1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2007 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Sepherosa Ziehau <sepherosa@gmail.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $ 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_inet.h" 43 #include "opt_bwi.h" 44 #include "opt_wlan.h" 45 46 #include <sys/param.h> 47 #include <sys/endian.h> 48 #include <sys/kernel.h> 49 #include <sys/bus.h> 50 #include <sys/malloc.h> 51 #include <sys/proc.h> 52 #include <sys/rman.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 #include <sys/systm.h> 57 #include <sys/taskqueue.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 #include <net/if_types.h> 64 #include <net/if_arp.h> 65 #include <net/ethernet.h> 66 #include <net/if_llc.h> 67 68 #include <net80211/ieee80211_var.h> 69 #include <net80211/ieee80211_radiotap.h> 70 #include <net80211/ieee80211_regdomain.h> 71 #include <net80211/ieee80211_phy.h> 72 #include <net80211/ieee80211_ratectl.h> 73 74 #include <net/bpf.h> 75 76 #ifdef INET 77 #include <netinet/in.h> 78 #include <netinet/if_ether.h> 79 #endif 80 81 #include <machine/bus.h> 82 83 #include <dev/pci/pcivar.h> 84 #include <dev/pci/pcireg.h> 85 86 #include <dev/bwi/bitops.h> 87 #include <dev/bwi/if_bwireg.h> 88 #include <dev/bwi/if_bwivar.h> 89 #include <dev/bwi/bwimac.h> 90 #include <dev/bwi/bwirf.h> 91 92 struct bwi_clock_freq { 93 u_int clkfreq_min; 94 u_int clkfreq_max; 95 }; 96 97 struct bwi_myaddr_bssid { 98 uint8_t myaddr[IEEE80211_ADDR_LEN]; 99 uint8_t bssid[IEEE80211_ADDR_LEN]; 100 } __packed; 101 102 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *, 103 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 104 const uint8_t [IEEE80211_ADDR_LEN], 105 const uint8_t [IEEE80211_ADDR_LEN]); 106 static void bwi_vap_delete(struct ieee80211vap *); 107 static void bwi_init(struct bwi_softc *); 108 static void bwi_parent(struct ieee80211com *); 109 static int bwi_transmit(struct ieee80211com *, struct mbuf *); 110 static void bwi_start_locked(struct bwi_softc *); 111 static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 112 const struct ieee80211_bpf_params *); 113 static void bwi_watchdog(void *); 114 static void bwi_scan_start(struct ieee80211com *); 115 static void bwi_getradiocaps(struct ieee80211com *, int, int *, 116 struct ieee80211_channel[]); 117 static void bwi_set_channel(struct ieee80211com *); 118 static void bwi_scan_end(struct ieee80211com *); 119 static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 120 static void bwi_updateslot(struct ieee80211com *); 121 122 static void bwi_calibrate(void *); 123 124 static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *); 125 static int bwi_calc_noise(struct bwi_softc *); 126 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype); 127 static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *, 128 struct bwi_rxbuf_hdr *, const void *, int, int, int); 129 130 static void bwi_restart(void *, int); 131 static void bwi_init_statechg(struct bwi_softc *, int); 132 static void bwi_stop(struct bwi_softc *, int); 133 static void bwi_stop_locked(struct bwi_softc *, int); 134 static int bwi_newbuf(struct bwi_softc *, int, int); 135 static int bwi_encap(struct bwi_softc *, int, struct mbuf *, 136 struct ieee80211_node *); 137 static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *, 138 struct ieee80211_node *, 139 const struct ieee80211_bpf_params *); 140 141 static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t, 142 bus_addr_t, int, int); 143 static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t); 144 145 static int bwi_init_tx_ring32(struct bwi_softc *, int); 146 static int bwi_init_rx_ring32(struct bwi_softc *); 147 static int bwi_init_txstats32(struct bwi_softc *); 148 static void bwi_free_tx_ring32(struct bwi_softc *, int); 149 static void bwi_free_rx_ring32(struct bwi_softc *); 150 static void bwi_free_txstats32(struct bwi_softc *); 151 static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int); 152 static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *, 153 int, bus_addr_t, int); 154 static int bwi_rxeof32(struct bwi_softc *); 155 static void bwi_start_tx32(struct bwi_softc *, uint32_t, int); 156 static void bwi_txeof_status32(struct bwi_softc *); 157 158 static int bwi_init_tx_ring64(struct bwi_softc *, int); 159 static int bwi_init_rx_ring64(struct bwi_softc *); 160 static int bwi_init_txstats64(struct bwi_softc *); 161 static void bwi_free_tx_ring64(struct bwi_softc *, int); 162 static void bwi_free_rx_ring64(struct bwi_softc *); 163 static void bwi_free_txstats64(struct bwi_softc *); 164 static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int); 165 static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *, 166 int, bus_addr_t, int); 167 static int bwi_rxeof64(struct bwi_softc *); 168 static void bwi_start_tx64(struct bwi_softc *, uint32_t, int); 169 static void bwi_txeof_status64(struct bwi_softc *); 170 171 static int bwi_rxeof(struct bwi_softc *, int); 172 static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int); 173 static void bwi_txeof(struct bwi_softc *); 174 static void bwi_txeof_status(struct bwi_softc *, int); 175 static void bwi_enable_intrs(struct bwi_softc *, uint32_t); 176 static void bwi_disable_intrs(struct bwi_softc *, uint32_t); 177 178 static int bwi_dma_alloc(struct bwi_softc *); 179 static void bwi_dma_free(struct bwi_softc *); 180 static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t, 181 struct bwi_ring_data *, bus_size_t, 182 uint32_t); 183 static int bwi_dma_mbuf_create(struct bwi_softc *); 184 static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int); 185 static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t); 186 static void bwi_dma_txstats_free(struct bwi_softc *); 187 static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int); 188 static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int, 189 bus_size_t, int); 190 191 static void bwi_power_on(struct bwi_softc *, int); 192 static int bwi_power_off(struct bwi_softc *, int); 193 static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode); 194 static int bwi_set_clock_delay(struct bwi_softc *); 195 static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *); 196 static int bwi_get_pwron_delay(struct bwi_softc *sc); 197 static void bwi_set_addr_filter(struct bwi_softc *, uint16_t, 198 const uint8_t *); 199 static void bwi_set_bssid(struct bwi_softc *, const uint8_t *); 200 201 static void bwi_get_card_flags(struct bwi_softc *); 202 static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *); 203 204 static int bwi_bus_attach(struct bwi_softc *); 205 static int bwi_bbp_attach(struct bwi_softc *); 206 static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode); 207 static void bwi_bbp_power_off(struct bwi_softc *); 208 209 static const char *bwi_regwin_name(const struct bwi_regwin *); 210 static uint32_t bwi_regwin_disable_bits(struct bwi_softc *); 211 static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *); 212 static int bwi_regwin_select(struct bwi_softc *, int); 213 214 static void bwi_led_attach(struct bwi_softc *); 215 static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state); 216 static void bwi_led_event(struct bwi_softc *, int); 217 static void bwi_led_blink_start(struct bwi_softc *, int, int); 218 static void bwi_led_blink_next(void *); 219 static void bwi_led_blink_end(void *); 220 221 static const struct { 222 uint16_t did_min; 223 uint16_t did_max; 224 uint16_t bbp_id; 225 } bwi_bbpid_map[] = { 226 { 0x4301, 0x4301, 0x4301 }, 227 { 0x4305, 0x4307, 0x4307 }, 228 { 0x4402, 0x4403, 0x4402 }, 229 { 0x4610, 0x4615, 0x4610 }, 230 { 0x4710, 0x4715, 0x4710 }, 231 { 0x4720, 0x4725, 0x4309 } 232 }; 233 234 static const struct { 235 uint16_t bbp_id; 236 int nregwin; 237 } bwi_regwin_count[] = { 238 { 0x4301, 5 }, 239 { 0x4306, 6 }, 240 { 0x4307, 5 }, 241 { 0x4310, 8 }, 242 { 0x4401, 3 }, 243 { 0x4402, 3 }, 244 { 0x4610, 9 }, 245 { 0x4704, 9 }, 246 { 0x4710, 9 }, 247 { 0x5365, 7 } 248 }; 249 250 #define CLKSRC(src) \ 251 [BWI_CLKSRC_ ## src] = { \ 252 .freq_min = BWI_CLKSRC_ ##src## _FMIN, \ 253 .freq_max = BWI_CLKSRC_ ##src## _FMAX \ 254 } 255 256 static const struct { 257 u_int freq_min; 258 u_int freq_max; 259 } bwi_clkfreq[BWI_CLKSRC_MAX] = { 260 CLKSRC(LP_OSC), 261 CLKSRC(CS_OSC), 262 CLKSRC(PCI) 263 }; 264 265 #undef CLKSRC 266 267 #define VENDOR_LED_ACT(vendor) \ 268 { \ 269 .vid = PCI_VENDOR_##vendor, \ 270 .led_act = { BWI_VENDOR_LED_ACT_##vendor } \ 271 } 272 273 static const struct { 274 #define PCI_VENDOR_COMPAQ 0x0e11 275 #define PCI_VENDOR_LINKSYS 0x1737 276 uint16_t vid; 277 uint8_t led_act[BWI_LED_MAX]; 278 } bwi_vendor_led_act[] = { 279 VENDOR_LED_ACT(COMPAQ), 280 VENDOR_LED_ACT(LINKSYS) 281 #undef PCI_VENDOR_LINKSYS 282 #undef PCI_VENDOR_COMPAQ 283 }; 284 285 static const uint8_t bwi_default_led_act[BWI_LED_MAX] = 286 { BWI_VENDOR_LED_ACT_DEFAULT }; 287 288 #undef VENDOR_LED_ACT 289 290 static const struct { 291 int on_dur; 292 int off_dur; 293 } bwi_led_duration[109] = { 294 [0] = { 400, 100 }, 295 [2] = { 150, 75 }, 296 [4] = { 90, 45 }, 297 [11] = { 66, 34 }, 298 [12] = { 53, 26 }, 299 [18] = { 42, 21 }, 300 [22] = { 35, 17 }, 301 [24] = { 32, 16 }, 302 [36] = { 21, 10 }, 303 [48] = { 16, 8 }, 304 [72] = { 11, 5 }, 305 [96] = { 9, 4 }, 306 [108] = { 7, 3 } 307 }; 308 309 #ifdef BWI_DEBUG 310 #ifdef BWI_DEBUG_VERBOSE 311 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER; 312 #else 313 static uint32_t bwi_debug; 314 #endif 315 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug); 316 #endif /* BWI_DEBUG */ 317 318 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN]; 319 320 uint16_t 321 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs) 322 { 323 return CSR_READ_2(sc, ofs + BWI_SPROM_START); 324 } 325 326 static __inline void 327 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array, 328 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, 329 int tx) 330 { 331 struct bwi_desc32 *desc = &desc_array[desc_idx]; 332 uint32_t ctrl, addr, addr_hi, addr_lo; 333 334 addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK); 335 addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK); 336 337 addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) | 338 __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK); 339 340 ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) | 341 __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK); 342 if (desc_idx == ndesc - 1) 343 ctrl |= BWI_DESC32_C_EOR; 344 if (tx) { 345 /* XXX */ 346 ctrl |= BWI_DESC32_C_FRAME_START | 347 BWI_DESC32_C_FRAME_END | 348 BWI_DESC32_C_INTR; 349 } 350 351 desc->addr = htole32(addr); 352 desc->ctrl = htole32(ctrl); 353 } 354 355 int 356 bwi_attach(struct bwi_softc *sc) 357 { 358 struct ieee80211com *ic = &sc->sc_ic; 359 device_t dev = sc->sc_dev; 360 struct bwi_mac *mac; 361 struct bwi_phy *phy; 362 int i, error; 363 364 BWI_LOCK_INIT(sc); 365 366 /* 367 * Initialize taskq and various tasks 368 */ 369 sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO, 370 taskqueue_thread_enqueue, &sc->sc_tq); 371 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 372 device_get_nameunit(dev)); 373 TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc); 374 callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0); 375 mbufq_init(&sc->sc_snd, ifqmaxlen); 376 377 /* 378 * Initialize sysctl variables 379 */ 380 sc->sc_fw_version = BWI_FW_VERSION3; 381 sc->sc_led_idle = (2350 * hz) / 1000; 382 sc->sc_led_ticks = ticks - sc->sc_led_idle; 383 sc->sc_led_blink = 1; 384 sc->sc_txpwr_calib = 1; 385 #ifdef BWI_DEBUG 386 sc->sc_debug = bwi_debug; 387 #endif 388 bwi_power_on(sc, 1); 389 390 error = bwi_bbp_attach(sc); 391 if (error) 392 goto fail; 393 394 error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 395 if (error) 396 goto fail; 397 398 if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) { 399 error = bwi_set_clock_delay(sc); 400 if (error) 401 goto fail; 402 403 error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST); 404 if (error) 405 goto fail; 406 407 error = bwi_get_pwron_delay(sc); 408 if (error) 409 goto fail; 410 } 411 412 error = bwi_bus_attach(sc); 413 if (error) 414 goto fail; 415 416 bwi_get_card_flags(sc); 417 418 bwi_led_attach(sc); 419 420 for (i = 0; i < sc->sc_nmac; ++i) { 421 struct bwi_regwin *old; 422 423 mac = &sc->sc_mac[i]; 424 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old); 425 if (error) 426 goto fail; 427 428 error = bwi_mac_lateattach(mac); 429 if (error) 430 goto fail; 431 432 error = bwi_regwin_switch(sc, old, NULL); 433 if (error) 434 goto fail; 435 } 436 437 /* 438 * XXX First MAC is known to exist 439 * TODO2 440 */ 441 mac = &sc->sc_mac[0]; 442 phy = &mac->mac_phy; 443 444 bwi_bbp_power_off(sc); 445 446 error = bwi_dma_alloc(sc); 447 if (error) 448 goto fail; 449 450 error = bwi_mac_fw_alloc(mac); 451 if (error) 452 goto fail; 453 454 callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0); 455 456 /* 457 * Setup ratesets, phytype, channels and get MAC address 458 */ 459 if (phy->phy_mode == IEEE80211_MODE_11B || 460 phy->phy_mode == IEEE80211_MODE_11G) { 461 if (phy->phy_mode == IEEE80211_MODE_11B) { 462 ic->ic_phytype = IEEE80211_T_DS; 463 } else { 464 ic->ic_phytype = IEEE80211_T_OFDM; 465 } 466 467 bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr); 468 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { 469 bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr); 470 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { 471 device_printf(dev, 472 "invalid MAC address: %6D\n", 473 ic->ic_macaddr, ":"); 474 } 475 } 476 } else if (phy->phy_mode == IEEE80211_MODE_11A) { 477 /* TODO:11A */ 478 error = ENXIO; 479 goto fail; 480 } else { 481 panic("unknown phymode %d\n", phy->phy_mode); 482 } 483 484 /* Get locale */ 485 sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO), 486 BWI_SPROM_CARD_INFO_LOCALE); 487 DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale); 488 /* XXX use locale */ 489 490 ic->ic_softc = sc; 491 492 bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 493 ic->ic_channels); 494 495 ic->ic_name = device_get_nameunit(dev); 496 ic->ic_caps = IEEE80211_C_STA | 497 IEEE80211_C_SHSLOT | 498 IEEE80211_C_SHPREAMBLE | 499 IEEE80211_C_WPA | 500 IEEE80211_C_BGSCAN | 501 IEEE80211_C_MONITOR; 502 ic->ic_opmode = IEEE80211_M_STA; 503 ieee80211_ifattach(ic); 504 505 ic->ic_headroom = sizeof(struct bwi_txbuf_hdr); 506 507 /* override default methods */ 508 ic->ic_vap_create = bwi_vap_create; 509 ic->ic_vap_delete = bwi_vap_delete; 510 ic->ic_raw_xmit = bwi_raw_xmit; 511 ic->ic_updateslot = bwi_updateslot; 512 ic->ic_scan_start = bwi_scan_start; 513 ic->ic_scan_end = bwi_scan_end; 514 ic->ic_getradiocaps = bwi_getradiocaps; 515 ic->ic_set_channel = bwi_set_channel; 516 ic->ic_transmit = bwi_transmit; 517 ic->ic_parent = bwi_parent; 518 519 sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan); 520 521 ieee80211_radiotap_attach(ic, 522 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 523 BWI_TX_RADIOTAP_PRESENT, 524 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 525 BWI_RX_RADIOTAP_PRESENT); 526 527 /* 528 * Add sysctl nodes 529 */ 530 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 531 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 532 "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0, 533 "Firmware version"); 534 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 535 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 536 "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0, 537 "# ticks before LED enters idle state"); 538 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 539 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 540 "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0, 541 "Allow LED to blink"); 542 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 543 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 544 "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0, 545 "Enable software TX power calibration"); 546 #ifdef BWI_DEBUG 547 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), 548 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 549 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); 550 #endif 551 if (bootverbose) 552 ieee80211_announce(ic); 553 554 return (0); 555 fail: 556 BWI_LOCK_DESTROY(sc); 557 return (error); 558 } 559 560 int 561 bwi_detach(struct bwi_softc *sc) 562 { 563 struct ieee80211com *ic = &sc->sc_ic; 564 int i; 565 566 bwi_stop(sc, 1); 567 callout_drain(&sc->sc_led_blink_ch); 568 callout_drain(&sc->sc_calib_ch); 569 callout_drain(&sc->sc_watchdog_timer); 570 ieee80211_ifdetach(ic); 571 572 for (i = 0; i < sc->sc_nmac; ++i) 573 bwi_mac_detach(&sc->sc_mac[i]); 574 bwi_dma_free(sc); 575 taskqueue_free(sc->sc_tq); 576 mbufq_drain(&sc->sc_snd); 577 578 BWI_LOCK_DESTROY(sc); 579 580 return (0); 581 } 582 583 static struct ieee80211vap * 584 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 585 enum ieee80211_opmode opmode, int flags, 586 const uint8_t bssid[IEEE80211_ADDR_LEN], 587 const uint8_t mac[IEEE80211_ADDR_LEN]) 588 { 589 struct bwi_vap *bvp; 590 struct ieee80211vap *vap; 591 592 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 593 return NULL; 594 bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 595 vap = &bvp->bv_vap; 596 /* enable s/w bmiss handling for sta mode */ 597 ieee80211_vap_setup(ic, vap, name, unit, opmode, 598 flags | IEEE80211_CLONE_NOBEACONS, bssid); 599 600 /* override default methods */ 601 bvp->bv_newstate = vap->iv_newstate; 602 vap->iv_newstate = bwi_newstate; 603 #if 0 604 vap->iv_update_beacon = bwi_beacon_update; 605 #endif 606 ieee80211_ratectl_init(vap); 607 608 /* complete setup */ 609 ieee80211_vap_attach(vap, ieee80211_media_change, 610 ieee80211_media_status, mac); 611 ic->ic_opmode = opmode; 612 return vap; 613 } 614 615 static void 616 bwi_vap_delete(struct ieee80211vap *vap) 617 { 618 struct bwi_vap *bvp = BWI_VAP(vap); 619 620 ieee80211_ratectl_deinit(vap); 621 ieee80211_vap_detach(vap); 622 free(bvp, M_80211_VAP); 623 } 624 625 void 626 bwi_suspend(struct bwi_softc *sc) 627 { 628 bwi_stop(sc, 1); 629 } 630 631 void 632 bwi_resume(struct bwi_softc *sc) 633 { 634 635 if (sc->sc_ic.ic_nrunning > 0) 636 bwi_init(sc); 637 } 638 639 int 640 bwi_shutdown(struct bwi_softc *sc) 641 { 642 bwi_stop(sc, 1); 643 return 0; 644 } 645 646 static void 647 bwi_power_on(struct bwi_softc *sc, int with_pll) 648 { 649 uint32_t gpio_in, gpio_out, gpio_en; 650 uint16_t status; 651 652 gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); 653 if (gpio_in & BWI_PCIM_GPIO_PWR_ON) 654 goto back; 655 656 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 657 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 658 659 gpio_out |= BWI_PCIM_GPIO_PWR_ON; 660 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 661 if (with_pll) { 662 /* Turn off PLL first */ 663 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 664 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 665 } 666 667 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 668 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 669 DELAY(1000); 670 671 if (with_pll) { 672 /* Turn on PLL */ 673 gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF; 674 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 675 DELAY(5000); 676 } 677 678 back: 679 /* Clear "Signaled Target Abort" */ 680 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 681 status &= ~PCIM_STATUS_STABORT; 682 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 683 } 684 685 static int 686 bwi_power_off(struct bwi_softc *sc, int with_pll) 687 { 688 uint32_t gpio_out, gpio_en; 689 690 pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */ 691 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 692 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 693 694 gpio_out &= ~BWI_PCIM_GPIO_PWR_ON; 695 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 696 if (with_pll) { 697 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 698 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 699 } 700 701 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 702 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 703 return 0; 704 } 705 706 int 707 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw, 708 struct bwi_regwin **old_rw) 709 { 710 int error; 711 712 if (old_rw != NULL) 713 *old_rw = NULL; 714 715 if (!BWI_REGWIN_EXIST(rw)) 716 return EINVAL; 717 718 if (sc->sc_cur_regwin != rw) { 719 error = bwi_regwin_select(sc, rw->rw_id); 720 if (error) { 721 device_printf(sc->sc_dev, "can't select regwin %d\n", 722 rw->rw_id); 723 return error; 724 } 725 } 726 727 if (old_rw != NULL) 728 *old_rw = sc->sc_cur_regwin; 729 sc->sc_cur_regwin = rw; 730 return 0; 731 } 732 733 static int 734 bwi_regwin_select(struct bwi_softc *sc, int id) 735 { 736 uint32_t win = BWI_PCIM_REGWIN(id); 737 int i; 738 739 #define RETRY_MAX 50 740 for (i = 0; i < RETRY_MAX; ++i) { 741 pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4); 742 if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win) 743 return 0; 744 DELAY(10); 745 } 746 #undef RETRY_MAX 747 748 return ENXIO; 749 } 750 751 static void 752 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev) 753 { 754 uint32_t val; 755 756 val = CSR_READ_4(sc, BWI_ID_HI); 757 *type = BWI_ID_HI_REGWIN_TYPE(val); 758 *rev = BWI_ID_HI_REGWIN_REV(val); 759 760 DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, " 761 "vendor 0x%04x\n", *type, *rev, 762 __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK)); 763 } 764 765 static int 766 bwi_bbp_attach(struct bwi_softc *sc) 767 { 768 uint16_t bbp_id, rw_type; 769 uint8_t rw_rev; 770 uint32_t info; 771 int error, nregwin, i; 772 773 /* 774 * Get 0th regwin information 775 * NOTE: 0th regwin should exist 776 */ 777 error = bwi_regwin_select(sc, 0); 778 if (error) { 779 device_printf(sc->sc_dev, "can't select regwin 0\n"); 780 return error; 781 } 782 bwi_regwin_info(sc, &rw_type, &rw_rev); 783 784 /* 785 * Find out BBP id 786 */ 787 bbp_id = 0; 788 info = 0; 789 if (rw_type == BWI_REGWIN_T_COM) { 790 info = CSR_READ_4(sc, BWI_INFO); 791 bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK); 792 793 BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev); 794 795 sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY); 796 } else { 797 for (i = 0; i < nitems(bwi_bbpid_map); ++i) { 798 if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min && 799 sc->sc_pci_did <= bwi_bbpid_map[i].did_max) { 800 bbp_id = bwi_bbpid_map[i].bbp_id; 801 break; 802 } 803 } 804 if (bbp_id == 0) { 805 device_printf(sc->sc_dev, "no BBP id for device id " 806 "0x%04x\n", sc->sc_pci_did); 807 return ENXIO; 808 } 809 810 info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) | 811 __SHIFTIN(0, BWI_INFO_BBPPKG_MASK); 812 } 813 814 /* 815 * Find out number of regwins 816 */ 817 nregwin = 0; 818 if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) { 819 nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK); 820 } else { 821 for (i = 0; i < nitems(bwi_regwin_count); ++i) { 822 if (bwi_regwin_count[i].bbp_id == bbp_id) { 823 nregwin = bwi_regwin_count[i].nregwin; 824 break; 825 } 826 } 827 if (nregwin == 0) { 828 device_printf(sc->sc_dev, "no number of win for " 829 "BBP id 0x%04x\n", bbp_id); 830 return ENXIO; 831 } 832 } 833 834 /* Record BBP id/rev for later using */ 835 sc->sc_bbp_id = bbp_id; 836 sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK); 837 sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK); 838 device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n", 839 sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg); 840 841 DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n", 842 nregwin, sc->sc_cap); 843 844 /* 845 * Create rest of the regwins 846 */ 847 848 /* Don't re-create common regwin, if it is already created */ 849 i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0; 850 851 for (; i < nregwin; ++i) { 852 /* 853 * Get regwin information 854 */ 855 error = bwi_regwin_select(sc, i); 856 if (error) { 857 device_printf(sc->sc_dev, 858 "can't select regwin %d\n", i); 859 return error; 860 } 861 bwi_regwin_info(sc, &rw_type, &rw_rev); 862 863 /* 864 * Try attach: 865 * 1) Bus (PCI/PCIE) regwin 866 * 2) MAC regwin 867 * Ignore rest types of regwin 868 */ 869 if (rw_type == BWI_REGWIN_T_BUSPCI || 870 rw_type == BWI_REGWIN_T_BUSPCIE) { 871 if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 872 device_printf(sc->sc_dev, 873 "bus regwin already exists\n"); 874 } else { 875 BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i, 876 rw_type, rw_rev); 877 } 878 } else if (rw_type == BWI_REGWIN_T_MAC) { 879 /* XXX ignore return value */ 880 bwi_mac_attach(sc, i, rw_rev); 881 } 882 } 883 884 /* At least one MAC shold exist */ 885 if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) { 886 device_printf(sc->sc_dev, "no MAC was found\n"); 887 return ENXIO; 888 } 889 KASSERT(sc->sc_nmac > 0, ("no mac's")); 890 891 /* Bus regwin must exist */ 892 if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 893 device_printf(sc->sc_dev, "no bus regwin was found\n"); 894 return ENXIO; 895 } 896 897 /* Start with first MAC */ 898 error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL); 899 if (error) 900 return error; 901 902 return 0; 903 } 904 905 int 906 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac) 907 { 908 struct bwi_regwin *old, *bus; 909 uint32_t val; 910 int error; 911 912 bus = &sc->sc_bus_regwin; 913 KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin")); 914 915 /* 916 * Tell bus to generate requested interrupts 917 */ 918 if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) { 919 /* 920 * NOTE: Read BWI_FLAGS from MAC regwin 921 */ 922 val = CSR_READ_4(sc, BWI_FLAGS); 923 924 error = bwi_regwin_switch(sc, bus, &old); 925 if (error) 926 return error; 927 928 CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK)); 929 } else { 930 uint32_t mac_mask; 931 932 mac_mask = 1 << mac->mac_id; 933 934 error = bwi_regwin_switch(sc, bus, &old); 935 if (error) 936 return error; 937 938 val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4); 939 val |= mac_mask << 8; 940 pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4); 941 } 942 943 if (sc->sc_flags & BWI_F_BUS_INITED) 944 goto back; 945 946 if (bus->rw_type == BWI_REGWIN_T_BUSPCI) { 947 /* 948 * Enable prefetch and burst 949 */ 950 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, 951 BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST); 952 953 if (bus->rw_rev < 5) { 954 struct bwi_regwin *com = &sc->sc_com_regwin; 955 956 /* 957 * Configure timeouts for bus operation 958 */ 959 960 /* 961 * Set service timeout and request timeout 962 */ 963 CSR_SETBITS_4(sc, BWI_CONF_LO, 964 __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) | 965 __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK)); 966 967 /* 968 * If there is common regwin, we switch to that regwin 969 * and switch back to bus regwin once we have done. 970 */ 971 if (BWI_REGWIN_EXIST(com)) { 972 error = bwi_regwin_switch(sc, com, NULL); 973 if (error) 974 return error; 975 } 976 977 /* Let bus know what we have changed */ 978 CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC); 979 CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */ 980 CSR_WRITE_4(sc, BWI_BUS_DATA, 0); 981 CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */ 982 983 if (BWI_REGWIN_EXIST(com)) { 984 error = bwi_regwin_switch(sc, bus, NULL); 985 if (error) 986 return error; 987 } 988 } else if (bus->rw_rev >= 11) { 989 /* 990 * Enable memory read multiple 991 */ 992 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM); 993 } 994 } else { 995 /* TODO:PCIE */ 996 } 997 998 sc->sc_flags |= BWI_F_BUS_INITED; 999 back: 1000 return bwi_regwin_switch(sc, old, NULL); 1001 } 1002 1003 static void 1004 bwi_get_card_flags(struct bwi_softc *sc) 1005 { 1006 #define PCI_VENDOR_APPLE 0x106b 1007 #define PCI_VENDOR_DELL 0x1028 1008 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS); 1009 if (sc->sc_card_flags == 0xffff) 1010 sc->sc_card_flags = 0; 1011 1012 if (sc->sc_pci_subvid == PCI_VENDOR_DELL && 1013 sc->sc_bbp_id == BWI_BBPID_BCM4301 && 1014 sc->sc_pci_revid == 0x74) 1015 sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST; 1016 1017 if (sc->sc_pci_subvid == PCI_VENDOR_APPLE && 1018 sc->sc_pci_subdid == 0x4e && /* XXX */ 1019 sc->sc_pci_revid > 0x40) 1020 sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9; 1021 1022 DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags); 1023 #undef PCI_VENDOR_DELL 1024 #undef PCI_VENDOR_APPLE 1025 } 1026 1027 static void 1028 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr) 1029 { 1030 int i; 1031 1032 for (i = 0; i < 3; ++i) { 1033 *((uint16_t *)eaddr + i) = 1034 htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i)); 1035 } 1036 } 1037 1038 static void 1039 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq) 1040 { 1041 struct bwi_regwin *com; 1042 uint32_t val; 1043 u_int div; 1044 int src; 1045 1046 bzero(freq, sizeof(*freq)); 1047 com = &sc->sc_com_regwin; 1048 1049 KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist")); 1050 KASSERT(sc->sc_cur_regwin == com, ("wrong regwin")); 1051 KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode")); 1052 1053 /* 1054 * Calculate clock frequency 1055 */ 1056 src = -1; 1057 div = 0; 1058 if (com->rw_rev < 6) { 1059 val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 1060 if (val & BWI_PCIM_GPIO_OUT_CLKSRC) { 1061 src = BWI_CLKSRC_PCI; 1062 div = 64; 1063 } else { 1064 src = BWI_CLKSRC_CS_OSC; 1065 div = 32; 1066 } 1067 } else if (com->rw_rev < 10) { 1068 val = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1069 1070 src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC); 1071 if (src == BWI_CLKSRC_LP_OSC) { 1072 div = 1; 1073 } else { 1074 div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2; 1075 1076 /* Unknown source */ 1077 if (src >= BWI_CLKSRC_MAX) 1078 src = BWI_CLKSRC_CS_OSC; 1079 } 1080 } else { 1081 val = CSR_READ_4(sc, BWI_CLOCK_INFO); 1082 1083 src = BWI_CLKSRC_CS_OSC; 1084 div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2; 1085 } 1086 1087 KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src)); 1088 KASSERT(div != 0, ("div zero")); 1089 1090 DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n", 1091 src == BWI_CLKSRC_PCI ? "PCI" : 1092 (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC")); 1093 1094 freq->clkfreq_min = bwi_clkfreq[src].freq_min / div; 1095 freq->clkfreq_max = bwi_clkfreq[src].freq_max / div; 1096 1097 DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n", 1098 freq->clkfreq_min, freq->clkfreq_max); 1099 } 1100 1101 static int 1102 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 1103 { 1104 struct bwi_regwin *old, *com; 1105 uint32_t clk_ctrl, clk_src; 1106 int error, pwr_off = 0; 1107 1108 com = &sc->sc_com_regwin; 1109 if (!BWI_REGWIN_EXIST(com)) 1110 return 0; 1111 1112 if (com->rw_rev >= 10 || com->rw_rev < 6) 1113 return 0; 1114 1115 /* 1116 * For common regwin whose rev is [6, 10), the chip 1117 * must be capable to change clock mode. 1118 */ 1119 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 1120 return 0; 1121 1122 error = bwi_regwin_switch(sc, com, &old); 1123 if (error) 1124 return error; 1125 1126 if (clk_mode == BWI_CLOCK_MODE_FAST) 1127 bwi_power_on(sc, 0); /* Don't turn on PLL */ 1128 1129 clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1130 clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC); 1131 1132 switch (clk_mode) { 1133 case BWI_CLOCK_MODE_FAST: 1134 clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW; 1135 clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL; 1136 break; 1137 case BWI_CLOCK_MODE_SLOW: 1138 clk_ctrl |= BWI_CLOCK_CTRL_SLOW; 1139 break; 1140 case BWI_CLOCK_MODE_DYN: 1141 clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW | 1142 BWI_CLOCK_CTRL_IGNPLL | 1143 BWI_CLOCK_CTRL_NODYN); 1144 if (clk_src != BWI_CLKSRC_CS_OSC) { 1145 clk_ctrl |= BWI_CLOCK_CTRL_NODYN; 1146 pwr_off = 1; 1147 } 1148 break; 1149 } 1150 CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl); 1151 1152 if (pwr_off) 1153 bwi_power_off(sc, 0); /* Leave PLL as it is */ 1154 1155 return bwi_regwin_switch(sc, old, NULL); 1156 } 1157 1158 static int 1159 bwi_set_clock_delay(struct bwi_softc *sc) 1160 { 1161 struct bwi_regwin *old, *com; 1162 int error; 1163 1164 com = &sc->sc_com_regwin; 1165 if (!BWI_REGWIN_EXIST(com)) 1166 return 0; 1167 1168 error = bwi_regwin_switch(sc, com, &old); 1169 if (error) 1170 return error; 1171 1172 if (sc->sc_bbp_id == BWI_BBPID_BCM4321) { 1173 if (sc->sc_bbp_rev == 0) 1174 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0); 1175 else if (sc->sc_bbp_rev == 1) 1176 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1); 1177 } 1178 1179 if (sc->sc_cap & BWI_CAP_CLKMODE) { 1180 if (com->rw_rev >= 10) { 1181 CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000); 1182 } else { 1183 struct bwi_clock_freq freq; 1184 1185 bwi_get_clock_freq(sc, &freq); 1186 CSR_WRITE_4(sc, BWI_PLL_ON_DELAY, 1187 howmany(freq.clkfreq_max * 150, 1000000)); 1188 CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY, 1189 howmany(freq.clkfreq_max * 15, 1000000)); 1190 } 1191 } 1192 1193 return bwi_regwin_switch(sc, old, NULL); 1194 } 1195 1196 static void 1197 bwi_init(struct bwi_softc *sc) 1198 { 1199 struct ieee80211com *ic = &sc->sc_ic; 1200 1201 BWI_LOCK(sc); 1202 bwi_init_statechg(sc, 1); 1203 BWI_UNLOCK(sc); 1204 1205 if (sc->sc_flags & BWI_F_RUNNING) 1206 ieee80211_start_all(ic); /* start all vap's */ 1207 } 1208 1209 static void 1210 bwi_init_statechg(struct bwi_softc *sc, int statechg) 1211 { 1212 struct bwi_mac *mac; 1213 int error; 1214 1215 BWI_ASSERT_LOCKED(sc); 1216 1217 bwi_stop_locked(sc, statechg); 1218 1219 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 1220 1221 /* TODO: 2 MAC */ 1222 1223 mac = &sc->sc_mac[0]; 1224 error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL); 1225 if (error) { 1226 device_printf(sc->sc_dev, "%s: error %d on regwin switch\n", 1227 __func__, error); 1228 goto bad; 1229 } 1230 error = bwi_mac_init(mac); 1231 if (error) { 1232 device_printf(sc->sc_dev, "%s: error %d on MAC init\n", 1233 __func__, error); 1234 goto bad; 1235 } 1236 1237 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN); 1238 1239 bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */ 1240 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr); 1241 1242 bwi_mac_reset_hwkeys(mac); 1243 1244 if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) { 1245 int i; 1246 1247 #define NRETRY 1000 1248 /* 1249 * Drain any possible pending TX status 1250 */ 1251 for (i = 0; i < NRETRY; ++i) { 1252 if ((CSR_READ_4(sc, BWI_TXSTATUS0) & 1253 BWI_TXSTATUS0_VALID) == 0) 1254 break; 1255 CSR_READ_4(sc, BWI_TXSTATUS1); 1256 } 1257 if (i == NRETRY) 1258 device_printf(sc->sc_dev, 1259 "%s: can't drain TX status\n", __func__); 1260 #undef NRETRY 1261 } 1262 1263 if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G) 1264 bwi_mac_updateslot(mac, 1); 1265 1266 /* Start MAC */ 1267 error = bwi_mac_start(mac); 1268 if (error) { 1269 device_printf(sc->sc_dev, "%s: error %d starting MAC\n", 1270 __func__, error); 1271 goto bad; 1272 } 1273 1274 /* Clear stop flag before enabling interrupt */ 1275 sc->sc_flags &= ~BWI_F_STOP; 1276 sc->sc_flags |= BWI_F_RUNNING; 1277 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1278 1279 /* Enable intrs */ 1280 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1281 return; 1282 bad: 1283 bwi_stop_locked(sc, 1); 1284 } 1285 1286 static void 1287 bwi_parent(struct ieee80211com *ic) 1288 { 1289 struct bwi_softc *sc = ic->ic_softc; 1290 int startall = 0; 1291 1292 BWI_LOCK(sc); 1293 if (ic->ic_nrunning > 0) { 1294 struct bwi_mac *mac; 1295 int promisc = -1; 1296 1297 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1298 ("current regwin type %d", 1299 sc->sc_cur_regwin->rw_type)); 1300 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1301 1302 if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) { 1303 promisc = 1; 1304 sc->sc_flags |= BWI_F_PROMISC; 1305 } else if (ic->ic_promisc == 0 && 1306 (sc->sc_flags & BWI_F_PROMISC) != 0) { 1307 promisc = 0; 1308 sc->sc_flags &= ~BWI_F_PROMISC; 1309 } 1310 1311 if (promisc >= 0) 1312 bwi_mac_set_promisc(mac, promisc); 1313 } 1314 if (ic->ic_nrunning > 0) { 1315 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1316 bwi_init_statechg(sc, 1); 1317 startall = 1; 1318 } 1319 } else if (sc->sc_flags & BWI_F_RUNNING) 1320 bwi_stop_locked(sc, 1); 1321 BWI_UNLOCK(sc); 1322 if (startall) 1323 ieee80211_start_all(ic); 1324 } 1325 1326 static int 1327 bwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1328 { 1329 struct bwi_softc *sc = ic->ic_softc; 1330 int error; 1331 1332 BWI_LOCK(sc); 1333 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1334 BWI_UNLOCK(sc); 1335 return (ENXIO); 1336 } 1337 error = mbufq_enqueue(&sc->sc_snd, m); 1338 if (error) { 1339 BWI_UNLOCK(sc); 1340 return (error); 1341 } 1342 bwi_start_locked(sc); 1343 BWI_UNLOCK(sc); 1344 return (0); 1345 } 1346 1347 static void 1348 bwi_start_locked(struct bwi_softc *sc) 1349 { 1350 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1351 struct ieee80211_frame *wh; 1352 struct ieee80211_node *ni; 1353 struct mbuf *m; 1354 int trans, idx; 1355 1356 BWI_ASSERT_LOCKED(sc); 1357 1358 trans = 0; 1359 idx = tbd->tbd_idx; 1360 1361 while (tbd->tbd_buf[idx].tb_mbuf == NULL && 1362 tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC && 1363 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1364 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1365 wh = mtod(m, struct ieee80211_frame *); 1366 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 && 1367 ieee80211_crypto_encap(ni, m) == NULL) { 1368 if_inc_counter(ni->ni_vap->iv_ifp, 1369 IFCOUNTER_OERRORS, 1); 1370 ieee80211_free_node(ni); 1371 m_freem(m); 1372 continue; 1373 } 1374 if (bwi_encap(sc, idx, m, ni) != 0) { 1375 /* 'm' is freed in bwi_encap() if we reach here */ 1376 if (ni != NULL) { 1377 if_inc_counter(ni->ni_vap->iv_ifp, 1378 IFCOUNTER_OERRORS, 1); 1379 ieee80211_free_node(ni); 1380 } else 1381 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1382 continue; 1383 } 1384 trans = 1; 1385 tbd->tbd_used++; 1386 idx = (idx + 1) % BWI_TX_NDESC; 1387 } 1388 1389 tbd->tbd_idx = idx; 1390 if (trans) 1391 sc->sc_tx_timer = 5; 1392 } 1393 1394 static int 1395 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1396 const struct ieee80211_bpf_params *params) 1397 { 1398 struct ieee80211com *ic = ni->ni_ic; 1399 struct bwi_softc *sc = ic->ic_softc; 1400 /* XXX wme? */ 1401 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1402 int idx, error; 1403 1404 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1405 m_freem(m); 1406 return ENETDOWN; 1407 } 1408 1409 BWI_LOCK(sc); 1410 idx = tbd->tbd_idx; 1411 KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx)); 1412 if (params == NULL) { 1413 /* 1414 * Legacy path; interpret frame contents to decide 1415 * precisely how to send the frame. 1416 */ 1417 error = bwi_encap(sc, idx, m, ni); 1418 } else { 1419 /* 1420 * Caller supplied explicit parameters to use in 1421 * sending the frame. 1422 */ 1423 error = bwi_encap_raw(sc, idx, m, ni, params); 1424 } 1425 if (error == 0) { 1426 tbd->tbd_used++; 1427 tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC; 1428 sc->sc_tx_timer = 5; 1429 } 1430 BWI_UNLOCK(sc); 1431 return error; 1432 } 1433 1434 static void 1435 bwi_watchdog(void *arg) 1436 { 1437 struct bwi_softc *sc; 1438 1439 sc = arg; 1440 BWI_ASSERT_LOCKED(sc); 1441 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { 1442 device_printf(sc->sc_dev, "watchdog timeout\n"); 1443 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1444 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1445 } 1446 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1447 } 1448 1449 static void 1450 bwi_stop(struct bwi_softc *sc, int statechg) 1451 { 1452 BWI_LOCK(sc); 1453 bwi_stop_locked(sc, statechg); 1454 BWI_UNLOCK(sc); 1455 } 1456 1457 static void 1458 bwi_stop_locked(struct bwi_softc *sc, int statechg) 1459 { 1460 struct bwi_mac *mac; 1461 int i, error, pwr_off = 0; 1462 1463 BWI_ASSERT_LOCKED(sc); 1464 1465 callout_stop(&sc->sc_calib_ch); 1466 callout_stop(&sc->sc_led_blink_ch); 1467 sc->sc_led_blinking = 0; 1468 sc->sc_flags |= BWI_F_STOP; 1469 1470 if (sc->sc_flags & BWI_F_RUNNING) { 1471 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1472 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1473 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1474 1475 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1476 CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1477 bwi_mac_stop(mac); 1478 } 1479 1480 for (i = 0; i < sc->sc_nmac; ++i) { 1481 struct bwi_regwin *old_rw; 1482 1483 mac = &sc->sc_mac[i]; 1484 if ((mac->mac_flags & BWI_MAC_F_INITED) == 0) 1485 continue; 1486 1487 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw); 1488 if (error) 1489 continue; 1490 1491 bwi_mac_shutdown(mac); 1492 pwr_off = 1; 1493 1494 bwi_regwin_switch(sc, old_rw, NULL); 1495 } 1496 1497 if (pwr_off) 1498 bwi_bbp_power_off(sc); 1499 1500 sc->sc_tx_timer = 0; 1501 callout_stop(&sc->sc_watchdog_timer); 1502 sc->sc_flags &= ~BWI_F_RUNNING; 1503 } 1504 1505 void 1506 bwi_intr(void *xsc) 1507 { 1508 struct epoch_tracker et; 1509 struct bwi_softc *sc = xsc; 1510 struct bwi_mac *mac; 1511 uint32_t intr_status; 1512 uint32_t txrx_intr_status[BWI_TXRX_NRING]; 1513 int i, txrx_error, tx = 0, rx_data = -1; 1514 1515 BWI_LOCK(sc); 1516 1517 if ((sc->sc_flags & BWI_F_RUNNING) == 0 || 1518 (sc->sc_flags & BWI_F_STOP)) { 1519 BWI_UNLOCK(sc); 1520 return; 1521 } 1522 /* 1523 * Get interrupt status 1524 */ 1525 intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS); 1526 if (intr_status == 0xffffffff) { /* Not for us */ 1527 BWI_UNLOCK(sc); 1528 return; 1529 } 1530 1531 DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status); 1532 1533 intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1534 if (intr_status == 0) { /* Nothing is interesting */ 1535 BWI_UNLOCK(sc); 1536 return; 1537 } 1538 1539 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1540 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1541 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1542 1543 txrx_error = 0; 1544 DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr"); 1545 for (i = 0; i < BWI_TXRX_NRING; ++i) { 1546 uint32_t mask; 1547 1548 if (BWI_TXRX_IS_RX(i)) 1549 mask = BWI_TXRX_RX_INTRS; 1550 else 1551 mask = BWI_TXRX_TX_INTRS; 1552 1553 txrx_intr_status[i] = 1554 CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask; 1555 1556 _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x", 1557 i, txrx_intr_status[i]); 1558 1559 if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) { 1560 device_printf(sc->sc_dev, 1561 "%s: intr fatal TX/RX (%d) error 0x%08x\n", 1562 __func__, i, txrx_intr_status[i]); 1563 txrx_error = 1; 1564 } 1565 } 1566 _DPRINTF(sc, BWI_DBG_INTR, "%s\n", ""); 1567 1568 /* 1569 * Acknowledge interrupt 1570 */ 1571 CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status); 1572 1573 for (i = 0; i < BWI_TXRX_NRING; ++i) 1574 CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]); 1575 1576 /* Disable all interrupts */ 1577 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1578 1579 /* 1580 * http://bcm-specs.sipsolutions.net/Interrupts 1581 * Says for this bit (0x800): 1582 * "Fatal Error 1583 * 1584 * We got this one while testing things when by accident the 1585 * template ram wasn't set to big endian when it should have 1586 * been after writing the initial values. It keeps on being 1587 * triggered, the only way to stop it seems to shut down the 1588 * chip." 1589 * 1590 * Suggesting that we should never get it and if we do we're not 1591 * feeding TX packets into the MAC correctly if we do... Apparently, 1592 * it is valid only on mac version 5 and higher, but I couldn't 1593 * find a reference for that... Since I see them from time to time 1594 * on my card, this suggests an error in the tx path still... 1595 */ 1596 if (intr_status & BWI_INTR_PHY_TXERR) { 1597 if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) { 1598 device_printf(sc->sc_dev, "%s: intr PHY TX error\n", 1599 __func__); 1600 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1601 BWI_UNLOCK(sc); 1602 return; 1603 } 1604 } 1605 1606 if (txrx_error) { 1607 /* TODO: reset device */ 1608 } 1609 1610 if (intr_status & BWI_INTR_TBTT) 1611 bwi_mac_config_ps(mac); 1612 1613 if (intr_status & BWI_INTR_EO_ATIM) 1614 device_printf(sc->sc_dev, "EO_ATIM\n"); 1615 1616 if (intr_status & BWI_INTR_PMQ) { 1617 for (;;) { 1618 if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0) 1619 break; 1620 } 1621 CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2); 1622 } 1623 1624 if (intr_status & BWI_INTR_NOISE) 1625 device_printf(sc->sc_dev, "intr noise\n"); 1626 1627 if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) { 1628 NET_EPOCH_ENTER(et); 1629 rx_data = sc->sc_rxeof(sc); 1630 NET_EPOCH_EXIT(et); 1631 if (sc->sc_flags & BWI_F_STOP) { 1632 BWI_UNLOCK(sc); 1633 return; 1634 } 1635 } 1636 1637 if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) { 1638 sc->sc_txeof_status(sc); 1639 tx = 1; 1640 } 1641 1642 if (intr_status & BWI_INTR_TX_DONE) { 1643 bwi_txeof(sc); 1644 tx = 1; 1645 } 1646 1647 /* Re-enable interrupts */ 1648 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1649 1650 if (sc->sc_blink_led != NULL && sc->sc_led_blink) { 1651 int evt = BWI_LED_EVENT_NONE; 1652 1653 if (tx && rx_data > 0) { 1654 if (sc->sc_rx_rate > sc->sc_tx_rate) 1655 evt = BWI_LED_EVENT_RX; 1656 else 1657 evt = BWI_LED_EVENT_TX; 1658 } else if (tx) { 1659 evt = BWI_LED_EVENT_TX; 1660 } else if (rx_data > 0) { 1661 evt = BWI_LED_EVENT_RX; 1662 } else if (rx_data == 0) { 1663 evt = BWI_LED_EVENT_POLL; 1664 } 1665 1666 if (evt != BWI_LED_EVENT_NONE) 1667 bwi_led_event(sc, evt); 1668 } 1669 1670 BWI_UNLOCK(sc); 1671 } 1672 1673 static void 1674 bwi_scan_start(struct ieee80211com *ic) 1675 { 1676 struct bwi_softc *sc = ic->ic_softc; 1677 1678 BWI_LOCK(sc); 1679 /* Enable MAC beacon promiscuity */ 1680 CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1681 BWI_UNLOCK(sc); 1682 } 1683 1684 static void 1685 bwi_getradiocaps(struct ieee80211com *ic, 1686 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1687 { 1688 struct bwi_softc *sc = ic->ic_softc; 1689 struct bwi_mac *mac; 1690 struct bwi_phy *phy; 1691 uint8_t bands[IEEE80211_MODE_BYTES]; 1692 1693 /* 1694 * XXX First MAC is known to exist 1695 * TODO2 1696 */ 1697 mac = &sc->sc_mac[0]; 1698 phy = &mac->mac_phy; 1699 1700 memset(bands, 0, sizeof(bands)); 1701 switch (phy->phy_mode) { 1702 case IEEE80211_MODE_11G: 1703 setbit(bands, IEEE80211_MODE_11G); 1704 /* FALLTHROUGH */ 1705 case IEEE80211_MODE_11B: 1706 setbit(bands, IEEE80211_MODE_11B); 1707 break; 1708 case IEEE80211_MODE_11A: 1709 /* TODO:11A */ 1710 setbit(bands, IEEE80211_MODE_11A); 1711 device_printf(sc->sc_dev, "no 11a support\n"); 1712 return; 1713 default: 1714 panic("unknown phymode %d\n", phy->phy_mode); 1715 } 1716 1717 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); 1718 } 1719 1720 static void 1721 bwi_set_channel(struct ieee80211com *ic) 1722 { 1723 struct bwi_softc *sc = ic->ic_softc; 1724 struct ieee80211_channel *c = ic->ic_curchan; 1725 struct bwi_mac *mac; 1726 1727 BWI_LOCK(sc); 1728 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1729 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1730 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1731 bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0); 1732 1733 sc->sc_rates = ieee80211_get_ratetable(c); 1734 BWI_UNLOCK(sc); 1735 } 1736 1737 static void 1738 bwi_scan_end(struct ieee80211com *ic) 1739 { 1740 struct bwi_softc *sc = ic->ic_softc; 1741 1742 BWI_LOCK(sc); 1743 CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1744 BWI_UNLOCK(sc); 1745 } 1746 1747 static int 1748 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1749 { 1750 struct bwi_vap *bvp = BWI_VAP(vap); 1751 struct ieee80211com *ic= vap->iv_ic; 1752 struct bwi_softc *sc = ic->ic_softc; 1753 enum ieee80211_state ostate = vap->iv_state; 1754 struct bwi_mac *mac; 1755 int error; 1756 1757 BWI_LOCK(sc); 1758 1759 callout_stop(&sc->sc_calib_ch); 1760 1761 if (nstate == IEEE80211_S_INIT) 1762 sc->sc_txpwrcb_type = BWI_TXPWR_INIT; 1763 1764 bwi_led_newstate(sc, nstate); 1765 1766 error = bvp->bv_newstate(vap, nstate, arg); 1767 if (error != 0) 1768 goto back; 1769 1770 /* 1771 * Clear the BSSID when we stop a STA 1772 */ 1773 if (vap->iv_opmode == IEEE80211_M_STA) { 1774 if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { 1775 /* 1776 * Clear out the BSSID. If we reassociate to 1777 * the same AP, this will reinialize things 1778 * correctly... 1779 */ 1780 if (ic->ic_opmode == IEEE80211_M_STA && 1781 !(sc->sc_flags & BWI_F_STOP)) 1782 bwi_set_bssid(sc, bwi_zero_addr); 1783 } 1784 } 1785 1786 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1787 /* Nothing to do */ 1788 } else if (nstate == IEEE80211_S_RUN) { 1789 bwi_set_bssid(sc, vap->iv_bss->ni_bssid); 1790 1791 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1792 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1793 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1794 1795 /* Initial TX power calibration */ 1796 bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT); 1797 #ifdef notyet 1798 sc->sc_txpwrcb_type = BWI_TXPWR_FORCE; 1799 #else 1800 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 1801 #endif 1802 1803 callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc); 1804 } 1805 back: 1806 BWI_UNLOCK(sc); 1807 1808 return error; 1809 } 1810 1811 static int 1812 bwi_dma_alloc(struct bwi_softc *sc) 1813 { 1814 int error, i, has_txstats; 1815 bus_addr_t lowaddr = 0; 1816 bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0; 1817 uint32_t txrx_ctrl_step = 0; 1818 1819 has_txstats = 0; 1820 for (i = 0; i < sc->sc_nmac; ++i) { 1821 if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) { 1822 has_txstats = 1; 1823 break; 1824 } 1825 } 1826 1827 switch (sc->sc_bus_space) { 1828 case BWI_BUS_SPACE_30BIT: 1829 case BWI_BUS_SPACE_32BIT: 1830 if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) 1831 lowaddr = BWI_BUS_SPACE_MAXADDR; 1832 else 1833 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1834 desc_sz = sizeof(struct bwi_desc32); 1835 txrx_ctrl_step = 0x20; 1836 1837 sc->sc_init_tx_ring = bwi_init_tx_ring32; 1838 sc->sc_free_tx_ring = bwi_free_tx_ring32; 1839 sc->sc_init_rx_ring = bwi_init_rx_ring32; 1840 sc->sc_free_rx_ring = bwi_free_rx_ring32; 1841 sc->sc_setup_rxdesc = bwi_setup_rx_desc32; 1842 sc->sc_setup_txdesc = bwi_setup_tx_desc32; 1843 sc->sc_rxeof = bwi_rxeof32; 1844 sc->sc_start_tx = bwi_start_tx32; 1845 if (has_txstats) { 1846 sc->sc_init_txstats = bwi_init_txstats32; 1847 sc->sc_free_txstats = bwi_free_txstats32; 1848 sc->sc_txeof_status = bwi_txeof_status32; 1849 } 1850 break; 1851 1852 case BWI_BUS_SPACE_64BIT: 1853 lowaddr = BUS_SPACE_MAXADDR; /* XXX */ 1854 desc_sz = sizeof(struct bwi_desc64); 1855 txrx_ctrl_step = 0x40; 1856 1857 sc->sc_init_tx_ring = bwi_init_tx_ring64; 1858 sc->sc_free_tx_ring = bwi_free_tx_ring64; 1859 sc->sc_init_rx_ring = bwi_init_rx_ring64; 1860 sc->sc_free_rx_ring = bwi_free_rx_ring64; 1861 sc->sc_setup_rxdesc = bwi_setup_rx_desc64; 1862 sc->sc_setup_txdesc = bwi_setup_tx_desc64; 1863 sc->sc_rxeof = bwi_rxeof64; 1864 sc->sc_start_tx = bwi_start_tx64; 1865 if (has_txstats) { 1866 sc->sc_init_txstats = bwi_init_txstats64; 1867 sc->sc_free_txstats = bwi_free_txstats64; 1868 sc->sc_txeof_status = bwi_txeof_status64; 1869 } 1870 break; 1871 } 1872 1873 KASSERT(lowaddr != 0, ("lowaddr zero")); 1874 KASSERT(desc_sz != 0, ("desc_sz zero")); 1875 KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero")); 1876 1877 tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN); 1878 rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN); 1879 1880 /* 1881 * Create top level DMA tag 1882 */ 1883 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1884 BWI_ALIGN, 0, /* alignment, bounds */ 1885 lowaddr, /* lowaddr */ 1886 BUS_SPACE_MAXADDR, /* highaddr */ 1887 NULL, NULL, /* filter, filterarg */ 1888 BUS_SPACE_MAXSIZE, /* maxsize */ 1889 BUS_SPACE_UNRESTRICTED, /* nsegments */ 1890 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1891 0, /* flags */ 1892 NULL, NULL, /* lockfunc, lockarg */ 1893 &sc->sc_parent_dtag); 1894 if (error) { 1895 device_printf(sc->sc_dev, "can't create parent DMA tag\n"); 1896 return error; 1897 } 1898 1899 #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step) 1900 1901 /* 1902 * Create TX ring DMA stuffs 1903 */ 1904 error = bus_dma_tag_create(sc->sc_parent_dtag, 1905 BWI_RING_ALIGN, 0, 1906 BUS_SPACE_MAXADDR, 1907 BUS_SPACE_MAXADDR, 1908 NULL, NULL, 1909 tx_ring_sz, 1910 1, 1911 tx_ring_sz, 1912 0, 1913 NULL, NULL, 1914 &sc->sc_txring_dtag); 1915 if (error) { 1916 device_printf(sc->sc_dev, "can't create TX ring DMA tag\n"); 1917 return error; 1918 } 1919 1920 for (i = 0; i < BWI_TX_NRING; ++i) { 1921 error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag, 1922 &sc->sc_tx_rdata[i], tx_ring_sz, 1923 TXRX_CTRL(i)); 1924 if (error) { 1925 device_printf(sc->sc_dev, "%dth TX ring " 1926 "DMA alloc failed\n", i); 1927 return error; 1928 } 1929 } 1930 1931 /* 1932 * Create RX ring DMA stuffs 1933 */ 1934 error = bus_dma_tag_create(sc->sc_parent_dtag, 1935 BWI_RING_ALIGN, 0, 1936 BUS_SPACE_MAXADDR, 1937 BUS_SPACE_MAXADDR, 1938 NULL, NULL, 1939 rx_ring_sz, 1940 1, 1941 rx_ring_sz, 1942 0, 1943 NULL, NULL, 1944 &sc->sc_rxring_dtag); 1945 if (error) { 1946 device_printf(sc->sc_dev, "can't create RX ring DMA tag\n"); 1947 return error; 1948 } 1949 1950 error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata, 1951 rx_ring_sz, TXRX_CTRL(0)); 1952 if (error) { 1953 device_printf(sc->sc_dev, "RX ring DMA alloc failed\n"); 1954 return error; 1955 } 1956 1957 if (has_txstats) { 1958 error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz); 1959 if (error) { 1960 device_printf(sc->sc_dev, 1961 "TX stats DMA alloc failed\n"); 1962 return error; 1963 } 1964 } 1965 1966 #undef TXRX_CTRL 1967 1968 return bwi_dma_mbuf_create(sc); 1969 } 1970 1971 static void 1972 bwi_dma_free(struct bwi_softc *sc) 1973 { 1974 if (sc->sc_txring_dtag != NULL) { 1975 int i; 1976 1977 for (i = 0; i < BWI_TX_NRING; ++i) { 1978 struct bwi_ring_data *rd = &sc->sc_tx_rdata[i]; 1979 1980 if (rd->rdata_desc != NULL) { 1981 bus_dmamap_unload(sc->sc_txring_dtag, 1982 rd->rdata_dmap); 1983 bus_dmamem_free(sc->sc_txring_dtag, 1984 rd->rdata_desc, 1985 rd->rdata_dmap); 1986 } 1987 } 1988 bus_dma_tag_destroy(sc->sc_txring_dtag); 1989 } 1990 1991 if (sc->sc_rxring_dtag != NULL) { 1992 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 1993 1994 if (rd->rdata_desc != NULL) { 1995 bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap); 1996 bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc, 1997 rd->rdata_dmap); 1998 } 1999 bus_dma_tag_destroy(sc->sc_rxring_dtag); 2000 } 2001 2002 bwi_dma_txstats_free(sc); 2003 bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1); 2004 2005 if (sc->sc_parent_dtag != NULL) 2006 bus_dma_tag_destroy(sc->sc_parent_dtag); 2007 } 2008 2009 static int 2010 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag, 2011 struct bwi_ring_data *rd, bus_size_t size, 2012 uint32_t txrx_ctrl) 2013 { 2014 int error; 2015 2016 error = bus_dmamem_alloc(dtag, &rd->rdata_desc, 2017 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2018 &rd->rdata_dmap); 2019 if (error) { 2020 device_printf(sc->sc_dev, "can't allocate DMA mem\n"); 2021 return error; 2022 } 2023 2024 error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size, 2025 bwi_dma_ring_addr, &rd->rdata_paddr, 2026 BUS_DMA_NOWAIT); 2027 if (error) { 2028 device_printf(sc->sc_dev, "can't load DMA mem\n"); 2029 bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap); 2030 rd->rdata_desc = NULL; 2031 return error; 2032 } 2033 2034 rd->rdata_txrx_ctrl = txrx_ctrl; 2035 return 0; 2036 } 2037 2038 static int 2039 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base, 2040 bus_size_t desc_sz) 2041 { 2042 struct bwi_txstats_data *st; 2043 bus_size_t dma_size; 2044 int error; 2045 2046 st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO); 2047 if (st == NULL) { 2048 device_printf(sc->sc_dev, "can't allocate txstats data\n"); 2049 return ENOMEM; 2050 } 2051 sc->sc_txstats = st; 2052 2053 /* 2054 * Create TX stats descriptor DMA stuffs 2055 */ 2056 dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN); 2057 2058 error = bus_dma_tag_create(sc->sc_parent_dtag, 2059 BWI_RING_ALIGN, 2060 0, 2061 BUS_SPACE_MAXADDR, 2062 BUS_SPACE_MAXADDR, 2063 NULL, NULL, 2064 dma_size, 2065 1, 2066 dma_size, 2067 0, 2068 NULL, NULL, 2069 &st->stats_ring_dtag); 2070 if (error) { 2071 device_printf(sc->sc_dev, "can't create txstats ring " 2072 "DMA tag\n"); 2073 return error; 2074 } 2075 2076 error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring, 2077 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2078 &st->stats_ring_dmap); 2079 if (error) { 2080 device_printf(sc->sc_dev, "can't allocate txstats ring " 2081 "DMA mem\n"); 2082 bus_dma_tag_destroy(st->stats_ring_dtag); 2083 st->stats_ring_dtag = NULL; 2084 return error; 2085 } 2086 2087 error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap, 2088 st->stats_ring, dma_size, 2089 bwi_dma_ring_addr, &st->stats_ring_paddr, 2090 BUS_DMA_NOWAIT); 2091 if (error) { 2092 device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n"); 2093 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2094 st->stats_ring_dmap); 2095 bus_dma_tag_destroy(st->stats_ring_dtag); 2096 st->stats_ring_dtag = NULL; 2097 return error; 2098 } 2099 2100 /* 2101 * Create TX stats DMA stuffs 2102 */ 2103 dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC, 2104 BWI_ALIGN); 2105 2106 error = bus_dma_tag_create(sc->sc_parent_dtag, 2107 BWI_ALIGN, 2108 0, 2109 BUS_SPACE_MAXADDR, 2110 BUS_SPACE_MAXADDR, 2111 NULL, NULL, 2112 dma_size, 2113 1, 2114 dma_size, 2115 0, 2116 NULL, NULL, 2117 &st->stats_dtag); 2118 if (error) { 2119 device_printf(sc->sc_dev, "can't create txstats DMA tag\n"); 2120 return error; 2121 } 2122 2123 error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats, 2124 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2125 &st->stats_dmap); 2126 if (error) { 2127 device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n"); 2128 bus_dma_tag_destroy(st->stats_dtag); 2129 st->stats_dtag = NULL; 2130 return error; 2131 } 2132 2133 error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats, 2134 dma_size, bwi_dma_ring_addr, &st->stats_paddr, 2135 BUS_DMA_NOWAIT); 2136 if (error) { 2137 device_printf(sc->sc_dev, "can't load txstats DMA mem\n"); 2138 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2139 bus_dma_tag_destroy(st->stats_dtag); 2140 st->stats_dtag = NULL; 2141 return error; 2142 } 2143 2144 st->stats_ctrl_base = ctrl_base; 2145 return 0; 2146 } 2147 2148 static void 2149 bwi_dma_txstats_free(struct bwi_softc *sc) 2150 { 2151 struct bwi_txstats_data *st; 2152 2153 if (sc->sc_txstats == NULL) 2154 return; 2155 st = sc->sc_txstats; 2156 2157 if (st->stats_ring_dtag != NULL) { 2158 bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap); 2159 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2160 st->stats_ring_dmap); 2161 bus_dma_tag_destroy(st->stats_ring_dtag); 2162 } 2163 2164 if (st->stats_dtag != NULL) { 2165 bus_dmamap_unload(st->stats_dtag, st->stats_dmap); 2166 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2167 bus_dma_tag_destroy(st->stats_dtag); 2168 } 2169 2170 free(st, M_DEVBUF); 2171 } 2172 2173 static void 2174 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) 2175 { 2176 KASSERT(nseg == 1, ("too many segments\n")); 2177 *((bus_addr_t *)arg) = seg->ds_addr; 2178 } 2179 2180 static int 2181 bwi_dma_mbuf_create(struct bwi_softc *sc) 2182 { 2183 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2184 int i, j, k, ntx, error; 2185 2186 /* 2187 * Create TX/RX mbuf DMA tag 2188 */ 2189 error = bus_dma_tag_create(sc->sc_parent_dtag, 2190 1, 2191 0, 2192 BUS_SPACE_MAXADDR, 2193 BUS_SPACE_MAXADDR, 2194 NULL, NULL, 2195 MCLBYTES, 2196 1, 2197 MCLBYTES, 2198 BUS_DMA_ALLOCNOW, 2199 NULL, NULL, 2200 &sc->sc_buf_dtag); 2201 if (error) { 2202 device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); 2203 return error; 2204 } 2205 2206 ntx = 0; 2207 2208 /* 2209 * Create TX mbuf DMA map 2210 */ 2211 for (i = 0; i < BWI_TX_NRING; ++i) { 2212 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2213 2214 for (j = 0; j < BWI_TX_NDESC; ++j) { 2215 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2216 &tbd->tbd_buf[j].tb_dmap); 2217 if (error) { 2218 device_printf(sc->sc_dev, "can't create " 2219 "%dth tbd, %dth DMA map\n", i, j); 2220 2221 ntx = i; 2222 for (k = 0; k < j; ++k) { 2223 bus_dmamap_destroy(sc->sc_buf_dtag, 2224 tbd->tbd_buf[k].tb_dmap); 2225 } 2226 goto fail; 2227 } 2228 } 2229 } 2230 ntx = BWI_TX_NRING; 2231 2232 /* 2233 * Create RX mbuf DMA map and a spare DMA map 2234 */ 2235 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2236 &rbd->rbd_tmp_dmap); 2237 if (error) { 2238 device_printf(sc->sc_dev, 2239 "can't create spare RX buf DMA map\n"); 2240 goto fail; 2241 } 2242 2243 for (j = 0; j < BWI_RX_NDESC; ++j) { 2244 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2245 &rbd->rbd_buf[j].rb_dmap); 2246 if (error) { 2247 device_printf(sc->sc_dev, "can't create %dth " 2248 "RX buf DMA map\n", j); 2249 2250 for (k = 0; k < j; ++k) { 2251 bus_dmamap_destroy(sc->sc_buf_dtag, 2252 rbd->rbd_buf[j].rb_dmap); 2253 } 2254 bus_dmamap_destroy(sc->sc_buf_dtag, 2255 rbd->rbd_tmp_dmap); 2256 goto fail; 2257 } 2258 } 2259 2260 return 0; 2261 fail: 2262 bwi_dma_mbuf_destroy(sc, ntx, 0); 2263 return error; 2264 } 2265 2266 static void 2267 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx) 2268 { 2269 int i, j; 2270 2271 if (sc->sc_buf_dtag == NULL) 2272 return; 2273 2274 for (i = 0; i < ntx; ++i) { 2275 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2276 2277 for (j = 0; j < BWI_TX_NDESC; ++j) { 2278 struct bwi_txbuf *tb = &tbd->tbd_buf[j]; 2279 2280 if (tb->tb_mbuf != NULL) { 2281 bus_dmamap_unload(sc->sc_buf_dtag, 2282 tb->tb_dmap); 2283 m_freem(tb->tb_mbuf); 2284 } 2285 if (tb->tb_ni != NULL) 2286 ieee80211_free_node(tb->tb_ni); 2287 bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap); 2288 } 2289 } 2290 2291 if (nrx) { 2292 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2293 2294 bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); 2295 for (j = 0; j < BWI_RX_NDESC; ++j) { 2296 struct bwi_rxbuf *rb = &rbd->rbd_buf[j]; 2297 2298 if (rb->rb_mbuf != NULL) { 2299 bus_dmamap_unload(sc->sc_buf_dtag, 2300 rb->rb_dmap); 2301 m_freem(rb->rb_mbuf); 2302 } 2303 bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap); 2304 } 2305 } 2306 2307 bus_dma_tag_destroy(sc->sc_buf_dtag); 2308 sc->sc_buf_dtag = NULL; 2309 } 2310 2311 static void 2312 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs) 2313 { 2314 CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs); 2315 } 2316 2317 static void 2318 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs) 2319 { 2320 CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs); 2321 } 2322 2323 static int 2324 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx) 2325 { 2326 struct bwi_ring_data *rd; 2327 struct bwi_txbuf_data *tbd; 2328 uint32_t val, addr_hi, addr_lo; 2329 2330 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2331 rd = &sc->sc_tx_rdata[ring_idx]; 2332 tbd = &sc->sc_tx_bdata[ring_idx]; 2333 2334 tbd->tbd_idx = 0; 2335 tbd->tbd_used = 0; 2336 2337 bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC); 2338 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 2339 BUS_DMASYNC_PREWRITE); 2340 2341 addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2342 addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2343 2344 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2345 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2346 BWI_TXRX32_RINGINFO_FUNC_MASK); 2347 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val); 2348 2349 val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2350 BWI_TXRX32_CTRL_ENABLE; 2351 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val); 2352 2353 return 0; 2354 } 2355 2356 static void 2357 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base, 2358 bus_addr_t paddr, int hdr_size, int ndesc) 2359 { 2360 uint32_t val, addr_hi, addr_lo; 2361 2362 addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2363 addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2364 2365 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2366 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2367 BWI_TXRX32_RINGINFO_FUNC_MASK); 2368 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val); 2369 2370 val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) | 2371 __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2372 BWI_TXRX32_CTRL_ENABLE; 2373 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val); 2374 2375 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 2376 (ndesc - 1) * sizeof(struct bwi_desc32)); 2377 } 2378 2379 static int 2380 bwi_init_rx_ring32(struct bwi_softc *sc) 2381 { 2382 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2383 int i, error; 2384 2385 sc->sc_rx_bdata.rbd_idx = 0; 2386 2387 for (i = 0; i < BWI_RX_NDESC; ++i) { 2388 error = bwi_newbuf(sc, i, 1); 2389 if (error) { 2390 device_printf(sc->sc_dev, 2391 "can't allocate %dth RX buffer\n", i); 2392 return error; 2393 } 2394 } 2395 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2396 BUS_DMASYNC_PREWRITE); 2397 2398 bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr, 2399 sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC); 2400 return 0; 2401 } 2402 2403 static int 2404 bwi_init_txstats32(struct bwi_softc *sc) 2405 { 2406 struct bwi_txstats_data *st = sc->sc_txstats; 2407 bus_addr_t stats_paddr; 2408 int i; 2409 2410 bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats)); 2411 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE); 2412 2413 st->stats_idx = 0; 2414 2415 stats_paddr = st->stats_paddr; 2416 for (i = 0; i < BWI_TXSTATS_NDESC; ++i) { 2417 bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i, 2418 stats_paddr, sizeof(struct bwi_txstats), 0); 2419 stats_paddr += sizeof(struct bwi_txstats); 2420 } 2421 bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap, 2422 BUS_DMASYNC_PREWRITE); 2423 2424 bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base, 2425 st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC); 2426 return 0; 2427 } 2428 2429 static void 2430 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2431 int buf_len) 2432 { 2433 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2434 2435 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2436 bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx, 2437 paddr, buf_len, 0); 2438 } 2439 2440 static void 2441 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd, 2442 int buf_idx, bus_addr_t paddr, int buf_len) 2443 { 2444 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 2445 bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx, 2446 paddr, buf_len, 1); 2447 } 2448 2449 static int 2450 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx) 2451 { 2452 /* TODO:64 */ 2453 return EOPNOTSUPP; 2454 } 2455 2456 static int 2457 bwi_init_rx_ring64(struct bwi_softc *sc) 2458 { 2459 /* TODO:64 */ 2460 return EOPNOTSUPP; 2461 } 2462 2463 static int 2464 bwi_init_txstats64(struct bwi_softc *sc) 2465 { 2466 /* TODO:64 */ 2467 return EOPNOTSUPP; 2468 } 2469 2470 static void 2471 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2472 int buf_len) 2473 { 2474 /* TODO:64 */ 2475 } 2476 2477 static void 2478 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd, 2479 int buf_idx, bus_addr_t paddr, int buf_len) 2480 { 2481 /* TODO:64 */ 2482 } 2483 2484 static void 2485 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, 2486 bus_size_t mapsz __unused, int error) 2487 { 2488 if (!error) { 2489 KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); 2490 *((bus_addr_t *)arg) = seg->ds_addr; 2491 } 2492 } 2493 2494 static int 2495 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init) 2496 { 2497 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2498 struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx]; 2499 struct bwi_rxbuf_hdr *hdr; 2500 bus_dmamap_t map; 2501 bus_addr_t paddr; 2502 struct mbuf *m; 2503 int error; 2504 2505 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2506 2507 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2508 if (m == NULL) { 2509 error = ENOBUFS; 2510 2511 /* 2512 * If the NIC is up and running, we need to: 2513 * - Clear RX buffer's header. 2514 * - Restore RX descriptor settings. 2515 */ 2516 if (init) 2517 return error; 2518 else 2519 goto back; 2520 } 2521 m->m_len = m->m_pkthdr.len = MCLBYTES; 2522 2523 /* 2524 * Try to load RX buf into temporary DMA map 2525 */ 2526 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m, 2527 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 2528 if (error) { 2529 m_freem(m); 2530 2531 /* 2532 * See the comment above 2533 */ 2534 if (init) 2535 return error; 2536 else 2537 goto back; 2538 } 2539 2540 if (!init) 2541 bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap); 2542 rxbuf->rb_mbuf = m; 2543 rxbuf->rb_paddr = paddr; 2544 2545 /* 2546 * Swap RX buf's DMA map with the loaded temporary one 2547 */ 2548 map = rxbuf->rb_dmap; 2549 rxbuf->rb_dmap = rbd->rbd_tmp_dmap; 2550 rbd->rbd_tmp_dmap = map; 2551 2552 back: 2553 /* 2554 * Clear RX buf header 2555 */ 2556 hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *); 2557 bzero(hdr, sizeof(*hdr)); 2558 bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE); 2559 2560 /* 2561 * Setup RX buf descriptor 2562 */ 2563 sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr, 2564 rxbuf->rb_mbuf->m_len - sizeof(*hdr)); 2565 return error; 2566 } 2567 2568 static void 2569 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs, 2570 const uint8_t *addr) 2571 { 2572 int i; 2573 2574 CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL, 2575 BWI_ADDR_FILTER_CTRL_SET | addr_ofs); 2576 2577 for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) { 2578 uint16_t addr_val; 2579 2580 addr_val = (uint16_t)addr[i * 2] | 2581 (((uint16_t)addr[(i * 2) + 1]) << 8); 2582 CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val); 2583 } 2584 } 2585 2586 static int 2587 bwi_rxeof(struct bwi_softc *sc, int end_idx) 2588 { 2589 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2590 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2591 struct ieee80211com *ic = &sc->sc_ic; 2592 int idx, rx_data = 0; 2593 2594 idx = rbd->rbd_idx; 2595 while (idx != end_idx) { 2596 struct bwi_rxbuf *rb = &rbd->rbd_buf[idx]; 2597 struct bwi_rxbuf_hdr *hdr; 2598 struct ieee80211_frame_min *wh; 2599 struct ieee80211_node *ni; 2600 struct mbuf *m; 2601 uint32_t plcp; 2602 uint16_t flags2; 2603 int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate; 2604 2605 m = rb->rb_mbuf; 2606 bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap, 2607 BUS_DMASYNC_POSTREAD); 2608 2609 if (bwi_newbuf(sc, idx, 0)) { 2610 counter_u64_add(ic->ic_ierrors, 1); 2611 goto next; 2612 } 2613 2614 hdr = mtod(m, struct bwi_rxbuf_hdr *); 2615 flags2 = le16toh(hdr->rxh_flags2); 2616 2617 hdr_extra = 0; 2618 if (flags2 & BWI_RXH_F2_TYPE2FRAME) 2619 hdr_extra = 2; 2620 wh_ofs = hdr_extra + 6; /* XXX magic number */ 2621 2622 buflen = le16toh(hdr->rxh_buflen); 2623 if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) { 2624 device_printf(sc->sc_dev, 2625 "%s: zero length data, hdr_extra %d\n", 2626 __func__, hdr_extra); 2627 counter_u64_add(ic->ic_ierrors, 1); 2628 m_freem(m); 2629 goto next; 2630 } 2631 2632 bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp)); 2633 rssi = bwi_calc_rssi(sc, hdr); 2634 noise = bwi_calc_noise(sc); 2635 2636 m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr); 2637 m_adj(m, sizeof(*hdr) + wh_ofs); 2638 2639 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM) 2640 rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM); 2641 else 2642 rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK); 2643 2644 /* RX radio tap */ 2645 if (ieee80211_radiotap_active(ic)) 2646 bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise); 2647 2648 m_adj(m, -IEEE80211_CRC_LEN); 2649 2650 BWI_UNLOCK(sc); 2651 2652 wh = mtod(m, struct ieee80211_frame_min *); 2653 ni = ieee80211_find_rxnode(ic, wh); 2654 if (ni != NULL) { 2655 type = ieee80211_input(ni, m, rssi - noise, noise); 2656 ieee80211_free_node(ni); 2657 } else 2658 type = ieee80211_input_all(ic, m, rssi - noise, noise); 2659 if (type == IEEE80211_FC0_TYPE_DATA) { 2660 rx_data = 1; 2661 sc->sc_rx_rate = rate; 2662 } 2663 2664 BWI_LOCK(sc); 2665 next: 2666 idx = (idx + 1) % BWI_RX_NDESC; 2667 2668 if (sc->sc_flags & BWI_F_STOP) { 2669 /* 2670 * Take the fast lane, don't do 2671 * any damage to softc 2672 */ 2673 return -1; 2674 } 2675 } 2676 2677 rbd->rbd_idx = idx; 2678 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2679 BUS_DMASYNC_PREWRITE); 2680 2681 return rx_data; 2682 } 2683 2684 static int 2685 bwi_rxeof32(struct bwi_softc *sc) 2686 { 2687 uint32_t val, rx_ctrl; 2688 int end_idx, rx_data; 2689 2690 rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl; 2691 2692 val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2693 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 2694 sizeof(struct bwi_desc32); 2695 2696 rx_data = bwi_rxeof(sc, end_idx); 2697 if (rx_data >= 0) { 2698 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX, 2699 end_idx * sizeof(struct bwi_desc32)); 2700 } 2701 return rx_data; 2702 } 2703 2704 static int 2705 bwi_rxeof64(struct bwi_softc *sc) 2706 { 2707 /* TODO:64 */ 2708 return 0; 2709 } 2710 2711 static void 2712 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl) 2713 { 2714 int i; 2715 2716 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0); 2717 2718 #define NRETRY 10 2719 2720 for (i = 0; i < NRETRY; ++i) { 2721 uint32_t status; 2722 2723 status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2724 if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) == 2725 BWI_RX32_STATUS_STATE_DISABLED) 2726 break; 2727 2728 DELAY(1000); 2729 } 2730 if (i == NRETRY) 2731 device_printf(sc->sc_dev, "reset rx ring timedout\n"); 2732 2733 #undef NRETRY 2734 2735 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0); 2736 } 2737 2738 static void 2739 bwi_free_txstats32(struct bwi_softc *sc) 2740 { 2741 bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base); 2742 } 2743 2744 static void 2745 bwi_free_rx_ring32(struct bwi_softc *sc) 2746 { 2747 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2748 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2749 int i; 2750 2751 bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl); 2752 2753 for (i = 0; i < BWI_RX_NDESC; ++i) { 2754 struct bwi_rxbuf *rb = &rbd->rbd_buf[i]; 2755 2756 if (rb->rb_mbuf != NULL) { 2757 bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); 2758 m_freem(rb->rb_mbuf); 2759 rb->rb_mbuf = NULL; 2760 } 2761 } 2762 } 2763 2764 static void 2765 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx) 2766 { 2767 struct bwi_ring_data *rd; 2768 struct bwi_txbuf_data *tbd; 2769 uint32_t state, val; 2770 int i; 2771 2772 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2773 rd = &sc->sc_tx_rdata[ring_idx]; 2774 tbd = &sc->sc_tx_bdata[ring_idx]; 2775 2776 #define NRETRY 10 2777 2778 for (i = 0; i < NRETRY; ++i) { 2779 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2780 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2781 if (state == BWI_TX32_STATUS_STATE_DISABLED || 2782 state == BWI_TX32_STATUS_STATE_IDLE || 2783 state == BWI_TX32_STATUS_STATE_STOPPED) 2784 break; 2785 2786 DELAY(1000); 2787 } 2788 if (i == NRETRY) { 2789 device_printf(sc->sc_dev, 2790 "%s: wait for TX ring(%d) stable timed out\n", 2791 __func__, ring_idx); 2792 } 2793 2794 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0); 2795 for (i = 0; i < NRETRY; ++i) { 2796 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2797 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2798 if (state == BWI_TX32_STATUS_STATE_DISABLED) 2799 break; 2800 2801 DELAY(1000); 2802 } 2803 if (i == NRETRY) 2804 device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n", 2805 __func__, ring_idx); 2806 2807 #undef NRETRY 2808 2809 DELAY(1000); 2810 2811 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0); 2812 2813 for (i = 0; i < BWI_TX_NDESC; ++i) { 2814 struct bwi_txbuf *tb = &tbd->tbd_buf[i]; 2815 2816 if (tb->tb_mbuf != NULL) { 2817 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 2818 m_freem(tb->tb_mbuf); 2819 tb->tb_mbuf = NULL; 2820 } 2821 if (tb->tb_ni != NULL) { 2822 ieee80211_free_node(tb->tb_ni); 2823 tb->tb_ni = NULL; 2824 } 2825 } 2826 } 2827 2828 static void 2829 bwi_free_txstats64(struct bwi_softc *sc) 2830 { 2831 /* TODO:64 */ 2832 } 2833 2834 static void 2835 bwi_free_rx_ring64(struct bwi_softc *sc) 2836 { 2837 /* TODO:64 */ 2838 } 2839 2840 static void 2841 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx) 2842 { 2843 /* TODO:64 */ 2844 } 2845 2846 /* XXX does not belong here */ 2847 #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0) 2848 #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5) 2849 2850 static __inline void 2851 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate) 2852 { 2853 uint32_t plcp; 2854 2855 plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM), 2856 IEEE80211_OFDM_PLCP_RATE_MASK) | 2857 __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK); 2858 *plcp0 = htole32(plcp); 2859 } 2860 2861 static __inline void 2862 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len, 2863 uint8_t rate) 2864 { 2865 int len, service, pkt_bitlen; 2866 2867 pkt_bitlen = pkt_len * NBBY; 2868 len = howmany(pkt_bitlen * 2, rate); 2869 2870 service = IEEE80211_PLCP_SERVICE_LOCKED; 2871 if (rate == (11 * 2)) { 2872 int pkt_bitlen1; 2873 2874 /* 2875 * PLCP service field needs to be adjusted, 2876 * if TX rate is 11Mbytes/s 2877 */ 2878 pkt_bitlen1 = len * 11; 2879 if (pkt_bitlen1 - pkt_bitlen >= NBBY) 2880 service |= IEEE80211_PLCP_SERVICE_LENEXT7; 2881 } 2882 2883 plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK); 2884 plcp->i_service = service; 2885 plcp->i_length = htole16(len); 2886 /* NOTE: do NOT touch i_crc */ 2887 } 2888 2889 static __inline void 2890 bwi_plcp_header(const struct ieee80211_rate_table *rt, 2891 void *plcp, int pkt_len, uint8_t rate) 2892 { 2893 enum ieee80211_phytype modtype; 2894 2895 /* 2896 * Assume caller has zeroed 'plcp' 2897 */ 2898 modtype = ieee80211_rate2phytype(rt, rate); 2899 if (modtype == IEEE80211_T_OFDM) 2900 bwi_ofdm_plcp_header(plcp, pkt_len, rate); 2901 else if (modtype == IEEE80211_T_DS) 2902 bwi_ds_plcp_header(plcp, pkt_len, rate); 2903 else 2904 panic("unsupport modulation type %u\n", modtype); 2905 } 2906 2907 static int 2908 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m, 2909 struct ieee80211_node *ni) 2910 { 2911 struct ieee80211vap *vap = ni->ni_vap; 2912 struct ieee80211com *ic = &sc->sc_ic; 2913 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 2914 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 2915 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 2916 struct bwi_mac *mac; 2917 struct bwi_txbuf_hdr *hdr; 2918 struct ieee80211_frame *wh; 2919 const struct ieee80211_txparam *tp = ni->ni_txparms; 2920 uint8_t rate, rate_fb; 2921 uint32_t mac_ctrl; 2922 uint16_t phy_ctrl; 2923 bus_addr_t paddr; 2924 int type, ismcast, pkt_len, error, rix; 2925 #if 0 2926 const uint8_t *p; 2927 int i; 2928 #endif 2929 2930 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 2931 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 2932 mac = (struct bwi_mac *)sc->sc_cur_regwin; 2933 2934 wh = mtod(m, struct ieee80211_frame *); 2935 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2936 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2937 2938 /* Get 802.11 frame len before prepending TX header */ 2939 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 2940 2941 /* 2942 * Find TX rate 2943 */ 2944 if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) { 2945 rate = rate_fb = tp->mgmtrate; 2946 } else if (ismcast) { 2947 rate = rate_fb = tp->mcastrate; 2948 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 2949 rate = rate_fb = tp->ucastrate; 2950 } else { 2951 rix = ieee80211_ratectl_rate(ni, NULL, pkt_len); 2952 rate = ni->ni_txrate; 2953 2954 if (rix > 0) { 2955 rate_fb = ni->ni_rates.rs_rates[rix-1] & 2956 IEEE80211_RATE_VAL; 2957 } else { 2958 rate_fb = rate; 2959 } 2960 } 2961 tb->tb_rate[0] = rate; 2962 tb->tb_rate[1] = rate_fb; 2963 sc->sc_tx_rate = rate; 2964 2965 /* 2966 * TX radio tap 2967 */ 2968 if (ieee80211_radiotap_active_vap(vap)) { 2969 sc->sc_tx_th.wt_flags = 0; 2970 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 2971 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2972 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS && 2973 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2974 rate != (1 * 2)) { 2975 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2976 } 2977 sc->sc_tx_th.wt_rate = rate; 2978 2979 ieee80211_radiotap_tx(vap, m); 2980 } 2981 2982 /* 2983 * Setup the embedded TX header 2984 */ 2985 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 2986 if (m == NULL) { 2987 device_printf(sc->sc_dev, "%s: prepend TX header failed\n", 2988 __func__); 2989 return ENOBUFS; 2990 } 2991 hdr = mtod(m, struct bwi_txbuf_hdr *); 2992 2993 bzero(hdr, sizeof(*hdr)); 2994 2995 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 2996 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 2997 2998 if (!ismcast) { 2999 uint16_t dur; 3000 3001 dur = ieee80211_ack_duration(sc->sc_rates, rate, 3002 ic->ic_flags & ~IEEE80211_F_SHPREAMBLE); 3003 3004 hdr->txh_fb_duration = htole16(dur); 3005 } 3006 3007 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3008 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3009 3010 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3011 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3012 3013 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3014 BWI_TXH_PHY_C_ANTMODE_MASK); 3015 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) 3016 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3017 else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1)) 3018 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3019 3020 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3021 if (!ismcast) 3022 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3023 if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM) 3024 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3025 3026 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3027 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3028 3029 /* Catch any further usage */ 3030 hdr = NULL; 3031 wh = NULL; 3032 3033 /* DMA load */ 3034 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3035 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3036 if (error && error != EFBIG) { 3037 device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", 3038 __func__, error); 3039 goto back; 3040 } 3041 3042 if (error) { /* error == EFBIG */ 3043 struct mbuf *m_new; 3044 3045 m_new = m_defrag(m, M_NOWAIT); 3046 if (m_new == NULL) { 3047 device_printf(sc->sc_dev, 3048 "%s: can't defrag TX buffer\n", __func__); 3049 error = ENOBUFS; 3050 goto back; 3051 } else { 3052 m = m_new; 3053 } 3054 3055 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3056 bwi_dma_buf_addr, &paddr, 3057 BUS_DMA_NOWAIT); 3058 if (error) { 3059 device_printf(sc->sc_dev, 3060 "%s: can't load TX buffer (2) %d\n", 3061 __func__, error); 3062 goto back; 3063 } 3064 } 3065 error = 0; 3066 3067 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3068 3069 tb->tb_mbuf = m; 3070 tb->tb_ni = ni; 3071 3072 #if 0 3073 p = mtod(m, const uint8_t *); 3074 for (i = 0; i < m->m_pkthdr.len; ++i) { 3075 if (i != 0 && i % 8 == 0) 3076 printf("\n"); 3077 printf("%02x ", p[i]); 3078 } 3079 printf("\n"); 3080 #endif 3081 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3082 idx, pkt_len, m->m_pkthdr.len); 3083 3084 /* Setup TX descriptor */ 3085 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3086 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3087 BUS_DMASYNC_PREWRITE); 3088 3089 /* Kick start */ 3090 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3091 3092 back: 3093 if (error) 3094 m_freem(m); 3095 return error; 3096 } 3097 3098 static int 3099 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m, 3100 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 3101 { 3102 struct ieee80211vap *vap = ni->ni_vap; 3103 struct ieee80211com *ic = ni->ni_ic; 3104 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 3105 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 3106 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 3107 struct bwi_mac *mac; 3108 struct bwi_txbuf_hdr *hdr; 3109 struct ieee80211_frame *wh; 3110 uint8_t rate, rate_fb; 3111 uint32_t mac_ctrl; 3112 uint16_t phy_ctrl; 3113 bus_addr_t paddr; 3114 int ismcast, pkt_len, error; 3115 3116 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3117 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3118 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3119 3120 wh = mtod(m, struct ieee80211_frame *); 3121 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3122 3123 /* Get 802.11 frame len before prepending TX header */ 3124 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3125 3126 /* 3127 * Find TX rate 3128 */ 3129 rate = params->ibp_rate0; 3130 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3131 /* XXX fall back to mcast/mgmt rate? */ 3132 m_freem(m); 3133 return EINVAL; 3134 } 3135 if (params->ibp_try1 != 0) { 3136 rate_fb = params->ibp_rate1; 3137 if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) { 3138 /* XXX fall back to rate0? */ 3139 m_freem(m); 3140 return EINVAL; 3141 } 3142 } else 3143 rate_fb = rate; 3144 tb->tb_rate[0] = rate; 3145 tb->tb_rate[1] = rate_fb; 3146 sc->sc_tx_rate = rate; 3147 3148 /* 3149 * TX radio tap 3150 */ 3151 if (ieee80211_radiotap_active_vap(vap)) { 3152 sc->sc_tx_th.wt_flags = 0; 3153 /* XXX IEEE80211_BPF_CRYPTO */ 3154 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3155 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3156 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3157 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3158 sc->sc_tx_th.wt_rate = rate; 3159 3160 ieee80211_radiotap_tx(vap, m); 3161 } 3162 3163 /* 3164 * Setup the embedded TX header 3165 */ 3166 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 3167 if (m == NULL) { 3168 device_printf(sc->sc_dev, "%s: prepend TX header failed\n", 3169 __func__); 3170 return ENOBUFS; 3171 } 3172 hdr = mtod(m, struct bwi_txbuf_hdr *); 3173 3174 bzero(hdr, sizeof(*hdr)); 3175 3176 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 3177 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 3178 3179 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3180 if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { 3181 uint16_t dur; 3182 3183 dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0); 3184 3185 hdr->txh_fb_duration = htole16(dur); 3186 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3187 } 3188 3189 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3190 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3191 3192 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3193 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3194 3195 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3196 BWI_TXH_PHY_C_ANTMODE_MASK); 3197 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) { 3198 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3199 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3200 } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3201 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3202 3203 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3204 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3205 3206 /* Catch any further usage */ 3207 hdr = NULL; 3208 wh = NULL; 3209 3210 /* DMA load */ 3211 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3212 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3213 if (error != 0) { 3214 struct mbuf *m_new; 3215 3216 if (error != EFBIG) { 3217 device_printf(sc->sc_dev, 3218 "%s: can't load TX buffer (1) %d\n", 3219 __func__, error); 3220 goto back; 3221 } 3222 m_new = m_defrag(m, M_NOWAIT); 3223 if (m_new == NULL) { 3224 device_printf(sc->sc_dev, 3225 "%s: can't defrag TX buffer\n", __func__); 3226 error = ENOBUFS; 3227 goto back; 3228 } 3229 m = m_new; 3230 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3231 bwi_dma_buf_addr, &paddr, 3232 BUS_DMA_NOWAIT); 3233 if (error) { 3234 device_printf(sc->sc_dev, 3235 "%s: can't load TX buffer (2) %d\n", 3236 __func__, error); 3237 goto back; 3238 } 3239 } 3240 3241 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3242 3243 tb->tb_mbuf = m; 3244 tb->tb_ni = ni; 3245 3246 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3247 idx, pkt_len, m->m_pkthdr.len); 3248 3249 /* Setup TX descriptor */ 3250 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3251 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3252 BUS_DMASYNC_PREWRITE); 3253 3254 /* Kick start */ 3255 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3256 back: 3257 if (error) 3258 m_freem(m); 3259 return error; 3260 } 3261 3262 static void 3263 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3264 { 3265 idx = (idx + 1) % BWI_TX_NDESC; 3266 CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX, 3267 idx * sizeof(struct bwi_desc32)); 3268 } 3269 3270 static void 3271 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3272 { 3273 /* TODO:64 */ 3274 } 3275 3276 static void 3277 bwi_txeof_status32(struct bwi_softc *sc) 3278 { 3279 uint32_t val, ctrl_base; 3280 int end_idx; 3281 3282 ctrl_base = sc->sc_txstats->stats_ctrl_base; 3283 3284 val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS); 3285 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 3286 sizeof(struct bwi_desc32); 3287 3288 bwi_txeof_status(sc, end_idx); 3289 3290 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 3291 end_idx * sizeof(struct bwi_desc32)); 3292 3293 bwi_start_locked(sc); 3294 } 3295 3296 static void 3297 bwi_txeof_status64(struct bwi_softc *sc) 3298 { 3299 /* TODO:64 */ 3300 } 3301 3302 static void 3303 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt) 3304 { 3305 struct bwi_txbuf_data *tbd; 3306 struct bwi_txbuf *tb; 3307 int ring_idx, buf_idx; 3308 struct ieee80211_node *ni; 3309 3310 if (tx_id == 0) { 3311 device_printf(sc->sc_dev, "%s: zero tx id\n", __func__); 3312 return; 3313 } 3314 3315 ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK); 3316 buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK); 3317 3318 KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx)); 3319 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 3320 3321 tbd = &sc->sc_tx_bdata[ring_idx]; 3322 KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used)); 3323 tbd->tbd_used--; 3324 3325 tb = &tbd->tbd_buf[buf_idx]; 3326 DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, " 3327 "acked %d, data_txcnt %d, ni %p\n", 3328 buf_idx, acked, data_txcnt, tb->tb_ni); 3329 3330 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 3331 3332 if ((ni = tb->tb_ni) != NULL) { 3333 const struct bwi_txbuf_hdr *hdr = 3334 mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *); 3335 struct ieee80211_ratectl_tx_status txs; 3336 3337 /* NB: update rate control only for unicast frames */ 3338 if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) { 3339 /* 3340 * Feed back 'acked and data_txcnt'. Note that the 3341 * generic AMRR code only understands one tx rate 3342 * and the estimator doesn't handle real retry counts 3343 * well so to avoid over-aggressive downshifting we 3344 * treat any number of retries as "1". 3345 */ 3346 txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY; 3347 txs.long_retries = acked; 3348 if (data_txcnt > 1) 3349 txs.status = IEEE80211_RATECTL_TX_SUCCESS; 3350 else { 3351 txs.status = 3352 IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3353 } 3354 ieee80211_ratectl_tx_complete(ni, &txs); 3355 } 3356 ieee80211_tx_complete(ni, tb->tb_mbuf, !acked); 3357 tb->tb_ni = NULL; 3358 } else 3359 m_freem(tb->tb_mbuf); 3360 tb->tb_mbuf = NULL; 3361 3362 if (tbd->tbd_used == 0) 3363 sc->sc_tx_timer = 0; 3364 } 3365 3366 static void 3367 bwi_txeof_status(struct bwi_softc *sc, int end_idx) 3368 { 3369 struct bwi_txstats_data *st = sc->sc_txstats; 3370 int idx; 3371 3372 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD); 3373 3374 idx = st->stats_idx; 3375 while (idx != end_idx) { 3376 const struct bwi_txstats *stats = &st->stats[idx]; 3377 3378 if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) { 3379 int data_txcnt; 3380 3381 data_txcnt = __SHIFTOUT(stats->txs_txcnt, 3382 BWI_TXS_TXCNT_DATA); 3383 _bwi_txeof(sc, le16toh(stats->txs_id), 3384 stats->txs_flags & BWI_TXS_F_ACKED, 3385 data_txcnt); 3386 } 3387 idx = (idx + 1) % BWI_TXSTATS_NDESC; 3388 } 3389 st->stats_idx = idx; 3390 } 3391 3392 static void 3393 bwi_txeof(struct bwi_softc *sc) 3394 { 3395 3396 for (;;) { 3397 uint32_t tx_status0, tx_status1 __unused; 3398 uint16_t tx_id; 3399 int data_txcnt; 3400 3401 tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0); 3402 if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0) 3403 break; 3404 tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1); 3405 3406 tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK); 3407 data_txcnt = __SHIFTOUT(tx_status0, 3408 BWI_TXSTATUS0_DATA_TXCNT_MASK); 3409 3410 if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING)) 3411 continue; 3412 3413 _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED, 3414 data_txcnt); 3415 } 3416 3417 bwi_start_locked(sc); 3418 } 3419 3420 static int 3421 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 3422 { 3423 bwi_power_on(sc, 1); 3424 return bwi_set_clock_mode(sc, clk_mode); 3425 } 3426 3427 static void 3428 bwi_bbp_power_off(struct bwi_softc *sc) 3429 { 3430 bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW); 3431 bwi_power_off(sc, 1); 3432 } 3433 3434 static int 3435 bwi_get_pwron_delay(struct bwi_softc *sc) 3436 { 3437 struct bwi_regwin *com, *old; 3438 struct bwi_clock_freq freq; 3439 uint32_t val; 3440 int error; 3441 3442 com = &sc->sc_com_regwin; 3443 KASSERT(BWI_REGWIN_EXIST(com), ("no regwin")); 3444 3445 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 3446 return 0; 3447 3448 error = bwi_regwin_switch(sc, com, &old); 3449 if (error) 3450 return error; 3451 3452 bwi_get_clock_freq(sc, &freq); 3453 3454 val = CSR_READ_4(sc, BWI_PLL_ON_DELAY); 3455 sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min); 3456 DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay); 3457 3458 return bwi_regwin_switch(sc, old, NULL); 3459 } 3460 3461 static int 3462 bwi_bus_attach(struct bwi_softc *sc) 3463 { 3464 struct bwi_regwin *bus, *old; 3465 int error; 3466 3467 bus = &sc->sc_bus_regwin; 3468 3469 error = bwi_regwin_switch(sc, bus, &old); 3470 if (error) 3471 return error; 3472 3473 if (!bwi_regwin_is_enabled(sc, bus)) 3474 bwi_regwin_enable(sc, bus, 0); 3475 3476 /* Disable interripts */ 3477 CSR_WRITE_4(sc, BWI_INTRVEC, 0); 3478 3479 return bwi_regwin_switch(sc, old, NULL); 3480 } 3481 3482 static const char * 3483 bwi_regwin_name(const struct bwi_regwin *rw) 3484 { 3485 switch (rw->rw_type) { 3486 case BWI_REGWIN_T_COM: 3487 return "COM"; 3488 case BWI_REGWIN_T_BUSPCI: 3489 return "PCI"; 3490 case BWI_REGWIN_T_MAC: 3491 return "MAC"; 3492 case BWI_REGWIN_T_BUSPCIE: 3493 return "PCIE"; 3494 } 3495 panic("unknown regwin type 0x%04x\n", rw->rw_type); 3496 return NULL; 3497 } 3498 3499 static uint32_t 3500 bwi_regwin_disable_bits(struct bwi_softc *sc) 3501 { 3502 uint32_t busrev; 3503 3504 /* XXX cache this */ 3505 busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK); 3506 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC, 3507 "bus rev %u\n", busrev); 3508 3509 if (busrev == BWI_BUSREV_0) 3510 return BWI_STATE_LO_DISABLE1; 3511 else if (busrev == BWI_BUSREV_1) 3512 return BWI_STATE_LO_DISABLE2; 3513 else 3514 return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2); 3515 } 3516 3517 int 3518 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw) 3519 { 3520 uint32_t val, disable_bits; 3521 3522 disable_bits = bwi_regwin_disable_bits(sc); 3523 val = CSR_READ_4(sc, BWI_STATE_LO); 3524 3525 if ((val & (BWI_STATE_LO_CLOCK | 3526 BWI_STATE_LO_RESET | 3527 disable_bits)) == BWI_STATE_LO_CLOCK) { 3528 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n", 3529 bwi_regwin_name(rw)); 3530 return 1; 3531 } else { 3532 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n", 3533 bwi_regwin_name(rw)); 3534 return 0; 3535 } 3536 } 3537 3538 void 3539 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3540 { 3541 uint32_t state_lo, disable_bits; 3542 int i; 3543 3544 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3545 3546 /* 3547 * If current regwin is in 'reset' state, it was already disabled. 3548 */ 3549 if (state_lo & BWI_STATE_LO_RESET) { 3550 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, 3551 "%s was already disabled\n", bwi_regwin_name(rw)); 3552 return; 3553 } 3554 3555 disable_bits = bwi_regwin_disable_bits(sc); 3556 3557 /* 3558 * Disable normal clock 3559 */ 3560 state_lo = BWI_STATE_LO_CLOCK | disable_bits; 3561 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3562 3563 /* 3564 * Wait until normal clock is disabled 3565 */ 3566 #define NRETRY 1000 3567 for (i = 0; i < NRETRY; ++i) { 3568 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3569 if (state_lo & disable_bits) 3570 break; 3571 DELAY(10); 3572 } 3573 if (i == NRETRY) { 3574 device_printf(sc->sc_dev, "%s disable clock timeout\n", 3575 bwi_regwin_name(rw)); 3576 } 3577 3578 for (i = 0; i < NRETRY; ++i) { 3579 uint32_t state_hi; 3580 3581 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3582 if ((state_hi & BWI_STATE_HI_BUSY) == 0) 3583 break; 3584 DELAY(10); 3585 } 3586 if (i == NRETRY) { 3587 device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n", 3588 bwi_regwin_name(rw)); 3589 } 3590 #undef NRETRY 3591 3592 /* 3593 * Reset and disable regwin with gated clock 3594 */ 3595 state_lo = BWI_STATE_LO_RESET | disable_bits | 3596 BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | 3597 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3598 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3599 3600 /* Flush pending bus write */ 3601 CSR_READ_4(sc, BWI_STATE_LO); 3602 DELAY(1); 3603 3604 /* Reset and disable regwin */ 3605 state_lo = BWI_STATE_LO_RESET | disable_bits | 3606 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3607 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3608 3609 /* Flush pending bus write */ 3610 CSR_READ_4(sc, BWI_STATE_LO); 3611 DELAY(1); 3612 } 3613 3614 void 3615 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3616 { 3617 uint32_t state_lo, state_hi, imstate; 3618 3619 bwi_regwin_disable(sc, rw, flags); 3620 3621 /* Reset regwin with gated clock */ 3622 state_lo = BWI_STATE_LO_RESET | 3623 BWI_STATE_LO_CLOCK | 3624 BWI_STATE_LO_GATED_CLOCK | 3625 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3626 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3627 3628 /* Flush pending bus write */ 3629 CSR_READ_4(sc, BWI_STATE_LO); 3630 DELAY(1); 3631 3632 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3633 if (state_hi & BWI_STATE_HI_SERROR) 3634 CSR_WRITE_4(sc, BWI_STATE_HI, 0); 3635 3636 imstate = CSR_READ_4(sc, BWI_IMSTATE); 3637 if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) { 3638 imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT); 3639 CSR_WRITE_4(sc, BWI_IMSTATE, imstate); 3640 } 3641 3642 /* Enable regwin with gated clock */ 3643 state_lo = BWI_STATE_LO_CLOCK | 3644 BWI_STATE_LO_GATED_CLOCK | 3645 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3646 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3647 3648 /* Flush pending bus write */ 3649 CSR_READ_4(sc, BWI_STATE_LO); 3650 DELAY(1); 3651 3652 /* Enable regwin with normal clock */ 3653 state_lo = BWI_STATE_LO_CLOCK | 3654 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3655 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3656 3657 /* Flush pending bus write */ 3658 CSR_READ_4(sc, BWI_STATE_LO); 3659 DELAY(1); 3660 } 3661 3662 static void 3663 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid) 3664 { 3665 struct bwi_mac *mac; 3666 struct bwi_myaddr_bssid buf; 3667 const uint8_t *p; 3668 uint32_t val; 3669 int n, i; 3670 3671 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3672 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3673 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3674 3675 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid); 3676 3677 bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr)); 3678 bcopy(bssid, buf.bssid, sizeof(buf.bssid)); 3679 3680 n = sizeof(buf) / sizeof(val); 3681 p = (const uint8_t *)&buf; 3682 for (i = 0; i < n; ++i) { 3683 int j; 3684 3685 val = 0; 3686 for (j = 0; j < sizeof(val); ++j) 3687 val |= ((uint32_t)(*p++)) << (j * 8); 3688 3689 TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val); 3690 } 3691 } 3692 3693 static void 3694 bwi_updateslot(struct ieee80211com *ic) 3695 { 3696 struct bwi_softc *sc = ic->ic_softc; 3697 struct bwi_mac *mac; 3698 3699 BWI_LOCK(sc); 3700 if (sc->sc_flags & BWI_F_RUNNING) { 3701 DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__); 3702 3703 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3704 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3705 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3706 3707 bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT)); 3708 } 3709 BWI_UNLOCK(sc); 3710 } 3711 3712 static void 3713 bwi_calibrate(void *xsc) 3714 { 3715 struct bwi_softc *sc = xsc; 3716 struct bwi_mac *mac; 3717 3718 BWI_ASSERT_LOCKED(sc); 3719 3720 KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR, 3721 ("opmode %d", sc->sc_ic.ic_opmode)); 3722 3723 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3724 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3725 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3726 3727 bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type); 3728 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 3729 3730 /* XXX 15 seconds */ 3731 callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc); 3732 } 3733 3734 static int 3735 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr) 3736 { 3737 struct bwi_mac *mac; 3738 3739 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3740 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3741 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3742 3743 return bwi_rf_calc_rssi(mac, hdr); 3744 } 3745 3746 static int 3747 bwi_calc_noise(struct bwi_softc *sc) 3748 { 3749 struct bwi_mac *mac; 3750 3751 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3752 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3753 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3754 3755 return bwi_rf_calc_noise(mac); 3756 } 3757 3758 static __inline uint8_t 3759 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type) 3760 { 3761 uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK; 3762 return (ieee80211_plcp2rate(plcp, type)); 3763 } 3764 3765 static void 3766 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m, 3767 struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise) 3768 { 3769 const struct ieee80211_frame_min *wh; 3770 3771 sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS; 3772 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE) 3773 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3774 3775 wh = mtod(m, const struct ieee80211_frame_min *); 3776 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3777 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; 3778 3779 sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */ 3780 sc->sc_rx_th.wr_rate = rate; 3781 sc->sc_rx_th.wr_antsignal = rssi; 3782 sc->sc_rx_th.wr_antnoise = noise; 3783 } 3784 3785 static void 3786 bwi_led_attach(struct bwi_softc *sc) 3787 { 3788 const uint8_t *led_act = NULL; 3789 uint16_t gpio, val[BWI_LED_MAX]; 3790 int i; 3791 3792 for (i = 0; i < nitems(bwi_vendor_led_act); ++i) { 3793 if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) { 3794 led_act = bwi_vendor_led_act[i].led_act; 3795 break; 3796 } 3797 } 3798 if (led_act == NULL) 3799 led_act = bwi_default_led_act; 3800 3801 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01); 3802 val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0); 3803 val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1); 3804 3805 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23); 3806 val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2); 3807 val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3); 3808 3809 for (i = 0; i < BWI_LED_MAX; ++i) { 3810 struct bwi_led *led = &sc->sc_leds[i]; 3811 3812 if (val[i] == 0xff) { 3813 led->l_act = led_act[i]; 3814 } else { 3815 if (val[i] & BWI_LED_ACT_LOW) 3816 led->l_flags |= BWI_LED_F_ACTLOW; 3817 led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK); 3818 } 3819 led->l_mask = (1 << i); 3820 3821 if (led->l_act == BWI_LED_ACT_BLINK_SLOW || 3822 led->l_act == BWI_LED_ACT_BLINK_POLL || 3823 led->l_act == BWI_LED_ACT_BLINK) { 3824 led->l_flags |= BWI_LED_F_BLINK; 3825 if (led->l_act == BWI_LED_ACT_BLINK_POLL) 3826 led->l_flags |= BWI_LED_F_POLLABLE; 3827 else if (led->l_act == BWI_LED_ACT_BLINK_SLOW) 3828 led->l_flags |= BWI_LED_F_SLOW; 3829 3830 if (sc->sc_blink_led == NULL) { 3831 sc->sc_blink_led = led; 3832 if (led->l_flags & BWI_LED_F_SLOW) 3833 BWI_LED_SLOWDOWN(sc->sc_led_idle); 3834 } 3835 } 3836 3837 DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH, 3838 "%dth led, act %d, lowact %d\n", i, 3839 led->l_act, led->l_flags & BWI_LED_F_ACTLOW); 3840 } 3841 callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); 3842 } 3843 3844 static __inline uint16_t 3845 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on) 3846 { 3847 if (led->l_flags & BWI_LED_F_ACTLOW) 3848 on = !on; 3849 if (on) 3850 val |= led->l_mask; 3851 else 3852 val &= ~led->l_mask; 3853 return val; 3854 } 3855 3856 static void 3857 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate) 3858 { 3859 struct ieee80211com *ic = &sc->sc_ic; 3860 uint16_t val; 3861 int i; 3862 3863 if (nstate == IEEE80211_S_INIT) { 3864 callout_stop(&sc->sc_led_blink_ch); 3865 sc->sc_led_blinking = 0; 3866 } 3867 3868 if ((sc->sc_flags & BWI_F_RUNNING) == 0) 3869 return; 3870 3871 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3872 for (i = 0; i < BWI_LED_MAX; ++i) { 3873 struct bwi_led *led = &sc->sc_leds[i]; 3874 int on; 3875 3876 if (led->l_act == BWI_LED_ACT_UNKN || 3877 led->l_act == BWI_LED_ACT_NULL) 3878 continue; 3879 3880 if ((led->l_flags & BWI_LED_F_BLINK) && 3881 nstate != IEEE80211_S_INIT) 3882 continue; 3883 3884 switch (led->l_act) { 3885 case BWI_LED_ACT_ON: /* Always on */ 3886 on = 1; 3887 break; 3888 case BWI_LED_ACT_OFF: /* Always off */ 3889 case BWI_LED_ACT_5GHZ: /* TODO: 11A */ 3890 on = 0; 3891 break; 3892 default: 3893 on = 1; 3894 switch (nstate) { 3895 case IEEE80211_S_INIT: 3896 on = 0; 3897 break; 3898 case IEEE80211_S_RUN: 3899 if (led->l_act == BWI_LED_ACT_11G && 3900 ic->ic_curmode != IEEE80211_MODE_11G) 3901 on = 0; 3902 break; 3903 default: 3904 if (led->l_act == BWI_LED_ACT_ASSOC) 3905 on = 0; 3906 break; 3907 } 3908 break; 3909 } 3910 3911 val = bwi_led_onoff(led, val, on); 3912 } 3913 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3914 } 3915 static void 3916 bwi_led_event(struct bwi_softc *sc, int event) 3917 { 3918 struct bwi_led *led = sc->sc_blink_led; 3919 int rate; 3920 3921 if (event == BWI_LED_EVENT_POLL) { 3922 if ((led->l_flags & BWI_LED_F_POLLABLE) == 0) 3923 return; 3924 if (ticks - sc->sc_led_ticks < sc->sc_led_idle) 3925 return; 3926 } 3927 3928 sc->sc_led_ticks = ticks; 3929 if (sc->sc_led_blinking) 3930 return; 3931 3932 switch (event) { 3933 case BWI_LED_EVENT_RX: 3934 rate = sc->sc_rx_rate; 3935 break; 3936 case BWI_LED_EVENT_TX: 3937 rate = sc->sc_tx_rate; 3938 break; 3939 case BWI_LED_EVENT_POLL: 3940 rate = 0; 3941 break; 3942 default: 3943 panic("unknown LED event %d\n", event); 3944 break; 3945 } 3946 bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur, 3947 bwi_led_duration[rate].off_dur); 3948 } 3949 3950 static void 3951 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur) 3952 { 3953 struct bwi_led *led = sc->sc_blink_led; 3954 uint16_t val; 3955 3956 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3957 val = bwi_led_onoff(led, val, 1); 3958 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3959 3960 if (led->l_flags & BWI_LED_F_SLOW) { 3961 BWI_LED_SLOWDOWN(on_dur); 3962 BWI_LED_SLOWDOWN(off_dur); 3963 } 3964 3965 sc->sc_led_blinking = 1; 3966 sc->sc_led_blink_offdur = off_dur; 3967 3968 callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc); 3969 } 3970 3971 static void 3972 bwi_led_blink_next(void *xsc) 3973 { 3974 struct bwi_softc *sc = xsc; 3975 uint16_t val; 3976 3977 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3978 val = bwi_led_onoff(sc->sc_blink_led, val, 0); 3979 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3980 3981 callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, 3982 bwi_led_blink_end, sc); 3983 } 3984 3985 static void 3986 bwi_led_blink_end(void *xsc) 3987 { 3988 struct bwi_softc *sc = xsc; 3989 sc->sc_led_blinking = 0; 3990 } 3991 3992 static void 3993 bwi_restart(void *xsc, int pending) 3994 { 3995 struct bwi_softc *sc = xsc; 3996 3997 device_printf(sc->sc_dev, "%s begin, help!\n", __func__); 3998 BWI_LOCK(sc); 3999 bwi_init_statechg(sc, 0); 4000 #if 0 4001 bwi_start_locked(sc); 4002 #endif 4003 BWI_UNLOCK(sc); 4004 } 4005