xref: /freebsd/sys/dev/bwi/if_bwi.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_set_channel(struct ieee80211com *);
114 static void	bwi_scan_end(struct ieee80211com *);
115 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
116 static void	bwi_updateslot(struct ieee80211com *);
117 static int	bwi_media_change(struct ifnet *);
118 
119 static void	bwi_calibrate(void *);
120 
121 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
122 static int	bwi_calc_noise(struct bwi_softc *);
123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
124 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
125 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
126 
127 static void	bwi_restart(void *, int);
128 static void	bwi_init_statechg(struct bwi_softc *, int);
129 static void	bwi_stop(struct bwi_softc *, int);
130 static void	bwi_stop_locked(struct bwi_softc *, int);
131 static int	bwi_newbuf(struct bwi_softc *, int, int);
132 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *);
134 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *,
136 			  const struct ieee80211_bpf_params *);
137 
138 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
139 				       bus_addr_t, int, int);
140 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
141 
142 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
143 static int	bwi_init_rx_ring32(struct bwi_softc *);
144 static int	bwi_init_txstats32(struct bwi_softc *);
145 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
146 static void	bwi_free_rx_ring32(struct bwi_softc *);
147 static void	bwi_free_txstats32(struct bwi_softc *);
148 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
149 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
150 				    int, bus_addr_t, int);
151 static int	bwi_rxeof32(struct bwi_softc *);
152 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
153 static void	bwi_txeof_status32(struct bwi_softc *);
154 
155 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
156 static int	bwi_init_rx_ring64(struct bwi_softc *);
157 static int	bwi_init_txstats64(struct bwi_softc *);
158 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
159 static void	bwi_free_rx_ring64(struct bwi_softc *);
160 static void	bwi_free_txstats64(struct bwi_softc *);
161 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
162 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
163 				    int, bus_addr_t, int);
164 static int	bwi_rxeof64(struct bwi_softc *);
165 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
166 static void	bwi_txeof_status64(struct bwi_softc *);
167 
168 static int	bwi_rxeof(struct bwi_softc *, int);
169 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
170 static void	bwi_txeof(struct bwi_softc *);
171 static void	bwi_txeof_status(struct bwi_softc *, int);
172 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
173 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
174 
175 static int	bwi_dma_alloc(struct bwi_softc *);
176 static void	bwi_dma_free(struct bwi_softc *);
177 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
178 				   struct bwi_ring_data *, bus_size_t,
179 				   uint32_t);
180 static int	bwi_dma_mbuf_create(struct bwi_softc *);
181 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
182 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
183 static void	bwi_dma_txstats_free(struct bwi_softc *);
184 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
185 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
186 				 bus_size_t, int);
187 
188 static void	bwi_power_on(struct bwi_softc *, int);
189 static int	bwi_power_off(struct bwi_softc *, int);
190 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
191 static int	bwi_set_clock_delay(struct bwi_softc *);
192 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
193 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
194 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
195 				    const uint8_t *);
196 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
197 
198 static void	bwi_get_card_flags(struct bwi_softc *);
199 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
200 
201 static int	bwi_bus_attach(struct bwi_softc *);
202 static int	bwi_bbp_attach(struct bwi_softc *);
203 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
204 static void	bwi_bbp_power_off(struct bwi_softc *);
205 
206 static const char *bwi_regwin_name(const struct bwi_regwin *);
207 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
208 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
209 static int	bwi_regwin_select(struct bwi_softc *, int);
210 
211 static void	bwi_led_attach(struct bwi_softc *);
212 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
213 static void	bwi_led_event(struct bwi_softc *, int);
214 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
215 static void	bwi_led_blink_next(void *);
216 static void	bwi_led_blink_end(void *);
217 
218 static const struct {
219 	uint16_t	did_min;
220 	uint16_t	did_max;
221 	uint16_t	bbp_id;
222 } bwi_bbpid_map[] = {
223 	{ 0x4301, 0x4301, 0x4301 },
224 	{ 0x4305, 0x4307, 0x4307 },
225 	{ 0x4402, 0x4403, 0x4402 },
226 	{ 0x4610, 0x4615, 0x4610 },
227 	{ 0x4710, 0x4715, 0x4710 },
228 	{ 0x4720, 0x4725, 0x4309 }
229 };
230 
231 static const struct {
232 	uint16_t	bbp_id;
233 	int		nregwin;
234 } bwi_regwin_count[] = {
235 	{ 0x4301, 5 },
236 	{ 0x4306, 6 },
237 	{ 0x4307, 5 },
238 	{ 0x4310, 8 },
239 	{ 0x4401, 3 },
240 	{ 0x4402, 3 },
241 	{ 0x4610, 9 },
242 	{ 0x4704, 9 },
243 	{ 0x4710, 9 },
244 	{ 0x5365, 7 }
245 };
246 
247 #define CLKSRC(src) 				\
248 [BWI_CLKSRC_ ## src] = {			\
249 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
250 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
251 }
252 
253 static const struct {
254 	u_int	freq_min;
255 	u_int	freq_max;
256 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
257 	CLKSRC(LP_OSC),
258 	CLKSRC(CS_OSC),
259 	CLKSRC(PCI)
260 };
261 
262 #undef CLKSRC
263 
264 #define VENDOR_LED_ACT(vendor)				\
265 {							\
266 	.vid = PCI_VENDOR_##vendor,			\
267 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
268 }
269 
270 static const struct {
271 #define	PCI_VENDOR_COMPAQ	0x0e11
272 #define	PCI_VENDOR_LINKSYS	0x1737
273 	uint16_t	vid;
274 	uint8_t		led_act[BWI_LED_MAX];
275 } bwi_vendor_led_act[] = {
276 	VENDOR_LED_ACT(COMPAQ),
277 	VENDOR_LED_ACT(LINKSYS)
278 #undef PCI_VENDOR_LINKSYS
279 #undef PCI_VENDOR_COMPAQ
280 };
281 
282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
283 	{ BWI_VENDOR_LED_ACT_DEFAULT };
284 
285 #undef VENDOR_LED_ACT
286 
287 static const struct {
288 	int	on_dur;
289 	int	off_dur;
290 } bwi_led_duration[109] = {
291 	[0]	= { 400, 100 },
292 	[2]	= { 150, 75 },
293 	[4]	= { 90, 45 },
294 	[11]	= { 66, 34 },
295 	[12]	= { 53, 26 },
296 	[18]	= { 42, 21 },
297 	[22]	= { 35, 17 },
298 	[24]	= { 32, 16 },
299 	[36]	= { 21, 10 },
300 	[48]	= { 16, 8 },
301 	[72]	= { 11, 5 },
302 	[96]	= { 9, 4 },
303 	[108]	= { 7, 3 }
304 };
305 
306 #ifdef BWI_DEBUG
307 #ifdef BWI_DEBUG_VERBOSE
308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
309 #else
310 static uint32_t	bwi_debug;
311 #endif
312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
313 #endif	/* BWI_DEBUG */
314 
315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
316 
317 uint16_t
318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
319 {
320 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
321 }
322 
323 static __inline void
324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
325 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
326 		 int tx)
327 {
328 	struct bwi_desc32 *desc = &desc_array[desc_idx];
329 	uint32_t ctrl, addr, addr_hi, addr_lo;
330 
331 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
332 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
333 
334 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
335 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
336 
337 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
338 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
339 	if (desc_idx == ndesc - 1)
340 		ctrl |= BWI_DESC32_C_EOR;
341 	if (tx) {
342 		/* XXX */
343 		ctrl |= BWI_DESC32_C_FRAME_START |
344 			BWI_DESC32_C_FRAME_END |
345 			BWI_DESC32_C_INTR;
346 	}
347 
348 	desc->addr = htole32(addr);
349 	desc->ctrl = htole32(ctrl);
350 }
351 
352 int
353 bwi_attach(struct bwi_softc *sc)
354 {
355 	struct ieee80211com *ic = &sc->sc_ic;
356 	device_t dev = sc->sc_dev;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)];
360 	int i, error;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_blink = 1;
381 	sc->sc_txpwr_calib = 1;
382 #ifdef BWI_DEBUG
383 	sc->sc_debug = bwi_debug;
384 #endif
385 	bwi_power_on(sc, 1);
386 
387 	error = bwi_bbp_attach(sc);
388 	if (error)
389 		goto fail;
390 
391 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
392 	if (error)
393 		goto fail;
394 
395 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
396 		error = bwi_set_clock_delay(sc);
397 		if (error)
398 			goto fail;
399 
400 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_get_pwron_delay(sc);
405 		if (error)
406 			goto fail;
407 	}
408 
409 	error = bwi_bus_attach(sc);
410 	if (error)
411 		goto fail;
412 
413 	bwi_get_card_flags(sc);
414 
415 	bwi_led_attach(sc);
416 
417 	for (i = 0; i < sc->sc_nmac; ++i) {
418 		struct bwi_regwin *old;
419 
420 		mac = &sc->sc_mac[i];
421 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
422 		if (error)
423 			goto fail;
424 
425 		error = bwi_mac_lateattach(mac);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_regwin_switch(sc, old, NULL);
430 		if (error)
431 			goto fail;
432 	}
433 
434 	/*
435 	 * XXX First MAC is known to exist
436 	 * TODO2
437 	 */
438 	mac = &sc->sc_mac[0];
439 	phy = &mac->mac_phy;
440 
441 	bwi_bbp_power_off(sc);
442 
443 	error = bwi_dma_alloc(sc);
444 	if (error)
445 		goto fail;
446 
447 	error = bwi_mac_fw_alloc(mac);
448 	if (error)
449 		goto fail;
450 
451 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
452 
453 	/*
454 	 * Setup ratesets, phytype, channels and get MAC address
455 	 */
456 	memset(bands, 0, sizeof(bands));
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		setbit(bands, IEEE80211_MODE_11B);
460 		if (phy->phy_mode == IEEE80211_MODE_11B) {
461 			ic->ic_phytype = IEEE80211_T_DS;
462 		} else {
463 			ic->ic_phytype = IEEE80211_T_OFDM;
464 			setbit(bands, IEEE80211_MODE_11G);
465 		}
466 
467 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
468 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
470 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
471 				device_printf(dev,
472 				    "invalid MAC address: %6D\n",
473 				    ic->ic_macaddr, ":");
474 			}
475 		}
476 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
477 		/* TODO:11A */
478 		setbit(bands, IEEE80211_MODE_11A);
479 		error = ENXIO;
480 		goto fail;
481 	} else {
482 		panic("unknown phymode %d\n", phy->phy_mode);
483 	}
484 
485 	/* Get locale */
486 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
487 				   BWI_SPROM_CARD_INFO_LOCALE);
488 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
489 	/* XXX use locale */
490 	ieee80211_init_channels(ic, NULL, bands);
491 
492 	ic->ic_softc = sc;
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 	ieee80211_ifattach(ic);
502 
503 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504 
505 	/* override default methods */
506 	ic->ic_vap_create = bwi_vap_create;
507 	ic->ic_vap_delete = bwi_vap_delete;
508 	ic->ic_raw_xmit = bwi_raw_xmit;
509 	ic->ic_updateslot = bwi_updateslot;
510 	ic->ic_scan_start = bwi_scan_start;
511 	ic->ic_scan_end = bwi_scan_end;
512 	ic->ic_set_channel = bwi_set_channel;
513 	ic->ic_transmit = bwi_transmit;
514 	ic->ic_parent = bwi_parent;
515 
516 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
517 
518 	ieee80211_radiotap_attach(ic,
519 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
520 		BWI_TX_RADIOTAP_PRESENT,
521 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
522 		BWI_RX_RADIOTAP_PRESENT);
523 
524 	/*
525 	 * Add sysctl nodes
526 	 */
527 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
528 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
529 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
530 		        "Firmware version");
531 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
532 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
533 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
534 		        "# ticks before LED enters idle state");
535 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
536 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
537 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
538 		       "Allow LED to blink");
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
542 		       "Enable software TX power calibration");
543 #ifdef BWI_DEBUG
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
547 #endif
548 	if (bootverbose)
549 		ieee80211_announce(ic);
550 
551 	return (0);
552 fail:
553 	BWI_LOCK_DESTROY(sc);
554 	return (error);
555 }
556 
557 int
558 bwi_detach(struct bwi_softc *sc)
559 {
560 	struct ieee80211com *ic = &sc->sc_ic;
561 	int i;
562 
563 	bwi_stop(sc, 1);
564 	callout_drain(&sc->sc_led_blink_ch);
565 	callout_drain(&sc->sc_calib_ch);
566 	callout_drain(&sc->sc_watchdog_timer);
567 	ieee80211_ifdetach(ic);
568 
569 	for (i = 0; i < sc->sc_nmac; ++i)
570 		bwi_mac_detach(&sc->sc_mac[i]);
571 	bwi_dma_free(sc);
572 	taskqueue_free(sc->sc_tq);
573 	mbufq_drain(&sc->sc_snd);
574 
575 	BWI_LOCK_DESTROY(sc);
576 
577 	return (0);
578 }
579 
580 static struct ieee80211vap *
581 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
582     enum ieee80211_opmode opmode, int flags,
583     const uint8_t bssid[IEEE80211_ADDR_LEN],
584     const uint8_t mac[IEEE80211_ADDR_LEN])
585 {
586 	struct bwi_vap *bvp;
587 	struct ieee80211vap *vap;
588 
589 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
590 		return NULL;
591 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
592 	vap = &bvp->bv_vap;
593 	/* enable s/w bmiss handling for sta mode */
594 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
595 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
596 
597 	/* override default methods */
598 	bvp->bv_newstate = vap->iv_newstate;
599 	vap->iv_newstate = bwi_newstate;
600 #if 0
601 	vap->iv_update_beacon = bwi_beacon_update;
602 #endif
603 	ieee80211_ratectl_init(vap);
604 
605 	/* complete setup */
606 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
607 	    mac);
608 	ic->ic_opmode = opmode;
609 	return vap;
610 }
611 
612 static void
613 bwi_vap_delete(struct ieee80211vap *vap)
614 {
615 	struct bwi_vap *bvp = BWI_VAP(vap);
616 
617 	ieee80211_ratectl_deinit(vap);
618 	ieee80211_vap_detach(vap);
619 	free(bvp, M_80211_VAP);
620 }
621 
622 void
623 bwi_suspend(struct bwi_softc *sc)
624 {
625 	bwi_stop(sc, 1);
626 }
627 
628 void
629 bwi_resume(struct bwi_softc *sc)
630 {
631 
632 	if (sc->sc_ic.ic_nrunning > 0)
633 		bwi_init(sc);
634 }
635 
636 int
637 bwi_shutdown(struct bwi_softc *sc)
638 {
639 	bwi_stop(sc, 1);
640 	return 0;
641 }
642 
643 static void
644 bwi_power_on(struct bwi_softc *sc, int with_pll)
645 {
646 	uint32_t gpio_in, gpio_out, gpio_en;
647 	uint16_t status;
648 
649 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
650 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
651 		goto back;
652 
653 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
654 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
655 
656 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
657 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
658 	if (with_pll) {
659 		/* Turn off PLL first */
660 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
661 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 	}
663 
664 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
665 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
666 	DELAY(1000);
667 
668 	if (with_pll) {
669 		/* Turn on PLL */
670 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
671 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
672 		DELAY(5000);
673 	}
674 
675 back:
676 	/* Clear "Signaled Target Abort" */
677 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
678 	status &= ~PCIM_STATUS_STABORT;
679 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
680 }
681 
682 static int
683 bwi_power_off(struct bwi_softc *sc, int with_pll)
684 {
685 	uint32_t gpio_out, gpio_en;
686 
687 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
688 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
689 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
690 
691 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
692 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
693 	if (with_pll) {
694 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
695 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 	}
697 
698 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
699 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
700 	return 0;
701 }
702 
703 int
704 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
705 		  struct bwi_regwin **old_rw)
706 {
707 	int error;
708 
709 	if (old_rw != NULL)
710 		*old_rw = NULL;
711 
712 	if (!BWI_REGWIN_EXIST(rw))
713 		return EINVAL;
714 
715 	if (sc->sc_cur_regwin != rw) {
716 		error = bwi_regwin_select(sc, rw->rw_id);
717 		if (error) {
718 			device_printf(sc->sc_dev, "can't select regwin %d\n",
719 				  rw->rw_id);
720 			return error;
721 		}
722 	}
723 
724 	if (old_rw != NULL)
725 		*old_rw = sc->sc_cur_regwin;
726 	sc->sc_cur_regwin = rw;
727 	return 0;
728 }
729 
730 static int
731 bwi_regwin_select(struct bwi_softc *sc, int id)
732 {
733 	uint32_t win = BWI_PCIM_REGWIN(id);
734 	int i;
735 
736 #define RETRY_MAX	50
737 	for (i = 0; i < RETRY_MAX; ++i) {
738 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
739 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
740 			return 0;
741 		DELAY(10);
742 	}
743 #undef RETRY_MAX
744 
745 	return ENXIO;
746 }
747 
748 static void
749 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
750 {
751 	uint32_t val;
752 
753 	val = CSR_READ_4(sc, BWI_ID_HI);
754 	*type = BWI_ID_HI_REGWIN_TYPE(val);
755 	*rev = BWI_ID_HI_REGWIN_REV(val);
756 
757 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
758 		"vendor 0x%04x\n", *type, *rev,
759 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
760 }
761 
762 static int
763 bwi_bbp_attach(struct bwi_softc *sc)
764 {
765 	uint16_t bbp_id, rw_type;
766 	uint8_t rw_rev;
767 	uint32_t info;
768 	int error, nregwin, i;
769 
770 	/*
771 	 * Get 0th regwin information
772 	 * NOTE: 0th regwin should exist
773 	 */
774 	error = bwi_regwin_select(sc, 0);
775 	if (error) {
776 		device_printf(sc->sc_dev, "can't select regwin 0\n");
777 		return error;
778 	}
779 	bwi_regwin_info(sc, &rw_type, &rw_rev);
780 
781 	/*
782 	 * Find out BBP id
783 	 */
784 	bbp_id = 0;
785 	info = 0;
786 	if (rw_type == BWI_REGWIN_T_COM) {
787 		info = CSR_READ_4(sc, BWI_INFO);
788 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
789 
790 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
791 
792 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
793 	} else {
794 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
795 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
796 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
797 				bbp_id = bwi_bbpid_map[i].bbp_id;
798 				break;
799 			}
800 		}
801 		if (bbp_id == 0) {
802 			device_printf(sc->sc_dev, "no BBP id for device id "
803 				      "0x%04x\n", sc->sc_pci_did);
804 			return ENXIO;
805 		}
806 
807 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
808 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
809 	}
810 
811 	/*
812 	 * Find out number of regwins
813 	 */
814 	nregwin = 0;
815 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
816 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
817 	} else {
818 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
819 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
820 				nregwin = bwi_regwin_count[i].nregwin;
821 				break;
822 			}
823 		}
824 		if (nregwin == 0) {
825 			device_printf(sc->sc_dev, "no number of win for "
826 				      "BBP id 0x%04x\n", bbp_id);
827 			return ENXIO;
828 		}
829 	}
830 
831 	/* Record BBP id/rev for later using */
832 	sc->sc_bbp_id = bbp_id;
833 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
834 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
835 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
836 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
837 
838 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
839 		nregwin, sc->sc_cap);
840 
841 	/*
842 	 * Create rest of the regwins
843 	 */
844 
845 	/* Don't re-create common regwin, if it is already created */
846 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
847 
848 	for (; i < nregwin; ++i) {
849 		/*
850 		 * Get regwin information
851 		 */
852 		error = bwi_regwin_select(sc, i);
853 		if (error) {
854 			device_printf(sc->sc_dev,
855 				      "can't select regwin %d\n", i);
856 			return error;
857 		}
858 		bwi_regwin_info(sc, &rw_type, &rw_rev);
859 
860 		/*
861 		 * Try attach:
862 		 * 1) Bus (PCI/PCIE) regwin
863 		 * 2) MAC regwin
864 		 * Ignore rest types of regwin
865 		 */
866 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
867 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
868 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
869 				device_printf(sc->sc_dev,
870 					      "bus regwin already exists\n");
871 			} else {
872 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
873 						  rw_type, rw_rev);
874 			}
875 		} else if (rw_type == BWI_REGWIN_T_MAC) {
876 			/* XXX ignore return value */
877 			bwi_mac_attach(sc, i, rw_rev);
878 		}
879 	}
880 
881 	/* At least one MAC shold exist */
882 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
883 		device_printf(sc->sc_dev, "no MAC was found\n");
884 		return ENXIO;
885 	}
886 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
887 
888 	/* Bus regwin must exist */
889 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
890 		device_printf(sc->sc_dev, "no bus regwin was found\n");
891 		return ENXIO;
892 	}
893 
894 	/* Start with first MAC */
895 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
896 	if (error)
897 		return error;
898 
899 	return 0;
900 }
901 
902 int
903 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
904 {
905 	struct bwi_regwin *old, *bus;
906 	uint32_t val;
907 	int error;
908 
909 	bus = &sc->sc_bus_regwin;
910 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
911 
912 	/*
913 	 * Tell bus to generate requested interrupts
914 	 */
915 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
916 		/*
917 		 * NOTE: Read BWI_FLAGS from MAC regwin
918 		 */
919 		val = CSR_READ_4(sc, BWI_FLAGS);
920 
921 		error = bwi_regwin_switch(sc, bus, &old);
922 		if (error)
923 			return error;
924 
925 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
926 	} else {
927 		uint32_t mac_mask;
928 
929 		mac_mask = 1 << mac->mac_id;
930 
931 		error = bwi_regwin_switch(sc, bus, &old);
932 		if (error)
933 			return error;
934 
935 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
936 		val |= mac_mask << 8;
937 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
938 	}
939 
940 	if (sc->sc_flags & BWI_F_BUS_INITED)
941 		goto back;
942 
943 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
944 		/*
945 		 * Enable prefetch and burst
946 		 */
947 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
948 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
949 
950 		if (bus->rw_rev < 5) {
951 			struct bwi_regwin *com = &sc->sc_com_regwin;
952 
953 			/*
954 			 * Configure timeouts for bus operation
955 			 */
956 
957 			/*
958 			 * Set service timeout and request timeout
959 			 */
960 			CSR_SETBITS_4(sc, BWI_CONF_LO,
961 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
962 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
963 
964 			/*
965 			 * If there is common regwin, we switch to that regwin
966 			 * and switch back to bus regwin once we have done.
967 			 */
968 			if (BWI_REGWIN_EXIST(com)) {
969 				error = bwi_regwin_switch(sc, com, NULL);
970 				if (error)
971 					return error;
972 			}
973 
974 			/* Let bus know what we have changed */
975 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
976 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
977 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
978 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
979 
980 			if (BWI_REGWIN_EXIST(com)) {
981 				error = bwi_regwin_switch(sc, bus, NULL);
982 				if (error)
983 					return error;
984 			}
985 		} else if (bus->rw_rev >= 11) {
986 			/*
987 			 * Enable memory read multiple
988 			 */
989 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
990 		}
991 	} else {
992 		/* TODO:PCIE */
993 	}
994 
995 	sc->sc_flags |= BWI_F_BUS_INITED;
996 back:
997 	return bwi_regwin_switch(sc, old, NULL);
998 }
999 
1000 static void
1001 bwi_get_card_flags(struct bwi_softc *sc)
1002 {
1003 #define	PCI_VENDOR_APPLE 0x106b
1004 #define	PCI_VENDOR_DELL  0x1028
1005 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1006 	if (sc->sc_card_flags == 0xffff)
1007 		sc->sc_card_flags = 0;
1008 
1009 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1010 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1011 	    sc->sc_pci_revid == 0x74)
1012 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1013 
1014 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1015 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1016 	    sc->sc_pci_revid > 0x40)
1017 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1018 
1019 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1020 #undef PCI_VENDOR_DELL
1021 #undef PCI_VENDOR_APPLE
1022 }
1023 
1024 static void
1025 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1026 {
1027 	int i;
1028 
1029 	for (i = 0; i < 3; ++i) {
1030 		*((uint16_t *)eaddr + i) =
1031 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1032 	}
1033 }
1034 
1035 static void
1036 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1037 {
1038 	struct bwi_regwin *com;
1039 	uint32_t val;
1040 	u_int div;
1041 	int src;
1042 
1043 	bzero(freq, sizeof(*freq));
1044 	com = &sc->sc_com_regwin;
1045 
1046 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1047 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1048 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1049 
1050 	/*
1051 	 * Calculate clock frequency
1052 	 */
1053 	src = -1;
1054 	div = 0;
1055 	if (com->rw_rev < 6) {
1056 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1057 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1058 			src = BWI_CLKSRC_PCI;
1059 			div = 64;
1060 		} else {
1061 			src = BWI_CLKSRC_CS_OSC;
1062 			div = 32;
1063 		}
1064 	} else if (com->rw_rev < 10) {
1065 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1066 
1067 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1068 		if (src == BWI_CLKSRC_LP_OSC) {
1069 			div = 1;
1070 		} else {
1071 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1072 
1073 			/* Unknown source */
1074 			if (src >= BWI_CLKSRC_MAX)
1075 				src = BWI_CLKSRC_CS_OSC;
1076 		}
1077 	} else {
1078 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1079 
1080 		src = BWI_CLKSRC_CS_OSC;
1081 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1082 	}
1083 
1084 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1085 	KASSERT(div != 0, ("div zero"));
1086 
1087 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1088 		src == BWI_CLKSRC_PCI ? "PCI" :
1089 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1090 
1091 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1092 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1093 
1094 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1095 		freq->clkfreq_min, freq->clkfreq_max);
1096 }
1097 
1098 static int
1099 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1100 {
1101 	struct bwi_regwin *old, *com;
1102 	uint32_t clk_ctrl, clk_src;
1103 	int error, pwr_off = 0;
1104 
1105 	com = &sc->sc_com_regwin;
1106 	if (!BWI_REGWIN_EXIST(com))
1107 		return 0;
1108 
1109 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1110 		return 0;
1111 
1112 	/*
1113 	 * For common regwin whose rev is [6, 10), the chip
1114 	 * must be capable to change clock mode.
1115 	 */
1116 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1117 		return 0;
1118 
1119 	error = bwi_regwin_switch(sc, com, &old);
1120 	if (error)
1121 		return error;
1122 
1123 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1124 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1125 
1126 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1127 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1128 
1129 	switch (clk_mode) {
1130 	case BWI_CLOCK_MODE_FAST:
1131 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1132 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1133 		break;
1134 	case BWI_CLOCK_MODE_SLOW:
1135 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1136 		break;
1137 	case BWI_CLOCK_MODE_DYN:
1138 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1139 			      BWI_CLOCK_CTRL_IGNPLL |
1140 			      BWI_CLOCK_CTRL_NODYN);
1141 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1142 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1143 			pwr_off = 1;
1144 		}
1145 		break;
1146 	}
1147 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1148 
1149 	if (pwr_off)
1150 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1151 
1152 	return bwi_regwin_switch(sc, old, NULL);
1153 }
1154 
1155 static int
1156 bwi_set_clock_delay(struct bwi_softc *sc)
1157 {
1158 	struct bwi_regwin *old, *com;
1159 	int error;
1160 
1161 	com = &sc->sc_com_regwin;
1162 	if (!BWI_REGWIN_EXIST(com))
1163 		return 0;
1164 
1165 	error = bwi_regwin_switch(sc, com, &old);
1166 	if (error)
1167 		return error;
1168 
1169 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1170 		if (sc->sc_bbp_rev == 0)
1171 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1172 		else if (sc->sc_bbp_rev == 1)
1173 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1174 	}
1175 
1176 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1177 		if (com->rw_rev >= 10) {
1178 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1179 		} else {
1180 			struct bwi_clock_freq freq;
1181 
1182 			bwi_get_clock_freq(sc, &freq);
1183 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1184 				howmany(freq.clkfreq_max * 150, 1000000));
1185 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1186 				howmany(freq.clkfreq_max * 15, 1000000));
1187 		}
1188 	}
1189 
1190 	return bwi_regwin_switch(sc, old, NULL);
1191 }
1192 
1193 static void
1194 bwi_init(struct bwi_softc *sc)
1195 {
1196 	struct ieee80211com *ic = &sc->sc_ic;
1197 
1198 	BWI_LOCK(sc);
1199 	bwi_init_statechg(sc, 1);
1200 	BWI_UNLOCK(sc);
1201 
1202 	if (sc->sc_flags & BWI_F_RUNNING)
1203 		ieee80211_start_all(ic);		/* start all vap's */
1204 }
1205 
1206 static void
1207 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1208 {
1209 	struct bwi_mac *mac;
1210 	int error;
1211 
1212 	BWI_ASSERT_LOCKED(sc);
1213 
1214 	bwi_stop_locked(sc, statechg);
1215 
1216 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1217 
1218 	/* TODO: 2 MAC */
1219 
1220 	mac = &sc->sc_mac[0];
1221 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1222 	if (error) {
1223 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1224 		    __func__, error);
1225 		goto bad;
1226 	}
1227 	error = bwi_mac_init(mac);
1228 	if (error) {
1229 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1230 		    __func__, error);
1231 		goto bad;
1232 	}
1233 
1234 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1235 
1236 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1237 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1238 
1239 	bwi_mac_reset_hwkeys(mac);
1240 
1241 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1242 		int i;
1243 
1244 #define NRETRY	1000
1245 		/*
1246 		 * Drain any possible pending TX status
1247 		 */
1248 		for (i = 0; i < NRETRY; ++i) {
1249 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1250 			     BWI_TXSTATUS0_VALID) == 0)
1251 				break;
1252 			CSR_READ_4(sc, BWI_TXSTATUS1);
1253 		}
1254 		if (i == NRETRY)
1255 			device_printf(sc->sc_dev,
1256 			    "%s: can't drain TX status\n", __func__);
1257 #undef NRETRY
1258 	}
1259 
1260 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1261 		bwi_mac_updateslot(mac, 1);
1262 
1263 	/* Start MAC */
1264 	error = bwi_mac_start(mac);
1265 	if (error) {
1266 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1267 		    __func__, error);
1268 		goto bad;
1269 	}
1270 
1271 	/* Clear stop flag before enabling interrupt */
1272 	sc->sc_flags &= ~BWI_F_STOP;
1273 	sc->sc_flags |= BWI_F_RUNNING;
1274 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1275 
1276 	/* Enable intrs */
1277 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1278 	return;
1279 bad:
1280 	bwi_stop_locked(sc, 1);
1281 }
1282 
1283 static void
1284 bwi_parent(struct ieee80211com *ic)
1285 {
1286 	struct bwi_softc *sc = ic->ic_softc;
1287 	int startall = 0;
1288 
1289 	BWI_LOCK(sc);
1290 	if (ic->ic_nrunning > 0) {
1291 		struct bwi_mac *mac;
1292 		int promisc = -1;
1293 
1294 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1295 		    ("current regwin type %d",
1296 		    sc->sc_cur_regwin->rw_type));
1297 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1298 
1299 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1300 			promisc = 1;
1301 			sc->sc_flags |= BWI_F_PROMISC;
1302 		} else if (ic->ic_promisc == 0 &&
1303 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1304 			promisc = 0;
1305 			sc->sc_flags &= ~BWI_F_PROMISC;
1306 		}
1307 
1308 		if (promisc >= 0)
1309 			bwi_mac_set_promisc(mac, promisc);
1310 	}
1311 	if (ic->ic_nrunning > 0) {
1312 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1313 			bwi_init_statechg(sc, 1);
1314 			startall = 1;
1315 		}
1316 	} else if (sc->sc_flags & BWI_F_RUNNING)
1317 		bwi_stop_locked(sc, 1);
1318 	BWI_UNLOCK(sc);
1319 	if (startall)
1320 		ieee80211_start_all(ic);
1321 }
1322 
1323 static int
1324 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1325 {
1326 	struct bwi_softc *sc = ic->ic_softc;
1327 	int error;
1328 
1329 	BWI_LOCK(sc);
1330 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1331 		BWI_UNLOCK(sc);
1332 		return (ENXIO);
1333 	}
1334 	error = mbufq_enqueue(&sc->sc_snd, m);
1335 	if (error) {
1336 		BWI_UNLOCK(sc);
1337 		return (error);
1338 	}
1339 	bwi_start_locked(sc);
1340 	BWI_UNLOCK(sc);
1341 	return (0);
1342 }
1343 
1344 static void
1345 bwi_start_locked(struct bwi_softc *sc)
1346 {
1347 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1348 	struct ieee80211_frame *wh;
1349 	struct ieee80211_node *ni;
1350 	struct mbuf *m;
1351 	int trans, idx;
1352 
1353 	BWI_ASSERT_LOCKED(sc);
1354 
1355 	trans = 0;
1356 	idx = tbd->tbd_idx;
1357 
1358 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1359 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1360 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1361 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1362 		wh = mtod(m, struct ieee80211_frame *);
1363 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1364 		    ieee80211_crypto_encap(ni, m) == NULL) {
1365 			if_inc_counter(ni->ni_vap->iv_ifp,
1366 			    IFCOUNTER_OERRORS, 1);
1367 			ieee80211_free_node(ni);
1368 			m_freem(m);
1369 			continue;
1370 		}
1371 		if (bwi_encap(sc, idx, m, ni) != 0) {
1372 			/* 'm' is freed in bwi_encap() if we reach here */
1373 			if (ni != NULL) {
1374 				if_inc_counter(ni->ni_vap->iv_ifp,
1375 				    IFCOUNTER_OERRORS, 1);
1376 				ieee80211_free_node(ni);
1377 			} else
1378 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1379 			continue;
1380 		}
1381 		trans = 1;
1382 		tbd->tbd_used++;
1383 		idx = (idx + 1) % BWI_TX_NDESC;
1384 	}
1385 
1386 	tbd->tbd_idx = idx;
1387 	if (trans)
1388 		sc->sc_tx_timer = 5;
1389 }
1390 
1391 static int
1392 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1393 	const struct ieee80211_bpf_params *params)
1394 {
1395 	struct ieee80211com *ic = ni->ni_ic;
1396 	struct bwi_softc *sc = ic->ic_softc;
1397 	/* XXX wme? */
1398 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1399 	int idx, error;
1400 
1401 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1402 		m_freem(m);
1403 		return ENETDOWN;
1404 	}
1405 
1406 	BWI_LOCK(sc);
1407 	idx = tbd->tbd_idx;
1408 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1409 	if (params == NULL) {
1410 		/*
1411 		 * Legacy path; interpret frame contents to decide
1412 		 * precisely how to send the frame.
1413 		 */
1414 		error = bwi_encap(sc, idx, m, ni);
1415 	} else {
1416 		/*
1417 		 * Caller supplied explicit parameters to use in
1418 		 * sending the frame.
1419 		 */
1420 		error = bwi_encap_raw(sc, idx, m, ni, params);
1421 	}
1422 	if (error == 0) {
1423 		tbd->tbd_used++;
1424 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1425 		sc->sc_tx_timer = 5;
1426 	}
1427 	BWI_UNLOCK(sc);
1428 	return error;
1429 }
1430 
1431 static void
1432 bwi_watchdog(void *arg)
1433 {
1434 	struct bwi_softc *sc;
1435 
1436 	sc = arg;
1437 	BWI_ASSERT_LOCKED(sc);
1438 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1439 		device_printf(sc->sc_dev, "watchdog timeout\n");
1440 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1441 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1442 	}
1443 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1444 }
1445 
1446 static void
1447 bwi_stop(struct bwi_softc *sc, int statechg)
1448 {
1449 	BWI_LOCK(sc);
1450 	bwi_stop_locked(sc, statechg);
1451 	BWI_UNLOCK(sc);
1452 }
1453 
1454 static void
1455 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1456 {
1457 	struct bwi_mac *mac;
1458 	int i, error, pwr_off = 0;
1459 
1460 	BWI_ASSERT_LOCKED(sc);
1461 
1462 	callout_stop(&sc->sc_calib_ch);
1463 	callout_stop(&sc->sc_led_blink_ch);
1464 	sc->sc_led_blinking = 0;
1465 	sc->sc_flags |= BWI_F_STOP;
1466 
1467 	if (sc->sc_flags & BWI_F_RUNNING) {
1468 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1469 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1470 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1471 
1472 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1473 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1474 		bwi_mac_stop(mac);
1475 	}
1476 
1477 	for (i = 0; i < sc->sc_nmac; ++i) {
1478 		struct bwi_regwin *old_rw;
1479 
1480 		mac = &sc->sc_mac[i];
1481 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1482 			continue;
1483 
1484 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1485 		if (error)
1486 			continue;
1487 
1488 		bwi_mac_shutdown(mac);
1489 		pwr_off = 1;
1490 
1491 		bwi_regwin_switch(sc, old_rw, NULL);
1492 	}
1493 
1494 	if (pwr_off)
1495 		bwi_bbp_power_off(sc);
1496 
1497 	sc->sc_tx_timer = 0;
1498 	callout_stop(&sc->sc_watchdog_timer);
1499 	sc->sc_flags &= ~BWI_F_RUNNING;
1500 }
1501 
1502 void
1503 bwi_intr(void *xsc)
1504 {
1505 	struct bwi_softc *sc = xsc;
1506 	struct bwi_mac *mac;
1507 	uint32_t intr_status;
1508 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1509 	int i, txrx_error, tx = 0, rx_data = -1;
1510 
1511 	BWI_LOCK(sc);
1512 
1513 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1514 	    (sc->sc_flags & BWI_F_STOP)) {
1515 		BWI_UNLOCK(sc);
1516 		return;
1517 	}
1518 	/*
1519 	 * Get interrupt status
1520 	 */
1521 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1522 	if (intr_status == 0xffffffff) {	/* Not for us */
1523 		BWI_UNLOCK(sc);
1524 		return;
1525 	}
1526 
1527 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1528 
1529 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1530 	if (intr_status == 0) {		/* Nothing is interesting */
1531 		BWI_UNLOCK(sc);
1532 		return;
1533 	}
1534 
1535 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1536 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1537 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1538 
1539 	txrx_error = 0;
1540 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1541 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1542 		uint32_t mask;
1543 
1544 		if (BWI_TXRX_IS_RX(i))
1545 			mask = BWI_TXRX_RX_INTRS;
1546 		else
1547 			mask = BWI_TXRX_TX_INTRS;
1548 
1549 		txrx_intr_status[i] =
1550 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1551 
1552 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1553 			 i, txrx_intr_status[i]);
1554 
1555 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1556 			device_printf(sc->sc_dev,
1557 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1558 			    __func__, i, txrx_intr_status[i]);
1559 			txrx_error = 1;
1560 		}
1561 	}
1562 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1563 
1564 	/*
1565 	 * Acknowledge interrupt
1566 	 */
1567 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1568 
1569 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1570 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1571 
1572 	/* Disable all interrupts */
1573 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1574 
1575 	/*
1576 	 * http://bcm-specs.sipsolutions.net/Interrupts
1577 	 * Says for this bit (0x800):
1578 	 * "Fatal Error
1579 	 *
1580 	 * We got this one while testing things when by accident the
1581 	 * template ram wasn't set to big endian when it should have
1582 	 * been after writing the initial values. It keeps on being
1583 	 * triggered, the only way to stop it seems to shut down the
1584 	 * chip."
1585 	 *
1586 	 * Suggesting that we should never get it and if we do we're not
1587 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1588 	 * it is valid only on mac version 5 and higher, but I couldn't
1589 	 * find a reference for that...  Since I see them from time to time
1590 	 * on my card, this suggests an error in the tx path still...
1591 	 */
1592 	if (intr_status & BWI_INTR_PHY_TXERR) {
1593 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1594 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1595 			    __func__);
1596 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1597 			BWI_UNLOCK(sc);
1598 			return;
1599 		}
1600 	}
1601 
1602 	if (txrx_error) {
1603 		/* TODO: reset device */
1604 	}
1605 
1606 	if (intr_status & BWI_INTR_TBTT)
1607 		bwi_mac_config_ps(mac);
1608 
1609 	if (intr_status & BWI_INTR_EO_ATIM)
1610 		device_printf(sc->sc_dev, "EO_ATIM\n");
1611 
1612 	if (intr_status & BWI_INTR_PMQ) {
1613 		for (;;) {
1614 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1615 				break;
1616 		}
1617 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1618 	}
1619 
1620 	if (intr_status & BWI_INTR_NOISE)
1621 		device_printf(sc->sc_dev, "intr noise\n");
1622 
1623 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1624 		rx_data = sc->sc_rxeof(sc);
1625 		if (sc->sc_flags & BWI_F_STOP) {
1626 			BWI_UNLOCK(sc);
1627 			return;
1628 		}
1629 	}
1630 
1631 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1632 		sc->sc_txeof_status(sc);
1633 		tx = 1;
1634 	}
1635 
1636 	if (intr_status & BWI_INTR_TX_DONE) {
1637 		bwi_txeof(sc);
1638 		tx = 1;
1639 	}
1640 
1641 	/* Re-enable interrupts */
1642 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1643 
1644 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1645 		int evt = BWI_LED_EVENT_NONE;
1646 
1647 		if (tx && rx_data > 0) {
1648 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1649 				evt = BWI_LED_EVENT_RX;
1650 			else
1651 				evt = BWI_LED_EVENT_TX;
1652 		} else if (tx) {
1653 			evt = BWI_LED_EVENT_TX;
1654 		} else if (rx_data > 0) {
1655 			evt = BWI_LED_EVENT_RX;
1656 		} else if (rx_data == 0) {
1657 			evt = BWI_LED_EVENT_POLL;
1658 		}
1659 
1660 		if (evt != BWI_LED_EVENT_NONE)
1661 			bwi_led_event(sc, evt);
1662 	}
1663 
1664 	BWI_UNLOCK(sc);
1665 }
1666 
1667 static void
1668 bwi_scan_start(struct ieee80211com *ic)
1669 {
1670 	struct bwi_softc *sc = ic->ic_softc;
1671 
1672 	BWI_LOCK(sc);
1673 	/* Enable MAC beacon promiscuity */
1674 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1675 	BWI_UNLOCK(sc);
1676 }
1677 
1678 static void
1679 bwi_set_channel(struct ieee80211com *ic)
1680 {
1681 	struct bwi_softc *sc = ic->ic_softc;
1682 	struct ieee80211_channel *c = ic->ic_curchan;
1683 	struct bwi_mac *mac;
1684 
1685 	BWI_LOCK(sc);
1686 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1687 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1688 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1689 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1690 
1691 	sc->sc_rates = ieee80211_get_ratetable(c);
1692 
1693 	/*
1694 	 * Setup radio tap channel freq and flags
1695 	 */
1696 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1697 		htole16(c->ic_freq);
1698 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1699 		htole16(c->ic_flags & 0xffff);
1700 
1701 	BWI_UNLOCK(sc);
1702 }
1703 
1704 static void
1705 bwi_scan_end(struct ieee80211com *ic)
1706 {
1707 	struct bwi_softc *sc = ic->ic_softc;
1708 
1709 	BWI_LOCK(sc);
1710 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1711 	BWI_UNLOCK(sc);
1712 }
1713 
1714 static int
1715 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1716 {
1717 	struct bwi_vap *bvp = BWI_VAP(vap);
1718 	struct ieee80211com *ic= vap->iv_ic;
1719 	struct bwi_softc *sc = ic->ic_softc;
1720 	enum ieee80211_state ostate = vap->iv_state;
1721 	struct bwi_mac *mac;
1722 	int error;
1723 
1724 	BWI_LOCK(sc);
1725 
1726 	callout_stop(&sc->sc_calib_ch);
1727 
1728 	if (nstate == IEEE80211_S_INIT)
1729 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1730 
1731 	bwi_led_newstate(sc, nstate);
1732 
1733 	error = bvp->bv_newstate(vap, nstate, arg);
1734 	if (error != 0)
1735 		goto back;
1736 
1737 	/*
1738 	 * Clear the BSSID when we stop a STA
1739 	 */
1740 	if (vap->iv_opmode == IEEE80211_M_STA) {
1741 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1742 			/*
1743 			 * Clear out the BSSID.  If we reassociate to
1744 			 * the same AP, this will reinialize things
1745 			 * correctly...
1746 			 */
1747 			if (ic->ic_opmode == IEEE80211_M_STA &&
1748 			    !(sc->sc_flags & BWI_F_STOP))
1749 				bwi_set_bssid(sc, bwi_zero_addr);
1750 		}
1751 	}
1752 
1753 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1754 		/* Nothing to do */
1755 	} else if (nstate == IEEE80211_S_RUN) {
1756 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1757 
1758 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1759 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1760 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1761 
1762 		/* Initial TX power calibration */
1763 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1764 #ifdef notyet
1765 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1766 #else
1767 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1768 #endif
1769 
1770 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1771 	}
1772 back:
1773 	BWI_UNLOCK(sc);
1774 
1775 	return error;
1776 }
1777 
1778 static int
1779 bwi_media_change(struct ifnet *ifp)
1780 {
1781 	int error = ieee80211_media_change(ifp);
1782 	/* NB: only the fixed rate can change and that doesn't need a reset */
1783 	return (error == ENETRESET ? 0 : error);
1784 }
1785 
1786 static int
1787 bwi_dma_alloc(struct bwi_softc *sc)
1788 {
1789 	int error, i, has_txstats;
1790 	bus_addr_t lowaddr = 0;
1791 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1792 	uint32_t txrx_ctrl_step = 0;
1793 
1794 	has_txstats = 0;
1795 	for (i = 0; i < sc->sc_nmac; ++i) {
1796 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1797 			has_txstats = 1;
1798 			break;
1799 		}
1800 	}
1801 
1802 	switch (sc->sc_bus_space) {
1803 	case BWI_BUS_SPACE_30BIT:
1804 	case BWI_BUS_SPACE_32BIT:
1805 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1806 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1807 		else
1808 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1809 		desc_sz = sizeof(struct bwi_desc32);
1810 		txrx_ctrl_step = 0x20;
1811 
1812 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1813 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1814 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1815 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1816 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1817 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1818 		sc->sc_rxeof = bwi_rxeof32;
1819 		sc->sc_start_tx = bwi_start_tx32;
1820 		if (has_txstats) {
1821 			sc->sc_init_txstats = bwi_init_txstats32;
1822 			sc->sc_free_txstats = bwi_free_txstats32;
1823 			sc->sc_txeof_status = bwi_txeof_status32;
1824 		}
1825 		break;
1826 
1827 	case BWI_BUS_SPACE_64BIT:
1828 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1829 		desc_sz = sizeof(struct bwi_desc64);
1830 		txrx_ctrl_step = 0x40;
1831 
1832 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1833 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1834 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1835 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1836 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1837 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1838 		sc->sc_rxeof = bwi_rxeof64;
1839 		sc->sc_start_tx = bwi_start_tx64;
1840 		if (has_txstats) {
1841 			sc->sc_init_txstats = bwi_init_txstats64;
1842 			sc->sc_free_txstats = bwi_free_txstats64;
1843 			sc->sc_txeof_status = bwi_txeof_status64;
1844 		}
1845 		break;
1846 	}
1847 
1848 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1849 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1850 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1851 
1852 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1853 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1854 
1855 	/*
1856 	 * Create top level DMA tag
1857 	 */
1858 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1859 			       BWI_ALIGN, 0,		/* alignment, bounds */
1860 			       lowaddr,			/* lowaddr */
1861 			       BUS_SPACE_MAXADDR,	/* highaddr */
1862 			       NULL, NULL,		/* filter, filterarg */
1863 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1864 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1865 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1866 			       0,			/* flags */
1867 			       NULL, NULL,		/* lockfunc, lockarg */
1868 			       &sc->sc_parent_dtag);
1869 	if (error) {
1870 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1871 		return error;
1872 	}
1873 
1874 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1875 
1876 	/*
1877 	 * Create TX ring DMA stuffs
1878 	 */
1879 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1880 				BWI_RING_ALIGN, 0,
1881 				BUS_SPACE_MAXADDR,
1882 				BUS_SPACE_MAXADDR,
1883 				NULL, NULL,
1884 				tx_ring_sz,
1885 				1,
1886 				tx_ring_sz,
1887 				0,
1888 				NULL, NULL,
1889 				&sc->sc_txring_dtag);
1890 	if (error) {
1891 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1892 		return error;
1893 	}
1894 
1895 	for (i = 0; i < BWI_TX_NRING; ++i) {
1896 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1897 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1898 					   TXRX_CTRL(i));
1899 		if (error) {
1900 			device_printf(sc->sc_dev, "%dth TX ring "
1901 				      "DMA alloc failed\n", i);
1902 			return error;
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * Create RX ring DMA stuffs
1908 	 */
1909 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1910 				BWI_RING_ALIGN, 0,
1911 				BUS_SPACE_MAXADDR,
1912 				BUS_SPACE_MAXADDR,
1913 				NULL, NULL,
1914 				rx_ring_sz,
1915 				1,
1916 				rx_ring_sz,
1917 				0,
1918 				NULL, NULL,
1919 				&sc->sc_rxring_dtag);
1920 	if (error) {
1921 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1922 		return error;
1923 	}
1924 
1925 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1926 				   rx_ring_sz, TXRX_CTRL(0));
1927 	if (error) {
1928 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1929 		return error;
1930 	}
1931 
1932 	if (has_txstats) {
1933 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1934 		if (error) {
1935 			device_printf(sc->sc_dev,
1936 				      "TX stats DMA alloc failed\n");
1937 			return error;
1938 		}
1939 	}
1940 
1941 #undef TXRX_CTRL
1942 
1943 	return bwi_dma_mbuf_create(sc);
1944 }
1945 
1946 static void
1947 bwi_dma_free(struct bwi_softc *sc)
1948 {
1949 	if (sc->sc_txring_dtag != NULL) {
1950 		int i;
1951 
1952 		for (i = 0; i < BWI_TX_NRING; ++i) {
1953 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1954 
1955 			if (rd->rdata_desc != NULL) {
1956 				bus_dmamap_unload(sc->sc_txring_dtag,
1957 						  rd->rdata_dmap);
1958 				bus_dmamem_free(sc->sc_txring_dtag,
1959 						rd->rdata_desc,
1960 						rd->rdata_dmap);
1961 			}
1962 		}
1963 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1964 	}
1965 
1966 	if (sc->sc_rxring_dtag != NULL) {
1967 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1968 
1969 		if (rd->rdata_desc != NULL) {
1970 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1971 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1972 					rd->rdata_dmap);
1973 		}
1974 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1975 	}
1976 
1977 	bwi_dma_txstats_free(sc);
1978 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
1979 
1980 	if (sc->sc_parent_dtag != NULL)
1981 		bus_dma_tag_destroy(sc->sc_parent_dtag);
1982 }
1983 
1984 static int
1985 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
1986 		   struct bwi_ring_data *rd, bus_size_t size,
1987 		   uint32_t txrx_ctrl)
1988 {
1989 	int error;
1990 
1991 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
1992 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1993 				 &rd->rdata_dmap);
1994 	if (error) {
1995 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
1996 		return error;
1997 	}
1998 
1999 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2000 				bwi_dma_ring_addr, &rd->rdata_paddr,
2001 				BUS_DMA_NOWAIT);
2002 	if (error) {
2003 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2004 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2005 		rd->rdata_desc = NULL;
2006 		return error;
2007 	}
2008 
2009 	rd->rdata_txrx_ctrl = txrx_ctrl;
2010 	return 0;
2011 }
2012 
2013 static int
2014 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2015 		      bus_size_t desc_sz)
2016 {
2017 	struct bwi_txstats_data *st;
2018 	bus_size_t dma_size;
2019 	int error;
2020 
2021 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2022 	if (st == NULL) {
2023 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2024 		return ENOMEM;
2025 	}
2026 	sc->sc_txstats = st;
2027 
2028 	/*
2029 	 * Create TX stats descriptor DMA stuffs
2030 	 */
2031 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2032 
2033 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2034 				BWI_RING_ALIGN,
2035 				0,
2036 				BUS_SPACE_MAXADDR,
2037 				BUS_SPACE_MAXADDR,
2038 				NULL, NULL,
2039 				dma_size,
2040 				1,
2041 				dma_size,
2042 				0,
2043 				NULL, NULL,
2044 				&st->stats_ring_dtag);
2045 	if (error) {
2046 		device_printf(sc->sc_dev, "can't create txstats ring "
2047 			      "DMA tag\n");
2048 		return error;
2049 	}
2050 
2051 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2052 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2053 				 &st->stats_ring_dmap);
2054 	if (error) {
2055 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2056 			      "DMA mem\n");
2057 		bus_dma_tag_destroy(st->stats_ring_dtag);
2058 		st->stats_ring_dtag = NULL;
2059 		return error;
2060 	}
2061 
2062 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2063 				st->stats_ring, dma_size,
2064 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2065 				BUS_DMA_NOWAIT);
2066 	if (error) {
2067 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2068 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2069 				st->stats_ring_dmap);
2070 		bus_dma_tag_destroy(st->stats_ring_dtag);
2071 		st->stats_ring_dtag = NULL;
2072 		return error;
2073 	}
2074 
2075 	/*
2076 	 * Create TX stats DMA stuffs
2077 	 */
2078 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2079 			   BWI_ALIGN);
2080 
2081 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2082 				BWI_ALIGN,
2083 				0,
2084 				BUS_SPACE_MAXADDR,
2085 				BUS_SPACE_MAXADDR,
2086 				NULL, NULL,
2087 				dma_size,
2088 				1,
2089 				dma_size,
2090 				0,
2091 				NULL, NULL,
2092 				&st->stats_dtag);
2093 	if (error) {
2094 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2095 		return error;
2096 	}
2097 
2098 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2099 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2100 				 &st->stats_dmap);
2101 	if (error) {
2102 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2103 		bus_dma_tag_destroy(st->stats_dtag);
2104 		st->stats_dtag = NULL;
2105 		return error;
2106 	}
2107 
2108 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2109 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2110 				BUS_DMA_NOWAIT);
2111 	if (error) {
2112 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2113 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2114 		bus_dma_tag_destroy(st->stats_dtag);
2115 		st->stats_dtag = NULL;
2116 		return error;
2117 	}
2118 
2119 	st->stats_ctrl_base = ctrl_base;
2120 	return 0;
2121 }
2122 
2123 static void
2124 bwi_dma_txstats_free(struct bwi_softc *sc)
2125 {
2126 	struct bwi_txstats_data *st;
2127 
2128 	if (sc->sc_txstats == NULL)
2129 		return;
2130 	st = sc->sc_txstats;
2131 
2132 	if (st->stats_ring_dtag != NULL) {
2133 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2134 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2135 				st->stats_ring_dmap);
2136 		bus_dma_tag_destroy(st->stats_ring_dtag);
2137 	}
2138 
2139 	if (st->stats_dtag != NULL) {
2140 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2141 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2142 		bus_dma_tag_destroy(st->stats_dtag);
2143 	}
2144 
2145 	free(st, M_DEVBUF);
2146 }
2147 
2148 static void
2149 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2150 {
2151 	KASSERT(nseg == 1, ("too many segments\n"));
2152 	*((bus_addr_t *)arg) = seg->ds_addr;
2153 }
2154 
2155 static int
2156 bwi_dma_mbuf_create(struct bwi_softc *sc)
2157 {
2158 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2159 	int i, j, k, ntx, error;
2160 
2161 	/*
2162 	 * Create TX/RX mbuf DMA tag
2163 	 */
2164 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2165 				1,
2166 				0,
2167 				BUS_SPACE_MAXADDR,
2168 				BUS_SPACE_MAXADDR,
2169 				NULL, NULL,
2170 				MCLBYTES,
2171 				1,
2172 				MCLBYTES,
2173 				BUS_DMA_ALLOCNOW,
2174 				NULL, NULL,
2175 				&sc->sc_buf_dtag);
2176 	if (error) {
2177 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2178 		return error;
2179 	}
2180 
2181 	ntx = 0;
2182 
2183 	/*
2184 	 * Create TX mbuf DMA map
2185 	 */
2186 	for (i = 0; i < BWI_TX_NRING; ++i) {
2187 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2188 
2189 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2190 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2191 						  &tbd->tbd_buf[j].tb_dmap);
2192 			if (error) {
2193 				device_printf(sc->sc_dev, "can't create "
2194 					      "%dth tbd, %dth DMA map\n", i, j);
2195 
2196 				ntx = i;
2197 				for (k = 0; k < j; ++k) {
2198 					bus_dmamap_destroy(sc->sc_buf_dtag,
2199 						tbd->tbd_buf[k].tb_dmap);
2200 				}
2201 				goto fail;
2202 			}
2203 		}
2204 	}
2205 	ntx = BWI_TX_NRING;
2206 
2207 	/*
2208 	 * Create RX mbuf DMA map and a spare DMA map
2209 	 */
2210 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2211 				  &rbd->rbd_tmp_dmap);
2212 	if (error) {
2213 		device_printf(sc->sc_dev,
2214 			      "can't create spare RX buf DMA map\n");
2215 		goto fail;
2216 	}
2217 
2218 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2219 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2220 					  &rbd->rbd_buf[j].rb_dmap);
2221 		if (error) {
2222 			device_printf(sc->sc_dev, "can't create %dth "
2223 				      "RX buf DMA map\n", j);
2224 
2225 			for (k = 0; k < j; ++k) {
2226 				bus_dmamap_destroy(sc->sc_buf_dtag,
2227 					rbd->rbd_buf[j].rb_dmap);
2228 			}
2229 			bus_dmamap_destroy(sc->sc_buf_dtag,
2230 					   rbd->rbd_tmp_dmap);
2231 			goto fail;
2232 		}
2233 	}
2234 
2235 	return 0;
2236 fail:
2237 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2238 	return error;
2239 }
2240 
2241 static void
2242 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2243 {
2244 	int i, j;
2245 
2246 	if (sc->sc_buf_dtag == NULL)
2247 		return;
2248 
2249 	for (i = 0; i < ntx; ++i) {
2250 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2251 
2252 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2253 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2254 
2255 			if (tb->tb_mbuf != NULL) {
2256 				bus_dmamap_unload(sc->sc_buf_dtag,
2257 						  tb->tb_dmap);
2258 				m_freem(tb->tb_mbuf);
2259 			}
2260 			if (tb->tb_ni != NULL)
2261 				ieee80211_free_node(tb->tb_ni);
2262 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2263 		}
2264 	}
2265 
2266 	if (nrx) {
2267 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2268 
2269 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2270 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2271 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2272 
2273 			if (rb->rb_mbuf != NULL) {
2274 				bus_dmamap_unload(sc->sc_buf_dtag,
2275 						  rb->rb_dmap);
2276 				m_freem(rb->rb_mbuf);
2277 			}
2278 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2279 		}
2280 	}
2281 
2282 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2283 	sc->sc_buf_dtag = NULL;
2284 }
2285 
2286 static void
2287 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2288 {
2289 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2290 }
2291 
2292 static void
2293 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2294 {
2295 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2296 }
2297 
2298 static int
2299 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2300 {
2301 	struct bwi_ring_data *rd;
2302 	struct bwi_txbuf_data *tbd;
2303 	uint32_t val, addr_hi, addr_lo;
2304 
2305 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2306 	rd = &sc->sc_tx_rdata[ring_idx];
2307 	tbd = &sc->sc_tx_bdata[ring_idx];
2308 
2309 	tbd->tbd_idx = 0;
2310 	tbd->tbd_used = 0;
2311 
2312 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2313 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2314 			BUS_DMASYNC_PREWRITE);
2315 
2316 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2317 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2318 
2319 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2320 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2321 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2322 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2323 
2324 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2325 	      BWI_TXRX32_CTRL_ENABLE;
2326 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2327 
2328 	return 0;
2329 }
2330 
2331 static void
2332 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2333 		       bus_addr_t paddr, int hdr_size, int ndesc)
2334 {
2335 	uint32_t val, addr_hi, addr_lo;
2336 
2337 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2338 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2339 
2340 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2341 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2342 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2343 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2344 
2345 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2346 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2347 	      BWI_TXRX32_CTRL_ENABLE;
2348 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2349 
2350 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2351 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2352 }
2353 
2354 static int
2355 bwi_init_rx_ring32(struct bwi_softc *sc)
2356 {
2357 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2358 	int i, error;
2359 
2360 	sc->sc_rx_bdata.rbd_idx = 0;
2361 
2362 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2363 		error = bwi_newbuf(sc, i, 1);
2364 		if (error) {
2365 			device_printf(sc->sc_dev,
2366 				  "can't allocate %dth RX buffer\n", i);
2367 			return error;
2368 		}
2369 	}
2370 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2371 			BUS_DMASYNC_PREWRITE);
2372 
2373 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2374 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2375 	return 0;
2376 }
2377 
2378 static int
2379 bwi_init_txstats32(struct bwi_softc *sc)
2380 {
2381 	struct bwi_txstats_data *st = sc->sc_txstats;
2382 	bus_addr_t stats_paddr;
2383 	int i;
2384 
2385 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2386 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2387 
2388 	st->stats_idx = 0;
2389 
2390 	stats_paddr = st->stats_paddr;
2391 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2392 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2393 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2394 		stats_paddr += sizeof(struct bwi_txstats);
2395 	}
2396 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2397 			BUS_DMASYNC_PREWRITE);
2398 
2399 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2400 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2401 	return 0;
2402 }
2403 
2404 static void
2405 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2406 		    int buf_len)
2407 {
2408 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2409 
2410 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2411 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2412 			 paddr, buf_len, 0);
2413 }
2414 
2415 static void
2416 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2417 		    int buf_idx, bus_addr_t paddr, int buf_len)
2418 {
2419 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2420 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2421 			 paddr, buf_len, 1);
2422 }
2423 
2424 static int
2425 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2426 {
2427 	/* TODO:64 */
2428 	return EOPNOTSUPP;
2429 }
2430 
2431 static int
2432 bwi_init_rx_ring64(struct bwi_softc *sc)
2433 {
2434 	/* TODO:64 */
2435 	return EOPNOTSUPP;
2436 }
2437 
2438 static int
2439 bwi_init_txstats64(struct bwi_softc *sc)
2440 {
2441 	/* TODO:64 */
2442 	return EOPNOTSUPP;
2443 }
2444 
2445 static void
2446 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2447 		    int buf_len)
2448 {
2449 	/* TODO:64 */
2450 }
2451 
2452 static void
2453 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2454 		    int buf_idx, bus_addr_t paddr, int buf_len)
2455 {
2456 	/* TODO:64 */
2457 }
2458 
2459 static void
2460 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2461 		 bus_size_t mapsz __unused, int error)
2462 {
2463         if (!error) {
2464 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2465 		*((bus_addr_t *)arg) = seg->ds_addr;
2466 	}
2467 }
2468 
2469 static int
2470 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2471 {
2472 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2473 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2474 	struct bwi_rxbuf_hdr *hdr;
2475 	bus_dmamap_t map;
2476 	bus_addr_t paddr;
2477 	struct mbuf *m;
2478 	int error;
2479 
2480 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2481 
2482 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2483 	if (m == NULL) {
2484 		error = ENOBUFS;
2485 
2486 		/*
2487 		 * If the NIC is up and running, we need to:
2488 		 * - Clear RX buffer's header.
2489 		 * - Restore RX descriptor settings.
2490 		 */
2491 		if (init)
2492 			return error;
2493 		else
2494 			goto back;
2495 	}
2496 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2497 
2498 	/*
2499 	 * Try to load RX buf into temporary DMA map
2500 	 */
2501 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2502 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2503 	if (error) {
2504 		m_freem(m);
2505 
2506 		/*
2507 		 * See the comment above
2508 		 */
2509 		if (init)
2510 			return error;
2511 		else
2512 			goto back;
2513 	}
2514 
2515 	if (!init)
2516 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2517 	rxbuf->rb_mbuf = m;
2518 	rxbuf->rb_paddr = paddr;
2519 
2520 	/*
2521 	 * Swap RX buf's DMA map with the loaded temporary one
2522 	 */
2523 	map = rxbuf->rb_dmap;
2524 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2525 	rbd->rbd_tmp_dmap = map;
2526 
2527 back:
2528 	/*
2529 	 * Clear RX buf header
2530 	 */
2531 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2532 	bzero(hdr, sizeof(*hdr));
2533 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2534 
2535 	/*
2536 	 * Setup RX buf descriptor
2537 	 */
2538 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2539 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2540 	return error;
2541 }
2542 
2543 static void
2544 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2545 		    const uint8_t *addr)
2546 {
2547 	int i;
2548 
2549 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2550 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2551 
2552 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2553 		uint16_t addr_val;
2554 
2555 		addr_val = (uint16_t)addr[i * 2] |
2556 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2557 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2558 	}
2559 }
2560 
2561 static int
2562 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2563 {
2564 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2565 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2566 	struct ieee80211com *ic = &sc->sc_ic;
2567 	int idx, rx_data = 0;
2568 
2569 	idx = rbd->rbd_idx;
2570 	while (idx != end_idx) {
2571 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2572 		struct bwi_rxbuf_hdr *hdr;
2573 		struct ieee80211_frame_min *wh;
2574 		struct ieee80211_node *ni;
2575 		struct mbuf *m;
2576 		uint32_t plcp;
2577 		uint16_t flags2;
2578 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2579 
2580 		m = rb->rb_mbuf;
2581 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2582 				BUS_DMASYNC_POSTREAD);
2583 
2584 		if (bwi_newbuf(sc, idx, 0)) {
2585 			counter_u64_add(ic->ic_ierrors, 1);
2586 			goto next;
2587 		}
2588 
2589 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2590 		flags2 = le16toh(hdr->rxh_flags2);
2591 
2592 		hdr_extra = 0;
2593 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2594 			hdr_extra = 2;
2595 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2596 
2597 		buflen = le16toh(hdr->rxh_buflen);
2598 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2599 			device_printf(sc->sc_dev,
2600 			    "%s: zero length data, hdr_extra %d\n",
2601 			    __func__, hdr_extra);
2602 			counter_u64_add(ic->ic_ierrors, 1);
2603 			m_freem(m);
2604 			goto next;
2605 		}
2606 
2607 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2608 		rssi = bwi_calc_rssi(sc, hdr);
2609 		noise = bwi_calc_noise(sc);
2610 
2611 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2612 		m_adj(m, sizeof(*hdr) + wh_ofs);
2613 
2614 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2615 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2616 		else
2617 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2618 
2619 		/* RX radio tap */
2620 		if (ieee80211_radiotap_active(ic))
2621 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2622 
2623 		m_adj(m, -IEEE80211_CRC_LEN);
2624 
2625 		BWI_UNLOCK(sc);
2626 
2627 		wh = mtod(m, struct ieee80211_frame_min *);
2628 		ni = ieee80211_find_rxnode(ic, wh);
2629 		if (ni != NULL) {
2630 			type = ieee80211_input(ni, m, rssi - noise, noise);
2631 			ieee80211_free_node(ni);
2632 		} else
2633 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2634 		if (type == IEEE80211_FC0_TYPE_DATA) {
2635 			rx_data = 1;
2636 			sc->sc_rx_rate = rate;
2637 		}
2638 
2639 		BWI_LOCK(sc);
2640 next:
2641 		idx = (idx + 1) % BWI_RX_NDESC;
2642 
2643 		if (sc->sc_flags & BWI_F_STOP) {
2644 			/*
2645 			 * Take the fast lane, don't do
2646 			 * any damage to softc
2647 			 */
2648 			return -1;
2649 		}
2650 	}
2651 
2652 	rbd->rbd_idx = idx;
2653 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2654 			BUS_DMASYNC_PREWRITE);
2655 
2656 	return rx_data;
2657 }
2658 
2659 static int
2660 bwi_rxeof32(struct bwi_softc *sc)
2661 {
2662 	uint32_t val, rx_ctrl;
2663 	int end_idx, rx_data;
2664 
2665 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2666 
2667 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2668 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2669 		  sizeof(struct bwi_desc32);
2670 
2671 	rx_data = bwi_rxeof(sc, end_idx);
2672 	if (rx_data >= 0) {
2673 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2674 			    end_idx * sizeof(struct bwi_desc32));
2675 	}
2676 	return rx_data;
2677 }
2678 
2679 static int
2680 bwi_rxeof64(struct bwi_softc *sc)
2681 {
2682 	/* TODO:64 */
2683 	return 0;
2684 }
2685 
2686 static void
2687 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2688 {
2689 	int i;
2690 
2691 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2692 
2693 #define NRETRY 10
2694 
2695 	for (i = 0; i < NRETRY; ++i) {
2696 		uint32_t status;
2697 
2698 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2699 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2700 		    BWI_RX32_STATUS_STATE_DISABLED)
2701 			break;
2702 
2703 		DELAY(1000);
2704 	}
2705 	if (i == NRETRY)
2706 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2707 
2708 #undef NRETRY
2709 
2710 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2711 }
2712 
2713 static void
2714 bwi_free_txstats32(struct bwi_softc *sc)
2715 {
2716 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2717 }
2718 
2719 static void
2720 bwi_free_rx_ring32(struct bwi_softc *sc)
2721 {
2722 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2723 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2724 	int i;
2725 
2726 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2727 
2728 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2729 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2730 
2731 		if (rb->rb_mbuf != NULL) {
2732 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2733 			m_freem(rb->rb_mbuf);
2734 			rb->rb_mbuf = NULL;
2735 		}
2736 	}
2737 }
2738 
2739 static void
2740 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2741 {
2742 	struct bwi_ring_data *rd;
2743 	struct bwi_txbuf_data *tbd;
2744 	uint32_t state, val;
2745 	int i;
2746 
2747 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2748 	rd = &sc->sc_tx_rdata[ring_idx];
2749 	tbd = &sc->sc_tx_bdata[ring_idx];
2750 
2751 #define NRETRY 10
2752 
2753 	for (i = 0; i < NRETRY; ++i) {
2754 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2755 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2756 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2757 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2758 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2759 			break;
2760 
2761 		DELAY(1000);
2762 	}
2763 	if (i == NRETRY) {
2764 		device_printf(sc->sc_dev,
2765 		    "%s: wait for TX ring(%d) stable timed out\n",
2766 		    __func__, ring_idx);
2767 	}
2768 
2769 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2770 	for (i = 0; i < NRETRY; ++i) {
2771 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2772 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2773 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2774 			break;
2775 
2776 		DELAY(1000);
2777 	}
2778 	if (i == NRETRY)
2779 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2780 		     __func__, ring_idx);
2781 
2782 #undef NRETRY
2783 
2784 	DELAY(1000);
2785 
2786 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2787 
2788 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2789 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2790 
2791 		if (tb->tb_mbuf != NULL) {
2792 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2793 			m_freem(tb->tb_mbuf);
2794 			tb->tb_mbuf = NULL;
2795 		}
2796 		if (tb->tb_ni != NULL) {
2797 			ieee80211_free_node(tb->tb_ni);
2798 			tb->tb_ni = NULL;
2799 		}
2800 	}
2801 }
2802 
2803 static void
2804 bwi_free_txstats64(struct bwi_softc *sc)
2805 {
2806 	/* TODO:64 */
2807 }
2808 
2809 static void
2810 bwi_free_rx_ring64(struct bwi_softc *sc)
2811 {
2812 	/* TODO:64 */
2813 }
2814 
2815 static void
2816 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2817 {
2818 	/* TODO:64 */
2819 }
2820 
2821 /* XXX does not belong here */
2822 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2823 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2824 
2825 static __inline void
2826 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2827 {
2828 	uint32_t plcp;
2829 
2830 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2831 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2832 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2833 	*plcp0 = htole32(plcp);
2834 }
2835 
2836 static __inline void
2837 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2838 		   uint8_t rate)
2839 {
2840 	int len, service, pkt_bitlen;
2841 
2842 	pkt_bitlen = pkt_len * NBBY;
2843 	len = howmany(pkt_bitlen * 2, rate);
2844 
2845 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2846 	if (rate == (11 * 2)) {
2847 		int pkt_bitlen1;
2848 
2849 		/*
2850 		 * PLCP service field needs to be adjusted,
2851 		 * if TX rate is 11Mbytes/s
2852 		 */
2853 		pkt_bitlen1 = len * 11;
2854 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2855 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2856 	}
2857 
2858 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2859 	plcp->i_service = service;
2860 	plcp->i_length = htole16(len);
2861 	/* NOTE: do NOT touch i_crc */
2862 }
2863 
2864 static __inline void
2865 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2866 	void *plcp, int pkt_len, uint8_t rate)
2867 {
2868 	enum ieee80211_phytype modtype;
2869 
2870 	/*
2871 	 * Assume caller has zeroed 'plcp'
2872 	 */
2873 	modtype = ieee80211_rate2phytype(rt, rate);
2874 	if (modtype == IEEE80211_T_OFDM)
2875 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2876 	else if (modtype == IEEE80211_T_DS)
2877 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2878 	else
2879 		panic("unsupport modulation type %u\n", modtype);
2880 }
2881 
2882 static int
2883 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2884 	  struct ieee80211_node *ni)
2885 {
2886 	struct ieee80211vap *vap = ni->ni_vap;
2887 	struct ieee80211com *ic = &sc->sc_ic;
2888 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2889 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2890 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2891 	struct bwi_mac *mac;
2892 	struct bwi_txbuf_hdr *hdr;
2893 	struct ieee80211_frame *wh;
2894 	const struct ieee80211_txparam *tp;
2895 	uint8_t rate, rate_fb;
2896 	uint32_t mac_ctrl;
2897 	uint16_t phy_ctrl;
2898 	bus_addr_t paddr;
2899 	int type, ismcast, pkt_len, error, rix;
2900 #if 0
2901 	const uint8_t *p;
2902 	int i;
2903 #endif
2904 
2905 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2906 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2907 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2908 
2909 	wh = mtod(m, struct ieee80211_frame *);
2910 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2911 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2912 
2913 	/* Get 802.11 frame len before prepending TX header */
2914 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2915 
2916 	/*
2917 	 * Find TX rate
2918 	 */
2919 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2920 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2921 		rate = rate_fb = tp->mgmtrate;
2922 	} else if (ismcast) {
2923 		rate = rate_fb = tp->mcastrate;
2924 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2925 		rate = rate_fb = tp->ucastrate;
2926 	} else {
2927 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2928 		rate = ni->ni_txrate;
2929 
2930 		if (rix > 0) {
2931 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2932 				  IEEE80211_RATE_VAL;
2933 		} else {
2934 			rate_fb = rate;
2935 		}
2936 	}
2937 	tb->tb_rate[0] = rate;
2938 	tb->tb_rate[1] = rate_fb;
2939 	sc->sc_tx_rate = rate;
2940 
2941 	/*
2942 	 * TX radio tap
2943 	 */
2944 	if (ieee80211_radiotap_active_vap(vap)) {
2945 		sc->sc_tx_th.wt_flags = 0;
2946 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2947 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2948 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2949 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2950 		    rate != (1 * 2)) {
2951 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2952 		}
2953 		sc->sc_tx_th.wt_rate = rate;
2954 
2955 		ieee80211_radiotap_tx(vap, m);
2956 	}
2957 
2958 	/*
2959 	 * Setup the embedded TX header
2960 	 */
2961 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2962 	if (m == NULL) {
2963 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2964 		    __func__);
2965 		return ENOBUFS;
2966 	}
2967 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2968 
2969 	bzero(hdr, sizeof(*hdr));
2970 
2971 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2972 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2973 
2974 	if (!ismcast) {
2975 		uint16_t dur;
2976 
2977 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
2978 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2979 
2980 		hdr->txh_fb_duration = htole16(dur);
2981 	}
2982 
2983 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
2984 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
2985 
2986 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
2987 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
2988 
2989 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
2990 			     BWI_TXH_PHY_C_ANTMODE_MASK);
2991 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
2992 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
2993 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
2994 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
2995 
2996 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
2997 	if (!ismcast)
2998 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
2999 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3000 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3001 
3002 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3003 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3004 
3005 	/* Catch any further usage */
3006 	hdr = NULL;
3007 	wh = NULL;
3008 
3009 	/* DMA load */
3010 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3011 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3012 	if (error && error != EFBIG) {
3013 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3014 		    __func__, error);
3015 		goto back;
3016 	}
3017 
3018 	if (error) {	/* error == EFBIG */
3019 		struct mbuf *m_new;
3020 
3021 		m_new = m_defrag(m, M_NOWAIT);
3022 		if (m_new == NULL) {
3023 			device_printf(sc->sc_dev,
3024 			    "%s: can't defrag TX buffer\n", __func__);
3025 			error = ENOBUFS;
3026 			goto back;
3027 		} else {
3028 			m = m_new;
3029 		}
3030 
3031 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3032 					     bwi_dma_buf_addr, &paddr,
3033 					     BUS_DMA_NOWAIT);
3034 		if (error) {
3035 			device_printf(sc->sc_dev,
3036 			    "%s: can't load TX buffer (2) %d\n",
3037 			    __func__, error);
3038 			goto back;
3039 		}
3040 	}
3041 	error = 0;
3042 
3043 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3044 
3045 	tb->tb_mbuf = m;
3046 	tb->tb_ni = ni;
3047 
3048 #if 0
3049 	p = mtod(m, const uint8_t *);
3050 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3051 		if (i != 0 && i % 8 == 0)
3052 			printf("\n");
3053 		printf("%02x ", p[i]);
3054 	}
3055 	printf("\n");
3056 #endif
3057 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3058 		idx, pkt_len, m->m_pkthdr.len);
3059 
3060 	/* Setup TX descriptor */
3061 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3062 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3063 			BUS_DMASYNC_PREWRITE);
3064 
3065 	/* Kick start */
3066 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3067 
3068 back:
3069 	if (error)
3070 		m_freem(m);
3071 	return error;
3072 }
3073 
3074 static int
3075 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3076 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3077 {
3078 	struct ieee80211vap *vap = ni->ni_vap;
3079 	struct ieee80211com *ic = ni->ni_ic;
3080 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3081 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3082 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3083 	struct bwi_mac *mac;
3084 	struct bwi_txbuf_hdr *hdr;
3085 	struct ieee80211_frame *wh;
3086 	uint8_t rate, rate_fb;
3087 	uint32_t mac_ctrl;
3088 	uint16_t phy_ctrl;
3089 	bus_addr_t paddr;
3090 	int ismcast, pkt_len, error;
3091 
3092 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3093 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3094 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3095 
3096 	wh = mtod(m, struct ieee80211_frame *);
3097 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3098 
3099 	/* Get 802.11 frame len before prepending TX header */
3100 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3101 
3102 	/*
3103 	 * Find TX rate
3104 	 */
3105 	rate = params->ibp_rate0;
3106 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3107 		/* XXX fall back to mcast/mgmt rate? */
3108 		m_freem(m);
3109 		return EINVAL;
3110 	}
3111 	if (params->ibp_try1 != 0) {
3112 		rate_fb = params->ibp_rate1;
3113 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3114 			/* XXX fall back to rate0? */
3115 			m_freem(m);
3116 			return EINVAL;
3117 		}
3118 	} else
3119 		rate_fb = rate;
3120 	tb->tb_rate[0] = rate;
3121 	tb->tb_rate[1] = rate_fb;
3122 	sc->sc_tx_rate = rate;
3123 
3124 	/*
3125 	 * TX radio tap
3126 	 */
3127 	if (ieee80211_radiotap_active_vap(vap)) {
3128 		sc->sc_tx_th.wt_flags = 0;
3129 		/* XXX IEEE80211_BPF_CRYPTO */
3130 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3131 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3132 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3133 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3134 		sc->sc_tx_th.wt_rate = rate;
3135 
3136 		ieee80211_radiotap_tx(vap, m);
3137 	}
3138 
3139 	/*
3140 	 * Setup the embedded TX header
3141 	 */
3142 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3143 	if (m == NULL) {
3144 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3145 		    __func__);
3146 		return ENOBUFS;
3147 	}
3148 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3149 
3150 	bzero(hdr, sizeof(*hdr));
3151 
3152 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3153 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3154 
3155 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3156 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3157 		uint16_t dur;
3158 
3159 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3160 
3161 		hdr->txh_fb_duration = htole16(dur);
3162 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3163 	}
3164 
3165 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3166 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3167 
3168 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3169 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3170 
3171 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3172 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3173 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3174 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3175 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3176 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3177 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3178 
3179 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3180 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3181 
3182 	/* Catch any further usage */
3183 	hdr = NULL;
3184 	wh = NULL;
3185 
3186 	/* DMA load */
3187 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3188 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3189 	if (error != 0) {
3190 		struct mbuf *m_new;
3191 
3192 		if (error != EFBIG) {
3193 			device_printf(sc->sc_dev,
3194 			    "%s: can't load TX buffer (1) %d\n",
3195 			    __func__, error);
3196 			goto back;
3197 		}
3198 		m_new = m_defrag(m, M_NOWAIT);
3199 		if (m_new == NULL) {
3200 			device_printf(sc->sc_dev,
3201 			    "%s: can't defrag TX buffer\n", __func__);
3202 			error = ENOBUFS;
3203 			goto back;
3204 		}
3205 		m = m_new;
3206 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3207 					     bwi_dma_buf_addr, &paddr,
3208 					     BUS_DMA_NOWAIT);
3209 		if (error) {
3210 			device_printf(sc->sc_dev,
3211 			    "%s: can't load TX buffer (2) %d\n",
3212 			    __func__, error);
3213 			goto back;
3214 		}
3215 	}
3216 
3217 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3218 
3219 	tb->tb_mbuf = m;
3220 	tb->tb_ni = ni;
3221 
3222 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3223 		idx, pkt_len, m->m_pkthdr.len);
3224 
3225 	/* Setup TX descriptor */
3226 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3227 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3228 			BUS_DMASYNC_PREWRITE);
3229 
3230 	/* Kick start */
3231 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3232 back:
3233 	if (error)
3234 		m_freem(m);
3235 	return error;
3236 }
3237 
3238 static void
3239 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3240 {
3241 	idx = (idx + 1) % BWI_TX_NDESC;
3242 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3243 		    idx * sizeof(struct bwi_desc32));
3244 }
3245 
3246 static void
3247 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3248 {
3249 	/* TODO:64 */
3250 }
3251 
3252 static void
3253 bwi_txeof_status32(struct bwi_softc *sc)
3254 {
3255 	uint32_t val, ctrl_base;
3256 	int end_idx;
3257 
3258 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3259 
3260 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3261 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3262 		  sizeof(struct bwi_desc32);
3263 
3264 	bwi_txeof_status(sc, end_idx);
3265 
3266 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3267 		    end_idx * sizeof(struct bwi_desc32));
3268 
3269 	bwi_start_locked(sc);
3270 }
3271 
3272 static void
3273 bwi_txeof_status64(struct bwi_softc *sc)
3274 {
3275 	/* TODO:64 */
3276 }
3277 
3278 static void
3279 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3280 {
3281 	struct bwi_txbuf_data *tbd;
3282 	struct bwi_txbuf *tb;
3283 	int ring_idx, buf_idx;
3284 	struct ieee80211_node *ni;
3285 	struct ieee80211vap *vap;
3286 
3287 	if (tx_id == 0) {
3288 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3289 		return;
3290 	}
3291 
3292 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3293 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3294 
3295 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3296 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3297 
3298 	tbd = &sc->sc_tx_bdata[ring_idx];
3299 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3300 	tbd->tbd_used--;
3301 
3302 	tb = &tbd->tbd_buf[buf_idx];
3303 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3304 		"acked %d, data_txcnt %d, ni %p\n",
3305 		buf_idx, acked, data_txcnt, tb->tb_ni);
3306 
3307 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3308 
3309 	if ((ni = tb->tb_ni) != NULL) {
3310 		const struct bwi_txbuf_hdr *hdr =
3311 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3312 		vap = ni->ni_vap;
3313 
3314 		/* NB: update rate control only for unicast frames */
3315 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3316 			/*
3317 			 * Feed back 'acked and data_txcnt'.  Note that the
3318 			 * generic AMRR code only understands one tx rate
3319 			 * and the estimator doesn't handle real retry counts
3320 			 * well so to avoid over-aggressive downshifting we
3321 			 * treat any number of retries as "1".
3322 			 */
3323 			ieee80211_ratectl_tx_complete(vap, ni,
3324 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3325 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3326 		}
3327 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3328 		tb->tb_ni = NULL;
3329 	} else
3330 		m_freem(tb->tb_mbuf);
3331 	tb->tb_mbuf = NULL;
3332 
3333 	if (tbd->tbd_used == 0)
3334 		sc->sc_tx_timer = 0;
3335 }
3336 
3337 static void
3338 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3339 {
3340 	struct bwi_txstats_data *st = sc->sc_txstats;
3341 	int idx;
3342 
3343 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3344 
3345 	idx = st->stats_idx;
3346 	while (idx != end_idx) {
3347 		const struct bwi_txstats *stats = &st->stats[idx];
3348 
3349 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3350 			int data_txcnt;
3351 
3352 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3353 						BWI_TXS_TXCNT_DATA);
3354 			_bwi_txeof(sc, le16toh(stats->txs_id),
3355 				   stats->txs_flags & BWI_TXS_F_ACKED,
3356 				   data_txcnt);
3357 		}
3358 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3359 	}
3360 	st->stats_idx = idx;
3361 }
3362 
3363 static void
3364 bwi_txeof(struct bwi_softc *sc)
3365 {
3366 
3367 	for (;;) {
3368 		uint32_t tx_status0, tx_status1;
3369 		uint16_t tx_id;
3370 		int data_txcnt;
3371 
3372 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3373 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3374 			break;
3375 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3376 
3377 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3378 		data_txcnt = __SHIFTOUT(tx_status0,
3379 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3380 
3381 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3382 			continue;
3383 
3384 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3385 		    data_txcnt);
3386 	}
3387 
3388 	bwi_start_locked(sc);
3389 }
3390 
3391 static int
3392 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3393 {
3394 	bwi_power_on(sc, 1);
3395 	return bwi_set_clock_mode(sc, clk_mode);
3396 }
3397 
3398 static void
3399 bwi_bbp_power_off(struct bwi_softc *sc)
3400 {
3401 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3402 	bwi_power_off(sc, 1);
3403 }
3404 
3405 static int
3406 bwi_get_pwron_delay(struct bwi_softc *sc)
3407 {
3408 	struct bwi_regwin *com, *old;
3409 	struct bwi_clock_freq freq;
3410 	uint32_t val;
3411 	int error;
3412 
3413 	com = &sc->sc_com_regwin;
3414 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3415 
3416 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3417 		return 0;
3418 
3419 	error = bwi_regwin_switch(sc, com, &old);
3420 	if (error)
3421 		return error;
3422 
3423 	bwi_get_clock_freq(sc, &freq);
3424 
3425 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3426 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3427 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3428 
3429 	return bwi_regwin_switch(sc, old, NULL);
3430 }
3431 
3432 static int
3433 bwi_bus_attach(struct bwi_softc *sc)
3434 {
3435 	struct bwi_regwin *bus, *old;
3436 	int error;
3437 
3438 	bus = &sc->sc_bus_regwin;
3439 
3440 	error = bwi_regwin_switch(sc, bus, &old);
3441 	if (error)
3442 		return error;
3443 
3444 	if (!bwi_regwin_is_enabled(sc, bus))
3445 		bwi_regwin_enable(sc, bus, 0);
3446 
3447 	/* Disable interripts */
3448 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3449 
3450 	return bwi_regwin_switch(sc, old, NULL);
3451 }
3452 
3453 static const char *
3454 bwi_regwin_name(const struct bwi_regwin *rw)
3455 {
3456 	switch (rw->rw_type) {
3457 	case BWI_REGWIN_T_COM:
3458 		return "COM";
3459 	case BWI_REGWIN_T_BUSPCI:
3460 		return "PCI";
3461 	case BWI_REGWIN_T_MAC:
3462 		return "MAC";
3463 	case BWI_REGWIN_T_BUSPCIE:
3464 		return "PCIE";
3465 	}
3466 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3467 	return NULL;
3468 }
3469 
3470 static uint32_t
3471 bwi_regwin_disable_bits(struct bwi_softc *sc)
3472 {
3473 	uint32_t busrev;
3474 
3475 	/* XXX cache this */
3476 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3477 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3478 		"bus rev %u\n", busrev);
3479 
3480 	if (busrev == BWI_BUSREV_0)
3481 		return BWI_STATE_LO_DISABLE1;
3482 	else if (busrev == BWI_BUSREV_1)
3483 		return BWI_STATE_LO_DISABLE2;
3484 	else
3485 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3486 }
3487 
3488 int
3489 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3490 {
3491 	uint32_t val, disable_bits;
3492 
3493 	disable_bits = bwi_regwin_disable_bits(sc);
3494 	val = CSR_READ_4(sc, BWI_STATE_LO);
3495 
3496 	if ((val & (BWI_STATE_LO_CLOCK |
3497 		    BWI_STATE_LO_RESET |
3498 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3499 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3500 			bwi_regwin_name(rw));
3501 		return 1;
3502 	} else {
3503 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3504 			bwi_regwin_name(rw));
3505 		return 0;
3506 	}
3507 }
3508 
3509 void
3510 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3511 {
3512 	uint32_t state_lo, disable_bits;
3513 	int i;
3514 
3515 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3516 
3517 	/*
3518 	 * If current regwin is in 'reset' state, it was already disabled.
3519 	 */
3520 	if (state_lo & BWI_STATE_LO_RESET) {
3521 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3522 			"%s was already disabled\n", bwi_regwin_name(rw));
3523 		return;
3524 	}
3525 
3526 	disable_bits = bwi_regwin_disable_bits(sc);
3527 
3528 	/*
3529 	 * Disable normal clock
3530 	 */
3531 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3532 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3533 
3534 	/*
3535 	 * Wait until normal clock is disabled
3536 	 */
3537 #define NRETRY	1000
3538 	for (i = 0; i < NRETRY; ++i) {
3539 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3540 		if (state_lo & disable_bits)
3541 			break;
3542 		DELAY(10);
3543 	}
3544 	if (i == NRETRY) {
3545 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3546 			      bwi_regwin_name(rw));
3547 	}
3548 
3549 	for (i = 0; i < NRETRY; ++i) {
3550 		uint32_t state_hi;
3551 
3552 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3553 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3554 			break;
3555 		DELAY(10);
3556 	}
3557 	if (i == NRETRY) {
3558 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3559 			      bwi_regwin_name(rw));
3560 	}
3561 #undef NRETRY
3562 
3563 	/*
3564 	 * Reset and disable regwin with gated clock
3565 	 */
3566 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3567 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3568 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3569 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3570 
3571 	/* Flush pending bus write */
3572 	CSR_READ_4(sc, BWI_STATE_LO);
3573 	DELAY(1);
3574 
3575 	/* Reset and disable regwin */
3576 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3577 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3578 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3579 
3580 	/* Flush pending bus write */
3581 	CSR_READ_4(sc, BWI_STATE_LO);
3582 	DELAY(1);
3583 }
3584 
3585 void
3586 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3587 {
3588 	uint32_t state_lo, state_hi, imstate;
3589 
3590 	bwi_regwin_disable(sc, rw, flags);
3591 
3592 	/* Reset regwin with gated clock */
3593 	state_lo = BWI_STATE_LO_RESET |
3594 		   BWI_STATE_LO_CLOCK |
3595 		   BWI_STATE_LO_GATED_CLOCK |
3596 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3597 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3598 
3599 	/* Flush pending bus write */
3600 	CSR_READ_4(sc, BWI_STATE_LO);
3601 	DELAY(1);
3602 
3603 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3604 	if (state_hi & BWI_STATE_HI_SERROR)
3605 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3606 
3607 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3608 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3609 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3610 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3611 	}
3612 
3613 	/* Enable regwin with gated clock */
3614 	state_lo = BWI_STATE_LO_CLOCK |
3615 		   BWI_STATE_LO_GATED_CLOCK |
3616 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3617 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3618 
3619 	/* Flush pending bus write */
3620 	CSR_READ_4(sc, BWI_STATE_LO);
3621 	DELAY(1);
3622 
3623 	/* Enable regwin with normal clock */
3624 	state_lo = BWI_STATE_LO_CLOCK |
3625 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3626 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3627 
3628 	/* Flush pending bus write */
3629 	CSR_READ_4(sc, BWI_STATE_LO);
3630 	DELAY(1);
3631 }
3632 
3633 static void
3634 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3635 {
3636 	struct bwi_mac *mac;
3637 	struct bwi_myaddr_bssid buf;
3638 	const uint8_t *p;
3639 	uint32_t val;
3640 	int n, i;
3641 
3642 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3643 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3644 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3645 
3646 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3647 
3648 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3649 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3650 
3651 	n = sizeof(buf) / sizeof(val);
3652 	p = (const uint8_t *)&buf;
3653 	for (i = 0; i < n; ++i) {
3654 		int j;
3655 
3656 		val = 0;
3657 		for (j = 0; j < sizeof(val); ++j)
3658 			val |= ((uint32_t)(*p++)) << (j * 8);
3659 
3660 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3661 	}
3662 }
3663 
3664 static void
3665 bwi_updateslot(struct ieee80211com *ic)
3666 {
3667 	struct bwi_softc *sc = ic->ic_softc;
3668 	struct bwi_mac *mac;
3669 
3670 	BWI_LOCK(sc);
3671 	if (sc->sc_flags & BWI_F_RUNNING) {
3672 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3673 
3674 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3675 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3676 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3677 
3678 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3679 	}
3680 	BWI_UNLOCK(sc);
3681 }
3682 
3683 static void
3684 bwi_calibrate(void *xsc)
3685 {
3686 	struct bwi_softc *sc = xsc;
3687 	struct bwi_mac *mac;
3688 
3689 	BWI_ASSERT_LOCKED(sc);
3690 
3691 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3692 	    ("opmode %d", sc->sc_ic.ic_opmode));
3693 
3694 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3695 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3696 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3697 
3698 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3699 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3700 
3701 	/* XXX 15 seconds */
3702 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3703 }
3704 
3705 static int
3706 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3707 {
3708 	struct bwi_mac *mac;
3709 
3710 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3711 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3712 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3713 
3714 	return bwi_rf_calc_rssi(mac, hdr);
3715 }
3716 
3717 static int
3718 bwi_calc_noise(struct bwi_softc *sc)
3719 {
3720 	struct bwi_mac *mac;
3721 
3722 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3723 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3724 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3725 
3726 	return bwi_rf_calc_noise(mac);
3727 }
3728 
3729 static __inline uint8_t
3730 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3731 {
3732 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3733 	return (ieee80211_plcp2rate(plcp, type));
3734 }
3735 
3736 static void
3737 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3738     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3739 {
3740 	const struct ieee80211_frame_min *wh;
3741 
3742 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3743 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3744 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3745 
3746 	wh = mtod(m, const struct ieee80211_frame_min *);
3747 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3748 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3749 
3750 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3751 	sc->sc_rx_th.wr_rate = rate;
3752 	sc->sc_rx_th.wr_antsignal = rssi;
3753 	sc->sc_rx_th.wr_antnoise = noise;
3754 }
3755 
3756 static void
3757 bwi_led_attach(struct bwi_softc *sc)
3758 {
3759 	const uint8_t *led_act = NULL;
3760 	uint16_t gpio, val[BWI_LED_MAX];
3761 	int i;
3762 
3763 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3764 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3765 			led_act = bwi_vendor_led_act[i].led_act;
3766 			break;
3767 		}
3768 	}
3769 	if (led_act == NULL)
3770 		led_act = bwi_default_led_act;
3771 
3772 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3773 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3774 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3775 
3776 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3777 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3778 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3779 
3780 	for (i = 0; i < BWI_LED_MAX; ++i) {
3781 		struct bwi_led *led = &sc->sc_leds[i];
3782 
3783 		if (val[i] == 0xff) {
3784 			led->l_act = led_act[i];
3785 		} else {
3786 			if (val[i] & BWI_LED_ACT_LOW)
3787 				led->l_flags |= BWI_LED_F_ACTLOW;
3788 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3789 		}
3790 		led->l_mask = (1 << i);
3791 
3792 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3793 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3794 		    led->l_act == BWI_LED_ACT_BLINK) {
3795 			led->l_flags |= BWI_LED_F_BLINK;
3796 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3797 				led->l_flags |= BWI_LED_F_POLLABLE;
3798 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3799 				led->l_flags |= BWI_LED_F_SLOW;
3800 
3801 			if (sc->sc_blink_led == NULL) {
3802 				sc->sc_blink_led = led;
3803 				if (led->l_flags & BWI_LED_F_SLOW)
3804 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3805 			}
3806 		}
3807 
3808 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3809 			"%dth led, act %d, lowact %d\n", i,
3810 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3811 	}
3812 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3813 }
3814 
3815 static __inline uint16_t
3816 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3817 {
3818 	if (led->l_flags & BWI_LED_F_ACTLOW)
3819 		on = !on;
3820 	if (on)
3821 		val |= led->l_mask;
3822 	else
3823 		val &= ~led->l_mask;
3824 	return val;
3825 }
3826 
3827 static void
3828 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3829 {
3830 	struct ieee80211com *ic = &sc->sc_ic;
3831 	uint16_t val;
3832 	int i;
3833 
3834 	if (nstate == IEEE80211_S_INIT) {
3835 		callout_stop(&sc->sc_led_blink_ch);
3836 		sc->sc_led_blinking = 0;
3837 	}
3838 
3839 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3840 		return;
3841 
3842 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3843 	for (i = 0; i < BWI_LED_MAX; ++i) {
3844 		struct bwi_led *led = &sc->sc_leds[i];
3845 		int on;
3846 
3847 		if (led->l_act == BWI_LED_ACT_UNKN ||
3848 		    led->l_act == BWI_LED_ACT_NULL)
3849 			continue;
3850 
3851 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3852 		    nstate != IEEE80211_S_INIT)
3853 		    	continue;
3854 
3855 		switch (led->l_act) {
3856 		case BWI_LED_ACT_ON:	/* Always on */
3857 			on = 1;
3858 			break;
3859 		case BWI_LED_ACT_OFF:	/* Always off */
3860 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3861 			on = 0;
3862 			break;
3863 		default:
3864 			on = 1;
3865 			switch (nstate) {
3866 			case IEEE80211_S_INIT:
3867 				on = 0;
3868 				break;
3869 			case IEEE80211_S_RUN:
3870 				if (led->l_act == BWI_LED_ACT_11G &&
3871 				    ic->ic_curmode != IEEE80211_MODE_11G)
3872 					on = 0;
3873 				break;
3874 			default:
3875 				if (led->l_act == BWI_LED_ACT_ASSOC)
3876 					on = 0;
3877 				break;
3878 			}
3879 			break;
3880 		}
3881 
3882 		val = bwi_led_onoff(led, val, on);
3883 	}
3884 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3885 }
3886 static void
3887 bwi_led_event(struct bwi_softc *sc, int event)
3888 {
3889 	struct bwi_led *led = sc->sc_blink_led;
3890 	int rate;
3891 
3892 	if (event == BWI_LED_EVENT_POLL) {
3893 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3894 			return;
3895 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3896 			return;
3897 	}
3898 
3899 	sc->sc_led_ticks = ticks;
3900 	if (sc->sc_led_blinking)
3901 		return;
3902 
3903 	switch (event) {
3904 	case BWI_LED_EVENT_RX:
3905 		rate = sc->sc_rx_rate;
3906 		break;
3907 	case BWI_LED_EVENT_TX:
3908 		rate = sc->sc_tx_rate;
3909 		break;
3910 	case BWI_LED_EVENT_POLL:
3911 		rate = 0;
3912 		break;
3913 	default:
3914 		panic("unknown LED event %d\n", event);
3915 		break;
3916 	}
3917 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3918 	    bwi_led_duration[rate].off_dur);
3919 }
3920 
3921 static void
3922 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3923 {
3924 	struct bwi_led *led = sc->sc_blink_led;
3925 	uint16_t val;
3926 
3927 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3928 	val = bwi_led_onoff(led, val, 1);
3929 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3930 
3931 	if (led->l_flags & BWI_LED_F_SLOW) {
3932 		BWI_LED_SLOWDOWN(on_dur);
3933 		BWI_LED_SLOWDOWN(off_dur);
3934 	}
3935 
3936 	sc->sc_led_blinking = 1;
3937 	sc->sc_led_blink_offdur = off_dur;
3938 
3939 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3940 }
3941 
3942 static void
3943 bwi_led_blink_next(void *xsc)
3944 {
3945 	struct bwi_softc *sc = xsc;
3946 	uint16_t val;
3947 
3948 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3949 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3950 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3951 
3952 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3953 	    bwi_led_blink_end, sc);
3954 }
3955 
3956 static void
3957 bwi_led_blink_end(void *xsc)
3958 {
3959 	struct bwi_softc *sc = xsc;
3960 	sc->sc_led_blinking = 0;
3961 }
3962 
3963 static void
3964 bwi_restart(void *xsc, int pending)
3965 {
3966 	struct bwi_softc *sc = xsc;
3967 
3968 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3969 	BWI_LOCK(sc);
3970 	bwi_init_statechg(sc, 0);
3971 #if 0
3972 	bwi_start_locked(sc);
3973 #endif
3974 	BWI_UNLOCK(sc);
3975 }
3976