xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 5ca34122ecdd5abc62bdae39663fec9ac8523d87)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_set_channel(struct ieee80211com *);
114 static void	bwi_scan_end(struct ieee80211com *);
115 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
116 static void	bwi_updateslot(struct ieee80211com *);
117 static int	bwi_media_change(struct ifnet *);
118 
119 static void	bwi_calibrate(void *);
120 
121 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
122 static int	bwi_calc_noise(struct bwi_softc *);
123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
124 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
125 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
126 
127 static void	bwi_restart(void *, int);
128 static void	bwi_init_statechg(struct bwi_softc *, int);
129 static void	bwi_stop(struct bwi_softc *, int);
130 static void	bwi_stop_locked(struct bwi_softc *, int);
131 static int	bwi_newbuf(struct bwi_softc *, int, int);
132 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *);
134 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *,
136 			  const struct ieee80211_bpf_params *);
137 
138 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
139 				       bus_addr_t, int, int);
140 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
141 
142 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
143 static int	bwi_init_rx_ring32(struct bwi_softc *);
144 static int	bwi_init_txstats32(struct bwi_softc *);
145 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
146 static void	bwi_free_rx_ring32(struct bwi_softc *);
147 static void	bwi_free_txstats32(struct bwi_softc *);
148 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
149 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
150 				    int, bus_addr_t, int);
151 static int	bwi_rxeof32(struct bwi_softc *);
152 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
153 static void	bwi_txeof_status32(struct bwi_softc *);
154 
155 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
156 static int	bwi_init_rx_ring64(struct bwi_softc *);
157 static int	bwi_init_txstats64(struct bwi_softc *);
158 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
159 static void	bwi_free_rx_ring64(struct bwi_softc *);
160 static void	bwi_free_txstats64(struct bwi_softc *);
161 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
162 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
163 				    int, bus_addr_t, int);
164 static int	bwi_rxeof64(struct bwi_softc *);
165 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
166 static void	bwi_txeof_status64(struct bwi_softc *);
167 
168 static int	bwi_rxeof(struct bwi_softc *, int);
169 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
170 static void	bwi_txeof(struct bwi_softc *);
171 static void	bwi_txeof_status(struct bwi_softc *, int);
172 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
173 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
174 
175 static int	bwi_dma_alloc(struct bwi_softc *);
176 static void	bwi_dma_free(struct bwi_softc *);
177 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
178 				   struct bwi_ring_data *, bus_size_t,
179 				   uint32_t);
180 static int	bwi_dma_mbuf_create(struct bwi_softc *);
181 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
182 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
183 static void	bwi_dma_txstats_free(struct bwi_softc *);
184 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
185 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
186 				 bus_size_t, int);
187 
188 static void	bwi_power_on(struct bwi_softc *, int);
189 static int	bwi_power_off(struct bwi_softc *, int);
190 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
191 static int	bwi_set_clock_delay(struct bwi_softc *);
192 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
193 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
194 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
195 				    const uint8_t *);
196 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
197 
198 static void	bwi_get_card_flags(struct bwi_softc *);
199 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
200 
201 static int	bwi_bus_attach(struct bwi_softc *);
202 static int	bwi_bbp_attach(struct bwi_softc *);
203 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
204 static void	bwi_bbp_power_off(struct bwi_softc *);
205 
206 static const char *bwi_regwin_name(const struct bwi_regwin *);
207 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
208 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
209 static int	bwi_regwin_select(struct bwi_softc *, int);
210 
211 static void	bwi_led_attach(struct bwi_softc *);
212 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
213 static void	bwi_led_event(struct bwi_softc *, int);
214 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
215 static void	bwi_led_blink_next(void *);
216 static void	bwi_led_blink_end(void *);
217 
218 static const struct {
219 	uint16_t	did_min;
220 	uint16_t	did_max;
221 	uint16_t	bbp_id;
222 } bwi_bbpid_map[] = {
223 	{ 0x4301, 0x4301, 0x4301 },
224 	{ 0x4305, 0x4307, 0x4307 },
225 	{ 0x4402, 0x4403, 0x4402 },
226 	{ 0x4610, 0x4615, 0x4610 },
227 	{ 0x4710, 0x4715, 0x4710 },
228 	{ 0x4720, 0x4725, 0x4309 }
229 };
230 
231 static const struct {
232 	uint16_t	bbp_id;
233 	int		nregwin;
234 } bwi_regwin_count[] = {
235 	{ 0x4301, 5 },
236 	{ 0x4306, 6 },
237 	{ 0x4307, 5 },
238 	{ 0x4310, 8 },
239 	{ 0x4401, 3 },
240 	{ 0x4402, 3 },
241 	{ 0x4610, 9 },
242 	{ 0x4704, 9 },
243 	{ 0x4710, 9 },
244 	{ 0x5365, 7 }
245 };
246 
247 #define CLKSRC(src) 				\
248 [BWI_CLKSRC_ ## src] = {			\
249 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
250 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
251 }
252 
253 static const struct {
254 	u_int	freq_min;
255 	u_int	freq_max;
256 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
257 	CLKSRC(LP_OSC),
258 	CLKSRC(CS_OSC),
259 	CLKSRC(PCI)
260 };
261 
262 #undef CLKSRC
263 
264 #define VENDOR_LED_ACT(vendor)				\
265 {							\
266 	.vid = PCI_VENDOR_##vendor,			\
267 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
268 }
269 
270 static const struct {
271 #define	PCI_VENDOR_COMPAQ	0x0e11
272 #define	PCI_VENDOR_LINKSYS	0x1737
273 	uint16_t	vid;
274 	uint8_t		led_act[BWI_LED_MAX];
275 } bwi_vendor_led_act[] = {
276 	VENDOR_LED_ACT(COMPAQ),
277 	VENDOR_LED_ACT(LINKSYS)
278 #undef PCI_VENDOR_LINKSYS
279 #undef PCI_VENDOR_COMPAQ
280 };
281 
282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
283 	{ BWI_VENDOR_LED_ACT_DEFAULT };
284 
285 #undef VENDOR_LED_ACT
286 
287 static const struct {
288 	int	on_dur;
289 	int	off_dur;
290 } bwi_led_duration[109] = {
291 	[0]	= { 400, 100 },
292 	[2]	= { 150, 75 },
293 	[4]	= { 90, 45 },
294 	[11]	= { 66, 34 },
295 	[12]	= { 53, 26 },
296 	[18]	= { 42, 21 },
297 	[22]	= { 35, 17 },
298 	[24]	= { 32, 16 },
299 	[36]	= { 21, 10 },
300 	[48]	= { 16, 8 },
301 	[72]	= { 11, 5 },
302 	[96]	= { 9, 4 },
303 	[108]	= { 7, 3 }
304 };
305 
306 #ifdef BWI_DEBUG
307 #ifdef BWI_DEBUG_VERBOSE
308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
309 #else
310 static uint32_t	bwi_debug;
311 #endif
312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
313 #endif	/* BWI_DEBUG */
314 
315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
316 
317 uint16_t
318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
319 {
320 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
321 }
322 
323 static __inline void
324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
325 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
326 		 int tx)
327 {
328 	struct bwi_desc32 *desc = &desc_array[desc_idx];
329 	uint32_t ctrl, addr, addr_hi, addr_lo;
330 
331 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
332 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
333 
334 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
335 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
336 
337 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
338 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
339 	if (desc_idx == ndesc - 1)
340 		ctrl |= BWI_DESC32_C_EOR;
341 	if (tx) {
342 		/* XXX */
343 		ctrl |= BWI_DESC32_C_FRAME_START |
344 			BWI_DESC32_C_FRAME_END |
345 			BWI_DESC32_C_INTR;
346 	}
347 
348 	desc->addr = htole32(addr);
349 	desc->ctrl = htole32(ctrl);
350 }
351 
352 int
353 bwi_attach(struct bwi_softc *sc)
354 {
355 	struct ieee80211com *ic = &sc->sc_ic;
356 	device_t dev = sc->sc_dev;
357 	struct bwi_mac *mac;
358 	struct bwi_phy *phy;
359 	int i, error;
360 	uint8_t bands;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_blink = 1;
381 	sc->sc_txpwr_calib = 1;
382 #ifdef BWI_DEBUG
383 	sc->sc_debug = bwi_debug;
384 #endif
385 	bwi_power_on(sc, 1);
386 
387 	error = bwi_bbp_attach(sc);
388 	if (error)
389 		goto fail;
390 
391 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
392 	if (error)
393 		goto fail;
394 
395 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
396 		error = bwi_set_clock_delay(sc);
397 		if (error)
398 			goto fail;
399 
400 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
401 		if (error)
402 			goto fail;
403 
404 		error = bwi_get_pwron_delay(sc);
405 		if (error)
406 			goto fail;
407 	}
408 
409 	error = bwi_bus_attach(sc);
410 	if (error)
411 		goto fail;
412 
413 	bwi_get_card_flags(sc);
414 
415 	bwi_led_attach(sc);
416 
417 	for (i = 0; i < sc->sc_nmac; ++i) {
418 		struct bwi_regwin *old;
419 
420 		mac = &sc->sc_mac[i];
421 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
422 		if (error)
423 			goto fail;
424 
425 		error = bwi_mac_lateattach(mac);
426 		if (error)
427 			goto fail;
428 
429 		error = bwi_regwin_switch(sc, old, NULL);
430 		if (error)
431 			goto fail;
432 	}
433 
434 	/*
435 	 * XXX First MAC is known to exist
436 	 * TODO2
437 	 */
438 	mac = &sc->sc_mac[0];
439 	phy = &mac->mac_phy;
440 
441 	bwi_bbp_power_off(sc);
442 
443 	error = bwi_dma_alloc(sc);
444 	if (error)
445 		goto fail;
446 
447 	error = bwi_mac_fw_alloc(mac);
448 	if (error)
449 		goto fail;
450 
451 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
452 
453 	/*
454 	 * Setup ratesets, phytype, channels and get MAC address
455 	 */
456 	bands = 0;
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		setbit(&bands, IEEE80211_MODE_11B);
460 		if (phy->phy_mode == IEEE80211_MODE_11B) {
461 			ic->ic_phytype = IEEE80211_T_DS;
462 		} else {
463 			ic->ic_phytype = IEEE80211_T_OFDM;
464 			setbit(&bands, IEEE80211_MODE_11G);
465 		}
466 
467 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
468 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
470 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
471 				device_printf(dev,
472 				    "invalid MAC address: %6D\n",
473 				    ic->ic_macaddr, ":");
474 			}
475 		}
476 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
477 		/* TODO:11A */
478 		setbit(&bands, IEEE80211_MODE_11A);
479 		error = ENXIO;
480 		goto fail;
481 	} else {
482 		panic("unknown phymode %d\n", phy->phy_mode);
483 	}
484 
485 	/* Get locale */
486 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
487 				   BWI_SPROM_CARD_INFO_LOCALE);
488 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
489 	/* XXX use locale */
490 	ieee80211_init_channels(ic, NULL, &bands);
491 
492 	ic->ic_softc = sc;
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 	ieee80211_ifattach(ic);
502 
503 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504 
505 	/* override default methods */
506 	ic->ic_vap_create = bwi_vap_create;
507 	ic->ic_vap_delete = bwi_vap_delete;
508 	ic->ic_raw_xmit = bwi_raw_xmit;
509 	ic->ic_updateslot = bwi_updateslot;
510 	ic->ic_scan_start = bwi_scan_start;
511 	ic->ic_scan_end = bwi_scan_end;
512 	ic->ic_set_channel = bwi_set_channel;
513 	ic->ic_transmit = bwi_transmit;
514 	ic->ic_parent = bwi_parent;
515 
516 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
517 
518 	ieee80211_radiotap_attach(ic,
519 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
520 		BWI_TX_RADIOTAP_PRESENT,
521 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
522 		BWI_RX_RADIOTAP_PRESENT);
523 
524 	/*
525 	 * Add sysctl nodes
526 	 */
527 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
528 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
529 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
530 		        "Firmware version");
531 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
532 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
533 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
534 		        "# ticks before LED enters idle state");
535 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
536 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
537 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
538 		       "Allow LED to blink");
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
542 		       "Enable software TX power calibration");
543 #ifdef BWI_DEBUG
544 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
545 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
546 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
547 #endif
548 	if (bootverbose)
549 		ieee80211_announce(ic);
550 
551 	return (0);
552 fail:
553 	BWI_LOCK_DESTROY(sc);
554 	return (error);
555 }
556 
557 int
558 bwi_detach(struct bwi_softc *sc)
559 {
560 	struct ieee80211com *ic = &sc->sc_ic;
561 	int i;
562 
563 	bwi_stop(sc, 1);
564 	callout_drain(&sc->sc_led_blink_ch);
565 	callout_drain(&sc->sc_calib_ch);
566 	callout_drain(&sc->sc_watchdog_timer);
567 	ieee80211_ifdetach(ic);
568 
569 	for (i = 0; i < sc->sc_nmac; ++i)
570 		bwi_mac_detach(&sc->sc_mac[i]);
571 	bwi_dma_free(sc);
572 	taskqueue_free(sc->sc_tq);
573 	mbufq_drain(&sc->sc_snd);
574 
575 	BWI_LOCK_DESTROY(sc);
576 
577 	return (0);
578 }
579 
580 static struct ieee80211vap *
581 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
582     enum ieee80211_opmode opmode, int flags,
583     const uint8_t bssid[IEEE80211_ADDR_LEN],
584     const uint8_t mac[IEEE80211_ADDR_LEN])
585 {
586 	struct bwi_vap *bvp;
587 	struct ieee80211vap *vap;
588 
589 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
590 		return NULL;
591 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
592 	vap = &bvp->bv_vap;
593 	/* enable s/w bmiss handling for sta mode */
594 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
595 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
596 
597 	/* override default methods */
598 	bvp->bv_newstate = vap->iv_newstate;
599 	vap->iv_newstate = bwi_newstate;
600 #if 0
601 	vap->iv_update_beacon = bwi_beacon_update;
602 #endif
603 	ieee80211_ratectl_init(vap);
604 
605 	/* complete setup */
606 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status,
607 	    mac);
608 	ic->ic_opmode = opmode;
609 	return vap;
610 }
611 
612 static void
613 bwi_vap_delete(struct ieee80211vap *vap)
614 {
615 	struct bwi_vap *bvp = BWI_VAP(vap);
616 
617 	ieee80211_ratectl_deinit(vap);
618 	ieee80211_vap_detach(vap);
619 	free(bvp, M_80211_VAP);
620 }
621 
622 void
623 bwi_suspend(struct bwi_softc *sc)
624 {
625 	bwi_stop(sc, 1);
626 }
627 
628 void
629 bwi_resume(struct bwi_softc *sc)
630 {
631 
632 	if (sc->sc_ic.ic_nrunning > 0)
633 		bwi_init(sc);
634 }
635 
636 int
637 bwi_shutdown(struct bwi_softc *sc)
638 {
639 	bwi_stop(sc, 1);
640 	return 0;
641 }
642 
643 static void
644 bwi_power_on(struct bwi_softc *sc, int with_pll)
645 {
646 	uint32_t gpio_in, gpio_out, gpio_en;
647 	uint16_t status;
648 
649 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
650 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
651 		goto back;
652 
653 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
654 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
655 
656 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
657 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
658 	if (with_pll) {
659 		/* Turn off PLL first */
660 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
661 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 	}
663 
664 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
665 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
666 	DELAY(1000);
667 
668 	if (with_pll) {
669 		/* Turn on PLL */
670 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
671 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
672 		DELAY(5000);
673 	}
674 
675 back:
676 	/* Clear "Signaled Target Abort" */
677 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
678 	status &= ~PCIM_STATUS_STABORT;
679 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
680 }
681 
682 static int
683 bwi_power_off(struct bwi_softc *sc, int with_pll)
684 {
685 	uint32_t gpio_out, gpio_en;
686 
687 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
688 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
689 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
690 
691 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
692 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
693 	if (with_pll) {
694 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
695 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 	}
697 
698 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
699 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
700 	return 0;
701 }
702 
703 int
704 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
705 		  struct bwi_regwin **old_rw)
706 {
707 	int error;
708 
709 	if (old_rw != NULL)
710 		*old_rw = NULL;
711 
712 	if (!BWI_REGWIN_EXIST(rw))
713 		return EINVAL;
714 
715 	if (sc->sc_cur_regwin != rw) {
716 		error = bwi_regwin_select(sc, rw->rw_id);
717 		if (error) {
718 			device_printf(sc->sc_dev, "can't select regwin %d\n",
719 				  rw->rw_id);
720 			return error;
721 		}
722 	}
723 
724 	if (old_rw != NULL)
725 		*old_rw = sc->sc_cur_regwin;
726 	sc->sc_cur_regwin = rw;
727 	return 0;
728 }
729 
730 static int
731 bwi_regwin_select(struct bwi_softc *sc, int id)
732 {
733 	uint32_t win = BWI_PCIM_REGWIN(id);
734 	int i;
735 
736 #define RETRY_MAX	50
737 	for (i = 0; i < RETRY_MAX; ++i) {
738 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
739 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
740 			return 0;
741 		DELAY(10);
742 	}
743 #undef RETRY_MAX
744 
745 	return ENXIO;
746 }
747 
748 static void
749 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
750 {
751 	uint32_t val;
752 
753 	val = CSR_READ_4(sc, BWI_ID_HI);
754 	*type = BWI_ID_HI_REGWIN_TYPE(val);
755 	*rev = BWI_ID_HI_REGWIN_REV(val);
756 
757 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
758 		"vendor 0x%04x\n", *type, *rev,
759 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
760 }
761 
762 static int
763 bwi_bbp_attach(struct bwi_softc *sc)
764 {
765 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
766 	uint16_t bbp_id, rw_type;
767 	uint8_t rw_rev;
768 	uint32_t info;
769 	int error, nregwin, i;
770 
771 	/*
772 	 * Get 0th regwin information
773 	 * NOTE: 0th regwin should exist
774 	 */
775 	error = bwi_regwin_select(sc, 0);
776 	if (error) {
777 		device_printf(sc->sc_dev, "can't select regwin 0\n");
778 		return error;
779 	}
780 	bwi_regwin_info(sc, &rw_type, &rw_rev);
781 
782 	/*
783 	 * Find out BBP id
784 	 */
785 	bbp_id = 0;
786 	info = 0;
787 	if (rw_type == BWI_REGWIN_T_COM) {
788 		info = CSR_READ_4(sc, BWI_INFO);
789 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
790 
791 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
792 
793 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
794 	} else {
795 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
796 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
797 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
798 				bbp_id = bwi_bbpid_map[i].bbp_id;
799 				break;
800 			}
801 		}
802 		if (bbp_id == 0) {
803 			device_printf(sc->sc_dev, "no BBP id for device id "
804 				      "0x%04x\n", sc->sc_pci_did);
805 			return ENXIO;
806 		}
807 
808 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
809 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
810 	}
811 
812 	/*
813 	 * Find out number of regwins
814 	 */
815 	nregwin = 0;
816 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
817 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
818 	} else {
819 		for (i = 0; i < N(bwi_regwin_count); ++i) {
820 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
821 				nregwin = bwi_regwin_count[i].nregwin;
822 				break;
823 			}
824 		}
825 		if (nregwin == 0) {
826 			device_printf(sc->sc_dev, "no number of win for "
827 				      "BBP id 0x%04x\n", bbp_id);
828 			return ENXIO;
829 		}
830 	}
831 
832 	/* Record BBP id/rev for later using */
833 	sc->sc_bbp_id = bbp_id;
834 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
835 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
836 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
837 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
838 
839 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
840 		nregwin, sc->sc_cap);
841 
842 	/*
843 	 * Create rest of the regwins
844 	 */
845 
846 	/* Don't re-create common regwin, if it is already created */
847 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
848 
849 	for (; i < nregwin; ++i) {
850 		/*
851 		 * Get regwin information
852 		 */
853 		error = bwi_regwin_select(sc, i);
854 		if (error) {
855 			device_printf(sc->sc_dev,
856 				      "can't select regwin %d\n", i);
857 			return error;
858 		}
859 		bwi_regwin_info(sc, &rw_type, &rw_rev);
860 
861 		/*
862 		 * Try attach:
863 		 * 1) Bus (PCI/PCIE) regwin
864 		 * 2) MAC regwin
865 		 * Ignore rest types of regwin
866 		 */
867 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
868 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
869 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
870 				device_printf(sc->sc_dev,
871 					      "bus regwin already exists\n");
872 			} else {
873 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
874 						  rw_type, rw_rev);
875 			}
876 		} else if (rw_type == BWI_REGWIN_T_MAC) {
877 			/* XXX ignore return value */
878 			bwi_mac_attach(sc, i, rw_rev);
879 		}
880 	}
881 
882 	/* At least one MAC shold exist */
883 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
884 		device_printf(sc->sc_dev, "no MAC was found\n");
885 		return ENXIO;
886 	}
887 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
888 
889 	/* Bus regwin must exist */
890 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
891 		device_printf(sc->sc_dev, "no bus regwin was found\n");
892 		return ENXIO;
893 	}
894 
895 	/* Start with first MAC */
896 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
897 	if (error)
898 		return error;
899 
900 	return 0;
901 #undef N
902 }
903 
904 int
905 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
906 {
907 	struct bwi_regwin *old, *bus;
908 	uint32_t val;
909 	int error;
910 
911 	bus = &sc->sc_bus_regwin;
912 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
913 
914 	/*
915 	 * Tell bus to generate requested interrupts
916 	 */
917 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
918 		/*
919 		 * NOTE: Read BWI_FLAGS from MAC regwin
920 		 */
921 		val = CSR_READ_4(sc, BWI_FLAGS);
922 
923 		error = bwi_regwin_switch(sc, bus, &old);
924 		if (error)
925 			return error;
926 
927 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
928 	} else {
929 		uint32_t mac_mask;
930 
931 		mac_mask = 1 << mac->mac_id;
932 
933 		error = bwi_regwin_switch(sc, bus, &old);
934 		if (error)
935 			return error;
936 
937 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
938 		val |= mac_mask << 8;
939 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
940 	}
941 
942 	if (sc->sc_flags & BWI_F_BUS_INITED)
943 		goto back;
944 
945 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
946 		/*
947 		 * Enable prefetch and burst
948 		 */
949 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
950 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
951 
952 		if (bus->rw_rev < 5) {
953 			struct bwi_regwin *com = &sc->sc_com_regwin;
954 
955 			/*
956 			 * Configure timeouts for bus operation
957 			 */
958 
959 			/*
960 			 * Set service timeout and request timeout
961 			 */
962 			CSR_SETBITS_4(sc, BWI_CONF_LO,
963 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
964 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
965 
966 			/*
967 			 * If there is common regwin, we switch to that regwin
968 			 * and switch back to bus regwin once we have done.
969 			 */
970 			if (BWI_REGWIN_EXIST(com)) {
971 				error = bwi_regwin_switch(sc, com, NULL);
972 				if (error)
973 					return error;
974 			}
975 
976 			/* Let bus know what we have changed */
977 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
978 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
979 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
980 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
981 
982 			if (BWI_REGWIN_EXIST(com)) {
983 				error = bwi_regwin_switch(sc, bus, NULL);
984 				if (error)
985 					return error;
986 			}
987 		} else if (bus->rw_rev >= 11) {
988 			/*
989 			 * Enable memory read multiple
990 			 */
991 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
992 		}
993 	} else {
994 		/* TODO:PCIE */
995 	}
996 
997 	sc->sc_flags |= BWI_F_BUS_INITED;
998 back:
999 	return bwi_regwin_switch(sc, old, NULL);
1000 }
1001 
1002 static void
1003 bwi_get_card_flags(struct bwi_softc *sc)
1004 {
1005 #define	PCI_VENDOR_APPLE 0x106b
1006 #define	PCI_VENDOR_DELL  0x1028
1007 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1008 	if (sc->sc_card_flags == 0xffff)
1009 		sc->sc_card_flags = 0;
1010 
1011 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1012 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1013 	    sc->sc_pci_revid == 0x74)
1014 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1015 
1016 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1017 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1018 	    sc->sc_pci_revid > 0x40)
1019 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1020 
1021 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1022 #undef PCI_VENDOR_DELL
1023 #undef PCI_VENDOR_APPLE
1024 }
1025 
1026 static void
1027 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < 3; ++i) {
1032 		*((uint16_t *)eaddr + i) =
1033 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1034 	}
1035 }
1036 
1037 static void
1038 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1039 {
1040 	struct bwi_regwin *com;
1041 	uint32_t val;
1042 	u_int div;
1043 	int src;
1044 
1045 	bzero(freq, sizeof(*freq));
1046 	com = &sc->sc_com_regwin;
1047 
1048 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1049 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1050 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1051 
1052 	/*
1053 	 * Calculate clock frequency
1054 	 */
1055 	src = -1;
1056 	div = 0;
1057 	if (com->rw_rev < 6) {
1058 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1059 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1060 			src = BWI_CLKSRC_PCI;
1061 			div = 64;
1062 		} else {
1063 			src = BWI_CLKSRC_CS_OSC;
1064 			div = 32;
1065 		}
1066 	} else if (com->rw_rev < 10) {
1067 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1068 
1069 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1070 		if (src == BWI_CLKSRC_LP_OSC) {
1071 			div = 1;
1072 		} else {
1073 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1074 
1075 			/* Unknown source */
1076 			if (src >= BWI_CLKSRC_MAX)
1077 				src = BWI_CLKSRC_CS_OSC;
1078 		}
1079 	} else {
1080 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1081 
1082 		src = BWI_CLKSRC_CS_OSC;
1083 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1084 	}
1085 
1086 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1087 	KASSERT(div != 0, ("div zero"));
1088 
1089 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1090 		src == BWI_CLKSRC_PCI ? "PCI" :
1091 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1092 
1093 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1094 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1095 
1096 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1097 		freq->clkfreq_min, freq->clkfreq_max);
1098 }
1099 
1100 static int
1101 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1102 {
1103 	struct bwi_regwin *old, *com;
1104 	uint32_t clk_ctrl, clk_src;
1105 	int error, pwr_off = 0;
1106 
1107 	com = &sc->sc_com_regwin;
1108 	if (!BWI_REGWIN_EXIST(com))
1109 		return 0;
1110 
1111 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1112 		return 0;
1113 
1114 	/*
1115 	 * For common regwin whose rev is [6, 10), the chip
1116 	 * must be capable to change clock mode.
1117 	 */
1118 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1119 		return 0;
1120 
1121 	error = bwi_regwin_switch(sc, com, &old);
1122 	if (error)
1123 		return error;
1124 
1125 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1126 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1127 
1128 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1129 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1130 
1131 	switch (clk_mode) {
1132 	case BWI_CLOCK_MODE_FAST:
1133 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1134 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1135 		break;
1136 	case BWI_CLOCK_MODE_SLOW:
1137 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1138 		break;
1139 	case BWI_CLOCK_MODE_DYN:
1140 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1141 			      BWI_CLOCK_CTRL_IGNPLL |
1142 			      BWI_CLOCK_CTRL_NODYN);
1143 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1144 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1145 			pwr_off = 1;
1146 		}
1147 		break;
1148 	}
1149 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1150 
1151 	if (pwr_off)
1152 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1153 
1154 	return bwi_regwin_switch(sc, old, NULL);
1155 }
1156 
1157 static int
1158 bwi_set_clock_delay(struct bwi_softc *sc)
1159 {
1160 	struct bwi_regwin *old, *com;
1161 	int error;
1162 
1163 	com = &sc->sc_com_regwin;
1164 	if (!BWI_REGWIN_EXIST(com))
1165 		return 0;
1166 
1167 	error = bwi_regwin_switch(sc, com, &old);
1168 	if (error)
1169 		return error;
1170 
1171 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1172 		if (sc->sc_bbp_rev == 0)
1173 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1174 		else if (sc->sc_bbp_rev == 1)
1175 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1176 	}
1177 
1178 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1179 		if (com->rw_rev >= 10) {
1180 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1181 		} else {
1182 			struct bwi_clock_freq freq;
1183 
1184 			bwi_get_clock_freq(sc, &freq);
1185 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1186 				howmany(freq.clkfreq_max * 150, 1000000));
1187 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1188 				howmany(freq.clkfreq_max * 15, 1000000));
1189 		}
1190 	}
1191 
1192 	return bwi_regwin_switch(sc, old, NULL);
1193 }
1194 
1195 static void
1196 bwi_init(struct bwi_softc *sc)
1197 {
1198 	struct ieee80211com *ic = &sc->sc_ic;
1199 
1200 	BWI_LOCK(sc);
1201 	bwi_init_statechg(sc, 1);
1202 	BWI_UNLOCK(sc);
1203 
1204 	if (sc->sc_flags & BWI_F_RUNNING)
1205 		ieee80211_start_all(ic);		/* start all vap's */
1206 }
1207 
1208 static void
1209 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1210 {
1211 	struct bwi_mac *mac;
1212 	int error;
1213 
1214 	BWI_ASSERT_LOCKED(sc);
1215 
1216 	bwi_stop_locked(sc, statechg);
1217 
1218 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1219 
1220 	/* TODO: 2 MAC */
1221 
1222 	mac = &sc->sc_mac[0];
1223 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1224 	if (error) {
1225 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1226 		    __func__, error);
1227 		goto bad;
1228 	}
1229 	error = bwi_mac_init(mac);
1230 	if (error) {
1231 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1232 		    __func__, error);
1233 		goto bad;
1234 	}
1235 
1236 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1237 
1238 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1239 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1240 
1241 	bwi_mac_reset_hwkeys(mac);
1242 
1243 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1244 		int i;
1245 
1246 #define NRETRY	1000
1247 		/*
1248 		 * Drain any possible pending TX status
1249 		 */
1250 		for (i = 0; i < NRETRY; ++i) {
1251 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1252 			     BWI_TXSTATUS0_VALID) == 0)
1253 				break;
1254 			CSR_READ_4(sc, BWI_TXSTATUS1);
1255 		}
1256 		if (i == NRETRY)
1257 			device_printf(sc->sc_dev,
1258 			    "%s: can't drain TX status\n", __func__);
1259 #undef NRETRY
1260 	}
1261 
1262 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1263 		bwi_mac_updateslot(mac, 1);
1264 
1265 	/* Start MAC */
1266 	error = bwi_mac_start(mac);
1267 	if (error) {
1268 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1269 		    __func__, error);
1270 		goto bad;
1271 	}
1272 
1273 	/* Clear stop flag before enabling interrupt */
1274 	sc->sc_flags &= ~BWI_F_STOP;
1275 	sc->sc_flags |= BWI_F_RUNNING;
1276 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1277 
1278 	/* Enable intrs */
1279 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1280 	return;
1281 bad:
1282 	bwi_stop_locked(sc, 1);
1283 }
1284 
1285 static void
1286 bwi_parent(struct ieee80211com *ic)
1287 {
1288 	struct bwi_softc *sc = ic->ic_softc;
1289 	int startall = 0;
1290 
1291 	BWI_LOCK(sc);
1292 	if (ic->ic_nrunning > 0) {
1293 		struct bwi_mac *mac;
1294 		int promisc = -1;
1295 
1296 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1297 		    ("current regwin type %d",
1298 		    sc->sc_cur_regwin->rw_type));
1299 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1300 
1301 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1302 			promisc = 1;
1303 			sc->sc_flags |= BWI_F_PROMISC;
1304 		} else if (ic->ic_promisc == 0 &&
1305 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1306 			promisc = 0;
1307 			sc->sc_flags &= ~BWI_F_PROMISC;
1308 		}
1309 
1310 		if (promisc >= 0)
1311 			bwi_mac_set_promisc(mac, promisc);
1312 	}
1313 	if (ic->ic_nrunning > 0) {
1314 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1315 			bwi_init_statechg(sc, 1);
1316 			startall = 1;
1317 		}
1318 	} else if (sc->sc_flags & BWI_F_RUNNING)
1319 		bwi_stop_locked(sc, 1);
1320 	BWI_UNLOCK(sc);
1321 	if (startall)
1322 		ieee80211_start_all(ic);
1323 }
1324 
1325 static int
1326 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1327 {
1328 	struct bwi_softc *sc = ic->ic_softc;
1329 	int error;
1330 
1331 	BWI_LOCK(sc);
1332 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1333 		BWI_UNLOCK(sc);
1334 		return (ENXIO);
1335 	}
1336 	error = mbufq_enqueue(&sc->sc_snd, m);
1337 	if (error) {
1338 		BWI_UNLOCK(sc);
1339 		return (error);
1340 	}
1341 	bwi_start_locked(sc);
1342 	BWI_UNLOCK(sc);
1343 	return (0);
1344 }
1345 
1346 static void
1347 bwi_start_locked(struct bwi_softc *sc)
1348 {
1349 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1350 	struct ieee80211_frame *wh;
1351 	struct ieee80211_node *ni;
1352 	struct mbuf *m;
1353 	int trans, idx;
1354 
1355 	BWI_ASSERT_LOCKED(sc);
1356 
1357 	trans = 0;
1358 	idx = tbd->tbd_idx;
1359 
1360 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1361 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1362 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1363 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1364 		wh = mtod(m, struct ieee80211_frame *);
1365 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1366 		    ieee80211_crypto_encap(ni, m) == NULL) {
1367 			if_inc_counter(ni->ni_vap->iv_ifp,
1368 			    IFCOUNTER_OERRORS, 1);
1369 			ieee80211_free_node(ni);
1370 			m_freem(m);
1371 			continue;
1372 		}
1373 		if (bwi_encap(sc, idx, m, ni) != 0) {
1374 			/* 'm' is freed in bwi_encap() if we reach here */
1375 			if (ni != NULL) {
1376 				if_inc_counter(ni->ni_vap->iv_ifp,
1377 				    IFCOUNTER_OERRORS, 1);
1378 				ieee80211_free_node(ni);
1379 			} else
1380 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1381 			continue;
1382 		}
1383 		trans = 1;
1384 		tbd->tbd_used++;
1385 		idx = (idx + 1) % BWI_TX_NDESC;
1386 	}
1387 
1388 	tbd->tbd_idx = idx;
1389 	if (trans)
1390 		sc->sc_tx_timer = 5;
1391 }
1392 
1393 static int
1394 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1395 	const struct ieee80211_bpf_params *params)
1396 {
1397 	struct ieee80211com *ic = ni->ni_ic;
1398 	struct bwi_softc *sc = ic->ic_softc;
1399 	/* XXX wme? */
1400 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1401 	int idx, error;
1402 
1403 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1404 		ieee80211_free_node(ni);
1405 		m_freem(m);
1406 		return ENETDOWN;
1407 	}
1408 
1409 	BWI_LOCK(sc);
1410 	idx = tbd->tbd_idx;
1411 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1412 	if (params == NULL) {
1413 		/*
1414 		 * Legacy path; interpret frame contents to decide
1415 		 * precisely how to send the frame.
1416 		 */
1417 		error = bwi_encap(sc, idx, m, ni);
1418 	} else {
1419 		/*
1420 		 * Caller supplied explicit parameters to use in
1421 		 * sending the frame.
1422 		 */
1423 		error = bwi_encap_raw(sc, idx, m, ni, params);
1424 	}
1425 	if (error == 0) {
1426 		tbd->tbd_used++;
1427 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1428 		sc->sc_tx_timer = 5;
1429 	} else
1430 		/* NB: m is reclaimed on encap failure */
1431 		ieee80211_free_node(ni);
1432 	BWI_UNLOCK(sc);
1433 	return error;
1434 }
1435 
1436 static void
1437 bwi_watchdog(void *arg)
1438 {
1439 	struct bwi_softc *sc;
1440 
1441 	sc = arg;
1442 	BWI_ASSERT_LOCKED(sc);
1443 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1444 		device_printf(sc->sc_dev, "watchdog timeout\n");
1445 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1446 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1447 	}
1448 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1449 }
1450 
1451 static void
1452 bwi_stop(struct bwi_softc *sc, int statechg)
1453 {
1454 	BWI_LOCK(sc);
1455 	bwi_stop_locked(sc, statechg);
1456 	BWI_UNLOCK(sc);
1457 }
1458 
1459 static void
1460 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1461 {
1462 	struct bwi_mac *mac;
1463 	int i, error, pwr_off = 0;
1464 
1465 	BWI_ASSERT_LOCKED(sc);
1466 
1467 	callout_stop(&sc->sc_calib_ch);
1468 	callout_stop(&sc->sc_led_blink_ch);
1469 	sc->sc_led_blinking = 0;
1470 	sc->sc_flags |= BWI_F_STOP;
1471 
1472 	if (sc->sc_flags & BWI_F_RUNNING) {
1473 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1474 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1475 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1476 
1477 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1478 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1479 		bwi_mac_stop(mac);
1480 	}
1481 
1482 	for (i = 0; i < sc->sc_nmac; ++i) {
1483 		struct bwi_regwin *old_rw;
1484 
1485 		mac = &sc->sc_mac[i];
1486 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1487 			continue;
1488 
1489 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1490 		if (error)
1491 			continue;
1492 
1493 		bwi_mac_shutdown(mac);
1494 		pwr_off = 1;
1495 
1496 		bwi_regwin_switch(sc, old_rw, NULL);
1497 	}
1498 
1499 	if (pwr_off)
1500 		bwi_bbp_power_off(sc);
1501 
1502 	sc->sc_tx_timer = 0;
1503 	callout_stop(&sc->sc_watchdog_timer);
1504 	sc->sc_flags &= ~BWI_F_RUNNING;
1505 }
1506 
1507 void
1508 bwi_intr(void *xsc)
1509 {
1510 	struct bwi_softc *sc = xsc;
1511 	struct bwi_mac *mac;
1512 	uint32_t intr_status;
1513 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1514 	int i, txrx_error, tx = 0, rx_data = -1;
1515 
1516 	BWI_LOCK(sc);
1517 
1518 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1519 	    (sc->sc_flags & BWI_F_STOP)) {
1520 		BWI_UNLOCK(sc);
1521 		return;
1522 	}
1523 	/*
1524 	 * Get interrupt status
1525 	 */
1526 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1527 	if (intr_status == 0xffffffff) {	/* Not for us */
1528 		BWI_UNLOCK(sc);
1529 		return;
1530 	}
1531 
1532 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1533 
1534 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1535 	if (intr_status == 0) {		/* Nothing is interesting */
1536 		BWI_UNLOCK(sc);
1537 		return;
1538 	}
1539 
1540 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1541 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1542 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1543 
1544 	txrx_error = 0;
1545 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1546 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1547 		uint32_t mask;
1548 
1549 		if (BWI_TXRX_IS_RX(i))
1550 			mask = BWI_TXRX_RX_INTRS;
1551 		else
1552 			mask = BWI_TXRX_TX_INTRS;
1553 
1554 		txrx_intr_status[i] =
1555 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1556 
1557 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1558 			 i, txrx_intr_status[i]);
1559 
1560 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1561 			device_printf(sc->sc_dev,
1562 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1563 			    __func__, i, txrx_intr_status[i]);
1564 			txrx_error = 1;
1565 		}
1566 	}
1567 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1568 
1569 	/*
1570 	 * Acknowledge interrupt
1571 	 */
1572 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1573 
1574 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1575 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1576 
1577 	/* Disable all interrupts */
1578 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1579 
1580 	/*
1581 	 * http://bcm-specs.sipsolutions.net/Interrupts
1582 	 * Says for this bit (0x800):
1583 	 * "Fatal Error
1584 	 *
1585 	 * We got this one while testing things when by accident the
1586 	 * template ram wasn't set to big endian when it should have
1587 	 * been after writing the initial values. It keeps on being
1588 	 * triggered, the only way to stop it seems to shut down the
1589 	 * chip."
1590 	 *
1591 	 * Suggesting that we should never get it and if we do we're not
1592 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1593 	 * it is valid only on mac version 5 and higher, but I couldn't
1594 	 * find a reference for that...  Since I see them from time to time
1595 	 * on my card, this suggests an error in the tx path still...
1596 	 */
1597 	if (intr_status & BWI_INTR_PHY_TXERR) {
1598 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1599 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1600 			    __func__);
1601 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1602 			BWI_UNLOCK(sc);
1603 			return;
1604 		}
1605 	}
1606 
1607 	if (txrx_error) {
1608 		/* TODO: reset device */
1609 	}
1610 
1611 	if (intr_status & BWI_INTR_TBTT)
1612 		bwi_mac_config_ps(mac);
1613 
1614 	if (intr_status & BWI_INTR_EO_ATIM)
1615 		device_printf(sc->sc_dev, "EO_ATIM\n");
1616 
1617 	if (intr_status & BWI_INTR_PMQ) {
1618 		for (;;) {
1619 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1620 				break;
1621 		}
1622 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1623 	}
1624 
1625 	if (intr_status & BWI_INTR_NOISE)
1626 		device_printf(sc->sc_dev, "intr noise\n");
1627 
1628 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1629 		rx_data = sc->sc_rxeof(sc);
1630 		if (sc->sc_flags & BWI_F_STOP) {
1631 			BWI_UNLOCK(sc);
1632 			return;
1633 		}
1634 	}
1635 
1636 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1637 		sc->sc_txeof_status(sc);
1638 		tx = 1;
1639 	}
1640 
1641 	if (intr_status & BWI_INTR_TX_DONE) {
1642 		bwi_txeof(sc);
1643 		tx = 1;
1644 	}
1645 
1646 	/* Re-enable interrupts */
1647 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1648 
1649 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1650 		int evt = BWI_LED_EVENT_NONE;
1651 
1652 		if (tx && rx_data > 0) {
1653 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1654 				evt = BWI_LED_EVENT_RX;
1655 			else
1656 				evt = BWI_LED_EVENT_TX;
1657 		} else if (tx) {
1658 			evt = BWI_LED_EVENT_TX;
1659 		} else if (rx_data > 0) {
1660 			evt = BWI_LED_EVENT_RX;
1661 		} else if (rx_data == 0) {
1662 			evt = BWI_LED_EVENT_POLL;
1663 		}
1664 
1665 		if (evt != BWI_LED_EVENT_NONE)
1666 			bwi_led_event(sc, evt);
1667 	}
1668 
1669 	BWI_UNLOCK(sc);
1670 }
1671 
1672 static void
1673 bwi_scan_start(struct ieee80211com *ic)
1674 {
1675 	struct bwi_softc *sc = ic->ic_softc;
1676 
1677 	BWI_LOCK(sc);
1678 	/* Enable MAC beacon promiscuity */
1679 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1680 	BWI_UNLOCK(sc);
1681 }
1682 
1683 static void
1684 bwi_set_channel(struct ieee80211com *ic)
1685 {
1686 	struct bwi_softc *sc = ic->ic_softc;
1687 	struct ieee80211_channel *c = ic->ic_curchan;
1688 	struct bwi_mac *mac;
1689 
1690 	BWI_LOCK(sc);
1691 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1692 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1693 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1694 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1695 
1696 	sc->sc_rates = ieee80211_get_ratetable(c);
1697 
1698 	/*
1699 	 * Setup radio tap channel freq and flags
1700 	 */
1701 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1702 		htole16(c->ic_freq);
1703 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1704 		htole16(c->ic_flags & 0xffff);
1705 
1706 	BWI_UNLOCK(sc);
1707 }
1708 
1709 static void
1710 bwi_scan_end(struct ieee80211com *ic)
1711 {
1712 	struct bwi_softc *sc = ic->ic_softc;
1713 
1714 	BWI_LOCK(sc);
1715 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1716 	BWI_UNLOCK(sc);
1717 }
1718 
1719 static int
1720 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1721 {
1722 	struct bwi_vap *bvp = BWI_VAP(vap);
1723 	struct ieee80211com *ic= vap->iv_ic;
1724 	struct bwi_softc *sc = ic->ic_softc;
1725 	enum ieee80211_state ostate = vap->iv_state;
1726 	struct bwi_mac *mac;
1727 	int error;
1728 
1729 	BWI_LOCK(sc);
1730 
1731 	callout_stop(&sc->sc_calib_ch);
1732 
1733 	if (nstate == IEEE80211_S_INIT)
1734 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1735 
1736 	bwi_led_newstate(sc, nstate);
1737 
1738 	error = bvp->bv_newstate(vap, nstate, arg);
1739 	if (error != 0)
1740 		goto back;
1741 
1742 	/*
1743 	 * Clear the BSSID when we stop a STA
1744 	 */
1745 	if (vap->iv_opmode == IEEE80211_M_STA) {
1746 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1747 			/*
1748 			 * Clear out the BSSID.  If we reassociate to
1749 			 * the same AP, this will reinialize things
1750 			 * correctly...
1751 			 */
1752 			if (ic->ic_opmode == IEEE80211_M_STA &&
1753 			    !(sc->sc_flags & BWI_F_STOP))
1754 				bwi_set_bssid(sc, bwi_zero_addr);
1755 		}
1756 	}
1757 
1758 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1759 		/* Nothing to do */
1760 	} else if (nstate == IEEE80211_S_RUN) {
1761 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1762 
1763 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1764 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1765 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1766 
1767 		/* Initial TX power calibration */
1768 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1769 #ifdef notyet
1770 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1771 #else
1772 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1773 #endif
1774 
1775 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1776 	}
1777 back:
1778 	BWI_UNLOCK(sc);
1779 
1780 	return error;
1781 }
1782 
1783 static int
1784 bwi_media_change(struct ifnet *ifp)
1785 {
1786 	int error = ieee80211_media_change(ifp);
1787 	/* NB: only the fixed rate can change and that doesn't need a reset */
1788 	return (error == ENETRESET ? 0 : error);
1789 }
1790 
1791 static int
1792 bwi_dma_alloc(struct bwi_softc *sc)
1793 {
1794 	int error, i, has_txstats;
1795 	bus_addr_t lowaddr = 0;
1796 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1797 	uint32_t txrx_ctrl_step = 0;
1798 
1799 	has_txstats = 0;
1800 	for (i = 0; i < sc->sc_nmac; ++i) {
1801 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1802 			has_txstats = 1;
1803 			break;
1804 		}
1805 	}
1806 
1807 	switch (sc->sc_bus_space) {
1808 	case BWI_BUS_SPACE_30BIT:
1809 	case BWI_BUS_SPACE_32BIT:
1810 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1811 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1812 		else
1813 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1814 		desc_sz = sizeof(struct bwi_desc32);
1815 		txrx_ctrl_step = 0x20;
1816 
1817 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1818 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1819 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1820 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1821 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1822 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1823 		sc->sc_rxeof = bwi_rxeof32;
1824 		sc->sc_start_tx = bwi_start_tx32;
1825 		if (has_txstats) {
1826 			sc->sc_init_txstats = bwi_init_txstats32;
1827 			sc->sc_free_txstats = bwi_free_txstats32;
1828 			sc->sc_txeof_status = bwi_txeof_status32;
1829 		}
1830 		break;
1831 
1832 	case BWI_BUS_SPACE_64BIT:
1833 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1834 		desc_sz = sizeof(struct bwi_desc64);
1835 		txrx_ctrl_step = 0x40;
1836 
1837 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1838 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1839 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1840 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1841 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1842 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1843 		sc->sc_rxeof = bwi_rxeof64;
1844 		sc->sc_start_tx = bwi_start_tx64;
1845 		if (has_txstats) {
1846 			sc->sc_init_txstats = bwi_init_txstats64;
1847 			sc->sc_free_txstats = bwi_free_txstats64;
1848 			sc->sc_txeof_status = bwi_txeof_status64;
1849 		}
1850 		break;
1851 	}
1852 
1853 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1854 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1855 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1856 
1857 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1858 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1859 
1860 	/*
1861 	 * Create top level DMA tag
1862 	 */
1863 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1864 			       BWI_ALIGN, 0,		/* alignment, bounds */
1865 			       lowaddr,			/* lowaddr */
1866 			       BUS_SPACE_MAXADDR,	/* highaddr */
1867 			       NULL, NULL,		/* filter, filterarg */
1868 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1869 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1870 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1871 			       0,			/* flags */
1872 			       NULL, NULL,		/* lockfunc, lockarg */
1873 			       &sc->sc_parent_dtag);
1874 	if (error) {
1875 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1876 		return error;
1877 	}
1878 
1879 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1880 
1881 	/*
1882 	 * Create TX ring DMA stuffs
1883 	 */
1884 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1885 				BWI_RING_ALIGN, 0,
1886 				BUS_SPACE_MAXADDR,
1887 				BUS_SPACE_MAXADDR,
1888 				NULL, NULL,
1889 				tx_ring_sz,
1890 				1,
1891 				tx_ring_sz,
1892 				0,
1893 				NULL, NULL,
1894 				&sc->sc_txring_dtag);
1895 	if (error) {
1896 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1897 		return error;
1898 	}
1899 
1900 	for (i = 0; i < BWI_TX_NRING; ++i) {
1901 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1902 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1903 					   TXRX_CTRL(i));
1904 		if (error) {
1905 			device_printf(sc->sc_dev, "%dth TX ring "
1906 				      "DMA alloc failed\n", i);
1907 			return error;
1908 		}
1909 	}
1910 
1911 	/*
1912 	 * Create RX ring DMA stuffs
1913 	 */
1914 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1915 				BWI_RING_ALIGN, 0,
1916 				BUS_SPACE_MAXADDR,
1917 				BUS_SPACE_MAXADDR,
1918 				NULL, NULL,
1919 				rx_ring_sz,
1920 				1,
1921 				rx_ring_sz,
1922 				0,
1923 				NULL, NULL,
1924 				&sc->sc_rxring_dtag);
1925 	if (error) {
1926 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1927 		return error;
1928 	}
1929 
1930 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1931 				   rx_ring_sz, TXRX_CTRL(0));
1932 	if (error) {
1933 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1934 		return error;
1935 	}
1936 
1937 	if (has_txstats) {
1938 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1939 		if (error) {
1940 			device_printf(sc->sc_dev,
1941 				      "TX stats DMA alloc failed\n");
1942 			return error;
1943 		}
1944 	}
1945 
1946 #undef TXRX_CTRL
1947 
1948 	return bwi_dma_mbuf_create(sc);
1949 }
1950 
1951 static void
1952 bwi_dma_free(struct bwi_softc *sc)
1953 {
1954 	if (sc->sc_txring_dtag != NULL) {
1955 		int i;
1956 
1957 		for (i = 0; i < BWI_TX_NRING; ++i) {
1958 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1959 
1960 			if (rd->rdata_desc != NULL) {
1961 				bus_dmamap_unload(sc->sc_txring_dtag,
1962 						  rd->rdata_dmap);
1963 				bus_dmamem_free(sc->sc_txring_dtag,
1964 						rd->rdata_desc,
1965 						rd->rdata_dmap);
1966 			}
1967 		}
1968 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1969 	}
1970 
1971 	if (sc->sc_rxring_dtag != NULL) {
1972 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1973 
1974 		if (rd->rdata_desc != NULL) {
1975 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1976 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1977 					rd->rdata_dmap);
1978 		}
1979 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1980 	}
1981 
1982 	bwi_dma_txstats_free(sc);
1983 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
1984 
1985 	if (sc->sc_parent_dtag != NULL)
1986 		bus_dma_tag_destroy(sc->sc_parent_dtag);
1987 }
1988 
1989 static int
1990 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
1991 		   struct bwi_ring_data *rd, bus_size_t size,
1992 		   uint32_t txrx_ctrl)
1993 {
1994 	int error;
1995 
1996 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
1997 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1998 				 &rd->rdata_dmap);
1999 	if (error) {
2000 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2001 		return error;
2002 	}
2003 
2004 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2005 				bwi_dma_ring_addr, &rd->rdata_paddr,
2006 				BUS_DMA_NOWAIT);
2007 	if (error) {
2008 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2009 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2010 		rd->rdata_desc = NULL;
2011 		return error;
2012 	}
2013 
2014 	rd->rdata_txrx_ctrl = txrx_ctrl;
2015 	return 0;
2016 }
2017 
2018 static int
2019 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2020 		      bus_size_t desc_sz)
2021 {
2022 	struct bwi_txstats_data *st;
2023 	bus_size_t dma_size;
2024 	int error;
2025 
2026 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2027 	if (st == NULL) {
2028 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2029 		return ENOMEM;
2030 	}
2031 	sc->sc_txstats = st;
2032 
2033 	/*
2034 	 * Create TX stats descriptor DMA stuffs
2035 	 */
2036 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2037 
2038 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2039 				BWI_RING_ALIGN,
2040 				0,
2041 				BUS_SPACE_MAXADDR,
2042 				BUS_SPACE_MAXADDR,
2043 				NULL, NULL,
2044 				dma_size,
2045 				1,
2046 				dma_size,
2047 				0,
2048 				NULL, NULL,
2049 				&st->stats_ring_dtag);
2050 	if (error) {
2051 		device_printf(sc->sc_dev, "can't create txstats ring "
2052 			      "DMA tag\n");
2053 		return error;
2054 	}
2055 
2056 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2057 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2058 				 &st->stats_ring_dmap);
2059 	if (error) {
2060 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2061 			      "DMA mem\n");
2062 		bus_dma_tag_destroy(st->stats_ring_dtag);
2063 		st->stats_ring_dtag = NULL;
2064 		return error;
2065 	}
2066 
2067 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2068 				st->stats_ring, dma_size,
2069 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2070 				BUS_DMA_NOWAIT);
2071 	if (error) {
2072 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2073 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2074 				st->stats_ring_dmap);
2075 		bus_dma_tag_destroy(st->stats_ring_dtag);
2076 		st->stats_ring_dtag = NULL;
2077 		return error;
2078 	}
2079 
2080 	/*
2081 	 * Create TX stats DMA stuffs
2082 	 */
2083 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2084 			   BWI_ALIGN);
2085 
2086 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2087 				BWI_ALIGN,
2088 				0,
2089 				BUS_SPACE_MAXADDR,
2090 				BUS_SPACE_MAXADDR,
2091 				NULL, NULL,
2092 				dma_size,
2093 				1,
2094 				dma_size,
2095 				0,
2096 				NULL, NULL,
2097 				&st->stats_dtag);
2098 	if (error) {
2099 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2100 		return error;
2101 	}
2102 
2103 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2104 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2105 				 &st->stats_dmap);
2106 	if (error) {
2107 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2108 		bus_dma_tag_destroy(st->stats_dtag);
2109 		st->stats_dtag = NULL;
2110 		return error;
2111 	}
2112 
2113 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2114 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2115 				BUS_DMA_NOWAIT);
2116 	if (error) {
2117 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2118 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2119 		bus_dma_tag_destroy(st->stats_dtag);
2120 		st->stats_dtag = NULL;
2121 		return error;
2122 	}
2123 
2124 	st->stats_ctrl_base = ctrl_base;
2125 	return 0;
2126 }
2127 
2128 static void
2129 bwi_dma_txstats_free(struct bwi_softc *sc)
2130 {
2131 	struct bwi_txstats_data *st;
2132 
2133 	if (sc->sc_txstats == NULL)
2134 		return;
2135 	st = sc->sc_txstats;
2136 
2137 	if (st->stats_ring_dtag != NULL) {
2138 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2139 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2140 				st->stats_ring_dmap);
2141 		bus_dma_tag_destroy(st->stats_ring_dtag);
2142 	}
2143 
2144 	if (st->stats_dtag != NULL) {
2145 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2146 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2147 		bus_dma_tag_destroy(st->stats_dtag);
2148 	}
2149 
2150 	free(st, M_DEVBUF);
2151 }
2152 
2153 static void
2154 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2155 {
2156 	KASSERT(nseg == 1, ("too many segments\n"));
2157 	*((bus_addr_t *)arg) = seg->ds_addr;
2158 }
2159 
2160 static int
2161 bwi_dma_mbuf_create(struct bwi_softc *sc)
2162 {
2163 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2164 	int i, j, k, ntx, error;
2165 
2166 	/*
2167 	 * Create TX/RX mbuf DMA tag
2168 	 */
2169 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2170 				1,
2171 				0,
2172 				BUS_SPACE_MAXADDR,
2173 				BUS_SPACE_MAXADDR,
2174 				NULL, NULL,
2175 				MCLBYTES,
2176 				1,
2177 				MCLBYTES,
2178 				BUS_DMA_ALLOCNOW,
2179 				NULL, NULL,
2180 				&sc->sc_buf_dtag);
2181 	if (error) {
2182 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2183 		return error;
2184 	}
2185 
2186 	ntx = 0;
2187 
2188 	/*
2189 	 * Create TX mbuf DMA map
2190 	 */
2191 	for (i = 0; i < BWI_TX_NRING; ++i) {
2192 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2193 
2194 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2195 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2196 						  &tbd->tbd_buf[j].tb_dmap);
2197 			if (error) {
2198 				device_printf(sc->sc_dev, "can't create "
2199 					      "%dth tbd, %dth DMA map\n", i, j);
2200 
2201 				ntx = i;
2202 				for (k = 0; k < j; ++k) {
2203 					bus_dmamap_destroy(sc->sc_buf_dtag,
2204 						tbd->tbd_buf[k].tb_dmap);
2205 				}
2206 				goto fail;
2207 			}
2208 		}
2209 	}
2210 	ntx = BWI_TX_NRING;
2211 
2212 	/*
2213 	 * Create RX mbuf DMA map and a spare DMA map
2214 	 */
2215 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2216 				  &rbd->rbd_tmp_dmap);
2217 	if (error) {
2218 		device_printf(sc->sc_dev,
2219 			      "can't create spare RX buf DMA map\n");
2220 		goto fail;
2221 	}
2222 
2223 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2224 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2225 					  &rbd->rbd_buf[j].rb_dmap);
2226 		if (error) {
2227 			device_printf(sc->sc_dev, "can't create %dth "
2228 				      "RX buf DMA map\n", j);
2229 
2230 			for (k = 0; k < j; ++k) {
2231 				bus_dmamap_destroy(sc->sc_buf_dtag,
2232 					rbd->rbd_buf[j].rb_dmap);
2233 			}
2234 			bus_dmamap_destroy(sc->sc_buf_dtag,
2235 					   rbd->rbd_tmp_dmap);
2236 			goto fail;
2237 		}
2238 	}
2239 
2240 	return 0;
2241 fail:
2242 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2243 	return error;
2244 }
2245 
2246 static void
2247 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2248 {
2249 	int i, j;
2250 
2251 	if (sc->sc_buf_dtag == NULL)
2252 		return;
2253 
2254 	for (i = 0; i < ntx; ++i) {
2255 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2256 
2257 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2258 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2259 
2260 			if (tb->tb_mbuf != NULL) {
2261 				bus_dmamap_unload(sc->sc_buf_dtag,
2262 						  tb->tb_dmap);
2263 				m_freem(tb->tb_mbuf);
2264 			}
2265 			if (tb->tb_ni != NULL)
2266 				ieee80211_free_node(tb->tb_ni);
2267 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2268 		}
2269 	}
2270 
2271 	if (nrx) {
2272 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2273 
2274 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2275 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2276 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2277 
2278 			if (rb->rb_mbuf != NULL) {
2279 				bus_dmamap_unload(sc->sc_buf_dtag,
2280 						  rb->rb_dmap);
2281 				m_freem(rb->rb_mbuf);
2282 			}
2283 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2284 		}
2285 	}
2286 
2287 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2288 	sc->sc_buf_dtag = NULL;
2289 }
2290 
2291 static void
2292 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2293 {
2294 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2295 }
2296 
2297 static void
2298 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2299 {
2300 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2301 }
2302 
2303 static int
2304 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2305 {
2306 	struct bwi_ring_data *rd;
2307 	struct bwi_txbuf_data *tbd;
2308 	uint32_t val, addr_hi, addr_lo;
2309 
2310 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2311 	rd = &sc->sc_tx_rdata[ring_idx];
2312 	tbd = &sc->sc_tx_bdata[ring_idx];
2313 
2314 	tbd->tbd_idx = 0;
2315 	tbd->tbd_used = 0;
2316 
2317 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2318 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2319 			BUS_DMASYNC_PREWRITE);
2320 
2321 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2322 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2323 
2324 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2325 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2326 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2327 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2328 
2329 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2330 	      BWI_TXRX32_CTRL_ENABLE;
2331 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2332 
2333 	return 0;
2334 }
2335 
2336 static void
2337 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2338 		       bus_addr_t paddr, int hdr_size, int ndesc)
2339 {
2340 	uint32_t val, addr_hi, addr_lo;
2341 
2342 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2343 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2344 
2345 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2346 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2347 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2348 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2349 
2350 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2351 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2352 	      BWI_TXRX32_CTRL_ENABLE;
2353 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2354 
2355 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2356 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2357 }
2358 
2359 static int
2360 bwi_init_rx_ring32(struct bwi_softc *sc)
2361 {
2362 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2363 	int i, error;
2364 
2365 	sc->sc_rx_bdata.rbd_idx = 0;
2366 
2367 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2368 		error = bwi_newbuf(sc, i, 1);
2369 		if (error) {
2370 			device_printf(sc->sc_dev,
2371 				  "can't allocate %dth RX buffer\n", i);
2372 			return error;
2373 		}
2374 	}
2375 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2376 			BUS_DMASYNC_PREWRITE);
2377 
2378 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2379 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2380 	return 0;
2381 }
2382 
2383 static int
2384 bwi_init_txstats32(struct bwi_softc *sc)
2385 {
2386 	struct bwi_txstats_data *st = sc->sc_txstats;
2387 	bus_addr_t stats_paddr;
2388 	int i;
2389 
2390 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2391 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2392 
2393 	st->stats_idx = 0;
2394 
2395 	stats_paddr = st->stats_paddr;
2396 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2397 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2398 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2399 		stats_paddr += sizeof(struct bwi_txstats);
2400 	}
2401 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2402 			BUS_DMASYNC_PREWRITE);
2403 
2404 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2405 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2406 	return 0;
2407 }
2408 
2409 static void
2410 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2411 		    int buf_len)
2412 {
2413 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2414 
2415 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2416 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2417 			 paddr, buf_len, 0);
2418 }
2419 
2420 static void
2421 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2422 		    int buf_idx, bus_addr_t paddr, int buf_len)
2423 {
2424 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2425 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2426 			 paddr, buf_len, 1);
2427 }
2428 
2429 static int
2430 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2431 {
2432 	/* TODO:64 */
2433 	return EOPNOTSUPP;
2434 }
2435 
2436 static int
2437 bwi_init_rx_ring64(struct bwi_softc *sc)
2438 {
2439 	/* TODO:64 */
2440 	return EOPNOTSUPP;
2441 }
2442 
2443 static int
2444 bwi_init_txstats64(struct bwi_softc *sc)
2445 {
2446 	/* TODO:64 */
2447 	return EOPNOTSUPP;
2448 }
2449 
2450 static void
2451 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2452 		    int buf_len)
2453 {
2454 	/* TODO:64 */
2455 }
2456 
2457 static void
2458 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2459 		    int buf_idx, bus_addr_t paddr, int buf_len)
2460 {
2461 	/* TODO:64 */
2462 }
2463 
2464 static void
2465 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2466 		 bus_size_t mapsz __unused, int error)
2467 {
2468         if (!error) {
2469 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2470 		*((bus_addr_t *)arg) = seg->ds_addr;
2471 	}
2472 }
2473 
2474 static int
2475 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2476 {
2477 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2478 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2479 	struct bwi_rxbuf_hdr *hdr;
2480 	bus_dmamap_t map;
2481 	bus_addr_t paddr;
2482 	struct mbuf *m;
2483 	int error;
2484 
2485 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2486 
2487 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2488 	if (m == NULL) {
2489 		error = ENOBUFS;
2490 
2491 		/*
2492 		 * If the NIC is up and running, we need to:
2493 		 * - Clear RX buffer's header.
2494 		 * - Restore RX descriptor settings.
2495 		 */
2496 		if (init)
2497 			return error;
2498 		else
2499 			goto back;
2500 	}
2501 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2502 
2503 	/*
2504 	 * Try to load RX buf into temporary DMA map
2505 	 */
2506 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2507 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2508 	if (error) {
2509 		m_freem(m);
2510 
2511 		/*
2512 		 * See the comment above
2513 		 */
2514 		if (init)
2515 			return error;
2516 		else
2517 			goto back;
2518 	}
2519 
2520 	if (!init)
2521 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2522 	rxbuf->rb_mbuf = m;
2523 	rxbuf->rb_paddr = paddr;
2524 
2525 	/*
2526 	 * Swap RX buf's DMA map with the loaded temporary one
2527 	 */
2528 	map = rxbuf->rb_dmap;
2529 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2530 	rbd->rbd_tmp_dmap = map;
2531 
2532 back:
2533 	/*
2534 	 * Clear RX buf header
2535 	 */
2536 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2537 	bzero(hdr, sizeof(*hdr));
2538 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2539 
2540 	/*
2541 	 * Setup RX buf descriptor
2542 	 */
2543 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2544 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2545 	return error;
2546 }
2547 
2548 static void
2549 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2550 		    const uint8_t *addr)
2551 {
2552 	int i;
2553 
2554 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2555 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2556 
2557 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2558 		uint16_t addr_val;
2559 
2560 		addr_val = (uint16_t)addr[i * 2] |
2561 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2562 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2563 	}
2564 }
2565 
2566 static int
2567 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2568 {
2569 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2570 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2571 	struct ieee80211com *ic = &sc->sc_ic;
2572 	int idx, rx_data = 0;
2573 
2574 	idx = rbd->rbd_idx;
2575 	while (idx != end_idx) {
2576 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2577 		struct bwi_rxbuf_hdr *hdr;
2578 		struct ieee80211_frame_min *wh;
2579 		struct ieee80211_node *ni;
2580 		struct mbuf *m;
2581 		uint32_t plcp;
2582 		uint16_t flags2;
2583 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2584 
2585 		m = rb->rb_mbuf;
2586 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2587 				BUS_DMASYNC_POSTREAD);
2588 
2589 		if (bwi_newbuf(sc, idx, 0)) {
2590 			counter_u64_add(ic->ic_ierrors, 1);
2591 			goto next;
2592 		}
2593 
2594 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2595 		flags2 = le16toh(hdr->rxh_flags2);
2596 
2597 		hdr_extra = 0;
2598 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2599 			hdr_extra = 2;
2600 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2601 
2602 		buflen = le16toh(hdr->rxh_buflen);
2603 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2604 			device_printf(sc->sc_dev,
2605 			    "%s: zero length data, hdr_extra %d\n",
2606 			    __func__, hdr_extra);
2607 			counter_u64_add(ic->ic_ierrors, 1);
2608 			m_freem(m);
2609 			goto next;
2610 		}
2611 
2612 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2613 		rssi = bwi_calc_rssi(sc, hdr);
2614 		noise = bwi_calc_noise(sc);
2615 
2616 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2617 		m_adj(m, sizeof(*hdr) + wh_ofs);
2618 
2619 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2620 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2621 		else
2622 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2623 
2624 		/* RX radio tap */
2625 		if (ieee80211_radiotap_active(ic))
2626 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2627 
2628 		m_adj(m, -IEEE80211_CRC_LEN);
2629 
2630 		BWI_UNLOCK(sc);
2631 
2632 		wh = mtod(m, struct ieee80211_frame_min *);
2633 		ni = ieee80211_find_rxnode(ic, wh);
2634 		if (ni != NULL) {
2635 			type = ieee80211_input(ni, m, rssi - noise, noise);
2636 			ieee80211_free_node(ni);
2637 		} else
2638 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2639 		if (type == IEEE80211_FC0_TYPE_DATA) {
2640 			rx_data = 1;
2641 			sc->sc_rx_rate = rate;
2642 		}
2643 
2644 		BWI_LOCK(sc);
2645 next:
2646 		idx = (idx + 1) % BWI_RX_NDESC;
2647 
2648 		if (sc->sc_flags & BWI_F_STOP) {
2649 			/*
2650 			 * Take the fast lane, don't do
2651 			 * any damage to softc
2652 			 */
2653 			return -1;
2654 		}
2655 	}
2656 
2657 	rbd->rbd_idx = idx;
2658 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2659 			BUS_DMASYNC_PREWRITE);
2660 
2661 	return rx_data;
2662 }
2663 
2664 static int
2665 bwi_rxeof32(struct bwi_softc *sc)
2666 {
2667 	uint32_t val, rx_ctrl;
2668 	int end_idx, rx_data;
2669 
2670 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2671 
2672 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2673 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2674 		  sizeof(struct bwi_desc32);
2675 
2676 	rx_data = bwi_rxeof(sc, end_idx);
2677 	if (rx_data >= 0) {
2678 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2679 			    end_idx * sizeof(struct bwi_desc32));
2680 	}
2681 	return rx_data;
2682 }
2683 
2684 static int
2685 bwi_rxeof64(struct bwi_softc *sc)
2686 {
2687 	/* TODO:64 */
2688 	return 0;
2689 }
2690 
2691 static void
2692 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2693 {
2694 	int i;
2695 
2696 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2697 
2698 #define NRETRY 10
2699 
2700 	for (i = 0; i < NRETRY; ++i) {
2701 		uint32_t status;
2702 
2703 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2704 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2705 		    BWI_RX32_STATUS_STATE_DISABLED)
2706 			break;
2707 
2708 		DELAY(1000);
2709 	}
2710 	if (i == NRETRY)
2711 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2712 
2713 #undef NRETRY
2714 
2715 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2716 }
2717 
2718 static void
2719 bwi_free_txstats32(struct bwi_softc *sc)
2720 {
2721 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2722 }
2723 
2724 static void
2725 bwi_free_rx_ring32(struct bwi_softc *sc)
2726 {
2727 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2728 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2729 	int i;
2730 
2731 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2732 
2733 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2734 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2735 
2736 		if (rb->rb_mbuf != NULL) {
2737 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2738 			m_freem(rb->rb_mbuf);
2739 			rb->rb_mbuf = NULL;
2740 		}
2741 	}
2742 }
2743 
2744 static void
2745 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2746 {
2747 	struct bwi_ring_data *rd;
2748 	struct bwi_txbuf_data *tbd;
2749 	uint32_t state, val;
2750 	int i;
2751 
2752 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2753 	rd = &sc->sc_tx_rdata[ring_idx];
2754 	tbd = &sc->sc_tx_bdata[ring_idx];
2755 
2756 #define NRETRY 10
2757 
2758 	for (i = 0; i < NRETRY; ++i) {
2759 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2760 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2761 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2762 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2763 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2764 			break;
2765 
2766 		DELAY(1000);
2767 	}
2768 	if (i == NRETRY) {
2769 		device_printf(sc->sc_dev,
2770 		    "%s: wait for TX ring(%d) stable timed out\n",
2771 		    __func__, ring_idx);
2772 	}
2773 
2774 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2775 	for (i = 0; i < NRETRY; ++i) {
2776 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2777 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2778 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2779 			break;
2780 
2781 		DELAY(1000);
2782 	}
2783 	if (i == NRETRY)
2784 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2785 		     __func__, ring_idx);
2786 
2787 #undef NRETRY
2788 
2789 	DELAY(1000);
2790 
2791 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2792 
2793 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2794 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2795 
2796 		if (tb->tb_mbuf != NULL) {
2797 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2798 			m_freem(tb->tb_mbuf);
2799 			tb->tb_mbuf = NULL;
2800 		}
2801 		if (tb->tb_ni != NULL) {
2802 			ieee80211_free_node(tb->tb_ni);
2803 			tb->tb_ni = NULL;
2804 		}
2805 	}
2806 }
2807 
2808 static void
2809 bwi_free_txstats64(struct bwi_softc *sc)
2810 {
2811 	/* TODO:64 */
2812 }
2813 
2814 static void
2815 bwi_free_rx_ring64(struct bwi_softc *sc)
2816 {
2817 	/* TODO:64 */
2818 }
2819 
2820 static void
2821 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2822 {
2823 	/* TODO:64 */
2824 }
2825 
2826 /* XXX does not belong here */
2827 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2828 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2829 
2830 static __inline void
2831 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2832 {
2833 	uint32_t plcp;
2834 
2835 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2836 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2837 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2838 	*plcp0 = htole32(plcp);
2839 }
2840 
2841 static __inline void
2842 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2843 		   uint8_t rate)
2844 {
2845 	int len, service, pkt_bitlen;
2846 
2847 	pkt_bitlen = pkt_len * NBBY;
2848 	len = howmany(pkt_bitlen * 2, rate);
2849 
2850 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2851 	if (rate == (11 * 2)) {
2852 		int pkt_bitlen1;
2853 
2854 		/*
2855 		 * PLCP service field needs to be adjusted,
2856 		 * if TX rate is 11Mbytes/s
2857 		 */
2858 		pkt_bitlen1 = len * 11;
2859 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2860 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2861 	}
2862 
2863 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2864 	plcp->i_service = service;
2865 	plcp->i_length = htole16(len);
2866 	/* NOTE: do NOT touch i_crc */
2867 }
2868 
2869 static __inline void
2870 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2871 	void *plcp, int pkt_len, uint8_t rate)
2872 {
2873 	enum ieee80211_phytype modtype;
2874 
2875 	/*
2876 	 * Assume caller has zeroed 'plcp'
2877 	 */
2878 	modtype = ieee80211_rate2phytype(rt, rate);
2879 	if (modtype == IEEE80211_T_OFDM)
2880 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2881 	else if (modtype == IEEE80211_T_DS)
2882 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2883 	else
2884 		panic("unsupport modulation type %u\n", modtype);
2885 }
2886 
2887 static int
2888 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2889 	  struct ieee80211_node *ni)
2890 {
2891 	struct ieee80211vap *vap = ni->ni_vap;
2892 	struct ieee80211com *ic = &sc->sc_ic;
2893 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2894 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2895 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2896 	struct bwi_mac *mac;
2897 	struct bwi_txbuf_hdr *hdr;
2898 	struct ieee80211_frame *wh;
2899 	const struct ieee80211_txparam *tp;
2900 	uint8_t rate, rate_fb;
2901 	uint32_t mac_ctrl;
2902 	uint16_t phy_ctrl;
2903 	bus_addr_t paddr;
2904 	int type, ismcast, pkt_len, error, rix;
2905 #if 0
2906 	const uint8_t *p;
2907 	int i;
2908 #endif
2909 
2910 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2911 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2912 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2913 
2914 	wh = mtod(m, struct ieee80211_frame *);
2915 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2916 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2917 
2918 	/* Get 802.11 frame len before prepending TX header */
2919 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2920 
2921 	/*
2922 	 * Find TX rate
2923 	 */
2924 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2925 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2926 		rate = rate_fb = tp->mgmtrate;
2927 	} else if (ismcast) {
2928 		rate = rate_fb = tp->mcastrate;
2929 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2930 		rate = rate_fb = tp->ucastrate;
2931 	} else {
2932 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2933 		rate = ni->ni_txrate;
2934 
2935 		if (rix > 0) {
2936 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2937 				  IEEE80211_RATE_VAL;
2938 		} else {
2939 			rate_fb = rate;
2940 		}
2941 	}
2942 	tb->tb_rate[0] = rate;
2943 	tb->tb_rate[1] = rate_fb;
2944 	sc->sc_tx_rate = rate;
2945 
2946 	/*
2947 	 * TX radio tap
2948 	 */
2949 	if (ieee80211_radiotap_active_vap(vap)) {
2950 		sc->sc_tx_th.wt_flags = 0;
2951 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2952 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2953 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2954 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2955 		    rate != (1 * 2)) {
2956 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2957 		}
2958 		sc->sc_tx_th.wt_rate = rate;
2959 
2960 		ieee80211_radiotap_tx(vap, m);
2961 	}
2962 
2963 	/*
2964 	 * Setup the embedded TX header
2965 	 */
2966 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2967 	if (m == NULL) {
2968 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2969 		    __func__);
2970 		return ENOBUFS;
2971 	}
2972 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2973 
2974 	bzero(hdr, sizeof(*hdr));
2975 
2976 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2977 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2978 
2979 	if (!ismcast) {
2980 		uint16_t dur;
2981 
2982 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
2983 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2984 
2985 		hdr->txh_fb_duration = htole16(dur);
2986 	}
2987 
2988 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
2989 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
2990 
2991 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
2992 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
2993 
2994 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
2995 			     BWI_TXH_PHY_C_ANTMODE_MASK);
2996 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
2997 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
2998 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
2999 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3000 
3001 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3002 	if (!ismcast)
3003 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3004 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3005 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3006 
3007 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3008 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3009 
3010 	/* Catch any further usage */
3011 	hdr = NULL;
3012 	wh = NULL;
3013 
3014 	/* DMA load */
3015 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3016 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3017 	if (error && error != EFBIG) {
3018 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3019 		    __func__, error);
3020 		goto back;
3021 	}
3022 
3023 	if (error) {	/* error == EFBIG */
3024 		struct mbuf *m_new;
3025 
3026 		m_new = m_defrag(m, M_NOWAIT);
3027 		if (m_new == NULL) {
3028 			device_printf(sc->sc_dev,
3029 			    "%s: can't defrag TX buffer\n", __func__);
3030 			error = ENOBUFS;
3031 			goto back;
3032 		} else {
3033 			m = m_new;
3034 		}
3035 
3036 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3037 					     bwi_dma_buf_addr, &paddr,
3038 					     BUS_DMA_NOWAIT);
3039 		if (error) {
3040 			device_printf(sc->sc_dev,
3041 			    "%s: can't load TX buffer (2) %d\n",
3042 			    __func__, error);
3043 			goto back;
3044 		}
3045 	}
3046 	error = 0;
3047 
3048 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3049 
3050 	tb->tb_mbuf = m;
3051 	tb->tb_ni = ni;
3052 
3053 #if 0
3054 	p = mtod(m, const uint8_t *);
3055 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3056 		if (i != 0 && i % 8 == 0)
3057 			printf("\n");
3058 		printf("%02x ", p[i]);
3059 	}
3060 	printf("\n");
3061 #endif
3062 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3063 		idx, pkt_len, m->m_pkthdr.len);
3064 
3065 	/* Setup TX descriptor */
3066 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3067 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3068 			BUS_DMASYNC_PREWRITE);
3069 
3070 	/* Kick start */
3071 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3072 
3073 back:
3074 	if (error)
3075 		m_freem(m);
3076 	return error;
3077 }
3078 
3079 static int
3080 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3081 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3082 {
3083 	struct ieee80211vap *vap = ni->ni_vap;
3084 	struct ieee80211com *ic = ni->ni_ic;
3085 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3086 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3087 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3088 	struct bwi_mac *mac;
3089 	struct bwi_txbuf_hdr *hdr;
3090 	struct ieee80211_frame *wh;
3091 	uint8_t rate, rate_fb;
3092 	uint32_t mac_ctrl;
3093 	uint16_t phy_ctrl;
3094 	bus_addr_t paddr;
3095 	int ismcast, pkt_len, error;
3096 
3097 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3098 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3099 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3100 
3101 	wh = mtod(m, struct ieee80211_frame *);
3102 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3103 
3104 	/* Get 802.11 frame len before prepending TX header */
3105 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3106 
3107 	/*
3108 	 * Find TX rate
3109 	 */
3110 	rate = params->ibp_rate0;
3111 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3112 		/* XXX fall back to mcast/mgmt rate? */
3113 		m_freem(m);
3114 		return EINVAL;
3115 	}
3116 	if (params->ibp_try1 != 0) {
3117 		rate_fb = params->ibp_rate1;
3118 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3119 			/* XXX fall back to rate0? */
3120 			m_freem(m);
3121 			return EINVAL;
3122 		}
3123 	} else
3124 		rate_fb = rate;
3125 	tb->tb_rate[0] = rate;
3126 	tb->tb_rate[1] = rate_fb;
3127 	sc->sc_tx_rate = rate;
3128 
3129 	/*
3130 	 * TX radio tap
3131 	 */
3132 	if (ieee80211_radiotap_active_vap(vap)) {
3133 		sc->sc_tx_th.wt_flags = 0;
3134 		/* XXX IEEE80211_BPF_CRYPTO */
3135 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3136 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3137 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3138 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3139 		sc->sc_tx_th.wt_rate = rate;
3140 
3141 		ieee80211_radiotap_tx(vap, m);
3142 	}
3143 
3144 	/*
3145 	 * Setup the embedded TX header
3146 	 */
3147 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3148 	if (m == NULL) {
3149 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3150 		    __func__);
3151 		return ENOBUFS;
3152 	}
3153 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3154 
3155 	bzero(hdr, sizeof(*hdr));
3156 
3157 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3158 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3159 
3160 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3161 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3162 		uint16_t dur;
3163 
3164 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3165 
3166 		hdr->txh_fb_duration = htole16(dur);
3167 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3168 	}
3169 
3170 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3171 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3172 
3173 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3174 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3175 
3176 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3177 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3178 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3179 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3180 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3181 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3182 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3183 
3184 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3185 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3186 
3187 	/* Catch any further usage */
3188 	hdr = NULL;
3189 	wh = NULL;
3190 
3191 	/* DMA load */
3192 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3193 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3194 	if (error != 0) {
3195 		struct mbuf *m_new;
3196 
3197 		if (error != EFBIG) {
3198 			device_printf(sc->sc_dev,
3199 			    "%s: can't load TX buffer (1) %d\n",
3200 			    __func__, error);
3201 			goto back;
3202 		}
3203 		m_new = m_defrag(m, M_NOWAIT);
3204 		if (m_new == NULL) {
3205 			device_printf(sc->sc_dev,
3206 			    "%s: can't defrag TX buffer\n", __func__);
3207 			error = ENOBUFS;
3208 			goto back;
3209 		}
3210 		m = m_new;
3211 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3212 					     bwi_dma_buf_addr, &paddr,
3213 					     BUS_DMA_NOWAIT);
3214 		if (error) {
3215 			device_printf(sc->sc_dev,
3216 			    "%s: can't load TX buffer (2) %d\n",
3217 			    __func__, error);
3218 			goto back;
3219 		}
3220 	}
3221 
3222 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3223 
3224 	tb->tb_mbuf = m;
3225 	tb->tb_ni = ni;
3226 
3227 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3228 		idx, pkt_len, m->m_pkthdr.len);
3229 
3230 	/* Setup TX descriptor */
3231 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3232 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3233 			BUS_DMASYNC_PREWRITE);
3234 
3235 	/* Kick start */
3236 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3237 back:
3238 	if (error)
3239 		m_freem(m);
3240 	return error;
3241 }
3242 
3243 static void
3244 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3245 {
3246 	idx = (idx + 1) % BWI_TX_NDESC;
3247 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3248 		    idx * sizeof(struct bwi_desc32));
3249 }
3250 
3251 static void
3252 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3253 {
3254 	/* TODO:64 */
3255 }
3256 
3257 static void
3258 bwi_txeof_status32(struct bwi_softc *sc)
3259 {
3260 	uint32_t val, ctrl_base;
3261 	int end_idx;
3262 
3263 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3264 
3265 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3266 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3267 		  sizeof(struct bwi_desc32);
3268 
3269 	bwi_txeof_status(sc, end_idx);
3270 
3271 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3272 		    end_idx * sizeof(struct bwi_desc32));
3273 
3274 	bwi_start_locked(sc);
3275 }
3276 
3277 static void
3278 bwi_txeof_status64(struct bwi_softc *sc)
3279 {
3280 	/* TODO:64 */
3281 }
3282 
3283 static void
3284 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3285 {
3286 	struct bwi_txbuf_data *tbd;
3287 	struct bwi_txbuf *tb;
3288 	int ring_idx, buf_idx;
3289 	struct ieee80211_node *ni;
3290 	struct ieee80211vap *vap;
3291 
3292 	if (tx_id == 0) {
3293 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3294 		return;
3295 	}
3296 
3297 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3298 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3299 
3300 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3301 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3302 
3303 	tbd = &sc->sc_tx_bdata[ring_idx];
3304 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3305 	tbd->tbd_used--;
3306 
3307 	tb = &tbd->tbd_buf[buf_idx];
3308 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3309 		"acked %d, data_txcnt %d, ni %p\n",
3310 		buf_idx, acked, data_txcnt, tb->tb_ni);
3311 
3312 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3313 
3314 	if ((ni = tb->tb_ni) != NULL) {
3315 		const struct bwi_txbuf_hdr *hdr =
3316 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3317 		vap = ni->ni_vap;
3318 
3319 		/* NB: update rate control only for unicast frames */
3320 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3321 			/*
3322 			 * Feed back 'acked and data_txcnt'.  Note that the
3323 			 * generic AMRR code only understands one tx rate
3324 			 * and the estimator doesn't handle real retry counts
3325 			 * well so to avoid over-aggressive downshifting we
3326 			 * treat any number of retries as "1".
3327 			 */
3328 			ieee80211_ratectl_tx_complete(vap, ni,
3329 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3330 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3331 		}
3332 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3333 		tb->tb_ni = NULL;
3334 	} else
3335 		m_freem(tb->tb_mbuf);
3336 	tb->tb_mbuf = NULL;
3337 
3338 	if (tbd->tbd_used == 0)
3339 		sc->sc_tx_timer = 0;
3340 }
3341 
3342 static void
3343 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3344 {
3345 	struct bwi_txstats_data *st = sc->sc_txstats;
3346 	int idx;
3347 
3348 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3349 
3350 	idx = st->stats_idx;
3351 	while (idx != end_idx) {
3352 		const struct bwi_txstats *stats = &st->stats[idx];
3353 
3354 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3355 			int data_txcnt;
3356 
3357 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3358 						BWI_TXS_TXCNT_DATA);
3359 			_bwi_txeof(sc, le16toh(stats->txs_id),
3360 				   stats->txs_flags & BWI_TXS_F_ACKED,
3361 				   data_txcnt);
3362 		}
3363 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3364 	}
3365 	st->stats_idx = idx;
3366 }
3367 
3368 static void
3369 bwi_txeof(struct bwi_softc *sc)
3370 {
3371 
3372 	for (;;) {
3373 		uint32_t tx_status0, tx_status1;
3374 		uint16_t tx_id;
3375 		int data_txcnt;
3376 
3377 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3378 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3379 			break;
3380 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3381 
3382 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3383 		data_txcnt = __SHIFTOUT(tx_status0,
3384 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3385 
3386 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3387 			continue;
3388 
3389 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3390 		    data_txcnt);
3391 	}
3392 
3393 	bwi_start_locked(sc);
3394 }
3395 
3396 static int
3397 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3398 {
3399 	bwi_power_on(sc, 1);
3400 	return bwi_set_clock_mode(sc, clk_mode);
3401 }
3402 
3403 static void
3404 bwi_bbp_power_off(struct bwi_softc *sc)
3405 {
3406 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3407 	bwi_power_off(sc, 1);
3408 }
3409 
3410 static int
3411 bwi_get_pwron_delay(struct bwi_softc *sc)
3412 {
3413 	struct bwi_regwin *com, *old;
3414 	struct bwi_clock_freq freq;
3415 	uint32_t val;
3416 	int error;
3417 
3418 	com = &sc->sc_com_regwin;
3419 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3420 
3421 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3422 		return 0;
3423 
3424 	error = bwi_regwin_switch(sc, com, &old);
3425 	if (error)
3426 		return error;
3427 
3428 	bwi_get_clock_freq(sc, &freq);
3429 
3430 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3431 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3432 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3433 
3434 	return bwi_regwin_switch(sc, old, NULL);
3435 }
3436 
3437 static int
3438 bwi_bus_attach(struct bwi_softc *sc)
3439 {
3440 	struct bwi_regwin *bus, *old;
3441 	int error;
3442 
3443 	bus = &sc->sc_bus_regwin;
3444 
3445 	error = bwi_regwin_switch(sc, bus, &old);
3446 	if (error)
3447 		return error;
3448 
3449 	if (!bwi_regwin_is_enabled(sc, bus))
3450 		bwi_regwin_enable(sc, bus, 0);
3451 
3452 	/* Disable interripts */
3453 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3454 
3455 	return bwi_regwin_switch(sc, old, NULL);
3456 }
3457 
3458 static const char *
3459 bwi_regwin_name(const struct bwi_regwin *rw)
3460 {
3461 	switch (rw->rw_type) {
3462 	case BWI_REGWIN_T_COM:
3463 		return "COM";
3464 	case BWI_REGWIN_T_BUSPCI:
3465 		return "PCI";
3466 	case BWI_REGWIN_T_MAC:
3467 		return "MAC";
3468 	case BWI_REGWIN_T_BUSPCIE:
3469 		return "PCIE";
3470 	}
3471 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3472 	return NULL;
3473 }
3474 
3475 static uint32_t
3476 bwi_regwin_disable_bits(struct bwi_softc *sc)
3477 {
3478 	uint32_t busrev;
3479 
3480 	/* XXX cache this */
3481 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3482 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3483 		"bus rev %u\n", busrev);
3484 
3485 	if (busrev == BWI_BUSREV_0)
3486 		return BWI_STATE_LO_DISABLE1;
3487 	else if (busrev == BWI_BUSREV_1)
3488 		return BWI_STATE_LO_DISABLE2;
3489 	else
3490 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3491 }
3492 
3493 int
3494 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3495 {
3496 	uint32_t val, disable_bits;
3497 
3498 	disable_bits = bwi_regwin_disable_bits(sc);
3499 	val = CSR_READ_4(sc, BWI_STATE_LO);
3500 
3501 	if ((val & (BWI_STATE_LO_CLOCK |
3502 		    BWI_STATE_LO_RESET |
3503 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3504 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3505 			bwi_regwin_name(rw));
3506 		return 1;
3507 	} else {
3508 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3509 			bwi_regwin_name(rw));
3510 		return 0;
3511 	}
3512 }
3513 
3514 void
3515 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3516 {
3517 	uint32_t state_lo, disable_bits;
3518 	int i;
3519 
3520 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3521 
3522 	/*
3523 	 * If current regwin is in 'reset' state, it was already disabled.
3524 	 */
3525 	if (state_lo & BWI_STATE_LO_RESET) {
3526 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3527 			"%s was already disabled\n", bwi_regwin_name(rw));
3528 		return;
3529 	}
3530 
3531 	disable_bits = bwi_regwin_disable_bits(sc);
3532 
3533 	/*
3534 	 * Disable normal clock
3535 	 */
3536 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3537 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3538 
3539 	/*
3540 	 * Wait until normal clock is disabled
3541 	 */
3542 #define NRETRY	1000
3543 	for (i = 0; i < NRETRY; ++i) {
3544 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3545 		if (state_lo & disable_bits)
3546 			break;
3547 		DELAY(10);
3548 	}
3549 	if (i == NRETRY) {
3550 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3551 			      bwi_regwin_name(rw));
3552 	}
3553 
3554 	for (i = 0; i < NRETRY; ++i) {
3555 		uint32_t state_hi;
3556 
3557 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3558 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3559 			break;
3560 		DELAY(10);
3561 	}
3562 	if (i == NRETRY) {
3563 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3564 			      bwi_regwin_name(rw));
3565 	}
3566 #undef NRETRY
3567 
3568 	/*
3569 	 * Reset and disable regwin with gated clock
3570 	 */
3571 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3572 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3573 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3574 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3575 
3576 	/* Flush pending bus write */
3577 	CSR_READ_4(sc, BWI_STATE_LO);
3578 	DELAY(1);
3579 
3580 	/* Reset and disable regwin */
3581 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3582 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3583 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3584 
3585 	/* Flush pending bus write */
3586 	CSR_READ_4(sc, BWI_STATE_LO);
3587 	DELAY(1);
3588 }
3589 
3590 void
3591 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3592 {
3593 	uint32_t state_lo, state_hi, imstate;
3594 
3595 	bwi_regwin_disable(sc, rw, flags);
3596 
3597 	/* Reset regwin with gated clock */
3598 	state_lo = BWI_STATE_LO_RESET |
3599 		   BWI_STATE_LO_CLOCK |
3600 		   BWI_STATE_LO_GATED_CLOCK |
3601 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3602 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3603 
3604 	/* Flush pending bus write */
3605 	CSR_READ_4(sc, BWI_STATE_LO);
3606 	DELAY(1);
3607 
3608 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3609 	if (state_hi & BWI_STATE_HI_SERROR)
3610 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3611 
3612 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3613 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3614 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3615 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3616 	}
3617 
3618 	/* Enable regwin with gated clock */
3619 	state_lo = BWI_STATE_LO_CLOCK |
3620 		   BWI_STATE_LO_GATED_CLOCK |
3621 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3622 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3623 
3624 	/* Flush pending bus write */
3625 	CSR_READ_4(sc, BWI_STATE_LO);
3626 	DELAY(1);
3627 
3628 	/* Enable regwin with normal clock */
3629 	state_lo = BWI_STATE_LO_CLOCK |
3630 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3631 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3632 
3633 	/* Flush pending bus write */
3634 	CSR_READ_4(sc, BWI_STATE_LO);
3635 	DELAY(1);
3636 }
3637 
3638 static void
3639 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3640 {
3641 	struct bwi_mac *mac;
3642 	struct bwi_myaddr_bssid buf;
3643 	const uint8_t *p;
3644 	uint32_t val;
3645 	int n, i;
3646 
3647 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3648 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3649 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3650 
3651 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3652 
3653 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3654 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3655 
3656 	n = sizeof(buf) / sizeof(val);
3657 	p = (const uint8_t *)&buf;
3658 	for (i = 0; i < n; ++i) {
3659 		int j;
3660 
3661 		val = 0;
3662 		for (j = 0; j < sizeof(val); ++j)
3663 			val |= ((uint32_t)(*p++)) << (j * 8);
3664 
3665 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3666 	}
3667 }
3668 
3669 static void
3670 bwi_updateslot(struct ieee80211com *ic)
3671 {
3672 	struct bwi_softc *sc = ic->ic_softc;
3673 	struct bwi_mac *mac;
3674 
3675 	BWI_LOCK(sc);
3676 	if (sc->sc_flags & BWI_F_RUNNING) {
3677 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3678 
3679 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3680 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3681 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3682 
3683 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3684 	}
3685 	BWI_UNLOCK(sc);
3686 }
3687 
3688 static void
3689 bwi_calibrate(void *xsc)
3690 {
3691 	struct bwi_softc *sc = xsc;
3692 	struct bwi_mac *mac;
3693 
3694 	BWI_ASSERT_LOCKED(sc);
3695 
3696 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3697 	    ("opmode %d", sc->sc_ic.ic_opmode));
3698 
3699 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3700 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3701 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3702 
3703 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3704 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3705 
3706 	/* XXX 15 seconds */
3707 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3708 }
3709 
3710 static int
3711 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3712 {
3713 	struct bwi_mac *mac;
3714 
3715 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3716 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3717 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3718 
3719 	return bwi_rf_calc_rssi(mac, hdr);
3720 }
3721 
3722 static int
3723 bwi_calc_noise(struct bwi_softc *sc)
3724 {
3725 	struct bwi_mac *mac;
3726 
3727 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3728 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3729 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3730 
3731 	return bwi_rf_calc_noise(mac);
3732 }
3733 
3734 static __inline uint8_t
3735 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3736 {
3737 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3738 	return (ieee80211_plcp2rate(plcp, type));
3739 }
3740 
3741 static void
3742 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3743     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3744 {
3745 	const struct ieee80211_frame_min *wh;
3746 
3747 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3748 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3749 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3750 
3751 	wh = mtod(m, const struct ieee80211_frame_min *);
3752 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3753 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3754 
3755 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3756 	sc->sc_rx_th.wr_rate = rate;
3757 	sc->sc_rx_th.wr_antsignal = rssi;
3758 	sc->sc_rx_th.wr_antnoise = noise;
3759 }
3760 
3761 static void
3762 bwi_led_attach(struct bwi_softc *sc)
3763 {
3764 	const uint8_t *led_act = NULL;
3765 	uint16_t gpio, val[BWI_LED_MAX];
3766 	int i;
3767 
3768 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3769 
3770 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3771 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3772 			led_act = bwi_vendor_led_act[i].led_act;
3773 			break;
3774 		}
3775 	}
3776 	if (led_act == NULL)
3777 		led_act = bwi_default_led_act;
3778 
3779 #undef N
3780 
3781 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3782 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3783 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3784 
3785 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3786 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3787 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3788 
3789 	for (i = 0; i < BWI_LED_MAX; ++i) {
3790 		struct bwi_led *led = &sc->sc_leds[i];
3791 
3792 		if (val[i] == 0xff) {
3793 			led->l_act = led_act[i];
3794 		} else {
3795 			if (val[i] & BWI_LED_ACT_LOW)
3796 				led->l_flags |= BWI_LED_F_ACTLOW;
3797 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3798 		}
3799 		led->l_mask = (1 << i);
3800 
3801 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3802 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3803 		    led->l_act == BWI_LED_ACT_BLINK) {
3804 			led->l_flags |= BWI_LED_F_BLINK;
3805 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3806 				led->l_flags |= BWI_LED_F_POLLABLE;
3807 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3808 				led->l_flags |= BWI_LED_F_SLOW;
3809 
3810 			if (sc->sc_blink_led == NULL) {
3811 				sc->sc_blink_led = led;
3812 				if (led->l_flags & BWI_LED_F_SLOW)
3813 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3814 			}
3815 		}
3816 
3817 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3818 			"%dth led, act %d, lowact %d\n", i,
3819 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3820 	}
3821 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3822 }
3823 
3824 static __inline uint16_t
3825 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3826 {
3827 	if (led->l_flags & BWI_LED_F_ACTLOW)
3828 		on = !on;
3829 	if (on)
3830 		val |= led->l_mask;
3831 	else
3832 		val &= ~led->l_mask;
3833 	return val;
3834 }
3835 
3836 static void
3837 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3838 {
3839 	struct ieee80211com *ic = &sc->sc_ic;
3840 	uint16_t val;
3841 	int i;
3842 
3843 	if (nstate == IEEE80211_S_INIT) {
3844 		callout_stop(&sc->sc_led_blink_ch);
3845 		sc->sc_led_blinking = 0;
3846 	}
3847 
3848 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3849 		return;
3850 
3851 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3852 	for (i = 0; i < BWI_LED_MAX; ++i) {
3853 		struct bwi_led *led = &sc->sc_leds[i];
3854 		int on;
3855 
3856 		if (led->l_act == BWI_LED_ACT_UNKN ||
3857 		    led->l_act == BWI_LED_ACT_NULL)
3858 			continue;
3859 
3860 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3861 		    nstate != IEEE80211_S_INIT)
3862 		    	continue;
3863 
3864 		switch (led->l_act) {
3865 		case BWI_LED_ACT_ON:	/* Always on */
3866 			on = 1;
3867 			break;
3868 		case BWI_LED_ACT_OFF:	/* Always off */
3869 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3870 			on = 0;
3871 			break;
3872 		default:
3873 			on = 1;
3874 			switch (nstate) {
3875 			case IEEE80211_S_INIT:
3876 				on = 0;
3877 				break;
3878 			case IEEE80211_S_RUN:
3879 				if (led->l_act == BWI_LED_ACT_11G &&
3880 				    ic->ic_curmode != IEEE80211_MODE_11G)
3881 					on = 0;
3882 				break;
3883 			default:
3884 				if (led->l_act == BWI_LED_ACT_ASSOC)
3885 					on = 0;
3886 				break;
3887 			}
3888 			break;
3889 		}
3890 
3891 		val = bwi_led_onoff(led, val, on);
3892 	}
3893 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3894 }
3895 static void
3896 bwi_led_event(struct bwi_softc *sc, int event)
3897 {
3898 	struct bwi_led *led = sc->sc_blink_led;
3899 	int rate;
3900 
3901 	if (event == BWI_LED_EVENT_POLL) {
3902 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3903 			return;
3904 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3905 			return;
3906 	}
3907 
3908 	sc->sc_led_ticks = ticks;
3909 	if (sc->sc_led_blinking)
3910 		return;
3911 
3912 	switch (event) {
3913 	case BWI_LED_EVENT_RX:
3914 		rate = sc->sc_rx_rate;
3915 		break;
3916 	case BWI_LED_EVENT_TX:
3917 		rate = sc->sc_tx_rate;
3918 		break;
3919 	case BWI_LED_EVENT_POLL:
3920 		rate = 0;
3921 		break;
3922 	default:
3923 		panic("unknown LED event %d\n", event);
3924 		break;
3925 	}
3926 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3927 	    bwi_led_duration[rate].off_dur);
3928 }
3929 
3930 static void
3931 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3932 {
3933 	struct bwi_led *led = sc->sc_blink_led;
3934 	uint16_t val;
3935 
3936 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3937 	val = bwi_led_onoff(led, val, 1);
3938 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3939 
3940 	if (led->l_flags & BWI_LED_F_SLOW) {
3941 		BWI_LED_SLOWDOWN(on_dur);
3942 		BWI_LED_SLOWDOWN(off_dur);
3943 	}
3944 
3945 	sc->sc_led_blinking = 1;
3946 	sc->sc_led_blink_offdur = off_dur;
3947 
3948 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3949 }
3950 
3951 static void
3952 bwi_led_blink_next(void *xsc)
3953 {
3954 	struct bwi_softc *sc = xsc;
3955 	uint16_t val;
3956 
3957 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3958 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3959 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3960 
3961 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3962 	    bwi_led_blink_end, sc);
3963 }
3964 
3965 static void
3966 bwi_led_blink_end(void *xsc)
3967 {
3968 	struct bwi_softc *sc = xsc;
3969 	sc->sc_led_blinking = 0;
3970 }
3971 
3972 static void
3973 bwi_restart(void *xsc, int pending)
3974 {
3975 	struct bwi_softc *sc = xsc;
3976 
3977 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3978 	BWI_LOCK(sc);
3979 	bwi_init_statechg(sc, 0);
3980 #if 0
3981 	bwi_start_locked(sc);
3982 #endif
3983 	BWI_UNLOCK(sc);
3984 }
3985