xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 9fd69f37d28cfd7438cac3eeb45fe9dd46b4d7dd)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_phy.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		   const char [IFNAMSIZ], int, int, int,
100 		   const uint8_t [IEEE80211_ADDR_LEN],
101 		   const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(void *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static struct ieee80211_node *bwi_node_alloc(struct ieee80211vap *,
116 		    const uint8_t [IEEE80211_ADDR_LEN]);
117 static void	bwi_newassoc(struct ieee80211_node *, int);
118 static int	bwi_media_change(struct ifnet *);
119 
120 static void	bwi_calibrate(void *);
121 
122 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int	bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_ofdm_plcp2rate(const uint32_t *);
125 static __inline uint8_t bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *);
126 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
127 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
128 
129 static void	bwi_restart(void *, int);
130 static void	bwi_init_statechg(struct bwi_softc *, int);
131 static void	bwi_stop(struct bwi_softc *, int);
132 static void	bwi_stop_locked(struct bwi_softc *, int);
133 static int	bwi_newbuf(struct bwi_softc *, int, int);
134 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *);
136 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *,
138 			  const struct ieee80211_bpf_params *);
139 
140 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
141 				       bus_addr_t, int, int);
142 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
143 
144 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
145 static int	bwi_init_rx_ring32(struct bwi_softc *);
146 static int	bwi_init_txstats32(struct bwi_softc *);
147 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
148 static void	bwi_free_rx_ring32(struct bwi_softc *);
149 static void	bwi_free_txstats32(struct bwi_softc *);
150 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
151 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
152 				    int, bus_addr_t, int);
153 static int	bwi_rxeof32(struct bwi_softc *);
154 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
155 static void	bwi_txeof_status32(struct bwi_softc *);
156 
157 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
158 static int	bwi_init_rx_ring64(struct bwi_softc *);
159 static int	bwi_init_txstats64(struct bwi_softc *);
160 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
161 static void	bwi_free_rx_ring64(struct bwi_softc *);
162 static void	bwi_free_txstats64(struct bwi_softc *);
163 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
164 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
165 				    int, bus_addr_t, int);
166 static int	bwi_rxeof64(struct bwi_softc *);
167 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
168 static void	bwi_txeof_status64(struct bwi_softc *);
169 
170 static int	bwi_rxeof(struct bwi_softc *, int);
171 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
172 static void	bwi_txeof(struct bwi_softc *);
173 static void	bwi_txeof_status(struct bwi_softc *, int);
174 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
175 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
176 
177 static int	bwi_dma_alloc(struct bwi_softc *);
178 static void	bwi_dma_free(struct bwi_softc *);
179 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
180 				   struct bwi_ring_data *, bus_size_t,
181 				   uint32_t);
182 static int	bwi_dma_mbuf_create(struct bwi_softc *);
183 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
184 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
185 static void	bwi_dma_txstats_free(struct bwi_softc *);
186 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
187 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
188 				 bus_size_t, int);
189 
190 static void	bwi_power_on(struct bwi_softc *, int);
191 static int	bwi_power_off(struct bwi_softc *, int);
192 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
193 static int	bwi_set_clock_delay(struct bwi_softc *);
194 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
195 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
196 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
197 				    const uint8_t *);
198 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
199 
200 static void	bwi_get_card_flags(struct bwi_softc *);
201 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
202 
203 static int	bwi_bus_attach(struct bwi_softc *);
204 static int	bwi_bbp_attach(struct bwi_softc *);
205 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
206 static void	bwi_bbp_power_off(struct bwi_softc *);
207 
208 static const char *bwi_regwin_name(const struct bwi_regwin *);
209 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
210 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
211 static int	bwi_regwin_select(struct bwi_softc *, int);
212 
213 static void	bwi_led_attach(struct bwi_softc *);
214 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
215 static void	bwi_led_event(struct bwi_softc *, int);
216 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
217 static void	bwi_led_blink_next(void *);
218 static void	bwi_led_blink_end(void *);
219 
220 static const struct {
221 	uint16_t	did_min;
222 	uint16_t	did_max;
223 	uint16_t	bbp_id;
224 } bwi_bbpid_map[] = {
225 	{ 0x4301, 0x4301, 0x4301 },
226 	{ 0x4305, 0x4307, 0x4307 },
227 	{ 0x4403, 0x4403, 0x4402 },
228 	{ 0x4610, 0x4615, 0x4610 },
229 	{ 0x4710, 0x4715, 0x4710 },
230 	{ 0x4720, 0x4725, 0x4309 }
231 };
232 
233 static const struct {
234 	uint16_t	bbp_id;
235 	int		nregwin;
236 } bwi_regwin_count[] = {
237 	{ 0x4301, 5 },
238 	{ 0x4306, 6 },
239 	{ 0x4307, 5 },
240 	{ 0x4310, 8 },
241 	{ 0x4401, 3 },
242 	{ 0x4402, 3 },
243 	{ 0x4610, 9 },
244 	{ 0x4704, 9 },
245 	{ 0x4710, 9 },
246 	{ 0x5365, 7 }
247 };
248 
249 #define CLKSRC(src) 				\
250 [BWI_CLKSRC_ ## src] = {			\
251 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
252 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
253 }
254 
255 static const struct {
256 	u_int	freq_min;
257 	u_int	freq_max;
258 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
259 	CLKSRC(LP_OSC),
260 	CLKSRC(CS_OSC),
261 	CLKSRC(PCI)
262 };
263 
264 #undef CLKSRC
265 
266 #define VENDOR_LED_ACT(vendor)				\
267 {							\
268 	.vid = PCI_VENDOR_##vendor,			\
269 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
270 }
271 
272 static const struct {
273 #define	PCI_VENDOR_COMPAQ	0x0e11
274 #define	PCI_VENDOR_LINKSYS	0x1737
275 	uint16_t	vid;
276 	uint8_t		led_act[BWI_LED_MAX];
277 } bwi_vendor_led_act[] = {
278 	VENDOR_LED_ACT(COMPAQ),
279 	VENDOR_LED_ACT(LINKSYS)
280 #undef PCI_VENDOR_LINKSYS
281 #undef PCI_VENDOR_COMPAQ
282 };
283 
284 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
285 	{ BWI_VENDOR_LED_ACT_DEFAULT };
286 
287 #undef VENDOR_LED_ACT
288 
289 static const struct {
290 	int	on_dur;
291 	int	off_dur;
292 } bwi_led_duration[109] = {
293 	[0]	= { 400, 100 },
294 	[2]	= { 150, 75 },
295 	[4]	= { 90, 45 },
296 	[11]	= { 66, 34 },
297 	[12]	= { 53, 26 },
298 	[18]	= { 42, 21 },
299 	[22]	= { 35, 17 },
300 	[24]	= { 32, 16 },
301 	[36]	= { 21, 10 },
302 	[48]	= { 16, 8 },
303 	[72]	= { 11, 5 },
304 	[96]	= { 9, 4 },
305 	[108]	= { 7, 3 }
306 };
307 
308 #ifdef BWI_DEBUG
309 #ifdef BWI_DEBUG_VERBOSE
310 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
311 #else
312 static uint32_t	bwi_debug;
313 #endif
314 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
315 #endif	/* BWI_DEBUG */
316 
317 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
318 
319 uint16_t
320 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
321 {
322 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
323 }
324 
325 static __inline void
326 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
327 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
328 		 int tx)
329 {
330 	struct bwi_desc32 *desc = &desc_array[desc_idx];
331 	uint32_t ctrl, addr, addr_hi, addr_lo;
332 
333 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
334 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
335 
336 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
337 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
338 
339 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
340 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
341 	if (desc_idx == ndesc - 1)
342 		ctrl |= BWI_DESC32_C_EOR;
343 	if (tx) {
344 		/* XXX */
345 		ctrl |= BWI_DESC32_C_FRAME_START |
346 			BWI_DESC32_C_FRAME_END |
347 			BWI_DESC32_C_INTR;
348 	}
349 
350 	desc->addr = htole32(addr);
351 	desc->ctrl = htole32(ctrl);
352 }
353 
354 int
355 bwi_attach(struct bwi_softc *sc)
356 {
357 	struct ieee80211com *ic;
358 	device_t dev = sc->sc_dev;
359 	struct ifnet *ifp;
360 	struct bwi_mac *mac;
361 	struct bwi_phy *phy;
362 	int i, error;
363 	uint8_t bands;
364 	uint8_t macaddr[IEEE80211_ADDR_LEN];
365 
366 	BWI_LOCK_INIT(sc);
367 
368 	/*
369 	 * Initialize taskq and various tasks
370 	 */
371 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
372 		taskqueue_thread_enqueue, &sc->sc_tq);
373 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
374 		device_get_nameunit(dev));
375 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
376 
377 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
378 
379 	/*
380 	 * Initialize sysctl variables
381 	 */
382 	sc->sc_fw_version = BWI_FW_VERSION3;
383 	sc->sc_led_idle = (2350 * hz) / 1000;
384 	sc->sc_led_blink = 1;
385 	sc->sc_txpwr_calib = 1;
386 #ifdef BWI_DEBUG
387 	sc->sc_debug = bwi_debug;
388 #endif
389 	bwi_power_on(sc, 1);
390 
391 	error = bwi_bbp_attach(sc);
392 	if (error)
393 		goto fail;
394 
395 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
396 	if (error)
397 		goto fail;
398 
399 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
400 		error = bwi_set_clock_delay(sc);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
405 		if (error)
406 			goto fail;
407 
408 		error = bwi_get_pwron_delay(sc);
409 		if (error)
410 			goto fail;
411 	}
412 
413 	error = bwi_bus_attach(sc);
414 	if (error)
415 		goto fail;
416 
417 	bwi_get_card_flags(sc);
418 
419 	bwi_led_attach(sc);
420 
421 	for (i = 0; i < sc->sc_nmac; ++i) {
422 		struct bwi_regwin *old;
423 
424 		mac = &sc->sc_mac[i];
425 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_mac_lateattach(mac);
430 		if (error)
431 			goto fail;
432 
433 		error = bwi_regwin_switch(sc, old, NULL);
434 		if (error)
435 			goto fail;
436 	}
437 
438 	/*
439 	 * XXX First MAC is known to exist
440 	 * TODO2
441 	 */
442 	mac = &sc->sc_mac[0];
443 	phy = &mac->mac_phy;
444 
445 	bwi_bbp_power_off(sc);
446 
447 	error = bwi_dma_alloc(sc);
448 	if (error)
449 		goto fail;
450 
451 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
452 	if (ifp == NULL) {
453 		device_printf(dev, "can not if_alloc()\n");
454 		error = ENOSPC;
455 		goto fail;
456 	}
457 	ic = ifp->if_l2com;
458 
459 	/* set these up early for if_printf use */
460 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
461 
462 	ifp->if_softc = sc;
463 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
464 	ifp->if_init = bwi_init;
465 	ifp->if_ioctl = bwi_ioctl;
466 	ifp->if_start = bwi_start;
467 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
468 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
469 	IFQ_SET_READY(&ifp->if_snd);
470 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
471 
472 	/*
473 	 * Setup ratesets, phytype, channels and get MAC address
474 	 */
475 	bands = 0;
476 	if (phy->phy_mode == IEEE80211_MODE_11B ||
477 	    phy->phy_mode == IEEE80211_MODE_11G) {
478 		setbit(&bands, IEEE80211_MODE_11B);
479 		if (phy->phy_mode == IEEE80211_MODE_11B) {
480 			ic->ic_phytype = IEEE80211_T_DS;
481 		} else {
482 			ic->ic_phytype = IEEE80211_T_OFDM;
483 			setbit(&bands, IEEE80211_MODE_11G);
484 		}
485 
486 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
487 		if (IEEE80211_IS_MULTICAST(macaddr)) {
488 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
489 			if (IEEE80211_IS_MULTICAST(macaddr)) {
490 				device_printf(dev,
491 				    "invalid MAC address: %6D\n",
492 				    macaddr, ":");
493 			}
494 		}
495 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
496 		/* TODO:11A */
497 		setbit(&bands, IEEE80211_MODE_11A);
498 		error = ENXIO;
499 		goto fail;
500 	} else {
501 		panic("unknown phymode %d\n", phy->phy_mode);
502 	}
503 
504 	/* Get locale */
505 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
506 				   BWI_SPROM_CARD_INFO_LOCALE);
507 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
508 	/* XXX use locale */
509 	ieee80211_init_channels(ic, NULL, &bands);
510 
511 	ic->ic_ifp = ifp;
512 	ic->ic_caps = IEEE80211_C_STA |
513 		      IEEE80211_C_SHSLOT |
514 		      IEEE80211_C_SHPREAMBLE |
515 		      IEEE80211_C_WPA |
516 		      IEEE80211_C_BGSCAN |
517 		      IEEE80211_C_MONITOR;
518 	ic->ic_opmode = IEEE80211_M_STA;
519 	ieee80211_ifattach(ic, macaddr);
520 
521 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
522 
523 	/* override default methods */
524 	ic->ic_vap_create = bwi_vap_create;
525 	ic->ic_vap_delete = bwi_vap_delete;
526 	ic->ic_raw_xmit = bwi_raw_xmit;
527 	ic->ic_updateslot = bwi_updateslot;
528 	ic->ic_node_alloc = bwi_node_alloc;
529 	ic->ic_scan_start = bwi_scan_start;
530 	ic->ic_scan_end = bwi_scan_end;
531 	ic->ic_set_channel = bwi_set_channel;
532 
533 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
534 
535 	ieee80211_radiotap_attach(ic,
536 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
537 		BWI_TX_RADIOTAP_PRESENT,
538 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
539 		BWI_RX_RADIOTAP_PRESENT);
540 
541 	/*
542 	 * Add sysctl nodes
543 	 */
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
547 		        "Firmware version");
548 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
549 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
551 		        "# ticks before LED enters idle state");
552 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
553 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
554 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
555 		       "Allow LED to blink");
556 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
557 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
558 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
559 		       "Enable software TX power calibration");
560 #ifdef BWI_DEBUG
561 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
562 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
563 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
564 #endif
565 	if (bootverbose)
566 		ieee80211_announce(ic);
567 
568 	return (0);
569 fail:
570 	BWI_LOCK_DESTROY(sc);
571 	return (error);
572 }
573 
574 int
575 bwi_detach(struct bwi_softc *sc)
576 {
577 	struct ifnet *ifp = sc->sc_ifp;
578 	struct ieee80211com *ic = ifp->if_l2com;
579 	int i;
580 
581 	bwi_stop(sc, 1);
582 	callout_drain(&sc->sc_led_blink_ch);
583 	callout_drain(&sc->sc_calib_ch);
584 	callout_drain(&sc->sc_watchdog_timer);
585 	ieee80211_ifdetach(ic);
586 
587 	for (i = 0; i < sc->sc_nmac; ++i)
588 		bwi_mac_detach(&sc->sc_mac[i]);
589 	bwi_dma_free(sc);
590 	if_free(ifp);
591 	taskqueue_free(sc->sc_tq);
592 
593 	BWI_LOCK_DESTROY(sc);
594 
595 	return (0);
596 }
597 
598 static struct ieee80211vap *
599 bwi_vap_create(struct ieee80211com *ic,
600 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
601 	const uint8_t bssid[IEEE80211_ADDR_LEN],
602 	const uint8_t mac[IEEE80211_ADDR_LEN])
603 {
604 	struct bwi_vap *bvp;
605 	struct ieee80211vap *vap;
606 
607 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
608 		return NULL;
609 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
610 	    M_80211_VAP, M_WAITOK | M_ZERO);
611 	if (bvp == NULL)
612 		return NULL;
613 	vap = &bvp->bv_vap;
614 	/* enable s/w bmiss handling for sta mode */
615 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
616 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
617 
618 	/* override default methods */
619 	bvp->bv_newstate = vap->iv_newstate;
620 	vap->iv_newstate = bwi_newstate;
621 #if 0
622 	vap->iv_update_beacon = bwi_beacon_update;
623 #endif
624 	ieee80211_amrr_init(&bvp->bv_amrr, vap,
625 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
626 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
627 	    500 /*ms*/);
628 
629 	/* complete setup */
630 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
631 	ic->ic_opmode = opmode;
632 	return vap;
633 }
634 
635 static void
636 bwi_vap_delete(struct ieee80211vap *vap)
637 {
638 	struct bwi_vap *bvp = BWI_VAP(vap);
639 
640 	ieee80211_amrr_cleanup(&bvp->bv_amrr);
641 	ieee80211_vap_detach(vap);
642 	free(bvp, M_80211_VAP);
643 }
644 
645 void
646 bwi_suspend(struct bwi_softc *sc)
647 {
648 	bwi_stop(sc, 1);
649 }
650 
651 void
652 bwi_resume(struct bwi_softc *sc)
653 {
654 	struct ifnet *ifp = sc->sc_ifp;
655 
656 	if (ifp->if_flags & IFF_UP)
657 		bwi_init(sc);
658 }
659 
660 int
661 bwi_shutdown(struct bwi_softc *sc)
662 {
663 	bwi_stop(sc, 1);
664 	return 0;
665 }
666 
667 static void
668 bwi_power_on(struct bwi_softc *sc, int with_pll)
669 {
670 	uint32_t gpio_in, gpio_out, gpio_en;
671 	uint16_t status;
672 
673 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
674 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
675 		goto back;
676 
677 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
678 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
679 
680 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
681 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
682 	if (with_pll) {
683 		/* Turn off PLL first */
684 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
685 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
686 	}
687 
688 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
689 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
690 	DELAY(1000);
691 
692 	if (with_pll) {
693 		/* Turn on PLL */
694 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
695 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
696 		DELAY(5000);
697 	}
698 
699 back:
700 	/* Clear "Signaled Target Abort" */
701 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
702 	status &= ~PCIM_STATUS_STABORT;
703 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
704 }
705 
706 static int
707 bwi_power_off(struct bwi_softc *sc, int with_pll)
708 {
709 	uint32_t gpio_out, gpio_en;
710 
711 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
712 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
713 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
714 
715 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
716 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
717 	if (with_pll) {
718 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
719 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
720 	}
721 
722 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
723 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
724 	return 0;
725 }
726 
727 int
728 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
729 		  struct bwi_regwin **old_rw)
730 {
731 	int error;
732 
733 	if (old_rw != NULL)
734 		*old_rw = NULL;
735 
736 	if (!BWI_REGWIN_EXIST(rw))
737 		return EINVAL;
738 
739 	if (sc->sc_cur_regwin != rw) {
740 		error = bwi_regwin_select(sc, rw->rw_id);
741 		if (error) {
742 			device_printf(sc->sc_dev, "can't select regwin %d\n",
743 				  rw->rw_id);
744 			return error;
745 		}
746 	}
747 
748 	if (old_rw != NULL)
749 		*old_rw = sc->sc_cur_regwin;
750 	sc->sc_cur_regwin = rw;
751 	return 0;
752 }
753 
754 static int
755 bwi_regwin_select(struct bwi_softc *sc, int id)
756 {
757 	uint32_t win = BWI_PCIM_REGWIN(id);
758 	int i;
759 
760 #define RETRY_MAX	50
761 	for (i = 0; i < RETRY_MAX; ++i) {
762 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
763 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
764 			return 0;
765 		DELAY(10);
766 	}
767 #undef RETRY_MAX
768 
769 	return ENXIO;
770 }
771 
772 static void
773 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
774 {
775 	uint32_t val;
776 
777 	val = CSR_READ_4(sc, BWI_ID_HI);
778 	*type = BWI_ID_HI_REGWIN_TYPE(val);
779 	*rev = BWI_ID_HI_REGWIN_REV(val);
780 
781 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
782 		"vendor 0x%04x\n", *type, *rev,
783 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
784 }
785 
786 static int
787 bwi_bbp_attach(struct bwi_softc *sc)
788 {
789 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
790 	uint16_t bbp_id, rw_type;
791 	uint8_t rw_rev;
792 	uint32_t info;
793 	int error, nregwin, i;
794 
795 	/*
796 	 * Get 0th regwin information
797 	 * NOTE: 0th regwin should exist
798 	 */
799 	error = bwi_regwin_select(sc, 0);
800 	if (error) {
801 		device_printf(sc->sc_dev, "can't select regwin 0\n");
802 		return error;
803 	}
804 	bwi_regwin_info(sc, &rw_type, &rw_rev);
805 
806 	/*
807 	 * Find out BBP id
808 	 */
809 	bbp_id = 0;
810 	info = 0;
811 	if (rw_type == BWI_REGWIN_T_COM) {
812 		info = CSR_READ_4(sc, BWI_INFO);
813 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
814 
815 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
816 
817 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
818 	} else {
819 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
820 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
821 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
822 				bbp_id = bwi_bbpid_map[i].bbp_id;
823 				break;
824 			}
825 		}
826 		if (bbp_id == 0) {
827 			device_printf(sc->sc_dev, "no BBP id for device id "
828 				      "0x%04x\n", sc->sc_pci_did);
829 			return ENXIO;
830 		}
831 
832 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
833 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
834 	}
835 
836 	/*
837 	 * Find out number of regwins
838 	 */
839 	nregwin = 0;
840 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
841 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
842 	} else {
843 		for (i = 0; i < N(bwi_regwin_count); ++i) {
844 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
845 				nregwin = bwi_regwin_count[i].nregwin;
846 				break;
847 			}
848 		}
849 		if (nregwin == 0) {
850 			device_printf(sc->sc_dev, "no number of win for "
851 				      "BBP id 0x%04x\n", bbp_id);
852 			return ENXIO;
853 		}
854 	}
855 
856 	/* Record BBP id/rev for later using */
857 	sc->sc_bbp_id = bbp_id;
858 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
859 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
860 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
861 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
862 
863 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
864 		nregwin, sc->sc_cap);
865 
866 	/*
867 	 * Create rest of the regwins
868 	 */
869 
870 	/* Don't re-create common regwin, if it is already created */
871 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
872 
873 	for (; i < nregwin; ++i) {
874 		/*
875 		 * Get regwin information
876 		 */
877 		error = bwi_regwin_select(sc, i);
878 		if (error) {
879 			device_printf(sc->sc_dev,
880 				      "can't select regwin %d\n", i);
881 			return error;
882 		}
883 		bwi_regwin_info(sc, &rw_type, &rw_rev);
884 
885 		/*
886 		 * Try attach:
887 		 * 1) Bus (PCI/PCIE) regwin
888 		 * 2) MAC regwin
889 		 * Ignore rest types of regwin
890 		 */
891 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
892 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
893 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
894 				device_printf(sc->sc_dev,
895 					      "bus regwin already exists\n");
896 			} else {
897 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
898 						  rw_type, rw_rev);
899 			}
900 		} else if (rw_type == BWI_REGWIN_T_MAC) {
901 			/* XXX ignore return value */
902 			bwi_mac_attach(sc, i, rw_rev);
903 		}
904 	}
905 
906 	/* At least one MAC shold exist */
907 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
908 		device_printf(sc->sc_dev, "no MAC was found\n");
909 		return ENXIO;
910 	}
911 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
912 
913 	/* Bus regwin must exist */
914 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
915 		device_printf(sc->sc_dev, "no bus regwin was found\n");
916 		return ENXIO;
917 	}
918 
919 	/* Start with first MAC */
920 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
921 	if (error)
922 		return error;
923 
924 	return 0;
925 #undef N
926 }
927 
928 int
929 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
930 {
931 	struct bwi_regwin *old, *bus;
932 	uint32_t val;
933 	int error;
934 
935 	bus = &sc->sc_bus_regwin;
936 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
937 
938 	/*
939 	 * Tell bus to generate requested interrupts
940 	 */
941 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
942 		/*
943 		 * NOTE: Read BWI_FLAGS from MAC regwin
944 		 */
945 		val = CSR_READ_4(sc, BWI_FLAGS);
946 
947 		error = bwi_regwin_switch(sc, bus, &old);
948 		if (error)
949 			return error;
950 
951 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
952 	} else {
953 		uint32_t mac_mask;
954 
955 		mac_mask = 1 << mac->mac_id;
956 
957 		error = bwi_regwin_switch(sc, bus, &old);
958 		if (error)
959 			return error;
960 
961 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
962 		val |= mac_mask << 8;
963 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
964 	}
965 
966 	if (sc->sc_flags & BWI_F_BUS_INITED)
967 		goto back;
968 
969 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
970 		/*
971 		 * Enable prefetch and burst
972 		 */
973 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
974 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
975 
976 		if (bus->rw_rev < 5) {
977 			struct bwi_regwin *com = &sc->sc_com_regwin;
978 
979 			/*
980 			 * Configure timeouts for bus operation
981 			 */
982 
983 			/*
984 			 * Set service timeout and request timeout
985 			 */
986 			CSR_SETBITS_4(sc, BWI_CONF_LO,
987 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
988 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
989 
990 			/*
991 			 * If there is common regwin, we switch to that regwin
992 			 * and switch back to bus regwin once we have done.
993 			 */
994 			if (BWI_REGWIN_EXIST(com)) {
995 				error = bwi_regwin_switch(sc, com, NULL);
996 				if (error)
997 					return error;
998 			}
999 
1000 			/* Let bus know what we have changed */
1001 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
1002 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
1003 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
1004 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
1005 
1006 			if (BWI_REGWIN_EXIST(com)) {
1007 				error = bwi_regwin_switch(sc, bus, NULL);
1008 				if (error)
1009 					return error;
1010 			}
1011 		} else if (bus->rw_rev >= 11) {
1012 			/*
1013 			 * Enable memory read multiple
1014 			 */
1015 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1016 		}
1017 	} else {
1018 		/* TODO:PCIE */
1019 	}
1020 
1021 	sc->sc_flags |= BWI_F_BUS_INITED;
1022 back:
1023 	return bwi_regwin_switch(sc, old, NULL);
1024 }
1025 
1026 static void
1027 bwi_get_card_flags(struct bwi_softc *sc)
1028 {
1029 #define	PCI_VENDOR_APPLE 0x106b
1030 #define	PCI_VENDOR_DELL  0x1028
1031 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1032 	if (sc->sc_card_flags == 0xffff)
1033 		sc->sc_card_flags = 0;
1034 
1035 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1036 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1037 	    sc->sc_pci_revid == 0x74)
1038 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1039 
1040 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1041 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1042 	    sc->sc_pci_revid > 0x40)
1043 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1044 
1045 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1046 #undef PCI_VENDOR_DELL
1047 #undef PCI_VENDOR_APPLE
1048 }
1049 
1050 static void
1051 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1052 {
1053 	int i;
1054 
1055 	for (i = 0; i < 3; ++i) {
1056 		*((uint16_t *)eaddr + i) =
1057 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1058 	}
1059 }
1060 
1061 static void
1062 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1063 {
1064 	struct bwi_regwin *com;
1065 	uint32_t val;
1066 	u_int div;
1067 	int src;
1068 
1069 	bzero(freq, sizeof(*freq));
1070 	com = &sc->sc_com_regwin;
1071 
1072 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1073 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1074 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1075 
1076 	/*
1077 	 * Calculate clock frequency
1078 	 */
1079 	src = -1;
1080 	div = 0;
1081 	if (com->rw_rev < 6) {
1082 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1083 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1084 			src = BWI_CLKSRC_PCI;
1085 			div = 64;
1086 		} else {
1087 			src = BWI_CLKSRC_CS_OSC;
1088 			div = 32;
1089 		}
1090 	} else if (com->rw_rev < 10) {
1091 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1092 
1093 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1094 		if (src == BWI_CLKSRC_LP_OSC) {
1095 			div = 1;
1096 		} else {
1097 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1098 
1099 			/* Unknown source */
1100 			if (src >= BWI_CLKSRC_MAX)
1101 				src = BWI_CLKSRC_CS_OSC;
1102 		}
1103 	} else {
1104 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1105 
1106 		src = BWI_CLKSRC_CS_OSC;
1107 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1108 	}
1109 
1110 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1111 	KASSERT(div != 0, ("div zero"));
1112 
1113 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1114 		src == BWI_CLKSRC_PCI ? "PCI" :
1115 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1116 
1117 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1118 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1119 
1120 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1121 		freq->clkfreq_min, freq->clkfreq_max);
1122 }
1123 
1124 static int
1125 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1126 {
1127 	struct bwi_regwin *old, *com;
1128 	uint32_t clk_ctrl, clk_src;
1129 	int error, pwr_off = 0;
1130 
1131 	com = &sc->sc_com_regwin;
1132 	if (!BWI_REGWIN_EXIST(com))
1133 		return 0;
1134 
1135 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1136 		return 0;
1137 
1138 	/*
1139 	 * For common regwin whose rev is [6, 10), the chip
1140 	 * must be capable to change clock mode.
1141 	 */
1142 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1143 		return 0;
1144 
1145 	error = bwi_regwin_switch(sc, com, &old);
1146 	if (error)
1147 		return error;
1148 
1149 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1150 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1151 
1152 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1153 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1154 
1155 	switch (clk_mode) {
1156 	case BWI_CLOCK_MODE_FAST:
1157 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1158 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1159 		break;
1160 	case BWI_CLOCK_MODE_SLOW:
1161 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1162 		break;
1163 	case BWI_CLOCK_MODE_DYN:
1164 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1165 			      BWI_CLOCK_CTRL_IGNPLL |
1166 			      BWI_CLOCK_CTRL_NODYN);
1167 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1168 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1169 			pwr_off = 1;
1170 		}
1171 		break;
1172 	}
1173 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1174 
1175 	if (pwr_off)
1176 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1177 
1178 	return bwi_regwin_switch(sc, old, NULL);
1179 }
1180 
1181 static int
1182 bwi_set_clock_delay(struct bwi_softc *sc)
1183 {
1184 	struct bwi_regwin *old, *com;
1185 	int error;
1186 
1187 	com = &sc->sc_com_regwin;
1188 	if (!BWI_REGWIN_EXIST(com))
1189 		return 0;
1190 
1191 	error = bwi_regwin_switch(sc, com, &old);
1192 	if (error)
1193 		return error;
1194 
1195 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1196 		if (sc->sc_bbp_rev == 0)
1197 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1198 		else if (sc->sc_bbp_rev == 1)
1199 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1200 	}
1201 
1202 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1203 		if (com->rw_rev >= 10) {
1204 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1205 		} else {
1206 			struct bwi_clock_freq freq;
1207 
1208 			bwi_get_clock_freq(sc, &freq);
1209 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1210 				howmany(freq.clkfreq_max * 150, 1000000));
1211 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1212 				howmany(freq.clkfreq_max * 15, 1000000));
1213 		}
1214 	}
1215 
1216 	return bwi_regwin_switch(sc, old, NULL);
1217 }
1218 
1219 static void
1220 bwi_init(void *xsc)
1221 {
1222 	struct bwi_softc *sc = xsc;
1223 	struct ifnet *ifp = sc->sc_ifp;
1224 	struct ieee80211com *ic = ifp->if_l2com;
1225 
1226 	BWI_LOCK(sc);
1227 	bwi_init_statechg(sc, 1);
1228 	BWI_UNLOCK(sc);
1229 
1230 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1231 		ieee80211_start_all(ic);		/* start all vap's */
1232 }
1233 
1234 static void
1235 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1236 {
1237 	struct ifnet *ifp = sc->sc_ifp;
1238 	struct bwi_mac *mac;
1239 	int error;
1240 
1241 	bwi_stop_locked(sc, statechg);
1242 
1243 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1244 
1245 	/* TODO: 2 MAC */
1246 
1247 	mac = &sc->sc_mac[0];
1248 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1249 	if (error) {
1250 		if_printf(ifp, "%s: error %d on regwin switch\n",
1251 		    __func__, error);
1252 		goto bad;
1253 	}
1254 	error = bwi_mac_init(mac);
1255 	if (error) {
1256 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1257 		goto bad;
1258 	}
1259 
1260 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1261 
1262 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1263 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1264 
1265 	bwi_mac_reset_hwkeys(mac);
1266 
1267 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1268 		int i;
1269 
1270 #define NRETRY	1000
1271 		/*
1272 		 * Drain any possible pending TX status
1273 		 */
1274 		for (i = 0; i < NRETRY; ++i) {
1275 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1276 			     BWI_TXSTATUS0_VALID) == 0)
1277 				break;
1278 			CSR_READ_4(sc, BWI_TXSTATUS1);
1279 		}
1280 		if (i == NRETRY)
1281 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1282 #undef NRETRY
1283 	}
1284 
1285 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1286 		bwi_mac_updateslot(mac, 1);
1287 
1288 	/* Start MAC */
1289 	error = bwi_mac_start(mac);
1290 	if (error) {
1291 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1292 		goto bad;
1293 	}
1294 
1295 	/* Clear stop flag before enabling interrupt */
1296 	sc->sc_flags &= ~BWI_F_STOP;
1297 
1298 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1299 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1300 
1301 	/* Enable intrs */
1302 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1303 	return;
1304 bad:
1305 	bwi_stop_locked(sc, 1);
1306 }
1307 
1308 static int
1309 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1310 {
1311 #define	IS_RUNNING(ifp) \
1312 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1313 	struct bwi_softc *sc = ifp->if_softc;
1314 	struct ieee80211com *ic = ifp->if_l2com;
1315 	struct ifreq *ifr = (struct ifreq *) data;
1316 	int error = 0, startall = 0;
1317 
1318 	switch (cmd) {
1319 	case SIOCSIFFLAGS:
1320 		BWI_LOCK(sc);
1321 		if (IS_RUNNING(ifp)) {
1322 			struct bwi_mac *mac;
1323 			int promisc = -1;
1324 
1325 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1326 			    ("current regwin type %d",
1327 			    sc->sc_cur_regwin->rw_type));
1328 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1329 
1330 			if ((ifp->if_flags & IFF_PROMISC) &&
1331 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1332 				promisc = 1;
1333 				sc->sc_flags |= BWI_F_PROMISC;
1334 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1335 				   (sc->sc_flags & BWI_F_PROMISC)) {
1336 				promisc = 0;
1337 				sc->sc_flags &= ~BWI_F_PROMISC;
1338 			}
1339 
1340 			if (promisc >= 0)
1341 				bwi_mac_set_promisc(mac, promisc);
1342 		}
1343 
1344 		if (ifp->if_flags & IFF_UP) {
1345 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1346 				bwi_init_statechg(sc, 1);
1347 				startall = 1;
1348 			}
1349 		} else {
1350 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1351 				bwi_stop_locked(sc, 1);
1352 		}
1353 		BWI_UNLOCK(sc);
1354 		if (startall)
1355 			ieee80211_start_all(ic);
1356 		break;
1357 	case SIOCGIFMEDIA:
1358 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1359 		break;
1360 	case SIOCGIFADDR:
1361 		error = ether_ioctl(ifp, cmd, data);
1362 		break;
1363 	default:
1364 		error = EINVAL;
1365 		break;
1366 	}
1367 	return error;
1368 #undef IS_RUNNING
1369 }
1370 
1371 static void
1372 bwi_start(struct ifnet *ifp)
1373 {
1374 	struct bwi_softc *sc = ifp->if_softc;
1375 
1376 	BWI_LOCK(sc);
1377 	bwi_start_locked(ifp);
1378 	BWI_UNLOCK(sc);
1379 }
1380 
1381 static void
1382 bwi_start_locked(struct ifnet *ifp)
1383 {
1384 	struct bwi_softc *sc = ifp->if_softc;
1385 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1386 	struct ieee80211_frame *wh;
1387 	struct ieee80211_node *ni;
1388 	struct ieee80211_key *k;
1389 	struct mbuf *m;
1390 	int trans, idx;
1391 
1392 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1393 		return;
1394 
1395 	trans = 0;
1396 	idx = tbd->tbd_idx;
1397 
1398 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1399 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1400 		if (m == NULL)
1401 			break;
1402 
1403 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1404 		wh = mtod(m, struct ieee80211_frame *);
1405 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1406 			k = ieee80211_crypto_encap(ni, m);
1407 			if (k == NULL) {
1408 				ieee80211_free_node(ni);
1409 				m_freem(m);
1410 				ifp->if_oerrors++;
1411 				continue;
1412 			}
1413 		}
1414 		wh = NULL;	/* Catch any invalid use */
1415 
1416 		if (bwi_encap(sc, idx, m, ni) != 0) {
1417 			/* 'm' is freed in bwi_encap() if we reach here */
1418 			if (ni != NULL)
1419 				ieee80211_free_node(ni);
1420 			ifp->if_oerrors++;
1421 			continue;
1422 		}
1423 
1424 		trans = 1;
1425 		tbd->tbd_used++;
1426 		idx = (idx + 1) % BWI_TX_NDESC;
1427 
1428 		ifp->if_opackets++;
1429 
1430 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1431 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1432 			break;
1433 		}
1434 	}
1435 	tbd->tbd_idx = idx;
1436 
1437 	if (trans)
1438 		sc->sc_tx_timer = 5;
1439 }
1440 
1441 static int
1442 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1443 	const struct ieee80211_bpf_params *params)
1444 {
1445 	struct ieee80211com *ic = ni->ni_ic;
1446 	struct ifnet *ifp = ic->ic_ifp;
1447 	struct bwi_softc *sc = ifp->if_softc;
1448 	/* XXX wme? */
1449 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1450 	int idx, error;
1451 
1452 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1453 		ieee80211_free_node(ni);
1454 		m_freem(m);
1455 		return ENETDOWN;
1456 	}
1457 
1458 	BWI_LOCK(sc);
1459 	idx = tbd->tbd_idx;
1460 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1461 	if (params == NULL) {
1462 		/*
1463 		 * Legacy path; interpret frame contents to decide
1464 		 * precisely how to send the frame.
1465 		 */
1466 		error = bwi_encap(sc, idx, m, ni);
1467 	} else {
1468 		/*
1469 		 * Caller supplied explicit parameters to use in
1470 		 * sending the frame.
1471 		 */
1472 		error = bwi_encap_raw(sc, idx, m, ni, params);
1473 	}
1474 	if (error == 0) {
1475 		ifp->if_opackets++;
1476 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1477 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1478 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1479 		sc->sc_tx_timer = 5;
1480 	} else {
1481 		/* NB: m is reclaimed on encap failure */
1482 		ieee80211_free_node(ni);
1483 		ifp->if_oerrors++;
1484 	}
1485 	BWI_UNLOCK(sc);
1486 	return error;
1487 }
1488 
1489 static void
1490 bwi_watchdog(void *arg)
1491 {
1492 	struct bwi_softc *sc;
1493 	struct ifnet *ifp;
1494 
1495 	sc = arg;
1496 	ifp = sc->sc_ifp;
1497 	BWI_ASSERT_LOCKED(sc);
1498 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1499 		if_printf(ifp, "watchdog timeout\n");
1500 		ifp->if_oerrors++;
1501 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1502 	}
1503 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1504 }
1505 
1506 static void
1507 bwi_stop(struct bwi_softc *sc, int statechg)
1508 {
1509 	BWI_LOCK(sc);
1510 	bwi_stop_locked(sc, statechg);
1511 	BWI_UNLOCK(sc);
1512 }
1513 
1514 static void
1515 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1516 {
1517 	struct ifnet *ifp = sc->sc_ifp;
1518 	struct bwi_mac *mac;
1519 	int i, error, pwr_off = 0;
1520 
1521 	BWI_ASSERT_LOCKED(sc);
1522 
1523 	callout_stop(&sc->sc_calib_ch);
1524 	callout_stop(&sc->sc_led_blink_ch);
1525 	sc->sc_led_blinking = 0;
1526 	sc->sc_flags |= BWI_F_STOP;
1527 
1528 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1529 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1530 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1531 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1532 
1533 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1534 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1535 		bwi_mac_stop(mac);
1536 	}
1537 
1538 	for (i = 0; i < sc->sc_nmac; ++i) {
1539 		struct bwi_regwin *old_rw;
1540 
1541 		mac = &sc->sc_mac[i];
1542 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1543 			continue;
1544 
1545 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1546 		if (error)
1547 			continue;
1548 
1549 		bwi_mac_shutdown(mac);
1550 		pwr_off = 1;
1551 
1552 		bwi_regwin_switch(sc, old_rw, NULL);
1553 	}
1554 
1555 	if (pwr_off)
1556 		bwi_bbp_power_off(sc);
1557 
1558 	sc->sc_tx_timer = 0;
1559 	callout_stop(&sc->sc_watchdog_timer);
1560 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1561 }
1562 
1563 void
1564 bwi_intr(void *xsc)
1565 {
1566 	struct bwi_softc *sc = xsc;
1567 	struct ifnet *ifp = sc->sc_ifp;
1568 	struct bwi_mac *mac;
1569 	uint32_t intr_status;
1570 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1571 	int i, txrx_error, tx = 0, rx_data = -1;
1572 
1573 	BWI_LOCK(sc);
1574 
1575 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1576 	    (sc->sc_flags & BWI_F_STOP)) {
1577 		BWI_UNLOCK(sc);
1578 		return;
1579 	}
1580 	/*
1581 	 * Get interrupt status
1582 	 */
1583 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1584 	if (intr_status == 0xffffffff) {	/* Not for us */
1585 		BWI_UNLOCK(sc);
1586 		return;
1587 	}
1588 
1589 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1590 
1591 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1592 	if (intr_status == 0) {		/* Nothing is interesting */
1593 		BWI_UNLOCK(sc);
1594 		return;
1595 	}
1596 
1597 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1598 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1599 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1600 
1601 	txrx_error = 0;
1602 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1603 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1604 		uint32_t mask;
1605 
1606 		if (BWI_TXRX_IS_RX(i))
1607 			mask = BWI_TXRX_RX_INTRS;
1608 		else
1609 			mask = BWI_TXRX_TX_INTRS;
1610 
1611 		txrx_intr_status[i] =
1612 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1613 
1614 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1615 			 i, txrx_intr_status[i]);
1616 
1617 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1618 			if_printf(ifp,
1619 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1620 			    __func__, i, txrx_intr_status[i]);
1621 			txrx_error = 1;
1622 		}
1623 	}
1624 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1625 
1626 	/*
1627 	 * Acknowledge interrupt
1628 	 */
1629 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1630 
1631 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1632 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1633 
1634 	/* Disable all interrupts */
1635 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1636 
1637 	/*
1638 	 * http://bcm-specs.sipsolutions.net/Interrupts
1639 	 * Says for this bit (0x800):
1640 	 * "Fatal Error
1641 	 *
1642 	 * We got this one while testing things when by accident the
1643 	 * template ram wasn't set to big endian when it should have
1644 	 * been after writing the initial values. It keeps on being
1645 	 * triggered, the only way to stop it seems to shut down the
1646 	 * chip."
1647 	 *
1648 	 * Suggesting that we should never get it and if we do we're not
1649 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1650 	 * it is valid only on mac version 5 and higher, but I couldn't
1651 	 * find a reference for that...  Since I see them from time to time
1652 	 * on my card, this suggests an error in the tx path still...
1653 	 */
1654 	if (intr_status & BWI_INTR_PHY_TXERR) {
1655 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1656 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1657 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1658 			BWI_UNLOCK(sc);
1659 			return;
1660 		}
1661 	}
1662 
1663 	if (txrx_error) {
1664 		/* TODO: reset device */
1665 	}
1666 
1667 	if (intr_status & BWI_INTR_TBTT)
1668 		bwi_mac_config_ps(mac);
1669 
1670 	if (intr_status & BWI_INTR_EO_ATIM)
1671 		if_printf(ifp, "EO_ATIM\n");
1672 
1673 	if (intr_status & BWI_INTR_PMQ) {
1674 		for (;;) {
1675 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1676 				break;
1677 		}
1678 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1679 	}
1680 
1681 	if (intr_status & BWI_INTR_NOISE)
1682 		if_printf(ifp, "intr noise\n");
1683 
1684 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1685 		rx_data = sc->sc_rxeof(sc);
1686 		if (sc->sc_flags & BWI_F_STOP) {
1687 			BWI_UNLOCK(sc);
1688 			return;
1689 		}
1690 	}
1691 
1692 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1693 		sc->sc_txeof_status(sc);
1694 		tx = 1;
1695 	}
1696 
1697 	if (intr_status & BWI_INTR_TX_DONE) {
1698 		bwi_txeof(sc);
1699 		tx = 1;
1700 	}
1701 
1702 	/* Re-enable interrupts */
1703 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1704 
1705 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1706 		int evt = BWI_LED_EVENT_NONE;
1707 
1708 		if (tx && rx_data > 0) {
1709 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1710 				evt = BWI_LED_EVENT_RX;
1711 			else
1712 				evt = BWI_LED_EVENT_TX;
1713 		} else if (tx) {
1714 			evt = BWI_LED_EVENT_TX;
1715 		} else if (rx_data > 0) {
1716 			evt = BWI_LED_EVENT_RX;
1717 		} else if (rx_data == 0) {
1718 			evt = BWI_LED_EVENT_POLL;
1719 		}
1720 
1721 		if (evt != BWI_LED_EVENT_NONE)
1722 			bwi_led_event(sc, evt);
1723 	}
1724 
1725 	BWI_UNLOCK(sc);
1726 }
1727 
1728 static void
1729 bwi_scan_start(struct ieee80211com *ic)
1730 {
1731 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1732 
1733 	BWI_LOCK(sc);
1734 	/* Enable MAC beacon promiscuity */
1735 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1736 	BWI_UNLOCK(sc);
1737 }
1738 
1739 static void
1740 bwi_set_channel(struct ieee80211com *ic)
1741 {
1742 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1743 	struct ieee80211_channel *c = ic->ic_curchan;
1744 	struct bwi_mac *mac;
1745 
1746 	BWI_LOCK(sc);
1747 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1748 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1749 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1750 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1751 
1752 	sc->sc_rates = ieee80211_get_ratetable(c);
1753 
1754 	/*
1755 	 * Setup radio tap channel freq and flags
1756 	 */
1757 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1758 		htole16(c->ic_freq);
1759 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1760 		htole16(c->ic_flags & 0xffff);
1761 
1762 	BWI_UNLOCK(sc);
1763 }
1764 
1765 static void
1766 bwi_scan_end(struct ieee80211com *ic)
1767 {
1768 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1769 
1770 	BWI_LOCK(sc);
1771 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1772 	BWI_UNLOCK(sc);
1773 }
1774 
1775 static int
1776 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1777 {
1778 	struct bwi_vap *bvp = BWI_VAP(vap);
1779 	struct ieee80211com *ic= vap->iv_ic;
1780 	struct ifnet *ifp = ic->ic_ifp;
1781 	enum ieee80211_state ostate = vap->iv_state;
1782 	struct bwi_softc *sc = ifp->if_softc;
1783 	struct bwi_mac *mac;
1784 	struct ieee80211_node *ni = vap->iv_bss;
1785 	int error;
1786 
1787 	BWI_LOCK(sc);
1788 
1789 	callout_stop(&sc->sc_calib_ch);
1790 
1791 	if (nstate == IEEE80211_S_INIT)
1792 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1793 
1794 	bwi_led_newstate(sc, nstate);
1795 
1796 	error = bvp->bv_newstate(vap, nstate, arg);
1797 	if (error != 0)
1798 		goto back;
1799 
1800 	/*
1801 	 * Clear the BSSID when we stop a STA
1802 	 */
1803 	if (vap->iv_opmode == IEEE80211_M_STA) {
1804 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1805 			/*
1806 			 * Clear out the BSSID.  If we reassociate to
1807 			 * the same AP, this will reinialize things
1808 			 * correctly...
1809 			 */
1810 			if (ic->ic_opmode == IEEE80211_M_STA &&
1811 			    !(sc->sc_flags & BWI_F_STOP))
1812 				bwi_set_bssid(sc, bwi_zero_addr);
1813 		}
1814 	}
1815 
1816 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1817 		/* Nothing to do */
1818 	} else if (nstate == IEEE80211_S_RUN) {
1819 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1820 
1821 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1822 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1823 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1824 
1825 		/* Initial TX power calibration */
1826 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1827 #ifdef notyet
1828 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1829 #else
1830 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1831 #endif
1832 		if (vap->iv_opmode == IEEE80211_M_STA) {
1833 			/* fake a join to init the tx rate */
1834 			bwi_newassoc(ni, 1);
1835 		}
1836 
1837 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1838 	}
1839 back:
1840 	BWI_UNLOCK(sc);
1841 
1842 	return error;
1843 }
1844 
1845 /* ARGUSED */
1846 static struct ieee80211_node *
1847 bwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1848 {
1849 	struct bwi_node *bn;
1850 
1851 	bn = malloc(sizeof(struct bwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1852 	return bn != NULL ? &bn->ni : NULL;
1853 }
1854 
1855 static void
1856 bwi_newassoc(struct ieee80211_node *ni, int isnew)
1857 {
1858 	struct ieee80211vap *vap = ni->ni_vap;
1859 
1860 	ieee80211_amrr_node_init(&BWI_VAP(vap)->bv_amrr,
1861 	    &BWI_NODE(ni)->amn, ni);
1862 }
1863 
1864 static int
1865 bwi_media_change(struct ifnet *ifp)
1866 {
1867 	int error = ieee80211_media_change(ifp);
1868 	/* NB: only the fixed rate can change and that doesn't need a reset */
1869 	return (error == ENETRESET ? 0 : error);
1870 }
1871 
1872 static int
1873 bwi_dma_alloc(struct bwi_softc *sc)
1874 {
1875 	int error, i, has_txstats;
1876 	bus_addr_t lowaddr = 0;
1877 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1878 	uint32_t txrx_ctrl_step = 0;
1879 
1880 	has_txstats = 0;
1881 	for (i = 0; i < sc->sc_nmac; ++i) {
1882 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1883 			has_txstats = 1;
1884 			break;
1885 		}
1886 	}
1887 
1888 	switch (sc->sc_bus_space) {
1889 	case BWI_BUS_SPACE_30BIT:
1890 	case BWI_BUS_SPACE_32BIT:
1891 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1892 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1893 		else
1894 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1895 		desc_sz = sizeof(struct bwi_desc32);
1896 		txrx_ctrl_step = 0x20;
1897 
1898 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1899 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1900 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1901 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1902 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1903 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1904 		sc->sc_rxeof = bwi_rxeof32;
1905 		sc->sc_start_tx = bwi_start_tx32;
1906 		if (has_txstats) {
1907 			sc->sc_init_txstats = bwi_init_txstats32;
1908 			sc->sc_free_txstats = bwi_free_txstats32;
1909 			sc->sc_txeof_status = bwi_txeof_status32;
1910 		}
1911 		break;
1912 
1913 	case BWI_BUS_SPACE_64BIT:
1914 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1915 		desc_sz = sizeof(struct bwi_desc64);
1916 		txrx_ctrl_step = 0x40;
1917 
1918 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1919 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1920 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1921 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1922 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1923 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1924 		sc->sc_rxeof = bwi_rxeof64;
1925 		sc->sc_start_tx = bwi_start_tx64;
1926 		if (has_txstats) {
1927 			sc->sc_init_txstats = bwi_init_txstats64;
1928 			sc->sc_free_txstats = bwi_free_txstats64;
1929 			sc->sc_txeof_status = bwi_txeof_status64;
1930 		}
1931 		break;
1932 	}
1933 
1934 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1935 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1936 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1937 
1938 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1939 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1940 
1941 	/*
1942 	 * Create top level DMA tag
1943 	 */
1944 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1945 			       BWI_ALIGN, 0,		/* alignment, bounds */
1946 			       lowaddr,			/* lowaddr */
1947 			       BUS_SPACE_MAXADDR,	/* highaddr */
1948 			       NULL, NULL,		/* filter, filterarg */
1949 			       MAXBSIZE,		/* maxsize */
1950 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1951 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1952 			       BUS_DMA_ALLOCNOW,	/* flags */
1953 			       NULL, NULL,		/* lockfunc, lockarg */
1954 			       &sc->sc_parent_dtag);
1955 	if (error) {
1956 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1957 		return error;
1958 	}
1959 
1960 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1961 
1962 	/*
1963 	 * Create TX ring DMA stuffs
1964 	 */
1965 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1966 				BWI_RING_ALIGN, 0,
1967 				BUS_SPACE_MAXADDR,
1968 				BUS_SPACE_MAXADDR,
1969 				NULL, NULL,
1970 				tx_ring_sz,
1971 				1,
1972 				BUS_SPACE_MAXSIZE_32BIT,
1973 				BUS_DMA_ALLOCNOW,
1974 				NULL, NULL,
1975 				&sc->sc_txring_dtag);
1976 	if (error) {
1977 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1978 		return error;
1979 	}
1980 
1981 	for (i = 0; i < BWI_TX_NRING; ++i) {
1982 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1983 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1984 					   TXRX_CTRL(i));
1985 		if (error) {
1986 			device_printf(sc->sc_dev, "%dth TX ring "
1987 				      "DMA alloc failed\n", i);
1988 			return error;
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * Create RX ring DMA stuffs
1994 	 */
1995 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1996 				BWI_RING_ALIGN, 0,
1997 				BUS_SPACE_MAXADDR,
1998 				BUS_SPACE_MAXADDR,
1999 				NULL, NULL,
2000 				rx_ring_sz,
2001 				1,
2002 				BUS_SPACE_MAXSIZE_32BIT,
2003 				BUS_DMA_ALLOCNOW,
2004 				NULL, NULL,
2005 				&sc->sc_rxring_dtag);
2006 	if (error) {
2007 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
2008 		return error;
2009 	}
2010 
2011 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
2012 				   rx_ring_sz, TXRX_CTRL(0));
2013 	if (error) {
2014 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
2015 		return error;
2016 	}
2017 
2018 	if (has_txstats) {
2019 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
2020 		if (error) {
2021 			device_printf(sc->sc_dev,
2022 				      "TX stats DMA alloc failed\n");
2023 			return error;
2024 		}
2025 	}
2026 
2027 #undef TXRX_CTRL
2028 
2029 	return bwi_dma_mbuf_create(sc);
2030 }
2031 
2032 static void
2033 bwi_dma_free(struct bwi_softc *sc)
2034 {
2035 	if (sc->sc_txring_dtag != NULL) {
2036 		int i;
2037 
2038 		for (i = 0; i < BWI_TX_NRING; ++i) {
2039 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2040 
2041 			if (rd->rdata_desc != NULL) {
2042 				bus_dmamap_unload(sc->sc_txring_dtag,
2043 						  rd->rdata_dmap);
2044 				bus_dmamem_free(sc->sc_txring_dtag,
2045 						rd->rdata_desc,
2046 						rd->rdata_dmap);
2047 			}
2048 		}
2049 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2050 	}
2051 
2052 	if (sc->sc_rxring_dtag != NULL) {
2053 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2054 
2055 		if (rd->rdata_desc != NULL) {
2056 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2057 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2058 					rd->rdata_dmap);
2059 		}
2060 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2061 	}
2062 
2063 	bwi_dma_txstats_free(sc);
2064 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2065 
2066 	if (sc->sc_parent_dtag != NULL)
2067 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2068 }
2069 
2070 static int
2071 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2072 		   struct bwi_ring_data *rd, bus_size_t size,
2073 		   uint32_t txrx_ctrl)
2074 {
2075 	int error;
2076 
2077 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2078 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2079 				 &rd->rdata_dmap);
2080 	if (error) {
2081 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2082 		return error;
2083 	}
2084 
2085 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2086 				bwi_dma_ring_addr, &rd->rdata_paddr,
2087 				BUS_DMA_NOWAIT);
2088 	if (error) {
2089 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2090 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2091 		rd->rdata_desc = NULL;
2092 		return error;
2093 	}
2094 
2095 	rd->rdata_txrx_ctrl = txrx_ctrl;
2096 	return 0;
2097 }
2098 
2099 static int
2100 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2101 		      bus_size_t desc_sz)
2102 {
2103 	struct bwi_txstats_data *st;
2104 	bus_size_t dma_size;
2105 	int error;
2106 
2107 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2108 	if (st == NULL) {
2109 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2110 		return ENOMEM;
2111 	}
2112 	sc->sc_txstats = st;
2113 
2114 	/*
2115 	 * Create TX stats descriptor DMA stuffs
2116 	 */
2117 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2118 
2119 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2120 				BWI_RING_ALIGN,
2121 				0,
2122 				BUS_SPACE_MAXADDR,
2123 				BUS_SPACE_MAXADDR,
2124 				NULL, NULL,
2125 				dma_size,
2126 				1,
2127 				BUS_SPACE_MAXSIZE_32BIT,
2128 				BUS_DMA_ALLOCNOW,
2129 				NULL, NULL,
2130 				&st->stats_ring_dtag);
2131 	if (error) {
2132 		device_printf(sc->sc_dev, "can't create txstats ring "
2133 			      "DMA tag\n");
2134 		return error;
2135 	}
2136 
2137 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2138 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2139 				 &st->stats_ring_dmap);
2140 	if (error) {
2141 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2142 			      "DMA mem\n");
2143 		bus_dma_tag_destroy(st->stats_ring_dtag);
2144 		st->stats_ring_dtag = NULL;
2145 		return error;
2146 	}
2147 
2148 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2149 				st->stats_ring, dma_size,
2150 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2151 				BUS_DMA_NOWAIT);
2152 	if (error) {
2153 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2154 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2155 				st->stats_ring_dmap);
2156 		bus_dma_tag_destroy(st->stats_ring_dtag);
2157 		st->stats_ring_dtag = NULL;
2158 		return error;
2159 	}
2160 
2161 	/*
2162 	 * Create TX stats DMA stuffs
2163 	 */
2164 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2165 			   BWI_ALIGN);
2166 
2167 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2168 				BWI_ALIGN,
2169 				0,
2170 				BUS_SPACE_MAXADDR,
2171 				BUS_SPACE_MAXADDR,
2172 				NULL, NULL,
2173 				dma_size,
2174 				1,
2175 				BUS_SPACE_MAXSIZE_32BIT,
2176 				BUS_DMA_ALLOCNOW,
2177 				NULL, NULL,
2178 				&st->stats_dtag);
2179 	if (error) {
2180 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2181 		return error;
2182 	}
2183 
2184 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2185 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2186 				 &st->stats_dmap);
2187 	if (error) {
2188 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2189 		bus_dma_tag_destroy(st->stats_dtag);
2190 		st->stats_dtag = NULL;
2191 		return error;
2192 	}
2193 
2194 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2195 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2196 				BUS_DMA_NOWAIT);
2197 	if (error) {
2198 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2199 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2200 		bus_dma_tag_destroy(st->stats_dtag);
2201 		st->stats_dtag = NULL;
2202 		return error;
2203 	}
2204 
2205 	st->stats_ctrl_base = ctrl_base;
2206 	return 0;
2207 }
2208 
2209 static void
2210 bwi_dma_txstats_free(struct bwi_softc *sc)
2211 {
2212 	struct bwi_txstats_data *st;
2213 
2214 	if (sc->sc_txstats == NULL)
2215 		return;
2216 	st = sc->sc_txstats;
2217 
2218 	if (st->stats_ring_dtag != NULL) {
2219 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2220 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2221 				st->stats_ring_dmap);
2222 		bus_dma_tag_destroy(st->stats_ring_dtag);
2223 	}
2224 
2225 	if (st->stats_dtag != NULL) {
2226 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2227 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2228 		bus_dma_tag_destroy(st->stats_dtag);
2229 	}
2230 
2231 	free(st, M_DEVBUF);
2232 }
2233 
2234 static void
2235 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2236 {
2237 	KASSERT(nseg == 1, ("too many segments\n"));
2238 	*((bus_addr_t *)arg) = seg->ds_addr;
2239 }
2240 
2241 static int
2242 bwi_dma_mbuf_create(struct bwi_softc *sc)
2243 {
2244 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2245 	int i, j, k, ntx, error;
2246 
2247 	/*
2248 	 * Create TX/RX mbuf DMA tag
2249 	 */
2250 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2251 				1,
2252 				0,
2253 				BUS_SPACE_MAXADDR,
2254 				BUS_SPACE_MAXADDR,
2255 				NULL, NULL,
2256 				MCLBYTES,
2257 				1,
2258 				BUS_SPACE_MAXSIZE_32BIT,
2259 				BUS_DMA_ALLOCNOW,
2260 				NULL, NULL,
2261 				&sc->sc_buf_dtag);
2262 	if (error) {
2263 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2264 		return error;
2265 	}
2266 
2267 	ntx = 0;
2268 
2269 	/*
2270 	 * Create TX mbuf DMA map
2271 	 */
2272 	for (i = 0; i < BWI_TX_NRING; ++i) {
2273 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2274 
2275 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2276 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2277 						  &tbd->tbd_buf[j].tb_dmap);
2278 			if (error) {
2279 				device_printf(sc->sc_dev, "can't create "
2280 					      "%dth tbd, %dth DMA map\n", i, j);
2281 
2282 				ntx = i;
2283 				for (k = 0; k < j; ++k) {
2284 					bus_dmamap_destroy(sc->sc_buf_dtag,
2285 						tbd->tbd_buf[k].tb_dmap);
2286 				}
2287 				goto fail;
2288 			}
2289 		}
2290 	}
2291 	ntx = BWI_TX_NRING;
2292 
2293 	/*
2294 	 * Create RX mbuf DMA map and a spare DMA map
2295 	 */
2296 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2297 				  &rbd->rbd_tmp_dmap);
2298 	if (error) {
2299 		device_printf(sc->sc_dev,
2300 			      "can't create spare RX buf DMA map\n");
2301 		goto fail;
2302 	}
2303 
2304 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2305 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2306 					  &rbd->rbd_buf[j].rb_dmap);
2307 		if (error) {
2308 			device_printf(sc->sc_dev, "can't create %dth "
2309 				      "RX buf DMA map\n", j);
2310 
2311 			for (k = 0; k < j; ++k) {
2312 				bus_dmamap_destroy(sc->sc_buf_dtag,
2313 					rbd->rbd_buf[j].rb_dmap);
2314 			}
2315 			bus_dmamap_destroy(sc->sc_buf_dtag,
2316 					   rbd->rbd_tmp_dmap);
2317 			goto fail;
2318 		}
2319 	}
2320 
2321 	return 0;
2322 fail:
2323 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2324 	return error;
2325 }
2326 
2327 static void
2328 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2329 {
2330 	int i, j;
2331 
2332 	if (sc->sc_buf_dtag == NULL)
2333 		return;
2334 
2335 	for (i = 0; i < ntx; ++i) {
2336 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2337 
2338 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2339 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2340 
2341 			if (tb->tb_mbuf != NULL) {
2342 				bus_dmamap_unload(sc->sc_buf_dtag,
2343 						  tb->tb_dmap);
2344 				m_freem(tb->tb_mbuf);
2345 			}
2346 			if (tb->tb_ni != NULL)
2347 				ieee80211_free_node(tb->tb_ni);
2348 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2349 		}
2350 	}
2351 
2352 	if (nrx) {
2353 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2354 
2355 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2356 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2357 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2358 
2359 			if (rb->rb_mbuf != NULL) {
2360 				bus_dmamap_unload(sc->sc_buf_dtag,
2361 						  rb->rb_dmap);
2362 				m_freem(rb->rb_mbuf);
2363 			}
2364 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2365 		}
2366 	}
2367 
2368 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2369 	sc->sc_buf_dtag = NULL;
2370 }
2371 
2372 static void
2373 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2374 {
2375 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2376 }
2377 
2378 static void
2379 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2380 {
2381 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2382 }
2383 
2384 static int
2385 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2386 {
2387 	struct bwi_ring_data *rd;
2388 	struct bwi_txbuf_data *tbd;
2389 	uint32_t val, addr_hi, addr_lo;
2390 
2391 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2392 	rd = &sc->sc_tx_rdata[ring_idx];
2393 	tbd = &sc->sc_tx_bdata[ring_idx];
2394 
2395 	tbd->tbd_idx = 0;
2396 	tbd->tbd_used = 0;
2397 
2398 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2399 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2400 			BUS_DMASYNC_PREWRITE);
2401 
2402 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2403 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2404 
2405 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2406 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2407 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2408 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2409 
2410 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2411 	      BWI_TXRX32_CTRL_ENABLE;
2412 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2413 
2414 	return 0;
2415 }
2416 
2417 static void
2418 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2419 		       bus_addr_t paddr, int hdr_size, int ndesc)
2420 {
2421 	uint32_t val, addr_hi, addr_lo;
2422 
2423 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2424 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2425 
2426 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2427 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2428 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2429 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2430 
2431 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2432 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2433 	      BWI_TXRX32_CTRL_ENABLE;
2434 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2435 
2436 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2437 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2438 }
2439 
2440 static int
2441 bwi_init_rx_ring32(struct bwi_softc *sc)
2442 {
2443 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2444 	int i, error;
2445 
2446 	sc->sc_rx_bdata.rbd_idx = 0;
2447 
2448 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2449 		error = bwi_newbuf(sc, i, 1);
2450 		if (error) {
2451 			device_printf(sc->sc_dev,
2452 				  "can't allocate %dth RX buffer\n", i);
2453 			return error;
2454 		}
2455 	}
2456 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2457 			BUS_DMASYNC_PREWRITE);
2458 
2459 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2460 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2461 	return 0;
2462 }
2463 
2464 static int
2465 bwi_init_txstats32(struct bwi_softc *sc)
2466 {
2467 	struct bwi_txstats_data *st = sc->sc_txstats;
2468 	bus_addr_t stats_paddr;
2469 	int i;
2470 
2471 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2472 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2473 
2474 	st->stats_idx = 0;
2475 
2476 	stats_paddr = st->stats_paddr;
2477 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2478 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2479 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2480 		stats_paddr += sizeof(struct bwi_txstats);
2481 	}
2482 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2483 			BUS_DMASYNC_PREWRITE);
2484 
2485 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2486 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2487 	return 0;
2488 }
2489 
2490 static void
2491 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2492 		    int buf_len)
2493 {
2494 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2495 
2496 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2497 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2498 			 paddr, buf_len, 0);
2499 }
2500 
2501 static void
2502 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2503 		    int buf_idx, bus_addr_t paddr, int buf_len)
2504 {
2505 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2506 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2507 			 paddr, buf_len, 1);
2508 }
2509 
2510 static int
2511 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2512 {
2513 	/* TODO:64 */
2514 	return EOPNOTSUPP;
2515 }
2516 
2517 static int
2518 bwi_init_rx_ring64(struct bwi_softc *sc)
2519 {
2520 	/* TODO:64 */
2521 	return EOPNOTSUPP;
2522 }
2523 
2524 static int
2525 bwi_init_txstats64(struct bwi_softc *sc)
2526 {
2527 	/* TODO:64 */
2528 	return EOPNOTSUPP;
2529 }
2530 
2531 static void
2532 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2533 		    int buf_len)
2534 {
2535 	/* TODO:64 */
2536 }
2537 
2538 static void
2539 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2540 		    int buf_idx, bus_addr_t paddr, int buf_len)
2541 {
2542 	/* TODO:64 */
2543 }
2544 
2545 static void
2546 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2547 		 bus_size_t mapsz __unused, int error)
2548 {
2549         if (!error) {
2550 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2551 		*((bus_addr_t *)arg) = seg->ds_addr;
2552 	}
2553 }
2554 
2555 static int
2556 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2557 {
2558 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2559 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2560 	struct bwi_rxbuf_hdr *hdr;
2561 	bus_dmamap_t map;
2562 	bus_addr_t paddr;
2563 	struct mbuf *m;
2564 	int error;
2565 
2566 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2567 
2568 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2569 	if (m == NULL) {
2570 		error = ENOBUFS;
2571 
2572 		/*
2573 		 * If the NIC is up and running, we need to:
2574 		 * - Clear RX buffer's header.
2575 		 * - Restore RX descriptor settings.
2576 		 */
2577 		if (init)
2578 			return error;
2579 		else
2580 			goto back;
2581 	}
2582 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2583 
2584 	/*
2585 	 * Try to load RX buf into temporary DMA map
2586 	 */
2587 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2588 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2589 	if (error) {
2590 		m_freem(m);
2591 
2592 		/*
2593 		 * See the comment above
2594 		 */
2595 		if (init)
2596 			return error;
2597 		else
2598 			goto back;
2599 	}
2600 
2601 	if (!init)
2602 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2603 	rxbuf->rb_mbuf = m;
2604 	rxbuf->rb_paddr = paddr;
2605 
2606 	/*
2607 	 * Swap RX buf's DMA map with the loaded temporary one
2608 	 */
2609 	map = rxbuf->rb_dmap;
2610 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2611 	rbd->rbd_tmp_dmap = map;
2612 
2613 back:
2614 	/*
2615 	 * Clear RX buf header
2616 	 */
2617 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2618 	bzero(hdr, sizeof(*hdr));
2619 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2620 
2621 	/*
2622 	 * Setup RX buf descriptor
2623 	 */
2624 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2625 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2626 	return error;
2627 }
2628 
2629 static void
2630 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2631 		    const uint8_t *addr)
2632 {
2633 	int i;
2634 
2635 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2636 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2637 
2638 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2639 		uint16_t addr_val;
2640 
2641 		addr_val = (uint16_t)addr[i * 2] |
2642 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2643 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2644 	}
2645 }
2646 
2647 static int
2648 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2649 {
2650 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2651 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2652 	struct ifnet *ifp = sc->sc_ifp;
2653 	struct ieee80211com *ic = ifp->if_l2com;
2654 	int idx, rx_data = 0;
2655 
2656 	idx = rbd->rbd_idx;
2657 	while (idx != end_idx) {
2658 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2659 		struct bwi_rxbuf_hdr *hdr;
2660 		struct ieee80211_frame_min *wh;
2661 		struct ieee80211_node *ni;
2662 		struct mbuf *m;
2663 		const void *plcp;
2664 		uint16_t flags2;
2665 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2666 
2667 		m = rb->rb_mbuf;
2668 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2669 				BUS_DMASYNC_POSTREAD);
2670 
2671 		if (bwi_newbuf(sc, idx, 0)) {
2672 			ifp->if_ierrors++;
2673 			goto next;
2674 		}
2675 
2676 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2677 		flags2 = le16toh(hdr->rxh_flags2);
2678 
2679 		hdr_extra = 0;
2680 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2681 			hdr_extra = 2;
2682 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2683 
2684 		buflen = le16toh(hdr->rxh_buflen);
2685 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2686 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2687 				  __func__, hdr_extra);
2688 			ifp->if_ierrors++;
2689 			m_freem(m);
2690 			goto next;
2691 		}
2692 
2693 		plcp = ((const uint8_t *)(hdr + 1) + hdr_extra);
2694 		rssi = bwi_calc_rssi(sc, hdr);
2695 		noise = bwi_calc_noise(sc);
2696 
2697 		m->m_pkthdr.rcvif = ifp;
2698 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2699 		m_adj(m, sizeof(*hdr) + wh_ofs);
2700 
2701 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2702 			rate = bwi_ofdm_plcp2rate(plcp);
2703 		else
2704 			rate = bwi_ds_plcp2rate(plcp);
2705 
2706 		/* RX radio tap */
2707 		if (ieee80211_radiotap_active(ic))
2708 			bwi_rx_radiotap(sc, m, hdr, plcp, rate, rssi, noise);
2709 
2710 		m_adj(m, -IEEE80211_CRC_LEN);
2711 
2712 		BWI_UNLOCK(sc);
2713 
2714 		wh = mtod(m, struct ieee80211_frame_min *);
2715 		ni = ieee80211_find_rxnode(ic, wh);
2716 		if (ni != NULL) {
2717 			type = ieee80211_input(ni, m, rssi - noise, noise);
2718 			ieee80211_free_node(ni);
2719 		} else
2720 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2721 		if (type == IEEE80211_FC0_TYPE_DATA) {
2722 			rx_data = 1;
2723 			sc->sc_rx_rate = rate;
2724 		}
2725 
2726 		BWI_LOCK(sc);
2727 next:
2728 		idx = (idx + 1) % BWI_RX_NDESC;
2729 
2730 		if (sc->sc_flags & BWI_F_STOP) {
2731 			/*
2732 			 * Take the fast lane, don't do
2733 			 * any damage to softc
2734 			 */
2735 			return -1;
2736 		}
2737 	}
2738 
2739 	rbd->rbd_idx = idx;
2740 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2741 			BUS_DMASYNC_PREWRITE);
2742 
2743 	return rx_data;
2744 }
2745 
2746 static int
2747 bwi_rxeof32(struct bwi_softc *sc)
2748 {
2749 	uint32_t val, rx_ctrl;
2750 	int end_idx, rx_data;
2751 
2752 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2753 
2754 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2755 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2756 		  sizeof(struct bwi_desc32);
2757 
2758 	rx_data = bwi_rxeof(sc, end_idx);
2759 	if (rx_data >= 0) {
2760 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2761 			    end_idx * sizeof(struct bwi_desc32));
2762 	}
2763 	return rx_data;
2764 }
2765 
2766 static int
2767 bwi_rxeof64(struct bwi_softc *sc)
2768 {
2769 	/* TODO:64 */
2770 	return 0;
2771 }
2772 
2773 static void
2774 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2775 {
2776 	int i;
2777 
2778 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2779 
2780 #define NRETRY 10
2781 
2782 	for (i = 0; i < NRETRY; ++i) {
2783 		uint32_t status;
2784 
2785 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2786 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2787 		    BWI_RX32_STATUS_STATE_DISABLED)
2788 			break;
2789 
2790 		DELAY(1000);
2791 	}
2792 	if (i == NRETRY)
2793 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2794 
2795 #undef NRETRY
2796 
2797 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2798 }
2799 
2800 static void
2801 bwi_free_txstats32(struct bwi_softc *sc)
2802 {
2803 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2804 }
2805 
2806 static void
2807 bwi_free_rx_ring32(struct bwi_softc *sc)
2808 {
2809 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2810 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2811 	int i;
2812 
2813 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2814 
2815 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2816 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2817 
2818 		if (rb->rb_mbuf != NULL) {
2819 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2820 			m_freem(rb->rb_mbuf);
2821 			rb->rb_mbuf = NULL;
2822 		}
2823 	}
2824 }
2825 
2826 static void
2827 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2828 {
2829 	struct bwi_ring_data *rd;
2830 	struct bwi_txbuf_data *tbd;
2831 	struct ifnet *ifp = sc->sc_ifp;
2832 	uint32_t state, val;
2833 	int i;
2834 
2835 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2836 	rd = &sc->sc_tx_rdata[ring_idx];
2837 	tbd = &sc->sc_tx_bdata[ring_idx];
2838 
2839 #define NRETRY 10
2840 
2841 	for (i = 0; i < NRETRY; ++i) {
2842 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2843 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2844 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2845 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2846 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2847 			break;
2848 
2849 		DELAY(1000);
2850 	}
2851 	if (i == NRETRY) {
2852 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2853 			  __func__, ring_idx);
2854 	}
2855 
2856 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2857 	for (i = 0; i < NRETRY; ++i) {
2858 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2859 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2860 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2861 			break;
2862 
2863 		DELAY(1000);
2864 	}
2865 	if (i == NRETRY)
2866 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2867 		     __func__, ring_idx);
2868 
2869 #undef NRETRY
2870 
2871 	DELAY(1000);
2872 
2873 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2874 
2875 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2876 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2877 
2878 		if (tb->tb_mbuf != NULL) {
2879 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2880 			m_freem(tb->tb_mbuf);
2881 			tb->tb_mbuf = NULL;
2882 		}
2883 		if (tb->tb_ni != NULL) {
2884 			ieee80211_free_node(tb->tb_ni);
2885 			tb->tb_ni = NULL;
2886 		}
2887 	}
2888 }
2889 
2890 static void
2891 bwi_free_txstats64(struct bwi_softc *sc)
2892 {
2893 	/* TODO:64 */
2894 }
2895 
2896 static void
2897 bwi_free_rx_ring64(struct bwi_softc *sc)
2898 {
2899 	/* TODO:64 */
2900 }
2901 
2902 static void
2903 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2904 {
2905 	/* TODO:64 */
2906 }
2907 
2908 /* XXX does not belong here */
2909 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2910 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2911 
2912 static __inline void
2913 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2914 {
2915 	uint32_t plcp;
2916 
2917 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2918 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2919 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2920 	*plcp0 = htole32(plcp);
2921 }
2922 
2923 static __inline void
2924 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2925 		   uint8_t rate)
2926 {
2927 	int len, service, pkt_bitlen;
2928 
2929 	pkt_bitlen = pkt_len * NBBY;
2930 	len = howmany(pkt_bitlen * 2, rate);
2931 
2932 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2933 	if (rate == (11 * 2)) {
2934 		int pkt_bitlen1;
2935 
2936 		/*
2937 		 * PLCP service field needs to be adjusted,
2938 		 * if TX rate is 11Mbytes/s
2939 		 */
2940 		pkt_bitlen1 = len * 11;
2941 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2942 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2943 	}
2944 
2945 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2946 	plcp->i_service = service;
2947 	plcp->i_length = htole16(len);
2948 	/* NOTE: do NOT touch i_crc */
2949 }
2950 
2951 static __inline void
2952 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2953 	void *plcp, int pkt_len, uint8_t rate)
2954 {
2955 	enum ieee80211_phytype modtype;
2956 
2957 	/*
2958 	 * Assume caller has zeroed 'plcp'
2959 	 */
2960 	modtype = ieee80211_rate2phytype(rt, rate);
2961 	if (modtype == IEEE80211_T_OFDM)
2962 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2963 	else if (modtype == IEEE80211_T_DS)
2964 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2965 	else
2966 		panic("unsupport modulation type %u\n", modtype);
2967 }
2968 
2969 static int
2970 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2971 	  struct ieee80211_node *ni)
2972 {
2973 	struct ieee80211vap *vap = ni->ni_vap;
2974 	struct ifnet *ifp = sc->sc_ifp;
2975 	struct ieee80211com *ic = ifp->if_l2com;
2976 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2977 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2978 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2979 	struct bwi_mac *mac;
2980 	struct bwi_txbuf_hdr *hdr;
2981 	struct ieee80211_frame *wh;
2982 	const struct ieee80211_txparam *tp;
2983 	uint8_t rate, rate_fb;
2984 	uint32_t mac_ctrl;
2985 	uint16_t phy_ctrl;
2986 	bus_addr_t paddr;
2987 	int type, ismcast, pkt_len, error, rix;
2988 #if 0
2989 	const uint8_t *p;
2990 	int i;
2991 #endif
2992 
2993 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2994 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2995 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2996 
2997 	wh = mtod(m, struct ieee80211_frame *);
2998 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2999 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3000 
3001 	/* Get 802.11 frame len before prepending TX header */
3002 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3003 
3004 	/*
3005 	 * Find TX rate
3006 	 */
3007 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
3008 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
3009 		rate = rate_fb = tp->mgmtrate;
3010 	} else if (ismcast) {
3011 		rate = rate_fb = tp->mcastrate;
3012 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3013 		rate = rate_fb = tp->ucastrate;
3014 	} else {
3015 		rix = ieee80211_amrr_choose(ni, &BWI_NODE(ni)->amn);
3016 		rate = ni->ni_txrate;
3017 
3018 		if (rix > 0) {
3019 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
3020 				  IEEE80211_RATE_VAL;
3021 		} else {
3022 			rate_fb = rate;
3023 		}
3024 	}
3025 	tb->tb_rate[0] = rate;
3026 	tb->tb_rate[1] = rate_fb;
3027 	sc->sc_tx_rate = rate;
3028 
3029 	/*
3030 	 * TX radio tap
3031 	 */
3032 	if (ieee80211_radiotap_active_vap(vap)) {
3033 		sc->sc_tx_th.wt_flags = 0;
3034 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3035 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3036 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3037 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3038 		    rate != (1 * 2)) {
3039 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3040 		}
3041 		sc->sc_tx_th.wt_rate = rate;
3042 
3043 		ieee80211_radiotap_tx(vap, m);
3044 	}
3045 
3046 	/*
3047 	 * Setup the embedded TX header
3048 	 */
3049 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3050 	if (m == NULL) {
3051 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3052 		return ENOBUFS;
3053 	}
3054 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3055 
3056 	bzero(hdr, sizeof(*hdr));
3057 
3058 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3059 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3060 
3061 	if (!ismcast) {
3062 		uint16_t dur;
3063 
3064 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3065 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3066 
3067 		hdr->txh_fb_duration = htole16(dur);
3068 	}
3069 
3070 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3071 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3072 
3073 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3074 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3075 
3076 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3077 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3078 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3079 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3080 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3081 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3082 
3083 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3084 	if (!ismcast)
3085 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3086 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3087 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3088 
3089 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3090 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3091 
3092 	/* Catch any further usage */
3093 	hdr = NULL;
3094 	wh = NULL;
3095 
3096 	/* DMA load */
3097 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3098 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3099 	if (error && error != EFBIG) {
3100 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3101 		    __func__, error);
3102 		goto back;
3103 	}
3104 
3105 	if (error) {	/* error == EFBIG */
3106 		struct mbuf *m_new;
3107 
3108 		m_new = m_defrag(m, M_DONTWAIT);
3109 		if (m_new == NULL) {
3110 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3111 			    __func__);
3112 			error = ENOBUFS;
3113 			goto back;
3114 		} else {
3115 			m = m_new;
3116 		}
3117 
3118 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3119 					     bwi_dma_buf_addr, &paddr,
3120 					     BUS_DMA_NOWAIT);
3121 		if (error) {
3122 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3123 			    __func__, error);
3124 			goto back;
3125 		}
3126 	}
3127 	error = 0;
3128 
3129 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3130 
3131 	tb->tb_mbuf = m;
3132 	tb->tb_ni = ni;
3133 
3134 #if 0
3135 	p = mtod(m, const uint8_t *);
3136 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3137 		if (i != 0 && i % 8 == 0)
3138 			printf("\n");
3139 		printf("%02x ", p[i]);
3140 	}
3141 	printf("\n");
3142 #endif
3143 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3144 		idx, pkt_len, m->m_pkthdr.len);
3145 
3146 	/* Setup TX descriptor */
3147 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3148 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3149 			BUS_DMASYNC_PREWRITE);
3150 
3151 	/* Kick start */
3152 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3153 
3154 back:
3155 	if (error)
3156 		m_freem(m);
3157 	return error;
3158 }
3159 
3160 static int
3161 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3162 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3163 {
3164 	struct ifnet *ifp = sc->sc_ifp;
3165 	struct ieee80211vap *vap = ni->ni_vap;
3166 	struct ieee80211com *ic = ni->ni_ic;
3167 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3168 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3169 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3170 	struct bwi_mac *mac;
3171 	struct bwi_txbuf_hdr *hdr;
3172 	struct ieee80211_frame *wh;
3173 	uint8_t rate, rate_fb;
3174 	uint32_t mac_ctrl;
3175 	uint16_t phy_ctrl;
3176 	bus_addr_t paddr;
3177 	int ismcast, pkt_len, error;
3178 
3179 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3180 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3181 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3182 
3183 	wh = mtod(m, struct ieee80211_frame *);
3184 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3185 
3186 	/* Get 802.11 frame len before prepending TX header */
3187 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3188 
3189 	/*
3190 	 * Find TX rate
3191 	 */
3192 	rate = params->ibp_rate0;
3193 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3194 		/* XXX fall back to mcast/mgmt rate? */
3195 		m_freem(m);
3196 		return EINVAL;
3197 	}
3198 	if (params->ibp_try1 != 0) {
3199 		rate_fb = params->ibp_rate1;
3200 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3201 			/* XXX fall back to rate0? */
3202 			m_freem(m);
3203 			return EINVAL;
3204 		}
3205 	} else
3206 		rate_fb = rate;
3207 	tb->tb_rate[0] = rate;
3208 	tb->tb_rate[1] = rate_fb;
3209 	sc->sc_tx_rate = rate;
3210 
3211 	/*
3212 	 * TX radio tap
3213 	 */
3214 	if (ieee80211_radiotap_active_vap(vap)) {
3215 		sc->sc_tx_th.wt_flags = 0;
3216 		/* XXX IEEE80211_BPF_CRYPTO */
3217 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3218 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3219 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3220 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3221 		sc->sc_tx_th.wt_rate = rate;
3222 
3223 		ieee80211_radiotap_tx(vap, m);
3224 	}
3225 
3226 	/*
3227 	 * Setup the embedded TX header
3228 	 */
3229 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3230 	if (m == NULL) {
3231 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3232 		return ENOBUFS;
3233 	}
3234 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3235 
3236 	bzero(hdr, sizeof(*hdr));
3237 
3238 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3239 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3240 
3241 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3242 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3243 		uint16_t dur;
3244 
3245 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3246 
3247 		hdr->txh_fb_duration = htole16(dur);
3248 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3249 	}
3250 
3251 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3252 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3253 
3254 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3255 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3256 
3257 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3258 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3259 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3260 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3261 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3262 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3263 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3264 
3265 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3266 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3267 
3268 	/* Catch any further usage */
3269 	hdr = NULL;
3270 	wh = NULL;
3271 
3272 	/* DMA load */
3273 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3274 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3275 	if (error != 0) {
3276 		struct mbuf *m_new;
3277 
3278 		if (error != EFBIG) {
3279 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3280 			    __func__, error);
3281 			goto back;
3282 		}
3283 		m_new = m_defrag(m, M_DONTWAIT);
3284 		if (m_new == NULL) {
3285 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3286 			    __func__);
3287 			error = ENOBUFS;
3288 			goto back;
3289 		}
3290 		m = m_new;
3291 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3292 					     bwi_dma_buf_addr, &paddr,
3293 					     BUS_DMA_NOWAIT);
3294 		if (error) {
3295 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3296 			    __func__, error);
3297 			goto back;
3298 		}
3299 	}
3300 
3301 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3302 
3303 	tb->tb_mbuf = m;
3304 	tb->tb_ni = ni;
3305 
3306 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3307 		idx, pkt_len, m->m_pkthdr.len);
3308 
3309 	/* Setup TX descriptor */
3310 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3311 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3312 			BUS_DMASYNC_PREWRITE);
3313 
3314 	/* Kick start */
3315 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3316 back:
3317 	if (error)
3318 		m_freem(m);
3319 	return error;
3320 }
3321 
3322 static void
3323 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3324 {
3325 	idx = (idx + 1) % BWI_TX_NDESC;
3326 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3327 		    idx * sizeof(struct bwi_desc32));
3328 }
3329 
3330 static void
3331 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3332 {
3333 	/* TODO:64 */
3334 }
3335 
3336 static void
3337 bwi_txeof_status32(struct bwi_softc *sc)
3338 {
3339 	struct ifnet *ifp = sc->sc_ifp;
3340 	uint32_t val, ctrl_base;
3341 	int end_idx;
3342 
3343 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3344 
3345 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3346 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3347 		  sizeof(struct bwi_desc32);
3348 
3349 	bwi_txeof_status(sc, end_idx);
3350 
3351 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3352 		    end_idx * sizeof(struct bwi_desc32));
3353 
3354 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3355 		ifp->if_start(ifp);
3356 }
3357 
3358 static void
3359 bwi_txeof_status64(struct bwi_softc *sc)
3360 {
3361 	/* TODO:64 */
3362 }
3363 
3364 static void
3365 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3366 {
3367 	struct ifnet *ifp = sc->sc_ifp;
3368 	struct bwi_txbuf_data *tbd;
3369 	struct bwi_txbuf *tb;
3370 	int ring_idx, buf_idx;
3371 	struct ieee80211_node *ni;
3372 
3373 	if (tx_id == 0) {
3374 		if_printf(ifp, "%s: zero tx id\n", __func__);
3375 		return;
3376 	}
3377 
3378 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3379 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3380 
3381 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3382 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3383 
3384 	tbd = &sc->sc_tx_bdata[ring_idx];
3385 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3386 	tbd->tbd_used--;
3387 
3388 	tb = &tbd->tbd_buf[buf_idx];
3389 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3390 		"acked %d, data_txcnt %d, ni %p\n",
3391 		buf_idx, acked, data_txcnt, tb->tb_ni);
3392 
3393 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3394 
3395 	ni = tb->tb_ni;
3396 	if (tb->tb_ni != NULL) {
3397 		struct bwi_node *bn = (struct bwi_node *) tb->tb_ni;
3398 		const struct bwi_txbuf_hdr *hdr =
3399 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3400 
3401 		/* NB: update rate control only for unicast frames */
3402 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3403 			/*
3404 			 * Feed back 'acked and data_txcnt'.  Note that the
3405 			 * generic AMRR code only understands one tx rate
3406 			 * and the estimator doesn't handle real retry counts
3407 			 * well so to avoid over-aggressive downshifting we
3408 			 * treat any number of retries as "1".
3409 			 */
3410 			ieee80211_amrr_tx_complete(&bn->amn, acked,
3411 			    data_txcnt > 1);
3412 		}
3413 
3414 		/*
3415 		 * Do any tx complete callback.  Note this must
3416 		 * be done before releasing the node reference.
3417 		 */
3418 		if (tb->tb_mbuf->m_flags & M_TXCB)
3419 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3420 
3421 		ieee80211_free_node(tb->tb_ni);
3422 		tb->tb_ni = NULL;
3423 	}
3424 	m_freem(tb->tb_mbuf);
3425 	tb->tb_mbuf = NULL;
3426 
3427 	if (tbd->tbd_used == 0)
3428 		sc->sc_tx_timer = 0;
3429 
3430 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3431 }
3432 
3433 static void
3434 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3435 {
3436 	struct bwi_txstats_data *st = sc->sc_txstats;
3437 	int idx;
3438 
3439 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3440 
3441 	idx = st->stats_idx;
3442 	while (idx != end_idx) {
3443 		const struct bwi_txstats *stats = &st->stats[idx];
3444 
3445 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3446 			int data_txcnt;
3447 
3448 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3449 						BWI_TXS_TXCNT_DATA);
3450 			_bwi_txeof(sc, le16toh(stats->txs_id),
3451 				   stats->txs_flags & BWI_TXS_F_ACKED,
3452 				   data_txcnt);
3453 		}
3454 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3455 	}
3456 	st->stats_idx = idx;
3457 }
3458 
3459 static void
3460 bwi_txeof(struct bwi_softc *sc)
3461 {
3462 	struct ifnet *ifp = sc->sc_ifp;
3463 
3464 	for (;;) {
3465 		uint32_t tx_status0, tx_status1;
3466 		uint16_t tx_id;
3467 		int data_txcnt;
3468 
3469 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3470 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3471 			break;
3472 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3473 
3474 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3475 		data_txcnt = __SHIFTOUT(tx_status0,
3476 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3477 
3478 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3479 			continue;
3480 
3481 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3482 		    data_txcnt);
3483 	}
3484 
3485 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3486 		ifp->if_start(ifp);
3487 }
3488 
3489 static int
3490 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3491 {
3492 	bwi_power_on(sc, 1);
3493 	return bwi_set_clock_mode(sc, clk_mode);
3494 }
3495 
3496 static void
3497 bwi_bbp_power_off(struct bwi_softc *sc)
3498 {
3499 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3500 	bwi_power_off(sc, 1);
3501 }
3502 
3503 static int
3504 bwi_get_pwron_delay(struct bwi_softc *sc)
3505 {
3506 	struct bwi_regwin *com, *old;
3507 	struct bwi_clock_freq freq;
3508 	uint32_t val;
3509 	int error;
3510 
3511 	com = &sc->sc_com_regwin;
3512 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3513 
3514 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3515 		return 0;
3516 
3517 	error = bwi_regwin_switch(sc, com, &old);
3518 	if (error)
3519 		return error;
3520 
3521 	bwi_get_clock_freq(sc, &freq);
3522 
3523 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3524 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3525 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3526 
3527 	return bwi_regwin_switch(sc, old, NULL);
3528 }
3529 
3530 static int
3531 bwi_bus_attach(struct bwi_softc *sc)
3532 {
3533 	struct bwi_regwin *bus, *old;
3534 	int error;
3535 
3536 	bus = &sc->sc_bus_regwin;
3537 
3538 	error = bwi_regwin_switch(sc, bus, &old);
3539 	if (error)
3540 		return error;
3541 
3542 	if (!bwi_regwin_is_enabled(sc, bus))
3543 		bwi_regwin_enable(sc, bus, 0);
3544 
3545 	/* Disable interripts */
3546 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3547 
3548 	return bwi_regwin_switch(sc, old, NULL);
3549 }
3550 
3551 static const char *
3552 bwi_regwin_name(const struct bwi_regwin *rw)
3553 {
3554 	switch (rw->rw_type) {
3555 	case BWI_REGWIN_T_COM:
3556 		return "COM";
3557 	case BWI_REGWIN_T_BUSPCI:
3558 		return "PCI";
3559 	case BWI_REGWIN_T_MAC:
3560 		return "MAC";
3561 	case BWI_REGWIN_T_BUSPCIE:
3562 		return "PCIE";
3563 	}
3564 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3565 	return NULL;
3566 }
3567 
3568 static uint32_t
3569 bwi_regwin_disable_bits(struct bwi_softc *sc)
3570 {
3571 	uint32_t busrev;
3572 
3573 	/* XXX cache this */
3574 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3575 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3576 		"bus rev %u\n", busrev);
3577 
3578 	if (busrev == BWI_BUSREV_0)
3579 		return BWI_STATE_LO_DISABLE1;
3580 	else if (busrev == BWI_BUSREV_1)
3581 		return BWI_STATE_LO_DISABLE2;
3582 	else
3583 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3584 }
3585 
3586 int
3587 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3588 {
3589 	uint32_t val, disable_bits;
3590 
3591 	disable_bits = bwi_regwin_disable_bits(sc);
3592 	val = CSR_READ_4(sc, BWI_STATE_LO);
3593 
3594 	if ((val & (BWI_STATE_LO_CLOCK |
3595 		    BWI_STATE_LO_RESET |
3596 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3597 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3598 			bwi_regwin_name(rw));
3599 		return 1;
3600 	} else {
3601 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3602 			bwi_regwin_name(rw));
3603 		return 0;
3604 	}
3605 }
3606 
3607 void
3608 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3609 {
3610 	uint32_t state_lo, disable_bits;
3611 	int i;
3612 
3613 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3614 
3615 	/*
3616 	 * If current regwin is in 'reset' state, it was already disabled.
3617 	 */
3618 	if (state_lo & BWI_STATE_LO_RESET) {
3619 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3620 			"%s was already disabled\n", bwi_regwin_name(rw));
3621 		return;
3622 	}
3623 
3624 	disable_bits = bwi_regwin_disable_bits(sc);
3625 
3626 	/*
3627 	 * Disable normal clock
3628 	 */
3629 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3630 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3631 
3632 	/*
3633 	 * Wait until normal clock is disabled
3634 	 */
3635 #define NRETRY	1000
3636 	for (i = 0; i < NRETRY; ++i) {
3637 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3638 		if (state_lo & disable_bits)
3639 			break;
3640 		DELAY(10);
3641 	}
3642 	if (i == NRETRY) {
3643 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3644 			      bwi_regwin_name(rw));
3645 	}
3646 
3647 	for (i = 0; i < NRETRY; ++i) {
3648 		uint32_t state_hi;
3649 
3650 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3651 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3652 			break;
3653 		DELAY(10);
3654 	}
3655 	if (i == NRETRY) {
3656 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3657 			      bwi_regwin_name(rw));
3658 	}
3659 #undef NRETRY
3660 
3661 	/*
3662 	 * Reset and disable regwin with gated clock
3663 	 */
3664 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3665 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3666 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3667 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3668 
3669 	/* Flush pending bus write */
3670 	CSR_READ_4(sc, BWI_STATE_LO);
3671 	DELAY(1);
3672 
3673 	/* Reset and disable regwin */
3674 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3675 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3676 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3677 
3678 	/* Flush pending bus write */
3679 	CSR_READ_4(sc, BWI_STATE_LO);
3680 	DELAY(1);
3681 }
3682 
3683 void
3684 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3685 {
3686 	uint32_t state_lo, state_hi, imstate;
3687 
3688 	bwi_regwin_disable(sc, rw, flags);
3689 
3690 	/* Reset regwin with gated clock */
3691 	state_lo = BWI_STATE_LO_RESET |
3692 		   BWI_STATE_LO_CLOCK |
3693 		   BWI_STATE_LO_GATED_CLOCK |
3694 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3695 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3696 
3697 	/* Flush pending bus write */
3698 	CSR_READ_4(sc, BWI_STATE_LO);
3699 	DELAY(1);
3700 
3701 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3702 	if (state_hi & BWI_STATE_HI_SERROR)
3703 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3704 
3705 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3706 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3707 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3708 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3709 	}
3710 
3711 	/* Enable regwin with gated clock */
3712 	state_lo = BWI_STATE_LO_CLOCK |
3713 		   BWI_STATE_LO_GATED_CLOCK |
3714 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3715 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3716 
3717 	/* Flush pending bus write */
3718 	CSR_READ_4(sc, BWI_STATE_LO);
3719 	DELAY(1);
3720 
3721 	/* Enable regwin with normal clock */
3722 	state_lo = BWI_STATE_LO_CLOCK |
3723 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3724 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3725 
3726 	/* Flush pending bus write */
3727 	CSR_READ_4(sc, BWI_STATE_LO);
3728 	DELAY(1);
3729 }
3730 
3731 static void
3732 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3733 {
3734 	struct ifnet *ifp = sc->sc_ifp;
3735 	struct bwi_mac *mac;
3736 	struct bwi_myaddr_bssid buf;
3737 	const uint8_t *p;
3738 	uint32_t val;
3739 	int n, i;
3740 
3741 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3742 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3743 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3744 
3745 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3746 
3747 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3748 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3749 
3750 	n = sizeof(buf) / sizeof(val);
3751 	p = (const uint8_t *)&buf;
3752 	for (i = 0; i < n; ++i) {
3753 		int j;
3754 
3755 		val = 0;
3756 		for (j = 0; j < sizeof(val); ++j)
3757 			val |= ((uint32_t)(*p++)) << (j * 8);
3758 
3759 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3760 	}
3761 }
3762 
3763 static void
3764 bwi_updateslot(struct ifnet *ifp)
3765 {
3766 	struct bwi_softc *sc = ifp->if_softc;
3767 	struct ieee80211com *ic = ifp->if_l2com;
3768 	struct bwi_mac *mac;
3769 
3770 	BWI_LOCK(sc);
3771 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3772 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3773 
3774 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3775 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3776 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3777 
3778 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3779 	}
3780 	BWI_UNLOCK(sc);
3781 }
3782 
3783 static void
3784 bwi_calibrate(void *xsc)
3785 {
3786 	struct bwi_softc *sc = xsc;
3787 #ifdef INVARIANTS
3788 	struct ifnet *ifp = sc->sc_ifp;
3789 	struct ieee80211com *ic = ifp->if_l2com;
3790 #endif
3791 	struct bwi_mac *mac;
3792 
3793 	BWI_ASSERT_LOCKED(sc);
3794 
3795 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3796 	    ("opmode %d", ic->ic_opmode));
3797 
3798 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3799 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3800 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3801 
3802 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3803 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3804 
3805 	/* XXX 15 seconds */
3806 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3807 }
3808 
3809 static int
3810 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3811 {
3812 	struct bwi_mac *mac;
3813 
3814 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3815 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3816 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3817 
3818 	return bwi_rf_calc_rssi(mac, hdr);
3819 }
3820 
3821 static int
3822 bwi_calc_noise(struct bwi_softc *sc)
3823 {
3824 	struct bwi_mac *mac;
3825 
3826 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3827 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3828 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3829 
3830 	return bwi_rf_calc_noise(mac);
3831 }
3832 
3833 static __inline uint8_t
3834 bwi_ofdm_plcp2rate(const uint32_t *plcp0)
3835 {
3836 	uint32_t plcp;
3837 	uint8_t plcp_rate;
3838 
3839 	plcp = le32toh(*plcp0);
3840 	plcp_rate = __SHIFTOUT(plcp, IEEE80211_OFDM_PLCP_RATE_MASK);
3841 	return ieee80211_plcp2rate(plcp_rate, IEEE80211_T_OFDM);
3842 }
3843 
3844 static __inline uint8_t
3845 bwi_ds_plcp2rate(const struct ieee80211_ds_plcp_hdr *hdr)
3846 {
3847 	return ieee80211_plcp2rate(hdr->i_signal, IEEE80211_T_DS);
3848 }
3849 
3850 static void
3851 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3852     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3853 {
3854 	const struct ieee80211_frame_min *wh;
3855 
3856 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3857 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3858 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3859 
3860 	wh = mtod(m, const struct ieee80211_frame_min *);
3861 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3862 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3863 
3864 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3865 	sc->sc_rx_th.wr_rate = rate;
3866 	sc->sc_rx_th.wr_antsignal = rssi;
3867 	sc->sc_rx_th.wr_antnoise = noise;
3868 }
3869 
3870 static void
3871 bwi_led_attach(struct bwi_softc *sc)
3872 {
3873 	const uint8_t *led_act = NULL;
3874 	uint16_t gpio, val[BWI_LED_MAX];
3875 	int i;
3876 
3877 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3878 
3879 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3880 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3881 			led_act = bwi_vendor_led_act[i].led_act;
3882 			break;
3883 		}
3884 	}
3885 	if (led_act == NULL)
3886 		led_act = bwi_default_led_act;
3887 
3888 #undef N
3889 
3890 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3891 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3892 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3893 
3894 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3895 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3896 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3897 
3898 	for (i = 0; i < BWI_LED_MAX; ++i) {
3899 		struct bwi_led *led = &sc->sc_leds[i];
3900 
3901 		if (val[i] == 0xff) {
3902 			led->l_act = led_act[i];
3903 		} else {
3904 			if (val[i] & BWI_LED_ACT_LOW)
3905 				led->l_flags |= BWI_LED_F_ACTLOW;
3906 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3907 		}
3908 		led->l_mask = (1 << i);
3909 
3910 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3911 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3912 		    led->l_act == BWI_LED_ACT_BLINK) {
3913 			led->l_flags |= BWI_LED_F_BLINK;
3914 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3915 				led->l_flags |= BWI_LED_F_POLLABLE;
3916 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3917 				led->l_flags |= BWI_LED_F_SLOW;
3918 
3919 			if (sc->sc_blink_led == NULL) {
3920 				sc->sc_blink_led = led;
3921 				if (led->l_flags & BWI_LED_F_SLOW)
3922 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3923 			}
3924 		}
3925 
3926 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3927 			"%dth led, act %d, lowact %d\n", i,
3928 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3929 	}
3930 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3931 }
3932 
3933 static __inline uint16_t
3934 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3935 {
3936 	if (led->l_flags & BWI_LED_F_ACTLOW)
3937 		on = !on;
3938 	if (on)
3939 		val |= led->l_mask;
3940 	else
3941 		val &= ~led->l_mask;
3942 	return val;
3943 }
3944 
3945 static void
3946 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3947 {
3948 	struct ifnet *ifp = sc->sc_ifp;
3949 	struct ieee80211com *ic = ifp->if_l2com;
3950 	uint16_t val;
3951 	int i;
3952 
3953 	if (nstate == IEEE80211_S_INIT) {
3954 		callout_stop(&sc->sc_led_blink_ch);
3955 		sc->sc_led_blinking = 0;
3956 	}
3957 
3958 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3959 		return;
3960 
3961 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3962 	for (i = 0; i < BWI_LED_MAX; ++i) {
3963 		struct bwi_led *led = &sc->sc_leds[i];
3964 		int on;
3965 
3966 		if (led->l_act == BWI_LED_ACT_UNKN ||
3967 		    led->l_act == BWI_LED_ACT_NULL)
3968 			continue;
3969 
3970 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3971 		    nstate != IEEE80211_S_INIT)
3972 		    	continue;
3973 
3974 		switch (led->l_act) {
3975 		case BWI_LED_ACT_ON:	/* Always on */
3976 			on = 1;
3977 			break;
3978 		case BWI_LED_ACT_OFF:	/* Always off */
3979 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3980 			on = 0;
3981 			break;
3982 		default:
3983 			on = 1;
3984 			switch (nstate) {
3985 			case IEEE80211_S_INIT:
3986 				on = 0;
3987 				break;
3988 			case IEEE80211_S_RUN:
3989 				if (led->l_act == BWI_LED_ACT_11G &&
3990 				    ic->ic_curmode != IEEE80211_MODE_11G)
3991 					on = 0;
3992 				break;
3993 			default:
3994 				if (led->l_act == BWI_LED_ACT_ASSOC)
3995 					on = 0;
3996 				break;
3997 			}
3998 			break;
3999 		}
4000 
4001 		val = bwi_led_onoff(led, val, on);
4002 	}
4003 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4004 }
4005 static void
4006 bwi_led_event(struct bwi_softc *sc, int event)
4007 {
4008 	struct bwi_led *led = sc->sc_blink_led;
4009 	int rate;
4010 
4011 	if (event == BWI_LED_EVENT_POLL) {
4012 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
4013 			return;
4014 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
4015 			return;
4016 	}
4017 
4018 	sc->sc_led_ticks = ticks;
4019 	if (sc->sc_led_blinking)
4020 		return;
4021 
4022 	switch (event) {
4023 	case BWI_LED_EVENT_RX:
4024 		rate = sc->sc_rx_rate;
4025 		break;
4026 	case BWI_LED_EVENT_TX:
4027 		rate = sc->sc_tx_rate;
4028 		break;
4029 	case BWI_LED_EVENT_POLL:
4030 		rate = 0;
4031 		break;
4032 	default:
4033 		panic("unknown LED event %d\n", event);
4034 		break;
4035 	}
4036 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
4037 	    bwi_led_duration[rate].off_dur);
4038 }
4039 
4040 static void
4041 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4042 {
4043 	struct bwi_led *led = sc->sc_blink_led;
4044 	uint16_t val;
4045 
4046 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4047 	val = bwi_led_onoff(led, val, 1);
4048 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4049 
4050 	if (led->l_flags & BWI_LED_F_SLOW) {
4051 		BWI_LED_SLOWDOWN(on_dur);
4052 		BWI_LED_SLOWDOWN(off_dur);
4053 	}
4054 
4055 	sc->sc_led_blinking = 1;
4056 	sc->sc_led_blink_offdur = off_dur;
4057 
4058 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4059 }
4060 
4061 static void
4062 bwi_led_blink_next(void *xsc)
4063 {
4064 	struct bwi_softc *sc = xsc;
4065 	uint16_t val;
4066 
4067 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4068 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4069 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4070 
4071 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4072 	    bwi_led_blink_end, sc);
4073 }
4074 
4075 static void
4076 bwi_led_blink_end(void *xsc)
4077 {
4078 	struct bwi_softc *sc = xsc;
4079 	sc->sc_led_blinking = 0;
4080 }
4081 
4082 static void
4083 bwi_restart(void *xsc, int pending)
4084 {
4085 	struct bwi_softc *sc = xsc;
4086 	struct ifnet *ifp = sc->sc_ifp;
4087 
4088 	if_printf(ifp, "%s begin, help!\n", __func__);
4089 	BWI_LOCK(sc);
4090 	bwi_init_statechg(xsc, 0);
4091 #if 0
4092 	bwi_start_locked(ifp);
4093 #endif
4094 	BWI_UNLOCK(sc);
4095 }
4096