xref: /freebsd/sys/dev/bwi/if_bwi.c (revision c9dbb1cc52b063bbd9ab078a7afc89a8696da659)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_set_channel(struct ieee80211com *);
114 static void	bwi_scan_end(struct ieee80211com *);
115 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
116 static void	bwi_updateslot(struct ieee80211com *);
117 static int	bwi_media_change(struct ifnet *);
118 
119 static void	bwi_calibrate(void *);
120 
121 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
122 static int	bwi_calc_noise(struct bwi_softc *);
123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
124 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
125 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
126 
127 static void	bwi_restart(void *, int);
128 static void	bwi_init_statechg(struct bwi_softc *, int);
129 static void	bwi_stop(struct bwi_softc *, int);
130 static void	bwi_stop_locked(struct bwi_softc *, int);
131 static int	bwi_newbuf(struct bwi_softc *, int, int);
132 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *);
134 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *,
136 			  const struct ieee80211_bpf_params *);
137 
138 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
139 				       bus_addr_t, int, int);
140 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
141 
142 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
143 static int	bwi_init_rx_ring32(struct bwi_softc *);
144 static int	bwi_init_txstats32(struct bwi_softc *);
145 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
146 static void	bwi_free_rx_ring32(struct bwi_softc *);
147 static void	bwi_free_txstats32(struct bwi_softc *);
148 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
149 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
150 				    int, bus_addr_t, int);
151 static int	bwi_rxeof32(struct bwi_softc *);
152 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
153 static void	bwi_txeof_status32(struct bwi_softc *);
154 
155 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
156 static int	bwi_init_rx_ring64(struct bwi_softc *);
157 static int	bwi_init_txstats64(struct bwi_softc *);
158 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
159 static void	bwi_free_rx_ring64(struct bwi_softc *);
160 static void	bwi_free_txstats64(struct bwi_softc *);
161 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
162 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
163 				    int, bus_addr_t, int);
164 static int	bwi_rxeof64(struct bwi_softc *);
165 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
166 static void	bwi_txeof_status64(struct bwi_softc *);
167 
168 static int	bwi_rxeof(struct bwi_softc *, int);
169 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
170 static void	bwi_txeof(struct bwi_softc *);
171 static void	bwi_txeof_status(struct bwi_softc *, int);
172 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
173 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
174 
175 static int	bwi_dma_alloc(struct bwi_softc *);
176 static void	bwi_dma_free(struct bwi_softc *);
177 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
178 				   struct bwi_ring_data *, bus_size_t,
179 				   uint32_t);
180 static int	bwi_dma_mbuf_create(struct bwi_softc *);
181 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
182 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
183 static void	bwi_dma_txstats_free(struct bwi_softc *);
184 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
185 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
186 				 bus_size_t, int);
187 
188 static void	bwi_power_on(struct bwi_softc *, int);
189 static int	bwi_power_off(struct bwi_softc *, int);
190 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
191 static int	bwi_set_clock_delay(struct bwi_softc *);
192 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
193 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
194 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
195 				    const uint8_t *);
196 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
197 
198 static void	bwi_get_card_flags(struct bwi_softc *);
199 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
200 
201 static int	bwi_bus_attach(struct bwi_softc *);
202 static int	bwi_bbp_attach(struct bwi_softc *);
203 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
204 static void	bwi_bbp_power_off(struct bwi_softc *);
205 
206 static const char *bwi_regwin_name(const struct bwi_regwin *);
207 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
208 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
209 static int	bwi_regwin_select(struct bwi_softc *, int);
210 
211 static void	bwi_led_attach(struct bwi_softc *);
212 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
213 static void	bwi_led_event(struct bwi_softc *, int);
214 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
215 static void	bwi_led_blink_next(void *);
216 static void	bwi_led_blink_end(void *);
217 
218 static const struct {
219 	uint16_t	did_min;
220 	uint16_t	did_max;
221 	uint16_t	bbp_id;
222 } bwi_bbpid_map[] = {
223 	{ 0x4301, 0x4301, 0x4301 },
224 	{ 0x4305, 0x4307, 0x4307 },
225 	{ 0x4402, 0x4403, 0x4402 },
226 	{ 0x4610, 0x4615, 0x4610 },
227 	{ 0x4710, 0x4715, 0x4710 },
228 	{ 0x4720, 0x4725, 0x4309 }
229 };
230 
231 static const struct {
232 	uint16_t	bbp_id;
233 	int		nregwin;
234 } bwi_regwin_count[] = {
235 	{ 0x4301, 5 },
236 	{ 0x4306, 6 },
237 	{ 0x4307, 5 },
238 	{ 0x4310, 8 },
239 	{ 0x4401, 3 },
240 	{ 0x4402, 3 },
241 	{ 0x4610, 9 },
242 	{ 0x4704, 9 },
243 	{ 0x4710, 9 },
244 	{ 0x5365, 7 }
245 };
246 
247 #define CLKSRC(src) 				\
248 [BWI_CLKSRC_ ## src] = {			\
249 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
250 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
251 }
252 
253 static const struct {
254 	u_int	freq_min;
255 	u_int	freq_max;
256 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
257 	CLKSRC(LP_OSC),
258 	CLKSRC(CS_OSC),
259 	CLKSRC(PCI)
260 };
261 
262 #undef CLKSRC
263 
264 #define VENDOR_LED_ACT(vendor)				\
265 {							\
266 	.vid = PCI_VENDOR_##vendor,			\
267 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
268 }
269 
270 static const struct {
271 #define	PCI_VENDOR_COMPAQ	0x0e11
272 #define	PCI_VENDOR_LINKSYS	0x1737
273 	uint16_t	vid;
274 	uint8_t		led_act[BWI_LED_MAX];
275 } bwi_vendor_led_act[] = {
276 	VENDOR_LED_ACT(COMPAQ),
277 	VENDOR_LED_ACT(LINKSYS)
278 #undef PCI_VENDOR_LINKSYS
279 #undef PCI_VENDOR_COMPAQ
280 };
281 
282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
283 	{ BWI_VENDOR_LED_ACT_DEFAULT };
284 
285 #undef VENDOR_LED_ACT
286 
287 static const struct {
288 	int	on_dur;
289 	int	off_dur;
290 } bwi_led_duration[109] = {
291 	[0]	= { 400, 100 },
292 	[2]	= { 150, 75 },
293 	[4]	= { 90, 45 },
294 	[11]	= { 66, 34 },
295 	[12]	= { 53, 26 },
296 	[18]	= { 42, 21 },
297 	[22]	= { 35, 17 },
298 	[24]	= { 32, 16 },
299 	[36]	= { 21, 10 },
300 	[48]	= { 16, 8 },
301 	[72]	= { 11, 5 },
302 	[96]	= { 9, 4 },
303 	[108]	= { 7, 3 }
304 };
305 
306 #ifdef BWI_DEBUG
307 #ifdef BWI_DEBUG_VERBOSE
308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
309 #else
310 static uint32_t	bwi_debug;
311 #endif
312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
313 #endif	/* BWI_DEBUG */
314 
315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
316 
317 uint16_t
318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
319 {
320 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
321 }
322 
323 static __inline void
324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
325 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
326 		 int tx)
327 {
328 	struct bwi_desc32 *desc = &desc_array[desc_idx];
329 	uint32_t ctrl, addr, addr_hi, addr_lo;
330 
331 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
332 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
333 
334 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
335 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
336 
337 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
338 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
339 	if (desc_idx == ndesc - 1)
340 		ctrl |= BWI_DESC32_C_EOR;
341 	if (tx) {
342 		/* XXX */
343 		ctrl |= BWI_DESC32_C_FRAME_START |
344 			BWI_DESC32_C_FRAME_END |
345 			BWI_DESC32_C_INTR;
346 	}
347 
348 	desc->addr = htole32(addr);
349 	desc->ctrl = htole32(ctrl);
350 }
351 
352 int
353 bwi_attach(struct bwi_softc *sc)
354 {
355 	struct ieee80211com *ic = &sc->sc_ic;
356 	device_t dev = sc->sc_dev;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	int i, error;
360 	uint8_t bands;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_blink = 1;
381 	sc->sc_txpwr_calib = 1;
382 #ifdef BWI_DEBUG
383 	sc->sc_debug = bwi_debug;
384 #endif
385 	bwi_power_on(sc, 1);
386 
387 	error = bwi_bbp_attach(sc);
388 	if (error)
389 		goto fail;
390 
391 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
392 	if (error)
393 		goto fail;
394 
395 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
396 		error = bwi_set_clock_delay(sc);
397 		if (error)
398 			goto fail;
399 
400 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_get_pwron_delay(sc);
405 		if (error)
406 			goto fail;
407 	}
408 
409 	error = bwi_bus_attach(sc);
410 	if (error)
411 		goto fail;
412 
413 	bwi_get_card_flags(sc);
414 
415 	bwi_led_attach(sc);
416 
417 	for (i = 0; i < sc->sc_nmac; ++i) {
418 		struct bwi_regwin *old;
419 
420 		mac = &sc->sc_mac[i];
421 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
422 		if (error)
423 			goto fail;
424 
425 		error = bwi_mac_lateattach(mac);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_regwin_switch(sc, old, NULL);
430 		if (error)
431 			goto fail;
432 	}
433 
434 	/*
435 	 * XXX First MAC is known to exist
436 	 * TODO2
437 	 */
438 	mac = &sc->sc_mac[0];
439 	phy = &mac->mac_phy;
440 
441 	bwi_bbp_power_off(sc);
442 
443 	error = bwi_dma_alloc(sc);
444 	if (error)
445 		goto fail;
446 
447 	error = bwi_mac_fw_alloc(mac);
448 	if (error)
449 		goto fail;
450 
451 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
452 
453 	/*
454 	 * Setup ratesets, phytype, channels and get MAC address
455 	 */
456 	bands = 0;
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		setbit(&bands, IEEE80211_MODE_11B);
460 		if (phy->phy_mode == IEEE80211_MODE_11B) {
461 			ic->ic_phytype = IEEE80211_T_DS;
462 		} else {
463 			ic->ic_phytype = IEEE80211_T_OFDM;
464 			setbit(&bands, IEEE80211_MODE_11G);
465 		}
466 
467 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
468 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
470 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
471 				device_printf(dev,
472 				    "invalid MAC address: %6D\n",
473 				    ic->ic_macaddr, ":");
474 			}
475 		}
476 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
477 		/* TODO:11A */
478 		setbit(&bands, IEEE80211_MODE_11A);
479 		error = ENXIO;
480 		goto fail;
481 	} else {
482 		panic("unknown phymode %d\n", phy->phy_mode);
483 	}
484 
485 	/* Get locale */
486 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
487 				   BWI_SPROM_CARD_INFO_LOCALE);
488 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
489 	/* XXX use locale */
490 	ieee80211_init_channels(ic, NULL, &bands);
491 
492 	ic->ic_softc = sc;
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 	ieee80211_ifattach(ic);
502 
503 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504 
505 	/* override default methods */
506 	ic->ic_vap_create = bwi_vap_create;
507 	ic->ic_vap_delete = bwi_vap_delete;
508 	ic->ic_raw_xmit = bwi_raw_xmit;
509 	ic->ic_updateslot = bwi_updateslot;
510 	ic->ic_scan_start = bwi_scan_start;
511 	ic->ic_scan_end = bwi_scan_end;
512 	ic->ic_set_channel = bwi_set_channel;
513 	ic->ic_transmit = bwi_transmit;
514 	ic->ic_parent = bwi_parent;
515 
516 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
517 
518 	ieee80211_radiotap_attach(ic,
519 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
520 		BWI_TX_RADIOTAP_PRESENT,
521 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
522 		BWI_RX_RADIOTAP_PRESENT);
523 
524 	/*
525 	 * Add sysctl nodes
526 	 */
527 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
528 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
529 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
530 		        "Firmware version");
531 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
532 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
533 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
534 		        "# ticks before LED enters idle state");
535 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
536 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
537 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
538 		       "Allow LED to blink");
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
542 		       "Enable software TX power calibration");
543 #ifdef BWI_DEBUG
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
547 #endif
548 	if (bootverbose)
549 		ieee80211_announce(ic);
550 
551 	return (0);
552 fail:
553 	BWI_LOCK_DESTROY(sc);
554 	return (error);
555 }
556 
557 int
558 bwi_detach(struct bwi_softc *sc)
559 {
560 	struct ieee80211com *ic = &sc->sc_ic;
561 	int i;
562 
563 	bwi_stop(sc, 1);
564 	callout_drain(&sc->sc_led_blink_ch);
565 	callout_drain(&sc->sc_calib_ch);
566 	callout_drain(&sc->sc_watchdog_timer);
567 	ieee80211_ifdetach(ic);
568 
569 	for (i = 0; i < sc->sc_nmac; ++i)
570 		bwi_mac_detach(&sc->sc_mac[i]);
571 	bwi_dma_free(sc);
572 	taskqueue_free(sc->sc_tq);
573 	mbufq_drain(&sc->sc_snd);
574 
575 	BWI_LOCK_DESTROY(sc);
576 
577 	return (0);
578 }
579 
580 static struct ieee80211vap *
581 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
582     enum ieee80211_opmode opmode, int flags,
583     const uint8_t bssid[IEEE80211_ADDR_LEN],
584     const uint8_t mac[IEEE80211_ADDR_LEN])
585 {
586 	struct bwi_vap *bvp;
587 	struct ieee80211vap *vap;
588 
589 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
590 		return NULL;
591 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
592 	vap = &bvp->bv_vap;
593 	/* enable s/w bmiss handling for sta mode */
594 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
595 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
596 
597 	/* override default methods */
598 	bvp->bv_newstate = vap->iv_newstate;
599 	vap->iv_newstate = bwi_newstate;
600 #if 0
601 	vap->iv_update_beacon = bwi_beacon_update;
602 #endif
603 	ieee80211_ratectl_init(vap);
604 
605 	/* complete setup */
606 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
607 	    mac);
608 	ic->ic_opmode = opmode;
609 	return vap;
610 }
611 
612 static void
613 bwi_vap_delete(struct ieee80211vap *vap)
614 {
615 	struct bwi_vap *bvp = BWI_VAP(vap);
616 
617 	ieee80211_ratectl_deinit(vap);
618 	ieee80211_vap_detach(vap);
619 	free(bvp, M_80211_VAP);
620 }
621 
622 void
623 bwi_suspend(struct bwi_softc *sc)
624 {
625 	bwi_stop(sc, 1);
626 }
627 
628 void
629 bwi_resume(struct bwi_softc *sc)
630 {
631 
632 	if (sc->sc_ic.ic_nrunning > 0)
633 		bwi_init(sc);
634 }
635 
636 int
637 bwi_shutdown(struct bwi_softc *sc)
638 {
639 	bwi_stop(sc, 1);
640 	return 0;
641 }
642 
643 static void
644 bwi_power_on(struct bwi_softc *sc, int with_pll)
645 {
646 	uint32_t gpio_in, gpio_out, gpio_en;
647 	uint16_t status;
648 
649 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
650 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
651 		goto back;
652 
653 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
654 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
655 
656 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
657 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
658 	if (with_pll) {
659 		/* Turn off PLL first */
660 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
661 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 	}
663 
664 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
665 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
666 	DELAY(1000);
667 
668 	if (with_pll) {
669 		/* Turn on PLL */
670 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
671 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
672 		DELAY(5000);
673 	}
674 
675 back:
676 	/* Clear "Signaled Target Abort" */
677 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
678 	status &= ~PCIM_STATUS_STABORT;
679 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
680 }
681 
682 static int
683 bwi_power_off(struct bwi_softc *sc, int with_pll)
684 {
685 	uint32_t gpio_out, gpio_en;
686 
687 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
688 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
689 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
690 
691 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
692 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
693 	if (with_pll) {
694 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
695 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 	}
697 
698 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
699 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
700 	return 0;
701 }
702 
703 int
704 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
705 		  struct bwi_regwin **old_rw)
706 {
707 	int error;
708 
709 	if (old_rw != NULL)
710 		*old_rw = NULL;
711 
712 	if (!BWI_REGWIN_EXIST(rw))
713 		return EINVAL;
714 
715 	if (sc->sc_cur_regwin != rw) {
716 		error = bwi_regwin_select(sc, rw->rw_id);
717 		if (error) {
718 			device_printf(sc->sc_dev, "can't select regwin %d\n",
719 				  rw->rw_id);
720 			return error;
721 		}
722 	}
723 
724 	if (old_rw != NULL)
725 		*old_rw = sc->sc_cur_regwin;
726 	sc->sc_cur_regwin = rw;
727 	return 0;
728 }
729 
730 static int
731 bwi_regwin_select(struct bwi_softc *sc, int id)
732 {
733 	uint32_t win = BWI_PCIM_REGWIN(id);
734 	int i;
735 
736 #define RETRY_MAX	50
737 	for (i = 0; i < RETRY_MAX; ++i) {
738 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
739 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
740 			return 0;
741 		DELAY(10);
742 	}
743 #undef RETRY_MAX
744 
745 	return ENXIO;
746 }
747 
748 static void
749 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
750 {
751 	uint32_t val;
752 
753 	val = CSR_READ_4(sc, BWI_ID_HI);
754 	*type = BWI_ID_HI_REGWIN_TYPE(val);
755 	*rev = BWI_ID_HI_REGWIN_REV(val);
756 
757 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
758 		"vendor 0x%04x\n", *type, *rev,
759 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
760 }
761 
762 static int
763 bwi_bbp_attach(struct bwi_softc *sc)
764 {
765 	uint16_t bbp_id, rw_type;
766 	uint8_t rw_rev;
767 	uint32_t info;
768 	int error, nregwin, i;
769 
770 	/*
771 	 * Get 0th regwin information
772 	 * NOTE: 0th regwin should exist
773 	 */
774 	error = bwi_regwin_select(sc, 0);
775 	if (error) {
776 		device_printf(sc->sc_dev, "can't select regwin 0\n");
777 		return error;
778 	}
779 	bwi_regwin_info(sc, &rw_type, &rw_rev);
780 
781 	/*
782 	 * Find out BBP id
783 	 */
784 	bbp_id = 0;
785 	info = 0;
786 	if (rw_type == BWI_REGWIN_T_COM) {
787 		info = CSR_READ_4(sc, BWI_INFO);
788 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
789 
790 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
791 
792 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
793 	} else {
794 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
795 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
796 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
797 				bbp_id = bwi_bbpid_map[i].bbp_id;
798 				break;
799 			}
800 		}
801 		if (bbp_id == 0) {
802 			device_printf(sc->sc_dev, "no BBP id for device id "
803 				      "0x%04x\n", sc->sc_pci_did);
804 			return ENXIO;
805 		}
806 
807 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
808 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
809 	}
810 
811 	/*
812 	 * Find out number of regwins
813 	 */
814 	nregwin = 0;
815 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
816 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
817 	} else {
818 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
819 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
820 				nregwin = bwi_regwin_count[i].nregwin;
821 				break;
822 			}
823 		}
824 		if (nregwin == 0) {
825 			device_printf(sc->sc_dev, "no number of win for "
826 				      "BBP id 0x%04x\n", bbp_id);
827 			return ENXIO;
828 		}
829 	}
830 
831 	/* Record BBP id/rev for later using */
832 	sc->sc_bbp_id = bbp_id;
833 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
834 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
835 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
836 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
837 
838 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
839 		nregwin, sc->sc_cap);
840 
841 	/*
842 	 * Create rest of the regwins
843 	 */
844 
845 	/* Don't re-create common regwin, if it is already created */
846 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
847 
848 	for (; i < nregwin; ++i) {
849 		/*
850 		 * Get regwin information
851 		 */
852 		error = bwi_regwin_select(sc, i);
853 		if (error) {
854 			device_printf(sc->sc_dev,
855 				      "can't select regwin %d\n", i);
856 			return error;
857 		}
858 		bwi_regwin_info(sc, &rw_type, &rw_rev);
859 
860 		/*
861 		 * Try attach:
862 		 * 1) Bus (PCI/PCIE) regwin
863 		 * 2) MAC regwin
864 		 * Ignore rest types of regwin
865 		 */
866 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
867 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
868 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
869 				device_printf(sc->sc_dev,
870 					      "bus regwin already exists\n");
871 			} else {
872 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
873 						  rw_type, rw_rev);
874 			}
875 		} else if (rw_type == BWI_REGWIN_T_MAC) {
876 			/* XXX ignore return value */
877 			bwi_mac_attach(sc, i, rw_rev);
878 		}
879 	}
880 
881 	/* At least one MAC shold exist */
882 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
883 		device_printf(sc->sc_dev, "no MAC was found\n");
884 		return ENXIO;
885 	}
886 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
887 
888 	/* Bus regwin must exist */
889 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
890 		device_printf(sc->sc_dev, "no bus regwin was found\n");
891 		return ENXIO;
892 	}
893 
894 	/* Start with first MAC */
895 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
896 	if (error)
897 		return error;
898 
899 	return 0;
900 }
901 
902 int
903 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
904 {
905 	struct bwi_regwin *old, *bus;
906 	uint32_t val;
907 	int error;
908 
909 	bus = &sc->sc_bus_regwin;
910 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
911 
912 	/*
913 	 * Tell bus to generate requested interrupts
914 	 */
915 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
916 		/*
917 		 * NOTE: Read BWI_FLAGS from MAC regwin
918 		 */
919 		val = CSR_READ_4(sc, BWI_FLAGS);
920 
921 		error = bwi_regwin_switch(sc, bus, &old);
922 		if (error)
923 			return error;
924 
925 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
926 	} else {
927 		uint32_t mac_mask;
928 
929 		mac_mask = 1 << mac->mac_id;
930 
931 		error = bwi_regwin_switch(sc, bus, &old);
932 		if (error)
933 			return error;
934 
935 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
936 		val |= mac_mask << 8;
937 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
938 	}
939 
940 	if (sc->sc_flags & BWI_F_BUS_INITED)
941 		goto back;
942 
943 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
944 		/*
945 		 * Enable prefetch and burst
946 		 */
947 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
948 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
949 
950 		if (bus->rw_rev < 5) {
951 			struct bwi_regwin *com = &sc->sc_com_regwin;
952 
953 			/*
954 			 * Configure timeouts for bus operation
955 			 */
956 
957 			/*
958 			 * Set service timeout and request timeout
959 			 */
960 			CSR_SETBITS_4(sc, BWI_CONF_LO,
961 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
962 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
963 
964 			/*
965 			 * If there is common regwin, we switch to that regwin
966 			 * and switch back to bus regwin once we have done.
967 			 */
968 			if (BWI_REGWIN_EXIST(com)) {
969 				error = bwi_regwin_switch(sc, com, NULL);
970 				if (error)
971 					return error;
972 			}
973 
974 			/* Let bus know what we have changed */
975 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
976 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
977 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
978 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
979 
980 			if (BWI_REGWIN_EXIST(com)) {
981 				error = bwi_regwin_switch(sc, bus, NULL);
982 				if (error)
983 					return error;
984 			}
985 		} else if (bus->rw_rev >= 11) {
986 			/*
987 			 * Enable memory read multiple
988 			 */
989 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
990 		}
991 	} else {
992 		/* TODO:PCIE */
993 	}
994 
995 	sc->sc_flags |= BWI_F_BUS_INITED;
996 back:
997 	return bwi_regwin_switch(sc, old, NULL);
998 }
999 
1000 static void
1001 bwi_get_card_flags(struct bwi_softc *sc)
1002 {
1003 #define	PCI_VENDOR_APPLE 0x106b
1004 #define	PCI_VENDOR_DELL  0x1028
1005 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1006 	if (sc->sc_card_flags == 0xffff)
1007 		sc->sc_card_flags = 0;
1008 
1009 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1010 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1011 	    sc->sc_pci_revid == 0x74)
1012 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1013 
1014 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1015 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1016 	    sc->sc_pci_revid > 0x40)
1017 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1018 
1019 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1020 #undef PCI_VENDOR_DELL
1021 #undef PCI_VENDOR_APPLE
1022 }
1023 
1024 static void
1025 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1026 {
1027 	int i;
1028 
1029 	for (i = 0; i < 3; ++i) {
1030 		*((uint16_t *)eaddr + i) =
1031 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1032 	}
1033 }
1034 
1035 static void
1036 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1037 {
1038 	struct bwi_regwin *com;
1039 	uint32_t val;
1040 	u_int div;
1041 	int src;
1042 
1043 	bzero(freq, sizeof(*freq));
1044 	com = &sc->sc_com_regwin;
1045 
1046 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1047 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1048 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1049 
1050 	/*
1051 	 * Calculate clock frequency
1052 	 */
1053 	src = -1;
1054 	div = 0;
1055 	if (com->rw_rev < 6) {
1056 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1057 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1058 			src = BWI_CLKSRC_PCI;
1059 			div = 64;
1060 		} else {
1061 			src = BWI_CLKSRC_CS_OSC;
1062 			div = 32;
1063 		}
1064 	} else if (com->rw_rev < 10) {
1065 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1066 
1067 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1068 		if (src == BWI_CLKSRC_LP_OSC) {
1069 			div = 1;
1070 		} else {
1071 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1072 
1073 			/* Unknown source */
1074 			if (src >= BWI_CLKSRC_MAX)
1075 				src = BWI_CLKSRC_CS_OSC;
1076 		}
1077 	} else {
1078 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1079 
1080 		src = BWI_CLKSRC_CS_OSC;
1081 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1082 	}
1083 
1084 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1085 	KASSERT(div != 0, ("div zero"));
1086 
1087 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1088 		src == BWI_CLKSRC_PCI ? "PCI" :
1089 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1090 
1091 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1092 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1093 
1094 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1095 		freq->clkfreq_min, freq->clkfreq_max);
1096 }
1097 
1098 static int
1099 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1100 {
1101 	struct bwi_regwin *old, *com;
1102 	uint32_t clk_ctrl, clk_src;
1103 	int error, pwr_off = 0;
1104 
1105 	com = &sc->sc_com_regwin;
1106 	if (!BWI_REGWIN_EXIST(com))
1107 		return 0;
1108 
1109 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1110 		return 0;
1111 
1112 	/*
1113 	 * For common regwin whose rev is [6, 10), the chip
1114 	 * must be capable to change clock mode.
1115 	 */
1116 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1117 		return 0;
1118 
1119 	error = bwi_regwin_switch(sc, com, &old);
1120 	if (error)
1121 		return error;
1122 
1123 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1124 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1125 
1126 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1127 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1128 
1129 	switch (clk_mode) {
1130 	case BWI_CLOCK_MODE_FAST:
1131 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1132 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1133 		break;
1134 	case BWI_CLOCK_MODE_SLOW:
1135 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1136 		break;
1137 	case BWI_CLOCK_MODE_DYN:
1138 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1139 			      BWI_CLOCK_CTRL_IGNPLL |
1140 			      BWI_CLOCK_CTRL_NODYN);
1141 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1142 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1143 			pwr_off = 1;
1144 		}
1145 		break;
1146 	}
1147 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1148 
1149 	if (pwr_off)
1150 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1151 
1152 	return bwi_regwin_switch(sc, old, NULL);
1153 }
1154 
1155 static int
1156 bwi_set_clock_delay(struct bwi_softc *sc)
1157 {
1158 	struct bwi_regwin *old, *com;
1159 	int error;
1160 
1161 	com = &sc->sc_com_regwin;
1162 	if (!BWI_REGWIN_EXIST(com))
1163 		return 0;
1164 
1165 	error = bwi_regwin_switch(sc, com, &old);
1166 	if (error)
1167 		return error;
1168 
1169 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1170 		if (sc->sc_bbp_rev == 0)
1171 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1172 		else if (sc->sc_bbp_rev == 1)
1173 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1174 	}
1175 
1176 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1177 		if (com->rw_rev >= 10) {
1178 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1179 		} else {
1180 			struct bwi_clock_freq freq;
1181 
1182 			bwi_get_clock_freq(sc, &freq);
1183 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1184 				howmany(freq.clkfreq_max * 150, 1000000));
1185 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1186 				howmany(freq.clkfreq_max * 15, 1000000));
1187 		}
1188 	}
1189 
1190 	return bwi_regwin_switch(sc, old, NULL);
1191 }
1192 
1193 static void
1194 bwi_init(struct bwi_softc *sc)
1195 {
1196 	struct ieee80211com *ic = &sc->sc_ic;
1197 
1198 	BWI_LOCK(sc);
1199 	bwi_init_statechg(sc, 1);
1200 	BWI_UNLOCK(sc);
1201 
1202 	if (sc->sc_flags & BWI_F_RUNNING)
1203 		ieee80211_start_all(ic);		/* start all vap's */
1204 }
1205 
1206 static void
1207 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1208 {
1209 	struct bwi_mac *mac;
1210 	int error;
1211 
1212 	BWI_ASSERT_LOCKED(sc);
1213 
1214 	bwi_stop_locked(sc, statechg);
1215 
1216 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1217 
1218 	/* TODO: 2 MAC */
1219 
1220 	mac = &sc->sc_mac[0];
1221 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1222 	if (error) {
1223 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1224 		    __func__, error);
1225 		goto bad;
1226 	}
1227 	error = bwi_mac_init(mac);
1228 	if (error) {
1229 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1230 		    __func__, error);
1231 		goto bad;
1232 	}
1233 
1234 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1235 
1236 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1237 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1238 
1239 	bwi_mac_reset_hwkeys(mac);
1240 
1241 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1242 		int i;
1243 
1244 #define NRETRY	1000
1245 		/*
1246 		 * Drain any possible pending TX status
1247 		 */
1248 		for (i = 0; i < NRETRY; ++i) {
1249 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1250 			     BWI_TXSTATUS0_VALID) == 0)
1251 				break;
1252 			CSR_READ_4(sc, BWI_TXSTATUS1);
1253 		}
1254 		if (i == NRETRY)
1255 			device_printf(sc->sc_dev,
1256 			    "%s: can't drain TX status\n", __func__);
1257 #undef NRETRY
1258 	}
1259 
1260 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1261 		bwi_mac_updateslot(mac, 1);
1262 
1263 	/* Start MAC */
1264 	error = bwi_mac_start(mac);
1265 	if (error) {
1266 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1267 		    __func__, error);
1268 		goto bad;
1269 	}
1270 
1271 	/* Clear stop flag before enabling interrupt */
1272 	sc->sc_flags &= ~BWI_F_STOP;
1273 	sc->sc_flags |= BWI_F_RUNNING;
1274 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1275 
1276 	/* Enable intrs */
1277 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1278 	return;
1279 bad:
1280 	bwi_stop_locked(sc, 1);
1281 }
1282 
1283 static void
1284 bwi_parent(struct ieee80211com *ic)
1285 {
1286 	struct bwi_softc *sc = ic->ic_softc;
1287 	int startall = 0;
1288 
1289 	BWI_LOCK(sc);
1290 	if (ic->ic_nrunning > 0) {
1291 		struct bwi_mac *mac;
1292 		int promisc = -1;
1293 
1294 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1295 		    ("current regwin type %d",
1296 		    sc->sc_cur_regwin->rw_type));
1297 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1298 
1299 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1300 			promisc = 1;
1301 			sc->sc_flags |= BWI_F_PROMISC;
1302 		} else if (ic->ic_promisc == 0 &&
1303 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1304 			promisc = 0;
1305 			sc->sc_flags &= ~BWI_F_PROMISC;
1306 		}
1307 
1308 		if (promisc >= 0)
1309 			bwi_mac_set_promisc(mac, promisc);
1310 	}
1311 	if (ic->ic_nrunning > 0) {
1312 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1313 			bwi_init_statechg(sc, 1);
1314 			startall = 1;
1315 		}
1316 	} else if (sc->sc_flags & BWI_F_RUNNING)
1317 		bwi_stop_locked(sc, 1);
1318 	BWI_UNLOCK(sc);
1319 	if (startall)
1320 		ieee80211_start_all(ic);
1321 }
1322 
1323 static int
1324 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1325 {
1326 	struct bwi_softc *sc = ic->ic_softc;
1327 	int error;
1328 
1329 	BWI_LOCK(sc);
1330 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1331 		BWI_UNLOCK(sc);
1332 		return (ENXIO);
1333 	}
1334 	error = mbufq_enqueue(&sc->sc_snd, m);
1335 	if (error) {
1336 		BWI_UNLOCK(sc);
1337 		return (error);
1338 	}
1339 	bwi_start_locked(sc);
1340 	BWI_UNLOCK(sc);
1341 	return (0);
1342 }
1343 
1344 static void
1345 bwi_start_locked(struct bwi_softc *sc)
1346 {
1347 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1348 	struct ieee80211_frame *wh;
1349 	struct ieee80211_node *ni;
1350 	struct mbuf *m;
1351 	int trans, idx;
1352 
1353 	BWI_ASSERT_LOCKED(sc);
1354 
1355 	trans = 0;
1356 	idx = tbd->tbd_idx;
1357 
1358 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1359 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1360 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1361 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1362 		wh = mtod(m, struct ieee80211_frame *);
1363 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1364 		    ieee80211_crypto_encap(ni, m) == NULL) {
1365 			if_inc_counter(ni->ni_vap->iv_ifp,
1366 			    IFCOUNTER_OERRORS, 1);
1367 			ieee80211_free_node(ni);
1368 			m_freem(m);
1369 			continue;
1370 		}
1371 		if (bwi_encap(sc, idx, m, ni) != 0) {
1372 			/* 'm' is freed in bwi_encap() if we reach here */
1373 			if (ni != NULL) {
1374 				if_inc_counter(ni->ni_vap->iv_ifp,
1375 				    IFCOUNTER_OERRORS, 1);
1376 				ieee80211_free_node(ni);
1377 			} else
1378 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1379 			continue;
1380 		}
1381 		trans = 1;
1382 		tbd->tbd_used++;
1383 		idx = (idx + 1) % BWI_TX_NDESC;
1384 	}
1385 
1386 	tbd->tbd_idx = idx;
1387 	if (trans)
1388 		sc->sc_tx_timer = 5;
1389 }
1390 
1391 static int
1392 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1393 	const struct ieee80211_bpf_params *params)
1394 {
1395 	struct ieee80211com *ic = ni->ni_ic;
1396 	struct bwi_softc *sc = ic->ic_softc;
1397 	/* XXX wme? */
1398 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1399 	int idx, error;
1400 
1401 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1402 		ieee80211_free_node(ni);
1403 		m_freem(m);
1404 		return ENETDOWN;
1405 	}
1406 
1407 	BWI_LOCK(sc);
1408 	idx = tbd->tbd_idx;
1409 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1410 	if (params == NULL) {
1411 		/*
1412 		 * Legacy path; interpret frame contents to decide
1413 		 * precisely how to send the frame.
1414 		 */
1415 		error = bwi_encap(sc, idx, m, ni);
1416 	} else {
1417 		/*
1418 		 * Caller supplied explicit parameters to use in
1419 		 * sending the frame.
1420 		 */
1421 		error = bwi_encap_raw(sc, idx, m, ni, params);
1422 	}
1423 	if (error == 0) {
1424 		tbd->tbd_used++;
1425 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1426 		sc->sc_tx_timer = 5;
1427 	} else
1428 		/* NB: m is reclaimed on encap failure */
1429 		ieee80211_free_node(ni);
1430 	BWI_UNLOCK(sc);
1431 	return error;
1432 }
1433 
1434 static void
1435 bwi_watchdog(void *arg)
1436 {
1437 	struct bwi_softc *sc;
1438 
1439 	sc = arg;
1440 	BWI_ASSERT_LOCKED(sc);
1441 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1442 		device_printf(sc->sc_dev, "watchdog timeout\n");
1443 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1444 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1445 	}
1446 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1447 }
1448 
1449 static void
1450 bwi_stop(struct bwi_softc *sc, int statechg)
1451 {
1452 	BWI_LOCK(sc);
1453 	bwi_stop_locked(sc, statechg);
1454 	BWI_UNLOCK(sc);
1455 }
1456 
1457 static void
1458 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1459 {
1460 	struct bwi_mac *mac;
1461 	int i, error, pwr_off = 0;
1462 
1463 	BWI_ASSERT_LOCKED(sc);
1464 
1465 	callout_stop(&sc->sc_calib_ch);
1466 	callout_stop(&sc->sc_led_blink_ch);
1467 	sc->sc_led_blinking = 0;
1468 	sc->sc_flags |= BWI_F_STOP;
1469 
1470 	if (sc->sc_flags & BWI_F_RUNNING) {
1471 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1472 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1473 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1474 
1475 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1476 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1477 		bwi_mac_stop(mac);
1478 	}
1479 
1480 	for (i = 0; i < sc->sc_nmac; ++i) {
1481 		struct bwi_regwin *old_rw;
1482 
1483 		mac = &sc->sc_mac[i];
1484 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1485 			continue;
1486 
1487 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1488 		if (error)
1489 			continue;
1490 
1491 		bwi_mac_shutdown(mac);
1492 		pwr_off = 1;
1493 
1494 		bwi_regwin_switch(sc, old_rw, NULL);
1495 	}
1496 
1497 	if (pwr_off)
1498 		bwi_bbp_power_off(sc);
1499 
1500 	sc->sc_tx_timer = 0;
1501 	callout_stop(&sc->sc_watchdog_timer);
1502 	sc->sc_flags &= ~BWI_F_RUNNING;
1503 }
1504 
1505 void
1506 bwi_intr(void *xsc)
1507 {
1508 	struct bwi_softc *sc = xsc;
1509 	struct bwi_mac *mac;
1510 	uint32_t intr_status;
1511 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1512 	int i, txrx_error, tx = 0, rx_data = -1;
1513 
1514 	BWI_LOCK(sc);
1515 
1516 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1517 	    (sc->sc_flags & BWI_F_STOP)) {
1518 		BWI_UNLOCK(sc);
1519 		return;
1520 	}
1521 	/*
1522 	 * Get interrupt status
1523 	 */
1524 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1525 	if (intr_status == 0xffffffff) {	/* Not for us */
1526 		BWI_UNLOCK(sc);
1527 		return;
1528 	}
1529 
1530 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1531 
1532 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1533 	if (intr_status == 0) {		/* Nothing is interesting */
1534 		BWI_UNLOCK(sc);
1535 		return;
1536 	}
1537 
1538 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1539 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1540 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1541 
1542 	txrx_error = 0;
1543 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1544 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1545 		uint32_t mask;
1546 
1547 		if (BWI_TXRX_IS_RX(i))
1548 			mask = BWI_TXRX_RX_INTRS;
1549 		else
1550 			mask = BWI_TXRX_TX_INTRS;
1551 
1552 		txrx_intr_status[i] =
1553 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1554 
1555 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1556 			 i, txrx_intr_status[i]);
1557 
1558 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1559 			device_printf(sc->sc_dev,
1560 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1561 			    __func__, i, txrx_intr_status[i]);
1562 			txrx_error = 1;
1563 		}
1564 	}
1565 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1566 
1567 	/*
1568 	 * Acknowledge interrupt
1569 	 */
1570 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1571 
1572 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1573 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1574 
1575 	/* Disable all interrupts */
1576 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1577 
1578 	/*
1579 	 * http://bcm-specs.sipsolutions.net/Interrupts
1580 	 * Says for this bit (0x800):
1581 	 * "Fatal Error
1582 	 *
1583 	 * We got this one while testing things when by accident the
1584 	 * template ram wasn't set to big endian when it should have
1585 	 * been after writing the initial values. It keeps on being
1586 	 * triggered, the only way to stop it seems to shut down the
1587 	 * chip."
1588 	 *
1589 	 * Suggesting that we should never get it and if we do we're not
1590 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1591 	 * it is valid only on mac version 5 and higher, but I couldn't
1592 	 * find a reference for that...  Since I see them from time to time
1593 	 * on my card, this suggests an error in the tx path still...
1594 	 */
1595 	if (intr_status & BWI_INTR_PHY_TXERR) {
1596 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1597 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1598 			    __func__);
1599 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1600 			BWI_UNLOCK(sc);
1601 			return;
1602 		}
1603 	}
1604 
1605 	if (txrx_error) {
1606 		/* TODO: reset device */
1607 	}
1608 
1609 	if (intr_status & BWI_INTR_TBTT)
1610 		bwi_mac_config_ps(mac);
1611 
1612 	if (intr_status & BWI_INTR_EO_ATIM)
1613 		device_printf(sc->sc_dev, "EO_ATIM\n");
1614 
1615 	if (intr_status & BWI_INTR_PMQ) {
1616 		for (;;) {
1617 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1618 				break;
1619 		}
1620 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1621 	}
1622 
1623 	if (intr_status & BWI_INTR_NOISE)
1624 		device_printf(sc->sc_dev, "intr noise\n");
1625 
1626 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1627 		rx_data = sc->sc_rxeof(sc);
1628 		if (sc->sc_flags & BWI_F_STOP) {
1629 			BWI_UNLOCK(sc);
1630 			return;
1631 		}
1632 	}
1633 
1634 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1635 		sc->sc_txeof_status(sc);
1636 		tx = 1;
1637 	}
1638 
1639 	if (intr_status & BWI_INTR_TX_DONE) {
1640 		bwi_txeof(sc);
1641 		tx = 1;
1642 	}
1643 
1644 	/* Re-enable interrupts */
1645 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1646 
1647 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1648 		int evt = BWI_LED_EVENT_NONE;
1649 
1650 		if (tx && rx_data > 0) {
1651 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1652 				evt = BWI_LED_EVENT_RX;
1653 			else
1654 				evt = BWI_LED_EVENT_TX;
1655 		} else if (tx) {
1656 			evt = BWI_LED_EVENT_TX;
1657 		} else if (rx_data > 0) {
1658 			evt = BWI_LED_EVENT_RX;
1659 		} else if (rx_data == 0) {
1660 			evt = BWI_LED_EVENT_POLL;
1661 		}
1662 
1663 		if (evt != BWI_LED_EVENT_NONE)
1664 			bwi_led_event(sc, evt);
1665 	}
1666 
1667 	BWI_UNLOCK(sc);
1668 }
1669 
1670 static void
1671 bwi_scan_start(struct ieee80211com *ic)
1672 {
1673 	struct bwi_softc *sc = ic->ic_softc;
1674 
1675 	BWI_LOCK(sc);
1676 	/* Enable MAC beacon promiscuity */
1677 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1678 	BWI_UNLOCK(sc);
1679 }
1680 
1681 static void
1682 bwi_set_channel(struct ieee80211com *ic)
1683 {
1684 	struct bwi_softc *sc = ic->ic_softc;
1685 	struct ieee80211_channel *c = ic->ic_curchan;
1686 	struct bwi_mac *mac;
1687 
1688 	BWI_LOCK(sc);
1689 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1690 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1691 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1692 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1693 
1694 	sc->sc_rates = ieee80211_get_ratetable(c);
1695 
1696 	/*
1697 	 * Setup radio tap channel freq and flags
1698 	 */
1699 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1700 		htole16(c->ic_freq);
1701 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1702 		htole16(c->ic_flags & 0xffff);
1703 
1704 	BWI_UNLOCK(sc);
1705 }
1706 
1707 static void
1708 bwi_scan_end(struct ieee80211com *ic)
1709 {
1710 	struct bwi_softc *sc = ic->ic_softc;
1711 
1712 	BWI_LOCK(sc);
1713 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1714 	BWI_UNLOCK(sc);
1715 }
1716 
1717 static int
1718 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1719 {
1720 	struct bwi_vap *bvp = BWI_VAP(vap);
1721 	struct ieee80211com *ic= vap->iv_ic;
1722 	struct bwi_softc *sc = ic->ic_softc;
1723 	enum ieee80211_state ostate = vap->iv_state;
1724 	struct bwi_mac *mac;
1725 	int error;
1726 
1727 	BWI_LOCK(sc);
1728 
1729 	callout_stop(&sc->sc_calib_ch);
1730 
1731 	if (nstate == IEEE80211_S_INIT)
1732 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1733 
1734 	bwi_led_newstate(sc, nstate);
1735 
1736 	error = bvp->bv_newstate(vap, nstate, arg);
1737 	if (error != 0)
1738 		goto back;
1739 
1740 	/*
1741 	 * Clear the BSSID when we stop a STA
1742 	 */
1743 	if (vap->iv_opmode == IEEE80211_M_STA) {
1744 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1745 			/*
1746 			 * Clear out the BSSID.  If we reassociate to
1747 			 * the same AP, this will reinialize things
1748 			 * correctly...
1749 			 */
1750 			if (ic->ic_opmode == IEEE80211_M_STA &&
1751 			    !(sc->sc_flags & BWI_F_STOP))
1752 				bwi_set_bssid(sc, bwi_zero_addr);
1753 		}
1754 	}
1755 
1756 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1757 		/* Nothing to do */
1758 	} else if (nstate == IEEE80211_S_RUN) {
1759 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1760 
1761 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1762 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1763 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1764 
1765 		/* Initial TX power calibration */
1766 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1767 #ifdef notyet
1768 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1769 #else
1770 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1771 #endif
1772 
1773 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1774 	}
1775 back:
1776 	BWI_UNLOCK(sc);
1777 
1778 	return error;
1779 }
1780 
1781 static int
1782 bwi_media_change(struct ifnet *ifp)
1783 {
1784 	int error = ieee80211_media_change(ifp);
1785 	/* NB: only the fixed rate can change and that doesn't need a reset */
1786 	return (error == ENETRESET ? 0 : error);
1787 }
1788 
1789 static int
1790 bwi_dma_alloc(struct bwi_softc *sc)
1791 {
1792 	int error, i, has_txstats;
1793 	bus_addr_t lowaddr = 0;
1794 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1795 	uint32_t txrx_ctrl_step = 0;
1796 
1797 	has_txstats = 0;
1798 	for (i = 0; i < sc->sc_nmac; ++i) {
1799 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1800 			has_txstats = 1;
1801 			break;
1802 		}
1803 	}
1804 
1805 	switch (sc->sc_bus_space) {
1806 	case BWI_BUS_SPACE_30BIT:
1807 	case BWI_BUS_SPACE_32BIT:
1808 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1809 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1810 		else
1811 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1812 		desc_sz = sizeof(struct bwi_desc32);
1813 		txrx_ctrl_step = 0x20;
1814 
1815 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1816 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1817 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1818 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1819 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1820 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1821 		sc->sc_rxeof = bwi_rxeof32;
1822 		sc->sc_start_tx = bwi_start_tx32;
1823 		if (has_txstats) {
1824 			sc->sc_init_txstats = bwi_init_txstats32;
1825 			sc->sc_free_txstats = bwi_free_txstats32;
1826 			sc->sc_txeof_status = bwi_txeof_status32;
1827 		}
1828 		break;
1829 
1830 	case BWI_BUS_SPACE_64BIT:
1831 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1832 		desc_sz = sizeof(struct bwi_desc64);
1833 		txrx_ctrl_step = 0x40;
1834 
1835 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1836 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1837 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1838 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1839 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1840 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1841 		sc->sc_rxeof = bwi_rxeof64;
1842 		sc->sc_start_tx = bwi_start_tx64;
1843 		if (has_txstats) {
1844 			sc->sc_init_txstats = bwi_init_txstats64;
1845 			sc->sc_free_txstats = bwi_free_txstats64;
1846 			sc->sc_txeof_status = bwi_txeof_status64;
1847 		}
1848 		break;
1849 	}
1850 
1851 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1852 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1853 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1854 
1855 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1856 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1857 
1858 	/*
1859 	 * Create top level DMA tag
1860 	 */
1861 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1862 			       BWI_ALIGN, 0,		/* alignment, bounds */
1863 			       lowaddr,			/* lowaddr */
1864 			       BUS_SPACE_MAXADDR,	/* highaddr */
1865 			       NULL, NULL,		/* filter, filterarg */
1866 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1867 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1868 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1869 			       0,			/* flags */
1870 			       NULL, NULL,		/* lockfunc, lockarg */
1871 			       &sc->sc_parent_dtag);
1872 	if (error) {
1873 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1874 		return error;
1875 	}
1876 
1877 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1878 
1879 	/*
1880 	 * Create TX ring DMA stuffs
1881 	 */
1882 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1883 				BWI_RING_ALIGN, 0,
1884 				BUS_SPACE_MAXADDR,
1885 				BUS_SPACE_MAXADDR,
1886 				NULL, NULL,
1887 				tx_ring_sz,
1888 				1,
1889 				tx_ring_sz,
1890 				0,
1891 				NULL, NULL,
1892 				&sc->sc_txring_dtag);
1893 	if (error) {
1894 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1895 		return error;
1896 	}
1897 
1898 	for (i = 0; i < BWI_TX_NRING; ++i) {
1899 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1900 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1901 					   TXRX_CTRL(i));
1902 		if (error) {
1903 			device_printf(sc->sc_dev, "%dth TX ring "
1904 				      "DMA alloc failed\n", i);
1905 			return error;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * Create RX ring DMA stuffs
1911 	 */
1912 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1913 				BWI_RING_ALIGN, 0,
1914 				BUS_SPACE_MAXADDR,
1915 				BUS_SPACE_MAXADDR,
1916 				NULL, NULL,
1917 				rx_ring_sz,
1918 				1,
1919 				rx_ring_sz,
1920 				0,
1921 				NULL, NULL,
1922 				&sc->sc_rxring_dtag);
1923 	if (error) {
1924 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1925 		return error;
1926 	}
1927 
1928 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1929 				   rx_ring_sz, TXRX_CTRL(0));
1930 	if (error) {
1931 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1932 		return error;
1933 	}
1934 
1935 	if (has_txstats) {
1936 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1937 		if (error) {
1938 			device_printf(sc->sc_dev,
1939 				      "TX stats DMA alloc failed\n");
1940 			return error;
1941 		}
1942 	}
1943 
1944 #undef TXRX_CTRL
1945 
1946 	return bwi_dma_mbuf_create(sc);
1947 }
1948 
1949 static void
1950 bwi_dma_free(struct bwi_softc *sc)
1951 {
1952 	if (sc->sc_txring_dtag != NULL) {
1953 		int i;
1954 
1955 		for (i = 0; i < BWI_TX_NRING; ++i) {
1956 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1957 
1958 			if (rd->rdata_desc != NULL) {
1959 				bus_dmamap_unload(sc->sc_txring_dtag,
1960 						  rd->rdata_dmap);
1961 				bus_dmamem_free(sc->sc_txring_dtag,
1962 						rd->rdata_desc,
1963 						rd->rdata_dmap);
1964 			}
1965 		}
1966 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1967 	}
1968 
1969 	if (sc->sc_rxring_dtag != NULL) {
1970 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1971 
1972 		if (rd->rdata_desc != NULL) {
1973 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1974 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1975 					rd->rdata_dmap);
1976 		}
1977 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1978 	}
1979 
1980 	bwi_dma_txstats_free(sc);
1981 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
1982 
1983 	if (sc->sc_parent_dtag != NULL)
1984 		bus_dma_tag_destroy(sc->sc_parent_dtag);
1985 }
1986 
1987 static int
1988 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
1989 		   struct bwi_ring_data *rd, bus_size_t size,
1990 		   uint32_t txrx_ctrl)
1991 {
1992 	int error;
1993 
1994 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
1995 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1996 				 &rd->rdata_dmap);
1997 	if (error) {
1998 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
1999 		return error;
2000 	}
2001 
2002 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2003 				bwi_dma_ring_addr, &rd->rdata_paddr,
2004 				BUS_DMA_NOWAIT);
2005 	if (error) {
2006 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2007 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2008 		rd->rdata_desc = NULL;
2009 		return error;
2010 	}
2011 
2012 	rd->rdata_txrx_ctrl = txrx_ctrl;
2013 	return 0;
2014 }
2015 
2016 static int
2017 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2018 		      bus_size_t desc_sz)
2019 {
2020 	struct bwi_txstats_data *st;
2021 	bus_size_t dma_size;
2022 	int error;
2023 
2024 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2025 	if (st == NULL) {
2026 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2027 		return ENOMEM;
2028 	}
2029 	sc->sc_txstats = st;
2030 
2031 	/*
2032 	 * Create TX stats descriptor DMA stuffs
2033 	 */
2034 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2035 
2036 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2037 				BWI_RING_ALIGN,
2038 				0,
2039 				BUS_SPACE_MAXADDR,
2040 				BUS_SPACE_MAXADDR,
2041 				NULL, NULL,
2042 				dma_size,
2043 				1,
2044 				dma_size,
2045 				0,
2046 				NULL, NULL,
2047 				&st->stats_ring_dtag);
2048 	if (error) {
2049 		device_printf(sc->sc_dev, "can't create txstats ring "
2050 			      "DMA tag\n");
2051 		return error;
2052 	}
2053 
2054 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2055 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2056 				 &st->stats_ring_dmap);
2057 	if (error) {
2058 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2059 			      "DMA mem\n");
2060 		bus_dma_tag_destroy(st->stats_ring_dtag);
2061 		st->stats_ring_dtag = NULL;
2062 		return error;
2063 	}
2064 
2065 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2066 				st->stats_ring, dma_size,
2067 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2068 				BUS_DMA_NOWAIT);
2069 	if (error) {
2070 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2071 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2072 				st->stats_ring_dmap);
2073 		bus_dma_tag_destroy(st->stats_ring_dtag);
2074 		st->stats_ring_dtag = NULL;
2075 		return error;
2076 	}
2077 
2078 	/*
2079 	 * Create TX stats DMA stuffs
2080 	 */
2081 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2082 			   BWI_ALIGN);
2083 
2084 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2085 				BWI_ALIGN,
2086 				0,
2087 				BUS_SPACE_MAXADDR,
2088 				BUS_SPACE_MAXADDR,
2089 				NULL, NULL,
2090 				dma_size,
2091 				1,
2092 				dma_size,
2093 				0,
2094 				NULL, NULL,
2095 				&st->stats_dtag);
2096 	if (error) {
2097 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2098 		return error;
2099 	}
2100 
2101 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2102 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2103 				 &st->stats_dmap);
2104 	if (error) {
2105 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2106 		bus_dma_tag_destroy(st->stats_dtag);
2107 		st->stats_dtag = NULL;
2108 		return error;
2109 	}
2110 
2111 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2112 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2113 				BUS_DMA_NOWAIT);
2114 	if (error) {
2115 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2116 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2117 		bus_dma_tag_destroy(st->stats_dtag);
2118 		st->stats_dtag = NULL;
2119 		return error;
2120 	}
2121 
2122 	st->stats_ctrl_base = ctrl_base;
2123 	return 0;
2124 }
2125 
2126 static void
2127 bwi_dma_txstats_free(struct bwi_softc *sc)
2128 {
2129 	struct bwi_txstats_data *st;
2130 
2131 	if (sc->sc_txstats == NULL)
2132 		return;
2133 	st = sc->sc_txstats;
2134 
2135 	if (st->stats_ring_dtag != NULL) {
2136 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2137 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2138 				st->stats_ring_dmap);
2139 		bus_dma_tag_destroy(st->stats_ring_dtag);
2140 	}
2141 
2142 	if (st->stats_dtag != NULL) {
2143 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2144 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2145 		bus_dma_tag_destroy(st->stats_dtag);
2146 	}
2147 
2148 	free(st, M_DEVBUF);
2149 }
2150 
2151 static void
2152 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2153 {
2154 	KASSERT(nseg == 1, ("too many segments\n"));
2155 	*((bus_addr_t *)arg) = seg->ds_addr;
2156 }
2157 
2158 static int
2159 bwi_dma_mbuf_create(struct bwi_softc *sc)
2160 {
2161 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2162 	int i, j, k, ntx, error;
2163 
2164 	/*
2165 	 * Create TX/RX mbuf DMA tag
2166 	 */
2167 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2168 				1,
2169 				0,
2170 				BUS_SPACE_MAXADDR,
2171 				BUS_SPACE_MAXADDR,
2172 				NULL, NULL,
2173 				MCLBYTES,
2174 				1,
2175 				MCLBYTES,
2176 				BUS_DMA_ALLOCNOW,
2177 				NULL, NULL,
2178 				&sc->sc_buf_dtag);
2179 	if (error) {
2180 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2181 		return error;
2182 	}
2183 
2184 	ntx = 0;
2185 
2186 	/*
2187 	 * Create TX mbuf DMA map
2188 	 */
2189 	for (i = 0; i < BWI_TX_NRING; ++i) {
2190 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2191 
2192 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2193 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2194 						  &tbd->tbd_buf[j].tb_dmap);
2195 			if (error) {
2196 				device_printf(sc->sc_dev, "can't create "
2197 					      "%dth tbd, %dth DMA map\n", i, j);
2198 
2199 				ntx = i;
2200 				for (k = 0; k < j; ++k) {
2201 					bus_dmamap_destroy(sc->sc_buf_dtag,
2202 						tbd->tbd_buf[k].tb_dmap);
2203 				}
2204 				goto fail;
2205 			}
2206 		}
2207 	}
2208 	ntx = BWI_TX_NRING;
2209 
2210 	/*
2211 	 * Create RX mbuf DMA map and a spare DMA map
2212 	 */
2213 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2214 				  &rbd->rbd_tmp_dmap);
2215 	if (error) {
2216 		device_printf(sc->sc_dev,
2217 			      "can't create spare RX buf DMA map\n");
2218 		goto fail;
2219 	}
2220 
2221 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2222 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2223 					  &rbd->rbd_buf[j].rb_dmap);
2224 		if (error) {
2225 			device_printf(sc->sc_dev, "can't create %dth "
2226 				      "RX buf DMA map\n", j);
2227 
2228 			for (k = 0; k < j; ++k) {
2229 				bus_dmamap_destroy(sc->sc_buf_dtag,
2230 					rbd->rbd_buf[j].rb_dmap);
2231 			}
2232 			bus_dmamap_destroy(sc->sc_buf_dtag,
2233 					   rbd->rbd_tmp_dmap);
2234 			goto fail;
2235 		}
2236 	}
2237 
2238 	return 0;
2239 fail:
2240 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2241 	return error;
2242 }
2243 
2244 static void
2245 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2246 {
2247 	int i, j;
2248 
2249 	if (sc->sc_buf_dtag == NULL)
2250 		return;
2251 
2252 	for (i = 0; i < ntx; ++i) {
2253 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2254 
2255 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2256 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2257 
2258 			if (tb->tb_mbuf != NULL) {
2259 				bus_dmamap_unload(sc->sc_buf_dtag,
2260 						  tb->tb_dmap);
2261 				m_freem(tb->tb_mbuf);
2262 			}
2263 			if (tb->tb_ni != NULL)
2264 				ieee80211_free_node(tb->tb_ni);
2265 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2266 		}
2267 	}
2268 
2269 	if (nrx) {
2270 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2271 
2272 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2273 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2274 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2275 
2276 			if (rb->rb_mbuf != NULL) {
2277 				bus_dmamap_unload(sc->sc_buf_dtag,
2278 						  rb->rb_dmap);
2279 				m_freem(rb->rb_mbuf);
2280 			}
2281 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2282 		}
2283 	}
2284 
2285 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2286 	sc->sc_buf_dtag = NULL;
2287 }
2288 
2289 static void
2290 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2291 {
2292 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2293 }
2294 
2295 static void
2296 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2297 {
2298 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2299 }
2300 
2301 static int
2302 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2303 {
2304 	struct bwi_ring_data *rd;
2305 	struct bwi_txbuf_data *tbd;
2306 	uint32_t val, addr_hi, addr_lo;
2307 
2308 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2309 	rd = &sc->sc_tx_rdata[ring_idx];
2310 	tbd = &sc->sc_tx_bdata[ring_idx];
2311 
2312 	tbd->tbd_idx = 0;
2313 	tbd->tbd_used = 0;
2314 
2315 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2316 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2317 			BUS_DMASYNC_PREWRITE);
2318 
2319 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2320 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2321 
2322 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2323 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2324 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2325 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2326 
2327 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2328 	      BWI_TXRX32_CTRL_ENABLE;
2329 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2330 
2331 	return 0;
2332 }
2333 
2334 static void
2335 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2336 		       bus_addr_t paddr, int hdr_size, int ndesc)
2337 {
2338 	uint32_t val, addr_hi, addr_lo;
2339 
2340 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2341 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2342 
2343 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2344 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2345 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2346 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2347 
2348 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2349 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2350 	      BWI_TXRX32_CTRL_ENABLE;
2351 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2352 
2353 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2354 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2355 }
2356 
2357 static int
2358 bwi_init_rx_ring32(struct bwi_softc *sc)
2359 {
2360 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2361 	int i, error;
2362 
2363 	sc->sc_rx_bdata.rbd_idx = 0;
2364 
2365 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2366 		error = bwi_newbuf(sc, i, 1);
2367 		if (error) {
2368 			device_printf(sc->sc_dev,
2369 				  "can't allocate %dth RX buffer\n", i);
2370 			return error;
2371 		}
2372 	}
2373 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2374 			BUS_DMASYNC_PREWRITE);
2375 
2376 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2377 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2378 	return 0;
2379 }
2380 
2381 static int
2382 bwi_init_txstats32(struct bwi_softc *sc)
2383 {
2384 	struct bwi_txstats_data *st = sc->sc_txstats;
2385 	bus_addr_t stats_paddr;
2386 	int i;
2387 
2388 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2389 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2390 
2391 	st->stats_idx = 0;
2392 
2393 	stats_paddr = st->stats_paddr;
2394 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2395 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2396 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2397 		stats_paddr += sizeof(struct bwi_txstats);
2398 	}
2399 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2400 			BUS_DMASYNC_PREWRITE);
2401 
2402 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2403 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2404 	return 0;
2405 }
2406 
2407 static void
2408 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2409 		    int buf_len)
2410 {
2411 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2412 
2413 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2414 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2415 			 paddr, buf_len, 0);
2416 }
2417 
2418 static void
2419 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2420 		    int buf_idx, bus_addr_t paddr, int buf_len)
2421 {
2422 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2423 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2424 			 paddr, buf_len, 1);
2425 }
2426 
2427 static int
2428 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2429 {
2430 	/* TODO:64 */
2431 	return EOPNOTSUPP;
2432 }
2433 
2434 static int
2435 bwi_init_rx_ring64(struct bwi_softc *sc)
2436 {
2437 	/* TODO:64 */
2438 	return EOPNOTSUPP;
2439 }
2440 
2441 static int
2442 bwi_init_txstats64(struct bwi_softc *sc)
2443 {
2444 	/* TODO:64 */
2445 	return EOPNOTSUPP;
2446 }
2447 
2448 static void
2449 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2450 		    int buf_len)
2451 {
2452 	/* TODO:64 */
2453 }
2454 
2455 static void
2456 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2457 		    int buf_idx, bus_addr_t paddr, int buf_len)
2458 {
2459 	/* TODO:64 */
2460 }
2461 
2462 static void
2463 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2464 		 bus_size_t mapsz __unused, int error)
2465 {
2466         if (!error) {
2467 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2468 		*((bus_addr_t *)arg) = seg->ds_addr;
2469 	}
2470 }
2471 
2472 static int
2473 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2474 {
2475 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2476 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2477 	struct bwi_rxbuf_hdr *hdr;
2478 	bus_dmamap_t map;
2479 	bus_addr_t paddr;
2480 	struct mbuf *m;
2481 	int error;
2482 
2483 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2484 
2485 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2486 	if (m == NULL) {
2487 		error = ENOBUFS;
2488 
2489 		/*
2490 		 * If the NIC is up and running, we need to:
2491 		 * - Clear RX buffer's header.
2492 		 * - Restore RX descriptor settings.
2493 		 */
2494 		if (init)
2495 			return error;
2496 		else
2497 			goto back;
2498 	}
2499 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2500 
2501 	/*
2502 	 * Try to load RX buf into temporary DMA map
2503 	 */
2504 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2505 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2506 	if (error) {
2507 		m_freem(m);
2508 
2509 		/*
2510 		 * See the comment above
2511 		 */
2512 		if (init)
2513 			return error;
2514 		else
2515 			goto back;
2516 	}
2517 
2518 	if (!init)
2519 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2520 	rxbuf->rb_mbuf = m;
2521 	rxbuf->rb_paddr = paddr;
2522 
2523 	/*
2524 	 * Swap RX buf's DMA map with the loaded temporary one
2525 	 */
2526 	map = rxbuf->rb_dmap;
2527 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2528 	rbd->rbd_tmp_dmap = map;
2529 
2530 back:
2531 	/*
2532 	 * Clear RX buf header
2533 	 */
2534 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2535 	bzero(hdr, sizeof(*hdr));
2536 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2537 
2538 	/*
2539 	 * Setup RX buf descriptor
2540 	 */
2541 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2542 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2543 	return error;
2544 }
2545 
2546 static void
2547 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2548 		    const uint8_t *addr)
2549 {
2550 	int i;
2551 
2552 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2553 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2554 
2555 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2556 		uint16_t addr_val;
2557 
2558 		addr_val = (uint16_t)addr[i * 2] |
2559 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2560 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2561 	}
2562 }
2563 
2564 static int
2565 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2566 {
2567 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2568 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2569 	struct ieee80211com *ic = &sc->sc_ic;
2570 	int idx, rx_data = 0;
2571 
2572 	idx = rbd->rbd_idx;
2573 	while (idx != end_idx) {
2574 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2575 		struct bwi_rxbuf_hdr *hdr;
2576 		struct ieee80211_frame_min *wh;
2577 		struct ieee80211_node *ni;
2578 		struct mbuf *m;
2579 		uint32_t plcp;
2580 		uint16_t flags2;
2581 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2582 
2583 		m = rb->rb_mbuf;
2584 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2585 				BUS_DMASYNC_POSTREAD);
2586 
2587 		if (bwi_newbuf(sc, idx, 0)) {
2588 			counter_u64_add(ic->ic_ierrors, 1);
2589 			goto next;
2590 		}
2591 
2592 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2593 		flags2 = le16toh(hdr->rxh_flags2);
2594 
2595 		hdr_extra = 0;
2596 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2597 			hdr_extra = 2;
2598 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2599 
2600 		buflen = le16toh(hdr->rxh_buflen);
2601 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2602 			device_printf(sc->sc_dev,
2603 			    "%s: zero length data, hdr_extra %d\n",
2604 			    __func__, hdr_extra);
2605 			counter_u64_add(ic->ic_ierrors, 1);
2606 			m_freem(m);
2607 			goto next;
2608 		}
2609 
2610 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2611 		rssi = bwi_calc_rssi(sc, hdr);
2612 		noise = bwi_calc_noise(sc);
2613 
2614 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2615 		m_adj(m, sizeof(*hdr) + wh_ofs);
2616 
2617 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2618 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2619 		else
2620 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2621 
2622 		/* RX radio tap */
2623 		if (ieee80211_radiotap_active(ic))
2624 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2625 
2626 		m_adj(m, -IEEE80211_CRC_LEN);
2627 
2628 		BWI_UNLOCK(sc);
2629 
2630 		wh = mtod(m, struct ieee80211_frame_min *);
2631 		ni = ieee80211_find_rxnode(ic, wh);
2632 		if (ni != NULL) {
2633 			type = ieee80211_input(ni, m, rssi - noise, noise);
2634 			ieee80211_free_node(ni);
2635 		} else
2636 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2637 		if (type == IEEE80211_FC0_TYPE_DATA) {
2638 			rx_data = 1;
2639 			sc->sc_rx_rate = rate;
2640 		}
2641 
2642 		BWI_LOCK(sc);
2643 next:
2644 		idx = (idx + 1) % BWI_RX_NDESC;
2645 
2646 		if (sc->sc_flags & BWI_F_STOP) {
2647 			/*
2648 			 * Take the fast lane, don't do
2649 			 * any damage to softc
2650 			 */
2651 			return -1;
2652 		}
2653 	}
2654 
2655 	rbd->rbd_idx = idx;
2656 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2657 			BUS_DMASYNC_PREWRITE);
2658 
2659 	return rx_data;
2660 }
2661 
2662 static int
2663 bwi_rxeof32(struct bwi_softc *sc)
2664 {
2665 	uint32_t val, rx_ctrl;
2666 	int end_idx, rx_data;
2667 
2668 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2669 
2670 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2671 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2672 		  sizeof(struct bwi_desc32);
2673 
2674 	rx_data = bwi_rxeof(sc, end_idx);
2675 	if (rx_data >= 0) {
2676 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2677 			    end_idx * sizeof(struct bwi_desc32));
2678 	}
2679 	return rx_data;
2680 }
2681 
2682 static int
2683 bwi_rxeof64(struct bwi_softc *sc)
2684 {
2685 	/* TODO:64 */
2686 	return 0;
2687 }
2688 
2689 static void
2690 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2691 {
2692 	int i;
2693 
2694 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2695 
2696 #define NRETRY 10
2697 
2698 	for (i = 0; i < NRETRY; ++i) {
2699 		uint32_t status;
2700 
2701 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2702 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2703 		    BWI_RX32_STATUS_STATE_DISABLED)
2704 			break;
2705 
2706 		DELAY(1000);
2707 	}
2708 	if (i == NRETRY)
2709 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2710 
2711 #undef NRETRY
2712 
2713 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2714 }
2715 
2716 static void
2717 bwi_free_txstats32(struct bwi_softc *sc)
2718 {
2719 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2720 }
2721 
2722 static void
2723 bwi_free_rx_ring32(struct bwi_softc *sc)
2724 {
2725 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2726 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2727 	int i;
2728 
2729 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2730 
2731 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2732 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2733 
2734 		if (rb->rb_mbuf != NULL) {
2735 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2736 			m_freem(rb->rb_mbuf);
2737 			rb->rb_mbuf = NULL;
2738 		}
2739 	}
2740 }
2741 
2742 static void
2743 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2744 {
2745 	struct bwi_ring_data *rd;
2746 	struct bwi_txbuf_data *tbd;
2747 	uint32_t state, val;
2748 	int i;
2749 
2750 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2751 	rd = &sc->sc_tx_rdata[ring_idx];
2752 	tbd = &sc->sc_tx_bdata[ring_idx];
2753 
2754 #define NRETRY 10
2755 
2756 	for (i = 0; i < NRETRY; ++i) {
2757 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2758 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2759 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2760 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2761 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2762 			break;
2763 
2764 		DELAY(1000);
2765 	}
2766 	if (i == NRETRY) {
2767 		device_printf(sc->sc_dev,
2768 		    "%s: wait for TX ring(%d) stable timed out\n",
2769 		    __func__, ring_idx);
2770 	}
2771 
2772 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2773 	for (i = 0; i < NRETRY; ++i) {
2774 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2775 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2776 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2777 			break;
2778 
2779 		DELAY(1000);
2780 	}
2781 	if (i == NRETRY)
2782 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2783 		     __func__, ring_idx);
2784 
2785 #undef NRETRY
2786 
2787 	DELAY(1000);
2788 
2789 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2790 
2791 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2792 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2793 
2794 		if (tb->tb_mbuf != NULL) {
2795 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2796 			m_freem(tb->tb_mbuf);
2797 			tb->tb_mbuf = NULL;
2798 		}
2799 		if (tb->tb_ni != NULL) {
2800 			ieee80211_free_node(tb->tb_ni);
2801 			tb->tb_ni = NULL;
2802 		}
2803 	}
2804 }
2805 
2806 static void
2807 bwi_free_txstats64(struct bwi_softc *sc)
2808 {
2809 	/* TODO:64 */
2810 }
2811 
2812 static void
2813 bwi_free_rx_ring64(struct bwi_softc *sc)
2814 {
2815 	/* TODO:64 */
2816 }
2817 
2818 static void
2819 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2820 {
2821 	/* TODO:64 */
2822 }
2823 
2824 /* XXX does not belong here */
2825 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2826 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2827 
2828 static __inline void
2829 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2830 {
2831 	uint32_t plcp;
2832 
2833 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2834 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2835 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2836 	*plcp0 = htole32(plcp);
2837 }
2838 
2839 static __inline void
2840 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2841 		   uint8_t rate)
2842 {
2843 	int len, service, pkt_bitlen;
2844 
2845 	pkt_bitlen = pkt_len * NBBY;
2846 	len = howmany(pkt_bitlen * 2, rate);
2847 
2848 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2849 	if (rate == (11 * 2)) {
2850 		int pkt_bitlen1;
2851 
2852 		/*
2853 		 * PLCP service field needs to be adjusted,
2854 		 * if TX rate is 11Mbytes/s
2855 		 */
2856 		pkt_bitlen1 = len * 11;
2857 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2858 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2859 	}
2860 
2861 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2862 	plcp->i_service = service;
2863 	plcp->i_length = htole16(len);
2864 	/* NOTE: do NOT touch i_crc */
2865 }
2866 
2867 static __inline void
2868 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2869 	void *plcp, int pkt_len, uint8_t rate)
2870 {
2871 	enum ieee80211_phytype modtype;
2872 
2873 	/*
2874 	 * Assume caller has zeroed 'plcp'
2875 	 */
2876 	modtype = ieee80211_rate2phytype(rt, rate);
2877 	if (modtype == IEEE80211_T_OFDM)
2878 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2879 	else if (modtype == IEEE80211_T_DS)
2880 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2881 	else
2882 		panic("unsupport modulation type %u\n", modtype);
2883 }
2884 
2885 static int
2886 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2887 	  struct ieee80211_node *ni)
2888 {
2889 	struct ieee80211vap *vap = ni->ni_vap;
2890 	struct ieee80211com *ic = &sc->sc_ic;
2891 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2892 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2893 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2894 	struct bwi_mac *mac;
2895 	struct bwi_txbuf_hdr *hdr;
2896 	struct ieee80211_frame *wh;
2897 	const struct ieee80211_txparam *tp;
2898 	uint8_t rate, rate_fb;
2899 	uint32_t mac_ctrl;
2900 	uint16_t phy_ctrl;
2901 	bus_addr_t paddr;
2902 	int type, ismcast, pkt_len, error, rix;
2903 #if 0
2904 	const uint8_t *p;
2905 	int i;
2906 #endif
2907 
2908 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2909 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2910 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2911 
2912 	wh = mtod(m, struct ieee80211_frame *);
2913 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2914 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2915 
2916 	/* Get 802.11 frame len before prepending TX header */
2917 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2918 
2919 	/*
2920 	 * Find TX rate
2921 	 */
2922 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2923 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2924 		rate = rate_fb = tp->mgmtrate;
2925 	} else if (ismcast) {
2926 		rate = rate_fb = tp->mcastrate;
2927 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2928 		rate = rate_fb = tp->ucastrate;
2929 	} else {
2930 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2931 		rate = ni->ni_txrate;
2932 
2933 		if (rix > 0) {
2934 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2935 				  IEEE80211_RATE_VAL;
2936 		} else {
2937 			rate_fb = rate;
2938 		}
2939 	}
2940 	tb->tb_rate[0] = rate;
2941 	tb->tb_rate[1] = rate_fb;
2942 	sc->sc_tx_rate = rate;
2943 
2944 	/*
2945 	 * TX radio tap
2946 	 */
2947 	if (ieee80211_radiotap_active_vap(vap)) {
2948 		sc->sc_tx_th.wt_flags = 0;
2949 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2950 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2951 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2952 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2953 		    rate != (1 * 2)) {
2954 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2955 		}
2956 		sc->sc_tx_th.wt_rate = rate;
2957 
2958 		ieee80211_radiotap_tx(vap, m);
2959 	}
2960 
2961 	/*
2962 	 * Setup the embedded TX header
2963 	 */
2964 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2965 	if (m == NULL) {
2966 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2967 		    __func__);
2968 		return ENOBUFS;
2969 	}
2970 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2971 
2972 	bzero(hdr, sizeof(*hdr));
2973 
2974 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2975 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2976 
2977 	if (!ismcast) {
2978 		uint16_t dur;
2979 
2980 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
2981 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2982 
2983 		hdr->txh_fb_duration = htole16(dur);
2984 	}
2985 
2986 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
2987 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
2988 
2989 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
2990 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
2991 
2992 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
2993 			     BWI_TXH_PHY_C_ANTMODE_MASK);
2994 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
2995 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
2996 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
2997 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
2998 
2999 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3000 	if (!ismcast)
3001 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3002 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3003 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3004 
3005 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3006 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3007 
3008 	/* Catch any further usage */
3009 	hdr = NULL;
3010 	wh = NULL;
3011 
3012 	/* DMA load */
3013 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3014 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3015 	if (error && error != EFBIG) {
3016 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3017 		    __func__, error);
3018 		goto back;
3019 	}
3020 
3021 	if (error) {	/* error == EFBIG */
3022 		struct mbuf *m_new;
3023 
3024 		m_new = m_defrag(m, M_NOWAIT);
3025 		if (m_new == NULL) {
3026 			device_printf(sc->sc_dev,
3027 			    "%s: can't defrag TX buffer\n", __func__);
3028 			error = ENOBUFS;
3029 			goto back;
3030 		} else {
3031 			m = m_new;
3032 		}
3033 
3034 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3035 					     bwi_dma_buf_addr, &paddr,
3036 					     BUS_DMA_NOWAIT);
3037 		if (error) {
3038 			device_printf(sc->sc_dev,
3039 			    "%s: can't load TX buffer (2) %d\n",
3040 			    __func__, error);
3041 			goto back;
3042 		}
3043 	}
3044 	error = 0;
3045 
3046 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3047 
3048 	tb->tb_mbuf = m;
3049 	tb->tb_ni = ni;
3050 
3051 #if 0
3052 	p = mtod(m, const uint8_t *);
3053 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3054 		if (i != 0 && i % 8 == 0)
3055 			printf("\n");
3056 		printf("%02x ", p[i]);
3057 	}
3058 	printf("\n");
3059 #endif
3060 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3061 		idx, pkt_len, m->m_pkthdr.len);
3062 
3063 	/* Setup TX descriptor */
3064 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3065 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3066 			BUS_DMASYNC_PREWRITE);
3067 
3068 	/* Kick start */
3069 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3070 
3071 back:
3072 	if (error)
3073 		m_freem(m);
3074 	return error;
3075 }
3076 
3077 static int
3078 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3079 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3080 {
3081 	struct ieee80211vap *vap = ni->ni_vap;
3082 	struct ieee80211com *ic = ni->ni_ic;
3083 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3084 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3085 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3086 	struct bwi_mac *mac;
3087 	struct bwi_txbuf_hdr *hdr;
3088 	struct ieee80211_frame *wh;
3089 	uint8_t rate, rate_fb;
3090 	uint32_t mac_ctrl;
3091 	uint16_t phy_ctrl;
3092 	bus_addr_t paddr;
3093 	int ismcast, pkt_len, error;
3094 
3095 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3096 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3097 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3098 
3099 	wh = mtod(m, struct ieee80211_frame *);
3100 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3101 
3102 	/* Get 802.11 frame len before prepending TX header */
3103 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3104 
3105 	/*
3106 	 * Find TX rate
3107 	 */
3108 	rate = params->ibp_rate0;
3109 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3110 		/* XXX fall back to mcast/mgmt rate? */
3111 		m_freem(m);
3112 		return EINVAL;
3113 	}
3114 	if (params->ibp_try1 != 0) {
3115 		rate_fb = params->ibp_rate1;
3116 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3117 			/* XXX fall back to rate0? */
3118 			m_freem(m);
3119 			return EINVAL;
3120 		}
3121 	} else
3122 		rate_fb = rate;
3123 	tb->tb_rate[0] = rate;
3124 	tb->tb_rate[1] = rate_fb;
3125 	sc->sc_tx_rate = rate;
3126 
3127 	/*
3128 	 * TX radio tap
3129 	 */
3130 	if (ieee80211_radiotap_active_vap(vap)) {
3131 		sc->sc_tx_th.wt_flags = 0;
3132 		/* XXX IEEE80211_BPF_CRYPTO */
3133 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3134 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3135 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3136 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3137 		sc->sc_tx_th.wt_rate = rate;
3138 
3139 		ieee80211_radiotap_tx(vap, m);
3140 	}
3141 
3142 	/*
3143 	 * Setup the embedded TX header
3144 	 */
3145 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3146 	if (m == NULL) {
3147 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3148 		    __func__);
3149 		return ENOBUFS;
3150 	}
3151 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3152 
3153 	bzero(hdr, sizeof(*hdr));
3154 
3155 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3156 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3157 
3158 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3159 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3160 		uint16_t dur;
3161 
3162 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3163 
3164 		hdr->txh_fb_duration = htole16(dur);
3165 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3166 	}
3167 
3168 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3169 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3170 
3171 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3172 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3173 
3174 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3175 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3176 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3177 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3178 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3179 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3180 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3181 
3182 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3183 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3184 
3185 	/* Catch any further usage */
3186 	hdr = NULL;
3187 	wh = NULL;
3188 
3189 	/* DMA load */
3190 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3191 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3192 	if (error != 0) {
3193 		struct mbuf *m_new;
3194 
3195 		if (error != EFBIG) {
3196 			device_printf(sc->sc_dev,
3197 			    "%s: can't load TX buffer (1) %d\n",
3198 			    __func__, error);
3199 			goto back;
3200 		}
3201 		m_new = m_defrag(m, M_NOWAIT);
3202 		if (m_new == NULL) {
3203 			device_printf(sc->sc_dev,
3204 			    "%s: can't defrag TX buffer\n", __func__);
3205 			error = ENOBUFS;
3206 			goto back;
3207 		}
3208 		m = m_new;
3209 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3210 					     bwi_dma_buf_addr, &paddr,
3211 					     BUS_DMA_NOWAIT);
3212 		if (error) {
3213 			device_printf(sc->sc_dev,
3214 			    "%s: can't load TX buffer (2) %d\n",
3215 			    __func__, error);
3216 			goto back;
3217 		}
3218 	}
3219 
3220 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3221 
3222 	tb->tb_mbuf = m;
3223 	tb->tb_ni = ni;
3224 
3225 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3226 		idx, pkt_len, m->m_pkthdr.len);
3227 
3228 	/* Setup TX descriptor */
3229 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3230 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3231 			BUS_DMASYNC_PREWRITE);
3232 
3233 	/* Kick start */
3234 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3235 back:
3236 	if (error)
3237 		m_freem(m);
3238 	return error;
3239 }
3240 
3241 static void
3242 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3243 {
3244 	idx = (idx + 1) % BWI_TX_NDESC;
3245 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3246 		    idx * sizeof(struct bwi_desc32));
3247 }
3248 
3249 static void
3250 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3251 {
3252 	/* TODO:64 */
3253 }
3254 
3255 static void
3256 bwi_txeof_status32(struct bwi_softc *sc)
3257 {
3258 	uint32_t val, ctrl_base;
3259 	int end_idx;
3260 
3261 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3262 
3263 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3264 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3265 		  sizeof(struct bwi_desc32);
3266 
3267 	bwi_txeof_status(sc, end_idx);
3268 
3269 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3270 		    end_idx * sizeof(struct bwi_desc32));
3271 
3272 	bwi_start_locked(sc);
3273 }
3274 
3275 static void
3276 bwi_txeof_status64(struct bwi_softc *sc)
3277 {
3278 	/* TODO:64 */
3279 }
3280 
3281 static void
3282 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3283 {
3284 	struct bwi_txbuf_data *tbd;
3285 	struct bwi_txbuf *tb;
3286 	int ring_idx, buf_idx;
3287 	struct ieee80211_node *ni;
3288 	struct ieee80211vap *vap;
3289 
3290 	if (tx_id == 0) {
3291 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3292 		return;
3293 	}
3294 
3295 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3296 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3297 
3298 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3299 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3300 
3301 	tbd = &sc->sc_tx_bdata[ring_idx];
3302 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3303 	tbd->tbd_used--;
3304 
3305 	tb = &tbd->tbd_buf[buf_idx];
3306 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3307 		"acked %d, data_txcnt %d, ni %p\n",
3308 		buf_idx, acked, data_txcnt, tb->tb_ni);
3309 
3310 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3311 
3312 	if ((ni = tb->tb_ni) != NULL) {
3313 		const struct bwi_txbuf_hdr *hdr =
3314 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3315 		vap = ni->ni_vap;
3316 
3317 		/* NB: update rate control only for unicast frames */
3318 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3319 			/*
3320 			 * Feed back 'acked and data_txcnt'.  Note that the
3321 			 * generic AMRR code only understands one tx rate
3322 			 * and the estimator doesn't handle real retry counts
3323 			 * well so to avoid over-aggressive downshifting we
3324 			 * treat any number of retries as "1".
3325 			 */
3326 			ieee80211_ratectl_tx_complete(vap, ni,
3327 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3328 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3329 		}
3330 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3331 		tb->tb_ni = NULL;
3332 	} else
3333 		m_freem(tb->tb_mbuf);
3334 	tb->tb_mbuf = NULL;
3335 
3336 	if (tbd->tbd_used == 0)
3337 		sc->sc_tx_timer = 0;
3338 }
3339 
3340 static void
3341 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3342 {
3343 	struct bwi_txstats_data *st = sc->sc_txstats;
3344 	int idx;
3345 
3346 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3347 
3348 	idx = st->stats_idx;
3349 	while (idx != end_idx) {
3350 		const struct bwi_txstats *stats = &st->stats[idx];
3351 
3352 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3353 			int data_txcnt;
3354 
3355 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3356 						BWI_TXS_TXCNT_DATA);
3357 			_bwi_txeof(sc, le16toh(stats->txs_id),
3358 				   stats->txs_flags & BWI_TXS_F_ACKED,
3359 				   data_txcnt);
3360 		}
3361 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3362 	}
3363 	st->stats_idx = idx;
3364 }
3365 
3366 static void
3367 bwi_txeof(struct bwi_softc *sc)
3368 {
3369 
3370 	for (;;) {
3371 		uint32_t tx_status0, tx_status1;
3372 		uint16_t tx_id;
3373 		int data_txcnt;
3374 
3375 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3376 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3377 			break;
3378 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3379 
3380 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3381 		data_txcnt = __SHIFTOUT(tx_status0,
3382 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3383 
3384 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3385 			continue;
3386 
3387 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3388 		    data_txcnt);
3389 	}
3390 
3391 	bwi_start_locked(sc);
3392 }
3393 
3394 static int
3395 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3396 {
3397 	bwi_power_on(sc, 1);
3398 	return bwi_set_clock_mode(sc, clk_mode);
3399 }
3400 
3401 static void
3402 bwi_bbp_power_off(struct bwi_softc *sc)
3403 {
3404 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3405 	bwi_power_off(sc, 1);
3406 }
3407 
3408 static int
3409 bwi_get_pwron_delay(struct bwi_softc *sc)
3410 {
3411 	struct bwi_regwin *com, *old;
3412 	struct bwi_clock_freq freq;
3413 	uint32_t val;
3414 	int error;
3415 
3416 	com = &sc->sc_com_regwin;
3417 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3418 
3419 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3420 		return 0;
3421 
3422 	error = bwi_regwin_switch(sc, com, &old);
3423 	if (error)
3424 		return error;
3425 
3426 	bwi_get_clock_freq(sc, &freq);
3427 
3428 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3429 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3430 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3431 
3432 	return bwi_regwin_switch(sc, old, NULL);
3433 }
3434 
3435 static int
3436 bwi_bus_attach(struct bwi_softc *sc)
3437 {
3438 	struct bwi_regwin *bus, *old;
3439 	int error;
3440 
3441 	bus = &sc->sc_bus_regwin;
3442 
3443 	error = bwi_regwin_switch(sc, bus, &old);
3444 	if (error)
3445 		return error;
3446 
3447 	if (!bwi_regwin_is_enabled(sc, bus))
3448 		bwi_regwin_enable(sc, bus, 0);
3449 
3450 	/* Disable interripts */
3451 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3452 
3453 	return bwi_regwin_switch(sc, old, NULL);
3454 }
3455 
3456 static const char *
3457 bwi_regwin_name(const struct bwi_regwin *rw)
3458 {
3459 	switch (rw->rw_type) {
3460 	case BWI_REGWIN_T_COM:
3461 		return "COM";
3462 	case BWI_REGWIN_T_BUSPCI:
3463 		return "PCI";
3464 	case BWI_REGWIN_T_MAC:
3465 		return "MAC";
3466 	case BWI_REGWIN_T_BUSPCIE:
3467 		return "PCIE";
3468 	}
3469 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3470 	return NULL;
3471 }
3472 
3473 static uint32_t
3474 bwi_regwin_disable_bits(struct bwi_softc *sc)
3475 {
3476 	uint32_t busrev;
3477 
3478 	/* XXX cache this */
3479 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3480 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3481 		"bus rev %u\n", busrev);
3482 
3483 	if (busrev == BWI_BUSREV_0)
3484 		return BWI_STATE_LO_DISABLE1;
3485 	else if (busrev == BWI_BUSREV_1)
3486 		return BWI_STATE_LO_DISABLE2;
3487 	else
3488 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3489 }
3490 
3491 int
3492 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3493 {
3494 	uint32_t val, disable_bits;
3495 
3496 	disable_bits = bwi_regwin_disable_bits(sc);
3497 	val = CSR_READ_4(sc, BWI_STATE_LO);
3498 
3499 	if ((val & (BWI_STATE_LO_CLOCK |
3500 		    BWI_STATE_LO_RESET |
3501 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3502 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3503 			bwi_regwin_name(rw));
3504 		return 1;
3505 	} else {
3506 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3507 			bwi_regwin_name(rw));
3508 		return 0;
3509 	}
3510 }
3511 
3512 void
3513 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3514 {
3515 	uint32_t state_lo, disable_bits;
3516 	int i;
3517 
3518 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3519 
3520 	/*
3521 	 * If current regwin is in 'reset' state, it was already disabled.
3522 	 */
3523 	if (state_lo & BWI_STATE_LO_RESET) {
3524 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3525 			"%s was already disabled\n", bwi_regwin_name(rw));
3526 		return;
3527 	}
3528 
3529 	disable_bits = bwi_regwin_disable_bits(sc);
3530 
3531 	/*
3532 	 * Disable normal clock
3533 	 */
3534 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3535 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3536 
3537 	/*
3538 	 * Wait until normal clock is disabled
3539 	 */
3540 #define NRETRY	1000
3541 	for (i = 0; i < NRETRY; ++i) {
3542 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3543 		if (state_lo & disable_bits)
3544 			break;
3545 		DELAY(10);
3546 	}
3547 	if (i == NRETRY) {
3548 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3549 			      bwi_regwin_name(rw));
3550 	}
3551 
3552 	for (i = 0; i < NRETRY; ++i) {
3553 		uint32_t state_hi;
3554 
3555 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3556 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3557 			break;
3558 		DELAY(10);
3559 	}
3560 	if (i == NRETRY) {
3561 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3562 			      bwi_regwin_name(rw));
3563 	}
3564 #undef NRETRY
3565 
3566 	/*
3567 	 * Reset and disable regwin with gated clock
3568 	 */
3569 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3570 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3571 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3572 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3573 
3574 	/* Flush pending bus write */
3575 	CSR_READ_4(sc, BWI_STATE_LO);
3576 	DELAY(1);
3577 
3578 	/* Reset and disable regwin */
3579 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3580 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3581 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3582 
3583 	/* Flush pending bus write */
3584 	CSR_READ_4(sc, BWI_STATE_LO);
3585 	DELAY(1);
3586 }
3587 
3588 void
3589 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3590 {
3591 	uint32_t state_lo, state_hi, imstate;
3592 
3593 	bwi_regwin_disable(sc, rw, flags);
3594 
3595 	/* Reset regwin with gated clock */
3596 	state_lo = BWI_STATE_LO_RESET |
3597 		   BWI_STATE_LO_CLOCK |
3598 		   BWI_STATE_LO_GATED_CLOCK |
3599 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3600 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3601 
3602 	/* Flush pending bus write */
3603 	CSR_READ_4(sc, BWI_STATE_LO);
3604 	DELAY(1);
3605 
3606 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3607 	if (state_hi & BWI_STATE_HI_SERROR)
3608 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3609 
3610 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3611 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3612 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3613 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3614 	}
3615 
3616 	/* Enable regwin with gated clock */
3617 	state_lo = BWI_STATE_LO_CLOCK |
3618 		   BWI_STATE_LO_GATED_CLOCK |
3619 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3620 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3621 
3622 	/* Flush pending bus write */
3623 	CSR_READ_4(sc, BWI_STATE_LO);
3624 	DELAY(1);
3625 
3626 	/* Enable regwin with normal clock */
3627 	state_lo = BWI_STATE_LO_CLOCK |
3628 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3629 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3630 
3631 	/* Flush pending bus write */
3632 	CSR_READ_4(sc, BWI_STATE_LO);
3633 	DELAY(1);
3634 }
3635 
3636 static void
3637 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3638 {
3639 	struct bwi_mac *mac;
3640 	struct bwi_myaddr_bssid buf;
3641 	const uint8_t *p;
3642 	uint32_t val;
3643 	int n, i;
3644 
3645 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3646 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3647 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3648 
3649 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3650 
3651 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3652 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3653 
3654 	n = sizeof(buf) / sizeof(val);
3655 	p = (const uint8_t *)&buf;
3656 	for (i = 0; i < n; ++i) {
3657 		int j;
3658 
3659 		val = 0;
3660 		for (j = 0; j < sizeof(val); ++j)
3661 			val |= ((uint32_t)(*p++)) << (j * 8);
3662 
3663 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3664 	}
3665 }
3666 
3667 static void
3668 bwi_updateslot(struct ieee80211com *ic)
3669 {
3670 	struct bwi_softc *sc = ic->ic_softc;
3671 	struct bwi_mac *mac;
3672 
3673 	BWI_LOCK(sc);
3674 	if (sc->sc_flags & BWI_F_RUNNING) {
3675 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3676 
3677 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3678 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3679 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3680 
3681 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3682 	}
3683 	BWI_UNLOCK(sc);
3684 }
3685 
3686 static void
3687 bwi_calibrate(void *xsc)
3688 {
3689 	struct bwi_softc *sc = xsc;
3690 	struct bwi_mac *mac;
3691 
3692 	BWI_ASSERT_LOCKED(sc);
3693 
3694 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3695 	    ("opmode %d", sc->sc_ic.ic_opmode));
3696 
3697 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3698 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3699 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3700 
3701 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3702 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3703 
3704 	/* XXX 15 seconds */
3705 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3706 }
3707 
3708 static int
3709 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3710 {
3711 	struct bwi_mac *mac;
3712 
3713 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3714 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3715 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3716 
3717 	return bwi_rf_calc_rssi(mac, hdr);
3718 }
3719 
3720 static int
3721 bwi_calc_noise(struct bwi_softc *sc)
3722 {
3723 	struct bwi_mac *mac;
3724 
3725 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3726 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3727 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3728 
3729 	return bwi_rf_calc_noise(mac);
3730 }
3731 
3732 static __inline uint8_t
3733 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3734 {
3735 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3736 	return (ieee80211_plcp2rate(plcp, type));
3737 }
3738 
3739 static void
3740 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3741     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3742 {
3743 	const struct ieee80211_frame_min *wh;
3744 
3745 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3746 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3747 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3748 
3749 	wh = mtod(m, const struct ieee80211_frame_min *);
3750 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3751 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3752 
3753 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3754 	sc->sc_rx_th.wr_rate = rate;
3755 	sc->sc_rx_th.wr_antsignal = rssi;
3756 	sc->sc_rx_th.wr_antnoise = noise;
3757 }
3758 
3759 static void
3760 bwi_led_attach(struct bwi_softc *sc)
3761 {
3762 	const uint8_t *led_act = NULL;
3763 	uint16_t gpio, val[BWI_LED_MAX];
3764 	int i;
3765 
3766 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3767 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3768 			led_act = bwi_vendor_led_act[i].led_act;
3769 			break;
3770 		}
3771 	}
3772 	if (led_act == NULL)
3773 		led_act = bwi_default_led_act;
3774 
3775 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3776 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3777 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3778 
3779 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3780 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3781 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3782 
3783 	for (i = 0; i < BWI_LED_MAX; ++i) {
3784 		struct bwi_led *led = &sc->sc_leds[i];
3785 
3786 		if (val[i] == 0xff) {
3787 			led->l_act = led_act[i];
3788 		} else {
3789 			if (val[i] & BWI_LED_ACT_LOW)
3790 				led->l_flags |= BWI_LED_F_ACTLOW;
3791 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3792 		}
3793 		led->l_mask = (1 << i);
3794 
3795 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3796 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3797 		    led->l_act == BWI_LED_ACT_BLINK) {
3798 			led->l_flags |= BWI_LED_F_BLINK;
3799 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3800 				led->l_flags |= BWI_LED_F_POLLABLE;
3801 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3802 				led->l_flags |= BWI_LED_F_SLOW;
3803 
3804 			if (sc->sc_blink_led == NULL) {
3805 				sc->sc_blink_led = led;
3806 				if (led->l_flags & BWI_LED_F_SLOW)
3807 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3808 			}
3809 		}
3810 
3811 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3812 			"%dth led, act %d, lowact %d\n", i,
3813 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3814 	}
3815 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3816 }
3817 
3818 static __inline uint16_t
3819 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3820 {
3821 	if (led->l_flags & BWI_LED_F_ACTLOW)
3822 		on = !on;
3823 	if (on)
3824 		val |= led->l_mask;
3825 	else
3826 		val &= ~led->l_mask;
3827 	return val;
3828 }
3829 
3830 static void
3831 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3832 {
3833 	struct ieee80211com *ic = &sc->sc_ic;
3834 	uint16_t val;
3835 	int i;
3836 
3837 	if (nstate == IEEE80211_S_INIT) {
3838 		callout_stop(&sc->sc_led_blink_ch);
3839 		sc->sc_led_blinking = 0;
3840 	}
3841 
3842 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3843 		return;
3844 
3845 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3846 	for (i = 0; i < BWI_LED_MAX; ++i) {
3847 		struct bwi_led *led = &sc->sc_leds[i];
3848 		int on;
3849 
3850 		if (led->l_act == BWI_LED_ACT_UNKN ||
3851 		    led->l_act == BWI_LED_ACT_NULL)
3852 			continue;
3853 
3854 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3855 		    nstate != IEEE80211_S_INIT)
3856 		    	continue;
3857 
3858 		switch (led->l_act) {
3859 		case BWI_LED_ACT_ON:	/* Always on */
3860 			on = 1;
3861 			break;
3862 		case BWI_LED_ACT_OFF:	/* Always off */
3863 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3864 			on = 0;
3865 			break;
3866 		default:
3867 			on = 1;
3868 			switch (nstate) {
3869 			case IEEE80211_S_INIT:
3870 				on = 0;
3871 				break;
3872 			case IEEE80211_S_RUN:
3873 				if (led->l_act == BWI_LED_ACT_11G &&
3874 				    ic->ic_curmode != IEEE80211_MODE_11G)
3875 					on = 0;
3876 				break;
3877 			default:
3878 				if (led->l_act == BWI_LED_ACT_ASSOC)
3879 					on = 0;
3880 				break;
3881 			}
3882 			break;
3883 		}
3884 
3885 		val = bwi_led_onoff(led, val, on);
3886 	}
3887 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3888 }
3889 static void
3890 bwi_led_event(struct bwi_softc *sc, int event)
3891 {
3892 	struct bwi_led *led = sc->sc_blink_led;
3893 	int rate;
3894 
3895 	if (event == BWI_LED_EVENT_POLL) {
3896 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3897 			return;
3898 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3899 			return;
3900 	}
3901 
3902 	sc->sc_led_ticks = ticks;
3903 	if (sc->sc_led_blinking)
3904 		return;
3905 
3906 	switch (event) {
3907 	case BWI_LED_EVENT_RX:
3908 		rate = sc->sc_rx_rate;
3909 		break;
3910 	case BWI_LED_EVENT_TX:
3911 		rate = sc->sc_tx_rate;
3912 		break;
3913 	case BWI_LED_EVENT_POLL:
3914 		rate = 0;
3915 		break;
3916 	default:
3917 		panic("unknown LED event %d\n", event);
3918 		break;
3919 	}
3920 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3921 	    bwi_led_duration[rate].off_dur);
3922 }
3923 
3924 static void
3925 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3926 {
3927 	struct bwi_led *led = sc->sc_blink_led;
3928 	uint16_t val;
3929 
3930 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3931 	val = bwi_led_onoff(led, val, 1);
3932 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3933 
3934 	if (led->l_flags & BWI_LED_F_SLOW) {
3935 		BWI_LED_SLOWDOWN(on_dur);
3936 		BWI_LED_SLOWDOWN(off_dur);
3937 	}
3938 
3939 	sc->sc_led_blinking = 1;
3940 	sc->sc_led_blink_offdur = off_dur;
3941 
3942 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3943 }
3944 
3945 static void
3946 bwi_led_blink_next(void *xsc)
3947 {
3948 	struct bwi_softc *sc = xsc;
3949 	uint16_t val;
3950 
3951 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3952 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3953 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3954 
3955 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3956 	    bwi_led_blink_end, sc);
3957 }
3958 
3959 static void
3960 bwi_led_blink_end(void *xsc)
3961 {
3962 	struct bwi_softc *sc = xsc;
3963 	sc->sc_led_blinking = 0;
3964 }
3965 
3966 static void
3967 bwi_restart(void *xsc, int pending)
3968 {
3969 	struct bwi_softc *sc = xsc;
3970 
3971 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3972 	BWI_LOCK(sc);
3973 	bwi_init_statechg(sc, 0);
3974 #if 0
3975 	bwi_start_locked(sc);
3976 #endif
3977 	BWI_UNLOCK(sc);
3978 }
3979