xref: /freebsd/sys/dev/bwi/if_bwi.c (revision cf4c5a533126ca1ddb1f070af73f8f53b9e77fd4)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_phy.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		   const char [IFNAMSIZ], int, int, int,
100 		   const uint8_t [IEEE80211_ADDR_LEN],
101 		   const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(struct ifnet *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static struct ieee80211_node *bwi_node_alloc(struct ieee80211vap *,
116 		    const uint8_t [IEEE80211_ADDR_LEN]);
117 static void	bwi_newassoc(struct ieee80211_node *, int);
118 static int	bwi_media_change(struct ifnet *);
119 
120 static void	bwi_calibrate(void *);
121 
122 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int	bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_ofdm_plcp2rate(const uint32_t *);
125 static __inline uint8_t bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *);
126 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
127 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
128 
129 static void	bwi_restart(void *, int);
130 static void	bwi_init_statechg(struct bwi_softc *, int);
131 static void	bwi_stop(struct bwi_softc *, int);
132 static void	bwi_stop_locked(struct bwi_softc *, int);
133 static int	bwi_newbuf(struct bwi_softc *, int, int);
134 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *);
136 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *,
138 			  const struct ieee80211_bpf_params *);
139 
140 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
141 				       bus_addr_t, int, int);
142 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
143 
144 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
145 static int	bwi_init_rx_ring32(struct bwi_softc *);
146 static int	bwi_init_txstats32(struct bwi_softc *);
147 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
148 static void	bwi_free_rx_ring32(struct bwi_softc *);
149 static void	bwi_free_txstats32(struct bwi_softc *);
150 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
151 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
152 				    int, bus_addr_t, int);
153 static int	bwi_rxeof32(struct bwi_softc *);
154 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
155 static void	bwi_txeof_status32(struct bwi_softc *);
156 
157 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
158 static int	bwi_init_rx_ring64(struct bwi_softc *);
159 static int	bwi_init_txstats64(struct bwi_softc *);
160 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
161 static void	bwi_free_rx_ring64(struct bwi_softc *);
162 static void	bwi_free_txstats64(struct bwi_softc *);
163 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
164 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
165 				    int, bus_addr_t, int);
166 static int	bwi_rxeof64(struct bwi_softc *);
167 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
168 static void	bwi_txeof_status64(struct bwi_softc *);
169 
170 static int	bwi_rxeof(struct bwi_softc *, int);
171 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
172 static void	bwi_txeof(struct bwi_softc *);
173 static void	bwi_txeof_status(struct bwi_softc *, int);
174 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
175 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
176 
177 static int	bwi_dma_alloc(struct bwi_softc *);
178 static void	bwi_dma_free(struct bwi_softc *);
179 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
180 				   struct bwi_ring_data *, bus_size_t,
181 				   uint32_t);
182 static int	bwi_dma_mbuf_create(struct bwi_softc *);
183 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
184 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
185 static void	bwi_dma_txstats_free(struct bwi_softc *);
186 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
187 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
188 				 bus_size_t, int);
189 
190 static void	bwi_power_on(struct bwi_softc *, int);
191 static int	bwi_power_off(struct bwi_softc *, int);
192 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
193 static int	bwi_set_clock_delay(struct bwi_softc *);
194 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
195 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
196 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
197 				    const uint8_t *);
198 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
199 
200 static void	bwi_get_card_flags(struct bwi_softc *);
201 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
202 
203 static int	bwi_bus_attach(struct bwi_softc *);
204 static int	bwi_bbp_attach(struct bwi_softc *);
205 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
206 static void	bwi_bbp_power_off(struct bwi_softc *);
207 
208 static const char *bwi_regwin_name(const struct bwi_regwin *);
209 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
210 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
211 static int	bwi_regwin_select(struct bwi_softc *, int);
212 
213 static void	bwi_led_attach(struct bwi_softc *);
214 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
215 static void	bwi_led_event(struct bwi_softc *, int);
216 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
217 static void	bwi_led_blink_next(void *);
218 static void	bwi_led_blink_end(void *);
219 
220 static const struct {
221 	uint16_t	did_min;
222 	uint16_t	did_max;
223 	uint16_t	bbp_id;
224 } bwi_bbpid_map[] = {
225 	{ 0x4301, 0x4301, 0x4301 },
226 	{ 0x4305, 0x4307, 0x4307 },
227 	{ 0x4403, 0x4403, 0x4402 },
228 	{ 0x4610, 0x4615, 0x4610 },
229 	{ 0x4710, 0x4715, 0x4710 },
230 	{ 0x4720, 0x4725, 0x4309 }
231 };
232 
233 static const struct {
234 	uint16_t	bbp_id;
235 	int		nregwin;
236 } bwi_regwin_count[] = {
237 	{ 0x4301, 5 },
238 	{ 0x4306, 6 },
239 	{ 0x4307, 5 },
240 	{ 0x4310, 8 },
241 	{ 0x4401, 3 },
242 	{ 0x4402, 3 },
243 	{ 0x4610, 9 },
244 	{ 0x4704, 9 },
245 	{ 0x4710, 9 },
246 	{ 0x5365, 7 }
247 };
248 
249 #define CLKSRC(src) 				\
250 [BWI_CLKSRC_ ## src] = {			\
251 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
252 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
253 }
254 
255 static const struct {
256 	u_int	freq_min;
257 	u_int	freq_max;
258 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
259 	CLKSRC(LP_OSC),
260 	CLKSRC(CS_OSC),
261 	CLKSRC(PCI)
262 };
263 
264 #undef CLKSRC
265 
266 #define VENDOR_LED_ACT(vendor)				\
267 {							\
268 	.vid = PCI_VENDOR_##vendor,			\
269 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
270 }
271 
272 static const struct {
273 #define	PCI_VENDOR_COMPAQ	0x0e11
274 #define	PCI_VENDOR_LINKSYS	0x1737
275 	uint16_t	vid;
276 	uint8_t		led_act[BWI_LED_MAX];
277 } bwi_vendor_led_act[] = {
278 	VENDOR_LED_ACT(COMPAQ),
279 	VENDOR_LED_ACT(LINKSYS)
280 #undef PCI_VENDOR_LINKSYS
281 #undef PCI_VENDOR_COMPAQ
282 };
283 
284 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
285 	{ BWI_VENDOR_LED_ACT_DEFAULT };
286 
287 #undef VENDOR_LED_ACT
288 
289 static const struct {
290 	int	on_dur;
291 	int	off_dur;
292 } bwi_led_duration[109] = {
293 	[0]	= { 400, 100 },
294 	[2]	= { 150, 75 },
295 	[4]	= { 90, 45 },
296 	[11]	= { 66, 34 },
297 	[12]	= { 53, 26 },
298 	[18]	= { 42, 21 },
299 	[22]	= { 35, 17 },
300 	[24]	= { 32, 16 },
301 	[36]	= { 21, 10 },
302 	[48]	= { 16, 8 },
303 	[72]	= { 11, 5 },
304 	[96]	= { 9, 4 },
305 	[108]	= { 7, 3 }
306 };
307 
308 #ifdef BWI_DEBUG
309 #ifdef BWI_DEBUG_VERBOSE
310 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
311 #else
312 static uint32_t	bwi_debug;
313 #endif
314 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
315 #endif	/* BWI_DEBUG */
316 
317 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
318 
319 uint16_t
320 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
321 {
322 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
323 }
324 
325 static __inline void
326 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
327 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
328 		 int tx)
329 {
330 	struct bwi_desc32 *desc = &desc_array[desc_idx];
331 	uint32_t ctrl, addr, addr_hi, addr_lo;
332 
333 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
334 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
335 
336 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
337 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
338 
339 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
340 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
341 	if (desc_idx == ndesc - 1)
342 		ctrl |= BWI_DESC32_C_EOR;
343 	if (tx) {
344 		/* XXX */
345 		ctrl |= BWI_DESC32_C_FRAME_START |
346 			BWI_DESC32_C_FRAME_END |
347 			BWI_DESC32_C_INTR;
348 	}
349 
350 	desc->addr = htole32(addr);
351 	desc->ctrl = htole32(ctrl);
352 }
353 
354 int
355 bwi_attach(struct bwi_softc *sc)
356 {
357 	struct ieee80211com *ic;
358 	device_t dev = sc->sc_dev;
359 	struct ifnet *ifp;
360 	struct bwi_mac *mac;
361 	struct bwi_phy *phy;
362 	int i, error;
363 	uint8_t bands;
364 	uint8_t macaddr[IEEE80211_ADDR_LEN];
365 
366 	BWI_LOCK_INIT(sc);
367 
368 	/*
369 	 * Initialize taskq and various tasks
370 	 */
371 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
372 		taskqueue_thread_enqueue, &sc->sc_tq);
373 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
374 		device_get_nameunit(dev));
375 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
376 
377 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
378 
379 	/*
380 	 * Initialize sysctl variables
381 	 */
382 	sc->sc_fw_version = BWI_FW_VERSION3;
383 	sc->sc_led_idle = (2350 * hz) / 1000;
384 	sc->sc_led_blink = 1;
385 	sc->sc_txpwr_calib = 1;
386 #ifdef BWI_DEBUG
387 	sc->sc_debug = bwi_debug;
388 #endif
389 	bwi_power_on(sc, 1);
390 
391 	error = bwi_bbp_attach(sc);
392 	if (error)
393 		goto fail;
394 
395 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
396 	if (error)
397 		goto fail;
398 
399 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
400 		error = bwi_set_clock_delay(sc);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
405 		if (error)
406 			goto fail;
407 
408 		error = bwi_get_pwron_delay(sc);
409 		if (error)
410 			goto fail;
411 	}
412 
413 	error = bwi_bus_attach(sc);
414 	if (error)
415 		goto fail;
416 
417 	bwi_get_card_flags(sc);
418 
419 	bwi_led_attach(sc);
420 
421 	for (i = 0; i < sc->sc_nmac; ++i) {
422 		struct bwi_regwin *old;
423 
424 		mac = &sc->sc_mac[i];
425 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_mac_lateattach(mac);
430 		if (error)
431 			goto fail;
432 
433 		error = bwi_regwin_switch(sc, old, NULL);
434 		if (error)
435 			goto fail;
436 	}
437 
438 	/*
439 	 * XXX First MAC is known to exist
440 	 * TODO2
441 	 */
442 	mac = &sc->sc_mac[0];
443 	phy = &mac->mac_phy;
444 
445 	bwi_bbp_power_off(sc);
446 
447 	error = bwi_dma_alloc(sc);
448 	if (error)
449 		goto fail;
450 
451 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
452 	if (ifp == NULL) {
453 		device_printf(dev, "can not if_alloc()\n");
454 		error = ENOSPC;
455 		goto fail;
456 	}
457 	ic = ifp->if_l2com;
458 
459 	/* set these up early for if_printf use */
460 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
461 
462 	ifp->if_softc = sc;
463 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
464 	ifp->if_init = bwi_init;
465 	ifp->if_ioctl = bwi_ioctl;
466 	ifp->if_start = bwi_start;
467 	ifp->if_watchdog = bwi_watchdog;
468 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
469 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
470 	IFQ_SET_READY(&ifp->if_snd);
471 
472 	/*
473 	 * Setup ratesets, phytype, channels and get MAC address
474 	 */
475 	bands = 0;
476 	if (phy->phy_mode == IEEE80211_MODE_11B ||
477 	    phy->phy_mode == IEEE80211_MODE_11G) {
478 		setbit(&bands, IEEE80211_MODE_11B);
479 		if (phy->phy_mode == IEEE80211_MODE_11B) {
480 			ic->ic_phytype = IEEE80211_T_DS;
481 		} else {
482 			ic->ic_phytype = IEEE80211_T_OFDM;
483 			setbit(&bands, IEEE80211_MODE_11G);
484 		}
485 
486 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
487 		if (IEEE80211_IS_MULTICAST(macaddr)) {
488 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
489 			if (IEEE80211_IS_MULTICAST(macaddr)) {
490 				device_printf(dev,
491 				    "invalid MAC address: %6D\n",
492 				    macaddr, ":");
493 			}
494 		}
495 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
496 		/* TODO:11A */
497 		setbit(&bands, IEEE80211_MODE_11A);
498 		error = ENXIO;
499 		goto fail;
500 	} else {
501 		panic("unknown phymode %d\n", phy->phy_mode);
502 	}
503 
504 	/* Get locale */
505 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
506 				   BWI_SPROM_CARD_INFO_LOCALE);
507 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
508 	/* XXX use locale */
509 	ieee80211_init_channels(ic, NULL, &bands);
510 
511 	ic->ic_ifp = ifp;
512 	ic->ic_caps = IEEE80211_C_STA |
513 		      IEEE80211_C_SHSLOT |
514 		      IEEE80211_C_SHPREAMBLE |
515 		      IEEE80211_C_WPA |
516 		      IEEE80211_C_BGSCAN |
517 		      IEEE80211_C_MONITOR;
518 	ic->ic_opmode = IEEE80211_M_STA;
519 	ieee80211_ifattach(ic, macaddr);
520 
521 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
522 
523 	/* override default methods */
524 	ic->ic_vap_create = bwi_vap_create;
525 	ic->ic_vap_delete = bwi_vap_delete;
526 	ic->ic_raw_xmit = bwi_raw_xmit;
527 	ic->ic_updateslot = bwi_updateslot;
528 	ic->ic_node_alloc = bwi_node_alloc;
529 	ic->ic_scan_start = bwi_scan_start;
530 	ic->ic_scan_end = bwi_scan_end;
531 	ic->ic_set_channel = bwi_set_channel;
532 
533 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
534 
535 	ieee80211_radiotap_attach(ic,
536 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
537 		BWI_TX_RADIOTAP_PRESENT,
538 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
539 		BWI_RX_RADIOTAP_PRESENT);
540 
541 	/*
542 	 * Add sysctl nodes
543 	 */
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
547 		        "Firmware version");
548 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
549 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
551 		        "# ticks before LED enters idle state");
552 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
553 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
554 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
555 		       "Allow LED to blink");
556 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
557 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
558 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
559 		       "Enable software TX power calibration");
560 #ifdef BWI_DEBUG
561 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
562 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
563 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
564 #endif
565 	if (bootverbose)
566 		ieee80211_announce(ic);
567 
568 	return (0);
569 fail:
570 	BWI_LOCK_DESTROY(sc);
571 	return (error);
572 }
573 
574 int
575 bwi_detach(struct bwi_softc *sc)
576 {
577 	struct ifnet *ifp = sc->sc_ifp;
578 	struct ieee80211com *ic = ifp->if_l2com;
579 	int i;
580 
581 	bwi_stop(sc, 1);
582 	callout_drain(&sc->sc_led_blink_ch);
583 	callout_drain(&sc->sc_calib_ch);
584 	ieee80211_ifdetach(ic);
585 
586 	for (i = 0; i < sc->sc_nmac; ++i)
587 		bwi_mac_detach(&sc->sc_mac[i]);
588 	bwi_dma_free(sc);
589 	if_free(ifp);
590 	taskqueue_free(sc->sc_tq);
591 
592 	BWI_LOCK_DESTROY(sc);
593 
594 	return (0);
595 }
596 
597 static struct ieee80211vap *
598 bwi_vap_create(struct ieee80211com *ic,
599 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
600 	const uint8_t bssid[IEEE80211_ADDR_LEN],
601 	const uint8_t mac[IEEE80211_ADDR_LEN])
602 {
603 	struct bwi_vap *bvp;
604 	struct ieee80211vap *vap;
605 
606 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
607 		return NULL;
608 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
609 	    M_80211_VAP, M_WAITOK | M_ZERO);
610 	if (bvp == NULL)
611 		return NULL;
612 	vap = &bvp->bv_vap;
613 	/* enable s/w bmiss handling for sta mode */
614 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
615 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
616 
617 	/* override default methods */
618 	bvp->bv_newstate = vap->iv_newstate;
619 	vap->iv_newstate = bwi_newstate;
620 #if 0
621 	vap->iv_update_beacon = bwi_beacon_update;
622 #endif
623 	ieee80211_amrr_init(&bvp->bv_amrr, vap,
624 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
625 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
626 	    500 /*ms*/);
627 
628 	/* complete setup */
629 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
630 	ic->ic_opmode = opmode;
631 	return vap;
632 }
633 
634 static void
635 bwi_vap_delete(struct ieee80211vap *vap)
636 {
637 	struct bwi_vap *bvp = BWI_VAP(vap);
638 
639 	ieee80211_amrr_cleanup(&bvp->bv_amrr);
640 	ieee80211_vap_detach(vap);
641 	free(bvp, M_80211_VAP);
642 }
643 
644 void
645 bwi_suspend(struct bwi_softc *sc)
646 {
647 	bwi_stop(sc, 1);
648 }
649 
650 void
651 bwi_resume(struct bwi_softc *sc)
652 {
653 	struct ifnet *ifp = sc->sc_ifp;
654 
655 	if (ifp->if_flags & IFF_UP)
656 		bwi_init(sc);
657 }
658 
659 int
660 bwi_shutdown(struct bwi_softc *sc)
661 {
662 	bwi_stop(sc, 1);
663 	return 0;
664 }
665 
666 static void
667 bwi_power_on(struct bwi_softc *sc, int with_pll)
668 {
669 	uint32_t gpio_in, gpio_out, gpio_en;
670 	uint16_t status;
671 
672 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
673 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
674 		goto back;
675 
676 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
677 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
678 
679 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
680 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
681 	if (with_pll) {
682 		/* Turn off PLL first */
683 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
684 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
685 	}
686 
687 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
688 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
689 	DELAY(1000);
690 
691 	if (with_pll) {
692 		/* Turn on PLL */
693 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
694 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
695 		DELAY(5000);
696 	}
697 
698 back:
699 	/* Clear "Signaled Target Abort" */
700 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
701 	status &= ~PCIM_STATUS_STABORT;
702 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
703 }
704 
705 static int
706 bwi_power_off(struct bwi_softc *sc, int with_pll)
707 {
708 	uint32_t gpio_out, gpio_en;
709 
710 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
711 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
712 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
713 
714 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
715 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
716 	if (with_pll) {
717 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
718 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
719 	}
720 
721 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
722 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
723 	return 0;
724 }
725 
726 int
727 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
728 		  struct bwi_regwin **old_rw)
729 {
730 	int error;
731 
732 	if (old_rw != NULL)
733 		*old_rw = NULL;
734 
735 	if (!BWI_REGWIN_EXIST(rw))
736 		return EINVAL;
737 
738 	if (sc->sc_cur_regwin != rw) {
739 		error = bwi_regwin_select(sc, rw->rw_id);
740 		if (error) {
741 			device_printf(sc->sc_dev, "can't select regwin %d\n",
742 				  rw->rw_id);
743 			return error;
744 		}
745 	}
746 
747 	if (old_rw != NULL)
748 		*old_rw = sc->sc_cur_regwin;
749 	sc->sc_cur_regwin = rw;
750 	return 0;
751 }
752 
753 static int
754 bwi_regwin_select(struct bwi_softc *sc, int id)
755 {
756 	uint32_t win = BWI_PCIM_REGWIN(id);
757 	int i;
758 
759 #define RETRY_MAX	50
760 	for (i = 0; i < RETRY_MAX; ++i) {
761 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
762 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
763 			return 0;
764 		DELAY(10);
765 	}
766 #undef RETRY_MAX
767 
768 	return ENXIO;
769 }
770 
771 static void
772 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
773 {
774 	uint32_t val;
775 
776 	val = CSR_READ_4(sc, BWI_ID_HI);
777 	*type = BWI_ID_HI_REGWIN_TYPE(val);
778 	*rev = BWI_ID_HI_REGWIN_REV(val);
779 
780 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
781 		"vendor 0x%04x\n", *type, *rev,
782 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
783 }
784 
785 static int
786 bwi_bbp_attach(struct bwi_softc *sc)
787 {
788 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
789 	uint16_t bbp_id, rw_type;
790 	uint8_t rw_rev;
791 	uint32_t info;
792 	int error, nregwin, i;
793 
794 	/*
795 	 * Get 0th regwin information
796 	 * NOTE: 0th regwin should exist
797 	 */
798 	error = bwi_regwin_select(sc, 0);
799 	if (error) {
800 		device_printf(sc->sc_dev, "can't select regwin 0\n");
801 		return error;
802 	}
803 	bwi_regwin_info(sc, &rw_type, &rw_rev);
804 
805 	/*
806 	 * Find out BBP id
807 	 */
808 	bbp_id = 0;
809 	info = 0;
810 	if (rw_type == BWI_REGWIN_T_COM) {
811 		info = CSR_READ_4(sc, BWI_INFO);
812 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
813 
814 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
815 
816 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
817 	} else {
818 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
819 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
820 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
821 				bbp_id = bwi_bbpid_map[i].bbp_id;
822 				break;
823 			}
824 		}
825 		if (bbp_id == 0) {
826 			device_printf(sc->sc_dev, "no BBP id for device id "
827 				      "0x%04x\n", sc->sc_pci_did);
828 			return ENXIO;
829 		}
830 
831 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
832 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
833 	}
834 
835 	/*
836 	 * Find out number of regwins
837 	 */
838 	nregwin = 0;
839 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
840 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
841 	} else {
842 		for (i = 0; i < N(bwi_regwin_count); ++i) {
843 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
844 				nregwin = bwi_regwin_count[i].nregwin;
845 				break;
846 			}
847 		}
848 		if (nregwin == 0) {
849 			device_printf(sc->sc_dev, "no number of win for "
850 				      "BBP id 0x%04x\n", bbp_id);
851 			return ENXIO;
852 		}
853 	}
854 
855 	/* Record BBP id/rev for later using */
856 	sc->sc_bbp_id = bbp_id;
857 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
858 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
859 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
860 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
861 
862 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
863 		nregwin, sc->sc_cap);
864 
865 	/*
866 	 * Create rest of the regwins
867 	 */
868 
869 	/* Don't re-create common regwin, if it is already created */
870 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
871 
872 	for (; i < nregwin; ++i) {
873 		/*
874 		 * Get regwin information
875 		 */
876 		error = bwi_regwin_select(sc, i);
877 		if (error) {
878 			device_printf(sc->sc_dev,
879 				      "can't select regwin %d\n", i);
880 			return error;
881 		}
882 		bwi_regwin_info(sc, &rw_type, &rw_rev);
883 
884 		/*
885 		 * Try attach:
886 		 * 1) Bus (PCI/PCIE) regwin
887 		 * 2) MAC regwin
888 		 * Ignore rest types of regwin
889 		 */
890 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
891 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
892 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
893 				device_printf(sc->sc_dev,
894 					      "bus regwin already exists\n");
895 			} else {
896 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
897 						  rw_type, rw_rev);
898 			}
899 		} else if (rw_type == BWI_REGWIN_T_MAC) {
900 			/* XXX ignore return value */
901 			bwi_mac_attach(sc, i, rw_rev);
902 		}
903 	}
904 
905 	/* At least one MAC shold exist */
906 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
907 		device_printf(sc->sc_dev, "no MAC was found\n");
908 		return ENXIO;
909 	}
910 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
911 
912 	/* Bus regwin must exist */
913 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
914 		device_printf(sc->sc_dev, "no bus regwin was found\n");
915 		return ENXIO;
916 	}
917 
918 	/* Start with first MAC */
919 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
920 	if (error)
921 		return error;
922 
923 	return 0;
924 #undef N
925 }
926 
927 int
928 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
929 {
930 	struct bwi_regwin *old, *bus;
931 	uint32_t val;
932 	int error;
933 
934 	bus = &sc->sc_bus_regwin;
935 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
936 
937 	/*
938 	 * Tell bus to generate requested interrupts
939 	 */
940 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
941 		/*
942 		 * NOTE: Read BWI_FLAGS from MAC regwin
943 		 */
944 		val = CSR_READ_4(sc, BWI_FLAGS);
945 
946 		error = bwi_regwin_switch(sc, bus, &old);
947 		if (error)
948 			return error;
949 
950 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
951 	} else {
952 		uint32_t mac_mask;
953 
954 		mac_mask = 1 << mac->mac_id;
955 
956 		error = bwi_regwin_switch(sc, bus, &old);
957 		if (error)
958 			return error;
959 
960 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
961 		val |= mac_mask << 8;
962 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
963 	}
964 
965 	if (sc->sc_flags & BWI_F_BUS_INITED)
966 		goto back;
967 
968 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
969 		/*
970 		 * Enable prefetch and burst
971 		 */
972 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
973 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
974 
975 		if (bus->rw_rev < 5) {
976 			struct bwi_regwin *com = &sc->sc_com_regwin;
977 
978 			/*
979 			 * Configure timeouts for bus operation
980 			 */
981 
982 			/*
983 			 * Set service timeout and request timeout
984 			 */
985 			CSR_SETBITS_4(sc, BWI_CONF_LO,
986 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
987 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
988 
989 			/*
990 			 * If there is common regwin, we switch to that regwin
991 			 * and switch back to bus regwin once we have done.
992 			 */
993 			if (BWI_REGWIN_EXIST(com)) {
994 				error = bwi_regwin_switch(sc, com, NULL);
995 				if (error)
996 					return error;
997 			}
998 
999 			/* Let bus know what we have changed */
1000 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
1001 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
1002 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
1003 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
1004 
1005 			if (BWI_REGWIN_EXIST(com)) {
1006 				error = bwi_regwin_switch(sc, bus, NULL);
1007 				if (error)
1008 					return error;
1009 			}
1010 		} else if (bus->rw_rev >= 11) {
1011 			/*
1012 			 * Enable memory read multiple
1013 			 */
1014 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1015 		}
1016 	} else {
1017 		/* TODO:PCIE */
1018 	}
1019 
1020 	sc->sc_flags |= BWI_F_BUS_INITED;
1021 back:
1022 	return bwi_regwin_switch(sc, old, NULL);
1023 }
1024 
1025 static void
1026 bwi_get_card_flags(struct bwi_softc *sc)
1027 {
1028 #define	PCI_VENDOR_APPLE 0x106b
1029 #define	PCI_VENDOR_DELL  0x1028
1030 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1031 	if (sc->sc_card_flags == 0xffff)
1032 		sc->sc_card_flags = 0;
1033 
1034 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1035 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1036 	    sc->sc_pci_revid == 0x74)
1037 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1038 
1039 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1040 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1041 	    sc->sc_pci_revid > 0x40)
1042 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1043 
1044 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1045 #undef PCI_VENDOR_DELL
1046 #undef PCI_VENDOR_APPLE
1047 }
1048 
1049 static void
1050 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1051 {
1052 	int i;
1053 
1054 	for (i = 0; i < 3; ++i) {
1055 		*((uint16_t *)eaddr + i) =
1056 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1057 	}
1058 }
1059 
1060 static void
1061 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1062 {
1063 	struct bwi_regwin *com;
1064 	uint32_t val;
1065 	u_int div;
1066 	int src;
1067 
1068 	bzero(freq, sizeof(*freq));
1069 	com = &sc->sc_com_regwin;
1070 
1071 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1072 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1073 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1074 
1075 	/*
1076 	 * Calculate clock frequency
1077 	 */
1078 	src = -1;
1079 	div = 0;
1080 	if (com->rw_rev < 6) {
1081 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1082 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1083 			src = BWI_CLKSRC_PCI;
1084 			div = 64;
1085 		} else {
1086 			src = BWI_CLKSRC_CS_OSC;
1087 			div = 32;
1088 		}
1089 	} else if (com->rw_rev < 10) {
1090 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1091 
1092 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1093 		if (src == BWI_CLKSRC_LP_OSC) {
1094 			div = 1;
1095 		} else {
1096 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1097 
1098 			/* Unknown source */
1099 			if (src >= BWI_CLKSRC_MAX)
1100 				src = BWI_CLKSRC_CS_OSC;
1101 		}
1102 	} else {
1103 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1104 
1105 		src = BWI_CLKSRC_CS_OSC;
1106 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1107 	}
1108 
1109 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1110 	KASSERT(div != 0, ("div zero"));
1111 
1112 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1113 		src == BWI_CLKSRC_PCI ? "PCI" :
1114 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1115 
1116 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1117 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1118 
1119 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1120 		freq->clkfreq_min, freq->clkfreq_max);
1121 }
1122 
1123 static int
1124 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1125 {
1126 	struct bwi_regwin *old, *com;
1127 	uint32_t clk_ctrl, clk_src;
1128 	int error, pwr_off = 0;
1129 
1130 	com = &sc->sc_com_regwin;
1131 	if (!BWI_REGWIN_EXIST(com))
1132 		return 0;
1133 
1134 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1135 		return 0;
1136 
1137 	/*
1138 	 * For common regwin whose rev is [6, 10), the chip
1139 	 * must be capable to change clock mode.
1140 	 */
1141 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1142 		return 0;
1143 
1144 	error = bwi_regwin_switch(sc, com, &old);
1145 	if (error)
1146 		return error;
1147 
1148 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1149 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1150 
1151 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1152 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1153 
1154 	switch (clk_mode) {
1155 	case BWI_CLOCK_MODE_FAST:
1156 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1157 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1158 		break;
1159 	case BWI_CLOCK_MODE_SLOW:
1160 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1161 		break;
1162 	case BWI_CLOCK_MODE_DYN:
1163 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1164 			      BWI_CLOCK_CTRL_IGNPLL |
1165 			      BWI_CLOCK_CTRL_NODYN);
1166 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1167 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1168 			pwr_off = 1;
1169 		}
1170 		break;
1171 	}
1172 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1173 
1174 	if (pwr_off)
1175 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1176 
1177 	return bwi_regwin_switch(sc, old, NULL);
1178 }
1179 
1180 static int
1181 bwi_set_clock_delay(struct bwi_softc *sc)
1182 {
1183 	struct bwi_regwin *old, *com;
1184 	int error;
1185 
1186 	com = &sc->sc_com_regwin;
1187 	if (!BWI_REGWIN_EXIST(com))
1188 		return 0;
1189 
1190 	error = bwi_regwin_switch(sc, com, &old);
1191 	if (error)
1192 		return error;
1193 
1194 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1195 		if (sc->sc_bbp_rev == 0)
1196 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1197 		else if (sc->sc_bbp_rev == 1)
1198 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1199 	}
1200 
1201 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1202 		if (com->rw_rev >= 10) {
1203 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1204 		} else {
1205 			struct bwi_clock_freq freq;
1206 
1207 			bwi_get_clock_freq(sc, &freq);
1208 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1209 				howmany(freq.clkfreq_max * 150, 1000000));
1210 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1211 				howmany(freq.clkfreq_max * 15, 1000000));
1212 		}
1213 	}
1214 
1215 	return bwi_regwin_switch(sc, old, NULL);
1216 }
1217 
1218 static void
1219 bwi_init(void *xsc)
1220 {
1221 	struct bwi_softc *sc = xsc;
1222 	struct ifnet *ifp = sc->sc_ifp;
1223 	struct ieee80211com *ic = ifp->if_l2com;
1224 
1225 	BWI_LOCK(sc);
1226 	bwi_init_statechg(sc, 1);
1227 	BWI_UNLOCK(sc);
1228 
1229 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1230 		ieee80211_start_all(ic);		/* start all vap's */
1231 }
1232 
1233 static void
1234 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1235 {
1236 	struct ifnet *ifp = sc->sc_ifp;
1237 	struct bwi_mac *mac;
1238 	int error;
1239 
1240 	bwi_stop_locked(sc, statechg);
1241 
1242 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1243 
1244 	/* TODO: 2 MAC */
1245 
1246 	mac = &sc->sc_mac[0];
1247 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1248 	if (error) {
1249 		if_printf(ifp, "%s: error %d on regwin switch\n",
1250 		    __func__, error);
1251 		goto bad;
1252 	}
1253 	error = bwi_mac_init(mac);
1254 	if (error) {
1255 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1256 		goto bad;
1257 	}
1258 
1259 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1260 
1261 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1262 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1263 
1264 	bwi_mac_reset_hwkeys(mac);
1265 
1266 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1267 		int i;
1268 
1269 #define NRETRY	1000
1270 		/*
1271 		 * Drain any possible pending TX status
1272 		 */
1273 		for (i = 0; i < NRETRY; ++i) {
1274 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1275 			     BWI_TXSTATUS0_VALID) == 0)
1276 				break;
1277 			CSR_READ_4(sc, BWI_TXSTATUS1);
1278 		}
1279 		if (i == NRETRY)
1280 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1281 #undef NRETRY
1282 	}
1283 
1284 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1285 		bwi_mac_updateslot(mac, 1);
1286 
1287 	/* Start MAC */
1288 	error = bwi_mac_start(mac);
1289 	if (error) {
1290 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1291 		goto bad;
1292 	}
1293 
1294 	/* Clear stop flag before enabling interrupt */
1295 	sc->sc_flags &= ~BWI_F_STOP;
1296 
1297 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1298 
1299 	/* Enable intrs */
1300 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1301 	return;
1302 bad:
1303 	bwi_stop_locked(sc, 1);
1304 }
1305 
1306 static int
1307 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1308 {
1309 #define	IS_RUNNING(ifp) \
1310 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1311 	struct bwi_softc *sc = ifp->if_softc;
1312 	struct ieee80211com *ic = ifp->if_l2com;
1313 	struct ifreq *ifr = (struct ifreq *) data;
1314 	int error = 0, startall = 0;
1315 
1316 	switch (cmd) {
1317 	case SIOCSIFFLAGS:
1318 		BWI_LOCK(sc);
1319 		if (IS_RUNNING(ifp)) {
1320 			struct bwi_mac *mac;
1321 			int promisc = -1;
1322 
1323 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1324 			    ("current regwin type %d",
1325 			    sc->sc_cur_regwin->rw_type));
1326 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1327 
1328 			if ((ifp->if_flags & IFF_PROMISC) &&
1329 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1330 				promisc = 1;
1331 				sc->sc_flags |= BWI_F_PROMISC;
1332 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1333 				   (sc->sc_flags & BWI_F_PROMISC)) {
1334 				promisc = 0;
1335 				sc->sc_flags &= ~BWI_F_PROMISC;
1336 			}
1337 
1338 			if (promisc >= 0)
1339 				bwi_mac_set_promisc(mac, promisc);
1340 		}
1341 
1342 		if (ifp->if_flags & IFF_UP) {
1343 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1344 				bwi_init_statechg(sc, 1);
1345 				startall = 1;
1346 			}
1347 		} else {
1348 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1349 				bwi_stop_locked(sc, 1);
1350 		}
1351 		BWI_UNLOCK(sc);
1352 		if (startall)
1353 			ieee80211_start_all(ic);
1354 		break;
1355 	case SIOCGIFMEDIA:
1356 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1357 		break;
1358 	case SIOCGIFADDR:
1359 		error = ether_ioctl(ifp, cmd, data);
1360 		break;
1361 	default:
1362 		error = EINVAL;
1363 		break;
1364 	}
1365 	return error;
1366 #undef IS_RUNNING
1367 }
1368 
1369 static void
1370 bwi_start(struct ifnet *ifp)
1371 {
1372 	struct bwi_softc *sc = ifp->if_softc;
1373 
1374 	BWI_LOCK(sc);
1375 	bwi_start_locked(ifp);
1376 	BWI_UNLOCK(sc);
1377 }
1378 
1379 static void
1380 bwi_start_locked(struct ifnet *ifp)
1381 {
1382 	struct bwi_softc *sc = ifp->if_softc;
1383 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1384 	struct ieee80211_frame *wh;
1385 	struct ieee80211_node *ni;
1386 	struct ieee80211_key *k;
1387 	struct mbuf *m;
1388 	int trans, idx;
1389 
1390 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1391 		return;
1392 
1393 	trans = 0;
1394 	idx = tbd->tbd_idx;
1395 
1396 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1397 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1398 		if (m == NULL)
1399 			break;
1400 
1401 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1402 		wh = mtod(m, struct ieee80211_frame *);
1403 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1404 			k = ieee80211_crypto_encap(ni, m);
1405 			if (k == NULL) {
1406 				ieee80211_free_node(ni);
1407 				m_freem(m);
1408 				ifp->if_oerrors++;
1409 				continue;
1410 			}
1411 		}
1412 		wh = NULL;	/* Catch any invalid use */
1413 
1414 		if (bwi_encap(sc, idx, m, ni) != 0) {
1415 			/* 'm' is freed in bwi_encap() if we reach here */
1416 			if (ni != NULL)
1417 				ieee80211_free_node(ni);
1418 			ifp->if_oerrors++;
1419 			continue;
1420 		}
1421 
1422 		trans = 1;
1423 		tbd->tbd_used++;
1424 		idx = (idx + 1) % BWI_TX_NDESC;
1425 
1426 		ifp->if_opackets++;
1427 
1428 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1429 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1430 			break;
1431 		}
1432 	}
1433 	tbd->tbd_idx = idx;
1434 
1435 	if (trans)
1436 		ifp->if_timer = 5;
1437 }
1438 
1439 static int
1440 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1441 	const struct ieee80211_bpf_params *params)
1442 {
1443 	struct ieee80211com *ic = ni->ni_ic;
1444 	struct ifnet *ifp = ic->ic_ifp;
1445 	struct bwi_softc *sc = ifp->if_softc;
1446 	/* XXX wme? */
1447 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1448 	int idx, error;
1449 
1450 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1451 		ieee80211_free_node(ni);
1452 		m_freem(m);
1453 		return ENETDOWN;
1454 	}
1455 
1456 	BWI_LOCK(sc);
1457 	idx = tbd->tbd_idx;
1458 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1459 	if (params == NULL) {
1460 		/*
1461 		 * Legacy path; interpret frame contents to decide
1462 		 * precisely how to send the frame.
1463 		 */
1464 		error = bwi_encap(sc, idx, m, ni);
1465 	} else {
1466 		/*
1467 		 * Caller supplied explicit parameters to use in
1468 		 * sending the frame.
1469 		 */
1470 		error = bwi_encap_raw(sc, idx, m, ni, params);
1471 	}
1472 	if (error == 0) {
1473 		ifp->if_opackets++;
1474 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1475 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1476 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1477 		ifp->if_timer = 5;
1478 	} else {
1479 		/* NB: m is reclaimed on encap failure */
1480 		ieee80211_free_node(ni);
1481 		ifp->if_oerrors++;
1482 	}
1483 	BWI_UNLOCK(sc);
1484 	return error;
1485 }
1486 
1487 static void
1488 bwi_watchdog(struct ifnet *ifp)
1489 {
1490 	struct bwi_softc *sc = ifp->if_softc;
1491 
1492 	BWI_LOCK(sc);
1493 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1494 		if_printf(ifp, "watchdog timeout\n");
1495 		ifp->if_oerrors++;
1496 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1497 	}
1498 	BWI_UNLOCK(sc);
1499 }
1500 
1501 static void
1502 bwi_stop(struct bwi_softc *sc, int statechg)
1503 {
1504 	BWI_LOCK(sc);
1505 	bwi_stop_locked(sc, statechg);
1506 	BWI_UNLOCK(sc);
1507 }
1508 
1509 static void
1510 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1511 {
1512 	struct ifnet *ifp = sc->sc_ifp;
1513 	struct bwi_mac *mac;
1514 	int i, error, pwr_off = 0;
1515 
1516 	BWI_ASSERT_LOCKED(sc);
1517 
1518 	callout_stop(&sc->sc_calib_ch);
1519 	callout_stop(&sc->sc_led_blink_ch);
1520 	sc->sc_led_blinking = 0;
1521 	sc->sc_flags |= BWI_F_STOP;
1522 
1523 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1524 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1525 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1526 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1527 
1528 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1529 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1530 		bwi_mac_stop(mac);
1531 	}
1532 
1533 	for (i = 0; i < sc->sc_nmac; ++i) {
1534 		struct bwi_regwin *old_rw;
1535 
1536 		mac = &sc->sc_mac[i];
1537 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1538 			continue;
1539 
1540 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1541 		if (error)
1542 			continue;
1543 
1544 		bwi_mac_shutdown(mac);
1545 		pwr_off = 1;
1546 
1547 		bwi_regwin_switch(sc, old_rw, NULL);
1548 	}
1549 
1550 	if (pwr_off)
1551 		bwi_bbp_power_off(sc);
1552 
1553 	sc->sc_tx_timer = 0;
1554 	ifp->if_timer = 0;
1555 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1556 }
1557 
1558 void
1559 bwi_intr(void *xsc)
1560 {
1561 	struct bwi_softc *sc = xsc;
1562 	struct ifnet *ifp = sc->sc_ifp;
1563 	struct bwi_mac *mac;
1564 	uint32_t intr_status;
1565 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1566 	int i, txrx_error, tx = 0, rx_data = -1;
1567 
1568 	BWI_LOCK(sc);
1569 
1570 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1571 	    (sc->sc_flags & BWI_F_STOP)) {
1572 		BWI_UNLOCK(sc);
1573 		return;
1574 	}
1575 	/*
1576 	 * Get interrupt status
1577 	 */
1578 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1579 	if (intr_status == 0xffffffff) {	/* Not for us */
1580 		BWI_UNLOCK(sc);
1581 		return;
1582 	}
1583 
1584 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1585 
1586 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1587 	if (intr_status == 0) {		/* Nothing is interesting */
1588 		BWI_UNLOCK(sc);
1589 		return;
1590 	}
1591 
1592 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1593 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1594 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1595 
1596 	txrx_error = 0;
1597 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1598 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1599 		uint32_t mask;
1600 
1601 		if (BWI_TXRX_IS_RX(i))
1602 			mask = BWI_TXRX_RX_INTRS;
1603 		else
1604 			mask = BWI_TXRX_TX_INTRS;
1605 
1606 		txrx_intr_status[i] =
1607 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1608 
1609 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1610 			 i, txrx_intr_status[i]);
1611 
1612 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1613 			if_printf(ifp,
1614 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1615 			    __func__, i, txrx_intr_status[i]);
1616 			txrx_error = 1;
1617 		}
1618 	}
1619 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1620 
1621 	/*
1622 	 * Acknowledge interrupt
1623 	 */
1624 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1625 
1626 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1627 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1628 
1629 	/* Disable all interrupts */
1630 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1631 
1632 	/*
1633 	 * http://bcm-specs.sipsolutions.net/Interrupts
1634 	 * Says for this bit (0x800):
1635 	 * "Fatal Error
1636 	 *
1637 	 * We got this one while testing things when by accident the
1638 	 * template ram wasn't set to big endian when it should have
1639 	 * been after writing the initial values. It keeps on being
1640 	 * triggered, the only way to stop it seems to shut down the
1641 	 * chip."
1642 	 *
1643 	 * Suggesting that we should never get it and if we do we're not
1644 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1645 	 * it is valid only on mac version 5 and higher, but I couldn't
1646 	 * find a reference for that...  Since I see them from time to time
1647 	 * on my card, this suggests an error in the tx path still...
1648 	 */
1649 	if (intr_status & BWI_INTR_PHY_TXERR) {
1650 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1651 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1652 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1653 			BWI_UNLOCK(sc);
1654 			return;
1655 		}
1656 	}
1657 
1658 	if (txrx_error) {
1659 		/* TODO: reset device */
1660 	}
1661 
1662 	if (intr_status & BWI_INTR_TBTT)
1663 		bwi_mac_config_ps(mac);
1664 
1665 	if (intr_status & BWI_INTR_EO_ATIM)
1666 		if_printf(ifp, "EO_ATIM\n");
1667 
1668 	if (intr_status & BWI_INTR_PMQ) {
1669 		for (;;) {
1670 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1671 				break;
1672 		}
1673 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1674 	}
1675 
1676 	if (intr_status & BWI_INTR_NOISE)
1677 		if_printf(ifp, "intr noise\n");
1678 
1679 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1680 		rx_data = sc->sc_rxeof(sc);
1681 		if (sc->sc_flags & BWI_F_STOP) {
1682 			BWI_UNLOCK(sc);
1683 			return;
1684 		}
1685 	}
1686 
1687 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1688 		sc->sc_txeof_status(sc);
1689 		tx = 1;
1690 	}
1691 
1692 	if (intr_status & BWI_INTR_TX_DONE) {
1693 		bwi_txeof(sc);
1694 		tx = 1;
1695 	}
1696 
1697 	/* Re-enable interrupts */
1698 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1699 
1700 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1701 		int evt = BWI_LED_EVENT_NONE;
1702 
1703 		if (tx && rx_data > 0) {
1704 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1705 				evt = BWI_LED_EVENT_RX;
1706 			else
1707 				evt = BWI_LED_EVENT_TX;
1708 		} else if (tx) {
1709 			evt = BWI_LED_EVENT_TX;
1710 		} else if (rx_data > 0) {
1711 			evt = BWI_LED_EVENT_RX;
1712 		} else if (rx_data == 0) {
1713 			evt = BWI_LED_EVENT_POLL;
1714 		}
1715 
1716 		if (evt != BWI_LED_EVENT_NONE)
1717 			bwi_led_event(sc, evt);
1718 	}
1719 
1720 	BWI_UNLOCK(sc);
1721 }
1722 
1723 static void
1724 bwi_scan_start(struct ieee80211com *ic)
1725 {
1726 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1727 
1728 	BWI_LOCK(sc);
1729 	/* Enable MAC beacon promiscuity */
1730 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1731 	BWI_UNLOCK(sc);
1732 }
1733 
1734 static void
1735 bwi_set_channel(struct ieee80211com *ic)
1736 {
1737 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1738 	struct ieee80211_channel *c = ic->ic_curchan;
1739 	struct bwi_mac *mac;
1740 
1741 	BWI_LOCK(sc);
1742 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1743 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1744 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1745 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1746 
1747 	sc->sc_rates = ieee80211_get_ratetable(c);
1748 
1749 	/*
1750 	 * Setup radio tap channel freq and flags
1751 	 */
1752 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1753 		htole16(c->ic_freq);
1754 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1755 		htole16(c->ic_flags & 0xffff);
1756 
1757 	BWI_UNLOCK(sc);
1758 }
1759 
1760 static void
1761 bwi_scan_end(struct ieee80211com *ic)
1762 {
1763 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1764 
1765 	BWI_LOCK(sc);
1766 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1767 	BWI_UNLOCK(sc);
1768 }
1769 
1770 static int
1771 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1772 {
1773 	struct bwi_vap *bvp = BWI_VAP(vap);
1774 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1775 	struct bwi_softc *sc = ifp->if_softc;
1776 	struct bwi_mac *mac;
1777 	struct ieee80211_node *ni;
1778 	int error;
1779 
1780 	BWI_LOCK(sc);
1781 
1782 	callout_stop(&sc->sc_calib_ch);
1783 
1784 	if (nstate == IEEE80211_S_INIT)
1785 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1786 
1787 	bwi_led_newstate(sc, nstate);
1788 
1789 	error = bvp->bv_newstate(vap, nstate, arg);
1790 	if (error != 0)
1791 		goto back;
1792 
1793 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1794 		/* Nothing to do */
1795 	} else if (nstate == IEEE80211_S_RUN) {
1796 		ni = vap->iv_bss;
1797 
1798 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1799 
1800 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1801 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1802 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1803 
1804 		/* Initial TX power calibration */
1805 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1806 #ifdef notyet
1807 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1808 #else
1809 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1810 #endif
1811 		if (vap->iv_opmode == IEEE80211_M_STA) {
1812 			/* fake a join to init the tx rate */
1813 			bwi_newassoc(ni, 1);
1814 		}
1815 
1816 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1817 	} else {
1818 		bwi_set_bssid(sc, bwi_zero_addr);
1819 	}
1820 back:
1821 	BWI_UNLOCK(sc);
1822 
1823 	return error;
1824 }
1825 
1826 /* ARGUSED */
1827 static struct ieee80211_node *
1828 bwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1829 {
1830 	struct bwi_node *bn;
1831 
1832 	bn = malloc(sizeof(struct bwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1833 	return bn != NULL ? &bn->ni : NULL;
1834 }
1835 
1836 static void
1837 bwi_newassoc(struct ieee80211_node *ni, int isnew)
1838 {
1839 	struct ieee80211vap *vap = ni->ni_vap;
1840 
1841 	ieee80211_amrr_node_init(&BWI_VAP(vap)->bv_amrr,
1842 	    &BWI_NODE(ni)->amn, ni);
1843 }
1844 
1845 static int
1846 bwi_media_change(struct ifnet *ifp)
1847 {
1848 	int error = ieee80211_media_change(ifp);
1849 	/* NB: only the fixed rate can change and that doesn't need a reset */
1850 	return (error == ENETRESET ? 0 : error);
1851 }
1852 
1853 static int
1854 bwi_dma_alloc(struct bwi_softc *sc)
1855 {
1856 	int error, i, has_txstats;
1857 	bus_addr_t lowaddr = 0;
1858 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1859 	uint32_t txrx_ctrl_step = 0;
1860 
1861 	has_txstats = 0;
1862 	for (i = 0; i < sc->sc_nmac; ++i) {
1863 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1864 			has_txstats = 1;
1865 			break;
1866 		}
1867 	}
1868 
1869 	switch (sc->sc_bus_space) {
1870 	case BWI_BUS_SPACE_30BIT:
1871 	case BWI_BUS_SPACE_32BIT:
1872 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1873 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1874 		else
1875 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1876 		desc_sz = sizeof(struct bwi_desc32);
1877 		txrx_ctrl_step = 0x20;
1878 
1879 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1880 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1881 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1882 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1883 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1884 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1885 		sc->sc_rxeof = bwi_rxeof32;
1886 		sc->sc_start_tx = bwi_start_tx32;
1887 		if (has_txstats) {
1888 			sc->sc_init_txstats = bwi_init_txstats32;
1889 			sc->sc_free_txstats = bwi_free_txstats32;
1890 			sc->sc_txeof_status = bwi_txeof_status32;
1891 		}
1892 		break;
1893 
1894 	case BWI_BUS_SPACE_64BIT:
1895 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1896 		desc_sz = sizeof(struct bwi_desc64);
1897 		txrx_ctrl_step = 0x40;
1898 
1899 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1900 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1901 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1902 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1903 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1904 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1905 		sc->sc_rxeof = bwi_rxeof64;
1906 		sc->sc_start_tx = bwi_start_tx64;
1907 		if (has_txstats) {
1908 			sc->sc_init_txstats = bwi_init_txstats64;
1909 			sc->sc_free_txstats = bwi_free_txstats64;
1910 			sc->sc_txeof_status = bwi_txeof_status64;
1911 		}
1912 		break;
1913 	}
1914 
1915 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1916 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1917 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1918 
1919 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1920 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1921 
1922 	/*
1923 	 * Create top level DMA tag
1924 	 */
1925 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1926 			       BWI_ALIGN, 0,		/* alignment, bounds */
1927 			       lowaddr,			/* lowaddr */
1928 			       BUS_SPACE_MAXADDR,	/* highaddr */
1929 			       NULL, NULL,		/* filter, filterarg */
1930 			       MAXBSIZE,		/* maxsize */
1931 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1932 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1933 			       BUS_DMA_ALLOCNOW,	/* flags */
1934 			       NULL, NULL,		/* lockfunc, lockarg */
1935 			       &sc->sc_parent_dtag);
1936 	if (error) {
1937 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1938 		return error;
1939 	}
1940 
1941 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1942 
1943 	/*
1944 	 * Create TX ring DMA stuffs
1945 	 */
1946 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1947 				BWI_RING_ALIGN, 0,
1948 				BUS_SPACE_MAXADDR,
1949 				BUS_SPACE_MAXADDR,
1950 				NULL, NULL,
1951 				tx_ring_sz,
1952 				1,
1953 				BUS_SPACE_MAXSIZE_32BIT,
1954 				BUS_DMA_ALLOCNOW,
1955 				NULL, NULL,
1956 				&sc->sc_txring_dtag);
1957 	if (error) {
1958 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1959 		return error;
1960 	}
1961 
1962 	for (i = 0; i < BWI_TX_NRING; ++i) {
1963 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1964 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1965 					   TXRX_CTRL(i));
1966 		if (error) {
1967 			device_printf(sc->sc_dev, "%dth TX ring "
1968 				      "DMA alloc failed\n", i);
1969 			return error;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * Create RX ring DMA stuffs
1975 	 */
1976 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1977 				BWI_RING_ALIGN, 0,
1978 				BUS_SPACE_MAXADDR,
1979 				BUS_SPACE_MAXADDR,
1980 				NULL, NULL,
1981 				rx_ring_sz,
1982 				1,
1983 				BUS_SPACE_MAXSIZE_32BIT,
1984 				BUS_DMA_ALLOCNOW,
1985 				NULL, NULL,
1986 				&sc->sc_rxring_dtag);
1987 	if (error) {
1988 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1989 		return error;
1990 	}
1991 
1992 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1993 				   rx_ring_sz, TXRX_CTRL(0));
1994 	if (error) {
1995 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1996 		return error;
1997 	}
1998 
1999 	if (has_txstats) {
2000 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
2001 		if (error) {
2002 			device_printf(sc->sc_dev,
2003 				      "TX stats DMA alloc failed\n");
2004 			return error;
2005 		}
2006 	}
2007 
2008 #undef TXRX_CTRL
2009 
2010 	return bwi_dma_mbuf_create(sc);
2011 }
2012 
2013 static void
2014 bwi_dma_free(struct bwi_softc *sc)
2015 {
2016 	if (sc->sc_txring_dtag != NULL) {
2017 		int i;
2018 
2019 		for (i = 0; i < BWI_TX_NRING; ++i) {
2020 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2021 
2022 			if (rd->rdata_desc != NULL) {
2023 				bus_dmamap_unload(sc->sc_txring_dtag,
2024 						  rd->rdata_dmap);
2025 				bus_dmamem_free(sc->sc_txring_dtag,
2026 						rd->rdata_desc,
2027 						rd->rdata_dmap);
2028 			}
2029 		}
2030 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2031 	}
2032 
2033 	if (sc->sc_rxring_dtag != NULL) {
2034 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2035 
2036 		if (rd->rdata_desc != NULL) {
2037 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2038 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2039 					rd->rdata_dmap);
2040 		}
2041 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2042 	}
2043 
2044 	bwi_dma_txstats_free(sc);
2045 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2046 
2047 	if (sc->sc_parent_dtag != NULL)
2048 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2049 }
2050 
2051 static int
2052 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2053 		   struct bwi_ring_data *rd, bus_size_t size,
2054 		   uint32_t txrx_ctrl)
2055 {
2056 	int error;
2057 
2058 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2059 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2060 				 &rd->rdata_dmap);
2061 	if (error) {
2062 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2063 		return error;
2064 	}
2065 
2066 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2067 				bwi_dma_ring_addr, &rd->rdata_paddr,
2068 				BUS_DMA_NOWAIT);
2069 	if (error) {
2070 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2071 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2072 		rd->rdata_desc = NULL;
2073 		return error;
2074 	}
2075 
2076 	rd->rdata_txrx_ctrl = txrx_ctrl;
2077 	return 0;
2078 }
2079 
2080 static int
2081 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2082 		      bus_size_t desc_sz)
2083 {
2084 	struct bwi_txstats_data *st;
2085 	bus_size_t dma_size;
2086 	int error;
2087 
2088 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2089 	if (st == NULL) {
2090 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2091 		return ENOMEM;
2092 	}
2093 	sc->sc_txstats = st;
2094 
2095 	/*
2096 	 * Create TX stats descriptor DMA stuffs
2097 	 */
2098 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2099 
2100 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2101 				BWI_RING_ALIGN,
2102 				0,
2103 				BUS_SPACE_MAXADDR,
2104 				BUS_SPACE_MAXADDR,
2105 				NULL, NULL,
2106 				dma_size,
2107 				1,
2108 				BUS_SPACE_MAXSIZE_32BIT,
2109 				BUS_DMA_ALLOCNOW,
2110 				NULL, NULL,
2111 				&st->stats_ring_dtag);
2112 	if (error) {
2113 		device_printf(sc->sc_dev, "can't create txstats ring "
2114 			      "DMA tag\n");
2115 		return error;
2116 	}
2117 
2118 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2119 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2120 				 &st->stats_ring_dmap);
2121 	if (error) {
2122 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2123 			      "DMA mem\n");
2124 		bus_dma_tag_destroy(st->stats_ring_dtag);
2125 		st->stats_ring_dtag = NULL;
2126 		return error;
2127 	}
2128 
2129 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2130 				st->stats_ring, dma_size,
2131 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2132 				BUS_DMA_NOWAIT);
2133 	if (error) {
2134 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2135 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2136 				st->stats_ring_dmap);
2137 		bus_dma_tag_destroy(st->stats_ring_dtag);
2138 		st->stats_ring_dtag = NULL;
2139 		return error;
2140 	}
2141 
2142 	/*
2143 	 * Create TX stats DMA stuffs
2144 	 */
2145 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2146 			   BWI_ALIGN);
2147 
2148 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2149 				BWI_ALIGN,
2150 				0,
2151 				BUS_SPACE_MAXADDR,
2152 				BUS_SPACE_MAXADDR,
2153 				NULL, NULL,
2154 				dma_size,
2155 				1,
2156 				BUS_SPACE_MAXSIZE_32BIT,
2157 				BUS_DMA_ALLOCNOW,
2158 				NULL, NULL,
2159 				&st->stats_dtag);
2160 	if (error) {
2161 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2162 		return error;
2163 	}
2164 
2165 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2166 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2167 				 &st->stats_dmap);
2168 	if (error) {
2169 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2170 		bus_dma_tag_destroy(st->stats_dtag);
2171 		st->stats_dtag = NULL;
2172 		return error;
2173 	}
2174 
2175 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2176 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2177 				BUS_DMA_NOWAIT);
2178 	if (error) {
2179 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2180 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2181 		bus_dma_tag_destroy(st->stats_dtag);
2182 		st->stats_dtag = NULL;
2183 		return error;
2184 	}
2185 
2186 	st->stats_ctrl_base = ctrl_base;
2187 	return 0;
2188 }
2189 
2190 static void
2191 bwi_dma_txstats_free(struct bwi_softc *sc)
2192 {
2193 	struct bwi_txstats_data *st;
2194 
2195 	if (sc->sc_txstats == NULL)
2196 		return;
2197 	st = sc->sc_txstats;
2198 
2199 	if (st->stats_ring_dtag != NULL) {
2200 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2201 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2202 				st->stats_ring_dmap);
2203 		bus_dma_tag_destroy(st->stats_ring_dtag);
2204 	}
2205 
2206 	if (st->stats_dtag != NULL) {
2207 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2208 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2209 		bus_dma_tag_destroy(st->stats_dtag);
2210 	}
2211 
2212 	free(st, M_DEVBUF);
2213 }
2214 
2215 static void
2216 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2217 {
2218 	KASSERT(nseg == 1, ("too many segments\n"));
2219 	*((bus_addr_t *)arg) = seg->ds_addr;
2220 }
2221 
2222 static int
2223 bwi_dma_mbuf_create(struct bwi_softc *sc)
2224 {
2225 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2226 	int i, j, k, ntx, error;
2227 
2228 	/*
2229 	 * Create TX/RX mbuf DMA tag
2230 	 */
2231 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2232 				1,
2233 				0,
2234 				BUS_SPACE_MAXADDR,
2235 				BUS_SPACE_MAXADDR,
2236 				NULL, NULL,
2237 				MCLBYTES,
2238 				1,
2239 				BUS_SPACE_MAXSIZE_32BIT,
2240 				BUS_DMA_ALLOCNOW,
2241 				NULL, NULL,
2242 				&sc->sc_buf_dtag);
2243 	if (error) {
2244 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2245 		return error;
2246 	}
2247 
2248 	ntx = 0;
2249 
2250 	/*
2251 	 * Create TX mbuf DMA map
2252 	 */
2253 	for (i = 0; i < BWI_TX_NRING; ++i) {
2254 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2255 
2256 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2257 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2258 						  &tbd->tbd_buf[j].tb_dmap);
2259 			if (error) {
2260 				device_printf(sc->sc_dev, "can't create "
2261 					      "%dth tbd, %dth DMA map\n", i, j);
2262 
2263 				ntx = i;
2264 				for (k = 0; k < j; ++k) {
2265 					bus_dmamap_destroy(sc->sc_buf_dtag,
2266 						tbd->tbd_buf[k].tb_dmap);
2267 				}
2268 				goto fail;
2269 			}
2270 		}
2271 	}
2272 	ntx = BWI_TX_NRING;
2273 
2274 	/*
2275 	 * Create RX mbuf DMA map and a spare DMA map
2276 	 */
2277 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2278 				  &rbd->rbd_tmp_dmap);
2279 	if (error) {
2280 		device_printf(sc->sc_dev,
2281 			      "can't create spare RX buf DMA map\n");
2282 		goto fail;
2283 	}
2284 
2285 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2286 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2287 					  &rbd->rbd_buf[j].rb_dmap);
2288 		if (error) {
2289 			device_printf(sc->sc_dev, "can't create %dth "
2290 				      "RX buf DMA map\n", j);
2291 
2292 			for (k = 0; k < j; ++k) {
2293 				bus_dmamap_destroy(sc->sc_buf_dtag,
2294 					rbd->rbd_buf[j].rb_dmap);
2295 			}
2296 			bus_dmamap_destroy(sc->sc_buf_dtag,
2297 					   rbd->rbd_tmp_dmap);
2298 			goto fail;
2299 		}
2300 	}
2301 
2302 	return 0;
2303 fail:
2304 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2305 	return error;
2306 }
2307 
2308 static void
2309 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2310 {
2311 	int i, j;
2312 
2313 	if (sc->sc_buf_dtag == NULL)
2314 		return;
2315 
2316 	for (i = 0; i < ntx; ++i) {
2317 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2318 
2319 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2320 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2321 
2322 			if (tb->tb_mbuf != NULL) {
2323 				bus_dmamap_unload(sc->sc_buf_dtag,
2324 						  tb->tb_dmap);
2325 				m_freem(tb->tb_mbuf);
2326 			}
2327 			if (tb->tb_ni != NULL)
2328 				ieee80211_free_node(tb->tb_ni);
2329 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2330 		}
2331 	}
2332 
2333 	if (nrx) {
2334 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2335 
2336 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2337 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2338 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2339 
2340 			if (rb->rb_mbuf != NULL) {
2341 				bus_dmamap_unload(sc->sc_buf_dtag,
2342 						  rb->rb_dmap);
2343 				m_freem(rb->rb_mbuf);
2344 			}
2345 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2346 		}
2347 	}
2348 
2349 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2350 	sc->sc_buf_dtag = NULL;
2351 }
2352 
2353 static void
2354 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2355 {
2356 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2357 }
2358 
2359 static void
2360 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2361 {
2362 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2363 }
2364 
2365 static int
2366 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2367 {
2368 	struct bwi_ring_data *rd;
2369 	struct bwi_txbuf_data *tbd;
2370 	uint32_t val, addr_hi, addr_lo;
2371 
2372 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2373 	rd = &sc->sc_tx_rdata[ring_idx];
2374 	tbd = &sc->sc_tx_bdata[ring_idx];
2375 
2376 	tbd->tbd_idx = 0;
2377 	tbd->tbd_used = 0;
2378 
2379 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2380 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2381 			BUS_DMASYNC_PREWRITE);
2382 
2383 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2384 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2385 
2386 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2387 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2388 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2389 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2390 
2391 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2392 	      BWI_TXRX32_CTRL_ENABLE;
2393 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2394 
2395 	return 0;
2396 }
2397 
2398 static void
2399 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2400 		       bus_addr_t paddr, int hdr_size, int ndesc)
2401 {
2402 	uint32_t val, addr_hi, addr_lo;
2403 
2404 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2405 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2406 
2407 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2408 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2409 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2410 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2411 
2412 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2413 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2414 	      BWI_TXRX32_CTRL_ENABLE;
2415 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2416 
2417 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2418 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2419 }
2420 
2421 static int
2422 bwi_init_rx_ring32(struct bwi_softc *sc)
2423 {
2424 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2425 	int i, error;
2426 
2427 	sc->sc_rx_bdata.rbd_idx = 0;
2428 
2429 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2430 		error = bwi_newbuf(sc, i, 1);
2431 		if (error) {
2432 			device_printf(sc->sc_dev,
2433 				  "can't allocate %dth RX buffer\n", i);
2434 			return error;
2435 		}
2436 	}
2437 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2438 			BUS_DMASYNC_PREWRITE);
2439 
2440 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2441 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2442 	return 0;
2443 }
2444 
2445 static int
2446 bwi_init_txstats32(struct bwi_softc *sc)
2447 {
2448 	struct bwi_txstats_data *st = sc->sc_txstats;
2449 	bus_addr_t stats_paddr;
2450 	int i;
2451 
2452 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2453 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2454 
2455 	st->stats_idx = 0;
2456 
2457 	stats_paddr = st->stats_paddr;
2458 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2459 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2460 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2461 		stats_paddr += sizeof(struct bwi_txstats);
2462 	}
2463 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2464 			BUS_DMASYNC_PREWRITE);
2465 
2466 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2467 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2468 	return 0;
2469 }
2470 
2471 static void
2472 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2473 		    int buf_len)
2474 {
2475 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2476 
2477 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2478 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2479 			 paddr, buf_len, 0);
2480 }
2481 
2482 static void
2483 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2484 		    int buf_idx, bus_addr_t paddr, int buf_len)
2485 {
2486 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2487 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2488 			 paddr, buf_len, 1);
2489 }
2490 
2491 static int
2492 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2493 {
2494 	/* TODO:64 */
2495 	return EOPNOTSUPP;
2496 }
2497 
2498 static int
2499 bwi_init_rx_ring64(struct bwi_softc *sc)
2500 {
2501 	/* TODO:64 */
2502 	return EOPNOTSUPP;
2503 }
2504 
2505 static int
2506 bwi_init_txstats64(struct bwi_softc *sc)
2507 {
2508 	/* TODO:64 */
2509 	return EOPNOTSUPP;
2510 }
2511 
2512 static void
2513 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2514 		    int buf_len)
2515 {
2516 	/* TODO:64 */
2517 }
2518 
2519 static void
2520 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2521 		    int buf_idx, bus_addr_t paddr, int buf_len)
2522 {
2523 	/* TODO:64 */
2524 }
2525 
2526 static void
2527 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2528 		 bus_size_t mapsz __unused, int error)
2529 {
2530         if (!error) {
2531 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2532 		*((bus_addr_t *)arg) = seg->ds_addr;
2533 	}
2534 }
2535 
2536 static int
2537 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2538 {
2539 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2540 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2541 	struct bwi_rxbuf_hdr *hdr;
2542 	bus_dmamap_t map;
2543 	bus_addr_t paddr;
2544 	struct mbuf *m;
2545 	int error;
2546 
2547 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2548 
2549 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2550 	if (m == NULL) {
2551 		error = ENOBUFS;
2552 
2553 		/*
2554 		 * If the NIC is up and running, we need to:
2555 		 * - Clear RX buffer's header.
2556 		 * - Restore RX descriptor settings.
2557 		 */
2558 		if (init)
2559 			return error;
2560 		else
2561 			goto back;
2562 	}
2563 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2564 
2565 	/*
2566 	 * Try to load RX buf into temporary DMA map
2567 	 */
2568 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2569 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2570 	if (error) {
2571 		m_freem(m);
2572 
2573 		/*
2574 		 * See the comment above
2575 		 */
2576 		if (init)
2577 			return error;
2578 		else
2579 			goto back;
2580 	}
2581 
2582 	if (!init)
2583 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2584 	rxbuf->rb_mbuf = m;
2585 	rxbuf->rb_paddr = paddr;
2586 
2587 	/*
2588 	 * Swap RX buf's DMA map with the loaded temporary one
2589 	 */
2590 	map = rxbuf->rb_dmap;
2591 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2592 	rbd->rbd_tmp_dmap = map;
2593 
2594 back:
2595 	/*
2596 	 * Clear RX buf header
2597 	 */
2598 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2599 	bzero(hdr, sizeof(*hdr));
2600 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2601 
2602 	/*
2603 	 * Setup RX buf descriptor
2604 	 */
2605 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2606 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2607 	return error;
2608 }
2609 
2610 static void
2611 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2612 		    const uint8_t *addr)
2613 {
2614 	int i;
2615 
2616 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2617 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2618 
2619 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2620 		uint16_t addr_val;
2621 
2622 		addr_val = (uint16_t)addr[i * 2] |
2623 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2624 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2625 	}
2626 }
2627 
2628 static int
2629 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2630 {
2631 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2632 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2633 	struct ifnet *ifp = sc->sc_ifp;
2634 	struct ieee80211com *ic = ifp->if_l2com;
2635 	int idx, rx_data = 0;
2636 
2637 	idx = rbd->rbd_idx;
2638 	while (idx != end_idx) {
2639 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2640 		struct bwi_rxbuf_hdr *hdr;
2641 		struct ieee80211_frame_min *wh;
2642 		struct ieee80211_node *ni;
2643 		struct mbuf *m;
2644 		const void *plcp;
2645 		uint16_t flags2;
2646 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2647 
2648 		m = rb->rb_mbuf;
2649 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2650 				BUS_DMASYNC_POSTREAD);
2651 
2652 		if (bwi_newbuf(sc, idx, 0)) {
2653 			ifp->if_ierrors++;
2654 			goto next;
2655 		}
2656 
2657 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2658 		flags2 = le16toh(hdr->rxh_flags2);
2659 
2660 		hdr_extra = 0;
2661 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2662 			hdr_extra = 2;
2663 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2664 
2665 		buflen = le16toh(hdr->rxh_buflen);
2666 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2667 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2668 				  __func__, hdr_extra);
2669 			ifp->if_ierrors++;
2670 			m_freem(m);
2671 			goto next;
2672 		}
2673 
2674 		plcp = ((const uint8_t *)(hdr + 1) + hdr_extra);
2675 		rssi = bwi_calc_rssi(sc, hdr);
2676 		noise = bwi_calc_noise(sc);
2677 
2678 		m->m_pkthdr.rcvif = ifp;
2679 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2680 		m_adj(m, sizeof(*hdr) + wh_ofs);
2681 
2682 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2683 			rate = bwi_ofdm_plcp2rate(plcp);
2684 		else
2685 			rate = bwi_ds_plcp2rate(plcp);
2686 
2687 		/* RX radio tap */
2688 		if (ieee80211_radiotap_active(ic))
2689 			bwi_rx_radiotap(sc, m, hdr, plcp, rate, rssi, noise);
2690 
2691 		m_adj(m, -IEEE80211_CRC_LEN);
2692 
2693 		BWI_UNLOCK(sc);
2694 
2695 		wh = mtod(m, struct ieee80211_frame_min *);
2696 		ni = ieee80211_find_rxnode(ic, wh);
2697 		if (ni != NULL) {
2698 			type = ieee80211_input(ni, m, rssi - noise, noise);
2699 			ieee80211_free_node(ni);
2700 		} else
2701 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2702 		if (type == IEEE80211_FC0_TYPE_DATA) {
2703 			rx_data = 1;
2704 			sc->sc_rx_rate = rate;
2705 		}
2706 
2707 		BWI_LOCK(sc);
2708 next:
2709 		idx = (idx + 1) % BWI_RX_NDESC;
2710 
2711 		if (sc->sc_flags & BWI_F_STOP) {
2712 			/*
2713 			 * Take the fast lane, don't do
2714 			 * any damage to softc
2715 			 */
2716 			return -1;
2717 		}
2718 	}
2719 
2720 	rbd->rbd_idx = idx;
2721 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2722 			BUS_DMASYNC_PREWRITE);
2723 
2724 	return rx_data;
2725 }
2726 
2727 static int
2728 bwi_rxeof32(struct bwi_softc *sc)
2729 {
2730 	uint32_t val, rx_ctrl;
2731 	int end_idx, rx_data;
2732 
2733 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2734 
2735 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2736 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2737 		  sizeof(struct bwi_desc32);
2738 
2739 	rx_data = bwi_rxeof(sc, end_idx);
2740 	if (rx_data >= 0) {
2741 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2742 			    end_idx * sizeof(struct bwi_desc32));
2743 	}
2744 	return rx_data;
2745 }
2746 
2747 static int
2748 bwi_rxeof64(struct bwi_softc *sc)
2749 {
2750 	/* TODO:64 */
2751 	return 0;
2752 }
2753 
2754 static void
2755 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2756 {
2757 	int i;
2758 
2759 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2760 
2761 #define NRETRY 10
2762 
2763 	for (i = 0; i < NRETRY; ++i) {
2764 		uint32_t status;
2765 
2766 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2767 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2768 		    BWI_RX32_STATUS_STATE_DISABLED)
2769 			break;
2770 
2771 		DELAY(1000);
2772 	}
2773 	if (i == NRETRY)
2774 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2775 
2776 #undef NRETRY
2777 
2778 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2779 }
2780 
2781 static void
2782 bwi_free_txstats32(struct bwi_softc *sc)
2783 {
2784 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2785 }
2786 
2787 static void
2788 bwi_free_rx_ring32(struct bwi_softc *sc)
2789 {
2790 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2791 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2792 	int i;
2793 
2794 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2795 
2796 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2797 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2798 
2799 		if (rb->rb_mbuf != NULL) {
2800 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2801 			m_freem(rb->rb_mbuf);
2802 			rb->rb_mbuf = NULL;
2803 		}
2804 	}
2805 }
2806 
2807 static void
2808 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2809 {
2810 	struct bwi_ring_data *rd;
2811 	struct bwi_txbuf_data *tbd;
2812 	struct ifnet *ifp = sc->sc_ifp;
2813 	uint32_t state, val;
2814 	int i;
2815 
2816 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2817 	rd = &sc->sc_tx_rdata[ring_idx];
2818 	tbd = &sc->sc_tx_bdata[ring_idx];
2819 
2820 #define NRETRY 10
2821 
2822 	for (i = 0; i < NRETRY; ++i) {
2823 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2824 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2825 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2826 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2827 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2828 			break;
2829 
2830 		DELAY(1000);
2831 	}
2832 	if (i == NRETRY) {
2833 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2834 			  __func__, ring_idx);
2835 	}
2836 
2837 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2838 	for (i = 0; i < NRETRY; ++i) {
2839 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2840 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2841 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2842 			break;
2843 
2844 		DELAY(1000);
2845 	}
2846 	if (i == NRETRY)
2847 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2848 		     __func__, ring_idx);
2849 
2850 #undef NRETRY
2851 
2852 	DELAY(1000);
2853 
2854 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2855 
2856 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2857 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2858 
2859 		if (tb->tb_mbuf != NULL) {
2860 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2861 			m_freem(tb->tb_mbuf);
2862 			tb->tb_mbuf = NULL;
2863 		}
2864 		if (tb->tb_ni != NULL) {
2865 			ieee80211_free_node(tb->tb_ni);
2866 			tb->tb_ni = NULL;
2867 		}
2868 	}
2869 }
2870 
2871 static void
2872 bwi_free_txstats64(struct bwi_softc *sc)
2873 {
2874 	/* TODO:64 */
2875 }
2876 
2877 static void
2878 bwi_free_rx_ring64(struct bwi_softc *sc)
2879 {
2880 	/* TODO:64 */
2881 }
2882 
2883 static void
2884 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2885 {
2886 	/* TODO:64 */
2887 }
2888 
2889 /* XXX does not belong here */
2890 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2891 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2892 
2893 static __inline void
2894 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2895 {
2896 	uint32_t plcp;
2897 
2898 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2899 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2900 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2901 	*plcp0 = htole32(plcp);
2902 }
2903 
2904 static __inline void
2905 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2906 		   uint8_t rate)
2907 {
2908 	int len, service, pkt_bitlen;
2909 
2910 	pkt_bitlen = pkt_len * NBBY;
2911 	len = howmany(pkt_bitlen * 2, rate);
2912 
2913 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2914 	if (rate == (11 * 2)) {
2915 		int pkt_bitlen1;
2916 
2917 		/*
2918 		 * PLCP service field needs to be adjusted,
2919 		 * if TX rate is 11Mbytes/s
2920 		 */
2921 		pkt_bitlen1 = len * 11;
2922 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2923 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2924 	}
2925 
2926 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2927 	plcp->i_service = service;
2928 	plcp->i_length = htole16(len);
2929 	/* NOTE: do NOT touch i_crc */
2930 }
2931 
2932 static __inline void
2933 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2934 	void *plcp, int pkt_len, uint8_t rate)
2935 {
2936 	enum ieee80211_phytype modtype;
2937 
2938 	/*
2939 	 * Assume caller has zeroed 'plcp'
2940 	 */
2941 	modtype = ieee80211_rate2phytype(rt, rate);
2942 	if (modtype == IEEE80211_T_OFDM)
2943 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2944 	else if (modtype == IEEE80211_T_DS)
2945 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2946 	else
2947 		panic("unsupport modulation type %u\n", modtype);
2948 }
2949 
2950 static int
2951 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2952 	  struct ieee80211_node *ni)
2953 {
2954 	struct ieee80211vap *vap = ni->ni_vap;
2955 	struct ifnet *ifp = sc->sc_ifp;
2956 	struct ieee80211com *ic = ifp->if_l2com;
2957 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2958 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2959 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2960 	struct bwi_mac *mac;
2961 	struct bwi_txbuf_hdr *hdr;
2962 	struct ieee80211_frame *wh;
2963 	const struct ieee80211_txparam *tp;
2964 	uint8_t rate, rate_fb;
2965 	uint32_t mac_ctrl;
2966 	uint16_t phy_ctrl;
2967 	bus_addr_t paddr;
2968 	int type, ismcast, pkt_len, error, rix;
2969 #if 0
2970 	const uint8_t *p;
2971 	int i;
2972 #endif
2973 
2974 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2975 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2976 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2977 
2978 	wh = mtod(m, struct ieee80211_frame *);
2979 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2980 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2981 
2982 	/* Get 802.11 frame len before prepending TX header */
2983 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2984 
2985 	/*
2986 	 * Find TX rate
2987 	 */
2988 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2989 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2990 		rate = rate_fb = tp->mgmtrate;
2991 	} else if (ismcast) {
2992 		rate = rate_fb = tp->mcastrate;
2993 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2994 		rate = rate_fb = tp->ucastrate;
2995 	} else {
2996 		rix = ieee80211_amrr_choose(ni, &BWI_NODE(ni)->amn);
2997 		rate = ni->ni_txrate;
2998 
2999 		if (rix > 0) {
3000 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
3001 				  IEEE80211_RATE_VAL;
3002 		} else {
3003 			rate_fb = rate;
3004 		}
3005 	}
3006 	tb->tb_rate[0] = rate;
3007 	tb->tb_rate[1] = rate_fb;
3008 	sc->sc_tx_rate = rate;
3009 
3010 	/*
3011 	 * TX radio tap
3012 	 */
3013 	if (ieee80211_radiotap_active_vap(vap)) {
3014 		sc->sc_tx_th.wt_flags = 0;
3015 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3016 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3017 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3018 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3019 		    rate != (1 * 2)) {
3020 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3021 		}
3022 		sc->sc_tx_th.wt_rate = rate;
3023 
3024 		ieee80211_radiotap_tx(vap, m);
3025 	}
3026 
3027 	/*
3028 	 * Setup the embedded TX header
3029 	 */
3030 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3031 	if (m == NULL) {
3032 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3033 		return ENOBUFS;
3034 	}
3035 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3036 
3037 	bzero(hdr, sizeof(*hdr));
3038 
3039 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3040 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3041 
3042 	if (!ismcast) {
3043 		uint16_t dur;
3044 
3045 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3046 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3047 
3048 		hdr->txh_fb_duration = htole16(dur);
3049 	}
3050 
3051 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3052 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3053 
3054 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3055 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3056 
3057 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3058 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3059 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3060 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3061 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3062 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3063 
3064 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3065 	if (!ismcast)
3066 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3067 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3068 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3069 
3070 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3071 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3072 
3073 	/* Catch any further usage */
3074 	hdr = NULL;
3075 	wh = NULL;
3076 
3077 	/* DMA load */
3078 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3079 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3080 	if (error && error != EFBIG) {
3081 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3082 		    __func__, error);
3083 		goto back;
3084 	}
3085 
3086 	if (error) {	/* error == EFBIG */
3087 		struct mbuf *m_new;
3088 
3089 		m_new = m_defrag(m, M_DONTWAIT);
3090 		if (m_new == NULL) {
3091 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3092 			    __func__);
3093 			error = ENOBUFS;
3094 			goto back;
3095 		} else {
3096 			m = m_new;
3097 		}
3098 
3099 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3100 					     bwi_dma_buf_addr, &paddr,
3101 					     BUS_DMA_NOWAIT);
3102 		if (error) {
3103 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3104 			    __func__, error);
3105 			goto back;
3106 		}
3107 	}
3108 	error = 0;
3109 
3110 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3111 
3112 	tb->tb_mbuf = m;
3113 	tb->tb_ni = ni;
3114 
3115 #if 0
3116 	p = mtod(m, const uint8_t *);
3117 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3118 		if (i != 0 && i % 8 == 0)
3119 			printf("\n");
3120 		printf("%02x ", p[i]);
3121 	}
3122 	printf("\n");
3123 #endif
3124 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3125 		idx, pkt_len, m->m_pkthdr.len);
3126 
3127 	/* Setup TX descriptor */
3128 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3129 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3130 			BUS_DMASYNC_PREWRITE);
3131 
3132 	/* Kick start */
3133 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3134 
3135 back:
3136 	if (error)
3137 		m_freem(m);
3138 	return error;
3139 }
3140 
3141 static int
3142 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3143 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3144 {
3145 	struct ifnet *ifp = sc->sc_ifp;
3146 	struct ieee80211vap *vap = ni->ni_vap;
3147 	struct ieee80211com *ic = ni->ni_ic;
3148 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3149 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3150 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3151 	struct bwi_mac *mac;
3152 	struct bwi_txbuf_hdr *hdr;
3153 	struct ieee80211_frame *wh;
3154 	uint8_t rate, rate_fb;
3155 	uint32_t mac_ctrl;
3156 	uint16_t phy_ctrl;
3157 	bus_addr_t paddr;
3158 	int ismcast, pkt_len, error;
3159 
3160 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3161 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3162 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3163 
3164 	wh = mtod(m, struct ieee80211_frame *);
3165 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3166 
3167 	/* Get 802.11 frame len before prepending TX header */
3168 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3169 
3170 	/*
3171 	 * Find TX rate
3172 	 */
3173 	rate = params->ibp_rate0;
3174 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3175 		/* XXX fall back to mcast/mgmt rate? */
3176 		m_freem(m);
3177 		return EINVAL;
3178 	}
3179 	if (params->ibp_try1 != 0) {
3180 		rate_fb = params->ibp_rate1;
3181 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3182 			/* XXX fall back to rate0? */
3183 			m_freem(m);
3184 			return EINVAL;
3185 		}
3186 	} else
3187 		rate_fb = rate;
3188 	tb->tb_rate[0] = rate;
3189 	tb->tb_rate[1] = rate_fb;
3190 	sc->sc_tx_rate = rate;
3191 
3192 	/*
3193 	 * TX radio tap
3194 	 */
3195 	if (ieee80211_radiotap_active_vap(vap)) {
3196 		sc->sc_tx_th.wt_flags = 0;
3197 		/* XXX IEEE80211_BPF_CRYPTO */
3198 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3199 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3200 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3201 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3202 		sc->sc_tx_th.wt_rate = rate;
3203 
3204 		ieee80211_radiotap_tx(vap, m);
3205 	}
3206 
3207 	/*
3208 	 * Setup the embedded TX header
3209 	 */
3210 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3211 	if (m == NULL) {
3212 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3213 		return ENOBUFS;
3214 	}
3215 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3216 
3217 	bzero(hdr, sizeof(*hdr));
3218 
3219 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3220 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3221 
3222 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3223 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3224 		uint16_t dur;
3225 
3226 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3227 
3228 		hdr->txh_fb_duration = htole16(dur);
3229 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3230 	}
3231 
3232 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3233 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3234 
3235 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3236 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3237 
3238 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3239 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3240 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3241 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3242 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3243 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3244 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3245 
3246 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3247 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3248 
3249 	/* Catch any further usage */
3250 	hdr = NULL;
3251 	wh = NULL;
3252 
3253 	/* DMA load */
3254 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3255 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3256 	if (error != 0) {
3257 		struct mbuf *m_new;
3258 
3259 		if (error != EFBIG) {
3260 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3261 			    __func__, error);
3262 			goto back;
3263 		}
3264 		m_new = m_defrag(m, M_DONTWAIT);
3265 		if (m_new == NULL) {
3266 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3267 			    __func__);
3268 			error = ENOBUFS;
3269 			goto back;
3270 		}
3271 		m = m_new;
3272 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3273 					     bwi_dma_buf_addr, &paddr,
3274 					     BUS_DMA_NOWAIT);
3275 		if (error) {
3276 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3277 			    __func__, error);
3278 			goto back;
3279 		}
3280 	}
3281 
3282 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3283 
3284 	tb->tb_mbuf = m;
3285 	tb->tb_ni = ni;
3286 
3287 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3288 		idx, pkt_len, m->m_pkthdr.len);
3289 
3290 	/* Setup TX descriptor */
3291 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3292 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3293 			BUS_DMASYNC_PREWRITE);
3294 
3295 	/* Kick start */
3296 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3297 back:
3298 	if (error)
3299 		m_freem(m);
3300 	return error;
3301 }
3302 
3303 static void
3304 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3305 {
3306 	idx = (idx + 1) % BWI_TX_NDESC;
3307 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3308 		    idx * sizeof(struct bwi_desc32));
3309 }
3310 
3311 static void
3312 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3313 {
3314 	/* TODO:64 */
3315 }
3316 
3317 static void
3318 bwi_txeof_status32(struct bwi_softc *sc)
3319 {
3320 	struct ifnet *ifp = sc->sc_ifp;
3321 	uint32_t val, ctrl_base;
3322 	int end_idx;
3323 
3324 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3325 
3326 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3327 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3328 		  sizeof(struct bwi_desc32);
3329 
3330 	bwi_txeof_status(sc, end_idx);
3331 
3332 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3333 		    end_idx * sizeof(struct bwi_desc32));
3334 
3335 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3336 		ifp->if_start(ifp);
3337 }
3338 
3339 static void
3340 bwi_txeof_status64(struct bwi_softc *sc)
3341 {
3342 	/* TODO:64 */
3343 }
3344 
3345 static void
3346 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3347 {
3348 	struct ifnet *ifp = sc->sc_ifp;
3349 	struct bwi_txbuf_data *tbd;
3350 	struct bwi_txbuf *tb;
3351 	int ring_idx, buf_idx;
3352 	struct ieee80211_node *ni;
3353 
3354 	if (tx_id == 0) {
3355 		if_printf(ifp, "%s: zero tx id\n", __func__);
3356 		return;
3357 	}
3358 
3359 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3360 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3361 
3362 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3363 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3364 
3365 	tbd = &sc->sc_tx_bdata[ring_idx];
3366 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3367 	tbd->tbd_used--;
3368 
3369 	tb = &tbd->tbd_buf[buf_idx];
3370 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3371 		"acked %d, data_txcnt %d, ni %p\n",
3372 		buf_idx, acked, data_txcnt, tb->tb_ni);
3373 
3374 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3375 
3376 	ni = tb->tb_ni;
3377 	if (tb->tb_ni != NULL) {
3378 		struct bwi_node *bn = (struct bwi_node *) tb->tb_ni;
3379 		const struct bwi_txbuf_hdr *hdr =
3380 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3381 
3382 		/* NB: update rate control only for unicast frames */
3383 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3384 			/*
3385 			 * Feed back 'acked and data_txcnt'.  Note that the
3386 			 * generic AMRR code only understands one tx rate
3387 			 * and the estimator doesn't handle real retry counts
3388 			 * well so to avoid over-aggressive downshifting we
3389 			 * treat any number of retries as "1".
3390 			 */
3391 			ieee80211_amrr_tx_complete(&bn->amn, acked,
3392 			    data_txcnt > 1);
3393 		}
3394 
3395 		/*
3396 		 * Do any tx complete callback.  Note this must
3397 		 * be done before releasing the node reference.
3398 		 */
3399 		if (tb->tb_mbuf->m_flags & M_TXCB)
3400 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3401 
3402 		ieee80211_free_node(tb->tb_ni);
3403 		tb->tb_ni = NULL;
3404 	}
3405 	m_freem(tb->tb_mbuf);
3406 	tb->tb_mbuf = NULL;
3407 
3408 	if (tbd->tbd_used == 0)
3409 		ifp->if_timer = 0;
3410 
3411 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3412 }
3413 
3414 static void
3415 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3416 {
3417 	struct bwi_txstats_data *st = sc->sc_txstats;
3418 	int idx;
3419 
3420 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3421 
3422 	idx = st->stats_idx;
3423 	while (idx != end_idx) {
3424 		const struct bwi_txstats *stats = &st->stats[idx];
3425 
3426 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3427 			int data_txcnt;
3428 
3429 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3430 						BWI_TXS_TXCNT_DATA);
3431 			_bwi_txeof(sc, le16toh(stats->txs_id),
3432 				   stats->txs_flags & BWI_TXS_F_ACKED,
3433 				   data_txcnt);
3434 		}
3435 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3436 	}
3437 	st->stats_idx = idx;
3438 }
3439 
3440 static void
3441 bwi_txeof(struct bwi_softc *sc)
3442 {
3443 	struct ifnet *ifp = sc->sc_ifp;
3444 
3445 	for (;;) {
3446 		uint32_t tx_status0, tx_status1;
3447 		uint16_t tx_id;
3448 		int data_txcnt;
3449 
3450 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3451 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3452 			break;
3453 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3454 
3455 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3456 		data_txcnt = __SHIFTOUT(tx_status0,
3457 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3458 
3459 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3460 			continue;
3461 
3462 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3463 		    data_txcnt);
3464 	}
3465 
3466 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3467 		ifp->if_start(ifp);
3468 }
3469 
3470 static int
3471 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3472 {
3473 	bwi_power_on(sc, 1);
3474 	return bwi_set_clock_mode(sc, clk_mode);
3475 }
3476 
3477 static void
3478 bwi_bbp_power_off(struct bwi_softc *sc)
3479 {
3480 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3481 	bwi_power_off(sc, 1);
3482 }
3483 
3484 static int
3485 bwi_get_pwron_delay(struct bwi_softc *sc)
3486 {
3487 	struct bwi_regwin *com, *old;
3488 	struct bwi_clock_freq freq;
3489 	uint32_t val;
3490 	int error;
3491 
3492 	com = &sc->sc_com_regwin;
3493 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3494 
3495 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3496 		return 0;
3497 
3498 	error = bwi_regwin_switch(sc, com, &old);
3499 	if (error)
3500 		return error;
3501 
3502 	bwi_get_clock_freq(sc, &freq);
3503 
3504 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3505 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3506 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3507 
3508 	return bwi_regwin_switch(sc, old, NULL);
3509 }
3510 
3511 static int
3512 bwi_bus_attach(struct bwi_softc *sc)
3513 {
3514 	struct bwi_regwin *bus, *old;
3515 	int error;
3516 
3517 	bus = &sc->sc_bus_regwin;
3518 
3519 	error = bwi_regwin_switch(sc, bus, &old);
3520 	if (error)
3521 		return error;
3522 
3523 	if (!bwi_regwin_is_enabled(sc, bus))
3524 		bwi_regwin_enable(sc, bus, 0);
3525 
3526 	/* Disable interripts */
3527 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3528 
3529 	return bwi_regwin_switch(sc, old, NULL);
3530 }
3531 
3532 static const char *
3533 bwi_regwin_name(const struct bwi_regwin *rw)
3534 {
3535 	switch (rw->rw_type) {
3536 	case BWI_REGWIN_T_COM:
3537 		return "COM";
3538 	case BWI_REGWIN_T_BUSPCI:
3539 		return "PCI";
3540 	case BWI_REGWIN_T_MAC:
3541 		return "MAC";
3542 	case BWI_REGWIN_T_BUSPCIE:
3543 		return "PCIE";
3544 	}
3545 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3546 	return NULL;
3547 }
3548 
3549 static uint32_t
3550 bwi_regwin_disable_bits(struct bwi_softc *sc)
3551 {
3552 	uint32_t busrev;
3553 
3554 	/* XXX cache this */
3555 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3556 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3557 		"bus rev %u\n", busrev);
3558 
3559 	if (busrev == BWI_BUSREV_0)
3560 		return BWI_STATE_LO_DISABLE1;
3561 	else if (busrev == BWI_BUSREV_1)
3562 		return BWI_STATE_LO_DISABLE2;
3563 	else
3564 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3565 }
3566 
3567 int
3568 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3569 {
3570 	uint32_t val, disable_bits;
3571 
3572 	disable_bits = bwi_regwin_disable_bits(sc);
3573 	val = CSR_READ_4(sc, BWI_STATE_LO);
3574 
3575 	if ((val & (BWI_STATE_LO_CLOCK |
3576 		    BWI_STATE_LO_RESET |
3577 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3578 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3579 			bwi_regwin_name(rw));
3580 		return 1;
3581 	} else {
3582 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3583 			bwi_regwin_name(rw));
3584 		return 0;
3585 	}
3586 }
3587 
3588 void
3589 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3590 {
3591 	uint32_t state_lo, disable_bits;
3592 	int i;
3593 
3594 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3595 
3596 	/*
3597 	 * If current regwin is in 'reset' state, it was already disabled.
3598 	 */
3599 	if (state_lo & BWI_STATE_LO_RESET) {
3600 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3601 			"%s was already disabled\n", bwi_regwin_name(rw));
3602 		return;
3603 	}
3604 
3605 	disable_bits = bwi_regwin_disable_bits(sc);
3606 
3607 	/*
3608 	 * Disable normal clock
3609 	 */
3610 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3611 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3612 
3613 	/*
3614 	 * Wait until normal clock is disabled
3615 	 */
3616 #define NRETRY	1000
3617 	for (i = 0; i < NRETRY; ++i) {
3618 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3619 		if (state_lo & disable_bits)
3620 			break;
3621 		DELAY(10);
3622 	}
3623 	if (i == NRETRY) {
3624 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3625 			      bwi_regwin_name(rw));
3626 	}
3627 
3628 	for (i = 0; i < NRETRY; ++i) {
3629 		uint32_t state_hi;
3630 
3631 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3632 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3633 			break;
3634 		DELAY(10);
3635 	}
3636 	if (i == NRETRY) {
3637 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3638 			      bwi_regwin_name(rw));
3639 	}
3640 #undef NRETRY
3641 
3642 	/*
3643 	 * Reset and disable regwin with gated clock
3644 	 */
3645 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3646 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3647 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3648 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3649 
3650 	/* Flush pending bus write */
3651 	CSR_READ_4(sc, BWI_STATE_LO);
3652 	DELAY(1);
3653 
3654 	/* Reset and disable regwin */
3655 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3656 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3657 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3658 
3659 	/* Flush pending bus write */
3660 	CSR_READ_4(sc, BWI_STATE_LO);
3661 	DELAY(1);
3662 }
3663 
3664 void
3665 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3666 {
3667 	uint32_t state_lo, state_hi, imstate;
3668 
3669 	bwi_regwin_disable(sc, rw, flags);
3670 
3671 	/* Reset regwin with gated clock */
3672 	state_lo = BWI_STATE_LO_RESET |
3673 		   BWI_STATE_LO_CLOCK |
3674 		   BWI_STATE_LO_GATED_CLOCK |
3675 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3676 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3677 
3678 	/* Flush pending bus write */
3679 	CSR_READ_4(sc, BWI_STATE_LO);
3680 	DELAY(1);
3681 
3682 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3683 	if (state_hi & BWI_STATE_HI_SERROR)
3684 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3685 
3686 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3687 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3688 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3689 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3690 	}
3691 
3692 	/* Enable regwin with gated clock */
3693 	state_lo = BWI_STATE_LO_CLOCK |
3694 		   BWI_STATE_LO_GATED_CLOCK |
3695 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3696 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3697 
3698 	/* Flush pending bus write */
3699 	CSR_READ_4(sc, BWI_STATE_LO);
3700 	DELAY(1);
3701 
3702 	/* Enable regwin with normal clock */
3703 	state_lo = BWI_STATE_LO_CLOCK |
3704 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3705 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3706 
3707 	/* Flush pending bus write */
3708 	CSR_READ_4(sc, BWI_STATE_LO);
3709 	DELAY(1);
3710 }
3711 
3712 static void
3713 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3714 {
3715 	struct ifnet *ifp = sc->sc_ifp;
3716 	struct bwi_mac *mac;
3717 	struct bwi_myaddr_bssid buf;
3718 	const uint8_t *p;
3719 	uint32_t val;
3720 	int n, i;
3721 
3722 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3723 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3724 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3725 
3726 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3727 
3728 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3729 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3730 
3731 	n = sizeof(buf) / sizeof(val);
3732 	p = (const uint8_t *)&buf;
3733 	for (i = 0; i < n; ++i) {
3734 		int j;
3735 
3736 		val = 0;
3737 		for (j = 0; j < sizeof(val); ++j)
3738 			val |= ((uint32_t)(*p++)) << (j * 8);
3739 
3740 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3741 	}
3742 }
3743 
3744 static void
3745 bwi_updateslot(struct ifnet *ifp)
3746 {
3747 	struct bwi_softc *sc = ifp->if_softc;
3748 	struct ieee80211com *ic = ifp->if_l2com;
3749 	struct bwi_mac *mac;
3750 
3751 	BWI_LOCK(sc);
3752 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3753 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3754 
3755 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3756 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3757 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3758 
3759 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3760 	}
3761 	BWI_UNLOCK(sc);
3762 }
3763 
3764 static void
3765 bwi_calibrate(void *xsc)
3766 {
3767 	struct bwi_softc *sc = xsc;
3768 #ifdef INVARIANTS
3769 	struct ifnet *ifp = sc->sc_ifp;
3770 	struct ieee80211com *ic = ifp->if_l2com;
3771 #endif
3772 	struct bwi_mac *mac;
3773 
3774 	BWI_ASSERT_LOCKED(sc);
3775 
3776 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3777 	    ("opmode %d", ic->ic_opmode));
3778 
3779 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3780 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3781 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3782 
3783 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3784 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3785 
3786 	/* XXX 15 seconds */
3787 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3788 }
3789 
3790 static int
3791 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3792 {
3793 	struct bwi_mac *mac;
3794 
3795 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3796 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3797 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3798 
3799 	return bwi_rf_calc_rssi(mac, hdr);
3800 }
3801 
3802 static int
3803 bwi_calc_noise(struct bwi_softc *sc)
3804 {
3805 	struct bwi_mac *mac;
3806 
3807 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3808 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3809 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3810 
3811 	return bwi_rf_calc_noise(mac);
3812 }
3813 
3814 static __inline uint8_t
3815 bwi_ofdm_plcp2rate(const uint32_t *plcp0)
3816 {
3817 	uint32_t plcp;
3818 	uint8_t plcp_rate;
3819 
3820 	plcp = le32toh(*plcp0);
3821 	plcp_rate = __SHIFTOUT(plcp, IEEE80211_OFDM_PLCP_RATE_MASK);
3822 	return ieee80211_plcp2rate(plcp_rate, IEEE80211_T_OFDM);
3823 }
3824 
3825 static __inline uint8_t
3826 bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *hdr)
3827 {
3828 	return ieee80211_plcp2rate(hdr->i_signal, IEEE80211_T_DS);
3829 }
3830 
3831 static void
3832 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3833     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3834 {
3835 	const struct ieee80211_frame_min *wh;
3836 
3837 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3838 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3839 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3840 
3841 	wh = mtod(m, const struct ieee80211_frame_min *);
3842 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3843 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3844 
3845 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3846 	sc->sc_rx_th.wr_rate = rate;
3847 	sc->sc_rx_th.wr_antsignal = rssi;
3848 	sc->sc_rx_th.wr_antnoise = noise;
3849 }
3850 
3851 static void
3852 bwi_led_attach(struct bwi_softc *sc)
3853 {
3854 	const uint8_t *led_act = NULL;
3855 	uint16_t gpio, val[BWI_LED_MAX];
3856 	int i;
3857 
3858 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3859 
3860 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3861 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3862 			led_act = bwi_vendor_led_act[i].led_act;
3863 			break;
3864 		}
3865 	}
3866 	if (led_act == NULL)
3867 		led_act = bwi_default_led_act;
3868 
3869 #undef N
3870 
3871 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3872 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3873 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3874 
3875 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3876 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3877 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3878 
3879 	for (i = 0; i < BWI_LED_MAX; ++i) {
3880 		struct bwi_led *led = &sc->sc_leds[i];
3881 
3882 		if (val[i] == 0xff) {
3883 			led->l_act = led_act[i];
3884 		} else {
3885 			if (val[i] & BWI_LED_ACT_LOW)
3886 				led->l_flags |= BWI_LED_F_ACTLOW;
3887 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3888 		}
3889 		led->l_mask = (1 << i);
3890 
3891 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3892 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3893 		    led->l_act == BWI_LED_ACT_BLINK) {
3894 			led->l_flags |= BWI_LED_F_BLINK;
3895 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3896 				led->l_flags |= BWI_LED_F_POLLABLE;
3897 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3898 				led->l_flags |= BWI_LED_F_SLOW;
3899 
3900 			if (sc->sc_blink_led == NULL) {
3901 				sc->sc_blink_led = led;
3902 				if (led->l_flags & BWI_LED_F_SLOW)
3903 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3904 			}
3905 		}
3906 
3907 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3908 			"%dth led, act %d, lowact %d\n", i,
3909 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3910 	}
3911 	callout_init(&sc->sc_led_blink_ch, CALLOUT_MPSAFE);
3912 }
3913 
3914 static __inline uint16_t
3915 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3916 {
3917 	if (led->l_flags & BWI_LED_F_ACTLOW)
3918 		on = !on;
3919 	if (on)
3920 		val |= led->l_mask;
3921 	else
3922 		val &= ~led->l_mask;
3923 	return val;
3924 }
3925 
3926 static void
3927 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3928 {
3929 	struct ifnet *ifp = sc->sc_ifp;
3930 	struct ieee80211com *ic = ifp->if_l2com;
3931 	uint16_t val;
3932 	int i;
3933 
3934 	if (nstate == IEEE80211_S_INIT) {
3935 		callout_stop(&sc->sc_led_blink_ch);
3936 		sc->sc_led_blinking = 0;
3937 	}
3938 
3939 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3940 		return;
3941 
3942 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3943 	for (i = 0; i < BWI_LED_MAX; ++i) {
3944 		struct bwi_led *led = &sc->sc_leds[i];
3945 		int on;
3946 
3947 		if (led->l_act == BWI_LED_ACT_UNKN ||
3948 		    led->l_act == BWI_LED_ACT_NULL)
3949 			continue;
3950 
3951 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3952 		    nstate != IEEE80211_S_INIT)
3953 		    	continue;
3954 
3955 		switch (led->l_act) {
3956 		case BWI_LED_ACT_ON:	/* Always on */
3957 			on = 1;
3958 			break;
3959 		case BWI_LED_ACT_OFF:	/* Always off */
3960 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3961 			on = 0;
3962 			break;
3963 		default:
3964 			on = 1;
3965 			switch (nstate) {
3966 			case IEEE80211_S_INIT:
3967 				on = 0;
3968 				break;
3969 			case IEEE80211_S_RUN:
3970 				if (led->l_act == BWI_LED_ACT_11G &&
3971 				    ic->ic_curmode != IEEE80211_MODE_11G)
3972 					on = 0;
3973 				break;
3974 			default:
3975 				if (led->l_act == BWI_LED_ACT_ASSOC)
3976 					on = 0;
3977 				break;
3978 			}
3979 			break;
3980 		}
3981 
3982 		val = bwi_led_onoff(led, val, on);
3983 	}
3984 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3985 }
3986 static void
3987 bwi_led_event(struct bwi_softc *sc, int event)
3988 {
3989 	struct bwi_led *led = sc->sc_blink_led;
3990 	int rate;
3991 
3992 	if (event == BWI_LED_EVENT_POLL) {
3993 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3994 			return;
3995 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3996 			return;
3997 	}
3998 
3999 	sc->sc_led_ticks = ticks;
4000 	if (sc->sc_led_blinking)
4001 		return;
4002 
4003 	switch (event) {
4004 	case BWI_LED_EVENT_RX:
4005 		rate = sc->sc_rx_rate;
4006 		break;
4007 	case BWI_LED_EVENT_TX:
4008 		rate = sc->sc_tx_rate;
4009 		break;
4010 	case BWI_LED_EVENT_POLL:
4011 		rate = 0;
4012 		break;
4013 	default:
4014 		panic("unknown LED event %d\n", event);
4015 		break;
4016 	}
4017 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4018 	    bwi_led_duration[rate].off_dur);
4019 }
4020 
4021 static void
4022 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4023 {
4024 	struct bwi_led *led = sc->sc_blink_led;
4025 	uint16_t val;
4026 
4027 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4028 	val = bwi_led_onoff(led, val, 1);
4029 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4030 
4031 	if (led->l_flags & BWI_LED_F_SLOW) {
4032 		BWI_LED_SLOWDOWN(on_dur);
4033 		BWI_LED_SLOWDOWN(off_dur);
4034 	}
4035 
4036 	sc->sc_led_blinking = 1;
4037 	sc->sc_led_blink_offdur = off_dur;
4038 
4039 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4040 }
4041 
4042 static void
4043 bwi_led_blink_next(void *xsc)
4044 {
4045 	struct bwi_softc *sc = xsc;
4046 	uint16_t val;
4047 
4048 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4049 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4050 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4051 
4052 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4053 	    bwi_led_blink_end, sc);
4054 }
4055 
4056 static void
4057 bwi_led_blink_end(void *xsc)
4058 {
4059 	struct bwi_softc *sc = xsc;
4060 	sc->sc_led_blinking = 0;
4061 }
4062 
4063 static void
4064 bwi_restart(void *xsc, int pending)
4065 {
4066 	struct bwi_softc *sc = xsc;
4067 	struct ifnet *ifp = sc->sc_ifp;
4068 
4069 	if_printf(ifp, "%s begin, help!\n", __func__);
4070 	BWI_LOCK(sc);
4071 	bwi_init_statechg(xsc, 0);
4072 #if 0
4073 	bwi_start_locked(ifp);
4074 #endif
4075 	BWI_UNLOCK(sc);
4076 }
4077