xref: /freebsd/sys/dev/bwi/if_bwi.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_phy.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		   const char [IFNAMSIZ], int, int, int,
100 		   const uint8_t [IEEE80211_ADDR_LEN],
101 		   const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(void *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static int	bwi_media_change(struct ifnet *);
116 
117 static void	bwi_calibrate(void *);
118 
119 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
120 static int	bwi_calc_noise(struct bwi_softc *);
121 static __inline uint8_t bwi_ofdm_plcp2rate(const uint32_t *);
122 static __inline uint8_t bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *);
123 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
124 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
125 
126 static void	bwi_restart(void *, int);
127 static void	bwi_init_statechg(struct bwi_softc *, int);
128 static void	bwi_stop(struct bwi_softc *, int);
129 static void	bwi_stop_locked(struct bwi_softc *, int);
130 static int	bwi_newbuf(struct bwi_softc *, int, int);
131 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
132 			  struct ieee80211_node *);
133 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *,
135 			  const struct ieee80211_bpf_params *);
136 
137 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
138 				       bus_addr_t, int, int);
139 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
140 
141 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
142 static int	bwi_init_rx_ring32(struct bwi_softc *);
143 static int	bwi_init_txstats32(struct bwi_softc *);
144 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
145 static void	bwi_free_rx_ring32(struct bwi_softc *);
146 static void	bwi_free_txstats32(struct bwi_softc *);
147 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
148 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
149 				    int, bus_addr_t, int);
150 static int	bwi_rxeof32(struct bwi_softc *);
151 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
152 static void	bwi_txeof_status32(struct bwi_softc *);
153 
154 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
155 static int	bwi_init_rx_ring64(struct bwi_softc *);
156 static int	bwi_init_txstats64(struct bwi_softc *);
157 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
158 static void	bwi_free_rx_ring64(struct bwi_softc *);
159 static void	bwi_free_txstats64(struct bwi_softc *);
160 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
161 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
162 				    int, bus_addr_t, int);
163 static int	bwi_rxeof64(struct bwi_softc *);
164 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
165 static void	bwi_txeof_status64(struct bwi_softc *);
166 
167 static int	bwi_rxeof(struct bwi_softc *, int);
168 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
169 static void	bwi_txeof(struct bwi_softc *);
170 static void	bwi_txeof_status(struct bwi_softc *, int);
171 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
172 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
173 
174 static int	bwi_dma_alloc(struct bwi_softc *);
175 static void	bwi_dma_free(struct bwi_softc *);
176 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
177 				   struct bwi_ring_data *, bus_size_t,
178 				   uint32_t);
179 static int	bwi_dma_mbuf_create(struct bwi_softc *);
180 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
181 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
182 static void	bwi_dma_txstats_free(struct bwi_softc *);
183 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
184 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
185 				 bus_size_t, int);
186 
187 static void	bwi_power_on(struct bwi_softc *, int);
188 static int	bwi_power_off(struct bwi_softc *, int);
189 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
190 static int	bwi_set_clock_delay(struct bwi_softc *);
191 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
192 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
193 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
194 				    const uint8_t *);
195 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
196 
197 static void	bwi_get_card_flags(struct bwi_softc *);
198 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
199 
200 static int	bwi_bus_attach(struct bwi_softc *);
201 static int	bwi_bbp_attach(struct bwi_softc *);
202 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
203 static void	bwi_bbp_power_off(struct bwi_softc *);
204 
205 static const char *bwi_regwin_name(const struct bwi_regwin *);
206 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
207 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
208 static int	bwi_regwin_select(struct bwi_softc *, int);
209 
210 static void	bwi_led_attach(struct bwi_softc *);
211 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
212 static void	bwi_led_event(struct bwi_softc *, int);
213 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
214 static void	bwi_led_blink_next(void *);
215 static void	bwi_led_blink_end(void *);
216 
217 static const struct {
218 	uint16_t	did_min;
219 	uint16_t	did_max;
220 	uint16_t	bbp_id;
221 } bwi_bbpid_map[] = {
222 	{ 0x4301, 0x4301, 0x4301 },
223 	{ 0x4305, 0x4307, 0x4307 },
224 	{ 0x4403, 0x4403, 0x4402 },
225 	{ 0x4610, 0x4615, 0x4610 },
226 	{ 0x4710, 0x4715, 0x4710 },
227 	{ 0x4720, 0x4725, 0x4309 }
228 };
229 
230 static const struct {
231 	uint16_t	bbp_id;
232 	int		nregwin;
233 } bwi_regwin_count[] = {
234 	{ 0x4301, 5 },
235 	{ 0x4306, 6 },
236 	{ 0x4307, 5 },
237 	{ 0x4310, 8 },
238 	{ 0x4401, 3 },
239 	{ 0x4402, 3 },
240 	{ 0x4610, 9 },
241 	{ 0x4704, 9 },
242 	{ 0x4710, 9 },
243 	{ 0x5365, 7 }
244 };
245 
246 #define CLKSRC(src) 				\
247 [BWI_CLKSRC_ ## src] = {			\
248 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
249 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
250 }
251 
252 static const struct {
253 	u_int	freq_min;
254 	u_int	freq_max;
255 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
256 	CLKSRC(LP_OSC),
257 	CLKSRC(CS_OSC),
258 	CLKSRC(PCI)
259 };
260 
261 #undef CLKSRC
262 
263 #define VENDOR_LED_ACT(vendor)				\
264 {							\
265 	.vid = PCI_VENDOR_##vendor,			\
266 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
267 }
268 
269 static const struct {
270 #define	PCI_VENDOR_COMPAQ	0x0e11
271 #define	PCI_VENDOR_LINKSYS	0x1737
272 	uint16_t	vid;
273 	uint8_t		led_act[BWI_LED_MAX];
274 } bwi_vendor_led_act[] = {
275 	VENDOR_LED_ACT(COMPAQ),
276 	VENDOR_LED_ACT(LINKSYS)
277 #undef PCI_VENDOR_LINKSYS
278 #undef PCI_VENDOR_COMPAQ
279 };
280 
281 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
282 	{ BWI_VENDOR_LED_ACT_DEFAULT };
283 
284 #undef VENDOR_LED_ACT
285 
286 static const struct {
287 	int	on_dur;
288 	int	off_dur;
289 } bwi_led_duration[109] = {
290 	[0]	= { 400, 100 },
291 	[2]	= { 150, 75 },
292 	[4]	= { 90, 45 },
293 	[11]	= { 66, 34 },
294 	[12]	= { 53, 26 },
295 	[18]	= { 42, 21 },
296 	[22]	= { 35, 17 },
297 	[24]	= { 32, 16 },
298 	[36]	= { 21, 10 },
299 	[48]	= { 16, 8 },
300 	[72]	= { 11, 5 },
301 	[96]	= { 9, 4 },
302 	[108]	= { 7, 3 }
303 };
304 
305 #ifdef BWI_DEBUG
306 #ifdef BWI_DEBUG_VERBOSE
307 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
308 #else
309 static uint32_t	bwi_debug;
310 #endif
311 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
312 #endif	/* BWI_DEBUG */
313 
314 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
315 
316 uint16_t
317 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
318 {
319 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
320 }
321 
322 static __inline void
323 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
324 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
325 		 int tx)
326 {
327 	struct bwi_desc32 *desc = &desc_array[desc_idx];
328 	uint32_t ctrl, addr, addr_hi, addr_lo;
329 
330 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
331 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
332 
333 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
334 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
335 
336 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
337 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
338 	if (desc_idx == ndesc - 1)
339 		ctrl |= BWI_DESC32_C_EOR;
340 	if (tx) {
341 		/* XXX */
342 		ctrl |= BWI_DESC32_C_FRAME_START |
343 			BWI_DESC32_C_FRAME_END |
344 			BWI_DESC32_C_INTR;
345 	}
346 
347 	desc->addr = htole32(addr);
348 	desc->ctrl = htole32(ctrl);
349 }
350 
351 int
352 bwi_attach(struct bwi_softc *sc)
353 {
354 	struct ieee80211com *ic;
355 	device_t dev = sc->sc_dev;
356 	struct ifnet *ifp;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	int i, error;
360 	uint8_t bands;
361 	uint8_t macaddr[IEEE80211_ADDR_LEN];
362 
363 	BWI_LOCK_INIT(sc);
364 
365 	/*
366 	 * Initialize taskq and various tasks
367 	 */
368 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
369 		taskqueue_thread_enqueue, &sc->sc_tq);
370 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
371 		device_get_nameunit(dev));
372 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
373 
374 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
375 
376 	/*
377 	 * Initialize sysctl variables
378 	 */
379 	sc->sc_fw_version = BWI_FW_VERSION3;
380 	sc->sc_led_idle = (2350 * hz) / 1000;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
449 	if (ifp == NULL) {
450 		device_printf(dev, "can not if_alloc()\n");
451 		error = ENOSPC;
452 		goto fail;
453 	}
454 	ic = ifp->if_l2com;
455 
456 	/* set these up early for if_printf use */
457 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
458 
459 	ifp->if_softc = sc;
460 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
461 	ifp->if_init = bwi_init;
462 	ifp->if_ioctl = bwi_ioctl;
463 	ifp->if_start = bwi_start;
464 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
465 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
466 	IFQ_SET_READY(&ifp->if_snd);
467 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
468 
469 	/*
470 	 * Setup ratesets, phytype, channels and get MAC address
471 	 */
472 	bands = 0;
473 	if (phy->phy_mode == IEEE80211_MODE_11B ||
474 	    phy->phy_mode == IEEE80211_MODE_11G) {
475 		setbit(&bands, IEEE80211_MODE_11B);
476 		if (phy->phy_mode == IEEE80211_MODE_11B) {
477 			ic->ic_phytype = IEEE80211_T_DS;
478 		} else {
479 			ic->ic_phytype = IEEE80211_T_OFDM;
480 			setbit(&bands, IEEE80211_MODE_11G);
481 		}
482 
483 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
484 		if (IEEE80211_IS_MULTICAST(macaddr)) {
485 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
486 			if (IEEE80211_IS_MULTICAST(macaddr)) {
487 				device_printf(dev,
488 				    "invalid MAC address: %6D\n",
489 				    macaddr, ":");
490 			}
491 		}
492 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
493 		/* TODO:11A */
494 		setbit(&bands, IEEE80211_MODE_11A);
495 		error = ENXIO;
496 		goto fail;
497 	} else {
498 		panic("unknown phymode %d\n", phy->phy_mode);
499 	}
500 
501 	/* Get locale */
502 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
503 				   BWI_SPROM_CARD_INFO_LOCALE);
504 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
505 	/* XXX use locale */
506 	ieee80211_init_channels(ic, NULL, &bands);
507 
508 	ic->ic_ifp = ifp;
509 	ic->ic_caps = IEEE80211_C_STA |
510 		      IEEE80211_C_SHSLOT |
511 		      IEEE80211_C_SHPREAMBLE |
512 		      IEEE80211_C_WPA |
513 		      IEEE80211_C_BGSCAN |
514 		      IEEE80211_C_MONITOR;
515 	ic->ic_opmode = IEEE80211_M_STA;
516 	ieee80211_ifattach(ic, macaddr);
517 
518 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
519 
520 	/* override default methods */
521 	ic->ic_vap_create = bwi_vap_create;
522 	ic->ic_vap_delete = bwi_vap_delete;
523 	ic->ic_raw_xmit = bwi_raw_xmit;
524 	ic->ic_updateslot = bwi_updateslot;
525 	ic->ic_scan_start = bwi_scan_start;
526 	ic->ic_scan_end = bwi_scan_end;
527 	ic->ic_set_channel = bwi_set_channel;
528 
529 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
530 
531 	ieee80211_radiotap_attach(ic,
532 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
533 		BWI_TX_RADIOTAP_PRESENT,
534 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
535 		BWI_RX_RADIOTAP_PRESENT);
536 
537 	/*
538 	 * Add sysctl nodes
539 	 */
540 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
541 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
543 		        "Firmware version");
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
547 		        "# ticks before LED enters idle state");
548 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
549 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
551 		       "Allow LED to blink");
552 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
553 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
554 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
555 		       "Enable software TX power calibration");
556 #ifdef BWI_DEBUG
557 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
558 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
559 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
560 #endif
561 	if (bootverbose)
562 		ieee80211_announce(ic);
563 
564 	return (0);
565 fail:
566 	BWI_LOCK_DESTROY(sc);
567 	return (error);
568 }
569 
570 int
571 bwi_detach(struct bwi_softc *sc)
572 {
573 	struct ifnet *ifp = sc->sc_ifp;
574 	struct ieee80211com *ic = ifp->if_l2com;
575 	int i;
576 
577 	bwi_stop(sc, 1);
578 	callout_drain(&sc->sc_led_blink_ch);
579 	callout_drain(&sc->sc_calib_ch);
580 	callout_drain(&sc->sc_watchdog_timer);
581 	ieee80211_ifdetach(ic);
582 
583 	for (i = 0; i < sc->sc_nmac; ++i)
584 		bwi_mac_detach(&sc->sc_mac[i]);
585 	bwi_dma_free(sc);
586 	if_free(ifp);
587 	taskqueue_free(sc->sc_tq);
588 
589 	BWI_LOCK_DESTROY(sc);
590 
591 	return (0);
592 }
593 
594 static struct ieee80211vap *
595 bwi_vap_create(struct ieee80211com *ic,
596 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
597 	const uint8_t bssid[IEEE80211_ADDR_LEN],
598 	const uint8_t mac[IEEE80211_ADDR_LEN])
599 {
600 	struct bwi_vap *bvp;
601 	struct ieee80211vap *vap;
602 
603 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
604 		return NULL;
605 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
606 	    M_80211_VAP, M_WAITOK | M_ZERO);
607 	if (bvp == NULL)
608 		return NULL;
609 	vap = &bvp->bv_vap;
610 	/* enable s/w bmiss handling for sta mode */
611 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
612 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
613 
614 	/* override default methods */
615 	bvp->bv_newstate = vap->iv_newstate;
616 	vap->iv_newstate = bwi_newstate;
617 #if 0
618 	vap->iv_update_beacon = bwi_beacon_update;
619 #endif
620 	ieee80211_ratectl_init(vap);
621 
622 	/* complete setup */
623 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
624 	ic->ic_opmode = opmode;
625 	return vap;
626 }
627 
628 static void
629 bwi_vap_delete(struct ieee80211vap *vap)
630 {
631 	struct bwi_vap *bvp = BWI_VAP(vap);
632 
633 	ieee80211_ratectl_deinit(vap);
634 	ieee80211_vap_detach(vap);
635 	free(bvp, M_80211_VAP);
636 }
637 
638 void
639 bwi_suspend(struct bwi_softc *sc)
640 {
641 	bwi_stop(sc, 1);
642 }
643 
644 void
645 bwi_resume(struct bwi_softc *sc)
646 {
647 	struct ifnet *ifp = sc->sc_ifp;
648 
649 	if (ifp->if_flags & IFF_UP)
650 		bwi_init(sc);
651 }
652 
653 int
654 bwi_shutdown(struct bwi_softc *sc)
655 {
656 	bwi_stop(sc, 1);
657 	return 0;
658 }
659 
660 static void
661 bwi_power_on(struct bwi_softc *sc, int with_pll)
662 {
663 	uint32_t gpio_in, gpio_out, gpio_en;
664 	uint16_t status;
665 
666 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
667 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
668 		goto back;
669 
670 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
671 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
672 
673 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
674 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
675 	if (with_pll) {
676 		/* Turn off PLL first */
677 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
678 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
679 	}
680 
681 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
682 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
683 	DELAY(1000);
684 
685 	if (with_pll) {
686 		/* Turn on PLL */
687 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
688 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
689 		DELAY(5000);
690 	}
691 
692 back:
693 	/* Clear "Signaled Target Abort" */
694 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
695 	status &= ~PCIM_STATUS_STABORT;
696 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
697 }
698 
699 static int
700 bwi_power_off(struct bwi_softc *sc, int with_pll)
701 {
702 	uint32_t gpio_out, gpio_en;
703 
704 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
705 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
706 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
707 
708 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
709 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
710 	if (with_pll) {
711 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
712 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
713 	}
714 
715 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
716 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
717 	return 0;
718 }
719 
720 int
721 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
722 		  struct bwi_regwin **old_rw)
723 {
724 	int error;
725 
726 	if (old_rw != NULL)
727 		*old_rw = NULL;
728 
729 	if (!BWI_REGWIN_EXIST(rw))
730 		return EINVAL;
731 
732 	if (sc->sc_cur_regwin != rw) {
733 		error = bwi_regwin_select(sc, rw->rw_id);
734 		if (error) {
735 			device_printf(sc->sc_dev, "can't select regwin %d\n",
736 				  rw->rw_id);
737 			return error;
738 		}
739 	}
740 
741 	if (old_rw != NULL)
742 		*old_rw = sc->sc_cur_regwin;
743 	sc->sc_cur_regwin = rw;
744 	return 0;
745 }
746 
747 static int
748 bwi_regwin_select(struct bwi_softc *sc, int id)
749 {
750 	uint32_t win = BWI_PCIM_REGWIN(id);
751 	int i;
752 
753 #define RETRY_MAX	50
754 	for (i = 0; i < RETRY_MAX; ++i) {
755 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
756 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
757 			return 0;
758 		DELAY(10);
759 	}
760 #undef RETRY_MAX
761 
762 	return ENXIO;
763 }
764 
765 static void
766 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
767 {
768 	uint32_t val;
769 
770 	val = CSR_READ_4(sc, BWI_ID_HI);
771 	*type = BWI_ID_HI_REGWIN_TYPE(val);
772 	*rev = BWI_ID_HI_REGWIN_REV(val);
773 
774 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
775 		"vendor 0x%04x\n", *type, *rev,
776 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
777 }
778 
779 static int
780 bwi_bbp_attach(struct bwi_softc *sc)
781 {
782 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
783 	uint16_t bbp_id, rw_type;
784 	uint8_t rw_rev;
785 	uint32_t info;
786 	int error, nregwin, i;
787 
788 	/*
789 	 * Get 0th regwin information
790 	 * NOTE: 0th regwin should exist
791 	 */
792 	error = bwi_regwin_select(sc, 0);
793 	if (error) {
794 		device_printf(sc->sc_dev, "can't select regwin 0\n");
795 		return error;
796 	}
797 	bwi_regwin_info(sc, &rw_type, &rw_rev);
798 
799 	/*
800 	 * Find out BBP id
801 	 */
802 	bbp_id = 0;
803 	info = 0;
804 	if (rw_type == BWI_REGWIN_T_COM) {
805 		info = CSR_READ_4(sc, BWI_INFO);
806 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
807 
808 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
809 
810 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
811 	} else {
812 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
813 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
814 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
815 				bbp_id = bwi_bbpid_map[i].bbp_id;
816 				break;
817 			}
818 		}
819 		if (bbp_id == 0) {
820 			device_printf(sc->sc_dev, "no BBP id for device id "
821 				      "0x%04x\n", sc->sc_pci_did);
822 			return ENXIO;
823 		}
824 
825 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
826 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
827 	}
828 
829 	/*
830 	 * Find out number of regwins
831 	 */
832 	nregwin = 0;
833 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
834 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
835 	} else {
836 		for (i = 0; i < N(bwi_regwin_count); ++i) {
837 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
838 				nregwin = bwi_regwin_count[i].nregwin;
839 				break;
840 			}
841 		}
842 		if (nregwin == 0) {
843 			device_printf(sc->sc_dev, "no number of win for "
844 				      "BBP id 0x%04x\n", bbp_id);
845 			return ENXIO;
846 		}
847 	}
848 
849 	/* Record BBP id/rev for later using */
850 	sc->sc_bbp_id = bbp_id;
851 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
852 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
853 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
854 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
855 
856 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
857 		nregwin, sc->sc_cap);
858 
859 	/*
860 	 * Create rest of the regwins
861 	 */
862 
863 	/* Don't re-create common regwin, if it is already created */
864 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
865 
866 	for (; i < nregwin; ++i) {
867 		/*
868 		 * Get regwin information
869 		 */
870 		error = bwi_regwin_select(sc, i);
871 		if (error) {
872 			device_printf(sc->sc_dev,
873 				      "can't select regwin %d\n", i);
874 			return error;
875 		}
876 		bwi_regwin_info(sc, &rw_type, &rw_rev);
877 
878 		/*
879 		 * Try attach:
880 		 * 1) Bus (PCI/PCIE) regwin
881 		 * 2) MAC regwin
882 		 * Ignore rest types of regwin
883 		 */
884 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
885 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
886 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
887 				device_printf(sc->sc_dev,
888 					      "bus regwin already exists\n");
889 			} else {
890 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
891 						  rw_type, rw_rev);
892 			}
893 		} else if (rw_type == BWI_REGWIN_T_MAC) {
894 			/* XXX ignore return value */
895 			bwi_mac_attach(sc, i, rw_rev);
896 		}
897 	}
898 
899 	/* At least one MAC shold exist */
900 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
901 		device_printf(sc->sc_dev, "no MAC was found\n");
902 		return ENXIO;
903 	}
904 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
905 
906 	/* Bus regwin must exist */
907 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
908 		device_printf(sc->sc_dev, "no bus regwin was found\n");
909 		return ENXIO;
910 	}
911 
912 	/* Start with first MAC */
913 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
914 	if (error)
915 		return error;
916 
917 	return 0;
918 #undef N
919 }
920 
921 int
922 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
923 {
924 	struct bwi_regwin *old, *bus;
925 	uint32_t val;
926 	int error;
927 
928 	bus = &sc->sc_bus_regwin;
929 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
930 
931 	/*
932 	 * Tell bus to generate requested interrupts
933 	 */
934 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
935 		/*
936 		 * NOTE: Read BWI_FLAGS from MAC regwin
937 		 */
938 		val = CSR_READ_4(sc, BWI_FLAGS);
939 
940 		error = bwi_regwin_switch(sc, bus, &old);
941 		if (error)
942 			return error;
943 
944 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
945 	} else {
946 		uint32_t mac_mask;
947 
948 		mac_mask = 1 << mac->mac_id;
949 
950 		error = bwi_regwin_switch(sc, bus, &old);
951 		if (error)
952 			return error;
953 
954 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
955 		val |= mac_mask << 8;
956 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
957 	}
958 
959 	if (sc->sc_flags & BWI_F_BUS_INITED)
960 		goto back;
961 
962 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
963 		/*
964 		 * Enable prefetch and burst
965 		 */
966 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
967 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
968 
969 		if (bus->rw_rev < 5) {
970 			struct bwi_regwin *com = &sc->sc_com_regwin;
971 
972 			/*
973 			 * Configure timeouts for bus operation
974 			 */
975 
976 			/*
977 			 * Set service timeout and request timeout
978 			 */
979 			CSR_SETBITS_4(sc, BWI_CONF_LO,
980 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
981 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
982 
983 			/*
984 			 * If there is common regwin, we switch to that regwin
985 			 * and switch back to bus regwin once we have done.
986 			 */
987 			if (BWI_REGWIN_EXIST(com)) {
988 				error = bwi_regwin_switch(sc, com, NULL);
989 				if (error)
990 					return error;
991 			}
992 
993 			/* Let bus know what we have changed */
994 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
995 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
996 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
997 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
998 
999 			if (BWI_REGWIN_EXIST(com)) {
1000 				error = bwi_regwin_switch(sc, bus, NULL);
1001 				if (error)
1002 					return error;
1003 			}
1004 		} else if (bus->rw_rev >= 11) {
1005 			/*
1006 			 * Enable memory read multiple
1007 			 */
1008 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1009 		}
1010 	} else {
1011 		/* TODO:PCIE */
1012 	}
1013 
1014 	sc->sc_flags |= BWI_F_BUS_INITED;
1015 back:
1016 	return bwi_regwin_switch(sc, old, NULL);
1017 }
1018 
1019 static void
1020 bwi_get_card_flags(struct bwi_softc *sc)
1021 {
1022 #define	PCI_VENDOR_APPLE 0x106b
1023 #define	PCI_VENDOR_DELL  0x1028
1024 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1025 	if (sc->sc_card_flags == 0xffff)
1026 		sc->sc_card_flags = 0;
1027 
1028 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1029 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1030 	    sc->sc_pci_revid == 0x74)
1031 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1032 
1033 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1034 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1035 	    sc->sc_pci_revid > 0x40)
1036 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1037 
1038 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1039 #undef PCI_VENDOR_DELL
1040 #undef PCI_VENDOR_APPLE
1041 }
1042 
1043 static void
1044 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < 3; ++i) {
1049 		*((uint16_t *)eaddr + i) =
1050 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1051 	}
1052 }
1053 
1054 static void
1055 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1056 {
1057 	struct bwi_regwin *com;
1058 	uint32_t val;
1059 	u_int div;
1060 	int src;
1061 
1062 	bzero(freq, sizeof(*freq));
1063 	com = &sc->sc_com_regwin;
1064 
1065 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1066 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1067 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1068 
1069 	/*
1070 	 * Calculate clock frequency
1071 	 */
1072 	src = -1;
1073 	div = 0;
1074 	if (com->rw_rev < 6) {
1075 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1076 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1077 			src = BWI_CLKSRC_PCI;
1078 			div = 64;
1079 		} else {
1080 			src = BWI_CLKSRC_CS_OSC;
1081 			div = 32;
1082 		}
1083 	} else if (com->rw_rev < 10) {
1084 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1085 
1086 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1087 		if (src == BWI_CLKSRC_LP_OSC) {
1088 			div = 1;
1089 		} else {
1090 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1091 
1092 			/* Unknown source */
1093 			if (src >= BWI_CLKSRC_MAX)
1094 				src = BWI_CLKSRC_CS_OSC;
1095 		}
1096 	} else {
1097 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1098 
1099 		src = BWI_CLKSRC_CS_OSC;
1100 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1101 	}
1102 
1103 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1104 	KASSERT(div != 0, ("div zero"));
1105 
1106 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1107 		src == BWI_CLKSRC_PCI ? "PCI" :
1108 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1109 
1110 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1111 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1112 
1113 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1114 		freq->clkfreq_min, freq->clkfreq_max);
1115 }
1116 
1117 static int
1118 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1119 {
1120 	struct bwi_regwin *old, *com;
1121 	uint32_t clk_ctrl, clk_src;
1122 	int error, pwr_off = 0;
1123 
1124 	com = &sc->sc_com_regwin;
1125 	if (!BWI_REGWIN_EXIST(com))
1126 		return 0;
1127 
1128 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1129 		return 0;
1130 
1131 	/*
1132 	 * For common regwin whose rev is [6, 10), the chip
1133 	 * must be capable to change clock mode.
1134 	 */
1135 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1136 		return 0;
1137 
1138 	error = bwi_regwin_switch(sc, com, &old);
1139 	if (error)
1140 		return error;
1141 
1142 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1143 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1144 
1145 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1146 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1147 
1148 	switch (clk_mode) {
1149 	case BWI_CLOCK_MODE_FAST:
1150 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1151 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1152 		break;
1153 	case BWI_CLOCK_MODE_SLOW:
1154 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1155 		break;
1156 	case BWI_CLOCK_MODE_DYN:
1157 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1158 			      BWI_CLOCK_CTRL_IGNPLL |
1159 			      BWI_CLOCK_CTRL_NODYN);
1160 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1161 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1162 			pwr_off = 1;
1163 		}
1164 		break;
1165 	}
1166 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1167 
1168 	if (pwr_off)
1169 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1170 
1171 	return bwi_regwin_switch(sc, old, NULL);
1172 }
1173 
1174 static int
1175 bwi_set_clock_delay(struct bwi_softc *sc)
1176 {
1177 	struct bwi_regwin *old, *com;
1178 	int error;
1179 
1180 	com = &sc->sc_com_regwin;
1181 	if (!BWI_REGWIN_EXIST(com))
1182 		return 0;
1183 
1184 	error = bwi_regwin_switch(sc, com, &old);
1185 	if (error)
1186 		return error;
1187 
1188 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1189 		if (sc->sc_bbp_rev == 0)
1190 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1191 		else if (sc->sc_bbp_rev == 1)
1192 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1193 	}
1194 
1195 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1196 		if (com->rw_rev >= 10) {
1197 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1198 		} else {
1199 			struct bwi_clock_freq freq;
1200 
1201 			bwi_get_clock_freq(sc, &freq);
1202 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1203 				howmany(freq.clkfreq_max * 150, 1000000));
1204 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1205 				howmany(freq.clkfreq_max * 15, 1000000));
1206 		}
1207 	}
1208 
1209 	return bwi_regwin_switch(sc, old, NULL);
1210 }
1211 
1212 static void
1213 bwi_init(void *xsc)
1214 {
1215 	struct bwi_softc *sc = xsc;
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 
1219 	BWI_LOCK(sc);
1220 	bwi_init_statechg(sc, 1);
1221 	BWI_UNLOCK(sc);
1222 
1223 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1224 		ieee80211_start_all(ic);		/* start all vap's */
1225 }
1226 
1227 static void
1228 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1229 {
1230 	struct ifnet *ifp = sc->sc_ifp;
1231 	struct bwi_mac *mac;
1232 	int error;
1233 
1234 	bwi_stop_locked(sc, statechg);
1235 
1236 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1237 
1238 	/* TODO: 2 MAC */
1239 
1240 	mac = &sc->sc_mac[0];
1241 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1242 	if (error) {
1243 		if_printf(ifp, "%s: error %d on regwin switch\n",
1244 		    __func__, error);
1245 		goto bad;
1246 	}
1247 	error = bwi_mac_init(mac);
1248 	if (error) {
1249 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1250 		goto bad;
1251 	}
1252 
1253 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1254 
1255 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1256 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1257 
1258 	bwi_mac_reset_hwkeys(mac);
1259 
1260 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1261 		int i;
1262 
1263 #define NRETRY	1000
1264 		/*
1265 		 * Drain any possible pending TX status
1266 		 */
1267 		for (i = 0; i < NRETRY; ++i) {
1268 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1269 			     BWI_TXSTATUS0_VALID) == 0)
1270 				break;
1271 			CSR_READ_4(sc, BWI_TXSTATUS1);
1272 		}
1273 		if (i == NRETRY)
1274 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1275 #undef NRETRY
1276 	}
1277 
1278 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1279 		bwi_mac_updateslot(mac, 1);
1280 
1281 	/* Start MAC */
1282 	error = bwi_mac_start(mac);
1283 	if (error) {
1284 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1285 		goto bad;
1286 	}
1287 
1288 	/* Clear stop flag before enabling interrupt */
1289 	sc->sc_flags &= ~BWI_F_STOP;
1290 
1291 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1292 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1293 
1294 	/* Enable intrs */
1295 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1296 	return;
1297 bad:
1298 	bwi_stop_locked(sc, 1);
1299 }
1300 
1301 static int
1302 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1303 {
1304 #define	IS_RUNNING(ifp) \
1305 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1306 	struct bwi_softc *sc = ifp->if_softc;
1307 	struct ieee80211com *ic = ifp->if_l2com;
1308 	struct ifreq *ifr = (struct ifreq *) data;
1309 	int error = 0, startall = 0;
1310 
1311 	switch (cmd) {
1312 	case SIOCSIFFLAGS:
1313 		BWI_LOCK(sc);
1314 		if (IS_RUNNING(ifp)) {
1315 			struct bwi_mac *mac;
1316 			int promisc = -1;
1317 
1318 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1319 			    ("current regwin type %d",
1320 			    sc->sc_cur_regwin->rw_type));
1321 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1322 
1323 			if ((ifp->if_flags & IFF_PROMISC) &&
1324 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1325 				promisc = 1;
1326 				sc->sc_flags |= BWI_F_PROMISC;
1327 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1328 				   (sc->sc_flags & BWI_F_PROMISC)) {
1329 				promisc = 0;
1330 				sc->sc_flags &= ~BWI_F_PROMISC;
1331 			}
1332 
1333 			if (promisc >= 0)
1334 				bwi_mac_set_promisc(mac, promisc);
1335 		}
1336 
1337 		if (ifp->if_flags & IFF_UP) {
1338 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1339 				bwi_init_statechg(sc, 1);
1340 				startall = 1;
1341 			}
1342 		} else {
1343 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1344 				bwi_stop_locked(sc, 1);
1345 		}
1346 		BWI_UNLOCK(sc);
1347 		if (startall)
1348 			ieee80211_start_all(ic);
1349 		break;
1350 	case SIOCGIFMEDIA:
1351 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1352 		break;
1353 	case SIOCGIFADDR:
1354 		error = ether_ioctl(ifp, cmd, data);
1355 		break;
1356 	default:
1357 		error = EINVAL;
1358 		break;
1359 	}
1360 	return error;
1361 #undef IS_RUNNING
1362 }
1363 
1364 static void
1365 bwi_start(struct ifnet *ifp)
1366 {
1367 	struct bwi_softc *sc = ifp->if_softc;
1368 
1369 	BWI_LOCK(sc);
1370 	bwi_start_locked(ifp);
1371 	BWI_UNLOCK(sc);
1372 }
1373 
1374 static void
1375 bwi_start_locked(struct ifnet *ifp)
1376 {
1377 	struct bwi_softc *sc = ifp->if_softc;
1378 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1379 	struct ieee80211_frame *wh;
1380 	struct ieee80211_node *ni;
1381 	struct ieee80211_key *k;
1382 	struct mbuf *m;
1383 	int trans, idx;
1384 
1385 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1386 		return;
1387 
1388 	trans = 0;
1389 	idx = tbd->tbd_idx;
1390 
1391 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1392 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1393 		if (m == NULL)
1394 			break;
1395 
1396 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1397 		wh = mtod(m, struct ieee80211_frame *);
1398 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1399 			k = ieee80211_crypto_encap(ni, m);
1400 			if (k == NULL) {
1401 				ieee80211_free_node(ni);
1402 				m_freem(m);
1403 				ifp->if_oerrors++;
1404 				continue;
1405 			}
1406 		}
1407 		wh = NULL;	/* Catch any invalid use */
1408 
1409 		if (bwi_encap(sc, idx, m, ni) != 0) {
1410 			/* 'm' is freed in bwi_encap() if we reach here */
1411 			if (ni != NULL)
1412 				ieee80211_free_node(ni);
1413 			ifp->if_oerrors++;
1414 			continue;
1415 		}
1416 
1417 		trans = 1;
1418 		tbd->tbd_used++;
1419 		idx = (idx + 1) % BWI_TX_NDESC;
1420 
1421 		ifp->if_opackets++;
1422 
1423 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1424 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1425 			break;
1426 		}
1427 	}
1428 	tbd->tbd_idx = idx;
1429 
1430 	if (trans)
1431 		sc->sc_tx_timer = 5;
1432 }
1433 
1434 static int
1435 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1436 	const struct ieee80211_bpf_params *params)
1437 {
1438 	struct ieee80211com *ic = ni->ni_ic;
1439 	struct ifnet *ifp = ic->ic_ifp;
1440 	struct bwi_softc *sc = ifp->if_softc;
1441 	/* XXX wme? */
1442 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1443 	int idx, error;
1444 
1445 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1446 		ieee80211_free_node(ni);
1447 		m_freem(m);
1448 		return ENETDOWN;
1449 	}
1450 
1451 	BWI_LOCK(sc);
1452 	idx = tbd->tbd_idx;
1453 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1454 	if (params == NULL) {
1455 		/*
1456 		 * Legacy path; interpret frame contents to decide
1457 		 * precisely how to send the frame.
1458 		 */
1459 		error = bwi_encap(sc, idx, m, ni);
1460 	} else {
1461 		/*
1462 		 * Caller supplied explicit parameters to use in
1463 		 * sending the frame.
1464 		 */
1465 		error = bwi_encap_raw(sc, idx, m, ni, params);
1466 	}
1467 	if (error == 0) {
1468 		ifp->if_opackets++;
1469 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1470 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1471 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1472 		sc->sc_tx_timer = 5;
1473 	} else {
1474 		/* NB: m is reclaimed on encap failure */
1475 		ieee80211_free_node(ni);
1476 		ifp->if_oerrors++;
1477 	}
1478 	BWI_UNLOCK(sc);
1479 	return error;
1480 }
1481 
1482 static void
1483 bwi_watchdog(void *arg)
1484 {
1485 	struct bwi_softc *sc;
1486 	struct ifnet *ifp;
1487 
1488 	sc = arg;
1489 	ifp = sc->sc_ifp;
1490 	BWI_ASSERT_LOCKED(sc);
1491 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1492 		if_printf(ifp, "watchdog timeout\n");
1493 		ifp->if_oerrors++;
1494 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1495 	}
1496 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1497 }
1498 
1499 static void
1500 bwi_stop(struct bwi_softc *sc, int statechg)
1501 {
1502 	BWI_LOCK(sc);
1503 	bwi_stop_locked(sc, statechg);
1504 	BWI_UNLOCK(sc);
1505 }
1506 
1507 static void
1508 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1509 {
1510 	struct ifnet *ifp = sc->sc_ifp;
1511 	struct bwi_mac *mac;
1512 	int i, error, pwr_off = 0;
1513 
1514 	BWI_ASSERT_LOCKED(sc);
1515 
1516 	callout_stop(&sc->sc_calib_ch);
1517 	callout_stop(&sc->sc_led_blink_ch);
1518 	sc->sc_led_blinking = 0;
1519 	sc->sc_flags |= BWI_F_STOP;
1520 
1521 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1522 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1523 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1524 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1525 
1526 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1527 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1528 		bwi_mac_stop(mac);
1529 	}
1530 
1531 	for (i = 0; i < sc->sc_nmac; ++i) {
1532 		struct bwi_regwin *old_rw;
1533 
1534 		mac = &sc->sc_mac[i];
1535 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1536 			continue;
1537 
1538 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1539 		if (error)
1540 			continue;
1541 
1542 		bwi_mac_shutdown(mac);
1543 		pwr_off = 1;
1544 
1545 		bwi_regwin_switch(sc, old_rw, NULL);
1546 	}
1547 
1548 	if (pwr_off)
1549 		bwi_bbp_power_off(sc);
1550 
1551 	sc->sc_tx_timer = 0;
1552 	callout_stop(&sc->sc_watchdog_timer);
1553 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1554 }
1555 
1556 void
1557 bwi_intr(void *xsc)
1558 {
1559 	struct bwi_softc *sc = xsc;
1560 	struct ifnet *ifp = sc->sc_ifp;
1561 	struct bwi_mac *mac;
1562 	uint32_t intr_status;
1563 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1564 	int i, txrx_error, tx = 0, rx_data = -1;
1565 
1566 	BWI_LOCK(sc);
1567 
1568 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1569 	    (sc->sc_flags & BWI_F_STOP)) {
1570 		BWI_UNLOCK(sc);
1571 		return;
1572 	}
1573 	/*
1574 	 * Get interrupt status
1575 	 */
1576 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1577 	if (intr_status == 0xffffffff) {	/* Not for us */
1578 		BWI_UNLOCK(sc);
1579 		return;
1580 	}
1581 
1582 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1583 
1584 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1585 	if (intr_status == 0) {		/* Nothing is interesting */
1586 		BWI_UNLOCK(sc);
1587 		return;
1588 	}
1589 
1590 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1591 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1592 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1593 
1594 	txrx_error = 0;
1595 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1596 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1597 		uint32_t mask;
1598 
1599 		if (BWI_TXRX_IS_RX(i))
1600 			mask = BWI_TXRX_RX_INTRS;
1601 		else
1602 			mask = BWI_TXRX_TX_INTRS;
1603 
1604 		txrx_intr_status[i] =
1605 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1606 
1607 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1608 			 i, txrx_intr_status[i]);
1609 
1610 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1611 			if_printf(ifp,
1612 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1613 			    __func__, i, txrx_intr_status[i]);
1614 			txrx_error = 1;
1615 		}
1616 	}
1617 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1618 
1619 	/*
1620 	 * Acknowledge interrupt
1621 	 */
1622 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1623 
1624 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1625 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1626 
1627 	/* Disable all interrupts */
1628 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1629 
1630 	/*
1631 	 * http://bcm-specs.sipsolutions.net/Interrupts
1632 	 * Says for this bit (0x800):
1633 	 * "Fatal Error
1634 	 *
1635 	 * We got this one while testing things when by accident the
1636 	 * template ram wasn't set to big endian when it should have
1637 	 * been after writing the initial values. It keeps on being
1638 	 * triggered, the only way to stop it seems to shut down the
1639 	 * chip."
1640 	 *
1641 	 * Suggesting that we should never get it and if we do we're not
1642 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1643 	 * it is valid only on mac version 5 and higher, but I couldn't
1644 	 * find a reference for that...  Since I see them from time to time
1645 	 * on my card, this suggests an error in the tx path still...
1646 	 */
1647 	if (intr_status & BWI_INTR_PHY_TXERR) {
1648 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1649 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1650 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1651 			BWI_UNLOCK(sc);
1652 			return;
1653 		}
1654 	}
1655 
1656 	if (txrx_error) {
1657 		/* TODO: reset device */
1658 	}
1659 
1660 	if (intr_status & BWI_INTR_TBTT)
1661 		bwi_mac_config_ps(mac);
1662 
1663 	if (intr_status & BWI_INTR_EO_ATIM)
1664 		if_printf(ifp, "EO_ATIM\n");
1665 
1666 	if (intr_status & BWI_INTR_PMQ) {
1667 		for (;;) {
1668 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1669 				break;
1670 		}
1671 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1672 	}
1673 
1674 	if (intr_status & BWI_INTR_NOISE)
1675 		if_printf(ifp, "intr noise\n");
1676 
1677 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1678 		rx_data = sc->sc_rxeof(sc);
1679 		if (sc->sc_flags & BWI_F_STOP) {
1680 			BWI_UNLOCK(sc);
1681 			return;
1682 		}
1683 	}
1684 
1685 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1686 		sc->sc_txeof_status(sc);
1687 		tx = 1;
1688 	}
1689 
1690 	if (intr_status & BWI_INTR_TX_DONE) {
1691 		bwi_txeof(sc);
1692 		tx = 1;
1693 	}
1694 
1695 	/* Re-enable interrupts */
1696 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1697 
1698 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1699 		int evt = BWI_LED_EVENT_NONE;
1700 
1701 		if (tx && rx_data > 0) {
1702 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1703 				evt = BWI_LED_EVENT_RX;
1704 			else
1705 				evt = BWI_LED_EVENT_TX;
1706 		} else if (tx) {
1707 			evt = BWI_LED_EVENT_TX;
1708 		} else if (rx_data > 0) {
1709 			evt = BWI_LED_EVENT_RX;
1710 		} else if (rx_data == 0) {
1711 			evt = BWI_LED_EVENT_POLL;
1712 		}
1713 
1714 		if (evt != BWI_LED_EVENT_NONE)
1715 			bwi_led_event(sc, evt);
1716 	}
1717 
1718 	BWI_UNLOCK(sc);
1719 }
1720 
1721 static void
1722 bwi_scan_start(struct ieee80211com *ic)
1723 {
1724 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1725 
1726 	BWI_LOCK(sc);
1727 	/* Enable MAC beacon promiscuity */
1728 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1729 	BWI_UNLOCK(sc);
1730 }
1731 
1732 static void
1733 bwi_set_channel(struct ieee80211com *ic)
1734 {
1735 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1736 	struct ieee80211_channel *c = ic->ic_curchan;
1737 	struct bwi_mac *mac;
1738 
1739 	BWI_LOCK(sc);
1740 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1741 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1742 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1743 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1744 
1745 	sc->sc_rates = ieee80211_get_ratetable(c);
1746 
1747 	/*
1748 	 * Setup radio tap channel freq and flags
1749 	 */
1750 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1751 		htole16(c->ic_freq);
1752 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1753 		htole16(c->ic_flags & 0xffff);
1754 
1755 	BWI_UNLOCK(sc);
1756 }
1757 
1758 static void
1759 bwi_scan_end(struct ieee80211com *ic)
1760 {
1761 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1762 
1763 	BWI_LOCK(sc);
1764 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1765 	BWI_UNLOCK(sc);
1766 }
1767 
1768 static int
1769 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1770 {
1771 	struct bwi_vap *bvp = BWI_VAP(vap);
1772 	const struct ieee80211_txparam *tp;
1773 	struct ieee80211com *ic= vap->iv_ic;
1774 	struct ifnet *ifp = ic->ic_ifp;
1775 	enum ieee80211_state ostate = vap->iv_state;
1776 	struct bwi_softc *sc = ifp->if_softc;
1777 	struct bwi_mac *mac;
1778 	int error;
1779 
1780 	BWI_LOCK(sc);
1781 
1782 	callout_stop(&sc->sc_calib_ch);
1783 
1784 	if (nstate == IEEE80211_S_INIT)
1785 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1786 
1787 	bwi_led_newstate(sc, nstate);
1788 
1789 	error = bvp->bv_newstate(vap, nstate, arg);
1790 	if (error != 0)
1791 		goto back;
1792 
1793 	/*
1794 	 * Clear the BSSID when we stop a STA
1795 	 */
1796 	if (vap->iv_opmode == IEEE80211_M_STA) {
1797 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1798 			/*
1799 			 * Clear out the BSSID.  If we reassociate to
1800 			 * the same AP, this will reinialize things
1801 			 * correctly...
1802 			 */
1803 			if (ic->ic_opmode == IEEE80211_M_STA &&
1804 			    !(sc->sc_flags & BWI_F_STOP))
1805 				bwi_set_bssid(sc, bwi_zero_addr);
1806 		}
1807 	}
1808 
1809 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1810 		/* Nothing to do */
1811 	} else if (nstate == IEEE80211_S_RUN) {
1812 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1813 
1814 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1815 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1816 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1817 
1818 		/* Initial TX power calibration */
1819 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1820 #ifdef notyet
1821 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1822 #else
1823 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1824 #endif
1825 
1826 		/* Initializes ratectl for a node. */
1827 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1828 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1829 			ieee80211_ratectl_node_init(vap->iv_bss);
1830 
1831 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1832 	}
1833 back:
1834 	BWI_UNLOCK(sc);
1835 
1836 	return error;
1837 }
1838 
1839 static int
1840 bwi_media_change(struct ifnet *ifp)
1841 {
1842 	int error = ieee80211_media_change(ifp);
1843 	/* NB: only the fixed rate can change and that doesn't need a reset */
1844 	return (error == ENETRESET ? 0 : error);
1845 }
1846 
1847 static int
1848 bwi_dma_alloc(struct bwi_softc *sc)
1849 {
1850 	int error, i, has_txstats;
1851 	bus_addr_t lowaddr = 0;
1852 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1853 	uint32_t txrx_ctrl_step = 0;
1854 
1855 	has_txstats = 0;
1856 	for (i = 0; i < sc->sc_nmac; ++i) {
1857 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1858 			has_txstats = 1;
1859 			break;
1860 		}
1861 	}
1862 
1863 	switch (sc->sc_bus_space) {
1864 	case BWI_BUS_SPACE_30BIT:
1865 	case BWI_BUS_SPACE_32BIT:
1866 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1867 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1868 		else
1869 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1870 		desc_sz = sizeof(struct bwi_desc32);
1871 		txrx_ctrl_step = 0x20;
1872 
1873 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1874 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1875 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1876 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1877 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1878 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1879 		sc->sc_rxeof = bwi_rxeof32;
1880 		sc->sc_start_tx = bwi_start_tx32;
1881 		if (has_txstats) {
1882 			sc->sc_init_txstats = bwi_init_txstats32;
1883 			sc->sc_free_txstats = bwi_free_txstats32;
1884 			sc->sc_txeof_status = bwi_txeof_status32;
1885 		}
1886 		break;
1887 
1888 	case BWI_BUS_SPACE_64BIT:
1889 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1890 		desc_sz = sizeof(struct bwi_desc64);
1891 		txrx_ctrl_step = 0x40;
1892 
1893 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1894 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1895 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1896 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1897 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1898 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1899 		sc->sc_rxeof = bwi_rxeof64;
1900 		sc->sc_start_tx = bwi_start_tx64;
1901 		if (has_txstats) {
1902 			sc->sc_init_txstats = bwi_init_txstats64;
1903 			sc->sc_free_txstats = bwi_free_txstats64;
1904 			sc->sc_txeof_status = bwi_txeof_status64;
1905 		}
1906 		break;
1907 	}
1908 
1909 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1910 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1911 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1912 
1913 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1914 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1915 
1916 	/*
1917 	 * Create top level DMA tag
1918 	 */
1919 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1920 			       BWI_ALIGN, 0,		/* alignment, bounds */
1921 			       lowaddr,			/* lowaddr */
1922 			       BUS_SPACE_MAXADDR,	/* highaddr */
1923 			       NULL, NULL,		/* filter, filterarg */
1924 			       MAXBSIZE,		/* maxsize */
1925 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1926 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1927 			       BUS_DMA_ALLOCNOW,	/* flags */
1928 			       NULL, NULL,		/* lockfunc, lockarg */
1929 			       &sc->sc_parent_dtag);
1930 	if (error) {
1931 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1932 		return error;
1933 	}
1934 
1935 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1936 
1937 	/*
1938 	 * Create TX ring DMA stuffs
1939 	 */
1940 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1941 				BWI_RING_ALIGN, 0,
1942 				BUS_SPACE_MAXADDR,
1943 				BUS_SPACE_MAXADDR,
1944 				NULL, NULL,
1945 				tx_ring_sz,
1946 				1,
1947 				BUS_SPACE_MAXSIZE_32BIT,
1948 				BUS_DMA_ALLOCNOW,
1949 				NULL, NULL,
1950 				&sc->sc_txring_dtag);
1951 	if (error) {
1952 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1953 		return error;
1954 	}
1955 
1956 	for (i = 0; i < BWI_TX_NRING; ++i) {
1957 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1958 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1959 					   TXRX_CTRL(i));
1960 		if (error) {
1961 			device_printf(sc->sc_dev, "%dth TX ring "
1962 				      "DMA alloc failed\n", i);
1963 			return error;
1964 		}
1965 	}
1966 
1967 	/*
1968 	 * Create RX ring DMA stuffs
1969 	 */
1970 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1971 				BWI_RING_ALIGN, 0,
1972 				BUS_SPACE_MAXADDR,
1973 				BUS_SPACE_MAXADDR,
1974 				NULL, NULL,
1975 				rx_ring_sz,
1976 				1,
1977 				BUS_SPACE_MAXSIZE_32BIT,
1978 				BUS_DMA_ALLOCNOW,
1979 				NULL, NULL,
1980 				&sc->sc_rxring_dtag);
1981 	if (error) {
1982 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1983 		return error;
1984 	}
1985 
1986 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1987 				   rx_ring_sz, TXRX_CTRL(0));
1988 	if (error) {
1989 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1990 		return error;
1991 	}
1992 
1993 	if (has_txstats) {
1994 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1995 		if (error) {
1996 			device_printf(sc->sc_dev,
1997 				      "TX stats DMA alloc failed\n");
1998 			return error;
1999 		}
2000 	}
2001 
2002 #undef TXRX_CTRL
2003 
2004 	return bwi_dma_mbuf_create(sc);
2005 }
2006 
2007 static void
2008 bwi_dma_free(struct bwi_softc *sc)
2009 {
2010 	if (sc->sc_txring_dtag != NULL) {
2011 		int i;
2012 
2013 		for (i = 0; i < BWI_TX_NRING; ++i) {
2014 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2015 
2016 			if (rd->rdata_desc != NULL) {
2017 				bus_dmamap_unload(sc->sc_txring_dtag,
2018 						  rd->rdata_dmap);
2019 				bus_dmamem_free(sc->sc_txring_dtag,
2020 						rd->rdata_desc,
2021 						rd->rdata_dmap);
2022 			}
2023 		}
2024 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2025 	}
2026 
2027 	if (sc->sc_rxring_dtag != NULL) {
2028 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2029 
2030 		if (rd->rdata_desc != NULL) {
2031 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2032 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2033 					rd->rdata_dmap);
2034 		}
2035 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2036 	}
2037 
2038 	bwi_dma_txstats_free(sc);
2039 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2040 
2041 	if (sc->sc_parent_dtag != NULL)
2042 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2043 }
2044 
2045 static int
2046 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2047 		   struct bwi_ring_data *rd, bus_size_t size,
2048 		   uint32_t txrx_ctrl)
2049 {
2050 	int error;
2051 
2052 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2053 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2054 				 &rd->rdata_dmap);
2055 	if (error) {
2056 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2057 		return error;
2058 	}
2059 
2060 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2061 				bwi_dma_ring_addr, &rd->rdata_paddr,
2062 				BUS_DMA_NOWAIT);
2063 	if (error) {
2064 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2065 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2066 		rd->rdata_desc = NULL;
2067 		return error;
2068 	}
2069 
2070 	rd->rdata_txrx_ctrl = txrx_ctrl;
2071 	return 0;
2072 }
2073 
2074 static int
2075 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2076 		      bus_size_t desc_sz)
2077 {
2078 	struct bwi_txstats_data *st;
2079 	bus_size_t dma_size;
2080 	int error;
2081 
2082 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2083 	if (st == NULL) {
2084 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2085 		return ENOMEM;
2086 	}
2087 	sc->sc_txstats = st;
2088 
2089 	/*
2090 	 * Create TX stats descriptor DMA stuffs
2091 	 */
2092 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2093 
2094 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2095 				BWI_RING_ALIGN,
2096 				0,
2097 				BUS_SPACE_MAXADDR,
2098 				BUS_SPACE_MAXADDR,
2099 				NULL, NULL,
2100 				dma_size,
2101 				1,
2102 				BUS_SPACE_MAXSIZE_32BIT,
2103 				BUS_DMA_ALLOCNOW,
2104 				NULL, NULL,
2105 				&st->stats_ring_dtag);
2106 	if (error) {
2107 		device_printf(sc->sc_dev, "can't create txstats ring "
2108 			      "DMA tag\n");
2109 		return error;
2110 	}
2111 
2112 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2113 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2114 				 &st->stats_ring_dmap);
2115 	if (error) {
2116 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2117 			      "DMA mem\n");
2118 		bus_dma_tag_destroy(st->stats_ring_dtag);
2119 		st->stats_ring_dtag = NULL;
2120 		return error;
2121 	}
2122 
2123 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2124 				st->stats_ring, dma_size,
2125 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2126 				BUS_DMA_NOWAIT);
2127 	if (error) {
2128 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2129 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2130 				st->stats_ring_dmap);
2131 		bus_dma_tag_destroy(st->stats_ring_dtag);
2132 		st->stats_ring_dtag = NULL;
2133 		return error;
2134 	}
2135 
2136 	/*
2137 	 * Create TX stats DMA stuffs
2138 	 */
2139 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2140 			   BWI_ALIGN);
2141 
2142 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2143 				BWI_ALIGN,
2144 				0,
2145 				BUS_SPACE_MAXADDR,
2146 				BUS_SPACE_MAXADDR,
2147 				NULL, NULL,
2148 				dma_size,
2149 				1,
2150 				BUS_SPACE_MAXSIZE_32BIT,
2151 				BUS_DMA_ALLOCNOW,
2152 				NULL, NULL,
2153 				&st->stats_dtag);
2154 	if (error) {
2155 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2156 		return error;
2157 	}
2158 
2159 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2160 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2161 				 &st->stats_dmap);
2162 	if (error) {
2163 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2164 		bus_dma_tag_destroy(st->stats_dtag);
2165 		st->stats_dtag = NULL;
2166 		return error;
2167 	}
2168 
2169 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2170 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2171 				BUS_DMA_NOWAIT);
2172 	if (error) {
2173 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2174 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2175 		bus_dma_tag_destroy(st->stats_dtag);
2176 		st->stats_dtag = NULL;
2177 		return error;
2178 	}
2179 
2180 	st->stats_ctrl_base = ctrl_base;
2181 	return 0;
2182 }
2183 
2184 static void
2185 bwi_dma_txstats_free(struct bwi_softc *sc)
2186 {
2187 	struct bwi_txstats_data *st;
2188 
2189 	if (sc->sc_txstats == NULL)
2190 		return;
2191 	st = sc->sc_txstats;
2192 
2193 	if (st->stats_ring_dtag != NULL) {
2194 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2195 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2196 				st->stats_ring_dmap);
2197 		bus_dma_tag_destroy(st->stats_ring_dtag);
2198 	}
2199 
2200 	if (st->stats_dtag != NULL) {
2201 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2202 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2203 		bus_dma_tag_destroy(st->stats_dtag);
2204 	}
2205 
2206 	free(st, M_DEVBUF);
2207 }
2208 
2209 static void
2210 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2211 {
2212 	KASSERT(nseg == 1, ("too many segments\n"));
2213 	*((bus_addr_t *)arg) = seg->ds_addr;
2214 }
2215 
2216 static int
2217 bwi_dma_mbuf_create(struct bwi_softc *sc)
2218 {
2219 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2220 	int i, j, k, ntx, error;
2221 
2222 	/*
2223 	 * Create TX/RX mbuf DMA tag
2224 	 */
2225 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2226 				1,
2227 				0,
2228 				BUS_SPACE_MAXADDR,
2229 				BUS_SPACE_MAXADDR,
2230 				NULL, NULL,
2231 				MCLBYTES,
2232 				1,
2233 				BUS_SPACE_MAXSIZE_32BIT,
2234 				BUS_DMA_ALLOCNOW,
2235 				NULL, NULL,
2236 				&sc->sc_buf_dtag);
2237 	if (error) {
2238 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2239 		return error;
2240 	}
2241 
2242 	ntx = 0;
2243 
2244 	/*
2245 	 * Create TX mbuf DMA map
2246 	 */
2247 	for (i = 0; i < BWI_TX_NRING; ++i) {
2248 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2249 
2250 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2251 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2252 						  &tbd->tbd_buf[j].tb_dmap);
2253 			if (error) {
2254 				device_printf(sc->sc_dev, "can't create "
2255 					      "%dth tbd, %dth DMA map\n", i, j);
2256 
2257 				ntx = i;
2258 				for (k = 0; k < j; ++k) {
2259 					bus_dmamap_destroy(sc->sc_buf_dtag,
2260 						tbd->tbd_buf[k].tb_dmap);
2261 				}
2262 				goto fail;
2263 			}
2264 		}
2265 	}
2266 	ntx = BWI_TX_NRING;
2267 
2268 	/*
2269 	 * Create RX mbuf DMA map and a spare DMA map
2270 	 */
2271 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2272 				  &rbd->rbd_tmp_dmap);
2273 	if (error) {
2274 		device_printf(sc->sc_dev,
2275 			      "can't create spare RX buf DMA map\n");
2276 		goto fail;
2277 	}
2278 
2279 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2280 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2281 					  &rbd->rbd_buf[j].rb_dmap);
2282 		if (error) {
2283 			device_printf(sc->sc_dev, "can't create %dth "
2284 				      "RX buf DMA map\n", j);
2285 
2286 			for (k = 0; k < j; ++k) {
2287 				bus_dmamap_destroy(sc->sc_buf_dtag,
2288 					rbd->rbd_buf[j].rb_dmap);
2289 			}
2290 			bus_dmamap_destroy(sc->sc_buf_dtag,
2291 					   rbd->rbd_tmp_dmap);
2292 			goto fail;
2293 		}
2294 	}
2295 
2296 	return 0;
2297 fail:
2298 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2299 	return error;
2300 }
2301 
2302 static void
2303 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2304 {
2305 	int i, j;
2306 
2307 	if (sc->sc_buf_dtag == NULL)
2308 		return;
2309 
2310 	for (i = 0; i < ntx; ++i) {
2311 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2312 
2313 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2314 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2315 
2316 			if (tb->tb_mbuf != NULL) {
2317 				bus_dmamap_unload(sc->sc_buf_dtag,
2318 						  tb->tb_dmap);
2319 				m_freem(tb->tb_mbuf);
2320 			}
2321 			if (tb->tb_ni != NULL)
2322 				ieee80211_free_node(tb->tb_ni);
2323 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2324 		}
2325 	}
2326 
2327 	if (nrx) {
2328 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2329 
2330 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2331 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2332 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2333 
2334 			if (rb->rb_mbuf != NULL) {
2335 				bus_dmamap_unload(sc->sc_buf_dtag,
2336 						  rb->rb_dmap);
2337 				m_freem(rb->rb_mbuf);
2338 			}
2339 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2340 		}
2341 	}
2342 
2343 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2344 	sc->sc_buf_dtag = NULL;
2345 }
2346 
2347 static void
2348 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2349 {
2350 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2351 }
2352 
2353 static void
2354 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2355 {
2356 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2357 }
2358 
2359 static int
2360 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2361 {
2362 	struct bwi_ring_data *rd;
2363 	struct bwi_txbuf_data *tbd;
2364 	uint32_t val, addr_hi, addr_lo;
2365 
2366 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2367 	rd = &sc->sc_tx_rdata[ring_idx];
2368 	tbd = &sc->sc_tx_bdata[ring_idx];
2369 
2370 	tbd->tbd_idx = 0;
2371 	tbd->tbd_used = 0;
2372 
2373 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2374 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2375 			BUS_DMASYNC_PREWRITE);
2376 
2377 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2378 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2379 
2380 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2381 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2382 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2383 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2384 
2385 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2386 	      BWI_TXRX32_CTRL_ENABLE;
2387 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2388 
2389 	return 0;
2390 }
2391 
2392 static void
2393 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2394 		       bus_addr_t paddr, int hdr_size, int ndesc)
2395 {
2396 	uint32_t val, addr_hi, addr_lo;
2397 
2398 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2399 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2400 
2401 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2402 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2403 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2404 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2405 
2406 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2407 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2408 	      BWI_TXRX32_CTRL_ENABLE;
2409 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2410 
2411 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2412 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2413 }
2414 
2415 static int
2416 bwi_init_rx_ring32(struct bwi_softc *sc)
2417 {
2418 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2419 	int i, error;
2420 
2421 	sc->sc_rx_bdata.rbd_idx = 0;
2422 
2423 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2424 		error = bwi_newbuf(sc, i, 1);
2425 		if (error) {
2426 			device_printf(sc->sc_dev,
2427 				  "can't allocate %dth RX buffer\n", i);
2428 			return error;
2429 		}
2430 	}
2431 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2432 			BUS_DMASYNC_PREWRITE);
2433 
2434 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2435 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2436 	return 0;
2437 }
2438 
2439 static int
2440 bwi_init_txstats32(struct bwi_softc *sc)
2441 {
2442 	struct bwi_txstats_data *st = sc->sc_txstats;
2443 	bus_addr_t stats_paddr;
2444 	int i;
2445 
2446 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2447 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2448 
2449 	st->stats_idx = 0;
2450 
2451 	stats_paddr = st->stats_paddr;
2452 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2453 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2454 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2455 		stats_paddr += sizeof(struct bwi_txstats);
2456 	}
2457 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2458 			BUS_DMASYNC_PREWRITE);
2459 
2460 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2461 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2462 	return 0;
2463 }
2464 
2465 static void
2466 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2467 		    int buf_len)
2468 {
2469 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2470 
2471 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2472 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2473 			 paddr, buf_len, 0);
2474 }
2475 
2476 static void
2477 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2478 		    int buf_idx, bus_addr_t paddr, int buf_len)
2479 {
2480 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2481 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2482 			 paddr, buf_len, 1);
2483 }
2484 
2485 static int
2486 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2487 {
2488 	/* TODO:64 */
2489 	return EOPNOTSUPP;
2490 }
2491 
2492 static int
2493 bwi_init_rx_ring64(struct bwi_softc *sc)
2494 {
2495 	/* TODO:64 */
2496 	return EOPNOTSUPP;
2497 }
2498 
2499 static int
2500 bwi_init_txstats64(struct bwi_softc *sc)
2501 {
2502 	/* TODO:64 */
2503 	return EOPNOTSUPP;
2504 }
2505 
2506 static void
2507 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2508 		    int buf_len)
2509 {
2510 	/* TODO:64 */
2511 }
2512 
2513 static void
2514 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2515 		    int buf_idx, bus_addr_t paddr, int buf_len)
2516 {
2517 	/* TODO:64 */
2518 }
2519 
2520 static void
2521 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2522 		 bus_size_t mapsz __unused, int error)
2523 {
2524         if (!error) {
2525 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2526 		*((bus_addr_t *)arg) = seg->ds_addr;
2527 	}
2528 }
2529 
2530 static int
2531 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2532 {
2533 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2534 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2535 	struct bwi_rxbuf_hdr *hdr;
2536 	bus_dmamap_t map;
2537 	bus_addr_t paddr;
2538 	struct mbuf *m;
2539 	int error;
2540 
2541 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2542 
2543 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2544 	if (m == NULL) {
2545 		error = ENOBUFS;
2546 
2547 		/*
2548 		 * If the NIC is up and running, we need to:
2549 		 * - Clear RX buffer's header.
2550 		 * - Restore RX descriptor settings.
2551 		 */
2552 		if (init)
2553 			return error;
2554 		else
2555 			goto back;
2556 	}
2557 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2558 
2559 	/*
2560 	 * Try to load RX buf into temporary DMA map
2561 	 */
2562 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2563 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2564 	if (error) {
2565 		m_freem(m);
2566 
2567 		/*
2568 		 * See the comment above
2569 		 */
2570 		if (init)
2571 			return error;
2572 		else
2573 			goto back;
2574 	}
2575 
2576 	if (!init)
2577 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2578 	rxbuf->rb_mbuf = m;
2579 	rxbuf->rb_paddr = paddr;
2580 
2581 	/*
2582 	 * Swap RX buf's DMA map with the loaded temporary one
2583 	 */
2584 	map = rxbuf->rb_dmap;
2585 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2586 	rbd->rbd_tmp_dmap = map;
2587 
2588 back:
2589 	/*
2590 	 * Clear RX buf header
2591 	 */
2592 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2593 	bzero(hdr, sizeof(*hdr));
2594 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2595 
2596 	/*
2597 	 * Setup RX buf descriptor
2598 	 */
2599 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2600 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2601 	return error;
2602 }
2603 
2604 static void
2605 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2606 		    const uint8_t *addr)
2607 {
2608 	int i;
2609 
2610 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2611 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2612 
2613 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2614 		uint16_t addr_val;
2615 
2616 		addr_val = (uint16_t)addr[i * 2] |
2617 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2618 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2619 	}
2620 }
2621 
2622 static int
2623 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2624 {
2625 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2626 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2627 	struct ifnet *ifp = sc->sc_ifp;
2628 	struct ieee80211com *ic = ifp->if_l2com;
2629 	int idx, rx_data = 0;
2630 
2631 	idx = rbd->rbd_idx;
2632 	while (idx != end_idx) {
2633 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2634 		struct bwi_rxbuf_hdr *hdr;
2635 		struct ieee80211_frame_min *wh;
2636 		struct ieee80211_node *ni;
2637 		struct mbuf *m;
2638 		const void *plcp;
2639 		uint16_t flags2;
2640 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2641 
2642 		m = rb->rb_mbuf;
2643 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2644 				BUS_DMASYNC_POSTREAD);
2645 
2646 		if (bwi_newbuf(sc, idx, 0)) {
2647 			ifp->if_ierrors++;
2648 			goto next;
2649 		}
2650 
2651 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2652 		flags2 = le16toh(hdr->rxh_flags2);
2653 
2654 		hdr_extra = 0;
2655 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2656 			hdr_extra = 2;
2657 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2658 
2659 		buflen = le16toh(hdr->rxh_buflen);
2660 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2661 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2662 				  __func__, hdr_extra);
2663 			ifp->if_ierrors++;
2664 			m_freem(m);
2665 			goto next;
2666 		}
2667 
2668 		plcp = ((const uint8_t *)(hdr + 1) + hdr_extra);
2669 		rssi = bwi_calc_rssi(sc, hdr);
2670 		noise = bwi_calc_noise(sc);
2671 
2672 		m->m_pkthdr.rcvif = ifp;
2673 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2674 		m_adj(m, sizeof(*hdr) + wh_ofs);
2675 
2676 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2677 			rate = bwi_ofdm_plcp2rate(plcp);
2678 		else
2679 			rate = bwi_ds_plcp2rate(plcp);
2680 
2681 		/* RX radio tap */
2682 		if (ieee80211_radiotap_active(ic))
2683 			bwi_rx_radiotap(sc, m, hdr, plcp, rate, rssi, noise);
2684 
2685 		m_adj(m, -IEEE80211_CRC_LEN);
2686 
2687 		BWI_UNLOCK(sc);
2688 
2689 		wh = mtod(m, struct ieee80211_frame_min *);
2690 		ni = ieee80211_find_rxnode(ic, wh);
2691 		if (ni != NULL) {
2692 			type = ieee80211_input(ni, m, rssi - noise, noise);
2693 			ieee80211_free_node(ni);
2694 		} else
2695 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2696 		if (type == IEEE80211_FC0_TYPE_DATA) {
2697 			rx_data = 1;
2698 			sc->sc_rx_rate = rate;
2699 		}
2700 
2701 		BWI_LOCK(sc);
2702 next:
2703 		idx = (idx + 1) % BWI_RX_NDESC;
2704 
2705 		if (sc->sc_flags & BWI_F_STOP) {
2706 			/*
2707 			 * Take the fast lane, don't do
2708 			 * any damage to softc
2709 			 */
2710 			return -1;
2711 		}
2712 	}
2713 
2714 	rbd->rbd_idx = idx;
2715 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2716 			BUS_DMASYNC_PREWRITE);
2717 
2718 	return rx_data;
2719 }
2720 
2721 static int
2722 bwi_rxeof32(struct bwi_softc *sc)
2723 {
2724 	uint32_t val, rx_ctrl;
2725 	int end_idx, rx_data;
2726 
2727 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2728 
2729 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2730 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2731 		  sizeof(struct bwi_desc32);
2732 
2733 	rx_data = bwi_rxeof(sc, end_idx);
2734 	if (rx_data >= 0) {
2735 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2736 			    end_idx * sizeof(struct bwi_desc32));
2737 	}
2738 	return rx_data;
2739 }
2740 
2741 static int
2742 bwi_rxeof64(struct bwi_softc *sc)
2743 {
2744 	/* TODO:64 */
2745 	return 0;
2746 }
2747 
2748 static void
2749 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2750 {
2751 	int i;
2752 
2753 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2754 
2755 #define NRETRY 10
2756 
2757 	for (i = 0; i < NRETRY; ++i) {
2758 		uint32_t status;
2759 
2760 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2761 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2762 		    BWI_RX32_STATUS_STATE_DISABLED)
2763 			break;
2764 
2765 		DELAY(1000);
2766 	}
2767 	if (i == NRETRY)
2768 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2769 
2770 #undef NRETRY
2771 
2772 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2773 }
2774 
2775 static void
2776 bwi_free_txstats32(struct bwi_softc *sc)
2777 {
2778 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2779 }
2780 
2781 static void
2782 bwi_free_rx_ring32(struct bwi_softc *sc)
2783 {
2784 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2785 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2786 	int i;
2787 
2788 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2789 
2790 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2791 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2792 
2793 		if (rb->rb_mbuf != NULL) {
2794 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2795 			m_freem(rb->rb_mbuf);
2796 			rb->rb_mbuf = NULL;
2797 		}
2798 	}
2799 }
2800 
2801 static void
2802 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2803 {
2804 	struct bwi_ring_data *rd;
2805 	struct bwi_txbuf_data *tbd;
2806 	struct ifnet *ifp = sc->sc_ifp;
2807 	uint32_t state, val;
2808 	int i;
2809 
2810 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2811 	rd = &sc->sc_tx_rdata[ring_idx];
2812 	tbd = &sc->sc_tx_bdata[ring_idx];
2813 
2814 #define NRETRY 10
2815 
2816 	for (i = 0; i < NRETRY; ++i) {
2817 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2818 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2819 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2820 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2821 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2822 			break;
2823 
2824 		DELAY(1000);
2825 	}
2826 	if (i == NRETRY) {
2827 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2828 			  __func__, ring_idx);
2829 	}
2830 
2831 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2832 	for (i = 0; i < NRETRY; ++i) {
2833 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2834 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2835 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2836 			break;
2837 
2838 		DELAY(1000);
2839 	}
2840 	if (i == NRETRY)
2841 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2842 		     __func__, ring_idx);
2843 
2844 #undef NRETRY
2845 
2846 	DELAY(1000);
2847 
2848 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2849 
2850 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2851 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2852 
2853 		if (tb->tb_mbuf != NULL) {
2854 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2855 			m_freem(tb->tb_mbuf);
2856 			tb->tb_mbuf = NULL;
2857 		}
2858 		if (tb->tb_ni != NULL) {
2859 			ieee80211_free_node(tb->tb_ni);
2860 			tb->tb_ni = NULL;
2861 		}
2862 	}
2863 }
2864 
2865 static void
2866 bwi_free_txstats64(struct bwi_softc *sc)
2867 {
2868 	/* TODO:64 */
2869 }
2870 
2871 static void
2872 bwi_free_rx_ring64(struct bwi_softc *sc)
2873 {
2874 	/* TODO:64 */
2875 }
2876 
2877 static void
2878 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2879 {
2880 	/* TODO:64 */
2881 }
2882 
2883 /* XXX does not belong here */
2884 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2885 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2886 
2887 static __inline void
2888 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2889 {
2890 	uint32_t plcp;
2891 
2892 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2893 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2894 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2895 	*plcp0 = htole32(plcp);
2896 }
2897 
2898 static __inline void
2899 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2900 		   uint8_t rate)
2901 {
2902 	int len, service, pkt_bitlen;
2903 
2904 	pkt_bitlen = pkt_len * NBBY;
2905 	len = howmany(pkt_bitlen * 2, rate);
2906 
2907 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2908 	if (rate == (11 * 2)) {
2909 		int pkt_bitlen1;
2910 
2911 		/*
2912 		 * PLCP service field needs to be adjusted,
2913 		 * if TX rate is 11Mbytes/s
2914 		 */
2915 		pkt_bitlen1 = len * 11;
2916 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2917 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2918 	}
2919 
2920 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2921 	plcp->i_service = service;
2922 	plcp->i_length = htole16(len);
2923 	/* NOTE: do NOT touch i_crc */
2924 }
2925 
2926 static __inline void
2927 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2928 	void *plcp, int pkt_len, uint8_t rate)
2929 {
2930 	enum ieee80211_phytype modtype;
2931 
2932 	/*
2933 	 * Assume caller has zeroed 'plcp'
2934 	 */
2935 	modtype = ieee80211_rate2phytype(rt, rate);
2936 	if (modtype == IEEE80211_T_OFDM)
2937 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2938 	else if (modtype == IEEE80211_T_DS)
2939 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2940 	else
2941 		panic("unsupport modulation type %u\n", modtype);
2942 }
2943 
2944 static int
2945 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2946 	  struct ieee80211_node *ni)
2947 {
2948 	struct ieee80211vap *vap = ni->ni_vap;
2949 	struct ifnet *ifp = sc->sc_ifp;
2950 	struct ieee80211com *ic = ifp->if_l2com;
2951 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2952 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2953 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2954 	struct bwi_mac *mac;
2955 	struct bwi_txbuf_hdr *hdr;
2956 	struct ieee80211_frame *wh;
2957 	const struct ieee80211_txparam *tp;
2958 	uint8_t rate, rate_fb;
2959 	uint32_t mac_ctrl;
2960 	uint16_t phy_ctrl;
2961 	bus_addr_t paddr;
2962 	int type, ismcast, pkt_len, error, rix;
2963 #if 0
2964 	const uint8_t *p;
2965 	int i;
2966 #endif
2967 
2968 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2969 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2970 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2971 
2972 	wh = mtod(m, struct ieee80211_frame *);
2973 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2974 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2975 
2976 	/* Get 802.11 frame len before prepending TX header */
2977 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2978 
2979 	/*
2980 	 * Find TX rate
2981 	 */
2982 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2983 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2984 		rate = rate_fb = tp->mgmtrate;
2985 	} else if (ismcast) {
2986 		rate = rate_fb = tp->mcastrate;
2987 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2988 		rate = rate_fb = tp->ucastrate;
2989 	} else {
2990 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2991 		rate = ni->ni_txrate;
2992 
2993 		if (rix > 0) {
2994 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2995 				  IEEE80211_RATE_VAL;
2996 		} else {
2997 			rate_fb = rate;
2998 		}
2999 	}
3000 	tb->tb_rate[0] = rate;
3001 	tb->tb_rate[1] = rate_fb;
3002 	sc->sc_tx_rate = rate;
3003 
3004 	/*
3005 	 * TX radio tap
3006 	 */
3007 	if (ieee80211_radiotap_active_vap(vap)) {
3008 		sc->sc_tx_th.wt_flags = 0;
3009 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3010 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3011 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3012 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3013 		    rate != (1 * 2)) {
3014 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3015 		}
3016 		sc->sc_tx_th.wt_rate = rate;
3017 
3018 		ieee80211_radiotap_tx(vap, m);
3019 	}
3020 
3021 	/*
3022 	 * Setup the embedded TX header
3023 	 */
3024 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3025 	if (m == NULL) {
3026 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3027 		return ENOBUFS;
3028 	}
3029 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3030 
3031 	bzero(hdr, sizeof(*hdr));
3032 
3033 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3034 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3035 
3036 	if (!ismcast) {
3037 		uint16_t dur;
3038 
3039 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3040 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3041 
3042 		hdr->txh_fb_duration = htole16(dur);
3043 	}
3044 
3045 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3046 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3047 
3048 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3049 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3050 
3051 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3052 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3053 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3054 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3055 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3056 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3057 
3058 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3059 	if (!ismcast)
3060 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3061 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3062 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3063 
3064 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3065 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3066 
3067 	/* Catch any further usage */
3068 	hdr = NULL;
3069 	wh = NULL;
3070 
3071 	/* DMA load */
3072 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3073 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3074 	if (error && error != EFBIG) {
3075 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3076 		    __func__, error);
3077 		goto back;
3078 	}
3079 
3080 	if (error) {	/* error == EFBIG */
3081 		struct mbuf *m_new;
3082 
3083 		m_new = m_defrag(m, M_DONTWAIT);
3084 		if (m_new == NULL) {
3085 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3086 			    __func__);
3087 			error = ENOBUFS;
3088 			goto back;
3089 		} else {
3090 			m = m_new;
3091 		}
3092 
3093 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3094 					     bwi_dma_buf_addr, &paddr,
3095 					     BUS_DMA_NOWAIT);
3096 		if (error) {
3097 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3098 			    __func__, error);
3099 			goto back;
3100 		}
3101 	}
3102 	error = 0;
3103 
3104 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3105 
3106 	tb->tb_mbuf = m;
3107 	tb->tb_ni = ni;
3108 
3109 #if 0
3110 	p = mtod(m, const uint8_t *);
3111 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3112 		if (i != 0 && i % 8 == 0)
3113 			printf("\n");
3114 		printf("%02x ", p[i]);
3115 	}
3116 	printf("\n");
3117 #endif
3118 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3119 		idx, pkt_len, m->m_pkthdr.len);
3120 
3121 	/* Setup TX descriptor */
3122 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3123 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3124 			BUS_DMASYNC_PREWRITE);
3125 
3126 	/* Kick start */
3127 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3128 
3129 back:
3130 	if (error)
3131 		m_freem(m);
3132 	return error;
3133 }
3134 
3135 static int
3136 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3137 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3138 {
3139 	struct ifnet *ifp = sc->sc_ifp;
3140 	struct ieee80211vap *vap = ni->ni_vap;
3141 	struct ieee80211com *ic = ni->ni_ic;
3142 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3143 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3144 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3145 	struct bwi_mac *mac;
3146 	struct bwi_txbuf_hdr *hdr;
3147 	struct ieee80211_frame *wh;
3148 	uint8_t rate, rate_fb;
3149 	uint32_t mac_ctrl;
3150 	uint16_t phy_ctrl;
3151 	bus_addr_t paddr;
3152 	int ismcast, pkt_len, error;
3153 
3154 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3155 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3156 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3157 
3158 	wh = mtod(m, struct ieee80211_frame *);
3159 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3160 
3161 	/* Get 802.11 frame len before prepending TX header */
3162 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3163 
3164 	/*
3165 	 * Find TX rate
3166 	 */
3167 	rate = params->ibp_rate0;
3168 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3169 		/* XXX fall back to mcast/mgmt rate? */
3170 		m_freem(m);
3171 		return EINVAL;
3172 	}
3173 	if (params->ibp_try1 != 0) {
3174 		rate_fb = params->ibp_rate1;
3175 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3176 			/* XXX fall back to rate0? */
3177 			m_freem(m);
3178 			return EINVAL;
3179 		}
3180 	} else
3181 		rate_fb = rate;
3182 	tb->tb_rate[0] = rate;
3183 	tb->tb_rate[1] = rate_fb;
3184 	sc->sc_tx_rate = rate;
3185 
3186 	/*
3187 	 * TX radio tap
3188 	 */
3189 	if (ieee80211_radiotap_active_vap(vap)) {
3190 		sc->sc_tx_th.wt_flags = 0;
3191 		/* XXX IEEE80211_BPF_CRYPTO */
3192 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3193 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3194 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3195 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3196 		sc->sc_tx_th.wt_rate = rate;
3197 
3198 		ieee80211_radiotap_tx(vap, m);
3199 	}
3200 
3201 	/*
3202 	 * Setup the embedded TX header
3203 	 */
3204 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3205 	if (m == NULL) {
3206 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3207 		return ENOBUFS;
3208 	}
3209 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3210 
3211 	bzero(hdr, sizeof(*hdr));
3212 
3213 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3214 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3215 
3216 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3217 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3218 		uint16_t dur;
3219 
3220 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3221 
3222 		hdr->txh_fb_duration = htole16(dur);
3223 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3224 	}
3225 
3226 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3227 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3228 
3229 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3230 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3231 
3232 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3233 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3234 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3235 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3236 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3237 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3238 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3239 
3240 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3241 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3242 
3243 	/* Catch any further usage */
3244 	hdr = NULL;
3245 	wh = NULL;
3246 
3247 	/* DMA load */
3248 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3249 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3250 	if (error != 0) {
3251 		struct mbuf *m_new;
3252 
3253 		if (error != EFBIG) {
3254 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3255 			    __func__, error);
3256 			goto back;
3257 		}
3258 		m_new = m_defrag(m, M_DONTWAIT);
3259 		if (m_new == NULL) {
3260 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3261 			    __func__);
3262 			error = ENOBUFS;
3263 			goto back;
3264 		}
3265 		m = m_new;
3266 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3267 					     bwi_dma_buf_addr, &paddr,
3268 					     BUS_DMA_NOWAIT);
3269 		if (error) {
3270 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3271 			    __func__, error);
3272 			goto back;
3273 		}
3274 	}
3275 
3276 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3277 
3278 	tb->tb_mbuf = m;
3279 	tb->tb_ni = ni;
3280 
3281 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3282 		idx, pkt_len, m->m_pkthdr.len);
3283 
3284 	/* Setup TX descriptor */
3285 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3286 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3287 			BUS_DMASYNC_PREWRITE);
3288 
3289 	/* Kick start */
3290 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3291 back:
3292 	if (error)
3293 		m_freem(m);
3294 	return error;
3295 }
3296 
3297 static void
3298 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3299 {
3300 	idx = (idx + 1) % BWI_TX_NDESC;
3301 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3302 		    idx * sizeof(struct bwi_desc32));
3303 }
3304 
3305 static void
3306 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3307 {
3308 	/* TODO:64 */
3309 }
3310 
3311 static void
3312 bwi_txeof_status32(struct bwi_softc *sc)
3313 {
3314 	struct ifnet *ifp = sc->sc_ifp;
3315 	uint32_t val, ctrl_base;
3316 	int end_idx;
3317 
3318 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3319 
3320 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3321 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3322 		  sizeof(struct bwi_desc32);
3323 
3324 	bwi_txeof_status(sc, end_idx);
3325 
3326 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3327 		    end_idx * sizeof(struct bwi_desc32));
3328 
3329 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3330 		ifp->if_start(ifp);
3331 }
3332 
3333 static void
3334 bwi_txeof_status64(struct bwi_softc *sc)
3335 {
3336 	/* TODO:64 */
3337 }
3338 
3339 static void
3340 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3341 {
3342 	struct ifnet *ifp = sc->sc_ifp;
3343 	struct bwi_txbuf_data *tbd;
3344 	struct bwi_txbuf *tb;
3345 	int ring_idx, buf_idx;
3346 	struct ieee80211_node *ni;
3347 	struct ieee80211vap *vap;
3348 
3349 	if (tx_id == 0) {
3350 		if_printf(ifp, "%s: zero tx id\n", __func__);
3351 		return;
3352 	}
3353 
3354 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3355 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3356 
3357 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3358 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3359 
3360 	tbd = &sc->sc_tx_bdata[ring_idx];
3361 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3362 	tbd->tbd_used--;
3363 
3364 	tb = &tbd->tbd_buf[buf_idx];
3365 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3366 		"acked %d, data_txcnt %d, ni %p\n",
3367 		buf_idx, acked, data_txcnt, tb->tb_ni);
3368 
3369 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3370 
3371 	ni = tb->tb_ni;
3372 	if (tb->tb_ni != NULL) {
3373 		const struct bwi_txbuf_hdr *hdr =
3374 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3375 		vap = ni->ni_vap;
3376 
3377 		/* NB: update rate control only for unicast frames */
3378 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3379 			/*
3380 			 * Feed back 'acked and data_txcnt'.  Note that the
3381 			 * generic AMRR code only understands one tx rate
3382 			 * and the estimator doesn't handle real retry counts
3383 			 * well so to avoid over-aggressive downshifting we
3384 			 * treat any number of retries as "1".
3385 			 */
3386 			ieee80211_ratectl_tx_complete(vap, ni,
3387 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3388 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3389 		}
3390 
3391 		/*
3392 		 * Do any tx complete callback.  Note this must
3393 		 * be done before releasing the node reference.
3394 		 */
3395 		if (tb->tb_mbuf->m_flags & M_TXCB)
3396 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3397 
3398 		ieee80211_free_node(tb->tb_ni);
3399 		tb->tb_ni = NULL;
3400 	}
3401 	m_freem(tb->tb_mbuf);
3402 	tb->tb_mbuf = NULL;
3403 
3404 	if (tbd->tbd_used == 0)
3405 		sc->sc_tx_timer = 0;
3406 
3407 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3408 }
3409 
3410 static void
3411 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3412 {
3413 	struct bwi_txstats_data *st = sc->sc_txstats;
3414 	int idx;
3415 
3416 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3417 
3418 	idx = st->stats_idx;
3419 	while (idx != end_idx) {
3420 		const struct bwi_txstats *stats = &st->stats[idx];
3421 
3422 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3423 			int data_txcnt;
3424 
3425 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3426 						BWI_TXS_TXCNT_DATA);
3427 			_bwi_txeof(sc, le16toh(stats->txs_id),
3428 				   stats->txs_flags & BWI_TXS_F_ACKED,
3429 				   data_txcnt);
3430 		}
3431 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3432 	}
3433 	st->stats_idx = idx;
3434 }
3435 
3436 static void
3437 bwi_txeof(struct bwi_softc *sc)
3438 {
3439 	struct ifnet *ifp = sc->sc_ifp;
3440 
3441 	for (;;) {
3442 		uint32_t tx_status0, tx_status1;
3443 		uint16_t tx_id;
3444 		int data_txcnt;
3445 
3446 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3447 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3448 			break;
3449 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3450 
3451 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3452 		data_txcnt = __SHIFTOUT(tx_status0,
3453 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3454 
3455 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3456 			continue;
3457 
3458 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3459 		    data_txcnt);
3460 	}
3461 
3462 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3463 		ifp->if_start(ifp);
3464 }
3465 
3466 static int
3467 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3468 {
3469 	bwi_power_on(sc, 1);
3470 	return bwi_set_clock_mode(sc, clk_mode);
3471 }
3472 
3473 static void
3474 bwi_bbp_power_off(struct bwi_softc *sc)
3475 {
3476 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3477 	bwi_power_off(sc, 1);
3478 }
3479 
3480 static int
3481 bwi_get_pwron_delay(struct bwi_softc *sc)
3482 {
3483 	struct bwi_regwin *com, *old;
3484 	struct bwi_clock_freq freq;
3485 	uint32_t val;
3486 	int error;
3487 
3488 	com = &sc->sc_com_regwin;
3489 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3490 
3491 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3492 		return 0;
3493 
3494 	error = bwi_regwin_switch(sc, com, &old);
3495 	if (error)
3496 		return error;
3497 
3498 	bwi_get_clock_freq(sc, &freq);
3499 
3500 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3501 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3502 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3503 
3504 	return bwi_regwin_switch(sc, old, NULL);
3505 }
3506 
3507 static int
3508 bwi_bus_attach(struct bwi_softc *sc)
3509 {
3510 	struct bwi_regwin *bus, *old;
3511 	int error;
3512 
3513 	bus = &sc->sc_bus_regwin;
3514 
3515 	error = bwi_regwin_switch(sc, bus, &old);
3516 	if (error)
3517 		return error;
3518 
3519 	if (!bwi_regwin_is_enabled(sc, bus))
3520 		bwi_regwin_enable(sc, bus, 0);
3521 
3522 	/* Disable interripts */
3523 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3524 
3525 	return bwi_regwin_switch(sc, old, NULL);
3526 }
3527 
3528 static const char *
3529 bwi_regwin_name(const struct bwi_regwin *rw)
3530 {
3531 	switch (rw->rw_type) {
3532 	case BWI_REGWIN_T_COM:
3533 		return "COM";
3534 	case BWI_REGWIN_T_BUSPCI:
3535 		return "PCI";
3536 	case BWI_REGWIN_T_MAC:
3537 		return "MAC";
3538 	case BWI_REGWIN_T_BUSPCIE:
3539 		return "PCIE";
3540 	}
3541 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3542 	return NULL;
3543 }
3544 
3545 static uint32_t
3546 bwi_regwin_disable_bits(struct bwi_softc *sc)
3547 {
3548 	uint32_t busrev;
3549 
3550 	/* XXX cache this */
3551 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3552 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3553 		"bus rev %u\n", busrev);
3554 
3555 	if (busrev == BWI_BUSREV_0)
3556 		return BWI_STATE_LO_DISABLE1;
3557 	else if (busrev == BWI_BUSREV_1)
3558 		return BWI_STATE_LO_DISABLE2;
3559 	else
3560 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3561 }
3562 
3563 int
3564 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3565 {
3566 	uint32_t val, disable_bits;
3567 
3568 	disable_bits = bwi_regwin_disable_bits(sc);
3569 	val = CSR_READ_4(sc, BWI_STATE_LO);
3570 
3571 	if ((val & (BWI_STATE_LO_CLOCK |
3572 		    BWI_STATE_LO_RESET |
3573 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3574 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3575 			bwi_regwin_name(rw));
3576 		return 1;
3577 	} else {
3578 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3579 			bwi_regwin_name(rw));
3580 		return 0;
3581 	}
3582 }
3583 
3584 void
3585 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3586 {
3587 	uint32_t state_lo, disable_bits;
3588 	int i;
3589 
3590 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3591 
3592 	/*
3593 	 * If current regwin is in 'reset' state, it was already disabled.
3594 	 */
3595 	if (state_lo & BWI_STATE_LO_RESET) {
3596 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3597 			"%s was already disabled\n", bwi_regwin_name(rw));
3598 		return;
3599 	}
3600 
3601 	disable_bits = bwi_regwin_disable_bits(sc);
3602 
3603 	/*
3604 	 * Disable normal clock
3605 	 */
3606 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3607 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3608 
3609 	/*
3610 	 * Wait until normal clock is disabled
3611 	 */
3612 #define NRETRY	1000
3613 	for (i = 0; i < NRETRY; ++i) {
3614 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3615 		if (state_lo & disable_bits)
3616 			break;
3617 		DELAY(10);
3618 	}
3619 	if (i == NRETRY) {
3620 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3621 			      bwi_regwin_name(rw));
3622 	}
3623 
3624 	for (i = 0; i < NRETRY; ++i) {
3625 		uint32_t state_hi;
3626 
3627 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3628 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3629 			break;
3630 		DELAY(10);
3631 	}
3632 	if (i == NRETRY) {
3633 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3634 			      bwi_regwin_name(rw));
3635 	}
3636 #undef NRETRY
3637 
3638 	/*
3639 	 * Reset and disable regwin with gated clock
3640 	 */
3641 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3642 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3643 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3644 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3645 
3646 	/* Flush pending bus write */
3647 	CSR_READ_4(sc, BWI_STATE_LO);
3648 	DELAY(1);
3649 
3650 	/* Reset and disable regwin */
3651 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3652 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3653 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3654 
3655 	/* Flush pending bus write */
3656 	CSR_READ_4(sc, BWI_STATE_LO);
3657 	DELAY(1);
3658 }
3659 
3660 void
3661 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3662 {
3663 	uint32_t state_lo, state_hi, imstate;
3664 
3665 	bwi_regwin_disable(sc, rw, flags);
3666 
3667 	/* Reset regwin with gated clock */
3668 	state_lo = BWI_STATE_LO_RESET |
3669 		   BWI_STATE_LO_CLOCK |
3670 		   BWI_STATE_LO_GATED_CLOCK |
3671 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3672 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3673 
3674 	/* Flush pending bus write */
3675 	CSR_READ_4(sc, BWI_STATE_LO);
3676 	DELAY(1);
3677 
3678 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3679 	if (state_hi & BWI_STATE_HI_SERROR)
3680 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3681 
3682 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3683 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3684 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3685 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3686 	}
3687 
3688 	/* Enable regwin with gated clock */
3689 	state_lo = BWI_STATE_LO_CLOCK |
3690 		   BWI_STATE_LO_GATED_CLOCK |
3691 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3692 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3693 
3694 	/* Flush pending bus write */
3695 	CSR_READ_4(sc, BWI_STATE_LO);
3696 	DELAY(1);
3697 
3698 	/* Enable regwin with normal clock */
3699 	state_lo = BWI_STATE_LO_CLOCK |
3700 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3701 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3702 
3703 	/* Flush pending bus write */
3704 	CSR_READ_4(sc, BWI_STATE_LO);
3705 	DELAY(1);
3706 }
3707 
3708 static void
3709 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3710 {
3711 	struct ifnet *ifp = sc->sc_ifp;
3712 	struct bwi_mac *mac;
3713 	struct bwi_myaddr_bssid buf;
3714 	const uint8_t *p;
3715 	uint32_t val;
3716 	int n, i;
3717 
3718 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3719 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3720 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3721 
3722 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3723 
3724 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3725 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3726 
3727 	n = sizeof(buf) / sizeof(val);
3728 	p = (const uint8_t *)&buf;
3729 	for (i = 0; i < n; ++i) {
3730 		int j;
3731 
3732 		val = 0;
3733 		for (j = 0; j < sizeof(val); ++j)
3734 			val |= ((uint32_t)(*p++)) << (j * 8);
3735 
3736 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3737 	}
3738 }
3739 
3740 static void
3741 bwi_updateslot(struct ifnet *ifp)
3742 {
3743 	struct bwi_softc *sc = ifp->if_softc;
3744 	struct ieee80211com *ic = ifp->if_l2com;
3745 	struct bwi_mac *mac;
3746 
3747 	BWI_LOCK(sc);
3748 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3749 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3750 
3751 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3752 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3753 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3754 
3755 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3756 	}
3757 	BWI_UNLOCK(sc);
3758 }
3759 
3760 static void
3761 bwi_calibrate(void *xsc)
3762 {
3763 	struct bwi_softc *sc = xsc;
3764 #ifdef INVARIANTS
3765 	struct ifnet *ifp = sc->sc_ifp;
3766 	struct ieee80211com *ic = ifp->if_l2com;
3767 #endif
3768 	struct bwi_mac *mac;
3769 
3770 	BWI_ASSERT_LOCKED(sc);
3771 
3772 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3773 	    ("opmode %d", ic->ic_opmode));
3774 
3775 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3776 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3777 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3778 
3779 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3780 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3781 
3782 	/* XXX 15 seconds */
3783 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3784 }
3785 
3786 static int
3787 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3788 {
3789 	struct bwi_mac *mac;
3790 
3791 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3792 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3793 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3794 
3795 	return bwi_rf_calc_rssi(mac, hdr);
3796 }
3797 
3798 static int
3799 bwi_calc_noise(struct bwi_softc *sc)
3800 {
3801 	struct bwi_mac *mac;
3802 
3803 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3804 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3805 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3806 
3807 	return bwi_rf_calc_noise(mac);
3808 }
3809 
3810 static __inline uint8_t
3811 bwi_ofdm_plcp2rate(const uint32_t *plcp0)
3812 {
3813 	uint32_t plcp;
3814 	uint8_t plcp_rate;
3815 
3816 	plcp = le32toh(*plcp0);
3817 	plcp_rate = __SHIFTOUT(plcp, IEEE80211_OFDM_PLCP_RATE_MASK);
3818 	return ieee80211_plcp2rate(plcp_rate, IEEE80211_T_OFDM);
3819 }
3820 
3821 static __inline uint8_t
3822 bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *hdr)
3823 {
3824 	return ieee80211_plcp2rate(hdr->i_signal, IEEE80211_T_DS);
3825 }
3826 
3827 static void
3828 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3829     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3830 {
3831 	const struct ieee80211_frame_min *wh;
3832 
3833 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3834 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3835 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3836 
3837 	wh = mtod(m, const struct ieee80211_frame_min *);
3838 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3839 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3840 
3841 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3842 	sc->sc_rx_th.wr_rate = rate;
3843 	sc->sc_rx_th.wr_antsignal = rssi;
3844 	sc->sc_rx_th.wr_antnoise = noise;
3845 }
3846 
3847 static void
3848 bwi_led_attach(struct bwi_softc *sc)
3849 {
3850 	const uint8_t *led_act = NULL;
3851 	uint16_t gpio, val[BWI_LED_MAX];
3852 	int i;
3853 
3854 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3855 
3856 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3857 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3858 			led_act = bwi_vendor_led_act[i].led_act;
3859 			break;
3860 		}
3861 	}
3862 	if (led_act == NULL)
3863 		led_act = bwi_default_led_act;
3864 
3865 #undef N
3866 
3867 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3868 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3869 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3870 
3871 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3872 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3873 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3874 
3875 	for (i = 0; i < BWI_LED_MAX; ++i) {
3876 		struct bwi_led *led = &sc->sc_leds[i];
3877 
3878 		if (val[i] == 0xff) {
3879 			led->l_act = led_act[i];
3880 		} else {
3881 			if (val[i] & BWI_LED_ACT_LOW)
3882 				led->l_flags |= BWI_LED_F_ACTLOW;
3883 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3884 		}
3885 		led->l_mask = (1 << i);
3886 
3887 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3888 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3889 		    led->l_act == BWI_LED_ACT_BLINK) {
3890 			led->l_flags |= BWI_LED_F_BLINK;
3891 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3892 				led->l_flags |= BWI_LED_F_POLLABLE;
3893 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3894 				led->l_flags |= BWI_LED_F_SLOW;
3895 
3896 			if (sc->sc_blink_led == NULL) {
3897 				sc->sc_blink_led = led;
3898 				if (led->l_flags & BWI_LED_F_SLOW)
3899 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3900 			}
3901 		}
3902 
3903 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3904 			"%dth led, act %d, lowact %d\n", i,
3905 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3906 	}
3907 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3908 }
3909 
3910 static __inline uint16_t
3911 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3912 {
3913 	if (led->l_flags & BWI_LED_F_ACTLOW)
3914 		on = !on;
3915 	if (on)
3916 		val |= led->l_mask;
3917 	else
3918 		val &= ~led->l_mask;
3919 	return val;
3920 }
3921 
3922 static void
3923 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3924 {
3925 	struct ifnet *ifp = sc->sc_ifp;
3926 	struct ieee80211com *ic = ifp->if_l2com;
3927 	uint16_t val;
3928 	int i;
3929 
3930 	if (nstate == IEEE80211_S_INIT) {
3931 		callout_stop(&sc->sc_led_blink_ch);
3932 		sc->sc_led_blinking = 0;
3933 	}
3934 
3935 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3936 		return;
3937 
3938 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3939 	for (i = 0; i < BWI_LED_MAX; ++i) {
3940 		struct bwi_led *led = &sc->sc_leds[i];
3941 		int on;
3942 
3943 		if (led->l_act == BWI_LED_ACT_UNKN ||
3944 		    led->l_act == BWI_LED_ACT_NULL)
3945 			continue;
3946 
3947 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3948 		    nstate != IEEE80211_S_INIT)
3949 		    	continue;
3950 
3951 		switch (led->l_act) {
3952 		case BWI_LED_ACT_ON:	/* Always on */
3953 			on = 1;
3954 			break;
3955 		case BWI_LED_ACT_OFF:	/* Always off */
3956 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3957 			on = 0;
3958 			break;
3959 		default:
3960 			on = 1;
3961 			switch (nstate) {
3962 			case IEEE80211_S_INIT:
3963 				on = 0;
3964 				break;
3965 			case IEEE80211_S_RUN:
3966 				if (led->l_act == BWI_LED_ACT_11G &&
3967 				    ic->ic_curmode != IEEE80211_MODE_11G)
3968 					on = 0;
3969 				break;
3970 			default:
3971 				if (led->l_act == BWI_LED_ACT_ASSOC)
3972 					on = 0;
3973 				break;
3974 			}
3975 			break;
3976 		}
3977 
3978 		val = bwi_led_onoff(led, val, on);
3979 	}
3980 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3981 }
3982 static void
3983 bwi_led_event(struct bwi_softc *sc, int event)
3984 {
3985 	struct bwi_led *led = sc->sc_blink_led;
3986 	int rate;
3987 
3988 	if (event == BWI_LED_EVENT_POLL) {
3989 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3990 			return;
3991 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3992 			return;
3993 	}
3994 
3995 	sc->sc_led_ticks = ticks;
3996 	if (sc->sc_led_blinking)
3997 		return;
3998 
3999 	switch (event) {
4000 	case BWI_LED_EVENT_RX:
4001 		rate = sc->sc_rx_rate;
4002 		break;
4003 	case BWI_LED_EVENT_TX:
4004 		rate = sc->sc_tx_rate;
4005 		break;
4006 	case BWI_LED_EVENT_POLL:
4007 		rate = 0;
4008 		break;
4009 	default:
4010 		panic("unknown LED event %d\n", event);
4011 		break;
4012 	}
4013 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4014 	    bwi_led_duration[rate].off_dur);
4015 }
4016 
4017 static void
4018 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4019 {
4020 	struct bwi_led *led = sc->sc_blink_led;
4021 	uint16_t val;
4022 
4023 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4024 	val = bwi_led_onoff(led, val, 1);
4025 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4026 
4027 	if (led->l_flags & BWI_LED_F_SLOW) {
4028 		BWI_LED_SLOWDOWN(on_dur);
4029 		BWI_LED_SLOWDOWN(off_dur);
4030 	}
4031 
4032 	sc->sc_led_blinking = 1;
4033 	sc->sc_led_blink_offdur = off_dur;
4034 
4035 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4036 }
4037 
4038 static void
4039 bwi_led_blink_next(void *xsc)
4040 {
4041 	struct bwi_softc *sc = xsc;
4042 	uint16_t val;
4043 
4044 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4045 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4046 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4047 
4048 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4049 	    bwi_led_blink_end, sc);
4050 }
4051 
4052 static void
4053 bwi_led_blink_end(void *xsc)
4054 {
4055 	struct bwi_softc *sc = xsc;
4056 	sc->sc_led_blinking = 0;
4057 }
4058 
4059 static void
4060 bwi_restart(void *xsc, int pending)
4061 {
4062 	struct bwi_softc *sc = xsc;
4063 	struct ifnet *ifp = sc->sc_ifp;
4064 
4065 	if_printf(ifp, "%s begin, help!\n", __func__);
4066 	BWI_LOCK(sc);
4067 	bwi_init_statechg(xsc, 0);
4068 #if 0
4069 	bwi_start_locked(ifp);
4070 #endif
4071 	BWI_UNLOCK(sc);
4072 }
4073