xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 731d06abf2105cc0873fa84e972178f9f37ca760)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_bwi.h"
44 #include "opt_wlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/endian.h>
48 #include <sys/kernel.h>
49 #include <sys/bus.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/rman.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/taskqueue.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/if_llc.h>
67 
68 #include <net80211/ieee80211_var.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_regdomain.h>
71 #include <net80211/ieee80211_phy.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <net/bpf.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif
80 
81 #include <machine/bus.h>
82 
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcireg.h>
85 
86 #include <dev/bwi/bitops.h>
87 #include <dev/bwi/if_bwireg.h>
88 #include <dev/bwi/if_bwivar.h>
89 #include <dev/bwi/bwimac.h>
90 #include <dev/bwi/bwirf.h>
91 
92 struct bwi_clock_freq {
93 	u_int		clkfreq_min;
94 	u_int		clkfreq_max;
95 };
96 
97 struct bwi_myaddr_bssid {
98 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
99 	uint8_t		bssid[IEEE80211_ADDR_LEN];
100 } __packed;
101 
102 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
103 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
104 		    const uint8_t [IEEE80211_ADDR_LEN],
105 		    const uint8_t [IEEE80211_ADDR_LEN]);
106 static void	bwi_vap_delete(struct ieee80211vap *);
107 static void	bwi_init(struct bwi_softc *);
108 static void	bwi_parent(struct ieee80211com *);
109 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
110 static void	bwi_start_locked(struct bwi_softc *);
111 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
112 			const struct ieee80211_bpf_params *);
113 static void	bwi_watchdog(void *);
114 static void	bwi_scan_start(struct ieee80211com *);
115 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
116 		    struct ieee80211_channel[]);
117 static void	bwi_set_channel(struct ieee80211com *);
118 static void	bwi_scan_end(struct ieee80211com *);
119 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
120 static void	bwi_updateslot(struct ieee80211com *);
121 static int	bwi_media_change(struct ifnet *);
122 
123 static void	bwi_calibrate(void *);
124 
125 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
126 static int	bwi_calc_noise(struct bwi_softc *);
127 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
128 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
129 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
130 
131 static void	bwi_restart(void *, int);
132 static void	bwi_init_statechg(struct bwi_softc *, int);
133 static void	bwi_stop(struct bwi_softc *, int);
134 static void	bwi_stop_locked(struct bwi_softc *, int);
135 static int	bwi_newbuf(struct bwi_softc *, int, int);
136 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
137 			  struct ieee80211_node *);
138 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
139 			  struct ieee80211_node *,
140 			  const struct ieee80211_bpf_params *);
141 
142 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
143 				       bus_addr_t, int, int);
144 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
145 
146 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
147 static int	bwi_init_rx_ring32(struct bwi_softc *);
148 static int	bwi_init_txstats32(struct bwi_softc *);
149 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
150 static void	bwi_free_rx_ring32(struct bwi_softc *);
151 static void	bwi_free_txstats32(struct bwi_softc *);
152 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
153 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
154 				    int, bus_addr_t, int);
155 static int	bwi_rxeof32(struct bwi_softc *);
156 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
157 static void	bwi_txeof_status32(struct bwi_softc *);
158 
159 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
160 static int	bwi_init_rx_ring64(struct bwi_softc *);
161 static int	bwi_init_txstats64(struct bwi_softc *);
162 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
163 static void	bwi_free_rx_ring64(struct bwi_softc *);
164 static void	bwi_free_txstats64(struct bwi_softc *);
165 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
166 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
167 				    int, bus_addr_t, int);
168 static int	bwi_rxeof64(struct bwi_softc *);
169 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
170 static void	bwi_txeof_status64(struct bwi_softc *);
171 
172 static int	bwi_rxeof(struct bwi_softc *, int);
173 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
174 static void	bwi_txeof(struct bwi_softc *);
175 static void	bwi_txeof_status(struct bwi_softc *, int);
176 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
177 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
178 
179 static int	bwi_dma_alloc(struct bwi_softc *);
180 static void	bwi_dma_free(struct bwi_softc *);
181 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
182 				   struct bwi_ring_data *, bus_size_t,
183 				   uint32_t);
184 static int	bwi_dma_mbuf_create(struct bwi_softc *);
185 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
186 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
187 static void	bwi_dma_txstats_free(struct bwi_softc *);
188 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
189 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
190 				 bus_size_t, int);
191 
192 static void	bwi_power_on(struct bwi_softc *, int);
193 static int	bwi_power_off(struct bwi_softc *, int);
194 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
195 static int	bwi_set_clock_delay(struct bwi_softc *);
196 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
197 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
198 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
199 				    const uint8_t *);
200 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
201 
202 static void	bwi_get_card_flags(struct bwi_softc *);
203 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
204 
205 static int	bwi_bus_attach(struct bwi_softc *);
206 static int	bwi_bbp_attach(struct bwi_softc *);
207 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
208 static void	bwi_bbp_power_off(struct bwi_softc *);
209 
210 static const char *bwi_regwin_name(const struct bwi_regwin *);
211 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
212 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
213 static int	bwi_regwin_select(struct bwi_softc *, int);
214 
215 static void	bwi_led_attach(struct bwi_softc *);
216 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
217 static void	bwi_led_event(struct bwi_softc *, int);
218 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
219 static void	bwi_led_blink_next(void *);
220 static void	bwi_led_blink_end(void *);
221 
222 static const struct {
223 	uint16_t	did_min;
224 	uint16_t	did_max;
225 	uint16_t	bbp_id;
226 } bwi_bbpid_map[] = {
227 	{ 0x4301, 0x4301, 0x4301 },
228 	{ 0x4305, 0x4307, 0x4307 },
229 	{ 0x4402, 0x4403, 0x4402 },
230 	{ 0x4610, 0x4615, 0x4610 },
231 	{ 0x4710, 0x4715, 0x4710 },
232 	{ 0x4720, 0x4725, 0x4309 }
233 };
234 
235 static const struct {
236 	uint16_t	bbp_id;
237 	int		nregwin;
238 } bwi_regwin_count[] = {
239 	{ 0x4301, 5 },
240 	{ 0x4306, 6 },
241 	{ 0x4307, 5 },
242 	{ 0x4310, 8 },
243 	{ 0x4401, 3 },
244 	{ 0x4402, 3 },
245 	{ 0x4610, 9 },
246 	{ 0x4704, 9 },
247 	{ 0x4710, 9 },
248 	{ 0x5365, 7 }
249 };
250 
251 #define CLKSRC(src) 				\
252 [BWI_CLKSRC_ ## src] = {			\
253 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
254 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
255 }
256 
257 static const struct {
258 	u_int	freq_min;
259 	u_int	freq_max;
260 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
261 	CLKSRC(LP_OSC),
262 	CLKSRC(CS_OSC),
263 	CLKSRC(PCI)
264 };
265 
266 #undef CLKSRC
267 
268 #define VENDOR_LED_ACT(vendor)				\
269 {							\
270 	.vid = PCI_VENDOR_##vendor,			\
271 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
272 }
273 
274 static const struct {
275 #define	PCI_VENDOR_COMPAQ	0x0e11
276 #define	PCI_VENDOR_LINKSYS	0x1737
277 	uint16_t	vid;
278 	uint8_t		led_act[BWI_LED_MAX];
279 } bwi_vendor_led_act[] = {
280 	VENDOR_LED_ACT(COMPAQ),
281 	VENDOR_LED_ACT(LINKSYS)
282 #undef PCI_VENDOR_LINKSYS
283 #undef PCI_VENDOR_COMPAQ
284 };
285 
286 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
287 	{ BWI_VENDOR_LED_ACT_DEFAULT };
288 
289 #undef VENDOR_LED_ACT
290 
291 static const struct {
292 	int	on_dur;
293 	int	off_dur;
294 } bwi_led_duration[109] = {
295 	[0]	= { 400, 100 },
296 	[2]	= { 150, 75 },
297 	[4]	= { 90, 45 },
298 	[11]	= { 66, 34 },
299 	[12]	= { 53, 26 },
300 	[18]	= { 42, 21 },
301 	[22]	= { 35, 17 },
302 	[24]	= { 32, 16 },
303 	[36]	= { 21, 10 },
304 	[48]	= { 16, 8 },
305 	[72]	= { 11, 5 },
306 	[96]	= { 9, 4 },
307 	[108]	= { 7, 3 }
308 };
309 
310 #ifdef BWI_DEBUG
311 #ifdef BWI_DEBUG_VERBOSE
312 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
313 #else
314 static uint32_t	bwi_debug;
315 #endif
316 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
317 #endif	/* BWI_DEBUG */
318 
319 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
320 
321 uint16_t
322 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
323 {
324 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
325 }
326 
327 static __inline void
328 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
329 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
330 		 int tx)
331 {
332 	struct bwi_desc32 *desc = &desc_array[desc_idx];
333 	uint32_t ctrl, addr, addr_hi, addr_lo;
334 
335 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
336 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
337 
338 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
339 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
340 
341 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
342 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
343 	if (desc_idx == ndesc - 1)
344 		ctrl |= BWI_DESC32_C_EOR;
345 	if (tx) {
346 		/* XXX */
347 		ctrl |= BWI_DESC32_C_FRAME_START |
348 			BWI_DESC32_C_FRAME_END |
349 			BWI_DESC32_C_INTR;
350 	}
351 
352 	desc->addr = htole32(addr);
353 	desc->ctrl = htole32(ctrl);
354 }
355 
356 int
357 bwi_attach(struct bwi_softc *sc)
358 {
359 	struct ieee80211com *ic = &sc->sc_ic;
360 	device_t dev = sc->sc_dev;
361 	struct bwi_mac *mac;
362 	struct bwi_phy *phy;
363 	int i, error;
364 
365 	BWI_LOCK_INIT(sc);
366 
367 	/*
368 	 * Initialize taskq and various tasks
369 	 */
370 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
371 		taskqueue_thread_enqueue, &sc->sc_tq);
372 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
373 		device_get_nameunit(dev));
374 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
375 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
376 	mbufq_init(&sc->sc_snd, ifqmaxlen);
377 
378 	/*
379 	 * Initialize sysctl variables
380 	 */
381 	sc->sc_fw_version = BWI_FW_VERSION3;
382 	sc->sc_led_idle = (2350 * hz) / 1000;
383 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
384 	sc->sc_led_blink = 1;
385 	sc->sc_txpwr_calib = 1;
386 #ifdef BWI_DEBUG
387 	sc->sc_debug = bwi_debug;
388 #endif
389 	bwi_power_on(sc, 1);
390 
391 	error = bwi_bbp_attach(sc);
392 	if (error)
393 		goto fail;
394 
395 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
396 	if (error)
397 		goto fail;
398 
399 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
400 		error = bwi_set_clock_delay(sc);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
405 		if (error)
406 			goto fail;
407 
408 		error = bwi_get_pwron_delay(sc);
409 		if (error)
410 			goto fail;
411 	}
412 
413 	error = bwi_bus_attach(sc);
414 	if (error)
415 		goto fail;
416 
417 	bwi_get_card_flags(sc);
418 
419 	bwi_led_attach(sc);
420 
421 	for (i = 0; i < sc->sc_nmac; ++i) {
422 		struct bwi_regwin *old;
423 
424 		mac = &sc->sc_mac[i];
425 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_mac_lateattach(mac);
430 		if (error)
431 			goto fail;
432 
433 		error = bwi_regwin_switch(sc, old, NULL);
434 		if (error)
435 			goto fail;
436 	}
437 
438 	/*
439 	 * XXX First MAC is known to exist
440 	 * TODO2
441 	 */
442 	mac = &sc->sc_mac[0];
443 	phy = &mac->mac_phy;
444 
445 	bwi_bbp_power_off(sc);
446 
447 	error = bwi_dma_alloc(sc);
448 	if (error)
449 		goto fail;
450 
451 	error = bwi_mac_fw_alloc(mac);
452 	if (error)
453 		goto fail;
454 
455 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
456 
457 	/*
458 	 * Setup ratesets, phytype, channels and get MAC address
459 	 */
460 	if (phy->phy_mode == IEEE80211_MODE_11B ||
461 	    phy->phy_mode == IEEE80211_MODE_11G) {
462 		if (phy->phy_mode == IEEE80211_MODE_11B) {
463 			ic->ic_phytype = IEEE80211_T_DS;
464 		} else {
465 			ic->ic_phytype = IEEE80211_T_OFDM;
466 		}
467 
468 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
469 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
470 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
471 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
472 				device_printf(dev,
473 				    "invalid MAC address: %6D\n",
474 				    ic->ic_macaddr, ":");
475 			}
476 		}
477 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
478 		/* TODO:11A */
479 		error = ENXIO;
480 		goto fail;
481 	} else {
482 		panic("unknown phymode %d\n", phy->phy_mode);
483 	}
484 
485 	/* Get locale */
486 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
487 				   BWI_SPROM_CARD_INFO_LOCALE);
488 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
489 	/* XXX use locale */
490 
491 	ic->ic_softc = sc;
492 
493 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
494 	    ic->ic_channels);
495 
496 	ic->ic_name = device_get_nameunit(dev);
497 	ic->ic_caps = IEEE80211_C_STA |
498 		      IEEE80211_C_SHSLOT |
499 		      IEEE80211_C_SHPREAMBLE |
500 		      IEEE80211_C_WPA |
501 		      IEEE80211_C_BGSCAN |
502 		      IEEE80211_C_MONITOR;
503 	ic->ic_opmode = IEEE80211_M_STA;
504 	ieee80211_ifattach(ic);
505 
506 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
507 
508 	/* override default methods */
509 	ic->ic_vap_create = bwi_vap_create;
510 	ic->ic_vap_delete = bwi_vap_delete;
511 	ic->ic_raw_xmit = bwi_raw_xmit;
512 	ic->ic_updateslot = bwi_updateslot;
513 	ic->ic_scan_start = bwi_scan_start;
514 	ic->ic_scan_end = bwi_scan_end;
515 	ic->ic_getradiocaps = bwi_getradiocaps;
516 	ic->ic_set_channel = bwi_set_channel;
517 	ic->ic_transmit = bwi_transmit;
518 	ic->ic_parent = bwi_parent;
519 
520 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
521 
522 	ieee80211_radiotap_attach(ic,
523 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
524 		BWI_TX_RADIOTAP_PRESENT,
525 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
526 		BWI_RX_RADIOTAP_PRESENT);
527 
528 	/*
529 	 * Add sysctl nodes
530 	 */
531 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
532 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
533 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
534 		        "Firmware version");
535 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
536 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
537 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
538 		        "# ticks before LED enters idle state");
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
542 		       "Allow LED to blink");
543 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
544 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
545 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
546 		       "Enable software TX power calibration");
547 #ifdef BWI_DEBUG
548 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
549 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
551 #endif
552 	if (bootverbose)
553 		ieee80211_announce(ic);
554 
555 	return (0);
556 fail:
557 	BWI_LOCK_DESTROY(sc);
558 	return (error);
559 }
560 
561 int
562 bwi_detach(struct bwi_softc *sc)
563 {
564 	struct ieee80211com *ic = &sc->sc_ic;
565 	int i;
566 
567 	bwi_stop(sc, 1);
568 	callout_drain(&sc->sc_led_blink_ch);
569 	callout_drain(&sc->sc_calib_ch);
570 	callout_drain(&sc->sc_watchdog_timer);
571 	ieee80211_ifdetach(ic);
572 
573 	for (i = 0; i < sc->sc_nmac; ++i)
574 		bwi_mac_detach(&sc->sc_mac[i]);
575 	bwi_dma_free(sc);
576 	taskqueue_free(sc->sc_tq);
577 	mbufq_drain(&sc->sc_snd);
578 
579 	BWI_LOCK_DESTROY(sc);
580 
581 	return (0);
582 }
583 
584 static struct ieee80211vap *
585 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
586     enum ieee80211_opmode opmode, int flags,
587     const uint8_t bssid[IEEE80211_ADDR_LEN],
588     const uint8_t mac[IEEE80211_ADDR_LEN])
589 {
590 	struct bwi_vap *bvp;
591 	struct ieee80211vap *vap;
592 
593 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
594 		return NULL;
595 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
596 	vap = &bvp->bv_vap;
597 	/* enable s/w bmiss handling for sta mode */
598 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
599 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
600 
601 	/* override default methods */
602 	bvp->bv_newstate = vap->iv_newstate;
603 	vap->iv_newstate = bwi_newstate;
604 #if 0
605 	vap->iv_update_beacon = bwi_beacon_update;
606 #endif
607 	ieee80211_ratectl_init(vap);
608 
609 	/* complete setup */
610 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
611 	    mac);
612 	ic->ic_opmode = opmode;
613 	return vap;
614 }
615 
616 static void
617 bwi_vap_delete(struct ieee80211vap *vap)
618 {
619 	struct bwi_vap *bvp = BWI_VAP(vap);
620 
621 	ieee80211_ratectl_deinit(vap);
622 	ieee80211_vap_detach(vap);
623 	free(bvp, M_80211_VAP);
624 }
625 
626 void
627 bwi_suspend(struct bwi_softc *sc)
628 {
629 	bwi_stop(sc, 1);
630 }
631 
632 void
633 bwi_resume(struct bwi_softc *sc)
634 {
635 
636 	if (sc->sc_ic.ic_nrunning > 0)
637 		bwi_init(sc);
638 }
639 
640 int
641 bwi_shutdown(struct bwi_softc *sc)
642 {
643 	bwi_stop(sc, 1);
644 	return 0;
645 }
646 
647 static void
648 bwi_power_on(struct bwi_softc *sc, int with_pll)
649 {
650 	uint32_t gpio_in, gpio_out, gpio_en;
651 	uint16_t status;
652 
653 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
654 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
655 		goto back;
656 
657 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
658 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
659 
660 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
661 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
662 	if (with_pll) {
663 		/* Turn off PLL first */
664 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
665 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
666 	}
667 
668 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
669 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
670 	DELAY(1000);
671 
672 	if (with_pll) {
673 		/* Turn on PLL */
674 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
675 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
676 		DELAY(5000);
677 	}
678 
679 back:
680 	/* Clear "Signaled Target Abort" */
681 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
682 	status &= ~PCIM_STATUS_STABORT;
683 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
684 }
685 
686 static int
687 bwi_power_off(struct bwi_softc *sc, int with_pll)
688 {
689 	uint32_t gpio_out, gpio_en;
690 
691 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
692 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
693 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
694 
695 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
696 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
697 	if (with_pll) {
698 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
699 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
700 	}
701 
702 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
703 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
704 	return 0;
705 }
706 
707 int
708 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
709 		  struct bwi_regwin **old_rw)
710 {
711 	int error;
712 
713 	if (old_rw != NULL)
714 		*old_rw = NULL;
715 
716 	if (!BWI_REGWIN_EXIST(rw))
717 		return EINVAL;
718 
719 	if (sc->sc_cur_regwin != rw) {
720 		error = bwi_regwin_select(sc, rw->rw_id);
721 		if (error) {
722 			device_printf(sc->sc_dev, "can't select regwin %d\n",
723 				  rw->rw_id);
724 			return error;
725 		}
726 	}
727 
728 	if (old_rw != NULL)
729 		*old_rw = sc->sc_cur_regwin;
730 	sc->sc_cur_regwin = rw;
731 	return 0;
732 }
733 
734 static int
735 bwi_regwin_select(struct bwi_softc *sc, int id)
736 {
737 	uint32_t win = BWI_PCIM_REGWIN(id);
738 	int i;
739 
740 #define RETRY_MAX	50
741 	for (i = 0; i < RETRY_MAX; ++i) {
742 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
743 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
744 			return 0;
745 		DELAY(10);
746 	}
747 #undef RETRY_MAX
748 
749 	return ENXIO;
750 }
751 
752 static void
753 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
754 {
755 	uint32_t val;
756 
757 	val = CSR_READ_4(sc, BWI_ID_HI);
758 	*type = BWI_ID_HI_REGWIN_TYPE(val);
759 	*rev = BWI_ID_HI_REGWIN_REV(val);
760 
761 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
762 		"vendor 0x%04x\n", *type, *rev,
763 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
764 }
765 
766 static int
767 bwi_bbp_attach(struct bwi_softc *sc)
768 {
769 	uint16_t bbp_id, rw_type;
770 	uint8_t rw_rev;
771 	uint32_t info;
772 	int error, nregwin, i;
773 
774 	/*
775 	 * Get 0th regwin information
776 	 * NOTE: 0th regwin should exist
777 	 */
778 	error = bwi_regwin_select(sc, 0);
779 	if (error) {
780 		device_printf(sc->sc_dev, "can't select regwin 0\n");
781 		return error;
782 	}
783 	bwi_regwin_info(sc, &rw_type, &rw_rev);
784 
785 	/*
786 	 * Find out BBP id
787 	 */
788 	bbp_id = 0;
789 	info = 0;
790 	if (rw_type == BWI_REGWIN_T_COM) {
791 		info = CSR_READ_4(sc, BWI_INFO);
792 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
793 
794 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
795 
796 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
797 	} else {
798 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
799 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
800 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
801 				bbp_id = bwi_bbpid_map[i].bbp_id;
802 				break;
803 			}
804 		}
805 		if (bbp_id == 0) {
806 			device_printf(sc->sc_dev, "no BBP id for device id "
807 				      "0x%04x\n", sc->sc_pci_did);
808 			return ENXIO;
809 		}
810 
811 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
812 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
813 	}
814 
815 	/*
816 	 * Find out number of regwins
817 	 */
818 	nregwin = 0;
819 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
820 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
821 	} else {
822 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
823 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
824 				nregwin = bwi_regwin_count[i].nregwin;
825 				break;
826 			}
827 		}
828 		if (nregwin == 0) {
829 			device_printf(sc->sc_dev, "no number of win for "
830 				      "BBP id 0x%04x\n", bbp_id);
831 			return ENXIO;
832 		}
833 	}
834 
835 	/* Record BBP id/rev for later using */
836 	sc->sc_bbp_id = bbp_id;
837 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
838 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
839 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
840 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
841 
842 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
843 		nregwin, sc->sc_cap);
844 
845 	/*
846 	 * Create rest of the regwins
847 	 */
848 
849 	/* Don't re-create common regwin, if it is already created */
850 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
851 
852 	for (; i < nregwin; ++i) {
853 		/*
854 		 * Get regwin information
855 		 */
856 		error = bwi_regwin_select(sc, i);
857 		if (error) {
858 			device_printf(sc->sc_dev,
859 				      "can't select regwin %d\n", i);
860 			return error;
861 		}
862 		bwi_regwin_info(sc, &rw_type, &rw_rev);
863 
864 		/*
865 		 * Try attach:
866 		 * 1) Bus (PCI/PCIE) regwin
867 		 * 2) MAC regwin
868 		 * Ignore rest types of regwin
869 		 */
870 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
871 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
872 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
873 				device_printf(sc->sc_dev,
874 					      "bus regwin already exists\n");
875 			} else {
876 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
877 						  rw_type, rw_rev);
878 			}
879 		} else if (rw_type == BWI_REGWIN_T_MAC) {
880 			/* XXX ignore return value */
881 			bwi_mac_attach(sc, i, rw_rev);
882 		}
883 	}
884 
885 	/* At least one MAC shold exist */
886 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
887 		device_printf(sc->sc_dev, "no MAC was found\n");
888 		return ENXIO;
889 	}
890 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
891 
892 	/* Bus regwin must exist */
893 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
894 		device_printf(sc->sc_dev, "no bus regwin was found\n");
895 		return ENXIO;
896 	}
897 
898 	/* Start with first MAC */
899 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
900 	if (error)
901 		return error;
902 
903 	return 0;
904 }
905 
906 int
907 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
908 {
909 	struct bwi_regwin *old, *bus;
910 	uint32_t val;
911 	int error;
912 
913 	bus = &sc->sc_bus_regwin;
914 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
915 
916 	/*
917 	 * Tell bus to generate requested interrupts
918 	 */
919 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
920 		/*
921 		 * NOTE: Read BWI_FLAGS from MAC regwin
922 		 */
923 		val = CSR_READ_4(sc, BWI_FLAGS);
924 
925 		error = bwi_regwin_switch(sc, bus, &old);
926 		if (error)
927 			return error;
928 
929 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
930 	} else {
931 		uint32_t mac_mask;
932 
933 		mac_mask = 1 << mac->mac_id;
934 
935 		error = bwi_regwin_switch(sc, bus, &old);
936 		if (error)
937 			return error;
938 
939 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
940 		val |= mac_mask << 8;
941 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
942 	}
943 
944 	if (sc->sc_flags & BWI_F_BUS_INITED)
945 		goto back;
946 
947 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
948 		/*
949 		 * Enable prefetch and burst
950 		 */
951 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
952 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
953 
954 		if (bus->rw_rev < 5) {
955 			struct bwi_regwin *com = &sc->sc_com_regwin;
956 
957 			/*
958 			 * Configure timeouts for bus operation
959 			 */
960 
961 			/*
962 			 * Set service timeout and request timeout
963 			 */
964 			CSR_SETBITS_4(sc, BWI_CONF_LO,
965 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
966 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
967 
968 			/*
969 			 * If there is common regwin, we switch to that regwin
970 			 * and switch back to bus regwin once we have done.
971 			 */
972 			if (BWI_REGWIN_EXIST(com)) {
973 				error = bwi_regwin_switch(sc, com, NULL);
974 				if (error)
975 					return error;
976 			}
977 
978 			/* Let bus know what we have changed */
979 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
980 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
981 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
982 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
983 
984 			if (BWI_REGWIN_EXIST(com)) {
985 				error = bwi_regwin_switch(sc, bus, NULL);
986 				if (error)
987 					return error;
988 			}
989 		} else if (bus->rw_rev >= 11) {
990 			/*
991 			 * Enable memory read multiple
992 			 */
993 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
994 		}
995 	} else {
996 		/* TODO:PCIE */
997 	}
998 
999 	sc->sc_flags |= BWI_F_BUS_INITED;
1000 back:
1001 	return bwi_regwin_switch(sc, old, NULL);
1002 }
1003 
1004 static void
1005 bwi_get_card_flags(struct bwi_softc *sc)
1006 {
1007 #define	PCI_VENDOR_APPLE 0x106b
1008 #define	PCI_VENDOR_DELL  0x1028
1009 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1010 	if (sc->sc_card_flags == 0xffff)
1011 		sc->sc_card_flags = 0;
1012 
1013 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1014 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1015 	    sc->sc_pci_revid == 0x74)
1016 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1017 
1018 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1019 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1020 	    sc->sc_pci_revid > 0x40)
1021 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1022 
1023 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1024 #undef PCI_VENDOR_DELL
1025 #undef PCI_VENDOR_APPLE
1026 }
1027 
1028 static void
1029 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1030 {
1031 	int i;
1032 
1033 	for (i = 0; i < 3; ++i) {
1034 		*((uint16_t *)eaddr + i) =
1035 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1036 	}
1037 }
1038 
1039 static void
1040 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1041 {
1042 	struct bwi_regwin *com;
1043 	uint32_t val;
1044 	u_int div;
1045 	int src;
1046 
1047 	bzero(freq, sizeof(*freq));
1048 	com = &sc->sc_com_regwin;
1049 
1050 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1051 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1052 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1053 
1054 	/*
1055 	 * Calculate clock frequency
1056 	 */
1057 	src = -1;
1058 	div = 0;
1059 	if (com->rw_rev < 6) {
1060 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1061 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1062 			src = BWI_CLKSRC_PCI;
1063 			div = 64;
1064 		} else {
1065 			src = BWI_CLKSRC_CS_OSC;
1066 			div = 32;
1067 		}
1068 	} else if (com->rw_rev < 10) {
1069 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1070 
1071 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1072 		if (src == BWI_CLKSRC_LP_OSC) {
1073 			div = 1;
1074 		} else {
1075 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1076 
1077 			/* Unknown source */
1078 			if (src >= BWI_CLKSRC_MAX)
1079 				src = BWI_CLKSRC_CS_OSC;
1080 		}
1081 	} else {
1082 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1083 
1084 		src = BWI_CLKSRC_CS_OSC;
1085 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1086 	}
1087 
1088 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1089 	KASSERT(div != 0, ("div zero"));
1090 
1091 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1092 		src == BWI_CLKSRC_PCI ? "PCI" :
1093 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1094 
1095 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1096 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1097 
1098 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1099 		freq->clkfreq_min, freq->clkfreq_max);
1100 }
1101 
1102 static int
1103 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1104 {
1105 	struct bwi_regwin *old, *com;
1106 	uint32_t clk_ctrl, clk_src;
1107 	int error, pwr_off = 0;
1108 
1109 	com = &sc->sc_com_regwin;
1110 	if (!BWI_REGWIN_EXIST(com))
1111 		return 0;
1112 
1113 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1114 		return 0;
1115 
1116 	/*
1117 	 * For common regwin whose rev is [6, 10), the chip
1118 	 * must be capable to change clock mode.
1119 	 */
1120 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1121 		return 0;
1122 
1123 	error = bwi_regwin_switch(sc, com, &old);
1124 	if (error)
1125 		return error;
1126 
1127 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1128 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1129 
1130 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1131 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1132 
1133 	switch (clk_mode) {
1134 	case BWI_CLOCK_MODE_FAST:
1135 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1136 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1137 		break;
1138 	case BWI_CLOCK_MODE_SLOW:
1139 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1140 		break;
1141 	case BWI_CLOCK_MODE_DYN:
1142 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1143 			      BWI_CLOCK_CTRL_IGNPLL |
1144 			      BWI_CLOCK_CTRL_NODYN);
1145 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1146 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1147 			pwr_off = 1;
1148 		}
1149 		break;
1150 	}
1151 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1152 
1153 	if (pwr_off)
1154 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1155 
1156 	return bwi_regwin_switch(sc, old, NULL);
1157 }
1158 
1159 static int
1160 bwi_set_clock_delay(struct bwi_softc *sc)
1161 {
1162 	struct bwi_regwin *old, *com;
1163 	int error;
1164 
1165 	com = &sc->sc_com_regwin;
1166 	if (!BWI_REGWIN_EXIST(com))
1167 		return 0;
1168 
1169 	error = bwi_regwin_switch(sc, com, &old);
1170 	if (error)
1171 		return error;
1172 
1173 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1174 		if (sc->sc_bbp_rev == 0)
1175 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1176 		else if (sc->sc_bbp_rev == 1)
1177 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1178 	}
1179 
1180 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1181 		if (com->rw_rev >= 10) {
1182 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1183 		} else {
1184 			struct bwi_clock_freq freq;
1185 
1186 			bwi_get_clock_freq(sc, &freq);
1187 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1188 				howmany(freq.clkfreq_max * 150, 1000000));
1189 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1190 				howmany(freq.clkfreq_max * 15, 1000000));
1191 		}
1192 	}
1193 
1194 	return bwi_regwin_switch(sc, old, NULL);
1195 }
1196 
1197 static void
1198 bwi_init(struct bwi_softc *sc)
1199 {
1200 	struct ieee80211com *ic = &sc->sc_ic;
1201 
1202 	BWI_LOCK(sc);
1203 	bwi_init_statechg(sc, 1);
1204 	BWI_UNLOCK(sc);
1205 
1206 	if (sc->sc_flags & BWI_F_RUNNING)
1207 		ieee80211_start_all(ic);		/* start all vap's */
1208 }
1209 
1210 static void
1211 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1212 {
1213 	struct bwi_mac *mac;
1214 	int error;
1215 
1216 	BWI_ASSERT_LOCKED(sc);
1217 
1218 	bwi_stop_locked(sc, statechg);
1219 
1220 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1221 
1222 	/* TODO: 2 MAC */
1223 
1224 	mac = &sc->sc_mac[0];
1225 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1226 	if (error) {
1227 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1228 		    __func__, error);
1229 		goto bad;
1230 	}
1231 	error = bwi_mac_init(mac);
1232 	if (error) {
1233 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1234 		    __func__, error);
1235 		goto bad;
1236 	}
1237 
1238 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1239 
1240 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1241 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1242 
1243 	bwi_mac_reset_hwkeys(mac);
1244 
1245 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1246 		int i;
1247 
1248 #define NRETRY	1000
1249 		/*
1250 		 * Drain any possible pending TX status
1251 		 */
1252 		for (i = 0; i < NRETRY; ++i) {
1253 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1254 			     BWI_TXSTATUS0_VALID) == 0)
1255 				break;
1256 			CSR_READ_4(sc, BWI_TXSTATUS1);
1257 		}
1258 		if (i == NRETRY)
1259 			device_printf(sc->sc_dev,
1260 			    "%s: can't drain TX status\n", __func__);
1261 #undef NRETRY
1262 	}
1263 
1264 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1265 		bwi_mac_updateslot(mac, 1);
1266 
1267 	/* Start MAC */
1268 	error = bwi_mac_start(mac);
1269 	if (error) {
1270 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1271 		    __func__, error);
1272 		goto bad;
1273 	}
1274 
1275 	/* Clear stop flag before enabling interrupt */
1276 	sc->sc_flags &= ~BWI_F_STOP;
1277 	sc->sc_flags |= BWI_F_RUNNING;
1278 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1279 
1280 	/* Enable intrs */
1281 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1282 	return;
1283 bad:
1284 	bwi_stop_locked(sc, 1);
1285 }
1286 
1287 static void
1288 bwi_parent(struct ieee80211com *ic)
1289 {
1290 	struct bwi_softc *sc = ic->ic_softc;
1291 	int startall = 0;
1292 
1293 	BWI_LOCK(sc);
1294 	if (ic->ic_nrunning > 0) {
1295 		struct bwi_mac *mac;
1296 		int promisc = -1;
1297 
1298 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1299 		    ("current regwin type %d",
1300 		    sc->sc_cur_regwin->rw_type));
1301 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1302 
1303 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1304 			promisc = 1;
1305 			sc->sc_flags |= BWI_F_PROMISC;
1306 		} else if (ic->ic_promisc == 0 &&
1307 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1308 			promisc = 0;
1309 			sc->sc_flags &= ~BWI_F_PROMISC;
1310 		}
1311 
1312 		if (promisc >= 0)
1313 			bwi_mac_set_promisc(mac, promisc);
1314 	}
1315 	if (ic->ic_nrunning > 0) {
1316 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1317 			bwi_init_statechg(sc, 1);
1318 			startall = 1;
1319 		}
1320 	} else if (sc->sc_flags & BWI_F_RUNNING)
1321 		bwi_stop_locked(sc, 1);
1322 	BWI_UNLOCK(sc);
1323 	if (startall)
1324 		ieee80211_start_all(ic);
1325 }
1326 
1327 static int
1328 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1329 {
1330 	struct bwi_softc *sc = ic->ic_softc;
1331 	int error;
1332 
1333 	BWI_LOCK(sc);
1334 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1335 		BWI_UNLOCK(sc);
1336 		return (ENXIO);
1337 	}
1338 	error = mbufq_enqueue(&sc->sc_snd, m);
1339 	if (error) {
1340 		BWI_UNLOCK(sc);
1341 		return (error);
1342 	}
1343 	bwi_start_locked(sc);
1344 	BWI_UNLOCK(sc);
1345 	return (0);
1346 }
1347 
1348 static void
1349 bwi_start_locked(struct bwi_softc *sc)
1350 {
1351 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1352 	struct ieee80211_frame *wh;
1353 	struct ieee80211_node *ni;
1354 	struct mbuf *m;
1355 	int trans, idx;
1356 
1357 	BWI_ASSERT_LOCKED(sc);
1358 
1359 	trans = 0;
1360 	idx = tbd->tbd_idx;
1361 
1362 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1363 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1364 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1365 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1366 		wh = mtod(m, struct ieee80211_frame *);
1367 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1368 		    ieee80211_crypto_encap(ni, m) == NULL) {
1369 			if_inc_counter(ni->ni_vap->iv_ifp,
1370 			    IFCOUNTER_OERRORS, 1);
1371 			ieee80211_free_node(ni);
1372 			m_freem(m);
1373 			continue;
1374 		}
1375 		if (bwi_encap(sc, idx, m, ni) != 0) {
1376 			/* 'm' is freed in bwi_encap() if we reach here */
1377 			if (ni != NULL) {
1378 				if_inc_counter(ni->ni_vap->iv_ifp,
1379 				    IFCOUNTER_OERRORS, 1);
1380 				ieee80211_free_node(ni);
1381 			} else
1382 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1383 			continue;
1384 		}
1385 		trans = 1;
1386 		tbd->tbd_used++;
1387 		idx = (idx + 1) % BWI_TX_NDESC;
1388 	}
1389 
1390 	tbd->tbd_idx = idx;
1391 	if (trans)
1392 		sc->sc_tx_timer = 5;
1393 }
1394 
1395 static int
1396 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1397 	const struct ieee80211_bpf_params *params)
1398 {
1399 	struct ieee80211com *ic = ni->ni_ic;
1400 	struct bwi_softc *sc = ic->ic_softc;
1401 	/* XXX wme? */
1402 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1403 	int idx, error;
1404 
1405 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1406 		m_freem(m);
1407 		return ENETDOWN;
1408 	}
1409 
1410 	BWI_LOCK(sc);
1411 	idx = tbd->tbd_idx;
1412 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1413 	if (params == NULL) {
1414 		/*
1415 		 * Legacy path; interpret frame contents to decide
1416 		 * precisely how to send the frame.
1417 		 */
1418 		error = bwi_encap(sc, idx, m, ni);
1419 	} else {
1420 		/*
1421 		 * Caller supplied explicit parameters to use in
1422 		 * sending the frame.
1423 		 */
1424 		error = bwi_encap_raw(sc, idx, m, ni, params);
1425 	}
1426 	if (error == 0) {
1427 		tbd->tbd_used++;
1428 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1429 		sc->sc_tx_timer = 5;
1430 	}
1431 	BWI_UNLOCK(sc);
1432 	return error;
1433 }
1434 
1435 static void
1436 bwi_watchdog(void *arg)
1437 {
1438 	struct bwi_softc *sc;
1439 
1440 	sc = arg;
1441 	BWI_ASSERT_LOCKED(sc);
1442 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1443 		device_printf(sc->sc_dev, "watchdog timeout\n");
1444 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1445 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1446 	}
1447 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1448 }
1449 
1450 static void
1451 bwi_stop(struct bwi_softc *sc, int statechg)
1452 {
1453 	BWI_LOCK(sc);
1454 	bwi_stop_locked(sc, statechg);
1455 	BWI_UNLOCK(sc);
1456 }
1457 
1458 static void
1459 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1460 {
1461 	struct bwi_mac *mac;
1462 	int i, error, pwr_off = 0;
1463 
1464 	BWI_ASSERT_LOCKED(sc);
1465 
1466 	callout_stop(&sc->sc_calib_ch);
1467 	callout_stop(&sc->sc_led_blink_ch);
1468 	sc->sc_led_blinking = 0;
1469 	sc->sc_flags |= BWI_F_STOP;
1470 
1471 	if (sc->sc_flags & BWI_F_RUNNING) {
1472 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1473 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1474 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1475 
1476 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1477 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1478 		bwi_mac_stop(mac);
1479 	}
1480 
1481 	for (i = 0; i < sc->sc_nmac; ++i) {
1482 		struct bwi_regwin *old_rw;
1483 
1484 		mac = &sc->sc_mac[i];
1485 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1486 			continue;
1487 
1488 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1489 		if (error)
1490 			continue;
1491 
1492 		bwi_mac_shutdown(mac);
1493 		pwr_off = 1;
1494 
1495 		bwi_regwin_switch(sc, old_rw, NULL);
1496 	}
1497 
1498 	if (pwr_off)
1499 		bwi_bbp_power_off(sc);
1500 
1501 	sc->sc_tx_timer = 0;
1502 	callout_stop(&sc->sc_watchdog_timer);
1503 	sc->sc_flags &= ~BWI_F_RUNNING;
1504 }
1505 
1506 void
1507 bwi_intr(void *xsc)
1508 {
1509 	struct bwi_softc *sc = xsc;
1510 	struct bwi_mac *mac;
1511 	uint32_t intr_status;
1512 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1513 	int i, txrx_error, tx = 0, rx_data = -1;
1514 
1515 	BWI_LOCK(sc);
1516 
1517 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1518 	    (sc->sc_flags & BWI_F_STOP)) {
1519 		BWI_UNLOCK(sc);
1520 		return;
1521 	}
1522 	/*
1523 	 * Get interrupt status
1524 	 */
1525 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1526 	if (intr_status == 0xffffffff) {	/* Not for us */
1527 		BWI_UNLOCK(sc);
1528 		return;
1529 	}
1530 
1531 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1532 
1533 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1534 	if (intr_status == 0) {		/* Nothing is interesting */
1535 		BWI_UNLOCK(sc);
1536 		return;
1537 	}
1538 
1539 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1540 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1541 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1542 
1543 	txrx_error = 0;
1544 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1545 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1546 		uint32_t mask;
1547 
1548 		if (BWI_TXRX_IS_RX(i))
1549 			mask = BWI_TXRX_RX_INTRS;
1550 		else
1551 			mask = BWI_TXRX_TX_INTRS;
1552 
1553 		txrx_intr_status[i] =
1554 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1555 
1556 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1557 			 i, txrx_intr_status[i]);
1558 
1559 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1560 			device_printf(sc->sc_dev,
1561 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1562 			    __func__, i, txrx_intr_status[i]);
1563 			txrx_error = 1;
1564 		}
1565 	}
1566 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1567 
1568 	/*
1569 	 * Acknowledge interrupt
1570 	 */
1571 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1572 
1573 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1574 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1575 
1576 	/* Disable all interrupts */
1577 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1578 
1579 	/*
1580 	 * http://bcm-specs.sipsolutions.net/Interrupts
1581 	 * Says for this bit (0x800):
1582 	 * "Fatal Error
1583 	 *
1584 	 * We got this one while testing things when by accident the
1585 	 * template ram wasn't set to big endian when it should have
1586 	 * been after writing the initial values. It keeps on being
1587 	 * triggered, the only way to stop it seems to shut down the
1588 	 * chip."
1589 	 *
1590 	 * Suggesting that we should never get it and if we do we're not
1591 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1592 	 * it is valid only on mac version 5 and higher, but I couldn't
1593 	 * find a reference for that...  Since I see them from time to time
1594 	 * on my card, this suggests an error in the tx path still...
1595 	 */
1596 	if (intr_status & BWI_INTR_PHY_TXERR) {
1597 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1598 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1599 			    __func__);
1600 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1601 			BWI_UNLOCK(sc);
1602 			return;
1603 		}
1604 	}
1605 
1606 	if (txrx_error) {
1607 		/* TODO: reset device */
1608 	}
1609 
1610 	if (intr_status & BWI_INTR_TBTT)
1611 		bwi_mac_config_ps(mac);
1612 
1613 	if (intr_status & BWI_INTR_EO_ATIM)
1614 		device_printf(sc->sc_dev, "EO_ATIM\n");
1615 
1616 	if (intr_status & BWI_INTR_PMQ) {
1617 		for (;;) {
1618 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1619 				break;
1620 		}
1621 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1622 	}
1623 
1624 	if (intr_status & BWI_INTR_NOISE)
1625 		device_printf(sc->sc_dev, "intr noise\n");
1626 
1627 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1628 		rx_data = sc->sc_rxeof(sc);
1629 		if (sc->sc_flags & BWI_F_STOP) {
1630 			BWI_UNLOCK(sc);
1631 			return;
1632 		}
1633 	}
1634 
1635 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1636 		sc->sc_txeof_status(sc);
1637 		tx = 1;
1638 	}
1639 
1640 	if (intr_status & BWI_INTR_TX_DONE) {
1641 		bwi_txeof(sc);
1642 		tx = 1;
1643 	}
1644 
1645 	/* Re-enable interrupts */
1646 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1647 
1648 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1649 		int evt = BWI_LED_EVENT_NONE;
1650 
1651 		if (tx && rx_data > 0) {
1652 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1653 				evt = BWI_LED_EVENT_RX;
1654 			else
1655 				evt = BWI_LED_EVENT_TX;
1656 		} else if (tx) {
1657 			evt = BWI_LED_EVENT_TX;
1658 		} else if (rx_data > 0) {
1659 			evt = BWI_LED_EVENT_RX;
1660 		} else if (rx_data == 0) {
1661 			evt = BWI_LED_EVENT_POLL;
1662 		}
1663 
1664 		if (evt != BWI_LED_EVENT_NONE)
1665 			bwi_led_event(sc, evt);
1666 	}
1667 
1668 	BWI_UNLOCK(sc);
1669 }
1670 
1671 static void
1672 bwi_scan_start(struct ieee80211com *ic)
1673 {
1674 	struct bwi_softc *sc = ic->ic_softc;
1675 
1676 	BWI_LOCK(sc);
1677 	/* Enable MAC beacon promiscuity */
1678 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1679 	BWI_UNLOCK(sc);
1680 }
1681 
1682 static void
1683 bwi_getradiocaps(struct ieee80211com *ic,
1684     int maxchans, int *nchans, struct ieee80211_channel chans[])
1685 {
1686 	struct bwi_softc *sc = ic->ic_softc;
1687 	struct bwi_mac *mac;
1688 	struct bwi_phy *phy;
1689 	uint8_t bands[IEEE80211_MODE_BYTES];
1690 
1691 	/*
1692 	 * XXX First MAC is known to exist
1693 	 * TODO2
1694 	 */
1695 	mac = &sc->sc_mac[0];
1696 	phy = &mac->mac_phy;
1697 
1698 	memset(bands, 0, sizeof(bands));
1699 	switch (phy->phy_mode) {
1700 	case IEEE80211_MODE_11G:
1701 		setbit(bands, IEEE80211_MODE_11G);
1702 		/* FALLTHROUGH */
1703 	case IEEE80211_MODE_11B:
1704 		setbit(bands, IEEE80211_MODE_11B);
1705 		break;
1706 	case IEEE80211_MODE_11A:
1707 		/* TODO:11A */
1708 		setbit(bands, IEEE80211_MODE_11A);
1709 		device_printf(sc->sc_dev, "no 11a support\n");
1710 		return;
1711 	default:
1712 		panic("unknown phymode %d\n", phy->phy_mode);
1713 	}
1714 
1715 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1716 }
1717 
1718 static void
1719 bwi_set_channel(struct ieee80211com *ic)
1720 {
1721 	struct bwi_softc *sc = ic->ic_softc;
1722 	struct ieee80211_channel *c = ic->ic_curchan;
1723 	struct bwi_mac *mac;
1724 
1725 	BWI_LOCK(sc);
1726 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1727 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1728 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1729 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1730 
1731 	sc->sc_rates = ieee80211_get_ratetable(c);
1732 	BWI_UNLOCK(sc);
1733 }
1734 
1735 static void
1736 bwi_scan_end(struct ieee80211com *ic)
1737 {
1738 	struct bwi_softc *sc = ic->ic_softc;
1739 
1740 	BWI_LOCK(sc);
1741 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1742 	BWI_UNLOCK(sc);
1743 }
1744 
1745 static int
1746 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1747 {
1748 	struct bwi_vap *bvp = BWI_VAP(vap);
1749 	struct ieee80211com *ic= vap->iv_ic;
1750 	struct bwi_softc *sc = ic->ic_softc;
1751 	enum ieee80211_state ostate = vap->iv_state;
1752 	struct bwi_mac *mac;
1753 	int error;
1754 
1755 	BWI_LOCK(sc);
1756 
1757 	callout_stop(&sc->sc_calib_ch);
1758 
1759 	if (nstate == IEEE80211_S_INIT)
1760 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1761 
1762 	bwi_led_newstate(sc, nstate);
1763 
1764 	error = bvp->bv_newstate(vap, nstate, arg);
1765 	if (error != 0)
1766 		goto back;
1767 
1768 	/*
1769 	 * Clear the BSSID when we stop a STA
1770 	 */
1771 	if (vap->iv_opmode == IEEE80211_M_STA) {
1772 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1773 			/*
1774 			 * Clear out the BSSID.  If we reassociate to
1775 			 * the same AP, this will reinialize things
1776 			 * correctly...
1777 			 */
1778 			if (ic->ic_opmode == IEEE80211_M_STA &&
1779 			    !(sc->sc_flags & BWI_F_STOP))
1780 				bwi_set_bssid(sc, bwi_zero_addr);
1781 		}
1782 	}
1783 
1784 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1785 		/* Nothing to do */
1786 	} else if (nstate == IEEE80211_S_RUN) {
1787 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1788 
1789 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1790 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1791 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1792 
1793 		/* Initial TX power calibration */
1794 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1795 #ifdef notyet
1796 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1797 #else
1798 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1799 #endif
1800 
1801 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1802 	}
1803 back:
1804 	BWI_UNLOCK(sc);
1805 
1806 	return error;
1807 }
1808 
1809 static int
1810 bwi_media_change(struct ifnet *ifp)
1811 {
1812 	int error = ieee80211_media_change(ifp);
1813 	/* NB: only the fixed rate can change and that doesn't need a reset */
1814 	return (error == ENETRESET ? 0 : error);
1815 }
1816 
1817 static int
1818 bwi_dma_alloc(struct bwi_softc *sc)
1819 {
1820 	int error, i, has_txstats;
1821 	bus_addr_t lowaddr = 0;
1822 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1823 	uint32_t txrx_ctrl_step = 0;
1824 
1825 	has_txstats = 0;
1826 	for (i = 0; i < sc->sc_nmac; ++i) {
1827 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1828 			has_txstats = 1;
1829 			break;
1830 		}
1831 	}
1832 
1833 	switch (sc->sc_bus_space) {
1834 	case BWI_BUS_SPACE_30BIT:
1835 	case BWI_BUS_SPACE_32BIT:
1836 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1837 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1838 		else
1839 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1840 		desc_sz = sizeof(struct bwi_desc32);
1841 		txrx_ctrl_step = 0x20;
1842 
1843 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1844 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1845 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1846 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1847 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1848 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1849 		sc->sc_rxeof = bwi_rxeof32;
1850 		sc->sc_start_tx = bwi_start_tx32;
1851 		if (has_txstats) {
1852 			sc->sc_init_txstats = bwi_init_txstats32;
1853 			sc->sc_free_txstats = bwi_free_txstats32;
1854 			sc->sc_txeof_status = bwi_txeof_status32;
1855 		}
1856 		break;
1857 
1858 	case BWI_BUS_SPACE_64BIT:
1859 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1860 		desc_sz = sizeof(struct bwi_desc64);
1861 		txrx_ctrl_step = 0x40;
1862 
1863 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1864 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1865 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1866 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1867 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1868 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1869 		sc->sc_rxeof = bwi_rxeof64;
1870 		sc->sc_start_tx = bwi_start_tx64;
1871 		if (has_txstats) {
1872 			sc->sc_init_txstats = bwi_init_txstats64;
1873 			sc->sc_free_txstats = bwi_free_txstats64;
1874 			sc->sc_txeof_status = bwi_txeof_status64;
1875 		}
1876 		break;
1877 	}
1878 
1879 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1880 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1881 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1882 
1883 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1884 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1885 
1886 	/*
1887 	 * Create top level DMA tag
1888 	 */
1889 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1890 			       BWI_ALIGN, 0,		/* alignment, bounds */
1891 			       lowaddr,			/* lowaddr */
1892 			       BUS_SPACE_MAXADDR,	/* highaddr */
1893 			       NULL, NULL,		/* filter, filterarg */
1894 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1895 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1896 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1897 			       0,			/* flags */
1898 			       NULL, NULL,		/* lockfunc, lockarg */
1899 			       &sc->sc_parent_dtag);
1900 	if (error) {
1901 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1902 		return error;
1903 	}
1904 
1905 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1906 
1907 	/*
1908 	 * Create TX ring DMA stuffs
1909 	 */
1910 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1911 				BWI_RING_ALIGN, 0,
1912 				BUS_SPACE_MAXADDR,
1913 				BUS_SPACE_MAXADDR,
1914 				NULL, NULL,
1915 				tx_ring_sz,
1916 				1,
1917 				tx_ring_sz,
1918 				0,
1919 				NULL, NULL,
1920 				&sc->sc_txring_dtag);
1921 	if (error) {
1922 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1923 		return error;
1924 	}
1925 
1926 	for (i = 0; i < BWI_TX_NRING; ++i) {
1927 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1928 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1929 					   TXRX_CTRL(i));
1930 		if (error) {
1931 			device_printf(sc->sc_dev, "%dth TX ring "
1932 				      "DMA alloc failed\n", i);
1933 			return error;
1934 		}
1935 	}
1936 
1937 	/*
1938 	 * Create RX ring DMA stuffs
1939 	 */
1940 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1941 				BWI_RING_ALIGN, 0,
1942 				BUS_SPACE_MAXADDR,
1943 				BUS_SPACE_MAXADDR,
1944 				NULL, NULL,
1945 				rx_ring_sz,
1946 				1,
1947 				rx_ring_sz,
1948 				0,
1949 				NULL, NULL,
1950 				&sc->sc_rxring_dtag);
1951 	if (error) {
1952 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1953 		return error;
1954 	}
1955 
1956 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1957 				   rx_ring_sz, TXRX_CTRL(0));
1958 	if (error) {
1959 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1960 		return error;
1961 	}
1962 
1963 	if (has_txstats) {
1964 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1965 		if (error) {
1966 			device_printf(sc->sc_dev,
1967 				      "TX stats DMA alloc failed\n");
1968 			return error;
1969 		}
1970 	}
1971 
1972 #undef TXRX_CTRL
1973 
1974 	return bwi_dma_mbuf_create(sc);
1975 }
1976 
1977 static void
1978 bwi_dma_free(struct bwi_softc *sc)
1979 {
1980 	if (sc->sc_txring_dtag != NULL) {
1981 		int i;
1982 
1983 		for (i = 0; i < BWI_TX_NRING; ++i) {
1984 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1985 
1986 			if (rd->rdata_desc != NULL) {
1987 				bus_dmamap_unload(sc->sc_txring_dtag,
1988 						  rd->rdata_dmap);
1989 				bus_dmamem_free(sc->sc_txring_dtag,
1990 						rd->rdata_desc,
1991 						rd->rdata_dmap);
1992 			}
1993 		}
1994 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1995 	}
1996 
1997 	if (sc->sc_rxring_dtag != NULL) {
1998 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1999 
2000 		if (rd->rdata_desc != NULL) {
2001 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2002 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2003 					rd->rdata_dmap);
2004 		}
2005 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2006 	}
2007 
2008 	bwi_dma_txstats_free(sc);
2009 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2010 
2011 	if (sc->sc_parent_dtag != NULL)
2012 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2013 }
2014 
2015 static int
2016 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2017 		   struct bwi_ring_data *rd, bus_size_t size,
2018 		   uint32_t txrx_ctrl)
2019 {
2020 	int error;
2021 
2022 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2023 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2024 				 &rd->rdata_dmap);
2025 	if (error) {
2026 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2027 		return error;
2028 	}
2029 
2030 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2031 				bwi_dma_ring_addr, &rd->rdata_paddr,
2032 				BUS_DMA_NOWAIT);
2033 	if (error) {
2034 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2035 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2036 		rd->rdata_desc = NULL;
2037 		return error;
2038 	}
2039 
2040 	rd->rdata_txrx_ctrl = txrx_ctrl;
2041 	return 0;
2042 }
2043 
2044 static int
2045 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2046 		      bus_size_t desc_sz)
2047 {
2048 	struct bwi_txstats_data *st;
2049 	bus_size_t dma_size;
2050 	int error;
2051 
2052 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2053 	if (st == NULL) {
2054 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2055 		return ENOMEM;
2056 	}
2057 	sc->sc_txstats = st;
2058 
2059 	/*
2060 	 * Create TX stats descriptor DMA stuffs
2061 	 */
2062 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2063 
2064 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2065 				BWI_RING_ALIGN,
2066 				0,
2067 				BUS_SPACE_MAXADDR,
2068 				BUS_SPACE_MAXADDR,
2069 				NULL, NULL,
2070 				dma_size,
2071 				1,
2072 				dma_size,
2073 				0,
2074 				NULL, NULL,
2075 				&st->stats_ring_dtag);
2076 	if (error) {
2077 		device_printf(sc->sc_dev, "can't create txstats ring "
2078 			      "DMA tag\n");
2079 		return error;
2080 	}
2081 
2082 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2083 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2084 				 &st->stats_ring_dmap);
2085 	if (error) {
2086 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2087 			      "DMA mem\n");
2088 		bus_dma_tag_destroy(st->stats_ring_dtag);
2089 		st->stats_ring_dtag = NULL;
2090 		return error;
2091 	}
2092 
2093 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2094 				st->stats_ring, dma_size,
2095 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2096 				BUS_DMA_NOWAIT);
2097 	if (error) {
2098 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2099 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2100 				st->stats_ring_dmap);
2101 		bus_dma_tag_destroy(st->stats_ring_dtag);
2102 		st->stats_ring_dtag = NULL;
2103 		return error;
2104 	}
2105 
2106 	/*
2107 	 * Create TX stats DMA stuffs
2108 	 */
2109 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2110 			   BWI_ALIGN);
2111 
2112 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2113 				BWI_ALIGN,
2114 				0,
2115 				BUS_SPACE_MAXADDR,
2116 				BUS_SPACE_MAXADDR,
2117 				NULL, NULL,
2118 				dma_size,
2119 				1,
2120 				dma_size,
2121 				0,
2122 				NULL, NULL,
2123 				&st->stats_dtag);
2124 	if (error) {
2125 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2126 		return error;
2127 	}
2128 
2129 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2130 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2131 				 &st->stats_dmap);
2132 	if (error) {
2133 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2134 		bus_dma_tag_destroy(st->stats_dtag);
2135 		st->stats_dtag = NULL;
2136 		return error;
2137 	}
2138 
2139 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2140 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2141 				BUS_DMA_NOWAIT);
2142 	if (error) {
2143 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2144 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2145 		bus_dma_tag_destroy(st->stats_dtag);
2146 		st->stats_dtag = NULL;
2147 		return error;
2148 	}
2149 
2150 	st->stats_ctrl_base = ctrl_base;
2151 	return 0;
2152 }
2153 
2154 static void
2155 bwi_dma_txstats_free(struct bwi_softc *sc)
2156 {
2157 	struct bwi_txstats_data *st;
2158 
2159 	if (sc->sc_txstats == NULL)
2160 		return;
2161 	st = sc->sc_txstats;
2162 
2163 	if (st->stats_ring_dtag != NULL) {
2164 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2165 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2166 				st->stats_ring_dmap);
2167 		bus_dma_tag_destroy(st->stats_ring_dtag);
2168 	}
2169 
2170 	if (st->stats_dtag != NULL) {
2171 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2172 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2173 		bus_dma_tag_destroy(st->stats_dtag);
2174 	}
2175 
2176 	free(st, M_DEVBUF);
2177 }
2178 
2179 static void
2180 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2181 {
2182 	KASSERT(nseg == 1, ("too many segments\n"));
2183 	*((bus_addr_t *)arg) = seg->ds_addr;
2184 }
2185 
2186 static int
2187 bwi_dma_mbuf_create(struct bwi_softc *sc)
2188 {
2189 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2190 	int i, j, k, ntx, error;
2191 
2192 	/*
2193 	 * Create TX/RX mbuf DMA tag
2194 	 */
2195 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2196 				1,
2197 				0,
2198 				BUS_SPACE_MAXADDR,
2199 				BUS_SPACE_MAXADDR,
2200 				NULL, NULL,
2201 				MCLBYTES,
2202 				1,
2203 				MCLBYTES,
2204 				BUS_DMA_ALLOCNOW,
2205 				NULL, NULL,
2206 				&sc->sc_buf_dtag);
2207 	if (error) {
2208 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2209 		return error;
2210 	}
2211 
2212 	ntx = 0;
2213 
2214 	/*
2215 	 * Create TX mbuf DMA map
2216 	 */
2217 	for (i = 0; i < BWI_TX_NRING; ++i) {
2218 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2219 
2220 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2221 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2222 						  &tbd->tbd_buf[j].tb_dmap);
2223 			if (error) {
2224 				device_printf(sc->sc_dev, "can't create "
2225 					      "%dth tbd, %dth DMA map\n", i, j);
2226 
2227 				ntx = i;
2228 				for (k = 0; k < j; ++k) {
2229 					bus_dmamap_destroy(sc->sc_buf_dtag,
2230 						tbd->tbd_buf[k].tb_dmap);
2231 				}
2232 				goto fail;
2233 			}
2234 		}
2235 	}
2236 	ntx = BWI_TX_NRING;
2237 
2238 	/*
2239 	 * Create RX mbuf DMA map and a spare DMA map
2240 	 */
2241 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2242 				  &rbd->rbd_tmp_dmap);
2243 	if (error) {
2244 		device_printf(sc->sc_dev,
2245 			      "can't create spare RX buf DMA map\n");
2246 		goto fail;
2247 	}
2248 
2249 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2250 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2251 					  &rbd->rbd_buf[j].rb_dmap);
2252 		if (error) {
2253 			device_printf(sc->sc_dev, "can't create %dth "
2254 				      "RX buf DMA map\n", j);
2255 
2256 			for (k = 0; k < j; ++k) {
2257 				bus_dmamap_destroy(sc->sc_buf_dtag,
2258 					rbd->rbd_buf[j].rb_dmap);
2259 			}
2260 			bus_dmamap_destroy(sc->sc_buf_dtag,
2261 					   rbd->rbd_tmp_dmap);
2262 			goto fail;
2263 		}
2264 	}
2265 
2266 	return 0;
2267 fail:
2268 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2269 	return error;
2270 }
2271 
2272 static void
2273 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2274 {
2275 	int i, j;
2276 
2277 	if (sc->sc_buf_dtag == NULL)
2278 		return;
2279 
2280 	for (i = 0; i < ntx; ++i) {
2281 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2282 
2283 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2284 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2285 
2286 			if (tb->tb_mbuf != NULL) {
2287 				bus_dmamap_unload(sc->sc_buf_dtag,
2288 						  tb->tb_dmap);
2289 				m_freem(tb->tb_mbuf);
2290 			}
2291 			if (tb->tb_ni != NULL)
2292 				ieee80211_free_node(tb->tb_ni);
2293 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2294 		}
2295 	}
2296 
2297 	if (nrx) {
2298 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2299 
2300 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2301 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2302 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2303 
2304 			if (rb->rb_mbuf != NULL) {
2305 				bus_dmamap_unload(sc->sc_buf_dtag,
2306 						  rb->rb_dmap);
2307 				m_freem(rb->rb_mbuf);
2308 			}
2309 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2310 		}
2311 	}
2312 
2313 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2314 	sc->sc_buf_dtag = NULL;
2315 }
2316 
2317 static void
2318 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2319 {
2320 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2321 }
2322 
2323 static void
2324 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2325 {
2326 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2327 }
2328 
2329 static int
2330 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2331 {
2332 	struct bwi_ring_data *rd;
2333 	struct bwi_txbuf_data *tbd;
2334 	uint32_t val, addr_hi, addr_lo;
2335 
2336 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2337 	rd = &sc->sc_tx_rdata[ring_idx];
2338 	tbd = &sc->sc_tx_bdata[ring_idx];
2339 
2340 	tbd->tbd_idx = 0;
2341 	tbd->tbd_used = 0;
2342 
2343 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2344 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2345 			BUS_DMASYNC_PREWRITE);
2346 
2347 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2348 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2349 
2350 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2351 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2352 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2353 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2354 
2355 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2356 	      BWI_TXRX32_CTRL_ENABLE;
2357 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2358 
2359 	return 0;
2360 }
2361 
2362 static void
2363 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2364 		       bus_addr_t paddr, int hdr_size, int ndesc)
2365 {
2366 	uint32_t val, addr_hi, addr_lo;
2367 
2368 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2369 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2370 
2371 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2372 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2373 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2374 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2375 
2376 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2377 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2378 	      BWI_TXRX32_CTRL_ENABLE;
2379 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2380 
2381 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2382 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2383 }
2384 
2385 static int
2386 bwi_init_rx_ring32(struct bwi_softc *sc)
2387 {
2388 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2389 	int i, error;
2390 
2391 	sc->sc_rx_bdata.rbd_idx = 0;
2392 
2393 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2394 		error = bwi_newbuf(sc, i, 1);
2395 		if (error) {
2396 			device_printf(sc->sc_dev,
2397 				  "can't allocate %dth RX buffer\n", i);
2398 			return error;
2399 		}
2400 	}
2401 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2402 			BUS_DMASYNC_PREWRITE);
2403 
2404 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2405 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2406 	return 0;
2407 }
2408 
2409 static int
2410 bwi_init_txstats32(struct bwi_softc *sc)
2411 {
2412 	struct bwi_txstats_data *st = sc->sc_txstats;
2413 	bus_addr_t stats_paddr;
2414 	int i;
2415 
2416 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2417 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2418 
2419 	st->stats_idx = 0;
2420 
2421 	stats_paddr = st->stats_paddr;
2422 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2423 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2424 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2425 		stats_paddr += sizeof(struct bwi_txstats);
2426 	}
2427 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2428 			BUS_DMASYNC_PREWRITE);
2429 
2430 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2431 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2432 	return 0;
2433 }
2434 
2435 static void
2436 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2437 		    int buf_len)
2438 {
2439 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2440 
2441 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2442 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2443 			 paddr, buf_len, 0);
2444 }
2445 
2446 static void
2447 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2448 		    int buf_idx, bus_addr_t paddr, int buf_len)
2449 {
2450 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2451 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2452 			 paddr, buf_len, 1);
2453 }
2454 
2455 static int
2456 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2457 {
2458 	/* TODO:64 */
2459 	return EOPNOTSUPP;
2460 }
2461 
2462 static int
2463 bwi_init_rx_ring64(struct bwi_softc *sc)
2464 {
2465 	/* TODO:64 */
2466 	return EOPNOTSUPP;
2467 }
2468 
2469 static int
2470 bwi_init_txstats64(struct bwi_softc *sc)
2471 {
2472 	/* TODO:64 */
2473 	return EOPNOTSUPP;
2474 }
2475 
2476 static void
2477 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2478 		    int buf_len)
2479 {
2480 	/* TODO:64 */
2481 }
2482 
2483 static void
2484 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2485 		    int buf_idx, bus_addr_t paddr, int buf_len)
2486 {
2487 	/* TODO:64 */
2488 }
2489 
2490 static void
2491 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2492 		 bus_size_t mapsz __unused, int error)
2493 {
2494         if (!error) {
2495 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2496 		*((bus_addr_t *)arg) = seg->ds_addr;
2497 	}
2498 }
2499 
2500 static int
2501 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2502 {
2503 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2504 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2505 	struct bwi_rxbuf_hdr *hdr;
2506 	bus_dmamap_t map;
2507 	bus_addr_t paddr;
2508 	struct mbuf *m;
2509 	int error;
2510 
2511 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2512 
2513 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2514 	if (m == NULL) {
2515 		error = ENOBUFS;
2516 
2517 		/*
2518 		 * If the NIC is up and running, we need to:
2519 		 * - Clear RX buffer's header.
2520 		 * - Restore RX descriptor settings.
2521 		 */
2522 		if (init)
2523 			return error;
2524 		else
2525 			goto back;
2526 	}
2527 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2528 
2529 	/*
2530 	 * Try to load RX buf into temporary DMA map
2531 	 */
2532 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2533 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2534 	if (error) {
2535 		m_freem(m);
2536 
2537 		/*
2538 		 * See the comment above
2539 		 */
2540 		if (init)
2541 			return error;
2542 		else
2543 			goto back;
2544 	}
2545 
2546 	if (!init)
2547 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2548 	rxbuf->rb_mbuf = m;
2549 	rxbuf->rb_paddr = paddr;
2550 
2551 	/*
2552 	 * Swap RX buf's DMA map with the loaded temporary one
2553 	 */
2554 	map = rxbuf->rb_dmap;
2555 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2556 	rbd->rbd_tmp_dmap = map;
2557 
2558 back:
2559 	/*
2560 	 * Clear RX buf header
2561 	 */
2562 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2563 	bzero(hdr, sizeof(*hdr));
2564 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2565 
2566 	/*
2567 	 * Setup RX buf descriptor
2568 	 */
2569 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2570 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2571 	return error;
2572 }
2573 
2574 static void
2575 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2576 		    const uint8_t *addr)
2577 {
2578 	int i;
2579 
2580 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2581 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2582 
2583 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2584 		uint16_t addr_val;
2585 
2586 		addr_val = (uint16_t)addr[i * 2] |
2587 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2588 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2589 	}
2590 }
2591 
2592 static int
2593 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2594 {
2595 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2596 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2597 	struct ieee80211com *ic = &sc->sc_ic;
2598 	int idx, rx_data = 0;
2599 
2600 	idx = rbd->rbd_idx;
2601 	while (idx != end_idx) {
2602 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2603 		struct bwi_rxbuf_hdr *hdr;
2604 		struct ieee80211_frame_min *wh;
2605 		struct ieee80211_node *ni;
2606 		struct mbuf *m;
2607 		uint32_t plcp;
2608 		uint16_t flags2;
2609 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2610 
2611 		m = rb->rb_mbuf;
2612 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2613 				BUS_DMASYNC_POSTREAD);
2614 
2615 		if (bwi_newbuf(sc, idx, 0)) {
2616 			counter_u64_add(ic->ic_ierrors, 1);
2617 			goto next;
2618 		}
2619 
2620 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2621 		flags2 = le16toh(hdr->rxh_flags2);
2622 
2623 		hdr_extra = 0;
2624 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2625 			hdr_extra = 2;
2626 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2627 
2628 		buflen = le16toh(hdr->rxh_buflen);
2629 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2630 			device_printf(sc->sc_dev,
2631 			    "%s: zero length data, hdr_extra %d\n",
2632 			    __func__, hdr_extra);
2633 			counter_u64_add(ic->ic_ierrors, 1);
2634 			m_freem(m);
2635 			goto next;
2636 		}
2637 
2638 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2639 		rssi = bwi_calc_rssi(sc, hdr);
2640 		noise = bwi_calc_noise(sc);
2641 
2642 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2643 		m_adj(m, sizeof(*hdr) + wh_ofs);
2644 
2645 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2646 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2647 		else
2648 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2649 
2650 		/* RX radio tap */
2651 		if (ieee80211_radiotap_active(ic))
2652 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2653 
2654 		m_adj(m, -IEEE80211_CRC_LEN);
2655 
2656 		BWI_UNLOCK(sc);
2657 
2658 		wh = mtod(m, struct ieee80211_frame_min *);
2659 		ni = ieee80211_find_rxnode(ic, wh);
2660 		if (ni != NULL) {
2661 			type = ieee80211_input(ni, m, rssi - noise, noise);
2662 			ieee80211_free_node(ni);
2663 		} else
2664 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2665 		if (type == IEEE80211_FC0_TYPE_DATA) {
2666 			rx_data = 1;
2667 			sc->sc_rx_rate = rate;
2668 		}
2669 
2670 		BWI_LOCK(sc);
2671 next:
2672 		idx = (idx + 1) % BWI_RX_NDESC;
2673 
2674 		if (sc->sc_flags & BWI_F_STOP) {
2675 			/*
2676 			 * Take the fast lane, don't do
2677 			 * any damage to softc
2678 			 */
2679 			return -1;
2680 		}
2681 	}
2682 
2683 	rbd->rbd_idx = idx;
2684 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2685 			BUS_DMASYNC_PREWRITE);
2686 
2687 	return rx_data;
2688 }
2689 
2690 static int
2691 bwi_rxeof32(struct bwi_softc *sc)
2692 {
2693 	uint32_t val, rx_ctrl;
2694 	int end_idx, rx_data;
2695 
2696 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2697 
2698 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2699 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2700 		  sizeof(struct bwi_desc32);
2701 
2702 	rx_data = bwi_rxeof(sc, end_idx);
2703 	if (rx_data >= 0) {
2704 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2705 			    end_idx * sizeof(struct bwi_desc32));
2706 	}
2707 	return rx_data;
2708 }
2709 
2710 static int
2711 bwi_rxeof64(struct bwi_softc *sc)
2712 {
2713 	/* TODO:64 */
2714 	return 0;
2715 }
2716 
2717 static void
2718 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2719 {
2720 	int i;
2721 
2722 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2723 
2724 #define NRETRY 10
2725 
2726 	for (i = 0; i < NRETRY; ++i) {
2727 		uint32_t status;
2728 
2729 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2730 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2731 		    BWI_RX32_STATUS_STATE_DISABLED)
2732 			break;
2733 
2734 		DELAY(1000);
2735 	}
2736 	if (i == NRETRY)
2737 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2738 
2739 #undef NRETRY
2740 
2741 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2742 }
2743 
2744 static void
2745 bwi_free_txstats32(struct bwi_softc *sc)
2746 {
2747 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2748 }
2749 
2750 static void
2751 bwi_free_rx_ring32(struct bwi_softc *sc)
2752 {
2753 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2754 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2755 	int i;
2756 
2757 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2758 
2759 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2760 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2761 
2762 		if (rb->rb_mbuf != NULL) {
2763 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2764 			m_freem(rb->rb_mbuf);
2765 			rb->rb_mbuf = NULL;
2766 		}
2767 	}
2768 }
2769 
2770 static void
2771 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2772 {
2773 	struct bwi_ring_data *rd;
2774 	struct bwi_txbuf_data *tbd;
2775 	uint32_t state, val;
2776 	int i;
2777 
2778 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2779 	rd = &sc->sc_tx_rdata[ring_idx];
2780 	tbd = &sc->sc_tx_bdata[ring_idx];
2781 
2782 #define NRETRY 10
2783 
2784 	for (i = 0; i < NRETRY; ++i) {
2785 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2786 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2787 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2788 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2789 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2790 			break;
2791 
2792 		DELAY(1000);
2793 	}
2794 	if (i == NRETRY) {
2795 		device_printf(sc->sc_dev,
2796 		    "%s: wait for TX ring(%d) stable timed out\n",
2797 		    __func__, ring_idx);
2798 	}
2799 
2800 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2801 	for (i = 0; i < NRETRY; ++i) {
2802 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2803 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2804 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2805 			break;
2806 
2807 		DELAY(1000);
2808 	}
2809 	if (i == NRETRY)
2810 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2811 		     __func__, ring_idx);
2812 
2813 #undef NRETRY
2814 
2815 	DELAY(1000);
2816 
2817 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2818 
2819 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2820 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2821 
2822 		if (tb->tb_mbuf != NULL) {
2823 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2824 			m_freem(tb->tb_mbuf);
2825 			tb->tb_mbuf = NULL;
2826 		}
2827 		if (tb->tb_ni != NULL) {
2828 			ieee80211_free_node(tb->tb_ni);
2829 			tb->tb_ni = NULL;
2830 		}
2831 	}
2832 }
2833 
2834 static void
2835 bwi_free_txstats64(struct bwi_softc *sc)
2836 {
2837 	/* TODO:64 */
2838 }
2839 
2840 static void
2841 bwi_free_rx_ring64(struct bwi_softc *sc)
2842 {
2843 	/* TODO:64 */
2844 }
2845 
2846 static void
2847 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2848 {
2849 	/* TODO:64 */
2850 }
2851 
2852 /* XXX does not belong here */
2853 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2854 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2855 
2856 static __inline void
2857 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2858 {
2859 	uint32_t plcp;
2860 
2861 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2862 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2863 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2864 	*plcp0 = htole32(plcp);
2865 }
2866 
2867 static __inline void
2868 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2869 		   uint8_t rate)
2870 {
2871 	int len, service, pkt_bitlen;
2872 
2873 	pkt_bitlen = pkt_len * NBBY;
2874 	len = howmany(pkt_bitlen * 2, rate);
2875 
2876 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2877 	if (rate == (11 * 2)) {
2878 		int pkt_bitlen1;
2879 
2880 		/*
2881 		 * PLCP service field needs to be adjusted,
2882 		 * if TX rate is 11Mbytes/s
2883 		 */
2884 		pkt_bitlen1 = len * 11;
2885 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2886 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2887 	}
2888 
2889 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2890 	plcp->i_service = service;
2891 	plcp->i_length = htole16(len);
2892 	/* NOTE: do NOT touch i_crc */
2893 }
2894 
2895 static __inline void
2896 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2897 	void *plcp, int pkt_len, uint8_t rate)
2898 {
2899 	enum ieee80211_phytype modtype;
2900 
2901 	/*
2902 	 * Assume caller has zeroed 'plcp'
2903 	 */
2904 	modtype = ieee80211_rate2phytype(rt, rate);
2905 	if (modtype == IEEE80211_T_OFDM)
2906 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2907 	else if (modtype == IEEE80211_T_DS)
2908 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2909 	else
2910 		panic("unsupport modulation type %u\n", modtype);
2911 }
2912 
2913 static int
2914 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2915 	  struct ieee80211_node *ni)
2916 {
2917 	struct ieee80211vap *vap = ni->ni_vap;
2918 	struct ieee80211com *ic = &sc->sc_ic;
2919 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2920 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2921 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2922 	struct bwi_mac *mac;
2923 	struct bwi_txbuf_hdr *hdr;
2924 	struct ieee80211_frame *wh;
2925 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2926 	uint8_t rate, rate_fb;
2927 	uint32_t mac_ctrl;
2928 	uint16_t phy_ctrl;
2929 	bus_addr_t paddr;
2930 	int type, ismcast, pkt_len, error, rix;
2931 #if 0
2932 	const uint8_t *p;
2933 	int i;
2934 #endif
2935 
2936 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2937 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2938 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2939 
2940 	wh = mtod(m, struct ieee80211_frame *);
2941 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2942 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2943 
2944 	/* Get 802.11 frame len before prepending TX header */
2945 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2946 
2947 	/*
2948 	 * Find TX rate
2949 	 */
2950 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2951 		rate = rate_fb = tp->mgmtrate;
2952 	} else if (ismcast) {
2953 		rate = rate_fb = tp->mcastrate;
2954 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2955 		rate = rate_fb = tp->ucastrate;
2956 	} else {
2957 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2958 		rate = ni->ni_txrate;
2959 
2960 		if (rix > 0) {
2961 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2962 				  IEEE80211_RATE_VAL;
2963 		} else {
2964 			rate_fb = rate;
2965 		}
2966 	}
2967 	tb->tb_rate[0] = rate;
2968 	tb->tb_rate[1] = rate_fb;
2969 	sc->sc_tx_rate = rate;
2970 
2971 	/*
2972 	 * TX radio tap
2973 	 */
2974 	if (ieee80211_radiotap_active_vap(vap)) {
2975 		sc->sc_tx_th.wt_flags = 0;
2976 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2977 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2978 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2979 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2980 		    rate != (1 * 2)) {
2981 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2982 		}
2983 		sc->sc_tx_th.wt_rate = rate;
2984 
2985 		ieee80211_radiotap_tx(vap, m);
2986 	}
2987 
2988 	/*
2989 	 * Setup the embedded TX header
2990 	 */
2991 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2992 	if (m == NULL) {
2993 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2994 		    __func__);
2995 		return ENOBUFS;
2996 	}
2997 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2998 
2999 	bzero(hdr, sizeof(*hdr));
3000 
3001 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3002 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3003 
3004 	if (!ismcast) {
3005 		uint16_t dur;
3006 
3007 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3008 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3009 
3010 		hdr->txh_fb_duration = htole16(dur);
3011 	}
3012 
3013 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3014 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3015 
3016 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3017 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3018 
3019 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3020 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3021 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3022 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3023 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3024 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3025 
3026 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3027 	if (!ismcast)
3028 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3029 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3030 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3031 
3032 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3033 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3034 
3035 	/* Catch any further usage */
3036 	hdr = NULL;
3037 	wh = NULL;
3038 
3039 	/* DMA load */
3040 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3041 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3042 	if (error && error != EFBIG) {
3043 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3044 		    __func__, error);
3045 		goto back;
3046 	}
3047 
3048 	if (error) {	/* error == EFBIG */
3049 		struct mbuf *m_new;
3050 
3051 		m_new = m_defrag(m, M_NOWAIT);
3052 		if (m_new == NULL) {
3053 			device_printf(sc->sc_dev,
3054 			    "%s: can't defrag TX buffer\n", __func__);
3055 			error = ENOBUFS;
3056 			goto back;
3057 		} else {
3058 			m = m_new;
3059 		}
3060 
3061 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3062 					     bwi_dma_buf_addr, &paddr,
3063 					     BUS_DMA_NOWAIT);
3064 		if (error) {
3065 			device_printf(sc->sc_dev,
3066 			    "%s: can't load TX buffer (2) %d\n",
3067 			    __func__, error);
3068 			goto back;
3069 		}
3070 	}
3071 	error = 0;
3072 
3073 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3074 
3075 	tb->tb_mbuf = m;
3076 	tb->tb_ni = ni;
3077 
3078 #if 0
3079 	p = mtod(m, const uint8_t *);
3080 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3081 		if (i != 0 && i % 8 == 0)
3082 			printf("\n");
3083 		printf("%02x ", p[i]);
3084 	}
3085 	printf("\n");
3086 #endif
3087 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3088 		idx, pkt_len, m->m_pkthdr.len);
3089 
3090 	/* Setup TX descriptor */
3091 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3092 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3093 			BUS_DMASYNC_PREWRITE);
3094 
3095 	/* Kick start */
3096 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3097 
3098 back:
3099 	if (error)
3100 		m_freem(m);
3101 	return error;
3102 }
3103 
3104 static int
3105 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3106 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3107 {
3108 	struct ieee80211vap *vap = ni->ni_vap;
3109 	struct ieee80211com *ic = ni->ni_ic;
3110 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3111 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3112 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3113 	struct bwi_mac *mac;
3114 	struct bwi_txbuf_hdr *hdr;
3115 	struct ieee80211_frame *wh;
3116 	uint8_t rate, rate_fb;
3117 	uint32_t mac_ctrl;
3118 	uint16_t phy_ctrl;
3119 	bus_addr_t paddr;
3120 	int ismcast, pkt_len, error;
3121 
3122 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3123 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3124 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3125 
3126 	wh = mtod(m, struct ieee80211_frame *);
3127 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3128 
3129 	/* Get 802.11 frame len before prepending TX header */
3130 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3131 
3132 	/*
3133 	 * Find TX rate
3134 	 */
3135 	rate = params->ibp_rate0;
3136 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3137 		/* XXX fall back to mcast/mgmt rate? */
3138 		m_freem(m);
3139 		return EINVAL;
3140 	}
3141 	if (params->ibp_try1 != 0) {
3142 		rate_fb = params->ibp_rate1;
3143 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3144 			/* XXX fall back to rate0? */
3145 			m_freem(m);
3146 			return EINVAL;
3147 		}
3148 	} else
3149 		rate_fb = rate;
3150 	tb->tb_rate[0] = rate;
3151 	tb->tb_rate[1] = rate_fb;
3152 	sc->sc_tx_rate = rate;
3153 
3154 	/*
3155 	 * TX radio tap
3156 	 */
3157 	if (ieee80211_radiotap_active_vap(vap)) {
3158 		sc->sc_tx_th.wt_flags = 0;
3159 		/* XXX IEEE80211_BPF_CRYPTO */
3160 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3161 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3162 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3163 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3164 		sc->sc_tx_th.wt_rate = rate;
3165 
3166 		ieee80211_radiotap_tx(vap, m);
3167 	}
3168 
3169 	/*
3170 	 * Setup the embedded TX header
3171 	 */
3172 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3173 	if (m == NULL) {
3174 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3175 		    __func__);
3176 		return ENOBUFS;
3177 	}
3178 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3179 
3180 	bzero(hdr, sizeof(*hdr));
3181 
3182 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3183 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3184 
3185 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3186 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3187 		uint16_t dur;
3188 
3189 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3190 
3191 		hdr->txh_fb_duration = htole16(dur);
3192 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3193 	}
3194 
3195 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3196 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3197 
3198 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3199 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3200 
3201 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3202 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3203 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3204 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3205 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3206 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3207 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3208 
3209 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3210 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3211 
3212 	/* Catch any further usage */
3213 	hdr = NULL;
3214 	wh = NULL;
3215 
3216 	/* DMA load */
3217 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3218 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3219 	if (error != 0) {
3220 		struct mbuf *m_new;
3221 
3222 		if (error != EFBIG) {
3223 			device_printf(sc->sc_dev,
3224 			    "%s: can't load TX buffer (1) %d\n",
3225 			    __func__, error);
3226 			goto back;
3227 		}
3228 		m_new = m_defrag(m, M_NOWAIT);
3229 		if (m_new == NULL) {
3230 			device_printf(sc->sc_dev,
3231 			    "%s: can't defrag TX buffer\n", __func__);
3232 			error = ENOBUFS;
3233 			goto back;
3234 		}
3235 		m = m_new;
3236 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3237 					     bwi_dma_buf_addr, &paddr,
3238 					     BUS_DMA_NOWAIT);
3239 		if (error) {
3240 			device_printf(sc->sc_dev,
3241 			    "%s: can't load TX buffer (2) %d\n",
3242 			    __func__, error);
3243 			goto back;
3244 		}
3245 	}
3246 
3247 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3248 
3249 	tb->tb_mbuf = m;
3250 	tb->tb_ni = ni;
3251 
3252 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3253 		idx, pkt_len, m->m_pkthdr.len);
3254 
3255 	/* Setup TX descriptor */
3256 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3257 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3258 			BUS_DMASYNC_PREWRITE);
3259 
3260 	/* Kick start */
3261 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3262 back:
3263 	if (error)
3264 		m_freem(m);
3265 	return error;
3266 }
3267 
3268 static void
3269 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3270 {
3271 	idx = (idx + 1) % BWI_TX_NDESC;
3272 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3273 		    idx * sizeof(struct bwi_desc32));
3274 }
3275 
3276 static void
3277 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3278 {
3279 	/* TODO:64 */
3280 }
3281 
3282 static void
3283 bwi_txeof_status32(struct bwi_softc *sc)
3284 {
3285 	uint32_t val, ctrl_base;
3286 	int end_idx;
3287 
3288 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3289 
3290 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3291 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3292 		  sizeof(struct bwi_desc32);
3293 
3294 	bwi_txeof_status(sc, end_idx);
3295 
3296 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3297 		    end_idx * sizeof(struct bwi_desc32));
3298 
3299 	bwi_start_locked(sc);
3300 }
3301 
3302 static void
3303 bwi_txeof_status64(struct bwi_softc *sc)
3304 {
3305 	/* TODO:64 */
3306 }
3307 
3308 static void
3309 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3310 {
3311 	struct bwi_txbuf_data *tbd;
3312 	struct bwi_txbuf *tb;
3313 	int ring_idx, buf_idx;
3314 	struct ieee80211_node *ni;
3315 
3316 	if (tx_id == 0) {
3317 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3318 		return;
3319 	}
3320 
3321 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3322 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3323 
3324 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3325 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3326 
3327 	tbd = &sc->sc_tx_bdata[ring_idx];
3328 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3329 	tbd->tbd_used--;
3330 
3331 	tb = &tbd->tbd_buf[buf_idx];
3332 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3333 		"acked %d, data_txcnt %d, ni %p\n",
3334 		buf_idx, acked, data_txcnt, tb->tb_ni);
3335 
3336 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3337 
3338 	if ((ni = tb->tb_ni) != NULL) {
3339 		const struct bwi_txbuf_hdr *hdr =
3340 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3341 		struct ieee80211_ratectl_tx_status txs;
3342 
3343 		/* NB: update rate control only for unicast frames */
3344 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3345 			/*
3346 			 * Feed back 'acked and data_txcnt'.  Note that the
3347 			 * generic AMRR code only understands one tx rate
3348 			 * and the estimator doesn't handle real retry counts
3349 			 * well so to avoid over-aggressive downshifting we
3350 			 * treat any number of retries as "1".
3351 			 */
3352 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3353 			txs.long_retries = acked;
3354 			if (data_txcnt > 1)
3355 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3356 			else {
3357 				txs.status =
3358 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3359 			}
3360 			ieee80211_ratectl_tx_complete(ni, &txs);
3361 		}
3362 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3363 		tb->tb_ni = NULL;
3364 	} else
3365 		m_freem(tb->tb_mbuf);
3366 	tb->tb_mbuf = NULL;
3367 
3368 	if (tbd->tbd_used == 0)
3369 		sc->sc_tx_timer = 0;
3370 }
3371 
3372 static void
3373 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3374 {
3375 	struct bwi_txstats_data *st = sc->sc_txstats;
3376 	int idx;
3377 
3378 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3379 
3380 	idx = st->stats_idx;
3381 	while (idx != end_idx) {
3382 		const struct bwi_txstats *stats = &st->stats[idx];
3383 
3384 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3385 			int data_txcnt;
3386 
3387 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3388 						BWI_TXS_TXCNT_DATA);
3389 			_bwi_txeof(sc, le16toh(stats->txs_id),
3390 				   stats->txs_flags & BWI_TXS_F_ACKED,
3391 				   data_txcnt);
3392 		}
3393 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3394 	}
3395 	st->stats_idx = idx;
3396 }
3397 
3398 static void
3399 bwi_txeof(struct bwi_softc *sc)
3400 {
3401 
3402 	for (;;) {
3403 		uint32_t tx_status0, tx_status1;
3404 		uint16_t tx_id;
3405 		int data_txcnt;
3406 
3407 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3408 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3409 			break;
3410 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3411 
3412 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3413 		data_txcnt = __SHIFTOUT(tx_status0,
3414 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3415 
3416 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3417 			continue;
3418 
3419 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3420 		    data_txcnt);
3421 	}
3422 
3423 	bwi_start_locked(sc);
3424 }
3425 
3426 static int
3427 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3428 {
3429 	bwi_power_on(sc, 1);
3430 	return bwi_set_clock_mode(sc, clk_mode);
3431 }
3432 
3433 static void
3434 bwi_bbp_power_off(struct bwi_softc *sc)
3435 {
3436 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3437 	bwi_power_off(sc, 1);
3438 }
3439 
3440 static int
3441 bwi_get_pwron_delay(struct bwi_softc *sc)
3442 {
3443 	struct bwi_regwin *com, *old;
3444 	struct bwi_clock_freq freq;
3445 	uint32_t val;
3446 	int error;
3447 
3448 	com = &sc->sc_com_regwin;
3449 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3450 
3451 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3452 		return 0;
3453 
3454 	error = bwi_regwin_switch(sc, com, &old);
3455 	if (error)
3456 		return error;
3457 
3458 	bwi_get_clock_freq(sc, &freq);
3459 
3460 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3461 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3462 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3463 
3464 	return bwi_regwin_switch(sc, old, NULL);
3465 }
3466 
3467 static int
3468 bwi_bus_attach(struct bwi_softc *sc)
3469 {
3470 	struct bwi_regwin *bus, *old;
3471 	int error;
3472 
3473 	bus = &sc->sc_bus_regwin;
3474 
3475 	error = bwi_regwin_switch(sc, bus, &old);
3476 	if (error)
3477 		return error;
3478 
3479 	if (!bwi_regwin_is_enabled(sc, bus))
3480 		bwi_regwin_enable(sc, bus, 0);
3481 
3482 	/* Disable interripts */
3483 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3484 
3485 	return bwi_regwin_switch(sc, old, NULL);
3486 }
3487 
3488 static const char *
3489 bwi_regwin_name(const struct bwi_regwin *rw)
3490 {
3491 	switch (rw->rw_type) {
3492 	case BWI_REGWIN_T_COM:
3493 		return "COM";
3494 	case BWI_REGWIN_T_BUSPCI:
3495 		return "PCI";
3496 	case BWI_REGWIN_T_MAC:
3497 		return "MAC";
3498 	case BWI_REGWIN_T_BUSPCIE:
3499 		return "PCIE";
3500 	}
3501 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3502 	return NULL;
3503 }
3504 
3505 static uint32_t
3506 bwi_regwin_disable_bits(struct bwi_softc *sc)
3507 {
3508 	uint32_t busrev;
3509 
3510 	/* XXX cache this */
3511 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3512 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3513 		"bus rev %u\n", busrev);
3514 
3515 	if (busrev == BWI_BUSREV_0)
3516 		return BWI_STATE_LO_DISABLE1;
3517 	else if (busrev == BWI_BUSREV_1)
3518 		return BWI_STATE_LO_DISABLE2;
3519 	else
3520 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3521 }
3522 
3523 int
3524 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3525 {
3526 	uint32_t val, disable_bits;
3527 
3528 	disable_bits = bwi_regwin_disable_bits(sc);
3529 	val = CSR_READ_4(sc, BWI_STATE_LO);
3530 
3531 	if ((val & (BWI_STATE_LO_CLOCK |
3532 		    BWI_STATE_LO_RESET |
3533 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3534 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3535 			bwi_regwin_name(rw));
3536 		return 1;
3537 	} else {
3538 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3539 			bwi_regwin_name(rw));
3540 		return 0;
3541 	}
3542 }
3543 
3544 void
3545 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3546 {
3547 	uint32_t state_lo, disable_bits;
3548 	int i;
3549 
3550 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3551 
3552 	/*
3553 	 * If current regwin is in 'reset' state, it was already disabled.
3554 	 */
3555 	if (state_lo & BWI_STATE_LO_RESET) {
3556 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3557 			"%s was already disabled\n", bwi_regwin_name(rw));
3558 		return;
3559 	}
3560 
3561 	disable_bits = bwi_regwin_disable_bits(sc);
3562 
3563 	/*
3564 	 * Disable normal clock
3565 	 */
3566 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3567 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3568 
3569 	/*
3570 	 * Wait until normal clock is disabled
3571 	 */
3572 #define NRETRY	1000
3573 	for (i = 0; i < NRETRY; ++i) {
3574 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3575 		if (state_lo & disable_bits)
3576 			break;
3577 		DELAY(10);
3578 	}
3579 	if (i == NRETRY) {
3580 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3581 			      bwi_regwin_name(rw));
3582 	}
3583 
3584 	for (i = 0; i < NRETRY; ++i) {
3585 		uint32_t state_hi;
3586 
3587 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3588 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3589 			break;
3590 		DELAY(10);
3591 	}
3592 	if (i == NRETRY) {
3593 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3594 			      bwi_regwin_name(rw));
3595 	}
3596 #undef NRETRY
3597 
3598 	/*
3599 	 * Reset and disable regwin with gated clock
3600 	 */
3601 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3602 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3603 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3604 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3605 
3606 	/* Flush pending bus write */
3607 	CSR_READ_4(sc, BWI_STATE_LO);
3608 	DELAY(1);
3609 
3610 	/* Reset and disable regwin */
3611 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3612 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3613 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3614 
3615 	/* Flush pending bus write */
3616 	CSR_READ_4(sc, BWI_STATE_LO);
3617 	DELAY(1);
3618 }
3619 
3620 void
3621 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3622 {
3623 	uint32_t state_lo, state_hi, imstate;
3624 
3625 	bwi_regwin_disable(sc, rw, flags);
3626 
3627 	/* Reset regwin with gated clock */
3628 	state_lo = BWI_STATE_LO_RESET |
3629 		   BWI_STATE_LO_CLOCK |
3630 		   BWI_STATE_LO_GATED_CLOCK |
3631 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3632 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3633 
3634 	/* Flush pending bus write */
3635 	CSR_READ_4(sc, BWI_STATE_LO);
3636 	DELAY(1);
3637 
3638 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3639 	if (state_hi & BWI_STATE_HI_SERROR)
3640 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3641 
3642 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3643 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3644 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3645 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3646 	}
3647 
3648 	/* Enable regwin with gated clock */
3649 	state_lo = BWI_STATE_LO_CLOCK |
3650 		   BWI_STATE_LO_GATED_CLOCK |
3651 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3652 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3653 
3654 	/* Flush pending bus write */
3655 	CSR_READ_4(sc, BWI_STATE_LO);
3656 	DELAY(1);
3657 
3658 	/* Enable regwin with normal clock */
3659 	state_lo = BWI_STATE_LO_CLOCK |
3660 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3661 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3662 
3663 	/* Flush pending bus write */
3664 	CSR_READ_4(sc, BWI_STATE_LO);
3665 	DELAY(1);
3666 }
3667 
3668 static void
3669 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3670 {
3671 	struct bwi_mac *mac;
3672 	struct bwi_myaddr_bssid buf;
3673 	const uint8_t *p;
3674 	uint32_t val;
3675 	int n, i;
3676 
3677 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3678 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3679 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3680 
3681 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3682 
3683 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3684 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3685 
3686 	n = sizeof(buf) / sizeof(val);
3687 	p = (const uint8_t *)&buf;
3688 	for (i = 0; i < n; ++i) {
3689 		int j;
3690 
3691 		val = 0;
3692 		for (j = 0; j < sizeof(val); ++j)
3693 			val |= ((uint32_t)(*p++)) << (j * 8);
3694 
3695 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3696 	}
3697 }
3698 
3699 static void
3700 bwi_updateslot(struct ieee80211com *ic)
3701 {
3702 	struct bwi_softc *sc = ic->ic_softc;
3703 	struct bwi_mac *mac;
3704 
3705 	BWI_LOCK(sc);
3706 	if (sc->sc_flags & BWI_F_RUNNING) {
3707 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3708 
3709 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3710 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3711 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3712 
3713 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3714 	}
3715 	BWI_UNLOCK(sc);
3716 }
3717 
3718 static void
3719 bwi_calibrate(void *xsc)
3720 {
3721 	struct bwi_softc *sc = xsc;
3722 	struct bwi_mac *mac;
3723 
3724 	BWI_ASSERT_LOCKED(sc);
3725 
3726 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3727 	    ("opmode %d", sc->sc_ic.ic_opmode));
3728 
3729 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3730 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3731 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3732 
3733 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3734 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3735 
3736 	/* XXX 15 seconds */
3737 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3738 }
3739 
3740 static int
3741 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3742 {
3743 	struct bwi_mac *mac;
3744 
3745 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3746 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3747 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3748 
3749 	return bwi_rf_calc_rssi(mac, hdr);
3750 }
3751 
3752 static int
3753 bwi_calc_noise(struct bwi_softc *sc)
3754 {
3755 	struct bwi_mac *mac;
3756 
3757 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3758 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3759 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3760 
3761 	return bwi_rf_calc_noise(mac);
3762 }
3763 
3764 static __inline uint8_t
3765 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3766 {
3767 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3768 	return (ieee80211_plcp2rate(plcp, type));
3769 }
3770 
3771 static void
3772 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3773     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3774 {
3775 	const struct ieee80211_frame_min *wh;
3776 
3777 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3778 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3779 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3780 
3781 	wh = mtod(m, const struct ieee80211_frame_min *);
3782 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3783 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3784 
3785 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3786 	sc->sc_rx_th.wr_rate = rate;
3787 	sc->sc_rx_th.wr_antsignal = rssi;
3788 	sc->sc_rx_th.wr_antnoise = noise;
3789 }
3790 
3791 static void
3792 bwi_led_attach(struct bwi_softc *sc)
3793 {
3794 	const uint8_t *led_act = NULL;
3795 	uint16_t gpio, val[BWI_LED_MAX];
3796 	int i;
3797 
3798 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3799 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3800 			led_act = bwi_vendor_led_act[i].led_act;
3801 			break;
3802 		}
3803 	}
3804 	if (led_act == NULL)
3805 		led_act = bwi_default_led_act;
3806 
3807 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3808 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3809 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3810 
3811 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3812 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3813 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3814 
3815 	for (i = 0; i < BWI_LED_MAX; ++i) {
3816 		struct bwi_led *led = &sc->sc_leds[i];
3817 
3818 		if (val[i] == 0xff) {
3819 			led->l_act = led_act[i];
3820 		} else {
3821 			if (val[i] & BWI_LED_ACT_LOW)
3822 				led->l_flags |= BWI_LED_F_ACTLOW;
3823 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3824 		}
3825 		led->l_mask = (1 << i);
3826 
3827 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3828 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3829 		    led->l_act == BWI_LED_ACT_BLINK) {
3830 			led->l_flags |= BWI_LED_F_BLINK;
3831 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3832 				led->l_flags |= BWI_LED_F_POLLABLE;
3833 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3834 				led->l_flags |= BWI_LED_F_SLOW;
3835 
3836 			if (sc->sc_blink_led == NULL) {
3837 				sc->sc_blink_led = led;
3838 				if (led->l_flags & BWI_LED_F_SLOW)
3839 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3840 			}
3841 		}
3842 
3843 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3844 			"%dth led, act %d, lowact %d\n", i,
3845 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3846 	}
3847 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3848 }
3849 
3850 static __inline uint16_t
3851 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3852 {
3853 	if (led->l_flags & BWI_LED_F_ACTLOW)
3854 		on = !on;
3855 	if (on)
3856 		val |= led->l_mask;
3857 	else
3858 		val &= ~led->l_mask;
3859 	return val;
3860 }
3861 
3862 static void
3863 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3864 {
3865 	struct ieee80211com *ic = &sc->sc_ic;
3866 	uint16_t val;
3867 	int i;
3868 
3869 	if (nstate == IEEE80211_S_INIT) {
3870 		callout_stop(&sc->sc_led_blink_ch);
3871 		sc->sc_led_blinking = 0;
3872 	}
3873 
3874 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3875 		return;
3876 
3877 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3878 	for (i = 0; i < BWI_LED_MAX; ++i) {
3879 		struct bwi_led *led = &sc->sc_leds[i];
3880 		int on;
3881 
3882 		if (led->l_act == BWI_LED_ACT_UNKN ||
3883 		    led->l_act == BWI_LED_ACT_NULL)
3884 			continue;
3885 
3886 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3887 		    nstate != IEEE80211_S_INIT)
3888 		    	continue;
3889 
3890 		switch (led->l_act) {
3891 		case BWI_LED_ACT_ON:	/* Always on */
3892 			on = 1;
3893 			break;
3894 		case BWI_LED_ACT_OFF:	/* Always off */
3895 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3896 			on = 0;
3897 			break;
3898 		default:
3899 			on = 1;
3900 			switch (nstate) {
3901 			case IEEE80211_S_INIT:
3902 				on = 0;
3903 				break;
3904 			case IEEE80211_S_RUN:
3905 				if (led->l_act == BWI_LED_ACT_11G &&
3906 				    ic->ic_curmode != IEEE80211_MODE_11G)
3907 					on = 0;
3908 				break;
3909 			default:
3910 				if (led->l_act == BWI_LED_ACT_ASSOC)
3911 					on = 0;
3912 				break;
3913 			}
3914 			break;
3915 		}
3916 
3917 		val = bwi_led_onoff(led, val, on);
3918 	}
3919 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3920 }
3921 static void
3922 bwi_led_event(struct bwi_softc *sc, int event)
3923 {
3924 	struct bwi_led *led = sc->sc_blink_led;
3925 	int rate;
3926 
3927 	if (event == BWI_LED_EVENT_POLL) {
3928 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3929 			return;
3930 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3931 			return;
3932 	}
3933 
3934 	sc->sc_led_ticks = ticks;
3935 	if (sc->sc_led_blinking)
3936 		return;
3937 
3938 	switch (event) {
3939 	case BWI_LED_EVENT_RX:
3940 		rate = sc->sc_rx_rate;
3941 		break;
3942 	case BWI_LED_EVENT_TX:
3943 		rate = sc->sc_tx_rate;
3944 		break;
3945 	case BWI_LED_EVENT_POLL:
3946 		rate = 0;
3947 		break;
3948 	default:
3949 		panic("unknown LED event %d\n", event);
3950 		break;
3951 	}
3952 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3953 	    bwi_led_duration[rate].off_dur);
3954 }
3955 
3956 static void
3957 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3958 {
3959 	struct bwi_led *led = sc->sc_blink_led;
3960 	uint16_t val;
3961 
3962 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3963 	val = bwi_led_onoff(led, val, 1);
3964 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3965 
3966 	if (led->l_flags & BWI_LED_F_SLOW) {
3967 		BWI_LED_SLOWDOWN(on_dur);
3968 		BWI_LED_SLOWDOWN(off_dur);
3969 	}
3970 
3971 	sc->sc_led_blinking = 1;
3972 	sc->sc_led_blink_offdur = off_dur;
3973 
3974 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3975 }
3976 
3977 static void
3978 bwi_led_blink_next(void *xsc)
3979 {
3980 	struct bwi_softc *sc = xsc;
3981 	uint16_t val;
3982 
3983 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3984 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3985 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3986 
3987 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3988 	    bwi_led_blink_end, sc);
3989 }
3990 
3991 static void
3992 bwi_led_blink_end(void *xsc)
3993 {
3994 	struct bwi_softc *sc = xsc;
3995 	sc->sc_led_blinking = 0;
3996 }
3997 
3998 static void
3999 bwi_restart(void *xsc, int pending)
4000 {
4001 	struct bwi_softc *sc = xsc;
4002 
4003 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
4004 	BWI_LOCK(sc);
4005 	bwi_init_statechg(sc, 0);
4006 #if 0
4007 	bwi_start_locked(sc);
4008 #endif
4009 	BWI_UNLOCK(sc);
4010 }
4011