xref: /freebsd/sys/dev/bwi/if_bwi.c (revision d06955f9bdb1416d9196043ed781f9b36dae9adc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_bwi.h"
44 #include "opt_wlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/endian.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/taskqueue.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_llc.h>
67 
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #include <net80211/ieee80211_phy.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <net/bpf.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif
80 
81 #include <machine/bus.h>
82 
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcireg.h>
85 
86 #include <dev/bwi/bitops.h>
87 #include <dev/bwi/if_bwireg.h>
88 #include <dev/bwi/if_bwivar.h>
89 #include <dev/bwi/bwimac.h>
90 #include <dev/bwi/bwirf.h>
91 
92 struct bwi_clock_freq {
93 	u_int		clkfreq_min;
94 	u_int		clkfreq_max;
95 };
96 
97 struct bwi_myaddr_bssid {
98 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
99 	uint8_t		bssid[IEEE80211_ADDR_LEN];
100 } __packed;
101 
102 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
103 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
104 		    const uint8_t [IEEE80211_ADDR_LEN],
105 		    const uint8_t [IEEE80211_ADDR_LEN]);
106 static void	bwi_vap_delete(struct ieee80211vap *);
107 static void	bwi_init(struct bwi_softc *);
108 static void	bwi_parent(struct ieee80211com *);
109 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
110 static void	bwi_start_locked(struct bwi_softc *);
111 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
112 			const struct ieee80211_bpf_params *);
113 static void	bwi_watchdog(void *);
114 static void	bwi_scan_start(struct ieee80211com *);
115 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
116 		    struct ieee80211_channel[]);
117 static void	bwi_set_channel(struct ieee80211com *);
118 static void	bwi_scan_end(struct ieee80211com *);
119 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
120 static void	bwi_updateslot(struct ieee80211com *);
121 static int	bwi_media_change(struct ifnet *);
122 
123 static void	bwi_calibrate(void *);
124 
125 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
126 static int	bwi_calc_noise(struct bwi_softc *);
127 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
128 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
129 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
130 
131 static void	bwi_restart(void *, int);
132 static void	bwi_init_statechg(struct bwi_softc *, int);
133 static void	bwi_stop(struct bwi_softc *, int);
134 static void	bwi_stop_locked(struct bwi_softc *, int);
135 static int	bwi_newbuf(struct bwi_softc *, int, int);
136 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *);
138 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
139 			  struct ieee80211_node *,
140 			  const struct ieee80211_bpf_params *);
141 
142 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
143 				       bus_addr_t, int, int);
144 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
145 
146 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
147 static int	bwi_init_rx_ring32(struct bwi_softc *);
148 static int	bwi_init_txstats32(struct bwi_softc *);
149 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
150 static void	bwi_free_rx_ring32(struct bwi_softc *);
151 static void	bwi_free_txstats32(struct bwi_softc *);
152 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
153 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
154 				    int, bus_addr_t, int);
155 static int	bwi_rxeof32(struct bwi_softc *);
156 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
157 static void	bwi_txeof_status32(struct bwi_softc *);
158 
159 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
160 static int	bwi_init_rx_ring64(struct bwi_softc *);
161 static int	bwi_init_txstats64(struct bwi_softc *);
162 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
163 static void	bwi_free_rx_ring64(struct bwi_softc *);
164 static void	bwi_free_txstats64(struct bwi_softc *);
165 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
166 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
167 				    int, bus_addr_t, int);
168 static int	bwi_rxeof64(struct bwi_softc *);
169 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
170 static void	bwi_txeof_status64(struct bwi_softc *);
171 
172 static int	bwi_rxeof(struct bwi_softc *, int);
173 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
174 static void	bwi_txeof(struct bwi_softc *);
175 static void	bwi_txeof_status(struct bwi_softc *, int);
176 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
177 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
178 
179 static int	bwi_dma_alloc(struct bwi_softc *);
180 static void	bwi_dma_free(struct bwi_softc *);
181 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
182 				   struct bwi_ring_data *, bus_size_t,
183 				   uint32_t);
184 static int	bwi_dma_mbuf_create(struct bwi_softc *);
185 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
186 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
187 static void	bwi_dma_txstats_free(struct bwi_softc *);
188 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
189 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
190 				 bus_size_t, int);
191 
192 static void	bwi_power_on(struct bwi_softc *, int);
193 static int	bwi_power_off(struct bwi_softc *, int);
194 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
195 static int	bwi_set_clock_delay(struct bwi_softc *);
196 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
197 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
198 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
199 				    const uint8_t *);
200 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
201 
202 static void	bwi_get_card_flags(struct bwi_softc *);
203 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
204 
205 static int	bwi_bus_attach(struct bwi_softc *);
206 static int	bwi_bbp_attach(struct bwi_softc *);
207 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
208 static void	bwi_bbp_power_off(struct bwi_softc *);
209 
210 static const char *bwi_regwin_name(const struct bwi_regwin *);
211 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
212 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
213 static int	bwi_regwin_select(struct bwi_softc *, int);
214 
215 static void	bwi_led_attach(struct bwi_softc *);
216 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
217 static void	bwi_led_event(struct bwi_softc *, int);
218 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
219 static void	bwi_led_blink_next(void *);
220 static void	bwi_led_blink_end(void *);
221 
222 static const struct {
223 	uint16_t	did_min;
224 	uint16_t	did_max;
225 	uint16_t	bbp_id;
226 } bwi_bbpid_map[] = {
227 	{ 0x4301, 0x4301, 0x4301 },
228 	{ 0x4305, 0x4307, 0x4307 },
229 	{ 0x4402, 0x4403, 0x4402 },
230 	{ 0x4610, 0x4615, 0x4610 },
231 	{ 0x4710, 0x4715, 0x4710 },
232 	{ 0x4720, 0x4725, 0x4309 }
233 };
234 
235 static const struct {
236 	uint16_t	bbp_id;
237 	int		nregwin;
238 } bwi_regwin_count[] = {
239 	{ 0x4301, 5 },
240 	{ 0x4306, 6 },
241 	{ 0x4307, 5 },
242 	{ 0x4310, 8 },
243 	{ 0x4401, 3 },
244 	{ 0x4402, 3 },
245 	{ 0x4610, 9 },
246 	{ 0x4704, 9 },
247 	{ 0x4710, 9 },
248 	{ 0x5365, 7 }
249 };
250 
251 #define CLKSRC(src) 				\
252 [BWI_CLKSRC_ ## src] = {			\
253 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
254 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
255 }
256 
257 static const struct {
258 	u_int	freq_min;
259 	u_int	freq_max;
260 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
261 	CLKSRC(LP_OSC),
262 	CLKSRC(CS_OSC),
263 	CLKSRC(PCI)
264 };
265 
266 #undef CLKSRC
267 
268 #define VENDOR_LED_ACT(vendor)				\
269 {							\
270 	.vid = PCI_VENDOR_##vendor,			\
271 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
272 }
273 
274 static const struct {
275 #define	PCI_VENDOR_COMPAQ	0x0e11
276 #define	PCI_VENDOR_LINKSYS	0x1737
277 	uint16_t	vid;
278 	uint8_t		led_act[BWI_LED_MAX];
279 } bwi_vendor_led_act[] = {
280 	VENDOR_LED_ACT(COMPAQ),
281 	VENDOR_LED_ACT(LINKSYS)
282 #undef PCI_VENDOR_LINKSYS
283 #undef PCI_VENDOR_COMPAQ
284 };
285 
286 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
287 	{ BWI_VENDOR_LED_ACT_DEFAULT };
288 
289 #undef VENDOR_LED_ACT
290 
291 static const struct {
292 	int	on_dur;
293 	int	off_dur;
294 } bwi_led_duration[109] = {
295 	[0]	= { 400, 100 },
296 	[2]	= { 150, 75 },
297 	[4]	= { 90, 45 },
298 	[11]	= { 66, 34 },
299 	[12]	= { 53, 26 },
300 	[18]	= { 42, 21 },
301 	[22]	= { 35, 17 },
302 	[24]	= { 32, 16 },
303 	[36]	= { 21, 10 },
304 	[48]	= { 16, 8 },
305 	[72]	= { 11, 5 },
306 	[96]	= { 9, 4 },
307 	[108]	= { 7, 3 }
308 };
309 
310 static const uint8_t bwi_chan_2ghz[] =
311 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
312 
313 #ifdef BWI_DEBUG
314 #ifdef BWI_DEBUG_VERBOSE
315 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
316 #else
317 static uint32_t	bwi_debug;
318 #endif
319 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
320 #endif	/* BWI_DEBUG */
321 
322 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
323 
324 uint16_t
325 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
326 {
327 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
328 }
329 
330 static __inline void
331 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
332 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
333 		 int tx)
334 {
335 	struct bwi_desc32 *desc = &desc_array[desc_idx];
336 	uint32_t ctrl, addr, addr_hi, addr_lo;
337 
338 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
339 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
340 
341 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
342 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
343 
344 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
345 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
346 	if (desc_idx == ndesc - 1)
347 		ctrl |= BWI_DESC32_C_EOR;
348 	if (tx) {
349 		/* XXX */
350 		ctrl |= BWI_DESC32_C_FRAME_START |
351 			BWI_DESC32_C_FRAME_END |
352 			BWI_DESC32_C_INTR;
353 	}
354 
355 	desc->addr = htole32(addr);
356 	desc->ctrl = htole32(ctrl);
357 }
358 
359 int
360 bwi_attach(struct bwi_softc *sc)
361 {
362 	struct ieee80211com *ic = &sc->sc_ic;
363 	device_t dev = sc->sc_dev;
364 	struct bwi_mac *mac;
365 	struct bwi_phy *phy;
366 	int i, error;
367 
368 	BWI_LOCK_INIT(sc);
369 
370 	/*
371 	 * Initialize taskq and various tasks
372 	 */
373 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
374 		taskqueue_thread_enqueue, &sc->sc_tq);
375 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
376 		device_get_nameunit(dev));
377 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
378 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
379 	mbufq_init(&sc->sc_snd, ifqmaxlen);
380 
381 	/*
382 	 * Initialize sysctl variables
383 	 */
384 	sc->sc_fw_version = BWI_FW_VERSION3;
385 	sc->sc_led_idle = (2350 * hz) / 1000;
386 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
387 	sc->sc_led_blink = 1;
388 	sc->sc_txpwr_calib = 1;
389 #ifdef BWI_DEBUG
390 	sc->sc_debug = bwi_debug;
391 #endif
392 	bwi_power_on(sc, 1);
393 
394 	error = bwi_bbp_attach(sc);
395 	if (error)
396 		goto fail;
397 
398 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
399 	if (error)
400 		goto fail;
401 
402 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
403 		error = bwi_set_clock_delay(sc);
404 		if (error)
405 			goto fail;
406 
407 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
408 		if (error)
409 			goto fail;
410 
411 		error = bwi_get_pwron_delay(sc);
412 		if (error)
413 			goto fail;
414 	}
415 
416 	error = bwi_bus_attach(sc);
417 	if (error)
418 		goto fail;
419 
420 	bwi_get_card_flags(sc);
421 
422 	bwi_led_attach(sc);
423 
424 	for (i = 0; i < sc->sc_nmac; ++i) {
425 		struct bwi_regwin *old;
426 
427 		mac = &sc->sc_mac[i];
428 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
429 		if (error)
430 			goto fail;
431 
432 		error = bwi_mac_lateattach(mac);
433 		if (error)
434 			goto fail;
435 
436 		error = bwi_regwin_switch(sc, old, NULL);
437 		if (error)
438 			goto fail;
439 	}
440 
441 	/*
442 	 * XXX First MAC is known to exist
443 	 * TODO2
444 	 */
445 	mac = &sc->sc_mac[0];
446 	phy = &mac->mac_phy;
447 
448 	bwi_bbp_power_off(sc);
449 
450 	error = bwi_dma_alloc(sc);
451 	if (error)
452 		goto fail;
453 
454 	error = bwi_mac_fw_alloc(mac);
455 	if (error)
456 		goto fail;
457 
458 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
459 
460 	/*
461 	 * Setup ratesets, phytype, channels and get MAC address
462 	 */
463 	if (phy->phy_mode == IEEE80211_MODE_11B ||
464 	    phy->phy_mode == IEEE80211_MODE_11G) {
465 		if (phy->phy_mode == IEEE80211_MODE_11B) {
466 			ic->ic_phytype = IEEE80211_T_DS;
467 		} else {
468 			ic->ic_phytype = IEEE80211_T_OFDM;
469 		}
470 
471 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
472 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
473 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
474 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
475 				device_printf(dev,
476 				    "invalid MAC address: %6D\n",
477 				    ic->ic_macaddr, ":");
478 			}
479 		}
480 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
481 		/* TODO:11A */
482 		error = ENXIO;
483 		goto fail;
484 	} else {
485 		panic("unknown phymode %d\n", phy->phy_mode);
486 	}
487 
488 	/* Get locale */
489 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
490 				   BWI_SPROM_CARD_INFO_LOCALE);
491 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
492 	/* XXX use locale */
493 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
494 	    ic->ic_channels);
495 
496 	ic->ic_softc = sc;
497 	ic->ic_name = device_get_nameunit(dev);
498 	ic->ic_caps = IEEE80211_C_STA |
499 		      IEEE80211_C_SHSLOT |
500 		      IEEE80211_C_SHPREAMBLE |
501 		      IEEE80211_C_WPA |
502 		      IEEE80211_C_BGSCAN |
503 		      IEEE80211_C_MONITOR;
504 	ic->ic_opmode = IEEE80211_M_STA;
505 	ieee80211_ifattach(ic);
506 
507 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
508 
509 	/* override default methods */
510 	ic->ic_vap_create = bwi_vap_create;
511 	ic->ic_vap_delete = bwi_vap_delete;
512 	ic->ic_raw_xmit = bwi_raw_xmit;
513 	ic->ic_updateslot = bwi_updateslot;
514 	ic->ic_scan_start = bwi_scan_start;
515 	ic->ic_scan_end = bwi_scan_end;
516 	ic->ic_getradiocaps = bwi_getradiocaps;
517 	ic->ic_set_channel = bwi_set_channel;
518 	ic->ic_transmit = bwi_transmit;
519 	ic->ic_parent = bwi_parent;
520 
521 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
522 
523 	ieee80211_radiotap_attach(ic,
524 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
525 		BWI_TX_RADIOTAP_PRESENT,
526 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
527 		BWI_RX_RADIOTAP_PRESENT);
528 
529 	/*
530 	 * Add sysctl nodes
531 	 */
532 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
533 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
534 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
535 		        "Firmware version");
536 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
537 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
538 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
539 		        "# ticks before LED enters idle state");
540 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
541 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
543 		       "Allow LED to blink");
544 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
545 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
547 		       "Enable software TX power calibration");
548 #ifdef BWI_DEBUG
549 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
550 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
551 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
552 #endif
553 	if (bootverbose)
554 		ieee80211_announce(ic);
555 
556 	return (0);
557 fail:
558 	BWI_LOCK_DESTROY(sc);
559 	return (error);
560 }
561 
562 int
563 bwi_detach(struct bwi_softc *sc)
564 {
565 	struct ieee80211com *ic = &sc->sc_ic;
566 	int i;
567 
568 	bwi_stop(sc, 1);
569 	callout_drain(&sc->sc_led_blink_ch);
570 	callout_drain(&sc->sc_calib_ch);
571 	callout_drain(&sc->sc_watchdog_timer);
572 	ieee80211_ifdetach(ic);
573 
574 	for (i = 0; i < sc->sc_nmac; ++i)
575 		bwi_mac_detach(&sc->sc_mac[i]);
576 	bwi_dma_free(sc);
577 	taskqueue_free(sc->sc_tq);
578 	mbufq_drain(&sc->sc_snd);
579 
580 	BWI_LOCK_DESTROY(sc);
581 
582 	return (0);
583 }
584 
585 static struct ieee80211vap *
586 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
587     enum ieee80211_opmode opmode, int flags,
588     const uint8_t bssid[IEEE80211_ADDR_LEN],
589     const uint8_t mac[IEEE80211_ADDR_LEN])
590 {
591 	struct bwi_vap *bvp;
592 	struct ieee80211vap *vap;
593 
594 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
595 		return NULL;
596 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
597 	vap = &bvp->bv_vap;
598 	/* enable s/w bmiss handling for sta mode */
599 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
600 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
601 
602 	/* override default methods */
603 	bvp->bv_newstate = vap->iv_newstate;
604 	vap->iv_newstate = bwi_newstate;
605 #if 0
606 	vap->iv_update_beacon = bwi_beacon_update;
607 #endif
608 	ieee80211_ratectl_init(vap);
609 
610 	/* complete setup */
611 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
612 	    mac);
613 	ic->ic_opmode = opmode;
614 	return vap;
615 }
616 
617 static void
618 bwi_vap_delete(struct ieee80211vap *vap)
619 {
620 	struct bwi_vap *bvp = BWI_VAP(vap);
621 
622 	ieee80211_ratectl_deinit(vap);
623 	ieee80211_vap_detach(vap);
624 	free(bvp, M_80211_VAP);
625 }
626 
627 void
628 bwi_suspend(struct bwi_softc *sc)
629 {
630 	bwi_stop(sc, 1);
631 }
632 
633 void
634 bwi_resume(struct bwi_softc *sc)
635 {
636 
637 	if (sc->sc_ic.ic_nrunning > 0)
638 		bwi_init(sc);
639 }
640 
641 int
642 bwi_shutdown(struct bwi_softc *sc)
643 {
644 	bwi_stop(sc, 1);
645 	return 0;
646 }
647 
648 static void
649 bwi_power_on(struct bwi_softc *sc, int with_pll)
650 {
651 	uint32_t gpio_in, gpio_out, gpio_en;
652 	uint16_t status;
653 
654 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
655 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
656 		goto back;
657 
658 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
659 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
660 
661 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
662 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
663 	if (with_pll) {
664 		/* Turn off PLL first */
665 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
666 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
667 	}
668 
669 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
670 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
671 	DELAY(1000);
672 
673 	if (with_pll) {
674 		/* Turn on PLL */
675 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
676 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
677 		DELAY(5000);
678 	}
679 
680 back:
681 	/* Clear "Signaled Target Abort" */
682 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
683 	status &= ~PCIM_STATUS_STABORT;
684 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
685 }
686 
687 static int
688 bwi_power_off(struct bwi_softc *sc, int with_pll)
689 {
690 	uint32_t gpio_out, gpio_en;
691 
692 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
693 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
694 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
695 
696 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
697 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
698 	if (with_pll) {
699 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
700 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
701 	}
702 
703 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
704 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
705 	return 0;
706 }
707 
708 int
709 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
710 		  struct bwi_regwin **old_rw)
711 {
712 	int error;
713 
714 	if (old_rw != NULL)
715 		*old_rw = NULL;
716 
717 	if (!BWI_REGWIN_EXIST(rw))
718 		return EINVAL;
719 
720 	if (sc->sc_cur_regwin != rw) {
721 		error = bwi_regwin_select(sc, rw->rw_id);
722 		if (error) {
723 			device_printf(sc->sc_dev, "can't select regwin %d\n",
724 				  rw->rw_id);
725 			return error;
726 		}
727 	}
728 
729 	if (old_rw != NULL)
730 		*old_rw = sc->sc_cur_regwin;
731 	sc->sc_cur_regwin = rw;
732 	return 0;
733 }
734 
735 static int
736 bwi_regwin_select(struct bwi_softc *sc, int id)
737 {
738 	uint32_t win = BWI_PCIM_REGWIN(id);
739 	int i;
740 
741 #define RETRY_MAX	50
742 	for (i = 0; i < RETRY_MAX; ++i) {
743 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
744 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
745 			return 0;
746 		DELAY(10);
747 	}
748 #undef RETRY_MAX
749 
750 	return ENXIO;
751 }
752 
753 static void
754 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
755 {
756 	uint32_t val;
757 
758 	val = CSR_READ_4(sc, BWI_ID_HI);
759 	*type = BWI_ID_HI_REGWIN_TYPE(val);
760 	*rev = BWI_ID_HI_REGWIN_REV(val);
761 
762 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
763 		"vendor 0x%04x\n", *type, *rev,
764 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
765 }
766 
767 static int
768 bwi_bbp_attach(struct bwi_softc *sc)
769 {
770 	uint16_t bbp_id, rw_type;
771 	uint8_t rw_rev;
772 	uint32_t info;
773 	int error, nregwin, i;
774 
775 	/*
776 	 * Get 0th regwin information
777 	 * NOTE: 0th regwin should exist
778 	 */
779 	error = bwi_regwin_select(sc, 0);
780 	if (error) {
781 		device_printf(sc->sc_dev, "can't select regwin 0\n");
782 		return error;
783 	}
784 	bwi_regwin_info(sc, &rw_type, &rw_rev);
785 
786 	/*
787 	 * Find out BBP id
788 	 */
789 	bbp_id = 0;
790 	info = 0;
791 	if (rw_type == BWI_REGWIN_T_COM) {
792 		info = CSR_READ_4(sc, BWI_INFO);
793 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
794 
795 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
796 
797 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
798 	} else {
799 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
800 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
801 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
802 				bbp_id = bwi_bbpid_map[i].bbp_id;
803 				break;
804 			}
805 		}
806 		if (bbp_id == 0) {
807 			device_printf(sc->sc_dev, "no BBP id for device id "
808 				      "0x%04x\n", sc->sc_pci_did);
809 			return ENXIO;
810 		}
811 
812 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
813 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
814 	}
815 
816 	/*
817 	 * Find out number of regwins
818 	 */
819 	nregwin = 0;
820 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
821 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
822 	} else {
823 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
824 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
825 				nregwin = bwi_regwin_count[i].nregwin;
826 				break;
827 			}
828 		}
829 		if (nregwin == 0) {
830 			device_printf(sc->sc_dev, "no number of win for "
831 				      "BBP id 0x%04x\n", bbp_id);
832 			return ENXIO;
833 		}
834 	}
835 
836 	/* Record BBP id/rev for later using */
837 	sc->sc_bbp_id = bbp_id;
838 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
839 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
840 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
841 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
842 
843 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
844 		nregwin, sc->sc_cap);
845 
846 	/*
847 	 * Create rest of the regwins
848 	 */
849 
850 	/* Don't re-create common regwin, if it is already created */
851 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
852 
853 	for (; i < nregwin; ++i) {
854 		/*
855 		 * Get regwin information
856 		 */
857 		error = bwi_regwin_select(sc, i);
858 		if (error) {
859 			device_printf(sc->sc_dev,
860 				      "can't select regwin %d\n", i);
861 			return error;
862 		}
863 		bwi_regwin_info(sc, &rw_type, &rw_rev);
864 
865 		/*
866 		 * Try attach:
867 		 * 1) Bus (PCI/PCIE) regwin
868 		 * 2) MAC regwin
869 		 * Ignore rest types of regwin
870 		 */
871 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
872 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
873 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
874 				device_printf(sc->sc_dev,
875 					      "bus regwin already exists\n");
876 			} else {
877 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
878 						  rw_type, rw_rev);
879 			}
880 		} else if (rw_type == BWI_REGWIN_T_MAC) {
881 			/* XXX ignore return value */
882 			bwi_mac_attach(sc, i, rw_rev);
883 		}
884 	}
885 
886 	/* At least one MAC shold exist */
887 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
888 		device_printf(sc->sc_dev, "no MAC was found\n");
889 		return ENXIO;
890 	}
891 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
892 
893 	/* Bus regwin must exist */
894 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
895 		device_printf(sc->sc_dev, "no bus regwin was found\n");
896 		return ENXIO;
897 	}
898 
899 	/* Start with first MAC */
900 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
901 	if (error)
902 		return error;
903 
904 	return 0;
905 }
906 
907 int
908 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
909 {
910 	struct bwi_regwin *old, *bus;
911 	uint32_t val;
912 	int error;
913 
914 	bus = &sc->sc_bus_regwin;
915 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
916 
917 	/*
918 	 * Tell bus to generate requested interrupts
919 	 */
920 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
921 		/*
922 		 * NOTE: Read BWI_FLAGS from MAC regwin
923 		 */
924 		val = CSR_READ_4(sc, BWI_FLAGS);
925 
926 		error = bwi_regwin_switch(sc, bus, &old);
927 		if (error)
928 			return error;
929 
930 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
931 	} else {
932 		uint32_t mac_mask;
933 
934 		mac_mask = 1 << mac->mac_id;
935 
936 		error = bwi_regwin_switch(sc, bus, &old);
937 		if (error)
938 			return error;
939 
940 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
941 		val |= mac_mask << 8;
942 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
943 	}
944 
945 	if (sc->sc_flags & BWI_F_BUS_INITED)
946 		goto back;
947 
948 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
949 		/*
950 		 * Enable prefetch and burst
951 		 */
952 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
953 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
954 
955 		if (bus->rw_rev < 5) {
956 			struct bwi_regwin *com = &sc->sc_com_regwin;
957 
958 			/*
959 			 * Configure timeouts for bus operation
960 			 */
961 
962 			/*
963 			 * Set service timeout and request timeout
964 			 */
965 			CSR_SETBITS_4(sc, BWI_CONF_LO,
966 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
967 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
968 
969 			/*
970 			 * If there is common regwin, we switch to that regwin
971 			 * and switch back to bus regwin once we have done.
972 			 */
973 			if (BWI_REGWIN_EXIST(com)) {
974 				error = bwi_regwin_switch(sc, com, NULL);
975 				if (error)
976 					return error;
977 			}
978 
979 			/* Let bus know what we have changed */
980 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
981 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
982 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
983 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
984 
985 			if (BWI_REGWIN_EXIST(com)) {
986 				error = bwi_regwin_switch(sc, bus, NULL);
987 				if (error)
988 					return error;
989 			}
990 		} else if (bus->rw_rev >= 11) {
991 			/*
992 			 * Enable memory read multiple
993 			 */
994 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
995 		}
996 	} else {
997 		/* TODO:PCIE */
998 	}
999 
1000 	sc->sc_flags |= BWI_F_BUS_INITED;
1001 back:
1002 	return bwi_regwin_switch(sc, old, NULL);
1003 }
1004 
1005 static void
1006 bwi_get_card_flags(struct bwi_softc *sc)
1007 {
1008 #define	PCI_VENDOR_APPLE 0x106b
1009 #define	PCI_VENDOR_DELL  0x1028
1010 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1011 	if (sc->sc_card_flags == 0xffff)
1012 		sc->sc_card_flags = 0;
1013 
1014 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1015 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1016 	    sc->sc_pci_revid == 0x74)
1017 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1018 
1019 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1020 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1021 	    sc->sc_pci_revid > 0x40)
1022 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1023 
1024 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1025 #undef PCI_VENDOR_DELL
1026 #undef PCI_VENDOR_APPLE
1027 }
1028 
1029 static void
1030 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1031 {
1032 	int i;
1033 
1034 	for (i = 0; i < 3; ++i) {
1035 		*((uint16_t *)eaddr + i) =
1036 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1037 	}
1038 }
1039 
1040 static void
1041 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1042 {
1043 	struct bwi_regwin *com;
1044 	uint32_t val;
1045 	u_int div;
1046 	int src;
1047 
1048 	bzero(freq, sizeof(*freq));
1049 	com = &sc->sc_com_regwin;
1050 
1051 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1052 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1053 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1054 
1055 	/*
1056 	 * Calculate clock frequency
1057 	 */
1058 	src = -1;
1059 	div = 0;
1060 	if (com->rw_rev < 6) {
1061 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1062 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1063 			src = BWI_CLKSRC_PCI;
1064 			div = 64;
1065 		} else {
1066 			src = BWI_CLKSRC_CS_OSC;
1067 			div = 32;
1068 		}
1069 	} else if (com->rw_rev < 10) {
1070 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1071 
1072 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1073 		if (src == BWI_CLKSRC_LP_OSC) {
1074 			div = 1;
1075 		} else {
1076 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1077 
1078 			/* Unknown source */
1079 			if (src >= BWI_CLKSRC_MAX)
1080 				src = BWI_CLKSRC_CS_OSC;
1081 		}
1082 	} else {
1083 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1084 
1085 		src = BWI_CLKSRC_CS_OSC;
1086 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1087 	}
1088 
1089 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1090 	KASSERT(div != 0, ("div zero"));
1091 
1092 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1093 		src == BWI_CLKSRC_PCI ? "PCI" :
1094 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1095 
1096 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1097 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1098 
1099 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1100 		freq->clkfreq_min, freq->clkfreq_max);
1101 }
1102 
1103 static int
1104 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1105 {
1106 	struct bwi_regwin *old, *com;
1107 	uint32_t clk_ctrl, clk_src;
1108 	int error, pwr_off = 0;
1109 
1110 	com = &sc->sc_com_regwin;
1111 	if (!BWI_REGWIN_EXIST(com))
1112 		return 0;
1113 
1114 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1115 		return 0;
1116 
1117 	/*
1118 	 * For common regwin whose rev is [6, 10), the chip
1119 	 * must be capable to change clock mode.
1120 	 */
1121 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1122 		return 0;
1123 
1124 	error = bwi_regwin_switch(sc, com, &old);
1125 	if (error)
1126 		return error;
1127 
1128 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1129 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1130 
1131 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1132 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1133 
1134 	switch (clk_mode) {
1135 	case BWI_CLOCK_MODE_FAST:
1136 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1137 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1138 		break;
1139 	case BWI_CLOCK_MODE_SLOW:
1140 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1141 		break;
1142 	case BWI_CLOCK_MODE_DYN:
1143 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1144 			      BWI_CLOCK_CTRL_IGNPLL |
1145 			      BWI_CLOCK_CTRL_NODYN);
1146 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1147 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1148 			pwr_off = 1;
1149 		}
1150 		break;
1151 	}
1152 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1153 
1154 	if (pwr_off)
1155 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1156 
1157 	return bwi_regwin_switch(sc, old, NULL);
1158 }
1159 
1160 static int
1161 bwi_set_clock_delay(struct bwi_softc *sc)
1162 {
1163 	struct bwi_regwin *old, *com;
1164 	int error;
1165 
1166 	com = &sc->sc_com_regwin;
1167 	if (!BWI_REGWIN_EXIST(com))
1168 		return 0;
1169 
1170 	error = bwi_regwin_switch(sc, com, &old);
1171 	if (error)
1172 		return error;
1173 
1174 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1175 		if (sc->sc_bbp_rev == 0)
1176 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1177 		else if (sc->sc_bbp_rev == 1)
1178 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1179 	}
1180 
1181 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1182 		if (com->rw_rev >= 10) {
1183 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1184 		} else {
1185 			struct bwi_clock_freq freq;
1186 
1187 			bwi_get_clock_freq(sc, &freq);
1188 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1189 				howmany(freq.clkfreq_max * 150, 1000000));
1190 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1191 				howmany(freq.clkfreq_max * 15, 1000000));
1192 		}
1193 	}
1194 
1195 	return bwi_regwin_switch(sc, old, NULL);
1196 }
1197 
1198 static void
1199 bwi_init(struct bwi_softc *sc)
1200 {
1201 	struct ieee80211com *ic = &sc->sc_ic;
1202 
1203 	BWI_LOCK(sc);
1204 	bwi_init_statechg(sc, 1);
1205 	BWI_UNLOCK(sc);
1206 
1207 	if (sc->sc_flags & BWI_F_RUNNING)
1208 		ieee80211_start_all(ic);		/* start all vap's */
1209 }
1210 
1211 static void
1212 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1213 {
1214 	struct bwi_mac *mac;
1215 	int error;
1216 
1217 	BWI_ASSERT_LOCKED(sc);
1218 
1219 	bwi_stop_locked(sc, statechg);
1220 
1221 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1222 
1223 	/* TODO: 2 MAC */
1224 
1225 	mac = &sc->sc_mac[0];
1226 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1227 	if (error) {
1228 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1229 		    __func__, error);
1230 		goto bad;
1231 	}
1232 	error = bwi_mac_init(mac);
1233 	if (error) {
1234 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1235 		    __func__, error);
1236 		goto bad;
1237 	}
1238 
1239 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1240 
1241 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1242 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1243 
1244 	bwi_mac_reset_hwkeys(mac);
1245 
1246 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1247 		int i;
1248 
1249 #define NRETRY	1000
1250 		/*
1251 		 * Drain any possible pending TX status
1252 		 */
1253 		for (i = 0; i < NRETRY; ++i) {
1254 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1255 			     BWI_TXSTATUS0_VALID) == 0)
1256 				break;
1257 			CSR_READ_4(sc, BWI_TXSTATUS1);
1258 		}
1259 		if (i == NRETRY)
1260 			device_printf(sc->sc_dev,
1261 			    "%s: can't drain TX status\n", __func__);
1262 #undef NRETRY
1263 	}
1264 
1265 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1266 		bwi_mac_updateslot(mac, 1);
1267 
1268 	/* Start MAC */
1269 	error = bwi_mac_start(mac);
1270 	if (error) {
1271 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1272 		    __func__, error);
1273 		goto bad;
1274 	}
1275 
1276 	/* Clear stop flag before enabling interrupt */
1277 	sc->sc_flags &= ~BWI_F_STOP;
1278 	sc->sc_flags |= BWI_F_RUNNING;
1279 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1280 
1281 	/* Enable intrs */
1282 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1283 	return;
1284 bad:
1285 	bwi_stop_locked(sc, 1);
1286 }
1287 
1288 static void
1289 bwi_parent(struct ieee80211com *ic)
1290 {
1291 	struct bwi_softc *sc = ic->ic_softc;
1292 	int startall = 0;
1293 
1294 	BWI_LOCK(sc);
1295 	if (ic->ic_nrunning > 0) {
1296 		struct bwi_mac *mac;
1297 		int promisc = -1;
1298 
1299 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1300 		    ("current regwin type %d",
1301 		    sc->sc_cur_regwin->rw_type));
1302 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1303 
1304 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1305 			promisc = 1;
1306 			sc->sc_flags |= BWI_F_PROMISC;
1307 		} else if (ic->ic_promisc == 0 &&
1308 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1309 			promisc = 0;
1310 			sc->sc_flags &= ~BWI_F_PROMISC;
1311 		}
1312 
1313 		if (promisc >= 0)
1314 			bwi_mac_set_promisc(mac, promisc);
1315 	}
1316 	if (ic->ic_nrunning > 0) {
1317 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1318 			bwi_init_statechg(sc, 1);
1319 			startall = 1;
1320 		}
1321 	} else if (sc->sc_flags & BWI_F_RUNNING)
1322 		bwi_stop_locked(sc, 1);
1323 	BWI_UNLOCK(sc);
1324 	if (startall)
1325 		ieee80211_start_all(ic);
1326 }
1327 
1328 static int
1329 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1330 {
1331 	struct bwi_softc *sc = ic->ic_softc;
1332 	int error;
1333 
1334 	BWI_LOCK(sc);
1335 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1336 		BWI_UNLOCK(sc);
1337 		return (ENXIO);
1338 	}
1339 	error = mbufq_enqueue(&sc->sc_snd, m);
1340 	if (error) {
1341 		BWI_UNLOCK(sc);
1342 		return (error);
1343 	}
1344 	bwi_start_locked(sc);
1345 	BWI_UNLOCK(sc);
1346 	return (0);
1347 }
1348 
1349 static void
1350 bwi_start_locked(struct bwi_softc *sc)
1351 {
1352 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1353 	struct ieee80211_frame *wh;
1354 	struct ieee80211_node *ni;
1355 	struct mbuf *m;
1356 	int trans, idx;
1357 
1358 	BWI_ASSERT_LOCKED(sc);
1359 
1360 	trans = 0;
1361 	idx = tbd->tbd_idx;
1362 
1363 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1364 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1365 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1366 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1367 		wh = mtod(m, struct ieee80211_frame *);
1368 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1369 		    ieee80211_crypto_encap(ni, m) == NULL) {
1370 			if_inc_counter(ni->ni_vap->iv_ifp,
1371 			    IFCOUNTER_OERRORS, 1);
1372 			ieee80211_free_node(ni);
1373 			m_freem(m);
1374 			continue;
1375 		}
1376 		if (bwi_encap(sc, idx, m, ni) != 0) {
1377 			/* 'm' is freed in bwi_encap() if we reach here */
1378 			if (ni != NULL) {
1379 				if_inc_counter(ni->ni_vap->iv_ifp,
1380 				    IFCOUNTER_OERRORS, 1);
1381 				ieee80211_free_node(ni);
1382 			} else
1383 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1384 			continue;
1385 		}
1386 		trans = 1;
1387 		tbd->tbd_used++;
1388 		idx = (idx + 1) % BWI_TX_NDESC;
1389 	}
1390 
1391 	tbd->tbd_idx = idx;
1392 	if (trans)
1393 		sc->sc_tx_timer = 5;
1394 }
1395 
1396 static int
1397 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1398 	const struct ieee80211_bpf_params *params)
1399 {
1400 	struct ieee80211com *ic = ni->ni_ic;
1401 	struct bwi_softc *sc = ic->ic_softc;
1402 	/* XXX wme? */
1403 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1404 	int idx, error;
1405 
1406 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1407 		m_freem(m);
1408 		return ENETDOWN;
1409 	}
1410 
1411 	BWI_LOCK(sc);
1412 	idx = tbd->tbd_idx;
1413 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1414 	if (params == NULL) {
1415 		/*
1416 		 * Legacy path; interpret frame contents to decide
1417 		 * precisely how to send the frame.
1418 		 */
1419 		error = bwi_encap(sc, idx, m, ni);
1420 	} else {
1421 		/*
1422 		 * Caller supplied explicit parameters to use in
1423 		 * sending the frame.
1424 		 */
1425 		error = bwi_encap_raw(sc, idx, m, ni, params);
1426 	}
1427 	if (error == 0) {
1428 		tbd->tbd_used++;
1429 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1430 		sc->sc_tx_timer = 5;
1431 	}
1432 	BWI_UNLOCK(sc);
1433 	return error;
1434 }
1435 
1436 static void
1437 bwi_watchdog(void *arg)
1438 {
1439 	struct bwi_softc *sc;
1440 
1441 	sc = arg;
1442 	BWI_ASSERT_LOCKED(sc);
1443 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1444 		device_printf(sc->sc_dev, "watchdog timeout\n");
1445 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1446 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1447 	}
1448 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1449 }
1450 
1451 static void
1452 bwi_stop(struct bwi_softc *sc, int statechg)
1453 {
1454 	BWI_LOCK(sc);
1455 	bwi_stop_locked(sc, statechg);
1456 	BWI_UNLOCK(sc);
1457 }
1458 
1459 static void
1460 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1461 {
1462 	struct bwi_mac *mac;
1463 	int i, error, pwr_off = 0;
1464 
1465 	BWI_ASSERT_LOCKED(sc);
1466 
1467 	callout_stop(&sc->sc_calib_ch);
1468 	callout_stop(&sc->sc_led_blink_ch);
1469 	sc->sc_led_blinking = 0;
1470 	sc->sc_flags |= BWI_F_STOP;
1471 
1472 	if (sc->sc_flags & BWI_F_RUNNING) {
1473 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1474 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1475 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1476 
1477 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1478 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1479 		bwi_mac_stop(mac);
1480 	}
1481 
1482 	for (i = 0; i < sc->sc_nmac; ++i) {
1483 		struct bwi_regwin *old_rw;
1484 
1485 		mac = &sc->sc_mac[i];
1486 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1487 			continue;
1488 
1489 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1490 		if (error)
1491 			continue;
1492 
1493 		bwi_mac_shutdown(mac);
1494 		pwr_off = 1;
1495 
1496 		bwi_regwin_switch(sc, old_rw, NULL);
1497 	}
1498 
1499 	if (pwr_off)
1500 		bwi_bbp_power_off(sc);
1501 
1502 	sc->sc_tx_timer = 0;
1503 	callout_stop(&sc->sc_watchdog_timer);
1504 	sc->sc_flags &= ~BWI_F_RUNNING;
1505 }
1506 
1507 void
1508 bwi_intr(void *xsc)
1509 {
1510 	struct bwi_softc *sc = xsc;
1511 	struct bwi_mac *mac;
1512 	uint32_t intr_status;
1513 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1514 	int i, txrx_error, tx = 0, rx_data = -1;
1515 
1516 	BWI_LOCK(sc);
1517 
1518 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1519 	    (sc->sc_flags & BWI_F_STOP)) {
1520 		BWI_UNLOCK(sc);
1521 		return;
1522 	}
1523 	/*
1524 	 * Get interrupt status
1525 	 */
1526 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1527 	if (intr_status == 0xffffffff) {	/* Not for us */
1528 		BWI_UNLOCK(sc);
1529 		return;
1530 	}
1531 
1532 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1533 
1534 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1535 	if (intr_status == 0) {		/* Nothing is interesting */
1536 		BWI_UNLOCK(sc);
1537 		return;
1538 	}
1539 
1540 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1541 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1542 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1543 
1544 	txrx_error = 0;
1545 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1546 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1547 		uint32_t mask;
1548 
1549 		if (BWI_TXRX_IS_RX(i))
1550 			mask = BWI_TXRX_RX_INTRS;
1551 		else
1552 			mask = BWI_TXRX_TX_INTRS;
1553 
1554 		txrx_intr_status[i] =
1555 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1556 
1557 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1558 			 i, txrx_intr_status[i]);
1559 
1560 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1561 			device_printf(sc->sc_dev,
1562 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1563 			    __func__, i, txrx_intr_status[i]);
1564 			txrx_error = 1;
1565 		}
1566 	}
1567 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1568 
1569 	/*
1570 	 * Acknowledge interrupt
1571 	 */
1572 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1573 
1574 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1575 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1576 
1577 	/* Disable all interrupts */
1578 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1579 
1580 	/*
1581 	 * http://bcm-specs.sipsolutions.net/Interrupts
1582 	 * Says for this bit (0x800):
1583 	 * "Fatal Error
1584 	 *
1585 	 * We got this one while testing things when by accident the
1586 	 * template ram wasn't set to big endian when it should have
1587 	 * been after writing the initial values. It keeps on being
1588 	 * triggered, the only way to stop it seems to shut down the
1589 	 * chip."
1590 	 *
1591 	 * Suggesting that we should never get it and if we do we're not
1592 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1593 	 * it is valid only on mac version 5 and higher, but I couldn't
1594 	 * find a reference for that...  Since I see them from time to time
1595 	 * on my card, this suggests an error in the tx path still...
1596 	 */
1597 	if (intr_status & BWI_INTR_PHY_TXERR) {
1598 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1599 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1600 			    __func__);
1601 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1602 			BWI_UNLOCK(sc);
1603 			return;
1604 		}
1605 	}
1606 
1607 	if (txrx_error) {
1608 		/* TODO: reset device */
1609 	}
1610 
1611 	if (intr_status & BWI_INTR_TBTT)
1612 		bwi_mac_config_ps(mac);
1613 
1614 	if (intr_status & BWI_INTR_EO_ATIM)
1615 		device_printf(sc->sc_dev, "EO_ATIM\n");
1616 
1617 	if (intr_status & BWI_INTR_PMQ) {
1618 		for (;;) {
1619 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1620 				break;
1621 		}
1622 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1623 	}
1624 
1625 	if (intr_status & BWI_INTR_NOISE)
1626 		device_printf(sc->sc_dev, "intr noise\n");
1627 
1628 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1629 		rx_data = sc->sc_rxeof(sc);
1630 		if (sc->sc_flags & BWI_F_STOP) {
1631 			BWI_UNLOCK(sc);
1632 			return;
1633 		}
1634 	}
1635 
1636 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1637 		sc->sc_txeof_status(sc);
1638 		tx = 1;
1639 	}
1640 
1641 	if (intr_status & BWI_INTR_TX_DONE) {
1642 		bwi_txeof(sc);
1643 		tx = 1;
1644 	}
1645 
1646 	/* Re-enable interrupts */
1647 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1648 
1649 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1650 		int evt = BWI_LED_EVENT_NONE;
1651 
1652 		if (tx && rx_data > 0) {
1653 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1654 				evt = BWI_LED_EVENT_RX;
1655 			else
1656 				evt = BWI_LED_EVENT_TX;
1657 		} else if (tx) {
1658 			evt = BWI_LED_EVENT_TX;
1659 		} else if (rx_data > 0) {
1660 			evt = BWI_LED_EVENT_RX;
1661 		} else if (rx_data == 0) {
1662 			evt = BWI_LED_EVENT_POLL;
1663 		}
1664 
1665 		if (evt != BWI_LED_EVENT_NONE)
1666 			bwi_led_event(sc, evt);
1667 	}
1668 
1669 	BWI_UNLOCK(sc);
1670 }
1671 
1672 static void
1673 bwi_scan_start(struct ieee80211com *ic)
1674 {
1675 	struct bwi_softc *sc = ic->ic_softc;
1676 
1677 	BWI_LOCK(sc);
1678 	/* Enable MAC beacon promiscuity */
1679 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1680 	BWI_UNLOCK(sc);
1681 }
1682 
1683 static void
1684 bwi_getradiocaps(struct ieee80211com *ic,
1685     int maxchans, int *nchans, struct ieee80211_channel chans[])
1686 {
1687 	struct bwi_softc *sc = ic->ic_softc;
1688 	struct bwi_mac *mac;
1689 	struct bwi_phy *phy;
1690 	uint8_t bands[IEEE80211_MODE_BYTES];
1691 
1692 	/*
1693 	 * XXX First MAC is known to exist
1694 	 * TODO2
1695 	 */
1696 	mac = &sc->sc_mac[0];
1697 	phy = &mac->mac_phy;
1698 
1699 	memset(bands, 0, sizeof(bands));
1700 	switch (phy->phy_mode) {
1701 	case IEEE80211_MODE_11G:
1702 		setbit(bands, IEEE80211_MODE_11G);
1703 		/* FALLTHROUGH */
1704 	case IEEE80211_MODE_11B:
1705 		setbit(bands, IEEE80211_MODE_11B);
1706 		break;
1707 	case IEEE80211_MODE_11A:
1708 		/* TODO:11A */
1709 		setbit(bands, IEEE80211_MODE_11A);
1710 		device_printf(sc->sc_dev, "no 11a support\n");
1711 		return;
1712 	default:
1713 		panic("unknown phymode %d\n", phy->phy_mode);
1714 	}
1715 
1716 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1717 	    bwi_chan_2ghz, nitems(bwi_chan_2ghz), bands, 0);
1718 }
1719 
1720 static void
1721 bwi_set_channel(struct ieee80211com *ic)
1722 {
1723 	struct bwi_softc *sc = ic->ic_softc;
1724 	struct ieee80211_channel *c = ic->ic_curchan;
1725 	struct bwi_mac *mac;
1726 
1727 	BWI_LOCK(sc);
1728 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1729 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1730 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1731 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1732 
1733 	sc->sc_rates = ieee80211_get_ratetable(c);
1734 
1735 	/*
1736 	 * Setup radio tap channel freq and flags
1737 	 */
1738 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1739 		htole16(c->ic_freq);
1740 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1741 		htole16(c->ic_flags & 0xffff);
1742 
1743 	BWI_UNLOCK(sc);
1744 }
1745 
1746 static void
1747 bwi_scan_end(struct ieee80211com *ic)
1748 {
1749 	struct bwi_softc *sc = ic->ic_softc;
1750 
1751 	BWI_LOCK(sc);
1752 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1753 	BWI_UNLOCK(sc);
1754 }
1755 
1756 static int
1757 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1758 {
1759 	struct bwi_vap *bvp = BWI_VAP(vap);
1760 	struct ieee80211com *ic= vap->iv_ic;
1761 	struct bwi_softc *sc = ic->ic_softc;
1762 	enum ieee80211_state ostate = vap->iv_state;
1763 	struct bwi_mac *mac;
1764 	int error;
1765 
1766 	BWI_LOCK(sc);
1767 
1768 	callout_stop(&sc->sc_calib_ch);
1769 
1770 	if (nstate == IEEE80211_S_INIT)
1771 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1772 
1773 	bwi_led_newstate(sc, nstate);
1774 
1775 	error = bvp->bv_newstate(vap, nstate, arg);
1776 	if (error != 0)
1777 		goto back;
1778 
1779 	/*
1780 	 * Clear the BSSID when we stop a STA
1781 	 */
1782 	if (vap->iv_opmode == IEEE80211_M_STA) {
1783 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1784 			/*
1785 			 * Clear out the BSSID.  If we reassociate to
1786 			 * the same AP, this will reinialize things
1787 			 * correctly...
1788 			 */
1789 			if (ic->ic_opmode == IEEE80211_M_STA &&
1790 			    !(sc->sc_flags & BWI_F_STOP))
1791 				bwi_set_bssid(sc, bwi_zero_addr);
1792 		}
1793 	}
1794 
1795 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1796 		/* Nothing to do */
1797 	} else if (nstate == IEEE80211_S_RUN) {
1798 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1799 
1800 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1801 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1802 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1803 
1804 		/* Initial TX power calibration */
1805 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1806 #ifdef notyet
1807 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1808 #else
1809 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1810 #endif
1811 
1812 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1813 	}
1814 back:
1815 	BWI_UNLOCK(sc);
1816 
1817 	return error;
1818 }
1819 
1820 static int
1821 bwi_media_change(struct ifnet *ifp)
1822 {
1823 	int error = ieee80211_media_change(ifp);
1824 	/* NB: only the fixed rate can change and that doesn't need a reset */
1825 	return (error == ENETRESET ? 0 : error);
1826 }
1827 
1828 static int
1829 bwi_dma_alloc(struct bwi_softc *sc)
1830 {
1831 	int error, i, has_txstats;
1832 	bus_addr_t lowaddr = 0;
1833 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1834 	uint32_t txrx_ctrl_step = 0;
1835 
1836 	has_txstats = 0;
1837 	for (i = 0; i < sc->sc_nmac; ++i) {
1838 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1839 			has_txstats = 1;
1840 			break;
1841 		}
1842 	}
1843 
1844 	switch (sc->sc_bus_space) {
1845 	case BWI_BUS_SPACE_30BIT:
1846 	case BWI_BUS_SPACE_32BIT:
1847 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1848 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1849 		else
1850 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1851 		desc_sz = sizeof(struct bwi_desc32);
1852 		txrx_ctrl_step = 0x20;
1853 
1854 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1855 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1856 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1857 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1858 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1859 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1860 		sc->sc_rxeof = bwi_rxeof32;
1861 		sc->sc_start_tx = bwi_start_tx32;
1862 		if (has_txstats) {
1863 			sc->sc_init_txstats = bwi_init_txstats32;
1864 			sc->sc_free_txstats = bwi_free_txstats32;
1865 			sc->sc_txeof_status = bwi_txeof_status32;
1866 		}
1867 		break;
1868 
1869 	case BWI_BUS_SPACE_64BIT:
1870 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1871 		desc_sz = sizeof(struct bwi_desc64);
1872 		txrx_ctrl_step = 0x40;
1873 
1874 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1875 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1876 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1877 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1878 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1879 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1880 		sc->sc_rxeof = bwi_rxeof64;
1881 		sc->sc_start_tx = bwi_start_tx64;
1882 		if (has_txstats) {
1883 			sc->sc_init_txstats = bwi_init_txstats64;
1884 			sc->sc_free_txstats = bwi_free_txstats64;
1885 			sc->sc_txeof_status = bwi_txeof_status64;
1886 		}
1887 		break;
1888 	}
1889 
1890 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1891 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1892 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1893 
1894 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1895 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1896 
1897 	/*
1898 	 * Create top level DMA tag
1899 	 */
1900 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1901 			       BWI_ALIGN, 0,		/* alignment, bounds */
1902 			       lowaddr,			/* lowaddr */
1903 			       BUS_SPACE_MAXADDR,	/* highaddr */
1904 			       NULL, NULL,		/* filter, filterarg */
1905 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1906 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1907 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1908 			       0,			/* flags */
1909 			       NULL, NULL,		/* lockfunc, lockarg */
1910 			       &sc->sc_parent_dtag);
1911 	if (error) {
1912 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1913 		return error;
1914 	}
1915 
1916 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1917 
1918 	/*
1919 	 * Create TX ring DMA stuffs
1920 	 */
1921 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1922 				BWI_RING_ALIGN, 0,
1923 				BUS_SPACE_MAXADDR,
1924 				BUS_SPACE_MAXADDR,
1925 				NULL, NULL,
1926 				tx_ring_sz,
1927 				1,
1928 				tx_ring_sz,
1929 				0,
1930 				NULL, NULL,
1931 				&sc->sc_txring_dtag);
1932 	if (error) {
1933 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1934 		return error;
1935 	}
1936 
1937 	for (i = 0; i < BWI_TX_NRING; ++i) {
1938 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1939 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1940 					   TXRX_CTRL(i));
1941 		if (error) {
1942 			device_printf(sc->sc_dev, "%dth TX ring "
1943 				      "DMA alloc failed\n", i);
1944 			return error;
1945 		}
1946 	}
1947 
1948 	/*
1949 	 * Create RX ring DMA stuffs
1950 	 */
1951 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1952 				BWI_RING_ALIGN, 0,
1953 				BUS_SPACE_MAXADDR,
1954 				BUS_SPACE_MAXADDR,
1955 				NULL, NULL,
1956 				rx_ring_sz,
1957 				1,
1958 				rx_ring_sz,
1959 				0,
1960 				NULL, NULL,
1961 				&sc->sc_rxring_dtag);
1962 	if (error) {
1963 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1964 		return error;
1965 	}
1966 
1967 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1968 				   rx_ring_sz, TXRX_CTRL(0));
1969 	if (error) {
1970 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1971 		return error;
1972 	}
1973 
1974 	if (has_txstats) {
1975 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1976 		if (error) {
1977 			device_printf(sc->sc_dev,
1978 				      "TX stats DMA alloc failed\n");
1979 			return error;
1980 		}
1981 	}
1982 
1983 #undef TXRX_CTRL
1984 
1985 	return bwi_dma_mbuf_create(sc);
1986 }
1987 
1988 static void
1989 bwi_dma_free(struct bwi_softc *sc)
1990 {
1991 	if (sc->sc_txring_dtag != NULL) {
1992 		int i;
1993 
1994 		for (i = 0; i < BWI_TX_NRING; ++i) {
1995 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1996 
1997 			if (rd->rdata_desc != NULL) {
1998 				bus_dmamap_unload(sc->sc_txring_dtag,
1999 						  rd->rdata_dmap);
2000 				bus_dmamem_free(sc->sc_txring_dtag,
2001 						rd->rdata_desc,
2002 						rd->rdata_dmap);
2003 			}
2004 		}
2005 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2006 	}
2007 
2008 	if (sc->sc_rxring_dtag != NULL) {
2009 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2010 
2011 		if (rd->rdata_desc != NULL) {
2012 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2013 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2014 					rd->rdata_dmap);
2015 		}
2016 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2017 	}
2018 
2019 	bwi_dma_txstats_free(sc);
2020 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2021 
2022 	if (sc->sc_parent_dtag != NULL)
2023 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2024 }
2025 
2026 static int
2027 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2028 		   struct bwi_ring_data *rd, bus_size_t size,
2029 		   uint32_t txrx_ctrl)
2030 {
2031 	int error;
2032 
2033 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2034 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2035 				 &rd->rdata_dmap);
2036 	if (error) {
2037 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2038 		return error;
2039 	}
2040 
2041 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2042 				bwi_dma_ring_addr, &rd->rdata_paddr,
2043 				BUS_DMA_NOWAIT);
2044 	if (error) {
2045 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2046 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2047 		rd->rdata_desc = NULL;
2048 		return error;
2049 	}
2050 
2051 	rd->rdata_txrx_ctrl = txrx_ctrl;
2052 	return 0;
2053 }
2054 
2055 static int
2056 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2057 		      bus_size_t desc_sz)
2058 {
2059 	struct bwi_txstats_data *st;
2060 	bus_size_t dma_size;
2061 	int error;
2062 
2063 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2064 	if (st == NULL) {
2065 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2066 		return ENOMEM;
2067 	}
2068 	sc->sc_txstats = st;
2069 
2070 	/*
2071 	 * Create TX stats descriptor DMA stuffs
2072 	 */
2073 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2074 
2075 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2076 				BWI_RING_ALIGN,
2077 				0,
2078 				BUS_SPACE_MAXADDR,
2079 				BUS_SPACE_MAXADDR,
2080 				NULL, NULL,
2081 				dma_size,
2082 				1,
2083 				dma_size,
2084 				0,
2085 				NULL, NULL,
2086 				&st->stats_ring_dtag);
2087 	if (error) {
2088 		device_printf(sc->sc_dev, "can't create txstats ring "
2089 			      "DMA tag\n");
2090 		return error;
2091 	}
2092 
2093 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2094 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2095 				 &st->stats_ring_dmap);
2096 	if (error) {
2097 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2098 			      "DMA mem\n");
2099 		bus_dma_tag_destroy(st->stats_ring_dtag);
2100 		st->stats_ring_dtag = NULL;
2101 		return error;
2102 	}
2103 
2104 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2105 				st->stats_ring, dma_size,
2106 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2107 				BUS_DMA_NOWAIT);
2108 	if (error) {
2109 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2110 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2111 				st->stats_ring_dmap);
2112 		bus_dma_tag_destroy(st->stats_ring_dtag);
2113 		st->stats_ring_dtag = NULL;
2114 		return error;
2115 	}
2116 
2117 	/*
2118 	 * Create TX stats DMA stuffs
2119 	 */
2120 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2121 			   BWI_ALIGN);
2122 
2123 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2124 				BWI_ALIGN,
2125 				0,
2126 				BUS_SPACE_MAXADDR,
2127 				BUS_SPACE_MAXADDR,
2128 				NULL, NULL,
2129 				dma_size,
2130 				1,
2131 				dma_size,
2132 				0,
2133 				NULL, NULL,
2134 				&st->stats_dtag);
2135 	if (error) {
2136 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2137 		return error;
2138 	}
2139 
2140 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2141 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2142 				 &st->stats_dmap);
2143 	if (error) {
2144 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2145 		bus_dma_tag_destroy(st->stats_dtag);
2146 		st->stats_dtag = NULL;
2147 		return error;
2148 	}
2149 
2150 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2151 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2152 				BUS_DMA_NOWAIT);
2153 	if (error) {
2154 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2155 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2156 		bus_dma_tag_destroy(st->stats_dtag);
2157 		st->stats_dtag = NULL;
2158 		return error;
2159 	}
2160 
2161 	st->stats_ctrl_base = ctrl_base;
2162 	return 0;
2163 }
2164 
2165 static void
2166 bwi_dma_txstats_free(struct bwi_softc *sc)
2167 {
2168 	struct bwi_txstats_data *st;
2169 
2170 	if (sc->sc_txstats == NULL)
2171 		return;
2172 	st = sc->sc_txstats;
2173 
2174 	if (st->stats_ring_dtag != NULL) {
2175 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2176 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2177 				st->stats_ring_dmap);
2178 		bus_dma_tag_destroy(st->stats_ring_dtag);
2179 	}
2180 
2181 	if (st->stats_dtag != NULL) {
2182 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2183 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2184 		bus_dma_tag_destroy(st->stats_dtag);
2185 	}
2186 
2187 	free(st, M_DEVBUF);
2188 }
2189 
2190 static void
2191 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2192 {
2193 	KASSERT(nseg == 1, ("too many segments\n"));
2194 	*((bus_addr_t *)arg) = seg->ds_addr;
2195 }
2196 
2197 static int
2198 bwi_dma_mbuf_create(struct bwi_softc *sc)
2199 {
2200 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2201 	int i, j, k, ntx, error;
2202 
2203 	/*
2204 	 * Create TX/RX mbuf DMA tag
2205 	 */
2206 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2207 				1,
2208 				0,
2209 				BUS_SPACE_MAXADDR,
2210 				BUS_SPACE_MAXADDR,
2211 				NULL, NULL,
2212 				MCLBYTES,
2213 				1,
2214 				MCLBYTES,
2215 				BUS_DMA_ALLOCNOW,
2216 				NULL, NULL,
2217 				&sc->sc_buf_dtag);
2218 	if (error) {
2219 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2220 		return error;
2221 	}
2222 
2223 	ntx = 0;
2224 
2225 	/*
2226 	 * Create TX mbuf DMA map
2227 	 */
2228 	for (i = 0; i < BWI_TX_NRING; ++i) {
2229 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2230 
2231 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2232 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2233 						  &tbd->tbd_buf[j].tb_dmap);
2234 			if (error) {
2235 				device_printf(sc->sc_dev, "can't create "
2236 					      "%dth tbd, %dth DMA map\n", i, j);
2237 
2238 				ntx = i;
2239 				for (k = 0; k < j; ++k) {
2240 					bus_dmamap_destroy(sc->sc_buf_dtag,
2241 						tbd->tbd_buf[k].tb_dmap);
2242 				}
2243 				goto fail;
2244 			}
2245 		}
2246 	}
2247 	ntx = BWI_TX_NRING;
2248 
2249 	/*
2250 	 * Create RX mbuf DMA map and a spare DMA map
2251 	 */
2252 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2253 				  &rbd->rbd_tmp_dmap);
2254 	if (error) {
2255 		device_printf(sc->sc_dev,
2256 			      "can't create spare RX buf DMA map\n");
2257 		goto fail;
2258 	}
2259 
2260 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2261 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2262 					  &rbd->rbd_buf[j].rb_dmap);
2263 		if (error) {
2264 			device_printf(sc->sc_dev, "can't create %dth "
2265 				      "RX buf DMA map\n", j);
2266 
2267 			for (k = 0; k < j; ++k) {
2268 				bus_dmamap_destroy(sc->sc_buf_dtag,
2269 					rbd->rbd_buf[j].rb_dmap);
2270 			}
2271 			bus_dmamap_destroy(sc->sc_buf_dtag,
2272 					   rbd->rbd_tmp_dmap);
2273 			goto fail;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 fail:
2279 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2280 	return error;
2281 }
2282 
2283 static void
2284 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2285 {
2286 	int i, j;
2287 
2288 	if (sc->sc_buf_dtag == NULL)
2289 		return;
2290 
2291 	for (i = 0; i < ntx; ++i) {
2292 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2293 
2294 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2295 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2296 
2297 			if (tb->tb_mbuf != NULL) {
2298 				bus_dmamap_unload(sc->sc_buf_dtag,
2299 						  tb->tb_dmap);
2300 				m_freem(tb->tb_mbuf);
2301 			}
2302 			if (tb->tb_ni != NULL)
2303 				ieee80211_free_node(tb->tb_ni);
2304 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2305 		}
2306 	}
2307 
2308 	if (nrx) {
2309 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2310 
2311 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2312 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2313 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2314 
2315 			if (rb->rb_mbuf != NULL) {
2316 				bus_dmamap_unload(sc->sc_buf_dtag,
2317 						  rb->rb_dmap);
2318 				m_freem(rb->rb_mbuf);
2319 			}
2320 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2321 		}
2322 	}
2323 
2324 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2325 	sc->sc_buf_dtag = NULL;
2326 }
2327 
2328 static void
2329 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2330 {
2331 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2332 }
2333 
2334 static void
2335 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2336 {
2337 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2338 }
2339 
2340 static int
2341 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2342 {
2343 	struct bwi_ring_data *rd;
2344 	struct bwi_txbuf_data *tbd;
2345 	uint32_t val, addr_hi, addr_lo;
2346 
2347 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2348 	rd = &sc->sc_tx_rdata[ring_idx];
2349 	tbd = &sc->sc_tx_bdata[ring_idx];
2350 
2351 	tbd->tbd_idx = 0;
2352 	tbd->tbd_used = 0;
2353 
2354 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2355 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2356 			BUS_DMASYNC_PREWRITE);
2357 
2358 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2359 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2360 
2361 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2362 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2363 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2364 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2365 
2366 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2367 	      BWI_TXRX32_CTRL_ENABLE;
2368 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2369 
2370 	return 0;
2371 }
2372 
2373 static void
2374 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2375 		       bus_addr_t paddr, int hdr_size, int ndesc)
2376 {
2377 	uint32_t val, addr_hi, addr_lo;
2378 
2379 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2380 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2381 
2382 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2383 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2384 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2385 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2386 
2387 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2388 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2389 	      BWI_TXRX32_CTRL_ENABLE;
2390 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2391 
2392 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2393 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2394 }
2395 
2396 static int
2397 bwi_init_rx_ring32(struct bwi_softc *sc)
2398 {
2399 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2400 	int i, error;
2401 
2402 	sc->sc_rx_bdata.rbd_idx = 0;
2403 
2404 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2405 		error = bwi_newbuf(sc, i, 1);
2406 		if (error) {
2407 			device_printf(sc->sc_dev,
2408 				  "can't allocate %dth RX buffer\n", i);
2409 			return error;
2410 		}
2411 	}
2412 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2413 			BUS_DMASYNC_PREWRITE);
2414 
2415 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2416 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2417 	return 0;
2418 }
2419 
2420 static int
2421 bwi_init_txstats32(struct bwi_softc *sc)
2422 {
2423 	struct bwi_txstats_data *st = sc->sc_txstats;
2424 	bus_addr_t stats_paddr;
2425 	int i;
2426 
2427 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2428 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2429 
2430 	st->stats_idx = 0;
2431 
2432 	stats_paddr = st->stats_paddr;
2433 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2434 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2435 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2436 		stats_paddr += sizeof(struct bwi_txstats);
2437 	}
2438 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2439 			BUS_DMASYNC_PREWRITE);
2440 
2441 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2442 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2443 	return 0;
2444 }
2445 
2446 static void
2447 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2448 		    int buf_len)
2449 {
2450 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2451 
2452 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2453 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2454 			 paddr, buf_len, 0);
2455 }
2456 
2457 static void
2458 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2459 		    int buf_idx, bus_addr_t paddr, int buf_len)
2460 {
2461 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2462 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2463 			 paddr, buf_len, 1);
2464 }
2465 
2466 static int
2467 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2468 {
2469 	/* TODO:64 */
2470 	return EOPNOTSUPP;
2471 }
2472 
2473 static int
2474 bwi_init_rx_ring64(struct bwi_softc *sc)
2475 {
2476 	/* TODO:64 */
2477 	return EOPNOTSUPP;
2478 }
2479 
2480 static int
2481 bwi_init_txstats64(struct bwi_softc *sc)
2482 {
2483 	/* TODO:64 */
2484 	return EOPNOTSUPP;
2485 }
2486 
2487 static void
2488 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2489 		    int buf_len)
2490 {
2491 	/* TODO:64 */
2492 }
2493 
2494 static void
2495 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2496 		    int buf_idx, bus_addr_t paddr, int buf_len)
2497 {
2498 	/* TODO:64 */
2499 }
2500 
2501 static void
2502 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2503 		 bus_size_t mapsz __unused, int error)
2504 {
2505         if (!error) {
2506 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2507 		*((bus_addr_t *)arg) = seg->ds_addr;
2508 	}
2509 }
2510 
2511 static int
2512 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2513 {
2514 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2515 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2516 	struct bwi_rxbuf_hdr *hdr;
2517 	bus_dmamap_t map;
2518 	bus_addr_t paddr;
2519 	struct mbuf *m;
2520 	int error;
2521 
2522 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2523 
2524 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2525 	if (m == NULL) {
2526 		error = ENOBUFS;
2527 
2528 		/*
2529 		 * If the NIC is up and running, we need to:
2530 		 * - Clear RX buffer's header.
2531 		 * - Restore RX descriptor settings.
2532 		 */
2533 		if (init)
2534 			return error;
2535 		else
2536 			goto back;
2537 	}
2538 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2539 
2540 	/*
2541 	 * Try to load RX buf into temporary DMA map
2542 	 */
2543 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2544 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2545 	if (error) {
2546 		m_freem(m);
2547 
2548 		/*
2549 		 * See the comment above
2550 		 */
2551 		if (init)
2552 			return error;
2553 		else
2554 			goto back;
2555 	}
2556 
2557 	if (!init)
2558 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2559 	rxbuf->rb_mbuf = m;
2560 	rxbuf->rb_paddr = paddr;
2561 
2562 	/*
2563 	 * Swap RX buf's DMA map with the loaded temporary one
2564 	 */
2565 	map = rxbuf->rb_dmap;
2566 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2567 	rbd->rbd_tmp_dmap = map;
2568 
2569 back:
2570 	/*
2571 	 * Clear RX buf header
2572 	 */
2573 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2574 	bzero(hdr, sizeof(*hdr));
2575 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2576 
2577 	/*
2578 	 * Setup RX buf descriptor
2579 	 */
2580 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2581 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2582 	return error;
2583 }
2584 
2585 static void
2586 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2587 		    const uint8_t *addr)
2588 {
2589 	int i;
2590 
2591 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2592 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2593 
2594 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2595 		uint16_t addr_val;
2596 
2597 		addr_val = (uint16_t)addr[i * 2] |
2598 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2599 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2600 	}
2601 }
2602 
2603 static int
2604 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2605 {
2606 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2607 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2608 	struct ieee80211com *ic = &sc->sc_ic;
2609 	int idx, rx_data = 0;
2610 
2611 	idx = rbd->rbd_idx;
2612 	while (idx != end_idx) {
2613 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2614 		struct bwi_rxbuf_hdr *hdr;
2615 		struct ieee80211_frame_min *wh;
2616 		struct ieee80211_node *ni;
2617 		struct mbuf *m;
2618 		uint32_t plcp;
2619 		uint16_t flags2;
2620 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2621 
2622 		m = rb->rb_mbuf;
2623 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2624 				BUS_DMASYNC_POSTREAD);
2625 
2626 		if (bwi_newbuf(sc, idx, 0)) {
2627 			counter_u64_add(ic->ic_ierrors, 1);
2628 			goto next;
2629 		}
2630 
2631 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2632 		flags2 = le16toh(hdr->rxh_flags2);
2633 
2634 		hdr_extra = 0;
2635 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2636 			hdr_extra = 2;
2637 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2638 
2639 		buflen = le16toh(hdr->rxh_buflen);
2640 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2641 			device_printf(sc->sc_dev,
2642 			    "%s: zero length data, hdr_extra %d\n",
2643 			    __func__, hdr_extra);
2644 			counter_u64_add(ic->ic_ierrors, 1);
2645 			m_freem(m);
2646 			goto next;
2647 		}
2648 
2649 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2650 		rssi = bwi_calc_rssi(sc, hdr);
2651 		noise = bwi_calc_noise(sc);
2652 
2653 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2654 		m_adj(m, sizeof(*hdr) + wh_ofs);
2655 
2656 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2657 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2658 		else
2659 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2660 
2661 		/* RX radio tap */
2662 		if (ieee80211_radiotap_active(ic))
2663 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2664 
2665 		m_adj(m, -IEEE80211_CRC_LEN);
2666 
2667 		BWI_UNLOCK(sc);
2668 
2669 		wh = mtod(m, struct ieee80211_frame_min *);
2670 		ni = ieee80211_find_rxnode(ic, wh);
2671 		if (ni != NULL) {
2672 			type = ieee80211_input(ni, m, rssi - noise, noise);
2673 			ieee80211_free_node(ni);
2674 		} else
2675 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2676 		if (type == IEEE80211_FC0_TYPE_DATA) {
2677 			rx_data = 1;
2678 			sc->sc_rx_rate = rate;
2679 		}
2680 
2681 		BWI_LOCK(sc);
2682 next:
2683 		idx = (idx + 1) % BWI_RX_NDESC;
2684 
2685 		if (sc->sc_flags & BWI_F_STOP) {
2686 			/*
2687 			 * Take the fast lane, don't do
2688 			 * any damage to softc
2689 			 */
2690 			return -1;
2691 		}
2692 	}
2693 
2694 	rbd->rbd_idx = idx;
2695 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2696 			BUS_DMASYNC_PREWRITE);
2697 
2698 	return rx_data;
2699 }
2700 
2701 static int
2702 bwi_rxeof32(struct bwi_softc *sc)
2703 {
2704 	uint32_t val, rx_ctrl;
2705 	int end_idx, rx_data;
2706 
2707 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2708 
2709 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2710 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2711 		  sizeof(struct bwi_desc32);
2712 
2713 	rx_data = bwi_rxeof(sc, end_idx);
2714 	if (rx_data >= 0) {
2715 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2716 			    end_idx * sizeof(struct bwi_desc32));
2717 	}
2718 	return rx_data;
2719 }
2720 
2721 static int
2722 bwi_rxeof64(struct bwi_softc *sc)
2723 {
2724 	/* TODO:64 */
2725 	return 0;
2726 }
2727 
2728 static void
2729 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2730 {
2731 	int i;
2732 
2733 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2734 
2735 #define NRETRY 10
2736 
2737 	for (i = 0; i < NRETRY; ++i) {
2738 		uint32_t status;
2739 
2740 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2741 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2742 		    BWI_RX32_STATUS_STATE_DISABLED)
2743 			break;
2744 
2745 		DELAY(1000);
2746 	}
2747 	if (i == NRETRY)
2748 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2749 
2750 #undef NRETRY
2751 
2752 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2753 }
2754 
2755 static void
2756 bwi_free_txstats32(struct bwi_softc *sc)
2757 {
2758 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2759 }
2760 
2761 static void
2762 bwi_free_rx_ring32(struct bwi_softc *sc)
2763 {
2764 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2765 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2766 	int i;
2767 
2768 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2769 
2770 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2771 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2772 
2773 		if (rb->rb_mbuf != NULL) {
2774 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2775 			m_freem(rb->rb_mbuf);
2776 			rb->rb_mbuf = NULL;
2777 		}
2778 	}
2779 }
2780 
2781 static void
2782 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2783 {
2784 	struct bwi_ring_data *rd;
2785 	struct bwi_txbuf_data *tbd;
2786 	uint32_t state, val;
2787 	int i;
2788 
2789 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2790 	rd = &sc->sc_tx_rdata[ring_idx];
2791 	tbd = &sc->sc_tx_bdata[ring_idx];
2792 
2793 #define NRETRY 10
2794 
2795 	for (i = 0; i < NRETRY; ++i) {
2796 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2797 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2798 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2799 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2800 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2801 			break;
2802 
2803 		DELAY(1000);
2804 	}
2805 	if (i == NRETRY) {
2806 		device_printf(sc->sc_dev,
2807 		    "%s: wait for TX ring(%d) stable timed out\n",
2808 		    __func__, ring_idx);
2809 	}
2810 
2811 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2812 	for (i = 0; i < NRETRY; ++i) {
2813 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2814 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2815 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2816 			break;
2817 
2818 		DELAY(1000);
2819 	}
2820 	if (i == NRETRY)
2821 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2822 		     __func__, ring_idx);
2823 
2824 #undef NRETRY
2825 
2826 	DELAY(1000);
2827 
2828 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2829 
2830 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2831 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2832 
2833 		if (tb->tb_mbuf != NULL) {
2834 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2835 			m_freem(tb->tb_mbuf);
2836 			tb->tb_mbuf = NULL;
2837 		}
2838 		if (tb->tb_ni != NULL) {
2839 			ieee80211_free_node(tb->tb_ni);
2840 			tb->tb_ni = NULL;
2841 		}
2842 	}
2843 }
2844 
2845 static void
2846 bwi_free_txstats64(struct bwi_softc *sc)
2847 {
2848 	/* TODO:64 */
2849 }
2850 
2851 static void
2852 bwi_free_rx_ring64(struct bwi_softc *sc)
2853 {
2854 	/* TODO:64 */
2855 }
2856 
2857 static void
2858 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2859 {
2860 	/* TODO:64 */
2861 }
2862 
2863 /* XXX does not belong here */
2864 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2865 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2866 
2867 static __inline void
2868 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2869 {
2870 	uint32_t plcp;
2871 
2872 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2873 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2874 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2875 	*plcp0 = htole32(plcp);
2876 }
2877 
2878 static __inline void
2879 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2880 		   uint8_t rate)
2881 {
2882 	int len, service, pkt_bitlen;
2883 
2884 	pkt_bitlen = pkt_len * NBBY;
2885 	len = howmany(pkt_bitlen * 2, rate);
2886 
2887 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2888 	if (rate == (11 * 2)) {
2889 		int pkt_bitlen1;
2890 
2891 		/*
2892 		 * PLCP service field needs to be adjusted,
2893 		 * if TX rate is 11Mbytes/s
2894 		 */
2895 		pkt_bitlen1 = len * 11;
2896 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2897 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2898 	}
2899 
2900 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2901 	plcp->i_service = service;
2902 	plcp->i_length = htole16(len);
2903 	/* NOTE: do NOT touch i_crc */
2904 }
2905 
2906 static __inline void
2907 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2908 	void *plcp, int pkt_len, uint8_t rate)
2909 {
2910 	enum ieee80211_phytype modtype;
2911 
2912 	/*
2913 	 * Assume caller has zeroed 'plcp'
2914 	 */
2915 	modtype = ieee80211_rate2phytype(rt, rate);
2916 	if (modtype == IEEE80211_T_OFDM)
2917 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2918 	else if (modtype == IEEE80211_T_DS)
2919 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2920 	else
2921 		panic("unsupport modulation type %u\n", modtype);
2922 }
2923 
2924 static int
2925 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2926 	  struct ieee80211_node *ni)
2927 {
2928 	struct ieee80211vap *vap = ni->ni_vap;
2929 	struct ieee80211com *ic = &sc->sc_ic;
2930 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2931 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2932 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2933 	struct bwi_mac *mac;
2934 	struct bwi_txbuf_hdr *hdr;
2935 	struct ieee80211_frame *wh;
2936 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2937 	uint8_t rate, rate_fb;
2938 	uint32_t mac_ctrl;
2939 	uint16_t phy_ctrl;
2940 	bus_addr_t paddr;
2941 	int type, ismcast, pkt_len, error, rix;
2942 #if 0
2943 	const uint8_t *p;
2944 	int i;
2945 #endif
2946 
2947 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2948 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2949 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2950 
2951 	wh = mtod(m, struct ieee80211_frame *);
2952 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2953 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2954 
2955 	/* Get 802.11 frame len before prepending TX header */
2956 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2957 
2958 	/*
2959 	 * Find TX rate
2960 	 */
2961 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2962 		rate = rate_fb = tp->mgmtrate;
2963 	} else if (ismcast) {
2964 		rate = rate_fb = tp->mcastrate;
2965 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2966 		rate = rate_fb = tp->ucastrate;
2967 	} else {
2968 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2969 		rate = ni->ni_txrate;
2970 
2971 		if (rix > 0) {
2972 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2973 				  IEEE80211_RATE_VAL;
2974 		} else {
2975 			rate_fb = rate;
2976 		}
2977 	}
2978 	tb->tb_rate[0] = rate;
2979 	tb->tb_rate[1] = rate_fb;
2980 	sc->sc_tx_rate = rate;
2981 
2982 	/*
2983 	 * TX radio tap
2984 	 */
2985 	if (ieee80211_radiotap_active_vap(vap)) {
2986 		sc->sc_tx_th.wt_flags = 0;
2987 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2988 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2989 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2990 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2991 		    rate != (1 * 2)) {
2992 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2993 		}
2994 		sc->sc_tx_th.wt_rate = rate;
2995 
2996 		ieee80211_radiotap_tx(vap, m);
2997 	}
2998 
2999 	/*
3000 	 * Setup the embedded TX header
3001 	 */
3002 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3003 	if (m == NULL) {
3004 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3005 		    __func__);
3006 		return ENOBUFS;
3007 	}
3008 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3009 
3010 	bzero(hdr, sizeof(*hdr));
3011 
3012 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3013 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3014 
3015 	if (!ismcast) {
3016 		uint16_t dur;
3017 
3018 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3019 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3020 
3021 		hdr->txh_fb_duration = htole16(dur);
3022 	}
3023 
3024 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3025 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3026 
3027 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3028 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3029 
3030 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3031 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3032 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3033 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3034 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3035 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3036 
3037 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3038 	if (!ismcast)
3039 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3040 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3041 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3042 
3043 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3044 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3045 
3046 	/* Catch any further usage */
3047 	hdr = NULL;
3048 	wh = NULL;
3049 
3050 	/* DMA load */
3051 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3052 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3053 	if (error && error != EFBIG) {
3054 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3055 		    __func__, error);
3056 		goto back;
3057 	}
3058 
3059 	if (error) {	/* error == EFBIG */
3060 		struct mbuf *m_new;
3061 
3062 		m_new = m_defrag(m, M_NOWAIT);
3063 		if (m_new == NULL) {
3064 			device_printf(sc->sc_dev,
3065 			    "%s: can't defrag TX buffer\n", __func__);
3066 			error = ENOBUFS;
3067 			goto back;
3068 		} else {
3069 			m = m_new;
3070 		}
3071 
3072 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3073 					     bwi_dma_buf_addr, &paddr,
3074 					     BUS_DMA_NOWAIT);
3075 		if (error) {
3076 			device_printf(sc->sc_dev,
3077 			    "%s: can't load TX buffer (2) %d\n",
3078 			    __func__, error);
3079 			goto back;
3080 		}
3081 	}
3082 	error = 0;
3083 
3084 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3085 
3086 	tb->tb_mbuf = m;
3087 	tb->tb_ni = ni;
3088 
3089 #if 0
3090 	p = mtod(m, const uint8_t *);
3091 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3092 		if (i != 0 && i % 8 == 0)
3093 			printf("\n");
3094 		printf("%02x ", p[i]);
3095 	}
3096 	printf("\n");
3097 #endif
3098 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3099 		idx, pkt_len, m->m_pkthdr.len);
3100 
3101 	/* Setup TX descriptor */
3102 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3103 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3104 			BUS_DMASYNC_PREWRITE);
3105 
3106 	/* Kick start */
3107 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3108 
3109 back:
3110 	if (error)
3111 		m_freem(m);
3112 	return error;
3113 }
3114 
3115 static int
3116 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3117 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3118 {
3119 	struct ieee80211vap *vap = ni->ni_vap;
3120 	struct ieee80211com *ic = ni->ni_ic;
3121 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3122 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3123 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3124 	struct bwi_mac *mac;
3125 	struct bwi_txbuf_hdr *hdr;
3126 	struct ieee80211_frame *wh;
3127 	uint8_t rate, rate_fb;
3128 	uint32_t mac_ctrl;
3129 	uint16_t phy_ctrl;
3130 	bus_addr_t paddr;
3131 	int ismcast, pkt_len, error;
3132 
3133 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3134 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3135 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3136 
3137 	wh = mtod(m, struct ieee80211_frame *);
3138 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3139 
3140 	/* Get 802.11 frame len before prepending TX header */
3141 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3142 
3143 	/*
3144 	 * Find TX rate
3145 	 */
3146 	rate = params->ibp_rate0;
3147 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3148 		/* XXX fall back to mcast/mgmt rate? */
3149 		m_freem(m);
3150 		return EINVAL;
3151 	}
3152 	if (params->ibp_try1 != 0) {
3153 		rate_fb = params->ibp_rate1;
3154 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3155 			/* XXX fall back to rate0? */
3156 			m_freem(m);
3157 			return EINVAL;
3158 		}
3159 	} else
3160 		rate_fb = rate;
3161 	tb->tb_rate[0] = rate;
3162 	tb->tb_rate[1] = rate_fb;
3163 	sc->sc_tx_rate = rate;
3164 
3165 	/*
3166 	 * TX radio tap
3167 	 */
3168 	if (ieee80211_radiotap_active_vap(vap)) {
3169 		sc->sc_tx_th.wt_flags = 0;
3170 		/* XXX IEEE80211_BPF_CRYPTO */
3171 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3172 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3173 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3174 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3175 		sc->sc_tx_th.wt_rate = rate;
3176 
3177 		ieee80211_radiotap_tx(vap, m);
3178 	}
3179 
3180 	/*
3181 	 * Setup the embedded TX header
3182 	 */
3183 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3184 	if (m == NULL) {
3185 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3186 		    __func__);
3187 		return ENOBUFS;
3188 	}
3189 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3190 
3191 	bzero(hdr, sizeof(*hdr));
3192 
3193 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3194 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3195 
3196 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3197 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3198 		uint16_t dur;
3199 
3200 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3201 
3202 		hdr->txh_fb_duration = htole16(dur);
3203 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3204 	}
3205 
3206 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3207 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3208 
3209 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3210 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3211 
3212 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3213 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3214 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3215 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3216 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3217 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3218 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3219 
3220 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3221 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3222 
3223 	/* Catch any further usage */
3224 	hdr = NULL;
3225 	wh = NULL;
3226 
3227 	/* DMA load */
3228 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3229 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3230 	if (error != 0) {
3231 		struct mbuf *m_new;
3232 
3233 		if (error != EFBIG) {
3234 			device_printf(sc->sc_dev,
3235 			    "%s: can't load TX buffer (1) %d\n",
3236 			    __func__, error);
3237 			goto back;
3238 		}
3239 		m_new = m_defrag(m, M_NOWAIT);
3240 		if (m_new == NULL) {
3241 			device_printf(sc->sc_dev,
3242 			    "%s: can't defrag TX buffer\n", __func__);
3243 			error = ENOBUFS;
3244 			goto back;
3245 		}
3246 		m = m_new;
3247 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3248 					     bwi_dma_buf_addr, &paddr,
3249 					     BUS_DMA_NOWAIT);
3250 		if (error) {
3251 			device_printf(sc->sc_dev,
3252 			    "%s: can't load TX buffer (2) %d\n",
3253 			    __func__, error);
3254 			goto back;
3255 		}
3256 	}
3257 
3258 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3259 
3260 	tb->tb_mbuf = m;
3261 	tb->tb_ni = ni;
3262 
3263 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3264 		idx, pkt_len, m->m_pkthdr.len);
3265 
3266 	/* Setup TX descriptor */
3267 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3268 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3269 			BUS_DMASYNC_PREWRITE);
3270 
3271 	/* Kick start */
3272 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3273 back:
3274 	if (error)
3275 		m_freem(m);
3276 	return error;
3277 }
3278 
3279 static void
3280 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3281 {
3282 	idx = (idx + 1) % BWI_TX_NDESC;
3283 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3284 		    idx * sizeof(struct bwi_desc32));
3285 }
3286 
3287 static void
3288 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3289 {
3290 	/* TODO:64 */
3291 }
3292 
3293 static void
3294 bwi_txeof_status32(struct bwi_softc *sc)
3295 {
3296 	uint32_t val, ctrl_base;
3297 	int end_idx;
3298 
3299 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3300 
3301 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3302 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3303 		  sizeof(struct bwi_desc32);
3304 
3305 	bwi_txeof_status(sc, end_idx);
3306 
3307 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3308 		    end_idx * sizeof(struct bwi_desc32));
3309 
3310 	bwi_start_locked(sc);
3311 }
3312 
3313 static void
3314 bwi_txeof_status64(struct bwi_softc *sc)
3315 {
3316 	/* TODO:64 */
3317 }
3318 
3319 static void
3320 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3321 {
3322 	struct bwi_txbuf_data *tbd;
3323 	struct bwi_txbuf *tb;
3324 	int ring_idx, buf_idx;
3325 	struct ieee80211_node *ni;
3326 
3327 	if (tx_id == 0) {
3328 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3329 		return;
3330 	}
3331 
3332 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3333 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3334 
3335 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3336 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3337 
3338 	tbd = &sc->sc_tx_bdata[ring_idx];
3339 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3340 	tbd->tbd_used--;
3341 
3342 	tb = &tbd->tbd_buf[buf_idx];
3343 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3344 		"acked %d, data_txcnt %d, ni %p\n",
3345 		buf_idx, acked, data_txcnt, tb->tb_ni);
3346 
3347 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3348 
3349 	if ((ni = tb->tb_ni) != NULL) {
3350 		const struct bwi_txbuf_hdr *hdr =
3351 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3352 		struct ieee80211_ratectl_tx_status txs;
3353 
3354 		/* NB: update rate control only for unicast frames */
3355 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3356 			/*
3357 			 * Feed back 'acked and data_txcnt'.  Note that the
3358 			 * generic AMRR code only understands one tx rate
3359 			 * and the estimator doesn't handle real retry counts
3360 			 * well so to avoid over-aggressive downshifting we
3361 			 * treat any number of retries as "1".
3362 			 */
3363 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3364 			txs.long_retries = acked;
3365 			if (data_txcnt > 1)
3366 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3367 			else {
3368 				txs.status =
3369 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3370 			}
3371 			ieee80211_ratectl_tx_complete(ni, &txs);
3372 		}
3373 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3374 		tb->tb_ni = NULL;
3375 	} else
3376 		m_freem(tb->tb_mbuf);
3377 	tb->tb_mbuf = NULL;
3378 
3379 	if (tbd->tbd_used == 0)
3380 		sc->sc_tx_timer = 0;
3381 }
3382 
3383 static void
3384 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3385 {
3386 	struct bwi_txstats_data *st = sc->sc_txstats;
3387 	int idx;
3388 
3389 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3390 
3391 	idx = st->stats_idx;
3392 	while (idx != end_idx) {
3393 		const struct bwi_txstats *stats = &st->stats[idx];
3394 
3395 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3396 			int data_txcnt;
3397 
3398 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3399 						BWI_TXS_TXCNT_DATA);
3400 			_bwi_txeof(sc, le16toh(stats->txs_id),
3401 				   stats->txs_flags & BWI_TXS_F_ACKED,
3402 				   data_txcnt);
3403 		}
3404 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3405 	}
3406 	st->stats_idx = idx;
3407 }
3408 
3409 static void
3410 bwi_txeof(struct bwi_softc *sc)
3411 {
3412 
3413 	for (;;) {
3414 		uint32_t tx_status0, tx_status1;
3415 		uint16_t tx_id;
3416 		int data_txcnt;
3417 
3418 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3419 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3420 			break;
3421 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3422 
3423 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3424 		data_txcnt = __SHIFTOUT(tx_status0,
3425 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3426 
3427 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3428 			continue;
3429 
3430 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3431 		    data_txcnt);
3432 	}
3433 
3434 	bwi_start_locked(sc);
3435 }
3436 
3437 static int
3438 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3439 {
3440 	bwi_power_on(sc, 1);
3441 	return bwi_set_clock_mode(sc, clk_mode);
3442 }
3443 
3444 static void
3445 bwi_bbp_power_off(struct bwi_softc *sc)
3446 {
3447 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3448 	bwi_power_off(sc, 1);
3449 }
3450 
3451 static int
3452 bwi_get_pwron_delay(struct bwi_softc *sc)
3453 {
3454 	struct bwi_regwin *com, *old;
3455 	struct bwi_clock_freq freq;
3456 	uint32_t val;
3457 	int error;
3458 
3459 	com = &sc->sc_com_regwin;
3460 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3461 
3462 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3463 		return 0;
3464 
3465 	error = bwi_regwin_switch(sc, com, &old);
3466 	if (error)
3467 		return error;
3468 
3469 	bwi_get_clock_freq(sc, &freq);
3470 
3471 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3472 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3473 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3474 
3475 	return bwi_regwin_switch(sc, old, NULL);
3476 }
3477 
3478 static int
3479 bwi_bus_attach(struct bwi_softc *sc)
3480 {
3481 	struct bwi_regwin *bus, *old;
3482 	int error;
3483 
3484 	bus = &sc->sc_bus_regwin;
3485 
3486 	error = bwi_regwin_switch(sc, bus, &old);
3487 	if (error)
3488 		return error;
3489 
3490 	if (!bwi_regwin_is_enabled(sc, bus))
3491 		bwi_regwin_enable(sc, bus, 0);
3492 
3493 	/* Disable interripts */
3494 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3495 
3496 	return bwi_regwin_switch(sc, old, NULL);
3497 }
3498 
3499 static const char *
3500 bwi_regwin_name(const struct bwi_regwin *rw)
3501 {
3502 	switch (rw->rw_type) {
3503 	case BWI_REGWIN_T_COM:
3504 		return "COM";
3505 	case BWI_REGWIN_T_BUSPCI:
3506 		return "PCI";
3507 	case BWI_REGWIN_T_MAC:
3508 		return "MAC";
3509 	case BWI_REGWIN_T_BUSPCIE:
3510 		return "PCIE";
3511 	}
3512 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3513 	return NULL;
3514 }
3515 
3516 static uint32_t
3517 bwi_regwin_disable_bits(struct bwi_softc *sc)
3518 {
3519 	uint32_t busrev;
3520 
3521 	/* XXX cache this */
3522 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3523 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3524 		"bus rev %u\n", busrev);
3525 
3526 	if (busrev == BWI_BUSREV_0)
3527 		return BWI_STATE_LO_DISABLE1;
3528 	else if (busrev == BWI_BUSREV_1)
3529 		return BWI_STATE_LO_DISABLE2;
3530 	else
3531 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3532 }
3533 
3534 int
3535 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3536 {
3537 	uint32_t val, disable_bits;
3538 
3539 	disable_bits = bwi_regwin_disable_bits(sc);
3540 	val = CSR_READ_4(sc, BWI_STATE_LO);
3541 
3542 	if ((val & (BWI_STATE_LO_CLOCK |
3543 		    BWI_STATE_LO_RESET |
3544 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3545 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3546 			bwi_regwin_name(rw));
3547 		return 1;
3548 	} else {
3549 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3550 			bwi_regwin_name(rw));
3551 		return 0;
3552 	}
3553 }
3554 
3555 void
3556 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3557 {
3558 	uint32_t state_lo, disable_bits;
3559 	int i;
3560 
3561 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3562 
3563 	/*
3564 	 * If current regwin is in 'reset' state, it was already disabled.
3565 	 */
3566 	if (state_lo & BWI_STATE_LO_RESET) {
3567 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3568 			"%s was already disabled\n", bwi_regwin_name(rw));
3569 		return;
3570 	}
3571 
3572 	disable_bits = bwi_regwin_disable_bits(sc);
3573 
3574 	/*
3575 	 * Disable normal clock
3576 	 */
3577 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3578 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3579 
3580 	/*
3581 	 * Wait until normal clock is disabled
3582 	 */
3583 #define NRETRY	1000
3584 	for (i = 0; i < NRETRY; ++i) {
3585 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3586 		if (state_lo & disable_bits)
3587 			break;
3588 		DELAY(10);
3589 	}
3590 	if (i == NRETRY) {
3591 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3592 			      bwi_regwin_name(rw));
3593 	}
3594 
3595 	for (i = 0; i < NRETRY; ++i) {
3596 		uint32_t state_hi;
3597 
3598 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3599 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3600 			break;
3601 		DELAY(10);
3602 	}
3603 	if (i == NRETRY) {
3604 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3605 			      bwi_regwin_name(rw));
3606 	}
3607 #undef NRETRY
3608 
3609 	/*
3610 	 * Reset and disable regwin with gated clock
3611 	 */
3612 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3613 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3614 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3615 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3616 
3617 	/* Flush pending bus write */
3618 	CSR_READ_4(sc, BWI_STATE_LO);
3619 	DELAY(1);
3620 
3621 	/* Reset and disable regwin */
3622 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3623 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3624 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3625 
3626 	/* Flush pending bus write */
3627 	CSR_READ_4(sc, BWI_STATE_LO);
3628 	DELAY(1);
3629 }
3630 
3631 void
3632 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3633 {
3634 	uint32_t state_lo, state_hi, imstate;
3635 
3636 	bwi_regwin_disable(sc, rw, flags);
3637 
3638 	/* Reset regwin with gated clock */
3639 	state_lo = BWI_STATE_LO_RESET |
3640 		   BWI_STATE_LO_CLOCK |
3641 		   BWI_STATE_LO_GATED_CLOCK |
3642 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3643 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3644 
3645 	/* Flush pending bus write */
3646 	CSR_READ_4(sc, BWI_STATE_LO);
3647 	DELAY(1);
3648 
3649 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3650 	if (state_hi & BWI_STATE_HI_SERROR)
3651 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3652 
3653 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3654 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3655 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3656 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3657 	}
3658 
3659 	/* Enable regwin with gated clock */
3660 	state_lo = BWI_STATE_LO_CLOCK |
3661 		   BWI_STATE_LO_GATED_CLOCK |
3662 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3663 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3664 
3665 	/* Flush pending bus write */
3666 	CSR_READ_4(sc, BWI_STATE_LO);
3667 	DELAY(1);
3668 
3669 	/* Enable regwin with normal clock */
3670 	state_lo = BWI_STATE_LO_CLOCK |
3671 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3672 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3673 
3674 	/* Flush pending bus write */
3675 	CSR_READ_4(sc, BWI_STATE_LO);
3676 	DELAY(1);
3677 }
3678 
3679 static void
3680 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3681 {
3682 	struct bwi_mac *mac;
3683 	struct bwi_myaddr_bssid buf;
3684 	const uint8_t *p;
3685 	uint32_t val;
3686 	int n, i;
3687 
3688 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3689 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3690 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3691 
3692 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3693 
3694 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3695 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3696 
3697 	n = sizeof(buf) / sizeof(val);
3698 	p = (const uint8_t *)&buf;
3699 	for (i = 0; i < n; ++i) {
3700 		int j;
3701 
3702 		val = 0;
3703 		for (j = 0; j < sizeof(val); ++j)
3704 			val |= ((uint32_t)(*p++)) << (j * 8);
3705 
3706 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3707 	}
3708 }
3709 
3710 static void
3711 bwi_updateslot(struct ieee80211com *ic)
3712 {
3713 	struct bwi_softc *sc = ic->ic_softc;
3714 	struct bwi_mac *mac;
3715 
3716 	BWI_LOCK(sc);
3717 	if (sc->sc_flags & BWI_F_RUNNING) {
3718 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3719 
3720 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3721 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3722 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3723 
3724 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3725 	}
3726 	BWI_UNLOCK(sc);
3727 }
3728 
3729 static void
3730 bwi_calibrate(void *xsc)
3731 {
3732 	struct bwi_softc *sc = xsc;
3733 	struct bwi_mac *mac;
3734 
3735 	BWI_ASSERT_LOCKED(sc);
3736 
3737 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3738 	    ("opmode %d", sc->sc_ic.ic_opmode));
3739 
3740 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3741 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3742 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3743 
3744 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3745 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3746 
3747 	/* XXX 15 seconds */
3748 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3749 }
3750 
3751 static int
3752 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3753 {
3754 	struct bwi_mac *mac;
3755 
3756 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3757 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3758 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3759 
3760 	return bwi_rf_calc_rssi(mac, hdr);
3761 }
3762 
3763 static int
3764 bwi_calc_noise(struct bwi_softc *sc)
3765 {
3766 	struct bwi_mac *mac;
3767 
3768 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3769 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3770 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3771 
3772 	return bwi_rf_calc_noise(mac);
3773 }
3774 
3775 static __inline uint8_t
3776 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3777 {
3778 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3779 	return (ieee80211_plcp2rate(plcp, type));
3780 }
3781 
3782 static void
3783 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3784     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3785 {
3786 	const struct ieee80211_frame_min *wh;
3787 
3788 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3789 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3790 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3791 
3792 	wh = mtod(m, const struct ieee80211_frame_min *);
3793 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3794 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3795 
3796 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3797 	sc->sc_rx_th.wr_rate = rate;
3798 	sc->sc_rx_th.wr_antsignal = rssi;
3799 	sc->sc_rx_th.wr_antnoise = noise;
3800 }
3801 
3802 static void
3803 bwi_led_attach(struct bwi_softc *sc)
3804 {
3805 	const uint8_t *led_act = NULL;
3806 	uint16_t gpio, val[BWI_LED_MAX];
3807 	int i;
3808 
3809 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3810 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3811 			led_act = bwi_vendor_led_act[i].led_act;
3812 			break;
3813 		}
3814 	}
3815 	if (led_act == NULL)
3816 		led_act = bwi_default_led_act;
3817 
3818 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3819 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3820 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3821 
3822 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3823 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3824 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3825 
3826 	for (i = 0; i < BWI_LED_MAX; ++i) {
3827 		struct bwi_led *led = &sc->sc_leds[i];
3828 
3829 		if (val[i] == 0xff) {
3830 			led->l_act = led_act[i];
3831 		} else {
3832 			if (val[i] & BWI_LED_ACT_LOW)
3833 				led->l_flags |= BWI_LED_F_ACTLOW;
3834 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3835 		}
3836 		led->l_mask = (1 << i);
3837 
3838 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3839 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3840 		    led->l_act == BWI_LED_ACT_BLINK) {
3841 			led->l_flags |= BWI_LED_F_BLINK;
3842 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3843 				led->l_flags |= BWI_LED_F_POLLABLE;
3844 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3845 				led->l_flags |= BWI_LED_F_SLOW;
3846 
3847 			if (sc->sc_blink_led == NULL) {
3848 				sc->sc_blink_led = led;
3849 				if (led->l_flags & BWI_LED_F_SLOW)
3850 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3851 			}
3852 		}
3853 
3854 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3855 			"%dth led, act %d, lowact %d\n", i,
3856 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3857 	}
3858 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3859 }
3860 
3861 static __inline uint16_t
3862 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3863 {
3864 	if (led->l_flags & BWI_LED_F_ACTLOW)
3865 		on = !on;
3866 	if (on)
3867 		val |= led->l_mask;
3868 	else
3869 		val &= ~led->l_mask;
3870 	return val;
3871 }
3872 
3873 static void
3874 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3875 {
3876 	struct ieee80211com *ic = &sc->sc_ic;
3877 	uint16_t val;
3878 	int i;
3879 
3880 	if (nstate == IEEE80211_S_INIT) {
3881 		callout_stop(&sc->sc_led_blink_ch);
3882 		sc->sc_led_blinking = 0;
3883 	}
3884 
3885 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3886 		return;
3887 
3888 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3889 	for (i = 0; i < BWI_LED_MAX; ++i) {
3890 		struct bwi_led *led = &sc->sc_leds[i];
3891 		int on;
3892 
3893 		if (led->l_act == BWI_LED_ACT_UNKN ||
3894 		    led->l_act == BWI_LED_ACT_NULL)
3895 			continue;
3896 
3897 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3898 		    nstate != IEEE80211_S_INIT)
3899 		    	continue;
3900 
3901 		switch (led->l_act) {
3902 		case BWI_LED_ACT_ON:	/* Always on */
3903 			on = 1;
3904 			break;
3905 		case BWI_LED_ACT_OFF:	/* Always off */
3906 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3907 			on = 0;
3908 			break;
3909 		default:
3910 			on = 1;
3911 			switch (nstate) {
3912 			case IEEE80211_S_INIT:
3913 				on = 0;
3914 				break;
3915 			case IEEE80211_S_RUN:
3916 				if (led->l_act == BWI_LED_ACT_11G &&
3917 				    ic->ic_curmode != IEEE80211_MODE_11G)
3918 					on = 0;
3919 				break;
3920 			default:
3921 				if (led->l_act == BWI_LED_ACT_ASSOC)
3922 					on = 0;
3923 				break;
3924 			}
3925 			break;
3926 		}
3927 
3928 		val = bwi_led_onoff(led, val, on);
3929 	}
3930 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3931 }
3932 static void
3933 bwi_led_event(struct bwi_softc *sc, int event)
3934 {
3935 	struct bwi_led *led = sc->sc_blink_led;
3936 	int rate;
3937 
3938 	if (event == BWI_LED_EVENT_POLL) {
3939 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3940 			return;
3941 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3942 			return;
3943 	}
3944 
3945 	sc->sc_led_ticks = ticks;
3946 	if (sc->sc_led_blinking)
3947 		return;
3948 
3949 	switch (event) {
3950 	case BWI_LED_EVENT_RX:
3951 		rate = sc->sc_rx_rate;
3952 		break;
3953 	case BWI_LED_EVENT_TX:
3954 		rate = sc->sc_tx_rate;
3955 		break;
3956 	case BWI_LED_EVENT_POLL:
3957 		rate = 0;
3958 		break;
3959 	default:
3960 		panic("unknown LED event %d\n", event);
3961 		break;
3962 	}
3963 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3964 	    bwi_led_duration[rate].off_dur);
3965 }
3966 
3967 static void
3968 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3969 {
3970 	struct bwi_led *led = sc->sc_blink_led;
3971 	uint16_t val;
3972 
3973 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3974 	val = bwi_led_onoff(led, val, 1);
3975 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3976 
3977 	if (led->l_flags & BWI_LED_F_SLOW) {
3978 		BWI_LED_SLOWDOWN(on_dur);
3979 		BWI_LED_SLOWDOWN(off_dur);
3980 	}
3981 
3982 	sc->sc_led_blinking = 1;
3983 	sc->sc_led_blink_offdur = off_dur;
3984 
3985 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3986 }
3987 
3988 static void
3989 bwi_led_blink_next(void *xsc)
3990 {
3991 	struct bwi_softc *sc = xsc;
3992 	uint16_t val;
3993 
3994 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3995 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3996 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3997 
3998 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3999 	    bwi_led_blink_end, sc);
4000 }
4001 
4002 static void
4003 bwi_led_blink_end(void *xsc)
4004 {
4005 	struct bwi_softc *sc = xsc;
4006 	sc->sc_led_blinking = 0;
4007 }
4008 
4009 static void
4010 bwi_restart(void *xsc, int pending)
4011 {
4012 	struct bwi_softc *sc = xsc;
4013 
4014 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
4015 	BWI_LOCK(sc);
4016 	bwi_init_statechg(sc, 0);
4017 #if 0
4018 	bwi_start_locked(sc);
4019 #endif
4020 	BWI_UNLOCK(sc);
4021 }
4022