xref: /freebsd/sys/dev/bwi/if_bwi.c (revision c1cdf6a42f0d951ba720688dfc6ce07608b02f6e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_bwi.h"
44 #include "opt_wlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/endian.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/taskqueue.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_llc.h>
67 
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #include <net80211/ieee80211_phy.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <net/bpf.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif
80 
81 #include <machine/bus.h>
82 
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcireg.h>
85 
86 #include <dev/bwi/bitops.h>
87 #include <dev/bwi/if_bwireg.h>
88 #include <dev/bwi/if_bwivar.h>
89 #include <dev/bwi/bwimac.h>
90 #include <dev/bwi/bwirf.h>
91 
92 struct bwi_clock_freq {
93 	u_int		clkfreq_min;
94 	u_int		clkfreq_max;
95 };
96 
97 struct bwi_myaddr_bssid {
98 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
99 	uint8_t		bssid[IEEE80211_ADDR_LEN];
100 } __packed;
101 
102 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
103 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
104 		    const uint8_t [IEEE80211_ADDR_LEN],
105 		    const uint8_t [IEEE80211_ADDR_LEN]);
106 static void	bwi_vap_delete(struct ieee80211vap *);
107 static void	bwi_init(struct bwi_softc *);
108 static void	bwi_parent(struct ieee80211com *);
109 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
110 static void	bwi_start_locked(struct bwi_softc *);
111 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
112 			const struct ieee80211_bpf_params *);
113 static void	bwi_watchdog(void *);
114 static void	bwi_scan_start(struct ieee80211com *);
115 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
116 		    struct ieee80211_channel[]);
117 static void	bwi_set_channel(struct ieee80211com *);
118 static void	bwi_scan_end(struct ieee80211com *);
119 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
120 static void	bwi_updateslot(struct ieee80211com *);
121 static int	bwi_media_change(struct ifnet *);
122 
123 static void	bwi_calibrate(void *);
124 
125 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
126 static int	bwi_calc_noise(struct bwi_softc *);
127 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
128 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
129 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
130 
131 static void	bwi_restart(void *, int);
132 static void	bwi_init_statechg(struct bwi_softc *, int);
133 static void	bwi_stop(struct bwi_softc *, int);
134 static void	bwi_stop_locked(struct bwi_softc *, int);
135 static int	bwi_newbuf(struct bwi_softc *, int, int);
136 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *);
138 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
139 			  struct ieee80211_node *,
140 			  const struct ieee80211_bpf_params *);
141 
142 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
143 				       bus_addr_t, int, int);
144 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
145 
146 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
147 static int	bwi_init_rx_ring32(struct bwi_softc *);
148 static int	bwi_init_txstats32(struct bwi_softc *);
149 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
150 static void	bwi_free_rx_ring32(struct bwi_softc *);
151 static void	bwi_free_txstats32(struct bwi_softc *);
152 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
153 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
154 				    int, bus_addr_t, int);
155 static int	bwi_rxeof32(struct bwi_softc *);
156 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
157 static void	bwi_txeof_status32(struct bwi_softc *);
158 
159 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
160 static int	bwi_init_rx_ring64(struct bwi_softc *);
161 static int	bwi_init_txstats64(struct bwi_softc *);
162 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
163 static void	bwi_free_rx_ring64(struct bwi_softc *);
164 static void	bwi_free_txstats64(struct bwi_softc *);
165 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
166 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
167 				    int, bus_addr_t, int);
168 static int	bwi_rxeof64(struct bwi_softc *);
169 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
170 static void	bwi_txeof_status64(struct bwi_softc *);
171 
172 static int	bwi_rxeof(struct bwi_softc *, int);
173 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
174 static void	bwi_txeof(struct bwi_softc *);
175 static void	bwi_txeof_status(struct bwi_softc *, int);
176 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
177 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
178 
179 static int	bwi_dma_alloc(struct bwi_softc *);
180 static void	bwi_dma_free(struct bwi_softc *);
181 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
182 				   struct bwi_ring_data *, bus_size_t,
183 				   uint32_t);
184 static int	bwi_dma_mbuf_create(struct bwi_softc *);
185 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
186 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
187 static void	bwi_dma_txstats_free(struct bwi_softc *);
188 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
189 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
190 				 bus_size_t, int);
191 
192 static void	bwi_power_on(struct bwi_softc *, int);
193 static int	bwi_power_off(struct bwi_softc *, int);
194 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
195 static int	bwi_set_clock_delay(struct bwi_softc *);
196 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
197 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
198 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
199 				    const uint8_t *);
200 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
201 
202 static void	bwi_get_card_flags(struct bwi_softc *);
203 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
204 
205 static int	bwi_bus_attach(struct bwi_softc *);
206 static int	bwi_bbp_attach(struct bwi_softc *);
207 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
208 static void	bwi_bbp_power_off(struct bwi_softc *);
209 
210 static const char *bwi_regwin_name(const struct bwi_regwin *);
211 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
212 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
213 static int	bwi_regwin_select(struct bwi_softc *, int);
214 
215 static void	bwi_led_attach(struct bwi_softc *);
216 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
217 static void	bwi_led_event(struct bwi_softc *, int);
218 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
219 static void	bwi_led_blink_next(void *);
220 static void	bwi_led_blink_end(void *);
221 
222 static const struct {
223 	uint16_t	did_min;
224 	uint16_t	did_max;
225 	uint16_t	bbp_id;
226 } bwi_bbpid_map[] = {
227 	{ 0x4301, 0x4301, 0x4301 },
228 	{ 0x4305, 0x4307, 0x4307 },
229 	{ 0x4402, 0x4403, 0x4402 },
230 	{ 0x4610, 0x4615, 0x4610 },
231 	{ 0x4710, 0x4715, 0x4710 },
232 	{ 0x4720, 0x4725, 0x4309 }
233 };
234 
235 static const struct {
236 	uint16_t	bbp_id;
237 	int		nregwin;
238 } bwi_regwin_count[] = {
239 	{ 0x4301, 5 },
240 	{ 0x4306, 6 },
241 	{ 0x4307, 5 },
242 	{ 0x4310, 8 },
243 	{ 0x4401, 3 },
244 	{ 0x4402, 3 },
245 	{ 0x4610, 9 },
246 	{ 0x4704, 9 },
247 	{ 0x4710, 9 },
248 	{ 0x5365, 7 }
249 };
250 
251 #define CLKSRC(src) 				\
252 [BWI_CLKSRC_ ## src] = {			\
253 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
254 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
255 }
256 
257 static const struct {
258 	u_int	freq_min;
259 	u_int	freq_max;
260 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
261 	CLKSRC(LP_OSC),
262 	CLKSRC(CS_OSC),
263 	CLKSRC(PCI)
264 };
265 
266 #undef CLKSRC
267 
268 #define VENDOR_LED_ACT(vendor)				\
269 {							\
270 	.vid = PCI_VENDOR_##vendor,			\
271 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
272 }
273 
274 static const struct {
275 #define	PCI_VENDOR_COMPAQ	0x0e11
276 #define	PCI_VENDOR_LINKSYS	0x1737
277 	uint16_t	vid;
278 	uint8_t		led_act[BWI_LED_MAX];
279 } bwi_vendor_led_act[] = {
280 	VENDOR_LED_ACT(COMPAQ),
281 	VENDOR_LED_ACT(LINKSYS)
282 #undef PCI_VENDOR_LINKSYS
283 #undef PCI_VENDOR_COMPAQ
284 };
285 
286 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
287 	{ BWI_VENDOR_LED_ACT_DEFAULT };
288 
289 #undef VENDOR_LED_ACT
290 
291 static const struct {
292 	int	on_dur;
293 	int	off_dur;
294 } bwi_led_duration[109] = {
295 	[0]	= { 400, 100 },
296 	[2]	= { 150, 75 },
297 	[4]	= { 90, 45 },
298 	[11]	= { 66, 34 },
299 	[12]	= { 53, 26 },
300 	[18]	= { 42, 21 },
301 	[22]	= { 35, 17 },
302 	[24]	= { 32, 16 },
303 	[36]	= { 21, 10 },
304 	[48]	= { 16, 8 },
305 	[72]	= { 11, 5 },
306 	[96]	= { 9, 4 },
307 	[108]	= { 7, 3 }
308 };
309 
310 static const uint8_t bwi_chan_2ghz[] =
311 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
312 
313 #ifdef BWI_DEBUG
314 #ifdef BWI_DEBUG_VERBOSE
315 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
316 #else
317 static uint32_t	bwi_debug;
318 #endif
319 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
320 #endif	/* BWI_DEBUG */
321 
322 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
323 
324 uint16_t
325 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
326 {
327 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
328 }
329 
330 static __inline void
331 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
332 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
333 		 int tx)
334 {
335 	struct bwi_desc32 *desc = &desc_array[desc_idx];
336 	uint32_t ctrl, addr, addr_hi, addr_lo;
337 
338 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
339 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
340 
341 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
342 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
343 
344 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
345 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
346 	if (desc_idx == ndesc - 1)
347 		ctrl |= BWI_DESC32_C_EOR;
348 	if (tx) {
349 		/* XXX */
350 		ctrl |= BWI_DESC32_C_FRAME_START |
351 			BWI_DESC32_C_FRAME_END |
352 			BWI_DESC32_C_INTR;
353 	}
354 
355 	desc->addr = htole32(addr);
356 	desc->ctrl = htole32(ctrl);
357 }
358 
359 int
360 bwi_attach(struct bwi_softc *sc)
361 {
362 	struct ieee80211com *ic = &sc->sc_ic;
363 	device_t dev = sc->sc_dev;
364 	struct bwi_mac *mac;
365 	struct bwi_phy *phy;
366 	int i, error;
367 
368 	BWI_LOCK_INIT(sc);
369 
370 	/*
371 	 * Initialize taskq and various tasks
372 	 */
373 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
374 		taskqueue_thread_enqueue, &sc->sc_tq);
375 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
376 		device_get_nameunit(dev));
377 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
378 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
379 	mbufq_init(&sc->sc_snd, ifqmaxlen);
380 
381 	/*
382 	 * Initialize sysctl variables
383 	 */
384 	sc->sc_fw_version = BWI_FW_VERSION3;
385 	sc->sc_led_idle = (2350 * hz) / 1000;
386 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
387 	sc->sc_led_blink = 1;
388 	sc->sc_txpwr_calib = 1;
389 #ifdef BWI_DEBUG
390 	sc->sc_debug = bwi_debug;
391 #endif
392 	bwi_power_on(sc, 1);
393 
394 	error = bwi_bbp_attach(sc);
395 	if (error)
396 		goto fail;
397 
398 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
399 	if (error)
400 		goto fail;
401 
402 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
403 		error = bwi_set_clock_delay(sc);
404 		if (error)
405 			goto fail;
406 
407 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
408 		if (error)
409 			goto fail;
410 
411 		error = bwi_get_pwron_delay(sc);
412 		if (error)
413 			goto fail;
414 	}
415 
416 	error = bwi_bus_attach(sc);
417 	if (error)
418 		goto fail;
419 
420 	bwi_get_card_flags(sc);
421 
422 	bwi_led_attach(sc);
423 
424 	for (i = 0; i < sc->sc_nmac; ++i) {
425 		struct bwi_regwin *old;
426 
427 		mac = &sc->sc_mac[i];
428 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
429 		if (error)
430 			goto fail;
431 
432 		error = bwi_mac_lateattach(mac);
433 		if (error)
434 			goto fail;
435 
436 		error = bwi_regwin_switch(sc, old, NULL);
437 		if (error)
438 			goto fail;
439 	}
440 
441 	/*
442 	 * XXX First MAC is known to exist
443 	 * TODO2
444 	 */
445 	mac = &sc->sc_mac[0];
446 	phy = &mac->mac_phy;
447 
448 	bwi_bbp_power_off(sc);
449 
450 	error = bwi_dma_alloc(sc);
451 	if (error)
452 		goto fail;
453 
454 	error = bwi_mac_fw_alloc(mac);
455 	if (error)
456 		goto fail;
457 
458 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
459 
460 	/*
461 	 * Setup ratesets, phytype, channels and get MAC address
462 	 */
463 	if (phy->phy_mode == IEEE80211_MODE_11B ||
464 	    phy->phy_mode == IEEE80211_MODE_11G) {
465 		if (phy->phy_mode == IEEE80211_MODE_11B) {
466 			ic->ic_phytype = IEEE80211_T_DS;
467 		} else {
468 			ic->ic_phytype = IEEE80211_T_OFDM;
469 		}
470 
471 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
472 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
473 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
474 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
475 				device_printf(dev,
476 				    "invalid MAC address: %6D\n",
477 				    ic->ic_macaddr, ":");
478 			}
479 		}
480 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
481 		/* TODO:11A */
482 		error = ENXIO;
483 		goto fail;
484 	} else {
485 		panic("unknown phymode %d\n", phy->phy_mode);
486 	}
487 
488 	/* Get locale */
489 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
490 				   BWI_SPROM_CARD_INFO_LOCALE);
491 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
492 	/* XXX use locale */
493 
494 	ic->ic_softc = sc;
495 
496 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
497 	    ic->ic_channels);
498 
499 	ic->ic_name = device_get_nameunit(dev);
500 	ic->ic_caps = IEEE80211_C_STA |
501 		      IEEE80211_C_SHSLOT |
502 		      IEEE80211_C_SHPREAMBLE |
503 		      IEEE80211_C_WPA |
504 		      IEEE80211_C_BGSCAN |
505 		      IEEE80211_C_MONITOR;
506 	ic->ic_opmode = IEEE80211_M_STA;
507 	ieee80211_ifattach(ic);
508 
509 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
510 
511 	/* override default methods */
512 	ic->ic_vap_create = bwi_vap_create;
513 	ic->ic_vap_delete = bwi_vap_delete;
514 	ic->ic_raw_xmit = bwi_raw_xmit;
515 	ic->ic_updateslot = bwi_updateslot;
516 	ic->ic_scan_start = bwi_scan_start;
517 	ic->ic_scan_end = bwi_scan_end;
518 	ic->ic_getradiocaps = bwi_getradiocaps;
519 	ic->ic_set_channel = bwi_set_channel;
520 	ic->ic_transmit = bwi_transmit;
521 	ic->ic_parent = bwi_parent;
522 
523 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
524 
525 	ieee80211_radiotap_attach(ic,
526 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
527 		BWI_TX_RADIOTAP_PRESENT,
528 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
529 		BWI_RX_RADIOTAP_PRESENT);
530 
531 	/*
532 	 * Add sysctl nodes
533 	 */
534 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
535 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
536 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
537 		        "Firmware version");
538 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
539 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
540 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
541 		        "# ticks before LED enters idle state");
542 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
543 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
544 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
545 		       "Allow LED to blink");
546 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
547 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
548 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
549 		       "Enable software TX power calibration");
550 #ifdef BWI_DEBUG
551 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
552 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
553 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
554 #endif
555 	if (bootverbose)
556 		ieee80211_announce(ic);
557 
558 	return (0);
559 fail:
560 	BWI_LOCK_DESTROY(sc);
561 	return (error);
562 }
563 
564 int
565 bwi_detach(struct bwi_softc *sc)
566 {
567 	struct ieee80211com *ic = &sc->sc_ic;
568 	int i;
569 
570 	bwi_stop(sc, 1);
571 	callout_drain(&sc->sc_led_blink_ch);
572 	callout_drain(&sc->sc_calib_ch);
573 	callout_drain(&sc->sc_watchdog_timer);
574 	ieee80211_ifdetach(ic);
575 
576 	for (i = 0; i < sc->sc_nmac; ++i)
577 		bwi_mac_detach(&sc->sc_mac[i]);
578 	bwi_dma_free(sc);
579 	taskqueue_free(sc->sc_tq);
580 	mbufq_drain(&sc->sc_snd);
581 
582 	BWI_LOCK_DESTROY(sc);
583 
584 	return (0);
585 }
586 
587 static struct ieee80211vap *
588 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
589     enum ieee80211_opmode opmode, int flags,
590     const uint8_t bssid[IEEE80211_ADDR_LEN],
591     const uint8_t mac[IEEE80211_ADDR_LEN])
592 {
593 	struct bwi_vap *bvp;
594 	struct ieee80211vap *vap;
595 
596 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
597 		return NULL;
598 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
599 	vap = &bvp->bv_vap;
600 	/* enable s/w bmiss handling for sta mode */
601 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
602 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
603 
604 	/* override default methods */
605 	bvp->bv_newstate = vap->iv_newstate;
606 	vap->iv_newstate = bwi_newstate;
607 #if 0
608 	vap->iv_update_beacon = bwi_beacon_update;
609 #endif
610 	ieee80211_ratectl_init(vap);
611 
612 	/* complete setup */
613 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
614 	    mac);
615 	ic->ic_opmode = opmode;
616 	return vap;
617 }
618 
619 static void
620 bwi_vap_delete(struct ieee80211vap *vap)
621 {
622 	struct bwi_vap *bvp = BWI_VAP(vap);
623 
624 	ieee80211_ratectl_deinit(vap);
625 	ieee80211_vap_detach(vap);
626 	free(bvp, M_80211_VAP);
627 }
628 
629 void
630 bwi_suspend(struct bwi_softc *sc)
631 {
632 	bwi_stop(sc, 1);
633 }
634 
635 void
636 bwi_resume(struct bwi_softc *sc)
637 {
638 
639 	if (sc->sc_ic.ic_nrunning > 0)
640 		bwi_init(sc);
641 }
642 
643 int
644 bwi_shutdown(struct bwi_softc *sc)
645 {
646 	bwi_stop(sc, 1);
647 	return 0;
648 }
649 
650 static void
651 bwi_power_on(struct bwi_softc *sc, int with_pll)
652 {
653 	uint32_t gpio_in, gpio_out, gpio_en;
654 	uint16_t status;
655 
656 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
657 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
658 		goto back;
659 
660 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
661 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
662 
663 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
664 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
665 	if (with_pll) {
666 		/* Turn off PLL first */
667 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
668 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
669 	}
670 
671 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
672 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
673 	DELAY(1000);
674 
675 	if (with_pll) {
676 		/* Turn on PLL */
677 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
678 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
679 		DELAY(5000);
680 	}
681 
682 back:
683 	/* Clear "Signaled Target Abort" */
684 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
685 	status &= ~PCIM_STATUS_STABORT;
686 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
687 }
688 
689 static int
690 bwi_power_off(struct bwi_softc *sc, int with_pll)
691 {
692 	uint32_t gpio_out, gpio_en;
693 
694 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
695 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
696 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
697 
698 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
699 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
700 	if (with_pll) {
701 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
702 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
703 	}
704 
705 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
706 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
707 	return 0;
708 }
709 
710 int
711 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
712 		  struct bwi_regwin **old_rw)
713 {
714 	int error;
715 
716 	if (old_rw != NULL)
717 		*old_rw = NULL;
718 
719 	if (!BWI_REGWIN_EXIST(rw))
720 		return EINVAL;
721 
722 	if (sc->sc_cur_regwin != rw) {
723 		error = bwi_regwin_select(sc, rw->rw_id);
724 		if (error) {
725 			device_printf(sc->sc_dev, "can't select regwin %d\n",
726 				  rw->rw_id);
727 			return error;
728 		}
729 	}
730 
731 	if (old_rw != NULL)
732 		*old_rw = sc->sc_cur_regwin;
733 	sc->sc_cur_regwin = rw;
734 	return 0;
735 }
736 
737 static int
738 bwi_regwin_select(struct bwi_softc *sc, int id)
739 {
740 	uint32_t win = BWI_PCIM_REGWIN(id);
741 	int i;
742 
743 #define RETRY_MAX	50
744 	for (i = 0; i < RETRY_MAX; ++i) {
745 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
746 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
747 			return 0;
748 		DELAY(10);
749 	}
750 #undef RETRY_MAX
751 
752 	return ENXIO;
753 }
754 
755 static void
756 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
757 {
758 	uint32_t val;
759 
760 	val = CSR_READ_4(sc, BWI_ID_HI);
761 	*type = BWI_ID_HI_REGWIN_TYPE(val);
762 	*rev = BWI_ID_HI_REGWIN_REV(val);
763 
764 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
765 		"vendor 0x%04x\n", *type, *rev,
766 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
767 }
768 
769 static int
770 bwi_bbp_attach(struct bwi_softc *sc)
771 {
772 	uint16_t bbp_id, rw_type;
773 	uint8_t rw_rev;
774 	uint32_t info;
775 	int error, nregwin, i;
776 
777 	/*
778 	 * Get 0th regwin information
779 	 * NOTE: 0th regwin should exist
780 	 */
781 	error = bwi_regwin_select(sc, 0);
782 	if (error) {
783 		device_printf(sc->sc_dev, "can't select regwin 0\n");
784 		return error;
785 	}
786 	bwi_regwin_info(sc, &rw_type, &rw_rev);
787 
788 	/*
789 	 * Find out BBP id
790 	 */
791 	bbp_id = 0;
792 	info = 0;
793 	if (rw_type == BWI_REGWIN_T_COM) {
794 		info = CSR_READ_4(sc, BWI_INFO);
795 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
796 
797 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
798 
799 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
800 	} else {
801 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
802 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
803 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
804 				bbp_id = bwi_bbpid_map[i].bbp_id;
805 				break;
806 			}
807 		}
808 		if (bbp_id == 0) {
809 			device_printf(sc->sc_dev, "no BBP id for device id "
810 				      "0x%04x\n", sc->sc_pci_did);
811 			return ENXIO;
812 		}
813 
814 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
815 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
816 	}
817 
818 	/*
819 	 * Find out number of regwins
820 	 */
821 	nregwin = 0;
822 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
823 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
824 	} else {
825 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
826 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
827 				nregwin = bwi_regwin_count[i].nregwin;
828 				break;
829 			}
830 		}
831 		if (nregwin == 0) {
832 			device_printf(sc->sc_dev, "no number of win for "
833 				      "BBP id 0x%04x\n", bbp_id);
834 			return ENXIO;
835 		}
836 	}
837 
838 	/* Record BBP id/rev for later using */
839 	sc->sc_bbp_id = bbp_id;
840 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
841 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
842 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
843 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
844 
845 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
846 		nregwin, sc->sc_cap);
847 
848 	/*
849 	 * Create rest of the regwins
850 	 */
851 
852 	/* Don't re-create common regwin, if it is already created */
853 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
854 
855 	for (; i < nregwin; ++i) {
856 		/*
857 		 * Get regwin information
858 		 */
859 		error = bwi_regwin_select(sc, i);
860 		if (error) {
861 			device_printf(sc->sc_dev,
862 				      "can't select regwin %d\n", i);
863 			return error;
864 		}
865 		bwi_regwin_info(sc, &rw_type, &rw_rev);
866 
867 		/*
868 		 * Try attach:
869 		 * 1) Bus (PCI/PCIE) regwin
870 		 * 2) MAC regwin
871 		 * Ignore rest types of regwin
872 		 */
873 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
874 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
875 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
876 				device_printf(sc->sc_dev,
877 					      "bus regwin already exists\n");
878 			} else {
879 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
880 						  rw_type, rw_rev);
881 			}
882 		} else if (rw_type == BWI_REGWIN_T_MAC) {
883 			/* XXX ignore return value */
884 			bwi_mac_attach(sc, i, rw_rev);
885 		}
886 	}
887 
888 	/* At least one MAC shold exist */
889 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
890 		device_printf(sc->sc_dev, "no MAC was found\n");
891 		return ENXIO;
892 	}
893 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
894 
895 	/* Bus regwin must exist */
896 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
897 		device_printf(sc->sc_dev, "no bus regwin was found\n");
898 		return ENXIO;
899 	}
900 
901 	/* Start with first MAC */
902 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
903 	if (error)
904 		return error;
905 
906 	return 0;
907 }
908 
909 int
910 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
911 {
912 	struct bwi_regwin *old, *bus;
913 	uint32_t val;
914 	int error;
915 
916 	bus = &sc->sc_bus_regwin;
917 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
918 
919 	/*
920 	 * Tell bus to generate requested interrupts
921 	 */
922 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
923 		/*
924 		 * NOTE: Read BWI_FLAGS from MAC regwin
925 		 */
926 		val = CSR_READ_4(sc, BWI_FLAGS);
927 
928 		error = bwi_regwin_switch(sc, bus, &old);
929 		if (error)
930 			return error;
931 
932 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
933 	} else {
934 		uint32_t mac_mask;
935 
936 		mac_mask = 1 << mac->mac_id;
937 
938 		error = bwi_regwin_switch(sc, bus, &old);
939 		if (error)
940 			return error;
941 
942 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
943 		val |= mac_mask << 8;
944 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
945 	}
946 
947 	if (sc->sc_flags & BWI_F_BUS_INITED)
948 		goto back;
949 
950 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
951 		/*
952 		 * Enable prefetch and burst
953 		 */
954 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
955 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
956 
957 		if (bus->rw_rev < 5) {
958 			struct bwi_regwin *com = &sc->sc_com_regwin;
959 
960 			/*
961 			 * Configure timeouts for bus operation
962 			 */
963 
964 			/*
965 			 * Set service timeout and request timeout
966 			 */
967 			CSR_SETBITS_4(sc, BWI_CONF_LO,
968 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
969 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
970 
971 			/*
972 			 * If there is common regwin, we switch to that regwin
973 			 * and switch back to bus regwin once we have done.
974 			 */
975 			if (BWI_REGWIN_EXIST(com)) {
976 				error = bwi_regwin_switch(sc, com, NULL);
977 				if (error)
978 					return error;
979 			}
980 
981 			/* Let bus know what we have changed */
982 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
983 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
984 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
985 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
986 
987 			if (BWI_REGWIN_EXIST(com)) {
988 				error = bwi_regwin_switch(sc, bus, NULL);
989 				if (error)
990 					return error;
991 			}
992 		} else if (bus->rw_rev >= 11) {
993 			/*
994 			 * Enable memory read multiple
995 			 */
996 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
997 		}
998 	} else {
999 		/* TODO:PCIE */
1000 	}
1001 
1002 	sc->sc_flags |= BWI_F_BUS_INITED;
1003 back:
1004 	return bwi_regwin_switch(sc, old, NULL);
1005 }
1006 
1007 static void
1008 bwi_get_card_flags(struct bwi_softc *sc)
1009 {
1010 #define	PCI_VENDOR_APPLE 0x106b
1011 #define	PCI_VENDOR_DELL  0x1028
1012 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1013 	if (sc->sc_card_flags == 0xffff)
1014 		sc->sc_card_flags = 0;
1015 
1016 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1017 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1018 	    sc->sc_pci_revid == 0x74)
1019 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1020 
1021 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1022 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1023 	    sc->sc_pci_revid > 0x40)
1024 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1025 
1026 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1027 #undef PCI_VENDOR_DELL
1028 #undef PCI_VENDOR_APPLE
1029 }
1030 
1031 static void
1032 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < 3; ++i) {
1037 		*((uint16_t *)eaddr + i) =
1038 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1039 	}
1040 }
1041 
1042 static void
1043 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1044 {
1045 	struct bwi_regwin *com;
1046 	uint32_t val;
1047 	u_int div;
1048 	int src;
1049 
1050 	bzero(freq, sizeof(*freq));
1051 	com = &sc->sc_com_regwin;
1052 
1053 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1054 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1055 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1056 
1057 	/*
1058 	 * Calculate clock frequency
1059 	 */
1060 	src = -1;
1061 	div = 0;
1062 	if (com->rw_rev < 6) {
1063 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1064 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1065 			src = BWI_CLKSRC_PCI;
1066 			div = 64;
1067 		} else {
1068 			src = BWI_CLKSRC_CS_OSC;
1069 			div = 32;
1070 		}
1071 	} else if (com->rw_rev < 10) {
1072 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1073 
1074 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1075 		if (src == BWI_CLKSRC_LP_OSC) {
1076 			div = 1;
1077 		} else {
1078 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1079 
1080 			/* Unknown source */
1081 			if (src >= BWI_CLKSRC_MAX)
1082 				src = BWI_CLKSRC_CS_OSC;
1083 		}
1084 	} else {
1085 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1086 
1087 		src = BWI_CLKSRC_CS_OSC;
1088 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1089 	}
1090 
1091 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1092 	KASSERT(div != 0, ("div zero"));
1093 
1094 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1095 		src == BWI_CLKSRC_PCI ? "PCI" :
1096 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1097 
1098 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1099 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1100 
1101 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1102 		freq->clkfreq_min, freq->clkfreq_max);
1103 }
1104 
1105 static int
1106 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1107 {
1108 	struct bwi_regwin *old, *com;
1109 	uint32_t clk_ctrl, clk_src;
1110 	int error, pwr_off = 0;
1111 
1112 	com = &sc->sc_com_regwin;
1113 	if (!BWI_REGWIN_EXIST(com))
1114 		return 0;
1115 
1116 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1117 		return 0;
1118 
1119 	/*
1120 	 * For common regwin whose rev is [6, 10), the chip
1121 	 * must be capable to change clock mode.
1122 	 */
1123 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1124 		return 0;
1125 
1126 	error = bwi_regwin_switch(sc, com, &old);
1127 	if (error)
1128 		return error;
1129 
1130 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1131 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1132 
1133 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1134 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1135 
1136 	switch (clk_mode) {
1137 	case BWI_CLOCK_MODE_FAST:
1138 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1139 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1140 		break;
1141 	case BWI_CLOCK_MODE_SLOW:
1142 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1143 		break;
1144 	case BWI_CLOCK_MODE_DYN:
1145 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1146 			      BWI_CLOCK_CTRL_IGNPLL |
1147 			      BWI_CLOCK_CTRL_NODYN);
1148 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1149 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1150 			pwr_off = 1;
1151 		}
1152 		break;
1153 	}
1154 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1155 
1156 	if (pwr_off)
1157 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1158 
1159 	return bwi_regwin_switch(sc, old, NULL);
1160 }
1161 
1162 static int
1163 bwi_set_clock_delay(struct bwi_softc *sc)
1164 {
1165 	struct bwi_regwin *old, *com;
1166 	int error;
1167 
1168 	com = &sc->sc_com_regwin;
1169 	if (!BWI_REGWIN_EXIST(com))
1170 		return 0;
1171 
1172 	error = bwi_regwin_switch(sc, com, &old);
1173 	if (error)
1174 		return error;
1175 
1176 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1177 		if (sc->sc_bbp_rev == 0)
1178 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1179 		else if (sc->sc_bbp_rev == 1)
1180 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1181 	}
1182 
1183 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1184 		if (com->rw_rev >= 10) {
1185 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1186 		} else {
1187 			struct bwi_clock_freq freq;
1188 
1189 			bwi_get_clock_freq(sc, &freq);
1190 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1191 				howmany(freq.clkfreq_max * 150, 1000000));
1192 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1193 				howmany(freq.clkfreq_max * 15, 1000000));
1194 		}
1195 	}
1196 
1197 	return bwi_regwin_switch(sc, old, NULL);
1198 }
1199 
1200 static void
1201 bwi_init(struct bwi_softc *sc)
1202 {
1203 	struct ieee80211com *ic = &sc->sc_ic;
1204 
1205 	BWI_LOCK(sc);
1206 	bwi_init_statechg(sc, 1);
1207 	BWI_UNLOCK(sc);
1208 
1209 	if (sc->sc_flags & BWI_F_RUNNING)
1210 		ieee80211_start_all(ic);		/* start all vap's */
1211 }
1212 
1213 static void
1214 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1215 {
1216 	struct bwi_mac *mac;
1217 	int error;
1218 
1219 	BWI_ASSERT_LOCKED(sc);
1220 
1221 	bwi_stop_locked(sc, statechg);
1222 
1223 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1224 
1225 	/* TODO: 2 MAC */
1226 
1227 	mac = &sc->sc_mac[0];
1228 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1229 	if (error) {
1230 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1231 		    __func__, error);
1232 		goto bad;
1233 	}
1234 	error = bwi_mac_init(mac);
1235 	if (error) {
1236 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1237 		    __func__, error);
1238 		goto bad;
1239 	}
1240 
1241 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1242 
1243 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1244 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1245 
1246 	bwi_mac_reset_hwkeys(mac);
1247 
1248 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1249 		int i;
1250 
1251 #define NRETRY	1000
1252 		/*
1253 		 * Drain any possible pending TX status
1254 		 */
1255 		for (i = 0; i < NRETRY; ++i) {
1256 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1257 			     BWI_TXSTATUS0_VALID) == 0)
1258 				break;
1259 			CSR_READ_4(sc, BWI_TXSTATUS1);
1260 		}
1261 		if (i == NRETRY)
1262 			device_printf(sc->sc_dev,
1263 			    "%s: can't drain TX status\n", __func__);
1264 #undef NRETRY
1265 	}
1266 
1267 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1268 		bwi_mac_updateslot(mac, 1);
1269 
1270 	/* Start MAC */
1271 	error = bwi_mac_start(mac);
1272 	if (error) {
1273 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1274 		    __func__, error);
1275 		goto bad;
1276 	}
1277 
1278 	/* Clear stop flag before enabling interrupt */
1279 	sc->sc_flags &= ~BWI_F_STOP;
1280 	sc->sc_flags |= BWI_F_RUNNING;
1281 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1282 
1283 	/* Enable intrs */
1284 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1285 	return;
1286 bad:
1287 	bwi_stop_locked(sc, 1);
1288 }
1289 
1290 static void
1291 bwi_parent(struct ieee80211com *ic)
1292 {
1293 	struct bwi_softc *sc = ic->ic_softc;
1294 	int startall = 0;
1295 
1296 	BWI_LOCK(sc);
1297 	if (ic->ic_nrunning > 0) {
1298 		struct bwi_mac *mac;
1299 		int promisc = -1;
1300 
1301 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1302 		    ("current regwin type %d",
1303 		    sc->sc_cur_regwin->rw_type));
1304 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1305 
1306 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1307 			promisc = 1;
1308 			sc->sc_flags |= BWI_F_PROMISC;
1309 		} else if (ic->ic_promisc == 0 &&
1310 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1311 			promisc = 0;
1312 			sc->sc_flags &= ~BWI_F_PROMISC;
1313 		}
1314 
1315 		if (promisc >= 0)
1316 			bwi_mac_set_promisc(mac, promisc);
1317 	}
1318 	if (ic->ic_nrunning > 0) {
1319 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1320 			bwi_init_statechg(sc, 1);
1321 			startall = 1;
1322 		}
1323 	} else if (sc->sc_flags & BWI_F_RUNNING)
1324 		bwi_stop_locked(sc, 1);
1325 	BWI_UNLOCK(sc);
1326 	if (startall)
1327 		ieee80211_start_all(ic);
1328 }
1329 
1330 static int
1331 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1332 {
1333 	struct bwi_softc *sc = ic->ic_softc;
1334 	int error;
1335 
1336 	BWI_LOCK(sc);
1337 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1338 		BWI_UNLOCK(sc);
1339 		return (ENXIO);
1340 	}
1341 	error = mbufq_enqueue(&sc->sc_snd, m);
1342 	if (error) {
1343 		BWI_UNLOCK(sc);
1344 		return (error);
1345 	}
1346 	bwi_start_locked(sc);
1347 	BWI_UNLOCK(sc);
1348 	return (0);
1349 }
1350 
1351 static void
1352 bwi_start_locked(struct bwi_softc *sc)
1353 {
1354 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1355 	struct ieee80211_frame *wh;
1356 	struct ieee80211_node *ni;
1357 	struct mbuf *m;
1358 	int trans, idx;
1359 
1360 	BWI_ASSERT_LOCKED(sc);
1361 
1362 	trans = 0;
1363 	idx = tbd->tbd_idx;
1364 
1365 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1366 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1367 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1368 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1369 		wh = mtod(m, struct ieee80211_frame *);
1370 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1371 		    ieee80211_crypto_encap(ni, m) == NULL) {
1372 			if_inc_counter(ni->ni_vap->iv_ifp,
1373 			    IFCOUNTER_OERRORS, 1);
1374 			ieee80211_free_node(ni);
1375 			m_freem(m);
1376 			continue;
1377 		}
1378 		if (bwi_encap(sc, idx, m, ni) != 0) {
1379 			/* 'm' is freed in bwi_encap() if we reach here */
1380 			if (ni != NULL) {
1381 				if_inc_counter(ni->ni_vap->iv_ifp,
1382 				    IFCOUNTER_OERRORS, 1);
1383 				ieee80211_free_node(ni);
1384 			} else
1385 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1386 			continue;
1387 		}
1388 		trans = 1;
1389 		tbd->tbd_used++;
1390 		idx = (idx + 1) % BWI_TX_NDESC;
1391 	}
1392 
1393 	tbd->tbd_idx = idx;
1394 	if (trans)
1395 		sc->sc_tx_timer = 5;
1396 }
1397 
1398 static int
1399 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1400 	const struct ieee80211_bpf_params *params)
1401 {
1402 	struct ieee80211com *ic = ni->ni_ic;
1403 	struct bwi_softc *sc = ic->ic_softc;
1404 	/* XXX wme? */
1405 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1406 	int idx, error;
1407 
1408 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1409 		m_freem(m);
1410 		return ENETDOWN;
1411 	}
1412 
1413 	BWI_LOCK(sc);
1414 	idx = tbd->tbd_idx;
1415 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1416 	if (params == NULL) {
1417 		/*
1418 		 * Legacy path; interpret frame contents to decide
1419 		 * precisely how to send the frame.
1420 		 */
1421 		error = bwi_encap(sc, idx, m, ni);
1422 	} else {
1423 		/*
1424 		 * Caller supplied explicit parameters to use in
1425 		 * sending the frame.
1426 		 */
1427 		error = bwi_encap_raw(sc, idx, m, ni, params);
1428 	}
1429 	if (error == 0) {
1430 		tbd->tbd_used++;
1431 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1432 		sc->sc_tx_timer = 5;
1433 	}
1434 	BWI_UNLOCK(sc);
1435 	return error;
1436 }
1437 
1438 static void
1439 bwi_watchdog(void *arg)
1440 {
1441 	struct bwi_softc *sc;
1442 
1443 	sc = arg;
1444 	BWI_ASSERT_LOCKED(sc);
1445 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1446 		device_printf(sc->sc_dev, "watchdog timeout\n");
1447 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1448 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1449 	}
1450 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1451 }
1452 
1453 static void
1454 bwi_stop(struct bwi_softc *sc, int statechg)
1455 {
1456 	BWI_LOCK(sc);
1457 	bwi_stop_locked(sc, statechg);
1458 	BWI_UNLOCK(sc);
1459 }
1460 
1461 static void
1462 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1463 {
1464 	struct bwi_mac *mac;
1465 	int i, error, pwr_off = 0;
1466 
1467 	BWI_ASSERT_LOCKED(sc);
1468 
1469 	callout_stop(&sc->sc_calib_ch);
1470 	callout_stop(&sc->sc_led_blink_ch);
1471 	sc->sc_led_blinking = 0;
1472 	sc->sc_flags |= BWI_F_STOP;
1473 
1474 	if (sc->sc_flags & BWI_F_RUNNING) {
1475 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1476 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1477 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1478 
1479 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1480 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1481 		bwi_mac_stop(mac);
1482 	}
1483 
1484 	for (i = 0; i < sc->sc_nmac; ++i) {
1485 		struct bwi_regwin *old_rw;
1486 
1487 		mac = &sc->sc_mac[i];
1488 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1489 			continue;
1490 
1491 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1492 		if (error)
1493 			continue;
1494 
1495 		bwi_mac_shutdown(mac);
1496 		pwr_off = 1;
1497 
1498 		bwi_regwin_switch(sc, old_rw, NULL);
1499 	}
1500 
1501 	if (pwr_off)
1502 		bwi_bbp_power_off(sc);
1503 
1504 	sc->sc_tx_timer = 0;
1505 	callout_stop(&sc->sc_watchdog_timer);
1506 	sc->sc_flags &= ~BWI_F_RUNNING;
1507 }
1508 
1509 void
1510 bwi_intr(void *xsc)
1511 {
1512 	struct bwi_softc *sc = xsc;
1513 	struct bwi_mac *mac;
1514 	uint32_t intr_status;
1515 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1516 	int i, txrx_error, tx = 0, rx_data = -1;
1517 
1518 	BWI_LOCK(sc);
1519 
1520 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1521 	    (sc->sc_flags & BWI_F_STOP)) {
1522 		BWI_UNLOCK(sc);
1523 		return;
1524 	}
1525 	/*
1526 	 * Get interrupt status
1527 	 */
1528 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1529 	if (intr_status == 0xffffffff) {	/* Not for us */
1530 		BWI_UNLOCK(sc);
1531 		return;
1532 	}
1533 
1534 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1535 
1536 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1537 	if (intr_status == 0) {		/* Nothing is interesting */
1538 		BWI_UNLOCK(sc);
1539 		return;
1540 	}
1541 
1542 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1543 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1544 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1545 
1546 	txrx_error = 0;
1547 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1548 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1549 		uint32_t mask;
1550 
1551 		if (BWI_TXRX_IS_RX(i))
1552 			mask = BWI_TXRX_RX_INTRS;
1553 		else
1554 			mask = BWI_TXRX_TX_INTRS;
1555 
1556 		txrx_intr_status[i] =
1557 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1558 
1559 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1560 			 i, txrx_intr_status[i]);
1561 
1562 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1563 			device_printf(sc->sc_dev,
1564 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1565 			    __func__, i, txrx_intr_status[i]);
1566 			txrx_error = 1;
1567 		}
1568 	}
1569 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1570 
1571 	/*
1572 	 * Acknowledge interrupt
1573 	 */
1574 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1575 
1576 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1577 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1578 
1579 	/* Disable all interrupts */
1580 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1581 
1582 	/*
1583 	 * http://bcm-specs.sipsolutions.net/Interrupts
1584 	 * Says for this bit (0x800):
1585 	 * "Fatal Error
1586 	 *
1587 	 * We got this one while testing things when by accident the
1588 	 * template ram wasn't set to big endian when it should have
1589 	 * been after writing the initial values. It keeps on being
1590 	 * triggered, the only way to stop it seems to shut down the
1591 	 * chip."
1592 	 *
1593 	 * Suggesting that we should never get it and if we do we're not
1594 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1595 	 * it is valid only on mac version 5 and higher, but I couldn't
1596 	 * find a reference for that...  Since I see them from time to time
1597 	 * on my card, this suggests an error in the tx path still...
1598 	 */
1599 	if (intr_status & BWI_INTR_PHY_TXERR) {
1600 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1601 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1602 			    __func__);
1603 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1604 			BWI_UNLOCK(sc);
1605 			return;
1606 		}
1607 	}
1608 
1609 	if (txrx_error) {
1610 		/* TODO: reset device */
1611 	}
1612 
1613 	if (intr_status & BWI_INTR_TBTT)
1614 		bwi_mac_config_ps(mac);
1615 
1616 	if (intr_status & BWI_INTR_EO_ATIM)
1617 		device_printf(sc->sc_dev, "EO_ATIM\n");
1618 
1619 	if (intr_status & BWI_INTR_PMQ) {
1620 		for (;;) {
1621 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1622 				break;
1623 		}
1624 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1625 	}
1626 
1627 	if (intr_status & BWI_INTR_NOISE)
1628 		device_printf(sc->sc_dev, "intr noise\n");
1629 
1630 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1631 		rx_data = sc->sc_rxeof(sc);
1632 		if (sc->sc_flags & BWI_F_STOP) {
1633 			BWI_UNLOCK(sc);
1634 			return;
1635 		}
1636 	}
1637 
1638 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1639 		sc->sc_txeof_status(sc);
1640 		tx = 1;
1641 	}
1642 
1643 	if (intr_status & BWI_INTR_TX_DONE) {
1644 		bwi_txeof(sc);
1645 		tx = 1;
1646 	}
1647 
1648 	/* Re-enable interrupts */
1649 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1650 
1651 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1652 		int evt = BWI_LED_EVENT_NONE;
1653 
1654 		if (tx && rx_data > 0) {
1655 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1656 				evt = BWI_LED_EVENT_RX;
1657 			else
1658 				evt = BWI_LED_EVENT_TX;
1659 		} else if (tx) {
1660 			evt = BWI_LED_EVENT_TX;
1661 		} else if (rx_data > 0) {
1662 			evt = BWI_LED_EVENT_RX;
1663 		} else if (rx_data == 0) {
1664 			evt = BWI_LED_EVENT_POLL;
1665 		}
1666 
1667 		if (evt != BWI_LED_EVENT_NONE)
1668 			bwi_led_event(sc, evt);
1669 	}
1670 
1671 	BWI_UNLOCK(sc);
1672 }
1673 
1674 static void
1675 bwi_scan_start(struct ieee80211com *ic)
1676 {
1677 	struct bwi_softc *sc = ic->ic_softc;
1678 
1679 	BWI_LOCK(sc);
1680 	/* Enable MAC beacon promiscuity */
1681 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1682 	BWI_UNLOCK(sc);
1683 }
1684 
1685 static void
1686 bwi_getradiocaps(struct ieee80211com *ic,
1687     int maxchans, int *nchans, struct ieee80211_channel chans[])
1688 {
1689 	struct bwi_softc *sc = ic->ic_softc;
1690 	struct bwi_mac *mac;
1691 	struct bwi_phy *phy;
1692 	uint8_t bands[IEEE80211_MODE_BYTES];
1693 
1694 	/*
1695 	 * XXX First MAC is known to exist
1696 	 * TODO2
1697 	 */
1698 	mac = &sc->sc_mac[0];
1699 	phy = &mac->mac_phy;
1700 
1701 	memset(bands, 0, sizeof(bands));
1702 	switch (phy->phy_mode) {
1703 	case IEEE80211_MODE_11G:
1704 		setbit(bands, IEEE80211_MODE_11G);
1705 		/* FALLTHROUGH */
1706 	case IEEE80211_MODE_11B:
1707 		setbit(bands, IEEE80211_MODE_11B);
1708 		break;
1709 	case IEEE80211_MODE_11A:
1710 		/* TODO:11A */
1711 		setbit(bands, IEEE80211_MODE_11A);
1712 		device_printf(sc->sc_dev, "no 11a support\n");
1713 		return;
1714 	default:
1715 		panic("unknown phymode %d\n", phy->phy_mode);
1716 	}
1717 
1718 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1719 	    bwi_chan_2ghz, nitems(bwi_chan_2ghz), bands, 0);
1720 }
1721 
1722 static void
1723 bwi_set_channel(struct ieee80211com *ic)
1724 {
1725 	struct bwi_softc *sc = ic->ic_softc;
1726 	struct ieee80211_channel *c = ic->ic_curchan;
1727 	struct bwi_mac *mac;
1728 
1729 	BWI_LOCK(sc);
1730 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1731 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1732 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1733 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1734 
1735 	sc->sc_rates = ieee80211_get_ratetable(c);
1736 
1737 	/*
1738 	 * Setup radio tap channel freq and flags
1739 	 */
1740 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1741 		htole16(c->ic_freq);
1742 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1743 		htole16(c->ic_flags & 0xffff);
1744 
1745 	BWI_UNLOCK(sc);
1746 }
1747 
1748 static void
1749 bwi_scan_end(struct ieee80211com *ic)
1750 {
1751 	struct bwi_softc *sc = ic->ic_softc;
1752 
1753 	BWI_LOCK(sc);
1754 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1755 	BWI_UNLOCK(sc);
1756 }
1757 
1758 static int
1759 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1760 {
1761 	struct bwi_vap *bvp = BWI_VAP(vap);
1762 	struct ieee80211com *ic= vap->iv_ic;
1763 	struct bwi_softc *sc = ic->ic_softc;
1764 	enum ieee80211_state ostate = vap->iv_state;
1765 	struct bwi_mac *mac;
1766 	int error;
1767 
1768 	BWI_LOCK(sc);
1769 
1770 	callout_stop(&sc->sc_calib_ch);
1771 
1772 	if (nstate == IEEE80211_S_INIT)
1773 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1774 
1775 	bwi_led_newstate(sc, nstate);
1776 
1777 	error = bvp->bv_newstate(vap, nstate, arg);
1778 	if (error != 0)
1779 		goto back;
1780 
1781 	/*
1782 	 * Clear the BSSID when we stop a STA
1783 	 */
1784 	if (vap->iv_opmode == IEEE80211_M_STA) {
1785 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1786 			/*
1787 			 * Clear out the BSSID.  If we reassociate to
1788 			 * the same AP, this will reinialize things
1789 			 * correctly...
1790 			 */
1791 			if (ic->ic_opmode == IEEE80211_M_STA &&
1792 			    !(sc->sc_flags & BWI_F_STOP))
1793 				bwi_set_bssid(sc, bwi_zero_addr);
1794 		}
1795 	}
1796 
1797 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1798 		/* Nothing to do */
1799 	} else if (nstate == IEEE80211_S_RUN) {
1800 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1801 
1802 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1803 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1804 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1805 
1806 		/* Initial TX power calibration */
1807 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1808 #ifdef notyet
1809 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1810 #else
1811 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1812 #endif
1813 
1814 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1815 	}
1816 back:
1817 	BWI_UNLOCK(sc);
1818 
1819 	return error;
1820 }
1821 
1822 static int
1823 bwi_media_change(struct ifnet *ifp)
1824 {
1825 	int error = ieee80211_media_change(ifp);
1826 	/* NB: only the fixed rate can change and that doesn't need a reset */
1827 	return (error == ENETRESET ? 0 : error);
1828 }
1829 
1830 static int
1831 bwi_dma_alloc(struct bwi_softc *sc)
1832 {
1833 	int error, i, has_txstats;
1834 	bus_addr_t lowaddr = 0;
1835 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1836 	uint32_t txrx_ctrl_step = 0;
1837 
1838 	has_txstats = 0;
1839 	for (i = 0; i < sc->sc_nmac; ++i) {
1840 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1841 			has_txstats = 1;
1842 			break;
1843 		}
1844 	}
1845 
1846 	switch (sc->sc_bus_space) {
1847 	case BWI_BUS_SPACE_30BIT:
1848 	case BWI_BUS_SPACE_32BIT:
1849 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1850 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1851 		else
1852 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1853 		desc_sz = sizeof(struct bwi_desc32);
1854 		txrx_ctrl_step = 0x20;
1855 
1856 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1857 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1858 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1859 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1860 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1861 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1862 		sc->sc_rxeof = bwi_rxeof32;
1863 		sc->sc_start_tx = bwi_start_tx32;
1864 		if (has_txstats) {
1865 			sc->sc_init_txstats = bwi_init_txstats32;
1866 			sc->sc_free_txstats = bwi_free_txstats32;
1867 			sc->sc_txeof_status = bwi_txeof_status32;
1868 		}
1869 		break;
1870 
1871 	case BWI_BUS_SPACE_64BIT:
1872 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1873 		desc_sz = sizeof(struct bwi_desc64);
1874 		txrx_ctrl_step = 0x40;
1875 
1876 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1877 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1878 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1879 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1880 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1881 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1882 		sc->sc_rxeof = bwi_rxeof64;
1883 		sc->sc_start_tx = bwi_start_tx64;
1884 		if (has_txstats) {
1885 			sc->sc_init_txstats = bwi_init_txstats64;
1886 			sc->sc_free_txstats = bwi_free_txstats64;
1887 			sc->sc_txeof_status = bwi_txeof_status64;
1888 		}
1889 		break;
1890 	}
1891 
1892 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1893 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1894 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1895 
1896 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1897 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1898 
1899 	/*
1900 	 * Create top level DMA tag
1901 	 */
1902 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1903 			       BWI_ALIGN, 0,		/* alignment, bounds */
1904 			       lowaddr,			/* lowaddr */
1905 			       BUS_SPACE_MAXADDR,	/* highaddr */
1906 			       NULL, NULL,		/* filter, filterarg */
1907 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1908 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1909 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1910 			       0,			/* flags */
1911 			       NULL, NULL,		/* lockfunc, lockarg */
1912 			       &sc->sc_parent_dtag);
1913 	if (error) {
1914 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1915 		return error;
1916 	}
1917 
1918 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1919 
1920 	/*
1921 	 * Create TX ring DMA stuffs
1922 	 */
1923 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1924 				BWI_RING_ALIGN, 0,
1925 				BUS_SPACE_MAXADDR,
1926 				BUS_SPACE_MAXADDR,
1927 				NULL, NULL,
1928 				tx_ring_sz,
1929 				1,
1930 				tx_ring_sz,
1931 				0,
1932 				NULL, NULL,
1933 				&sc->sc_txring_dtag);
1934 	if (error) {
1935 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1936 		return error;
1937 	}
1938 
1939 	for (i = 0; i < BWI_TX_NRING; ++i) {
1940 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1941 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1942 					   TXRX_CTRL(i));
1943 		if (error) {
1944 			device_printf(sc->sc_dev, "%dth TX ring "
1945 				      "DMA alloc failed\n", i);
1946 			return error;
1947 		}
1948 	}
1949 
1950 	/*
1951 	 * Create RX ring DMA stuffs
1952 	 */
1953 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1954 				BWI_RING_ALIGN, 0,
1955 				BUS_SPACE_MAXADDR,
1956 				BUS_SPACE_MAXADDR,
1957 				NULL, NULL,
1958 				rx_ring_sz,
1959 				1,
1960 				rx_ring_sz,
1961 				0,
1962 				NULL, NULL,
1963 				&sc->sc_rxring_dtag);
1964 	if (error) {
1965 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1966 		return error;
1967 	}
1968 
1969 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1970 				   rx_ring_sz, TXRX_CTRL(0));
1971 	if (error) {
1972 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1973 		return error;
1974 	}
1975 
1976 	if (has_txstats) {
1977 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1978 		if (error) {
1979 			device_printf(sc->sc_dev,
1980 				      "TX stats DMA alloc failed\n");
1981 			return error;
1982 		}
1983 	}
1984 
1985 #undef TXRX_CTRL
1986 
1987 	return bwi_dma_mbuf_create(sc);
1988 }
1989 
1990 static void
1991 bwi_dma_free(struct bwi_softc *sc)
1992 {
1993 	if (sc->sc_txring_dtag != NULL) {
1994 		int i;
1995 
1996 		for (i = 0; i < BWI_TX_NRING; ++i) {
1997 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1998 
1999 			if (rd->rdata_desc != NULL) {
2000 				bus_dmamap_unload(sc->sc_txring_dtag,
2001 						  rd->rdata_dmap);
2002 				bus_dmamem_free(sc->sc_txring_dtag,
2003 						rd->rdata_desc,
2004 						rd->rdata_dmap);
2005 			}
2006 		}
2007 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2008 	}
2009 
2010 	if (sc->sc_rxring_dtag != NULL) {
2011 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2012 
2013 		if (rd->rdata_desc != NULL) {
2014 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2015 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2016 					rd->rdata_dmap);
2017 		}
2018 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2019 	}
2020 
2021 	bwi_dma_txstats_free(sc);
2022 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2023 
2024 	if (sc->sc_parent_dtag != NULL)
2025 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2026 }
2027 
2028 static int
2029 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2030 		   struct bwi_ring_data *rd, bus_size_t size,
2031 		   uint32_t txrx_ctrl)
2032 {
2033 	int error;
2034 
2035 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2036 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2037 				 &rd->rdata_dmap);
2038 	if (error) {
2039 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2040 		return error;
2041 	}
2042 
2043 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2044 				bwi_dma_ring_addr, &rd->rdata_paddr,
2045 				BUS_DMA_NOWAIT);
2046 	if (error) {
2047 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2048 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2049 		rd->rdata_desc = NULL;
2050 		return error;
2051 	}
2052 
2053 	rd->rdata_txrx_ctrl = txrx_ctrl;
2054 	return 0;
2055 }
2056 
2057 static int
2058 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2059 		      bus_size_t desc_sz)
2060 {
2061 	struct bwi_txstats_data *st;
2062 	bus_size_t dma_size;
2063 	int error;
2064 
2065 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2066 	if (st == NULL) {
2067 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2068 		return ENOMEM;
2069 	}
2070 	sc->sc_txstats = st;
2071 
2072 	/*
2073 	 * Create TX stats descriptor DMA stuffs
2074 	 */
2075 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2076 
2077 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2078 				BWI_RING_ALIGN,
2079 				0,
2080 				BUS_SPACE_MAXADDR,
2081 				BUS_SPACE_MAXADDR,
2082 				NULL, NULL,
2083 				dma_size,
2084 				1,
2085 				dma_size,
2086 				0,
2087 				NULL, NULL,
2088 				&st->stats_ring_dtag);
2089 	if (error) {
2090 		device_printf(sc->sc_dev, "can't create txstats ring "
2091 			      "DMA tag\n");
2092 		return error;
2093 	}
2094 
2095 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2096 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2097 				 &st->stats_ring_dmap);
2098 	if (error) {
2099 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2100 			      "DMA mem\n");
2101 		bus_dma_tag_destroy(st->stats_ring_dtag);
2102 		st->stats_ring_dtag = NULL;
2103 		return error;
2104 	}
2105 
2106 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2107 				st->stats_ring, dma_size,
2108 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2109 				BUS_DMA_NOWAIT);
2110 	if (error) {
2111 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2112 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2113 				st->stats_ring_dmap);
2114 		bus_dma_tag_destroy(st->stats_ring_dtag);
2115 		st->stats_ring_dtag = NULL;
2116 		return error;
2117 	}
2118 
2119 	/*
2120 	 * Create TX stats DMA stuffs
2121 	 */
2122 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2123 			   BWI_ALIGN);
2124 
2125 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2126 				BWI_ALIGN,
2127 				0,
2128 				BUS_SPACE_MAXADDR,
2129 				BUS_SPACE_MAXADDR,
2130 				NULL, NULL,
2131 				dma_size,
2132 				1,
2133 				dma_size,
2134 				0,
2135 				NULL, NULL,
2136 				&st->stats_dtag);
2137 	if (error) {
2138 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2139 		return error;
2140 	}
2141 
2142 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2143 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2144 				 &st->stats_dmap);
2145 	if (error) {
2146 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2147 		bus_dma_tag_destroy(st->stats_dtag);
2148 		st->stats_dtag = NULL;
2149 		return error;
2150 	}
2151 
2152 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2153 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2154 				BUS_DMA_NOWAIT);
2155 	if (error) {
2156 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2157 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2158 		bus_dma_tag_destroy(st->stats_dtag);
2159 		st->stats_dtag = NULL;
2160 		return error;
2161 	}
2162 
2163 	st->stats_ctrl_base = ctrl_base;
2164 	return 0;
2165 }
2166 
2167 static void
2168 bwi_dma_txstats_free(struct bwi_softc *sc)
2169 {
2170 	struct bwi_txstats_data *st;
2171 
2172 	if (sc->sc_txstats == NULL)
2173 		return;
2174 	st = sc->sc_txstats;
2175 
2176 	if (st->stats_ring_dtag != NULL) {
2177 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2178 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2179 				st->stats_ring_dmap);
2180 		bus_dma_tag_destroy(st->stats_ring_dtag);
2181 	}
2182 
2183 	if (st->stats_dtag != NULL) {
2184 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2185 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2186 		bus_dma_tag_destroy(st->stats_dtag);
2187 	}
2188 
2189 	free(st, M_DEVBUF);
2190 }
2191 
2192 static void
2193 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2194 {
2195 	KASSERT(nseg == 1, ("too many segments\n"));
2196 	*((bus_addr_t *)arg) = seg->ds_addr;
2197 }
2198 
2199 static int
2200 bwi_dma_mbuf_create(struct bwi_softc *sc)
2201 {
2202 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2203 	int i, j, k, ntx, error;
2204 
2205 	/*
2206 	 * Create TX/RX mbuf DMA tag
2207 	 */
2208 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2209 				1,
2210 				0,
2211 				BUS_SPACE_MAXADDR,
2212 				BUS_SPACE_MAXADDR,
2213 				NULL, NULL,
2214 				MCLBYTES,
2215 				1,
2216 				MCLBYTES,
2217 				BUS_DMA_ALLOCNOW,
2218 				NULL, NULL,
2219 				&sc->sc_buf_dtag);
2220 	if (error) {
2221 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2222 		return error;
2223 	}
2224 
2225 	ntx = 0;
2226 
2227 	/*
2228 	 * Create TX mbuf DMA map
2229 	 */
2230 	for (i = 0; i < BWI_TX_NRING; ++i) {
2231 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2232 
2233 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2234 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2235 						  &tbd->tbd_buf[j].tb_dmap);
2236 			if (error) {
2237 				device_printf(sc->sc_dev, "can't create "
2238 					      "%dth tbd, %dth DMA map\n", i, j);
2239 
2240 				ntx = i;
2241 				for (k = 0; k < j; ++k) {
2242 					bus_dmamap_destroy(sc->sc_buf_dtag,
2243 						tbd->tbd_buf[k].tb_dmap);
2244 				}
2245 				goto fail;
2246 			}
2247 		}
2248 	}
2249 	ntx = BWI_TX_NRING;
2250 
2251 	/*
2252 	 * Create RX mbuf DMA map and a spare DMA map
2253 	 */
2254 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2255 				  &rbd->rbd_tmp_dmap);
2256 	if (error) {
2257 		device_printf(sc->sc_dev,
2258 			      "can't create spare RX buf DMA map\n");
2259 		goto fail;
2260 	}
2261 
2262 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2263 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2264 					  &rbd->rbd_buf[j].rb_dmap);
2265 		if (error) {
2266 			device_printf(sc->sc_dev, "can't create %dth "
2267 				      "RX buf DMA map\n", j);
2268 
2269 			for (k = 0; k < j; ++k) {
2270 				bus_dmamap_destroy(sc->sc_buf_dtag,
2271 					rbd->rbd_buf[j].rb_dmap);
2272 			}
2273 			bus_dmamap_destroy(sc->sc_buf_dtag,
2274 					   rbd->rbd_tmp_dmap);
2275 			goto fail;
2276 		}
2277 	}
2278 
2279 	return 0;
2280 fail:
2281 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2282 	return error;
2283 }
2284 
2285 static void
2286 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2287 {
2288 	int i, j;
2289 
2290 	if (sc->sc_buf_dtag == NULL)
2291 		return;
2292 
2293 	for (i = 0; i < ntx; ++i) {
2294 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2295 
2296 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2297 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2298 
2299 			if (tb->tb_mbuf != NULL) {
2300 				bus_dmamap_unload(sc->sc_buf_dtag,
2301 						  tb->tb_dmap);
2302 				m_freem(tb->tb_mbuf);
2303 			}
2304 			if (tb->tb_ni != NULL)
2305 				ieee80211_free_node(tb->tb_ni);
2306 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2307 		}
2308 	}
2309 
2310 	if (nrx) {
2311 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2312 
2313 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2314 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2315 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2316 
2317 			if (rb->rb_mbuf != NULL) {
2318 				bus_dmamap_unload(sc->sc_buf_dtag,
2319 						  rb->rb_dmap);
2320 				m_freem(rb->rb_mbuf);
2321 			}
2322 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2323 		}
2324 	}
2325 
2326 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2327 	sc->sc_buf_dtag = NULL;
2328 }
2329 
2330 static void
2331 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2332 {
2333 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2334 }
2335 
2336 static void
2337 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2338 {
2339 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2340 }
2341 
2342 static int
2343 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2344 {
2345 	struct bwi_ring_data *rd;
2346 	struct bwi_txbuf_data *tbd;
2347 	uint32_t val, addr_hi, addr_lo;
2348 
2349 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2350 	rd = &sc->sc_tx_rdata[ring_idx];
2351 	tbd = &sc->sc_tx_bdata[ring_idx];
2352 
2353 	tbd->tbd_idx = 0;
2354 	tbd->tbd_used = 0;
2355 
2356 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2357 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2358 			BUS_DMASYNC_PREWRITE);
2359 
2360 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2361 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2362 
2363 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2364 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2365 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2366 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2367 
2368 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2369 	      BWI_TXRX32_CTRL_ENABLE;
2370 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2371 
2372 	return 0;
2373 }
2374 
2375 static void
2376 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2377 		       bus_addr_t paddr, int hdr_size, int ndesc)
2378 {
2379 	uint32_t val, addr_hi, addr_lo;
2380 
2381 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2382 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2383 
2384 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2385 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2386 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2387 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2388 
2389 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2390 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2391 	      BWI_TXRX32_CTRL_ENABLE;
2392 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2393 
2394 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2395 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2396 }
2397 
2398 static int
2399 bwi_init_rx_ring32(struct bwi_softc *sc)
2400 {
2401 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2402 	int i, error;
2403 
2404 	sc->sc_rx_bdata.rbd_idx = 0;
2405 
2406 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2407 		error = bwi_newbuf(sc, i, 1);
2408 		if (error) {
2409 			device_printf(sc->sc_dev,
2410 				  "can't allocate %dth RX buffer\n", i);
2411 			return error;
2412 		}
2413 	}
2414 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2415 			BUS_DMASYNC_PREWRITE);
2416 
2417 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2418 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2419 	return 0;
2420 }
2421 
2422 static int
2423 bwi_init_txstats32(struct bwi_softc *sc)
2424 {
2425 	struct bwi_txstats_data *st = sc->sc_txstats;
2426 	bus_addr_t stats_paddr;
2427 	int i;
2428 
2429 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2430 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2431 
2432 	st->stats_idx = 0;
2433 
2434 	stats_paddr = st->stats_paddr;
2435 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2436 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2437 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2438 		stats_paddr += sizeof(struct bwi_txstats);
2439 	}
2440 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2441 			BUS_DMASYNC_PREWRITE);
2442 
2443 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2444 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2445 	return 0;
2446 }
2447 
2448 static void
2449 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2450 		    int buf_len)
2451 {
2452 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2453 
2454 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2455 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2456 			 paddr, buf_len, 0);
2457 }
2458 
2459 static void
2460 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2461 		    int buf_idx, bus_addr_t paddr, int buf_len)
2462 {
2463 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2464 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2465 			 paddr, buf_len, 1);
2466 }
2467 
2468 static int
2469 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2470 {
2471 	/* TODO:64 */
2472 	return EOPNOTSUPP;
2473 }
2474 
2475 static int
2476 bwi_init_rx_ring64(struct bwi_softc *sc)
2477 {
2478 	/* TODO:64 */
2479 	return EOPNOTSUPP;
2480 }
2481 
2482 static int
2483 bwi_init_txstats64(struct bwi_softc *sc)
2484 {
2485 	/* TODO:64 */
2486 	return EOPNOTSUPP;
2487 }
2488 
2489 static void
2490 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2491 		    int buf_len)
2492 {
2493 	/* TODO:64 */
2494 }
2495 
2496 static void
2497 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2498 		    int buf_idx, bus_addr_t paddr, int buf_len)
2499 {
2500 	/* TODO:64 */
2501 }
2502 
2503 static void
2504 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2505 		 bus_size_t mapsz __unused, int error)
2506 {
2507         if (!error) {
2508 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2509 		*((bus_addr_t *)arg) = seg->ds_addr;
2510 	}
2511 }
2512 
2513 static int
2514 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2515 {
2516 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2517 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2518 	struct bwi_rxbuf_hdr *hdr;
2519 	bus_dmamap_t map;
2520 	bus_addr_t paddr;
2521 	struct mbuf *m;
2522 	int error;
2523 
2524 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2525 
2526 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2527 	if (m == NULL) {
2528 		error = ENOBUFS;
2529 
2530 		/*
2531 		 * If the NIC is up and running, we need to:
2532 		 * - Clear RX buffer's header.
2533 		 * - Restore RX descriptor settings.
2534 		 */
2535 		if (init)
2536 			return error;
2537 		else
2538 			goto back;
2539 	}
2540 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2541 
2542 	/*
2543 	 * Try to load RX buf into temporary DMA map
2544 	 */
2545 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2546 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2547 	if (error) {
2548 		m_freem(m);
2549 
2550 		/*
2551 		 * See the comment above
2552 		 */
2553 		if (init)
2554 			return error;
2555 		else
2556 			goto back;
2557 	}
2558 
2559 	if (!init)
2560 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2561 	rxbuf->rb_mbuf = m;
2562 	rxbuf->rb_paddr = paddr;
2563 
2564 	/*
2565 	 * Swap RX buf's DMA map with the loaded temporary one
2566 	 */
2567 	map = rxbuf->rb_dmap;
2568 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2569 	rbd->rbd_tmp_dmap = map;
2570 
2571 back:
2572 	/*
2573 	 * Clear RX buf header
2574 	 */
2575 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2576 	bzero(hdr, sizeof(*hdr));
2577 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2578 
2579 	/*
2580 	 * Setup RX buf descriptor
2581 	 */
2582 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2583 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2584 	return error;
2585 }
2586 
2587 static void
2588 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2589 		    const uint8_t *addr)
2590 {
2591 	int i;
2592 
2593 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2594 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2595 
2596 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2597 		uint16_t addr_val;
2598 
2599 		addr_val = (uint16_t)addr[i * 2] |
2600 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2601 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2602 	}
2603 }
2604 
2605 static int
2606 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2607 {
2608 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2609 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2610 	struct ieee80211com *ic = &sc->sc_ic;
2611 	int idx, rx_data = 0;
2612 
2613 	idx = rbd->rbd_idx;
2614 	while (idx != end_idx) {
2615 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2616 		struct bwi_rxbuf_hdr *hdr;
2617 		struct ieee80211_frame_min *wh;
2618 		struct ieee80211_node *ni;
2619 		struct mbuf *m;
2620 		uint32_t plcp;
2621 		uint16_t flags2;
2622 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2623 
2624 		m = rb->rb_mbuf;
2625 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2626 				BUS_DMASYNC_POSTREAD);
2627 
2628 		if (bwi_newbuf(sc, idx, 0)) {
2629 			counter_u64_add(ic->ic_ierrors, 1);
2630 			goto next;
2631 		}
2632 
2633 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2634 		flags2 = le16toh(hdr->rxh_flags2);
2635 
2636 		hdr_extra = 0;
2637 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2638 			hdr_extra = 2;
2639 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2640 
2641 		buflen = le16toh(hdr->rxh_buflen);
2642 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2643 			device_printf(sc->sc_dev,
2644 			    "%s: zero length data, hdr_extra %d\n",
2645 			    __func__, hdr_extra);
2646 			counter_u64_add(ic->ic_ierrors, 1);
2647 			m_freem(m);
2648 			goto next;
2649 		}
2650 
2651 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2652 		rssi = bwi_calc_rssi(sc, hdr);
2653 		noise = bwi_calc_noise(sc);
2654 
2655 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2656 		m_adj(m, sizeof(*hdr) + wh_ofs);
2657 
2658 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2659 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2660 		else
2661 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2662 
2663 		/* RX radio tap */
2664 		if (ieee80211_radiotap_active(ic))
2665 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2666 
2667 		m_adj(m, -IEEE80211_CRC_LEN);
2668 
2669 		BWI_UNLOCK(sc);
2670 
2671 		wh = mtod(m, struct ieee80211_frame_min *);
2672 		ni = ieee80211_find_rxnode(ic, wh);
2673 		if (ni != NULL) {
2674 			type = ieee80211_input(ni, m, rssi - noise, noise);
2675 			ieee80211_free_node(ni);
2676 		} else
2677 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2678 		if (type == IEEE80211_FC0_TYPE_DATA) {
2679 			rx_data = 1;
2680 			sc->sc_rx_rate = rate;
2681 		}
2682 
2683 		BWI_LOCK(sc);
2684 next:
2685 		idx = (idx + 1) % BWI_RX_NDESC;
2686 
2687 		if (sc->sc_flags & BWI_F_STOP) {
2688 			/*
2689 			 * Take the fast lane, don't do
2690 			 * any damage to softc
2691 			 */
2692 			return -1;
2693 		}
2694 	}
2695 
2696 	rbd->rbd_idx = idx;
2697 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2698 			BUS_DMASYNC_PREWRITE);
2699 
2700 	return rx_data;
2701 }
2702 
2703 static int
2704 bwi_rxeof32(struct bwi_softc *sc)
2705 {
2706 	uint32_t val, rx_ctrl;
2707 	int end_idx, rx_data;
2708 
2709 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2710 
2711 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2712 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2713 		  sizeof(struct bwi_desc32);
2714 
2715 	rx_data = bwi_rxeof(sc, end_idx);
2716 	if (rx_data >= 0) {
2717 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2718 			    end_idx * sizeof(struct bwi_desc32));
2719 	}
2720 	return rx_data;
2721 }
2722 
2723 static int
2724 bwi_rxeof64(struct bwi_softc *sc)
2725 {
2726 	/* TODO:64 */
2727 	return 0;
2728 }
2729 
2730 static void
2731 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2732 {
2733 	int i;
2734 
2735 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2736 
2737 #define NRETRY 10
2738 
2739 	for (i = 0; i < NRETRY; ++i) {
2740 		uint32_t status;
2741 
2742 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2743 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2744 		    BWI_RX32_STATUS_STATE_DISABLED)
2745 			break;
2746 
2747 		DELAY(1000);
2748 	}
2749 	if (i == NRETRY)
2750 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2751 
2752 #undef NRETRY
2753 
2754 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2755 }
2756 
2757 static void
2758 bwi_free_txstats32(struct bwi_softc *sc)
2759 {
2760 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2761 }
2762 
2763 static void
2764 bwi_free_rx_ring32(struct bwi_softc *sc)
2765 {
2766 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2767 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2768 	int i;
2769 
2770 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2771 
2772 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2773 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2774 
2775 		if (rb->rb_mbuf != NULL) {
2776 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2777 			m_freem(rb->rb_mbuf);
2778 			rb->rb_mbuf = NULL;
2779 		}
2780 	}
2781 }
2782 
2783 static void
2784 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2785 {
2786 	struct bwi_ring_data *rd;
2787 	struct bwi_txbuf_data *tbd;
2788 	uint32_t state, val;
2789 	int i;
2790 
2791 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2792 	rd = &sc->sc_tx_rdata[ring_idx];
2793 	tbd = &sc->sc_tx_bdata[ring_idx];
2794 
2795 #define NRETRY 10
2796 
2797 	for (i = 0; i < NRETRY; ++i) {
2798 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2799 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2800 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2801 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2802 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2803 			break;
2804 
2805 		DELAY(1000);
2806 	}
2807 	if (i == NRETRY) {
2808 		device_printf(sc->sc_dev,
2809 		    "%s: wait for TX ring(%d) stable timed out\n",
2810 		    __func__, ring_idx);
2811 	}
2812 
2813 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2814 	for (i = 0; i < NRETRY; ++i) {
2815 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2816 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2817 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2818 			break;
2819 
2820 		DELAY(1000);
2821 	}
2822 	if (i == NRETRY)
2823 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2824 		     __func__, ring_idx);
2825 
2826 #undef NRETRY
2827 
2828 	DELAY(1000);
2829 
2830 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2831 
2832 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2833 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2834 
2835 		if (tb->tb_mbuf != NULL) {
2836 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2837 			m_freem(tb->tb_mbuf);
2838 			tb->tb_mbuf = NULL;
2839 		}
2840 		if (tb->tb_ni != NULL) {
2841 			ieee80211_free_node(tb->tb_ni);
2842 			tb->tb_ni = NULL;
2843 		}
2844 	}
2845 }
2846 
2847 static void
2848 bwi_free_txstats64(struct bwi_softc *sc)
2849 {
2850 	/* TODO:64 */
2851 }
2852 
2853 static void
2854 bwi_free_rx_ring64(struct bwi_softc *sc)
2855 {
2856 	/* TODO:64 */
2857 }
2858 
2859 static void
2860 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2861 {
2862 	/* TODO:64 */
2863 }
2864 
2865 /* XXX does not belong here */
2866 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2867 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2868 
2869 static __inline void
2870 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2871 {
2872 	uint32_t plcp;
2873 
2874 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2875 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2876 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2877 	*plcp0 = htole32(plcp);
2878 }
2879 
2880 static __inline void
2881 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2882 		   uint8_t rate)
2883 {
2884 	int len, service, pkt_bitlen;
2885 
2886 	pkt_bitlen = pkt_len * NBBY;
2887 	len = howmany(pkt_bitlen * 2, rate);
2888 
2889 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2890 	if (rate == (11 * 2)) {
2891 		int pkt_bitlen1;
2892 
2893 		/*
2894 		 * PLCP service field needs to be adjusted,
2895 		 * if TX rate is 11Mbytes/s
2896 		 */
2897 		pkt_bitlen1 = len * 11;
2898 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2899 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2900 	}
2901 
2902 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2903 	plcp->i_service = service;
2904 	plcp->i_length = htole16(len);
2905 	/* NOTE: do NOT touch i_crc */
2906 }
2907 
2908 static __inline void
2909 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2910 	void *plcp, int pkt_len, uint8_t rate)
2911 {
2912 	enum ieee80211_phytype modtype;
2913 
2914 	/*
2915 	 * Assume caller has zeroed 'plcp'
2916 	 */
2917 	modtype = ieee80211_rate2phytype(rt, rate);
2918 	if (modtype == IEEE80211_T_OFDM)
2919 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2920 	else if (modtype == IEEE80211_T_DS)
2921 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2922 	else
2923 		panic("unsupport modulation type %u\n", modtype);
2924 }
2925 
2926 static int
2927 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2928 	  struct ieee80211_node *ni)
2929 {
2930 	struct ieee80211vap *vap = ni->ni_vap;
2931 	struct ieee80211com *ic = &sc->sc_ic;
2932 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2933 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2934 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2935 	struct bwi_mac *mac;
2936 	struct bwi_txbuf_hdr *hdr;
2937 	struct ieee80211_frame *wh;
2938 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2939 	uint8_t rate, rate_fb;
2940 	uint32_t mac_ctrl;
2941 	uint16_t phy_ctrl;
2942 	bus_addr_t paddr;
2943 	int type, ismcast, pkt_len, error, rix;
2944 #if 0
2945 	const uint8_t *p;
2946 	int i;
2947 #endif
2948 
2949 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2950 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2951 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2952 
2953 	wh = mtod(m, struct ieee80211_frame *);
2954 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2955 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2956 
2957 	/* Get 802.11 frame len before prepending TX header */
2958 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2959 
2960 	/*
2961 	 * Find TX rate
2962 	 */
2963 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2964 		rate = rate_fb = tp->mgmtrate;
2965 	} else if (ismcast) {
2966 		rate = rate_fb = tp->mcastrate;
2967 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2968 		rate = rate_fb = tp->ucastrate;
2969 	} else {
2970 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2971 		rate = ni->ni_txrate;
2972 
2973 		if (rix > 0) {
2974 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2975 				  IEEE80211_RATE_VAL;
2976 		} else {
2977 			rate_fb = rate;
2978 		}
2979 	}
2980 	tb->tb_rate[0] = rate;
2981 	tb->tb_rate[1] = rate_fb;
2982 	sc->sc_tx_rate = rate;
2983 
2984 	/*
2985 	 * TX radio tap
2986 	 */
2987 	if (ieee80211_radiotap_active_vap(vap)) {
2988 		sc->sc_tx_th.wt_flags = 0;
2989 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2990 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2991 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2992 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2993 		    rate != (1 * 2)) {
2994 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2995 		}
2996 		sc->sc_tx_th.wt_rate = rate;
2997 
2998 		ieee80211_radiotap_tx(vap, m);
2999 	}
3000 
3001 	/*
3002 	 * Setup the embedded TX header
3003 	 */
3004 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3005 	if (m == NULL) {
3006 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3007 		    __func__);
3008 		return ENOBUFS;
3009 	}
3010 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3011 
3012 	bzero(hdr, sizeof(*hdr));
3013 
3014 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3015 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3016 
3017 	if (!ismcast) {
3018 		uint16_t dur;
3019 
3020 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3021 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3022 
3023 		hdr->txh_fb_duration = htole16(dur);
3024 	}
3025 
3026 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3027 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3028 
3029 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3030 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3031 
3032 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3033 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3034 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3035 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3036 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3037 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3038 
3039 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3040 	if (!ismcast)
3041 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3042 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3043 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3044 
3045 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3046 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3047 
3048 	/* Catch any further usage */
3049 	hdr = NULL;
3050 	wh = NULL;
3051 
3052 	/* DMA load */
3053 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3054 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3055 	if (error && error != EFBIG) {
3056 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3057 		    __func__, error);
3058 		goto back;
3059 	}
3060 
3061 	if (error) {	/* error == EFBIG */
3062 		struct mbuf *m_new;
3063 
3064 		m_new = m_defrag(m, M_NOWAIT);
3065 		if (m_new == NULL) {
3066 			device_printf(sc->sc_dev,
3067 			    "%s: can't defrag TX buffer\n", __func__);
3068 			error = ENOBUFS;
3069 			goto back;
3070 		} else {
3071 			m = m_new;
3072 		}
3073 
3074 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3075 					     bwi_dma_buf_addr, &paddr,
3076 					     BUS_DMA_NOWAIT);
3077 		if (error) {
3078 			device_printf(sc->sc_dev,
3079 			    "%s: can't load TX buffer (2) %d\n",
3080 			    __func__, error);
3081 			goto back;
3082 		}
3083 	}
3084 	error = 0;
3085 
3086 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3087 
3088 	tb->tb_mbuf = m;
3089 	tb->tb_ni = ni;
3090 
3091 #if 0
3092 	p = mtod(m, const uint8_t *);
3093 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3094 		if (i != 0 && i % 8 == 0)
3095 			printf("\n");
3096 		printf("%02x ", p[i]);
3097 	}
3098 	printf("\n");
3099 #endif
3100 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3101 		idx, pkt_len, m->m_pkthdr.len);
3102 
3103 	/* Setup TX descriptor */
3104 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3105 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3106 			BUS_DMASYNC_PREWRITE);
3107 
3108 	/* Kick start */
3109 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3110 
3111 back:
3112 	if (error)
3113 		m_freem(m);
3114 	return error;
3115 }
3116 
3117 static int
3118 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3119 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3120 {
3121 	struct ieee80211vap *vap = ni->ni_vap;
3122 	struct ieee80211com *ic = ni->ni_ic;
3123 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3124 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3125 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3126 	struct bwi_mac *mac;
3127 	struct bwi_txbuf_hdr *hdr;
3128 	struct ieee80211_frame *wh;
3129 	uint8_t rate, rate_fb;
3130 	uint32_t mac_ctrl;
3131 	uint16_t phy_ctrl;
3132 	bus_addr_t paddr;
3133 	int ismcast, pkt_len, error;
3134 
3135 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3136 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3137 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3138 
3139 	wh = mtod(m, struct ieee80211_frame *);
3140 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3141 
3142 	/* Get 802.11 frame len before prepending TX header */
3143 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3144 
3145 	/*
3146 	 * Find TX rate
3147 	 */
3148 	rate = params->ibp_rate0;
3149 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3150 		/* XXX fall back to mcast/mgmt rate? */
3151 		m_freem(m);
3152 		return EINVAL;
3153 	}
3154 	if (params->ibp_try1 != 0) {
3155 		rate_fb = params->ibp_rate1;
3156 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3157 			/* XXX fall back to rate0? */
3158 			m_freem(m);
3159 			return EINVAL;
3160 		}
3161 	} else
3162 		rate_fb = rate;
3163 	tb->tb_rate[0] = rate;
3164 	tb->tb_rate[1] = rate_fb;
3165 	sc->sc_tx_rate = rate;
3166 
3167 	/*
3168 	 * TX radio tap
3169 	 */
3170 	if (ieee80211_radiotap_active_vap(vap)) {
3171 		sc->sc_tx_th.wt_flags = 0;
3172 		/* XXX IEEE80211_BPF_CRYPTO */
3173 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3174 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3175 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3176 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3177 		sc->sc_tx_th.wt_rate = rate;
3178 
3179 		ieee80211_radiotap_tx(vap, m);
3180 	}
3181 
3182 	/*
3183 	 * Setup the embedded TX header
3184 	 */
3185 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3186 	if (m == NULL) {
3187 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3188 		    __func__);
3189 		return ENOBUFS;
3190 	}
3191 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3192 
3193 	bzero(hdr, sizeof(*hdr));
3194 
3195 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3196 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3197 
3198 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3199 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3200 		uint16_t dur;
3201 
3202 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3203 
3204 		hdr->txh_fb_duration = htole16(dur);
3205 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3206 	}
3207 
3208 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3209 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3210 
3211 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3212 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3213 
3214 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3215 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3216 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3217 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3218 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3219 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3220 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3221 
3222 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3223 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3224 
3225 	/* Catch any further usage */
3226 	hdr = NULL;
3227 	wh = NULL;
3228 
3229 	/* DMA load */
3230 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3231 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3232 	if (error != 0) {
3233 		struct mbuf *m_new;
3234 
3235 		if (error != EFBIG) {
3236 			device_printf(sc->sc_dev,
3237 			    "%s: can't load TX buffer (1) %d\n",
3238 			    __func__, error);
3239 			goto back;
3240 		}
3241 		m_new = m_defrag(m, M_NOWAIT);
3242 		if (m_new == NULL) {
3243 			device_printf(sc->sc_dev,
3244 			    "%s: can't defrag TX buffer\n", __func__);
3245 			error = ENOBUFS;
3246 			goto back;
3247 		}
3248 		m = m_new;
3249 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3250 					     bwi_dma_buf_addr, &paddr,
3251 					     BUS_DMA_NOWAIT);
3252 		if (error) {
3253 			device_printf(sc->sc_dev,
3254 			    "%s: can't load TX buffer (2) %d\n",
3255 			    __func__, error);
3256 			goto back;
3257 		}
3258 	}
3259 
3260 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3261 
3262 	tb->tb_mbuf = m;
3263 	tb->tb_ni = ni;
3264 
3265 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3266 		idx, pkt_len, m->m_pkthdr.len);
3267 
3268 	/* Setup TX descriptor */
3269 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3270 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3271 			BUS_DMASYNC_PREWRITE);
3272 
3273 	/* Kick start */
3274 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3275 back:
3276 	if (error)
3277 		m_freem(m);
3278 	return error;
3279 }
3280 
3281 static void
3282 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3283 {
3284 	idx = (idx + 1) % BWI_TX_NDESC;
3285 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3286 		    idx * sizeof(struct bwi_desc32));
3287 }
3288 
3289 static void
3290 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3291 {
3292 	/* TODO:64 */
3293 }
3294 
3295 static void
3296 bwi_txeof_status32(struct bwi_softc *sc)
3297 {
3298 	uint32_t val, ctrl_base;
3299 	int end_idx;
3300 
3301 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3302 
3303 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3304 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3305 		  sizeof(struct bwi_desc32);
3306 
3307 	bwi_txeof_status(sc, end_idx);
3308 
3309 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3310 		    end_idx * sizeof(struct bwi_desc32));
3311 
3312 	bwi_start_locked(sc);
3313 }
3314 
3315 static void
3316 bwi_txeof_status64(struct bwi_softc *sc)
3317 {
3318 	/* TODO:64 */
3319 }
3320 
3321 static void
3322 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3323 {
3324 	struct bwi_txbuf_data *tbd;
3325 	struct bwi_txbuf *tb;
3326 	int ring_idx, buf_idx;
3327 	struct ieee80211_node *ni;
3328 
3329 	if (tx_id == 0) {
3330 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3331 		return;
3332 	}
3333 
3334 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3335 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3336 
3337 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3338 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3339 
3340 	tbd = &sc->sc_tx_bdata[ring_idx];
3341 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3342 	tbd->tbd_used--;
3343 
3344 	tb = &tbd->tbd_buf[buf_idx];
3345 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3346 		"acked %d, data_txcnt %d, ni %p\n",
3347 		buf_idx, acked, data_txcnt, tb->tb_ni);
3348 
3349 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3350 
3351 	if ((ni = tb->tb_ni) != NULL) {
3352 		const struct bwi_txbuf_hdr *hdr =
3353 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3354 		struct ieee80211_ratectl_tx_status txs;
3355 
3356 		/* NB: update rate control only for unicast frames */
3357 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3358 			/*
3359 			 * Feed back 'acked and data_txcnt'.  Note that the
3360 			 * generic AMRR code only understands one tx rate
3361 			 * and the estimator doesn't handle real retry counts
3362 			 * well so to avoid over-aggressive downshifting we
3363 			 * treat any number of retries as "1".
3364 			 */
3365 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3366 			txs.long_retries = acked;
3367 			if (data_txcnt > 1)
3368 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3369 			else {
3370 				txs.status =
3371 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3372 			}
3373 			ieee80211_ratectl_tx_complete(ni, &txs);
3374 		}
3375 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3376 		tb->tb_ni = NULL;
3377 	} else
3378 		m_freem(tb->tb_mbuf);
3379 	tb->tb_mbuf = NULL;
3380 
3381 	if (tbd->tbd_used == 0)
3382 		sc->sc_tx_timer = 0;
3383 }
3384 
3385 static void
3386 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3387 {
3388 	struct bwi_txstats_data *st = sc->sc_txstats;
3389 	int idx;
3390 
3391 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3392 
3393 	idx = st->stats_idx;
3394 	while (idx != end_idx) {
3395 		const struct bwi_txstats *stats = &st->stats[idx];
3396 
3397 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3398 			int data_txcnt;
3399 
3400 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3401 						BWI_TXS_TXCNT_DATA);
3402 			_bwi_txeof(sc, le16toh(stats->txs_id),
3403 				   stats->txs_flags & BWI_TXS_F_ACKED,
3404 				   data_txcnt);
3405 		}
3406 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3407 	}
3408 	st->stats_idx = idx;
3409 }
3410 
3411 static void
3412 bwi_txeof(struct bwi_softc *sc)
3413 {
3414 
3415 	for (;;) {
3416 		uint32_t tx_status0, tx_status1;
3417 		uint16_t tx_id;
3418 		int data_txcnt;
3419 
3420 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3421 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3422 			break;
3423 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3424 
3425 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3426 		data_txcnt = __SHIFTOUT(tx_status0,
3427 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3428 
3429 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3430 			continue;
3431 
3432 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3433 		    data_txcnt);
3434 	}
3435 
3436 	bwi_start_locked(sc);
3437 }
3438 
3439 static int
3440 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3441 {
3442 	bwi_power_on(sc, 1);
3443 	return bwi_set_clock_mode(sc, clk_mode);
3444 }
3445 
3446 static void
3447 bwi_bbp_power_off(struct bwi_softc *sc)
3448 {
3449 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3450 	bwi_power_off(sc, 1);
3451 }
3452 
3453 static int
3454 bwi_get_pwron_delay(struct bwi_softc *sc)
3455 {
3456 	struct bwi_regwin *com, *old;
3457 	struct bwi_clock_freq freq;
3458 	uint32_t val;
3459 	int error;
3460 
3461 	com = &sc->sc_com_regwin;
3462 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3463 
3464 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3465 		return 0;
3466 
3467 	error = bwi_regwin_switch(sc, com, &old);
3468 	if (error)
3469 		return error;
3470 
3471 	bwi_get_clock_freq(sc, &freq);
3472 
3473 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3474 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3475 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3476 
3477 	return bwi_regwin_switch(sc, old, NULL);
3478 }
3479 
3480 static int
3481 bwi_bus_attach(struct bwi_softc *sc)
3482 {
3483 	struct bwi_regwin *bus, *old;
3484 	int error;
3485 
3486 	bus = &sc->sc_bus_regwin;
3487 
3488 	error = bwi_regwin_switch(sc, bus, &old);
3489 	if (error)
3490 		return error;
3491 
3492 	if (!bwi_regwin_is_enabled(sc, bus))
3493 		bwi_regwin_enable(sc, bus, 0);
3494 
3495 	/* Disable interripts */
3496 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3497 
3498 	return bwi_regwin_switch(sc, old, NULL);
3499 }
3500 
3501 static const char *
3502 bwi_regwin_name(const struct bwi_regwin *rw)
3503 {
3504 	switch (rw->rw_type) {
3505 	case BWI_REGWIN_T_COM:
3506 		return "COM";
3507 	case BWI_REGWIN_T_BUSPCI:
3508 		return "PCI";
3509 	case BWI_REGWIN_T_MAC:
3510 		return "MAC";
3511 	case BWI_REGWIN_T_BUSPCIE:
3512 		return "PCIE";
3513 	}
3514 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3515 	return NULL;
3516 }
3517 
3518 static uint32_t
3519 bwi_regwin_disable_bits(struct bwi_softc *sc)
3520 {
3521 	uint32_t busrev;
3522 
3523 	/* XXX cache this */
3524 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3525 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3526 		"bus rev %u\n", busrev);
3527 
3528 	if (busrev == BWI_BUSREV_0)
3529 		return BWI_STATE_LO_DISABLE1;
3530 	else if (busrev == BWI_BUSREV_1)
3531 		return BWI_STATE_LO_DISABLE2;
3532 	else
3533 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3534 }
3535 
3536 int
3537 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3538 {
3539 	uint32_t val, disable_bits;
3540 
3541 	disable_bits = bwi_regwin_disable_bits(sc);
3542 	val = CSR_READ_4(sc, BWI_STATE_LO);
3543 
3544 	if ((val & (BWI_STATE_LO_CLOCK |
3545 		    BWI_STATE_LO_RESET |
3546 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3547 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3548 			bwi_regwin_name(rw));
3549 		return 1;
3550 	} else {
3551 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3552 			bwi_regwin_name(rw));
3553 		return 0;
3554 	}
3555 }
3556 
3557 void
3558 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3559 {
3560 	uint32_t state_lo, disable_bits;
3561 	int i;
3562 
3563 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3564 
3565 	/*
3566 	 * If current regwin is in 'reset' state, it was already disabled.
3567 	 */
3568 	if (state_lo & BWI_STATE_LO_RESET) {
3569 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3570 			"%s was already disabled\n", bwi_regwin_name(rw));
3571 		return;
3572 	}
3573 
3574 	disable_bits = bwi_regwin_disable_bits(sc);
3575 
3576 	/*
3577 	 * Disable normal clock
3578 	 */
3579 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3580 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3581 
3582 	/*
3583 	 * Wait until normal clock is disabled
3584 	 */
3585 #define NRETRY	1000
3586 	for (i = 0; i < NRETRY; ++i) {
3587 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3588 		if (state_lo & disable_bits)
3589 			break;
3590 		DELAY(10);
3591 	}
3592 	if (i == NRETRY) {
3593 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3594 			      bwi_regwin_name(rw));
3595 	}
3596 
3597 	for (i = 0; i < NRETRY; ++i) {
3598 		uint32_t state_hi;
3599 
3600 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3601 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3602 			break;
3603 		DELAY(10);
3604 	}
3605 	if (i == NRETRY) {
3606 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3607 			      bwi_regwin_name(rw));
3608 	}
3609 #undef NRETRY
3610 
3611 	/*
3612 	 * Reset and disable regwin with gated clock
3613 	 */
3614 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3615 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3616 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3617 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3618 
3619 	/* Flush pending bus write */
3620 	CSR_READ_4(sc, BWI_STATE_LO);
3621 	DELAY(1);
3622 
3623 	/* Reset and disable regwin */
3624 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3625 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3626 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3627 
3628 	/* Flush pending bus write */
3629 	CSR_READ_4(sc, BWI_STATE_LO);
3630 	DELAY(1);
3631 }
3632 
3633 void
3634 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3635 {
3636 	uint32_t state_lo, state_hi, imstate;
3637 
3638 	bwi_regwin_disable(sc, rw, flags);
3639 
3640 	/* Reset regwin with gated clock */
3641 	state_lo = BWI_STATE_LO_RESET |
3642 		   BWI_STATE_LO_CLOCK |
3643 		   BWI_STATE_LO_GATED_CLOCK |
3644 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3645 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3646 
3647 	/* Flush pending bus write */
3648 	CSR_READ_4(sc, BWI_STATE_LO);
3649 	DELAY(1);
3650 
3651 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3652 	if (state_hi & BWI_STATE_HI_SERROR)
3653 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3654 
3655 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3656 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3657 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3658 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3659 	}
3660 
3661 	/* Enable regwin with gated clock */
3662 	state_lo = BWI_STATE_LO_CLOCK |
3663 		   BWI_STATE_LO_GATED_CLOCK |
3664 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3665 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3666 
3667 	/* Flush pending bus write */
3668 	CSR_READ_4(sc, BWI_STATE_LO);
3669 	DELAY(1);
3670 
3671 	/* Enable regwin with normal clock */
3672 	state_lo = BWI_STATE_LO_CLOCK |
3673 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3674 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3675 
3676 	/* Flush pending bus write */
3677 	CSR_READ_4(sc, BWI_STATE_LO);
3678 	DELAY(1);
3679 }
3680 
3681 static void
3682 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3683 {
3684 	struct bwi_mac *mac;
3685 	struct bwi_myaddr_bssid buf;
3686 	const uint8_t *p;
3687 	uint32_t val;
3688 	int n, i;
3689 
3690 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3691 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3692 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3693 
3694 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3695 
3696 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3697 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3698 
3699 	n = sizeof(buf) / sizeof(val);
3700 	p = (const uint8_t *)&buf;
3701 	for (i = 0; i < n; ++i) {
3702 		int j;
3703 
3704 		val = 0;
3705 		for (j = 0; j < sizeof(val); ++j)
3706 			val |= ((uint32_t)(*p++)) << (j * 8);
3707 
3708 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3709 	}
3710 }
3711 
3712 static void
3713 bwi_updateslot(struct ieee80211com *ic)
3714 {
3715 	struct bwi_softc *sc = ic->ic_softc;
3716 	struct bwi_mac *mac;
3717 
3718 	BWI_LOCK(sc);
3719 	if (sc->sc_flags & BWI_F_RUNNING) {
3720 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3721 
3722 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3723 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3724 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3725 
3726 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3727 	}
3728 	BWI_UNLOCK(sc);
3729 }
3730 
3731 static void
3732 bwi_calibrate(void *xsc)
3733 {
3734 	struct bwi_softc *sc = xsc;
3735 	struct bwi_mac *mac;
3736 
3737 	BWI_ASSERT_LOCKED(sc);
3738 
3739 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3740 	    ("opmode %d", sc->sc_ic.ic_opmode));
3741 
3742 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3743 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3744 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3745 
3746 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3747 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3748 
3749 	/* XXX 15 seconds */
3750 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3751 }
3752 
3753 static int
3754 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3755 {
3756 	struct bwi_mac *mac;
3757 
3758 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3759 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3760 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3761 
3762 	return bwi_rf_calc_rssi(mac, hdr);
3763 }
3764 
3765 static int
3766 bwi_calc_noise(struct bwi_softc *sc)
3767 {
3768 	struct bwi_mac *mac;
3769 
3770 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3771 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3772 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3773 
3774 	return bwi_rf_calc_noise(mac);
3775 }
3776 
3777 static __inline uint8_t
3778 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3779 {
3780 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3781 	return (ieee80211_plcp2rate(plcp, type));
3782 }
3783 
3784 static void
3785 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3786     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3787 {
3788 	const struct ieee80211_frame_min *wh;
3789 
3790 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3791 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3792 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3793 
3794 	wh = mtod(m, const struct ieee80211_frame_min *);
3795 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3796 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3797 
3798 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3799 	sc->sc_rx_th.wr_rate = rate;
3800 	sc->sc_rx_th.wr_antsignal = rssi;
3801 	sc->sc_rx_th.wr_antnoise = noise;
3802 }
3803 
3804 static void
3805 bwi_led_attach(struct bwi_softc *sc)
3806 {
3807 	const uint8_t *led_act = NULL;
3808 	uint16_t gpio, val[BWI_LED_MAX];
3809 	int i;
3810 
3811 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3812 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3813 			led_act = bwi_vendor_led_act[i].led_act;
3814 			break;
3815 		}
3816 	}
3817 	if (led_act == NULL)
3818 		led_act = bwi_default_led_act;
3819 
3820 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3821 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3822 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3823 
3824 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3825 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3826 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3827 
3828 	for (i = 0; i < BWI_LED_MAX; ++i) {
3829 		struct bwi_led *led = &sc->sc_leds[i];
3830 
3831 		if (val[i] == 0xff) {
3832 			led->l_act = led_act[i];
3833 		} else {
3834 			if (val[i] & BWI_LED_ACT_LOW)
3835 				led->l_flags |= BWI_LED_F_ACTLOW;
3836 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3837 		}
3838 		led->l_mask = (1 << i);
3839 
3840 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3841 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3842 		    led->l_act == BWI_LED_ACT_BLINK) {
3843 			led->l_flags |= BWI_LED_F_BLINK;
3844 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3845 				led->l_flags |= BWI_LED_F_POLLABLE;
3846 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3847 				led->l_flags |= BWI_LED_F_SLOW;
3848 
3849 			if (sc->sc_blink_led == NULL) {
3850 				sc->sc_blink_led = led;
3851 				if (led->l_flags & BWI_LED_F_SLOW)
3852 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3853 			}
3854 		}
3855 
3856 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3857 			"%dth led, act %d, lowact %d\n", i,
3858 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3859 	}
3860 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3861 }
3862 
3863 static __inline uint16_t
3864 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3865 {
3866 	if (led->l_flags & BWI_LED_F_ACTLOW)
3867 		on = !on;
3868 	if (on)
3869 		val |= led->l_mask;
3870 	else
3871 		val &= ~led->l_mask;
3872 	return val;
3873 }
3874 
3875 static void
3876 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3877 {
3878 	struct ieee80211com *ic = &sc->sc_ic;
3879 	uint16_t val;
3880 	int i;
3881 
3882 	if (nstate == IEEE80211_S_INIT) {
3883 		callout_stop(&sc->sc_led_blink_ch);
3884 		sc->sc_led_blinking = 0;
3885 	}
3886 
3887 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3888 		return;
3889 
3890 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3891 	for (i = 0; i < BWI_LED_MAX; ++i) {
3892 		struct bwi_led *led = &sc->sc_leds[i];
3893 		int on;
3894 
3895 		if (led->l_act == BWI_LED_ACT_UNKN ||
3896 		    led->l_act == BWI_LED_ACT_NULL)
3897 			continue;
3898 
3899 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3900 		    nstate != IEEE80211_S_INIT)
3901 		    	continue;
3902 
3903 		switch (led->l_act) {
3904 		case BWI_LED_ACT_ON:	/* Always on */
3905 			on = 1;
3906 			break;
3907 		case BWI_LED_ACT_OFF:	/* Always off */
3908 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3909 			on = 0;
3910 			break;
3911 		default:
3912 			on = 1;
3913 			switch (nstate) {
3914 			case IEEE80211_S_INIT:
3915 				on = 0;
3916 				break;
3917 			case IEEE80211_S_RUN:
3918 				if (led->l_act == BWI_LED_ACT_11G &&
3919 				    ic->ic_curmode != IEEE80211_MODE_11G)
3920 					on = 0;
3921 				break;
3922 			default:
3923 				if (led->l_act == BWI_LED_ACT_ASSOC)
3924 					on = 0;
3925 				break;
3926 			}
3927 			break;
3928 		}
3929 
3930 		val = bwi_led_onoff(led, val, on);
3931 	}
3932 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3933 }
3934 static void
3935 bwi_led_event(struct bwi_softc *sc, int event)
3936 {
3937 	struct bwi_led *led = sc->sc_blink_led;
3938 	int rate;
3939 
3940 	if (event == BWI_LED_EVENT_POLL) {
3941 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3942 			return;
3943 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3944 			return;
3945 	}
3946 
3947 	sc->sc_led_ticks = ticks;
3948 	if (sc->sc_led_blinking)
3949 		return;
3950 
3951 	switch (event) {
3952 	case BWI_LED_EVENT_RX:
3953 		rate = sc->sc_rx_rate;
3954 		break;
3955 	case BWI_LED_EVENT_TX:
3956 		rate = sc->sc_tx_rate;
3957 		break;
3958 	case BWI_LED_EVENT_POLL:
3959 		rate = 0;
3960 		break;
3961 	default:
3962 		panic("unknown LED event %d\n", event);
3963 		break;
3964 	}
3965 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3966 	    bwi_led_duration[rate].off_dur);
3967 }
3968 
3969 static void
3970 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3971 {
3972 	struct bwi_led *led = sc->sc_blink_led;
3973 	uint16_t val;
3974 
3975 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3976 	val = bwi_led_onoff(led, val, 1);
3977 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3978 
3979 	if (led->l_flags & BWI_LED_F_SLOW) {
3980 		BWI_LED_SLOWDOWN(on_dur);
3981 		BWI_LED_SLOWDOWN(off_dur);
3982 	}
3983 
3984 	sc->sc_led_blinking = 1;
3985 	sc->sc_led_blink_offdur = off_dur;
3986 
3987 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3988 }
3989 
3990 static void
3991 bwi_led_blink_next(void *xsc)
3992 {
3993 	struct bwi_softc *sc = xsc;
3994 	uint16_t val;
3995 
3996 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3997 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3998 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3999 
4000 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4001 	    bwi_led_blink_end, sc);
4002 }
4003 
4004 static void
4005 bwi_led_blink_end(void *xsc)
4006 {
4007 	struct bwi_softc *sc = xsc;
4008 	sc->sc_led_blinking = 0;
4009 }
4010 
4011 static void
4012 bwi_restart(void *xsc, int pending)
4013 {
4014 	struct bwi_softc *sc = xsc;
4015 
4016 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
4017 	BWI_LOCK(sc);
4018 	bwi_init_statechg(sc, 0);
4019 #if 0
4020 	bwi_start_locked(sc);
4021 #endif
4022 	BWI_UNLOCK(sc);
4023 }
4024