xref: /freebsd/sys/dev/bwi/if_bwi.c (revision b5864e6de2f3aa8eb9bb269ec86282598b5201b1)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
114 		    struct ieee80211_channel[]);
115 static void	bwi_set_channel(struct ieee80211com *);
116 static void	bwi_scan_end(struct ieee80211com *);
117 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static void	bwi_updateslot(struct ieee80211com *);
119 static int	bwi_media_change(struct ifnet *);
120 
121 static void	bwi_calibrate(void *);
122 
123 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
124 static int	bwi_calc_noise(struct bwi_softc *);
125 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
126 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
127 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
128 
129 static void	bwi_restart(void *, int);
130 static void	bwi_init_statechg(struct bwi_softc *, int);
131 static void	bwi_stop(struct bwi_softc *, int);
132 static void	bwi_stop_locked(struct bwi_softc *, int);
133 static int	bwi_newbuf(struct bwi_softc *, int, int);
134 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *);
136 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *,
138 			  const struct ieee80211_bpf_params *);
139 
140 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
141 				       bus_addr_t, int, int);
142 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
143 
144 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
145 static int	bwi_init_rx_ring32(struct bwi_softc *);
146 static int	bwi_init_txstats32(struct bwi_softc *);
147 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
148 static void	bwi_free_rx_ring32(struct bwi_softc *);
149 static void	bwi_free_txstats32(struct bwi_softc *);
150 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
151 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
152 				    int, bus_addr_t, int);
153 static int	bwi_rxeof32(struct bwi_softc *);
154 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
155 static void	bwi_txeof_status32(struct bwi_softc *);
156 
157 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
158 static int	bwi_init_rx_ring64(struct bwi_softc *);
159 static int	bwi_init_txstats64(struct bwi_softc *);
160 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
161 static void	bwi_free_rx_ring64(struct bwi_softc *);
162 static void	bwi_free_txstats64(struct bwi_softc *);
163 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
164 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
165 				    int, bus_addr_t, int);
166 static int	bwi_rxeof64(struct bwi_softc *);
167 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
168 static void	bwi_txeof_status64(struct bwi_softc *);
169 
170 static int	bwi_rxeof(struct bwi_softc *, int);
171 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
172 static void	bwi_txeof(struct bwi_softc *);
173 static void	bwi_txeof_status(struct bwi_softc *, int);
174 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
175 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
176 
177 static int	bwi_dma_alloc(struct bwi_softc *);
178 static void	bwi_dma_free(struct bwi_softc *);
179 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
180 				   struct bwi_ring_data *, bus_size_t,
181 				   uint32_t);
182 static int	bwi_dma_mbuf_create(struct bwi_softc *);
183 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
184 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
185 static void	bwi_dma_txstats_free(struct bwi_softc *);
186 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
187 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
188 				 bus_size_t, int);
189 
190 static void	bwi_power_on(struct bwi_softc *, int);
191 static int	bwi_power_off(struct bwi_softc *, int);
192 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
193 static int	bwi_set_clock_delay(struct bwi_softc *);
194 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
195 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
196 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
197 				    const uint8_t *);
198 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
199 
200 static void	bwi_get_card_flags(struct bwi_softc *);
201 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
202 
203 static int	bwi_bus_attach(struct bwi_softc *);
204 static int	bwi_bbp_attach(struct bwi_softc *);
205 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
206 static void	bwi_bbp_power_off(struct bwi_softc *);
207 
208 static const char *bwi_regwin_name(const struct bwi_regwin *);
209 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
210 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
211 static int	bwi_regwin_select(struct bwi_softc *, int);
212 
213 static void	bwi_led_attach(struct bwi_softc *);
214 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
215 static void	bwi_led_event(struct bwi_softc *, int);
216 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
217 static void	bwi_led_blink_next(void *);
218 static void	bwi_led_blink_end(void *);
219 
220 static const struct {
221 	uint16_t	did_min;
222 	uint16_t	did_max;
223 	uint16_t	bbp_id;
224 } bwi_bbpid_map[] = {
225 	{ 0x4301, 0x4301, 0x4301 },
226 	{ 0x4305, 0x4307, 0x4307 },
227 	{ 0x4402, 0x4403, 0x4402 },
228 	{ 0x4610, 0x4615, 0x4610 },
229 	{ 0x4710, 0x4715, 0x4710 },
230 	{ 0x4720, 0x4725, 0x4309 }
231 };
232 
233 static const struct {
234 	uint16_t	bbp_id;
235 	int		nregwin;
236 } bwi_regwin_count[] = {
237 	{ 0x4301, 5 },
238 	{ 0x4306, 6 },
239 	{ 0x4307, 5 },
240 	{ 0x4310, 8 },
241 	{ 0x4401, 3 },
242 	{ 0x4402, 3 },
243 	{ 0x4610, 9 },
244 	{ 0x4704, 9 },
245 	{ 0x4710, 9 },
246 	{ 0x5365, 7 }
247 };
248 
249 #define CLKSRC(src) 				\
250 [BWI_CLKSRC_ ## src] = {			\
251 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
252 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
253 }
254 
255 static const struct {
256 	u_int	freq_min;
257 	u_int	freq_max;
258 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
259 	CLKSRC(LP_OSC),
260 	CLKSRC(CS_OSC),
261 	CLKSRC(PCI)
262 };
263 
264 #undef CLKSRC
265 
266 #define VENDOR_LED_ACT(vendor)				\
267 {							\
268 	.vid = PCI_VENDOR_##vendor,			\
269 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
270 }
271 
272 static const struct {
273 #define	PCI_VENDOR_COMPAQ	0x0e11
274 #define	PCI_VENDOR_LINKSYS	0x1737
275 	uint16_t	vid;
276 	uint8_t		led_act[BWI_LED_MAX];
277 } bwi_vendor_led_act[] = {
278 	VENDOR_LED_ACT(COMPAQ),
279 	VENDOR_LED_ACT(LINKSYS)
280 #undef PCI_VENDOR_LINKSYS
281 #undef PCI_VENDOR_COMPAQ
282 };
283 
284 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
285 	{ BWI_VENDOR_LED_ACT_DEFAULT };
286 
287 #undef VENDOR_LED_ACT
288 
289 static const struct {
290 	int	on_dur;
291 	int	off_dur;
292 } bwi_led_duration[109] = {
293 	[0]	= { 400, 100 },
294 	[2]	= { 150, 75 },
295 	[4]	= { 90, 45 },
296 	[11]	= { 66, 34 },
297 	[12]	= { 53, 26 },
298 	[18]	= { 42, 21 },
299 	[22]	= { 35, 17 },
300 	[24]	= { 32, 16 },
301 	[36]	= { 21, 10 },
302 	[48]	= { 16, 8 },
303 	[72]	= { 11, 5 },
304 	[96]	= { 9, 4 },
305 	[108]	= { 7, 3 }
306 };
307 
308 static const uint8_t bwi_chan_2ghz[] =
309 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
310 
311 #ifdef BWI_DEBUG
312 #ifdef BWI_DEBUG_VERBOSE
313 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
314 #else
315 static uint32_t	bwi_debug;
316 #endif
317 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
318 #endif	/* BWI_DEBUG */
319 
320 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
321 
322 uint16_t
323 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
324 {
325 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
326 }
327 
328 static __inline void
329 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
330 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
331 		 int tx)
332 {
333 	struct bwi_desc32 *desc = &desc_array[desc_idx];
334 	uint32_t ctrl, addr, addr_hi, addr_lo;
335 
336 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
337 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
338 
339 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
340 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
341 
342 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
343 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
344 	if (desc_idx == ndesc - 1)
345 		ctrl |= BWI_DESC32_C_EOR;
346 	if (tx) {
347 		/* XXX */
348 		ctrl |= BWI_DESC32_C_FRAME_START |
349 			BWI_DESC32_C_FRAME_END |
350 			BWI_DESC32_C_INTR;
351 	}
352 
353 	desc->addr = htole32(addr);
354 	desc->ctrl = htole32(ctrl);
355 }
356 
357 int
358 bwi_attach(struct bwi_softc *sc)
359 {
360 	struct ieee80211com *ic = &sc->sc_ic;
361 	device_t dev = sc->sc_dev;
362 	struct bwi_mac *mac;
363 	struct bwi_phy *phy;
364 	int i, error;
365 
366 	BWI_LOCK_INIT(sc);
367 
368 	/*
369 	 * Initialize taskq and various tasks
370 	 */
371 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
372 		taskqueue_thread_enqueue, &sc->sc_tq);
373 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
374 		device_get_nameunit(dev));
375 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
376 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
377 	mbufq_init(&sc->sc_snd, ifqmaxlen);
378 
379 	/*
380 	 * Initialize sysctl variables
381 	 */
382 	sc->sc_fw_version = BWI_FW_VERSION3;
383 	sc->sc_led_idle = (2350 * hz) / 1000;
384 	sc->sc_led_blink = 1;
385 	sc->sc_txpwr_calib = 1;
386 #ifdef BWI_DEBUG
387 	sc->sc_debug = bwi_debug;
388 #endif
389 	bwi_power_on(sc, 1);
390 
391 	error = bwi_bbp_attach(sc);
392 	if (error)
393 		goto fail;
394 
395 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
396 	if (error)
397 		goto fail;
398 
399 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
400 		error = bwi_set_clock_delay(sc);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
405 		if (error)
406 			goto fail;
407 
408 		error = bwi_get_pwron_delay(sc);
409 		if (error)
410 			goto fail;
411 	}
412 
413 	error = bwi_bus_attach(sc);
414 	if (error)
415 		goto fail;
416 
417 	bwi_get_card_flags(sc);
418 
419 	bwi_led_attach(sc);
420 
421 	for (i = 0; i < sc->sc_nmac; ++i) {
422 		struct bwi_regwin *old;
423 
424 		mac = &sc->sc_mac[i];
425 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_mac_lateattach(mac);
430 		if (error)
431 			goto fail;
432 
433 		error = bwi_regwin_switch(sc, old, NULL);
434 		if (error)
435 			goto fail;
436 	}
437 
438 	/*
439 	 * XXX First MAC is known to exist
440 	 * TODO2
441 	 */
442 	mac = &sc->sc_mac[0];
443 	phy = &mac->mac_phy;
444 
445 	bwi_bbp_power_off(sc);
446 
447 	error = bwi_dma_alloc(sc);
448 	if (error)
449 		goto fail;
450 
451 	error = bwi_mac_fw_alloc(mac);
452 	if (error)
453 		goto fail;
454 
455 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
456 
457 	/*
458 	 * Setup ratesets, phytype, channels and get MAC address
459 	 */
460 	if (phy->phy_mode == IEEE80211_MODE_11B ||
461 	    phy->phy_mode == IEEE80211_MODE_11G) {
462 		if (phy->phy_mode == IEEE80211_MODE_11B) {
463 			ic->ic_phytype = IEEE80211_T_DS;
464 		} else {
465 			ic->ic_phytype = IEEE80211_T_OFDM;
466 		}
467 
468 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
469 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
470 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
471 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
472 				device_printf(dev,
473 				    "invalid MAC address: %6D\n",
474 				    ic->ic_macaddr, ":");
475 			}
476 		}
477 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
478 		/* TODO:11A */
479 		error = ENXIO;
480 		goto fail;
481 	} else {
482 		panic("unknown phymode %d\n", phy->phy_mode);
483 	}
484 
485 	/* Get locale */
486 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
487 				   BWI_SPROM_CARD_INFO_LOCALE);
488 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
489 	/* XXX use locale */
490 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
491 	    ic->ic_channels);
492 
493 	ic->ic_softc = sc;
494 	ic->ic_name = device_get_nameunit(dev);
495 	ic->ic_caps = IEEE80211_C_STA |
496 		      IEEE80211_C_SHSLOT |
497 		      IEEE80211_C_SHPREAMBLE |
498 		      IEEE80211_C_WPA |
499 		      IEEE80211_C_BGSCAN |
500 		      IEEE80211_C_MONITOR;
501 	ic->ic_opmode = IEEE80211_M_STA;
502 	ieee80211_ifattach(ic);
503 
504 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
505 
506 	/* override default methods */
507 	ic->ic_vap_create = bwi_vap_create;
508 	ic->ic_vap_delete = bwi_vap_delete;
509 	ic->ic_raw_xmit = bwi_raw_xmit;
510 	ic->ic_updateslot = bwi_updateslot;
511 	ic->ic_scan_start = bwi_scan_start;
512 	ic->ic_scan_end = bwi_scan_end;
513 	ic->ic_getradiocaps = bwi_getradiocaps;
514 	ic->ic_set_channel = bwi_set_channel;
515 	ic->ic_transmit = bwi_transmit;
516 	ic->ic_parent = bwi_parent;
517 
518 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
519 
520 	ieee80211_radiotap_attach(ic,
521 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
522 		BWI_TX_RADIOTAP_PRESENT,
523 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
524 		BWI_RX_RADIOTAP_PRESENT);
525 
526 	/*
527 	 * Add sysctl nodes
528 	 */
529 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
530 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
531 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
532 		        "Firmware version");
533 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
534 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
535 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
536 		        "# ticks before LED enters idle state");
537 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
538 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
539 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
540 		       "Allow LED to blink");
541 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
542 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
543 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
544 		       "Enable software TX power calibration");
545 #ifdef BWI_DEBUG
546 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
547 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
548 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
549 #endif
550 	if (bootverbose)
551 		ieee80211_announce(ic);
552 
553 	return (0);
554 fail:
555 	BWI_LOCK_DESTROY(sc);
556 	return (error);
557 }
558 
559 int
560 bwi_detach(struct bwi_softc *sc)
561 {
562 	struct ieee80211com *ic = &sc->sc_ic;
563 	int i;
564 
565 	bwi_stop(sc, 1);
566 	callout_drain(&sc->sc_led_blink_ch);
567 	callout_drain(&sc->sc_calib_ch);
568 	callout_drain(&sc->sc_watchdog_timer);
569 	ieee80211_ifdetach(ic);
570 
571 	for (i = 0; i < sc->sc_nmac; ++i)
572 		bwi_mac_detach(&sc->sc_mac[i]);
573 	bwi_dma_free(sc);
574 	taskqueue_free(sc->sc_tq);
575 	mbufq_drain(&sc->sc_snd);
576 
577 	BWI_LOCK_DESTROY(sc);
578 
579 	return (0);
580 }
581 
582 static struct ieee80211vap *
583 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
584     enum ieee80211_opmode opmode, int flags,
585     const uint8_t bssid[IEEE80211_ADDR_LEN],
586     const uint8_t mac[IEEE80211_ADDR_LEN])
587 {
588 	struct bwi_vap *bvp;
589 	struct ieee80211vap *vap;
590 
591 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
592 		return NULL;
593 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
594 	vap = &bvp->bv_vap;
595 	/* enable s/w bmiss handling for sta mode */
596 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
597 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
598 
599 	/* override default methods */
600 	bvp->bv_newstate = vap->iv_newstate;
601 	vap->iv_newstate = bwi_newstate;
602 #if 0
603 	vap->iv_update_beacon = bwi_beacon_update;
604 #endif
605 	ieee80211_ratectl_init(vap);
606 
607 	/* complete setup */
608 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
609 	    mac);
610 	ic->ic_opmode = opmode;
611 	return vap;
612 }
613 
614 static void
615 bwi_vap_delete(struct ieee80211vap *vap)
616 {
617 	struct bwi_vap *bvp = BWI_VAP(vap);
618 
619 	ieee80211_ratectl_deinit(vap);
620 	ieee80211_vap_detach(vap);
621 	free(bvp, M_80211_VAP);
622 }
623 
624 void
625 bwi_suspend(struct bwi_softc *sc)
626 {
627 	bwi_stop(sc, 1);
628 }
629 
630 void
631 bwi_resume(struct bwi_softc *sc)
632 {
633 
634 	if (sc->sc_ic.ic_nrunning > 0)
635 		bwi_init(sc);
636 }
637 
638 int
639 bwi_shutdown(struct bwi_softc *sc)
640 {
641 	bwi_stop(sc, 1);
642 	return 0;
643 }
644 
645 static void
646 bwi_power_on(struct bwi_softc *sc, int with_pll)
647 {
648 	uint32_t gpio_in, gpio_out, gpio_en;
649 	uint16_t status;
650 
651 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
652 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
653 		goto back;
654 
655 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
656 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
657 
658 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
659 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
660 	if (with_pll) {
661 		/* Turn off PLL first */
662 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
663 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
664 	}
665 
666 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
667 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
668 	DELAY(1000);
669 
670 	if (with_pll) {
671 		/* Turn on PLL */
672 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
673 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
674 		DELAY(5000);
675 	}
676 
677 back:
678 	/* Clear "Signaled Target Abort" */
679 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
680 	status &= ~PCIM_STATUS_STABORT;
681 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
682 }
683 
684 static int
685 bwi_power_off(struct bwi_softc *sc, int with_pll)
686 {
687 	uint32_t gpio_out, gpio_en;
688 
689 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
690 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
691 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
692 
693 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
694 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
695 	if (with_pll) {
696 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
697 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
698 	}
699 
700 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
701 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
702 	return 0;
703 }
704 
705 int
706 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
707 		  struct bwi_regwin **old_rw)
708 {
709 	int error;
710 
711 	if (old_rw != NULL)
712 		*old_rw = NULL;
713 
714 	if (!BWI_REGWIN_EXIST(rw))
715 		return EINVAL;
716 
717 	if (sc->sc_cur_regwin != rw) {
718 		error = bwi_regwin_select(sc, rw->rw_id);
719 		if (error) {
720 			device_printf(sc->sc_dev, "can't select regwin %d\n",
721 				  rw->rw_id);
722 			return error;
723 		}
724 	}
725 
726 	if (old_rw != NULL)
727 		*old_rw = sc->sc_cur_regwin;
728 	sc->sc_cur_regwin = rw;
729 	return 0;
730 }
731 
732 static int
733 bwi_regwin_select(struct bwi_softc *sc, int id)
734 {
735 	uint32_t win = BWI_PCIM_REGWIN(id);
736 	int i;
737 
738 #define RETRY_MAX	50
739 	for (i = 0; i < RETRY_MAX; ++i) {
740 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
741 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
742 			return 0;
743 		DELAY(10);
744 	}
745 #undef RETRY_MAX
746 
747 	return ENXIO;
748 }
749 
750 static void
751 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
752 {
753 	uint32_t val;
754 
755 	val = CSR_READ_4(sc, BWI_ID_HI);
756 	*type = BWI_ID_HI_REGWIN_TYPE(val);
757 	*rev = BWI_ID_HI_REGWIN_REV(val);
758 
759 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
760 		"vendor 0x%04x\n", *type, *rev,
761 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
762 }
763 
764 static int
765 bwi_bbp_attach(struct bwi_softc *sc)
766 {
767 	uint16_t bbp_id, rw_type;
768 	uint8_t rw_rev;
769 	uint32_t info;
770 	int error, nregwin, i;
771 
772 	/*
773 	 * Get 0th regwin information
774 	 * NOTE: 0th regwin should exist
775 	 */
776 	error = bwi_regwin_select(sc, 0);
777 	if (error) {
778 		device_printf(sc->sc_dev, "can't select regwin 0\n");
779 		return error;
780 	}
781 	bwi_regwin_info(sc, &rw_type, &rw_rev);
782 
783 	/*
784 	 * Find out BBP id
785 	 */
786 	bbp_id = 0;
787 	info = 0;
788 	if (rw_type == BWI_REGWIN_T_COM) {
789 		info = CSR_READ_4(sc, BWI_INFO);
790 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
791 
792 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
793 
794 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
795 	} else {
796 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
797 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
798 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
799 				bbp_id = bwi_bbpid_map[i].bbp_id;
800 				break;
801 			}
802 		}
803 		if (bbp_id == 0) {
804 			device_printf(sc->sc_dev, "no BBP id for device id "
805 				      "0x%04x\n", sc->sc_pci_did);
806 			return ENXIO;
807 		}
808 
809 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
810 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
811 	}
812 
813 	/*
814 	 * Find out number of regwins
815 	 */
816 	nregwin = 0;
817 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
818 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
819 	} else {
820 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
821 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
822 				nregwin = bwi_regwin_count[i].nregwin;
823 				break;
824 			}
825 		}
826 		if (nregwin == 0) {
827 			device_printf(sc->sc_dev, "no number of win for "
828 				      "BBP id 0x%04x\n", bbp_id);
829 			return ENXIO;
830 		}
831 	}
832 
833 	/* Record BBP id/rev for later using */
834 	sc->sc_bbp_id = bbp_id;
835 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
836 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
837 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
838 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
839 
840 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
841 		nregwin, sc->sc_cap);
842 
843 	/*
844 	 * Create rest of the regwins
845 	 */
846 
847 	/* Don't re-create common regwin, if it is already created */
848 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
849 
850 	for (; i < nregwin; ++i) {
851 		/*
852 		 * Get regwin information
853 		 */
854 		error = bwi_regwin_select(sc, i);
855 		if (error) {
856 			device_printf(sc->sc_dev,
857 				      "can't select regwin %d\n", i);
858 			return error;
859 		}
860 		bwi_regwin_info(sc, &rw_type, &rw_rev);
861 
862 		/*
863 		 * Try attach:
864 		 * 1) Bus (PCI/PCIE) regwin
865 		 * 2) MAC regwin
866 		 * Ignore rest types of regwin
867 		 */
868 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
869 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
870 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
871 				device_printf(sc->sc_dev,
872 					      "bus regwin already exists\n");
873 			} else {
874 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
875 						  rw_type, rw_rev);
876 			}
877 		} else if (rw_type == BWI_REGWIN_T_MAC) {
878 			/* XXX ignore return value */
879 			bwi_mac_attach(sc, i, rw_rev);
880 		}
881 	}
882 
883 	/* At least one MAC shold exist */
884 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
885 		device_printf(sc->sc_dev, "no MAC was found\n");
886 		return ENXIO;
887 	}
888 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
889 
890 	/* Bus regwin must exist */
891 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
892 		device_printf(sc->sc_dev, "no bus regwin was found\n");
893 		return ENXIO;
894 	}
895 
896 	/* Start with first MAC */
897 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
898 	if (error)
899 		return error;
900 
901 	return 0;
902 }
903 
904 int
905 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
906 {
907 	struct bwi_regwin *old, *bus;
908 	uint32_t val;
909 	int error;
910 
911 	bus = &sc->sc_bus_regwin;
912 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
913 
914 	/*
915 	 * Tell bus to generate requested interrupts
916 	 */
917 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
918 		/*
919 		 * NOTE: Read BWI_FLAGS from MAC regwin
920 		 */
921 		val = CSR_READ_4(sc, BWI_FLAGS);
922 
923 		error = bwi_regwin_switch(sc, bus, &old);
924 		if (error)
925 			return error;
926 
927 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
928 	} else {
929 		uint32_t mac_mask;
930 
931 		mac_mask = 1 << mac->mac_id;
932 
933 		error = bwi_regwin_switch(sc, bus, &old);
934 		if (error)
935 			return error;
936 
937 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
938 		val |= mac_mask << 8;
939 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
940 	}
941 
942 	if (sc->sc_flags & BWI_F_BUS_INITED)
943 		goto back;
944 
945 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
946 		/*
947 		 * Enable prefetch and burst
948 		 */
949 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
950 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
951 
952 		if (bus->rw_rev < 5) {
953 			struct bwi_regwin *com = &sc->sc_com_regwin;
954 
955 			/*
956 			 * Configure timeouts for bus operation
957 			 */
958 
959 			/*
960 			 * Set service timeout and request timeout
961 			 */
962 			CSR_SETBITS_4(sc, BWI_CONF_LO,
963 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
964 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
965 
966 			/*
967 			 * If there is common regwin, we switch to that regwin
968 			 * and switch back to bus regwin once we have done.
969 			 */
970 			if (BWI_REGWIN_EXIST(com)) {
971 				error = bwi_regwin_switch(sc, com, NULL);
972 				if (error)
973 					return error;
974 			}
975 
976 			/* Let bus know what we have changed */
977 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
978 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
979 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
980 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
981 
982 			if (BWI_REGWIN_EXIST(com)) {
983 				error = bwi_regwin_switch(sc, bus, NULL);
984 				if (error)
985 					return error;
986 			}
987 		} else if (bus->rw_rev >= 11) {
988 			/*
989 			 * Enable memory read multiple
990 			 */
991 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
992 		}
993 	} else {
994 		/* TODO:PCIE */
995 	}
996 
997 	sc->sc_flags |= BWI_F_BUS_INITED;
998 back:
999 	return bwi_regwin_switch(sc, old, NULL);
1000 }
1001 
1002 static void
1003 bwi_get_card_flags(struct bwi_softc *sc)
1004 {
1005 #define	PCI_VENDOR_APPLE 0x106b
1006 #define	PCI_VENDOR_DELL  0x1028
1007 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1008 	if (sc->sc_card_flags == 0xffff)
1009 		sc->sc_card_flags = 0;
1010 
1011 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1012 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1013 	    sc->sc_pci_revid == 0x74)
1014 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1015 
1016 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1017 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1018 	    sc->sc_pci_revid > 0x40)
1019 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1020 
1021 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1022 #undef PCI_VENDOR_DELL
1023 #undef PCI_VENDOR_APPLE
1024 }
1025 
1026 static void
1027 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < 3; ++i) {
1032 		*((uint16_t *)eaddr + i) =
1033 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1034 	}
1035 }
1036 
1037 static void
1038 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1039 {
1040 	struct bwi_regwin *com;
1041 	uint32_t val;
1042 	u_int div;
1043 	int src;
1044 
1045 	bzero(freq, sizeof(*freq));
1046 	com = &sc->sc_com_regwin;
1047 
1048 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1049 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1050 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1051 
1052 	/*
1053 	 * Calculate clock frequency
1054 	 */
1055 	src = -1;
1056 	div = 0;
1057 	if (com->rw_rev < 6) {
1058 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1059 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1060 			src = BWI_CLKSRC_PCI;
1061 			div = 64;
1062 		} else {
1063 			src = BWI_CLKSRC_CS_OSC;
1064 			div = 32;
1065 		}
1066 	} else if (com->rw_rev < 10) {
1067 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1068 
1069 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1070 		if (src == BWI_CLKSRC_LP_OSC) {
1071 			div = 1;
1072 		} else {
1073 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1074 
1075 			/* Unknown source */
1076 			if (src >= BWI_CLKSRC_MAX)
1077 				src = BWI_CLKSRC_CS_OSC;
1078 		}
1079 	} else {
1080 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1081 
1082 		src = BWI_CLKSRC_CS_OSC;
1083 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1084 	}
1085 
1086 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1087 	KASSERT(div != 0, ("div zero"));
1088 
1089 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1090 		src == BWI_CLKSRC_PCI ? "PCI" :
1091 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1092 
1093 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1094 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1095 
1096 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1097 		freq->clkfreq_min, freq->clkfreq_max);
1098 }
1099 
1100 static int
1101 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1102 {
1103 	struct bwi_regwin *old, *com;
1104 	uint32_t clk_ctrl, clk_src;
1105 	int error, pwr_off = 0;
1106 
1107 	com = &sc->sc_com_regwin;
1108 	if (!BWI_REGWIN_EXIST(com))
1109 		return 0;
1110 
1111 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1112 		return 0;
1113 
1114 	/*
1115 	 * For common regwin whose rev is [6, 10), the chip
1116 	 * must be capable to change clock mode.
1117 	 */
1118 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1119 		return 0;
1120 
1121 	error = bwi_regwin_switch(sc, com, &old);
1122 	if (error)
1123 		return error;
1124 
1125 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1126 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1127 
1128 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1129 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1130 
1131 	switch (clk_mode) {
1132 	case BWI_CLOCK_MODE_FAST:
1133 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1134 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1135 		break;
1136 	case BWI_CLOCK_MODE_SLOW:
1137 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1138 		break;
1139 	case BWI_CLOCK_MODE_DYN:
1140 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1141 			      BWI_CLOCK_CTRL_IGNPLL |
1142 			      BWI_CLOCK_CTRL_NODYN);
1143 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1144 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1145 			pwr_off = 1;
1146 		}
1147 		break;
1148 	}
1149 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1150 
1151 	if (pwr_off)
1152 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1153 
1154 	return bwi_regwin_switch(sc, old, NULL);
1155 }
1156 
1157 static int
1158 bwi_set_clock_delay(struct bwi_softc *sc)
1159 {
1160 	struct bwi_regwin *old, *com;
1161 	int error;
1162 
1163 	com = &sc->sc_com_regwin;
1164 	if (!BWI_REGWIN_EXIST(com))
1165 		return 0;
1166 
1167 	error = bwi_regwin_switch(sc, com, &old);
1168 	if (error)
1169 		return error;
1170 
1171 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1172 		if (sc->sc_bbp_rev == 0)
1173 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1174 		else if (sc->sc_bbp_rev == 1)
1175 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1176 	}
1177 
1178 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1179 		if (com->rw_rev >= 10) {
1180 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1181 		} else {
1182 			struct bwi_clock_freq freq;
1183 
1184 			bwi_get_clock_freq(sc, &freq);
1185 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1186 				howmany(freq.clkfreq_max * 150, 1000000));
1187 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1188 				howmany(freq.clkfreq_max * 15, 1000000));
1189 		}
1190 	}
1191 
1192 	return bwi_regwin_switch(sc, old, NULL);
1193 }
1194 
1195 static void
1196 bwi_init(struct bwi_softc *sc)
1197 {
1198 	struct ieee80211com *ic = &sc->sc_ic;
1199 
1200 	BWI_LOCK(sc);
1201 	bwi_init_statechg(sc, 1);
1202 	BWI_UNLOCK(sc);
1203 
1204 	if (sc->sc_flags & BWI_F_RUNNING)
1205 		ieee80211_start_all(ic);		/* start all vap's */
1206 }
1207 
1208 static void
1209 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1210 {
1211 	struct bwi_mac *mac;
1212 	int error;
1213 
1214 	BWI_ASSERT_LOCKED(sc);
1215 
1216 	bwi_stop_locked(sc, statechg);
1217 
1218 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1219 
1220 	/* TODO: 2 MAC */
1221 
1222 	mac = &sc->sc_mac[0];
1223 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1224 	if (error) {
1225 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1226 		    __func__, error);
1227 		goto bad;
1228 	}
1229 	error = bwi_mac_init(mac);
1230 	if (error) {
1231 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1232 		    __func__, error);
1233 		goto bad;
1234 	}
1235 
1236 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1237 
1238 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1239 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1240 
1241 	bwi_mac_reset_hwkeys(mac);
1242 
1243 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1244 		int i;
1245 
1246 #define NRETRY	1000
1247 		/*
1248 		 * Drain any possible pending TX status
1249 		 */
1250 		for (i = 0; i < NRETRY; ++i) {
1251 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1252 			     BWI_TXSTATUS0_VALID) == 0)
1253 				break;
1254 			CSR_READ_4(sc, BWI_TXSTATUS1);
1255 		}
1256 		if (i == NRETRY)
1257 			device_printf(sc->sc_dev,
1258 			    "%s: can't drain TX status\n", __func__);
1259 #undef NRETRY
1260 	}
1261 
1262 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1263 		bwi_mac_updateslot(mac, 1);
1264 
1265 	/* Start MAC */
1266 	error = bwi_mac_start(mac);
1267 	if (error) {
1268 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1269 		    __func__, error);
1270 		goto bad;
1271 	}
1272 
1273 	/* Clear stop flag before enabling interrupt */
1274 	sc->sc_flags &= ~BWI_F_STOP;
1275 	sc->sc_flags |= BWI_F_RUNNING;
1276 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1277 
1278 	/* Enable intrs */
1279 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1280 	return;
1281 bad:
1282 	bwi_stop_locked(sc, 1);
1283 }
1284 
1285 static void
1286 bwi_parent(struct ieee80211com *ic)
1287 {
1288 	struct bwi_softc *sc = ic->ic_softc;
1289 	int startall = 0;
1290 
1291 	BWI_LOCK(sc);
1292 	if (ic->ic_nrunning > 0) {
1293 		struct bwi_mac *mac;
1294 		int promisc = -1;
1295 
1296 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1297 		    ("current regwin type %d",
1298 		    sc->sc_cur_regwin->rw_type));
1299 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1300 
1301 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1302 			promisc = 1;
1303 			sc->sc_flags |= BWI_F_PROMISC;
1304 		} else if (ic->ic_promisc == 0 &&
1305 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1306 			promisc = 0;
1307 			sc->sc_flags &= ~BWI_F_PROMISC;
1308 		}
1309 
1310 		if (promisc >= 0)
1311 			bwi_mac_set_promisc(mac, promisc);
1312 	}
1313 	if (ic->ic_nrunning > 0) {
1314 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1315 			bwi_init_statechg(sc, 1);
1316 			startall = 1;
1317 		}
1318 	} else if (sc->sc_flags & BWI_F_RUNNING)
1319 		bwi_stop_locked(sc, 1);
1320 	BWI_UNLOCK(sc);
1321 	if (startall)
1322 		ieee80211_start_all(ic);
1323 }
1324 
1325 static int
1326 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1327 {
1328 	struct bwi_softc *sc = ic->ic_softc;
1329 	int error;
1330 
1331 	BWI_LOCK(sc);
1332 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1333 		BWI_UNLOCK(sc);
1334 		return (ENXIO);
1335 	}
1336 	error = mbufq_enqueue(&sc->sc_snd, m);
1337 	if (error) {
1338 		BWI_UNLOCK(sc);
1339 		return (error);
1340 	}
1341 	bwi_start_locked(sc);
1342 	BWI_UNLOCK(sc);
1343 	return (0);
1344 }
1345 
1346 static void
1347 bwi_start_locked(struct bwi_softc *sc)
1348 {
1349 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1350 	struct ieee80211_frame *wh;
1351 	struct ieee80211_node *ni;
1352 	struct mbuf *m;
1353 	int trans, idx;
1354 
1355 	BWI_ASSERT_LOCKED(sc);
1356 
1357 	trans = 0;
1358 	idx = tbd->tbd_idx;
1359 
1360 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1361 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1362 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1363 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1364 		wh = mtod(m, struct ieee80211_frame *);
1365 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1366 		    ieee80211_crypto_encap(ni, m) == NULL) {
1367 			if_inc_counter(ni->ni_vap->iv_ifp,
1368 			    IFCOUNTER_OERRORS, 1);
1369 			ieee80211_free_node(ni);
1370 			m_freem(m);
1371 			continue;
1372 		}
1373 		if (bwi_encap(sc, idx, m, ni) != 0) {
1374 			/* 'm' is freed in bwi_encap() if we reach here */
1375 			if (ni != NULL) {
1376 				if_inc_counter(ni->ni_vap->iv_ifp,
1377 				    IFCOUNTER_OERRORS, 1);
1378 				ieee80211_free_node(ni);
1379 			} else
1380 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1381 			continue;
1382 		}
1383 		trans = 1;
1384 		tbd->tbd_used++;
1385 		idx = (idx + 1) % BWI_TX_NDESC;
1386 	}
1387 
1388 	tbd->tbd_idx = idx;
1389 	if (trans)
1390 		sc->sc_tx_timer = 5;
1391 }
1392 
1393 static int
1394 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1395 	const struct ieee80211_bpf_params *params)
1396 {
1397 	struct ieee80211com *ic = ni->ni_ic;
1398 	struct bwi_softc *sc = ic->ic_softc;
1399 	/* XXX wme? */
1400 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1401 	int idx, error;
1402 
1403 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1404 		m_freem(m);
1405 		return ENETDOWN;
1406 	}
1407 
1408 	BWI_LOCK(sc);
1409 	idx = tbd->tbd_idx;
1410 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1411 	if (params == NULL) {
1412 		/*
1413 		 * Legacy path; interpret frame contents to decide
1414 		 * precisely how to send the frame.
1415 		 */
1416 		error = bwi_encap(sc, idx, m, ni);
1417 	} else {
1418 		/*
1419 		 * Caller supplied explicit parameters to use in
1420 		 * sending the frame.
1421 		 */
1422 		error = bwi_encap_raw(sc, idx, m, ni, params);
1423 	}
1424 	if (error == 0) {
1425 		tbd->tbd_used++;
1426 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1427 		sc->sc_tx_timer = 5;
1428 	}
1429 	BWI_UNLOCK(sc);
1430 	return error;
1431 }
1432 
1433 static void
1434 bwi_watchdog(void *arg)
1435 {
1436 	struct bwi_softc *sc;
1437 
1438 	sc = arg;
1439 	BWI_ASSERT_LOCKED(sc);
1440 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1441 		device_printf(sc->sc_dev, "watchdog timeout\n");
1442 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1443 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1444 	}
1445 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1446 }
1447 
1448 static void
1449 bwi_stop(struct bwi_softc *sc, int statechg)
1450 {
1451 	BWI_LOCK(sc);
1452 	bwi_stop_locked(sc, statechg);
1453 	BWI_UNLOCK(sc);
1454 }
1455 
1456 static void
1457 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1458 {
1459 	struct bwi_mac *mac;
1460 	int i, error, pwr_off = 0;
1461 
1462 	BWI_ASSERT_LOCKED(sc);
1463 
1464 	callout_stop(&sc->sc_calib_ch);
1465 	callout_stop(&sc->sc_led_blink_ch);
1466 	sc->sc_led_blinking = 0;
1467 	sc->sc_flags |= BWI_F_STOP;
1468 
1469 	if (sc->sc_flags & BWI_F_RUNNING) {
1470 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1471 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1472 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1473 
1474 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1475 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1476 		bwi_mac_stop(mac);
1477 	}
1478 
1479 	for (i = 0; i < sc->sc_nmac; ++i) {
1480 		struct bwi_regwin *old_rw;
1481 
1482 		mac = &sc->sc_mac[i];
1483 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1484 			continue;
1485 
1486 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1487 		if (error)
1488 			continue;
1489 
1490 		bwi_mac_shutdown(mac);
1491 		pwr_off = 1;
1492 
1493 		bwi_regwin_switch(sc, old_rw, NULL);
1494 	}
1495 
1496 	if (pwr_off)
1497 		bwi_bbp_power_off(sc);
1498 
1499 	sc->sc_tx_timer = 0;
1500 	callout_stop(&sc->sc_watchdog_timer);
1501 	sc->sc_flags &= ~BWI_F_RUNNING;
1502 }
1503 
1504 void
1505 bwi_intr(void *xsc)
1506 {
1507 	struct bwi_softc *sc = xsc;
1508 	struct bwi_mac *mac;
1509 	uint32_t intr_status;
1510 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1511 	int i, txrx_error, tx = 0, rx_data = -1;
1512 
1513 	BWI_LOCK(sc);
1514 
1515 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1516 	    (sc->sc_flags & BWI_F_STOP)) {
1517 		BWI_UNLOCK(sc);
1518 		return;
1519 	}
1520 	/*
1521 	 * Get interrupt status
1522 	 */
1523 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1524 	if (intr_status == 0xffffffff) {	/* Not for us */
1525 		BWI_UNLOCK(sc);
1526 		return;
1527 	}
1528 
1529 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1530 
1531 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1532 	if (intr_status == 0) {		/* Nothing is interesting */
1533 		BWI_UNLOCK(sc);
1534 		return;
1535 	}
1536 
1537 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1538 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1539 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1540 
1541 	txrx_error = 0;
1542 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1543 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1544 		uint32_t mask;
1545 
1546 		if (BWI_TXRX_IS_RX(i))
1547 			mask = BWI_TXRX_RX_INTRS;
1548 		else
1549 			mask = BWI_TXRX_TX_INTRS;
1550 
1551 		txrx_intr_status[i] =
1552 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1553 
1554 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1555 			 i, txrx_intr_status[i]);
1556 
1557 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1558 			device_printf(sc->sc_dev,
1559 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1560 			    __func__, i, txrx_intr_status[i]);
1561 			txrx_error = 1;
1562 		}
1563 	}
1564 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1565 
1566 	/*
1567 	 * Acknowledge interrupt
1568 	 */
1569 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1570 
1571 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1572 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1573 
1574 	/* Disable all interrupts */
1575 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1576 
1577 	/*
1578 	 * http://bcm-specs.sipsolutions.net/Interrupts
1579 	 * Says for this bit (0x800):
1580 	 * "Fatal Error
1581 	 *
1582 	 * We got this one while testing things when by accident the
1583 	 * template ram wasn't set to big endian when it should have
1584 	 * been after writing the initial values. It keeps on being
1585 	 * triggered, the only way to stop it seems to shut down the
1586 	 * chip."
1587 	 *
1588 	 * Suggesting that we should never get it and if we do we're not
1589 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1590 	 * it is valid only on mac version 5 and higher, but I couldn't
1591 	 * find a reference for that...  Since I see them from time to time
1592 	 * on my card, this suggests an error in the tx path still...
1593 	 */
1594 	if (intr_status & BWI_INTR_PHY_TXERR) {
1595 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1596 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1597 			    __func__);
1598 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1599 			BWI_UNLOCK(sc);
1600 			return;
1601 		}
1602 	}
1603 
1604 	if (txrx_error) {
1605 		/* TODO: reset device */
1606 	}
1607 
1608 	if (intr_status & BWI_INTR_TBTT)
1609 		bwi_mac_config_ps(mac);
1610 
1611 	if (intr_status & BWI_INTR_EO_ATIM)
1612 		device_printf(sc->sc_dev, "EO_ATIM\n");
1613 
1614 	if (intr_status & BWI_INTR_PMQ) {
1615 		for (;;) {
1616 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1617 				break;
1618 		}
1619 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1620 	}
1621 
1622 	if (intr_status & BWI_INTR_NOISE)
1623 		device_printf(sc->sc_dev, "intr noise\n");
1624 
1625 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1626 		rx_data = sc->sc_rxeof(sc);
1627 		if (sc->sc_flags & BWI_F_STOP) {
1628 			BWI_UNLOCK(sc);
1629 			return;
1630 		}
1631 	}
1632 
1633 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1634 		sc->sc_txeof_status(sc);
1635 		tx = 1;
1636 	}
1637 
1638 	if (intr_status & BWI_INTR_TX_DONE) {
1639 		bwi_txeof(sc);
1640 		tx = 1;
1641 	}
1642 
1643 	/* Re-enable interrupts */
1644 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1645 
1646 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1647 		int evt = BWI_LED_EVENT_NONE;
1648 
1649 		if (tx && rx_data > 0) {
1650 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1651 				evt = BWI_LED_EVENT_RX;
1652 			else
1653 				evt = BWI_LED_EVENT_TX;
1654 		} else if (tx) {
1655 			evt = BWI_LED_EVENT_TX;
1656 		} else if (rx_data > 0) {
1657 			evt = BWI_LED_EVENT_RX;
1658 		} else if (rx_data == 0) {
1659 			evt = BWI_LED_EVENT_POLL;
1660 		}
1661 
1662 		if (evt != BWI_LED_EVENT_NONE)
1663 			bwi_led_event(sc, evt);
1664 	}
1665 
1666 	BWI_UNLOCK(sc);
1667 }
1668 
1669 static void
1670 bwi_scan_start(struct ieee80211com *ic)
1671 {
1672 	struct bwi_softc *sc = ic->ic_softc;
1673 
1674 	BWI_LOCK(sc);
1675 	/* Enable MAC beacon promiscuity */
1676 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1677 	BWI_UNLOCK(sc);
1678 }
1679 
1680 static void
1681 bwi_getradiocaps(struct ieee80211com *ic,
1682     int maxchans, int *nchans, struct ieee80211_channel chans[])
1683 {
1684 	struct bwi_softc *sc = ic->ic_softc;
1685 	struct bwi_mac *mac;
1686 	struct bwi_phy *phy;
1687 	uint8_t bands[IEEE80211_MODE_BYTES];
1688 
1689 	/*
1690 	 * XXX First MAC is known to exist
1691 	 * TODO2
1692 	 */
1693 	mac = &sc->sc_mac[0];
1694 	phy = &mac->mac_phy;
1695 
1696 	memset(bands, 0, sizeof(bands));
1697 	switch (phy->phy_mode) {
1698 	case IEEE80211_MODE_11G:
1699 		setbit(bands, IEEE80211_MODE_11G);
1700 		/* FALLTHROUGH */
1701 	case IEEE80211_MODE_11B:
1702 		setbit(bands, IEEE80211_MODE_11B);
1703 		break;
1704 	case IEEE80211_MODE_11A:
1705 		/* TODO:11A */
1706 		setbit(bands, IEEE80211_MODE_11A);
1707 		device_printf(sc->sc_dev, "no 11a support\n");
1708 		return;
1709 	default:
1710 		panic("unknown phymode %d\n", phy->phy_mode);
1711 	}
1712 
1713 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1714 	    bwi_chan_2ghz, nitems(bwi_chan_2ghz), bands, 0);
1715 }
1716 
1717 static void
1718 bwi_set_channel(struct ieee80211com *ic)
1719 {
1720 	struct bwi_softc *sc = ic->ic_softc;
1721 	struct ieee80211_channel *c = ic->ic_curchan;
1722 	struct bwi_mac *mac;
1723 
1724 	BWI_LOCK(sc);
1725 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1726 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1727 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1728 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1729 
1730 	sc->sc_rates = ieee80211_get_ratetable(c);
1731 
1732 	/*
1733 	 * Setup radio tap channel freq and flags
1734 	 */
1735 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1736 		htole16(c->ic_freq);
1737 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1738 		htole16(c->ic_flags & 0xffff);
1739 
1740 	BWI_UNLOCK(sc);
1741 }
1742 
1743 static void
1744 bwi_scan_end(struct ieee80211com *ic)
1745 {
1746 	struct bwi_softc *sc = ic->ic_softc;
1747 
1748 	BWI_LOCK(sc);
1749 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1750 	BWI_UNLOCK(sc);
1751 }
1752 
1753 static int
1754 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1755 {
1756 	struct bwi_vap *bvp = BWI_VAP(vap);
1757 	struct ieee80211com *ic= vap->iv_ic;
1758 	struct bwi_softc *sc = ic->ic_softc;
1759 	enum ieee80211_state ostate = vap->iv_state;
1760 	struct bwi_mac *mac;
1761 	int error;
1762 
1763 	BWI_LOCK(sc);
1764 
1765 	callout_stop(&sc->sc_calib_ch);
1766 
1767 	if (nstate == IEEE80211_S_INIT)
1768 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1769 
1770 	bwi_led_newstate(sc, nstate);
1771 
1772 	error = bvp->bv_newstate(vap, nstate, arg);
1773 	if (error != 0)
1774 		goto back;
1775 
1776 	/*
1777 	 * Clear the BSSID when we stop a STA
1778 	 */
1779 	if (vap->iv_opmode == IEEE80211_M_STA) {
1780 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1781 			/*
1782 			 * Clear out the BSSID.  If we reassociate to
1783 			 * the same AP, this will reinialize things
1784 			 * correctly...
1785 			 */
1786 			if (ic->ic_opmode == IEEE80211_M_STA &&
1787 			    !(sc->sc_flags & BWI_F_STOP))
1788 				bwi_set_bssid(sc, bwi_zero_addr);
1789 		}
1790 	}
1791 
1792 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1793 		/* Nothing to do */
1794 	} else if (nstate == IEEE80211_S_RUN) {
1795 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1796 
1797 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1798 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1799 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1800 
1801 		/* Initial TX power calibration */
1802 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1803 #ifdef notyet
1804 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1805 #else
1806 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1807 #endif
1808 
1809 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1810 	}
1811 back:
1812 	BWI_UNLOCK(sc);
1813 
1814 	return error;
1815 }
1816 
1817 static int
1818 bwi_media_change(struct ifnet *ifp)
1819 {
1820 	int error = ieee80211_media_change(ifp);
1821 	/* NB: only the fixed rate can change and that doesn't need a reset */
1822 	return (error == ENETRESET ? 0 : error);
1823 }
1824 
1825 static int
1826 bwi_dma_alloc(struct bwi_softc *sc)
1827 {
1828 	int error, i, has_txstats;
1829 	bus_addr_t lowaddr = 0;
1830 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1831 	uint32_t txrx_ctrl_step = 0;
1832 
1833 	has_txstats = 0;
1834 	for (i = 0; i < sc->sc_nmac; ++i) {
1835 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1836 			has_txstats = 1;
1837 			break;
1838 		}
1839 	}
1840 
1841 	switch (sc->sc_bus_space) {
1842 	case BWI_BUS_SPACE_30BIT:
1843 	case BWI_BUS_SPACE_32BIT:
1844 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1845 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1846 		else
1847 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1848 		desc_sz = sizeof(struct bwi_desc32);
1849 		txrx_ctrl_step = 0x20;
1850 
1851 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1852 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1853 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1854 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1855 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1856 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1857 		sc->sc_rxeof = bwi_rxeof32;
1858 		sc->sc_start_tx = bwi_start_tx32;
1859 		if (has_txstats) {
1860 			sc->sc_init_txstats = bwi_init_txstats32;
1861 			sc->sc_free_txstats = bwi_free_txstats32;
1862 			sc->sc_txeof_status = bwi_txeof_status32;
1863 		}
1864 		break;
1865 
1866 	case BWI_BUS_SPACE_64BIT:
1867 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1868 		desc_sz = sizeof(struct bwi_desc64);
1869 		txrx_ctrl_step = 0x40;
1870 
1871 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1872 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1873 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1874 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1875 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1876 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1877 		sc->sc_rxeof = bwi_rxeof64;
1878 		sc->sc_start_tx = bwi_start_tx64;
1879 		if (has_txstats) {
1880 			sc->sc_init_txstats = bwi_init_txstats64;
1881 			sc->sc_free_txstats = bwi_free_txstats64;
1882 			sc->sc_txeof_status = bwi_txeof_status64;
1883 		}
1884 		break;
1885 	}
1886 
1887 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1888 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1889 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1890 
1891 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1892 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1893 
1894 	/*
1895 	 * Create top level DMA tag
1896 	 */
1897 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1898 			       BWI_ALIGN, 0,		/* alignment, bounds */
1899 			       lowaddr,			/* lowaddr */
1900 			       BUS_SPACE_MAXADDR,	/* highaddr */
1901 			       NULL, NULL,		/* filter, filterarg */
1902 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1903 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1904 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1905 			       0,			/* flags */
1906 			       NULL, NULL,		/* lockfunc, lockarg */
1907 			       &sc->sc_parent_dtag);
1908 	if (error) {
1909 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1910 		return error;
1911 	}
1912 
1913 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1914 
1915 	/*
1916 	 * Create TX ring DMA stuffs
1917 	 */
1918 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1919 				BWI_RING_ALIGN, 0,
1920 				BUS_SPACE_MAXADDR,
1921 				BUS_SPACE_MAXADDR,
1922 				NULL, NULL,
1923 				tx_ring_sz,
1924 				1,
1925 				tx_ring_sz,
1926 				0,
1927 				NULL, NULL,
1928 				&sc->sc_txring_dtag);
1929 	if (error) {
1930 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1931 		return error;
1932 	}
1933 
1934 	for (i = 0; i < BWI_TX_NRING; ++i) {
1935 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1936 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1937 					   TXRX_CTRL(i));
1938 		if (error) {
1939 			device_printf(sc->sc_dev, "%dth TX ring "
1940 				      "DMA alloc failed\n", i);
1941 			return error;
1942 		}
1943 	}
1944 
1945 	/*
1946 	 * Create RX ring DMA stuffs
1947 	 */
1948 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1949 				BWI_RING_ALIGN, 0,
1950 				BUS_SPACE_MAXADDR,
1951 				BUS_SPACE_MAXADDR,
1952 				NULL, NULL,
1953 				rx_ring_sz,
1954 				1,
1955 				rx_ring_sz,
1956 				0,
1957 				NULL, NULL,
1958 				&sc->sc_rxring_dtag);
1959 	if (error) {
1960 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1961 		return error;
1962 	}
1963 
1964 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1965 				   rx_ring_sz, TXRX_CTRL(0));
1966 	if (error) {
1967 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1968 		return error;
1969 	}
1970 
1971 	if (has_txstats) {
1972 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1973 		if (error) {
1974 			device_printf(sc->sc_dev,
1975 				      "TX stats DMA alloc failed\n");
1976 			return error;
1977 		}
1978 	}
1979 
1980 #undef TXRX_CTRL
1981 
1982 	return bwi_dma_mbuf_create(sc);
1983 }
1984 
1985 static void
1986 bwi_dma_free(struct bwi_softc *sc)
1987 {
1988 	if (sc->sc_txring_dtag != NULL) {
1989 		int i;
1990 
1991 		for (i = 0; i < BWI_TX_NRING; ++i) {
1992 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1993 
1994 			if (rd->rdata_desc != NULL) {
1995 				bus_dmamap_unload(sc->sc_txring_dtag,
1996 						  rd->rdata_dmap);
1997 				bus_dmamem_free(sc->sc_txring_dtag,
1998 						rd->rdata_desc,
1999 						rd->rdata_dmap);
2000 			}
2001 		}
2002 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2003 	}
2004 
2005 	if (sc->sc_rxring_dtag != NULL) {
2006 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2007 
2008 		if (rd->rdata_desc != NULL) {
2009 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2010 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2011 					rd->rdata_dmap);
2012 		}
2013 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2014 	}
2015 
2016 	bwi_dma_txstats_free(sc);
2017 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2018 
2019 	if (sc->sc_parent_dtag != NULL)
2020 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2021 }
2022 
2023 static int
2024 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2025 		   struct bwi_ring_data *rd, bus_size_t size,
2026 		   uint32_t txrx_ctrl)
2027 {
2028 	int error;
2029 
2030 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2031 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2032 				 &rd->rdata_dmap);
2033 	if (error) {
2034 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2035 		return error;
2036 	}
2037 
2038 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2039 				bwi_dma_ring_addr, &rd->rdata_paddr,
2040 				BUS_DMA_NOWAIT);
2041 	if (error) {
2042 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2043 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2044 		rd->rdata_desc = NULL;
2045 		return error;
2046 	}
2047 
2048 	rd->rdata_txrx_ctrl = txrx_ctrl;
2049 	return 0;
2050 }
2051 
2052 static int
2053 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2054 		      bus_size_t desc_sz)
2055 {
2056 	struct bwi_txstats_data *st;
2057 	bus_size_t dma_size;
2058 	int error;
2059 
2060 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2061 	if (st == NULL) {
2062 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2063 		return ENOMEM;
2064 	}
2065 	sc->sc_txstats = st;
2066 
2067 	/*
2068 	 * Create TX stats descriptor DMA stuffs
2069 	 */
2070 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2071 
2072 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2073 				BWI_RING_ALIGN,
2074 				0,
2075 				BUS_SPACE_MAXADDR,
2076 				BUS_SPACE_MAXADDR,
2077 				NULL, NULL,
2078 				dma_size,
2079 				1,
2080 				dma_size,
2081 				0,
2082 				NULL, NULL,
2083 				&st->stats_ring_dtag);
2084 	if (error) {
2085 		device_printf(sc->sc_dev, "can't create txstats ring "
2086 			      "DMA tag\n");
2087 		return error;
2088 	}
2089 
2090 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2091 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2092 				 &st->stats_ring_dmap);
2093 	if (error) {
2094 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2095 			      "DMA mem\n");
2096 		bus_dma_tag_destroy(st->stats_ring_dtag);
2097 		st->stats_ring_dtag = NULL;
2098 		return error;
2099 	}
2100 
2101 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2102 				st->stats_ring, dma_size,
2103 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2104 				BUS_DMA_NOWAIT);
2105 	if (error) {
2106 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2107 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2108 				st->stats_ring_dmap);
2109 		bus_dma_tag_destroy(st->stats_ring_dtag);
2110 		st->stats_ring_dtag = NULL;
2111 		return error;
2112 	}
2113 
2114 	/*
2115 	 * Create TX stats DMA stuffs
2116 	 */
2117 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2118 			   BWI_ALIGN);
2119 
2120 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2121 				BWI_ALIGN,
2122 				0,
2123 				BUS_SPACE_MAXADDR,
2124 				BUS_SPACE_MAXADDR,
2125 				NULL, NULL,
2126 				dma_size,
2127 				1,
2128 				dma_size,
2129 				0,
2130 				NULL, NULL,
2131 				&st->stats_dtag);
2132 	if (error) {
2133 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2134 		return error;
2135 	}
2136 
2137 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2138 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2139 				 &st->stats_dmap);
2140 	if (error) {
2141 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2142 		bus_dma_tag_destroy(st->stats_dtag);
2143 		st->stats_dtag = NULL;
2144 		return error;
2145 	}
2146 
2147 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2148 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2149 				BUS_DMA_NOWAIT);
2150 	if (error) {
2151 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2152 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2153 		bus_dma_tag_destroy(st->stats_dtag);
2154 		st->stats_dtag = NULL;
2155 		return error;
2156 	}
2157 
2158 	st->stats_ctrl_base = ctrl_base;
2159 	return 0;
2160 }
2161 
2162 static void
2163 bwi_dma_txstats_free(struct bwi_softc *sc)
2164 {
2165 	struct bwi_txstats_data *st;
2166 
2167 	if (sc->sc_txstats == NULL)
2168 		return;
2169 	st = sc->sc_txstats;
2170 
2171 	if (st->stats_ring_dtag != NULL) {
2172 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2173 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2174 				st->stats_ring_dmap);
2175 		bus_dma_tag_destroy(st->stats_ring_dtag);
2176 	}
2177 
2178 	if (st->stats_dtag != NULL) {
2179 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2180 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2181 		bus_dma_tag_destroy(st->stats_dtag);
2182 	}
2183 
2184 	free(st, M_DEVBUF);
2185 }
2186 
2187 static void
2188 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2189 {
2190 	KASSERT(nseg == 1, ("too many segments\n"));
2191 	*((bus_addr_t *)arg) = seg->ds_addr;
2192 }
2193 
2194 static int
2195 bwi_dma_mbuf_create(struct bwi_softc *sc)
2196 {
2197 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2198 	int i, j, k, ntx, error;
2199 
2200 	/*
2201 	 * Create TX/RX mbuf DMA tag
2202 	 */
2203 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2204 				1,
2205 				0,
2206 				BUS_SPACE_MAXADDR,
2207 				BUS_SPACE_MAXADDR,
2208 				NULL, NULL,
2209 				MCLBYTES,
2210 				1,
2211 				MCLBYTES,
2212 				BUS_DMA_ALLOCNOW,
2213 				NULL, NULL,
2214 				&sc->sc_buf_dtag);
2215 	if (error) {
2216 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2217 		return error;
2218 	}
2219 
2220 	ntx = 0;
2221 
2222 	/*
2223 	 * Create TX mbuf DMA map
2224 	 */
2225 	for (i = 0; i < BWI_TX_NRING; ++i) {
2226 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2227 
2228 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2229 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2230 						  &tbd->tbd_buf[j].tb_dmap);
2231 			if (error) {
2232 				device_printf(sc->sc_dev, "can't create "
2233 					      "%dth tbd, %dth DMA map\n", i, j);
2234 
2235 				ntx = i;
2236 				for (k = 0; k < j; ++k) {
2237 					bus_dmamap_destroy(sc->sc_buf_dtag,
2238 						tbd->tbd_buf[k].tb_dmap);
2239 				}
2240 				goto fail;
2241 			}
2242 		}
2243 	}
2244 	ntx = BWI_TX_NRING;
2245 
2246 	/*
2247 	 * Create RX mbuf DMA map and a spare DMA map
2248 	 */
2249 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2250 				  &rbd->rbd_tmp_dmap);
2251 	if (error) {
2252 		device_printf(sc->sc_dev,
2253 			      "can't create spare RX buf DMA map\n");
2254 		goto fail;
2255 	}
2256 
2257 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2258 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2259 					  &rbd->rbd_buf[j].rb_dmap);
2260 		if (error) {
2261 			device_printf(sc->sc_dev, "can't create %dth "
2262 				      "RX buf DMA map\n", j);
2263 
2264 			for (k = 0; k < j; ++k) {
2265 				bus_dmamap_destroy(sc->sc_buf_dtag,
2266 					rbd->rbd_buf[j].rb_dmap);
2267 			}
2268 			bus_dmamap_destroy(sc->sc_buf_dtag,
2269 					   rbd->rbd_tmp_dmap);
2270 			goto fail;
2271 		}
2272 	}
2273 
2274 	return 0;
2275 fail:
2276 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2277 	return error;
2278 }
2279 
2280 static void
2281 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2282 {
2283 	int i, j;
2284 
2285 	if (sc->sc_buf_dtag == NULL)
2286 		return;
2287 
2288 	for (i = 0; i < ntx; ++i) {
2289 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2290 
2291 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2292 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2293 
2294 			if (tb->tb_mbuf != NULL) {
2295 				bus_dmamap_unload(sc->sc_buf_dtag,
2296 						  tb->tb_dmap);
2297 				m_freem(tb->tb_mbuf);
2298 			}
2299 			if (tb->tb_ni != NULL)
2300 				ieee80211_free_node(tb->tb_ni);
2301 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2302 		}
2303 	}
2304 
2305 	if (nrx) {
2306 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2307 
2308 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2309 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2310 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2311 
2312 			if (rb->rb_mbuf != NULL) {
2313 				bus_dmamap_unload(sc->sc_buf_dtag,
2314 						  rb->rb_dmap);
2315 				m_freem(rb->rb_mbuf);
2316 			}
2317 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2318 		}
2319 	}
2320 
2321 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2322 	sc->sc_buf_dtag = NULL;
2323 }
2324 
2325 static void
2326 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2327 {
2328 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2329 }
2330 
2331 static void
2332 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2333 {
2334 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2335 }
2336 
2337 static int
2338 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2339 {
2340 	struct bwi_ring_data *rd;
2341 	struct bwi_txbuf_data *tbd;
2342 	uint32_t val, addr_hi, addr_lo;
2343 
2344 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2345 	rd = &sc->sc_tx_rdata[ring_idx];
2346 	tbd = &sc->sc_tx_bdata[ring_idx];
2347 
2348 	tbd->tbd_idx = 0;
2349 	tbd->tbd_used = 0;
2350 
2351 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2352 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2353 			BUS_DMASYNC_PREWRITE);
2354 
2355 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2356 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2357 
2358 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2359 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2360 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2361 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2362 
2363 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2364 	      BWI_TXRX32_CTRL_ENABLE;
2365 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2366 
2367 	return 0;
2368 }
2369 
2370 static void
2371 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2372 		       bus_addr_t paddr, int hdr_size, int ndesc)
2373 {
2374 	uint32_t val, addr_hi, addr_lo;
2375 
2376 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2377 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2378 
2379 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2380 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2381 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2382 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2383 
2384 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2385 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2386 	      BWI_TXRX32_CTRL_ENABLE;
2387 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2388 
2389 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2390 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2391 }
2392 
2393 static int
2394 bwi_init_rx_ring32(struct bwi_softc *sc)
2395 {
2396 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2397 	int i, error;
2398 
2399 	sc->sc_rx_bdata.rbd_idx = 0;
2400 
2401 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2402 		error = bwi_newbuf(sc, i, 1);
2403 		if (error) {
2404 			device_printf(sc->sc_dev,
2405 				  "can't allocate %dth RX buffer\n", i);
2406 			return error;
2407 		}
2408 	}
2409 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2410 			BUS_DMASYNC_PREWRITE);
2411 
2412 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2413 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2414 	return 0;
2415 }
2416 
2417 static int
2418 bwi_init_txstats32(struct bwi_softc *sc)
2419 {
2420 	struct bwi_txstats_data *st = sc->sc_txstats;
2421 	bus_addr_t stats_paddr;
2422 	int i;
2423 
2424 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2425 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2426 
2427 	st->stats_idx = 0;
2428 
2429 	stats_paddr = st->stats_paddr;
2430 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2431 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2432 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2433 		stats_paddr += sizeof(struct bwi_txstats);
2434 	}
2435 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2436 			BUS_DMASYNC_PREWRITE);
2437 
2438 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2439 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2440 	return 0;
2441 }
2442 
2443 static void
2444 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2445 		    int buf_len)
2446 {
2447 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2448 
2449 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2450 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2451 			 paddr, buf_len, 0);
2452 }
2453 
2454 static void
2455 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2456 		    int buf_idx, bus_addr_t paddr, int buf_len)
2457 {
2458 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2459 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2460 			 paddr, buf_len, 1);
2461 }
2462 
2463 static int
2464 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2465 {
2466 	/* TODO:64 */
2467 	return EOPNOTSUPP;
2468 }
2469 
2470 static int
2471 bwi_init_rx_ring64(struct bwi_softc *sc)
2472 {
2473 	/* TODO:64 */
2474 	return EOPNOTSUPP;
2475 }
2476 
2477 static int
2478 bwi_init_txstats64(struct bwi_softc *sc)
2479 {
2480 	/* TODO:64 */
2481 	return EOPNOTSUPP;
2482 }
2483 
2484 static void
2485 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2486 		    int buf_len)
2487 {
2488 	/* TODO:64 */
2489 }
2490 
2491 static void
2492 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2493 		    int buf_idx, bus_addr_t paddr, int buf_len)
2494 {
2495 	/* TODO:64 */
2496 }
2497 
2498 static void
2499 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2500 		 bus_size_t mapsz __unused, int error)
2501 {
2502         if (!error) {
2503 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2504 		*((bus_addr_t *)arg) = seg->ds_addr;
2505 	}
2506 }
2507 
2508 static int
2509 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2510 {
2511 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2512 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2513 	struct bwi_rxbuf_hdr *hdr;
2514 	bus_dmamap_t map;
2515 	bus_addr_t paddr;
2516 	struct mbuf *m;
2517 	int error;
2518 
2519 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2520 
2521 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2522 	if (m == NULL) {
2523 		error = ENOBUFS;
2524 
2525 		/*
2526 		 * If the NIC is up and running, we need to:
2527 		 * - Clear RX buffer's header.
2528 		 * - Restore RX descriptor settings.
2529 		 */
2530 		if (init)
2531 			return error;
2532 		else
2533 			goto back;
2534 	}
2535 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2536 
2537 	/*
2538 	 * Try to load RX buf into temporary DMA map
2539 	 */
2540 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2541 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2542 	if (error) {
2543 		m_freem(m);
2544 
2545 		/*
2546 		 * See the comment above
2547 		 */
2548 		if (init)
2549 			return error;
2550 		else
2551 			goto back;
2552 	}
2553 
2554 	if (!init)
2555 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2556 	rxbuf->rb_mbuf = m;
2557 	rxbuf->rb_paddr = paddr;
2558 
2559 	/*
2560 	 * Swap RX buf's DMA map with the loaded temporary one
2561 	 */
2562 	map = rxbuf->rb_dmap;
2563 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2564 	rbd->rbd_tmp_dmap = map;
2565 
2566 back:
2567 	/*
2568 	 * Clear RX buf header
2569 	 */
2570 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2571 	bzero(hdr, sizeof(*hdr));
2572 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2573 
2574 	/*
2575 	 * Setup RX buf descriptor
2576 	 */
2577 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2578 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2579 	return error;
2580 }
2581 
2582 static void
2583 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2584 		    const uint8_t *addr)
2585 {
2586 	int i;
2587 
2588 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2589 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2590 
2591 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2592 		uint16_t addr_val;
2593 
2594 		addr_val = (uint16_t)addr[i * 2] |
2595 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2596 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2597 	}
2598 }
2599 
2600 static int
2601 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2602 {
2603 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2604 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2605 	struct ieee80211com *ic = &sc->sc_ic;
2606 	int idx, rx_data = 0;
2607 
2608 	idx = rbd->rbd_idx;
2609 	while (idx != end_idx) {
2610 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2611 		struct bwi_rxbuf_hdr *hdr;
2612 		struct ieee80211_frame_min *wh;
2613 		struct ieee80211_node *ni;
2614 		struct mbuf *m;
2615 		uint32_t plcp;
2616 		uint16_t flags2;
2617 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2618 
2619 		m = rb->rb_mbuf;
2620 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2621 				BUS_DMASYNC_POSTREAD);
2622 
2623 		if (bwi_newbuf(sc, idx, 0)) {
2624 			counter_u64_add(ic->ic_ierrors, 1);
2625 			goto next;
2626 		}
2627 
2628 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2629 		flags2 = le16toh(hdr->rxh_flags2);
2630 
2631 		hdr_extra = 0;
2632 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2633 			hdr_extra = 2;
2634 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2635 
2636 		buflen = le16toh(hdr->rxh_buflen);
2637 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2638 			device_printf(sc->sc_dev,
2639 			    "%s: zero length data, hdr_extra %d\n",
2640 			    __func__, hdr_extra);
2641 			counter_u64_add(ic->ic_ierrors, 1);
2642 			m_freem(m);
2643 			goto next;
2644 		}
2645 
2646 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2647 		rssi = bwi_calc_rssi(sc, hdr);
2648 		noise = bwi_calc_noise(sc);
2649 
2650 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2651 		m_adj(m, sizeof(*hdr) + wh_ofs);
2652 
2653 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2654 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2655 		else
2656 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2657 
2658 		/* RX radio tap */
2659 		if (ieee80211_radiotap_active(ic))
2660 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2661 
2662 		m_adj(m, -IEEE80211_CRC_LEN);
2663 
2664 		BWI_UNLOCK(sc);
2665 
2666 		wh = mtod(m, struct ieee80211_frame_min *);
2667 		ni = ieee80211_find_rxnode(ic, wh);
2668 		if (ni != NULL) {
2669 			type = ieee80211_input(ni, m, rssi - noise, noise);
2670 			ieee80211_free_node(ni);
2671 		} else
2672 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2673 		if (type == IEEE80211_FC0_TYPE_DATA) {
2674 			rx_data = 1;
2675 			sc->sc_rx_rate = rate;
2676 		}
2677 
2678 		BWI_LOCK(sc);
2679 next:
2680 		idx = (idx + 1) % BWI_RX_NDESC;
2681 
2682 		if (sc->sc_flags & BWI_F_STOP) {
2683 			/*
2684 			 * Take the fast lane, don't do
2685 			 * any damage to softc
2686 			 */
2687 			return -1;
2688 		}
2689 	}
2690 
2691 	rbd->rbd_idx = idx;
2692 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2693 			BUS_DMASYNC_PREWRITE);
2694 
2695 	return rx_data;
2696 }
2697 
2698 static int
2699 bwi_rxeof32(struct bwi_softc *sc)
2700 {
2701 	uint32_t val, rx_ctrl;
2702 	int end_idx, rx_data;
2703 
2704 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2705 
2706 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2707 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2708 		  sizeof(struct bwi_desc32);
2709 
2710 	rx_data = bwi_rxeof(sc, end_idx);
2711 	if (rx_data >= 0) {
2712 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2713 			    end_idx * sizeof(struct bwi_desc32));
2714 	}
2715 	return rx_data;
2716 }
2717 
2718 static int
2719 bwi_rxeof64(struct bwi_softc *sc)
2720 {
2721 	/* TODO:64 */
2722 	return 0;
2723 }
2724 
2725 static void
2726 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2727 {
2728 	int i;
2729 
2730 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2731 
2732 #define NRETRY 10
2733 
2734 	for (i = 0; i < NRETRY; ++i) {
2735 		uint32_t status;
2736 
2737 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2738 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2739 		    BWI_RX32_STATUS_STATE_DISABLED)
2740 			break;
2741 
2742 		DELAY(1000);
2743 	}
2744 	if (i == NRETRY)
2745 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2746 
2747 #undef NRETRY
2748 
2749 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2750 }
2751 
2752 static void
2753 bwi_free_txstats32(struct bwi_softc *sc)
2754 {
2755 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2756 }
2757 
2758 static void
2759 bwi_free_rx_ring32(struct bwi_softc *sc)
2760 {
2761 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2762 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2763 	int i;
2764 
2765 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2766 
2767 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2768 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2769 
2770 		if (rb->rb_mbuf != NULL) {
2771 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2772 			m_freem(rb->rb_mbuf);
2773 			rb->rb_mbuf = NULL;
2774 		}
2775 	}
2776 }
2777 
2778 static void
2779 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2780 {
2781 	struct bwi_ring_data *rd;
2782 	struct bwi_txbuf_data *tbd;
2783 	uint32_t state, val;
2784 	int i;
2785 
2786 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2787 	rd = &sc->sc_tx_rdata[ring_idx];
2788 	tbd = &sc->sc_tx_bdata[ring_idx];
2789 
2790 #define NRETRY 10
2791 
2792 	for (i = 0; i < NRETRY; ++i) {
2793 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2794 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2795 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2796 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2797 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2798 			break;
2799 
2800 		DELAY(1000);
2801 	}
2802 	if (i == NRETRY) {
2803 		device_printf(sc->sc_dev,
2804 		    "%s: wait for TX ring(%d) stable timed out\n",
2805 		    __func__, ring_idx);
2806 	}
2807 
2808 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2809 	for (i = 0; i < NRETRY; ++i) {
2810 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2811 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2812 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2813 			break;
2814 
2815 		DELAY(1000);
2816 	}
2817 	if (i == NRETRY)
2818 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2819 		     __func__, ring_idx);
2820 
2821 #undef NRETRY
2822 
2823 	DELAY(1000);
2824 
2825 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2826 
2827 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2828 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2829 
2830 		if (tb->tb_mbuf != NULL) {
2831 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2832 			m_freem(tb->tb_mbuf);
2833 			tb->tb_mbuf = NULL;
2834 		}
2835 		if (tb->tb_ni != NULL) {
2836 			ieee80211_free_node(tb->tb_ni);
2837 			tb->tb_ni = NULL;
2838 		}
2839 	}
2840 }
2841 
2842 static void
2843 bwi_free_txstats64(struct bwi_softc *sc)
2844 {
2845 	/* TODO:64 */
2846 }
2847 
2848 static void
2849 bwi_free_rx_ring64(struct bwi_softc *sc)
2850 {
2851 	/* TODO:64 */
2852 }
2853 
2854 static void
2855 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2856 {
2857 	/* TODO:64 */
2858 }
2859 
2860 /* XXX does not belong here */
2861 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2862 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2863 
2864 static __inline void
2865 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2866 {
2867 	uint32_t plcp;
2868 
2869 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2870 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2871 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2872 	*plcp0 = htole32(plcp);
2873 }
2874 
2875 static __inline void
2876 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2877 		   uint8_t rate)
2878 {
2879 	int len, service, pkt_bitlen;
2880 
2881 	pkt_bitlen = pkt_len * NBBY;
2882 	len = howmany(pkt_bitlen * 2, rate);
2883 
2884 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2885 	if (rate == (11 * 2)) {
2886 		int pkt_bitlen1;
2887 
2888 		/*
2889 		 * PLCP service field needs to be adjusted,
2890 		 * if TX rate is 11Mbytes/s
2891 		 */
2892 		pkt_bitlen1 = len * 11;
2893 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2894 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2895 	}
2896 
2897 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2898 	plcp->i_service = service;
2899 	plcp->i_length = htole16(len);
2900 	/* NOTE: do NOT touch i_crc */
2901 }
2902 
2903 static __inline void
2904 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2905 	void *plcp, int pkt_len, uint8_t rate)
2906 {
2907 	enum ieee80211_phytype modtype;
2908 
2909 	/*
2910 	 * Assume caller has zeroed 'plcp'
2911 	 */
2912 	modtype = ieee80211_rate2phytype(rt, rate);
2913 	if (modtype == IEEE80211_T_OFDM)
2914 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2915 	else if (modtype == IEEE80211_T_DS)
2916 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2917 	else
2918 		panic("unsupport modulation type %u\n", modtype);
2919 }
2920 
2921 static int
2922 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2923 	  struct ieee80211_node *ni)
2924 {
2925 	struct ieee80211vap *vap = ni->ni_vap;
2926 	struct ieee80211com *ic = &sc->sc_ic;
2927 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2928 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2929 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2930 	struct bwi_mac *mac;
2931 	struct bwi_txbuf_hdr *hdr;
2932 	struct ieee80211_frame *wh;
2933 	const struct ieee80211_txparam *tp;
2934 	uint8_t rate, rate_fb;
2935 	uint32_t mac_ctrl;
2936 	uint16_t phy_ctrl;
2937 	bus_addr_t paddr;
2938 	int type, ismcast, pkt_len, error, rix;
2939 #if 0
2940 	const uint8_t *p;
2941 	int i;
2942 #endif
2943 
2944 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2945 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2946 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2947 
2948 	wh = mtod(m, struct ieee80211_frame *);
2949 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2950 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2951 
2952 	/* Get 802.11 frame len before prepending TX header */
2953 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2954 
2955 	/*
2956 	 * Find TX rate
2957 	 */
2958 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2959 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2960 		rate = rate_fb = tp->mgmtrate;
2961 	} else if (ismcast) {
2962 		rate = rate_fb = tp->mcastrate;
2963 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2964 		rate = rate_fb = tp->ucastrate;
2965 	} else {
2966 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2967 		rate = ni->ni_txrate;
2968 
2969 		if (rix > 0) {
2970 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2971 				  IEEE80211_RATE_VAL;
2972 		} else {
2973 			rate_fb = rate;
2974 		}
2975 	}
2976 	tb->tb_rate[0] = rate;
2977 	tb->tb_rate[1] = rate_fb;
2978 	sc->sc_tx_rate = rate;
2979 
2980 	/*
2981 	 * TX radio tap
2982 	 */
2983 	if (ieee80211_radiotap_active_vap(vap)) {
2984 		sc->sc_tx_th.wt_flags = 0;
2985 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2986 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2987 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2988 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2989 		    rate != (1 * 2)) {
2990 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2991 		}
2992 		sc->sc_tx_th.wt_rate = rate;
2993 
2994 		ieee80211_radiotap_tx(vap, m);
2995 	}
2996 
2997 	/*
2998 	 * Setup the embedded TX header
2999 	 */
3000 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3001 	if (m == NULL) {
3002 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3003 		    __func__);
3004 		return ENOBUFS;
3005 	}
3006 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3007 
3008 	bzero(hdr, sizeof(*hdr));
3009 
3010 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3011 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3012 
3013 	if (!ismcast) {
3014 		uint16_t dur;
3015 
3016 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3017 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3018 
3019 		hdr->txh_fb_duration = htole16(dur);
3020 	}
3021 
3022 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3023 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3024 
3025 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3026 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3027 
3028 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3029 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3030 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3031 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3032 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3033 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3034 
3035 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3036 	if (!ismcast)
3037 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3038 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3039 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3040 
3041 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3042 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3043 
3044 	/* Catch any further usage */
3045 	hdr = NULL;
3046 	wh = NULL;
3047 
3048 	/* DMA load */
3049 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3050 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3051 	if (error && error != EFBIG) {
3052 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3053 		    __func__, error);
3054 		goto back;
3055 	}
3056 
3057 	if (error) {	/* error == EFBIG */
3058 		struct mbuf *m_new;
3059 
3060 		m_new = m_defrag(m, M_NOWAIT);
3061 		if (m_new == NULL) {
3062 			device_printf(sc->sc_dev,
3063 			    "%s: can't defrag TX buffer\n", __func__);
3064 			error = ENOBUFS;
3065 			goto back;
3066 		} else {
3067 			m = m_new;
3068 		}
3069 
3070 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3071 					     bwi_dma_buf_addr, &paddr,
3072 					     BUS_DMA_NOWAIT);
3073 		if (error) {
3074 			device_printf(sc->sc_dev,
3075 			    "%s: can't load TX buffer (2) %d\n",
3076 			    __func__, error);
3077 			goto back;
3078 		}
3079 	}
3080 	error = 0;
3081 
3082 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3083 
3084 	tb->tb_mbuf = m;
3085 	tb->tb_ni = ni;
3086 
3087 #if 0
3088 	p = mtod(m, const uint8_t *);
3089 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3090 		if (i != 0 && i % 8 == 0)
3091 			printf("\n");
3092 		printf("%02x ", p[i]);
3093 	}
3094 	printf("\n");
3095 #endif
3096 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3097 		idx, pkt_len, m->m_pkthdr.len);
3098 
3099 	/* Setup TX descriptor */
3100 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3101 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3102 			BUS_DMASYNC_PREWRITE);
3103 
3104 	/* Kick start */
3105 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3106 
3107 back:
3108 	if (error)
3109 		m_freem(m);
3110 	return error;
3111 }
3112 
3113 static int
3114 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3115 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3116 {
3117 	struct ieee80211vap *vap = ni->ni_vap;
3118 	struct ieee80211com *ic = ni->ni_ic;
3119 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3120 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3121 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3122 	struct bwi_mac *mac;
3123 	struct bwi_txbuf_hdr *hdr;
3124 	struct ieee80211_frame *wh;
3125 	uint8_t rate, rate_fb;
3126 	uint32_t mac_ctrl;
3127 	uint16_t phy_ctrl;
3128 	bus_addr_t paddr;
3129 	int ismcast, pkt_len, error;
3130 
3131 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3132 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3133 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3134 
3135 	wh = mtod(m, struct ieee80211_frame *);
3136 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3137 
3138 	/* Get 802.11 frame len before prepending TX header */
3139 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3140 
3141 	/*
3142 	 * Find TX rate
3143 	 */
3144 	rate = params->ibp_rate0;
3145 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3146 		/* XXX fall back to mcast/mgmt rate? */
3147 		m_freem(m);
3148 		return EINVAL;
3149 	}
3150 	if (params->ibp_try1 != 0) {
3151 		rate_fb = params->ibp_rate1;
3152 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3153 			/* XXX fall back to rate0? */
3154 			m_freem(m);
3155 			return EINVAL;
3156 		}
3157 	} else
3158 		rate_fb = rate;
3159 	tb->tb_rate[0] = rate;
3160 	tb->tb_rate[1] = rate_fb;
3161 	sc->sc_tx_rate = rate;
3162 
3163 	/*
3164 	 * TX radio tap
3165 	 */
3166 	if (ieee80211_radiotap_active_vap(vap)) {
3167 		sc->sc_tx_th.wt_flags = 0;
3168 		/* XXX IEEE80211_BPF_CRYPTO */
3169 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3170 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3171 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3172 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3173 		sc->sc_tx_th.wt_rate = rate;
3174 
3175 		ieee80211_radiotap_tx(vap, m);
3176 	}
3177 
3178 	/*
3179 	 * Setup the embedded TX header
3180 	 */
3181 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3182 	if (m == NULL) {
3183 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3184 		    __func__);
3185 		return ENOBUFS;
3186 	}
3187 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3188 
3189 	bzero(hdr, sizeof(*hdr));
3190 
3191 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3192 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3193 
3194 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3195 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3196 		uint16_t dur;
3197 
3198 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3199 
3200 		hdr->txh_fb_duration = htole16(dur);
3201 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3202 	}
3203 
3204 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3205 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3206 
3207 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3208 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3209 
3210 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3211 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3212 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3213 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3214 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3215 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3216 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3217 
3218 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3219 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3220 
3221 	/* Catch any further usage */
3222 	hdr = NULL;
3223 	wh = NULL;
3224 
3225 	/* DMA load */
3226 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3227 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3228 	if (error != 0) {
3229 		struct mbuf *m_new;
3230 
3231 		if (error != EFBIG) {
3232 			device_printf(sc->sc_dev,
3233 			    "%s: can't load TX buffer (1) %d\n",
3234 			    __func__, error);
3235 			goto back;
3236 		}
3237 		m_new = m_defrag(m, M_NOWAIT);
3238 		if (m_new == NULL) {
3239 			device_printf(sc->sc_dev,
3240 			    "%s: can't defrag TX buffer\n", __func__);
3241 			error = ENOBUFS;
3242 			goto back;
3243 		}
3244 		m = m_new;
3245 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3246 					     bwi_dma_buf_addr, &paddr,
3247 					     BUS_DMA_NOWAIT);
3248 		if (error) {
3249 			device_printf(sc->sc_dev,
3250 			    "%s: can't load TX buffer (2) %d\n",
3251 			    __func__, error);
3252 			goto back;
3253 		}
3254 	}
3255 
3256 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3257 
3258 	tb->tb_mbuf = m;
3259 	tb->tb_ni = ni;
3260 
3261 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3262 		idx, pkt_len, m->m_pkthdr.len);
3263 
3264 	/* Setup TX descriptor */
3265 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3266 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3267 			BUS_DMASYNC_PREWRITE);
3268 
3269 	/* Kick start */
3270 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3271 back:
3272 	if (error)
3273 		m_freem(m);
3274 	return error;
3275 }
3276 
3277 static void
3278 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3279 {
3280 	idx = (idx + 1) % BWI_TX_NDESC;
3281 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3282 		    idx * sizeof(struct bwi_desc32));
3283 }
3284 
3285 static void
3286 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3287 {
3288 	/* TODO:64 */
3289 }
3290 
3291 static void
3292 bwi_txeof_status32(struct bwi_softc *sc)
3293 {
3294 	uint32_t val, ctrl_base;
3295 	int end_idx;
3296 
3297 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3298 
3299 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3300 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3301 		  sizeof(struct bwi_desc32);
3302 
3303 	bwi_txeof_status(sc, end_idx);
3304 
3305 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3306 		    end_idx * sizeof(struct bwi_desc32));
3307 
3308 	bwi_start_locked(sc);
3309 }
3310 
3311 static void
3312 bwi_txeof_status64(struct bwi_softc *sc)
3313 {
3314 	/* TODO:64 */
3315 }
3316 
3317 static void
3318 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3319 {
3320 	struct bwi_txbuf_data *tbd;
3321 	struct bwi_txbuf *tb;
3322 	int ring_idx, buf_idx;
3323 	struct ieee80211_node *ni;
3324 	struct ieee80211vap *vap;
3325 
3326 	if (tx_id == 0) {
3327 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3328 		return;
3329 	}
3330 
3331 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3332 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3333 
3334 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3335 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3336 
3337 	tbd = &sc->sc_tx_bdata[ring_idx];
3338 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3339 	tbd->tbd_used--;
3340 
3341 	tb = &tbd->tbd_buf[buf_idx];
3342 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3343 		"acked %d, data_txcnt %d, ni %p\n",
3344 		buf_idx, acked, data_txcnt, tb->tb_ni);
3345 
3346 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3347 
3348 	if ((ni = tb->tb_ni) != NULL) {
3349 		const struct bwi_txbuf_hdr *hdr =
3350 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3351 		vap = ni->ni_vap;
3352 
3353 		/* NB: update rate control only for unicast frames */
3354 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3355 			/*
3356 			 * Feed back 'acked and data_txcnt'.  Note that the
3357 			 * generic AMRR code only understands one tx rate
3358 			 * and the estimator doesn't handle real retry counts
3359 			 * well so to avoid over-aggressive downshifting we
3360 			 * treat any number of retries as "1".
3361 			 */
3362 			ieee80211_ratectl_tx_complete(vap, ni,
3363 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3364 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3365 		}
3366 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3367 		tb->tb_ni = NULL;
3368 	} else
3369 		m_freem(tb->tb_mbuf);
3370 	tb->tb_mbuf = NULL;
3371 
3372 	if (tbd->tbd_used == 0)
3373 		sc->sc_tx_timer = 0;
3374 }
3375 
3376 static void
3377 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3378 {
3379 	struct bwi_txstats_data *st = sc->sc_txstats;
3380 	int idx;
3381 
3382 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3383 
3384 	idx = st->stats_idx;
3385 	while (idx != end_idx) {
3386 		const struct bwi_txstats *stats = &st->stats[idx];
3387 
3388 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3389 			int data_txcnt;
3390 
3391 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3392 						BWI_TXS_TXCNT_DATA);
3393 			_bwi_txeof(sc, le16toh(stats->txs_id),
3394 				   stats->txs_flags & BWI_TXS_F_ACKED,
3395 				   data_txcnt);
3396 		}
3397 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3398 	}
3399 	st->stats_idx = idx;
3400 }
3401 
3402 static void
3403 bwi_txeof(struct bwi_softc *sc)
3404 {
3405 
3406 	for (;;) {
3407 		uint32_t tx_status0, tx_status1;
3408 		uint16_t tx_id;
3409 		int data_txcnt;
3410 
3411 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3412 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3413 			break;
3414 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3415 
3416 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3417 		data_txcnt = __SHIFTOUT(tx_status0,
3418 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3419 
3420 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3421 			continue;
3422 
3423 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3424 		    data_txcnt);
3425 	}
3426 
3427 	bwi_start_locked(sc);
3428 }
3429 
3430 static int
3431 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3432 {
3433 	bwi_power_on(sc, 1);
3434 	return bwi_set_clock_mode(sc, clk_mode);
3435 }
3436 
3437 static void
3438 bwi_bbp_power_off(struct bwi_softc *sc)
3439 {
3440 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3441 	bwi_power_off(sc, 1);
3442 }
3443 
3444 static int
3445 bwi_get_pwron_delay(struct bwi_softc *sc)
3446 {
3447 	struct bwi_regwin *com, *old;
3448 	struct bwi_clock_freq freq;
3449 	uint32_t val;
3450 	int error;
3451 
3452 	com = &sc->sc_com_regwin;
3453 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3454 
3455 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3456 		return 0;
3457 
3458 	error = bwi_regwin_switch(sc, com, &old);
3459 	if (error)
3460 		return error;
3461 
3462 	bwi_get_clock_freq(sc, &freq);
3463 
3464 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3465 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3466 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3467 
3468 	return bwi_regwin_switch(sc, old, NULL);
3469 }
3470 
3471 static int
3472 bwi_bus_attach(struct bwi_softc *sc)
3473 {
3474 	struct bwi_regwin *bus, *old;
3475 	int error;
3476 
3477 	bus = &sc->sc_bus_regwin;
3478 
3479 	error = bwi_regwin_switch(sc, bus, &old);
3480 	if (error)
3481 		return error;
3482 
3483 	if (!bwi_regwin_is_enabled(sc, bus))
3484 		bwi_regwin_enable(sc, bus, 0);
3485 
3486 	/* Disable interripts */
3487 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3488 
3489 	return bwi_regwin_switch(sc, old, NULL);
3490 }
3491 
3492 static const char *
3493 bwi_regwin_name(const struct bwi_regwin *rw)
3494 {
3495 	switch (rw->rw_type) {
3496 	case BWI_REGWIN_T_COM:
3497 		return "COM";
3498 	case BWI_REGWIN_T_BUSPCI:
3499 		return "PCI";
3500 	case BWI_REGWIN_T_MAC:
3501 		return "MAC";
3502 	case BWI_REGWIN_T_BUSPCIE:
3503 		return "PCIE";
3504 	}
3505 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3506 	return NULL;
3507 }
3508 
3509 static uint32_t
3510 bwi_regwin_disable_bits(struct bwi_softc *sc)
3511 {
3512 	uint32_t busrev;
3513 
3514 	/* XXX cache this */
3515 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3516 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3517 		"bus rev %u\n", busrev);
3518 
3519 	if (busrev == BWI_BUSREV_0)
3520 		return BWI_STATE_LO_DISABLE1;
3521 	else if (busrev == BWI_BUSREV_1)
3522 		return BWI_STATE_LO_DISABLE2;
3523 	else
3524 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3525 }
3526 
3527 int
3528 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3529 {
3530 	uint32_t val, disable_bits;
3531 
3532 	disable_bits = bwi_regwin_disable_bits(sc);
3533 	val = CSR_READ_4(sc, BWI_STATE_LO);
3534 
3535 	if ((val & (BWI_STATE_LO_CLOCK |
3536 		    BWI_STATE_LO_RESET |
3537 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3538 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3539 			bwi_regwin_name(rw));
3540 		return 1;
3541 	} else {
3542 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3543 			bwi_regwin_name(rw));
3544 		return 0;
3545 	}
3546 }
3547 
3548 void
3549 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3550 {
3551 	uint32_t state_lo, disable_bits;
3552 	int i;
3553 
3554 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3555 
3556 	/*
3557 	 * If current regwin is in 'reset' state, it was already disabled.
3558 	 */
3559 	if (state_lo & BWI_STATE_LO_RESET) {
3560 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3561 			"%s was already disabled\n", bwi_regwin_name(rw));
3562 		return;
3563 	}
3564 
3565 	disable_bits = bwi_regwin_disable_bits(sc);
3566 
3567 	/*
3568 	 * Disable normal clock
3569 	 */
3570 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3571 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3572 
3573 	/*
3574 	 * Wait until normal clock is disabled
3575 	 */
3576 #define NRETRY	1000
3577 	for (i = 0; i < NRETRY; ++i) {
3578 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3579 		if (state_lo & disable_bits)
3580 			break;
3581 		DELAY(10);
3582 	}
3583 	if (i == NRETRY) {
3584 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3585 			      bwi_regwin_name(rw));
3586 	}
3587 
3588 	for (i = 0; i < NRETRY; ++i) {
3589 		uint32_t state_hi;
3590 
3591 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3592 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3593 			break;
3594 		DELAY(10);
3595 	}
3596 	if (i == NRETRY) {
3597 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3598 			      bwi_regwin_name(rw));
3599 	}
3600 #undef NRETRY
3601 
3602 	/*
3603 	 * Reset and disable regwin with gated clock
3604 	 */
3605 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3606 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3607 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3608 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3609 
3610 	/* Flush pending bus write */
3611 	CSR_READ_4(sc, BWI_STATE_LO);
3612 	DELAY(1);
3613 
3614 	/* Reset and disable regwin */
3615 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3616 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3617 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3618 
3619 	/* Flush pending bus write */
3620 	CSR_READ_4(sc, BWI_STATE_LO);
3621 	DELAY(1);
3622 }
3623 
3624 void
3625 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3626 {
3627 	uint32_t state_lo, state_hi, imstate;
3628 
3629 	bwi_regwin_disable(sc, rw, flags);
3630 
3631 	/* Reset regwin with gated clock */
3632 	state_lo = BWI_STATE_LO_RESET |
3633 		   BWI_STATE_LO_CLOCK |
3634 		   BWI_STATE_LO_GATED_CLOCK |
3635 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3636 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3637 
3638 	/* Flush pending bus write */
3639 	CSR_READ_4(sc, BWI_STATE_LO);
3640 	DELAY(1);
3641 
3642 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3643 	if (state_hi & BWI_STATE_HI_SERROR)
3644 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3645 
3646 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3647 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3648 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3649 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3650 	}
3651 
3652 	/* Enable regwin with gated clock */
3653 	state_lo = BWI_STATE_LO_CLOCK |
3654 		   BWI_STATE_LO_GATED_CLOCK |
3655 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3656 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3657 
3658 	/* Flush pending bus write */
3659 	CSR_READ_4(sc, BWI_STATE_LO);
3660 	DELAY(1);
3661 
3662 	/* Enable regwin with normal clock */
3663 	state_lo = BWI_STATE_LO_CLOCK |
3664 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3665 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3666 
3667 	/* Flush pending bus write */
3668 	CSR_READ_4(sc, BWI_STATE_LO);
3669 	DELAY(1);
3670 }
3671 
3672 static void
3673 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3674 {
3675 	struct bwi_mac *mac;
3676 	struct bwi_myaddr_bssid buf;
3677 	const uint8_t *p;
3678 	uint32_t val;
3679 	int n, i;
3680 
3681 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3682 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3683 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3684 
3685 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3686 
3687 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3688 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3689 
3690 	n = sizeof(buf) / sizeof(val);
3691 	p = (const uint8_t *)&buf;
3692 	for (i = 0; i < n; ++i) {
3693 		int j;
3694 
3695 		val = 0;
3696 		for (j = 0; j < sizeof(val); ++j)
3697 			val |= ((uint32_t)(*p++)) << (j * 8);
3698 
3699 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3700 	}
3701 }
3702 
3703 static void
3704 bwi_updateslot(struct ieee80211com *ic)
3705 {
3706 	struct bwi_softc *sc = ic->ic_softc;
3707 	struct bwi_mac *mac;
3708 
3709 	BWI_LOCK(sc);
3710 	if (sc->sc_flags & BWI_F_RUNNING) {
3711 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3712 
3713 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3714 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3715 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3716 
3717 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3718 	}
3719 	BWI_UNLOCK(sc);
3720 }
3721 
3722 static void
3723 bwi_calibrate(void *xsc)
3724 {
3725 	struct bwi_softc *sc = xsc;
3726 	struct bwi_mac *mac;
3727 
3728 	BWI_ASSERT_LOCKED(sc);
3729 
3730 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3731 	    ("opmode %d", sc->sc_ic.ic_opmode));
3732 
3733 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3734 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3735 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3736 
3737 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3738 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3739 
3740 	/* XXX 15 seconds */
3741 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3742 }
3743 
3744 static int
3745 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3746 {
3747 	struct bwi_mac *mac;
3748 
3749 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3750 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3751 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3752 
3753 	return bwi_rf_calc_rssi(mac, hdr);
3754 }
3755 
3756 static int
3757 bwi_calc_noise(struct bwi_softc *sc)
3758 {
3759 	struct bwi_mac *mac;
3760 
3761 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3762 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3763 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3764 
3765 	return bwi_rf_calc_noise(mac);
3766 }
3767 
3768 static __inline uint8_t
3769 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3770 {
3771 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3772 	return (ieee80211_plcp2rate(plcp, type));
3773 }
3774 
3775 static void
3776 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3777     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3778 {
3779 	const struct ieee80211_frame_min *wh;
3780 
3781 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3782 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3783 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3784 
3785 	wh = mtod(m, const struct ieee80211_frame_min *);
3786 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3787 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3788 
3789 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3790 	sc->sc_rx_th.wr_rate = rate;
3791 	sc->sc_rx_th.wr_antsignal = rssi;
3792 	sc->sc_rx_th.wr_antnoise = noise;
3793 }
3794 
3795 static void
3796 bwi_led_attach(struct bwi_softc *sc)
3797 {
3798 	const uint8_t *led_act = NULL;
3799 	uint16_t gpio, val[BWI_LED_MAX];
3800 	int i;
3801 
3802 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3803 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3804 			led_act = bwi_vendor_led_act[i].led_act;
3805 			break;
3806 		}
3807 	}
3808 	if (led_act == NULL)
3809 		led_act = bwi_default_led_act;
3810 
3811 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3812 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3813 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3814 
3815 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3816 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3817 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3818 
3819 	for (i = 0; i < BWI_LED_MAX; ++i) {
3820 		struct bwi_led *led = &sc->sc_leds[i];
3821 
3822 		if (val[i] == 0xff) {
3823 			led->l_act = led_act[i];
3824 		} else {
3825 			if (val[i] & BWI_LED_ACT_LOW)
3826 				led->l_flags |= BWI_LED_F_ACTLOW;
3827 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3828 		}
3829 		led->l_mask = (1 << i);
3830 
3831 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3832 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3833 		    led->l_act == BWI_LED_ACT_BLINK) {
3834 			led->l_flags |= BWI_LED_F_BLINK;
3835 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3836 				led->l_flags |= BWI_LED_F_POLLABLE;
3837 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3838 				led->l_flags |= BWI_LED_F_SLOW;
3839 
3840 			if (sc->sc_blink_led == NULL) {
3841 				sc->sc_blink_led = led;
3842 				if (led->l_flags & BWI_LED_F_SLOW)
3843 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3844 			}
3845 		}
3846 
3847 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3848 			"%dth led, act %d, lowact %d\n", i,
3849 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3850 	}
3851 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3852 }
3853 
3854 static __inline uint16_t
3855 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3856 {
3857 	if (led->l_flags & BWI_LED_F_ACTLOW)
3858 		on = !on;
3859 	if (on)
3860 		val |= led->l_mask;
3861 	else
3862 		val &= ~led->l_mask;
3863 	return val;
3864 }
3865 
3866 static void
3867 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3868 {
3869 	struct ieee80211com *ic = &sc->sc_ic;
3870 	uint16_t val;
3871 	int i;
3872 
3873 	if (nstate == IEEE80211_S_INIT) {
3874 		callout_stop(&sc->sc_led_blink_ch);
3875 		sc->sc_led_blinking = 0;
3876 	}
3877 
3878 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3879 		return;
3880 
3881 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3882 	for (i = 0; i < BWI_LED_MAX; ++i) {
3883 		struct bwi_led *led = &sc->sc_leds[i];
3884 		int on;
3885 
3886 		if (led->l_act == BWI_LED_ACT_UNKN ||
3887 		    led->l_act == BWI_LED_ACT_NULL)
3888 			continue;
3889 
3890 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3891 		    nstate != IEEE80211_S_INIT)
3892 		    	continue;
3893 
3894 		switch (led->l_act) {
3895 		case BWI_LED_ACT_ON:	/* Always on */
3896 			on = 1;
3897 			break;
3898 		case BWI_LED_ACT_OFF:	/* Always off */
3899 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3900 			on = 0;
3901 			break;
3902 		default:
3903 			on = 1;
3904 			switch (nstate) {
3905 			case IEEE80211_S_INIT:
3906 				on = 0;
3907 				break;
3908 			case IEEE80211_S_RUN:
3909 				if (led->l_act == BWI_LED_ACT_11G &&
3910 				    ic->ic_curmode != IEEE80211_MODE_11G)
3911 					on = 0;
3912 				break;
3913 			default:
3914 				if (led->l_act == BWI_LED_ACT_ASSOC)
3915 					on = 0;
3916 				break;
3917 			}
3918 			break;
3919 		}
3920 
3921 		val = bwi_led_onoff(led, val, on);
3922 	}
3923 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3924 }
3925 static void
3926 bwi_led_event(struct bwi_softc *sc, int event)
3927 {
3928 	struct bwi_led *led = sc->sc_blink_led;
3929 	int rate;
3930 
3931 	if (event == BWI_LED_EVENT_POLL) {
3932 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3933 			return;
3934 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3935 			return;
3936 	}
3937 
3938 	sc->sc_led_ticks = ticks;
3939 	if (sc->sc_led_blinking)
3940 		return;
3941 
3942 	switch (event) {
3943 	case BWI_LED_EVENT_RX:
3944 		rate = sc->sc_rx_rate;
3945 		break;
3946 	case BWI_LED_EVENT_TX:
3947 		rate = sc->sc_tx_rate;
3948 		break;
3949 	case BWI_LED_EVENT_POLL:
3950 		rate = 0;
3951 		break;
3952 	default:
3953 		panic("unknown LED event %d\n", event);
3954 		break;
3955 	}
3956 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3957 	    bwi_led_duration[rate].off_dur);
3958 }
3959 
3960 static void
3961 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3962 {
3963 	struct bwi_led *led = sc->sc_blink_led;
3964 	uint16_t val;
3965 
3966 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3967 	val = bwi_led_onoff(led, val, 1);
3968 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3969 
3970 	if (led->l_flags & BWI_LED_F_SLOW) {
3971 		BWI_LED_SLOWDOWN(on_dur);
3972 		BWI_LED_SLOWDOWN(off_dur);
3973 	}
3974 
3975 	sc->sc_led_blinking = 1;
3976 	sc->sc_led_blink_offdur = off_dur;
3977 
3978 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3979 }
3980 
3981 static void
3982 bwi_led_blink_next(void *xsc)
3983 {
3984 	struct bwi_softc *sc = xsc;
3985 	uint16_t val;
3986 
3987 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3988 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3989 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3990 
3991 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3992 	    bwi_led_blink_end, sc);
3993 }
3994 
3995 static void
3996 bwi_led_blink_end(void *xsc)
3997 {
3998 	struct bwi_softc *sc = xsc;
3999 	sc->sc_led_blinking = 0;
4000 }
4001 
4002 static void
4003 bwi_restart(void *xsc, int pending)
4004 {
4005 	struct bwi_softc *sc = xsc;
4006 
4007 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
4008 	BWI_LOCK(sc);
4009 	bwi_init_statechg(sc, 0);
4010 #if 0
4011 	bwi_start_locked(sc);
4012 #endif
4013 	BWI_UNLOCK(sc);
4014 }
4015