 15385 BUS_DMA_NOWAIT, 15386 &fp->rx_tpa_info[j].bd.m_map)) { 15387 /* XXX unwind and free previous fastpath allocations */ 15388 BLOGE(sc, "Failed to create dma map for " 15389 "'fp %d rx tpa mbuf %d' (%d)\n", 15390 i, j, rc); 15391 return (1); 15392 } 15393 } 15394 15395 /* create dma map for the spare rx tpa mbuf cluster */ 15396 if (bus_dmamap_create(fp->rx_mbuf_tag, 15397 BUS_DMA_NOWAIT, 15398 &fp->rx_tpa_info_mbuf_spare_map)) { 15399 /* XXX unwind and free previous fastpath allocations */ 15400 BLOGE(sc, "Failed to create dma map for " 15401 "'fp %d spare rx tpa mbuf' (%d)\n", 15402 i, rc); 15403 return (1); 15404 } 15405 15406 bxe_init_sge_ring_bit_mask(fp); 15407 } 15408 15409 return (0); 15410 } 15411 15412 static void 15413 bxe_free_hsi_mem(struct bxe_softc *sc) 15414 { 15415 struct bxe_fastpath *fp; 15416 int max_agg_queues; 15417 int i, j; 15418 15419 if (sc->parent_dma_tag == NULL) { 15420 return; /* assume nothing was allocated */ 15421 } 15422 15423 for (i = 0; i < sc->num_queues; i++) { 15424 fp = &sc->fp[i]; 15425 15426 /*******************/ 15427 /* FP STATUS BLOCK */ 15428 /*******************/ 15429 15430 bxe_dma_free(sc, &fp->sb_dma); 15431 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15432 15433 /******************/ 15434 /* FP TX BD CHAIN */ 15435 /******************/ 15436 15437 bxe_dma_free(sc, &fp->tx_dma); 15438 fp->tx_chain = NULL; 15439 15440 /******************/ 15441 /* FP RX BD CHAIN */ 15442 /******************/ 15443 15444 bxe_dma_free(sc, &fp->rx_dma); 15445 fp->rx_chain = NULL; 15446 15447 /*******************/ 15448 /* FP RX RCQ CHAIN */ 15449 /*******************/ 15450 15451 bxe_dma_free(sc, &fp->rcq_dma); 15452 fp->rcq_chain = NULL; 15453 15454 /*******************/ 15455 /* FP RX SGE CHAIN */ 15456 /*******************/ 15457 15458 bxe_dma_free(sc, &fp->rx_sge_dma); 15459 fp->rx_sge_chain = NULL; 15460 15461 /***********************/ 15462 /* FP TX MBUF DMA MAPS */ 15463 /***********************/ 15464 15465 if (fp->tx_mbuf_tag != NULL) { 15466 for (j = 0; j < TX_BD_TOTAL; j++) { 15467 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15468 bus_dmamap_unload(fp->tx_mbuf_tag, 15469 fp->tx_mbuf_chain[j].m_map); 15470 bus_dmamap_destroy(fp->tx_mbuf_tag, 15471 fp->tx_mbuf_chain[j].m_map); 15472 } 15473 } 15474 15475 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15476 fp->tx_mbuf_tag = NULL; 15477 } 15478 15479 /***********************/ 15480 /* FP RX MBUF DMA MAPS */ 15481 /***********************/ 15482 15483 if (fp->rx_mbuf_tag != NULL) { 15484 for (j = 0; j < RX_BD_TOTAL; j++) { 15485 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15486 bus_dmamap_unload(fp->rx_mbuf_tag, 15487 fp->rx_mbuf_chain[j].m_map); 15488 bus_dmamap_destroy(fp->rx_mbuf_tag, 15489 fp->rx_mbuf_chain[j].m_map); 15490 } 15491 } 15492 15493 if (fp->rx_mbuf_spare_map != NULL) { 15494 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15495 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15496 } 15497 15498 /***************************/ 15499 /* FP RX TPA MBUF DMA MAPS */ 15500 /***************************/ 15501 15502 max_agg_queues = MAX_AGG_QS(sc); 15503 15504 for (j = 0; j < max_agg_queues; j++) { 15505 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15506 bus_dmamap_unload(fp->rx_mbuf_tag, 15507 fp->rx_tpa_info[j].bd.m_map); 15508 bus_dmamap_destroy(fp->rx_mbuf_tag, 15509 fp->rx_tpa_info[j].bd.m_map); 15510 } 15511 } 15512 15513 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15514 bus_dmamap_unload(fp->rx_mbuf_tag, 15515 fp->rx_tpa_info_mbuf_spare_map); 15516 bus_dmamap_destroy(fp->rx_mbuf_tag, 15517 fp->rx_tpa_info_mbuf_spare_map); 15518 } 15519 15520 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15521 fp->rx_mbuf_tag = NULL; 15522 } 15523 15524 /***************************/ 15525 /* FP RX SGE MBUF DMA MAPS */ 15526 /***************************/ 15527 15528 if (fp->rx_sge_mbuf_tag != NULL) { 15529 for (j = 0; j < RX_SGE_TOTAL; j++) { 15530 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15531 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15532 fp->rx_sge_mbuf_chain[j].m_map); 15533 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15534 fp->rx_sge_mbuf_chain[j].m_map); 15535 } 15536 } 15537 15538 if (fp->rx_sge_mbuf_spare_map != NULL) { 15539 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15540 fp->rx_sge_mbuf_spare_map); 15541 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15542 fp->rx_sge_mbuf_spare_map); 15543 } 15544 15545 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15546 fp->rx_sge_mbuf_tag = NULL; 15547 } 15548 } 15549 15550 /***************************/ 15551 /* FW DECOMPRESSION BUFFER */ 15552 /***************************/ 15553 15554 bxe_dma_free(sc, &sc->gz_buf_dma); 15555 sc->gz_buf = NULL; 15556 free(sc->gz_strm, M_DEVBUF); 15557 sc->gz_strm = NULL; 15558 15559 /*******************/ 15560 /* SLOW PATH QUEUE */ 15561 /*******************/ 15562 15563 bxe_dma_free(sc, &sc->spq_dma); 15564 sc->spq = NULL; 15565 15566 /*************/ 15567 /* SLOW PATH */ 15568 /*************/ 15569 15570 bxe_dma_free(sc, &sc->sp_dma); 15571 sc->sp = NULL; 15572 15573 /***************/ 15574 /* EVENT QUEUE */ 15575 /***************/ 15576 15577 bxe_dma_free(sc, &sc->eq_dma); 15578 sc->eq = NULL; 15579 15580 /************************/ 15581 /* DEFAULT STATUS BLOCK */ 15582 /************************/ 15583 15584 bxe_dma_free(sc, &sc->def_sb_dma); 15585 sc->def_sb = NULL; 15586 15587 bus_dma_tag_destroy(sc->parent_dma_tag); 15588 sc->parent_dma_tag = NULL; 15589 } 15590 15591 /* 15592 * Previous driver DMAE transaction may have occurred when pre-boot stage 15593 * ended and boot began. This would invalidate the addresses of the 15594 * transaction, resulting in was-error bit set in the PCI causing all 15595 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15596 * the interrupt which detected this from the pglueb and the was-done bit 15597 */ 15598 static void 15599 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15600 { 15601 uint32_t val; 15602 15603 if (!CHIP_IS_E1x(sc)) { 15604 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15605 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15606 BLOGD(sc, DBG_LOAD, 15607 "Clearing 'was-error' bit that was set in pglueb"); 15608 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15609 } 15610 } 15611 } 15612 15613 static int 15614 bxe_prev_mcp_done(struct bxe_softc *sc) 15615 { 15616 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15617 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15618 if (!rc) { 15619 BLOGE(sc, "MCP response failure, aborting\n"); 15620 return (-1); 15621 } 15622 15623 return (0); 15624 } 15625 15626 static struct bxe_prev_list_node * 15627 bxe_prev_path_get_entry(struct bxe_softc *sc) 15628 { 15629 struct bxe_prev_list_node *tmp; 15630 15631 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15632 if ((sc->pcie_bus == tmp->bus) && 15633 (sc->pcie_device == tmp->slot) && 15634 (SC_PATH(sc) == tmp->path)) { 15635 return (tmp); 15636 } 15637 } 15638 15639 return (NULL); 15640 } 15641 15642 static uint8_t 15643 bxe_prev_is_path_marked(struct bxe_softc *sc) 15644 { 15645 struct bxe_prev_list_node *tmp; 15646 int rc = FALSE; 15647 15648 mtx_lock(&bxe_prev_mtx); 15649 15650 tmp = bxe_prev_path_get_entry(sc); 15651 if (tmp) { 15652 if (tmp->aer) { 15653 BLOGD(sc, DBG_LOAD, 15654 "Path %d/%d/%d was marked by AER\n", 15655 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15656 } else { 15657 rc = TRUE; 15658 BLOGD(sc, DBG_LOAD, 15659 "Path %d/%d/%d was already cleaned from previous drivers\n", 15660 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15661 } 15662 } 15663 15664 mtx_unlock(&bxe_prev_mtx); 15665 15666 return (rc); 15667 } 15668 15669 static int 15670 bxe_prev_mark_path(struct bxe_softc *sc, 15671 uint8_t after_undi) 15672 { 15673 struct bxe_prev_list_node *tmp; 15674 15675 mtx_lock(&bxe_prev_mtx); 15676 15677 /* Check whether the entry for this path already exists */ 15678 tmp = bxe_prev_path_get_entry(sc); 15679 if (tmp) { 15680 if (!tmp->aer) { 15681 BLOGD(sc, DBG_LOAD, 15682 "Re-marking AER in path %d/%d/%d\n", 15683 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15684 } else { 15685 BLOGD(sc, DBG_LOAD, 15686 "Removing AER indication from path %d/%d/%d\n", 15687 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15688 tmp->aer = 0; 15689 } 15690 15691 mtx_unlock(&bxe_prev_mtx); 15692 return (0); 15693 } 15694 15695 mtx_unlock(&bxe_prev_mtx); 15696 15697 /* Create an entry for this path and add it */ 15698 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15699 (M_NOWAIT | M_ZERO)); 15700 if (!tmp) { 15701 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15702 return (-1); 15703 } 15704 15705 tmp->bus = sc->pcie_bus; 15706 tmp->slot = sc->pcie_device; 15707 tmp->path = SC_PATH(sc); 15708 tmp->aer = 0; 15709 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15710 15711 mtx_lock(&bxe_prev_mtx); 15712 15713 BLOGD(sc, DBG_LOAD, 15714 "Marked path %d/%d/%d - finished previous unload\n", 15715 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15716 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15717 15718 mtx_unlock(&bxe_prev_mtx); 15719 15720 return (0); 15721 } 15722 15723 static int 15724 bxe_do_flr(struct bxe_softc *sc) 15725 { 15726 int i; 15727 15728 /* only E2 and onwards support FLR */ 15729 if (CHIP_IS_E1x(sc)) { 15730 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15731 return (-1); 15732 } 15733 15734 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15735 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15736 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15737 sc->devinfo.bc_ver); 15738 return (-1); 15739 } 15740 15741 /* Wait for Transaction Pending bit clean */ 15742 for (i = 0; i < 4; i++) { 15743 if (i) { 15744 DELAY(((1 << (i - 1)) * 100) * 1000); 15745 } 15746 15747 if (!bxe_is_pcie_pending(sc)) { 15748 goto clear; 15749 } 15750 } 15751 15752 BLOGE(sc, "PCIE transaction is not cleared, " 15753 "proceeding with reset anyway\n"); 15754 15755 clear: 15756 15757 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15758 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15759 15760 return (0); 15761 } 15762 15763 struct bxe_mac_vals { 15764 uint32_t xmac_addr; 15765 uint32_t xmac_val; 15766 uint32_t emac_addr; 15767 uint32_t emac_val; 15768 uint32_t umac_addr; 15769 uint32_t umac_val; 15770 uint32_t bmac_addr; 15771 uint32_t bmac_val[2]; 15772 }; 15773 15774 static void 15775 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15776 struct bxe_mac_vals *vals) 15777 { 15778 uint32_t val, base_addr, offset, mask, reset_reg; 15779 uint8_t mac_stopped = FALSE; 15780 uint8_t port = SC_PORT(sc); 15781 uint32_t wb_data[2]; 15782 15783 /* reset addresses as they also mark which values were changed */ 15784 vals->bmac_addr = 0; 15785 vals->umac_addr = 0; 15786 vals->xmac_addr = 0; 15787 vals->emac_addr = 0; 15788 15789 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15790 15791 if (!CHIP_IS_E3(sc)) { 15792 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15793 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15794 if ((mask & reset_reg) && val) { 15795 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15796 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15797 : NIG_REG_INGRESS_BMAC0_MEM; 15798 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15799 : BIGMAC_REGISTER_BMAC_CONTROL; 15800 15801 /* 15802 * use rd/wr since we cannot use dmae. This is safe 15803 * since MCP won't access the bus due to the request 15804 * to unload, and no function on the path can be 15805 * loaded at this time. 15806 */ 15807 wb_data[0] = REG_RD(sc, base_addr + offset); 15808 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15809 vals->bmac_addr = base_addr + offset; 15810 vals->bmac_val[0] = wb_data[0]; 15811 vals->bmac_val[1] = wb_data[1]; 15812 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15813 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15814 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15815 } 15816 15817 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15818 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15819 vals->emac_val = REG_RD(sc, vals->emac_addr); 15820 REG_WR(sc, vals->emac_addr, 0); 15821 mac_stopped = TRUE; 15822 } else { 15823 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15824 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15825 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15826 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15827 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15828 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15829 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15830 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15831 REG_WR(sc, vals->xmac_addr, 0); 15832 mac_stopped = TRUE; 15833 } 15834 15835 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15836 if (mask & reset_reg) { 15837 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15838 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15839 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15840 vals->umac_val = REG_RD(sc, vals->umac_addr); 15841 REG_WR(sc, vals->umac_addr, 0); 15842 mac_stopped = TRUE; 15843 } 15844 } 15845 15846 if (mac_stopped) { 15847 DELAY(20000); 15848 } 15849 } 15850 15851 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15852 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15853 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15854 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15855 15856 static void 15857 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15858 uint8_t port, 15859 uint8_t inc) 15860 { 15861 uint16_t rcq, bd; 15862 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15863 15864 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15865 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15866 15867 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15868 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15869 15870 BLOGD(sc, DBG_LOAD, 15871 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15872 port, bd, rcq); 15873 } 15874 15875 static int 15876 bxe_prev_unload_common(struct bxe_softc *sc) 15877 { 15878 uint32_t reset_reg, tmp_reg = 0, rc; 15879 uint8_t prev_undi = FALSE; 15880 struct bxe_mac_vals mac_vals; 15881 uint32_t timer_count = 1000; 15882 uint32_t prev_brb; 15883 15884 /* 15885 * It is possible a previous function received 'common' answer, 15886 * but hasn't loaded yet, therefore creating a scenario of 15887 * multiple functions receiving 'common' on the same path. 15888 */ 15889 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15890 15891 memset(&mac_vals, 0, sizeof(mac_vals)); 15892 15893 if (bxe_prev_is_path_marked(sc)) { 15894 return (bxe_prev_mcp_done(sc)); 15895 } 15896 15897 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15898 15899 /* Reset should be performed after BRB is emptied */ 15900 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15901 /* Close the MAC Rx to prevent BRB from filling up */ 15902 bxe_prev_unload_close_mac(sc, &mac_vals); 15903 15904 /* close LLH filters towards the BRB */ 15905 elink_set_rx_filter(&sc->link_params, 0); 15906 15907 /* 15908 * Check if the UNDI driver was previously loaded. 15909 * UNDI driver initializes CID offset for normal bell to 0x7 15910 */ 15911 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15912 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15913 if (tmp_reg == 0x7) { 15914 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15915 prev_undi = TRUE; 15916 /* clear the UNDI indication */ 15917 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15918 /* clear possible idle check errors */ 15919 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15920 } 15921 } 15922 15923 /* wait until BRB is empty */ 15924 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15925 while (timer_count) { 15926 prev_brb = tmp_reg; 15927 15928 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15929 if (!tmp_reg) { 15930 break; 15931 } 15932 15933 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15934 15935 /* reset timer as long as BRB actually gets emptied */ 15936 if (prev_brb > tmp_reg) { 15937 timer_count = 1000; 15938 } else { 15939 timer_count--; 15940 } 15941 15942 /* If UNDI resides in memory, manually increment it */ 15943 if (prev_undi) { 15944 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15945 } 15946 15947 DELAY(10); 15948 } 15949 15950 if (!timer_count) { 15951 BLOGE(sc, "Failed to empty BRB\n"); 15952 } 15953 } 15954 15955 /* No packets are in the pipeline, path is ready for reset */ 15956 bxe_reset_common(sc); 15957 15958 if (mac_vals.xmac_addr) { 15959 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15960 } 15961 if (mac_vals.umac_addr) { 15962 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15963 } 15964 if (mac_vals.emac_addr) { 15965 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15966 } 15967 if (mac_vals.bmac_addr) { 15968 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15969 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15970 } 15971 15972 rc = bxe_prev_mark_path(sc, prev_undi); 15973 if (rc) { 15974 bxe_prev_mcp_done(sc); 15975 return (rc); 15976 } 15977 15978 return (bxe_prev_mcp_done(sc)); 15979 } 15980 15981 static int 15982 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15983 { 15984 int rc; 15985 15986 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15987 15988 /* Test if previous unload process was already finished for this path */ 15989 if (bxe_prev_is_path_marked(sc)) { 15990 return (bxe_prev_mcp_done(sc)); 15991 } 15992 15993 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15994 15995 /* 15996 * If function has FLR capabilities, and existing FW version matches 15997 * the one required, then FLR will be sufficient to clean any residue 15998 * left by previous driver 15999 */ 16000 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 16001 if (!rc) { 16002 /* fw version is good */ 16003 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 16004 rc = bxe_do_flr(sc); 16005 } 16006 16007 if (!rc) { 16008 /* FLR was performed */ 16009 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 16010 return (0); 16011 } 16012 16013 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 16014 16015 /* Close the MCP request, return failure*/ 16016 rc = bxe_prev_mcp_done(sc); 16017 if (!rc) { 16018 rc = BXE_PREV_WAIT_NEEDED; 16019 } 16020 16021 return (rc); 16022 } 16023 16024 static int 16025 bxe_prev_unload(struct bxe_softc *sc) 16026 { 16027 int time_counter = 10; 16028 uint32_t fw, hw_lock_reg, hw_lock_val; 16029 uint32_t rc = 0; 16030 16031 /* 16032 * Clear HW from errors which may have resulted from an interrupted 16033 * DMAE transaction. 16034 */ 16035 bxe_prev_interrupted_dmae(sc); 16036 16037 /* Release previously held locks */ 16038 hw_lock_reg = 16039 (SC_FUNC(sc) <= 5) ? 16040 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 16041 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 16042 16043 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 16044 if (hw_lock_val) { 16045 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 16046 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 16047 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 16048 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 16049 } 16050 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 16051 REG_WR(sc, hw_lock_reg, 0xffffffff); 16052 } else { 16053 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 16054 } 16055 16056 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 16057 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 16058 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 16059 } 16060 16061 do { 16062 /* Lock MCP using an unload request */ 16063 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 16064 if (!fw) { 16065 BLOGE(sc, "MCP response failure, aborting\n"); 16066 rc = -1; 16067 break; 16068 } 16069 16070 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 16071 rc = bxe_prev_unload_common(sc); 16072 break; 16073 } 16074 16075 /* non-common reply from MCP night require looping */ 16076 rc = bxe_prev_unload_uncommon(sc); 16077 if (rc != BXE_PREV_WAIT_NEEDED) { 16078 break; 16079 } 16080 16081 DELAY(20000); 16082 } while (--time_counter); 16083 16084 if (!time_counter || rc) { 16085 BLOGE(sc, "Failed to unload previous driver!\n"); 16086 rc = -1; 16087 } 16088 16089 return (rc); 16090 } 16091 16092 void 16093 bxe_dcbx_set_state(struct bxe_softc *sc, 16094 uint8_t dcb_on, 16095 uint32_t dcbx_enabled) 16096 { 16097 if (!CHIP_IS_E1x(sc)) { 16098 sc->dcb_state = dcb_on; 16099 sc->dcbx_enabled = dcbx_enabled; 16100 } else { 16101 sc->dcb_state = FALSE; 16102 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 16103 } 16104 BLOGD(sc, DBG_LOAD, 16105 "DCB state [%s:%s]\n", 16106 dcb_on ? "ON" : "OFF", 16107 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 16108 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 16109 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 16110 "on-chip with negotiation" : "invalid"); 16111 } 16112 16113 /* must be called after sriov-enable */ 16114 static int 16115 bxe_set_qm_cid_count(struct bxe_softc *sc) 16116 { 16117 int cid_count = BXE_L2_MAX_CID(sc); 16118 16119 if (IS_SRIOV(sc)) { 16120 cid_count += BXE_VF_CIDS; 16121 } 16122 16123 if (CNIC_SUPPORT(sc)) { 16124 cid_count += CNIC_CID_MAX; 16125 } 16126 16127 return (roundup(cid_count, QM_CID_ROUND)); 16128 } 16129 16130 static void 16131 bxe_init_multi_cos(struct bxe_softc *sc) 16132 { 16133 int pri, cos; 16134 16135 uint32_t pri_map = 0; /* XXX change to user config */ 16136 16137 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 16138 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 16139 if (cos < sc->max_cos) { 16140 sc->prio_to_cos[pri] = cos; 16141 } else { 16142 BLOGW(sc, "Invalid COS %d for priority %d " 16143 "(max COS is %d), setting to 0\n", 16144 cos, pri, (sc->max_cos - 1)); 16145 sc->prio_to_cos[pri] = 0; 16146 } 16147 } 16148 } 16149 16150 static int 16151 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 16152 { 16153 struct bxe_softc *sc; 16154 int error, result; 16155 16156 result = 0; 16157 error = sysctl_handle_int(oidp, &result, 0, req); 16158 16159 if (error || !req->newptr) { 16160 return (error); 16161 } 16162 16163 if (result == 1) { 16164 sc = (struct bxe_softc *)arg1; 16165 BLOGI(sc, "... dumping driver state ...\n"); 16166 /* XXX */ 16167 } 16168 16169 return (error); 16170 } 16171 16172 static int 16173 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 16174 { 16175 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16176 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 16177 uint32_t *offset; 16178 uint64_t value = 0; 16179 int index = (int)arg2; 16180 16181 if (index >= BXE_NUM_ETH_STATS) { 16182 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 16183 return (-1); 16184 } 16185 16186 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 16187 16188 switch (bxe_eth_stats_arr[index].size) { 16189 case 4: 16190 value = (uint64_t)*offset; 16191 break; 16192 case 8: 16193 value = HILO_U64(*offset, *(offset + 1)); 16194 break; 16195 default: 16196 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 16197 index, bxe_eth_stats_arr[index].size); 16198 return (-1); 16199 } 16200 16201 return (sysctl_handle_64(oidp, &value, 0, req)); 16202 } 16203 16204 static int 16205 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 16206 { 16207 struct bxe_softc *sc = (struct bxe_softc *)arg1; 16208 uint32_t *eth_stats; 16209 uint32_t *offset; 16210 uint64_t value = 0; 16211 uint32_t q_stat = (uint32_t)arg2; 16212 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 16213 uint32_t index = (q_stat & 0xffff); 16214 16215 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 16216 16217 if (index >= BXE_NUM_ETH_Q_STATS) { 16218 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 16219 return (-1); 16220 } 16221 16222 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 16223 16224 switch (bxe_eth_q_stats_arr[index].size) { 16225 case 4: 16226 value = (uint64_t)*offset; 16227 break; 16228 case 8: 16229 value = HILO_U64(*offset, *(offset + 1)); 16230 break; 16231 default: 16232 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 16233 index, bxe_eth_q_stats_arr[index].size); 16234 return (-1); 16235 } 16236 16237 return (sysctl_handle_64(oidp, &value, 0, req)); 16238 } 16239 16240 static void 16241 bxe_add_sysctls(struct bxe_softc *sc) 16242 { 16243 struct sysctl_ctx_list *ctx; 16244 struct sysctl_oid_list *children; 16245 struct sysctl_oid *queue_top, *queue; 16246 struct sysctl_oid_list *queue_top_children, *queue_children; 16247 char queue_num_buf[32]; 16248 uint32_t q_stat; 16249 int i, j; 16250 16251 ctx = device_get_sysctl_ctx(sc->dev); 16252 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16253 16254 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16255 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16256 "version"); 16257 16258 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16259 CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0, 16260 "bootcode version"); 16261 16262 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16263 BCM_5710_FW_MAJOR_VERSION, 16264 BCM_5710_FW_MINOR_VERSION, 16265 BCM_5710_FW_REVISION_VERSION, 16266 BCM_5710_FW_ENGINEERING_VERSION); 16267 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16268 CTLFLAG_RD, &sc->fw_ver_str, 0, 16269 "firmware version"); 16270 16271 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16272 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16273 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16274 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16275 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16276 "Unknown")); 16277 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16278 CTLFLAG_RD, &sc->mf_mode_str, 0, 16279 "multifunction mode"); 16280 16281 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16282 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16283 "multifunction vnics per port"); 16284 16285 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16286 CTLFLAG_RD, &sc->mac_addr_str, 0, 16287 "mac address"); 16288 16289 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16290 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16291 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16292 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16293 "???GT/s"), 16294 sc->devinfo.pcie_link_width); 16295 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16296 CTLFLAG_RD, &sc->pci_link_str, 0, 16297 "pci link status"); 16298 16299 sc->debug = bxe_debug; 16300 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug", 16301 CTLFLAG_RW, &sc->debug, 0, 16302 "debug logging mode"); 16303 16304 sc->rx_budget = bxe_rx_budget; 16305 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16306 CTLFLAG_RW, &sc->rx_budget, 0, 16307 "rx processing budget"); 16308 16309 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16310 CTLTYPE_UINT | CTLFLAG_RW, sc, 0, 16311 bxe_sysctl_state, "IU", "dump driver state"); 16312 16313 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16314 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16315 bxe_eth_stats_arr[i].string, 16316 CTLTYPE_U64 | CTLFLAG_RD, sc, i, 16317 bxe_sysctl_eth_stat, "LU", 16318 bxe_eth_stats_arr[i].string); 16319 } 16320 16321 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16322 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16323 CTLFLAG_RD, NULL, "queue"); 16324 queue_top_children = SYSCTL_CHILDREN(queue_top); 16325 16326 for (i = 0; i < sc->num_queues; i++) { 16327 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16328 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16329 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16330 queue_num_buf, CTLFLAG_RD, NULL, 16331 "single queue"); 16332 queue_children = SYSCTL_CHILDREN(queue); 16333 16334 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16335 q_stat = ((i << 16) | j); 16336 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16337 bxe_eth_q_stats_arr[j].string, 16338 CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, 16339 bxe_sysctl_eth_q_stat, "LU", 16340 bxe_eth_q_stats_arr[j].string); 16341 } 16342 } 16343 } 16344 16345 /* 16346 * Device attach function. 16347 * 16348 * Allocates device resources, performs secondary chip identification, and 16349 * initializes driver instance variables. This function is called from driver 16350 * load after a successful probe. 16351 * 16352 * Returns: 16353 * 0 = Success, >0 = Failure 16354 */ 16355 static int 16356 bxe_attach(device_t dev) 16357 { 16358 struct bxe_softc *sc; 16359 16360 sc = device_get_softc(dev); 16361 16362 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16363 16364 sc->state = BXE_STATE_CLOSED; 16365 16366 sc->dev = dev; 16367 sc->unit = device_get_unit(dev); 16368 16369 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16370 16371 sc->pcie_bus = pci_get_bus(dev); 16372 sc->pcie_device = pci_get_slot(dev); 16373 sc->pcie_func = pci_get_function(dev); 16374 16375 /* enable bus master capability */ 16376 pci_enable_busmaster(dev); 16377 16378 /* get the BARs */ 16379 if (bxe_allocate_bars(sc) != 0) { 16380 return (ENXIO); 16381 } 16382 16383 /* initialize the mutexes */ 16384 bxe_init_mutexes(sc); 16385 16386 /* prepare the periodic callout */ 16387 callout_init(&sc->periodic_callout, 0); 16388 16389 /* prepare the chip taskqueue */ 16390 sc->chip_tq_flags = CHIP_TQ_NONE; 16391 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16392 "bxe%d_chip_tq", sc->unit); 16393 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16394 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16395 taskqueue_thread_enqueue, 16396 &sc->chip_tq); 16397 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16398 "%s", sc->chip_tq_name); 16399 16400 /* get device info and set params */ 16401 if (bxe_get_device_info(sc) != 0) { 16402 BLOGE(sc, "getting device info\n"); 16403 bxe_deallocate_bars(sc); 16404 pci_disable_busmaster(dev); 16405 return (ENXIO); 16406 } 16407 16408 /* get final misc params */ 16409 bxe_get_params(sc); 16410 16411 /* set the default MTU (changed via ifconfig) */ 16412 sc->mtu = ETHERMTU; 16413 16414 bxe_set_modes_bitmap(sc); 16415 16416 /* XXX 16417 * If in AFEX mode and the function is configured for FCoE 16418 * then bail... no L2 allowed. 16419 */ 16420 16421 /* get phy settings from shmem and 'and' against admin settings */ 16422 bxe_get_phy_info(sc); 16423 16424 /* initialize the FreeBSD ifnet interface */ 16425 if (bxe_init_ifnet(sc) != 0) { 16426 bxe_release_mutexes(sc); 16427 bxe_deallocate_bars(sc); 16428 pci_disable_busmaster(dev); 16429 return (ENXIO); 16430 } 16431 16432 /* allocate device interrupts */ 16433 if (bxe_interrupt_alloc(sc) != 0) { 16434 if (sc->ifnet != NULL) { 16435 ether_ifdetach(sc->ifnet); 16436 } 16437 ifmedia_removeall(&sc->ifmedia); 16438 bxe_release_mutexes(sc); 16439 bxe_deallocate_bars(sc); 16440 pci_disable_busmaster(dev); 16441 return (ENXIO); 16442 } 16443 16444 /* allocate ilt */ 16445 if (bxe_alloc_ilt_mem(sc) != 0) { 16446 bxe_interrupt_free(sc); 16447 if (sc->ifnet != NULL) { 16448 ether_ifdetach(sc->ifnet); 16449 } 16450 ifmedia_removeall(&sc->ifmedia); 16451 bxe_release_mutexes(sc); 16452 bxe_deallocate_bars(sc); 16453 pci_disable_busmaster(dev); 16454 return (ENXIO); 16455 } 16456 16457 /* allocate the host hardware/software hsi structures */ 16458 if (bxe_alloc_hsi_mem(sc) != 0) { 16459 bxe_free_ilt_mem(sc); 16460 bxe_interrupt_free(sc); 16461 if (sc->ifnet != NULL) { 16462 ether_ifdetach(sc->ifnet); 16463 } 16464 ifmedia_removeall(&sc->ifmedia); 16465 bxe_release_mutexes(sc); 16466 bxe_deallocate_bars(sc); 16467 pci_disable_busmaster(dev); 16468 return (ENXIO); 16469 } 16470 16471 /* need to reset chip if UNDI was active */ 16472 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16473 /* init fw_seq */ 16474 sc->fw_seq = 16475 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16476 DRV_MSG_SEQ_NUMBER_MASK); 16477 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16478 bxe_prev_unload(sc); 16479 } 16480 16481 #if 1 16482 /* XXX */ 16483 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16484 #else 16485 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16486 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16487 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16488 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16489 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16490 bxe_dcbx_init_params(sc); 16491 } else { 16492 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16493 } 16494 #endif 16495 16496 /* calculate qm_cid_count */ 16497 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16498 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16499 16500 sc->max_cos = 1; 16501 bxe_init_multi_cos(sc); 16502 16503 bxe_add_sysctls(sc); 16504 16505 return (0); 16506 } 16507 16508 /* 16509 * Device detach function. 16510 * 16511 * Stops the controller, resets the controller, and releases resources. 16512 * 16513 * Returns: 16514 * 0 = Success, >0 = Failure 16515 */ 16516 static int 16517 bxe_detach(device_t dev) 16518 { 16519 struct bxe_softc *sc; 16520 struct ifnet *ifp; 16521 16522 sc = device_get_softc(dev); 16523 16524 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16525 16526 ifp = sc->ifnet; 16527 if (ifp != NULL && ifp->if_vlantrunk != NULL) { 16528 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16529 return(EBUSY); 16530 } 16531 16532 /* stop the periodic callout */ 16533 bxe_periodic_stop(sc); 16534 16535 /* stop the chip taskqueue */ 16536 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16537 if (sc->chip_tq) { 16538 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16539 taskqueue_free(sc->chip_tq); 16540 sc->chip_tq = NULL; 16541 } 16542 16543 /* stop and reset the controller if it was open */ 16544 if (sc->state != BXE_STATE_CLOSED) { 16545 BXE_CORE_LOCK(sc); 16546 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16547 BXE_CORE_UNLOCK(sc); 16548 } 16549 16550 /* release the network interface */ 16551 if (ifp != NULL) { 16552 ether_ifdetach(ifp); 16553 } 16554 ifmedia_removeall(&sc->ifmedia); 16555 16556 /* XXX do the following based on driver state... */ 16557 16558 /* free the host hardware/software hsi structures */ 16559 bxe_free_hsi_mem(sc); 16560 16561 /* free ilt */ 16562 bxe_free_ilt_mem(sc); 16563 16564 /* release the interrupts */ 16565 bxe_interrupt_free(sc); 16566 16567 /* Release the mutexes*/ 16568 bxe_release_mutexes(sc); 16569 16570 /* Release the PCIe BAR mapped memory */ 16571 bxe_deallocate_bars(sc); 16572 16573 /* Release the FreeBSD interface. */ 16574 if (sc->ifnet != NULL) { 16575 if_free(sc->ifnet); 16576 } 16577 16578 pci_disable_busmaster(dev); 16579 16580 return (0); 16581 } 16582 16583 /* 16584 * Device shutdown function. 16585 * 16586 * Stops and resets the controller. 16587 * 16588 * Returns: 16589 * Nothing 16590 */ 16591 static int 16592 bxe_shutdown(device_t dev) 16593 { 16594 struct bxe_softc *sc; 16595 16596 sc = device_get_softc(dev); 16597 16598 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16599 16600 /* stop the periodic callout */ 16601 bxe_periodic_stop(sc); 16602 16603 BXE_CORE_LOCK(sc); 16604 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16605 BXE_CORE_UNLOCK(sc); 16606 16607 return (0); 16608 } 16609 16610 void 16611 bxe_igu_ack_sb(struct bxe_softc *sc, 16612 uint8_t igu_sb_id, 16613 uint8_t segment, 16614 uint16_t index, 16615 uint8_t op, 16616 uint8_t update) 16617 { 16618 uint32_t igu_addr = sc->igu_base_addr; 16619 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16620 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16621 } 16622 16623 static void 16624 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16625 uint8_t func, 16626 uint8_t idu_sb_id, 16627 uint8_t is_pf) 16628 { 16629 uint32_t data, ctl, cnt = 100; 16630 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16631 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16632 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16633 uint32_t sb_bit = 1 << (idu_sb_id%32); 16634 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16635 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16636 16637 /* Not supported in BC mode */ 16638 if (CHIP_INT_MODE_IS_BC(sc)) { 16639 return; 16640 } 16641 16642 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16643 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16644 IGU_REGULAR_CLEANUP_SET | 16645 IGU_REGULAR_BCLEANUP); 16646 16647 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16648 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16649 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16650 16651 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16652 data, igu_addr_data); 16653 REG_WR(sc, igu_addr_data, data); 16654 16655 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16656 BUS_SPACE_BARRIER_WRITE); 16657 mb(); 16658 16659 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16660 ctl, igu_addr_ctl); 16661 REG_WR(sc, igu_addr_ctl, ctl); 16662 16663 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16664 BUS_SPACE_BARRIER_WRITE); 16665 mb(); 16666 16667 /* wait for clean up to finish */ 16668 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16669 DELAY(20000); 16670 } 16671 16672 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16673 BLOGD(sc, DBG_LOAD, 16674 "Unable to finish IGU cleanup: " 16675 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16676 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16677 } 16678 } 16679 16680 static void 16681 bxe_igu_clear_sb(struct bxe_softc *sc, 16682 uint8_t idu_sb_id) 16683 { 16684 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16685 } 16686 16687 16688 16689 16690 16691 16692 16693 /*******************/ 16694 /* ECORE CALLBACKS */ 16695 /*******************/ 16696 16697 static void 16698 bxe_reset_common(struct bxe_softc *sc) 16699 { 16700 uint32_t val = 0x1400; 16701 16702 /* reset_common */ 16703 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16704 16705 if (CHIP_IS_E3(sc)) { 16706 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16707 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16708 } 16709 16710 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16711 } 16712 16713 static void 16714 bxe_common_init_phy(struct bxe_softc *sc) 16715 { 16716 uint32_t shmem_base[2]; 16717 uint32_t shmem2_base[2]; 16718 16719 /* Avoid common init in case MFW supports LFA */ 16720 if (SHMEM2_RD(sc, size) > 16721 (uint32_t)offsetof(struct shmem2_region, 16722 lfa_host_addr[SC_PORT(sc)])) { 16723 return; 16724 } 16725 16726 shmem_base[0] = sc->devinfo.shmem_base; 16727 shmem2_base[0] = sc->devinfo.shmem2_base; 16728 16729 if (!CHIP_IS_E1x(sc)) { 16730 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16731 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16732 } 16733 16734 BXE_PHY_LOCK(sc); 16735 elink_common_init_phy(sc, shmem_base, shmem2_base, 16736 sc->devinfo.chip_id, 0); 16737 BXE_PHY_UNLOCK(sc); 16738 } 16739 16740 static void 16741 bxe_pf_disable(struct bxe_softc *sc) 16742 { 16743 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16744 16745 val &= ~IGU_PF_CONF_FUNC_EN; 16746 16747 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16748 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16749 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16750 } 16751 16752 static void 16753 bxe_init_pxp(struct bxe_softc *sc) 16754 { 16755 uint16_t devctl; 16756 int r_order, w_order; 16757 16758 devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); 16759 16760 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16761 16762 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); 16763 16764 if (sc->mrrs == -1) { 16765 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); 16766 } else { 16767 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16768 r_order = sc->mrrs; 16769 } 16770 16771 ecore_init_pxp_arb(sc, r_order, w_order); 16772 } 16773 16774 static uint32_t 16775 bxe_get_pretend_reg(struct bxe_softc *sc) 16776 { 16777 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16778 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16779 return (base + (SC_ABS_FUNC(sc)) * stride); 16780 } 16781 16782 /* 16783 * Called only on E1H or E2. 16784 * When pretending to be PF, the pretend value is the function number 0..7. 16785 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16786 * combination. 16787 */ 16788 static int 16789 bxe_pretend_func(struct bxe_softc *sc, 16790 uint16_t pretend_func_val) 16791 { 16792 uint32_t pretend_reg; 16793 16794 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16795 return (-1); 16796 } 16797 16798 /* get my own pretend register */ 16799 pretend_reg = bxe_get_pretend_reg(sc); 16800 REG_WR(sc, pretend_reg, pretend_func_val); 16801 REG_RD(sc, pretend_reg); 16802 return (0); 16803 } 16804 16805 static void 16806 bxe_iov_init_dmae(struct bxe_softc *sc) 16807 { 16808 return; 16809 #if 0 16810 BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); 16811 16812 if (!IS_SRIOV(sc)) { 16813 return; 16814 } 16815 16816 REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); 16817 #endif 16818 } 16819 16820 #if 0 16821 static int 16822 bxe_iov_init_ilt(struct bxe_softc *sc, 16823 uint16_t line) 16824 { 16825 return (line); 16826 #if 0 16827 int i; 16828 struct ecore_ilt* ilt = sc->ilt; 16829 16830 if (!IS_SRIOV(sc)) { 16831 return (line); 16832 } 16833 16834 /* set vfs ilt lines */ 16835 for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { 16836 struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); 16837 ilt->lines[line+i].page = hw_cxt->addr; 16838 ilt->lines[line+i].page_mapping = hw_cxt->mapping; 16839 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ 16840 } 16841 return (line+i); 16842 #endif 16843 } 16844 #endif 16845 16846 static void 16847 bxe_iov_init_dq(struct bxe_softc *sc) 16848 { 16849 return; 16850 #if 0 16851 if (!IS_SRIOV(sc)) { 16852 return; 16853 } 16854 16855 /* Set the DQ such that the CID reflect the abs_vfid */ 16856 REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); 16857 REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); 16858 16859 /* 16860 * Set VFs starting CID. If its > 0 the preceding CIDs are belong to 16861 * the PF L2 queues 16862 */ 16863 REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); 16864 16865 /* The VF window size is the log2 of the max number of CIDs per VF */ 16866 REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); 16867 16868 /* 16869 * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match 16870 * the Pf doorbell size although the 2 are independent. 16871 */ 16872 REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, 16873 BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); 16874 16875 /* 16876 * No security checks for now - 16877 * configure single rule (out of 16) mask = 0x1, value = 0x0, 16878 * CID range 0 - 0x1ffff 16879 */ 16880 REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); 16881 REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); 16882 REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); 16883 REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); 16884 16885 /* set the number of VF alllowed doorbells to the full DQ range */ 16886 REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); 16887 16888 /* set the VF doorbell threshold */ 16889 REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); 16890 #endif 16891 } 16892 16893 /* send a NIG loopback debug packet */ 16894 static void 16895 bxe_lb_pckt(struct bxe_softc *sc) 16896 { 16897 uint32_t wb_write[3]; 16898 16899 /* Ethernet source and destination addresses */ 16900 wb_write[0] = 0x55555555; 16901 wb_write[1] = 0x55555555; 16902 wb_write[2] = 0x20; /* SOP */ 16903 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16904 16905 /* NON-IP protocol */ 16906 wb_write[0] = 0x09000000; 16907 wb_write[1] = 0x55555555; 16908 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16909 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16910 } 16911 16912 /* 16913 * Some of the internal memories are not directly readable from the driver. 16914 * To test them we send debug packets. 16915 */ 16916 static int 16917 bxe_int_mem_test(struct bxe_softc *sc) 16918 { 16919 int factor; 16920 int count, i; 16921 uint32_t val = 0; 16922 16923 if (CHIP_REV_IS_FPGA(sc)) { 16924 factor = 120; 16925 } else if (CHIP_REV_IS_EMUL(sc)) { 16926 factor = 200; 16927 } else { 16928 factor = 1; 16929 } 16930 16931 /* disable inputs of parser neighbor blocks */ 16932 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16933 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16934 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16935 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16936 16937 /* write 0 to parser credits for CFC search request */ 16938 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16939 16940 /* send Ethernet packet */ 16941 bxe_lb_pckt(sc); 16942 16943 /* TODO do i reset NIG statistic? */ 16944 /* Wait until NIG register shows 1 packet of size 0x10 */ 16945 count = 1000 * factor; 16946 while (count) { 16947 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16948 val = *BXE_SP(sc, wb_data[0]); 16949 if (val == 0x10) { 16950 break; 16951 } 16952 16953 DELAY(10000); 16954 count--; 16955 } 16956 16957 if (val != 0x10) { 16958 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16959 return (-1); 16960 } 16961 16962 /* wait until PRS register shows 1 packet */ 16963 count = (1000 * factor); 16964 while (count) { 16965 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16966 if (val == 1) { 16967 break; 16968 } 16969 16970 DELAY(10000); 16971 count--; 16972 } 16973 16974 if (val != 0x1) { 16975 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16976 return (-2); 16977 } 16978 16979 /* Reset and init BRB, PRS */ 16980 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16981 DELAY(50000); 16982 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16983 DELAY(50000); 16984 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16985 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16986 16987 /* Disable inputs of parser neighbor blocks */ 16988 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16989 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16990 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16991 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16992 16993 /* Write 0 to parser credits for CFC search request */ 16994 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16995 16996 /* send 10 Ethernet packets */ 16997 for (i = 0; i < 10; i++) { 16998 bxe_lb_pckt(sc); 16999 } 17000 17001 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 17002 count = (1000 * factor); 17003 while (count) { 17004 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17005 val = *BXE_SP(sc, wb_data[0]); 17006 if (val == 0xb0) { 17007 break; 17008 } 17009 17010 DELAY(10000); 17011 count--; 17012 } 17013 17014 if (val != 0xb0) { 17015 BLOGE(sc, "NIG timeout val=0x%x\n", val); 17016 return (-3); 17017 } 17018 17019 /* Wait until PRS register shows 2 packets */ 17020 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17021 if (val != 2) { 17022 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17023 } 17024 17025 /* Write 1 to parser credits for CFC search request */ 17026 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 17027 17028 /* Wait until PRS register shows 3 packets */ 17029 DELAY(10000 * factor); 17030 17031 /* Wait until NIG register shows 1 packet of size 0x10 */ 17032 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 17033 if (val != 3) { 17034 BLOGE(sc, "PRS timeout val=0x%x\n", val); 17035 } 17036 17037 /* clear NIG EOP FIFO */ 17038 for (i = 0; i < 11; i++) { 17039 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 17040 } 17041 17042 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 17043 if (val != 1) { 17044 BLOGE(sc, "clear of NIG failed\n"); 17045 return (-4); 17046 } 17047 17048 /* Reset and init BRB, PRS, NIG */ 17049 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 17050 DELAY(50000); 17051 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 17052 DELAY(50000); 17053 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17054 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17055 if (!CNIC_SUPPORT(sc)) { 17056 /* set NIC mode */ 17057 REG_WR(sc, PRS_REG_NIC_MODE, 1); 17058 } 17059 17060 /* Enable inputs of parser neighbor blocks */ 17061 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 17062 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 17063 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 17064 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 17065 17066 return (0); 17067 } 17068 17069 static void 17070 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 17071 { 17072 int is_required; 17073 uint32_t val; 17074 int port; 17075 17076 is_required = 0; 17077 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 17078 SHARED_HW_CFG_FAN_FAILURE_MASK); 17079 17080 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 17081 is_required = 1; 17082 } 17083 /* 17084 * The fan failure mechanism is usually related to the PHY type since 17085 * the power consumption of the board is affected by the PHY. Currently, 17086 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 17087 */ 17088 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 17089 for (port = PORT_0; port < PORT_MAX; port++) { 17090 is_required |= elink_fan_failure_det_req(sc, 17091 sc->devinfo.shmem_base, 17092 sc->devinfo.shmem2_base, 17093 port); 17094 } 17095 } 17096 17097 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 17098 17099 if (is_required == 0) { 17100 return; 17101 } 17102 17103 /* Fan failure is indicated by SPIO 5 */ 17104 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 17105 17106 /* set to active low mode */ 17107 val = REG_RD(sc, MISC_REG_SPIO_INT); 17108 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 17109 REG_WR(sc, MISC_REG_SPIO_INT, val); 17110 17111 /* enable interrupt to signal the IGU */ 17112 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17113 val |= MISC_SPIO_SPIO5; 17114 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 17115 } 17116 17117 static void 17118 bxe_enable_blocks_attention(struct bxe_softc *sc) 17119 { 17120 uint32_t val; 17121 17122 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17123 if (!CHIP_IS_E1x(sc)) { 17124 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 17125 } else { 17126 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 17127 } 17128 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17129 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17130 /* 17131 * mask read length error interrupts in brb for parser 17132 * (parsing unit and 'checksum and crc' unit) 17133 * these errors are legal (PU reads fixed length and CAC can cause 17134 * read length error on truncated packets) 17135 */ 17136 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 17137 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 17138 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 17139 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 17140 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 17141 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 17142 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 17143 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 17144 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 17145 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 17146 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 17147 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 17148 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 17149 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 17150 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 17151 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 17152 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 17153 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 17154 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 17155 17156 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 17157 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 17158 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 17159 if (!CHIP_IS_E1x(sc)) { 17160 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 17161 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 17162 } 17163 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 17164 17165 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 17166 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 17167 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 17168 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 17169 17170 if (!CHIP_IS_E1x(sc)) { 17171 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 17172 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 17173 } 17174 17175 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17176 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17177 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17178 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17179 } 17180 17181 /** 17182 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17183 * 17184 * @sc: driver handle 17185 */ 17186 static int 17187 bxe_init_hw_common(struct bxe_softc *sc) 17188 { 17189 uint8_t abs_func_id; 17190 uint32_t val; 17191 17192 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17193 SC_ABS_FUNC(sc)); 17194 17195 /* 17196 * take the RESET lock to protect undi_unload flow from accessing 17197 * registers while we are resetting the chip 17198 */ 17199 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17200 17201 bxe_reset_common(sc); 17202 17203 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17204 17205 val = 0xfffc; 17206 if (CHIP_IS_E3(sc)) { 17207 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17208 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17209 } 17210 17211 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17212 17213 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17214 17215 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17216 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17217 17218 if (!CHIP_IS_E1x(sc)) { 17219 /* 17220 * 4-port mode or 2-port mode we need to turn off master-enable for 17221 * everyone. After that we turn it back on for self. So, we disregard 17222 * multi-function, and always disable all functions on the given path, 17223 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17224 */ 17225 for (abs_func_id = SC_PATH(sc); 17226 abs_func_id < (E2_FUNC_MAX * 2); 17227 abs_func_id += 2) { 17228 if (abs_func_id == SC_ABS_FUNC(sc)) { 17229 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17230 continue; 17231 } 17232 17233 bxe_pretend_func(sc, abs_func_id); 17234 17235 /* clear pf enable */ 17236 bxe_pf_disable(sc); 17237 17238 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17239 } 17240 } 17241 17242 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17243 17244 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17245 17246 if (CHIP_IS_E1(sc)) { 17247 /* 17248 * enable HW interrupt from PXP on USDM overflow 17249 * bit 16 on INT_MASK_0 17250 */ 17251 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17252 } 17253 17254 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17255 bxe_init_pxp(sc); 17256 17257 #ifdef __BIG_ENDIAN 17258 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17259 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17260 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17261 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17262 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17263 /* make sure this value is 0 */ 17264 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17265 17266 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17267 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17268 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17269 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17270 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17271 #endif 17272 17273 ecore_ilt_init_page_size(sc, INITOP_SET); 17274 17275 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17276 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17277 } 17278 17279 /* let the HW do it's magic... */ 17280 DELAY(100000); 17281 17282 /* finish PXP init */ 17283 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17284 if (val != 1) { 17285 BLOGE(sc, "PXP2 CFG failed\n"); 17286 return (-1); 17287 } 17288 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17289 if (val != 1) { 17290 BLOGE(sc, "PXP2 RD_INIT failed\n"); 17291 return (-1); 17292 } 17293 17294 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17295 17296 /* 17297 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17298 * entries with value "0" and valid bit on. This needs to be done by the 17299 * first PF that is loaded in a path (i.e. common phase) 17300 */ 17301 if (!CHIP_IS_E1x(sc)) { 17302 /* 17303 * In E2 there is a bug in the timers block that can cause function 6 / 7 17304 * (i.e. vnic3) to start even if it is marked as "scan-off". 17305 * This occurs when a different function (func2,3) is being marked 17306 * as "scan-off". Real-life scenario for example: if a driver is being 17307 * load-unloaded while func6,7 are down. This will cause the timer to access 17308 * the ilt, translate to a logical address and send a request to read/write. 17309 * Since the ilt for the function that is down is not valid, this will cause 17310 * a translation error which is unrecoverable. 17311 * The Workaround is intended to make sure that when this happens nothing 17312 * fatal will occur. The workaround: 17313 * 1. First PF driver which loads on a path will: 17314 * a. After taking the chip out of reset, by using pretend, 17315 * it will write "0" to the following registers of 17316 * the other vnics. 17317 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17318 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17319 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17320 * And for itself it will write '1' to 17321 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17322 * dmae-operations (writing to pram for example.) 17323 * note: can be done for only function 6,7 but cleaner this 17324 * way. 17325 * b. Write zero+valid to the entire ILT. 17326 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17327 * VNIC3 (of that port). The range allocated will be the 17328 * entire ILT. This is needed to prevent ILT range error. 17329 * 2. Any PF driver load flow: 17330 * a. ILT update with the physical addresses of the allocated 17331 * logical pages. 17332 * b. Wait 20msec. - note that this timeout is needed to make 17333 * sure there are no requests in one of the PXP internal 17334 * queues with "old" ILT addresses. 17335 * c. PF enable in the PGLC. 17336 * d. Clear the was_error of the PF in the PGLC. (could have 17337 * occurred while driver was down) 17338 * e. PF enable in the CFC (WEAK + STRONG) 17339 * f. Timers scan enable 17340 * 3. PF driver unload flow: 17341 * a. Clear the Timers scan_en. 17342 * b. Polling for scan_on=0 for that PF. 17343 * c. Clear the PF enable bit in the PXP. 17344 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17345 * e. Write zero+valid to all ILT entries (The valid bit must 17346 * stay set) 17347 * f. If this is VNIC 3 of a port then also init 17348 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17349 * to the last enrty in the ILT. 17350 * 17351 * Notes: 17352 * Currently the PF error in the PGLC is non recoverable. 17353 * In the future the there will be a recovery routine for this error. 17354 * Currently attention is masked. 17355 * Having an MCP lock on the load/unload process does not guarantee that 17356 * there is no Timer disable during Func6/7 enable. This is because the 17357 * Timers scan is currently being cleared by the MCP on FLR. 17358 * Step 2.d can be done only for PF6/7 and the driver can also check if 17359 * there is error before clearing it. But the flow above is simpler and 17360 * more general. 17361 * All ILT entries are written by zero+valid and not just PF6/7 17362 * ILT entries since in the future the ILT entries allocation for 17363 * PF-s might be dynamic. 17364 */ 17365 struct ilt_client_info ilt_cli; 17366 struct ecore_ilt ilt; 17367 17368 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17369 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17370 17371 /* initialize dummy TM client */ 17372 ilt_cli.start = 0; 17373 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17374 ilt_cli.client_num = ILT_CLIENT_TM; 17375 17376 /* 17377 * Step 1: set zeroes to all ilt page entries with valid bit on 17378 * Step 2: set the timers first/last ilt entry to point 17379 * to the entire range to prevent ILT range error for 3rd/4th 17380 * vnic (this code assumes existence of the vnic) 17381 * 17382 * both steps performed by call to ecore_ilt_client_init_op() 17383 * with dummy TM client 17384 * 17385 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17386 * and his brother are split registers 17387 */ 17388 17389 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17390 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17391 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17392 17393 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17394 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17395 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17396 } 17397 17398 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17399 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17400 17401 if (!CHIP_IS_E1x(sc)) { 17402 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17403 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17404 17405 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17406 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17407 17408 /* let the HW do it's magic... */ 17409 do { 17410 DELAY(200000); 17411 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17412 } while (factor-- && (val != 1)); 17413 17414 if (val != 1) { 17415 BLOGE(sc, "ATC_INIT failed\n"); 17416 return (-1); 17417 } 17418 } 17419 17420 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17421 17422 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17423 17424 bxe_iov_init_dmae(sc); 17425 17426 /* clean the DMAE memory */ 17427 sc->dmae_ready = 1; 17428 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17429 17430 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17431 17432 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17433 17434 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17435 17436 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17437 17438 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17439 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17440 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17441 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17442 17443 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17444 17445 /* QM queues pointers table */ 17446 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17447 17448 /* soft reset pulse */ 17449 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17450 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17451 17452 if (CNIC_SUPPORT(sc)) 17453 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17454 17455 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17456 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17457 if (!CHIP_REV_IS_SLOW(sc)) { 17458 /* enable hw interrupt from doorbell Q */ 17459 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17460 } 17461 17462 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17463 17464 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17465 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17466 17467 if (!CHIP_IS_E1(sc)) { 17468 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17469 } 17470 17471 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17472 if (IS_MF_AFEX(sc)) { 17473 /* 17474 * configure that AFEX and VLAN headers must be 17475 * received in AFEX mode 17476 */ 17477 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17478 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17479 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17480 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17481 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17482 } else { 17483 /* 17484 * Bit-map indicating which L2 hdrs may appear 17485 * after the basic Ethernet header 17486 */ 17487 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17488 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17489 } 17490 } 17491 17492 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17493 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17494 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17495 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17496 17497 if (!CHIP_IS_E1x(sc)) { 17498 /* reset VFC memories */ 17499 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17500 VFC_MEMORIES_RST_REG_CAM_RST | 17501 VFC_MEMORIES_RST_REG_RAM_RST); 17502 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17503 VFC_MEMORIES_RST_REG_CAM_RST | 17504 VFC_MEMORIES_RST_REG_RAM_RST); 17505 17506 DELAY(20000); 17507 } 17508 17509 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17510 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17511 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17512 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17513 17514 /* sync semi rtc */ 17515 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17516 0x80000000); 17517 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17518 0x80000000); 17519 17520 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17521 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17522 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17523 17524 if (!CHIP_IS_E1x(sc)) { 17525 if (IS_MF_AFEX(sc)) { 17526 /* 17527 * configure that AFEX and VLAN headers must be 17528 * sent in AFEX mode 17529 */ 17530 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17531 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17532 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17533 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17534 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17535 } else { 17536 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17537 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17538 } 17539 } 17540 17541 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17542 17543 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17544 17545 if (CNIC_SUPPORT(sc)) { 17546 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17547 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17548 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17549 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17550 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17551 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17552 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17553 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17554 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17555 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17556 } 17557 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17558 17559 if (sizeof(union cdu_context) != 1024) { 17560 /* we currently assume that a context is 1024 bytes */ 17561 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17562 (long)sizeof(union cdu_context)); 17563 } 17564 17565 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17566 val = (4 << 24) + (0 << 12) + 1024; 17567 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17568 17569 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17570 17571 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17572 /* enable context validation interrupt from CFC */ 17573 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17574 17575 /* set the thresholds to prevent CFC/CDU race */ 17576 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17577 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17578 17579 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17580 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17581 } 17582 17583 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17584 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17585 17586 /* Reset PCIE errors for debug */ 17587 REG_WR(sc, 0x2814, 0xffffffff); 17588 REG_WR(sc, 0x3820, 0xffffffff); 17589 17590 if (!CHIP_IS_E1x(sc)) { 17591 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17592 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17593 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17594 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17595 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17596 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17597 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17598 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17599 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17600 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17601 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17602 } 17603 17604 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17605 17606 if (!CHIP_IS_E1(sc)) { 17607 /* in E3 this done in per-port section */ 17608 if (!CHIP_IS_E3(sc)) 17609 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17610 } 17611 17612 if (CHIP_IS_E1H(sc)) { 17613 /* not applicable for E2 (and above ...) */ 17614 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17615 } 17616 17617 if (CHIP_REV_IS_SLOW(sc)) { 17618 DELAY(200000); 17619 } 17620 17621 /* finish CFC init */ 17622 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17623 if (val != 1) { 17624 BLOGE(sc, "CFC LL_INIT failed\n"); 17625 return (-1); 17626 } 17627 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17628 if (val != 1) { 17629 BLOGE(sc, "CFC AC_INIT failed\n"); 17630 return (-1); 17631 } 17632 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17633 if (val != 1) { 17634 BLOGE(sc, "CFC CAM_INIT failed\n"); 17635 return (-1); 17636 } 17637 REG_WR(sc, CFC_REG_DEBUG0, 0); 17638 17639 if (CHIP_IS_E1(sc)) { 17640 /* read NIG statistic to see if this is our first up since powerup */ 17641 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17642 val = *BXE_SP(sc, wb_data[0]); 17643 17644 /* do internal memory self test */ 17645 if ((val == 0) && bxe_int_mem_test(sc)) { 17646 BLOGE(sc, "internal mem self test failed\n"); 17647 return (-1); 17648 } 17649 } 17650 17651 bxe_setup_fan_failure_detection(sc); 17652 17653 /* clear PXP2 attentions */ 17654 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17655 17656 bxe_enable_blocks_attention(sc); 17657 17658 if (!CHIP_REV_IS_SLOW(sc)) { 17659 ecore_enable_blocks_parity(sc); 17660 } 17661 17662 if (!BXE_NOMCP(sc)) { 17663 if (CHIP_IS_E1x(sc)) { 17664 bxe_common_init_phy(sc); 17665 } 17666 } 17667 17668 return (0); 17669 } 17670 17671 /** 17672 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17673 * 17674 * @sc: driver handle 17675 */ 17676 static int 17677 bxe_init_hw_common_chip(struct bxe_softc *sc) 17678 { 17679 int rc = bxe_init_hw_common(sc); 17680 17681 if (rc) { 17682 return (rc); 17683 } 17684 17685 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17686 if (!BXE_NOMCP(sc)) { 17687 bxe_common_init_phy(sc); 17688 } 17689 17690 return (0); 17691 } 17692 17693 static int 17694 bxe_init_hw_port(struct bxe_softc *sc) 17695 { 17696 int port = SC_PORT(sc); 17697 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17698 uint32_t low, high; 17699 uint32_t val; 17700 17701 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17702 17703 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17704 17705 ecore_init_block(sc, BLOCK_MISC, init_phase); 17706 ecore_init_block(sc, BLOCK_PXP, init_phase); 17707 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17708 17709 /* 17710 * Timers bug workaround: disables the pf_master bit in pglue at 17711 * common phase, we need to enable it here before any dmae access are 17712 * attempted. Therefore we manually added the enable-master to the 17713 * port phase (it also happens in the function phase) 17714 */ 17715 if (!CHIP_IS_E1x(sc)) { 17716 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17717 } 17718 17719 ecore_init_block(sc, BLOCK_ATC, init_phase); 17720 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17721 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17722 ecore_init_block(sc, BLOCK_QM, init_phase); 17723 17724 ecore_init_block(sc, BLOCK_TCM, init_phase); 17725 ecore_init_block(sc, BLOCK_UCM, init_phase); 17726 ecore_init_block(sc, BLOCK_CCM, init_phase); 17727 ecore_init_block(sc, BLOCK_XCM, init_phase); 17728 17729 /* QM cid (connection) count */ 17730 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17731 17732 if (CNIC_SUPPORT(sc)) { 17733 ecore_init_block(sc, BLOCK_TM, init_phase); 17734 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17735 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17736 } 17737 17738 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17739 17740 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17741 17742 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17743 if (IS_MF(sc)) { 17744 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17745 } else if (sc->mtu > 4096) { 17746 if (BXE_ONE_PORT(sc)) { 17747 low = 160; 17748 } else { 17749 val = sc->mtu; 17750 /* (24*1024 + val*4)/256 */ 17751 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17752 } 17753 } else { 17754 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17755 } 17756 high = (low + 56); /* 14*1024/256 */ 17757 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17758 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17759 } 17760 17761 if (CHIP_IS_MODE_4_PORT(sc)) { 17762 REG_WR(sc, SC_PORT(sc) ? 17763 BRB1_REG_MAC_GUARANTIED_1 : 17764 BRB1_REG_MAC_GUARANTIED_0, 40); 17765 } 17766 17767 ecore_init_block(sc, BLOCK_PRS, init_phase); 17768 if (CHIP_IS_E3B0(sc)) { 17769 if (IS_MF_AFEX(sc)) { 17770 /* configure headers for AFEX mode */ 17771 REG_WR(sc, SC_PORT(sc) ? 17772 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17773 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17774 REG_WR(sc, SC_PORT(sc) ? 17775 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17776 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17777 REG_WR(sc, SC_PORT(sc) ? 17778 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17779 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17780 } else { 17781 /* Ovlan exists only if we are in multi-function + 17782 * switch-dependent mode, in switch-independent there 17783 * is no ovlan headers 17784 */ 17785 REG_WR(sc, SC_PORT(sc) ? 17786 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17787 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17788 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17789 } 17790 } 17791 17792 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17793 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17794 ecore_init_block(sc, BLOCK_USDM, init_phase); 17795 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17796 17797 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17798 ecore_init_block(sc, BLOCK_USEM, init_phase); 17799 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17800 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17801 17802 ecore_init_block(sc, BLOCK_UPB, init_phase); 17803 ecore_init_block(sc, BLOCK_XPB, init_phase); 17804 17805 ecore_init_block(sc, BLOCK_PBF, init_phase); 17806 17807 if (CHIP_IS_E1x(sc)) { 17808 /* configure PBF to work without PAUSE mtu 9000 */ 17809 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17810 17811 /* update threshold */ 17812 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17813 /* update init credit */ 17814 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17815 17816 /* probe changes */ 17817 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17818 DELAY(50); 17819 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17820 } 17821 17822 if (CNIC_SUPPORT(sc)) { 17823 ecore_init_block(sc, BLOCK_SRC, init_phase); 17824 } 17825 17826 ecore_init_block(sc, BLOCK_CDU, init_phase); 17827 ecore_init_block(sc, BLOCK_CFC, init_phase); 17828 17829 if (CHIP_IS_E1(sc)) { 17830 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17831 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17832 } 17833 ecore_init_block(sc, BLOCK_HC, init_phase); 17834 17835 ecore_init_block(sc, BLOCK_IGU, init_phase); 17836 17837 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17838 /* init aeu_mask_attn_func_0/1: 17839 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17840 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17841 * bits 4-7 are used for "per vn group attention" */ 17842 val = IS_MF(sc) ? 0xF7 : 0x7; 17843 /* Enable DCBX attention for all but E1 */ 17844 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17845 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17846 17847 ecore_init_block(sc, BLOCK_NIG, init_phase); 17848 17849 if (!CHIP_IS_E1x(sc)) { 17850 /* Bit-map indicating which L2 hdrs may appear after the 17851 * basic Ethernet header 17852 */ 17853 if (IS_MF_AFEX(sc)) { 17854 REG_WR(sc, SC_PORT(sc) ? 17855 NIG_REG_P1_HDRS_AFTER_BASIC : 17856 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17857 } else { 17858 REG_WR(sc, SC_PORT(sc) ? 17859 NIG_REG_P1_HDRS_AFTER_BASIC : 17860 NIG_REG_P0_HDRS_AFTER_BASIC, 17861 IS_MF_SD(sc) ? 7 : 6); 17862 } 17863 17864 if (CHIP_IS_E3(sc)) { 17865 REG_WR(sc, SC_PORT(sc) ? 17866 NIG_REG_LLH1_MF_MODE : 17867 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17868 } 17869 } 17870 if (!CHIP_IS_E3(sc)) { 17871 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17872 } 17873 17874 if (!CHIP_IS_E1(sc)) { 17875 /* 0x2 disable mf_ov, 0x1 enable */ 17876 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17877 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17878 17879 if (!CHIP_IS_E1x(sc)) { 17880 val = 0; 17881 switch (sc->devinfo.mf_info.mf_mode) { 17882 case MULTI_FUNCTION_SD: 17883 val = 1; 17884 break; 17885 case MULTI_FUNCTION_SI: 17886 case MULTI_FUNCTION_AFEX: 17887 val = 2; 17888 break; 17889 } 17890 17891 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17892 NIG_REG_LLH0_CLS_TYPE), val); 17893 } 17894 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17895 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17896 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17897 } 17898 17899 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17900 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17901 if (val & MISC_SPIO_SPIO5) { 17902 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17903 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17904 val = REG_RD(sc, reg_addr); 17905 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17906 REG_WR(sc, reg_addr, val); 17907 } 17908 17909 return (0); 17910 } 17911 17912 static uint32_t 17913 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17914 uint32_t reg, 17915 uint32_t expected, 17916 uint32_t poll_count) 17917 { 17918 uint32_t cur_cnt = poll_count; 17919 uint32_t val; 17920 17921 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17922 DELAY(FLR_WAIT_INTERVAL); 17923 } 17924 17925 return (val); 17926 } 17927 17928 static int 17929 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17930 uint32_t reg, 17931 char *msg, 17932 uint32_t poll_cnt) 17933 { 17934 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17935 17936 if (val != 0) { 17937 BLOGE(sc, "%s usage count=%d\n", msg, val); 17938 return (1); 17939 } 17940 17941 return (0); 17942 } 17943 17944 /* Common routines with VF FLR cleanup */ 17945 static uint32_t 17946 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17947 { 17948 /* adjust polling timeout */ 17949 if (CHIP_REV_IS_EMUL(sc)) { 17950 return (FLR_POLL_CNT * 2000); 17951 } 17952 17953 if (CHIP_REV_IS_FPGA(sc)) { 17954 return (FLR_POLL_CNT * 120); 17955 } 17956 17957 return (FLR_POLL_CNT); 17958 } 17959 17960 static int 17961 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17962 uint32_t poll_cnt) 17963 { 17964 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17965 if (bxe_flr_clnup_poll_hw_counter(sc, 17966 CFC_REG_NUM_LCIDS_INSIDE_PF, 17967 "CFC PF usage counter timed out", 17968 poll_cnt)) { 17969 return (1); 17970 } 17971 17972 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17973 if (bxe_flr_clnup_poll_hw_counter(sc, 17974 DORQ_REG_PF_USAGE_CNT, 17975 "DQ PF usage counter timed out", 17976 poll_cnt)) { 17977 return (1); 17978 } 17979 17980 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17981 if (bxe_flr_clnup_poll_hw_counter(sc, 17982 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17983 "QM PF usage counter timed out", 17984 poll_cnt)) { 17985 return (1); 17986 } 17987 17988 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17989 if (bxe_flr_clnup_poll_hw_counter(sc, 17990 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17991 "Timers VNIC usage counter timed out", 17992 poll_cnt)) { 17993 return (1); 17994 } 17995 17996 if (bxe_flr_clnup_poll_hw_counter(sc, 17997 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17998 "Timers NUM_SCANS usage counter timed out", 17999 poll_cnt)) { 18000 return (1); 18001 } 18002 18003 /* Wait DMAE PF usage counter to zero */ 18004 if (bxe_flr_clnup_poll_hw_counter(sc, 18005 dmae_reg_go_c[INIT_DMAE_C(sc)], 18006 "DMAE dommand register timed out", 18007 poll_cnt)) { 18008 return (1); 18009 } 18010 18011 return (0); 18012 } 18013 18014 #define OP_GEN_PARAM(param) \ 18015 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 18016 #define OP_GEN_TYPE(type) \ 18017 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 18018 #define OP_GEN_AGG_VECT(index) \ 18019 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 18020 18021 static int 18022 bxe_send_final_clnup(struct bxe_softc *sc, 18023 uint8_t clnup_func, 18024 uint32_t poll_cnt) 18025 { 18026 uint32_t op_gen_command = 0; 18027 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 18028 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 18029 int ret = 0; 18030 18031 if (REG_RD(sc, comp_addr)) { 18032 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 18033 return (1); 18034 } 18035 18036 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 18037 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 18038 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 18039 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 18040 18041 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 18042 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 18043 18044 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 18045 BLOGE(sc, "FW final cleanup did not succeed\n"); 18046 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 18047 (REG_RD(sc, comp_addr))); 18048 bxe_panic(sc, ("FLR cleanup failed\n")); 18049 return (1); 18050 } 18051 18052 /* Zero completion for nxt FLR */ 18053 REG_WR(sc, comp_addr, 0); 18054 18055 return (ret); 18056 } 18057 18058 static void 18059 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 18060 struct pbf_pN_buf_regs *regs, 18061 uint32_t poll_count) 18062 { 18063 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 18064 uint32_t cur_cnt = poll_count; 18065 18066 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 18067 crd = crd_start = REG_RD(sc, regs->crd); 18068 init_crd = REG_RD(sc, regs->init_crd); 18069 18070 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 18071 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 18072 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 18073 18074 while ((crd != init_crd) && 18075 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 18076 (init_crd - crd_start))) { 18077 if (cur_cnt--) { 18078 DELAY(FLR_WAIT_INTERVAL); 18079 crd = REG_RD(sc, regs->crd); 18080 crd_freed = REG_RD(sc, regs->crd_freed); 18081 } else { 18082 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 18083 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 18084 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 18085 break; 18086 } 18087 } 18088 18089 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 18090 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18091 } 18092 18093 static void 18094 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 18095 struct pbf_pN_cmd_regs *regs, 18096 uint32_t poll_count) 18097 { 18098 uint32_t occup, to_free, freed, freed_start; 18099 uint32_t cur_cnt = poll_count; 18100 18101 occup = to_free = REG_RD(sc, regs->lines_occup); 18102 freed = freed_start = REG_RD(sc, regs->lines_freed); 18103 18104 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18105 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18106 18107 while (occup && 18108 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 18109 if (cur_cnt--) { 18110 DELAY(FLR_WAIT_INTERVAL); 18111 occup = REG_RD(sc, regs->lines_occup); 18112 freed = REG_RD(sc, regs->lines_freed); 18113 } else { 18114 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 18115 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 18116 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 18117 break; 18118 } 18119 } 18120 18121 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 18122 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 18123 } 18124 18125 static void 18126 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 18127 { 18128 struct pbf_pN_cmd_regs cmd_regs[] = { 18129 {0, (CHIP_IS_E3B0(sc)) ? 18130 PBF_REG_TQ_OCCUPANCY_Q0 : 18131 PBF_REG_P0_TQ_OCCUPANCY, 18132 (CHIP_IS_E3B0(sc)) ? 18133 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 18134 PBF_REG_P0_TQ_LINES_FREED_CNT}, 18135 {1, (CHIP_IS_E3B0(sc)) ? 18136 PBF_REG_TQ_OCCUPANCY_Q1 : 18137 PBF_REG_P1_TQ_OCCUPANCY, 18138 (CHIP_IS_E3B0(sc)) ? 18139 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 18140 PBF_REG_P1_TQ_LINES_FREED_CNT}, 18141 {4, (CHIP_IS_E3B0(sc)) ? 18142 PBF_REG_TQ_OCCUPANCY_LB_Q : 18143 PBF_REG_P4_TQ_OCCUPANCY, 18144 (CHIP_IS_E3B0(sc)) ? 18145 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 18146 PBF_REG_P4_TQ_LINES_FREED_CNT} 18147 }; 18148 18149 struct pbf_pN_buf_regs buf_regs[] = { 18150 {0, (CHIP_IS_E3B0(sc)) ? 18151 PBF_REG_INIT_CRD_Q0 : 18152 PBF_REG_P0_INIT_CRD , 18153 (CHIP_IS_E3B0(sc)) ? 18154 PBF_REG_CREDIT_Q0 : 18155 PBF_REG_P0_CREDIT, 18156 (CHIP_IS_E3B0(sc)) ? 18157 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 18158 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 18159 {1, (CHIP_IS_E3B0(sc)) ? 18160 PBF_REG_INIT_CRD_Q1 : 18161 PBF_REG_P1_INIT_CRD, 18162 (CHIP_IS_E3B0(sc)) ? 18163 PBF_REG_CREDIT_Q1 : 18164 PBF_REG_P1_CREDIT, 18165 (CHIP_IS_E3B0(sc)) ? 18166 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 18167 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 18168 {4, (CHIP_IS_E3B0(sc)) ? 18169 PBF_REG_INIT_CRD_LB_Q : 18170 PBF_REG_P4_INIT_CRD, 18171 (CHIP_IS_E3B0(sc)) ? 18172 PBF_REG_CREDIT_LB_Q : 18173 PBF_REG_P4_CREDIT, 18174 (CHIP_IS_E3B0(sc)) ? 18175 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18176 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18177 }; 18178 18179 int i; 18180 18181 /* Verify the command queues are flushed P0, P1, P4 */ 18182 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18183 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18184 } 18185 18186 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18187 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18188 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18189 } 18190 } 18191 18192 static void 18193 bxe_hw_enable_status(struct bxe_softc *sc) 18194 { 18195 uint32_t val; 18196 18197 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18198 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18199 18200 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18201 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18202 18203 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18204 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18205 18206 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18207 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18208 18209 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18210 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18211 18212 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18213 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18214 18215 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18216 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18217 18218 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18219 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18220 } 18221 18222 static int 18223 bxe_pf_flr_clnup(struct bxe_softc *sc) 18224 { 18225 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18226 18227 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18228 18229 /* Re-enable PF target read access */ 18230 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18231 18232 /* Poll HW usage counters */ 18233 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18234 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18235 return (-1); 18236 } 18237 18238 /* Zero the igu 'trailing edge' and 'leading edge' */ 18239 18240 /* Send the FW cleanup command */ 18241 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18242 return (-1); 18243 } 18244 18245 /* ATC cleanup */ 18246 18247 /* Verify TX hw is flushed */ 18248 bxe_tx_hw_flushed(sc, poll_cnt); 18249 18250 /* Wait 100ms (not adjusted according to platform) */ 18251 DELAY(100000); 18252 18253 /* Verify no pending pci transactions */ 18254 if (bxe_is_pcie_pending(sc)) { 18255 BLOGE(sc, "PCIE Transactions still pending\n"); 18256 } 18257 18258 /* Debug */ 18259 bxe_hw_enable_status(sc); 18260 18261 /* 18262 * Master enable - Due to WB DMAE writes performed before this 18263 * register is re-initialized as part of the regular function init 18264 */ 18265 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18266 18267 return (0); 18268 } 18269 18270 #if 0 18271 static void 18272 bxe_init_searcher(struct bxe_softc *sc) 18273 { 18274 int port = SC_PORT(sc); 18275 ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); 18276 /* T1 hash bits value determines the T1 number of entries */ 18277 REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 18278 } 18279 #endif 18280 18281 static int 18282 bxe_init_hw_func(struct bxe_softc *sc) 18283 { 18284 int port = SC_PORT(sc); 18285 int func = SC_FUNC(sc); 18286 int init_phase = PHASE_PF0 + func; 18287 struct ecore_ilt *ilt = sc->ilt; 18288 uint16_t cdu_ilt_start; 18289 uint32_t addr, val; 18290 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18291 int i, main_mem_width, rc; 18292 18293 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18294 18295 /* FLR cleanup */ 18296 if (!CHIP_IS_E1x(sc)) { 18297 rc = bxe_pf_flr_clnup(sc); 18298 if (rc) { 18299 BLOGE(sc, "FLR cleanup failed!\n"); 18300 // XXX bxe_fw_dump(sc); 18301 // XXX bxe_idle_chk(sc); 18302 return (rc); 18303 } 18304 } 18305 18306 /* set MSI reconfigure capability */ 18307 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18308 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18309 val = REG_RD(sc, addr); 18310 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18311 REG_WR(sc, addr, val); 18312 } 18313 18314 ecore_init_block(sc, BLOCK_PXP, init_phase); 18315 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18316 18317 ilt = sc->ilt; 18318 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18319 18320 #if 0 18321 if (IS_SRIOV(sc)) { 18322 cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; 18323 } 18324 cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); 18325 18326 #if (BXE_FIRST_VF_CID > 0) 18327 /* 18328 * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes 18329 * those of the VFs, so start line should be reset 18330 */ 18331 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18332 #endif 18333 #endif 18334 18335 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18336 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18337 ilt->lines[cdu_ilt_start + i].page_mapping = 18338 sc->context[i].vcxt_dma.paddr; 18339 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18340 } 18341 ecore_ilt_init_op(sc, INITOP_SET); 18342 18343 #if 0 18344 if (!CONFIGURE_NIC_MODE(sc)) { 18345 bxe_init_searcher(sc); 18346 REG_WR(sc, PRS_REG_NIC_MODE, 0); 18347 BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); 18348 } else 18349 #endif 18350 { 18351 /* Set NIC mode */ 18352 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18353 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18354 } 18355 18356 if (!CHIP_IS_E1x(sc)) { 18357 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18358 18359 /* Turn on a single ISR mode in IGU if driver is going to use 18360 * INT#x or MSI 18361 */ 18362 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18363 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18364 } 18365 18366 /* 18367 * Timers workaround bug: function init part. 18368 * Need to wait 20msec after initializing ILT, 18369 * needed to make sure there are no requests in 18370 * one of the PXP internal queues with "old" ILT addresses 18371 */ 18372 DELAY(20000); 18373 18374 /* 18375 * Master enable - Due to WB DMAE writes performed before this 18376 * register is re-initialized as part of the regular function 18377 * init 18378 */ 18379 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18380 /* Enable the function in IGU */ 18381 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18382 } 18383 18384 sc->dmae_ready = 1; 18385 18386 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18387 18388 if (!CHIP_IS_E1x(sc)) 18389 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18390 18391 ecore_init_block(sc, BLOCK_ATC, init_phase); 18392 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18393 ecore_init_block(sc, BLOCK_NIG, init_phase); 18394 ecore_init_block(sc, BLOCK_SRC, init_phase); 18395 ecore_init_block(sc, BLOCK_MISC, init_phase); 18396 ecore_init_block(sc, BLOCK_TCM, init_phase); 18397 ecore_init_block(sc, BLOCK_UCM, init_phase); 18398 ecore_init_block(sc, BLOCK_CCM, init_phase); 18399 ecore_init_block(sc, BLOCK_XCM, init_phase); 18400 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18401 ecore_init_block(sc, BLOCK_USEM, init_phase); 18402 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18403 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18404 18405 if (!CHIP_IS_E1x(sc)) 18406 REG_WR(sc, QM_REG_PF_EN, 1); 18407 18408 if (!CHIP_IS_E1x(sc)) { 18409 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18410 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18411 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18412 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18413 } 18414 ecore_init_block(sc, BLOCK_QM, init_phase); 18415 18416 ecore_init_block(sc, BLOCK_TM, init_phase); 18417 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18418 18419 bxe_iov_init_dq(sc); 18420 18421 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18422 ecore_init_block(sc, BLOCK_PRS, init_phase); 18423 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18424 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18425 ecore_init_block(sc, BLOCK_USDM, init_phase); 18426 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18427 ecore_init_block(sc, BLOCK_UPB, init_phase); 18428 ecore_init_block(sc, BLOCK_XPB, init_phase); 18429 ecore_init_block(sc, BLOCK_PBF, init_phase); 18430 if (!CHIP_IS_E1x(sc)) 18431 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18432 18433 ecore_init_block(sc, BLOCK_CDU, init_phase); 18434 18435 ecore_init_block(sc, BLOCK_CFC, init_phase); 18436 18437 if (!CHIP_IS_E1x(sc)) 18438 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18439 18440 if (IS_MF(sc)) { 18441 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18442 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18443 } 18444 18445 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18446 18447 /* HC init per function */ 18448 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18449 if (CHIP_IS_E1H(sc)) { 18450 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18451 18452 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18453 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18454 } 18455 ecore_init_block(sc, BLOCK_HC, init_phase); 18456 18457 } else { 18458 int num_segs, sb_idx, prod_offset; 18459 18460 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18461 18462 if (!CHIP_IS_E1x(sc)) { 18463 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18464 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18465 } 18466 18467 ecore_init_block(sc, BLOCK_IGU, init_phase); 18468 18469 if (!CHIP_IS_E1x(sc)) { 18470 int dsb_idx = 0; 18471 /** 18472 * Producer memory: 18473 * E2 mode: address 0-135 match to the mapping memory; 18474 * 136 - PF0 default prod; 137 - PF1 default prod; 18475 * 138 - PF2 default prod; 139 - PF3 default prod; 18476 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18477 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18478 * 144-147 reserved. 18479 * 18480 * E1.5 mode - In backward compatible mode; 18481 * for non default SB; each even line in the memory 18482 * holds the U producer and each odd line hold 18483 * the C producer. The first 128 producers are for 18484 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18485 * producers are for the DSB for each PF. 18486 * Each PF has five segments: (the order inside each 18487 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18488 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18489 * 144-147 attn prods; 18490 */ 18491 /* non-default-status-blocks */ 18492 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18493 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18494 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18495 prod_offset = (sc->igu_base_sb + sb_idx) * 18496 num_segs; 18497 18498 for (i = 0; i < num_segs; i++) { 18499 addr = IGU_REG_PROD_CONS_MEMORY + 18500 (prod_offset + i) * 4; 18501 REG_WR(sc, addr, 0); 18502 } 18503 /* send consumer update with value 0 */ 18504 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18505 USTORM_ID, 0, IGU_INT_NOP, 1); 18506 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18507 } 18508 18509 /* default-status-blocks */ 18510 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18511 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18512 18513 if (CHIP_IS_MODE_4_PORT(sc)) 18514 dsb_idx = SC_FUNC(sc); 18515 else 18516 dsb_idx = SC_VN(sc); 18517 18518 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18519 IGU_BC_BASE_DSB_PROD + dsb_idx : 18520 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18521 18522 /* 18523 * igu prods come in chunks of E1HVN_MAX (4) - 18524 * does not matters what is the current chip mode 18525 */ 18526 for (i = 0; i < (num_segs * E1HVN_MAX); 18527 i += E1HVN_MAX) { 18528 addr = IGU_REG_PROD_CONS_MEMORY + 18529 (prod_offset + i)*4; 18530 REG_WR(sc, addr, 0); 18531 } 18532 /* send consumer update with 0 */ 18533 if (CHIP_INT_MODE_IS_BC(sc)) { 18534 bxe_ack_sb(sc, sc->igu_dsb_id, 18535 USTORM_ID, 0, IGU_INT_NOP, 1); 18536 bxe_ack_sb(sc, sc->igu_dsb_id, 18537 CSTORM_ID, 0, IGU_INT_NOP, 1); 18538 bxe_ack_sb(sc, sc->igu_dsb_id, 18539 XSTORM_ID, 0, IGU_INT_NOP, 1); 18540 bxe_ack_sb(sc, sc->igu_dsb_id, 18541 TSTORM_ID, 0, IGU_INT_NOP, 1); 18542 bxe_ack_sb(sc, sc->igu_dsb_id, 18543 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18544 } else { 18545 bxe_ack_sb(sc, sc->igu_dsb_id, 18546 USTORM_ID, 0, IGU_INT_NOP, 1); 18547 bxe_ack_sb(sc, sc->igu_dsb_id, 18548 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18549 } 18550 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18551 18552 /* !!! these should become driver const once 18553 rf-tool supports split-68 const */ 18554 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18555 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18556 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18557 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18558 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18559 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18560 } 18561 } 18562 18563 /* Reset PCIE errors for debug */ 18564 REG_WR(sc, 0x2114, 0xffffffff); 18565 REG_WR(sc, 0x2120, 0xffffffff); 18566 18567 if (CHIP_IS_E1x(sc)) { 18568 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18569 main_mem_base = HC_REG_MAIN_MEMORY + 18570 SC_PORT(sc) * (main_mem_size * 4); 18571 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18572 main_mem_width = 8; 18573 18574 val = REG_RD(sc, main_mem_prty_clr); 18575 if (val) { 18576 BLOGD(sc, DBG_LOAD, 18577 "Parity errors in HC block during function init (0x%x)!\n", 18578 val); 18579 } 18580 18581 /* Clear "false" parity errors in MSI-X table */ 18582 for (i = main_mem_base; 18583 i < main_mem_base + main_mem_size * 4; 18584 i += main_mem_width) { 18585 bxe_read_dmae(sc, i, main_mem_width / 4); 18586 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18587 i, main_mem_width / 4); 18588 } 18589 /* Clear HC parity attention */ 18590 REG_RD(sc, main_mem_prty_clr); 18591 } 18592 18593 #if 1 18594 /* Enable STORMs SP logging */ 18595 REG_WR8(sc, BAR_USTRORM_INTMEM + 18596 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18597 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18598 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18599 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18600 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18601 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18602 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18603 #endif 18604 18605 elink_phy_probe(&sc->link_params); 18606 18607 return (0); 18608 } 18609 18610 static void 18611 bxe_link_reset(struct bxe_softc *sc) 18612 { 18613 if (!BXE_NOMCP(sc)) { 18614 BXE_PHY_LOCK(sc); 18615 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18616 BXE_PHY_UNLOCK(sc); 18617 } else { 18618 if (!CHIP_REV_IS_SLOW(sc)) { 18619 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18620 } 18621 } 18622 } 18623 18624 static void 18625 bxe_reset_port(struct bxe_softc *sc) 18626 { 18627 int port = SC_PORT(sc); 18628 uint32_t val; 18629 18630 /* reset physical Link */ 18631 bxe_link_reset(sc); 18632 18633 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18634 18635 /* Do not rcv packets to BRB */ 18636 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18637 /* Do not direct rcv packets that are not for MCP to the BRB */ 18638 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18639 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18640 18641 /* Configure AEU */ 18642 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18643 18644 DELAY(100000); 18645 18646 /* Check for BRB port occupancy */ 18647 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18648 if (val) { 18649 BLOGD(sc, DBG_LOAD, 18650 "BRB1 is not empty, %d blocks are occupied\n", val); 18651 } 18652 18653 /* TODO: Close Doorbell port? */ 18654 } 18655 18656 static void 18657 bxe_ilt_wr(struct bxe_softc *sc, 18658 uint32_t index, 18659 bus_addr_t addr) 18660 { 18661 int reg; 18662 uint32_t wb_write[2]; 18663 18664 if (CHIP_IS_E1(sc)) { 18665 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18666 } else { 18667 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18668 } 18669 18670 wb_write[0] = ONCHIP_ADDR1(addr); 18671 wb_write[1] = ONCHIP_ADDR2(addr); 18672 REG_WR_DMAE(sc, reg, wb_write, 2); 18673 } 18674 18675 static void 18676 bxe_clear_func_ilt(struct bxe_softc *sc, 18677 uint32_t func) 18678 { 18679 uint32_t i, base = FUNC_ILT_BASE(func); 18680 for (i = base; i < base + ILT_PER_FUNC; i++) { 18681 bxe_ilt_wr(sc, i, 0); 18682 } 18683 } 18684 18685 static void 18686 bxe_reset_func(struct bxe_softc *sc) 18687 { 18688 struct bxe_fastpath *fp; 18689 int port = SC_PORT(sc); 18690 int func = SC_FUNC(sc); 18691 int i; 18692 18693 /* Disable the function in the FW */ 18694 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18695 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18696 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18697 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18698 18699 /* FP SBs */ 18700 FOR_EACH_ETH_QUEUE(sc, i) { 18701 fp = &sc->fp[i]; 18702 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18703 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18704 SB_DISABLED); 18705 } 18706 18707 #if 0 18708 if (CNIC_LOADED(sc)) { 18709 /* CNIC SB */ 18710 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18711 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 18712 (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); 18713 } 18714 #endif 18715 18716 /* SP SB */ 18717 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18718 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18719 SB_DISABLED); 18720 18721 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18722 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18723 } 18724 18725 /* Configure IGU */ 18726 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18727 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18728 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18729 } else { 18730 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18731 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18732 } 18733 18734 if (CNIC_LOADED(sc)) { 18735 /* Disable Timer scan */ 18736 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18737 /* 18738 * Wait for at least 10ms and up to 2 second for the timers 18739 * scan to complete 18740 */ 18741 for (i = 0; i < 200; i++) { 18742 DELAY(10000); 18743 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18744 break; 18745 } 18746 } 18747 18748 /* Clear ILT */ 18749 bxe_clear_func_ilt(sc, func); 18750 18751 /* 18752 * Timers workaround bug for E2: if this is vnic-3, 18753 * we need to set the entire ilt range for this timers. 18754 */ 18755 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18756 struct ilt_client_info ilt_cli; 18757 /* use dummy TM client */ 18758 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18759 ilt_cli.start = 0; 18760 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18761 ilt_cli.client_num = ILT_CLIENT_TM; 18762 18763 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18764 } 18765 18766 /* this assumes that reset_port() called before reset_func()*/ 18767 if (!CHIP_IS_E1x(sc)) { 18768 bxe_pf_disable(sc); 18769 } 18770 18771 sc->dmae_ready = 0; 18772 } 18773 18774 static int 18775 bxe_gunzip_init(struct bxe_softc *sc) 18776 { 18777 return (0); 18778 } 18779 18780 static void 18781 bxe_gunzip_end(struct bxe_softc *sc) 18782 { 18783 return; 18784 } 18785 18786 static int 18787 bxe_init_firmware(struct bxe_softc *sc) 18788 { 18789 if (CHIP_IS_E1(sc)) { 18790 ecore_init_e1_firmware(sc); 18791 sc->iro_array = e1_iro_arr; 18792 } else if (CHIP_IS_E1H(sc)) { 18793 ecore_init_e1h_firmware(sc); 18794 sc->iro_array = e1h_iro_arr; 18795 } else if (!CHIP_IS_E1x(sc)) { 18796 ecore_init_e2_firmware(sc); 18797 sc->iro_array = e2_iro_arr; 18798 } else { 18799 BLOGE(sc, "Unsupported chip revision\n"); 18800 return (-1); 18801 } 18802 18803 return (0); 18804 } 18805 18806 static void 18807 bxe_release_firmware(struct bxe_softc *sc) 18808 { 18809 /* Do nothing */ 18810 return; 18811 } 18812 18813 static int 18814 ecore_gunzip(struct bxe_softc *sc, 18815 const uint8_t *zbuf, 18816 int len) 18817 { 18818 /* XXX : Implement... */ 18819 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18820 return (FALSE); 18821 } 18822 18823 static void 18824 ecore_reg_wr_ind(struct bxe_softc *sc, 18825 uint32_t addr, 18826 uint32_t val) 18827 { 18828 bxe_reg_wr_ind(sc, addr, val); 18829 } 18830 18831 static void 18832 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18833 bus_addr_t phys_addr, 18834 uint32_t addr, 18835 uint32_t len) 18836 { 18837 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18838 } 18839 18840 void 18841 ecore_storm_memset_struct(struct bxe_softc *sc, 18842 uint32_t addr, 18843 size_t size, 18844 uint32_t *data) 18845 { 18846 uint8_t i; 18847 for (i = 0; i < size/4; i++) { 18848 REG_WR(sc, addr + (i * 4), data[i]); 18849 } 18850 } 18851 18852