xref: /freebsd/sys/dev/bwi/if_bwi.c (revision d1a0d267b78b542fbd7e6553af2493760f49bfa8)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(void *);
106 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
107 static void	bwi_start(struct ifnet *);
108 static void	bwi_start_locked(struct ifnet *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_set_channel(struct ieee80211com *);
114 static void	bwi_scan_end(struct ieee80211com *);
115 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
116 static void	bwi_updateslot(struct ieee80211com *);
117 static int	bwi_media_change(struct ifnet *);
118 
119 static void	bwi_calibrate(void *);
120 
121 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
122 static int	bwi_calc_noise(struct bwi_softc *);
123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
124 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
125 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
126 
127 static void	bwi_restart(void *, int);
128 static void	bwi_init_statechg(struct bwi_softc *, int);
129 static void	bwi_stop(struct bwi_softc *, int);
130 static void	bwi_stop_locked(struct bwi_softc *, int);
131 static int	bwi_newbuf(struct bwi_softc *, int, int);
132 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *);
134 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *,
136 			  const struct ieee80211_bpf_params *);
137 
138 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
139 				       bus_addr_t, int, int);
140 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
141 
142 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
143 static int	bwi_init_rx_ring32(struct bwi_softc *);
144 static int	bwi_init_txstats32(struct bwi_softc *);
145 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
146 static void	bwi_free_rx_ring32(struct bwi_softc *);
147 static void	bwi_free_txstats32(struct bwi_softc *);
148 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
149 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
150 				    int, bus_addr_t, int);
151 static int	bwi_rxeof32(struct bwi_softc *);
152 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
153 static void	bwi_txeof_status32(struct bwi_softc *);
154 
155 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
156 static int	bwi_init_rx_ring64(struct bwi_softc *);
157 static int	bwi_init_txstats64(struct bwi_softc *);
158 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
159 static void	bwi_free_rx_ring64(struct bwi_softc *);
160 static void	bwi_free_txstats64(struct bwi_softc *);
161 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
162 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
163 				    int, bus_addr_t, int);
164 static int	bwi_rxeof64(struct bwi_softc *);
165 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
166 static void	bwi_txeof_status64(struct bwi_softc *);
167 
168 static int	bwi_rxeof(struct bwi_softc *, int);
169 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
170 static void	bwi_txeof(struct bwi_softc *);
171 static void	bwi_txeof_status(struct bwi_softc *, int);
172 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
173 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
174 
175 static int	bwi_dma_alloc(struct bwi_softc *);
176 static void	bwi_dma_free(struct bwi_softc *);
177 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
178 				   struct bwi_ring_data *, bus_size_t,
179 				   uint32_t);
180 static int	bwi_dma_mbuf_create(struct bwi_softc *);
181 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
182 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
183 static void	bwi_dma_txstats_free(struct bwi_softc *);
184 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
185 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
186 				 bus_size_t, int);
187 
188 static void	bwi_power_on(struct bwi_softc *, int);
189 static int	bwi_power_off(struct bwi_softc *, int);
190 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
191 static int	bwi_set_clock_delay(struct bwi_softc *);
192 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
193 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
194 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
195 				    const uint8_t *);
196 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
197 
198 static void	bwi_get_card_flags(struct bwi_softc *);
199 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
200 
201 static int	bwi_bus_attach(struct bwi_softc *);
202 static int	bwi_bbp_attach(struct bwi_softc *);
203 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
204 static void	bwi_bbp_power_off(struct bwi_softc *);
205 
206 static const char *bwi_regwin_name(const struct bwi_regwin *);
207 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
208 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
209 static int	bwi_regwin_select(struct bwi_softc *, int);
210 
211 static void	bwi_led_attach(struct bwi_softc *);
212 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
213 static void	bwi_led_event(struct bwi_softc *, int);
214 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
215 static void	bwi_led_blink_next(void *);
216 static void	bwi_led_blink_end(void *);
217 
218 static const struct {
219 	uint16_t	did_min;
220 	uint16_t	did_max;
221 	uint16_t	bbp_id;
222 } bwi_bbpid_map[] = {
223 	{ 0x4301, 0x4301, 0x4301 },
224 	{ 0x4305, 0x4307, 0x4307 },
225 	{ 0x4402, 0x4403, 0x4402 },
226 	{ 0x4610, 0x4615, 0x4610 },
227 	{ 0x4710, 0x4715, 0x4710 },
228 	{ 0x4720, 0x4725, 0x4309 }
229 };
230 
231 static const struct {
232 	uint16_t	bbp_id;
233 	int		nregwin;
234 } bwi_regwin_count[] = {
235 	{ 0x4301, 5 },
236 	{ 0x4306, 6 },
237 	{ 0x4307, 5 },
238 	{ 0x4310, 8 },
239 	{ 0x4401, 3 },
240 	{ 0x4402, 3 },
241 	{ 0x4610, 9 },
242 	{ 0x4704, 9 },
243 	{ 0x4710, 9 },
244 	{ 0x5365, 7 }
245 };
246 
247 #define CLKSRC(src) 				\
248 [BWI_CLKSRC_ ## src] = {			\
249 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
250 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
251 }
252 
253 static const struct {
254 	u_int	freq_min;
255 	u_int	freq_max;
256 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
257 	CLKSRC(LP_OSC),
258 	CLKSRC(CS_OSC),
259 	CLKSRC(PCI)
260 };
261 
262 #undef CLKSRC
263 
264 #define VENDOR_LED_ACT(vendor)				\
265 {							\
266 	.vid = PCI_VENDOR_##vendor,			\
267 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
268 }
269 
270 static const struct {
271 #define	PCI_VENDOR_COMPAQ	0x0e11
272 #define	PCI_VENDOR_LINKSYS	0x1737
273 	uint16_t	vid;
274 	uint8_t		led_act[BWI_LED_MAX];
275 } bwi_vendor_led_act[] = {
276 	VENDOR_LED_ACT(COMPAQ),
277 	VENDOR_LED_ACT(LINKSYS)
278 #undef PCI_VENDOR_LINKSYS
279 #undef PCI_VENDOR_COMPAQ
280 };
281 
282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
283 	{ BWI_VENDOR_LED_ACT_DEFAULT };
284 
285 #undef VENDOR_LED_ACT
286 
287 static const struct {
288 	int	on_dur;
289 	int	off_dur;
290 } bwi_led_duration[109] = {
291 	[0]	= { 400, 100 },
292 	[2]	= { 150, 75 },
293 	[4]	= { 90, 45 },
294 	[11]	= { 66, 34 },
295 	[12]	= { 53, 26 },
296 	[18]	= { 42, 21 },
297 	[22]	= { 35, 17 },
298 	[24]	= { 32, 16 },
299 	[36]	= { 21, 10 },
300 	[48]	= { 16, 8 },
301 	[72]	= { 11, 5 },
302 	[96]	= { 9, 4 },
303 	[108]	= { 7, 3 }
304 };
305 
306 #ifdef BWI_DEBUG
307 #ifdef BWI_DEBUG_VERBOSE
308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
309 #else
310 static uint32_t	bwi_debug;
311 #endif
312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
313 #endif	/* BWI_DEBUG */
314 
315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
316 
317 uint16_t
318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
319 {
320 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
321 }
322 
323 static __inline void
324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
325 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
326 		 int tx)
327 {
328 	struct bwi_desc32 *desc = &desc_array[desc_idx];
329 	uint32_t ctrl, addr, addr_hi, addr_lo;
330 
331 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
332 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
333 
334 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
335 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
336 
337 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
338 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
339 	if (desc_idx == ndesc - 1)
340 		ctrl |= BWI_DESC32_C_EOR;
341 	if (tx) {
342 		/* XXX */
343 		ctrl |= BWI_DESC32_C_FRAME_START |
344 			BWI_DESC32_C_FRAME_END |
345 			BWI_DESC32_C_INTR;
346 	}
347 
348 	desc->addr = htole32(addr);
349 	desc->ctrl = htole32(ctrl);
350 }
351 
352 int
353 bwi_attach(struct bwi_softc *sc)
354 {
355 	struct ieee80211com *ic;
356 	device_t dev = sc->sc_dev;
357 	struct ifnet *ifp;
358 	struct bwi_mac *mac;
359 	struct bwi_phy *phy;
360 	int i, error;
361 	uint8_t bands;
362 	uint8_t macaddr[IEEE80211_ADDR_LEN];
363 
364 	BWI_LOCK_INIT(sc);
365 
366 	/*
367 	 * Initialize taskq and various tasks
368 	 */
369 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
370 		taskqueue_thread_enqueue, &sc->sc_tq);
371 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
372 		device_get_nameunit(dev));
373 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
374 
375 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
376 
377 	/*
378 	 * Initialize sysctl variables
379 	 */
380 	sc->sc_fw_version = BWI_FW_VERSION3;
381 	sc->sc_led_idle = (2350 * hz) / 1000;
382 	sc->sc_led_blink = 1;
383 	sc->sc_txpwr_calib = 1;
384 #ifdef BWI_DEBUG
385 	sc->sc_debug = bwi_debug;
386 #endif
387 	bwi_power_on(sc, 1);
388 
389 	error = bwi_bbp_attach(sc);
390 	if (error)
391 		goto fail;
392 
393 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
394 	if (error)
395 		goto fail;
396 
397 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
398 		error = bwi_set_clock_delay(sc);
399 		if (error)
400 			goto fail;
401 
402 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
403 		if (error)
404 			goto fail;
405 
406 		error = bwi_get_pwron_delay(sc);
407 		if (error)
408 			goto fail;
409 	}
410 
411 	error = bwi_bus_attach(sc);
412 	if (error)
413 		goto fail;
414 
415 	bwi_get_card_flags(sc);
416 
417 	bwi_led_attach(sc);
418 
419 	for (i = 0; i < sc->sc_nmac; ++i) {
420 		struct bwi_regwin *old;
421 
422 		mac = &sc->sc_mac[i];
423 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
424 		if (error)
425 			goto fail;
426 
427 		error = bwi_mac_lateattach(mac);
428 		if (error)
429 			goto fail;
430 
431 		error = bwi_regwin_switch(sc, old, NULL);
432 		if (error)
433 			goto fail;
434 	}
435 
436 	/*
437 	 * XXX First MAC is known to exist
438 	 * TODO2
439 	 */
440 	mac = &sc->sc_mac[0];
441 	phy = &mac->mac_phy;
442 
443 	bwi_bbp_power_off(sc);
444 
445 	error = bwi_dma_alloc(sc);
446 	if (error)
447 		goto fail;
448 
449 	error = bwi_mac_fw_alloc(mac);
450 	if (error)
451 		goto fail;
452 
453 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
454 	if (ifp == NULL) {
455 		device_printf(dev, "can not if_alloc()\n");
456 		error = ENOSPC;
457 		goto fail;
458 	}
459 	ic = ifp->if_l2com;
460 
461 	/* set these up early for if_printf use */
462 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
463 
464 	ifp->if_softc = sc;
465 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
466 	ifp->if_init = bwi_init;
467 	ifp->if_ioctl = bwi_ioctl;
468 	ifp->if_start = bwi_start;
469 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
470 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
471 	IFQ_SET_READY(&ifp->if_snd);
472 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
473 
474 	/*
475 	 * Setup ratesets, phytype, channels and get MAC address
476 	 */
477 	bands = 0;
478 	if (phy->phy_mode == IEEE80211_MODE_11B ||
479 	    phy->phy_mode == IEEE80211_MODE_11G) {
480 		setbit(&bands, IEEE80211_MODE_11B);
481 		if (phy->phy_mode == IEEE80211_MODE_11B) {
482 			ic->ic_phytype = IEEE80211_T_DS;
483 		} else {
484 			ic->ic_phytype = IEEE80211_T_OFDM;
485 			setbit(&bands, IEEE80211_MODE_11G);
486 		}
487 
488 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
489 		if (IEEE80211_IS_MULTICAST(macaddr)) {
490 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
491 			if (IEEE80211_IS_MULTICAST(macaddr)) {
492 				device_printf(dev,
493 				    "invalid MAC address: %6D\n",
494 				    macaddr, ":");
495 			}
496 		}
497 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
498 		/* TODO:11A */
499 		setbit(&bands, IEEE80211_MODE_11A);
500 		error = ENXIO;
501 		goto fail;
502 	} else {
503 		panic("unknown phymode %d\n", phy->phy_mode);
504 	}
505 
506 	/* Get locale */
507 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
508 				   BWI_SPROM_CARD_INFO_LOCALE);
509 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
510 	/* XXX use locale */
511 	ieee80211_init_channels(ic, NULL, &bands);
512 
513 	ic->ic_ifp = ifp;
514 	ic->ic_softc = sc;
515 	ic->ic_name = device_get_nameunit(dev);
516 	ic->ic_caps = IEEE80211_C_STA |
517 		      IEEE80211_C_SHSLOT |
518 		      IEEE80211_C_SHPREAMBLE |
519 		      IEEE80211_C_WPA |
520 		      IEEE80211_C_BGSCAN |
521 		      IEEE80211_C_MONITOR;
522 	ic->ic_opmode = IEEE80211_M_STA;
523 	ieee80211_ifattach(ic, macaddr);
524 
525 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
526 
527 	/* override default methods */
528 	ic->ic_vap_create = bwi_vap_create;
529 	ic->ic_vap_delete = bwi_vap_delete;
530 	ic->ic_raw_xmit = bwi_raw_xmit;
531 	ic->ic_updateslot = bwi_updateslot;
532 	ic->ic_scan_start = bwi_scan_start;
533 	ic->ic_scan_end = bwi_scan_end;
534 	ic->ic_set_channel = bwi_set_channel;
535 
536 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
537 
538 	ieee80211_radiotap_attach(ic,
539 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
540 		BWI_TX_RADIOTAP_PRESENT,
541 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
542 		BWI_RX_RADIOTAP_PRESENT);
543 
544 	/*
545 	 * Add sysctl nodes
546 	 */
547 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
548 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
549 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
550 		        "Firmware version");
551 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
552 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
553 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
554 		        "# ticks before LED enters idle state");
555 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
556 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
557 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
558 		       "Allow LED to blink");
559 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
560 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
561 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
562 		       "Enable software TX power calibration");
563 #ifdef BWI_DEBUG
564 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
565 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
566 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
567 #endif
568 	if (bootverbose)
569 		ieee80211_announce(ic);
570 
571 	return (0);
572 fail:
573 	BWI_LOCK_DESTROY(sc);
574 	return (error);
575 }
576 
577 int
578 bwi_detach(struct bwi_softc *sc)
579 {
580 	struct ifnet *ifp = sc->sc_ifp;
581 	struct ieee80211com *ic = ifp->if_l2com;
582 	int i;
583 
584 	bwi_stop(sc, 1);
585 	callout_drain(&sc->sc_led_blink_ch);
586 	callout_drain(&sc->sc_calib_ch);
587 	callout_drain(&sc->sc_watchdog_timer);
588 	ieee80211_ifdetach(ic);
589 
590 	for (i = 0; i < sc->sc_nmac; ++i)
591 		bwi_mac_detach(&sc->sc_mac[i]);
592 	bwi_dma_free(sc);
593 	if_free(ifp);
594 	taskqueue_free(sc->sc_tq);
595 
596 	BWI_LOCK_DESTROY(sc);
597 
598 	return (0);
599 }
600 
601 static struct ieee80211vap *
602 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
603     enum ieee80211_opmode opmode, int flags,
604     const uint8_t bssid[IEEE80211_ADDR_LEN],
605     const uint8_t mac[IEEE80211_ADDR_LEN])
606 {
607 	struct bwi_vap *bvp;
608 	struct ieee80211vap *vap;
609 
610 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
611 		return NULL;
612 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
613 	    M_80211_VAP, M_WAITOK | M_ZERO);
614 	if (bvp == NULL)
615 		return NULL;
616 	vap = &bvp->bv_vap;
617 	/* enable s/w bmiss handling for sta mode */
618 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
619 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
620 
621 	/* override default methods */
622 	bvp->bv_newstate = vap->iv_newstate;
623 	vap->iv_newstate = bwi_newstate;
624 #if 0
625 	vap->iv_update_beacon = bwi_beacon_update;
626 #endif
627 	ieee80211_ratectl_init(vap);
628 
629 	/* complete setup */
630 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
631 	ic->ic_opmode = opmode;
632 	return vap;
633 }
634 
635 static void
636 bwi_vap_delete(struct ieee80211vap *vap)
637 {
638 	struct bwi_vap *bvp = BWI_VAP(vap);
639 
640 	ieee80211_ratectl_deinit(vap);
641 	ieee80211_vap_detach(vap);
642 	free(bvp, M_80211_VAP);
643 }
644 
645 void
646 bwi_suspend(struct bwi_softc *sc)
647 {
648 	bwi_stop(sc, 1);
649 }
650 
651 void
652 bwi_resume(struct bwi_softc *sc)
653 {
654 	struct ifnet *ifp = sc->sc_ifp;
655 
656 	if (ifp->if_flags & IFF_UP)
657 		bwi_init(sc);
658 }
659 
660 int
661 bwi_shutdown(struct bwi_softc *sc)
662 {
663 	bwi_stop(sc, 1);
664 	return 0;
665 }
666 
667 static void
668 bwi_power_on(struct bwi_softc *sc, int with_pll)
669 {
670 	uint32_t gpio_in, gpio_out, gpio_en;
671 	uint16_t status;
672 
673 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
674 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
675 		goto back;
676 
677 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
678 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
679 
680 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
681 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
682 	if (with_pll) {
683 		/* Turn off PLL first */
684 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
685 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
686 	}
687 
688 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
689 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
690 	DELAY(1000);
691 
692 	if (with_pll) {
693 		/* Turn on PLL */
694 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
695 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
696 		DELAY(5000);
697 	}
698 
699 back:
700 	/* Clear "Signaled Target Abort" */
701 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
702 	status &= ~PCIM_STATUS_STABORT;
703 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
704 }
705 
706 static int
707 bwi_power_off(struct bwi_softc *sc, int with_pll)
708 {
709 	uint32_t gpio_out, gpio_en;
710 
711 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
712 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
713 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
714 
715 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
716 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
717 	if (with_pll) {
718 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
719 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
720 	}
721 
722 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
723 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
724 	return 0;
725 }
726 
727 int
728 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
729 		  struct bwi_regwin **old_rw)
730 {
731 	int error;
732 
733 	if (old_rw != NULL)
734 		*old_rw = NULL;
735 
736 	if (!BWI_REGWIN_EXIST(rw))
737 		return EINVAL;
738 
739 	if (sc->sc_cur_regwin != rw) {
740 		error = bwi_regwin_select(sc, rw->rw_id);
741 		if (error) {
742 			device_printf(sc->sc_dev, "can't select regwin %d\n",
743 				  rw->rw_id);
744 			return error;
745 		}
746 	}
747 
748 	if (old_rw != NULL)
749 		*old_rw = sc->sc_cur_regwin;
750 	sc->sc_cur_regwin = rw;
751 	return 0;
752 }
753 
754 static int
755 bwi_regwin_select(struct bwi_softc *sc, int id)
756 {
757 	uint32_t win = BWI_PCIM_REGWIN(id);
758 	int i;
759 
760 #define RETRY_MAX	50
761 	for (i = 0; i < RETRY_MAX; ++i) {
762 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
763 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
764 			return 0;
765 		DELAY(10);
766 	}
767 #undef RETRY_MAX
768 
769 	return ENXIO;
770 }
771 
772 static void
773 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
774 {
775 	uint32_t val;
776 
777 	val = CSR_READ_4(sc, BWI_ID_HI);
778 	*type = BWI_ID_HI_REGWIN_TYPE(val);
779 	*rev = BWI_ID_HI_REGWIN_REV(val);
780 
781 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
782 		"vendor 0x%04x\n", *type, *rev,
783 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
784 }
785 
786 static int
787 bwi_bbp_attach(struct bwi_softc *sc)
788 {
789 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
790 	uint16_t bbp_id, rw_type;
791 	uint8_t rw_rev;
792 	uint32_t info;
793 	int error, nregwin, i;
794 
795 	/*
796 	 * Get 0th regwin information
797 	 * NOTE: 0th regwin should exist
798 	 */
799 	error = bwi_regwin_select(sc, 0);
800 	if (error) {
801 		device_printf(sc->sc_dev, "can't select regwin 0\n");
802 		return error;
803 	}
804 	bwi_regwin_info(sc, &rw_type, &rw_rev);
805 
806 	/*
807 	 * Find out BBP id
808 	 */
809 	bbp_id = 0;
810 	info = 0;
811 	if (rw_type == BWI_REGWIN_T_COM) {
812 		info = CSR_READ_4(sc, BWI_INFO);
813 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
814 
815 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
816 
817 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
818 	} else {
819 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
820 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
821 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
822 				bbp_id = bwi_bbpid_map[i].bbp_id;
823 				break;
824 			}
825 		}
826 		if (bbp_id == 0) {
827 			device_printf(sc->sc_dev, "no BBP id for device id "
828 				      "0x%04x\n", sc->sc_pci_did);
829 			return ENXIO;
830 		}
831 
832 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
833 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
834 	}
835 
836 	/*
837 	 * Find out number of regwins
838 	 */
839 	nregwin = 0;
840 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
841 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
842 	} else {
843 		for (i = 0; i < N(bwi_regwin_count); ++i) {
844 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
845 				nregwin = bwi_regwin_count[i].nregwin;
846 				break;
847 			}
848 		}
849 		if (nregwin == 0) {
850 			device_printf(sc->sc_dev, "no number of win for "
851 				      "BBP id 0x%04x\n", bbp_id);
852 			return ENXIO;
853 		}
854 	}
855 
856 	/* Record BBP id/rev for later using */
857 	sc->sc_bbp_id = bbp_id;
858 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
859 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
860 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
861 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
862 
863 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
864 		nregwin, sc->sc_cap);
865 
866 	/*
867 	 * Create rest of the regwins
868 	 */
869 
870 	/* Don't re-create common regwin, if it is already created */
871 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
872 
873 	for (; i < nregwin; ++i) {
874 		/*
875 		 * Get regwin information
876 		 */
877 		error = bwi_regwin_select(sc, i);
878 		if (error) {
879 			device_printf(sc->sc_dev,
880 				      "can't select regwin %d\n", i);
881 			return error;
882 		}
883 		bwi_regwin_info(sc, &rw_type, &rw_rev);
884 
885 		/*
886 		 * Try attach:
887 		 * 1) Bus (PCI/PCIE) regwin
888 		 * 2) MAC regwin
889 		 * Ignore rest types of regwin
890 		 */
891 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
892 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
893 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
894 				device_printf(sc->sc_dev,
895 					      "bus regwin already exists\n");
896 			} else {
897 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
898 						  rw_type, rw_rev);
899 			}
900 		} else if (rw_type == BWI_REGWIN_T_MAC) {
901 			/* XXX ignore return value */
902 			bwi_mac_attach(sc, i, rw_rev);
903 		}
904 	}
905 
906 	/* At least one MAC shold exist */
907 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
908 		device_printf(sc->sc_dev, "no MAC was found\n");
909 		return ENXIO;
910 	}
911 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
912 
913 	/* Bus regwin must exist */
914 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
915 		device_printf(sc->sc_dev, "no bus regwin was found\n");
916 		return ENXIO;
917 	}
918 
919 	/* Start with first MAC */
920 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
921 	if (error)
922 		return error;
923 
924 	return 0;
925 #undef N
926 }
927 
928 int
929 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
930 {
931 	struct bwi_regwin *old, *bus;
932 	uint32_t val;
933 	int error;
934 
935 	bus = &sc->sc_bus_regwin;
936 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
937 
938 	/*
939 	 * Tell bus to generate requested interrupts
940 	 */
941 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
942 		/*
943 		 * NOTE: Read BWI_FLAGS from MAC regwin
944 		 */
945 		val = CSR_READ_4(sc, BWI_FLAGS);
946 
947 		error = bwi_regwin_switch(sc, bus, &old);
948 		if (error)
949 			return error;
950 
951 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
952 	} else {
953 		uint32_t mac_mask;
954 
955 		mac_mask = 1 << mac->mac_id;
956 
957 		error = bwi_regwin_switch(sc, bus, &old);
958 		if (error)
959 			return error;
960 
961 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
962 		val |= mac_mask << 8;
963 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
964 	}
965 
966 	if (sc->sc_flags & BWI_F_BUS_INITED)
967 		goto back;
968 
969 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
970 		/*
971 		 * Enable prefetch and burst
972 		 */
973 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
974 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
975 
976 		if (bus->rw_rev < 5) {
977 			struct bwi_regwin *com = &sc->sc_com_regwin;
978 
979 			/*
980 			 * Configure timeouts for bus operation
981 			 */
982 
983 			/*
984 			 * Set service timeout and request timeout
985 			 */
986 			CSR_SETBITS_4(sc, BWI_CONF_LO,
987 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
988 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
989 
990 			/*
991 			 * If there is common regwin, we switch to that regwin
992 			 * and switch back to bus regwin once we have done.
993 			 */
994 			if (BWI_REGWIN_EXIST(com)) {
995 				error = bwi_regwin_switch(sc, com, NULL);
996 				if (error)
997 					return error;
998 			}
999 
1000 			/* Let bus know what we have changed */
1001 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
1002 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
1003 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
1004 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
1005 
1006 			if (BWI_REGWIN_EXIST(com)) {
1007 				error = bwi_regwin_switch(sc, bus, NULL);
1008 				if (error)
1009 					return error;
1010 			}
1011 		} else if (bus->rw_rev >= 11) {
1012 			/*
1013 			 * Enable memory read multiple
1014 			 */
1015 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1016 		}
1017 	} else {
1018 		/* TODO:PCIE */
1019 	}
1020 
1021 	sc->sc_flags |= BWI_F_BUS_INITED;
1022 back:
1023 	return bwi_regwin_switch(sc, old, NULL);
1024 }
1025 
1026 static void
1027 bwi_get_card_flags(struct bwi_softc *sc)
1028 {
1029 #define	PCI_VENDOR_APPLE 0x106b
1030 #define	PCI_VENDOR_DELL  0x1028
1031 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1032 	if (sc->sc_card_flags == 0xffff)
1033 		sc->sc_card_flags = 0;
1034 
1035 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1036 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1037 	    sc->sc_pci_revid == 0x74)
1038 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1039 
1040 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1041 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1042 	    sc->sc_pci_revid > 0x40)
1043 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1044 
1045 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1046 #undef PCI_VENDOR_DELL
1047 #undef PCI_VENDOR_APPLE
1048 }
1049 
1050 static void
1051 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1052 {
1053 	int i;
1054 
1055 	for (i = 0; i < 3; ++i) {
1056 		*((uint16_t *)eaddr + i) =
1057 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1058 	}
1059 }
1060 
1061 static void
1062 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1063 {
1064 	struct bwi_regwin *com;
1065 	uint32_t val;
1066 	u_int div;
1067 	int src;
1068 
1069 	bzero(freq, sizeof(*freq));
1070 	com = &sc->sc_com_regwin;
1071 
1072 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1073 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1074 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1075 
1076 	/*
1077 	 * Calculate clock frequency
1078 	 */
1079 	src = -1;
1080 	div = 0;
1081 	if (com->rw_rev < 6) {
1082 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1083 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1084 			src = BWI_CLKSRC_PCI;
1085 			div = 64;
1086 		} else {
1087 			src = BWI_CLKSRC_CS_OSC;
1088 			div = 32;
1089 		}
1090 	} else if (com->rw_rev < 10) {
1091 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1092 
1093 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1094 		if (src == BWI_CLKSRC_LP_OSC) {
1095 			div = 1;
1096 		} else {
1097 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1098 
1099 			/* Unknown source */
1100 			if (src >= BWI_CLKSRC_MAX)
1101 				src = BWI_CLKSRC_CS_OSC;
1102 		}
1103 	} else {
1104 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1105 
1106 		src = BWI_CLKSRC_CS_OSC;
1107 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1108 	}
1109 
1110 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1111 	KASSERT(div != 0, ("div zero"));
1112 
1113 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1114 		src == BWI_CLKSRC_PCI ? "PCI" :
1115 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1116 
1117 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1118 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1119 
1120 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1121 		freq->clkfreq_min, freq->clkfreq_max);
1122 }
1123 
1124 static int
1125 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1126 {
1127 	struct bwi_regwin *old, *com;
1128 	uint32_t clk_ctrl, clk_src;
1129 	int error, pwr_off = 0;
1130 
1131 	com = &sc->sc_com_regwin;
1132 	if (!BWI_REGWIN_EXIST(com))
1133 		return 0;
1134 
1135 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1136 		return 0;
1137 
1138 	/*
1139 	 * For common regwin whose rev is [6, 10), the chip
1140 	 * must be capable to change clock mode.
1141 	 */
1142 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1143 		return 0;
1144 
1145 	error = bwi_regwin_switch(sc, com, &old);
1146 	if (error)
1147 		return error;
1148 
1149 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1150 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1151 
1152 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1153 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1154 
1155 	switch (clk_mode) {
1156 	case BWI_CLOCK_MODE_FAST:
1157 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1158 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1159 		break;
1160 	case BWI_CLOCK_MODE_SLOW:
1161 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1162 		break;
1163 	case BWI_CLOCK_MODE_DYN:
1164 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1165 			      BWI_CLOCK_CTRL_IGNPLL |
1166 			      BWI_CLOCK_CTRL_NODYN);
1167 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1168 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1169 			pwr_off = 1;
1170 		}
1171 		break;
1172 	}
1173 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1174 
1175 	if (pwr_off)
1176 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1177 
1178 	return bwi_regwin_switch(sc, old, NULL);
1179 }
1180 
1181 static int
1182 bwi_set_clock_delay(struct bwi_softc *sc)
1183 {
1184 	struct bwi_regwin *old, *com;
1185 	int error;
1186 
1187 	com = &sc->sc_com_regwin;
1188 	if (!BWI_REGWIN_EXIST(com))
1189 		return 0;
1190 
1191 	error = bwi_regwin_switch(sc, com, &old);
1192 	if (error)
1193 		return error;
1194 
1195 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1196 		if (sc->sc_bbp_rev == 0)
1197 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1198 		else if (sc->sc_bbp_rev == 1)
1199 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1200 	}
1201 
1202 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1203 		if (com->rw_rev >= 10) {
1204 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1205 		} else {
1206 			struct bwi_clock_freq freq;
1207 
1208 			bwi_get_clock_freq(sc, &freq);
1209 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1210 				howmany(freq.clkfreq_max * 150, 1000000));
1211 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1212 				howmany(freq.clkfreq_max * 15, 1000000));
1213 		}
1214 	}
1215 
1216 	return bwi_regwin_switch(sc, old, NULL);
1217 }
1218 
1219 static void
1220 bwi_init(void *xsc)
1221 {
1222 	struct bwi_softc *sc = xsc;
1223 	struct ifnet *ifp = sc->sc_ifp;
1224 	struct ieee80211com *ic = ifp->if_l2com;
1225 
1226 	BWI_LOCK(sc);
1227 	bwi_init_statechg(sc, 1);
1228 	BWI_UNLOCK(sc);
1229 
1230 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1231 		ieee80211_start_all(ic);		/* start all vap's */
1232 }
1233 
1234 static void
1235 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1236 {
1237 	struct ifnet *ifp = sc->sc_ifp;
1238 	struct bwi_mac *mac;
1239 	int error;
1240 
1241 	bwi_stop_locked(sc, statechg);
1242 
1243 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1244 
1245 	/* TODO: 2 MAC */
1246 
1247 	mac = &sc->sc_mac[0];
1248 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1249 	if (error) {
1250 		if_printf(ifp, "%s: error %d on regwin switch\n",
1251 		    __func__, error);
1252 		goto bad;
1253 	}
1254 	error = bwi_mac_init(mac);
1255 	if (error) {
1256 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1257 		goto bad;
1258 	}
1259 
1260 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1261 
1262 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1263 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1264 
1265 	bwi_mac_reset_hwkeys(mac);
1266 
1267 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1268 		int i;
1269 
1270 #define NRETRY	1000
1271 		/*
1272 		 * Drain any possible pending TX status
1273 		 */
1274 		for (i = 0; i < NRETRY; ++i) {
1275 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1276 			     BWI_TXSTATUS0_VALID) == 0)
1277 				break;
1278 			CSR_READ_4(sc, BWI_TXSTATUS1);
1279 		}
1280 		if (i == NRETRY)
1281 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1282 #undef NRETRY
1283 	}
1284 
1285 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1286 		bwi_mac_updateslot(mac, 1);
1287 
1288 	/* Start MAC */
1289 	error = bwi_mac_start(mac);
1290 	if (error) {
1291 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1292 		goto bad;
1293 	}
1294 
1295 	/* Clear stop flag before enabling interrupt */
1296 	sc->sc_flags &= ~BWI_F_STOP;
1297 
1298 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1299 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1300 
1301 	/* Enable intrs */
1302 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1303 	return;
1304 bad:
1305 	bwi_stop_locked(sc, 1);
1306 }
1307 
1308 static int
1309 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1310 {
1311 #define	IS_RUNNING(ifp) \
1312 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1313 	struct bwi_softc *sc = ifp->if_softc;
1314 	struct ieee80211com *ic = ifp->if_l2com;
1315 	struct ifreq *ifr = (struct ifreq *) data;
1316 	int error = 0, startall = 0;
1317 
1318 	switch (cmd) {
1319 	case SIOCSIFFLAGS:
1320 		BWI_LOCK(sc);
1321 		if (IS_RUNNING(ifp)) {
1322 			struct bwi_mac *mac;
1323 			int promisc = -1;
1324 
1325 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1326 			    ("current regwin type %d",
1327 			    sc->sc_cur_regwin->rw_type));
1328 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1329 
1330 			if ((ifp->if_flags & IFF_PROMISC) &&
1331 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1332 				promisc = 1;
1333 				sc->sc_flags |= BWI_F_PROMISC;
1334 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1335 				   (sc->sc_flags & BWI_F_PROMISC)) {
1336 				promisc = 0;
1337 				sc->sc_flags &= ~BWI_F_PROMISC;
1338 			}
1339 
1340 			if (promisc >= 0)
1341 				bwi_mac_set_promisc(mac, promisc);
1342 		}
1343 
1344 		if (ifp->if_flags & IFF_UP) {
1345 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1346 				bwi_init_statechg(sc, 1);
1347 				startall = 1;
1348 			}
1349 		} else {
1350 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1351 				bwi_stop_locked(sc, 1);
1352 		}
1353 		BWI_UNLOCK(sc);
1354 		if (startall)
1355 			ieee80211_start_all(ic);
1356 		break;
1357 	case SIOCGIFMEDIA:
1358 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1359 		break;
1360 	case SIOCGIFADDR:
1361 		error = ether_ioctl(ifp, cmd, data);
1362 		break;
1363 	default:
1364 		error = EINVAL;
1365 		break;
1366 	}
1367 	return error;
1368 #undef IS_RUNNING
1369 }
1370 
1371 static void
1372 bwi_start(struct ifnet *ifp)
1373 {
1374 	struct bwi_softc *sc = ifp->if_softc;
1375 
1376 	BWI_LOCK(sc);
1377 	bwi_start_locked(ifp);
1378 	BWI_UNLOCK(sc);
1379 }
1380 
1381 static void
1382 bwi_start_locked(struct ifnet *ifp)
1383 {
1384 	struct bwi_softc *sc = ifp->if_softc;
1385 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1386 	struct ieee80211_frame *wh;
1387 	struct ieee80211_node *ni;
1388 	struct ieee80211_key *k;
1389 	struct mbuf *m;
1390 	int trans, idx;
1391 
1392 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1393 		return;
1394 
1395 	trans = 0;
1396 	idx = tbd->tbd_idx;
1397 
1398 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1399 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1400 		if (m == NULL)
1401 			break;
1402 
1403 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1404 		wh = mtod(m, struct ieee80211_frame *);
1405 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1406 			k = ieee80211_crypto_encap(ni, m);
1407 			if (k == NULL) {
1408 				ieee80211_free_node(ni);
1409 				m_freem(m);
1410 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1411 				continue;
1412 			}
1413 		}
1414 		wh = NULL;	/* Catch any invalid use */
1415 
1416 		if (bwi_encap(sc, idx, m, ni) != 0) {
1417 			/* 'm' is freed in bwi_encap() if we reach here */
1418 			if (ni != NULL)
1419 				ieee80211_free_node(ni);
1420 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1421 			continue;
1422 		}
1423 
1424 		trans = 1;
1425 		tbd->tbd_used++;
1426 		idx = (idx + 1) % BWI_TX_NDESC;
1427 
1428 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1429 
1430 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1431 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1432 			break;
1433 		}
1434 	}
1435 	tbd->tbd_idx = idx;
1436 
1437 	if (trans)
1438 		sc->sc_tx_timer = 5;
1439 }
1440 
1441 static int
1442 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1443 	const struct ieee80211_bpf_params *params)
1444 {
1445 	struct ieee80211com *ic = ni->ni_ic;
1446 	struct ifnet *ifp = ic->ic_ifp;
1447 	struct bwi_softc *sc = ic->ic_softc;
1448 	/* XXX wme? */
1449 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1450 	int idx, error;
1451 
1452 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1453 		ieee80211_free_node(ni);
1454 		m_freem(m);
1455 		return ENETDOWN;
1456 	}
1457 
1458 	BWI_LOCK(sc);
1459 	idx = tbd->tbd_idx;
1460 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1461 	if (params == NULL) {
1462 		/*
1463 		 * Legacy path; interpret frame contents to decide
1464 		 * precisely how to send the frame.
1465 		 */
1466 		error = bwi_encap(sc, idx, m, ni);
1467 	} else {
1468 		/*
1469 		 * Caller supplied explicit parameters to use in
1470 		 * sending the frame.
1471 		 */
1472 		error = bwi_encap_raw(sc, idx, m, ni, params);
1473 	}
1474 	if (error == 0) {
1475 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1476 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1477 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1478 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1479 		sc->sc_tx_timer = 5;
1480 	} else {
1481 		/* NB: m is reclaimed on encap failure */
1482 		ieee80211_free_node(ni);
1483 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1484 	}
1485 	BWI_UNLOCK(sc);
1486 	return error;
1487 }
1488 
1489 static void
1490 bwi_watchdog(void *arg)
1491 {
1492 	struct bwi_softc *sc;
1493 	struct ifnet *ifp;
1494 
1495 	sc = arg;
1496 	ifp = sc->sc_ifp;
1497 	BWI_ASSERT_LOCKED(sc);
1498 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1499 		if_printf(ifp, "watchdog timeout\n");
1500 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1501 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1502 	}
1503 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1504 }
1505 
1506 static void
1507 bwi_stop(struct bwi_softc *sc, int statechg)
1508 {
1509 	BWI_LOCK(sc);
1510 	bwi_stop_locked(sc, statechg);
1511 	BWI_UNLOCK(sc);
1512 }
1513 
1514 static void
1515 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1516 {
1517 	struct ifnet *ifp = sc->sc_ifp;
1518 	struct bwi_mac *mac;
1519 	int i, error, pwr_off = 0;
1520 
1521 	BWI_ASSERT_LOCKED(sc);
1522 
1523 	callout_stop(&sc->sc_calib_ch);
1524 	callout_stop(&sc->sc_led_blink_ch);
1525 	sc->sc_led_blinking = 0;
1526 	sc->sc_flags |= BWI_F_STOP;
1527 
1528 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1529 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1530 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1531 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1532 
1533 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1534 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1535 		bwi_mac_stop(mac);
1536 	}
1537 
1538 	for (i = 0; i < sc->sc_nmac; ++i) {
1539 		struct bwi_regwin *old_rw;
1540 
1541 		mac = &sc->sc_mac[i];
1542 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1543 			continue;
1544 
1545 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1546 		if (error)
1547 			continue;
1548 
1549 		bwi_mac_shutdown(mac);
1550 		pwr_off = 1;
1551 
1552 		bwi_regwin_switch(sc, old_rw, NULL);
1553 	}
1554 
1555 	if (pwr_off)
1556 		bwi_bbp_power_off(sc);
1557 
1558 	sc->sc_tx_timer = 0;
1559 	callout_stop(&sc->sc_watchdog_timer);
1560 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1561 }
1562 
1563 void
1564 bwi_intr(void *xsc)
1565 {
1566 	struct bwi_softc *sc = xsc;
1567 	struct ifnet *ifp = sc->sc_ifp;
1568 	struct bwi_mac *mac;
1569 	uint32_t intr_status;
1570 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1571 	int i, txrx_error, tx = 0, rx_data = -1;
1572 
1573 	BWI_LOCK(sc);
1574 
1575 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1576 	    (sc->sc_flags & BWI_F_STOP)) {
1577 		BWI_UNLOCK(sc);
1578 		return;
1579 	}
1580 	/*
1581 	 * Get interrupt status
1582 	 */
1583 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1584 	if (intr_status == 0xffffffff) {	/* Not for us */
1585 		BWI_UNLOCK(sc);
1586 		return;
1587 	}
1588 
1589 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1590 
1591 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1592 	if (intr_status == 0) {		/* Nothing is interesting */
1593 		BWI_UNLOCK(sc);
1594 		return;
1595 	}
1596 
1597 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1598 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1599 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1600 
1601 	txrx_error = 0;
1602 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1603 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1604 		uint32_t mask;
1605 
1606 		if (BWI_TXRX_IS_RX(i))
1607 			mask = BWI_TXRX_RX_INTRS;
1608 		else
1609 			mask = BWI_TXRX_TX_INTRS;
1610 
1611 		txrx_intr_status[i] =
1612 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1613 
1614 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1615 			 i, txrx_intr_status[i]);
1616 
1617 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1618 			if_printf(ifp,
1619 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1620 			    __func__, i, txrx_intr_status[i]);
1621 			txrx_error = 1;
1622 		}
1623 	}
1624 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1625 
1626 	/*
1627 	 * Acknowledge interrupt
1628 	 */
1629 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1630 
1631 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1632 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1633 
1634 	/* Disable all interrupts */
1635 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1636 
1637 	/*
1638 	 * http://bcm-specs.sipsolutions.net/Interrupts
1639 	 * Says for this bit (0x800):
1640 	 * "Fatal Error
1641 	 *
1642 	 * We got this one while testing things when by accident the
1643 	 * template ram wasn't set to big endian when it should have
1644 	 * been after writing the initial values. It keeps on being
1645 	 * triggered, the only way to stop it seems to shut down the
1646 	 * chip."
1647 	 *
1648 	 * Suggesting that we should never get it and if we do we're not
1649 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1650 	 * it is valid only on mac version 5 and higher, but I couldn't
1651 	 * find a reference for that...  Since I see them from time to time
1652 	 * on my card, this suggests an error in the tx path still...
1653 	 */
1654 	if (intr_status & BWI_INTR_PHY_TXERR) {
1655 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1656 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1657 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1658 			BWI_UNLOCK(sc);
1659 			return;
1660 		}
1661 	}
1662 
1663 	if (txrx_error) {
1664 		/* TODO: reset device */
1665 	}
1666 
1667 	if (intr_status & BWI_INTR_TBTT)
1668 		bwi_mac_config_ps(mac);
1669 
1670 	if (intr_status & BWI_INTR_EO_ATIM)
1671 		if_printf(ifp, "EO_ATIM\n");
1672 
1673 	if (intr_status & BWI_INTR_PMQ) {
1674 		for (;;) {
1675 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1676 				break;
1677 		}
1678 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1679 	}
1680 
1681 	if (intr_status & BWI_INTR_NOISE)
1682 		if_printf(ifp, "intr noise\n");
1683 
1684 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1685 		rx_data = sc->sc_rxeof(sc);
1686 		if (sc->sc_flags & BWI_F_STOP) {
1687 			BWI_UNLOCK(sc);
1688 			return;
1689 		}
1690 	}
1691 
1692 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1693 		sc->sc_txeof_status(sc);
1694 		tx = 1;
1695 	}
1696 
1697 	if (intr_status & BWI_INTR_TX_DONE) {
1698 		bwi_txeof(sc);
1699 		tx = 1;
1700 	}
1701 
1702 	/* Re-enable interrupts */
1703 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1704 
1705 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1706 		int evt = BWI_LED_EVENT_NONE;
1707 
1708 		if (tx && rx_data > 0) {
1709 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1710 				evt = BWI_LED_EVENT_RX;
1711 			else
1712 				evt = BWI_LED_EVENT_TX;
1713 		} else if (tx) {
1714 			evt = BWI_LED_EVENT_TX;
1715 		} else if (rx_data > 0) {
1716 			evt = BWI_LED_EVENT_RX;
1717 		} else if (rx_data == 0) {
1718 			evt = BWI_LED_EVENT_POLL;
1719 		}
1720 
1721 		if (evt != BWI_LED_EVENT_NONE)
1722 			bwi_led_event(sc, evt);
1723 	}
1724 
1725 	BWI_UNLOCK(sc);
1726 }
1727 
1728 static void
1729 bwi_scan_start(struct ieee80211com *ic)
1730 {
1731 	struct bwi_softc *sc = ic->ic_softc;
1732 
1733 	BWI_LOCK(sc);
1734 	/* Enable MAC beacon promiscuity */
1735 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1736 	BWI_UNLOCK(sc);
1737 }
1738 
1739 static void
1740 bwi_set_channel(struct ieee80211com *ic)
1741 {
1742 	struct bwi_softc *sc = ic->ic_softc;
1743 	struct ieee80211_channel *c = ic->ic_curchan;
1744 	struct bwi_mac *mac;
1745 
1746 	BWI_LOCK(sc);
1747 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1748 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1749 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1750 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1751 
1752 	sc->sc_rates = ieee80211_get_ratetable(c);
1753 
1754 	/*
1755 	 * Setup radio tap channel freq and flags
1756 	 */
1757 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1758 		htole16(c->ic_freq);
1759 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1760 		htole16(c->ic_flags & 0xffff);
1761 
1762 	BWI_UNLOCK(sc);
1763 }
1764 
1765 static void
1766 bwi_scan_end(struct ieee80211com *ic)
1767 {
1768 	struct bwi_softc *sc = ic->ic_softc;
1769 
1770 	BWI_LOCK(sc);
1771 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1772 	BWI_UNLOCK(sc);
1773 }
1774 
1775 static int
1776 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1777 {
1778 	struct bwi_vap *bvp = BWI_VAP(vap);
1779 	struct ieee80211com *ic = vap->iv_ic;
1780 	enum ieee80211_state ostate = vap->iv_state;
1781 	struct bwi_softc *sc = ic->ic_softc;
1782 	struct bwi_mac *mac;
1783 	int error;
1784 
1785 	BWI_LOCK(sc);
1786 
1787 	callout_stop(&sc->sc_calib_ch);
1788 
1789 	if (nstate == IEEE80211_S_INIT)
1790 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1791 
1792 	bwi_led_newstate(sc, nstate);
1793 
1794 	error = bvp->bv_newstate(vap, nstate, arg);
1795 	if (error != 0)
1796 		goto back;
1797 
1798 	/*
1799 	 * Clear the BSSID when we stop a STA
1800 	 */
1801 	if (vap->iv_opmode == IEEE80211_M_STA) {
1802 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1803 			/*
1804 			 * Clear out the BSSID.  If we reassociate to
1805 			 * the same AP, this will reinialize things
1806 			 * correctly...
1807 			 */
1808 			if (ic->ic_opmode == IEEE80211_M_STA &&
1809 			    !(sc->sc_flags & BWI_F_STOP))
1810 				bwi_set_bssid(sc, bwi_zero_addr);
1811 		}
1812 	}
1813 
1814 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1815 		/* Nothing to do */
1816 	} else if (nstate == IEEE80211_S_RUN) {
1817 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1818 
1819 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1820 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1821 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1822 
1823 		/* Initial TX power calibration */
1824 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1825 #ifdef notyet
1826 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1827 #else
1828 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1829 #endif
1830 
1831 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1832 	}
1833 back:
1834 	BWI_UNLOCK(sc);
1835 
1836 	return error;
1837 }
1838 
1839 static int
1840 bwi_media_change(struct ifnet *ifp)
1841 {
1842 	int error = ieee80211_media_change(ifp);
1843 	/* NB: only the fixed rate can change and that doesn't need a reset */
1844 	return (error == ENETRESET ? 0 : error);
1845 }
1846 
1847 static int
1848 bwi_dma_alloc(struct bwi_softc *sc)
1849 {
1850 	int error, i, has_txstats;
1851 	bus_addr_t lowaddr = 0;
1852 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1853 	uint32_t txrx_ctrl_step = 0;
1854 
1855 	has_txstats = 0;
1856 	for (i = 0; i < sc->sc_nmac; ++i) {
1857 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1858 			has_txstats = 1;
1859 			break;
1860 		}
1861 	}
1862 
1863 	switch (sc->sc_bus_space) {
1864 	case BWI_BUS_SPACE_30BIT:
1865 	case BWI_BUS_SPACE_32BIT:
1866 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1867 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1868 		else
1869 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1870 		desc_sz = sizeof(struct bwi_desc32);
1871 		txrx_ctrl_step = 0x20;
1872 
1873 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1874 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1875 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1876 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1877 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1878 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1879 		sc->sc_rxeof = bwi_rxeof32;
1880 		sc->sc_start_tx = bwi_start_tx32;
1881 		if (has_txstats) {
1882 			sc->sc_init_txstats = bwi_init_txstats32;
1883 			sc->sc_free_txstats = bwi_free_txstats32;
1884 			sc->sc_txeof_status = bwi_txeof_status32;
1885 		}
1886 		break;
1887 
1888 	case BWI_BUS_SPACE_64BIT:
1889 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1890 		desc_sz = sizeof(struct bwi_desc64);
1891 		txrx_ctrl_step = 0x40;
1892 
1893 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1894 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1895 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1896 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1897 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1898 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1899 		sc->sc_rxeof = bwi_rxeof64;
1900 		sc->sc_start_tx = bwi_start_tx64;
1901 		if (has_txstats) {
1902 			sc->sc_init_txstats = bwi_init_txstats64;
1903 			sc->sc_free_txstats = bwi_free_txstats64;
1904 			sc->sc_txeof_status = bwi_txeof_status64;
1905 		}
1906 		break;
1907 	}
1908 
1909 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1910 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1911 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1912 
1913 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1914 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1915 
1916 	/*
1917 	 * Create top level DMA tag
1918 	 */
1919 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1920 			       BWI_ALIGN, 0,		/* alignment, bounds */
1921 			       lowaddr,			/* lowaddr */
1922 			       BUS_SPACE_MAXADDR,	/* highaddr */
1923 			       NULL, NULL,		/* filter, filterarg */
1924 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1925 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1926 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1927 			       0,			/* flags */
1928 			       NULL, NULL,		/* lockfunc, lockarg */
1929 			       &sc->sc_parent_dtag);
1930 	if (error) {
1931 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1932 		return error;
1933 	}
1934 
1935 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1936 
1937 	/*
1938 	 * Create TX ring DMA stuffs
1939 	 */
1940 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1941 				BWI_RING_ALIGN, 0,
1942 				BUS_SPACE_MAXADDR,
1943 				BUS_SPACE_MAXADDR,
1944 				NULL, NULL,
1945 				tx_ring_sz,
1946 				1,
1947 				tx_ring_sz,
1948 				0,
1949 				NULL, NULL,
1950 				&sc->sc_txring_dtag);
1951 	if (error) {
1952 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1953 		return error;
1954 	}
1955 
1956 	for (i = 0; i < BWI_TX_NRING; ++i) {
1957 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1958 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1959 					   TXRX_CTRL(i));
1960 		if (error) {
1961 			device_printf(sc->sc_dev, "%dth TX ring "
1962 				      "DMA alloc failed\n", i);
1963 			return error;
1964 		}
1965 	}
1966 
1967 	/*
1968 	 * Create RX ring DMA stuffs
1969 	 */
1970 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1971 				BWI_RING_ALIGN, 0,
1972 				BUS_SPACE_MAXADDR,
1973 				BUS_SPACE_MAXADDR,
1974 				NULL, NULL,
1975 				rx_ring_sz,
1976 				1,
1977 				rx_ring_sz,
1978 				0,
1979 				NULL, NULL,
1980 				&sc->sc_rxring_dtag);
1981 	if (error) {
1982 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1983 		return error;
1984 	}
1985 
1986 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1987 				   rx_ring_sz, TXRX_CTRL(0));
1988 	if (error) {
1989 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1990 		return error;
1991 	}
1992 
1993 	if (has_txstats) {
1994 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1995 		if (error) {
1996 			device_printf(sc->sc_dev,
1997 				      "TX stats DMA alloc failed\n");
1998 			return error;
1999 		}
2000 	}
2001 
2002 #undef TXRX_CTRL
2003 
2004 	return bwi_dma_mbuf_create(sc);
2005 }
2006 
2007 static void
2008 bwi_dma_free(struct bwi_softc *sc)
2009 {
2010 	if (sc->sc_txring_dtag != NULL) {
2011 		int i;
2012 
2013 		for (i = 0; i < BWI_TX_NRING; ++i) {
2014 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2015 
2016 			if (rd->rdata_desc != NULL) {
2017 				bus_dmamap_unload(sc->sc_txring_dtag,
2018 						  rd->rdata_dmap);
2019 				bus_dmamem_free(sc->sc_txring_dtag,
2020 						rd->rdata_desc,
2021 						rd->rdata_dmap);
2022 			}
2023 		}
2024 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2025 	}
2026 
2027 	if (sc->sc_rxring_dtag != NULL) {
2028 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2029 
2030 		if (rd->rdata_desc != NULL) {
2031 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2032 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2033 					rd->rdata_dmap);
2034 		}
2035 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2036 	}
2037 
2038 	bwi_dma_txstats_free(sc);
2039 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2040 
2041 	if (sc->sc_parent_dtag != NULL)
2042 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2043 }
2044 
2045 static int
2046 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2047 		   struct bwi_ring_data *rd, bus_size_t size,
2048 		   uint32_t txrx_ctrl)
2049 {
2050 	int error;
2051 
2052 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2053 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2054 				 &rd->rdata_dmap);
2055 	if (error) {
2056 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2057 		return error;
2058 	}
2059 
2060 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2061 				bwi_dma_ring_addr, &rd->rdata_paddr,
2062 				BUS_DMA_NOWAIT);
2063 	if (error) {
2064 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2065 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2066 		rd->rdata_desc = NULL;
2067 		return error;
2068 	}
2069 
2070 	rd->rdata_txrx_ctrl = txrx_ctrl;
2071 	return 0;
2072 }
2073 
2074 static int
2075 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2076 		      bus_size_t desc_sz)
2077 {
2078 	struct bwi_txstats_data *st;
2079 	bus_size_t dma_size;
2080 	int error;
2081 
2082 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2083 	if (st == NULL) {
2084 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2085 		return ENOMEM;
2086 	}
2087 	sc->sc_txstats = st;
2088 
2089 	/*
2090 	 * Create TX stats descriptor DMA stuffs
2091 	 */
2092 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2093 
2094 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2095 				BWI_RING_ALIGN,
2096 				0,
2097 				BUS_SPACE_MAXADDR,
2098 				BUS_SPACE_MAXADDR,
2099 				NULL, NULL,
2100 				dma_size,
2101 				1,
2102 				dma_size,
2103 				0,
2104 				NULL, NULL,
2105 				&st->stats_ring_dtag);
2106 	if (error) {
2107 		device_printf(sc->sc_dev, "can't create txstats ring "
2108 			      "DMA tag\n");
2109 		return error;
2110 	}
2111 
2112 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2113 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2114 				 &st->stats_ring_dmap);
2115 	if (error) {
2116 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2117 			      "DMA mem\n");
2118 		bus_dma_tag_destroy(st->stats_ring_dtag);
2119 		st->stats_ring_dtag = NULL;
2120 		return error;
2121 	}
2122 
2123 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2124 				st->stats_ring, dma_size,
2125 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2126 				BUS_DMA_NOWAIT);
2127 	if (error) {
2128 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2129 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2130 				st->stats_ring_dmap);
2131 		bus_dma_tag_destroy(st->stats_ring_dtag);
2132 		st->stats_ring_dtag = NULL;
2133 		return error;
2134 	}
2135 
2136 	/*
2137 	 * Create TX stats DMA stuffs
2138 	 */
2139 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2140 			   BWI_ALIGN);
2141 
2142 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2143 				BWI_ALIGN,
2144 				0,
2145 				BUS_SPACE_MAXADDR,
2146 				BUS_SPACE_MAXADDR,
2147 				NULL, NULL,
2148 				dma_size,
2149 				1,
2150 				dma_size,
2151 				0,
2152 				NULL, NULL,
2153 				&st->stats_dtag);
2154 	if (error) {
2155 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2156 		return error;
2157 	}
2158 
2159 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2160 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2161 				 &st->stats_dmap);
2162 	if (error) {
2163 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2164 		bus_dma_tag_destroy(st->stats_dtag);
2165 		st->stats_dtag = NULL;
2166 		return error;
2167 	}
2168 
2169 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2170 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2171 				BUS_DMA_NOWAIT);
2172 	if (error) {
2173 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2174 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2175 		bus_dma_tag_destroy(st->stats_dtag);
2176 		st->stats_dtag = NULL;
2177 		return error;
2178 	}
2179 
2180 	st->stats_ctrl_base = ctrl_base;
2181 	return 0;
2182 }
2183 
2184 static void
2185 bwi_dma_txstats_free(struct bwi_softc *sc)
2186 {
2187 	struct bwi_txstats_data *st;
2188 
2189 	if (sc->sc_txstats == NULL)
2190 		return;
2191 	st = sc->sc_txstats;
2192 
2193 	if (st->stats_ring_dtag != NULL) {
2194 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2195 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2196 				st->stats_ring_dmap);
2197 		bus_dma_tag_destroy(st->stats_ring_dtag);
2198 	}
2199 
2200 	if (st->stats_dtag != NULL) {
2201 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2202 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2203 		bus_dma_tag_destroy(st->stats_dtag);
2204 	}
2205 
2206 	free(st, M_DEVBUF);
2207 }
2208 
2209 static void
2210 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2211 {
2212 	KASSERT(nseg == 1, ("too many segments\n"));
2213 	*((bus_addr_t *)arg) = seg->ds_addr;
2214 }
2215 
2216 static int
2217 bwi_dma_mbuf_create(struct bwi_softc *sc)
2218 {
2219 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2220 	int i, j, k, ntx, error;
2221 
2222 	/*
2223 	 * Create TX/RX mbuf DMA tag
2224 	 */
2225 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2226 				1,
2227 				0,
2228 				BUS_SPACE_MAXADDR,
2229 				BUS_SPACE_MAXADDR,
2230 				NULL, NULL,
2231 				MCLBYTES,
2232 				1,
2233 				MCLBYTES,
2234 				BUS_DMA_ALLOCNOW,
2235 				NULL, NULL,
2236 				&sc->sc_buf_dtag);
2237 	if (error) {
2238 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2239 		return error;
2240 	}
2241 
2242 	ntx = 0;
2243 
2244 	/*
2245 	 * Create TX mbuf DMA map
2246 	 */
2247 	for (i = 0; i < BWI_TX_NRING; ++i) {
2248 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2249 
2250 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2251 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2252 						  &tbd->tbd_buf[j].tb_dmap);
2253 			if (error) {
2254 				device_printf(sc->sc_dev, "can't create "
2255 					      "%dth tbd, %dth DMA map\n", i, j);
2256 
2257 				ntx = i;
2258 				for (k = 0; k < j; ++k) {
2259 					bus_dmamap_destroy(sc->sc_buf_dtag,
2260 						tbd->tbd_buf[k].tb_dmap);
2261 				}
2262 				goto fail;
2263 			}
2264 		}
2265 	}
2266 	ntx = BWI_TX_NRING;
2267 
2268 	/*
2269 	 * Create RX mbuf DMA map and a spare DMA map
2270 	 */
2271 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2272 				  &rbd->rbd_tmp_dmap);
2273 	if (error) {
2274 		device_printf(sc->sc_dev,
2275 			      "can't create spare RX buf DMA map\n");
2276 		goto fail;
2277 	}
2278 
2279 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2280 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2281 					  &rbd->rbd_buf[j].rb_dmap);
2282 		if (error) {
2283 			device_printf(sc->sc_dev, "can't create %dth "
2284 				      "RX buf DMA map\n", j);
2285 
2286 			for (k = 0; k < j; ++k) {
2287 				bus_dmamap_destroy(sc->sc_buf_dtag,
2288 					rbd->rbd_buf[j].rb_dmap);
2289 			}
2290 			bus_dmamap_destroy(sc->sc_buf_dtag,
2291 					   rbd->rbd_tmp_dmap);
2292 			goto fail;
2293 		}
2294 	}
2295 
2296 	return 0;
2297 fail:
2298 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2299 	return error;
2300 }
2301 
2302 static void
2303 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2304 {
2305 	int i, j;
2306 
2307 	if (sc->sc_buf_dtag == NULL)
2308 		return;
2309 
2310 	for (i = 0; i < ntx; ++i) {
2311 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2312 
2313 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2314 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2315 
2316 			if (tb->tb_mbuf != NULL) {
2317 				bus_dmamap_unload(sc->sc_buf_dtag,
2318 						  tb->tb_dmap);
2319 				m_freem(tb->tb_mbuf);
2320 			}
2321 			if (tb->tb_ni != NULL)
2322 				ieee80211_free_node(tb->tb_ni);
2323 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2324 		}
2325 	}
2326 
2327 	if (nrx) {
2328 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2329 
2330 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2331 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2332 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2333 
2334 			if (rb->rb_mbuf != NULL) {
2335 				bus_dmamap_unload(sc->sc_buf_dtag,
2336 						  rb->rb_dmap);
2337 				m_freem(rb->rb_mbuf);
2338 			}
2339 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2340 		}
2341 	}
2342 
2343 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2344 	sc->sc_buf_dtag = NULL;
2345 }
2346 
2347 static void
2348 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2349 {
2350 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2351 }
2352 
2353 static void
2354 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2355 {
2356 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2357 }
2358 
2359 static int
2360 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2361 {
2362 	struct bwi_ring_data *rd;
2363 	struct bwi_txbuf_data *tbd;
2364 	uint32_t val, addr_hi, addr_lo;
2365 
2366 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2367 	rd = &sc->sc_tx_rdata[ring_idx];
2368 	tbd = &sc->sc_tx_bdata[ring_idx];
2369 
2370 	tbd->tbd_idx = 0;
2371 	tbd->tbd_used = 0;
2372 
2373 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2374 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2375 			BUS_DMASYNC_PREWRITE);
2376 
2377 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2378 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2379 
2380 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2381 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2382 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2383 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2384 
2385 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2386 	      BWI_TXRX32_CTRL_ENABLE;
2387 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2388 
2389 	return 0;
2390 }
2391 
2392 static void
2393 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2394 		       bus_addr_t paddr, int hdr_size, int ndesc)
2395 {
2396 	uint32_t val, addr_hi, addr_lo;
2397 
2398 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2399 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2400 
2401 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2402 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2403 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2404 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2405 
2406 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2407 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2408 	      BWI_TXRX32_CTRL_ENABLE;
2409 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2410 
2411 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2412 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2413 }
2414 
2415 static int
2416 bwi_init_rx_ring32(struct bwi_softc *sc)
2417 {
2418 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2419 	int i, error;
2420 
2421 	sc->sc_rx_bdata.rbd_idx = 0;
2422 
2423 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2424 		error = bwi_newbuf(sc, i, 1);
2425 		if (error) {
2426 			device_printf(sc->sc_dev,
2427 				  "can't allocate %dth RX buffer\n", i);
2428 			return error;
2429 		}
2430 	}
2431 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2432 			BUS_DMASYNC_PREWRITE);
2433 
2434 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2435 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2436 	return 0;
2437 }
2438 
2439 static int
2440 bwi_init_txstats32(struct bwi_softc *sc)
2441 {
2442 	struct bwi_txstats_data *st = sc->sc_txstats;
2443 	bus_addr_t stats_paddr;
2444 	int i;
2445 
2446 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2447 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2448 
2449 	st->stats_idx = 0;
2450 
2451 	stats_paddr = st->stats_paddr;
2452 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2453 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2454 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2455 		stats_paddr += sizeof(struct bwi_txstats);
2456 	}
2457 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2458 			BUS_DMASYNC_PREWRITE);
2459 
2460 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2461 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2462 	return 0;
2463 }
2464 
2465 static void
2466 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2467 		    int buf_len)
2468 {
2469 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2470 
2471 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2472 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2473 			 paddr, buf_len, 0);
2474 }
2475 
2476 static void
2477 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2478 		    int buf_idx, bus_addr_t paddr, int buf_len)
2479 {
2480 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2481 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2482 			 paddr, buf_len, 1);
2483 }
2484 
2485 static int
2486 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2487 {
2488 	/* TODO:64 */
2489 	return EOPNOTSUPP;
2490 }
2491 
2492 static int
2493 bwi_init_rx_ring64(struct bwi_softc *sc)
2494 {
2495 	/* TODO:64 */
2496 	return EOPNOTSUPP;
2497 }
2498 
2499 static int
2500 bwi_init_txstats64(struct bwi_softc *sc)
2501 {
2502 	/* TODO:64 */
2503 	return EOPNOTSUPP;
2504 }
2505 
2506 static void
2507 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2508 		    int buf_len)
2509 {
2510 	/* TODO:64 */
2511 }
2512 
2513 static void
2514 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2515 		    int buf_idx, bus_addr_t paddr, int buf_len)
2516 {
2517 	/* TODO:64 */
2518 }
2519 
2520 static void
2521 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2522 		 bus_size_t mapsz __unused, int error)
2523 {
2524         if (!error) {
2525 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2526 		*((bus_addr_t *)arg) = seg->ds_addr;
2527 	}
2528 }
2529 
2530 static int
2531 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2532 {
2533 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2534 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2535 	struct bwi_rxbuf_hdr *hdr;
2536 	bus_dmamap_t map;
2537 	bus_addr_t paddr;
2538 	struct mbuf *m;
2539 	int error;
2540 
2541 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2542 
2543 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2544 	if (m == NULL) {
2545 		error = ENOBUFS;
2546 
2547 		/*
2548 		 * If the NIC is up and running, we need to:
2549 		 * - Clear RX buffer's header.
2550 		 * - Restore RX descriptor settings.
2551 		 */
2552 		if (init)
2553 			return error;
2554 		else
2555 			goto back;
2556 	}
2557 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2558 
2559 	/*
2560 	 * Try to load RX buf into temporary DMA map
2561 	 */
2562 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2563 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2564 	if (error) {
2565 		m_freem(m);
2566 
2567 		/*
2568 		 * See the comment above
2569 		 */
2570 		if (init)
2571 			return error;
2572 		else
2573 			goto back;
2574 	}
2575 
2576 	if (!init)
2577 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2578 	rxbuf->rb_mbuf = m;
2579 	rxbuf->rb_paddr = paddr;
2580 
2581 	/*
2582 	 * Swap RX buf's DMA map with the loaded temporary one
2583 	 */
2584 	map = rxbuf->rb_dmap;
2585 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2586 	rbd->rbd_tmp_dmap = map;
2587 
2588 back:
2589 	/*
2590 	 * Clear RX buf header
2591 	 */
2592 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2593 	bzero(hdr, sizeof(*hdr));
2594 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2595 
2596 	/*
2597 	 * Setup RX buf descriptor
2598 	 */
2599 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2600 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2601 	return error;
2602 }
2603 
2604 static void
2605 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2606 		    const uint8_t *addr)
2607 {
2608 	int i;
2609 
2610 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2611 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2612 
2613 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2614 		uint16_t addr_val;
2615 
2616 		addr_val = (uint16_t)addr[i * 2] |
2617 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2618 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2619 	}
2620 }
2621 
2622 static int
2623 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2624 {
2625 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2626 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2627 	struct ifnet *ifp = sc->sc_ifp;
2628 	struct ieee80211com *ic = ifp->if_l2com;
2629 	int idx, rx_data = 0;
2630 
2631 	idx = rbd->rbd_idx;
2632 	while (idx != end_idx) {
2633 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2634 		struct bwi_rxbuf_hdr *hdr;
2635 		struct ieee80211_frame_min *wh;
2636 		struct ieee80211_node *ni;
2637 		struct mbuf *m;
2638 		uint32_t plcp;
2639 		uint16_t flags2;
2640 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2641 
2642 		m = rb->rb_mbuf;
2643 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2644 				BUS_DMASYNC_POSTREAD);
2645 
2646 		if (bwi_newbuf(sc, idx, 0)) {
2647 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2648 			goto next;
2649 		}
2650 
2651 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2652 		flags2 = le16toh(hdr->rxh_flags2);
2653 
2654 		hdr_extra = 0;
2655 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2656 			hdr_extra = 2;
2657 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2658 
2659 		buflen = le16toh(hdr->rxh_buflen);
2660 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2661 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2662 				  __func__, hdr_extra);
2663 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2664 			m_freem(m);
2665 			goto next;
2666 		}
2667 
2668 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2669 		rssi = bwi_calc_rssi(sc, hdr);
2670 		noise = bwi_calc_noise(sc);
2671 
2672 		m->m_pkthdr.rcvif = ifp;
2673 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2674 		m_adj(m, sizeof(*hdr) + wh_ofs);
2675 
2676 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2677 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2678 		else
2679 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2680 
2681 		/* RX radio tap */
2682 		if (ieee80211_radiotap_active(ic))
2683 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2684 
2685 		m_adj(m, -IEEE80211_CRC_LEN);
2686 
2687 		BWI_UNLOCK(sc);
2688 
2689 		wh = mtod(m, struct ieee80211_frame_min *);
2690 		ni = ieee80211_find_rxnode(ic, wh);
2691 		if (ni != NULL) {
2692 			type = ieee80211_input(ni, m, rssi - noise, noise);
2693 			ieee80211_free_node(ni);
2694 		} else
2695 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2696 		if (type == IEEE80211_FC0_TYPE_DATA) {
2697 			rx_data = 1;
2698 			sc->sc_rx_rate = rate;
2699 		}
2700 
2701 		BWI_LOCK(sc);
2702 next:
2703 		idx = (idx + 1) % BWI_RX_NDESC;
2704 
2705 		if (sc->sc_flags & BWI_F_STOP) {
2706 			/*
2707 			 * Take the fast lane, don't do
2708 			 * any damage to softc
2709 			 */
2710 			return -1;
2711 		}
2712 	}
2713 
2714 	rbd->rbd_idx = idx;
2715 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2716 			BUS_DMASYNC_PREWRITE);
2717 
2718 	return rx_data;
2719 }
2720 
2721 static int
2722 bwi_rxeof32(struct bwi_softc *sc)
2723 {
2724 	uint32_t val, rx_ctrl;
2725 	int end_idx, rx_data;
2726 
2727 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2728 
2729 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2730 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2731 		  sizeof(struct bwi_desc32);
2732 
2733 	rx_data = bwi_rxeof(sc, end_idx);
2734 	if (rx_data >= 0) {
2735 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2736 			    end_idx * sizeof(struct bwi_desc32));
2737 	}
2738 	return rx_data;
2739 }
2740 
2741 static int
2742 bwi_rxeof64(struct bwi_softc *sc)
2743 {
2744 	/* TODO:64 */
2745 	return 0;
2746 }
2747 
2748 static void
2749 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2750 {
2751 	int i;
2752 
2753 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2754 
2755 #define NRETRY 10
2756 
2757 	for (i = 0; i < NRETRY; ++i) {
2758 		uint32_t status;
2759 
2760 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2761 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2762 		    BWI_RX32_STATUS_STATE_DISABLED)
2763 			break;
2764 
2765 		DELAY(1000);
2766 	}
2767 	if (i == NRETRY)
2768 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2769 
2770 #undef NRETRY
2771 
2772 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2773 }
2774 
2775 static void
2776 bwi_free_txstats32(struct bwi_softc *sc)
2777 {
2778 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2779 }
2780 
2781 static void
2782 bwi_free_rx_ring32(struct bwi_softc *sc)
2783 {
2784 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2785 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2786 	int i;
2787 
2788 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2789 
2790 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2791 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2792 
2793 		if (rb->rb_mbuf != NULL) {
2794 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2795 			m_freem(rb->rb_mbuf);
2796 			rb->rb_mbuf = NULL;
2797 		}
2798 	}
2799 }
2800 
2801 static void
2802 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2803 {
2804 	struct bwi_ring_data *rd;
2805 	struct bwi_txbuf_data *tbd;
2806 	struct ifnet *ifp = sc->sc_ifp;
2807 	uint32_t state, val;
2808 	int i;
2809 
2810 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2811 	rd = &sc->sc_tx_rdata[ring_idx];
2812 	tbd = &sc->sc_tx_bdata[ring_idx];
2813 
2814 #define NRETRY 10
2815 
2816 	for (i = 0; i < NRETRY; ++i) {
2817 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2818 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2819 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2820 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2821 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2822 			break;
2823 
2824 		DELAY(1000);
2825 	}
2826 	if (i == NRETRY) {
2827 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2828 			  __func__, ring_idx);
2829 	}
2830 
2831 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2832 	for (i = 0; i < NRETRY; ++i) {
2833 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2834 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2835 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2836 			break;
2837 
2838 		DELAY(1000);
2839 	}
2840 	if (i == NRETRY)
2841 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2842 		     __func__, ring_idx);
2843 
2844 #undef NRETRY
2845 
2846 	DELAY(1000);
2847 
2848 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2849 
2850 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2851 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2852 
2853 		if (tb->tb_mbuf != NULL) {
2854 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2855 			m_freem(tb->tb_mbuf);
2856 			tb->tb_mbuf = NULL;
2857 		}
2858 		if (tb->tb_ni != NULL) {
2859 			ieee80211_free_node(tb->tb_ni);
2860 			tb->tb_ni = NULL;
2861 		}
2862 	}
2863 }
2864 
2865 static void
2866 bwi_free_txstats64(struct bwi_softc *sc)
2867 {
2868 	/* TODO:64 */
2869 }
2870 
2871 static void
2872 bwi_free_rx_ring64(struct bwi_softc *sc)
2873 {
2874 	/* TODO:64 */
2875 }
2876 
2877 static void
2878 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2879 {
2880 	/* TODO:64 */
2881 }
2882 
2883 /* XXX does not belong here */
2884 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2885 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2886 
2887 static __inline void
2888 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2889 {
2890 	uint32_t plcp;
2891 
2892 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2893 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2894 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2895 	*plcp0 = htole32(plcp);
2896 }
2897 
2898 static __inline void
2899 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2900 		   uint8_t rate)
2901 {
2902 	int len, service, pkt_bitlen;
2903 
2904 	pkt_bitlen = pkt_len * NBBY;
2905 	len = howmany(pkt_bitlen * 2, rate);
2906 
2907 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2908 	if (rate == (11 * 2)) {
2909 		int pkt_bitlen1;
2910 
2911 		/*
2912 		 * PLCP service field needs to be adjusted,
2913 		 * if TX rate is 11Mbytes/s
2914 		 */
2915 		pkt_bitlen1 = len * 11;
2916 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2917 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2918 	}
2919 
2920 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2921 	plcp->i_service = service;
2922 	plcp->i_length = htole16(len);
2923 	/* NOTE: do NOT touch i_crc */
2924 }
2925 
2926 static __inline void
2927 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2928 	void *plcp, int pkt_len, uint8_t rate)
2929 {
2930 	enum ieee80211_phytype modtype;
2931 
2932 	/*
2933 	 * Assume caller has zeroed 'plcp'
2934 	 */
2935 	modtype = ieee80211_rate2phytype(rt, rate);
2936 	if (modtype == IEEE80211_T_OFDM)
2937 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2938 	else if (modtype == IEEE80211_T_DS)
2939 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2940 	else
2941 		panic("unsupport modulation type %u\n", modtype);
2942 }
2943 
2944 static int
2945 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2946 	  struct ieee80211_node *ni)
2947 {
2948 	struct ieee80211vap *vap = ni->ni_vap;
2949 	struct ifnet *ifp = sc->sc_ifp;
2950 	struct ieee80211com *ic = ifp->if_l2com;
2951 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2952 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2953 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2954 	struct bwi_mac *mac;
2955 	struct bwi_txbuf_hdr *hdr;
2956 	struct ieee80211_frame *wh;
2957 	const struct ieee80211_txparam *tp;
2958 	uint8_t rate, rate_fb;
2959 	uint32_t mac_ctrl;
2960 	uint16_t phy_ctrl;
2961 	bus_addr_t paddr;
2962 	int type, ismcast, pkt_len, error, rix;
2963 #if 0
2964 	const uint8_t *p;
2965 	int i;
2966 #endif
2967 
2968 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2969 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2970 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2971 
2972 	wh = mtod(m, struct ieee80211_frame *);
2973 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2974 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2975 
2976 	/* Get 802.11 frame len before prepending TX header */
2977 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2978 
2979 	/*
2980 	 * Find TX rate
2981 	 */
2982 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2983 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2984 		rate = rate_fb = tp->mgmtrate;
2985 	} else if (ismcast) {
2986 		rate = rate_fb = tp->mcastrate;
2987 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2988 		rate = rate_fb = tp->ucastrate;
2989 	} else {
2990 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2991 		rate = ni->ni_txrate;
2992 
2993 		if (rix > 0) {
2994 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2995 				  IEEE80211_RATE_VAL;
2996 		} else {
2997 			rate_fb = rate;
2998 		}
2999 	}
3000 	tb->tb_rate[0] = rate;
3001 	tb->tb_rate[1] = rate_fb;
3002 	sc->sc_tx_rate = rate;
3003 
3004 	/*
3005 	 * TX radio tap
3006 	 */
3007 	if (ieee80211_radiotap_active_vap(vap)) {
3008 		sc->sc_tx_th.wt_flags = 0;
3009 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3010 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3011 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3012 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3013 		    rate != (1 * 2)) {
3014 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3015 		}
3016 		sc->sc_tx_th.wt_rate = rate;
3017 
3018 		ieee80211_radiotap_tx(vap, m);
3019 	}
3020 
3021 	/*
3022 	 * Setup the embedded TX header
3023 	 */
3024 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3025 	if (m == NULL) {
3026 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3027 		return ENOBUFS;
3028 	}
3029 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3030 
3031 	bzero(hdr, sizeof(*hdr));
3032 
3033 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3034 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3035 
3036 	if (!ismcast) {
3037 		uint16_t dur;
3038 
3039 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3040 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3041 
3042 		hdr->txh_fb_duration = htole16(dur);
3043 	}
3044 
3045 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3046 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3047 
3048 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3049 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3050 
3051 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3052 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3053 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3054 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3055 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3056 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3057 
3058 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3059 	if (!ismcast)
3060 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3061 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3062 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3063 
3064 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3065 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3066 
3067 	/* Catch any further usage */
3068 	hdr = NULL;
3069 	wh = NULL;
3070 
3071 	/* DMA load */
3072 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3073 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3074 	if (error && error != EFBIG) {
3075 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3076 		    __func__, error);
3077 		goto back;
3078 	}
3079 
3080 	if (error) {	/* error == EFBIG */
3081 		struct mbuf *m_new;
3082 
3083 		m_new = m_defrag(m, M_NOWAIT);
3084 		if (m_new == NULL) {
3085 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3086 			    __func__);
3087 			error = ENOBUFS;
3088 			goto back;
3089 		} else {
3090 			m = m_new;
3091 		}
3092 
3093 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3094 					     bwi_dma_buf_addr, &paddr,
3095 					     BUS_DMA_NOWAIT);
3096 		if (error) {
3097 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3098 			    __func__, error);
3099 			goto back;
3100 		}
3101 	}
3102 	error = 0;
3103 
3104 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3105 
3106 	tb->tb_mbuf = m;
3107 	tb->tb_ni = ni;
3108 
3109 #if 0
3110 	p = mtod(m, const uint8_t *);
3111 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3112 		if (i != 0 && i % 8 == 0)
3113 			printf("\n");
3114 		printf("%02x ", p[i]);
3115 	}
3116 	printf("\n");
3117 #endif
3118 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3119 		idx, pkt_len, m->m_pkthdr.len);
3120 
3121 	/* Setup TX descriptor */
3122 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3123 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3124 			BUS_DMASYNC_PREWRITE);
3125 
3126 	/* Kick start */
3127 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3128 
3129 back:
3130 	if (error)
3131 		m_freem(m);
3132 	return error;
3133 }
3134 
3135 static int
3136 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3137 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3138 {
3139 	struct ifnet *ifp = sc->sc_ifp;
3140 	struct ieee80211vap *vap = ni->ni_vap;
3141 	struct ieee80211com *ic = ni->ni_ic;
3142 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3143 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3144 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3145 	struct bwi_mac *mac;
3146 	struct bwi_txbuf_hdr *hdr;
3147 	struct ieee80211_frame *wh;
3148 	uint8_t rate, rate_fb;
3149 	uint32_t mac_ctrl;
3150 	uint16_t phy_ctrl;
3151 	bus_addr_t paddr;
3152 	int ismcast, pkt_len, error;
3153 
3154 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3155 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3156 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3157 
3158 	wh = mtod(m, struct ieee80211_frame *);
3159 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3160 
3161 	/* Get 802.11 frame len before prepending TX header */
3162 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3163 
3164 	/*
3165 	 * Find TX rate
3166 	 */
3167 	rate = params->ibp_rate0;
3168 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3169 		/* XXX fall back to mcast/mgmt rate? */
3170 		m_freem(m);
3171 		return EINVAL;
3172 	}
3173 	if (params->ibp_try1 != 0) {
3174 		rate_fb = params->ibp_rate1;
3175 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3176 			/* XXX fall back to rate0? */
3177 			m_freem(m);
3178 			return EINVAL;
3179 		}
3180 	} else
3181 		rate_fb = rate;
3182 	tb->tb_rate[0] = rate;
3183 	tb->tb_rate[1] = rate_fb;
3184 	sc->sc_tx_rate = rate;
3185 
3186 	/*
3187 	 * TX radio tap
3188 	 */
3189 	if (ieee80211_radiotap_active_vap(vap)) {
3190 		sc->sc_tx_th.wt_flags = 0;
3191 		/* XXX IEEE80211_BPF_CRYPTO */
3192 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3193 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3194 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3195 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3196 		sc->sc_tx_th.wt_rate = rate;
3197 
3198 		ieee80211_radiotap_tx(vap, m);
3199 	}
3200 
3201 	/*
3202 	 * Setup the embedded TX header
3203 	 */
3204 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3205 	if (m == NULL) {
3206 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3207 		return ENOBUFS;
3208 	}
3209 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3210 
3211 	bzero(hdr, sizeof(*hdr));
3212 
3213 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3214 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3215 
3216 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3217 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3218 		uint16_t dur;
3219 
3220 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3221 
3222 		hdr->txh_fb_duration = htole16(dur);
3223 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3224 	}
3225 
3226 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3227 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3228 
3229 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3230 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3231 
3232 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3233 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3234 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3235 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3236 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3237 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3238 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3239 
3240 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3241 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3242 
3243 	/* Catch any further usage */
3244 	hdr = NULL;
3245 	wh = NULL;
3246 
3247 	/* DMA load */
3248 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3249 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3250 	if (error != 0) {
3251 		struct mbuf *m_new;
3252 
3253 		if (error != EFBIG) {
3254 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3255 			    __func__, error);
3256 			goto back;
3257 		}
3258 		m_new = m_defrag(m, M_NOWAIT);
3259 		if (m_new == NULL) {
3260 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3261 			    __func__);
3262 			error = ENOBUFS;
3263 			goto back;
3264 		}
3265 		m = m_new;
3266 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3267 					     bwi_dma_buf_addr, &paddr,
3268 					     BUS_DMA_NOWAIT);
3269 		if (error) {
3270 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3271 			    __func__, error);
3272 			goto back;
3273 		}
3274 	}
3275 
3276 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3277 
3278 	tb->tb_mbuf = m;
3279 	tb->tb_ni = ni;
3280 
3281 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3282 		idx, pkt_len, m->m_pkthdr.len);
3283 
3284 	/* Setup TX descriptor */
3285 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3286 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3287 			BUS_DMASYNC_PREWRITE);
3288 
3289 	/* Kick start */
3290 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3291 back:
3292 	if (error)
3293 		m_freem(m);
3294 	return error;
3295 }
3296 
3297 static void
3298 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3299 {
3300 	idx = (idx + 1) % BWI_TX_NDESC;
3301 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3302 		    idx * sizeof(struct bwi_desc32));
3303 }
3304 
3305 static void
3306 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3307 {
3308 	/* TODO:64 */
3309 }
3310 
3311 static void
3312 bwi_txeof_status32(struct bwi_softc *sc)
3313 {
3314 	struct ifnet *ifp = sc->sc_ifp;
3315 	uint32_t val, ctrl_base;
3316 	int end_idx;
3317 
3318 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3319 
3320 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3321 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3322 		  sizeof(struct bwi_desc32);
3323 
3324 	bwi_txeof_status(sc, end_idx);
3325 
3326 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3327 		    end_idx * sizeof(struct bwi_desc32));
3328 
3329 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3330 		ifp->if_start(ifp);
3331 }
3332 
3333 static void
3334 bwi_txeof_status64(struct bwi_softc *sc)
3335 {
3336 	/* TODO:64 */
3337 }
3338 
3339 static void
3340 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3341 {
3342 	struct ifnet *ifp = sc->sc_ifp;
3343 	struct bwi_txbuf_data *tbd;
3344 	struct bwi_txbuf *tb;
3345 	int ring_idx, buf_idx;
3346 	struct ieee80211_node *ni;
3347 	struct ieee80211vap *vap;
3348 
3349 	if (tx_id == 0) {
3350 		if_printf(ifp, "%s: zero tx id\n", __func__);
3351 		return;
3352 	}
3353 
3354 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3355 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3356 
3357 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3358 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3359 
3360 	tbd = &sc->sc_tx_bdata[ring_idx];
3361 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3362 	tbd->tbd_used--;
3363 
3364 	tb = &tbd->tbd_buf[buf_idx];
3365 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3366 		"acked %d, data_txcnt %d, ni %p\n",
3367 		buf_idx, acked, data_txcnt, tb->tb_ni);
3368 
3369 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3370 
3371 	ni = tb->tb_ni;
3372 	if (tb->tb_ni != NULL) {
3373 		const struct bwi_txbuf_hdr *hdr =
3374 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3375 		vap = ni->ni_vap;
3376 
3377 		/* NB: update rate control only for unicast frames */
3378 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3379 			/*
3380 			 * Feed back 'acked and data_txcnt'.  Note that the
3381 			 * generic AMRR code only understands one tx rate
3382 			 * and the estimator doesn't handle real retry counts
3383 			 * well so to avoid over-aggressive downshifting we
3384 			 * treat any number of retries as "1".
3385 			 */
3386 			ieee80211_ratectl_tx_complete(vap, ni,
3387 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3388 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3389 		}
3390 
3391 		/*
3392 		 * Do any tx complete callback.  Note this must
3393 		 * be done before releasing the node reference.
3394 		 */
3395 		if (tb->tb_mbuf->m_flags & M_TXCB)
3396 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3397 
3398 		ieee80211_free_node(tb->tb_ni);
3399 		tb->tb_ni = NULL;
3400 	}
3401 	m_freem(tb->tb_mbuf);
3402 	tb->tb_mbuf = NULL;
3403 
3404 	if (tbd->tbd_used == 0)
3405 		sc->sc_tx_timer = 0;
3406 
3407 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3408 }
3409 
3410 static void
3411 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3412 {
3413 	struct bwi_txstats_data *st = sc->sc_txstats;
3414 	int idx;
3415 
3416 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3417 
3418 	idx = st->stats_idx;
3419 	while (idx != end_idx) {
3420 		const struct bwi_txstats *stats = &st->stats[idx];
3421 
3422 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3423 			int data_txcnt;
3424 
3425 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3426 						BWI_TXS_TXCNT_DATA);
3427 			_bwi_txeof(sc, le16toh(stats->txs_id),
3428 				   stats->txs_flags & BWI_TXS_F_ACKED,
3429 				   data_txcnt);
3430 		}
3431 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3432 	}
3433 	st->stats_idx = idx;
3434 }
3435 
3436 static void
3437 bwi_txeof(struct bwi_softc *sc)
3438 {
3439 	struct ifnet *ifp = sc->sc_ifp;
3440 
3441 	for (;;) {
3442 		uint32_t tx_status0, tx_status1;
3443 		uint16_t tx_id;
3444 		int data_txcnt;
3445 
3446 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3447 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3448 			break;
3449 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3450 
3451 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3452 		data_txcnt = __SHIFTOUT(tx_status0,
3453 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3454 
3455 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3456 			continue;
3457 
3458 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3459 		    data_txcnt);
3460 	}
3461 
3462 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3463 		ifp->if_start(ifp);
3464 }
3465 
3466 static int
3467 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3468 {
3469 	bwi_power_on(sc, 1);
3470 	return bwi_set_clock_mode(sc, clk_mode);
3471 }
3472 
3473 static void
3474 bwi_bbp_power_off(struct bwi_softc *sc)
3475 {
3476 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3477 	bwi_power_off(sc, 1);
3478 }
3479 
3480 static int
3481 bwi_get_pwron_delay(struct bwi_softc *sc)
3482 {
3483 	struct bwi_regwin *com, *old;
3484 	struct bwi_clock_freq freq;
3485 	uint32_t val;
3486 	int error;
3487 
3488 	com = &sc->sc_com_regwin;
3489 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3490 
3491 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3492 		return 0;
3493 
3494 	error = bwi_regwin_switch(sc, com, &old);
3495 	if (error)
3496 		return error;
3497 
3498 	bwi_get_clock_freq(sc, &freq);
3499 
3500 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3501 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3502 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3503 
3504 	return bwi_regwin_switch(sc, old, NULL);
3505 }
3506 
3507 static int
3508 bwi_bus_attach(struct bwi_softc *sc)
3509 {
3510 	struct bwi_regwin *bus, *old;
3511 	int error;
3512 
3513 	bus = &sc->sc_bus_regwin;
3514 
3515 	error = bwi_regwin_switch(sc, bus, &old);
3516 	if (error)
3517 		return error;
3518 
3519 	if (!bwi_regwin_is_enabled(sc, bus))
3520 		bwi_regwin_enable(sc, bus, 0);
3521 
3522 	/* Disable interripts */
3523 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3524 
3525 	return bwi_regwin_switch(sc, old, NULL);
3526 }
3527 
3528 static const char *
3529 bwi_regwin_name(const struct bwi_regwin *rw)
3530 {
3531 	switch (rw->rw_type) {
3532 	case BWI_REGWIN_T_COM:
3533 		return "COM";
3534 	case BWI_REGWIN_T_BUSPCI:
3535 		return "PCI";
3536 	case BWI_REGWIN_T_MAC:
3537 		return "MAC";
3538 	case BWI_REGWIN_T_BUSPCIE:
3539 		return "PCIE";
3540 	}
3541 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3542 	return NULL;
3543 }
3544 
3545 static uint32_t
3546 bwi_regwin_disable_bits(struct bwi_softc *sc)
3547 {
3548 	uint32_t busrev;
3549 
3550 	/* XXX cache this */
3551 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3552 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3553 		"bus rev %u\n", busrev);
3554 
3555 	if (busrev == BWI_BUSREV_0)
3556 		return BWI_STATE_LO_DISABLE1;
3557 	else if (busrev == BWI_BUSREV_1)
3558 		return BWI_STATE_LO_DISABLE2;
3559 	else
3560 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3561 }
3562 
3563 int
3564 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3565 {
3566 	uint32_t val, disable_bits;
3567 
3568 	disable_bits = bwi_regwin_disable_bits(sc);
3569 	val = CSR_READ_4(sc, BWI_STATE_LO);
3570 
3571 	if ((val & (BWI_STATE_LO_CLOCK |
3572 		    BWI_STATE_LO_RESET |
3573 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3574 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3575 			bwi_regwin_name(rw));
3576 		return 1;
3577 	} else {
3578 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3579 			bwi_regwin_name(rw));
3580 		return 0;
3581 	}
3582 }
3583 
3584 void
3585 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3586 {
3587 	uint32_t state_lo, disable_bits;
3588 	int i;
3589 
3590 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3591 
3592 	/*
3593 	 * If current regwin is in 'reset' state, it was already disabled.
3594 	 */
3595 	if (state_lo & BWI_STATE_LO_RESET) {
3596 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3597 			"%s was already disabled\n", bwi_regwin_name(rw));
3598 		return;
3599 	}
3600 
3601 	disable_bits = bwi_regwin_disable_bits(sc);
3602 
3603 	/*
3604 	 * Disable normal clock
3605 	 */
3606 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3607 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3608 
3609 	/*
3610 	 * Wait until normal clock is disabled
3611 	 */
3612 #define NRETRY	1000
3613 	for (i = 0; i < NRETRY; ++i) {
3614 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3615 		if (state_lo & disable_bits)
3616 			break;
3617 		DELAY(10);
3618 	}
3619 	if (i == NRETRY) {
3620 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3621 			      bwi_regwin_name(rw));
3622 	}
3623 
3624 	for (i = 0; i < NRETRY; ++i) {
3625 		uint32_t state_hi;
3626 
3627 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3628 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3629 			break;
3630 		DELAY(10);
3631 	}
3632 	if (i == NRETRY) {
3633 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3634 			      bwi_regwin_name(rw));
3635 	}
3636 #undef NRETRY
3637 
3638 	/*
3639 	 * Reset and disable regwin with gated clock
3640 	 */
3641 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3642 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3643 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3644 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3645 
3646 	/* Flush pending bus write */
3647 	CSR_READ_4(sc, BWI_STATE_LO);
3648 	DELAY(1);
3649 
3650 	/* Reset and disable regwin */
3651 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3652 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3653 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3654 
3655 	/* Flush pending bus write */
3656 	CSR_READ_4(sc, BWI_STATE_LO);
3657 	DELAY(1);
3658 }
3659 
3660 void
3661 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3662 {
3663 	uint32_t state_lo, state_hi, imstate;
3664 
3665 	bwi_regwin_disable(sc, rw, flags);
3666 
3667 	/* Reset regwin with gated clock */
3668 	state_lo = BWI_STATE_LO_RESET |
3669 		   BWI_STATE_LO_CLOCK |
3670 		   BWI_STATE_LO_GATED_CLOCK |
3671 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3672 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3673 
3674 	/* Flush pending bus write */
3675 	CSR_READ_4(sc, BWI_STATE_LO);
3676 	DELAY(1);
3677 
3678 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3679 	if (state_hi & BWI_STATE_HI_SERROR)
3680 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3681 
3682 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3683 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3684 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3685 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3686 	}
3687 
3688 	/* Enable regwin with gated clock */
3689 	state_lo = BWI_STATE_LO_CLOCK |
3690 		   BWI_STATE_LO_GATED_CLOCK |
3691 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3692 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3693 
3694 	/* Flush pending bus write */
3695 	CSR_READ_4(sc, BWI_STATE_LO);
3696 	DELAY(1);
3697 
3698 	/* Enable regwin with normal clock */
3699 	state_lo = BWI_STATE_LO_CLOCK |
3700 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3701 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3702 
3703 	/* Flush pending bus write */
3704 	CSR_READ_4(sc, BWI_STATE_LO);
3705 	DELAY(1);
3706 }
3707 
3708 static void
3709 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3710 {
3711 	struct ifnet *ifp = sc->sc_ifp;
3712 	struct bwi_mac *mac;
3713 	struct bwi_myaddr_bssid buf;
3714 	const uint8_t *p;
3715 	uint32_t val;
3716 	int n, i;
3717 
3718 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3719 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3720 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3721 
3722 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3723 
3724 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3725 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3726 
3727 	n = sizeof(buf) / sizeof(val);
3728 	p = (const uint8_t *)&buf;
3729 	for (i = 0; i < n; ++i) {
3730 		int j;
3731 
3732 		val = 0;
3733 		for (j = 0; j < sizeof(val); ++j)
3734 			val |= ((uint32_t)(*p++)) << (j * 8);
3735 
3736 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3737 	}
3738 }
3739 
3740 static void
3741 bwi_updateslot(struct ieee80211com *ic)
3742 {
3743 	struct bwi_softc *sc = ic->ic_softc;
3744 	struct bwi_mac *mac;
3745 
3746 	BWI_LOCK(sc);
3747 	if (ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) {
3748 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3749 
3750 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3751 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3752 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3753 
3754 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3755 	}
3756 	BWI_UNLOCK(sc);
3757 }
3758 
3759 static void
3760 bwi_calibrate(void *xsc)
3761 {
3762 	struct bwi_softc *sc = xsc;
3763 #ifdef INVARIANTS
3764 	struct ifnet *ifp = sc->sc_ifp;
3765 	struct ieee80211com *ic = ifp->if_l2com;
3766 #endif
3767 	struct bwi_mac *mac;
3768 
3769 	BWI_ASSERT_LOCKED(sc);
3770 
3771 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3772 	    ("opmode %d", ic->ic_opmode));
3773 
3774 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3775 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3776 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3777 
3778 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3779 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3780 
3781 	/* XXX 15 seconds */
3782 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3783 }
3784 
3785 static int
3786 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3787 {
3788 	struct bwi_mac *mac;
3789 
3790 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3791 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3792 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3793 
3794 	return bwi_rf_calc_rssi(mac, hdr);
3795 }
3796 
3797 static int
3798 bwi_calc_noise(struct bwi_softc *sc)
3799 {
3800 	struct bwi_mac *mac;
3801 
3802 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3803 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3804 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3805 
3806 	return bwi_rf_calc_noise(mac);
3807 }
3808 
3809 static __inline uint8_t
3810 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3811 {
3812 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3813 	return (ieee80211_plcp2rate(plcp, type));
3814 }
3815 
3816 static void
3817 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3818     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3819 {
3820 	const struct ieee80211_frame_min *wh;
3821 
3822 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3823 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3824 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3825 
3826 	wh = mtod(m, const struct ieee80211_frame_min *);
3827 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3828 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3829 
3830 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3831 	sc->sc_rx_th.wr_rate = rate;
3832 	sc->sc_rx_th.wr_antsignal = rssi;
3833 	sc->sc_rx_th.wr_antnoise = noise;
3834 }
3835 
3836 static void
3837 bwi_led_attach(struct bwi_softc *sc)
3838 {
3839 	const uint8_t *led_act = NULL;
3840 	uint16_t gpio, val[BWI_LED_MAX];
3841 	int i;
3842 
3843 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3844 
3845 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3846 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3847 			led_act = bwi_vendor_led_act[i].led_act;
3848 			break;
3849 		}
3850 	}
3851 	if (led_act == NULL)
3852 		led_act = bwi_default_led_act;
3853 
3854 #undef N
3855 
3856 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3857 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3858 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3859 
3860 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3861 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3862 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3863 
3864 	for (i = 0; i < BWI_LED_MAX; ++i) {
3865 		struct bwi_led *led = &sc->sc_leds[i];
3866 
3867 		if (val[i] == 0xff) {
3868 			led->l_act = led_act[i];
3869 		} else {
3870 			if (val[i] & BWI_LED_ACT_LOW)
3871 				led->l_flags |= BWI_LED_F_ACTLOW;
3872 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3873 		}
3874 		led->l_mask = (1 << i);
3875 
3876 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3877 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3878 		    led->l_act == BWI_LED_ACT_BLINK) {
3879 			led->l_flags |= BWI_LED_F_BLINK;
3880 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3881 				led->l_flags |= BWI_LED_F_POLLABLE;
3882 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3883 				led->l_flags |= BWI_LED_F_SLOW;
3884 
3885 			if (sc->sc_blink_led == NULL) {
3886 				sc->sc_blink_led = led;
3887 				if (led->l_flags & BWI_LED_F_SLOW)
3888 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3889 			}
3890 		}
3891 
3892 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3893 			"%dth led, act %d, lowact %d\n", i,
3894 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3895 	}
3896 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3897 }
3898 
3899 static __inline uint16_t
3900 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3901 {
3902 	if (led->l_flags & BWI_LED_F_ACTLOW)
3903 		on = !on;
3904 	if (on)
3905 		val |= led->l_mask;
3906 	else
3907 		val &= ~led->l_mask;
3908 	return val;
3909 }
3910 
3911 static void
3912 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3913 {
3914 	struct ifnet *ifp = sc->sc_ifp;
3915 	struct ieee80211com *ic = ifp->if_l2com;
3916 	uint16_t val;
3917 	int i;
3918 
3919 	if (nstate == IEEE80211_S_INIT) {
3920 		callout_stop(&sc->sc_led_blink_ch);
3921 		sc->sc_led_blinking = 0;
3922 	}
3923 
3924 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3925 		return;
3926 
3927 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3928 	for (i = 0; i < BWI_LED_MAX; ++i) {
3929 		struct bwi_led *led = &sc->sc_leds[i];
3930 		int on;
3931 
3932 		if (led->l_act == BWI_LED_ACT_UNKN ||
3933 		    led->l_act == BWI_LED_ACT_NULL)
3934 			continue;
3935 
3936 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3937 		    nstate != IEEE80211_S_INIT)
3938 		    	continue;
3939 
3940 		switch (led->l_act) {
3941 		case BWI_LED_ACT_ON:	/* Always on */
3942 			on = 1;
3943 			break;
3944 		case BWI_LED_ACT_OFF:	/* Always off */
3945 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3946 			on = 0;
3947 			break;
3948 		default:
3949 			on = 1;
3950 			switch (nstate) {
3951 			case IEEE80211_S_INIT:
3952 				on = 0;
3953 				break;
3954 			case IEEE80211_S_RUN:
3955 				if (led->l_act == BWI_LED_ACT_11G &&
3956 				    ic->ic_curmode != IEEE80211_MODE_11G)
3957 					on = 0;
3958 				break;
3959 			default:
3960 				if (led->l_act == BWI_LED_ACT_ASSOC)
3961 					on = 0;
3962 				break;
3963 			}
3964 			break;
3965 		}
3966 
3967 		val = bwi_led_onoff(led, val, on);
3968 	}
3969 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3970 }
3971 static void
3972 bwi_led_event(struct bwi_softc *sc, int event)
3973 {
3974 	struct bwi_led *led = sc->sc_blink_led;
3975 	int rate;
3976 
3977 	if (event == BWI_LED_EVENT_POLL) {
3978 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3979 			return;
3980 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3981 			return;
3982 	}
3983 
3984 	sc->sc_led_ticks = ticks;
3985 	if (sc->sc_led_blinking)
3986 		return;
3987 
3988 	switch (event) {
3989 	case BWI_LED_EVENT_RX:
3990 		rate = sc->sc_rx_rate;
3991 		break;
3992 	case BWI_LED_EVENT_TX:
3993 		rate = sc->sc_tx_rate;
3994 		break;
3995 	case BWI_LED_EVENT_POLL:
3996 		rate = 0;
3997 		break;
3998 	default:
3999 		panic("unknown LED event %d\n", event);
4000 		break;
4001 	}
4002 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4003 	    bwi_led_duration[rate].off_dur);
4004 }
4005 
4006 static void
4007 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4008 {
4009 	struct bwi_led *led = sc->sc_blink_led;
4010 	uint16_t val;
4011 
4012 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4013 	val = bwi_led_onoff(led, val, 1);
4014 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4015 
4016 	if (led->l_flags & BWI_LED_F_SLOW) {
4017 		BWI_LED_SLOWDOWN(on_dur);
4018 		BWI_LED_SLOWDOWN(off_dur);
4019 	}
4020 
4021 	sc->sc_led_blinking = 1;
4022 	sc->sc_led_blink_offdur = off_dur;
4023 
4024 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4025 }
4026 
4027 static void
4028 bwi_led_blink_next(void *xsc)
4029 {
4030 	struct bwi_softc *sc = xsc;
4031 	uint16_t val;
4032 
4033 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4034 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4035 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4036 
4037 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4038 	    bwi_led_blink_end, sc);
4039 }
4040 
4041 static void
4042 bwi_led_blink_end(void *xsc)
4043 {
4044 	struct bwi_softc *sc = xsc;
4045 	sc->sc_led_blinking = 0;
4046 }
4047 
4048 static void
4049 bwi_restart(void *xsc, int pending)
4050 {
4051 	struct bwi_softc *sc = xsc;
4052 	struct ifnet *ifp = sc->sc_ifp;
4053 
4054 	if_printf(ifp, "%s begin, help!\n", __func__);
4055 	BWI_LOCK(sc);
4056 	bwi_init_statechg(xsc, 0);
4057 #if 0
4058 	bwi_start_locked(ifp);
4059 #endif
4060 	BWI_UNLOCK(sc);
4061 }
4062