xref: /freebsd/sys/dev/bwi/if_bwi.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_bwi.h"
44 #include "opt_wlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/endian.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/taskqueue.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_llc.h>
67 
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #include <net80211/ieee80211_phy.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <net/bpf.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif
80 
81 #include <machine/bus.h>
82 
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcireg.h>
85 
86 #include <dev/bwi/bitops.h>
87 #include <dev/bwi/if_bwireg.h>
88 #include <dev/bwi/if_bwivar.h>
89 #include <dev/bwi/bwimac.h>
90 #include <dev/bwi/bwirf.h>
91 
92 struct bwi_clock_freq {
93 	u_int		clkfreq_min;
94 	u_int		clkfreq_max;
95 };
96 
97 struct bwi_myaddr_bssid {
98 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
99 	uint8_t		bssid[IEEE80211_ADDR_LEN];
100 } __packed;
101 
102 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
103 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
104 		    const uint8_t [IEEE80211_ADDR_LEN],
105 		    const uint8_t [IEEE80211_ADDR_LEN]);
106 static void	bwi_vap_delete(struct ieee80211vap *);
107 static void	bwi_init(struct bwi_softc *);
108 static void	bwi_parent(struct ieee80211com *);
109 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
110 static void	bwi_start_locked(struct bwi_softc *);
111 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
112 			const struct ieee80211_bpf_params *);
113 static void	bwi_watchdog(void *);
114 static void	bwi_scan_start(struct ieee80211com *);
115 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
116 		    struct ieee80211_channel[]);
117 static void	bwi_set_channel(struct ieee80211com *);
118 static void	bwi_scan_end(struct ieee80211com *);
119 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
120 static void	bwi_updateslot(struct ieee80211com *);
121 
122 static void	bwi_calibrate(void *);
123 
124 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
125 static int	bwi_calc_noise(struct bwi_softc *);
126 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
127 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
128 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
129 
130 static void	bwi_restart(void *, int);
131 static void	bwi_init_statechg(struct bwi_softc *, int);
132 static void	bwi_stop(struct bwi_softc *, int);
133 static void	bwi_stop_locked(struct bwi_softc *, int);
134 static int	bwi_newbuf(struct bwi_softc *, int, int);
135 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
136 			  struct ieee80211_node *);
137 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
138 			  struct ieee80211_node *,
139 			  const struct ieee80211_bpf_params *);
140 
141 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
142 				       bus_addr_t, int, int);
143 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
144 
145 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
146 static int	bwi_init_rx_ring32(struct bwi_softc *);
147 static int	bwi_init_txstats32(struct bwi_softc *);
148 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
149 static void	bwi_free_rx_ring32(struct bwi_softc *);
150 static void	bwi_free_txstats32(struct bwi_softc *);
151 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
152 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
153 				    int, bus_addr_t, int);
154 static int	bwi_rxeof32(struct bwi_softc *);
155 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
156 static void	bwi_txeof_status32(struct bwi_softc *);
157 
158 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
159 static int	bwi_init_rx_ring64(struct bwi_softc *);
160 static int	bwi_init_txstats64(struct bwi_softc *);
161 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
162 static void	bwi_free_rx_ring64(struct bwi_softc *);
163 static void	bwi_free_txstats64(struct bwi_softc *);
164 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
165 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
166 				    int, bus_addr_t, int);
167 static int	bwi_rxeof64(struct bwi_softc *);
168 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
169 static void	bwi_txeof_status64(struct bwi_softc *);
170 
171 static int	bwi_rxeof(struct bwi_softc *, int);
172 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
173 static void	bwi_txeof(struct bwi_softc *);
174 static void	bwi_txeof_status(struct bwi_softc *, int);
175 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
176 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
177 
178 static int	bwi_dma_alloc(struct bwi_softc *);
179 static void	bwi_dma_free(struct bwi_softc *);
180 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
181 				   struct bwi_ring_data *, bus_size_t,
182 				   uint32_t);
183 static int	bwi_dma_mbuf_create(struct bwi_softc *);
184 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
185 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
186 static void	bwi_dma_txstats_free(struct bwi_softc *);
187 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
188 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
189 				 bus_size_t, int);
190 
191 static void	bwi_power_on(struct bwi_softc *, int);
192 static int	bwi_power_off(struct bwi_softc *, int);
193 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
194 static int	bwi_set_clock_delay(struct bwi_softc *);
195 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
196 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
197 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
198 				    const uint8_t *);
199 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
200 
201 static void	bwi_get_card_flags(struct bwi_softc *);
202 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
203 
204 static int	bwi_bus_attach(struct bwi_softc *);
205 static int	bwi_bbp_attach(struct bwi_softc *);
206 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
207 static void	bwi_bbp_power_off(struct bwi_softc *);
208 
209 static const char *bwi_regwin_name(const struct bwi_regwin *);
210 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
211 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
212 static int	bwi_regwin_select(struct bwi_softc *, int);
213 
214 static void	bwi_led_attach(struct bwi_softc *);
215 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
216 static void	bwi_led_event(struct bwi_softc *, int);
217 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
218 static void	bwi_led_blink_next(void *);
219 static void	bwi_led_blink_end(void *);
220 
221 static const struct {
222 	uint16_t	did_min;
223 	uint16_t	did_max;
224 	uint16_t	bbp_id;
225 } bwi_bbpid_map[] = {
226 	{ 0x4301, 0x4301, 0x4301 },
227 	{ 0x4305, 0x4307, 0x4307 },
228 	{ 0x4402, 0x4403, 0x4402 },
229 	{ 0x4610, 0x4615, 0x4610 },
230 	{ 0x4710, 0x4715, 0x4710 },
231 	{ 0x4720, 0x4725, 0x4309 }
232 };
233 
234 static const struct {
235 	uint16_t	bbp_id;
236 	int		nregwin;
237 } bwi_regwin_count[] = {
238 	{ 0x4301, 5 },
239 	{ 0x4306, 6 },
240 	{ 0x4307, 5 },
241 	{ 0x4310, 8 },
242 	{ 0x4401, 3 },
243 	{ 0x4402, 3 },
244 	{ 0x4610, 9 },
245 	{ 0x4704, 9 },
246 	{ 0x4710, 9 },
247 	{ 0x5365, 7 }
248 };
249 
250 #define CLKSRC(src) 				\
251 [BWI_CLKSRC_ ## src] = {			\
252 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
253 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
254 }
255 
256 static const struct {
257 	u_int	freq_min;
258 	u_int	freq_max;
259 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
260 	CLKSRC(LP_OSC),
261 	CLKSRC(CS_OSC),
262 	CLKSRC(PCI)
263 };
264 
265 #undef CLKSRC
266 
267 #define VENDOR_LED_ACT(vendor)				\
268 {							\
269 	.vid = PCI_VENDOR_##vendor,			\
270 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
271 }
272 
273 static const struct {
274 #define	PCI_VENDOR_COMPAQ	0x0e11
275 #define	PCI_VENDOR_LINKSYS	0x1737
276 	uint16_t	vid;
277 	uint8_t		led_act[BWI_LED_MAX];
278 } bwi_vendor_led_act[] = {
279 	VENDOR_LED_ACT(COMPAQ),
280 	VENDOR_LED_ACT(LINKSYS)
281 #undef PCI_VENDOR_LINKSYS
282 #undef PCI_VENDOR_COMPAQ
283 };
284 
285 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
286 	{ BWI_VENDOR_LED_ACT_DEFAULT };
287 
288 #undef VENDOR_LED_ACT
289 
290 static const struct {
291 	int	on_dur;
292 	int	off_dur;
293 } bwi_led_duration[109] = {
294 	[0]	= { 400, 100 },
295 	[2]	= { 150, 75 },
296 	[4]	= { 90, 45 },
297 	[11]	= { 66, 34 },
298 	[12]	= { 53, 26 },
299 	[18]	= { 42, 21 },
300 	[22]	= { 35, 17 },
301 	[24]	= { 32, 16 },
302 	[36]	= { 21, 10 },
303 	[48]	= { 16, 8 },
304 	[72]	= { 11, 5 },
305 	[96]	= { 9, 4 },
306 	[108]	= { 7, 3 }
307 };
308 
309 #ifdef BWI_DEBUG
310 #ifdef BWI_DEBUG_VERBOSE
311 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
312 #else
313 static uint32_t	bwi_debug;
314 #endif
315 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
316 #endif	/* BWI_DEBUG */
317 
318 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
319 
320 uint16_t
321 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
322 {
323 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
324 }
325 
326 static __inline void
327 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
328 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
329 		 int tx)
330 {
331 	struct bwi_desc32 *desc = &desc_array[desc_idx];
332 	uint32_t ctrl, addr, addr_hi, addr_lo;
333 
334 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
335 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
336 
337 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
338 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
339 
340 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
341 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
342 	if (desc_idx == ndesc - 1)
343 		ctrl |= BWI_DESC32_C_EOR;
344 	if (tx) {
345 		/* XXX */
346 		ctrl |= BWI_DESC32_C_FRAME_START |
347 			BWI_DESC32_C_FRAME_END |
348 			BWI_DESC32_C_INTR;
349 	}
350 
351 	desc->addr = htole32(addr);
352 	desc->ctrl = htole32(ctrl);
353 }
354 
355 int
356 bwi_attach(struct bwi_softc *sc)
357 {
358 	struct ieee80211com *ic = &sc->sc_ic;
359 	device_t dev = sc->sc_dev;
360 	struct bwi_mac *mac;
361 	struct bwi_phy *phy;
362 	int i, error;
363 
364 	BWI_LOCK_INIT(sc);
365 
366 	/*
367 	 * Initialize taskq and various tasks
368 	 */
369 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
370 		taskqueue_thread_enqueue, &sc->sc_tq);
371 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
372 		device_get_nameunit(dev));
373 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
374 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
375 	mbufq_init(&sc->sc_snd, ifqmaxlen);
376 
377 	/*
378 	 * Initialize sysctl variables
379 	 */
380 	sc->sc_fw_version = BWI_FW_VERSION3;
381 	sc->sc_led_idle = (2350 * hz) / 1000;
382 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
383 	sc->sc_led_blink = 1;
384 	sc->sc_txpwr_calib = 1;
385 #ifdef BWI_DEBUG
386 	sc->sc_debug = bwi_debug;
387 #endif
388 	bwi_power_on(sc, 1);
389 
390 	error = bwi_bbp_attach(sc);
391 	if (error)
392 		goto fail;
393 
394 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
395 	if (error)
396 		goto fail;
397 
398 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
399 		error = bwi_set_clock_delay(sc);
400 		if (error)
401 			goto fail;
402 
403 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
404 		if (error)
405 			goto fail;
406 
407 		error = bwi_get_pwron_delay(sc);
408 		if (error)
409 			goto fail;
410 	}
411 
412 	error = bwi_bus_attach(sc);
413 	if (error)
414 		goto fail;
415 
416 	bwi_get_card_flags(sc);
417 
418 	bwi_led_attach(sc);
419 
420 	for (i = 0; i < sc->sc_nmac; ++i) {
421 		struct bwi_regwin *old;
422 
423 		mac = &sc->sc_mac[i];
424 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
425 		if (error)
426 			goto fail;
427 
428 		error = bwi_mac_lateattach(mac);
429 		if (error)
430 			goto fail;
431 
432 		error = bwi_regwin_switch(sc, old, NULL);
433 		if (error)
434 			goto fail;
435 	}
436 
437 	/*
438 	 * XXX First MAC is known to exist
439 	 * TODO2
440 	 */
441 	mac = &sc->sc_mac[0];
442 	phy = &mac->mac_phy;
443 
444 	bwi_bbp_power_off(sc);
445 
446 	error = bwi_dma_alloc(sc);
447 	if (error)
448 		goto fail;
449 
450 	error = bwi_mac_fw_alloc(mac);
451 	if (error)
452 		goto fail;
453 
454 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
455 
456 	/*
457 	 * Setup ratesets, phytype, channels and get MAC address
458 	 */
459 	if (phy->phy_mode == IEEE80211_MODE_11B ||
460 	    phy->phy_mode == IEEE80211_MODE_11G) {
461 		if (phy->phy_mode == IEEE80211_MODE_11B) {
462 			ic->ic_phytype = IEEE80211_T_DS;
463 		} else {
464 			ic->ic_phytype = IEEE80211_T_OFDM;
465 		}
466 
467 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
468 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
470 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
471 				device_printf(dev,
472 				    "invalid MAC address: %6D\n",
473 				    ic->ic_macaddr, ":");
474 			}
475 		}
476 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
477 		/* TODO:11A */
478 		error = ENXIO;
479 		goto fail;
480 	} else {
481 		panic("unknown phymode %d\n", phy->phy_mode);
482 	}
483 
484 	/* Get locale */
485 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
486 				   BWI_SPROM_CARD_INFO_LOCALE);
487 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
488 	/* XXX use locale */
489 
490 	ic->ic_softc = sc;
491 
492 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
493 	    ic->ic_channels);
494 
495 	ic->ic_name = device_get_nameunit(dev);
496 	ic->ic_caps = IEEE80211_C_STA |
497 		      IEEE80211_C_SHSLOT |
498 		      IEEE80211_C_SHPREAMBLE |
499 		      IEEE80211_C_WPA |
500 		      IEEE80211_C_BGSCAN |
501 		      IEEE80211_C_MONITOR;
502 	ic->ic_opmode = IEEE80211_M_STA;
503 	ieee80211_ifattach(ic);
504 
505 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
506 
507 	/* override default methods */
508 	ic->ic_vap_create = bwi_vap_create;
509 	ic->ic_vap_delete = bwi_vap_delete;
510 	ic->ic_raw_xmit = bwi_raw_xmit;
511 	ic->ic_updateslot = bwi_updateslot;
512 	ic->ic_scan_start = bwi_scan_start;
513 	ic->ic_scan_end = bwi_scan_end;
514 	ic->ic_getradiocaps = bwi_getradiocaps;
515 	ic->ic_set_channel = bwi_set_channel;
516 	ic->ic_transmit = bwi_transmit;
517 	ic->ic_parent = bwi_parent;
518 
519 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
520 
521 	ieee80211_radiotap_attach(ic,
522 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
523 		BWI_TX_RADIOTAP_PRESENT,
524 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
525 		BWI_RX_RADIOTAP_PRESENT);
526 
527 	/*
528 	 * Add sysctl nodes
529 	 */
530 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
531 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
532 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
533 		        "Firmware version");
534 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
535 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
536 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
537 		        "# ticks before LED enters idle state");
538 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
539 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
540 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
541 		       "Allow LED to blink");
542 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
543 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
544 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
545 		       "Enable software TX power calibration");
546 #ifdef BWI_DEBUG
547 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
548 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
549 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
550 #endif
551 	if (bootverbose)
552 		ieee80211_announce(ic);
553 
554 	return (0);
555 fail:
556 	BWI_LOCK_DESTROY(sc);
557 	return (error);
558 }
559 
560 int
561 bwi_detach(struct bwi_softc *sc)
562 {
563 	struct ieee80211com *ic = &sc->sc_ic;
564 	int i;
565 
566 	bwi_stop(sc, 1);
567 	callout_drain(&sc->sc_led_blink_ch);
568 	callout_drain(&sc->sc_calib_ch);
569 	callout_drain(&sc->sc_watchdog_timer);
570 	ieee80211_ifdetach(ic);
571 
572 	for (i = 0; i < sc->sc_nmac; ++i)
573 		bwi_mac_detach(&sc->sc_mac[i]);
574 	bwi_dma_free(sc);
575 	taskqueue_free(sc->sc_tq);
576 	mbufq_drain(&sc->sc_snd);
577 
578 	BWI_LOCK_DESTROY(sc);
579 
580 	return (0);
581 }
582 
583 static struct ieee80211vap *
584 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
585     enum ieee80211_opmode opmode, int flags,
586     const uint8_t bssid[IEEE80211_ADDR_LEN],
587     const uint8_t mac[IEEE80211_ADDR_LEN])
588 {
589 	struct bwi_vap *bvp;
590 	struct ieee80211vap *vap;
591 
592 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
593 		return NULL;
594 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
595 	vap = &bvp->bv_vap;
596 	/* enable s/w bmiss handling for sta mode */
597 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
598 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
599 
600 	/* override default methods */
601 	bvp->bv_newstate = vap->iv_newstate;
602 	vap->iv_newstate = bwi_newstate;
603 #if 0
604 	vap->iv_update_beacon = bwi_beacon_update;
605 #endif
606 	ieee80211_ratectl_init(vap);
607 
608 	/* complete setup */
609 	ieee80211_vap_attach(vap, ieee80211_media_change,
610 	    ieee80211_media_status, mac);
611 	ic->ic_opmode = opmode;
612 	return vap;
613 }
614 
615 static void
616 bwi_vap_delete(struct ieee80211vap *vap)
617 {
618 	struct bwi_vap *bvp = BWI_VAP(vap);
619 
620 	ieee80211_ratectl_deinit(vap);
621 	ieee80211_vap_detach(vap);
622 	free(bvp, M_80211_VAP);
623 }
624 
625 void
626 bwi_suspend(struct bwi_softc *sc)
627 {
628 	bwi_stop(sc, 1);
629 }
630 
631 void
632 bwi_resume(struct bwi_softc *sc)
633 {
634 
635 	if (sc->sc_ic.ic_nrunning > 0)
636 		bwi_init(sc);
637 }
638 
639 int
640 bwi_shutdown(struct bwi_softc *sc)
641 {
642 	bwi_stop(sc, 1);
643 	return 0;
644 }
645 
646 static void
647 bwi_power_on(struct bwi_softc *sc, int with_pll)
648 {
649 	uint32_t gpio_in, gpio_out, gpio_en;
650 	uint16_t status;
651 
652 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
653 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
654 		goto back;
655 
656 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
657 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
658 
659 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
660 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
661 	if (with_pll) {
662 		/* Turn off PLL first */
663 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
664 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
665 	}
666 
667 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
668 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
669 	DELAY(1000);
670 
671 	if (with_pll) {
672 		/* Turn on PLL */
673 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
674 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
675 		DELAY(5000);
676 	}
677 
678 back:
679 	/* Clear "Signaled Target Abort" */
680 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
681 	status &= ~PCIM_STATUS_STABORT;
682 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
683 }
684 
685 static int
686 bwi_power_off(struct bwi_softc *sc, int with_pll)
687 {
688 	uint32_t gpio_out, gpio_en;
689 
690 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
691 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
692 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
693 
694 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
695 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
696 	if (with_pll) {
697 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
698 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
699 	}
700 
701 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
702 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
703 	return 0;
704 }
705 
706 int
707 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
708 		  struct bwi_regwin **old_rw)
709 {
710 	int error;
711 
712 	if (old_rw != NULL)
713 		*old_rw = NULL;
714 
715 	if (!BWI_REGWIN_EXIST(rw))
716 		return EINVAL;
717 
718 	if (sc->sc_cur_regwin != rw) {
719 		error = bwi_regwin_select(sc, rw->rw_id);
720 		if (error) {
721 			device_printf(sc->sc_dev, "can't select regwin %d\n",
722 				  rw->rw_id);
723 			return error;
724 		}
725 	}
726 
727 	if (old_rw != NULL)
728 		*old_rw = sc->sc_cur_regwin;
729 	sc->sc_cur_regwin = rw;
730 	return 0;
731 }
732 
733 static int
734 bwi_regwin_select(struct bwi_softc *sc, int id)
735 {
736 	uint32_t win = BWI_PCIM_REGWIN(id);
737 	int i;
738 
739 #define RETRY_MAX	50
740 	for (i = 0; i < RETRY_MAX; ++i) {
741 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
742 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
743 			return 0;
744 		DELAY(10);
745 	}
746 #undef RETRY_MAX
747 
748 	return ENXIO;
749 }
750 
751 static void
752 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
753 {
754 	uint32_t val;
755 
756 	val = CSR_READ_4(sc, BWI_ID_HI);
757 	*type = BWI_ID_HI_REGWIN_TYPE(val);
758 	*rev = BWI_ID_HI_REGWIN_REV(val);
759 
760 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
761 		"vendor 0x%04x\n", *type, *rev,
762 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
763 }
764 
765 static int
766 bwi_bbp_attach(struct bwi_softc *sc)
767 {
768 	uint16_t bbp_id, rw_type;
769 	uint8_t rw_rev;
770 	uint32_t info;
771 	int error, nregwin, i;
772 
773 	/*
774 	 * Get 0th regwin information
775 	 * NOTE: 0th regwin should exist
776 	 */
777 	error = bwi_regwin_select(sc, 0);
778 	if (error) {
779 		device_printf(sc->sc_dev, "can't select regwin 0\n");
780 		return error;
781 	}
782 	bwi_regwin_info(sc, &rw_type, &rw_rev);
783 
784 	/*
785 	 * Find out BBP id
786 	 */
787 	bbp_id = 0;
788 	info = 0;
789 	if (rw_type == BWI_REGWIN_T_COM) {
790 		info = CSR_READ_4(sc, BWI_INFO);
791 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
792 
793 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
794 
795 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
796 	} else {
797 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
798 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
799 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
800 				bbp_id = bwi_bbpid_map[i].bbp_id;
801 				break;
802 			}
803 		}
804 		if (bbp_id == 0) {
805 			device_printf(sc->sc_dev, "no BBP id for device id "
806 				      "0x%04x\n", sc->sc_pci_did);
807 			return ENXIO;
808 		}
809 
810 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
811 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
812 	}
813 
814 	/*
815 	 * Find out number of regwins
816 	 */
817 	nregwin = 0;
818 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
819 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
820 	} else {
821 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
822 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
823 				nregwin = bwi_regwin_count[i].nregwin;
824 				break;
825 			}
826 		}
827 		if (nregwin == 0) {
828 			device_printf(sc->sc_dev, "no number of win for "
829 				      "BBP id 0x%04x\n", bbp_id);
830 			return ENXIO;
831 		}
832 	}
833 
834 	/* Record BBP id/rev for later using */
835 	sc->sc_bbp_id = bbp_id;
836 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
837 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
838 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
839 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
840 
841 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
842 		nregwin, sc->sc_cap);
843 
844 	/*
845 	 * Create rest of the regwins
846 	 */
847 
848 	/* Don't re-create common regwin, if it is already created */
849 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
850 
851 	for (; i < nregwin; ++i) {
852 		/*
853 		 * Get regwin information
854 		 */
855 		error = bwi_regwin_select(sc, i);
856 		if (error) {
857 			device_printf(sc->sc_dev,
858 				      "can't select regwin %d\n", i);
859 			return error;
860 		}
861 		bwi_regwin_info(sc, &rw_type, &rw_rev);
862 
863 		/*
864 		 * Try attach:
865 		 * 1) Bus (PCI/PCIE) regwin
866 		 * 2) MAC regwin
867 		 * Ignore rest types of regwin
868 		 */
869 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
870 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
871 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
872 				device_printf(sc->sc_dev,
873 					      "bus regwin already exists\n");
874 			} else {
875 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
876 						  rw_type, rw_rev);
877 			}
878 		} else if (rw_type == BWI_REGWIN_T_MAC) {
879 			/* XXX ignore return value */
880 			bwi_mac_attach(sc, i, rw_rev);
881 		}
882 	}
883 
884 	/* At least one MAC shold exist */
885 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
886 		device_printf(sc->sc_dev, "no MAC was found\n");
887 		return ENXIO;
888 	}
889 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
890 
891 	/* Bus regwin must exist */
892 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
893 		device_printf(sc->sc_dev, "no bus regwin was found\n");
894 		return ENXIO;
895 	}
896 
897 	/* Start with first MAC */
898 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
899 	if (error)
900 		return error;
901 
902 	return 0;
903 }
904 
905 int
906 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
907 {
908 	struct bwi_regwin *old, *bus;
909 	uint32_t val;
910 	int error;
911 
912 	bus = &sc->sc_bus_regwin;
913 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
914 
915 	/*
916 	 * Tell bus to generate requested interrupts
917 	 */
918 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
919 		/*
920 		 * NOTE: Read BWI_FLAGS from MAC regwin
921 		 */
922 		val = CSR_READ_4(sc, BWI_FLAGS);
923 
924 		error = bwi_regwin_switch(sc, bus, &old);
925 		if (error)
926 			return error;
927 
928 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
929 	} else {
930 		uint32_t mac_mask;
931 
932 		mac_mask = 1 << mac->mac_id;
933 
934 		error = bwi_regwin_switch(sc, bus, &old);
935 		if (error)
936 			return error;
937 
938 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
939 		val |= mac_mask << 8;
940 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
941 	}
942 
943 	if (sc->sc_flags & BWI_F_BUS_INITED)
944 		goto back;
945 
946 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
947 		/*
948 		 * Enable prefetch and burst
949 		 */
950 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
951 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
952 
953 		if (bus->rw_rev < 5) {
954 			struct bwi_regwin *com = &sc->sc_com_regwin;
955 
956 			/*
957 			 * Configure timeouts for bus operation
958 			 */
959 
960 			/*
961 			 * Set service timeout and request timeout
962 			 */
963 			CSR_SETBITS_4(sc, BWI_CONF_LO,
964 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
965 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
966 
967 			/*
968 			 * If there is common regwin, we switch to that regwin
969 			 * and switch back to bus regwin once we have done.
970 			 */
971 			if (BWI_REGWIN_EXIST(com)) {
972 				error = bwi_regwin_switch(sc, com, NULL);
973 				if (error)
974 					return error;
975 			}
976 
977 			/* Let bus know what we have changed */
978 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
979 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
980 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
981 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
982 
983 			if (BWI_REGWIN_EXIST(com)) {
984 				error = bwi_regwin_switch(sc, bus, NULL);
985 				if (error)
986 					return error;
987 			}
988 		} else if (bus->rw_rev >= 11) {
989 			/*
990 			 * Enable memory read multiple
991 			 */
992 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
993 		}
994 	} else {
995 		/* TODO:PCIE */
996 	}
997 
998 	sc->sc_flags |= BWI_F_BUS_INITED;
999 back:
1000 	return bwi_regwin_switch(sc, old, NULL);
1001 }
1002 
1003 static void
1004 bwi_get_card_flags(struct bwi_softc *sc)
1005 {
1006 #define	PCI_VENDOR_APPLE 0x106b
1007 #define	PCI_VENDOR_DELL  0x1028
1008 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1009 	if (sc->sc_card_flags == 0xffff)
1010 		sc->sc_card_flags = 0;
1011 
1012 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1013 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1014 	    sc->sc_pci_revid == 0x74)
1015 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1016 
1017 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1018 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1019 	    sc->sc_pci_revid > 0x40)
1020 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1021 
1022 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1023 #undef PCI_VENDOR_DELL
1024 #undef PCI_VENDOR_APPLE
1025 }
1026 
1027 static void
1028 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < 3; ++i) {
1033 		*((uint16_t *)eaddr + i) =
1034 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1035 	}
1036 }
1037 
1038 static void
1039 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1040 {
1041 	struct bwi_regwin *com;
1042 	uint32_t val;
1043 	u_int div;
1044 	int src;
1045 
1046 	bzero(freq, sizeof(*freq));
1047 	com = &sc->sc_com_regwin;
1048 
1049 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1050 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1051 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1052 
1053 	/*
1054 	 * Calculate clock frequency
1055 	 */
1056 	src = -1;
1057 	div = 0;
1058 	if (com->rw_rev < 6) {
1059 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1060 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1061 			src = BWI_CLKSRC_PCI;
1062 			div = 64;
1063 		} else {
1064 			src = BWI_CLKSRC_CS_OSC;
1065 			div = 32;
1066 		}
1067 	} else if (com->rw_rev < 10) {
1068 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1069 
1070 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1071 		if (src == BWI_CLKSRC_LP_OSC) {
1072 			div = 1;
1073 		} else {
1074 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1075 
1076 			/* Unknown source */
1077 			if (src >= BWI_CLKSRC_MAX)
1078 				src = BWI_CLKSRC_CS_OSC;
1079 		}
1080 	} else {
1081 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1082 
1083 		src = BWI_CLKSRC_CS_OSC;
1084 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1085 	}
1086 
1087 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1088 	KASSERT(div != 0, ("div zero"));
1089 
1090 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1091 		src == BWI_CLKSRC_PCI ? "PCI" :
1092 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1093 
1094 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1095 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1096 
1097 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1098 		freq->clkfreq_min, freq->clkfreq_max);
1099 }
1100 
1101 static int
1102 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1103 {
1104 	struct bwi_regwin *old, *com;
1105 	uint32_t clk_ctrl, clk_src;
1106 	int error, pwr_off = 0;
1107 
1108 	com = &sc->sc_com_regwin;
1109 	if (!BWI_REGWIN_EXIST(com))
1110 		return 0;
1111 
1112 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1113 		return 0;
1114 
1115 	/*
1116 	 * For common regwin whose rev is [6, 10), the chip
1117 	 * must be capable to change clock mode.
1118 	 */
1119 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1120 		return 0;
1121 
1122 	error = bwi_regwin_switch(sc, com, &old);
1123 	if (error)
1124 		return error;
1125 
1126 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1127 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1128 
1129 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1130 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1131 
1132 	switch (clk_mode) {
1133 	case BWI_CLOCK_MODE_FAST:
1134 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1135 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1136 		break;
1137 	case BWI_CLOCK_MODE_SLOW:
1138 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1139 		break;
1140 	case BWI_CLOCK_MODE_DYN:
1141 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1142 			      BWI_CLOCK_CTRL_IGNPLL |
1143 			      BWI_CLOCK_CTRL_NODYN);
1144 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1145 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1146 			pwr_off = 1;
1147 		}
1148 		break;
1149 	}
1150 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1151 
1152 	if (pwr_off)
1153 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1154 
1155 	return bwi_regwin_switch(sc, old, NULL);
1156 }
1157 
1158 static int
1159 bwi_set_clock_delay(struct bwi_softc *sc)
1160 {
1161 	struct bwi_regwin *old, *com;
1162 	int error;
1163 
1164 	com = &sc->sc_com_regwin;
1165 	if (!BWI_REGWIN_EXIST(com))
1166 		return 0;
1167 
1168 	error = bwi_regwin_switch(sc, com, &old);
1169 	if (error)
1170 		return error;
1171 
1172 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1173 		if (sc->sc_bbp_rev == 0)
1174 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1175 		else if (sc->sc_bbp_rev == 1)
1176 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1177 	}
1178 
1179 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1180 		if (com->rw_rev >= 10) {
1181 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1182 		} else {
1183 			struct bwi_clock_freq freq;
1184 
1185 			bwi_get_clock_freq(sc, &freq);
1186 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1187 				howmany(freq.clkfreq_max * 150, 1000000));
1188 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1189 				howmany(freq.clkfreq_max * 15, 1000000));
1190 		}
1191 	}
1192 
1193 	return bwi_regwin_switch(sc, old, NULL);
1194 }
1195 
1196 static void
1197 bwi_init(struct bwi_softc *sc)
1198 {
1199 	struct ieee80211com *ic = &sc->sc_ic;
1200 
1201 	BWI_LOCK(sc);
1202 	bwi_init_statechg(sc, 1);
1203 	BWI_UNLOCK(sc);
1204 
1205 	if (sc->sc_flags & BWI_F_RUNNING)
1206 		ieee80211_start_all(ic);		/* start all vap's */
1207 }
1208 
1209 static void
1210 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1211 {
1212 	struct bwi_mac *mac;
1213 	int error;
1214 
1215 	BWI_ASSERT_LOCKED(sc);
1216 
1217 	bwi_stop_locked(sc, statechg);
1218 
1219 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1220 
1221 	/* TODO: 2 MAC */
1222 
1223 	mac = &sc->sc_mac[0];
1224 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1225 	if (error) {
1226 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1227 		    __func__, error);
1228 		goto bad;
1229 	}
1230 	error = bwi_mac_init(mac);
1231 	if (error) {
1232 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1233 		    __func__, error);
1234 		goto bad;
1235 	}
1236 
1237 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1238 
1239 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1240 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1241 
1242 	bwi_mac_reset_hwkeys(mac);
1243 
1244 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1245 		int i;
1246 
1247 #define NRETRY	1000
1248 		/*
1249 		 * Drain any possible pending TX status
1250 		 */
1251 		for (i = 0; i < NRETRY; ++i) {
1252 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1253 			     BWI_TXSTATUS0_VALID) == 0)
1254 				break;
1255 			CSR_READ_4(sc, BWI_TXSTATUS1);
1256 		}
1257 		if (i == NRETRY)
1258 			device_printf(sc->sc_dev,
1259 			    "%s: can't drain TX status\n", __func__);
1260 #undef NRETRY
1261 	}
1262 
1263 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1264 		bwi_mac_updateslot(mac, 1);
1265 
1266 	/* Start MAC */
1267 	error = bwi_mac_start(mac);
1268 	if (error) {
1269 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1270 		    __func__, error);
1271 		goto bad;
1272 	}
1273 
1274 	/* Clear stop flag before enabling interrupt */
1275 	sc->sc_flags &= ~BWI_F_STOP;
1276 	sc->sc_flags |= BWI_F_RUNNING;
1277 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1278 
1279 	/* Enable intrs */
1280 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1281 	return;
1282 bad:
1283 	bwi_stop_locked(sc, 1);
1284 }
1285 
1286 static void
1287 bwi_parent(struct ieee80211com *ic)
1288 {
1289 	struct bwi_softc *sc = ic->ic_softc;
1290 	int startall = 0;
1291 
1292 	BWI_LOCK(sc);
1293 	if (ic->ic_nrunning > 0) {
1294 		struct bwi_mac *mac;
1295 		int promisc = -1;
1296 
1297 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1298 		    ("current regwin type %d",
1299 		    sc->sc_cur_regwin->rw_type));
1300 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1301 
1302 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1303 			promisc = 1;
1304 			sc->sc_flags |= BWI_F_PROMISC;
1305 		} else if (ic->ic_promisc == 0 &&
1306 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1307 			promisc = 0;
1308 			sc->sc_flags &= ~BWI_F_PROMISC;
1309 		}
1310 
1311 		if (promisc >= 0)
1312 			bwi_mac_set_promisc(mac, promisc);
1313 	}
1314 	if (ic->ic_nrunning > 0) {
1315 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1316 			bwi_init_statechg(sc, 1);
1317 			startall = 1;
1318 		}
1319 	} else if (sc->sc_flags & BWI_F_RUNNING)
1320 		bwi_stop_locked(sc, 1);
1321 	BWI_UNLOCK(sc);
1322 	if (startall)
1323 		ieee80211_start_all(ic);
1324 }
1325 
1326 static int
1327 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1328 {
1329 	struct bwi_softc *sc = ic->ic_softc;
1330 	int error;
1331 
1332 	BWI_LOCK(sc);
1333 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1334 		BWI_UNLOCK(sc);
1335 		return (ENXIO);
1336 	}
1337 	error = mbufq_enqueue(&sc->sc_snd, m);
1338 	if (error) {
1339 		BWI_UNLOCK(sc);
1340 		return (error);
1341 	}
1342 	bwi_start_locked(sc);
1343 	BWI_UNLOCK(sc);
1344 	return (0);
1345 }
1346 
1347 static void
1348 bwi_start_locked(struct bwi_softc *sc)
1349 {
1350 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1351 	struct ieee80211_frame *wh;
1352 	struct ieee80211_node *ni;
1353 	struct mbuf *m;
1354 	int trans, idx;
1355 
1356 	BWI_ASSERT_LOCKED(sc);
1357 
1358 	trans = 0;
1359 	idx = tbd->tbd_idx;
1360 
1361 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1362 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1363 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1364 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1365 		wh = mtod(m, struct ieee80211_frame *);
1366 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1367 		    ieee80211_crypto_encap(ni, m) == NULL) {
1368 			if_inc_counter(ni->ni_vap->iv_ifp,
1369 			    IFCOUNTER_OERRORS, 1);
1370 			ieee80211_free_node(ni);
1371 			m_freem(m);
1372 			continue;
1373 		}
1374 		if (bwi_encap(sc, idx, m, ni) != 0) {
1375 			/* 'm' is freed in bwi_encap() if we reach here */
1376 			if (ni != NULL) {
1377 				if_inc_counter(ni->ni_vap->iv_ifp,
1378 				    IFCOUNTER_OERRORS, 1);
1379 				ieee80211_free_node(ni);
1380 			} else
1381 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1382 			continue;
1383 		}
1384 		trans = 1;
1385 		tbd->tbd_used++;
1386 		idx = (idx + 1) % BWI_TX_NDESC;
1387 	}
1388 
1389 	tbd->tbd_idx = idx;
1390 	if (trans)
1391 		sc->sc_tx_timer = 5;
1392 }
1393 
1394 static int
1395 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1396 	const struct ieee80211_bpf_params *params)
1397 {
1398 	struct ieee80211com *ic = ni->ni_ic;
1399 	struct bwi_softc *sc = ic->ic_softc;
1400 	/* XXX wme? */
1401 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1402 	int idx, error;
1403 
1404 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1405 		m_freem(m);
1406 		return ENETDOWN;
1407 	}
1408 
1409 	BWI_LOCK(sc);
1410 	idx = tbd->tbd_idx;
1411 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1412 	if (params == NULL) {
1413 		/*
1414 		 * Legacy path; interpret frame contents to decide
1415 		 * precisely how to send the frame.
1416 		 */
1417 		error = bwi_encap(sc, idx, m, ni);
1418 	} else {
1419 		/*
1420 		 * Caller supplied explicit parameters to use in
1421 		 * sending the frame.
1422 		 */
1423 		error = bwi_encap_raw(sc, idx, m, ni, params);
1424 	}
1425 	if (error == 0) {
1426 		tbd->tbd_used++;
1427 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1428 		sc->sc_tx_timer = 5;
1429 	}
1430 	BWI_UNLOCK(sc);
1431 	return error;
1432 }
1433 
1434 static void
1435 bwi_watchdog(void *arg)
1436 {
1437 	struct bwi_softc *sc;
1438 
1439 	sc = arg;
1440 	BWI_ASSERT_LOCKED(sc);
1441 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1442 		device_printf(sc->sc_dev, "watchdog timeout\n");
1443 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1444 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1445 	}
1446 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1447 }
1448 
1449 static void
1450 bwi_stop(struct bwi_softc *sc, int statechg)
1451 {
1452 	BWI_LOCK(sc);
1453 	bwi_stop_locked(sc, statechg);
1454 	BWI_UNLOCK(sc);
1455 }
1456 
1457 static void
1458 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1459 {
1460 	struct bwi_mac *mac;
1461 	int i, error, pwr_off = 0;
1462 
1463 	BWI_ASSERT_LOCKED(sc);
1464 
1465 	callout_stop(&sc->sc_calib_ch);
1466 	callout_stop(&sc->sc_led_blink_ch);
1467 	sc->sc_led_blinking = 0;
1468 	sc->sc_flags |= BWI_F_STOP;
1469 
1470 	if (sc->sc_flags & BWI_F_RUNNING) {
1471 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1472 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1473 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1474 
1475 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1476 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1477 		bwi_mac_stop(mac);
1478 	}
1479 
1480 	for (i = 0; i < sc->sc_nmac; ++i) {
1481 		struct bwi_regwin *old_rw;
1482 
1483 		mac = &sc->sc_mac[i];
1484 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1485 			continue;
1486 
1487 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1488 		if (error)
1489 			continue;
1490 
1491 		bwi_mac_shutdown(mac);
1492 		pwr_off = 1;
1493 
1494 		bwi_regwin_switch(sc, old_rw, NULL);
1495 	}
1496 
1497 	if (pwr_off)
1498 		bwi_bbp_power_off(sc);
1499 
1500 	sc->sc_tx_timer = 0;
1501 	callout_stop(&sc->sc_watchdog_timer);
1502 	sc->sc_flags &= ~BWI_F_RUNNING;
1503 }
1504 
1505 void
1506 bwi_intr(void *xsc)
1507 {
1508 	struct epoch_tracker et;
1509 	struct bwi_softc *sc = xsc;
1510 	struct bwi_mac *mac;
1511 	uint32_t intr_status;
1512 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1513 	int i, txrx_error, tx = 0, rx_data = -1;
1514 
1515 	BWI_LOCK(sc);
1516 
1517 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1518 	    (sc->sc_flags & BWI_F_STOP)) {
1519 		BWI_UNLOCK(sc);
1520 		return;
1521 	}
1522 	/*
1523 	 * Get interrupt status
1524 	 */
1525 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1526 	if (intr_status == 0xffffffff) {	/* Not for us */
1527 		BWI_UNLOCK(sc);
1528 		return;
1529 	}
1530 
1531 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1532 
1533 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1534 	if (intr_status == 0) {		/* Nothing is interesting */
1535 		BWI_UNLOCK(sc);
1536 		return;
1537 	}
1538 
1539 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1540 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1541 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1542 
1543 	txrx_error = 0;
1544 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1545 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1546 		uint32_t mask;
1547 
1548 		if (BWI_TXRX_IS_RX(i))
1549 			mask = BWI_TXRX_RX_INTRS;
1550 		else
1551 			mask = BWI_TXRX_TX_INTRS;
1552 
1553 		txrx_intr_status[i] =
1554 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1555 
1556 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1557 			 i, txrx_intr_status[i]);
1558 
1559 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1560 			device_printf(sc->sc_dev,
1561 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1562 			    __func__, i, txrx_intr_status[i]);
1563 			txrx_error = 1;
1564 		}
1565 	}
1566 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1567 
1568 	/*
1569 	 * Acknowledge interrupt
1570 	 */
1571 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1572 
1573 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1574 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1575 
1576 	/* Disable all interrupts */
1577 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1578 
1579 	/*
1580 	 * http://bcm-specs.sipsolutions.net/Interrupts
1581 	 * Says for this bit (0x800):
1582 	 * "Fatal Error
1583 	 *
1584 	 * We got this one while testing things when by accident the
1585 	 * template ram wasn't set to big endian when it should have
1586 	 * been after writing the initial values. It keeps on being
1587 	 * triggered, the only way to stop it seems to shut down the
1588 	 * chip."
1589 	 *
1590 	 * Suggesting that we should never get it and if we do we're not
1591 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1592 	 * it is valid only on mac version 5 and higher, but I couldn't
1593 	 * find a reference for that...  Since I see them from time to time
1594 	 * on my card, this suggests an error in the tx path still...
1595 	 */
1596 	if (intr_status & BWI_INTR_PHY_TXERR) {
1597 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1598 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1599 			    __func__);
1600 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1601 			BWI_UNLOCK(sc);
1602 			return;
1603 		}
1604 	}
1605 
1606 	if (txrx_error) {
1607 		/* TODO: reset device */
1608 	}
1609 
1610 	if (intr_status & BWI_INTR_TBTT)
1611 		bwi_mac_config_ps(mac);
1612 
1613 	if (intr_status & BWI_INTR_EO_ATIM)
1614 		device_printf(sc->sc_dev, "EO_ATIM\n");
1615 
1616 	if (intr_status & BWI_INTR_PMQ) {
1617 		for (;;) {
1618 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1619 				break;
1620 		}
1621 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1622 	}
1623 
1624 	if (intr_status & BWI_INTR_NOISE)
1625 		device_printf(sc->sc_dev, "intr noise\n");
1626 
1627 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1628 		NET_EPOCH_ENTER(et);
1629 		rx_data = sc->sc_rxeof(sc);
1630 		NET_EPOCH_EXIT(et);
1631 		if (sc->sc_flags & BWI_F_STOP) {
1632 			BWI_UNLOCK(sc);
1633 			return;
1634 		}
1635 	}
1636 
1637 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1638 		sc->sc_txeof_status(sc);
1639 		tx = 1;
1640 	}
1641 
1642 	if (intr_status & BWI_INTR_TX_DONE) {
1643 		bwi_txeof(sc);
1644 		tx = 1;
1645 	}
1646 
1647 	/* Re-enable interrupts */
1648 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1649 
1650 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1651 		int evt = BWI_LED_EVENT_NONE;
1652 
1653 		if (tx && rx_data > 0) {
1654 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1655 				evt = BWI_LED_EVENT_RX;
1656 			else
1657 				evt = BWI_LED_EVENT_TX;
1658 		} else if (tx) {
1659 			evt = BWI_LED_EVENT_TX;
1660 		} else if (rx_data > 0) {
1661 			evt = BWI_LED_EVENT_RX;
1662 		} else if (rx_data == 0) {
1663 			evt = BWI_LED_EVENT_POLL;
1664 		}
1665 
1666 		if (evt != BWI_LED_EVENT_NONE)
1667 			bwi_led_event(sc, evt);
1668 	}
1669 
1670 	BWI_UNLOCK(sc);
1671 }
1672 
1673 static void
1674 bwi_scan_start(struct ieee80211com *ic)
1675 {
1676 	struct bwi_softc *sc = ic->ic_softc;
1677 
1678 	BWI_LOCK(sc);
1679 	/* Enable MAC beacon promiscuity */
1680 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1681 	BWI_UNLOCK(sc);
1682 }
1683 
1684 static void
1685 bwi_getradiocaps(struct ieee80211com *ic,
1686     int maxchans, int *nchans, struct ieee80211_channel chans[])
1687 {
1688 	struct bwi_softc *sc = ic->ic_softc;
1689 	struct bwi_mac *mac;
1690 	struct bwi_phy *phy;
1691 	uint8_t bands[IEEE80211_MODE_BYTES];
1692 
1693 	/*
1694 	 * XXX First MAC is known to exist
1695 	 * TODO2
1696 	 */
1697 	mac = &sc->sc_mac[0];
1698 	phy = &mac->mac_phy;
1699 
1700 	memset(bands, 0, sizeof(bands));
1701 	switch (phy->phy_mode) {
1702 	case IEEE80211_MODE_11G:
1703 		setbit(bands, IEEE80211_MODE_11G);
1704 		/* FALLTHROUGH */
1705 	case IEEE80211_MODE_11B:
1706 		setbit(bands, IEEE80211_MODE_11B);
1707 		break;
1708 	case IEEE80211_MODE_11A:
1709 		/* TODO:11A */
1710 		setbit(bands, IEEE80211_MODE_11A);
1711 		device_printf(sc->sc_dev, "no 11a support\n");
1712 		return;
1713 	default:
1714 		panic("unknown phymode %d\n", phy->phy_mode);
1715 	}
1716 
1717 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1718 }
1719 
1720 static void
1721 bwi_set_channel(struct ieee80211com *ic)
1722 {
1723 	struct bwi_softc *sc = ic->ic_softc;
1724 	struct ieee80211_channel *c = ic->ic_curchan;
1725 	struct bwi_mac *mac;
1726 
1727 	BWI_LOCK(sc);
1728 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1729 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1730 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1731 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1732 
1733 	sc->sc_rates = ieee80211_get_ratetable(c);
1734 	BWI_UNLOCK(sc);
1735 }
1736 
1737 static void
1738 bwi_scan_end(struct ieee80211com *ic)
1739 {
1740 	struct bwi_softc *sc = ic->ic_softc;
1741 
1742 	BWI_LOCK(sc);
1743 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1744 	BWI_UNLOCK(sc);
1745 }
1746 
1747 static int
1748 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1749 {
1750 	struct bwi_vap *bvp = BWI_VAP(vap);
1751 	struct ieee80211com *ic= vap->iv_ic;
1752 	struct bwi_softc *sc = ic->ic_softc;
1753 	enum ieee80211_state ostate = vap->iv_state;
1754 	struct bwi_mac *mac;
1755 	int error;
1756 
1757 	BWI_LOCK(sc);
1758 
1759 	callout_stop(&sc->sc_calib_ch);
1760 
1761 	if (nstate == IEEE80211_S_INIT)
1762 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1763 
1764 	bwi_led_newstate(sc, nstate);
1765 
1766 	error = bvp->bv_newstate(vap, nstate, arg);
1767 	if (error != 0)
1768 		goto back;
1769 
1770 	/*
1771 	 * Clear the BSSID when we stop a STA
1772 	 */
1773 	if (vap->iv_opmode == IEEE80211_M_STA) {
1774 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1775 			/*
1776 			 * Clear out the BSSID.  If we reassociate to
1777 			 * the same AP, this will reinialize things
1778 			 * correctly...
1779 			 */
1780 			if (ic->ic_opmode == IEEE80211_M_STA &&
1781 			    !(sc->sc_flags & BWI_F_STOP))
1782 				bwi_set_bssid(sc, bwi_zero_addr);
1783 		}
1784 	}
1785 
1786 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1787 		/* Nothing to do */
1788 	} else if (nstate == IEEE80211_S_RUN) {
1789 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1790 
1791 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1792 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1793 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1794 
1795 		/* Initial TX power calibration */
1796 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1797 #ifdef notyet
1798 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1799 #else
1800 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1801 #endif
1802 
1803 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1804 	}
1805 back:
1806 	BWI_UNLOCK(sc);
1807 
1808 	return error;
1809 }
1810 
1811 static int
1812 bwi_dma_alloc(struct bwi_softc *sc)
1813 {
1814 	int error, i, has_txstats;
1815 	bus_addr_t lowaddr = 0;
1816 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1817 	uint32_t txrx_ctrl_step = 0;
1818 
1819 	has_txstats = 0;
1820 	for (i = 0; i < sc->sc_nmac; ++i) {
1821 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1822 			has_txstats = 1;
1823 			break;
1824 		}
1825 	}
1826 
1827 	switch (sc->sc_bus_space) {
1828 	case BWI_BUS_SPACE_30BIT:
1829 	case BWI_BUS_SPACE_32BIT:
1830 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1831 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1832 		else
1833 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1834 		desc_sz = sizeof(struct bwi_desc32);
1835 		txrx_ctrl_step = 0x20;
1836 
1837 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1838 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1839 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1840 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1841 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1842 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1843 		sc->sc_rxeof = bwi_rxeof32;
1844 		sc->sc_start_tx = bwi_start_tx32;
1845 		if (has_txstats) {
1846 			sc->sc_init_txstats = bwi_init_txstats32;
1847 			sc->sc_free_txstats = bwi_free_txstats32;
1848 			sc->sc_txeof_status = bwi_txeof_status32;
1849 		}
1850 		break;
1851 
1852 	case BWI_BUS_SPACE_64BIT:
1853 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1854 		desc_sz = sizeof(struct bwi_desc64);
1855 		txrx_ctrl_step = 0x40;
1856 
1857 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1858 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1859 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1860 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1861 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1862 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1863 		sc->sc_rxeof = bwi_rxeof64;
1864 		sc->sc_start_tx = bwi_start_tx64;
1865 		if (has_txstats) {
1866 			sc->sc_init_txstats = bwi_init_txstats64;
1867 			sc->sc_free_txstats = bwi_free_txstats64;
1868 			sc->sc_txeof_status = bwi_txeof_status64;
1869 		}
1870 		break;
1871 	}
1872 
1873 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1874 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1875 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1876 
1877 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1878 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1879 
1880 	/*
1881 	 * Create top level DMA tag
1882 	 */
1883 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1884 			       BWI_ALIGN, 0,		/* alignment, bounds */
1885 			       lowaddr,			/* lowaddr */
1886 			       BUS_SPACE_MAXADDR,	/* highaddr */
1887 			       NULL, NULL,		/* filter, filterarg */
1888 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1889 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1890 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1891 			       0,			/* flags */
1892 			       NULL, NULL,		/* lockfunc, lockarg */
1893 			       &sc->sc_parent_dtag);
1894 	if (error) {
1895 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1896 		return error;
1897 	}
1898 
1899 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1900 
1901 	/*
1902 	 * Create TX ring DMA stuffs
1903 	 */
1904 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1905 				BWI_RING_ALIGN, 0,
1906 				BUS_SPACE_MAXADDR,
1907 				BUS_SPACE_MAXADDR,
1908 				NULL, NULL,
1909 				tx_ring_sz,
1910 				1,
1911 				tx_ring_sz,
1912 				0,
1913 				NULL, NULL,
1914 				&sc->sc_txring_dtag);
1915 	if (error) {
1916 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1917 		return error;
1918 	}
1919 
1920 	for (i = 0; i < BWI_TX_NRING; ++i) {
1921 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1922 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1923 					   TXRX_CTRL(i));
1924 		if (error) {
1925 			device_printf(sc->sc_dev, "%dth TX ring "
1926 				      "DMA alloc failed\n", i);
1927 			return error;
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * Create RX ring DMA stuffs
1933 	 */
1934 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1935 				BWI_RING_ALIGN, 0,
1936 				BUS_SPACE_MAXADDR,
1937 				BUS_SPACE_MAXADDR,
1938 				NULL, NULL,
1939 				rx_ring_sz,
1940 				1,
1941 				rx_ring_sz,
1942 				0,
1943 				NULL, NULL,
1944 				&sc->sc_rxring_dtag);
1945 	if (error) {
1946 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1947 		return error;
1948 	}
1949 
1950 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1951 				   rx_ring_sz, TXRX_CTRL(0));
1952 	if (error) {
1953 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1954 		return error;
1955 	}
1956 
1957 	if (has_txstats) {
1958 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1959 		if (error) {
1960 			device_printf(sc->sc_dev,
1961 				      "TX stats DMA alloc failed\n");
1962 			return error;
1963 		}
1964 	}
1965 
1966 #undef TXRX_CTRL
1967 
1968 	return bwi_dma_mbuf_create(sc);
1969 }
1970 
1971 static void
1972 bwi_dma_free(struct bwi_softc *sc)
1973 {
1974 	if (sc->sc_txring_dtag != NULL) {
1975 		int i;
1976 
1977 		for (i = 0; i < BWI_TX_NRING; ++i) {
1978 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1979 
1980 			if (rd->rdata_desc != NULL) {
1981 				bus_dmamap_unload(sc->sc_txring_dtag,
1982 						  rd->rdata_dmap);
1983 				bus_dmamem_free(sc->sc_txring_dtag,
1984 						rd->rdata_desc,
1985 						rd->rdata_dmap);
1986 			}
1987 		}
1988 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1989 	}
1990 
1991 	if (sc->sc_rxring_dtag != NULL) {
1992 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1993 
1994 		if (rd->rdata_desc != NULL) {
1995 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1996 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1997 					rd->rdata_dmap);
1998 		}
1999 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2000 	}
2001 
2002 	bwi_dma_txstats_free(sc);
2003 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2004 
2005 	if (sc->sc_parent_dtag != NULL)
2006 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2007 }
2008 
2009 static int
2010 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2011 		   struct bwi_ring_data *rd, bus_size_t size,
2012 		   uint32_t txrx_ctrl)
2013 {
2014 	int error;
2015 
2016 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2017 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2018 				 &rd->rdata_dmap);
2019 	if (error) {
2020 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2021 		return error;
2022 	}
2023 
2024 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2025 				bwi_dma_ring_addr, &rd->rdata_paddr,
2026 				BUS_DMA_NOWAIT);
2027 	if (error) {
2028 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2029 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2030 		rd->rdata_desc = NULL;
2031 		return error;
2032 	}
2033 
2034 	rd->rdata_txrx_ctrl = txrx_ctrl;
2035 	return 0;
2036 }
2037 
2038 static int
2039 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2040 		      bus_size_t desc_sz)
2041 {
2042 	struct bwi_txstats_data *st;
2043 	bus_size_t dma_size;
2044 	int error;
2045 
2046 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2047 	if (st == NULL) {
2048 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2049 		return ENOMEM;
2050 	}
2051 	sc->sc_txstats = st;
2052 
2053 	/*
2054 	 * Create TX stats descriptor DMA stuffs
2055 	 */
2056 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2057 
2058 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2059 				BWI_RING_ALIGN,
2060 				0,
2061 				BUS_SPACE_MAXADDR,
2062 				BUS_SPACE_MAXADDR,
2063 				NULL, NULL,
2064 				dma_size,
2065 				1,
2066 				dma_size,
2067 				0,
2068 				NULL, NULL,
2069 				&st->stats_ring_dtag);
2070 	if (error) {
2071 		device_printf(sc->sc_dev, "can't create txstats ring "
2072 			      "DMA tag\n");
2073 		return error;
2074 	}
2075 
2076 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2077 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2078 				 &st->stats_ring_dmap);
2079 	if (error) {
2080 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2081 			      "DMA mem\n");
2082 		bus_dma_tag_destroy(st->stats_ring_dtag);
2083 		st->stats_ring_dtag = NULL;
2084 		return error;
2085 	}
2086 
2087 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2088 				st->stats_ring, dma_size,
2089 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2090 				BUS_DMA_NOWAIT);
2091 	if (error) {
2092 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2093 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2094 				st->stats_ring_dmap);
2095 		bus_dma_tag_destroy(st->stats_ring_dtag);
2096 		st->stats_ring_dtag = NULL;
2097 		return error;
2098 	}
2099 
2100 	/*
2101 	 * Create TX stats DMA stuffs
2102 	 */
2103 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2104 			   BWI_ALIGN);
2105 
2106 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2107 				BWI_ALIGN,
2108 				0,
2109 				BUS_SPACE_MAXADDR,
2110 				BUS_SPACE_MAXADDR,
2111 				NULL, NULL,
2112 				dma_size,
2113 				1,
2114 				dma_size,
2115 				0,
2116 				NULL, NULL,
2117 				&st->stats_dtag);
2118 	if (error) {
2119 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2120 		return error;
2121 	}
2122 
2123 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2124 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2125 				 &st->stats_dmap);
2126 	if (error) {
2127 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2128 		bus_dma_tag_destroy(st->stats_dtag);
2129 		st->stats_dtag = NULL;
2130 		return error;
2131 	}
2132 
2133 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2134 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2135 				BUS_DMA_NOWAIT);
2136 	if (error) {
2137 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2138 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2139 		bus_dma_tag_destroy(st->stats_dtag);
2140 		st->stats_dtag = NULL;
2141 		return error;
2142 	}
2143 
2144 	st->stats_ctrl_base = ctrl_base;
2145 	return 0;
2146 }
2147 
2148 static void
2149 bwi_dma_txstats_free(struct bwi_softc *sc)
2150 {
2151 	struct bwi_txstats_data *st;
2152 
2153 	if (sc->sc_txstats == NULL)
2154 		return;
2155 	st = sc->sc_txstats;
2156 
2157 	if (st->stats_ring_dtag != NULL) {
2158 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2159 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2160 				st->stats_ring_dmap);
2161 		bus_dma_tag_destroy(st->stats_ring_dtag);
2162 	}
2163 
2164 	if (st->stats_dtag != NULL) {
2165 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2166 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2167 		bus_dma_tag_destroy(st->stats_dtag);
2168 	}
2169 
2170 	free(st, M_DEVBUF);
2171 }
2172 
2173 static void
2174 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2175 {
2176 	KASSERT(nseg == 1, ("too many segments\n"));
2177 	*((bus_addr_t *)arg) = seg->ds_addr;
2178 }
2179 
2180 static int
2181 bwi_dma_mbuf_create(struct bwi_softc *sc)
2182 {
2183 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2184 	int i, j, k, ntx, error;
2185 
2186 	/*
2187 	 * Create TX/RX mbuf DMA tag
2188 	 */
2189 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2190 				1,
2191 				0,
2192 				BUS_SPACE_MAXADDR,
2193 				BUS_SPACE_MAXADDR,
2194 				NULL, NULL,
2195 				MCLBYTES,
2196 				1,
2197 				MCLBYTES,
2198 				BUS_DMA_ALLOCNOW,
2199 				NULL, NULL,
2200 				&sc->sc_buf_dtag);
2201 	if (error) {
2202 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2203 		return error;
2204 	}
2205 
2206 	ntx = 0;
2207 
2208 	/*
2209 	 * Create TX mbuf DMA map
2210 	 */
2211 	for (i = 0; i < BWI_TX_NRING; ++i) {
2212 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2213 
2214 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2215 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2216 						  &tbd->tbd_buf[j].tb_dmap);
2217 			if (error) {
2218 				device_printf(sc->sc_dev, "can't create "
2219 					      "%dth tbd, %dth DMA map\n", i, j);
2220 
2221 				ntx = i;
2222 				for (k = 0; k < j; ++k) {
2223 					bus_dmamap_destroy(sc->sc_buf_dtag,
2224 						tbd->tbd_buf[k].tb_dmap);
2225 				}
2226 				goto fail;
2227 			}
2228 		}
2229 	}
2230 	ntx = BWI_TX_NRING;
2231 
2232 	/*
2233 	 * Create RX mbuf DMA map and a spare DMA map
2234 	 */
2235 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2236 				  &rbd->rbd_tmp_dmap);
2237 	if (error) {
2238 		device_printf(sc->sc_dev,
2239 			      "can't create spare RX buf DMA map\n");
2240 		goto fail;
2241 	}
2242 
2243 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2244 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2245 					  &rbd->rbd_buf[j].rb_dmap);
2246 		if (error) {
2247 			device_printf(sc->sc_dev, "can't create %dth "
2248 				      "RX buf DMA map\n", j);
2249 
2250 			for (k = 0; k < j; ++k) {
2251 				bus_dmamap_destroy(sc->sc_buf_dtag,
2252 					rbd->rbd_buf[j].rb_dmap);
2253 			}
2254 			bus_dmamap_destroy(sc->sc_buf_dtag,
2255 					   rbd->rbd_tmp_dmap);
2256 			goto fail;
2257 		}
2258 	}
2259 
2260 	return 0;
2261 fail:
2262 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2263 	return error;
2264 }
2265 
2266 static void
2267 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2268 {
2269 	int i, j;
2270 
2271 	if (sc->sc_buf_dtag == NULL)
2272 		return;
2273 
2274 	for (i = 0; i < ntx; ++i) {
2275 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2276 
2277 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2278 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2279 
2280 			if (tb->tb_mbuf != NULL) {
2281 				bus_dmamap_unload(sc->sc_buf_dtag,
2282 						  tb->tb_dmap);
2283 				m_freem(tb->tb_mbuf);
2284 			}
2285 			if (tb->tb_ni != NULL)
2286 				ieee80211_free_node(tb->tb_ni);
2287 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2288 		}
2289 	}
2290 
2291 	if (nrx) {
2292 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2293 
2294 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2295 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2296 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2297 
2298 			if (rb->rb_mbuf != NULL) {
2299 				bus_dmamap_unload(sc->sc_buf_dtag,
2300 						  rb->rb_dmap);
2301 				m_freem(rb->rb_mbuf);
2302 			}
2303 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2304 		}
2305 	}
2306 
2307 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2308 	sc->sc_buf_dtag = NULL;
2309 }
2310 
2311 static void
2312 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2313 {
2314 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2315 }
2316 
2317 static void
2318 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2319 {
2320 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2321 }
2322 
2323 static int
2324 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2325 {
2326 	struct bwi_ring_data *rd;
2327 	struct bwi_txbuf_data *tbd;
2328 	uint32_t val, addr_hi, addr_lo;
2329 
2330 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2331 	rd = &sc->sc_tx_rdata[ring_idx];
2332 	tbd = &sc->sc_tx_bdata[ring_idx];
2333 
2334 	tbd->tbd_idx = 0;
2335 	tbd->tbd_used = 0;
2336 
2337 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2338 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2339 			BUS_DMASYNC_PREWRITE);
2340 
2341 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2342 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2343 
2344 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2345 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2346 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2347 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2348 
2349 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2350 	      BWI_TXRX32_CTRL_ENABLE;
2351 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2352 
2353 	return 0;
2354 }
2355 
2356 static void
2357 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2358 		       bus_addr_t paddr, int hdr_size, int ndesc)
2359 {
2360 	uint32_t val, addr_hi, addr_lo;
2361 
2362 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2363 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2364 
2365 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2366 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2367 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2368 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2369 
2370 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2371 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2372 	      BWI_TXRX32_CTRL_ENABLE;
2373 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2374 
2375 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2376 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2377 }
2378 
2379 static int
2380 bwi_init_rx_ring32(struct bwi_softc *sc)
2381 {
2382 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2383 	int i, error;
2384 
2385 	sc->sc_rx_bdata.rbd_idx = 0;
2386 
2387 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2388 		error = bwi_newbuf(sc, i, 1);
2389 		if (error) {
2390 			device_printf(sc->sc_dev,
2391 				  "can't allocate %dth RX buffer\n", i);
2392 			return error;
2393 		}
2394 	}
2395 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2396 			BUS_DMASYNC_PREWRITE);
2397 
2398 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2399 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2400 	return 0;
2401 }
2402 
2403 static int
2404 bwi_init_txstats32(struct bwi_softc *sc)
2405 {
2406 	struct bwi_txstats_data *st = sc->sc_txstats;
2407 	bus_addr_t stats_paddr;
2408 	int i;
2409 
2410 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2411 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2412 
2413 	st->stats_idx = 0;
2414 
2415 	stats_paddr = st->stats_paddr;
2416 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2417 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2418 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2419 		stats_paddr += sizeof(struct bwi_txstats);
2420 	}
2421 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2422 			BUS_DMASYNC_PREWRITE);
2423 
2424 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2425 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2426 	return 0;
2427 }
2428 
2429 static void
2430 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2431 		    int buf_len)
2432 {
2433 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2434 
2435 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2436 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2437 			 paddr, buf_len, 0);
2438 }
2439 
2440 static void
2441 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2442 		    int buf_idx, bus_addr_t paddr, int buf_len)
2443 {
2444 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2445 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2446 			 paddr, buf_len, 1);
2447 }
2448 
2449 static int
2450 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2451 {
2452 	/* TODO:64 */
2453 	return EOPNOTSUPP;
2454 }
2455 
2456 static int
2457 bwi_init_rx_ring64(struct bwi_softc *sc)
2458 {
2459 	/* TODO:64 */
2460 	return EOPNOTSUPP;
2461 }
2462 
2463 static int
2464 bwi_init_txstats64(struct bwi_softc *sc)
2465 {
2466 	/* TODO:64 */
2467 	return EOPNOTSUPP;
2468 }
2469 
2470 static void
2471 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2472 		    int buf_len)
2473 {
2474 	/* TODO:64 */
2475 }
2476 
2477 static void
2478 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2479 		    int buf_idx, bus_addr_t paddr, int buf_len)
2480 {
2481 	/* TODO:64 */
2482 }
2483 
2484 static void
2485 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2486 		 bus_size_t mapsz __unused, int error)
2487 {
2488         if (!error) {
2489 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2490 		*((bus_addr_t *)arg) = seg->ds_addr;
2491 	}
2492 }
2493 
2494 static int
2495 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2496 {
2497 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2498 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2499 	struct bwi_rxbuf_hdr *hdr;
2500 	bus_dmamap_t map;
2501 	bus_addr_t paddr;
2502 	struct mbuf *m;
2503 	int error;
2504 
2505 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2506 
2507 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2508 	if (m == NULL) {
2509 		error = ENOBUFS;
2510 
2511 		/*
2512 		 * If the NIC is up and running, we need to:
2513 		 * - Clear RX buffer's header.
2514 		 * - Restore RX descriptor settings.
2515 		 */
2516 		if (init)
2517 			return error;
2518 		else
2519 			goto back;
2520 	}
2521 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2522 
2523 	/*
2524 	 * Try to load RX buf into temporary DMA map
2525 	 */
2526 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2527 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2528 	if (error) {
2529 		m_freem(m);
2530 
2531 		/*
2532 		 * See the comment above
2533 		 */
2534 		if (init)
2535 			return error;
2536 		else
2537 			goto back;
2538 	}
2539 
2540 	if (!init)
2541 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2542 	rxbuf->rb_mbuf = m;
2543 	rxbuf->rb_paddr = paddr;
2544 
2545 	/*
2546 	 * Swap RX buf's DMA map with the loaded temporary one
2547 	 */
2548 	map = rxbuf->rb_dmap;
2549 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2550 	rbd->rbd_tmp_dmap = map;
2551 
2552 back:
2553 	/*
2554 	 * Clear RX buf header
2555 	 */
2556 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2557 	bzero(hdr, sizeof(*hdr));
2558 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2559 
2560 	/*
2561 	 * Setup RX buf descriptor
2562 	 */
2563 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2564 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2565 	return error;
2566 }
2567 
2568 static void
2569 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2570 		    const uint8_t *addr)
2571 {
2572 	int i;
2573 
2574 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2575 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2576 
2577 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2578 		uint16_t addr_val;
2579 
2580 		addr_val = (uint16_t)addr[i * 2] |
2581 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2582 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2583 	}
2584 }
2585 
2586 static int
2587 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2588 {
2589 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2590 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2591 	struct ieee80211com *ic = &sc->sc_ic;
2592 	int idx, rx_data = 0;
2593 
2594 	idx = rbd->rbd_idx;
2595 	while (idx != end_idx) {
2596 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2597 		struct bwi_rxbuf_hdr *hdr;
2598 		struct ieee80211_frame_min *wh;
2599 		struct ieee80211_node *ni;
2600 		struct mbuf *m;
2601 		uint32_t plcp;
2602 		uint16_t flags2;
2603 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2604 
2605 		m = rb->rb_mbuf;
2606 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2607 				BUS_DMASYNC_POSTREAD);
2608 
2609 		if (bwi_newbuf(sc, idx, 0)) {
2610 			counter_u64_add(ic->ic_ierrors, 1);
2611 			goto next;
2612 		}
2613 
2614 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2615 		flags2 = le16toh(hdr->rxh_flags2);
2616 
2617 		hdr_extra = 0;
2618 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2619 			hdr_extra = 2;
2620 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2621 
2622 		buflen = le16toh(hdr->rxh_buflen);
2623 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2624 			device_printf(sc->sc_dev,
2625 			    "%s: zero length data, hdr_extra %d\n",
2626 			    __func__, hdr_extra);
2627 			counter_u64_add(ic->ic_ierrors, 1);
2628 			m_freem(m);
2629 			goto next;
2630 		}
2631 
2632 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2633 		rssi = bwi_calc_rssi(sc, hdr);
2634 		noise = bwi_calc_noise(sc);
2635 
2636 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2637 		m_adj(m, sizeof(*hdr) + wh_ofs);
2638 
2639 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2640 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2641 		else
2642 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2643 
2644 		/* RX radio tap */
2645 		if (ieee80211_radiotap_active(ic))
2646 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2647 
2648 		m_adj(m, -IEEE80211_CRC_LEN);
2649 
2650 		BWI_UNLOCK(sc);
2651 
2652 		wh = mtod(m, struct ieee80211_frame_min *);
2653 		ni = ieee80211_find_rxnode(ic, wh);
2654 		if (ni != NULL) {
2655 			type = ieee80211_input(ni, m, rssi - noise, noise);
2656 			ieee80211_free_node(ni);
2657 		} else
2658 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2659 		if (type == IEEE80211_FC0_TYPE_DATA) {
2660 			rx_data = 1;
2661 			sc->sc_rx_rate = rate;
2662 		}
2663 
2664 		BWI_LOCK(sc);
2665 next:
2666 		idx = (idx + 1) % BWI_RX_NDESC;
2667 
2668 		if (sc->sc_flags & BWI_F_STOP) {
2669 			/*
2670 			 * Take the fast lane, don't do
2671 			 * any damage to softc
2672 			 */
2673 			return -1;
2674 		}
2675 	}
2676 
2677 	rbd->rbd_idx = idx;
2678 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2679 			BUS_DMASYNC_PREWRITE);
2680 
2681 	return rx_data;
2682 }
2683 
2684 static int
2685 bwi_rxeof32(struct bwi_softc *sc)
2686 {
2687 	uint32_t val, rx_ctrl;
2688 	int end_idx, rx_data;
2689 
2690 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2691 
2692 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2693 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2694 		  sizeof(struct bwi_desc32);
2695 
2696 	rx_data = bwi_rxeof(sc, end_idx);
2697 	if (rx_data >= 0) {
2698 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2699 			    end_idx * sizeof(struct bwi_desc32));
2700 	}
2701 	return rx_data;
2702 }
2703 
2704 static int
2705 bwi_rxeof64(struct bwi_softc *sc)
2706 {
2707 	/* TODO:64 */
2708 	return 0;
2709 }
2710 
2711 static void
2712 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2713 {
2714 	int i;
2715 
2716 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2717 
2718 #define NRETRY 10
2719 
2720 	for (i = 0; i < NRETRY; ++i) {
2721 		uint32_t status;
2722 
2723 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2724 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2725 		    BWI_RX32_STATUS_STATE_DISABLED)
2726 			break;
2727 
2728 		DELAY(1000);
2729 	}
2730 	if (i == NRETRY)
2731 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2732 
2733 #undef NRETRY
2734 
2735 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2736 }
2737 
2738 static void
2739 bwi_free_txstats32(struct bwi_softc *sc)
2740 {
2741 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2742 }
2743 
2744 static void
2745 bwi_free_rx_ring32(struct bwi_softc *sc)
2746 {
2747 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2748 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2749 	int i;
2750 
2751 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2752 
2753 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2754 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2755 
2756 		if (rb->rb_mbuf != NULL) {
2757 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2758 			m_freem(rb->rb_mbuf);
2759 			rb->rb_mbuf = NULL;
2760 		}
2761 	}
2762 }
2763 
2764 static void
2765 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2766 {
2767 	struct bwi_ring_data *rd;
2768 	struct bwi_txbuf_data *tbd;
2769 	uint32_t state, val;
2770 	int i;
2771 
2772 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2773 	rd = &sc->sc_tx_rdata[ring_idx];
2774 	tbd = &sc->sc_tx_bdata[ring_idx];
2775 
2776 #define NRETRY 10
2777 
2778 	for (i = 0; i < NRETRY; ++i) {
2779 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2780 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2781 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2782 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2783 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2784 			break;
2785 
2786 		DELAY(1000);
2787 	}
2788 	if (i == NRETRY) {
2789 		device_printf(sc->sc_dev,
2790 		    "%s: wait for TX ring(%d) stable timed out\n",
2791 		    __func__, ring_idx);
2792 	}
2793 
2794 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2795 	for (i = 0; i < NRETRY; ++i) {
2796 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2797 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2798 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2799 			break;
2800 
2801 		DELAY(1000);
2802 	}
2803 	if (i == NRETRY)
2804 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2805 		     __func__, ring_idx);
2806 
2807 #undef NRETRY
2808 
2809 	DELAY(1000);
2810 
2811 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2812 
2813 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2814 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2815 
2816 		if (tb->tb_mbuf != NULL) {
2817 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2818 			m_freem(tb->tb_mbuf);
2819 			tb->tb_mbuf = NULL;
2820 		}
2821 		if (tb->tb_ni != NULL) {
2822 			ieee80211_free_node(tb->tb_ni);
2823 			tb->tb_ni = NULL;
2824 		}
2825 	}
2826 }
2827 
2828 static void
2829 bwi_free_txstats64(struct bwi_softc *sc)
2830 {
2831 	/* TODO:64 */
2832 }
2833 
2834 static void
2835 bwi_free_rx_ring64(struct bwi_softc *sc)
2836 {
2837 	/* TODO:64 */
2838 }
2839 
2840 static void
2841 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2842 {
2843 	/* TODO:64 */
2844 }
2845 
2846 /* XXX does not belong here */
2847 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2848 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2849 
2850 static __inline void
2851 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2852 {
2853 	uint32_t plcp;
2854 
2855 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2856 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2857 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2858 	*plcp0 = htole32(plcp);
2859 }
2860 
2861 static __inline void
2862 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2863 		   uint8_t rate)
2864 {
2865 	int len, service, pkt_bitlen;
2866 
2867 	pkt_bitlen = pkt_len * NBBY;
2868 	len = howmany(pkt_bitlen * 2, rate);
2869 
2870 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2871 	if (rate == (11 * 2)) {
2872 		int pkt_bitlen1;
2873 
2874 		/*
2875 		 * PLCP service field needs to be adjusted,
2876 		 * if TX rate is 11Mbytes/s
2877 		 */
2878 		pkt_bitlen1 = len * 11;
2879 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2880 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2881 	}
2882 
2883 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2884 	plcp->i_service = service;
2885 	plcp->i_length = htole16(len);
2886 	/* NOTE: do NOT touch i_crc */
2887 }
2888 
2889 static __inline void
2890 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2891 	void *plcp, int pkt_len, uint8_t rate)
2892 {
2893 	enum ieee80211_phytype modtype;
2894 
2895 	/*
2896 	 * Assume caller has zeroed 'plcp'
2897 	 */
2898 	modtype = ieee80211_rate2phytype(rt, rate);
2899 	if (modtype == IEEE80211_T_OFDM)
2900 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2901 	else if (modtype == IEEE80211_T_DS)
2902 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2903 	else
2904 		panic("unsupport modulation type %u\n", modtype);
2905 }
2906 
2907 static int
2908 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2909 	  struct ieee80211_node *ni)
2910 {
2911 	struct ieee80211vap *vap = ni->ni_vap;
2912 	struct ieee80211com *ic = &sc->sc_ic;
2913 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2914 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2915 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2916 	struct bwi_mac *mac;
2917 	struct bwi_txbuf_hdr *hdr;
2918 	struct ieee80211_frame *wh;
2919 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2920 	uint8_t rate, rate_fb;
2921 	uint32_t mac_ctrl;
2922 	uint16_t phy_ctrl;
2923 	bus_addr_t paddr;
2924 	int type, ismcast, pkt_len, error, rix;
2925 #if 0
2926 	const uint8_t *p;
2927 	int i;
2928 #endif
2929 
2930 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2931 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2932 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2933 
2934 	wh = mtod(m, struct ieee80211_frame *);
2935 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2936 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2937 
2938 	/* Get 802.11 frame len before prepending TX header */
2939 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2940 
2941 	/*
2942 	 * Find TX rate
2943 	 */
2944 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2945 		rate = rate_fb = tp->mgmtrate;
2946 	} else if (ismcast) {
2947 		rate = rate_fb = tp->mcastrate;
2948 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2949 		rate = rate_fb = tp->ucastrate;
2950 	} else {
2951 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2952 		rate = ni->ni_txrate;
2953 
2954 		if (rix > 0) {
2955 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2956 				  IEEE80211_RATE_VAL;
2957 		} else {
2958 			rate_fb = rate;
2959 		}
2960 	}
2961 	tb->tb_rate[0] = rate;
2962 	tb->tb_rate[1] = rate_fb;
2963 	sc->sc_tx_rate = rate;
2964 
2965 	/*
2966 	 * TX radio tap
2967 	 */
2968 	if (ieee80211_radiotap_active_vap(vap)) {
2969 		sc->sc_tx_th.wt_flags = 0;
2970 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2971 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2972 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2973 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2974 		    rate != (1 * 2)) {
2975 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2976 		}
2977 		sc->sc_tx_th.wt_rate = rate;
2978 
2979 		ieee80211_radiotap_tx(vap, m);
2980 	}
2981 
2982 	/*
2983 	 * Setup the embedded TX header
2984 	 */
2985 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2986 	if (m == NULL) {
2987 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2988 		    __func__);
2989 		return ENOBUFS;
2990 	}
2991 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2992 
2993 	bzero(hdr, sizeof(*hdr));
2994 
2995 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2996 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2997 
2998 	if (!ismcast) {
2999 		uint16_t dur;
3000 
3001 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3002 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3003 
3004 		hdr->txh_fb_duration = htole16(dur);
3005 	}
3006 
3007 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3008 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3009 
3010 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3011 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3012 
3013 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3014 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3015 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3016 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3017 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3018 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3019 
3020 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3021 	if (!ismcast)
3022 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3023 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3024 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3025 
3026 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3027 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3028 
3029 	/* Catch any further usage */
3030 	hdr = NULL;
3031 	wh = NULL;
3032 
3033 	/* DMA load */
3034 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3035 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3036 	if (error && error != EFBIG) {
3037 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3038 		    __func__, error);
3039 		goto back;
3040 	}
3041 
3042 	if (error) {	/* error == EFBIG */
3043 		struct mbuf *m_new;
3044 
3045 		m_new = m_defrag(m, M_NOWAIT);
3046 		if (m_new == NULL) {
3047 			device_printf(sc->sc_dev,
3048 			    "%s: can't defrag TX buffer\n", __func__);
3049 			error = ENOBUFS;
3050 			goto back;
3051 		} else {
3052 			m = m_new;
3053 		}
3054 
3055 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3056 					     bwi_dma_buf_addr, &paddr,
3057 					     BUS_DMA_NOWAIT);
3058 		if (error) {
3059 			device_printf(sc->sc_dev,
3060 			    "%s: can't load TX buffer (2) %d\n",
3061 			    __func__, error);
3062 			goto back;
3063 		}
3064 	}
3065 	error = 0;
3066 
3067 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3068 
3069 	tb->tb_mbuf = m;
3070 	tb->tb_ni = ni;
3071 
3072 #if 0
3073 	p = mtod(m, const uint8_t *);
3074 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3075 		if (i != 0 && i % 8 == 0)
3076 			printf("\n");
3077 		printf("%02x ", p[i]);
3078 	}
3079 	printf("\n");
3080 #endif
3081 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3082 		idx, pkt_len, m->m_pkthdr.len);
3083 
3084 	/* Setup TX descriptor */
3085 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3086 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3087 			BUS_DMASYNC_PREWRITE);
3088 
3089 	/* Kick start */
3090 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3091 
3092 back:
3093 	if (error)
3094 		m_freem(m);
3095 	return error;
3096 }
3097 
3098 static int
3099 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3100 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3101 {
3102 	struct ieee80211vap *vap = ni->ni_vap;
3103 	struct ieee80211com *ic = ni->ni_ic;
3104 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3105 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3106 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3107 	struct bwi_mac *mac;
3108 	struct bwi_txbuf_hdr *hdr;
3109 	struct ieee80211_frame *wh;
3110 	uint8_t rate, rate_fb;
3111 	uint32_t mac_ctrl;
3112 	uint16_t phy_ctrl;
3113 	bus_addr_t paddr;
3114 	int ismcast, pkt_len, error;
3115 
3116 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3117 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3118 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3119 
3120 	wh = mtod(m, struct ieee80211_frame *);
3121 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3122 
3123 	/* Get 802.11 frame len before prepending TX header */
3124 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3125 
3126 	/*
3127 	 * Find TX rate
3128 	 */
3129 	rate = params->ibp_rate0;
3130 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3131 		/* XXX fall back to mcast/mgmt rate? */
3132 		m_freem(m);
3133 		return EINVAL;
3134 	}
3135 	if (params->ibp_try1 != 0) {
3136 		rate_fb = params->ibp_rate1;
3137 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3138 			/* XXX fall back to rate0? */
3139 			m_freem(m);
3140 			return EINVAL;
3141 		}
3142 	} else
3143 		rate_fb = rate;
3144 	tb->tb_rate[0] = rate;
3145 	tb->tb_rate[1] = rate_fb;
3146 	sc->sc_tx_rate = rate;
3147 
3148 	/*
3149 	 * TX radio tap
3150 	 */
3151 	if (ieee80211_radiotap_active_vap(vap)) {
3152 		sc->sc_tx_th.wt_flags = 0;
3153 		/* XXX IEEE80211_BPF_CRYPTO */
3154 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3155 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3156 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3157 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3158 		sc->sc_tx_th.wt_rate = rate;
3159 
3160 		ieee80211_radiotap_tx(vap, m);
3161 	}
3162 
3163 	/*
3164 	 * Setup the embedded TX header
3165 	 */
3166 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3167 	if (m == NULL) {
3168 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3169 		    __func__);
3170 		return ENOBUFS;
3171 	}
3172 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3173 
3174 	bzero(hdr, sizeof(*hdr));
3175 
3176 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3177 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3178 
3179 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3180 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3181 		uint16_t dur;
3182 
3183 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3184 
3185 		hdr->txh_fb_duration = htole16(dur);
3186 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3187 	}
3188 
3189 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3190 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3191 
3192 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3193 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3194 
3195 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3196 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3197 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3198 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3199 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3200 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3201 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3202 
3203 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3204 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3205 
3206 	/* Catch any further usage */
3207 	hdr = NULL;
3208 	wh = NULL;
3209 
3210 	/* DMA load */
3211 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3212 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3213 	if (error != 0) {
3214 		struct mbuf *m_new;
3215 
3216 		if (error != EFBIG) {
3217 			device_printf(sc->sc_dev,
3218 			    "%s: can't load TX buffer (1) %d\n",
3219 			    __func__, error);
3220 			goto back;
3221 		}
3222 		m_new = m_defrag(m, M_NOWAIT);
3223 		if (m_new == NULL) {
3224 			device_printf(sc->sc_dev,
3225 			    "%s: can't defrag TX buffer\n", __func__);
3226 			error = ENOBUFS;
3227 			goto back;
3228 		}
3229 		m = m_new;
3230 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3231 					     bwi_dma_buf_addr, &paddr,
3232 					     BUS_DMA_NOWAIT);
3233 		if (error) {
3234 			device_printf(sc->sc_dev,
3235 			    "%s: can't load TX buffer (2) %d\n",
3236 			    __func__, error);
3237 			goto back;
3238 		}
3239 	}
3240 
3241 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3242 
3243 	tb->tb_mbuf = m;
3244 	tb->tb_ni = ni;
3245 
3246 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3247 		idx, pkt_len, m->m_pkthdr.len);
3248 
3249 	/* Setup TX descriptor */
3250 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3251 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3252 			BUS_DMASYNC_PREWRITE);
3253 
3254 	/* Kick start */
3255 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3256 back:
3257 	if (error)
3258 		m_freem(m);
3259 	return error;
3260 }
3261 
3262 static void
3263 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3264 {
3265 	idx = (idx + 1) % BWI_TX_NDESC;
3266 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3267 		    idx * sizeof(struct bwi_desc32));
3268 }
3269 
3270 static void
3271 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3272 {
3273 	/* TODO:64 */
3274 }
3275 
3276 static void
3277 bwi_txeof_status32(struct bwi_softc *sc)
3278 {
3279 	uint32_t val, ctrl_base;
3280 	int end_idx;
3281 
3282 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3283 
3284 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3285 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3286 		  sizeof(struct bwi_desc32);
3287 
3288 	bwi_txeof_status(sc, end_idx);
3289 
3290 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3291 		    end_idx * sizeof(struct bwi_desc32));
3292 
3293 	bwi_start_locked(sc);
3294 }
3295 
3296 static void
3297 bwi_txeof_status64(struct bwi_softc *sc)
3298 {
3299 	/* TODO:64 */
3300 }
3301 
3302 static void
3303 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3304 {
3305 	struct bwi_txbuf_data *tbd;
3306 	struct bwi_txbuf *tb;
3307 	int ring_idx, buf_idx;
3308 	struct ieee80211_node *ni;
3309 
3310 	if (tx_id == 0) {
3311 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3312 		return;
3313 	}
3314 
3315 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3316 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3317 
3318 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3319 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3320 
3321 	tbd = &sc->sc_tx_bdata[ring_idx];
3322 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3323 	tbd->tbd_used--;
3324 
3325 	tb = &tbd->tbd_buf[buf_idx];
3326 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3327 		"acked %d, data_txcnt %d, ni %p\n",
3328 		buf_idx, acked, data_txcnt, tb->tb_ni);
3329 
3330 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3331 
3332 	if ((ni = tb->tb_ni) != NULL) {
3333 		const struct bwi_txbuf_hdr *hdr =
3334 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3335 		struct ieee80211_ratectl_tx_status txs;
3336 
3337 		/* NB: update rate control only for unicast frames */
3338 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3339 			/*
3340 			 * Feed back 'acked and data_txcnt'.  Note that the
3341 			 * generic AMRR code only understands one tx rate
3342 			 * and the estimator doesn't handle real retry counts
3343 			 * well so to avoid over-aggressive downshifting we
3344 			 * treat any number of retries as "1".
3345 			 */
3346 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3347 			txs.long_retries = acked;
3348 			if (data_txcnt > 1)
3349 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3350 			else {
3351 				txs.status =
3352 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3353 			}
3354 			ieee80211_ratectl_tx_complete(ni, &txs);
3355 		}
3356 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3357 		tb->tb_ni = NULL;
3358 	} else
3359 		m_freem(tb->tb_mbuf);
3360 	tb->tb_mbuf = NULL;
3361 
3362 	if (tbd->tbd_used == 0)
3363 		sc->sc_tx_timer = 0;
3364 }
3365 
3366 static void
3367 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3368 {
3369 	struct bwi_txstats_data *st = sc->sc_txstats;
3370 	int idx;
3371 
3372 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3373 
3374 	idx = st->stats_idx;
3375 	while (idx != end_idx) {
3376 		const struct bwi_txstats *stats = &st->stats[idx];
3377 
3378 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3379 			int data_txcnt;
3380 
3381 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3382 						BWI_TXS_TXCNT_DATA);
3383 			_bwi_txeof(sc, le16toh(stats->txs_id),
3384 				   stats->txs_flags & BWI_TXS_F_ACKED,
3385 				   data_txcnt);
3386 		}
3387 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3388 	}
3389 	st->stats_idx = idx;
3390 }
3391 
3392 static void
3393 bwi_txeof(struct bwi_softc *sc)
3394 {
3395 
3396 	for (;;) {
3397 		uint32_t tx_status0, tx_status1 __unused;
3398 		uint16_t tx_id;
3399 		int data_txcnt;
3400 
3401 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3402 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3403 			break;
3404 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3405 
3406 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3407 		data_txcnt = __SHIFTOUT(tx_status0,
3408 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3409 
3410 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3411 			continue;
3412 
3413 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3414 		    data_txcnt);
3415 	}
3416 
3417 	bwi_start_locked(sc);
3418 }
3419 
3420 static int
3421 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3422 {
3423 	bwi_power_on(sc, 1);
3424 	return bwi_set_clock_mode(sc, clk_mode);
3425 }
3426 
3427 static void
3428 bwi_bbp_power_off(struct bwi_softc *sc)
3429 {
3430 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3431 	bwi_power_off(sc, 1);
3432 }
3433 
3434 static int
3435 bwi_get_pwron_delay(struct bwi_softc *sc)
3436 {
3437 	struct bwi_regwin *com, *old;
3438 	struct bwi_clock_freq freq;
3439 	uint32_t val;
3440 	int error;
3441 
3442 	com = &sc->sc_com_regwin;
3443 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3444 
3445 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3446 		return 0;
3447 
3448 	error = bwi_regwin_switch(sc, com, &old);
3449 	if (error)
3450 		return error;
3451 
3452 	bwi_get_clock_freq(sc, &freq);
3453 
3454 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3455 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3456 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3457 
3458 	return bwi_regwin_switch(sc, old, NULL);
3459 }
3460 
3461 static int
3462 bwi_bus_attach(struct bwi_softc *sc)
3463 {
3464 	struct bwi_regwin *bus, *old;
3465 	int error;
3466 
3467 	bus = &sc->sc_bus_regwin;
3468 
3469 	error = bwi_regwin_switch(sc, bus, &old);
3470 	if (error)
3471 		return error;
3472 
3473 	if (!bwi_regwin_is_enabled(sc, bus))
3474 		bwi_regwin_enable(sc, bus, 0);
3475 
3476 	/* Disable interripts */
3477 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3478 
3479 	return bwi_regwin_switch(sc, old, NULL);
3480 }
3481 
3482 static const char *
3483 bwi_regwin_name(const struct bwi_regwin *rw)
3484 {
3485 	switch (rw->rw_type) {
3486 	case BWI_REGWIN_T_COM:
3487 		return "COM";
3488 	case BWI_REGWIN_T_BUSPCI:
3489 		return "PCI";
3490 	case BWI_REGWIN_T_MAC:
3491 		return "MAC";
3492 	case BWI_REGWIN_T_BUSPCIE:
3493 		return "PCIE";
3494 	}
3495 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3496 	return NULL;
3497 }
3498 
3499 static uint32_t
3500 bwi_regwin_disable_bits(struct bwi_softc *sc)
3501 {
3502 	uint32_t busrev;
3503 
3504 	/* XXX cache this */
3505 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3506 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3507 		"bus rev %u\n", busrev);
3508 
3509 	if (busrev == BWI_BUSREV_0)
3510 		return BWI_STATE_LO_DISABLE1;
3511 	else if (busrev == BWI_BUSREV_1)
3512 		return BWI_STATE_LO_DISABLE2;
3513 	else
3514 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3515 }
3516 
3517 int
3518 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3519 {
3520 	uint32_t val, disable_bits;
3521 
3522 	disable_bits = bwi_regwin_disable_bits(sc);
3523 	val = CSR_READ_4(sc, BWI_STATE_LO);
3524 
3525 	if ((val & (BWI_STATE_LO_CLOCK |
3526 		    BWI_STATE_LO_RESET |
3527 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3528 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3529 			bwi_regwin_name(rw));
3530 		return 1;
3531 	} else {
3532 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3533 			bwi_regwin_name(rw));
3534 		return 0;
3535 	}
3536 }
3537 
3538 void
3539 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3540 {
3541 	uint32_t state_lo, disable_bits;
3542 	int i;
3543 
3544 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3545 
3546 	/*
3547 	 * If current regwin is in 'reset' state, it was already disabled.
3548 	 */
3549 	if (state_lo & BWI_STATE_LO_RESET) {
3550 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3551 			"%s was already disabled\n", bwi_regwin_name(rw));
3552 		return;
3553 	}
3554 
3555 	disable_bits = bwi_regwin_disable_bits(sc);
3556 
3557 	/*
3558 	 * Disable normal clock
3559 	 */
3560 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3561 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3562 
3563 	/*
3564 	 * Wait until normal clock is disabled
3565 	 */
3566 #define NRETRY	1000
3567 	for (i = 0; i < NRETRY; ++i) {
3568 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3569 		if (state_lo & disable_bits)
3570 			break;
3571 		DELAY(10);
3572 	}
3573 	if (i == NRETRY) {
3574 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3575 			      bwi_regwin_name(rw));
3576 	}
3577 
3578 	for (i = 0; i < NRETRY; ++i) {
3579 		uint32_t state_hi;
3580 
3581 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3582 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3583 			break;
3584 		DELAY(10);
3585 	}
3586 	if (i == NRETRY) {
3587 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3588 			      bwi_regwin_name(rw));
3589 	}
3590 #undef NRETRY
3591 
3592 	/*
3593 	 * Reset and disable regwin with gated clock
3594 	 */
3595 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3596 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3597 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3598 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3599 
3600 	/* Flush pending bus write */
3601 	CSR_READ_4(sc, BWI_STATE_LO);
3602 	DELAY(1);
3603 
3604 	/* Reset and disable regwin */
3605 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3606 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3607 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3608 
3609 	/* Flush pending bus write */
3610 	CSR_READ_4(sc, BWI_STATE_LO);
3611 	DELAY(1);
3612 }
3613 
3614 void
3615 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3616 {
3617 	uint32_t state_lo, state_hi, imstate;
3618 
3619 	bwi_regwin_disable(sc, rw, flags);
3620 
3621 	/* Reset regwin with gated clock */
3622 	state_lo = BWI_STATE_LO_RESET |
3623 		   BWI_STATE_LO_CLOCK |
3624 		   BWI_STATE_LO_GATED_CLOCK |
3625 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3626 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3627 
3628 	/* Flush pending bus write */
3629 	CSR_READ_4(sc, BWI_STATE_LO);
3630 	DELAY(1);
3631 
3632 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3633 	if (state_hi & BWI_STATE_HI_SERROR)
3634 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3635 
3636 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3637 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3638 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3639 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3640 	}
3641 
3642 	/* Enable regwin with gated clock */
3643 	state_lo = BWI_STATE_LO_CLOCK |
3644 		   BWI_STATE_LO_GATED_CLOCK |
3645 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3646 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3647 
3648 	/* Flush pending bus write */
3649 	CSR_READ_4(sc, BWI_STATE_LO);
3650 	DELAY(1);
3651 
3652 	/* Enable regwin with normal clock */
3653 	state_lo = BWI_STATE_LO_CLOCK |
3654 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3655 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3656 
3657 	/* Flush pending bus write */
3658 	CSR_READ_4(sc, BWI_STATE_LO);
3659 	DELAY(1);
3660 }
3661 
3662 static void
3663 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3664 {
3665 	struct bwi_mac *mac;
3666 	struct bwi_myaddr_bssid buf;
3667 	const uint8_t *p;
3668 	uint32_t val;
3669 	int n, i;
3670 
3671 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3672 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3673 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3674 
3675 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3676 
3677 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3678 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3679 
3680 	n = sizeof(buf) / sizeof(val);
3681 	p = (const uint8_t *)&buf;
3682 	for (i = 0; i < n; ++i) {
3683 		int j;
3684 
3685 		val = 0;
3686 		for (j = 0; j < sizeof(val); ++j)
3687 			val |= ((uint32_t)(*p++)) << (j * 8);
3688 
3689 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3690 	}
3691 }
3692 
3693 static void
3694 bwi_updateslot(struct ieee80211com *ic)
3695 {
3696 	struct bwi_softc *sc = ic->ic_softc;
3697 	struct bwi_mac *mac;
3698 
3699 	BWI_LOCK(sc);
3700 	if (sc->sc_flags & BWI_F_RUNNING) {
3701 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3702 
3703 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3704 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3705 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3706 
3707 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3708 	}
3709 	BWI_UNLOCK(sc);
3710 }
3711 
3712 static void
3713 bwi_calibrate(void *xsc)
3714 {
3715 	struct bwi_softc *sc = xsc;
3716 	struct bwi_mac *mac;
3717 
3718 	BWI_ASSERT_LOCKED(sc);
3719 
3720 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3721 	    ("opmode %d", sc->sc_ic.ic_opmode));
3722 
3723 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3724 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3725 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3726 
3727 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3728 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3729 
3730 	/* XXX 15 seconds */
3731 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3732 }
3733 
3734 static int
3735 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3736 {
3737 	struct bwi_mac *mac;
3738 
3739 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3740 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3741 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3742 
3743 	return bwi_rf_calc_rssi(mac, hdr);
3744 }
3745 
3746 static int
3747 bwi_calc_noise(struct bwi_softc *sc)
3748 {
3749 	struct bwi_mac *mac;
3750 
3751 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3752 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3753 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3754 
3755 	return bwi_rf_calc_noise(mac);
3756 }
3757 
3758 static __inline uint8_t
3759 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3760 {
3761 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3762 	return (ieee80211_plcp2rate(plcp, type));
3763 }
3764 
3765 static void
3766 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3767     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3768 {
3769 	const struct ieee80211_frame_min *wh;
3770 
3771 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3772 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3773 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3774 
3775 	wh = mtod(m, const struct ieee80211_frame_min *);
3776 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3777 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3778 
3779 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3780 	sc->sc_rx_th.wr_rate = rate;
3781 	sc->sc_rx_th.wr_antsignal = rssi;
3782 	sc->sc_rx_th.wr_antnoise = noise;
3783 }
3784 
3785 static void
3786 bwi_led_attach(struct bwi_softc *sc)
3787 {
3788 	const uint8_t *led_act = NULL;
3789 	uint16_t gpio, val[BWI_LED_MAX];
3790 	int i;
3791 
3792 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3793 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3794 			led_act = bwi_vendor_led_act[i].led_act;
3795 			break;
3796 		}
3797 	}
3798 	if (led_act == NULL)
3799 		led_act = bwi_default_led_act;
3800 
3801 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3802 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3803 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3804 
3805 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3806 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3807 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3808 
3809 	for (i = 0; i < BWI_LED_MAX; ++i) {
3810 		struct bwi_led *led = &sc->sc_leds[i];
3811 
3812 		if (val[i] == 0xff) {
3813 			led->l_act = led_act[i];
3814 		} else {
3815 			if (val[i] & BWI_LED_ACT_LOW)
3816 				led->l_flags |= BWI_LED_F_ACTLOW;
3817 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3818 		}
3819 		led->l_mask = (1 << i);
3820 
3821 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3822 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3823 		    led->l_act == BWI_LED_ACT_BLINK) {
3824 			led->l_flags |= BWI_LED_F_BLINK;
3825 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3826 				led->l_flags |= BWI_LED_F_POLLABLE;
3827 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3828 				led->l_flags |= BWI_LED_F_SLOW;
3829 
3830 			if (sc->sc_blink_led == NULL) {
3831 				sc->sc_blink_led = led;
3832 				if (led->l_flags & BWI_LED_F_SLOW)
3833 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3834 			}
3835 		}
3836 
3837 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3838 			"%dth led, act %d, lowact %d\n", i,
3839 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3840 	}
3841 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3842 }
3843 
3844 static __inline uint16_t
3845 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3846 {
3847 	if (led->l_flags & BWI_LED_F_ACTLOW)
3848 		on = !on;
3849 	if (on)
3850 		val |= led->l_mask;
3851 	else
3852 		val &= ~led->l_mask;
3853 	return val;
3854 }
3855 
3856 static void
3857 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3858 {
3859 	struct ieee80211com *ic = &sc->sc_ic;
3860 	uint16_t val;
3861 	int i;
3862 
3863 	if (nstate == IEEE80211_S_INIT) {
3864 		callout_stop(&sc->sc_led_blink_ch);
3865 		sc->sc_led_blinking = 0;
3866 	}
3867 
3868 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3869 		return;
3870 
3871 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3872 	for (i = 0; i < BWI_LED_MAX; ++i) {
3873 		struct bwi_led *led = &sc->sc_leds[i];
3874 		int on;
3875 
3876 		if (led->l_act == BWI_LED_ACT_UNKN ||
3877 		    led->l_act == BWI_LED_ACT_NULL)
3878 			continue;
3879 
3880 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3881 		    nstate != IEEE80211_S_INIT)
3882 		    	continue;
3883 
3884 		switch (led->l_act) {
3885 		case BWI_LED_ACT_ON:	/* Always on */
3886 			on = 1;
3887 			break;
3888 		case BWI_LED_ACT_OFF:	/* Always off */
3889 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3890 			on = 0;
3891 			break;
3892 		default:
3893 			on = 1;
3894 			switch (nstate) {
3895 			case IEEE80211_S_INIT:
3896 				on = 0;
3897 				break;
3898 			case IEEE80211_S_RUN:
3899 				if (led->l_act == BWI_LED_ACT_11G &&
3900 				    ic->ic_curmode != IEEE80211_MODE_11G)
3901 					on = 0;
3902 				break;
3903 			default:
3904 				if (led->l_act == BWI_LED_ACT_ASSOC)
3905 					on = 0;
3906 				break;
3907 			}
3908 			break;
3909 		}
3910 
3911 		val = bwi_led_onoff(led, val, on);
3912 	}
3913 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3914 }
3915 static void
3916 bwi_led_event(struct bwi_softc *sc, int event)
3917 {
3918 	struct bwi_led *led = sc->sc_blink_led;
3919 	int rate;
3920 
3921 	if (event == BWI_LED_EVENT_POLL) {
3922 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3923 			return;
3924 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3925 			return;
3926 	}
3927 
3928 	sc->sc_led_ticks = ticks;
3929 	if (sc->sc_led_blinking)
3930 		return;
3931 
3932 	switch (event) {
3933 	case BWI_LED_EVENT_RX:
3934 		rate = sc->sc_rx_rate;
3935 		break;
3936 	case BWI_LED_EVENT_TX:
3937 		rate = sc->sc_tx_rate;
3938 		break;
3939 	case BWI_LED_EVENT_POLL:
3940 		rate = 0;
3941 		break;
3942 	default:
3943 		panic("unknown LED event %d\n", event);
3944 		break;
3945 	}
3946 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3947 	    bwi_led_duration[rate].off_dur);
3948 }
3949 
3950 static void
3951 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3952 {
3953 	struct bwi_led *led = sc->sc_blink_led;
3954 	uint16_t val;
3955 
3956 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3957 	val = bwi_led_onoff(led, val, 1);
3958 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3959 
3960 	if (led->l_flags & BWI_LED_F_SLOW) {
3961 		BWI_LED_SLOWDOWN(on_dur);
3962 		BWI_LED_SLOWDOWN(off_dur);
3963 	}
3964 
3965 	sc->sc_led_blinking = 1;
3966 	sc->sc_led_blink_offdur = off_dur;
3967 
3968 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3969 }
3970 
3971 static void
3972 bwi_led_blink_next(void *xsc)
3973 {
3974 	struct bwi_softc *sc = xsc;
3975 	uint16_t val;
3976 
3977 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3978 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3979 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3980 
3981 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3982 	    bwi_led_blink_end, sc);
3983 }
3984 
3985 static void
3986 bwi_led_blink_end(void *xsc)
3987 {
3988 	struct bwi_softc *sc = xsc;
3989 	sc->sc_led_blinking = 0;
3990 }
3991 
3992 static void
3993 bwi_restart(void *xsc, int pending)
3994 {
3995 	struct bwi_softc *sc = xsc;
3996 
3997 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3998 	BWI_LOCK(sc);
3999 	bwi_init_statechg(sc, 0);
4000 #if 0
4001 	bwi_start_locked(sc);
4002 #endif
4003 	BWI_UNLOCK(sc);
4004 }
4005