xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 
43 #include <sys/param.h>
44 #include <sys/endian.h>
45 #include <sys/kernel.h>
46 #include <sys/bus.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_llc.h>
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 #include <net80211/ieee80211_regdomain.h>
67 #include <net80211/ieee80211_phy.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <net/bpf.h>
71 
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_ether.h>
75 #endif
76 
77 #include <machine/bus.h>
78 
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcireg.h>
81 
82 #include <dev/bwi/bitops.h>
83 #include <dev/bwi/if_bwireg.h>
84 #include <dev/bwi/if_bwivar.h>
85 #include <dev/bwi/bwimac.h>
86 #include <dev/bwi/bwirf.h>
87 
88 struct bwi_clock_freq {
89 	u_int		clkfreq_min;
90 	u_int		clkfreq_max;
91 };
92 
93 struct bwi_myaddr_bssid {
94 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
95 	uint8_t		bssid[IEEE80211_ADDR_LEN];
96 } __packed;
97 
98 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
99 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
100 		    const uint8_t [IEEE80211_ADDR_LEN],
101 		    const uint8_t [IEEE80211_ADDR_LEN]);
102 static void	bwi_vap_delete(struct ieee80211vap *);
103 static void	bwi_init(void *);
104 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
105 static void	bwi_start(struct ifnet *);
106 static void	bwi_start_locked(struct ifnet *);
107 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
108 			const struct ieee80211_bpf_params *);
109 static void	bwi_watchdog(void *);
110 static void	bwi_scan_start(struct ieee80211com *);
111 static void	bwi_set_channel(struct ieee80211com *);
112 static void	bwi_scan_end(struct ieee80211com *);
113 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
114 static void	bwi_updateslot(struct ifnet *);
115 static int	bwi_media_change(struct ifnet *);
116 
117 static void	bwi_calibrate(void *);
118 
119 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
120 static int	bwi_calc_noise(struct bwi_softc *);
121 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
122 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
123 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
124 
125 static void	bwi_restart(void *, int);
126 static void	bwi_init_statechg(struct bwi_softc *, int);
127 static void	bwi_stop(struct bwi_softc *, int);
128 static void	bwi_stop_locked(struct bwi_softc *, int);
129 static int	bwi_newbuf(struct bwi_softc *, int, int);
130 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
131 			  struct ieee80211_node *);
132 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *,
134 			  const struct ieee80211_bpf_params *);
135 
136 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
137 				       bus_addr_t, int, int);
138 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
139 
140 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
141 static int	bwi_init_rx_ring32(struct bwi_softc *);
142 static int	bwi_init_txstats32(struct bwi_softc *);
143 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
144 static void	bwi_free_rx_ring32(struct bwi_softc *);
145 static void	bwi_free_txstats32(struct bwi_softc *);
146 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
147 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
148 				    int, bus_addr_t, int);
149 static int	bwi_rxeof32(struct bwi_softc *);
150 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
151 static void	bwi_txeof_status32(struct bwi_softc *);
152 
153 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
154 static int	bwi_init_rx_ring64(struct bwi_softc *);
155 static int	bwi_init_txstats64(struct bwi_softc *);
156 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
157 static void	bwi_free_rx_ring64(struct bwi_softc *);
158 static void	bwi_free_txstats64(struct bwi_softc *);
159 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
160 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
161 				    int, bus_addr_t, int);
162 static int	bwi_rxeof64(struct bwi_softc *);
163 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
164 static void	bwi_txeof_status64(struct bwi_softc *);
165 
166 static int	bwi_rxeof(struct bwi_softc *, int);
167 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
168 static void	bwi_txeof(struct bwi_softc *);
169 static void	bwi_txeof_status(struct bwi_softc *, int);
170 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
171 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
172 
173 static int	bwi_dma_alloc(struct bwi_softc *);
174 static void	bwi_dma_free(struct bwi_softc *);
175 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
176 				   struct bwi_ring_data *, bus_size_t,
177 				   uint32_t);
178 static int	bwi_dma_mbuf_create(struct bwi_softc *);
179 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
180 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
181 static void	bwi_dma_txstats_free(struct bwi_softc *);
182 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
183 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
184 				 bus_size_t, int);
185 
186 static void	bwi_power_on(struct bwi_softc *, int);
187 static int	bwi_power_off(struct bwi_softc *, int);
188 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
189 static int	bwi_set_clock_delay(struct bwi_softc *);
190 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
191 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
192 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
193 				    const uint8_t *);
194 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
195 
196 static void	bwi_get_card_flags(struct bwi_softc *);
197 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
198 
199 static int	bwi_bus_attach(struct bwi_softc *);
200 static int	bwi_bbp_attach(struct bwi_softc *);
201 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
202 static void	bwi_bbp_power_off(struct bwi_softc *);
203 
204 static const char *bwi_regwin_name(const struct bwi_regwin *);
205 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
206 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
207 static int	bwi_regwin_select(struct bwi_softc *, int);
208 
209 static void	bwi_led_attach(struct bwi_softc *);
210 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
211 static void	bwi_led_event(struct bwi_softc *, int);
212 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
213 static void	bwi_led_blink_next(void *);
214 static void	bwi_led_blink_end(void *);
215 
216 static const struct {
217 	uint16_t	did_min;
218 	uint16_t	did_max;
219 	uint16_t	bbp_id;
220 } bwi_bbpid_map[] = {
221 	{ 0x4301, 0x4301, 0x4301 },
222 	{ 0x4305, 0x4307, 0x4307 },
223 	{ 0x4402, 0x4403, 0x4402 },
224 	{ 0x4610, 0x4615, 0x4610 },
225 	{ 0x4710, 0x4715, 0x4710 },
226 	{ 0x4720, 0x4725, 0x4309 }
227 };
228 
229 static const struct {
230 	uint16_t	bbp_id;
231 	int		nregwin;
232 } bwi_regwin_count[] = {
233 	{ 0x4301, 5 },
234 	{ 0x4306, 6 },
235 	{ 0x4307, 5 },
236 	{ 0x4310, 8 },
237 	{ 0x4401, 3 },
238 	{ 0x4402, 3 },
239 	{ 0x4610, 9 },
240 	{ 0x4704, 9 },
241 	{ 0x4710, 9 },
242 	{ 0x5365, 7 }
243 };
244 
245 #define CLKSRC(src) 				\
246 [BWI_CLKSRC_ ## src] = {			\
247 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
248 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
249 }
250 
251 static const struct {
252 	u_int	freq_min;
253 	u_int	freq_max;
254 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
255 	CLKSRC(LP_OSC),
256 	CLKSRC(CS_OSC),
257 	CLKSRC(PCI)
258 };
259 
260 #undef CLKSRC
261 
262 #define VENDOR_LED_ACT(vendor)				\
263 {							\
264 	.vid = PCI_VENDOR_##vendor,			\
265 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
266 }
267 
268 static const struct {
269 #define	PCI_VENDOR_COMPAQ	0x0e11
270 #define	PCI_VENDOR_LINKSYS	0x1737
271 	uint16_t	vid;
272 	uint8_t		led_act[BWI_LED_MAX];
273 } bwi_vendor_led_act[] = {
274 	VENDOR_LED_ACT(COMPAQ),
275 	VENDOR_LED_ACT(LINKSYS)
276 #undef PCI_VENDOR_LINKSYS
277 #undef PCI_VENDOR_COMPAQ
278 };
279 
280 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
281 	{ BWI_VENDOR_LED_ACT_DEFAULT };
282 
283 #undef VENDOR_LED_ACT
284 
285 static const struct {
286 	int	on_dur;
287 	int	off_dur;
288 } bwi_led_duration[109] = {
289 	[0]	= { 400, 100 },
290 	[2]	= { 150, 75 },
291 	[4]	= { 90, 45 },
292 	[11]	= { 66, 34 },
293 	[12]	= { 53, 26 },
294 	[18]	= { 42, 21 },
295 	[22]	= { 35, 17 },
296 	[24]	= { 32, 16 },
297 	[36]	= { 21, 10 },
298 	[48]	= { 16, 8 },
299 	[72]	= { 11, 5 },
300 	[96]	= { 9, 4 },
301 	[108]	= { 7, 3 }
302 };
303 
304 #ifdef BWI_DEBUG
305 #ifdef BWI_DEBUG_VERBOSE
306 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
307 #else
308 static uint32_t	bwi_debug;
309 #endif
310 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
311 #endif	/* BWI_DEBUG */
312 
313 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
314 
315 uint16_t
316 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
317 {
318 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
319 }
320 
321 static __inline void
322 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
323 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
324 		 int tx)
325 {
326 	struct bwi_desc32 *desc = &desc_array[desc_idx];
327 	uint32_t ctrl, addr, addr_hi, addr_lo;
328 
329 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
330 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
331 
332 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
333 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
334 
335 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
336 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
337 	if (desc_idx == ndesc - 1)
338 		ctrl |= BWI_DESC32_C_EOR;
339 	if (tx) {
340 		/* XXX */
341 		ctrl |= BWI_DESC32_C_FRAME_START |
342 			BWI_DESC32_C_FRAME_END |
343 			BWI_DESC32_C_INTR;
344 	}
345 
346 	desc->addr = htole32(addr);
347 	desc->ctrl = htole32(ctrl);
348 }
349 
350 int
351 bwi_attach(struct bwi_softc *sc)
352 {
353 	struct ieee80211com *ic;
354 	device_t dev = sc->sc_dev;
355 	struct ifnet *ifp;
356 	struct bwi_mac *mac;
357 	struct bwi_phy *phy;
358 	int i, error;
359 	uint8_t bands;
360 	uint8_t macaddr[IEEE80211_ADDR_LEN];
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 
373 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_blink = 1;
381 	sc->sc_txpwr_calib = 1;
382 #ifdef BWI_DEBUG
383 	sc->sc_debug = bwi_debug;
384 #endif
385 	bwi_power_on(sc, 1);
386 
387 	error = bwi_bbp_attach(sc);
388 	if (error)
389 		goto fail;
390 
391 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
392 	if (error)
393 		goto fail;
394 
395 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
396 		error = bwi_set_clock_delay(sc);
397 		if (error)
398 			goto fail;
399 
400 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_get_pwron_delay(sc);
405 		if (error)
406 			goto fail;
407 	}
408 
409 	error = bwi_bus_attach(sc);
410 	if (error)
411 		goto fail;
412 
413 	bwi_get_card_flags(sc);
414 
415 	bwi_led_attach(sc);
416 
417 	for (i = 0; i < sc->sc_nmac; ++i) {
418 		struct bwi_regwin *old;
419 
420 		mac = &sc->sc_mac[i];
421 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
422 		if (error)
423 			goto fail;
424 
425 		error = bwi_mac_lateattach(mac);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_regwin_switch(sc, old, NULL);
430 		if (error)
431 			goto fail;
432 	}
433 
434 	/*
435 	 * XXX First MAC is known to exist
436 	 * TODO2
437 	 */
438 	mac = &sc->sc_mac[0];
439 	phy = &mac->mac_phy;
440 
441 	bwi_bbp_power_off(sc);
442 
443 	error = bwi_dma_alloc(sc);
444 	if (error)
445 		goto fail;
446 
447 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
448 	if (ifp == NULL) {
449 		device_printf(dev, "can not if_alloc()\n");
450 		error = ENOSPC;
451 		goto fail;
452 	}
453 	ic = ifp->if_l2com;
454 
455 	/* set these up early for if_printf use */
456 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
457 
458 	ifp->if_softc = sc;
459 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
460 	ifp->if_init = bwi_init;
461 	ifp->if_ioctl = bwi_ioctl;
462 	ifp->if_start = bwi_start;
463 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
464 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
465 	IFQ_SET_READY(&ifp->if_snd);
466 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
467 
468 	/*
469 	 * Setup ratesets, phytype, channels and get MAC address
470 	 */
471 	bands = 0;
472 	if (phy->phy_mode == IEEE80211_MODE_11B ||
473 	    phy->phy_mode == IEEE80211_MODE_11G) {
474 		setbit(&bands, IEEE80211_MODE_11B);
475 		if (phy->phy_mode == IEEE80211_MODE_11B) {
476 			ic->ic_phytype = IEEE80211_T_DS;
477 		} else {
478 			ic->ic_phytype = IEEE80211_T_OFDM;
479 			setbit(&bands, IEEE80211_MODE_11G);
480 		}
481 
482 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
483 		if (IEEE80211_IS_MULTICAST(macaddr)) {
484 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
485 			if (IEEE80211_IS_MULTICAST(macaddr)) {
486 				device_printf(dev,
487 				    "invalid MAC address: %6D\n",
488 				    macaddr, ":");
489 			}
490 		}
491 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
492 		/* TODO:11A */
493 		setbit(&bands, IEEE80211_MODE_11A);
494 		error = ENXIO;
495 		goto fail;
496 	} else {
497 		panic("unknown phymode %d\n", phy->phy_mode);
498 	}
499 
500 	/* Get locale */
501 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
502 				   BWI_SPROM_CARD_INFO_LOCALE);
503 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
504 	/* XXX use locale */
505 	ieee80211_init_channels(ic, NULL, &bands);
506 
507 	ic->ic_ifp = ifp;
508 	ic->ic_caps = IEEE80211_C_STA |
509 		      IEEE80211_C_SHSLOT |
510 		      IEEE80211_C_SHPREAMBLE |
511 		      IEEE80211_C_WPA |
512 		      IEEE80211_C_BGSCAN |
513 		      IEEE80211_C_MONITOR;
514 	ic->ic_opmode = IEEE80211_M_STA;
515 	ieee80211_ifattach(ic, macaddr);
516 
517 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
518 
519 	/* override default methods */
520 	ic->ic_vap_create = bwi_vap_create;
521 	ic->ic_vap_delete = bwi_vap_delete;
522 	ic->ic_raw_xmit = bwi_raw_xmit;
523 	ic->ic_updateslot = bwi_updateslot;
524 	ic->ic_scan_start = bwi_scan_start;
525 	ic->ic_scan_end = bwi_scan_end;
526 	ic->ic_set_channel = bwi_set_channel;
527 
528 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
529 
530 	ieee80211_radiotap_attach(ic,
531 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
532 		BWI_TX_RADIOTAP_PRESENT,
533 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
534 		BWI_RX_RADIOTAP_PRESENT);
535 
536 	/*
537 	 * Add sysctl nodes
538 	 */
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
542 		        "Firmware version");
543 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
544 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
545 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
546 		        "# ticks before LED enters idle state");
547 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
548 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
549 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
550 		       "Allow LED to blink");
551 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
552 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
553 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
554 		       "Enable software TX power calibration");
555 #ifdef BWI_DEBUG
556 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
557 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
558 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
559 #endif
560 	if (bootverbose)
561 		ieee80211_announce(ic);
562 
563 	return (0);
564 fail:
565 	BWI_LOCK_DESTROY(sc);
566 	return (error);
567 }
568 
569 int
570 bwi_detach(struct bwi_softc *sc)
571 {
572 	struct ifnet *ifp = sc->sc_ifp;
573 	struct ieee80211com *ic = ifp->if_l2com;
574 	int i;
575 
576 	bwi_stop(sc, 1);
577 	callout_drain(&sc->sc_led_blink_ch);
578 	callout_drain(&sc->sc_calib_ch);
579 	callout_drain(&sc->sc_watchdog_timer);
580 	ieee80211_ifdetach(ic);
581 
582 	for (i = 0; i < sc->sc_nmac; ++i)
583 		bwi_mac_detach(&sc->sc_mac[i]);
584 	bwi_dma_free(sc);
585 	if_free(ifp);
586 	taskqueue_free(sc->sc_tq);
587 
588 	BWI_LOCK_DESTROY(sc);
589 
590 	return (0);
591 }
592 
593 static struct ieee80211vap *
594 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
595     enum ieee80211_opmode opmode, int flags,
596     const uint8_t bssid[IEEE80211_ADDR_LEN],
597     const uint8_t mac[IEEE80211_ADDR_LEN])
598 {
599 	struct bwi_vap *bvp;
600 	struct ieee80211vap *vap;
601 
602 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
603 		return NULL;
604 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
605 	    M_80211_VAP, M_WAITOK | M_ZERO);
606 	if (bvp == NULL)
607 		return NULL;
608 	vap = &bvp->bv_vap;
609 	/* enable s/w bmiss handling for sta mode */
610 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
611 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
612 
613 	/* override default methods */
614 	bvp->bv_newstate = vap->iv_newstate;
615 	vap->iv_newstate = bwi_newstate;
616 #if 0
617 	vap->iv_update_beacon = bwi_beacon_update;
618 #endif
619 	ieee80211_ratectl_init(vap);
620 
621 	/* complete setup */
622 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
623 	ic->ic_opmode = opmode;
624 	return vap;
625 }
626 
627 static void
628 bwi_vap_delete(struct ieee80211vap *vap)
629 {
630 	struct bwi_vap *bvp = BWI_VAP(vap);
631 
632 	ieee80211_ratectl_deinit(vap);
633 	ieee80211_vap_detach(vap);
634 	free(bvp, M_80211_VAP);
635 }
636 
637 void
638 bwi_suspend(struct bwi_softc *sc)
639 {
640 	bwi_stop(sc, 1);
641 }
642 
643 void
644 bwi_resume(struct bwi_softc *sc)
645 {
646 	struct ifnet *ifp = sc->sc_ifp;
647 
648 	if (ifp->if_flags & IFF_UP)
649 		bwi_init(sc);
650 }
651 
652 int
653 bwi_shutdown(struct bwi_softc *sc)
654 {
655 	bwi_stop(sc, 1);
656 	return 0;
657 }
658 
659 static void
660 bwi_power_on(struct bwi_softc *sc, int with_pll)
661 {
662 	uint32_t gpio_in, gpio_out, gpio_en;
663 	uint16_t status;
664 
665 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
666 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
667 		goto back;
668 
669 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
670 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
671 
672 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
673 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
674 	if (with_pll) {
675 		/* Turn off PLL first */
676 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
677 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
678 	}
679 
680 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
681 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
682 	DELAY(1000);
683 
684 	if (with_pll) {
685 		/* Turn on PLL */
686 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
687 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
688 		DELAY(5000);
689 	}
690 
691 back:
692 	/* Clear "Signaled Target Abort" */
693 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
694 	status &= ~PCIM_STATUS_STABORT;
695 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
696 }
697 
698 static int
699 bwi_power_off(struct bwi_softc *sc, int with_pll)
700 {
701 	uint32_t gpio_out, gpio_en;
702 
703 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
704 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
705 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
706 
707 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
708 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
709 	if (with_pll) {
710 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
711 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
712 	}
713 
714 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
715 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
716 	return 0;
717 }
718 
719 int
720 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
721 		  struct bwi_regwin **old_rw)
722 {
723 	int error;
724 
725 	if (old_rw != NULL)
726 		*old_rw = NULL;
727 
728 	if (!BWI_REGWIN_EXIST(rw))
729 		return EINVAL;
730 
731 	if (sc->sc_cur_regwin != rw) {
732 		error = bwi_regwin_select(sc, rw->rw_id);
733 		if (error) {
734 			device_printf(sc->sc_dev, "can't select regwin %d\n",
735 				  rw->rw_id);
736 			return error;
737 		}
738 	}
739 
740 	if (old_rw != NULL)
741 		*old_rw = sc->sc_cur_regwin;
742 	sc->sc_cur_regwin = rw;
743 	return 0;
744 }
745 
746 static int
747 bwi_regwin_select(struct bwi_softc *sc, int id)
748 {
749 	uint32_t win = BWI_PCIM_REGWIN(id);
750 	int i;
751 
752 #define RETRY_MAX	50
753 	for (i = 0; i < RETRY_MAX; ++i) {
754 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
755 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
756 			return 0;
757 		DELAY(10);
758 	}
759 #undef RETRY_MAX
760 
761 	return ENXIO;
762 }
763 
764 static void
765 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
766 {
767 	uint32_t val;
768 
769 	val = CSR_READ_4(sc, BWI_ID_HI);
770 	*type = BWI_ID_HI_REGWIN_TYPE(val);
771 	*rev = BWI_ID_HI_REGWIN_REV(val);
772 
773 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
774 		"vendor 0x%04x\n", *type, *rev,
775 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
776 }
777 
778 static int
779 bwi_bbp_attach(struct bwi_softc *sc)
780 {
781 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
782 	uint16_t bbp_id, rw_type;
783 	uint8_t rw_rev;
784 	uint32_t info;
785 	int error, nregwin, i;
786 
787 	/*
788 	 * Get 0th regwin information
789 	 * NOTE: 0th regwin should exist
790 	 */
791 	error = bwi_regwin_select(sc, 0);
792 	if (error) {
793 		device_printf(sc->sc_dev, "can't select regwin 0\n");
794 		return error;
795 	}
796 	bwi_regwin_info(sc, &rw_type, &rw_rev);
797 
798 	/*
799 	 * Find out BBP id
800 	 */
801 	bbp_id = 0;
802 	info = 0;
803 	if (rw_type == BWI_REGWIN_T_COM) {
804 		info = CSR_READ_4(sc, BWI_INFO);
805 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
806 
807 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
808 
809 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
810 	} else {
811 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
812 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
813 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
814 				bbp_id = bwi_bbpid_map[i].bbp_id;
815 				break;
816 			}
817 		}
818 		if (bbp_id == 0) {
819 			device_printf(sc->sc_dev, "no BBP id for device id "
820 				      "0x%04x\n", sc->sc_pci_did);
821 			return ENXIO;
822 		}
823 
824 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
825 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
826 	}
827 
828 	/*
829 	 * Find out number of regwins
830 	 */
831 	nregwin = 0;
832 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
833 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
834 	} else {
835 		for (i = 0; i < N(bwi_regwin_count); ++i) {
836 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
837 				nregwin = bwi_regwin_count[i].nregwin;
838 				break;
839 			}
840 		}
841 		if (nregwin == 0) {
842 			device_printf(sc->sc_dev, "no number of win for "
843 				      "BBP id 0x%04x\n", bbp_id);
844 			return ENXIO;
845 		}
846 	}
847 
848 	/* Record BBP id/rev for later using */
849 	sc->sc_bbp_id = bbp_id;
850 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
851 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
852 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
853 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
854 
855 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
856 		nregwin, sc->sc_cap);
857 
858 	/*
859 	 * Create rest of the regwins
860 	 */
861 
862 	/* Don't re-create common regwin, if it is already created */
863 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
864 
865 	for (; i < nregwin; ++i) {
866 		/*
867 		 * Get regwin information
868 		 */
869 		error = bwi_regwin_select(sc, i);
870 		if (error) {
871 			device_printf(sc->sc_dev,
872 				      "can't select regwin %d\n", i);
873 			return error;
874 		}
875 		bwi_regwin_info(sc, &rw_type, &rw_rev);
876 
877 		/*
878 		 * Try attach:
879 		 * 1) Bus (PCI/PCIE) regwin
880 		 * 2) MAC regwin
881 		 * Ignore rest types of regwin
882 		 */
883 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
884 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
885 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
886 				device_printf(sc->sc_dev,
887 					      "bus regwin already exists\n");
888 			} else {
889 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
890 						  rw_type, rw_rev);
891 			}
892 		} else if (rw_type == BWI_REGWIN_T_MAC) {
893 			/* XXX ignore return value */
894 			bwi_mac_attach(sc, i, rw_rev);
895 		}
896 	}
897 
898 	/* At least one MAC shold exist */
899 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
900 		device_printf(sc->sc_dev, "no MAC was found\n");
901 		return ENXIO;
902 	}
903 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
904 
905 	/* Bus regwin must exist */
906 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
907 		device_printf(sc->sc_dev, "no bus regwin was found\n");
908 		return ENXIO;
909 	}
910 
911 	/* Start with first MAC */
912 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
913 	if (error)
914 		return error;
915 
916 	return 0;
917 #undef N
918 }
919 
920 int
921 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
922 {
923 	struct bwi_regwin *old, *bus;
924 	uint32_t val;
925 	int error;
926 
927 	bus = &sc->sc_bus_regwin;
928 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
929 
930 	/*
931 	 * Tell bus to generate requested interrupts
932 	 */
933 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
934 		/*
935 		 * NOTE: Read BWI_FLAGS from MAC regwin
936 		 */
937 		val = CSR_READ_4(sc, BWI_FLAGS);
938 
939 		error = bwi_regwin_switch(sc, bus, &old);
940 		if (error)
941 			return error;
942 
943 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
944 	} else {
945 		uint32_t mac_mask;
946 
947 		mac_mask = 1 << mac->mac_id;
948 
949 		error = bwi_regwin_switch(sc, bus, &old);
950 		if (error)
951 			return error;
952 
953 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
954 		val |= mac_mask << 8;
955 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
956 	}
957 
958 	if (sc->sc_flags & BWI_F_BUS_INITED)
959 		goto back;
960 
961 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
962 		/*
963 		 * Enable prefetch and burst
964 		 */
965 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
966 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
967 
968 		if (bus->rw_rev < 5) {
969 			struct bwi_regwin *com = &sc->sc_com_regwin;
970 
971 			/*
972 			 * Configure timeouts for bus operation
973 			 */
974 
975 			/*
976 			 * Set service timeout and request timeout
977 			 */
978 			CSR_SETBITS_4(sc, BWI_CONF_LO,
979 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
980 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
981 
982 			/*
983 			 * If there is common regwin, we switch to that regwin
984 			 * and switch back to bus regwin once we have done.
985 			 */
986 			if (BWI_REGWIN_EXIST(com)) {
987 				error = bwi_regwin_switch(sc, com, NULL);
988 				if (error)
989 					return error;
990 			}
991 
992 			/* Let bus know what we have changed */
993 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
994 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
995 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
996 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
997 
998 			if (BWI_REGWIN_EXIST(com)) {
999 				error = bwi_regwin_switch(sc, bus, NULL);
1000 				if (error)
1001 					return error;
1002 			}
1003 		} else if (bus->rw_rev >= 11) {
1004 			/*
1005 			 * Enable memory read multiple
1006 			 */
1007 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1008 		}
1009 	} else {
1010 		/* TODO:PCIE */
1011 	}
1012 
1013 	sc->sc_flags |= BWI_F_BUS_INITED;
1014 back:
1015 	return bwi_regwin_switch(sc, old, NULL);
1016 }
1017 
1018 static void
1019 bwi_get_card_flags(struct bwi_softc *sc)
1020 {
1021 #define	PCI_VENDOR_APPLE 0x106b
1022 #define	PCI_VENDOR_DELL  0x1028
1023 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1024 	if (sc->sc_card_flags == 0xffff)
1025 		sc->sc_card_flags = 0;
1026 
1027 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1028 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1029 	    sc->sc_pci_revid == 0x74)
1030 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1031 
1032 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1033 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1034 	    sc->sc_pci_revid > 0x40)
1035 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1036 
1037 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1038 #undef PCI_VENDOR_DELL
1039 #undef PCI_VENDOR_APPLE
1040 }
1041 
1042 static void
1043 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1044 {
1045 	int i;
1046 
1047 	for (i = 0; i < 3; ++i) {
1048 		*((uint16_t *)eaddr + i) =
1049 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1050 	}
1051 }
1052 
1053 static void
1054 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1055 {
1056 	struct bwi_regwin *com;
1057 	uint32_t val;
1058 	u_int div;
1059 	int src;
1060 
1061 	bzero(freq, sizeof(*freq));
1062 	com = &sc->sc_com_regwin;
1063 
1064 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1065 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1066 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1067 
1068 	/*
1069 	 * Calculate clock frequency
1070 	 */
1071 	src = -1;
1072 	div = 0;
1073 	if (com->rw_rev < 6) {
1074 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1075 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1076 			src = BWI_CLKSRC_PCI;
1077 			div = 64;
1078 		} else {
1079 			src = BWI_CLKSRC_CS_OSC;
1080 			div = 32;
1081 		}
1082 	} else if (com->rw_rev < 10) {
1083 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1084 
1085 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1086 		if (src == BWI_CLKSRC_LP_OSC) {
1087 			div = 1;
1088 		} else {
1089 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1090 
1091 			/* Unknown source */
1092 			if (src >= BWI_CLKSRC_MAX)
1093 				src = BWI_CLKSRC_CS_OSC;
1094 		}
1095 	} else {
1096 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1097 
1098 		src = BWI_CLKSRC_CS_OSC;
1099 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1100 	}
1101 
1102 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1103 	KASSERT(div != 0, ("div zero"));
1104 
1105 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1106 		src == BWI_CLKSRC_PCI ? "PCI" :
1107 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1108 
1109 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1110 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1111 
1112 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1113 		freq->clkfreq_min, freq->clkfreq_max);
1114 }
1115 
1116 static int
1117 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1118 {
1119 	struct bwi_regwin *old, *com;
1120 	uint32_t clk_ctrl, clk_src;
1121 	int error, pwr_off = 0;
1122 
1123 	com = &sc->sc_com_regwin;
1124 	if (!BWI_REGWIN_EXIST(com))
1125 		return 0;
1126 
1127 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1128 		return 0;
1129 
1130 	/*
1131 	 * For common regwin whose rev is [6, 10), the chip
1132 	 * must be capable to change clock mode.
1133 	 */
1134 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1135 		return 0;
1136 
1137 	error = bwi_regwin_switch(sc, com, &old);
1138 	if (error)
1139 		return error;
1140 
1141 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1142 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1143 
1144 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1145 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1146 
1147 	switch (clk_mode) {
1148 	case BWI_CLOCK_MODE_FAST:
1149 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1150 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1151 		break;
1152 	case BWI_CLOCK_MODE_SLOW:
1153 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1154 		break;
1155 	case BWI_CLOCK_MODE_DYN:
1156 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1157 			      BWI_CLOCK_CTRL_IGNPLL |
1158 			      BWI_CLOCK_CTRL_NODYN);
1159 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1160 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1161 			pwr_off = 1;
1162 		}
1163 		break;
1164 	}
1165 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1166 
1167 	if (pwr_off)
1168 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1169 
1170 	return bwi_regwin_switch(sc, old, NULL);
1171 }
1172 
1173 static int
1174 bwi_set_clock_delay(struct bwi_softc *sc)
1175 {
1176 	struct bwi_regwin *old, *com;
1177 	int error;
1178 
1179 	com = &sc->sc_com_regwin;
1180 	if (!BWI_REGWIN_EXIST(com))
1181 		return 0;
1182 
1183 	error = bwi_regwin_switch(sc, com, &old);
1184 	if (error)
1185 		return error;
1186 
1187 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1188 		if (sc->sc_bbp_rev == 0)
1189 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1190 		else if (sc->sc_bbp_rev == 1)
1191 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1192 	}
1193 
1194 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1195 		if (com->rw_rev >= 10) {
1196 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1197 		} else {
1198 			struct bwi_clock_freq freq;
1199 
1200 			bwi_get_clock_freq(sc, &freq);
1201 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1202 				howmany(freq.clkfreq_max * 150, 1000000));
1203 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1204 				howmany(freq.clkfreq_max * 15, 1000000));
1205 		}
1206 	}
1207 
1208 	return bwi_regwin_switch(sc, old, NULL);
1209 }
1210 
1211 static void
1212 bwi_init(void *xsc)
1213 {
1214 	struct bwi_softc *sc = xsc;
1215 	struct ifnet *ifp = sc->sc_ifp;
1216 	struct ieee80211com *ic = ifp->if_l2com;
1217 
1218 	BWI_LOCK(sc);
1219 	bwi_init_statechg(sc, 1);
1220 	BWI_UNLOCK(sc);
1221 
1222 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1223 		ieee80211_start_all(ic);		/* start all vap's */
1224 }
1225 
1226 static void
1227 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct bwi_mac *mac;
1231 	int error;
1232 
1233 	bwi_stop_locked(sc, statechg);
1234 
1235 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1236 
1237 	/* TODO: 2 MAC */
1238 
1239 	mac = &sc->sc_mac[0];
1240 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1241 	if (error) {
1242 		if_printf(ifp, "%s: error %d on regwin switch\n",
1243 		    __func__, error);
1244 		goto bad;
1245 	}
1246 	error = bwi_mac_init(mac);
1247 	if (error) {
1248 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1249 		goto bad;
1250 	}
1251 
1252 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1253 
1254 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1255 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1256 
1257 	bwi_mac_reset_hwkeys(mac);
1258 
1259 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1260 		int i;
1261 
1262 #define NRETRY	1000
1263 		/*
1264 		 * Drain any possible pending TX status
1265 		 */
1266 		for (i = 0; i < NRETRY; ++i) {
1267 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1268 			     BWI_TXSTATUS0_VALID) == 0)
1269 				break;
1270 			CSR_READ_4(sc, BWI_TXSTATUS1);
1271 		}
1272 		if (i == NRETRY)
1273 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1274 #undef NRETRY
1275 	}
1276 
1277 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1278 		bwi_mac_updateslot(mac, 1);
1279 
1280 	/* Start MAC */
1281 	error = bwi_mac_start(mac);
1282 	if (error) {
1283 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1284 		goto bad;
1285 	}
1286 
1287 	/* Clear stop flag before enabling interrupt */
1288 	sc->sc_flags &= ~BWI_F_STOP;
1289 
1290 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1291 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1292 
1293 	/* Enable intrs */
1294 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1295 	return;
1296 bad:
1297 	bwi_stop_locked(sc, 1);
1298 }
1299 
1300 static int
1301 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1302 {
1303 #define	IS_RUNNING(ifp) \
1304 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1305 	struct bwi_softc *sc = ifp->if_softc;
1306 	struct ieee80211com *ic = ifp->if_l2com;
1307 	struct ifreq *ifr = (struct ifreq *) data;
1308 	int error = 0, startall = 0;
1309 
1310 	switch (cmd) {
1311 	case SIOCSIFFLAGS:
1312 		BWI_LOCK(sc);
1313 		if (IS_RUNNING(ifp)) {
1314 			struct bwi_mac *mac;
1315 			int promisc = -1;
1316 
1317 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1318 			    ("current regwin type %d",
1319 			    sc->sc_cur_regwin->rw_type));
1320 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1321 
1322 			if ((ifp->if_flags & IFF_PROMISC) &&
1323 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1324 				promisc = 1;
1325 				sc->sc_flags |= BWI_F_PROMISC;
1326 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1327 				   (sc->sc_flags & BWI_F_PROMISC)) {
1328 				promisc = 0;
1329 				sc->sc_flags &= ~BWI_F_PROMISC;
1330 			}
1331 
1332 			if (promisc >= 0)
1333 				bwi_mac_set_promisc(mac, promisc);
1334 		}
1335 
1336 		if (ifp->if_flags & IFF_UP) {
1337 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1338 				bwi_init_statechg(sc, 1);
1339 				startall = 1;
1340 			}
1341 		} else {
1342 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1343 				bwi_stop_locked(sc, 1);
1344 		}
1345 		BWI_UNLOCK(sc);
1346 		if (startall)
1347 			ieee80211_start_all(ic);
1348 		break;
1349 	case SIOCGIFMEDIA:
1350 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1351 		break;
1352 	case SIOCGIFADDR:
1353 		error = ether_ioctl(ifp, cmd, data);
1354 		break;
1355 	default:
1356 		error = EINVAL;
1357 		break;
1358 	}
1359 	return error;
1360 #undef IS_RUNNING
1361 }
1362 
1363 static void
1364 bwi_start(struct ifnet *ifp)
1365 {
1366 	struct bwi_softc *sc = ifp->if_softc;
1367 
1368 	BWI_LOCK(sc);
1369 	bwi_start_locked(ifp);
1370 	BWI_UNLOCK(sc);
1371 }
1372 
1373 static void
1374 bwi_start_locked(struct ifnet *ifp)
1375 {
1376 	struct bwi_softc *sc = ifp->if_softc;
1377 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1378 	struct ieee80211_frame *wh;
1379 	struct ieee80211_node *ni;
1380 	struct ieee80211_key *k;
1381 	struct mbuf *m;
1382 	int trans, idx;
1383 
1384 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1385 		return;
1386 
1387 	trans = 0;
1388 	idx = tbd->tbd_idx;
1389 
1390 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1391 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1392 		if (m == NULL)
1393 			break;
1394 
1395 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1396 		wh = mtod(m, struct ieee80211_frame *);
1397 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1398 			k = ieee80211_crypto_encap(ni, m);
1399 			if (k == NULL) {
1400 				ieee80211_free_node(ni);
1401 				m_freem(m);
1402 				ifp->if_oerrors++;
1403 				continue;
1404 			}
1405 		}
1406 		wh = NULL;	/* Catch any invalid use */
1407 
1408 		if (bwi_encap(sc, idx, m, ni) != 0) {
1409 			/* 'm' is freed in bwi_encap() if we reach here */
1410 			if (ni != NULL)
1411 				ieee80211_free_node(ni);
1412 			ifp->if_oerrors++;
1413 			continue;
1414 		}
1415 
1416 		trans = 1;
1417 		tbd->tbd_used++;
1418 		idx = (idx + 1) % BWI_TX_NDESC;
1419 
1420 		ifp->if_opackets++;
1421 
1422 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1423 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1424 			break;
1425 		}
1426 	}
1427 	tbd->tbd_idx = idx;
1428 
1429 	if (trans)
1430 		sc->sc_tx_timer = 5;
1431 }
1432 
1433 static int
1434 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1435 	const struct ieee80211_bpf_params *params)
1436 {
1437 	struct ieee80211com *ic = ni->ni_ic;
1438 	struct ifnet *ifp = ic->ic_ifp;
1439 	struct bwi_softc *sc = ifp->if_softc;
1440 	/* XXX wme? */
1441 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1442 	int idx, error;
1443 
1444 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1445 		ieee80211_free_node(ni);
1446 		m_freem(m);
1447 		return ENETDOWN;
1448 	}
1449 
1450 	BWI_LOCK(sc);
1451 	idx = tbd->tbd_idx;
1452 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1453 	if (params == NULL) {
1454 		/*
1455 		 * Legacy path; interpret frame contents to decide
1456 		 * precisely how to send the frame.
1457 		 */
1458 		error = bwi_encap(sc, idx, m, ni);
1459 	} else {
1460 		/*
1461 		 * Caller supplied explicit parameters to use in
1462 		 * sending the frame.
1463 		 */
1464 		error = bwi_encap_raw(sc, idx, m, ni, params);
1465 	}
1466 	if (error == 0) {
1467 		ifp->if_opackets++;
1468 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1469 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1470 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1471 		sc->sc_tx_timer = 5;
1472 	} else {
1473 		/* NB: m is reclaimed on encap failure */
1474 		ieee80211_free_node(ni);
1475 		ifp->if_oerrors++;
1476 	}
1477 	BWI_UNLOCK(sc);
1478 	return error;
1479 }
1480 
1481 static void
1482 bwi_watchdog(void *arg)
1483 {
1484 	struct bwi_softc *sc;
1485 	struct ifnet *ifp;
1486 
1487 	sc = arg;
1488 	ifp = sc->sc_ifp;
1489 	BWI_ASSERT_LOCKED(sc);
1490 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1491 		if_printf(ifp, "watchdog timeout\n");
1492 		ifp->if_oerrors++;
1493 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1494 	}
1495 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1496 }
1497 
1498 static void
1499 bwi_stop(struct bwi_softc *sc, int statechg)
1500 {
1501 	BWI_LOCK(sc);
1502 	bwi_stop_locked(sc, statechg);
1503 	BWI_UNLOCK(sc);
1504 }
1505 
1506 static void
1507 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1508 {
1509 	struct ifnet *ifp = sc->sc_ifp;
1510 	struct bwi_mac *mac;
1511 	int i, error, pwr_off = 0;
1512 
1513 	BWI_ASSERT_LOCKED(sc);
1514 
1515 	callout_stop(&sc->sc_calib_ch);
1516 	callout_stop(&sc->sc_led_blink_ch);
1517 	sc->sc_led_blinking = 0;
1518 	sc->sc_flags |= BWI_F_STOP;
1519 
1520 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1521 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1522 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1523 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1524 
1525 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1526 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1527 		bwi_mac_stop(mac);
1528 	}
1529 
1530 	for (i = 0; i < sc->sc_nmac; ++i) {
1531 		struct bwi_regwin *old_rw;
1532 
1533 		mac = &sc->sc_mac[i];
1534 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1535 			continue;
1536 
1537 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1538 		if (error)
1539 			continue;
1540 
1541 		bwi_mac_shutdown(mac);
1542 		pwr_off = 1;
1543 
1544 		bwi_regwin_switch(sc, old_rw, NULL);
1545 	}
1546 
1547 	if (pwr_off)
1548 		bwi_bbp_power_off(sc);
1549 
1550 	sc->sc_tx_timer = 0;
1551 	callout_stop(&sc->sc_watchdog_timer);
1552 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1553 }
1554 
1555 void
1556 bwi_intr(void *xsc)
1557 {
1558 	struct bwi_softc *sc = xsc;
1559 	struct ifnet *ifp = sc->sc_ifp;
1560 	struct bwi_mac *mac;
1561 	uint32_t intr_status;
1562 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1563 	int i, txrx_error, tx = 0, rx_data = -1;
1564 
1565 	BWI_LOCK(sc);
1566 
1567 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1568 	    (sc->sc_flags & BWI_F_STOP)) {
1569 		BWI_UNLOCK(sc);
1570 		return;
1571 	}
1572 	/*
1573 	 * Get interrupt status
1574 	 */
1575 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1576 	if (intr_status == 0xffffffff) {	/* Not for us */
1577 		BWI_UNLOCK(sc);
1578 		return;
1579 	}
1580 
1581 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1582 
1583 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1584 	if (intr_status == 0) {		/* Nothing is interesting */
1585 		BWI_UNLOCK(sc);
1586 		return;
1587 	}
1588 
1589 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1590 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1591 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1592 
1593 	txrx_error = 0;
1594 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1595 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1596 		uint32_t mask;
1597 
1598 		if (BWI_TXRX_IS_RX(i))
1599 			mask = BWI_TXRX_RX_INTRS;
1600 		else
1601 			mask = BWI_TXRX_TX_INTRS;
1602 
1603 		txrx_intr_status[i] =
1604 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1605 
1606 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1607 			 i, txrx_intr_status[i]);
1608 
1609 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1610 			if_printf(ifp,
1611 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1612 			    __func__, i, txrx_intr_status[i]);
1613 			txrx_error = 1;
1614 		}
1615 	}
1616 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1617 
1618 	/*
1619 	 * Acknowledge interrupt
1620 	 */
1621 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1622 
1623 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1624 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1625 
1626 	/* Disable all interrupts */
1627 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1628 
1629 	/*
1630 	 * http://bcm-specs.sipsolutions.net/Interrupts
1631 	 * Says for this bit (0x800):
1632 	 * "Fatal Error
1633 	 *
1634 	 * We got this one while testing things when by accident the
1635 	 * template ram wasn't set to big endian when it should have
1636 	 * been after writing the initial values. It keeps on being
1637 	 * triggered, the only way to stop it seems to shut down the
1638 	 * chip."
1639 	 *
1640 	 * Suggesting that we should never get it and if we do we're not
1641 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1642 	 * it is valid only on mac version 5 and higher, but I couldn't
1643 	 * find a reference for that...  Since I see them from time to time
1644 	 * on my card, this suggests an error in the tx path still...
1645 	 */
1646 	if (intr_status & BWI_INTR_PHY_TXERR) {
1647 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1648 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1649 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1650 			BWI_UNLOCK(sc);
1651 			return;
1652 		}
1653 	}
1654 
1655 	if (txrx_error) {
1656 		/* TODO: reset device */
1657 	}
1658 
1659 	if (intr_status & BWI_INTR_TBTT)
1660 		bwi_mac_config_ps(mac);
1661 
1662 	if (intr_status & BWI_INTR_EO_ATIM)
1663 		if_printf(ifp, "EO_ATIM\n");
1664 
1665 	if (intr_status & BWI_INTR_PMQ) {
1666 		for (;;) {
1667 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1668 				break;
1669 		}
1670 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1671 	}
1672 
1673 	if (intr_status & BWI_INTR_NOISE)
1674 		if_printf(ifp, "intr noise\n");
1675 
1676 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1677 		rx_data = sc->sc_rxeof(sc);
1678 		if (sc->sc_flags & BWI_F_STOP) {
1679 			BWI_UNLOCK(sc);
1680 			return;
1681 		}
1682 	}
1683 
1684 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1685 		sc->sc_txeof_status(sc);
1686 		tx = 1;
1687 	}
1688 
1689 	if (intr_status & BWI_INTR_TX_DONE) {
1690 		bwi_txeof(sc);
1691 		tx = 1;
1692 	}
1693 
1694 	/* Re-enable interrupts */
1695 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1696 
1697 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1698 		int evt = BWI_LED_EVENT_NONE;
1699 
1700 		if (tx && rx_data > 0) {
1701 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1702 				evt = BWI_LED_EVENT_RX;
1703 			else
1704 				evt = BWI_LED_EVENT_TX;
1705 		} else if (tx) {
1706 			evt = BWI_LED_EVENT_TX;
1707 		} else if (rx_data > 0) {
1708 			evt = BWI_LED_EVENT_RX;
1709 		} else if (rx_data == 0) {
1710 			evt = BWI_LED_EVENT_POLL;
1711 		}
1712 
1713 		if (evt != BWI_LED_EVENT_NONE)
1714 			bwi_led_event(sc, evt);
1715 	}
1716 
1717 	BWI_UNLOCK(sc);
1718 }
1719 
1720 static void
1721 bwi_scan_start(struct ieee80211com *ic)
1722 {
1723 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1724 
1725 	BWI_LOCK(sc);
1726 	/* Enable MAC beacon promiscuity */
1727 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1728 	BWI_UNLOCK(sc);
1729 }
1730 
1731 static void
1732 bwi_set_channel(struct ieee80211com *ic)
1733 {
1734 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1735 	struct ieee80211_channel *c = ic->ic_curchan;
1736 	struct bwi_mac *mac;
1737 
1738 	BWI_LOCK(sc);
1739 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1740 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1741 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1742 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1743 
1744 	sc->sc_rates = ieee80211_get_ratetable(c);
1745 
1746 	/*
1747 	 * Setup radio tap channel freq and flags
1748 	 */
1749 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1750 		htole16(c->ic_freq);
1751 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1752 		htole16(c->ic_flags & 0xffff);
1753 
1754 	BWI_UNLOCK(sc);
1755 }
1756 
1757 static void
1758 bwi_scan_end(struct ieee80211com *ic)
1759 {
1760 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1761 
1762 	BWI_LOCK(sc);
1763 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1764 	BWI_UNLOCK(sc);
1765 }
1766 
1767 static int
1768 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1769 {
1770 	struct bwi_vap *bvp = BWI_VAP(vap);
1771 	struct ieee80211com *ic= vap->iv_ic;
1772 	struct ifnet *ifp = ic->ic_ifp;
1773 	enum ieee80211_state ostate = vap->iv_state;
1774 	struct bwi_softc *sc = ifp->if_softc;
1775 	struct bwi_mac *mac;
1776 	int error;
1777 
1778 	BWI_LOCK(sc);
1779 
1780 	callout_stop(&sc->sc_calib_ch);
1781 
1782 	if (nstate == IEEE80211_S_INIT)
1783 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1784 
1785 	bwi_led_newstate(sc, nstate);
1786 
1787 	error = bvp->bv_newstate(vap, nstate, arg);
1788 	if (error != 0)
1789 		goto back;
1790 
1791 	/*
1792 	 * Clear the BSSID when we stop a STA
1793 	 */
1794 	if (vap->iv_opmode == IEEE80211_M_STA) {
1795 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1796 			/*
1797 			 * Clear out the BSSID.  If we reassociate to
1798 			 * the same AP, this will reinialize things
1799 			 * correctly...
1800 			 */
1801 			if (ic->ic_opmode == IEEE80211_M_STA &&
1802 			    !(sc->sc_flags & BWI_F_STOP))
1803 				bwi_set_bssid(sc, bwi_zero_addr);
1804 		}
1805 	}
1806 
1807 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1808 		/* Nothing to do */
1809 	} else if (nstate == IEEE80211_S_RUN) {
1810 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1811 
1812 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1813 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1814 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1815 
1816 		/* Initial TX power calibration */
1817 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1818 #ifdef notyet
1819 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1820 #else
1821 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1822 #endif
1823 
1824 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1825 	}
1826 back:
1827 	BWI_UNLOCK(sc);
1828 
1829 	return error;
1830 }
1831 
1832 static int
1833 bwi_media_change(struct ifnet *ifp)
1834 {
1835 	int error = ieee80211_media_change(ifp);
1836 	/* NB: only the fixed rate can change and that doesn't need a reset */
1837 	return (error == ENETRESET ? 0 : error);
1838 }
1839 
1840 static int
1841 bwi_dma_alloc(struct bwi_softc *sc)
1842 {
1843 	int error, i, has_txstats;
1844 	bus_addr_t lowaddr = 0;
1845 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1846 	uint32_t txrx_ctrl_step = 0;
1847 
1848 	has_txstats = 0;
1849 	for (i = 0; i < sc->sc_nmac; ++i) {
1850 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1851 			has_txstats = 1;
1852 			break;
1853 		}
1854 	}
1855 
1856 	switch (sc->sc_bus_space) {
1857 	case BWI_BUS_SPACE_30BIT:
1858 	case BWI_BUS_SPACE_32BIT:
1859 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1860 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1861 		else
1862 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1863 		desc_sz = sizeof(struct bwi_desc32);
1864 		txrx_ctrl_step = 0x20;
1865 
1866 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1867 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1868 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1869 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1870 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1871 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1872 		sc->sc_rxeof = bwi_rxeof32;
1873 		sc->sc_start_tx = bwi_start_tx32;
1874 		if (has_txstats) {
1875 			sc->sc_init_txstats = bwi_init_txstats32;
1876 			sc->sc_free_txstats = bwi_free_txstats32;
1877 			sc->sc_txeof_status = bwi_txeof_status32;
1878 		}
1879 		break;
1880 
1881 	case BWI_BUS_SPACE_64BIT:
1882 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1883 		desc_sz = sizeof(struct bwi_desc64);
1884 		txrx_ctrl_step = 0x40;
1885 
1886 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1887 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1888 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1889 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1890 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1891 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1892 		sc->sc_rxeof = bwi_rxeof64;
1893 		sc->sc_start_tx = bwi_start_tx64;
1894 		if (has_txstats) {
1895 			sc->sc_init_txstats = bwi_init_txstats64;
1896 			sc->sc_free_txstats = bwi_free_txstats64;
1897 			sc->sc_txeof_status = bwi_txeof_status64;
1898 		}
1899 		break;
1900 	}
1901 
1902 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1903 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1904 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1905 
1906 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1907 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1908 
1909 	/*
1910 	 * Create top level DMA tag
1911 	 */
1912 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1913 			       BWI_ALIGN, 0,		/* alignment, bounds */
1914 			       lowaddr,			/* lowaddr */
1915 			       BUS_SPACE_MAXADDR,	/* highaddr */
1916 			       NULL, NULL,		/* filter, filterarg */
1917 			       MAXBSIZE,		/* maxsize */
1918 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1919 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1920 			       BUS_DMA_ALLOCNOW,	/* flags */
1921 			       NULL, NULL,		/* lockfunc, lockarg */
1922 			       &sc->sc_parent_dtag);
1923 	if (error) {
1924 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1925 		return error;
1926 	}
1927 
1928 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1929 
1930 	/*
1931 	 * Create TX ring DMA stuffs
1932 	 */
1933 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1934 				BWI_RING_ALIGN, 0,
1935 				BUS_SPACE_MAXADDR,
1936 				BUS_SPACE_MAXADDR,
1937 				NULL, NULL,
1938 				tx_ring_sz,
1939 				1,
1940 				BUS_SPACE_MAXSIZE_32BIT,
1941 				BUS_DMA_ALLOCNOW,
1942 				NULL, NULL,
1943 				&sc->sc_txring_dtag);
1944 	if (error) {
1945 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1946 		return error;
1947 	}
1948 
1949 	for (i = 0; i < BWI_TX_NRING; ++i) {
1950 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1951 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1952 					   TXRX_CTRL(i));
1953 		if (error) {
1954 			device_printf(sc->sc_dev, "%dth TX ring "
1955 				      "DMA alloc failed\n", i);
1956 			return error;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Create RX ring DMA stuffs
1962 	 */
1963 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1964 				BWI_RING_ALIGN, 0,
1965 				BUS_SPACE_MAXADDR,
1966 				BUS_SPACE_MAXADDR,
1967 				NULL, NULL,
1968 				rx_ring_sz,
1969 				1,
1970 				BUS_SPACE_MAXSIZE_32BIT,
1971 				BUS_DMA_ALLOCNOW,
1972 				NULL, NULL,
1973 				&sc->sc_rxring_dtag);
1974 	if (error) {
1975 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1976 		return error;
1977 	}
1978 
1979 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1980 				   rx_ring_sz, TXRX_CTRL(0));
1981 	if (error) {
1982 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1983 		return error;
1984 	}
1985 
1986 	if (has_txstats) {
1987 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1988 		if (error) {
1989 			device_printf(sc->sc_dev,
1990 				      "TX stats DMA alloc failed\n");
1991 			return error;
1992 		}
1993 	}
1994 
1995 #undef TXRX_CTRL
1996 
1997 	return bwi_dma_mbuf_create(sc);
1998 }
1999 
2000 static void
2001 bwi_dma_free(struct bwi_softc *sc)
2002 {
2003 	if (sc->sc_txring_dtag != NULL) {
2004 		int i;
2005 
2006 		for (i = 0; i < BWI_TX_NRING; ++i) {
2007 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2008 
2009 			if (rd->rdata_desc != NULL) {
2010 				bus_dmamap_unload(sc->sc_txring_dtag,
2011 						  rd->rdata_dmap);
2012 				bus_dmamem_free(sc->sc_txring_dtag,
2013 						rd->rdata_desc,
2014 						rd->rdata_dmap);
2015 			}
2016 		}
2017 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2018 	}
2019 
2020 	if (sc->sc_rxring_dtag != NULL) {
2021 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2022 
2023 		if (rd->rdata_desc != NULL) {
2024 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2025 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2026 					rd->rdata_dmap);
2027 		}
2028 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2029 	}
2030 
2031 	bwi_dma_txstats_free(sc);
2032 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2033 
2034 	if (sc->sc_parent_dtag != NULL)
2035 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2036 }
2037 
2038 static int
2039 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2040 		   struct bwi_ring_data *rd, bus_size_t size,
2041 		   uint32_t txrx_ctrl)
2042 {
2043 	int error;
2044 
2045 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2046 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2047 				 &rd->rdata_dmap);
2048 	if (error) {
2049 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2050 		return error;
2051 	}
2052 
2053 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2054 				bwi_dma_ring_addr, &rd->rdata_paddr,
2055 				BUS_DMA_NOWAIT);
2056 	if (error) {
2057 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2058 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2059 		rd->rdata_desc = NULL;
2060 		return error;
2061 	}
2062 
2063 	rd->rdata_txrx_ctrl = txrx_ctrl;
2064 	return 0;
2065 }
2066 
2067 static int
2068 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2069 		      bus_size_t desc_sz)
2070 {
2071 	struct bwi_txstats_data *st;
2072 	bus_size_t dma_size;
2073 	int error;
2074 
2075 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2076 	if (st == NULL) {
2077 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2078 		return ENOMEM;
2079 	}
2080 	sc->sc_txstats = st;
2081 
2082 	/*
2083 	 * Create TX stats descriptor DMA stuffs
2084 	 */
2085 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2086 
2087 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2088 				BWI_RING_ALIGN,
2089 				0,
2090 				BUS_SPACE_MAXADDR,
2091 				BUS_SPACE_MAXADDR,
2092 				NULL, NULL,
2093 				dma_size,
2094 				1,
2095 				BUS_SPACE_MAXSIZE_32BIT,
2096 				BUS_DMA_ALLOCNOW,
2097 				NULL, NULL,
2098 				&st->stats_ring_dtag);
2099 	if (error) {
2100 		device_printf(sc->sc_dev, "can't create txstats ring "
2101 			      "DMA tag\n");
2102 		return error;
2103 	}
2104 
2105 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2106 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2107 				 &st->stats_ring_dmap);
2108 	if (error) {
2109 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2110 			      "DMA mem\n");
2111 		bus_dma_tag_destroy(st->stats_ring_dtag);
2112 		st->stats_ring_dtag = NULL;
2113 		return error;
2114 	}
2115 
2116 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2117 				st->stats_ring, dma_size,
2118 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2119 				BUS_DMA_NOWAIT);
2120 	if (error) {
2121 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2122 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2123 				st->stats_ring_dmap);
2124 		bus_dma_tag_destroy(st->stats_ring_dtag);
2125 		st->stats_ring_dtag = NULL;
2126 		return error;
2127 	}
2128 
2129 	/*
2130 	 * Create TX stats DMA stuffs
2131 	 */
2132 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2133 			   BWI_ALIGN);
2134 
2135 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2136 				BWI_ALIGN,
2137 				0,
2138 				BUS_SPACE_MAXADDR,
2139 				BUS_SPACE_MAXADDR,
2140 				NULL, NULL,
2141 				dma_size,
2142 				1,
2143 				BUS_SPACE_MAXSIZE_32BIT,
2144 				BUS_DMA_ALLOCNOW,
2145 				NULL, NULL,
2146 				&st->stats_dtag);
2147 	if (error) {
2148 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2149 		return error;
2150 	}
2151 
2152 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2153 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2154 				 &st->stats_dmap);
2155 	if (error) {
2156 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2157 		bus_dma_tag_destroy(st->stats_dtag);
2158 		st->stats_dtag = NULL;
2159 		return error;
2160 	}
2161 
2162 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2163 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2164 				BUS_DMA_NOWAIT);
2165 	if (error) {
2166 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2167 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2168 		bus_dma_tag_destroy(st->stats_dtag);
2169 		st->stats_dtag = NULL;
2170 		return error;
2171 	}
2172 
2173 	st->stats_ctrl_base = ctrl_base;
2174 	return 0;
2175 }
2176 
2177 static void
2178 bwi_dma_txstats_free(struct bwi_softc *sc)
2179 {
2180 	struct bwi_txstats_data *st;
2181 
2182 	if (sc->sc_txstats == NULL)
2183 		return;
2184 	st = sc->sc_txstats;
2185 
2186 	if (st->stats_ring_dtag != NULL) {
2187 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2188 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2189 				st->stats_ring_dmap);
2190 		bus_dma_tag_destroy(st->stats_ring_dtag);
2191 	}
2192 
2193 	if (st->stats_dtag != NULL) {
2194 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2195 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2196 		bus_dma_tag_destroy(st->stats_dtag);
2197 	}
2198 
2199 	free(st, M_DEVBUF);
2200 }
2201 
2202 static void
2203 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2204 {
2205 	KASSERT(nseg == 1, ("too many segments\n"));
2206 	*((bus_addr_t *)arg) = seg->ds_addr;
2207 }
2208 
2209 static int
2210 bwi_dma_mbuf_create(struct bwi_softc *sc)
2211 {
2212 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2213 	int i, j, k, ntx, error;
2214 
2215 	/*
2216 	 * Create TX/RX mbuf DMA tag
2217 	 */
2218 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2219 				1,
2220 				0,
2221 				BUS_SPACE_MAXADDR,
2222 				BUS_SPACE_MAXADDR,
2223 				NULL, NULL,
2224 				MCLBYTES,
2225 				1,
2226 				BUS_SPACE_MAXSIZE_32BIT,
2227 				BUS_DMA_ALLOCNOW,
2228 				NULL, NULL,
2229 				&sc->sc_buf_dtag);
2230 	if (error) {
2231 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2232 		return error;
2233 	}
2234 
2235 	ntx = 0;
2236 
2237 	/*
2238 	 * Create TX mbuf DMA map
2239 	 */
2240 	for (i = 0; i < BWI_TX_NRING; ++i) {
2241 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2242 
2243 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2244 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2245 						  &tbd->tbd_buf[j].tb_dmap);
2246 			if (error) {
2247 				device_printf(sc->sc_dev, "can't create "
2248 					      "%dth tbd, %dth DMA map\n", i, j);
2249 
2250 				ntx = i;
2251 				for (k = 0; k < j; ++k) {
2252 					bus_dmamap_destroy(sc->sc_buf_dtag,
2253 						tbd->tbd_buf[k].tb_dmap);
2254 				}
2255 				goto fail;
2256 			}
2257 		}
2258 	}
2259 	ntx = BWI_TX_NRING;
2260 
2261 	/*
2262 	 * Create RX mbuf DMA map and a spare DMA map
2263 	 */
2264 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2265 				  &rbd->rbd_tmp_dmap);
2266 	if (error) {
2267 		device_printf(sc->sc_dev,
2268 			      "can't create spare RX buf DMA map\n");
2269 		goto fail;
2270 	}
2271 
2272 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2273 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2274 					  &rbd->rbd_buf[j].rb_dmap);
2275 		if (error) {
2276 			device_printf(sc->sc_dev, "can't create %dth "
2277 				      "RX buf DMA map\n", j);
2278 
2279 			for (k = 0; k < j; ++k) {
2280 				bus_dmamap_destroy(sc->sc_buf_dtag,
2281 					rbd->rbd_buf[j].rb_dmap);
2282 			}
2283 			bus_dmamap_destroy(sc->sc_buf_dtag,
2284 					   rbd->rbd_tmp_dmap);
2285 			goto fail;
2286 		}
2287 	}
2288 
2289 	return 0;
2290 fail:
2291 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2292 	return error;
2293 }
2294 
2295 static void
2296 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2297 {
2298 	int i, j;
2299 
2300 	if (sc->sc_buf_dtag == NULL)
2301 		return;
2302 
2303 	for (i = 0; i < ntx; ++i) {
2304 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2305 
2306 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2307 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2308 
2309 			if (tb->tb_mbuf != NULL) {
2310 				bus_dmamap_unload(sc->sc_buf_dtag,
2311 						  tb->tb_dmap);
2312 				m_freem(tb->tb_mbuf);
2313 			}
2314 			if (tb->tb_ni != NULL)
2315 				ieee80211_free_node(tb->tb_ni);
2316 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2317 		}
2318 	}
2319 
2320 	if (nrx) {
2321 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2322 
2323 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2324 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2325 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2326 
2327 			if (rb->rb_mbuf != NULL) {
2328 				bus_dmamap_unload(sc->sc_buf_dtag,
2329 						  rb->rb_dmap);
2330 				m_freem(rb->rb_mbuf);
2331 			}
2332 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2333 		}
2334 	}
2335 
2336 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2337 	sc->sc_buf_dtag = NULL;
2338 }
2339 
2340 static void
2341 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2342 {
2343 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2344 }
2345 
2346 static void
2347 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2348 {
2349 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2350 }
2351 
2352 static int
2353 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2354 {
2355 	struct bwi_ring_data *rd;
2356 	struct bwi_txbuf_data *tbd;
2357 	uint32_t val, addr_hi, addr_lo;
2358 
2359 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2360 	rd = &sc->sc_tx_rdata[ring_idx];
2361 	tbd = &sc->sc_tx_bdata[ring_idx];
2362 
2363 	tbd->tbd_idx = 0;
2364 	tbd->tbd_used = 0;
2365 
2366 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2367 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2368 			BUS_DMASYNC_PREWRITE);
2369 
2370 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2371 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2372 
2373 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2374 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2375 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2376 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2377 
2378 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2379 	      BWI_TXRX32_CTRL_ENABLE;
2380 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2381 
2382 	return 0;
2383 }
2384 
2385 static void
2386 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2387 		       bus_addr_t paddr, int hdr_size, int ndesc)
2388 {
2389 	uint32_t val, addr_hi, addr_lo;
2390 
2391 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2392 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2393 
2394 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2395 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2396 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2397 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2398 
2399 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2400 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2401 	      BWI_TXRX32_CTRL_ENABLE;
2402 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2403 
2404 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2405 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2406 }
2407 
2408 static int
2409 bwi_init_rx_ring32(struct bwi_softc *sc)
2410 {
2411 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2412 	int i, error;
2413 
2414 	sc->sc_rx_bdata.rbd_idx = 0;
2415 
2416 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2417 		error = bwi_newbuf(sc, i, 1);
2418 		if (error) {
2419 			device_printf(sc->sc_dev,
2420 				  "can't allocate %dth RX buffer\n", i);
2421 			return error;
2422 		}
2423 	}
2424 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2425 			BUS_DMASYNC_PREWRITE);
2426 
2427 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2428 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2429 	return 0;
2430 }
2431 
2432 static int
2433 bwi_init_txstats32(struct bwi_softc *sc)
2434 {
2435 	struct bwi_txstats_data *st = sc->sc_txstats;
2436 	bus_addr_t stats_paddr;
2437 	int i;
2438 
2439 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2440 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2441 
2442 	st->stats_idx = 0;
2443 
2444 	stats_paddr = st->stats_paddr;
2445 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2446 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2447 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2448 		stats_paddr += sizeof(struct bwi_txstats);
2449 	}
2450 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2451 			BUS_DMASYNC_PREWRITE);
2452 
2453 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2454 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2455 	return 0;
2456 }
2457 
2458 static void
2459 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2460 		    int buf_len)
2461 {
2462 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2463 
2464 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2465 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2466 			 paddr, buf_len, 0);
2467 }
2468 
2469 static void
2470 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2471 		    int buf_idx, bus_addr_t paddr, int buf_len)
2472 {
2473 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2474 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2475 			 paddr, buf_len, 1);
2476 }
2477 
2478 static int
2479 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2480 {
2481 	/* TODO:64 */
2482 	return EOPNOTSUPP;
2483 }
2484 
2485 static int
2486 bwi_init_rx_ring64(struct bwi_softc *sc)
2487 {
2488 	/* TODO:64 */
2489 	return EOPNOTSUPP;
2490 }
2491 
2492 static int
2493 bwi_init_txstats64(struct bwi_softc *sc)
2494 {
2495 	/* TODO:64 */
2496 	return EOPNOTSUPP;
2497 }
2498 
2499 static void
2500 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2501 		    int buf_len)
2502 {
2503 	/* TODO:64 */
2504 }
2505 
2506 static void
2507 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2508 		    int buf_idx, bus_addr_t paddr, int buf_len)
2509 {
2510 	/* TODO:64 */
2511 }
2512 
2513 static void
2514 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2515 		 bus_size_t mapsz __unused, int error)
2516 {
2517         if (!error) {
2518 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2519 		*((bus_addr_t *)arg) = seg->ds_addr;
2520 	}
2521 }
2522 
2523 static int
2524 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2525 {
2526 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2527 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2528 	struct bwi_rxbuf_hdr *hdr;
2529 	bus_dmamap_t map;
2530 	bus_addr_t paddr;
2531 	struct mbuf *m;
2532 	int error;
2533 
2534 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2535 
2536 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2537 	if (m == NULL) {
2538 		error = ENOBUFS;
2539 
2540 		/*
2541 		 * If the NIC is up and running, we need to:
2542 		 * - Clear RX buffer's header.
2543 		 * - Restore RX descriptor settings.
2544 		 */
2545 		if (init)
2546 			return error;
2547 		else
2548 			goto back;
2549 	}
2550 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2551 
2552 	/*
2553 	 * Try to load RX buf into temporary DMA map
2554 	 */
2555 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2556 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2557 	if (error) {
2558 		m_freem(m);
2559 
2560 		/*
2561 		 * See the comment above
2562 		 */
2563 		if (init)
2564 			return error;
2565 		else
2566 			goto back;
2567 	}
2568 
2569 	if (!init)
2570 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2571 	rxbuf->rb_mbuf = m;
2572 	rxbuf->rb_paddr = paddr;
2573 
2574 	/*
2575 	 * Swap RX buf's DMA map with the loaded temporary one
2576 	 */
2577 	map = rxbuf->rb_dmap;
2578 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2579 	rbd->rbd_tmp_dmap = map;
2580 
2581 back:
2582 	/*
2583 	 * Clear RX buf header
2584 	 */
2585 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2586 	bzero(hdr, sizeof(*hdr));
2587 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2588 
2589 	/*
2590 	 * Setup RX buf descriptor
2591 	 */
2592 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2593 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2594 	return error;
2595 }
2596 
2597 static void
2598 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2599 		    const uint8_t *addr)
2600 {
2601 	int i;
2602 
2603 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2604 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2605 
2606 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2607 		uint16_t addr_val;
2608 
2609 		addr_val = (uint16_t)addr[i * 2] |
2610 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2611 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2612 	}
2613 }
2614 
2615 static int
2616 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2617 {
2618 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2619 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2620 	struct ifnet *ifp = sc->sc_ifp;
2621 	struct ieee80211com *ic = ifp->if_l2com;
2622 	int idx, rx_data = 0;
2623 
2624 	idx = rbd->rbd_idx;
2625 	while (idx != end_idx) {
2626 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2627 		struct bwi_rxbuf_hdr *hdr;
2628 		struct ieee80211_frame_min *wh;
2629 		struct ieee80211_node *ni;
2630 		struct mbuf *m;
2631 		uint32_t plcp;
2632 		uint16_t flags2;
2633 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2634 
2635 		m = rb->rb_mbuf;
2636 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2637 				BUS_DMASYNC_POSTREAD);
2638 
2639 		if (bwi_newbuf(sc, idx, 0)) {
2640 			ifp->if_ierrors++;
2641 			goto next;
2642 		}
2643 
2644 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2645 		flags2 = le16toh(hdr->rxh_flags2);
2646 
2647 		hdr_extra = 0;
2648 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2649 			hdr_extra = 2;
2650 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2651 
2652 		buflen = le16toh(hdr->rxh_buflen);
2653 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2654 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2655 				  __func__, hdr_extra);
2656 			ifp->if_ierrors++;
2657 			m_freem(m);
2658 			goto next;
2659 		}
2660 
2661 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2662 		rssi = bwi_calc_rssi(sc, hdr);
2663 		noise = bwi_calc_noise(sc);
2664 
2665 		m->m_pkthdr.rcvif = ifp;
2666 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2667 		m_adj(m, sizeof(*hdr) + wh_ofs);
2668 
2669 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2670 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2671 		else
2672 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2673 
2674 		/* RX radio tap */
2675 		if (ieee80211_radiotap_active(ic))
2676 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2677 
2678 		m_adj(m, -IEEE80211_CRC_LEN);
2679 
2680 		BWI_UNLOCK(sc);
2681 
2682 		wh = mtod(m, struct ieee80211_frame_min *);
2683 		ni = ieee80211_find_rxnode(ic, wh);
2684 		if (ni != NULL) {
2685 			type = ieee80211_input(ni, m, rssi - noise, noise);
2686 			ieee80211_free_node(ni);
2687 		} else
2688 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2689 		if (type == IEEE80211_FC0_TYPE_DATA) {
2690 			rx_data = 1;
2691 			sc->sc_rx_rate = rate;
2692 		}
2693 
2694 		BWI_LOCK(sc);
2695 next:
2696 		idx = (idx + 1) % BWI_RX_NDESC;
2697 
2698 		if (sc->sc_flags & BWI_F_STOP) {
2699 			/*
2700 			 * Take the fast lane, don't do
2701 			 * any damage to softc
2702 			 */
2703 			return -1;
2704 		}
2705 	}
2706 
2707 	rbd->rbd_idx = idx;
2708 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2709 			BUS_DMASYNC_PREWRITE);
2710 
2711 	return rx_data;
2712 }
2713 
2714 static int
2715 bwi_rxeof32(struct bwi_softc *sc)
2716 {
2717 	uint32_t val, rx_ctrl;
2718 	int end_idx, rx_data;
2719 
2720 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2721 
2722 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2723 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2724 		  sizeof(struct bwi_desc32);
2725 
2726 	rx_data = bwi_rxeof(sc, end_idx);
2727 	if (rx_data >= 0) {
2728 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2729 			    end_idx * sizeof(struct bwi_desc32));
2730 	}
2731 	return rx_data;
2732 }
2733 
2734 static int
2735 bwi_rxeof64(struct bwi_softc *sc)
2736 {
2737 	/* TODO:64 */
2738 	return 0;
2739 }
2740 
2741 static void
2742 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2743 {
2744 	int i;
2745 
2746 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2747 
2748 #define NRETRY 10
2749 
2750 	for (i = 0; i < NRETRY; ++i) {
2751 		uint32_t status;
2752 
2753 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2754 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2755 		    BWI_RX32_STATUS_STATE_DISABLED)
2756 			break;
2757 
2758 		DELAY(1000);
2759 	}
2760 	if (i == NRETRY)
2761 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2762 
2763 #undef NRETRY
2764 
2765 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2766 }
2767 
2768 static void
2769 bwi_free_txstats32(struct bwi_softc *sc)
2770 {
2771 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2772 }
2773 
2774 static void
2775 bwi_free_rx_ring32(struct bwi_softc *sc)
2776 {
2777 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2778 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2779 	int i;
2780 
2781 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2782 
2783 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2784 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2785 
2786 		if (rb->rb_mbuf != NULL) {
2787 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2788 			m_freem(rb->rb_mbuf);
2789 			rb->rb_mbuf = NULL;
2790 		}
2791 	}
2792 }
2793 
2794 static void
2795 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2796 {
2797 	struct bwi_ring_data *rd;
2798 	struct bwi_txbuf_data *tbd;
2799 	struct ifnet *ifp = sc->sc_ifp;
2800 	uint32_t state, val;
2801 	int i;
2802 
2803 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2804 	rd = &sc->sc_tx_rdata[ring_idx];
2805 	tbd = &sc->sc_tx_bdata[ring_idx];
2806 
2807 #define NRETRY 10
2808 
2809 	for (i = 0; i < NRETRY; ++i) {
2810 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2811 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2812 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2813 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2814 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2815 			break;
2816 
2817 		DELAY(1000);
2818 	}
2819 	if (i == NRETRY) {
2820 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2821 			  __func__, ring_idx);
2822 	}
2823 
2824 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2825 	for (i = 0; i < NRETRY; ++i) {
2826 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2827 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2828 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2829 			break;
2830 
2831 		DELAY(1000);
2832 	}
2833 	if (i == NRETRY)
2834 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2835 		     __func__, ring_idx);
2836 
2837 #undef NRETRY
2838 
2839 	DELAY(1000);
2840 
2841 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2842 
2843 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2844 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2845 
2846 		if (tb->tb_mbuf != NULL) {
2847 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2848 			m_freem(tb->tb_mbuf);
2849 			tb->tb_mbuf = NULL;
2850 		}
2851 		if (tb->tb_ni != NULL) {
2852 			ieee80211_free_node(tb->tb_ni);
2853 			tb->tb_ni = NULL;
2854 		}
2855 	}
2856 }
2857 
2858 static void
2859 bwi_free_txstats64(struct bwi_softc *sc)
2860 {
2861 	/* TODO:64 */
2862 }
2863 
2864 static void
2865 bwi_free_rx_ring64(struct bwi_softc *sc)
2866 {
2867 	/* TODO:64 */
2868 }
2869 
2870 static void
2871 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2872 {
2873 	/* TODO:64 */
2874 }
2875 
2876 /* XXX does not belong here */
2877 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2878 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2879 
2880 static __inline void
2881 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2882 {
2883 	uint32_t plcp;
2884 
2885 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2886 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2887 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2888 	*plcp0 = htole32(plcp);
2889 }
2890 
2891 static __inline void
2892 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2893 		   uint8_t rate)
2894 {
2895 	int len, service, pkt_bitlen;
2896 
2897 	pkt_bitlen = pkt_len * NBBY;
2898 	len = howmany(pkt_bitlen * 2, rate);
2899 
2900 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2901 	if (rate == (11 * 2)) {
2902 		int pkt_bitlen1;
2903 
2904 		/*
2905 		 * PLCP service field needs to be adjusted,
2906 		 * if TX rate is 11Mbytes/s
2907 		 */
2908 		pkt_bitlen1 = len * 11;
2909 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2910 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2911 	}
2912 
2913 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2914 	plcp->i_service = service;
2915 	plcp->i_length = htole16(len);
2916 	/* NOTE: do NOT touch i_crc */
2917 }
2918 
2919 static __inline void
2920 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2921 	void *plcp, int pkt_len, uint8_t rate)
2922 {
2923 	enum ieee80211_phytype modtype;
2924 
2925 	/*
2926 	 * Assume caller has zeroed 'plcp'
2927 	 */
2928 	modtype = ieee80211_rate2phytype(rt, rate);
2929 	if (modtype == IEEE80211_T_OFDM)
2930 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2931 	else if (modtype == IEEE80211_T_DS)
2932 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2933 	else
2934 		panic("unsupport modulation type %u\n", modtype);
2935 }
2936 
2937 static int
2938 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2939 	  struct ieee80211_node *ni)
2940 {
2941 	struct ieee80211vap *vap = ni->ni_vap;
2942 	struct ifnet *ifp = sc->sc_ifp;
2943 	struct ieee80211com *ic = ifp->if_l2com;
2944 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2945 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2946 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2947 	struct bwi_mac *mac;
2948 	struct bwi_txbuf_hdr *hdr;
2949 	struct ieee80211_frame *wh;
2950 	const struct ieee80211_txparam *tp;
2951 	uint8_t rate, rate_fb;
2952 	uint32_t mac_ctrl;
2953 	uint16_t phy_ctrl;
2954 	bus_addr_t paddr;
2955 	int type, ismcast, pkt_len, error, rix;
2956 #if 0
2957 	const uint8_t *p;
2958 	int i;
2959 #endif
2960 
2961 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2962 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2963 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2964 
2965 	wh = mtod(m, struct ieee80211_frame *);
2966 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2967 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2968 
2969 	/* Get 802.11 frame len before prepending TX header */
2970 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2971 
2972 	/*
2973 	 * Find TX rate
2974 	 */
2975 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2976 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2977 		rate = rate_fb = tp->mgmtrate;
2978 	} else if (ismcast) {
2979 		rate = rate_fb = tp->mcastrate;
2980 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2981 		rate = rate_fb = tp->ucastrate;
2982 	} else {
2983 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2984 		rate = ni->ni_txrate;
2985 
2986 		if (rix > 0) {
2987 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2988 				  IEEE80211_RATE_VAL;
2989 		} else {
2990 			rate_fb = rate;
2991 		}
2992 	}
2993 	tb->tb_rate[0] = rate;
2994 	tb->tb_rate[1] = rate_fb;
2995 	sc->sc_tx_rate = rate;
2996 
2997 	/*
2998 	 * TX radio tap
2999 	 */
3000 	if (ieee80211_radiotap_active_vap(vap)) {
3001 		sc->sc_tx_th.wt_flags = 0;
3002 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3003 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3004 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3005 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3006 		    rate != (1 * 2)) {
3007 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3008 		}
3009 		sc->sc_tx_th.wt_rate = rate;
3010 
3011 		ieee80211_radiotap_tx(vap, m);
3012 	}
3013 
3014 	/*
3015 	 * Setup the embedded TX header
3016 	 */
3017 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3018 	if (m == NULL) {
3019 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3020 		return ENOBUFS;
3021 	}
3022 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3023 
3024 	bzero(hdr, sizeof(*hdr));
3025 
3026 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3027 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3028 
3029 	if (!ismcast) {
3030 		uint16_t dur;
3031 
3032 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3033 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3034 
3035 		hdr->txh_fb_duration = htole16(dur);
3036 	}
3037 
3038 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3039 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3040 
3041 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3042 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3043 
3044 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3045 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3046 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3047 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3048 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3049 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3050 
3051 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3052 	if (!ismcast)
3053 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3054 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3055 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3056 
3057 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3058 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3059 
3060 	/* Catch any further usage */
3061 	hdr = NULL;
3062 	wh = NULL;
3063 
3064 	/* DMA load */
3065 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3066 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3067 	if (error && error != EFBIG) {
3068 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3069 		    __func__, error);
3070 		goto back;
3071 	}
3072 
3073 	if (error) {	/* error == EFBIG */
3074 		struct mbuf *m_new;
3075 
3076 		m_new = m_defrag(m, M_DONTWAIT);
3077 		if (m_new == NULL) {
3078 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3079 			    __func__);
3080 			error = ENOBUFS;
3081 			goto back;
3082 		} else {
3083 			m = m_new;
3084 		}
3085 
3086 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3087 					     bwi_dma_buf_addr, &paddr,
3088 					     BUS_DMA_NOWAIT);
3089 		if (error) {
3090 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3091 			    __func__, error);
3092 			goto back;
3093 		}
3094 	}
3095 	error = 0;
3096 
3097 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3098 
3099 	tb->tb_mbuf = m;
3100 	tb->tb_ni = ni;
3101 
3102 #if 0
3103 	p = mtod(m, const uint8_t *);
3104 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3105 		if (i != 0 && i % 8 == 0)
3106 			printf("\n");
3107 		printf("%02x ", p[i]);
3108 	}
3109 	printf("\n");
3110 #endif
3111 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3112 		idx, pkt_len, m->m_pkthdr.len);
3113 
3114 	/* Setup TX descriptor */
3115 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3116 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3117 			BUS_DMASYNC_PREWRITE);
3118 
3119 	/* Kick start */
3120 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3121 
3122 back:
3123 	if (error)
3124 		m_freem(m);
3125 	return error;
3126 }
3127 
3128 static int
3129 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3130 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3131 {
3132 	struct ifnet *ifp = sc->sc_ifp;
3133 	struct ieee80211vap *vap = ni->ni_vap;
3134 	struct ieee80211com *ic = ni->ni_ic;
3135 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3136 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3137 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3138 	struct bwi_mac *mac;
3139 	struct bwi_txbuf_hdr *hdr;
3140 	struct ieee80211_frame *wh;
3141 	uint8_t rate, rate_fb;
3142 	uint32_t mac_ctrl;
3143 	uint16_t phy_ctrl;
3144 	bus_addr_t paddr;
3145 	int ismcast, pkt_len, error;
3146 
3147 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3148 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3149 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3150 
3151 	wh = mtod(m, struct ieee80211_frame *);
3152 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3153 
3154 	/* Get 802.11 frame len before prepending TX header */
3155 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3156 
3157 	/*
3158 	 * Find TX rate
3159 	 */
3160 	rate = params->ibp_rate0;
3161 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3162 		/* XXX fall back to mcast/mgmt rate? */
3163 		m_freem(m);
3164 		return EINVAL;
3165 	}
3166 	if (params->ibp_try1 != 0) {
3167 		rate_fb = params->ibp_rate1;
3168 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3169 			/* XXX fall back to rate0? */
3170 			m_freem(m);
3171 			return EINVAL;
3172 		}
3173 	} else
3174 		rate_fb = rate;
3175 	tb->tb_rate[0] = rate;
3176 	tb->tb_rate[1] = rate_fb;
3177 	sc->sc_tx_rate = rate;
3178 
3179 	/*
3180 	 * TX radio tap
3181 	 */
3182 	if (ieee80211_radiotap_active_vap(vap)) {
3183 		sc->sc_tx_th.wt_flags = 0;
3184 		/* XXX IEEE80211_BPF_CRYPTO */
3185 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3186 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3187 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3188 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3189 		sc->sc_tx_th.wt_rate = rate;
3190 
3191 		ieee80211_radiotap_tx(vap, m);
3192 	}
3193 
3194 	/*
3195 	 * Setup the embedded TX header
3196 	 */
3197 	M_PREPEND(m, sizeof(*hdr), M_DONTWAIT);
3198 	if (m == NULL) {
3199 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3200 		return ENOBUFS;
3201 	}
3202 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3203 
3204 	bzero(hdr, sizeof(*hdr));
3205 
3206 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3207 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3208 
3209 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3210 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3211 		uint16_t dur;
3212 
3213 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3214 
3215 		hdr->txh_fb_duration = htole16(dur);
3216 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3217 	}
3218 
3219 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3220 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3221 
3222 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3223 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3224 
3225 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3226 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3227 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3228 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3229 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3230 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3231 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3232 
3233 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3234 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3235 
3236 	/* Catch any further usage */
3237 	hdr = NULL;
3238 	wh = NULL;
3239 
3240 	/* DMA load */
3241 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3242 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3243 	if (error != 0) {
3244 		struct mbuf *m_new;
3245 
3246 		if (error != EFBIG) {
3247 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3248 			    __func__, error);
3249 			goto back;
3250 		}
3251 		m_new = m_defrag(m, M_DONTWAIT);
3252 		if (m_new == NULL) {
3253 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3254 			    __func__);
3255 			error = ENOBUFS;
3256 			goto back;
3257 		}
3258 		m = m_new;
3259 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3260 					     bwi_dma_buf_addr, &paddr,
3261 					     BUS_DMA_NOWAIT);
3262 		if (error) {
3263 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3264 			    __func__, error);
3265 			goto back;
3266 		}
3267 	}
3268 
3269 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3270 
3271 	tb->tb_mbuf = m;
3272 	tb->tb_ni = ni;
3273 
3274 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3275 		idx, pkt_len, m->m_pkthdr.len);
3276 
3277 	/* Setup TX descriptor */
3278 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3279 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3280 			BUS_DMASYNC_PREWRITE);
3281 
3282 	/* Kick start */
3283 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3284 back:
3285 	if (error)
3286 		m_freem(m);
3287 	return error;
3288 }
3289 
3290 static void
3291 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3292 {
3293 	idx = (idx + 1) % BWI_TX_NDESC;
3294 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3295 		    idx * sizeof(struct bwi_desc32));
3296 }
3297 
3298 static void
3299 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3300 {
3301 	/* TODO:64 */
3302 }
3303 
3304 static void
3305 bwi_txeof_status32(struct bwi_softc *sc)
3306 {
3307 	struct ifnet *ifp = sc->sc_ifp;
3308 	uint32_t val, ctrl_base;
3309 	int end_idx;
3310 
3311 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3312 
3313 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3314 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3315 		  sizeof(struct bwi_desc32);
3316 
3317 	bwi_txeof_status(sc, end_idx);
3318 
3319 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3320 		    end_idx * sizeof(struct bwi_desc32));
3321 
3322 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3323 		ifp->if_start(ifp);
3324 }
3325 
3326 static void
3327 bwi_txeof_status64(struct bwi_softc *sc)
3328 {
3329 	/* TODO:64 */
3330 }
3331 
3332 static void
3333 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3334 {
3335 	struct ifnet *ifp = sc->sc_ifp;
3336 	struct bwi_txbuf_data *tbd;
3337 	struct bwi_txbuf *tb;
3338 	int ring_idx, buf_idx;
3339 	struct ieee80211_node *ni;
3340 	struct ieee80211vap *vap;
3341 
3342 	if (tx_id == 0) {
3343 		if_printf(ifp, "%s: zero tx id\n", __func__);
3344 		return;
3345 	}
3346 
3347 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3348 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3349 
3350 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3351 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3352 
3353 	tbd = &sc->sc_tx_bdata[ring_idx];
3354 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3355 	tbd->tbd_used--;
3356 
3357 	tb = &tbd->tbd_buf[buf_idx];
3358 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3359 		"acked %d, data_txcnt %d, ni %p\n",
3360 		buf_idx, acked, data_txcnt, tb->tb_ni);
3361 
3362 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3363 
3364 	ni = tb->tb_ni;
3365 	if (tb->tb_ni != NULL) {
3366 		const struct bwi_txbuf_hdr *hdr =
3367 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3368 		vap = ni->ni_vap;
3369 
3370 		/* NB: update rate control only for unicast frames */
3371 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3372 			/*
3373 			 * Feed back 'acked and data_txcnt'.  Note that the
3374 			 * generic AMRR code only understands one tx rate
3375 			 * and the estimator doesn't handle real retry counts
3376 			 * well so to avoid over-aggressive downshifting we
3377 			 * treat any number of retries as "1".
3378 			 */
3379 			ieee80211_ratectl_tx_complete(vap, ni,
3380 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3381 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3382 		}
3383 
3384 		/*
3385 		 * Do any tx complete callback.  Note this must
3386 		 * be done before releasing the node reference.
3387 		 */
3388 		if (tb->tb_mbuf->m_flags & M_TXCB)
3389 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3390 
3391 		ieee80211_free_node(tb->tb_ni);
3392 		tb->tb_ni = NULL;
3393 	}
3394 	m_freem(tb->tb_mbuf);
3395 	tb->tb_mbuf = NULL;
3396 
3397 	if (tbd->tbd_used == 0)
3398 		sc->sc_tx_timer = 0;
3399 
3400 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3401 }
3402 
3403 static void
3404 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3405 {
3406 	struct bwi_txstats_data *st = sc->sc_txstats;
3407 	int idx;
3408 
3409 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3410 
3411 	idx = st->stats_idx;
3412 	while (idx != end_idx) {
3413 		const struct bwi_txstats *stats = &st->stats[idx];
3414 
3415 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3416 			int data_txcnt;
3417 
3418 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3419 						BWI_TXS_TXCNT_DATA);
3420 			_bwi_txeof(sc, le16toh(stats->txs_id),
3421 				   stats->txs_flags & BWI_TXS_F_ACKED,
3422 				   data_txcnt);
3423 		}
3424 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3425 	}
3426 	st->stats_idx = idx;
3427 }
3428 
3429 static void
3430 bwi_txeof(struct bwi_softc *sc)
3431 {
3432 	struct ifnet *ifp = sc->sc_ifp;
3433 
3434 	for (;;) {
3435 		uint32_t tx_status0, tx_status1;
3436 		uint16_t tx_id;
3437 		int data_txcnt;
3438 
3439 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3440 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3441 			break;
3442 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3443 
3444 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3445 		data_txcnt = __SHIFTOUT(tx_status0,
3446 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3447 
3448 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3449 			continue;
3450 
3451 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3452 		    data_txcnt);
3453 	}
3454 
3455 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3456 		ifp->if_start(ifp);
3457 }
3458 
3459 static int
3460 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3461 {
3462 	bwi_power_on(sc, 1);
3463 	return bwi_set_clock_mode(sc, clk_mode);
3464 }
3465 
3466 static void
3467 bwi_bbp_power_off(struct bwi_softc *sc)
3468 {
3469 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3470 	bwi_power_off(sc, 1);
3471 }
3472 
3473 static int
3474 bwi_get_pwron_delay(struct bwi_softc *sc)
3475 {
3476 	struct bwi_regwin *com, *old;
3477 	struct bwi_clock_freq freq;
3478 	uint32_t val;
3479 	int error;
3480 
3481 	com = &sc->sc_com_regwin;
3482 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3483 
3484 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3485 		return 0;
3486 
3487 	error = bwi_regwin_switch(sc, com, &old);
3488 	if (error)
3489 		return error;
3490 
3491 	bwi_get_clock_freq(sc, &freq);
3492 
3493 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3494 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3495 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3496 
3497 	return bwi_regwin_switch(sc, old, NULL);
3498 }
3499 
3500 static int
3501 bwi_bus_attach(struct bwi_softc *sc)
3502 {
3503 	struct bwi_regwin *bus, *old;
3504 	int error;
3505 
3506 	bus = &sc->sc_bus_regwin;
3507 
3508 	error = bwi_regwin_switch(sc, bus, &old);
3509 	if (error)
3510 		return error;
3511 
3512 	if (!bwi_regwin_is_enabled(sc, bus))
3513 		bwi_regwin_enable(sc, bus, 0);
3514 
3515 	/* Disable interripts */
3516 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3517 
3518 	return bwi_regwin_switch(sc, old, NULL);
3519 }
3520 
3521 static const char *
3522 bwi_regwin_name(const struct bwi_regwin *rw)
3523 {
3524 	switch (rw->rw_type) {
3525 	case BWI_REGWIN_T_COM:
3526 		return "COM";
3527 	case BWI_REGWIN_T_BUSPCI:
3528 		return "PCI";
3529 	case BWI_REGWIN_T_MAC:
3530 		return "MAC";
3531 	case BWI_REGWIN_T_BUSPCIE:
3532 		return "PCIE";
3533 	}
3534 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3535 	return NULL;
3536 }
3537 
3538 static uint32_t
3539 bwi_regwin_disable_bits(struct bwi_softc *sc)
3540 {
3541 	uint32_t busrev;
3542 
3543 	/* XXX cache this */
3544 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3545 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3546 		"bus rev %u\n", busrev);
3547 
3548 	if (busrev == BWI_BUSREV_0)
3549 		return BWI_STATE_LO_DISABLE1;
3550 	else if (busrev == BWI_BUSREV_1)
3551 		return BWI_STATE_LO_DISABLE2;
3552 	else
3553 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3554 }
3555 
3556 int
3557 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3558 {
3559 	uint32_t val, disable_bits;
3560 
3561 	disable_bits = bwi_regwin_disable_bits(sc);
3562 	val = CSR_READ_4(sc, BWI_STATE_LO);
3563 
3564 	if ((val & (BWI_STATE_LO_CLOCK |
3565 		    BWI_STATE_LO_RESET |
3566 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3567 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3568 			bwi_regwin_name(rw));
3569 		return 1;
3570 	} else {
3571 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3572 			bwi_regwin_name(rw));
3573 		return 0;
3574 	}
3575 }
3576 
3577 void
3578 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3579 {
3580 	uint32_t state_lo, disable_bits;
3581 	int i;
3582 
3583 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3584 
3585 	/*
3586 	 * If current regwin is in 'reset' state, it was already disabled.
3587 	 */
3588 	if (state_lo & BWI_STATE_LO_RESET) {
3589 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3590 			"%s was already disabled\n", bwi_regwin_name(rw));
3591 		return;
3592 	}
3593 
3594 	disable_bits = bwi_regwin_disable_bits(sc);
3595 
3596 	/*
3597 	 * Disable normal clock
3598 	 */
3599 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3600 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3601 
3602 	/*
3603 	 * Wait until normal clock is disabled
3604 	 */
3605 #define NRETRY	1000
3606 	for (i = 0; i < NRETRY; ++i) {
3607 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3608 		if (state_lo & disable_bits)
3609 			break;
3610 		DELAY(10);
3611 	}
3612 	if (i == NRETRY) {
3613 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3614 			      bwi_regwin_name(rw));
3615 	}
3616 
3617 	for (i = 0; i < NRETRY; ++i) {
3618 		uint32_t state_hi;
3619 
3620 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3621 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3622 			break;
3623 		DELAY(10);
3624 	}
3625 	if (i == NRETRY) {
3626 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3627 			      bwi_regwin_name(rw));
3628 	}
3629 #undef NRETRY
3630 
3631 	/*
3632 	 * Reset and disable regwin with gated clock
3633 	 */
3634 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3635 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3636 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3637 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3638 
3639 	/* Flush pending bus write */
3640 	CSR_READ_4(sc, BWI_STATE_LO);
3641 	DELAY(1);
3642 
3643 	/* Reset and disable regwin */
3644 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3645 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3646 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3647 
3648 	/* Flush pending bus write */
3649 	CSR_READ_4(sc, BWI_STATE_LO);
3650 	DELAY(1);
3651 }
3652 
3653 void
3654 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3655 {
3656 	uint32_t state_lo, state_hi, imstate;
3657 
3658 	bwi_regwin_disable(sc, rw, flags);
3659 
3660 	/* Reset regwin with gated clock */
3661 	state_lo = BWI_STATE_LO_RESET |
3662 		   BWI_STATE_LO_CLOCK |
3663 		   BWI_STATE_LO_GATED_CLOCK |
3664 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3665 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3666 
3667 	/* Flush pending bus write */
3668 	CSR_READ_4(sc, BWI_STATE_LO);
3669 	DELAY(1);
3670 
3671 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3672 	if (state_hi & BWI_STATE_HI_SERROR)
3673 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3674 
3675 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3676 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3677 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3678 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3679 	}
3680 
3681 	/* Enable regwin with gated clock */
3682 	state_lo = BWI_STATE_LO_CLOCK |
3683 		   BWI_STATE_LO_GATED_CLOCK |
3684 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3685 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3686 
3687 	/* Flush pending bus write */
3688 	CSR_READ_4(sc, BWI_STATE_LO);
3689 	DELAY(1);
3690 
3691 	/* Enable regwin with normal clock */
3692 	state_lo = BWI_STATE_LO_CLOCK |
3693 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3694 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3695 
3696 	/* Flush pending bus write */
3697 	CSR_READ_4(sc, BWI_STATE_LO);
3698 	DELAY(1);
3699 }
3700 
3701 static void
3702 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3703 {
3704 	struct ifnet *ifp = sc->sc_ifp;
3705 	struct bwi_mac *mac;
3706 	struct bwi_myaddr_bssid buf;
3707 	const uint8_t *p;
3708 	uint32_t val;
3709 	int n, i;
3710 
3711 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3712 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3713 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3714 
3715 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3716 
3717 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3718 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3719 
3720 	n = sizeof(buf) / sizeof(val);
3721 	p = (const uint8_t *)&buf;
3722 	for (i = 0; i < n; ++i) {
3723 		int j;
3724 
3725 		val = 0;
3726 		for (j = 0; j < sizeof(val); ++j)
3727 			val |= ((uint32_t)(*p++)) << (j * 8);
3728 
3729 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3730 	}
3731 }
3732 
3733 static void
3734 bwi_updateslot(struct ifnet *ifp)
3735 {
3736 	struct bwi_softc *sc = ifp->if_softc;
3737 	struct ieee80211com *ic = ifp->if_l2com;
3738 	struct bwi_mac *mac;
3739 
3740 	BWI_LOCK(sc);
3741 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3742 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3743 
3744 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3745 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3746 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3747 
3748 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3749 	}
3750 	BWI_UNLOCK(sc);
3751 }
3752 
3753 static void
3754 bwi_calibrate(void *xsc)
3755 {
3756 	struct bwi_softc *sc = xsc;
3757 #ifdef INVARIANTS
3758 	struct ifnet *ifp = sc->sc_ifp;
3759 	struct ieee80211com *ic = ifp->if_l2com;
3760 #endif
3761 	struct bwi_mac *mac;
3762 
3763 	BWI_ASSERT_LOCKED(sc);
3764 
3765 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3766 	    ("opmode %d", ic->ic_opmode));
3767 
3768 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3769 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3770 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3771 
3772 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3773 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3774 
3775 	/* XXX 15 seconds */
3776 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3777 }
3778 
3779 static int
3780 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3781 {
3782 	struct bwi_mac *mac;
3783 
3784 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3785 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3786 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3787 
3788 	return bwi_rf_calc_rssi(mac, hdr);
3789 }
3790 
3791 static int
3792 bwi_calc_noise(struct bwi_softc *sc)
3793 {
3794 	struct bwi_mac *mac;
3795 
3796 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3797 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3798 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3799 
3800 	return bwi_rf_calc_noise(mac);
3801 }
3802 
3803 static __inline uint8_t
3804 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3805 {
3806 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3807 	return (ieee80211_plcp2rate(plcp, type));
3808 }
3809 
3810 static void
3811 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3812     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3813 {
3814 	const struct ieee80211_frame_min *wh;
3815 
3816 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3817 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3818 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3819 
3820 	wh = mtod(m, const struct ieee80211_frame_min *);
3821 	if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3822 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3823 
3824 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3825 	sc->sc_rx_th.wr_rate = rate;
3826 	sc->sc_rx_th.wr_antsignal = rssi;
3827 	sc->sc_rx_th.wr_antnoise = noise;
3828 }
3829 
3830 static void
3831 bwi_led_attach(struct bwi_softc *sc)
3832 {
3833 	const uint8_t *led_act = NULL;
3834 	uint16_t gpio, val[BWI_LED_MAX];
3835 	int i;
3836 
3837 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3838 
3839 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3840 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3841 			led_act = bwi_vendor_led_act[i].led_act;
3842 			break;
3843 		}
3844 	}
3845 	if (led_act == NULL)
3846 		led_act = bwi_default_led_act;
3847 
3848 #undef N
3849 
3850 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3851 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3852 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3853 
3854 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3855 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3856 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3857 
3858 	for (i = 0; i < BWI_LED_MAX; ++i) {
3859 		struct bwi_led *led = &sc->sc_leds[i];
3860 
3861 		if (val[i] == 0xff) {
3862 			led->l_act = led_act[i];
3863 		} else {
3864 			if (val[i] & BWI_LED_ACT_LOW)
3865 				led->l_flags |= BWI_LED_F_ACTLOW;
3866 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3867 		}
3868 		led->l_mask = (1 << i);
3869 
3870 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3871 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3872 		    led->l_act == BWI_LED_ACT_BLINK) {
3873 			led->l_flags |= BWI_LED_F_BLINK;
3874 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3875 				led->l_flags |= BWI_LED_F_POLLABLE;
3876 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3877 				led->l_flags |= BWI_LED_F_SLOW;
3878 
3879 			if (sc->sc_blink_led == NULL) {
3880 				sc->sc_blink_led = led;
3881 				if (led->l_flags & BWI_LED_F_SLOW)
3882 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3883 			}
3884 		}
3885 
3886 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3887 			"%dth led, act %d, lowact %d\n", i,
3888 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3889 	}
3890 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3891 }
3892 
3893 static __inline uint16_t
3894 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3895 {
3896 	if (led->l_flags & BWI_LED_F_ACTLOW)
3897 		on = !on;
3898 	if (on)
3899 		val |= led->l_mask;
3900 	else
3901 		val &= ~led->l_mask;
3902 	return val;
3903 }
3904 
3905 static void
3906 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3907 {
3908 	struct ifnet *ifp = sc->sc_ifp;
3909 	struct ieee80211com *ic = ifp->if_l2com;
3910 	uint16_t val;
3911 	int i;
3912 
3913 	if (nstate == IEEE80211_S_INIT) {
3914 		callout_stop(&sc->sc_led_blink_ch);
3915 		sc->sc_led_blinking = 0;
3916 	}
3917 
3918 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3919 		return;
3920 
3921 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3922 	for (i = 0; i < BWI_LED_MAX; ++i) {
3923 		struct bwi_led *led = &sc->sc_leds[i];
3924 		int on;
3925 
3926 		if (led->l_act == BWI_LED_ACT_UNKN ||
3927 		    led->l_act == BWI_LED_ACT_NULL)
3928 			continue;
3929 
3930 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3931 		    nstate != IEEE80211_S_INIT)
3932 		    	continue;
3933 
3934 		switch (led->l_act) {
3935 		case BWI_LED_ACT_ON:	/* Always on */
3936 			on = 1;
3937 			break;
3938 		case BWI_LED_ACT_OFF:	/* Always off */
3939 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3940 			on = 0;
3941 			break;
3942 		default:
3943 			on = 1;
3944 			switch (nstate) {
3945 			case IEEE80211_S_INIT:
3946 				on = 0;
3947 				break;
3948 			case IEEE80211_S_RUN:
3949 				if (led->l_act == BWI_LED_ACT_11G &&
3950 				    ic->ic_curmode != IEEE80211_MODE_11G)
3951 					on = 0;
3952 				break;
3953 			default:
3954 				if (led->l_act == BWI_LED_ACT_ASSOC)
3955 					on = 0;
3956 				break;
3957 			}
3958 			break;
3959 		}
3960 
3961 		val = bwi_led_onoff(led, val, on);
3962 	}
3963 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3964 }
3965 static void
3966 bwi_led_event(struct bwi_softc *sc, int event)
3967 {
3968 	struct bwi_led *led = sc->sc_blink_led;
3969 	int rate;
3970 
3971 	if (event == BWI_LED_EVENT_POLL) {
3972 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3973 			return;
3974 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3975 			return;
3976 	}
3977 
3978 	sc->sc_led_ticks = ticks;
3979 	if (sc->sc_led_blinking)
3980 		return;
3981 
3982 	switch (event) {
3983 	case BWI_LED_EVENT_RX:
3984 		rate = sc->sc_rx_rate;
3985 		break;
3986 	case BWI_LED_EVENT_TX:
3987 		rate = sc->sc_tx_rate;
3988 		break;
3989 	case BWI_LED_EVENT_POLL:
3990 		rate = 0;
3991 		break;
3992 	default:
3993 		panic("unknown LED event %d\n", event);
3994 		break;
3995 	}
3996 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3997 	    bwi_led_duration[rate].off_dur);
3998 }
3999 
4000 static void
4001 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4002 {
4003 	struct bwi_led *led = sc->sc_blink_led;
4004 	uint16_t val;
4005 
4006 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4007 	val = bwi_led_onoff(led, val, 1);
4008 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4009 
4010 	if (led->l_flags & BWI_LED_F_SLOW) {
4011 		BWI_LED_SLOWDOWN(on_dur);
4012 		BWI_LED_SLOWDOWN(off_dur);
4013 	}
4014 
4015 	sc->sc_led_blinking = 1;
4016 	sc->sc_led_blink_offdur = off_dur;
4017 
4018 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4019 }
4020 
4021 static void
4022 bwi_led_blink_next(void *xsc)
4023 {
4024 	struct bwi_softc *sc = xsc;
4025 	uint16_t val;
4026 
4027 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4028 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4029 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4030 
4031 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4032 	    bwi_led_blink_end, sc);
4033 }
4034 
4035 static void
4036 bwi_led_blink_end(void *xsc)
4037 {
4038 	struct bwi_softc *sc = xsc;
4039 	sc->sc_led_blinking = 0;
4040 }
4041 
4042 static void
4043 bwi_restart(void *xsc, int pending)
4044 {
4045 	struct bwi_softc *sc = xsc;
4046 	struct ifnet *ifp = sc->sc_ifp;
4047 
4048 	if_printf(ifp, "%s begin, help!\n", __func__);
4049 	BWI_LOCK(sc);
4050 	bwi_init_statechg(xsc, 0);
4051 #if 0
4052 	bwi_start_locked(ifp);
4053 #endif
4054 	BWI_UNLOCK(sc);
4055 }
4056