xref: /freebsd/sys/dev/bwi/if_bwi.c (revision b50261e21f39a6c7249a49e7b60aa878c98512a8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
114 		    struct ieee80211_channel[]);
115 static void	bwi_set_channel(struct ieee80211com *);
116 static void	bwi_scan_end(struct ieee80211com *);
117 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static void	bwi_updateslot(struct ieee80211com *);
119 
120 static void	bwi_calibrate(void *);
121 
122 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int	bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
125 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
126 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
127 
128 static void	bwi_restart(void *, int);
129 static void	bwi_init_statechg(struct bwi_softc *, int);
130 static void	bwi_stop(struct bwi_softc *, int);
131 static void	bwi_stop_locked(struct bwi_softc *, int);
132 static int	bwi_newbuf(struct bwi_softc *, int, int);
133 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *);
135 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
136 			  struct ieee80211_node *,
137 			  const struct ieee80211_bpf_params *);
138 
139 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
140 				       bus_addr_t, int, int);
141 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
142 
143 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
144 static int	bwi_init_rx_ring32(struct bwi_softc *);
145 static int	bwi_init_txstats32(struct bwi_softc *);
146 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
147 static void	bwi_free_rx_ring32(struct bwi_softc *);
148 static void	bwi_free_txstats32(struct bwi_softc *);
149 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
150 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
151 				    int, bus_addr_t, int);
152 static int	bwi_rxeof32(struct bwi_softc *);
153 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
154 static void	bwi_txeof_status32(struct bwi_softc *);
155 
156 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
157 static int	bwi_init_rx_ring64(struct bwi_softc *);
158 static int	bwi_init_txstats64(struct bwi_softc *);
159 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
160 static void	bwi_free_rx_ring64(struct bwi_softc *);
161 static void	bwi_free_txstats64(struct bwi_softc *);
162 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
163 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
164 				    int, bus_addr_t, int);
165 static int	bwi_rxeof64(struct bwi_softc *);
166 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
167 static void	bwi_txeof_status64(struct bwi_softc *);
168 
169 static int	bwi_rxeof(struct bwi_softc *, int);
170 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
171 static void	bwi_txeof(struct bwi_softc *);
172 static void	bwi_txeof_status(struct bwi_softc *, int);
173 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
174 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
175 
176 static int	bwi_dma_alloc(struct bwi_softc *);
177 static void	bwi_dma_free(struct bwi_softc *);
178 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
179 				   struct bwi_ring_data *, bus_size_t,
180 				   uint32_t);
181 static int	bwi_dma_mbuf_create(struct bwi_softc *);
182 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
183 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
184 static void	bwi_dma_txstats_free(struct bwi_softc *);
185 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
186 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
187 				 bus_size_t, int);
188 
189 static void	bwi_power_on(struct bwi_softc *, int);
190 static int	bwi_power_off(struct bwi_softc *, int);
191 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
192 static int	bwi_set_clock_delay(struct bwi_softc *);
193 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
194 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
195 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
196 				    const uint8_t *);
197 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
198 
199 static void	bwi_get_card_flags(struct bwi_softc *);
200 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
201 
202 static int	bwi_bus_attach(struct bwi_softc *);
203 static int	bwi_bbp_attach(struct bwi_softc *);
204 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
205 static void	bwi_bbp_power_off(struct bwi_softc *);
206 
207 static const char *bwi_regwin_name(const struct bwi_regwin *);
208 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
209 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
210 static int	bwi_regwin_select(struct bwi_softc *, int);
211 
212 static void	bwi_led_attach(struct bwi_softc *);
213 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
214 static void	bwi_led_event(struct bwi_softc *, int);
215 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
216 static void	bwi_led_blink_next(void *);
217 static void	bwi_led_blink_end(void *);
218 
219 static const struct {
220 	uint16_t	did_min;
221 	uint16_t	did_max;
222 	uint16_t	bbp_id;
223 } bwi_bbpid_map[] = {
224 	{ 0x4301, 0x4301, 0x4301 },
225 	{ 0x4305, 0x4307, 0x4307 },
226 	{ 0x4402, 0x4403, 0x4402 },
227 	{ 0x4610, 0x4615, 0x4610 },
228 	{ 0x4710, 0x4715, 0x4710 },
229 	{ 0x4720, 0x4725, 0x4309 }
230 };
231 
232 static const struct {
233 	uint16_t	bbp_id;
234 	int		nregwin;
235 } bwi_regwin_count[] = {
236 	{ 0x4301, 5 },
237 	{ 0x4306, 6 },
238 	{ 0x4307, 5 },
239 	{ 0x4310, 8 },
240 	{ 0x4401, 3 },
241 	{ 0x4402, 3 },
242 	{ 0x4610, 9 },
243 	{ 0x4704, 9 },
244 	{ 0x4710, 9 },
245 	{ 0x5365, 7 }
246 };
247 
248 #define CLKSRC(src) 				\
249 [BWI_CLKSRC_ ## src] = {			\
250 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
251 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
252 }
253 
254 static const struct {
255 	u_int	freq_min;
256 	u_int	freq_max;
257 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
258 	CLKSRC(LP_OSC),
259 	CLKSRC(CS_OSC),
260 	CLKSRC(PCI)
261 };
262 
263 #undef CLKSRC
264 
265 #define VENDOR_LED_ACT(vendor)				\
266 {							\
267 	.vid = PCI_VENDOR_##vendor,			\
268 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
269 }
270 
271 static const struct {
272 #define	PCI_VENDOR_COMPAQ	0x0e11
273 #define	PCI_VENDOR_LINKSYS	0x1737
274 	uint16_t	vid;
275 	uint8_t		led_act[BWI_LED_MAX];
276 } bwi_vendor_led_act[] = {
277 	VENDOR_LED_ACT(COMPAQ),
278 	VENDOR_LED_ACT(LINKSYS)
279 #undef PCI_VENDOR_LINKSYS
280 #undef PCI_VENDOR_COMPAQ
281 };
282 
283 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
284 	{ BWI_VENDOR_LED_ACT_DEFAULT };
285 
286 #undef VENDOR_LED_ACT
287 
288 static const struct {
289 	int	on_dur;
290 	int	off_dur;
291 } bwi_led_duration[109] = {
292 	[0]	= { 400, 100 },
293 	[2]	= { 150, 75 },
294 	[4]	= { 90, 45 },
295 	[11]	= { 66, 34 },
296 	[12]	= { 53, 26 },
297 	[18]	= { 42, 21 },
298 	[22]	= { 35, 17 },
299 	[24]	= { 32, 16 },
300 	[36]	= { 21, 10 },
301 	[48]	= { 16, 8 },
302 	[72]	= { 11, 5 },
303 	[96]	= { 9, 4 },
304 	[108]	= { 7, 3 }
305 };
306 
307 #ifdef BWI_DEBUG
308 #ifdef BWI_DEBUG_VERBOSE
309 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
310 #else
311 static uint32_t	bwi_debug;
312 #endif
313 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
314 #endif	/* BWI_DEBUG */
315 
316 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
317 
318 uint16_t
319 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
320 {
321 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
322 }
323 
324 static __inline void
325 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
326 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
327 		 int tx)
328 {
329 	struct bwi_desc32 *desc = &desc_array[desc_idx];
330 	uint32_t ctrl, addr, addr_hi, addr_lo;
331 
332 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
333 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
334 
335 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
336 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
337 
338 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
339 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
340 	if (desc_idx == ndesc - 1)
341 		ctrl |= BWI_DESC32_C_EOR;
342 	if (tx) {
343 		/* XXX */
344 		ctrl |= BWI_DESC32_C_FRAME_START |
345 			BWI_DESC32_C_FRAME_END |
346 			BWI_DESC32_C_INTR;
347 	}
348 
349 	desc->addr = htole32(addr);
350 	desc->ctrl = htole32(ctrl);
351 }
352 
353 int
354 bwi_attach(struct bwi_softc *sc)
355 {
356 	struct ieee80211com *ic = &sc->sc_ic;
357 	device_t dev = sc->sc_dev;
358 	struct bwi_mac *mac;
359 	struct bwi_phy *phy;
360 	int i, error;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	error = bwi_mac_fw_alloc(mac);
449 	if (error)
450 		goto fail;
451 
452 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
453 
454 	/*
455 	 * Setup ratesets, phytype, channels and get MAC address
456 	 */
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		if (phy->phy_mode == IEEE80211_MODE_11B) {
460 			ic->ic_phytype = IEEE80211_T_DS;
461 		} else {
462 			ic->ic_phytype = IEEE80211_T_OFDM;
463 		}
464 
465 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
466 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
467 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
468 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 				device_printf(dev,
470 				    "invalid MAC address: %6D\n",
471 				    ic->ic_macaddr, ":");
472 			}
473 		}
474 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
475 		/* TODO:11A */
476 		error = ENXIO;
477 		goto fail;
478 	} else {
479 		panic("unknown phymode %d\n", phy->phy_mode);
480 	}
481 
482 	/* Get locale */
483 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
484 				   BWI_SPROM_CARD_INFO_LOCALE);
485 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
486 	/* XXX use locale */
487 
488 	ic->ic_softc = sc;
489 
490 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
491 	    ic->ic_channels);
492 
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 	ieee80211_ifattach(ic);
502 
503 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504 
505 	/* override default methods */
506 	ic->ic_vap_create = bwi_vap_create;
507 	ic->ic_vap_delete = bwi_vap_delete;
508 	ic->ic_raw_xmit = bwi_raw_xmit;
509 	ic->ic_updateslot = bwi_updateslot;
510 	ic->ic_scan_start = bwi_scan_start;
511 	ic->ic_scan_end = bwi_scan_end;
512 	ic->ic_getradiocaps = bwi_getradiocaps;
513 	ic->ic_set_channel = bwi_set_channel;
514 	ic->ic_transmit = bwi_transmit;
515 	ic->ic_parent = bwi_parent;
516 
517 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
518 
519 	ieee80211_radiotap_attach(ic,
520 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
521 		BWI_TX_RADIOTAP_PRESENT,
522 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
523 		BWI_RX_RADIOTAP_PRESENT);
524 
525 	/*
526 	 * Add sysctl nodes
527 	 */
528 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
529 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
530 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
531 		        "Firmware version");
532 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
533 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
534 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
535 		        "# ticks before LED enters idle state");
536 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
537 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
538 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
539 		       "Allow LED to blink");
540 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
541 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
543 		       "Enable software TX power calibration");
544 #ifdef BWI_DEBUG
545 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
546 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
547 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
548 #endif
549 	if (bootverbose)
550 		ieee80211_announce(ic);
551 
552 	return (0);
553 fail:
554 	BWI_LOCK_DESTROY(sc);
555 	return (error);
556 }
557 
558 int
559 bwi_detach(struct bwi_softc *sc)
560 {
561 	struct ieee80211com *ic = &sc->sc_ic;
562 	int i;
563 
564 	bwi_stop(sc, 1);
565 	callout_drain(&sc->sc_led_blink_ch);
566 	callout_drain(&sc->sc_calib_ch);
567 	callout_drain(&sc->sc_watchdog_timer);
568 	ieee80211_ifdetach(ic);
569 
570 	for (i = 0; i < sc->sc_nmac; ++i)
571 		bwi_mac_detach(&sc->sc_mac[i]);
572 	bwi_dma_free(sc);
573 	taskqueue_free(sc->sc_tq);
574 	mbufq_drain(&sc->sc_snd);
575 
576 	BWI_LOCK_DESTROY(sc);
577 
578 	return (0);
579 }
580 
581 static struct ieee80211vap *
582 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
583     enum ieee80211_opmode opmode, int flags,
584     const uint8_t bssid[IEEE80211_ADDR_LEN],
585     const uint8_t mac[IEEE80211_ADDR_LEN])
586 {
587 	struct bwi_vap *bvp;
588 	struct ieee80211vap *vap;
589 
590 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
591 		return NULL;
592 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
593 	vap = &bvp->bv_vap;
594 	/* enable s/w bmiss handling for sta mode */
595 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
596 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
597 
598 	/* override default methods */
599 	bvp->bv_newstate = vap->iv_newstate;
600 	vap->iv_newstate = bwi_newstate;
601 #if 0
602 	vap->iv_update_beacon = bwi_beacon_update;
603 #endif
604 	ieee80211_ratectl_init(vap);
605 
606 	/* complete setup */
607 	ieee80211_vap_attach(vap, ieee80211_media_change,
608 	    ieee80211_media_status, mac);
609 	ic->ic_opmode = opmode;
610 	return vap;
611 }
612 
613 static void
614 bwi_vap_delete(struct ieee80211vap *vap)
615 {
616 	struct bwi_vap *bvp = BWI_VAP(vap);
617 
618 	ieee80211_ratectl_deinit(vap);
619 	ieee80211_vap_detach(vap);
620 	free(bvp, M_80211_VAP);
621 }
622 
623 void
624 bwi_suspend(struct bwi_softc *sc)
625 {
626 	bwi_stop(sc, 1);
627 }
628 
629 void
630 bwi_resume(struct bwi_softc *sc)
631 {
632 
633 	if (sc->sc_ic.ic_nrunning > 0)
634 		bwi_init(sc);
635 }
636 
637 int
638 bwi_shutdown(struct bwi_softc *sc)
639 {
640 	bwi_stop(sc, 1);
641 	return 0;
642 }
643 
644 static void
645 bwi_power_on(struct bwi_softc *sc, int with_pll)
646 {
647 	uint32_t gpio_in, gpio_out, gpio_en;
648 	uint16_t status;
649 
650 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
651 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
652 		goto back;
653 
654 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
655 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
656 
657 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
658 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
659 	if (with_pll) {
660 		/* Turn off PLL first */
661 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
663 	}
664 
665 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
666 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
667 	DELAY(1000);
668 
669 	if (with_pll) {
670 		/* Turn on PLL */
671 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
672 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
673 		DELAY(5000);
674 	}
675 
676 back:
677 	/* Clear "Signaled Target Abort" */
678 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
679 	status &= ~PCIM_STATUS_STABORT;
680 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
681 }
682 
683 static int
684 bwi_power_off(struct bwi_softc *sc, int with_pll)
685 {
686 	uint32_t gpio_out, gpio_en;
687 
688 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
689 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
690 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
691 
692 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
693 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
694 	if (with_pll) {
695 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
697 	}
698 
699 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
700 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
701 	return 0;
702 }
703 
704 int
705 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
706 		  struct bwi_regwin **old_rw)
707 {
708 	int error;
709 
710 	if (old_rw != NULL)
711 		*old_rw = NULL;
712 
713 	if (!BWI_REGWIN_EXIST(rw))
714 		return EINVAL;
715 
716 	if (sc->sc_cur_regwin != rw) {
717 		error = bwi_regwin_select(sc, rw->rw_id);
718 		if (error) {
719 			device_printf(sc->sc_dev, "can't select regwin %d\n",
720 				  rw->rw_id);
721 			return error;
722 		}
723 	}
724 
725 	if (old_rw != NULL)
726 		*old_rw = sc->sc_cur_regwin;
727 	sc->sc_cur_regwin = rw;
728 	return 0;
729 }
730 
731 static int
732 bwi_regwin_select(struct bwi_softc *sc, int id)
733 {
734 	uint32_t win = BWI_PCIM_REGWIN(id);
735 	int i;
736 
737 #define RETRY_MAX	50
738 	for (i = 0; i < RETRY_MAX; ++i) {
739 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
740 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
741 			return 0;
742 		DELAY(10);
743 	}
744 #undef RETRY_MAX
745 
746 	return ENXIO;
747 }
748 
749 static void
750 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
751 {
752 	uint32_t val;
753 
754 	val = CSR_READ_4(sc, BWI_ID_HI);
755 	*type = BWI_ID_HI_REGWIN_TYPE(val);
756 	*rev = BWI_ID_HI_REGWIN_REV(val);
757 
758 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
759 		"vendor 0x%04x\n", *type, *rev,
760 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
761 }
762 
763 static int
764 bwi_bbp_attach(struct bwi_softc *sc)
765 {
766 	uint16_t bbp_id, rw_type;
767 	uint8_t rw_rev;
768 	uint32_t info;
769 	int error, nregwin, i;
770 
771 	/*
772 	 * Get 0th regwin information
773 	 * NOTE: 0th regwin should exist
774 	 */
775 	error = bwi_regwin_select(sc, 0);
776 	if (error) {
777 		device_printf(sc->sc_dev, "can't select regwin 0\n");
778 		return error;
779 	}
780 	bwi_regwin_info(sc, &rw_type, &rw_rev);
781 
782 	/*
783 	 * Find out BBP id
784 	 */
785 	bbp_id = 0;
786 	info = 0;
787 	if (rw_type == BWI_REGWIN_T_COM) {
788 		info = CSR_READ_4(sc, BWI_INFO);
789 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
790 
791 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
792 
793 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
794 	} else {
795 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
796 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
797 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
798 				bbp_id = bwi_bbpid_map[i].bbp_id;
799 				break;
800 			}
801 		}
802 		if (bbp_id == 0) {
803 			device_printf(sc->sc_dev, "no BBP id for device id "
804 				      "0x%04x\n", sc->sc_pci_did);
805 			return ENXIO;
806 		}
807 
808 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
809 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
810 	}
811 
812 	/*
813 	 * Find out number of regwins
814 	 */
815 	nregwin = 0;
816 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
817 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
818 	} else {
819 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
820 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
821 				nregwin = bwi_regwin_count[i].nregwin;
822 				break;
823 			}
824 		}
825 		if (nregwin == 0) {
826 			device_printf(sc->sc_dev, "no number of win for "
827 				      "BBP id 0x%04x\n", bbp_id);
828 			return ENXIO;
829 		}
830 	}
831 
832 	/* Record BBP id/rev for later using */
833 	sc->sc_bbp_id = bbp_id;
834 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
835 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
836 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
837 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
838 
839 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
840 		nregwin, sc->sc_cap);
841 
842 	/*
843 	 * Create rest of the regwins
844 	 */
845 
846 	/* Don't re-create common regwin, if it is already created */
847 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
848 
849 	for (; i < nregwin; ++i) {
850 		/*
851 		 * Get regwin information
852 		 */
853 		error = bwi_regwin_select(sc, i);
854 		if (error) {
855 			device_printf(sc->sc_dev,
856 				      "can't select regwin %d\n", i);
857 			return error;
858 		}
859 		bwi_regwin_info(sc, &rw_type, &rw_rev);
860 
861 		/*
862 		 * Try attach:
863 		 * 1) Bus (PCI/PCIE) regwin
864 		 * 2) MAC regwin
865 		 * Ignore rest types of regwin
866 		 */
867 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
868 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
869 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
870 				device_printf(sc->sc_dev,
871 					      "bus regwin already exists\n");
872 			} else {
873 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
874 						  rw_type, rw_rev);
875 			}
876 		} else if (rw_type == BWI_REGWIN_T_MAC) {
877 			/* XXX ignore return value */
878 			bwi_mac_attach(sc, i, rw_rev);
879 		}
880 	}
881 
882 	/* At least one MAC shold exist */
883 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
884 		device_printf(sc->sc_dev, "no MAC was found\n");
885 		return ENXIO;
886 	}
887 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
888 
889 	/* Bus regwin must exist */
890 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
891 		device_printf(sc->sc_dev, "no bus regwin was found\n");
892 		return ENXIO;
893 	}
894 
895 	/* Start with first MAC */
896 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
897 	if (error)
898 		return error;
899 
900 	return 0;
901 }
902 
903 int
904 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
905 {
906 	struct bwi_regwin *old, *bus;
907 	uint32_t val;
908 	int error;
909 
910 	bus = &sc->sc_bus_regwin;
911 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
912 
913 	/*
914 	 * Tell bus to generate requested interrupts
915 	 */
916 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
917 		/*
918 		 * NOTE: Read BWI_FLAGS from MAC regwin
919 		 */
920 		val = CSR_READ_4(sc, BWI_FLAGS);
921 
922 		error = bwi_regwin_switch(sc, bus, &old);
923 		if (error)
924 			return error;
925 
926 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
927 	} else {
928 		uint32_t mac_mask;
929 
930 		mac_mask = 1 << mac->mac_id;
931 
932 		error = bwi_regwin_switch(sc, bus, &old);
933 		if (error)
934 			return error;
935 
936 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
937 		val |= mac_mask << 8;
938 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
939 	}
940 
941 	if (sc->sc_flags & BWI_F_BUS_INITED)
942 		goto back;
943 
944 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
945 		/*
946 		 * Enable prefetch and burst
947 		 */
948 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
949 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
950 
951 		if (bus->rw_rev < 5) {
952 			struct bwi_regwin *com = &sc->sc_com_regwin;
953 
954 			/*
955 			 * Configure timeouts for bus operation
956 			 */
957 
958 			/*
959 			 * Set service timeout and request timeout
960 			 */
961 			CSR_SETBITS_4(sc, BWI_CONF_LO,
962 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
963 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
964 
965 			/*
966 			 * If there is common regwin, we switch to that regwin
967 			 * and switch back to bus regwin once we have done.
968 			 */
969 			if (BWI_REGWIN_EXIST(com)) {
970 				error = bwi_regwin_switch(sc, com, NULL);
971 				if (error)
972 					return error;
973 			}
974 
975 			/* Let bus know what we have changed */
976 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
977 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
978 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
979 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
980 
981 			if (BWI_REGWIN_EXIST(com)) {
982 				error = bwi_regwin_switch(sc, bus, NULL);
983 				if (error)
984 					return error;
985 			}
986 		} else if (bus->rw_rev >= 11) {
987 			/*
988 			 * Enable memory read multiple
989 			 */
990 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
991 		}
992 	} else {
993 		/* TODO:PCIE */
994 	}
995 
996 	sc->sc_flags |= BWI_F_BUS_INITED;
997 back:
998 	return bwi_regwin_switch(sc, old, NULL);
999 }
1000 
1001 static void
1002 bwi_get_card_flags(struct bwi_softc *sc)
1003 {
1004 #define	PCI_VENDOR_APPLE 0x106b
1005 #define	PCI_VENDOR_DELL  0x1028
1006 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1007 	if (sc->sc_card_flags == 0xffff)
1008 		sc->sc_card_flags = 0;
1009 
1010 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1011 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1012 	    sc->sc_pci_revid == 0x74)
1013 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1014 
1015 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1016 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1017 	    sc->sc_pci_revid > 0x40)
1018 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1019 
1020 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1021 #undef PCI_VENDOR_DELL
1022 #undef PCI_VENDOR_APPLE
1023 }
1024 
1025 static void
1026 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < 3; ++i) {
1031 		*((uint16_t *)eaddr + i) =
1032 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1033 	}
1034 }
1035 
1036 static void
1037 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1038 {
1039 	struct bwi_regwin *com;
1040 	uint32_t val;
1041 	u_int div;
1042 	int src;
1043 
1044 	bzero(freq, sizeof(*freq));
1045 	com = &sc->sc_com_regwin;
1046 
1047 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1048 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1049 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1050 
1051 	/*
1052 	 * Calculate clock frequency
1053 	 */
1054 	src = -1;
1055 	div = 0;
1056 	if (com->rw_rev < 6) {
1057 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1058 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1059 			src = BWI_CLKSRC_PCI;
1060 			div = 64;
1061 		} else {
1062 			src = BWI_CLKSRC_CS_OSC;
1063 			div = 32;
1064 		}
1065 	} else if (com->rw_rev < 10) {
1066 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1067 
1068 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1069 		if (src == BWI_CLKSRC_LP_OSC) {
1070 			div = 1;
1071 		} else {
1072 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1073 
1074 			/* Unknown source */
1075 			if (src >= BWI_CLKSRC_MAX)
1076 				src = BWI_CLKSRC_CS_OSC;
1077 		}
1078 	} else {
1079 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1080 
1081 		src = BWI_CLKSRC_CS_OSC;
1082 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1083 	}
1084 
1085 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1086 	KASSERT(div != 0, ("div zero"));
1087 
1088 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1089 		src == BWI_CLKSRC_PCI ? "PCI" :
1090 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1091 
1092 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1093 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1094 
1095 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1096 		freq->clkfreq_min, freq->clkfreq_max);
1097 }
1098 
1099 static int
1100 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1101 {
1102 	struct bwi_regwin *old, *com;
1103 	uint32_t clk_ctrl, clk_src;
1104 	int error, pwr_off = 0;
1105 
1106 	com = &sc->sc_com_regwin;
1107 	if (!BWI_REGWIN_EXIST(com))
1108 		return 0;
1109 
1110 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1111 		return 0;
1112 
1113 	/*
1114 	 * For common regwin whose rev is [6, 10), the chip
1115 	 * must be capable to change clock mode.
1116 	 */
1117 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1118 		return 0;
1119 
1120 	error = bwi_regwin_switch(sc, com, &old);
1121 	if (error)
1122 		return error;
1123 
1124 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1125 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1126 
1127 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1128 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1129 
1130 	switch (clk_mode) {
1131 	case BWI_CLOCK_MODE_FAST:
1132 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1133 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1134 		break;
1135 	case BWI_CLOCK_MODE_SLOW:
1136 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1137 		break;
1138 	case BWI_CLOCK_MODE_DYN:
1139 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1140 			      BWI_CLOCK_CTRL_IGNPLL |
1141 			      BWI_CLOCK_CTRL_NODYN);
1142 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1143 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1144 			pwr_off = 1;
1145 		}
1146 		break;
1147 	}
1148 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1149 
1150 	if (pwr_off)
1151 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1152 
1153 	return bwi_regwin_switch(sc, old, NULL);
1154 }
1155 
1156 static int
1157 bwi_set_clock_delay(struct bwi_softc *sc)
1158 {
1159 	struct bwi_regwin *old, *com;
1160 	int error;
1161 
1162 	com = &sc->sc_com_regwin;
1163 	if (!BWI_REGWIN_EXIST(com))
1164 		return 0;
1165 
1166 	error = bwi_regwin_switch(sc, com, &old);
1167 	if (error)
1168 		return error;
1169 
1170 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1171 		if (sc->sc_bbp_rev == 0)
1172 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1173 		else if (sc->sc_bbp_rev == 1)
1174 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1175 	}
1176 
1177 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1178 		if (com->rw_rev >= 10) {
1179 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1180 		} else {
1181 			struct bwi_clock_freq freq;
1182 
1183 			bwi_get_clock_freq(sc, &freq);
1184 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1185 				howmany(freq.clkfreq_max * 150, 1000000));
1186 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1187 				howmany(freq.clkfreq_max * 15, 1000000));
1188 		}
1189 	}
1190 
1191 	return bwi_regwin_switch(sc, old, NULL);
1192 }
1193 
1194 static void
1195 bwi_init(struct bwi_softc *sc)
1196 {
1197 	struct ieee80211com *ic = &sc->sc_ic;
1198 
1199 	BWI_LOCK(sc);
1200 	bwi_init_statechg(sc, 1);
1201 	BWI_UNLOCK(sc);
1202 
1203 	if (sc->sc_flags & BWI_F_RUNNING)
1204 		ieee80211_start_all(ic);		/* start all vap's */
1205 }
1206 
1207 static void
1208 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1209 {
1210 	struct bwi_mac *mac;
1211 	int error;
1212 
1213 	BWI_ASSERT_LOCKED(sc);
1214 
1215 	bwi_stop_locked(sc, statechg);
1216 
1217 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1218 
1219 	/* TODO: 2 MAC */
1220 
1221 	mac = &sc->sc_mac[0];
1222 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1223 	if (error) {
1224 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1225 		    __func__, error);
1226 		goto bad;
1227 	}
1228 	error = bwi_mac_init(mac);
1229 	if (error) {
1230 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1231 		    __func__, error);
1232 		goto bad;
1233 	}
1234 
1235 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1236 
1237 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1238 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1239 
1240 	bwi_mac_reset_hwkeys(mac);
1241 
1242 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1243 		int i;
1244 
1245 #define NRETRY	1000
1246 		/*
1247 		 * Drain any possible pending TX status
1248 		 */
1249 		for (i = 0; i < NRETRY; ++i) {
1250 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1251 			     BWI_TXSTATUS0_VALID) == 0)
1252 				break;
1253 			CSR_READ_4(sc, BWI_TXSTATUS1);
1254 		}
1255 		if (i == NRETRY)
1256 			device_printf(sc->sc_dev,
1257 			    "%s: can't drain TX status\n", __func__);
1258 #undef NRETRY
1259 	}
1260 
1261 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1262 		bwi_mac_updateslot(mac, 1);
1263 
1264 	/* Start MAC */
1265 	error = bwi_mac_start(mac);
1266 	if (error) {
1267 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1268 		    __func__, error);
1269 		goto bad;
1270 	}
1271 
1272 	/* Clear stop flag before enabling interrupt */
1273 	sc->sc_flags &= ~BWI_F_STOP;
1274 	sc->sc_flags |= BWI_F_RUNNING;
1275 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1276 
1277 	/* Enable intrs */
1278 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1279 	return;
1280 bad:
1281 	bwi_stop_locked(sc, 1);
1282 }
1283 
1284 static void
1285 bwi_parent(struct ieee80211com *ic)
1286 {
1287 	struct bwi_softc *sc = ic->ic_softc;
1288 	int startall = 0;
1289 
1290 	BWI_LOCK(sc);
1291 	if (ic->ic_nrunning > 0) {
1292 		struct bwi_mac *mac;
1293 		int promisc = -1;
1294 
1295 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1296 		    ("current regwin type %d",
1297 		    sc->sc_cur_regwin->rw_type));
1298 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1299 
1300 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1301 			promisc = 1;
1302 			sc->sc_flags |= BWI_F_PROMISC;
1303 		} else if (ic->ic_promisc == 0 &&
1304 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1305 			promisc = 0;
1306 			sc->sc_flags &= ~BWI_F_PROMISC;
1307 		}
1308 
1309 		if (promisc >= 0)
1310 			bwi_mac_set_promisc(mac, promisc);
1311 	}
1312 	if (ic->ic_nrunning > 0) {
1313 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1314 			bwi_init_statechg(sc, 1);
1315 			startall = 1;
1316 		}
1317 	} else if (sc->sc_flags & BWI_F_RUNNING)
1318 		bwi_stop_locked(sc, 1);
1319 	BWI_UNLOCK(sc);
1320 	if (startall)
1321 		ieee80211_start_all(ic);
1322 }
1323 
1324 static int
1325 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1326 {
1327 	struct bwi_softc *sc = ic->ic_softc;
1328 	int error;
1329 
1330 	BWI_LOCK(sc);
1331 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1332 		BWI_UNLOCK(sc);
1333 		return (ENXIO);
1334 	}
1335 	error = mbufq_enqueue(&sc->sc_snd, m);
1336 	if (error) {
1337 		BWI_UNLOCK(sc);
1338 		return (error);
1339 	}
1340 	bwi_start_locked(sc);
1341 	BWI_UNLOCK(sc);
1342 	return (0);
1343 }
1344 
1345 static void
1346 bwi_start_locked(struct bwi_softc *sc)
1347 {
1348 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1349 	struct ieee80211_frame *wh;
1350 	struct ieee80211_node *ni;
1351 	struct mbuf *m;
1352 	int trans, idx;
1353 
1354 	BWI_ASSERT_LOCKED(sc);
1355 
1356 	trans = 0;
1357 	idx = tbd->tbd_idx;
1358 
1359 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1360 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1361 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1362 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1363 		wh = mtod(m, struct ieee80211_frame *);
1364 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1365 		    ieee80211_crypto_encap(ni, m) == NULL) {
1366 			if_inc_counter(ni->ni_vap->iv_ifp,
1367 			    IFCOUNTER_OERRORS, 1);
1368 			ieee80211_free_node(ni);
1369 			m_freem(m);
1370 			continue;
1371 		}
1372 		if (bwi_encap(sc, idx, m, ni) != 0) {
1373 			/* 'm' is freed in bwi_encap() if we reach here */
1374 			if (ni != NULL) {
1375 				if_inc_counter(ni->ni_vap->iv_ifp,
1376 				    IFCOUNTER_OERRORS, 1);
1377 				ieee80211_free_node(ni);
1378 			} else
1379 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1380 			continue;
1381 		}
1382 		trans = 1;
1383 		tbd->tbd_used++;
1384 		idx = (idx + 1) % BWI_TX_NDESC;
1385 	}
1386 
1387 	tbd->tbd_idx = idx;
1388 	if (trans)
1389 		sc->sc_tx_timer = 5;
1390 }
1391 
1392 static int
1393 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1394 	const struct ieee80211_bpf_params *params)
1395 {
1396 	struct ieee80211com *ic = ni->ni_ic;
1397 	struct bwi_softc *sc = ic->ic_softc;
1398 	/* XXX wme? */
1399 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1400 	int idx, error;
1401 
1402 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1403 		m_freem(m);
1404 		return ENETDOWN;
1405 	}
1406 
1407 	BWI_LOCK(sc);
1408 	idx = tbd->tbd_idx;
1409 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1410 	if (params == NULL) {
1411 		/*
1412 		 * Legacy path; interpret frame contents to decide
1413 		 * precisely how to send the frame.
1414 		 */
1415 		error = bwi_encap(sc, idx, m, ni);
1416 	} else {
1417 		/*
1418 		 * Caller supplied explicit parameters to use in
1419 		 * sending the frame.
1420 		 */
1421 		error = bwi_encap_raw(sc, idx, m, ni, params);
1422 	}
1423 	if (error == 0) {
1424 		tbd->tbd_used++;
1425 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1426 		sc->sc_tx_timer = 5;
1427 	}
1428 	BWI_UNLOCK(sc);
1429 	return error;
1430 }
1431 
1432 static void
1433 bwi_watchdog(void *arg)
1434 {
1435 	struct bwi_softc *sc;
1436 
1437 	sc = arg;
1438 	BWI_ASSERT_LOCKED(sc);
1439 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1440 		device_printf(sc->sc_dev, "watchdog timeout\n");
1441 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1442 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1443 	}
1444 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1445 }
1446 
1447 static void
1448 bwi_stop(struct bwi_softc *sc, int statechg)
1449 {
1450 	BWI_LOCK(sc);
1451 	bwi_stop_locked(sc, statechg);
1452 	BWI_UNLOCK(sc);
1453 }
1454 
1455 static void
1456 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1457 {
1458 	struct bwi_mac *mac;
1459 	int i, error, pwr_off = 0;
1460 
1461 	BWI_ASSERT_LOCKED(sc);
1462 
1463 	callout_stop(&sc->sc_calib_ch);
1464 	callout_stop(&sc->sc_led_blink_ch);
1465 	sc->sc_led_blinking = 0;
1466 	sc->sc_flags |= BWI_F_STOP;
1467 
1468 	if (sc->sc_flags & BWI_F_RUNNING) {
1469 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1470 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1471 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1472 
1473 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1474 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1475 		bwi_mac_stop(mac);
1476 	}
1477 
1478 	for (i = 0; i < sc->sc_nmac; ++i) {
1479 		struct bwi_regwin *old_rw;
1480 
1481 		mac = &sc->sc_mac[i];
1482 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1483 			continue;
1484 
1485 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1486 		if (error)
1487 			continue;
1488 
1489 		bwi_mac_shutdown(mac);
1490 		pwr_off = 1;
1491 
1492 		bwi_regwin_switch(sc, old_rw, NULL);
1493 	}
1494 
1495 	if (pwr_off)
1496 		bwi_bbp_power_off(sc);
1497 
1498 	sc->sc_tx_timer = 0;
1499 	callout_stop(&sc->sc_watchdog_timer);
1500 	sc->sc_flags &= ~BWI_F_RUNNING;
1501 }
1502 
1503 void
1504 bwi_intr(void *xsc)
1505 {
1506 	struct epoch_tracker et;
1507 	struct bwi_softc *sc = xsc;
1508 	struct bwi_mac *mac;
1509 	uint32_t intr_status;
1510 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1511 	int i, txrx_error, tx = 0, rx_data = -1;
1512 
1513 	BWI_LOCK(sc);
1514 
1515 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1516 	    (sc->sc_flags & BWI_F_STOP)) {
1517 		BWI_UNLOCK(sc);
1518 		return;
1519 	}
1520 	/*
1521 	 * Get interrupt status
1522 	 */
1523 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1524 	if (intr_status == 0xffffffff) {	/* Not for us */
1525 		BWI_UNLOCK(sc);
1526 		return;
1527 	}
1528 
1529 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1530 
1531 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1532 	if (intr_status == 0) {		/* Nothing is interesting */
1533 		BWI_UNLOCK(sc);
1534 		return;
1535 	}
1536 
1537 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1538 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1539 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1540 
1541 	txrx_error = 0;
1542 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1543 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1544 		uint32_t mask;
1545 
1546 		if (BWI_TXRX_IS_RX(i))
1547 			mask = BWI_TXRX_RX_INTRS;
1548 		else
1549 			mask = BWI_TXRX_TX_INTRS;
1550 
1551 		txrx_intr_status[i] =
1552 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1553 
1554 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1555 			 i, txrx_intr_status[i]);
1556 
1557 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1558 			device_printf(sc->sc_dev,
1559 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1560 			    __func__, i, txrx_intr_status[i]);
1561 			txrx_error = 1;
1562 		}
1563 	}
1564 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1565 
1566 	/*
1567 	 * Acknowledge interrupt
1568 	 */
1569 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1570 
1571 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1572 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1573 
1574 	/* Disable all interrupts */
1575 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1576 
1577 	/*
1578 	 * http://bcm-specs.sipsolutions.net/Interrupts
1579 	 * Says for this bit (0x800):
1580 	 * "Fatal Error
1581 	 *
1582 	 * We got this one while testing things when by accident the
1583 	 * template ram wasn't set to big endian when it should have
1584 	 * been after writing the initial values. It keeps on being
1585 	 * triggered, the only way to stop it seems to shut down the
1586 	 * chip."
1587 	 *
1588 	 * Suggesting that we should never get it and if we do we're not
1589 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1590 	 * it is valid only on mac version 5 and higher, but I couldn't
1591 	 * find a reference for that...  Since I see them from time to time
1592 	 * on my card, this suggests an error in the tx path still...
1593 	 */
1594 	if (intr_status & BWI_INTR_PHY_TXERR) {
1595 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1596 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1597 			    __func__);
1598 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1599 			BWI_UNLOCK(sc);
1600 			return;
1601 		}
1602 	}
1603 
1604 	if (txrx_error) {
1605 		/* TODO: reset device */
1606 	}
1607 
1608 	if (intr_status & BWI_INTR_TBTT)
1609 		bwi_mac_config_ps(mac);
1610 
1611 	if (intr_status & BWI_INTR_EO_ATIM)
1612 		device_printf(sc->sc_dev, "EO_ATIM\n");
1613 
1614 	if (intr_status & BWI_INTR_PMQ) {
1615 		for (;;) {
1616 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1617 				break;
1618 		}
1619 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1620 	}
1621 
1622 	if (intr_status & BWI_INTR_NOISE)
1623 		device_printf(sc->sc_dev, "intr noise\n");
1624 
1625 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1626 		NET_EPOCH_ENTER(et);
1627 		rx_data = sc->sc_rxeof(sc);
1628 		NET_EPOCH_EXIT(et);
1629 		if (sc->sc_flags & BWI_F_STOP) {
1630 			BWI_UNLOCK(sc);
1631 			return;
1632 		}
1633 	}
1634 
1635 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1636 		sc->sc_txeof_status(sc);
1637 		tx = 1;
1638 	}
1639 
1640 	if (intr_status & BWI_INTR_TX_DONE) {
1641 		bwi_txeof(sc);
1642 		tx = 1;
1643 	}
1644 
1645 	/* Re-enable interrupts */
1646 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1647 
1648 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1649 		int evt = BWI_LED_EVENT_NONE;
1650 
1651 		if (tx && rx_data > 0) {
1652 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1653 				evt = BWI_LED_EVENT_RX;
1654 			else
1655 				evt = BWI_LED_EVENT_TX;
1656 		} else if (tx) {
1657 			evt = BWI_LED_EVENT_TX;
1658 		} else if (rx_data > 0) {
1659 			evt = BWI_LED_EVENT_RX;
1660 		} else if (rx_data == 0) {
1661 			evt = BWI_LED_EVENT_POLL;
1662 		}
1663 
1664 		if (evt != BWI_LED_EVENT_NONE)
1665 			bwi_led_event(sc, evt);
1666 	}
1667 
1668 	BWI_UNLOCK(sc);
1669 }
1670 
1671 static void
1672 bwi_scan_start(struct ieee80211com *ic)
1673 {
1674 	struct bwi_softc *sc = ic->ic_softc;
1675 
1676 	BWI_LOCK(sc);
1677 	/* Enable MAC beacon promiscuity */
1678 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1679 	BWI_UNLOCK(sc);
1680 }
1681 
1682 static void
1683 bwi_getradiocaps(struct ieee80211com *ic,
1684     int maxchans, int *nchans, struct ieee80211_channel chans[])
1685 {
1686 	struct bwi_softc *sc = ic->ic_softc;
1687 	struct bwi_mac *mac;
1688 	struct bwi_phy *phy;
1689 	uint8_t bands[IEEE80211_MODE_BYTES];
1690 
1691 	/*
1692 	 * XXX First MAC is known to exist
1693 	 * TODO2
1694 	 */
1695 	mac = &sc->sc_mac[0];
1696 	phy = &mac->mac_phy;
1697 
1698 	memset(bands, 0, sizeof(bands));
1699 	switch (phy->phy_mode) {
1700 	case IEEE80211_MODE_11G:
1701 		setbit(bands, IEEE80211_MODE_11G);
1702 		/* FALLTHROUGH */
1703 	case IEEE80211_MODE_11B:
1704 		setbit(bands, IEEE80211_MODE_11B);
1705 		break;
1706 	case IEEE80211_MODE_11A:
1707 		/* TODO:11A */
1708 		setbit(bands, IEEE80211_MODE_11A);
1709 		device_printf(sc->sc_dev, "no 11a support\n");
1710 		return;
1711 	default:
1712 		panic("unknown phymode %d\n", phy->phy_mode);
1713 	}
1714 
1715 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1716 }
1717 
1718 static void
1719 bwi_set_channel(struct ieee80211com *ic)
1720 {
1721 	struct bwi_softc *sc = ic->ic_softc;
1722 	struct ieee80211_channel *c = ic->ic_curchan;
1723 	struct bwi_mac *mac;
1724 
1725 	BWI_LOCK(sc);
1726 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1727 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1728 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1729 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1730 
1731 	sc->sc_rates = ieee80211_get_ratetable(c);
1732 	BWI_UNLOCK(sc);
1733 }
1734 
1735 static void
1736 bwi_scan_end(struct ieee80211com *ic)
1737 {
1738 	struct bwi_softc *sc = ic->ic_softc;
1739 
1740 	BWI_LOCK(sc);
1741 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1742 	BWI_UNLOCK(sc);
1743 }
1744 
1745 static int
1746 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1747 {
1748 	struct bwi_vap *bvp = BWI_VAP(vap);
1749 	struct ieee80211com *ic= vap->iv_ic;
1750 	struct bwi_softc *sc = ic->ic_softc;
1751 	enum ieee80211_state ostate = vap->iv_state;
1752 	struct bwi_mac *mac;
1753 	int error;
1754 
1755 	BWI_LOCK(sc);
1756 
1757 	callout_stop(&sc->sc_calib_ch);
1758 
1759 	if (nstate == IEEE80211_S_INIT)
1760 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1761 
1762 	bwi_led_newstate(sc, nstate);
1763 
1764 	error = bvp->bv_newstate(vap, nstate, arg);
1765 	if (error != 0)
1766 		goto back;
1767 
1768 	/*
1769 	 * Clear the BSSID when we stop a STA
1770 	 */
1771 	if (vap->iv_opmode == IEEE80211_M_STA) {
1772 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1773 			/*
1774 			 * Clear out the BSSID.  If we reassociate to
1775 			 * the same AP, this will reinialize things
1776 			 * correctly...
1777 			 */
1778 			if (ic->ic_opmode == IEEE80211_M_STA &&
1779 			    !(sc->sc_flags & BWI_F_STOP))
1780 				bwi_set_bssid(sc, bwi_zero_addr);
1781 		}
1782 	}
1783 
1784 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1785 		/* Nothing to do */
1786 	} else if (nstate == IEEE80211_S_RUN) {
1787 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1788 
1789 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1790 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1791 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1792 
1793 		/* Initial TX power calibration */
1794 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1795 #ifdef notyet
1796 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1797 #else
1798 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1799 #endif
1800 
1801 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1802 	}
1803 back:
1804 	BWI_UNLOCK(sc);
1805 
1806 	return error;
1807 }
1808 
1809 static int
1810 bwi_dma_alloc(struct bwi_softc *sc)
1811 {
1812 	int error, i, has_txstats;
1813 	bus_addr_t lowaddr = 0;
1814 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1815 	uint32_t txrx_ctrl_step = 0;
1816 
1817 	has_txstats = 0;
1818 	for (i = 0; i < sc->sc_nmac; ++i) {
1819 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1820 			has_txstats = 1;
1821 			break;
1822 		}
1823 	}
1824 
1825 	switch (sc->sc_bus_space) {
1826 	case BWI_BUS_SPACE_30BIT:
1827 	case BWI_BUS_SPACE_32BIT:
1828 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1829 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1830 		else
1831 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1832 		desc_sz = sizeof(struct bwi_desc32);
1833 		txrx_ctrl_step = 0x20;
1834 
1835 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1836 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1837 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1838 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1839 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1840 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1841 		sc->sc_rxeof = bwi_rxeof32;
1842 		sc->sc_start_tx = bwi_start_tx32;
1843 		if (has_txstats) {
1844 			sc->sc_init_txstats = bwi_init_txstats32;
1845 			sc->sc_free_txstats = bwi_free_txstats32;
1846 			sc->sc_txeof_status = bwi_txeof_status32;
1847 		}
1848 		break;
1849 
1850 	case BWI_BUS_SPACE_64BIT:
1851 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1852 		desc_sz = sizeof(struct bwi_desc64);
1853 		txrx_ctrl_step = 0x40;
1854 
1855 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1856 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1857 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1858 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1859 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1860 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1861 		sc->sc_rxeof = bwi_rxeof64;
1862 		sc->sc_start_tx = bwi_start_tx64;
1863 		if (has_txstats) {
1864 			sc->sc_init_txstats = bwi_init_txstats64;
1865 			sc->sc_free_txstats = bwi_free_txstats64;
1866 			sc->sc_txeof_status = bwi_txeof_status64;
1867 		}
1868 		break;
1869 	}
1870 
1871 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1872 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1873 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1874 
1875 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1876 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1877 
1878 	/*
1879 	 * Create top level DMA tag
1880 	 */
1881 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1882 			       BWI_ALIGN, 0,		/* alignment, bounds */
1883 			       lowaddr,			/* lowaddr */
1884 			       BUS_SPACE_MAXADDR,	/* highaddr */
1885 			       NULL, NULL,		/* filter, filterarg */
1886 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1887 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1888 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1889 			       0,			/* flags */
1890 			       NULL, NULL,		/* lockfunc, lockarg */
1891 			       &sc->sc_parent_dtag);
1892 	if (error) {
1893 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1894 		return error;
1895 	}
1896 
1897 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1898 
1899 	/*
1900 	 * Create TX ring DMA stuffs
1901 	 */
1902 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1903 				BWI_RING_ALIGN, 0,
1904 				BUS_SPACE_MAXADDR,
1905 				BUS_SPACE_MAXADDR,
1906 				NULL, NULL,
1907 				tx_ring_sz,
1908 				1,
1909 				tx_ring_sz,
1910 				0,
1911 				NULL, NULL,
1912 				&sc->sc_txring_dtag);
1913 	if (error) {
1914 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1915 		return error;
1916 	}
1917 
1918 	for (i = 0; i < BWI_TX_NRING; ++i) {
1919 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1920 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1921 					   TXRX_CTRL(i));
1922 		if (error) {
1923 			device_printf(sc->sc_dev, "%dth TX ring "
1924 				      "DMA alloc failed\n", i);
1925 			return error;
1926 		}
1927 	}
1928 
1929 	/*
1930 	 * Create RX ring DMA stuffs
1931 	 */
1932 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1933 				BWI_RING_ALIGN, 0,
1934 				BUS_SPACE_MAXADDR,
1935 				BUS_SPACE_MAXADDR,
1936 				NULL, NULL,
1937 				rx_ring_sz,
1938 				1,
1939 				rx_ring_sz,
1940 				0,
1941 				NULL, NULL,
1942 				&sc->sc_rxring_dtag);
1943 	if (error) {
1944 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1945 		return error;
1946 	}
1947 
1948 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1949 				   rx_ring_sz, TXRX_CTRL(0));
1950 	if (error) {
1951 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1952 		return error;
1953 	}
1954 
1955 	if (has_txstats) {
1956 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1957 		if (error) {
1958 			device_printf(sc->sc_dev,
1959 				      "TX stats DMA alloc failed\n");
1960 			return error;
1961 		}
1962 	}
1963 
1964 #undef TXRX_CTRL
1965 
1966 	return bwi_dma_mbuf_create(sc);
1967 }
1968 
1969 static void
1970 bwi_dma_free(struct bwi_softc *sc)
1971 {
1972 	if (sc->sc_txring_dtag != NULL) {
1973 		int i;
1974 
1975 		for (i = 0; i < BWI_TX_NRING; ++i) {
1976 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1977 
1978 			if (rd->rdata_desc != NULL) {
1979 				bus_dmamap_unload(sc->sc_txring_dtag,
1980 						  rd->rdata_dmap);
1981 				bus_dmamem_free(sc->sc_txring_dtag,
1982 						rd->rdata_desc,
1983 						rd->rdata_dmap);
1984 			}
1985 		}
1986 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1987 	}
1988 
1989 	if (sc->sc_rxring_dtag != NULL) {
1990 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1991 
1992 		if (rd->rdata_desc != NULL) {
1993 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1994 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1995 					rd->rdata_dmap);
1996 		}
1997 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1998 	}
1999 
2000 	bwi_dma_txstats_free(sc);
2001 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2002 
2003 	if (sc->sc_parent_dtag != NULL)
2004 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2005 }
2006 
2007 static int
2008 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2009 		   struct bwi_ring_data *rd, bus_size_t size,
2010 		   uint32_t txrx_ctrl)
2011 {
2012 	int error;
2013 
2014 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2015 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2016 				 &rd->rdata_dmap);
2017 	if (error) {
2018 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2019 		return error;
2020 	}
2021 
2022 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2023 				bwi_dma_ring_addr, &rd->rdata_paddr,
2024 				BUS_DMA_NOWAIT);
2025 	if (error) {
2026 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2027 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2028 		rd->rdata_desc = NULL;
2029 		return error;
2030 	}
2031 
2032 	rd->rdata_txrx_ctrl = txrx_ctrl;
2033 	return 0;
2034 }
2035 
2036 static int
2037 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2038 		      bus_size_t desc_sz)
2039 {
2040 	struct bwi_txstats_data *st;
2041 	bus_size_t dma_size;
2042 	int error;
2043 
2044 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2045 	if (st == NULL) {
2046 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2047 		return ENOMEM;
2048 	}
2049 	sc->sc_txstats = st;
2050 
2051 	/*
2052 	 * Create TX stats descriptor DMA stuffs
2053 	 */
2054 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2055 
2056 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2057 				BWI_RING_ALIGN,
2058 				0,
2059 				BUS_SPACE_MAXADDR,
2060 				BUS_SPACE_MAXADDR,
2061 				NULL, NULL,
2062 				dma_size,
2063 				1,
2064 				dma_size,
2065 				0,
2066 				NULL, NULL,
2067 				&st->stats_ring_dtag);
2068 	if (error) {
2069 		device_printf(sc->sc_dev, "can't create txstats ring "
2070 			      "DMA tag\n");
2071 		return error;
2072 	}
2073 
2074 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2075 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2076 				 &st->stats_ring_dmap);
2077 	if (error) {
2078 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2079 			      "DMA mem\n");
2080 		bus_dma_tag_destroy(st->stats_ring_dtag);
2081 		st->stats_ring_dtag = NULL;
2082 		return error;
2083 	}
2084 
2085 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2086 				st->stats_ring, dma_size,
2087 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2088 				BUS_DMA_NOWAIT);
2089 	if (error) {
2090 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2091 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2092 				st->stats_ring_dmap);
2093 		bus_dma_tag_destroy(st->stats_ring_dtag);
2094 		st->stats_ring_dtag = NULL;
2095 		return error;
2096 	}
2097 
2098 	/*
2099 	 * Create TX stats DMA stuffs
2100 	 */
2101 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2102 			   BWI_ALIGN);
2103 
2104 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2105 				BWI_ALIGN,
2106 				0,
2107 				BUS_SPACE_MAXADDR,
2108 				BUS_SPACE_MAXADDR,
2109 				NULL, NULL,
2110 				dma_size,
2111 				1,
2112 				dma_size,
2113 				0,
2114 				NULL, NULL,
2115 				&st->stats_dtag);
2116 	if (error) {
2117 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2118 		return error;
2119 	}
2120 
2121 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2122 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2123 				 &st->stats_dmap);
2124 	if (error) {
2125 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2126 		bus_dma_tag_destroy(st->stats_dtag);
2127 		st->stats_dtag = NULL;
2128 		return error;
2129 	}
2130 
2131 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2132 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2133 				BUS_DMA_NOWAIT);
2134 	if (error) {
2135 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2136 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2137 		bus_dma_tag_destroy(st->stats_dtag);
2138 		st->stats_dtag = NULL;
2139 		return error;
2140 	}
2141 
2142 	st->stats_ctrl_base = ctrl_base;
2143 	return 0;
2144 }
2145 
2146 static void
2147 bwi_dma_txstats_free(struct bwi_softc *sc)
2148 {
2149 	struct bwi_txstats_data *st;
2150 
2151 	if (sc->sc_txstats == NULL)
2152 		return;
2153 	st = sc->sc_txstats;
2154 
2155 	if (st->stats_ring_dtag != NULL) {
2156 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2157 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2158 				st->stats_ring_dmap);
2159 		bus_dma_tag_destroy(st->stats_ring_dtag);
2160 	}
2161 
2162 	if (st->stats_dtag != NULL) {
2163 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2164 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2165 		bus_dma_tag_destroy(st->stats_dtag);
2166 	}
2167 
2168 	free(st, M_DEVBUF);
2169 }
2170 
2171 static void
2172 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2173 {
2174 	KASSERT(nseg == 1, ("too many segments\n"));
2175 	*((bus_addr_t *)arg) = seg->ds_addr;
2176 }
2177 
2178 static int
2179 bwi_dma_mbuf_create(struct bwi_softc *sc)
2180 {
2181 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2182 	int i, j, k, ntx, error;
2183 
2184 	/*
2185 	 * Create TX/RX mbuf DMA tag
2186 	 */
2187 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2188 				1,
2189 				0,
2190 				BUS_SPACE_MAXADDR,
2191 				BUS_SPACE_MAXADDR,
2192 				NULL, NULL,
2193 				MCLBYTES,
2194 				1,
2195 				MCLBYTES,
2196 				BUS_DMA_ALLOCNOW,
2197 				NULL, NULL,
2198 				&sc->sc_buf_dtag);
2199 	if (error) {
2200 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2201 		return error;
2202 	}
2203 
2204 	ntx = 0;
2205 
2206 	/*
2207 	 * Create TX mbuf DMA map
2208 	 */
2209 	for (i = 0; i < BWI_TX_NRING; ++i) {
2210 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2211 
2212 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2213 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2214 						  &tbd->tbd_buf[j].tb_dmap);
2215 			if (error) {
2216 				device_printf(sc->sc_dev, "can't create "
2217 					      "%dth tbd, %dth DMA map\n", i, j);
2218 
2219 				ntx = i;
2220 				for (k = 0; k < j; ++k) {
2221 					bus_dmamap_destroy(sc->sc_buf_dtag,
2222 						tbd->tbd_buf[k].tb_dmap);
2223 				}
2224 				goto fail;
2225 			}
2226 		}
2227 	}
2228 	ntx = BWI_TX_NRING;
2229 
2230 	/*
2231 	 * Create RX mbuf DMA map and a spare DMA map
2232 	 */
2233 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2234 				  &rbd->rbd_tmp_dmap);
2235 	if (error) {
2236 		device_printf(sc->sc_dev,
2237 			      "can't create spare RX buf DMA map\n");
2238 		goto fail;
2239 	}
2240 
2241 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2242 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2243 					  &rbd->rbd_buf[j].rb_dmap);
2244 		if (error) {
2245 			device_printf(sc->sc_dev, "can't create %dth "
2246 				      "RX buf DMA map\n", j);
2247 
2248 			for (k = 0; k < j; ++k) {
2249 				bus_dmamap_destroy(sc->sc_buf_dtag,
2250 					rbd->rbd_buf[j].rb_dmap);
2251 			}
2252 			bus_dmamap_destroy(sc->sc_buf_dtag,
2253 					   rbd->rbd_tmp_dmap);
2254 			goto fail;
2255 		}
2256 	}
2257 
2258 	return 0;
2259 fail:
2260 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2261 	return error;
2262 }
2263 
2264 static void
2265 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2266 {
2267 	int i, j;
2268 
2269 	if (sc->sc_buf_dtag == NULL)
2270 		return;
2271 
2272 	for (i = 0; i < ntx; ++i) {
2273 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2274 
2275 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2276 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2277 
2278 			if (tb->tb_mbuf != NULL) {
2279 				bus_dmamap_unload(sc->sc_buf_dtag,
2280 						  tb->tb_dmap);
2281 				m_freem(tb->tb_mbuf);
2282 			}
2283 			if (tb->tb_ni != NULL)
2284 				ieee80211_free_node(tb->tb_ni);
2285 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2286 		}
2287 	}
2288 
2289 	if (nrx) {
2290 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2291 
2292 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2293 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2294 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2295 
2296 			if (rb->rb_mbuf != NULL) {
2297 				bus_dmamap_unload(sc->sc_buf_dtag,
2298 						  rb->rb_dmap);
2299 				m_freem(rb->rb_mbuf);
2300 			}
2301 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2302 		}
2303 	}
2304 
2305 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2306 	sc->sc_buf_dtag = NULL;
2307 }
2308 
2309 static void
2310 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2311 {
2312 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2313 }
2314 
2315 static void
2316 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2317 {
2318 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2319 }
2320 
2321 static int
2322 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2323 {
2324 	struct bwi_ring_data *rd;
2325 	struct bwi_txbuf_data *tbd;
2326 	uint32_t val, addr_hi, addr_lo;
2327 
2328 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2329 	rd = &sc->sc_tx_rdata[ring_idx];
2330 	tbd = &sc->sc_tx_bdata[ring_idx];
2331 
2332 	tbd->tbd_idx = 0;
2333 	tbd->tbd_used = 0;
2334 
2335 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2336 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2337 			BUS_DMASYNC_PREWRITE);
2338 
2339 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2340 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2341 
2342 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2343 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2344 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2345 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2346 
2347 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2348 	      BWI_TXRX32_CTRL_ENABLE;
2349 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2350 
2351 	return 0;
2352 }
2353 
2354 static void
2355 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2356 		       bus_addr_t paddr, int hdr_size, int ndesc)
2357 {
2358 	uint32_t val, addr_hi, addr_lo;
2359 
2360 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2361 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2362 
2363 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2364 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2365 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2366 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2367 
2368 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2369 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2370 	      BWI_TXRX32_CTRL_ENABLE;
2371 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2372 
2373 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2374 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2375 }
2376 
2377 static int
2378 bwi_init_rx_ring32(struct bwi_softc *sc)
2379 {
2380 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2381 	int i, error;
2382 
2383 	sc->sc_rx_bdata.rbd_idx = 0;
2384 
2385 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2386 		error = bwi_newbuf(sc, i, 1);
2387 		if (error) {
2388 			device_printf(sc->sc_dev,
2389 				  "can't allocate %dth RX buffer\n", i);
2390 			return error;
2391 		}
2392 	}
2393 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2394 			BUS_DMASYNC_PREWRITE);
2395 
2396 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2397 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2398 	return 0;
2399 }
2400 
2401 static int
2402 bwi_init_txstats32(struct bwi_softc *sc)
2403 {
2404 	struct bwi_txstats_data *st = sc->sc_txstats;
2405 	bus_addr_t stats_paddr;
2406 	int i;
2407 
2408 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2409 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2410 
2411 	st->stats_idx = 0;
2412 
2413 	stats_paddr = st->stats_paddr;
2414 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2415 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2416 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2417 		stats_paddr += sizeof(struct bwi_txstats);
2418 	}
2419 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2420 			BUS_DMASYNC_PREWRITE);
2421 
2422 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2423 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2424 	return 0;
2425 }
2426 
2427 static void
2428 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2429 		    int buf_len)
2430 {
2431 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2432 
2433 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2434 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2435 			 paddr, buf_len, 0);
2436 }
2437 
2438 static void
2439 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2440 		    int buf_idx, bus_addr_t paddr, int buf_len)
2441 {
2442 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2443 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2444 			 paddr, buf_len, 1);
2445 }
2446 
2447 static int
2448 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2449 {
2450 	/* TODO:64 */
2451 	return EOPNOTSUPP;
2452 }
2453 
2454 static int
2455 bwi_init_rx_ring64(struct bwi_softc *sc)
2456 {
2457 	/* TODO:64 */
2458 	return EOPNOTSUPP;
2459 }
2460 
2461 static int
2462 bwi_init_txstats64(struct bwi_softc *sc)
2463 {
2464 	/* TODO:64 */
2465 	return EOPNOTSUPP;
2466 }
2467 
2468 static void
2469 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2470 		    int buf_len)
2471 {
2472 	/* TODO:64 */
2473 }
2474 
2475 static void
2476 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2477 		    int buf_idx, bus_addr_t paddr, int buf_len)
2478 {
2479 	/* TODO:64 */
2480 }
2481 
2482 static void
2483 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2484 		 bus_size_t mapsz __unused, int error)
2485 {
2486         if (!error) {
2487 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2488 		*((bus_addr_t *)arg) = seg->ds_addr;
2489 	}
2490 }
2491 
2492 static int
2493 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2494 {
2495 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2496 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2497 	struct bwi_rxbuf_hdr *hdr;
2498 	bus_dmamap_t map;
2499 	bus_addr_t paddr;
2500 	struct mbuf *m;
2501 	int error;
2502 
2503 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2504 
2505 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2506 	if (m == NULL) {
2507 		error = ENOBUFS;
2508 
2509 		/*
2510 		 * If the NIC is up and running, we need to:
2511 		 * - Clear RX buffer's header.
2512 		 * - Restore RX descriptor settings.
2513 		 */
2514 		if (init)
2515 			return error;
2516 		else
2517 			goto back;
2518 	}
2519 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2520 
2521 	/*
2522 	 * Try to load RX buf into temporary DMA map
2523 	 */
2524 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2525 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2526 	if (error) {
2527 		m_freem(m);
2528 
2529 		/*
2530 		 * See the comment above
2531 		 */
2532 		if (init)
2533 			return error;
2534 		else
2535 			goto back;
2536 	}
2537 
2538 	if (!init)
2539 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2540 	rxbuf->rb_mbuf = m;
2541 	rxbuf->rb_paddr = paddr;
2542 
2543 	/*
2544 	 * Swap RX buf's DMA map with the loaded temporary one
2545 	 */
2546 	map = rxbuf->rb_dmap;
2547 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2548 	rbd->rbd_tmp_dmap = map;
2549 
2550 back:
2551 	/*
2552 	 * Clear RX buf header
2553 	 */
2554 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2555 	bzero(hdr, sizeof(*hdr));
2556 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2557 
2558 	/*
2559 	 * Setup RX buf descriptor
2560 	 */
2561 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2562 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2563 	return error;
2564 }
2565 
2566 static void
2567 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2568 		    const uint8_t *addr)
2569 {
2570 	int i;
2571 
2572 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2573 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2574 
2575 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2576 		uint16_t addr_val;
2577 
2578 		addr_val = (uint16_t)addr[i * 2] |
2579 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2580 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2581 	}
2582 }
2583 
2584 static int
2585 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2586 {
2587 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2588 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2589 	struct ieee80211com *ic = &sc->sc_ic;
2590 	int idx, rx_data = 0;
2591 
2592 	idx = rbd->rbd_idx;
2593 	while (idx != end_idx) {
2594 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2595 		struct bwi_rxbuf_hdr *hdr;
2596 		struct ieee80211_frame_min *wh;
2597 		struct ieee80211_node *ni;
2598 		struct mbuf *m;
2599 		uint32_t plcp;
2600 		uint16_t flags2;
2601 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2602 
2603 		m = rb->rb_mbuf;
2604 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2605 				BUS_DMASYNC_POSTREAD);
2606 
2607 		if (bwi_newbuf(sc, idx, 0)) {
2608 			counter_u64_add(ic->ic_ierrors, 1);
2609 			goto next;
2610 		}
2611 
2612 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2613 		flags2 = le16toh(hdr->rxh_flags2);
2614 
2615 		hdr_extra = 0;
2616 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2617 			hdr_extra = 2;
2618 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2619 
2620 		buflen = le16toh(hdr->rxh_buflen);
2621 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2622 			device_printf(sc->sc_dev,
2623 			    "%s: zero length data, hdr_extra %d\n",
2624 			    __func__, hdr_extra);
2625 			counter_u64_add(ic->ic_ierrors, 1);
2626 			m_freem(m);
2627 			goto next;
2628 		}
2629 
2630 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2631 		rssi = bwi_calc_rssi(sc, hdr);
2632 		noise = bwi_calc_noise(sc);
2633 
2634 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2635 		m_adj(m, sizeof(*hdr) + wh_ofs);
2636 
2637 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2638 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2639 		else
2640 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2641 
2642 		/* RX radio tap */
2643 		if (ieee80211_radiotap_active(ic))
2644 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2645 
2646 		m_adj(m, -IEEE80211_CRC_LEN);
2647 
2648 		BWI_UNLOCK(sc);
2649 
2650 		wh = mtod(m, struct ieee80211_frame_min *);
2651 		ni = ieee80211_find_rxnode(ic, wh);
2652 		if (ni != NULL) {
2653 			type = ieee80211_input(ni, m, rssi - noise, noise);
2654 			ieee80211_free_node(ni);
2655 		} else
2656 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2657 		if (type == IEEE80211_FC0_TYPE_DATA) {
2658 			rx_data = 1;
2659 			sc->sc_rx_rate = rate;
2660 		}
2661 
2662 		BWI_LOCK(sc);
2663 next:
2664 		idx = (idx + 1) % BWI_RX_NDESC;
2665 
2666 		if (sc->sc_flags & BWI_F_STOP) {
2667 			/*
2668 			 * Take the fast lane, don't do
2669 			 * any damage to softc
2670 			 */
2671 			return -1;
2672 		}
2673 	}
2674 
2675 	rbd->rbd_idx = idx;
2676 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2677 			BUS_DMASYNC_PREWRITE);
2678 
2679 	return rx_data;
2680 }
2681 
2682 static int
2683 bwi_rxeof32(struct bwi_softc *sc)
2684 {
2685 	uint32_t val, rx_ctrl;
2686 	int end_idx, rx_data;
2687 
2688 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2689 
2690 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2691 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2692 		  sizeof(struct bwi_desc32);
2693 
2694 	rx_data = bwi_rxeof(sc, end_idx);
2695 	if (rx_data >= 0) {
2696 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2697 			    end_idx * sizeof(struct bwi_desc32));
2698 	}
2699 	return rx_data;
2700 }
2701 
2702 static int
2703 bwi_rxeof64(struct bwi_softc *sc)
2704 {
2705 	/* TODO:64 */
2706 	return 0;
2707 }
2708 
2709 static void
2710 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2711 {
2712 	int i;
2713 
2714 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2715 
2716 #define NRETRY 10
2717 
2718 	for (i = 0; i < NRETRY; ++i) {
2719 		uint32_t status;
2720 
2721 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2722 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2723 		    BWI_RX32_STATUS_STATE_DISABLED)
2724 			break;
2725 
2726 		DELAY(1000);
2727 	}
2728 	if (i == NRETRY)
2729 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2730 
2731 #undef NRETRY
2732 
2733 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2734 }
2735 
2736 static void
2737 bwi_free_txstats32(struct bwi_softc *sc)
2738 {
2739 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2740 }
2741 
2742 static void
2743 bwi_free_rx_ring32(struct bwi_softc *sc)
2744 {
2745 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2746 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2747 	int i;
2748 
2749 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2750 
2751 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2752 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2753 
2754 		if (rb->rb_mbuf != NULL) {
2755 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2756 			m_freem(rb->rb_mbuf);
2757 			rb->rb_mbuf = NULL;
2758 		}
2759 	}
2760 }
2761 
2762 static void
2763 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2764 {
2765 	struct bwi_ring_data *rd;
2766 	struct bwi_txbuf_data *tbd;
2767 	uint32_t state, val;
2768 	int i;
2769 
2770 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2771 	rd = &sc->sc_tx_rdata[ring_idx];
2772 	tbd = &sc->sc_tx_bdata[ring_idx];
2773 
2774 #define NRETRY 10
2775 
2776 	for (i = 0; i < NRETRY; ++i) {
2777 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2778 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2779 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2780 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2781 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2782 			break;
2783 
2784 		DELAY(1000);
2785 	}
2786 	if (i == NRETRY) {
2787 		device_printf(sc->sc_dev,
2788 		    "%s: wait for TX ring(%d) stable timed out\n",
2789 		    __func__, ring_idx);
2790 	}
2791 
2792 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2793 	for (i = 0; i < NRETRY; ++i) {
2794 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2795 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2796 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2797 			break;
2798 
2799 		DELAY(1000);
2800 	}
2801 	if (i == NRETRY)
2802 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2803 		     __func__, ring_idx);
2804 
2805 #undef NRETRY
2806 
2807 	DELAY(1000);
2808 
2809 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2810 
2811 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2812 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2813 
2814 		if (tb->tb_mbuf != NULL) {
2815 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2816 			m_freem(tb->tb_mbuf);
2817 			tb->tb_mbuf = NULL;
2818 		}
2819 		if (tb->tb_ni != NULL) {
2820 			ieee80211_free_node(tb->tb_ni);
2821 			tb->tb_ni = NULL;
2822 		}
2823 	}
2824 }
2825 
2826 static void
2827 bwi_free_txstats64(struct bwi_softc *sc)
2828 {
2829 	/* TODO:64 */
2830 }
2831 
2832 static void
2833 bwi_free_rx_ring64(struct bwi_softc *sc)
2834 {
2835 	/* TODO:64 */
2836 }
2837 
2838 static void
2839 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2840 {
2841 	/* TODO:64 */
2842 }
2843 
2844 /* XXX does not belong here */
2845 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2846 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2847 
2848 static __inline void
2849 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2850 {
2851 	uint32_t plcp;
2852 
2853 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2854 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2855 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2856 	*plcp0 = htole32(plcp);
2857 }
2858 
2859 static __inline void
2860 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2861 		   uint8_t rate)
2862 {
2863 	int len, service, pkt_bitlen;
2864 
2865 	pkt_bitlen = pkt_len * NBBY;
2866 	len = howmany(pkt_bitlen * 2, rate);
2867 
2868 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2869 	if (rate == (11 * 2)) {
2870 		int pkt_bitlen1;
2871 
2872 		/*
2873 		 * PLCP service field needs to be adjusted,
2874 		 * if TX rate is 11Mbytes/s
2875 		 */
2876 		pkt_bitlen1 = len * 11;
2877 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2878 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2879 	}
2880 
2881 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2882 	plcp->i_service = service;
2883 	plcp->i_length = htole16(len);
2884 	/* NOTE: do NOT touch i_crc */
2885 }
2886 
2887 static __inline void
2888 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2889 	void *plcp, int pkt_len, uint8_t rate)
2890 {
2891 	enum ieee80211_phytype modtype;
2892 
2893 	/*
2894 	 * Assume caller has zeroed 'plcp'
2895 	 */
2896 	modtype = ieee80211_rate2phytype(rt, rate);
2897 	if (modtype == IEEE80211_T_OFDM)
2898 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2899 	else if (modtype == IEEE80211_T_DS)
2900 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2901 	else
2902 		panic("unsupport modulation type %u\n", modtype);
2903 }
2904 
2905 static int
2906 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2907 	  struct ieee80211_node *ni)
2908 {
2909 	struct ieee80211vap *vap = ni->ni_vap;
2910 	struct ieee80211com *ic = &sc->sc_ic;
2911 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2912 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2913 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2914 	struct bwi_mac *mac;
2915 	struct bwi_txbuf_hdr *hdr;
2916 	struct ieee80211_frame *wh;
2917 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2918 	uint8_t rate, rate_fb;
2919 	uint32_t mac_ctrl;
2920 	uint16_t phy_ctrl;
2921 	bus_addr_t paddr;
2922 	int type, ismcast, pkt_len, error, rix;
2923 #if 0
2924 	const uint8_t *p;
2925 	int i;
2926 #endif
2927 
2928 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2929 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2930 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2931 
2932 	wh = mtod(m, struct ieee80211_frame *);
2933 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2934 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2935 
2936 	/* Get 802.11 frame len before prepending TX header */
2937 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2938 
2939 	/*
2940 	 * Find TX rate
2941 	 */
2942 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2943 		rate = rate_fb = tp->mgmtrate;
2944 	} else if (ismcast) {
2945 		rate = rate_fb = tp->mcastrate;
2946 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2947 		rate = rate_fb = tp->ucastrate;
2948 	} else {
2949 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2950 		rate = ni->ni_txrate;
2951 
2952 		if (rix > 0) {
2953 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2954 				  IEEE80211_RATE_VAL;
2955 		} else {
2956 			rate_fb = rate;
2957 		}
2958 	}
2959 	tb->tb_rate[0] = rate;
2960 	tb->tb_rate[1] = rate_fb;
2961 	sc->sc_tx_rate = rate;
2962 
2963 	/*
2964 	 * TX radio tap
2965 	 */
2966 	if (ieee80211_radiotap_active_vap(vap)) {
2967 		sc->sc_tx_th.wt_flags = 0;
2968 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2969 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2970 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2971 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2972 		    rate != (1 * 2)) {
2973 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2974 		}
2975 		sc->sc_tx_th.wt_rate = rate;
2976 
2977 		ieee80211_radiotap_tx(vap, m);
2978 	}
2979 
2980 	/*
2981 	 * Setup the embedded TX header
2982 	 */
2983 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2984 	if (m == NULL) {
2985 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2986 		    __func__);
2987 		return ENOBUFS;
2988 	}
2989 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2990 
2991 	bzero(hdr, sizeof(*hdr));
2992 
2993 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2994 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2995 
2996 	if (!ismcast) {
2997 		uint16_t dur;
2998 
2999 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3000 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3001 
3002 		hdr->txh_fb_duration = htole16(dur);
3003 	}
3004 
3005 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3006 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3007 
3008 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3009 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3010 
3011 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3012 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3013 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3014 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3015 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3016 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3017 
3018 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3019 	if (!ismcast)
3020 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3021 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3022 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3023 
3024 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3025 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3026 
3027 	/* Catch any further usage */
3028 	hdr = NULL;
3029 	wh = NULL;
3030 
3031 	/* DMA load */
3032 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3033 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3034 	if (error && error != EFBIG) {
3035 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3036 		    __func__, error);
3037 		goto back;
3038 	}
3039 
3040 	if (error) {	/* error == EFBIG */
3041 		struct mbuf *m_new;
3042 
3043 		m_new = m_defrag(m, M_NOWAIT);
3044 		if (m_new == NULL) {
3045 			device_printf(sc->sc_dev,
3046 			    "%s: can't defrag TX buffer\n", __func__);
3047 			error = ENOBUFS;
3048 			goto back;
3049 		} else {
3050 			m = m_new;
3051 		}
3052 
3053 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3054 					     bwi_dma_buf_addr, &paddr,
3055 					     BUS_DMA_NOWAIT);
3056 		if (error) {
3057 			device_printf(sc->sc_dev,
3058 			    "%s: can't load TX buffer (2) %d\n",
3059 			    __func__, error);
3060 			goto back;
3061 		}
3062 	}
3063 	error = 0;
3064 
3065 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3066 
3067 	tb->tb_mbuf = m;
3068 	tb->tb_ni = ni;
3069 
3070 #if 0
3071 	p = mtod(m, const uint8_t *);
3072 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3073 		if (i != 0 && i % 8 == 0)
3074 			printf("\n");
3075 		printf("%02x ", p[i]);
3076 	}
3077 	printf("\n");
3078 #endif
3079 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3080 		idx, pkt_len, m->m_pkthdr.len);
3081 
3082 	/* Setup TX descriptor */
3083 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3084 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3085 			BUS_DMASYNC_PREWRITE);
3086 
3087 	/* Kick start */
3088 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3089 
3090 back:
3091 	if (error)
3092 		m_freem(m);
3093 	return error;
3094 }
3095 
3096 static int
3097 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3098 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3099 {
3100 	struct ieee80211vap *vap = ni->ni_vap;
3101 	struct ieee80211com *ic = ni->ni_ic;
3102 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3103 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3104 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3105 	struct bwi_mac *mac;
3106 	struct bwi_txbuf_hdr *hdr;
3107 	struct ieee80211_frame *wh;
3108 	uint8_t rate, rate_fb;
3109 	uint32_t mac_ctrl;
3110 	uint16_t phy_ctrl;
3111 	bus_addr_t paddr;
3112 	int ismcast, pkt_len, error;
3113 
3114 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3115 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3116 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3117 
3118 	wh = mtod(m, struct ieee80211_frame *);
3119 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3120 
3121 	/* Get 802.11 frame len before prepending TX header */
3122 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3123 
3124 	/*
3125 	 * Find TX rate
3126 	 */
3127 	rate = params->ibp_rate0;
3128 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3129 		/* XXX fall back to mcast/mgmt rate? */
3130 		m_freem(m);
3131 		return EINVAL;
3132 	}
3133 	if (params->ibp_try1 != 0) {
3134 		rate_fb = params->ibp_rate1;
3135 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3136 			/* XXX fall back to rate0? */
3137 			m_freem(m);
3138 			return EINVAL;
3139 		}
3140 	} else
3141 		rate_fb = rate;
3142 	tb->tb_rate[0] = rate;
3143 	tb->tb_rate[1] = rate_fb;
3144 	sc->sc_tx_rate = rate;
3145 
3146 	/*
3147 	 * TX radio tap
3148 	 */
3149 	if (ieee80211_radiotap_active_vap(vap)) {
3150 		sc->sc_tx_th.wt_flags = 0;
3151 		/* XXX IEEE80211_BPF_CRYPTO */
3152 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3153 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3154 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3155 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3156 		sc->sc_tx_th.wt_rate = rate;
3157 
3158 		ieee80211_radiotap_tx(vap, m);
3159 	}
3160 
3161 	/*
3162 	 * Setup the embedded TX header
3163 	 */
3164 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3165 	if (m == NULL) {
3166 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3167 		    __func__);
3168 		return ENOBUFS;
3169 	}
3170 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3171 
3172 	bzero(hdr, sizeof(*hdr));
3173 
3174 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3175 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3176 
3177 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3178 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3179 		uint16_t dur;
3180 
3181 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3182 
3183 		hdr->txh_fb_duration = htole16(dur);
3184 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3185 	}
3186 
3187 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3188 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3189 
3190 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3191 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3192 
3193 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3194 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3195 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3196 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3197 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3198 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3199 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3200 
3201 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3202 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3203 
3204 	/* Catch any further usage */
3205 	hdr = NULL;
3206 	wh = NULL;
3207 
3208 	/* DMA load */
3209 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3210 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3211 	if (error != 0) {
3212 		struct mbuf *m_new;
3213 
3214 		if (error != EFBIG) {
3215 			device_printf(sc->sc_dev,
3216 			    "%s: can't load TX buffer (1) %d\n",
3217 			    __func__, error);
3218 			goto back;
3219 		}
3220 		m_new = m_defrag(m, M_NOWAIT);
3221 		if (m_new == NULL) {
3222 			device_printf(sc->sc_dev,
3223 			    "%s: can't defrag TX buffer\n", __func__);
3224 			error = ENOBUFS;
3225 			goto back;
3226 		}
3227 		m = m_new;
3228 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3229 					     bwi_dma_buf_addr, &paddr,
3230 					     BUS_DMA_NOWAIT);
3231 		if (error) {
3232 			device_printf(sc->sc_dev,
3233 			    "%s: can't load TX buffer (2) %d\n",
3234 			    __func__, error);
3235 			goto back;
3236 		}
3237 	}
3238 
3239 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3240 
3241 	tb->tb_mbuf = m;
3242 	tb->tb_ni = ni;
3243 
3244 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3245 		idx, pkt_len, m->m_pkthdr.len);
3246 
3247 	/* Setup TX descriptor */
3248 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3249 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3250 			BUS_DMASYNC_PREWRITE);
3251 
3252 	/* Kick start */
3253 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3254 back:
3255 	if (error)
3256 		m_freem(m);
3257 	return error;
3258 }
3259 
3260 static void
3261 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3262 {
3263 	idx = (idx + 1) % BWI_TX_NDESC;
3264 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3265 		    idx * sizeof(struct bwi_desc32));
3266 }
3267 
3268 static void
3269 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3270 {
3271 	/* TODO:64 */
3272 }
3273 
3274 static void
3275 bwi_txeof_status32(struct bwi_softc *sc)
3276 {
3277 	uint32_t val, ctrl_base;
3278 	int end_idx;
3279 
3280 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3281 
3282 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3283 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3284 		  sizeof(struct bwi_desc32);
3285 
3286 	bwi_txeof_status(sc, end_idx);
3287 
3288 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3289 		    end_idx * sizeof(struct bwi_desc32));
3290 
3291 	bwi_start_locked(sc);
3292 }
3293 
3294 static void
3295 bwi_txeof_status64(struct bwi_softc *sc)
3296 {
3297 	/* TODO:64 */
3298 }
3299 
3300 static void
3301 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3302 {
3303 	struct bwi_txbuf_data *tbd;
3304 	struct bwi_txbuf *tb;
3305 	int ring_idx, buf_idx;
3306 	struct ieee80211_node *ni;
3307 
3308 	if (tx_id == 0) {
3309 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3310 		return;
3311 	}
3312 
3313 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3314 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3315 
3316 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3317 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3318 
3319 	tbd = &sc->sc_tx_bdata[ring_idx];
3320 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3321 	tbd->tbd_used--;
3322 
3323 	tb = &tbd->tbd_buf[buf_idx];
3324 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3325 		"acked %d, data_txcnt %d, ni %p\n",
3326 		buf_idx, acked, data_txcnt, tb->tb_ni);
3327 
3328 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3329 
3330 	if ((ni = tb->tb_ni) != NULL) {
3331 		const struct bwi_txbuf_hdr *hdr =
3332 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3333 		struct ieee80211_ratectl_tx_status txs;
3334 
3335 		/* NB: update rate control only for unicast frames */
3336 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3337 			/*
3338 			 * Feed back 'acked and data_txcnt'.  Note that the
3339 			 * generic AMRR code only understands one tx rate
3340 			 * and the estimator doesn't handle real retry counts
3341 			 * well so to avoid over-aggressive downshifting we
3342 			 * treat any number of retries as "1".
3343 			 */
3344 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3345 			txs.long_retries = acked;
3346 			if (data_txcnt > 1)
3347 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3348 			else {
3349 				txs.status =
3350 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3351 			}
3352 			ieee80211_ratectl_tx_complete(ni, &txs);
3353 		}
3354 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3355 		tb->tb_ni = NULL;
3356 	} else
3357 		m_freem(tb->tb_mbuf);
3358 	tb->tb_mbuf = NULL;
3359 
3360 	if (tbd->tbd_used == 0)
3361 		sc->sc_tx_timer = 0;
3362 }
3363 
3364 static void
3365 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3366 {
3367 	struct bwi_txstats_data *st = sc->sc_txstats;
3368 	int idx;
3369 
3370 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3371 
3372 	idx = st->stats_idx;
3373 	while (idx != end_idx) {
3374 		const struct bwi_txstats *stats = &st->stats[idx];
3375 
3376 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3377 			int data_txcnt;
3378 
3379 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3380 						BWI_TXS_TXCNT_DATA);
3381 			_bwi_txeof(sc, le16toh(stats->txs_id),
3382 				   stats->txs_flags & BWI_TXS_F_ACKED,
3383 				   data_txcnt);
3384 		}
3385 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3386 	}
3387 	st->stats_idx = idx;
3388 }
3389 
3390 static void
3391 bwi_txeof(struct bwi_softc *sc)
3392 {
3393 
3394 	for (;;) {
3395 		uint32_t tx_status0, tx_status1 __unused;
3396 		uint16_t tx_id;
3397 		int data_txcnt;
3398 
3399 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3400 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3401 			break;
3402 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3403 
3404 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3405 		data_txcnt = __SHIFTOUT(tx_status0,
3406 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3407 
3408 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3409 			continue;
3410 
3411 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3412 		    data_txcnt);
3413 	}
3414 
3415 	bwi_start_locked(sc);
3416 }
3417 
3418 static int
3419 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3420 {
3421 	bwi_power_on(sc, 1);
3422 	return bwi_set_clock_mode(sc, clk_mode);
3423 }
3424 
3425 static void
3426 bwi_bbp_power_off(struct bwi_softc *sc)
3427 {
3428 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3429 	bwi_power_off(sc, 1);
3430 }
3431 
3432 static int
3433 bwi_get_pwron_delay(struct bwi_softc *sc)
3434 {
3435 	struct bwi_regwin *com, *old;
3436 	struct bwi_clock_freq freq;
3437 	uint32_t val;
3438 	int error;
3439 
3440 	com = &sc->sc_com_regwin;
3441 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3442 
3443 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3444 		return 0;
3445 
3446 	error = bwi_regwin_switch(sc, com, &old);
3447 	if (error)
3448 		return error;
3449 
3450 	bwi_get_clock_freq(sc, &freq);
3451 
3452 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3453 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3454 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3455 
3456 	return bwi_regwin_switch(sc, old, NULL);
3457 }
3458 
3459 static int
3460 bwi_bus_attach(struct bwi_softc *sc)
3461 {
3462 	struct bwi_regwin *bus, *old;
3463 	int error;
3464 
3465 	bus = &sc->sc_bus_regwin;
3466 
3467 	error = bwi_regwin_switch(sc, bus, &old);
3468 	if (error)
3469 		return error;
3470 
3471 	if (!bwi_regwin_is_enabled(sc, bus))
3472 		bwi_regwin_enable(sc, bus, 0);
3473 
3474 	/* Disable interripts */
3475 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3476 
3477 	return bwi_regwin_switch(sc, old, NULL);
3478 }
3479 
3480 static const char *
3481 bwi_regwin_name(const struct bwi_regwin *rw)
3482 {
3483 	switch (rw->rw_type) {
3484 	case BWI_REGWIN_T_COM:
3485 		return "COM";
3486 	case BWI_REGWIN_T_BUSPCI:
3487 		return "PCI";
3488 	case BWI_REGWIN_T_MAC:
3489 		return "MAC";
3490 	case BWI_REGWIN_T_BUSPCIE:
3491 		return "PCIE";
3492 	}
3493 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3494 	return NULL;
3495 }
3496 
3497 static uint32_t
3498 bwi_regwin_disable_bits(struct bwi_softc *sc)
3499 {
3500 	uint32_t busrev;
3501 
3502 	/* XXX cache this */
3503 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3504 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3505 		"bus rev %u\n", busrev);
3506 
3507 	if (busrev == BWI_BUSREV_0)
3508 		return BWI_STATE_LO_DISABLE1;
3509 	else if (busrev == BWI_BUSREV_1)
3510 		return BWI_STATE_LO_DISABLE2;
3511 	else
3512 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3513 }
3514 
3515 int
3516 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3517 {
3518 	uint32_t val, disable_bits;
3519 
3520 	disable_bits = bwi_regwin_disable_bits(sc);
3521 	val = CSR_READ_4(sc, BWI_STATE_LO);
3522 
3523 	if ((val & (BWI_STATE_LO_CLOCK |
3524 		    BWI_STATE_LO_RESET |
3525 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3526 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3527 			bwi_regwin_name(rw));
3528 		return 1;
3529 	} else {
3530 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3531 			bwi_regwin_name(rw));
3532 		return 0;
3533 	}
3534 }
3535 
3536 void
3537 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3538 {
3539 	uint32_t state_lo, disable_bits;
3540 	int i;
3541 
3542 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3543 
3544 	/*
3545 	 * If current regwin is in 'reset' state, it was already disabled.
3546 	 */
3547 	if (state_lo & BWI_STATE_LO_RESET) {
3548 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3549 			"%s was already disabled\n", bwi_regwin_name(rw));
3550 		return;
3551 	}
3552 
3553 	disable_bits = bwi_regwin_disable_bits(sc);
3554 
3555 	/*
3556 	 * Disable normal clock
3557 	 */
3558 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3559 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3560 
3561 	/*
3562 	 * Wait until normal clock is disabled
3563 	 */
3564 #define NRETRY	1000
3565 	for (i = 0; i < NRETRY; ++i) {
3566 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3567 		if (state_lo & disable_bits)
3568 			break;
3569 		DELAY(10);
3570 	}
3571 	if (i == NRETRY) {
3572 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3573 			      bwi_regwin_name(rw));
3574 	}
3575 
3576 	for (i = 0; i < NRETRY; ++i) {
3577 		uint32_t state_hi;
3578 
3579 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3580 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3581 			break;
3582 		DELAY(10);
3583 	}
3584 	if (i == NRETRY) {
3585 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3586 			      bwi_regwin_name(rw));
3587 	}
3588 #undef NRETRY
3589 
3590 	/*
3591 	 * Reset and disable regwin with gated clock
3592 	 */
3593 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3594 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3595 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3596 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3597 
3598 	/* Flush pending bus write */
3599 	CSR_READ_4(sc, BWI_STATE_LO);
3600 	DELAY(1);
3601 
3602 	/* Reset and disable regwin */
3603 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3604 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3605 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3606 
3607 	/* Flush pending bus write */
3608 	CSR_READ_4(sc, BWI_STATE_LO);
3609 	DELAY(1);
3610 }
3611 
3612 void
3613 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3614 {
3615 	uint32_t state_lo, state_hi, imstate;
3616 
3617 	bwi_regwin_disable(sc, rw, flags);
3618 
3619 	/* Reset regwin with gated clock */
3620 	state_lo = BWI_STATE_LO_RESET |
3621 		   BWI_STATE_LO_CLOCK |
3622 		   BWI_STATE_LO_GATED_CLOCK |
3623 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3624 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3625 
3626 	/* Flush pending bus write */
3627 	CSR_READ_4(sc, BWI_STATE_LO);
3628 	DELAY(1);
3629 
3630 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3631 	if (state_hi & BWI_STATE_HI_SERROR)
3632 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3633 
3634 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3635 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3636 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3637 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3638 	}
3639 
3640 	/* Enable regwin with gated clock */
3641 	state_lo = BWI_STATE_LO_CLOCK |
3642 		   BWI_STATE_LO_GATED_CLOCK |
3643 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3644 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3645 
3646 	/* Flush pending bus write */
3647 	CSR_READ_4(sc, BWI_STATE_LO);
3648 	DELAY(1);
3649 
3650 	/* Enable regwin with normal clock */
3651 	state_lo = BWI_STATE_LO_CLOCK |
3652 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3653 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3654 
3655 	/* Flush pending bus write */
3656 	CSR_READ_4(sc, BWI_STATE_LO);
3657 	DELAY(1);
3658 }
3659 
3660 static void
3661 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3662 {
3663 	struct bwi_mac *mac;
3664 	struct bwi_myaddr_bssid buf;
3665 	const uint8_t *p;
3666 	uint32_t val;
3667 	int n, i;
3668 
3669 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3670 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3671 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3672 
3673 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3674 
3675 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3676 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3677 
3678 	n = sizeof(buf) / sizeof(val);
3679 	p = (const uint8_t *)&buf;
3680 	for (i = 0; i < n; ++i) {
3681 		int j;
3682 
3683 		val = 0;
3684 		for (j = 0; j < sizeof(val); ++j)
3685 			val |= ((uint32_t)(*p++)) << (j * 8);
3686 
3687 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3688 	}
3689 }
3690 
3691 static void
3692 bwi_updateslot(struct ieee80211com *ic)
3693 {
3694 	struct bwi_softc *sc = ic->ic_softc;
3695 	struct bwi_mac *mac;
3696 
3697 	BWI_LOCK(sc);
3698 	if (sc->sc_flags & BWI_F_RUNNING) {
3699 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3700 
3701 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3702 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3703 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3704 
3705 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3706 	}
3707 	BWI_UNLOCK(sc);
3708 }
3709 
3710 static void
3711 bwi_calibrate(void *xsc)
3712 {
3713 	struct bwi_softc *sc = xsc;
3714 	struct bwi_mac *mac;
3715 
3716 	BWI_ASSERT_LOCKED(sc);
3717 
3718 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3719 	    ("opmode %d", sc->sc_ic.ic_opmode));
3720 
3721 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3722 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3723 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3724 
3725 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3726 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3727 
3728 	/* XXX 15 seconds */
3729 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3730 }
3731 
3732 static int
3733 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3734 {
3735 	struct bwi_mac *mac;
3736 
3737 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3738 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3739 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3740 
3741 	return bwi_rf_calc_rssi(mac, hdr);
3742 }
3743 
3744 static int
3745 bwi_calc_noise(struct bwi_softc *sc)
3746 {
3747 	struct bwi_mac *mac;
3748 
3749 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3750 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3751 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3752 
3753 	return bwi_rf_calc_noise(mac);
3754 }
3755 
3756 static __inline uint8_t
3757 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3758 {
3759 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3760 	return (ieee80211_plcp2rate(plcp, type));
3761 }
3762 
3763 static void
3764 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3765     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3766 {
3767 	const struct ieee80211_frame_min *wh;
3768 
3769 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3770 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3771 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3772 
3773 	wh = mtod(m, const struct ieee80211_frame_min *);
3774 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3775 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3776 
3777 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3778 	sc->sc_rx_th.wr_rate = rate;
3779 	sc->sc_rx_th.wr_antsignal = rssi;
3780 	sc->sc_rx_th.wr_antnoise = noise;
3781 }
3782 
3783 static void
3784 bwi_led_attach(struct bwi_softc *sc)
3785 {
3786 	const uint8_t *led_act = NULL;
3787 	uint16_t gpio, val[BWI_LED_MAX];
3788 	int i;
3789 
3790 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3791 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3792 			led_act = bwi_vendor_led_act[i].led_act;
3793 			break;
3794 		}
3795 	}
3796 	if (led_act == NULL)
3797 		led_act = bwi_default_led_act;
3798 
3799 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3800 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3801 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3802 
3803 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3804 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3805 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3806 
3807 	for (i = 0; i < BWI_LED_MAX; ++i) {
3808 		struct bwi_led *led = &sc->sc_leds[i];
3809 
3810 		if (val[i] == 0xff) {
3811 			led->l_act = led_act[i];
3812 		} else {
3813 			if (val[i] & BWI_LED_ACT_LOW)
3814 				led->l_flags |= BWI_LED_F_ACTLOW;
3815 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3816 		}
3817 		led->l_mask = (1 << i);
3818 
3819 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3820 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3821 		    led->l_act == BWI_LED_ACT_BLINK) {
3822 			led->l_flags |= BWI_LED_F_BLINK;
3823 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3824 				led->l_flags |= BWI_LED_F_POLLABLE;
3825 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3826 				led->l_flags |= BWI_LED_F_SLOW;
3827 
3828 			if (sc->sc_blink_led == NULL) {
3829 				sc->sc_blink_led = led;
3830 				if (led->l_flags & BWI_LED_F_SLOW)
3831 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3832 			}
3833 		}
3834 
3835 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3836 			"%dth led, act %d, lowact %d\n", i,
3837 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3838 	}
3839 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3840 }
3841 
3842 static __inline uint16_t
3843 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3844 {
3845 	if (led->l_flags & BWI_LED_F_ACTLOW)
3846 		on = !on;
3847 	if (on)
3848 		val |= led->l_mask;
3849 	else
3850 		val &= ~led->l_mask;
3851 	return val;
3852 }
3853 
3854 static void
3855 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3856 {
3857 	struct ieee80211com *ic = &sc->sc_ic;
3858 	uint16_t val;
3859 	int i;
3860 
3861 	if (nstate == IEEE80211_S_INIT) {
3862 		callout_stop(&sc->sc_led_blink_ch);
3863 		sc->sc_led_blinking = 0;
3864 	}
3865 
3866 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3867 		return;
3868 
3869 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3870 	for (i = 0; i < BWI_LED_MAX; ++i) {
3871 		struct bwi_led *led = &sc->sc_leds[i];
3872 		int on;
3873 
3874 		if (led->l_act == BWI_LED_ACT_UNKN ||
3875 		    led->l_act == BWI_LED_ACT_NULL)
3876 			continue;
3877 
3878 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3879 		    nstate != IEEE80211_S_INIT)
3880 		    	continue;
3881 
3882 		switch (led->l_act) {
3883 		case BWI_LED_ACT_ON:	/* Always on */
3884 			on = 1;
3885 			break;
3886 		case BWI_LED_ACT_OFF:	/* Always off */
3887 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3888 			on = 0;
3889 			break;
3890 		default:
3891 			on = 1;
3892 			switch (nstate) {
3893 			case IEEE80211_S_INIT:
3894 				on = 0;
3895 				break;
3896 			case IEEE80211_S_RUN:
3897 				if (led->l_act == BWI_LED_ACT_11G &&
3898 				    ic->ic_curmode != IEEE80211_MODE_11G)
3899 					on = 0;
3900 				break;
3901 			default:
3902 				if (led->l_act == BWI_LED_ACT_ASSOC)
3903 					on = 0;
3904 				break;
3905 			}
3906 			break;
3907 		}
3908 
3909 		val = bwi_led_onoff(led, val, on);
3910 	}
3911 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3912 }
3913 static void
3914 bwi_led_event(struct bwi_softc *sc, int event)
3915 {
3916 	struct bwi_led *led = sc->sc_blink_led;
3917 	int rate;
3918 
3919 	if (event == BWI_LED_EVENT_POLL) {
3920 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3921 			return;
3922 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3923 			return;
3924 	}
3925 
3926 	sc->sc_led_ticks = ticks;
3927 	if (sc->sc_led_blinking)
3928 		return;
3929 
3930 	switch (event) {
3931 	case BWI_LED_EVENT_RX:
3932 		rate = sc->sc_rx_rate;
3933 		break;
3934 	case BWI_LED_EVENT_TX:
3935 		rate = sc->sc_tx_rate;
3936 		break;
3937 	case BWI_LED_EVENT_POLL:
3938 		rate = 0;
3939 		break;
3940 	default:
3941 		panic("unknown LED event %d\n", event);
3942 		break;
3943 	}
3944 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3945 	    bwi_led_duration[rate].off_dur);
3946 }
3947 
3948 static void
3949 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3950 {
3951 	struct bwi_led *led = sc->sc_blink_led;
3952 	uint16_t val;
3953 
3954 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3955 	val = bwi_led_onoff(led, val, 1);
3956 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3957 
3958 	if (led->l_flags & BWI_LED_F_SLOW) {
3959 		BWI_LED_SLOWDOWN(on_dur);
3960 		BWI_LED_SLOWDOWN(off_dur);
3961 	}
3962 
3963 	sc->sc_led_blinking = 1;
3964 	sc->sc_led_blink_offdur = off_dur;
3965 
3966 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3967 }
3968 
3969 static void
3970 bwi_led_blink_next(void *xsc)
3971 {
3972 	struct bwi_softc *sc = xsc;
3973 	uint16_t val;
3974 
3975 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3976 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3977 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3978 
3979 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3980 	    bwi_led_blink_end, sc);
3981 }
3982 
3983 static void
3984 bwi_led_blink_end(void *xsc)
3985 {
3986 	struct bwi_softc *sc = xsc;
3987 	sc->sc_led_blinking = 0;
3988 }
3989 
3990 static void
3991 bwi_restart(void *xsc, int pending)
3992 {
3993 	struct bwi_softc *sc = xsc;
3994 
3995 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3996 	BWI_LOCK(sc);
3997 	bwi_init_statechg(sc, 0);
3998 #if 0
3999 	bwi_start_locked(sc);
4000 #endif
4001 	BWI_UNLOCK(sc);
4002 }
4003