1 /* 2 * Copyright (c) 2007 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Sepherosa Ziehau <sepherosa@gmail.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $ 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet.h" 41 #include "opt_bwi.h" 42 #include "opt_wlan.h" 43 44 #include <sys/param.h> 45 #include <sys/endian.h> 46 #include <sys/kernel.h> 47 #include <sys/bus.h> 48 #include <sys/malloc.h> 49 #include <sys/proc.h> 50 #include <sys/rman.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/taskqueue.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 #include <net/if_arp.h> 63 #include <net/ethernet.h> 64 #include <net/if_llc.h> 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_regdomain.h> 69 #include <net80211/ieee80211_phy.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <net/bpf.h> 73 74 #ifdef INET 75 #include <netinet/in.h> 76 #include <netinet/if_ether.h> 77 #endif 78 79 #include <machine/bus.h> 80 81 #include <dev/pci/pcivar.h> 82 #include <dev/pci/pcireg.h> 83 84 #include <dev/bwi/bitops.h> 85 #include <dev/bwi/if_bwireg.h> 86 #include <dev/bwi/if_bwivar.h> 87 #include <dev/bwi/bwimac.h> 88 #include <dev/bwi/bwirf.h> 89 90 struct bwi_clock_freq { 91 u_int clkfreq_min; 92 u_int clkfreq_max; 93 }; 94 95 struct bwi_myaddr_bssid { 96 uint8_t myaddr[IEEE80211_ADDR_LEN]; 97 uint8_t bssid[IEEE80211_ADDR_LEN]; 98 } __packed; 99 100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *, 101 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 102 const uint8_t [IEEE80211_ADDR_LEN], 103 const uint8_t [IEEE80211_ADDR_LEN]); 104 static void bwi_vap_delete(struct ieee80211vap *); 105 static void bwi_init(void *); 106 static int bwi_ioctl(struct ifnet *, u_long, caddr_t); 107 static void bwi_start(struct ifnet *); 108 static void bwi_start_locked(struct ifnet *); 109 static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 110 const struct ieee80211_bpf_params *); 111 static void bwi_watchdog(void *); 112 static void bwi_scan_start(struct ieee80211com *); 113 static void bwi_set_channel(struct ieee80211com *); 114 static void bwi_scan_end(struct ieee80211com *); 115 static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 116 static void bwi_updateslot(struct ifnet *); 117 static int bwi_media_change(struct ifnet *); 118 119 static void bwi_calibrate(void *); 120 121 static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *); 122 static int bwi_calc_noise(struct bwi_softc *); 123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype); 124 static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *, 125 struct bwi_rxbuf_hdr *, const void *, int, int, int); 126 127 static void bwi_restart(void *, int); 128 static void bwi_init_statechg(struct bwi_softc *, int); 129 static void bwi_stop(struct bwi_softc *, int); 130 static void bwi_stop_locked(struct bwi_softc *, int); 131 static int bwi_newbuf(struct bwi_softc *, int, int); 132 static int bwi_encap(struct bwi_softc *, int, struct mbuf *, 133 struct ieee80211_node *); 134 static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *, 135 struct ieee80211_node *, 136 const struct ieee80211_bpf_params *); 137 138 static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t, 139 bus_addr_t, int, int); 140 static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t); 141 142 static int bwi_init_tx_ring32(struct bwi_softc *, int); 143 static int bwi_init_rx_ring32(struct bwi_softc *); 144 static int bwi_init_txstats32(struct bwi_softc *); 145 static void bwi_free_tx_ring32(struct bwi_softc *, int); 146 static void bwi_free_rx_ring32(struct bwi_softc *); 147 static void bwi_free_txstats32(struct bwi_softc *); 148 static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int); 149 static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *, 150 int, bus_addr_t, int); 151 static int bwi_rxeof32(struct bwi_softc *); 152 static void bwi_start_tx32(struct bwi_softc *, uint32_t, int); 153 static void bwi_txeof_status32(struct bwi_softc *); 154 155 static int bwi_init_tx_ring64(struct bwi_softc *, int); 156 static int bwi_init_rx_ring64(struct bwi_softc *); 157 static int bwi_init_txstats64(struct bwi_softc *); 158 static void bwi_free_tx_ring64(struct bwi_softc *, int); 159 static void bwi_free_rx_ring64(struct bwi_softc *); 160 static void bwi_free_txstats64(struct bwi_softc *); 161 static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int); 162 static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *, 163 int, bus_addr_t, int); 164 static int bwi_rxeof64(struct bwi_softc *); 165 static void bwi_start_tx64(struct bwi_softc *, uint32_t, int); 166 static void bwi_txeof_status64(struct bwi_softc *); 167 168 static int bwi_rxeof(struct bwi_softc *, int); 169 static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int); 170 static void bwi_txeof(struct bwi_softc *); 171 static void bwi_txeof_status(struct bwi_softc *, int); 172 static void bwi_enable_intrs(struct bwi_softc *, uint32_t); 173 static void bwi_disable_intrs(struct bwi_softc *, uint32_t); 174 175 static int bwi_dma_alloc(struct bwi_softc *); 176 static void bwi_dma_free(struct bwi_softc *); 177 static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t, 178 struct bwi_ring_data *, bus_size_t, 179 uint32_t); 180 static int bwi_dma_mbuf_create(struct bwi_softc *); 181 static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int); 182 static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t); 183 static void bwi_dma_txstats_free(struct bwi_softc *); 184 static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int); 185 static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int, 186 bus_size_t, int); 187 188 static void bwi_power_on(struct bwi_softc *, int); 189 static int bwi_power_off(struct bwi_softc *, int); 190 static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode); 191 static int bwi_set_clock_delay(struct bwi_softc *); 192 static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *); 193 static int bwi_get_pwron_delay(struct bwi_softc *sc); 194 static void bwi_set_addr_filter(struct bwi_softc *, uint16_t, 195 const uint8_t *); 196 static void bwi_set_bssid(struct bwi_softc *, const uint8_t *); 197 198 static void bwi_get_card_flags(struct bwi_softc *); 199 static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *); 200 201 static int bwi_bus_attach(struct bwi_softc *); 202 static int bwi_bbp_attach(struct bwi_softc *); 203 static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode); 204 static void bwi_bbp_power_off(struct bwi_softc *); 205 206 static const char *bwi_regwin_name(const struct bwi_regwin *); 207 static uint32_t bwi_regwin_disable_bits(struct bwi_softc *); 208 static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *); 209 static int bwi_regwin_select(struct bwi_softc *, int); 210 211 static void bwi_led_attach(struct bwi_softc *); 212 static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state); 213 static void bwi_led_event(struct bwi_softc *, int); 214 static void bwi_led_blink_start(struct bwi_softc *, int, int); 215 static void bwi_led_blink_next(void *); 216 static void bwi_led_blink_end(void *); 217 218 static const struct { 219 uint16_t did_min; 220 uint16_t did_max; 221 uint16_t bbp_id; 222 } bwi_bbpid_map[] = { 223 { 0x4301, 0x4301, 0x4301 }, 224 { 0x4305, 0x4307, 0x4307 }, 225 { 0x4402, 0x4403, 0x4402 }, 226 { 0x4610, 0x4615, 0x4610 }, 227 { 0x4710, 0x4715, 0x4710 }, 228 { 0x4720, 0x4725, 0x4309 } 229 }; 230 231 static const struct { 232 uint16_t bbp_id; 233 int nregwin; 234 } bwi_regwin_count[] = { 235 { 0x4301, 5 }, 236 { 0x4306, 6 }, 237 { 0x4307, 5 }, 238 { 0x4310, 8 }, 239 { 0x4401, 3 }, 240 { 0x4402, 3 }, 241 { 0x4610, 9 }, 242 { 0x4704, 9 }, 243 { 0x4710, 9 }, 244 { 0x5365, 7 } 245 }; 246 247 #define CLKSRC(src) \ 248 [BWI_CLKSRC_ ## src] = { \ 249 .freq_min = BWI_CLKSRC_ ##src## _FMIN, \ 250 .freq_max = BWI_CLKSRC_ ##src## _FMAX \ 251 } 252 253 static const struct { 254 u_int freq_min; 255 u_int freq_max; 256 } bwi_clkfreq[BWI_CLKSRC_MAX] = { 257 CLKSRC(LP_OSC), 258 CLKSRC(CS_OSC), 259 CLKSRC(PCI) 260 }; 261 262 #undef CLKSRC 263 264 #define VENDOR_LED_ACT(vendor) \ 265 { \ 266 .vid = PCI_VENDOR_##vendor, \ 267 .led_act = { BWI_VENDOR_LED_ACT_##vendor } \ 268 } 269 270 static const struct { 271 #define PCI_VENDOR_COMPAQ 0x0e11 272 #define PCI_VENDOR_LINKSYS 0x1737 273 uint16_t vid; 274 uint8_t led_act[BWI_LED_MAX]; 275 } bwi_vendor_led_act[] = { 276 VENDOR_LED_ACT(COMPAQ), 277 VENDOR_LED_ACT(LINKSYS) 278 #undef PCI_VENDOR_LINKSYS 279 #undef PCI_VENDOR_COMPAQ 280 }; 281 282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] = 283 { BWI_VENDOR_LED_ACT_DEFAULT }; 284 285 #undef VENDOR_LED_ACT 286 287 static const struct { 288 int on_dur; 289 int off_dur; 290 } bwi_led_duration[109] = { 291 [0] = { 400, 100 }, 292 [2] = { 150, 75 }, 293 [4] = { 90, 45 }, 294 [11] = { 66, 34 }, 295 [12] = { 53, 26 }, 296 [18] = { 42, 21 }, 297 [22] = { 35, 17 }, 298 [24] = { 32, 16 }, 299 [36] = { 21, 10 }, 300 [48] = { 16, 8 }, 301 [72] = { 11, 5 }, 302 [96] = { 9, 4 }, 303 [108] = { 7, 3 } 304 }; 305 306 #ifdef BWI_DEBUG 307 #ifdef BWI_DEBUG_VERBOSE 308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER; 309 #else 310 static uint32_t bwi_debug; 311 #endif 312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug); 313 #endif /* BWI_DEBUG */ 314 315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN]; 316 317 uint16_t 318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs) 319 { 320 return CSR_READ_2(sc, ofs + BWI_SPROM_START); 321 } 322 323 static __inline void 324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array, 325 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, 326 int tx) 327 { 328 struct bwi_desc32 *desc = &desc_array[desc_idx]; 329 uint32_t ctrl, addr, addr_hi, addr_lo; 330 331 addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK); 332 addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK); 333 334 addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) | 335 __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK); 336 337 ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) | 338 __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK); 339 if (desc_idx == ndesc - 1) 340 ctrl |= BWI_DESC32_C_EOR; 341 if (tx) { 342 /* XXX */ 343 ctrl |= BWI_DESC32_C_FRAME_START | 344 BWI_DESC32_C_FRAME_END | 345 BWI_DESC32_C_INTR; 346 } 347 348 desc->addr = htole32(addr); 349 desc->ctrl = htole32(ctrl); 350 } 351 352 int 353 bwi_attach(struct bwi_softc *sc) 354 { 355 struct ieee80211com *ic; 356 device_t dev = sc->sc_dev; 357 struct ifnet *ifp; 358 struct bwi_mac *mac; 359 struct bwi_phy *phy; 360 int i, error; 361 uint8_t bands; 362 uint8_t macaddr[IEEE80211_ADDR_LEN]; 363 364 BWI_LOCK_INIT(sc); 365 366 /* 367 * Initialize taskq and various tasks 368 */ 369 sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO, 370 taskqueue_thread_enqueue, &sc->sc_tq); 371 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 372 device_get_nameunit(dev)); 373 TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc); 374 375 callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0); 376 377 /* 378 * Initialize sysctl variables 379 */ 380 sc->sc_fw_version = BWI_FW_VERSION3; 381 sc->sc_led_idle = (2350 * hz) / 1000; 382 sc->sc_led_blink = 1; 383 sc->sc_txpwr_calib = 1; 384 #ifdef BWI_DEBUG 385 sc->sc_debug = bwi_debug; 386 #endif 387 bwi_power_on(sc, 1); 388 389 error = bwi_bbp_attach(sc); 390 if (error) 391 goto fail; 392 393 error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 394 if (error) 395 goto fail; 396 397 if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) { 398 error = bwi_set_clock_delay(sc); 399 if (error) 400 goto fail; 401 402 error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST); 403 if (error) 404 goto fail; 405 406 error = bwi_get_pwron_delay(sc); 407 if (error) 408 goto fail; 409 } 410 411 error = bwi_bus_attach(sc); 412 if (error) 413 goto fail; 414 415 bwi_get_card_flags(sc); 416 417 bwi_led_attach(sc); 418 419 for (i = 0; i < sc->sc_nmac; ++i) { 420 struct bwi_regwin *old; 421 422 mac = &sc->sc_mac[i]; 423 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old); 424 if (error) 425 goto fail; 426 427 error = bwi_mac_lateattach(mac); 428 if (error) 429 goto fail; 430 431 error = bwi_regwin_switch(sc, old, NULL); 432 if (error) 433 goto fail; 434 } 435 436 /* 437 * XXX First MAC is known to exist 438 * TODO2 439 */ 440 mac = &sc->sc_mac[0]; 441 phy = &mac->mac_phy; 442 443 bwi_bbp_power_off(sc); 444 445 error = bwi_dma_alloc(sc); 446 if (error) 447 goto fail; 448 449 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 450 if (ifp == NULL) { 451 device_printf(dev, "can not if_alloc()\n"); 452 error = ENOSPC; 453 goto fail; 454 } 455 ic = ifp->if_l2com; 456 457 /* set these up early for if_printf use */ 458 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 459 460 ifp->if_softc = sc; 461 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 462 ifp->if_init = bwi_init; 463 ifp->if_ioctl = bwi_ioctl; 464 ifp->if_start = bwi_start; 465 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 466 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 467 IFQ_SET_READY(&ifp->if_snd); 468 callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0); 469 470 /* 471 * Setup ratesets, phytype, channels and get MAC address 472 */ 473 bands = 0; 474 if (phy->phy_mode == IEEE80211_MODE_11B || 475 phy->phy_mode == IEEE80211_MODE_11G) { 476 setbit(&bands, IEEE80211_MODE_11B); 477 if (phy->phy_mode == IEEE80211_MODE_11B) { 478 ic->ic_phytype = IEEE80211_T_DS; 479 } else { 480 ic->ic_phytype = IEEE80211_T_OFDM; 481 setbit(&bands, IEEE80211_MODE_11G); 482 } 483 484 bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr); 485 if (IEEE80211_IS_MULTICAST(macaddr)) { 486 bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr); 487 if (IEEE80211_IS_MULTICAST(macaddr)) { 488 device_printf(dev, 489 "invalid MAC address: %6D\n", 490 macaddr, ":"); 491 } 492 } 493 } else if (phy->phy_mode == IEEE80211_MODE_11A) { 494 /* TODO:11A */ 495 setbit(&bands, IEEE80211_MODE_11A); 496 error = ENXIO; 497 goto fail; 498 } else { 499 panic("unknown phymode %d\n", phy->phy_mode); 500 } 501 502 /* Get locale */ 503 sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO), 504 BWI_SPROM_CARD_INFO_LOCALE); 505 DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale); 506 /* XXX use locale */ 507 ieee80211_init_channels(ic, NULL, &bands); 508 509 ic->ic_ifp = ifp; 510 ic->ic_caps = IEEE80211_C_STA | 511 IEEE80211_C_SHSLOT | 512 IEEE80211_C_SHPREAMBLE | 513 IEEE80211_C_WPA | 514 IEEE80211_C_BGSCAN | 515 IEEE80211_C_MONITOR; 516 ic->ic_opmode = IEEE80211_M_STA; 517 ieee80211_ifattach(ic, macaddr); 518 519 ic->ic_headroom = sizeof(struct bwi_txbuf_hdr); 520 521 /* override default methods */ 522 ic->ic_vap_create = bwi_vap_create; 523 ic->ic_vap_delete = bwi_vap_delete; 524 ic->ic_raw_xmit = bwi_raw_xmit; 525 ic->ic_updateslot = bwi_updateslot; 526 ic->ic_scan_start = bwi_scan_start; 527 ic->ic_scan_end = bwi_scan_end; 528 ic->ic_set_channel = bwi_set_channel; 529 530 sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan); 531 532 ieee80211_radiotap_attach(ic, 533 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 534 BWI_TX_RADIOTAP_PRESENT, 535 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 536 BWI_RX_RADIOTAP_PRESENT); 537 538 /* 539 * Add sysctl nodes 540 */ 541 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 542 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 543 "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0, 544 "Firmware version"); 545 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 546 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 547 "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0, 548 "# ticks before LED enters idle state"); 549 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 550 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 551 "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0, 552 "Allow LED to blink"); 553 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 554 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 555 "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0, 556 "Enable software TX power calibration"); 557 #ifdef BWI_DEBUG 558 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), 559 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 560 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); 561 #endif 562 if (bootverbose) 563 ieee80211_announce(ic); 564 565 return (0); 566 fail: 567 BWI_LOCK_DESTROY(sc); 568 return (error); 569 } 570 571 int 572 bwi_detach(struct bwi_softc *sc) 573 { 574 struct ifnet *ifp = sc->sc_ifp; 575 struct ieee80211com *ic = ifp->if_l2com; 576 int i; 577 578 bwi_stop(sc, 1); 579 callout_drain(&sc->sc_led_blink_ch); 580 callout_drain(&sc->sc_calib_ch); 581 callout_drain(&sc->sc_watchdog_timer); 582 ieee80211_ifdetach(ic); 583 584 for (i = 0; i < sc->sc_nmac; ++i) 585 bwi_mac_detach(&sc->sc_mac[i]); 586 bwi_dma_free(sc); 587 if_free(ifp); 588 taskqueue_free(sc->sc_tq); 589 590 BWI_LOCK_DESTROY(sc); 591 592 return (0); 593 } 594 595 static struct ieee80211vap * 596 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 597 enum ieee80211_opmode opmode, int flags, 598 const uint8_t bssid[IEEE80211_ADDR_LEN], 599 const uint8_t mac[IEEE80211_ADDR_LEN]) 600 { 601 struct bwi_vap *bvp; 602 struct ieee80211vap *vap; 603 604 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 605 return NULL; 606 bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap), 607 M_80211_VAP, M_WAITOK | M_ZERO); 608 if (bvp == NULL) 609 return NULL; 610 vap = &bvp->bv_vap; 611 /* enable s/w bmiss handling for sta mode */ 612 ieee80211_vap_setup(ic, vap, name, unit, opmode, 613 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); 614 615 /* override default methods */ 616 bvp->bv_newstate = vap->iv_newstate; 617 vap->iv_newstate = bwi_newstate; 618 #if 0 619 vap->iv_update_beacon = bwi_beacon_update; 620 #endif 621 ieee80211_ratectl_init(vap); 622 623 /* complete setup */ 624 ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status); 625 ic->ic_opmode = opmode; 626 return vap; 627 } 628 629 static void 630 bwi_vap_delete(struct ieee80211vap *vap) 631 { 632 struct bwi_vap *bvp = BWI_VAP(vap); 633 634 ieee80211_ratectl_deinit(vap); 635 ieee80211_vap_detach(vap); 636 free(bvp, M_80211_VAP); 637 } 638 639 void 640 bwi_suspend(struct bwi_softc *sc) 641 { 642 bwi_stop(sc, 1); 643 } 644 645 void 646 bwi_resume(struct bwi_softc *sc) 647 { 648 struct ifnet *ifp = sc->sc_ifp; 649 650 if (ifp->if_flags & IFF_UP) 651 bwi_init(sc); 652 } 653 654 int 655 bwi_shutdown(struct bwi_softc *sc) 656 { 657 bwi_stop(sc, 1); 658 return 0; 659 } 660 661 static void 662 bwi_power_on(struct bwi_softc *sc, int with_pll) 663 { 664 uint32_t gpio_in, gpio_out, gpio_en; 665 uint16_t status; 666 667 gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); 668 if (gpio_in & BWI_PCIM_GPIO_PWR_ON) 669 goto back; 670 671 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 672 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 673 674 gpio_out |= BWI_PCIM_GPIO_PWR_ON; 675 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 676 if (with_pll) { 677 /* Turn off PLL first */ 678 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 679 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 680 } 681 682 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 683 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 684 DELAY(1000); 685 686 if (with_pll) { 687 /* Turn on PLL */ 688 gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF; 689 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 690 DELAY(5000); 691 } 692 693 back: 694 /* Clear "Signaled Target Abort" */ 695 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 696 status &= ~PCIM_STATUS_STABORT; 697 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 698 } 699 700 static int 701 bwi_power_off(struct bwi_softc *sc, int with_pll) 702 { 703 uint32_t gpio_out, gpio_en; 704 705 pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */ 706 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 707 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 708 709 gpio_out &= ~BWI_PCIM_GPIO_PWR_ON; 710 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 711 if (with_pll) { 712 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 713 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 714 } 715 716 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 717 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 718 return 0; 719 } 720 721 int 722 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw, 723 struct bwi_regwin **old_rw) 724 { 725 int error; 726 727 if (old_rw != NULL) 728 *old_rw = NULL; 729 730 if (!BWI_REGWIN_EXIST(rw)) 731 return EINVAL; 732 733 if (sc->sc_cur_regwin != rw) { 734 error = bwi_regwin_select(sc, rw->rw_id); 735 if (error) { 736 device_printf(sc->sc_dev, "can't select regwin %d\n", 737 rw->rw_id); 738 return error; 739 } 740 } 741 742 if (old_rw != NULL) 743 *old_rw = sc->sc_cur_regwin; 744 sc->sc_cur_regwin = rw; 745 return 0; 746 } 747 748 static int 749 bwi_regwin_select(struct bwi_softc *sc, int id) 750 { 751 uint32_t win = BWI_PCIM_REGWIN(id); 752 int i; 753 754 #define RETRY_MAX 50 755 for (i = 0; i < RETRY_MAX; ++i) { 756 pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4); 757 if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win) 758 return 0; 759 DELAY(10); 760 } 761 #undef RETRY_MAX 762 763 return ENXIO; 764 } 765 766 static void 767 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev) 768 { 769 uint32_t val; 770 771 val = CSR_READ_4(sc, BWI_ID_HI); 772 *type = BWI_ID_HI_REGWIN_TYPE(val); 773 *rev = BWI_ID_HI_REGWIN_REV(val); 774 775 DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, " 776 "vendor 0x%04x\n", *type, *rev, 777 __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK)); 778 } 779 780 static int 781 bwi_bbp_attach(struct bwi_softc *sc) 782 { 783 #define N(arr) (int)(sizeof(arr) / sizeof(arr[0])) 784 uint16_t bbp_id, rw_type; 785 uint8_t rw_rev; 786 uint32_t info; 787 int error, nregwin, i; 788 789 /* 790 * Get 0th regwin information 791 * NOTE: 0th regwin should exist 792 */ 793 error = bwi_regwin_select(sc, 0); 794 if (error) { 795 device_printf(sc->sc_dev, "can't select regwin 0\n"); 796 return error; 797 } 798 bwi_regwin_info(sc, &rw_type, &rw_rev); 799 800 /* 801 * Find out BBP id 802 */ 803 bbp_id = 0; 804 info = 0; 805 if (rw_type == BWI_REGWIN_T_COM) { 806 info = CSR_READ_4(sc, BWI_INFO); 807 bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK); 808 809 BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev); 810 811 sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY); 812 } else { 813 for (i = 0; i < N(bwi_bbpid_map); ++i) { 814 if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min && 815 sc->sc_pci_did <= bwi_bbpid_map[i].did_max) { 816 bbp_id = bwi_bbpid_map[i].bbp_id; 817 break; 818 } 819 } 820 if (bbp_id == 0) { 821 device_printf(sc->sc_dev, "no BBP id for device id " 822 "0x%04x\n", sc->sc_pci_did); 823 return ENXIO; 824 } 825 826 info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) | 827 __SHIFTIN(0, BWI_INFO_BBPPKG_MASK); 828 } 829 830 /* 831 * Find out number of regwins 832 */ 833 nregwin = 0; 834 if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) { 835 nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK); 836 } else { 837 for (i = 0; i < N(bwi_regwin_count); ++i) { 838 if (bwi_regwin_count[i].bbp_id == bbp_id) { 839 nregwin = bwi_regwin_count[i].nregwin; 840 break; 841 } 842 } 843 if (nregwin == 0) { 844 device_printf(sc->sc_dev, "no number of win for " 845 "BBP id 0x%04x\n", bbp_id); 846 return ENXIO; 847 } 848 } 849 850 /* Record BBP id/rev for later using */ 851 sc->sc_bbp_id = bbp_id; 852 sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK); 853 sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK); 854 device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n", 855 sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg); 856 857 DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n", 858 nregwin, sc->sc_cap); 859 860 /* 861 * Create rest of the regwins 862 */ 863 864 /* Don't re-create common regwin, if it is already created */ 865 i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0; 866 867 for (; i < nregwin; ++i) { 868 /* 869 * Get regwin information 870 */ 871 error = bwi_regwin_select(sc, i); 872 if (error) { 873 device_printf(sc->sc_dev, 874 "can't select regwin %d\n", i); 875 return error; 876 } 877 bwi_regwin_info(sc, &rw_type, &rw_rev); 878 879 /* 880 * Try attach: 881 * 1) Bus (PCI/PCIE) regwin 882 * 2) MAC regwin 883 * Ignore rest types of regwin 884 */ 885 if (rw_type == BWI_REGWIN_T_BUSPCI || 886 rw_type == BWI_REGWIN_T_BUSPCIE) { 887 if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 888 device_printf(sc->sc_dev, 889 "bus regwin already exists\n"); 890 } else { 891 BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i, 892 rw_type, rw_rev); 893 } 894 } else if (rw_type == BWI_REGWIN_T_MAC) { 895 /* XXX ignore return value */ 896 bwi_mac_attach(sc, i, rw_rev); 897 } 898 } 899 900 /* At least one MAC shold exist */ 901 if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) { 902 device_printf(sc->sc_dev, "no MAC was found\n"); 903 return ENXIO; 904 } 905 KASSERT(sc->sc_nmac > 0, ("no mac's")); 906 907 /* Bus regwin must exist */ 908 if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 909 device_printf(sc->sc_dev, "no bus regwin was found\n"); 910 return ENXIO; 911 } 912 913 /* Start with first MAC */ 914 error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL); 915 if (error) 916 return error; 917 918 return 0; 919 #undef N 920 } 921 922 int 923 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac) 924 { 925 struct bwi_regwin *old, *bus; 926 uint32_t val; 927 int error; 928 929 bus = &sc->sc_bus_regwin; 930 KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin")); 931 932 /* 933 * Tell bus to generate requested interrupts 934 */ 935 if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) { 936 /* 937 * NOTE: Read BWI_FLAGS from MAC regwin 938 */ 939 val = CSR_READ_4(sc, BWI_FLAGS); 940 941 error = bwi_regwin_switch(sc, bus, &old); 942 if (error) 943 return error; 944 945 CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK)); 946 } else { 947 uint32_t mac_mask; 948 949 mac_mask = 1 << mac->mac_id; 950 951 error = bwi_regwin_switch(sc, bus, &old); 952 if (error) 953 return error; 954 955 val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4); 956 val |= mac_mask << 8; 957 pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4); 958 } 959 960 if (sc->sc_flags & BWI_F_BUS_INITED) 961 goto back; 962 963 if (bus->rw_type == BWI_REGWIN_T_BUSPCI) { 964 /* 965 * Enable prefetch and burst 966 */ 967 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, 968 BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST); 969 970 if (bus->rw_rev < 5) { 971 struct bwi_regwin *com = &sc->sc_com_regwin; 972 973 /* 974 * Configure timeouts for bus operation 975 */ 976 977 /* 978 * Set service timeout and request timeout 979 */ 980 CSR_SETBITS_4(sc, BWI_CONF_LO, 981 __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) | 982 __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK)); 983 984 /* 985 * If there is common regwin, we switch to that regwin 986 * and switch back to bus regwin once we have done. 987 */ 988 if (BWI_REGWIN_EXIST(com)) { 989 error = bwi_regwin_switch(sc, com, NULL); 990 if (error) 991 return error; 992 } 993 994 /* Let bus know what we have changed */ 995 CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC); 996 CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */ 997 CSR_WRITE_4(sc, BWI_BUS_DATA, 0); 998 CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */ 999 1000 if (BWI_REGWIN_EXIST(com)) { 1001 error = bwi_regwin_switch(sc, bus, NULL); 1002 if (error) 1003 return error; 1004 } 1005 } else if (bus->rw_rev >= 11) { 1006 /* 1007 * Enable memory read multiple 1008 */ 1009 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM); 1010 } 1011 } else { 1012 /* TODO:PCIE */ 1013 } 1014 1015 sc->sc_flags |= BWI_F_BUS_INITED; 1016 back: 1017 return bwi_regwin_switch(sc, old, NULL); 1018 } 1019 1020 static void 1021 bwi_get_card_flags(struct bwi_softc *sc) 1022 { 1023 #define PCI_VENDOR_APPLE 0x106b 1024 #define PCI_VENDOR_DELL 0x1028 1025 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS); 1026 if (sc->sc_card_flags == 0xffff) 1027 sc->sc_card_flags = 0; 1028 1029 if (sc->sc_pci_subvid == PCI_VENDOR_DELL && 1030 sc->sc_bbp_id == BWI_BBPID_BCM4301 && 1031 sc->sc_pci_revid == 0x74) 1032 sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST; 1033 1034 if (sc->sc_pci_subvid == PCI_VENDOR_APPLE && 1035 sc->sc_pci_subdid == 0x4e && /* XXX */ 1036 sc->sc_pci_revid > 0x40) 1037 sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9; 1038 1039 DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags); 1040 #undef PCI_VENDOR_DELL 1041 #undef PCI_VENDOR_APPLE 1042 } 1043 1044 static void 1045 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr) 1046 { 1047 int i; 1048 1049 for (i = 0; i < 3; ++i) { 1050 *((uint16_t *)eaddr + i) = 1051 htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i)); 1052 } 1053 } 1054 1055 static void 1056 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq) 1057 { 1058 struct bwi_regwin *com; 1059 uint32_t val; 1060 u_int div; 1061 int src; 1062 1063 bzero(freq, sizeof(*freq)); 1064 com = &sc->sc_com_regwin; 1065 1066 KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist")); 1067 KASSERT(sc->sc_cur_regwin == com, ("wrong regwin")); 1068 KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode")); 1069 1070 /* 1071 * Calculate clock frequency 1072 */ 1073 src = -1; 1074 div = 0; 1075 if (com->rw_rev < 6) { 1076 val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 1077 if (val & BWI_PCIM_GPIO_OUT_CLKSRC) { 1078 src = BWI_CLKSRC_PCI; 1079 div = 64; 1080 } else { 1081 src = BWI_CLKSRC_CS_OSC; 1082 div = 32; 1083 } 1084 } else if (com->rw_rev < 10) { 1085 val = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1086 1087 src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC); 1088 if (src == BWI_CLKSRC_LP_OSC) { 1089 div = 1; 1090 } else { 1091 div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2; 1092 1093 /* Unknown source */ 1094 if (src >= BWI_CLKSRC_MAX) 1095 src = BWI_CLKSRC_CS_OSC; 1096 } 1097 } else { 1098 val = CSR_READ_4(sc, BWI_CLOCK_INFO); 1099 1100 src = BWI_CLKSRC_CS_OSC; 1101 div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2; 1102 } 1103 1104 KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src)); 1105 KASSERT(div != 0, ("div zero")); 1106 1107 DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n", 1108 src == BWI_CLKSRC_PCI ? "PCI" : 1109 (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC")); 1110 1111 freq->clkfreq_min = bwi_clkfreq[src].freq_min / div; 1112 freq->clkfreq_max = bwi_clkfreq[src].freq_max / div; 1113 1114 DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n", 1115 freq->clkfreq_min, freq->clkfreq_max); 1116 } 1117 1118 static int 1119 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 1120 { 1121 struct bwi_regwin *old, *com; 1122 uint32_t clk_ctrl, clk_src; 1123 int error, pwr_off = 0; 1124 1125 com = &sc->sc_com_regwin; 1126 if (!BWI_REGWIN_EXIST(com)) 1127 return 0; 1128 1129 if (com->rw_rev >= 10 || com->rw_rev < 6) 1130 return 0; 1131 1132 /* 1133 * For common regwin whose rev is [6, 10), the chip 1134 * must be capable to change clock mode. 1135 */ 1136 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 1137 return 0; 1138 1139 error = bwi_regwin_switch(sc, com, &old); 1140 if (error) 1141 return error; 1142 1143 if (clk_mode == BWI_CLOCK_MODE_FAST) 1144 bwi_power_on(sc, 0); /* Don't turn on PLL */ 1145 1146 clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1147 clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC); 1148 1149 switch (clk_mode) { 1150 case BWI_CLOCK_MODE_FAST: 1151 clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW; 1152 clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL; 1153 break; 1154 case BWI_CLOCK_MODE_SLOW: 1155 clk_ctrl |= BWI_CLOCK_CTRL_SLOW; 1156 break; 1157 case BWI_CLOCK_MODE_DYN: 1158 clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW | 1159 BWI_CLOCK_CTRL_IGNPLL | 1160 BWI_CLOCK_CTRL_NODYN); 1161 if (clk_src != BWI_CLKSRC_CS_OSC) { 1162 clk_ctrl |= BWI_CLOCK_CTRL_NODYN; 1163 pwr_off = 1; 1164 } 1165 break; 1166 } 1167 CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl); 1168 1169 if (pwr_off) 1170 bwi_power_off(sc, 0); /* Leave PLL as it is */ 1171 1172 return bwi_regwin_switch(sc, old, NULL); 1173 } 1174 1175 static int 1176 bwi_set_clock_delay(struct bwi_softc *sc) 1177 { 1178 struct bwi_regwin *old, *com; 1179 int error; 1180 1181 com = &sc->sc_com_regwin; 1182 if (!BWI_REGWIN_EXIST(com)) 1183 return 0; 1184 1185 error = bwi_regwin_switch(sc, com, &old); 1186 if (error) 1187 return error; 1188 1189 if (sc->sc_bbp_id == BWI_BBPID_BCM4321) { 1190 if (sc->sc_bbp_rev == 0) 1191 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0); 1192 else if (sc->sc_bbp_rev == 1) 1193 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1); 1194 } 1195 1196 if (sc->sc_cap & BWI_CAP_CLKMODE) { 1197 if (com->rw_rev >= 10) { 1198 CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000); 1199 } else { 1200 struct bwi_clock_freq freq; 1201 1202 bwi_get_clock_freq(sc, &freq); 1203 CSR_WRITE_4(sc, BWI_PLL_ON_DELAY, 1204 howmany(freq.clkfreq_max * 150, 1000000)); 1205 CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY, 1206 howmany(freq.clkfreq_max * 15, 1000000)); 1207 } 1208 } 1209 1210 return bwi_regwin_switch(sc, old, NULL); 1211 } 1212 1213 static void 1214 bwi_init(void *xsc) 1215 { 1216 struct bwi_softc *sc = xsc; 1217 struct ifnet *ifp = sc->sc_ifp; 1218 struct ieee80211com *ic = ifp->if_l2com; 1219 1220 BWI_LOCK(sc); 1221 bwi_init_statechg(sc, 1); 1222 BWI_UNLOCK(sc); 1223 1224 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1225 ieee80211_start_all(ic); /* start all vap's */ 1226 } 1227 1228 static void 1229 bwi_init_statechg(struct bwi_softc *sc, int statechg) 1230 { 1231 struct ifnet *ifp = sc->sc_ifp; 1232 struct bwi_mac *mac; 1233 int error; 1234 1235 bwi_stop_locked(sc, statechg); 1236 1237 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 1238 1239 /* TODO: 2 MAC */ 1240 1241 mac = &sc->sc_mac[0]; 1242 error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL); 1243 if (error) { 1244 if_printf(ifp, "%s: error %d on regwin switch\n", 1245 __func__, error); 1246 goto bad; 1247 } 1248 error = bwi_mac_init(mac); 1249 if (error) { 1250 if_printf(ifp, "%s: error %d on MAC init\n", __func__, error); 1251 goto bad; 1252 } 1253 1254 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN); 1255 1256 bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */ 1257 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp)); 1258 1259 bwi_mac_reset_hwkeys(mac); 1260 1261 if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) { 1262 int i; 1263 1264 #define NRETRY 1000 1265 /* 1266 * Drain any possible pending TX status 1267 */ 1268 for (i = 0; i < NRETRY; ++i) { 1269 if ((CSR_READ_4(sc, BWI_TXSTATUS0) & 1270 BWI_TXSTATUS0_VALID) == 0) 1271 break; 1272 CSR_READ_4(sc, BWI_TXSTATUS1); 1273 } 1274 if (i == NRETRY) 1275 if_printf(ifp, "%s: can't drain TX status\n", __func__); 1276 #undef NRETRY 1277 } 1278 1279 if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G) 1280 bwi_mac_updateslot(mac, 1); 1281 1282 /* Start MAC */ 1283 error = bwi_mac_start(mac); 1284 if (error) { 1285 if_printf(ifp, "%s: error %d starting MAC\n", __func__, error); 1286 goto bad; 1287 } 1288 1289 /* Clear stop flag before enabling interrupt */ 1290 sc->sc_flags &= ~BWI_F_STOP; 1291 1292 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1293 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1294 1295 /* Enable intrs */ 1296 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1297 return; 1298 bad: 1299 bwi_stop_locked(sc, 1); 1300 } 1301 1302 static int 1303 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1304 { 1305 #define IS_RUNNING(ifp) \ 1306 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 1307 struct bwi_softc *sc = ifp->if_softc; 1308 struct ieee80211com *ic = ifp->if_l2com; 1309 struct ifreq *ifr = (struct ifreq *) data; 1310 int error = 0, startall = 0; 1311 1312 switch (cmd) { 1313 case SIOCSIFFLAGS: 1314 BWI_LOCK(sc); 1315 if (IS_RUNNING(ifp)) { 1316 struct bwi_mac *mac; 1317 int promisc = -1; 1318 1319 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1320 ("current regwin type %d", 1321 sc->sc_cur_regwin->rw_type)); 1322 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1323 1324 if ((ifp->if_flags & IFF_PROMISC) && 1325 (sc->sc_flags & BWI_F_PROMISC) == 0) { 1326 promisc = 1; 1327 sc->sc_flags |= BWI_F_PROMISC; 1328 } else if ((ifp->if_flags & IFF_PROMISC) == 0 && 1329 (sc->sc_flags & BWI_F_PROMISC)) { 1330 promisc = 0; 1331 sc->sc_flags &= ~BWI_F_PROMISC; 1332 } 1333 1334 if (promisc >= 0) 1335 bwi_mac_set_promisc(mac, promisc); 1336 } 1337 1338 if (ifp->if_flags & IFF_UP) { 1339 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1340 bwi_init_statechg(sc, 1); 1341 startall = 1; 1342 } 1343 } else { 1344 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1345 bwi_stop_locked(sc, 1); 1346 } 1347 BWI_UNLOCK(sc); 1348 if (startall) 1349 ieee80211_start_all(ic); 1350 break; 1351 case SIOCGIFMEDIA: 1352 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1353 break; 1354 case SIOCGIFADDR: 1355 error = ether_ioctl(ifp, cmd, data); 1356 break; 1357 default: 1358 error = EINVAL; 1359 break; 1360 } 1361 return error; 1362 #undef IS_RUNNING 1363 } 1364 1365 static void 1366 bwi_start(struct ifnet *ifp) 1367 { 1368 struct bwi_softc *sc = ifp->if_softc; 1369 1370 BWI_LOCK(sc); 1371 bwi_start_locked(ifp); 1372 BWI_UNLOCK(sc); 1373 } 1374 1375 static void 1376 bwi_start_locked(struct ifnet *ifp) 1377 { 1378 struct bwi_softc *sc = ifp->if_softc; 1379 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1380 struct ieee80211_frame *wh; 1381 struct ieee80211_node *ni; 1382 struct ieee80211_key *k; 1383 struct mbuf *m; 1384 int trans, idx; 1385 1386 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1387 return; 1388 1389 trans = 0; 1390 idx = tbd->tbd_idx; 1391 1392 while (tbd->tbd_buf[idx].tb_mbuf == NULL) { 1393 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1394 if (m == NULL) 1395 break; 1396 1397 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1398 wh = mtod(m, struct ieee80211_frame *); 1399 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1400 k = ieee80211_crypto_encap(ni, m); 1401 if (k == NULL) { 1402 ieee80211_free_node(ni); 1403 m_freem(m); 1404 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1405 continue; 1406 } 1407 } 1408 wh = NULL; /* Catch any invalid use */ 1409 1410 if (bwi_encap(sc, idx, m, ni) != 0) { 1411 /* 'm' is freed in bwi_encap() if we reach here */ 1412 if (ni != NULL) 1413 ieee80211_free_node(ni); 1414 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1415 continue; 1416 } 1417 1418 trans = 1; 1419 tbd->tbd_used++; 1420 idx = (idx + 1) % BWI_TX_NDESC; 1421 1422 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1423 1424 if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) { 1425 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1426 break; 1427 } 1428 } 1429 tbd->tbd_idx = idx; 1430 1431 if (trans) 1432 sc->sc_tx_timer = 5; 1433 } 1434 1435 static int 1436 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1437 const struct ieee80211_bpf_params *params) 1438 { 1439 struct ieee80211com *ic = ni->ni_ic; 1440 struct ifnet *ifp = ic->ic_ifp; 1441 struct bwi_softc *sc = ifp->if_softc; 1442 /* XXX wme? */ 1443 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1444 int idx, error; 1445 1446 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1447 ieee80211_free_node(ni); 1448 m_freem(m); 1449 return ENETDOWN; 1450 } 1451 1452 BWI_LOCK(sc); 1453 idx = tbd->tbd_idx; 1454 KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx)); 1455 if (params == NULL) { 1456 /* 1457 * Legacy path; interpret frame contents to decide 1458 * precisely how to send the frame. 1459 */ 1460 error = bwi_encap(sc, idx, m, ni); 1461 } else { 1462 /* 1463 * Caller supplied explicit parameters to use in 1464 * sending the frame. 1465 */ 1466 error = bwi_encap_raw(sc, idx, m, ni, params); 1467 } 1468 if (error == 0) { 1469 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1470 if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) 1471 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1472 tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC; 1473 sc->sc_tx_timer = 5; 1474 } else { 1475 /* NB: m is reclaimed on encap failure */ 1476 ieee80211_free_node(ni); 1477 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1478 } 1479 BWI_UNLOCK(sc); 1480 return error; 1481 } 1482 1483 static void 1484 bwi_watchdog(void *arg) 1485 { 1486 struct bwi_softc *sc; 1487 struct ifnet *ifp; 1488 1489 sc = arg; 1490 ifp = sc->sc_ifp; 1491 BWI_ASSERT_LOCKED(sc); 1492 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { 1493 if_printf(ifp, "watchdog timeout\n"); 1494 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1495 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1496 } 1497 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1498 } 1499 1500 static void 1501 bwi_stop(struct bwi_softc *sc, int statechg) 1502 { 1503 BWI_LOCK(sc); 1504 bwi_stop_locked(sc, statechg); 1505 BWI_UNLOCK(sc); 1506 } 1507 1508 static void 1509 bwi_stop_locked(struct bwi_softc *sc, int statechg) 1510 { 1511 struct ifnet *ifp = sc->sc_ifp; 1512 struct bwi_mac *mac; 1513 int i, error, pwr_off = 0; 1514 1515 BWI_ASSERT_LOCKED(sc); 1516 1517 callout_stop(&sc->sc_calib_ch); 1518 callout_stop(&sc->sc_led_blink_ch); 1519 sc->sc_led_blinking = 0; 1520 sc->sc_flags |= BWI_F_STOP; 1521 1522 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1523 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1524 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1525 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1526 1527 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1528 CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1529 bwi_mac_stop(mac); 1530 } 1531 1532 for (i = 0; i < sc->sc_nmac; ++i) { 1533 struct bwi_regwin *old_rw; 1534 1535 mac = &sc->sc_mac[i]; 1536 if ((mac->mac_flags & BWI_MAC_F_INITED) == 0) 1537 continue; 1538 1539 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw); 1540 if (error) 1541 continue; 1542 1543 bwi_mac_shutdown(mac); 1544 pwr_off = 1; 1545 1546 bwi_regwin_switch(sc, old_rw, NULL); 1547 } 1548 1549 if (pwr_off) 1550 bwi_bbp_power_off(sc); 1551 1552 sc->sc_tx_timer = 0; 1553 callout_stop(&sc->sc_watchdog_timer); 1554 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1555 } 1556 1557 void 1558 bwi_intr(void *xsc) 1559 { 1560 struct bwi_softc *sc = xsc; 1561 struct ifnet *ifp = sc->sc_ifp; 1562 struct bwi_mac *mac; 1563 uint32_t intr_status; 1564 uint32_t txrx_intr_status[BWI_TXRX_NRING]; 1565 int i, txrx_error, tx = 0, rx_data = -1; 1566 1567 BWI_LOCK(sc); 1568 1569 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1570 (sc->sc_flags & BWI_F_STOP)) { 1571 BWI_UNLOCK(sc); 1572 return; 1573 } 1574 /* 1575 * Get interrupt status 1576 */ 1577 intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS); 1578 if (intr_status == 0xffffffff) { /* Not for us */ 1579 BWI_UNLOCK(sc); 1580 return; 1581 } 1582 1583 DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status); 1584 1585 intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1586 if (intr_status == 0) { /* Nothing is interesting */ 1587 BWI_UNLOCK(sc); 1588 return; 1589 } 1590 1591 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1592 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1593 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1594 1595 txrx_error = 0; 1596 DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr"); 1597 for (i = 0; i < BWI_TXRX_NRING; ++i) { 1598 uint32_t mask; 1599 1600 if (BWI_TXRX_IS_RX(i)) 1601 mask = BWI_TXRX_RX_INTRS; 1602 else 1603 mask = BWI_TXRX_TX_INTRS; 1604 1605 txrx_intr_status[i] = 1606 CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask; 1607 1608 _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x", 1609 i, txrx_intr_status[i]); 1610 1611 if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) { 1612 if_printf(ifp, 1613 "%s: intr fatal TX/RX (%d) error 0x%08x\n", 1614 __func__, i, txrx_intr_status[i]); 1615 txrx_error = 1; 1616 } 1617 } 1618 _DPRINTF(sc, BWI_DBG_INTR, "%s\n", ""); 1619 1620 /* 1621 * Acknowledge interrupt 1622 */ 1623 CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status); 1624 1625 for (i = 0; i < BWI_TXRX_NRING; ++i) 1626 CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]); 1627 1628 /* Disable all interrupts */ 1629 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1630 1631 /* 1632 * http://bcm-specs.sipsolutions.net/Interrupts 1633 * Says for this bit (0x800): 1634 * "Fatal Error 1635 * 1636 * We got this one while testing things when by accident the 1637 * template ram wasn't set to big endian when it should have 1638 * been after writing the initial values. It keeps on being 1639 * triggered, the only way to stop it seems to shut down the 1640 * chip." 1641 * 1642 * Suggesting that we should never get it and if we do we're not 1643 * feeding TX packets into the MAC correctly if we do... Apparently, 1644 * it is valid only on mac version 5 and higher, but I couldn't 1645 * find a reference for that... Since I see them from time to time 1646 * on my card, this suggests an error in the tx path still... 1647 */ 1648 if (intr_status & BWI_INTR_PHY_TXERR) { 1649 if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) { 1650 if_printf(ifp, "%s: intr PHY TX error\n", __func__); 1651 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1652 BWI_UNLOCK(sc); 1653 return; 1654 } 1655 } 1656 1657 if (txrx_error) { 1658 /* TODO: reset device */ 1659 } 1660 1661 if (intr_status & BWI_INTR_TBTT) 1662 bwi_mac_config_ps(mac); 1663 1664 if (intr_status & BWI_INTR_EO_ATIM) 1665 if_printf(ifp, "EO_ATIM\n"); 1666 1667 if (intr_status & BWI_INTR_PMQ) { 1668 for (;;) { 1669 if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0) 1670 break; 1671 } 1672 CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2); 1673 } 1674 1675 if (intr_status & BWI_INTR_NOISE) 1676 if_printf(ifp, "intr noise\n"); 1677 1678 if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) { 1679 rx_data = sc->sc_rxeof(sc); 1680 if (sc->sc_flags & BWI_F_STOP) { 1681 BWI_UNLOCK(sc); 1682 return; 1683 } 1684 } 1685 1686 if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) { 1687 sc->sc_txeof_status(sc); 1688 tx = 1; 1689 } 1690 1691 if (intr_status & BWI_INTR_TX_DONE) { 1692 bwi_txeof(sc); 1693 tx = 1; 1694 } 1695 1696 /* Re-enable interrupts */ 1697 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1698 1699 if (sc->sc_blink_led != NULL && sc->sc_led_blink) { 1700 int evt = BWI_LED_EVENT_NONE; 1701 1702 if (tx && rx_data > 0) { 1703 if (sc->sc_rx_rate > sc->sc_tx_rate) 1704 evt = BWI_LED_EVENT_RX; 1705 else 1706 evt = BWI_LED_EVENT_TX; 1707 } else if (tx) { 1708 evt = BWI_LED_EVENT_TX; 1709 } else if (rx_data > 0) { 1710 evt = BWI_LED_EVENT_RX; 1711 } else if (rx_data == 0) { 1712 evt = BWI_LED_EVENT_POLL; 1713 } 1714 1715 if (evt != BWI_LED_EVENT_NONE) 1716 bwi_led_event(sc, evt); 1717 } 1718 1719 BWI_UNLOCK(sc); 1720 } 1721 1722 static void 1723 bwi_scan_start(struct ieee80211com *ic) 1724 { 1725 struct bwi_softc *sc = ic->ic_ifp->if_softc; 1726 1727 BWI_LOCK(sc); 1728 /* Enable MAC beacon promiscuity */ 1729 CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1730 BWI_UNLOCK(sc); 1731 } 1732 1733 static void 1734 bwi_set_channel(struct ieee80211com *ic) 1735 { 1736 struct bwi_softc *sc = ic->ic_ifp->if_softc; 1737 struct ieee80211_channel *c = ic->ic_curchan; 1738 struct bwi_mac *mac; 1739 1740 BWI_LOCK(sc); 1741 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1742 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1743 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1744 bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0); 1745 1746 sc->sc_rates = ieee80211_get_ratetable(c); 1747 1748 /* 1749 * Setup radio tap channel freq and flags 1750 */ 1751 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 1752 htole16(c->ic_freq); 1753 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 1754 htole16(c->ic_flags & 0xffff); 1755 1756 BWI_UNLOCK(sc); 1757 } 1758 1759 static void 1760 bwi_scan_end(struct ieee80211com *ic) 1761 { 1762 struct bwi_softc *sc = ic->ic_ifp->if_softc; 1763 1764 BWI_LOCK(sc); 1765 CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1766 BWI_UNLOCK(sc); 1767 } 1768 1769 static int 1770 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1771 { 1772 struct bwi_vap *bvp = BWI_VAP(vap); 1773 struct ieee80211com *ic= vap->iv_ic; 1774 struct ifnet *ifp = ic->ic_ifp; 1775 enum ieee80211_state ostate = vap->iv_state; 1776 struct bwi_softc *sc = ifp->if_softc; 1777 struct bwi_mac *mac; 1778 int error; 1779 1780 BWI_LOCK(sc); 1781 1782 callout_stop(&sc->sc_calib_ch); 1783 1784 if (nstate == IEEE80211_S_INIT) 1785 sc->sc_txpwrcb_type = BWI_TXPWR_INIT; 1786 1787 bwi_led_newstate(sc, nstate); 1788 1789 error = bvp->bv_newstate(vap, nstate, arg); 1790 if (error != 0) 1791 goto back; 1792 1793 /* 1794 * Clear the BSSID when we stop a STA 1795 */ 1796 if (vap->iv_opmode == IEEE80211_M_STA) { 1797 if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { 1798 /* 1799 * Clear out the BSSID. If we reassociate to 1800 * the same AP, this will reinialize things 1801 * correctly... 1802 */ 1803 if (ic->ic_opmode == IEEE80211_M_STA && 1804 !(sc->sc_flags & BWI_F_STOP)) 1805 bwi_set_bssid(sc, bwi_zero_addr); 1806 } 1807 } 1808 1809 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1810 /* Nothing to do */ 1811 } else if (nstate == IEEE80211_S_RUN) { 1812 bwi_set_bssid(sc, vap->iv_bss->ni_bssid); 1813 1814 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1815 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1816 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1817 1818 /* Initial TX power calibration */ 1819 bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT); 1820 #ifdef notyet 1821 sc->sc_txpwrcb_type = BWI_TXPWR_FORCE; 1822 #else 1823 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 1824 #endif 1825 1826 callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc); 1827 } 1828 back: 1829 BWI_UNLOCK(sc); 1830 1831 return error; 1832 } 1833 1834 static int 1835 bwi_media_change(struct ifnet *ifp) 1836 { 1837 int error = ieee80211_media_change(ifp); 1838 /* NB: only the fixed rate can change and that doesn't need a reset */ 1839 return (error == ENETRESET ? 0 : error); 1840 } 1841 1842 static int 1843 bwi_dma_alloc(struct bwi_softc *sc) 1844 { 1845 int error, i, has_txstats; 1846 bus_addr_t lowaddr = 0; 1847 bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0; 1848 uint32_t txrx_ctrl_step = 0; 1849 1850 has_txstats = 0; 1851 for (i = 0; i < sc->sc_nmac; ++i) { 1852 if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) { 1853 has_txstats = 1; 1854 break; 1855 } 1856 } 1857 1858 switch (sc->sc_bus_space) { 1859 case BWI_BUS_SPACE_30BIT: 1860 case BWI_BUS_SPACE_32BIT: 1861 if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) 1862 lowaddr = BWI_BUS_SPACE_MAXADDR; 1863 else 1864 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1865 desc_sz = sizeof(struct bwi_desc32); 1866 txrx_ctrl_step = 0x20; 1867 1868 sc->sc_init_tx_ring = bwi_init_tx_ring32; 1869 sc->sc_free_tx_ring = bwi_free_tx_ring32; 1870 sc->sc_init_rx_ring = bwi_init_rx_ring32; 1871 sc->sc_free_rx_ring = bwi_free_rx_ring32; 1872 sc->sc_setup_rxdesc = bwi_setup_rx_desc32; 1873 sc->sc_setup_txdesc = bwi_setup_tx_desc32; 1874 sc->sc_rxeof = bwi_rxeof32; 1875 sc->sc_start_tx = bwi_start_tx32; 1876 if (has_txstats) { 1877 sc->sc_init_txstats = bwi_init_txstats32; 1878 sc->sc_free_txstats = bwi_free_txstats32; 1879 sc->sc_txeof_status = bwi_txeof_status32; 1880 } 1881 break; 1882 1883 case BWI_BUS_SPACE_64BIT: 1884 lowaddr = BUS_SPACE_MAXADDR; /* XXX */ 1885 desc_sz = sizeof(struct bwi_desc64); 1886 txrx_ctrl_step = 0x40; 1887 1888 sc->sc_init_tx_ring = bwi_init_tx_ring64; 1889 sc->sc_free_tx_ring = bwi_free_tx_ring64; 1890 sc->sc_init_rx_ring = bwi_init_rx_ring64; 1891 sc->sc_free_rx_ring = bwi_free_rx_ring64; 1892 sc->sc_setup_rxdesc = bwi_setup_rx_desc64; 1893 sc->sc_setup_txdesc = bwi_setup_tx_desc64; 1894 sc->sc_rxeof = bwi_rxeof64; 1895 sc->sc_start_tx = bwi_start_tx64; 1896 if (has_txstats) { 1897 sc->sc_init_txstats = bwi_init_txstats64; 1898 sc->sc_free_txstats = bwi_free_txstats64; 1899 sc->sc_txeof_status = bwi_txeof_status64; 1900 } 1901 break; 1902 } 1903 1904 KASSERT(lowaddr != 0, ("lowaddr zero")); 1905 KASSERT(desc_sz != 0, ("desc_sz zero")); 1906 KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero")); 1907 1908 tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN); 1909 rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN); 1910 1911 /* 1912 * Create top level DMA tag 1913 */ 1914 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1915 BWI_ALIGN, 0, /* alignment, bounds */ 1916 lowaddr, /* lowaddr */ 1917 BUS_SPACE_MAXADDR, /* highaddr */ 1918 NULL, NULL, /* filter, filterarg */ 1919 MAXBSIZE, /* maxsize */ 1920 BUS_SPACE_UNRESTRICTED, /* nsegments */ 1921 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1922 BUS_DMA_ALLOCNOW, /* flags */ 1923 NULL, NULL, /* lockfunc, lockarg */ 1924 &sc->sc_parent_dtag); 1925 if (error) { 1926 device_printf(sc->sc_dev, "can't create parent DMA tag\n"); 1927 return error; 1928 } 1929 1930 #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step) 1931 1932 /* 1933 * Create TX ring DMA stuffs 1934 */ 1935 error = bus_dma_tag_create(sc->sc_parent_dtag, 1936 BWI_RING_ALIGN, 0, 1937 BUS_SPACE_MAXADDR, 1938 BUS_SPACE_MAXADDR, 1939 NULL, NULL, 1940 tx_ring_sz, 1941 1, 1942 BUS_SPACE_MAXSIZE_32BIT, 1943 BUS_DMA_ALLOCNOW, 1944 NULL, NULL, 1945 &sc->sc_txring_dtag); 1946 if (error) { 1947 device_printf(sc->sc_dev, "can't create TX ring DMA tag\n"); 1948 return error; 1949 } 1950 1951 for (i = 0; i < BWI_TX_NRING; ++i) { 1952 error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag, 1953 &sc->sc_tx_rdata[i], tx_ring_sz, 1954 TXRX_CTRL(i)); 1955 if (error) { 1956 device_printf(sc->sc_dev, "%dth TX ring " 1957 "DMA alloc failed\n", i); 1958 return error; 1959 } 1960 } 1961 1962 /* 1963 * Create RX ring DMA stuffs 1964 */ 1965 error = bus_dma_tag_create(sc->sc_parent_dtag, 1966 BWI_RING_ALIGN, 0, 1967 BUS_SPACE_MAXADDR, 1968 BUS_SPACE_MAXADDR, 1969 NULL, NULL, 1970 rx_ring_sz, 1971 1, 1972 BUS_SPACE_MAXSIZE_32BIT, 1973 BUS_DMA_ALLOCNOW, 1974 NULL, NULL, 1975 &sc->sc_rxring_dtag); 1976 if (error) { 1977 device_printf(sc->sc_dev, "can't create RX ring DMA tag\n"); 1978 return error; 1979 } 1980 1981 error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata, 1982 rx_ring_sz, TXRX_CTRL(0)); 1983 if (error) { 1984 device_printf(sc->sc_dev, "RX ring DMA alloc failed\n"); 1985 return error; 1986 } 1987 1988 if (has_txstats) { 1989 error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz); 1990 if (error) { 1991 device_printf(sc->sc_dev, 1992 "TX stats DMA alloc failed\n"); 1993 return error; 1994 } 1995 } 1996 1997 #undef TXRX_CTRL 1998 1999 return bwi_dma_mbuf_create(sc); 2000 } 2001 2002 static void 2003 bwi_dma_free(struct bwi_softc *sc) 2004 { 2005 if (sc->sc_txring_dtag != NULL) { 2006 int i; 2007 2008 for (i = 0; i < BWI_TX_NRING; ++i) { 2009 struct bwi_ring_data *rd = &sc->sc_tx_rdata[i]; 2010 2011 if (rd->rdata_desc != NULL) { 2012 bus_dmamap_unload(sc->sc_txring_dtag, 2013 rd->rdata_dmap); 2014 bus_dmamem_free(sc->sc_txring_dtag, 2015 rd->rdata_desc, 2016 rd->rdata_dmap); 2017 } 2018 } 2019 bus_dma_tag_destroy(sc->sc_txring_dtag); 2020 } 2021 2022 if (sc->sc_rxring_dtag != NULL) { 2023 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2024 2025 if (rd->rdata_desc != NULL) { 2026 bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap); 2027 bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc, 2028 rd->rdata_dmap); 2029 } 2030 bus_dma_tag_destroy(sc->sc_rxring_dtag); 2031 } 2032 2033 bwi_dma_txstats_free(sc); 2034 bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1); 2035 2036 if (sc->sc_parent_dtag != NULL) 2037 bus_dma_tag_destroy(sc->sc_parent_dtag); 2038 } 2039 2040 static int 2041 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag, 2042 struct bwi_ring_data *rd, bus_size_t size, 2043 uint32_t txrx_ctrl) 2044 { 2045 int error; 2046 2047 error = bus_dmamem_alloc(dtag, &rd->rdata_desc, 2048 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2049 &rd->rdata_dmap); 2050 if (error) { 2051 device_printf(sc->sc_dev, "can't allocate DMA mem\n"); 2052 return error; 2053 } 2054 2055 error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size, 2056 bwi_dma_ring_addr, &rd->rdata_paddr, 2057 BUS_DMA_NOWAIT); 2058 if (error) { 2059 device_printf(sc->sc_dev, "can't load DMA mem\n"); 2060 bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap); 2061 rd->rdata_desc = NULL; 2062 return error; 2063 } 2064 2065 rd->rdata_txrx_ctrl = txrx_ctrl; 2066 return 0; 2067 } 2068 2069 static int 2070 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base, 2071 bus_size_t desc_sz) 2072 { 2073 struct bwi_txstats_data *st; 2074 bus_size_t dma_size; 2075 int error; 2076 2077 st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO); 2078 if (st == NULL) { 2079 device_printf(sc->sc_dev, "can't allocate txstats data\n"); 2080 return ENOMEM; 2081 } 2082 sc->sc_txstats = st; 2083 2084 /* 2085 * Create TX stats descriptor DMA stuffs 2086 */ 2087 dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN); 2088 2089 error = bus_dma_tag_create(sc->sc_parent_dtag, 2090 BWI_RING_ALIGN, 2091 0, 2092 BUS_SPACE_MAXADDR, 2093 BUS_SPACE_MAXADDR, 2094 NULL, NULL, 2095 dma_size, 2096 1, 2097 BUS_SPACE_MAXSIZE_32BIT, 2098 BUS_DMA_ALLOCNOW, 2099 NULL, NULL, 2100 &st->stats_ring_dtag); 2101 if (error) { 2102 device_printf(sc->sc_dev, "can't create txstats ring " 2103 "DMA tag\n"); 2104 return error; 2105 } 2106 2107 error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring, 2108 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2109 &st->stats_ring_dmap); 2110 if (error) { 2111 device_printf(sc->sc_dev, "can't allocate txstats ring " 2112 "DMA mem\n"); 2113 bus_dma_tag_destroy(st->stats_ring_dtag); 2114 st->stats_ring_dtag = NULL; 2115 return error; 2116 } 2117 2118 error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap, 2119 st->stats_ring, dma_size, 2120 bwi_dma_ring_addr, &st->stats_ring_paddr, 2121 BUS_DMA_NOWAIT); 2122 if (error) { 2123 device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n"); 2124 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2125 st->stats_ring_dmap); 2126 bus_dma_tag_destroy(st->stats_ring_dtag); 2127 st->stats_ring_dtag = NULL; 2128 return error; 2129 } 2130 2131 /* 2132 * Create TX stats DMA stuffs 2133 */ 2134 dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC, 2135 BWI_ALIGN); 2136 2137 error = bus_dma_tag_create(sc->sc_parent_dtag, 2138 BWI_ALIGN, 2139 0, 2140 BUS_SPACE_MAXADDR, 2141 BUS_SPACE_MAXADDR, 2142 NULL, NULL, 2143 dma_size, 2144 1, 2145 BUS_SPACE_MAXSIZE_32BIT, 2146 BUS_DMA_ALLOCNOW, 2147 NULL, NULL, 2148 &st->stats_dtag); 2149 if (error) { 2150 device_printf(sc->sc_dev, "can't create txstats DMA tag\n"); 2151 return error; 2152 } 2153 2154 error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats, 2155 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2156 &st->stats_dmap); 2157 if (error) { 2158 device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n"); 2159 bus_dma_tag_destroy(st->stats_dtag); 2160 st->stats_dtag = NULL; 2161 return error; 2162 } 2163 2164 error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats, 2165 dma_size, bwi_dma_ring_addr, &st->stats_paddr, 2166 BUS_DMA_NOWAIT); 2167 if (error) { 2168 device_printf(sc->sc_dev, "can't load txstats DMA mem\n"); 2169 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2170 bus_dma_tag_destroy(st->stats_dtag); 2171 st->stats_dtag = NULL; 2172 return error; 2173 } 2174 2175 st->stats_ctrl_base = ctrl_base; 2176 return 0; 2177 } 2178 2179 static void 2180 bwi_dma_txstats_free(struct bwi_softc *sc) 2181 { 2182 struct bwi_txstats_data *st; 2183 2184 if (sc->sc_txstats == NULL) 2185 return; 2186 st = sc->sc_txstats; 2187 2188 if (st->stats_ring_dtag != NULL) { 2189 bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap); 2190 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2191 st->stats_ring_dmap); 2192 bus_dma_tag_destroy(st->stats_ring_dtag); 2193 } 2194 2195 if (st->stats_dtag != NULL) { 2196 bus_dmamap_unload(st->stats_dtag, st->stats_dmap); 2197 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2198 bus_dma_tag_destroy(st->stats_dtag); 2199 } 2200 2201 free(st, M_DEVBUF); 2202 } 2203 2204 static void 2205 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) 2206 { 2207 KASSERT(nseg == 1, ("too many segments\n")); 2208 *((bus_addr_t *)arg) = seg->ds_addr; 2209 } 2210 2211 static int 2212 bwi_dma_mbuf_create(struct bwi_softc *sc) 2213 { 2214 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2215 int i, j, k, ntx, error; 2216 2217 /* 2218 * Create TX/RX mbuf DMA tag 2219 */ 2220 error = bus_dma_tag_create(sc->sc_parent_dtag, 2221 1, 2222 0, 2223 BUS_SPACE_MAXADDR, 2224 BUS_SPACE_MAXADDR, 2225 NULL, NULL, 2226 MCLBYTES, 2227 1, 2228 BUS_SPACE_MAXSIZE_32BIT, 2229 BUS_DMA_ALLOCNOW, 2230 NULL, NULL, 2231 &sc->sc_buf_dtag); 2232 if (error) { 2233 device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); 2234 return error; 2235 } 2236 2237 ntx = 0; 2238 2239 /* 2240 * Create TX mbuf DMA map 2241 */ 2242 for (i = 0; i < BWI_TX_NRING; ++i) { 2243 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2244 2245 for (j = 0; j < BWI_TX_NDESC; ++j) { 2246 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2247 &tbd->tbd_buf[j].tb_dmap); 2248 if (error) { 2249 device_printf(sc->sc_dev, "can't create " 2250 "%dth tbd, %dth DMA map\n", i, j); 2251 2252 ntx = i; 2253 for (k = 0; k < j; ++k) { 2254 bus_dmamap_destroy(sc->sc_buf_dtag, 2255 tbd->tbd_buf[k].tb_dmap); 2256 } 2257 goto fail; 2258 } 2259 } 2260 } 2261 ntx = BWI_TX_NRING; 2262 2263 /* 2264 * Create RX mbuf DMA map and a spare DMA map 2265 */ 2266 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2267 &rbd->rbd_tmp_dmap); 2268 if (error) { 2269 device_printf(sc->sc_dev, 2270 "can't create spare RX buf DMA map\n"); 2271 goto fail; 2272 } 2273 2274 for (j = 0; j < BWI_RX_NDESC; ++j) { 2275 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2276 &rbd->rbd_buf[j].rb_dmap); 2277 if (error) { 2278 device_printf(sc->sc_dev, "can't create %dth " 2279 "RX buf DMA map\n", j); 2280 2281 for (k = 0; k < j; ++k) { 2282 bus_dmamap_destroy(sc->sc_buf_dtag, 2283 rbd->rbd_buf[j].rb_dmap); 2284 } 2285 bus_dmamap_destroy(sc->sc_buf_dtag, 2286 rbd->rbd_tmp_dmap); 2287 goto fail; 2288 } 2289 } 2290 2291 return 0; 2292 fail: 2293 bwi_dma_mbuf_destroy(sc, ntx, 0); 2294 return error; 2295 } 2296 2297 static void 2298 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx) 2299 { 2300 int i, j; 2301 2302 if (sc->sc_buf_dtag == NULL) 2303 return; 2304 2305 for (i = 0; i < ntx; ++i) { 2306 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2307 2308 for (j = 0; j < BWI_TX_NDESC; ++j) { 2309 struct bwi_txbuf *tb = &tbd->tbd_buf[j]; 2310 2311 if (tb->tb_mbuf != NULL) { 2312 bus_dmamap_unload(sc->sc_buf_dtag, 2313 tb->tb_dmap); 2314 m_freem(tb->tb_mbuf); 2315 } 2316 if (tb->tb_ni != NULL) 2317 ieee80211_free_node(tb->tb_ni); 2318 bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap); 2319 } 2320 } 2321 2322 if (nrx) { 2323 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2324 2325 bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); 2326 for (j = 0; j < BWI_RX_NDESC; ++j) { 2327 struct bwi_rxbuf *rb = &rbd->rbd_buf[j]; 2328 2329 if (rb->rb_mbuf != NULL) { 2330 bus_dmamap_unload(sc->sc_buf_dtag, 2331 rb->rb_dmap); 2332 m_freem(rb->rb_mbuf); 2333 } 2334 bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap); 2335 } 2336 } 2337 2338 bus_dma_tag_destroy(sc->sc_buf_dtag); 2339 sc->sc_buf_dtag = NULL; 2340 } 2341 2342 static void 2343 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs) 2344 { 2345 CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs); 2346 } 2347 2348 static void 2349 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs) 2350 { 2351 CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs); 2352 } 2353 2354 static int 2355 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx) 2356 { 2357 struct bwi_ring_data *rd; 2358 struct bwi_txbuf_data *tbd; 2359 uint32_t val, addr_hi, addr_lo; 2360 2361 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2362 rd = &sc->sc_tx_rdata[ring_idx]; 2363 tbd = &sc->sc_tx_bdata[ring_idx]; 2364 2365 tbd->tbd_idx = 0; 2366 tbd->tbd_used = 0; 2367 2368 bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC); 2369 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 2370 BUS_DMASYNC_PREWRITE); 2371 2372 addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2373 addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2374 2375 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2376 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2377 BWI_TXRX32_RINGINFO_FUNC_MASK); 2378 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val); 2379 2380 val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2381 BWI_TXRX32_CTRL_ENABLE; 2382 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val); 2383 2384 return 0; 2385 } 2386 2387 static void 2388 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base, 2389 bus_addr_t paddr, int hdr_size, int ndesc) 2390 { 2391 uint32_t val, addr_hi, addr_lo; 2392 2393 addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2394 addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2395 2396 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2397 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2398 BWI_TXRX32_RINGINFO_FUNC_MASK); 2399 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val); 2400 2401 val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) | 2402 __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2403 BWI_TXRX32_CTRL_ENABLE; 2404 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val); 2405 2406 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 2407 (ndesc - 1) * sizeof(struct bwi_desc32)); 2408 } 2409 2410 static int 2411 bwi_init_rx_ring32(struct bwi_softc *sc) 2412 { 2413 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2414 int i, error; 2415 2416 sc->sc_rx_bdata.rbd_idx = 0; 2417 2418 for (i = 0; i < BWI_RX_NDESC; ++i) { 2419 error = bwi_newbuf(sc, i, 1); 2420 if (error) { 2421 device_printf(sc->sc_dev, 2422 "can't allocate %dth RX buffer\n", i); 2423 return error; 2424 } 2425 } 2426 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2427 BUS_DMASYNC_PREWRITE); 2428 2429 bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr, 2430 sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC); 2431 return 0; 2432 } 2433 2434 static int 2435 bwi_init_txstats32(struct bwi_softc *sc) 2436 { 2437 struct bwi_txstats_data *st = sc->sc_txstats; 2438 bus_addr_t stats_paddr; 2439 int i; 2440 2441 bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats)); 2442 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE); 2443 2444 st->stats_idx = 0; 2445 2446 stats_paddr = st->stats_paddr; 2447 for (i = 0; i < BWI_TXSTATS_NDESC; ++i) { 2448 bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i, 2449 stats_paddr, sizeof(struct bwi_txstats), 0); 2450 stats_paddr += sizeof(struct bwi_txstats); 2451 } 2452 bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap, 2453 BUS_DMASYNC_PREWRITE); 2454 2455 bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base, 2456 st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC); 2457 return 0; 2458 } 2459 2460 static void 2461 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2462 int buf_len) 2463 { 2464 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2465 2466 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2467 bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx, 2468 paddr, buf_len, 0); 2469 } 2470 2471 static void 2472 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd, 2473 int buf_idx, bus_addr_t paddr, int buf_len) 2474 { 2475 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 2476 bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx, 2477 paddr, buf_len, 1); 2478 } 2479 2480 static int 2481 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx) 2482 { 2483 /* TODO:64 */ 2484 return EOPNOTSUPP; 2485 } 2486 2487 static int 2488 bwi_init_rx_ring64(struct bwi_softc *sc) 2489 { 2490 /* TODO:64 */ 2491 return EOPNOTSUPP; 2492 } 2493 2494 static int 2495 bwi_init_txstats64(struct bwi_softc *sc) 2496 { 2497 /* TODO:64 */ 2498 return EOPNOTSUPP; 2499 } 2500 2501 static void 2502 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2503 int buf_len) 2504 { 2505 /* TODO:64 */ 2506 } 2507 2508 static void 2509 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd, 2510 int buf_idx, bus_addr_t paddr, int buf_len) 2511 { 2512 /* TODO:64 */ 2513 } 2514 2515 static void 2516 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, 2517 bus_size_t mapsz __unused, int error) 2518 { 2519 if (!error) { 2520 KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); 2521 *((bus_addr_t *)arg) = seg->ds_addr; 2522 } 2523 } 2524 2525 static int 2526 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init) 2527 { 2528 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2529 struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx]; 2530 struct bwi_rxbuf_hdr *hdr; 2531 bus_dmamap_t map; 2532 bus_addr_t paddr; 2533 struct mbuf *m; 2534 int error; 2535 2536 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2537 2538 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2539 if (m == NULL) { 2540 error = ENOBUFS; 2541 2542 /* 2543 * If the NIC is up and running, we need to: 2544 * - Clear RX buffer's header. 2545 * - Restore RX descriptor settings. 2546 */ 2547 if (init) 2548 return error; 2549 else 2550 goto back; 2551 } 2552 m->m_len = m->m_pkthdr.len = MCLBYTES; 2553 2554 /* 2555 * Try to load RX buf into temporary DMA map 2556 */ 2557 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m, 2558 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 2559 if (error) { 2560 m_freem(m); 2561 2562 /* 2563 * See the comment above 2564 */ 2565 if (init) 2566 return error; 2567 else 2568 goto back; 2569 } 2570 2571 if (!init) 2572 bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap); 2573 rxbuf->rb_mbuf = m; 2574 rxbuf->rb_paddr = paddr; 2575 2576 /* 2577 * Swap RX buf's DMA map with the loaded temporary one 2578 */ 2579 map = rxbuf->rb_dmap; 2580 rxbuf->rb_dmap = rbd->rbd_tmp_dmap; 2581 rbd->rbd_tmp_dmap = map; 2582 2583 back: 2584 /* 2585 * Clear RX buf header 2586 */ 2587 hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *); 2588 bzero(hdr, sizeof(*hdr)); 2589 bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE); 2590 2591 /* 2592 * Setup RX buf descriptor 2593 */ 2594 sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr, 2595 rxbuf->rb_mbuf->m_len - sizeof(*hdr)); 2596 return error; 2597 } 2598 2599 static void 2600 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs, 2601 const uint8_t *addr) 2602 { 2603 int i; 2604 2605 CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL, 2606 BWI_ADDR_FILTER_CTRL_SET | addr_ofs); 2607 2608 for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) { 2609 uint16_t addr_val; 2610 2611 addr_val = (uint16_t)addr[i * 2] | 2612 (((uint16_t)addr[(i * 2) + 1]) << 8); 2613 CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val); 2614 } 2615 } 2616 2617 static int 2618 bwi_rxeof(struct bwi_softc *sc, int end_idx) 2619 { 2620 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2621 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2622 struct ifnet *ifp = sc->sc_ifp; 2623 struct ieee80211com *ic = ifp->if_l2com; 2624 int idx, rx_data = 0; 2625 2626 idx = rbd->rbd_idx; 2627 while (idx != end_idx) { 2628 struct bwi_rxbuf *rb = &rbd->rbd_buf[idx]; 2629 struct bwi_rxbuf_hdr *hdr; 2630 struct ieee80211_frame_min *wh; 2631 struct ieee80211_node *ni; 2632 struct mbuf *m; 2633 uint32_t plcp; 2634 uint16_t flags2; 2635 int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate; 2636 2637 m = rb->rb_mbuf; 2638 bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap, 2639 BUS_DMASYNC_POSTREAD); 2640 2641 if (bwi_newbuf(sc, idx, 0)) { 2642 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2643 goto next; 2644 } 2645 2646 hdr = mtod(m, struct bwi_rxbuf_hdr *); 2647 flags2 = le16toh(hdr->rxh_flags2); 2648 2649 hdr_extra = 0; 2650 if (flags2 & BWI_RXH_F2_TYPE2FRAME) 2651 hdr_extra = 2; 2652 wh_ofs = hdr_extra + 6; /* XXX magic number */ 2653 2654 buflen = le16toh(hdr->rxh_buflen); 2655 if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) { 2656 if_printf(ifp, "%s: zero length data, hdr_extra %d\n", 2657 __func__, hdr_extra); 2658 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2659 m_freem(m); 2660 goto next; 2661 } 2662 2663 bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp)); 2664 rssi = bwi_calc_rssi(sc, hdr); 2665 noise = bwi_calc_noise(sc); 2666 2667 m->m_pkthdr.rcvif = ifp; 2668 m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr); 2669 m_adj(m, sizeof(*hdr) + wh_ofs); 2670 2671 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM) 2672 rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM); 2673 else 2674 rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK); 2675 2676 /* RX radio tap */ 2677 if (ieee80211_radiotap_active(ic)) 2678 bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise); 2679 2680 m_adj(m, -IEEE80211_CRC_LEN); 2681 2682 BWI_UNLOCK(sc); 2683 2684 wh = mtod(m, struct ieee80211_frame_min *); 2685 ni = ieee80211_find_rxnode(ic, wh); 2686 if (ni != NULL) { 2687 type = ieee80211_input(ni, m, rssi - noise, noise); 2688 ieee80211_free_node(ni); 2689 } else 2690 type = ieee80211_input_all(ic, m, rssi - noise, noise); 2691 if (type == IEEE80211_FC0_TYPE_DATA) { 2692 rx_data = 1; 2693 sc->sc_rx_rate = rate; 2694 } 2695 2696 BWI_LOCK(sc); 2697 next: 2698 idx = (idx + 1) % BWI_RX_NDESC; 2699 2700 if (sc->sc_flags & BWI_F_STOP) { 2701 /* 2702 * Take the fast lane, don't do 2703 * any damage to softc 2704 */ 2705 return -1; 2706 } 2707 } 2708 2709 rbd->rbd_idx = idx; 2710 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2711 BUS_DMASYNC_PREWRITE); 2712 2713 return rx_data; 2714 } 2715 2716 static int 2717 bwi_rxeof32(struct bwi_softc *sc) 2718 { 2719 uint32_t val, rx_ctrl; 2720 int end_idx, rx_data; 2721 2722 rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl; 2723 2724 val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2725 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 2726 sizeof(struct bwi_desc32); 2727 2728 rx_data = bwi_rxeof(sc, end_idx); 2729 if (rx_data >= 0) { 2730 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX, 2731 end_idx * sizeof(struct bwi_desc32)); 2732 } 2733 return rx_data; 2734 } 2735 2736 static int 2737 bwi_rxeof64(struct bwi_softc *sc) 2738 { 2739 /* TODO:64 */ 2740 return 0; 2741 } 2742 2743 static void 2744 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl) 2745 { 2746 int i; 2747 2748 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0); 2749 2750 #define NRETRY 10 2751 2752 for (i = 0; i < NRETRY; ++i) { 2753 uint32_t status; 2754 2755 status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2756 if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) == 2757 BWI_RX32_STATUS_STATE_DISABLED) 2758 break; 2759 2760 DELAY(1000); 2761 } 2762 if (i == NRETRY) 2763 device_printf(sc->sc_dev, "reset rx ring timedout\n"); 2764 2765 #undef NRETRY 2766 2767 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0); 2768 } 2769 2770 static void 2771 bwi_free_txstats32(struct bwi_softc *sc) 2772 { 2773 bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base); 2774 } 2775 2776 static void 2777 bwi_free_rx_ring32(struct bwi_softc *sc) 2778 { 2779 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2780 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2781 int i; 2782 2783 bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl); 2784 2785 for (i = 0; i < BWI_RX_NDESC; ++i) { 2786 struct bwi_rxbuf *rb = &rbd->rbd_buf[i]; 2787 2788 if (rb->rb_mbuf != NULL) { 2789 bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); 2790 m_freem(rb->rb_mbuf); 2791 rb->rb_mbuf = NULL; 2792 } 2793 } 2794 } 2795 2796 static void 2797 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx) 2798 { 2799 struct bwi_ring_data *rd; 2800 struct bwi_txbuf_data *tbd; 2801 struct ifnet *ifp = sc->sc_ifp; 2802 uint32_t state, val; 2803 int i; 2804 2805 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2806 rd = &sc->sc_tx_rdata[ring_idx]; 2807 tbd = &sc->sc_tx_bdata[ring_idx]; 2808 2809 #define NRETRY 10 2810 2811 for (i = 0; i < NRETRY; ++i) { 2812 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2813 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2814 if (state == BWI_TX32_STATUS_STATE_DISABLED || 2815 state == BWI_TX32_STATUS_STATE_IDLE || 2816 state == BWI_TX32_STATUS_STATE_STOPPED) 2817 break; 2818 2819 DELAY(1000); 2820 } 2821 if (i == NRETRY) { 2822 if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n", 2823 __func__, ring_idx); 2824 } 2825 2826 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0); 2827 for (i = 0; i < NRETRY; ++i) { 2828 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2829 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2830 if (state == BWI_TX32_STATUS_STATE_DISABLED) 2831 break; 2832 2833 DELAY(1000); 2834 } 2835 if (i == NRETRY) 2836 if_printf(ifp, "%s: reset TX ring (%d) timed out\n", 2837 __func__, ring_idx); 2838 2839 #undef NRETRY 2840 2841 DELAY(1000); 2842 2843 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0); 2844 2845 for (i = 0; i < BWI_TX_NDESC; ++i) { 2846 struct bwi_txbuf *tb = &tbd->tbd_buf[i]; 2847 2848 if (tb->tb_mbuf != NULL) { 2849 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 2850 m_freem(tb->tb_mbuf); 2851 tb->tb_mbuf = NULL; 2852 } 2853 if (tb->tb_ni != NULL) { 2854 ieee80211_free_node(tb->tb_ni); 2855 tb->tb_ni = NULL; 2856 } 2857 } 2858 } 2859 2860 static void 2861 bwi_free_txstats64(struct bwi_softc *sc) 2862 { 2863 /* TODO:64 */ 2864 } 2865 2866 static void 2867 bwi_free_rx_ring64(struct bwi_softc *sc) 2868 { 2869 /* TODO:64 */ 2870 } 2871 2872 static void 2873 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx) 2874 { 2875 /* TODO:64 */ 2876 } 2877 2878 /* XXX does not belong here */ 2879 #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0) 2880 #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5) 2881 2882 static __inline void 2883 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate) 2884 { 2885 uint32_t plcp; 2886 2887 plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM), 2888 IEEE80211_OFDM_PLCP_RATE_MASK) | 2889 __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK); 2890 *plcp0 = htole32(plcp); 2891 } 2892 2893 static __inline void 2894 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len, 2895 uint8_t rate) 2896 { 2897 int len, service, pkt_bitlen; 2898 2899 pkt_bitlen = pkt_len * NBBY; 2900 len = howmany(pkt_bitlen * 2, rate); 2901 2902 service = IEEE80211_PLCP_SERVICE_LOCKED; 2903 if (rate == (11 * 2)) { 2904 int pkt_bitlen1; 2905 2906 /* 2907 * PLCP service field needs to be adjusted, 2908 * if TX rate is 11Mbytes/s 2909 */ 2910 pkt_bitlen1 = len * 11; 2911 if (pkt_bitlen1 - pkt_bitlen >= NBBY) 2912 service |= IEEE80211_PLCP_SERVICE_LENEXT7; 2913 } 2914 2915 plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK); 2916 plcp->i_service = service; 2917 plcp->i_length = htole16(len); 2918 /* NOTE: do NOT touch i_crc */ 2919 } 2920 2921 static __inline void 2922 bwi_plcp_header(const struct ieee80211_rate_table *rt, 2923 void *plcp, int pkt_len, uint8_t rate) 2924 { 2925 enum ieee80211_phytype modtype; 2926 2927 /* 2928 * Assume caller has zeroed 'plcp' 2929 */ 2930 modtype = ieee80211_rate2phytype(rt, rate); 2931 if (modtype == IEEE80211_T_OFDM) 2932 bwi_ofdm_plcp_header(plcp, pkt_len, rate); 2933 else if (modtype == IEEE80211_T_DS) 2934 bwi_ds_plcp_header(plcp, pkt_len, rate); 2935 else 2936 panic("unsupport modulation type %u\n", modtype); 2937 } 2938 2939 static int 2940 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m, 2941 struct ieee80211_node *ni) 2942 { 2943 struct ieee80211vap *vap = ni->ni_vap; 2944 struct ifnet *ifp = sc->sc_ifp; 2945 struct ieee80211com *ic = ifp->if_l2com; 2946 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 2947 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 2948 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 2949 struct bwi_mac *mac; 2950 struct bwi_txbuf_hdr *hdr; 2951 struct ieee80211_frame *wh; 2952 const struct ieee80211_txparam *tp; 2953 uint8_t rate, rate_fb; 2954 uint32_t mac_ctrl; 2955 uint16_t phy_ctrl; 2956 bus_addr_t paddr; 2957 int type, ismcast, pkt_len, error, rix; 2958 #if 0 2959 const uint8_t *p; 2960 int i; 2961 #endif 2962 2963 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 2964 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 2965 mac = (struct bwi_mac *)sc->sc_cur_regwin; 2966 2967 wh = mtod(m, struct ieee80211_frame *); 2968 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2969 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2970 2971 /* Get 802.11 frame len before prepending TX header */ 2972 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 2973 2974 /* 2975 * Find TX rate 2976 */ 2977 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2978 if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) { 2979 rate = rate_fb = tp->mgmtrate; 2980 } else if (ismcast) { 2981 rate = rate_fb = tp->mcastrate; 2982 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 2983 rate = rate_fb = tp->ucastrate; 2984 } else { 2985 rix = ieee80211_ratectl_rate(ni, NULL, pkt_len); 2986 rate = ni->ni_txrate; 2987 2988 if (rix > 0) { 2989 rate_fb = ni->ni_rates.rs_rates[rix-1] & 2990 IEEE80211_RATE_VAL; 2991 } else { 2992 rate_fb = rate; 2993 } 2994 } 2995 tb->tb_rate[0] = rate; 2996 tb->tb_rate[1] = rate_fb; 2997 sc->sc_tx_rate = rate; 2998 2999 /* 3000 * TX radio tap 3001 */ 3002 if (ieee80211_radiotap_active_vap(vap)) { 3003 sc->sc_tx_th.wt_flags = 0; 3004 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3005 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3006 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS && 3007 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3008 rate != (1 * 2)) { 3009 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3010 } 3011 sc->sc_tx_th.wt_rate = rate; 3012 3013 ieee80211_radiotap_tx(vap, m); 3014 } 3015 3016 /* 3017 * Setup the embedded TX header 3018 */ 3019 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 3020 if (m == NULL) { 3021 if_printf(ifp, "%s: prepend TX header failed\n", __func__); 3022 return ENOBUFS; 3023 } 3024 hdr = mtod(m, struct bwi_txbuf_hdr *); 3025 3026 bzero(hdr, sizeof(*hdr)); 3027 3028 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 3029 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 3030 3031 if (!ismcast) { 3032 uint16_t dur; 3033 3034 dur = ieee80211_ack_duration(sc->sc_rates, rate, 3035 ic->ic_flags & ~IEEE80211_F_SHPREAMBLE); 3036 3037 hdr->txh_fb_duration = htole16(dur); 3038 } 3039 3040 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3041 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3042 3043 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3044 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3045 3046 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3047 BWI_TXH_PHY_C_ANTMODE_MASK); 3048 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) 3049 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3050 else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1)) 3051 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3052 3053 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3054 if (!ismcast) 3055 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3056 if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM) 3057 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3058 3059 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3060 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3061 3062 /* Catch any further usage */ 3063 hdr = NULL; 3064 wh = NULL; 3065 3066 /* DMA load */ 3067 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3068 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3069 if (error && error != EFBIG) { 3070 if_printf(ifp, "%s: can't load TX buffer (1) %d\n", 3071 __func__, error); 3072 goto back; 3073 } 3074 3075 if (error) { /* error == EFBIG */ 3076 struct mbuf *m_new; 3077 3078 m_new = m_defrag(m, M_NOWAIT); 3079 if (m_new == NULL) { 3080 if_printf(ifp, "%s: can't defrag TX buffer\n", 3081 __func__); 3082 error = ENOBUFS; 3083 goto back; 3084 } else { 3085 m = m_new; 3086 } 3087 3088 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3089 bwi_dma_buf_addr, &paddr, 3090 BUS_DMA_NOWAIT); 3091 if (error) { 3092 if_printf(ifp, "%s: can't load TX buffer (2) %d\n", 3093 __func__, error); 3094 goto back; 3095 } 3096 } 3097 error = 0; 3098 3099 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3100 3101 tb->tb_mbuf = m; 3102 tb->tb_ni = ni; 3103 3104 #if 0 3105 p = mtod(m, const uint8_t *); 3106 for (i = 0; i < m->m_pkthdr.len; ++i) { 3107 if (i != 0 && i % 8 == 0) 3108 printf("\n"); 3109 printf("%02x ", p[i]); 3110 } 3111 printf("\n"); 3112 #endif 3113 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3114 idx, pkt_len, m->m_pkthdr.len); 3115 3116 /* Setup TX descriptor */ 3117 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3118 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3119 BUS_DMASYNC_PREWRITE); 3120 3121 /* Kick start */ 3122 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3123 3124 back: 3125 if (error) 3126 m_freem(m); 3127 return error; 3128 } 3129 3130 static int 3131 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m, 3132 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 3133 { 3134 struct ifnet *ifp = sc->sc_ifp; 3135 struct ieee80211vap *vap = ni->ni_vap; 3136 struct ieee80211com *ic = ni->ni_ic; 3137 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 3138 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 3139 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 3140 struct bwi_mac *mac; 3141 struct bwi_txbuf_hdr *hdr; 3142 struct ieee80211_frame *wh; 3143 uint8_t rate, rate_fb; 3144 uint32_t mac_ctrl; 3145 uint16_t phy_ctrl; 3146 bus_addr_t paddr; 3147 int ismcast, pkt_len, error; 3148 3149 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3150 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3151 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3152 3153 wh = mtod(m, struct ieee80211_frame *); 3154 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3155 3156 /* Get 802.11 frame len before prepending TX header */ 3157 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3158 3159 /* 3160 * Find TX rate 3161 */ 3162 rate = params->ibp_rate0; 3163 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3164 /* XXX fall back to mcast/mgmt rate? */ 3165 m_freem(m); 3166 return EINVAL; 3167 } 3168 if (params->ibp_try1 != 0) { 3169 rate_fb = params->ibp_rate1; 3170 if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) { 3171 /* XXX fall back to rate0? */ 3172 m_freem(m); 3173 return EINVAL; 3174 } 3175 } else 3176 rate_fb = rate; 3177 tb->tb_rate[0] = rate; 3178 tb->tb_rate[1] = rate_fb; 3179 sc->sc_tx_rate = rate; 3180 3181 /* 3182 * TX radio tap 3183 */ 3184 if (ieee80211_radiotap_active_vap(vap)) { 3185 sc->sc_tx_th.wt_flags = 0; 3186 /* XXX IEEE80211_BPF_CRYPTO */ 3187 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3188 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3189 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3190 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3191 sc->sc_tx_th.wt_rate = rate; 3192 3193 ieee80211_radiotap_tx(vap, m); 3194 } 3195 3196 /* 3197 * Setup the embedded TX header 3198 */ 3199 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 3200 if (m == NULL) { 3201 if_printf(ifp, "%s: prepend TX header failed\n", __func__); 3202 return ENOBUFS; 3203 } 3204 hdr = mtod(m, struct bwi_txbuf_hdr *); 3205 3206 bzero(hdr, sizeof(*hdr)); 3207 3208 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 3209 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 3210 3211 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3212 if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { 3213 uint16_t dur; 3214 3215 dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0); 3216 3217 hdr->txh_fb_duration = htole16(dur); 3218 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3219 } 3220 3221 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3222 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3223 3224 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3225 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3226 3227 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3228 BWI_TXH_PHY_C_ANTMODE_MASK); 3229 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) { 3230 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3231 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3232 } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3233 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3234 3235 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3236 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3237 3238 /* Catch any further usage */ 3239 hdr = NULL; 3240 wh = NULL; 3241 3242 /* DMA load */ 3243 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3244 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3245 if (error != 0) { 3246 struct mbuf *m_new; 3247 3248 if (error != EFBIG) { 3249 if_printf(ifp, "%s: can't load TX buffer (1) %d\n", 3250 __func__, error); 3251 goto back; 3252 } 3253 m_new = m_defrag(m, M_NOWAIT); 3254 if (m_new == NULL) { 3255 if_printf(ifp, "%s: can't defrag TX buffer\n", 3256 __func__); 3257 error = ENOBUFS; 3258 goto back; 3259 } 3260 m = m_new; 3261 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3262 bwi_dma_buf_addr, &paddr, 3263 BUS_DMA_NOWAIT); 3264 if (error) { 3265 if_printf(ifp, "%s: can't load TX buffer (2) %d\n", 3266 __func__, error); 3267 goto back; 3268 } 3269 } 3270 3271 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3272 3273 tb->tb_mbuf = m; 3274 tb->tb_ni = ni; 3275 3276 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3277 idx, pkt_len, m->m_pkthdr.len); 3278 3279 /* Setup TX descriptor */ 3280 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3281 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3282 BUS_DMASYNC_PREWRITE); 3283 3284 /* Kick start */ 3285 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3286 back: 3287 if (error) 3288 m_freem(m); 3289 return error; 3290 } 3291 3292 static void 3293 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3294 { 3295 idx = (idx + 1) % BWI_TX_NDESC; 3296 CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX, 3297 idx * sizeof(struct bwi_desc32)); 3298 } 3299 3300 static void 3301 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3302 { 3303 /* TODO:64 */ 3304 } 3305 3306 static void 3307 bwi_txeof_status32(struct bwi_softc *sc) 3308 { 3309 struct ifnet *ifp = sc->sc_ifp; 3310 uint32_t val, ctrl_base; 3311 int end_idx; 3312 3313 ctrl_base = sc->sc_txstats->stats_ctrl_base; 3314 3315 val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS); 3316 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 3317 sizeof(struct bwi_desc32); 3318 3319 bwi_txeof_status(sc, end_idx); 3320 3321 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 3322 end_idx * sizeof(struct bwi_desc32)); 3323 3324 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) 3325 ifp->if_start(ifp); 3326 } 3327 3328 static void 3329 bwi_txeof_status64(struct bwi_softc *sc) 3330 { 3331 /* TODO:64 */ 3332 } 3333 3334 static void 3335 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt) 3336 { 3337 struct ifnet *ifp = sc->sc_ifp; 3338 struct bwi_txbuf_data *tbd; 3339 struct bwi_txbuf *tb; 3340 int ring_idx, buf_idx; 3341 struct ieee80211_node *ni; 3342 struct ieee80211vap *vap; 3343 3344 if (tx_id == 0) { 3345 if_printf(ifp, "%s: zero tx id\n", __func__); 3346 return; 3347 } 3348 3349 ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK); 3350 buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK); 3351 3352 KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx)); 3353 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 3354 3355 tbd = &sc->sc_tx_bdata[ring_idx]; 3356 KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used)); 3357 tbd->tbd_used--; 3358 3359 tb = &tbd->tbd_buf[buf_idx]; 3360 DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, " 3361 "acked %d, data_txcnt %d, ni %p\n", 3362 buf_idx, acked, data_txcnt, tb->tb_ni); 3363 3364 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 3365 3366 ni = tb->tb_ni; 3367 if (tb->tb_ni != NULL) { 3368 const struct bwi_txbuf_hdr *hdr = 3369 mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *); 3370 vap = ni->ni_vap; 3371 3372 /* NB: update rate control only for unicast frames */ 3373 if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) { 3374 /* 3375 * Feed back 'acked and data_txcnt'. Note that the 3376 * generic AMRR code only understands one tx rate 3377 * and the estimator doesn't handle real retry counts 3378 * well so to avoid over-aggressive downshifting we 3379 * treat any number of retries as "1". 3380 */ 3381 ieee80211_ratectl_tx_complete(vap, ni, 3382 (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS : 3383 IEEE80211_RATECTL_TX_FAILURE, &acked, NULL); 3384 } 3385 3386 /* 3387 * Do any tx complete callback. Note this must 3388 * be done before releasing the node reference. 3389 */ 3390 if (tb->tb_mbuf->m_flags & M_TXCB) 3391 ieee80211_process_callback(ni, tb->tb_mbuf, !acked); 3392 3393 ieee80211_free_node(tb->tb_ni); 3394 tb->tb_ni = NULL; 3395 } 3396 m_freem(tb->tb_mbuf); 3397 tb->tb_mbuf = NULL; 3398 3399 if (tbd->tbd_used == 0) 3400 sc->sc_tx_timer = 0; 3401 3402 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3403 } 3404 3405 static void 3406 bwi_txeof_status(struct bwi_softc *sc, int end_idx) 3407 { 3408 struct bwi_txstats_data *st = sc->sc_txstats; 3409 int idx; 3410 3411 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD); 3412 3413 idx = st->stats_idx; 3414 while (idx != end_idx) { 3415 const struct bwi_txstats *stats = &st->stats[idx]; 3416 3417 if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) { 3418 int data_txcnt; 3419 3420 data_txcnt = __SHIFTOUT(stats->txs_txcnt, 3421 BWI_TXS_TXCNT_DATA); 3422 _bwi_txeof(sc, le16toh(stats->txs_id), 3423 stats->txs_flags & BWI_TXS_F_ACKED, 3424 data_txcnt); 3425 } 3426 idx = (idx + 1) % BWI_TXSTATS_NDESC; 3427 } 3428 st->stats_idx = idx; 3429 } 3430 3431 static void 3432 bwi_txeof(struct bwi_softc *sc) 3433 { 3434 struct ifnet *ifp = sc->sc_ifp; 3435 3436 for (;;) { 3437 uint32_t tx_status0, tx_status1; 3438 uint16_t tx_id; 3439 int data_txcnt; 3440 3441 tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0); 3442 if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0) 3443 break; 3444 tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1); 3445 3446 tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK); 3447 data_txcnt = __SHIFTOUT(tx_status0, 3448 BWI_TXSTATUS0_DATA_TXCNT_MASK); 3449 3450 if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING)) 3451 continue; 3452 3453 _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED, 3454 data_txcnt); 3455 } 3456 3457 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) 3458 ifp->if_start(ifp); 3459 } 3460 3461 static int 3462 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 3463 { 3464 bwi_power_on(sc, 1); 3465 return bwi_set_clock_mode(sc, clk_mode); 3466 } 3467 3468 static void 3469 bwi_bbp_power_off(struct bwi_softc *sc) 3470 { 3471 bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW); 3472 bwi_power_off(sc, 1); 3473 } 3474 3475 static int 3476 bwi_get_pwron_delay(struct bwi_softc *sc) 3477 { 3478 struct bwi_regwin *com, *old; 3479 struct bwi_clock_freq freq; 3480 uint32_t val; 3481 int error; 3482 3483 com = &sc->sc_com_regwin; 3484 KASSERT(BWI_REGWIN_EXIST(com), ("no regwin")); 3485 3486 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 3487 return 0; 3488 3489 error = bwi_regwin_switch(sc, com, &old); 3490 if (error) 3491 return error; 3492 3493 bwi_get_clock_freq(sc, &freq); 3494 3495 val = CSR_READ_4(sc, BWI_PLL_ON_DELAY); 3496 sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min); 3497 DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay); 3498 3499 return bwi_regwin_switch(sc, old, NULL); 3500 } 3501 3502 static int 3503 bwi_bus_attach(struct bwi_softc *sc) 3504 { 3505 struct bwi_regwin *bus, *old; 3506 int error; 3507 3508 bus = &sc->sc_bus_regwin; 3509 3510 error = bwi_regwin_switch(sc, bus, &old); 3511 if (error) 3512 return error; 3513 3514 if (!bwi_regwin_is_enabled(sc, bus)) 3515 bwi_regwin_enable(sc, bus, 0); 3516 3517 /* Disable interripts */ 3518 CSR_WRITE_4(sc, BWI_INTRVEC, 0); 3519 3520 return bwi_regwin_switch(sc, old, NULL); 3521 } 3522 3523 static const char * 3524 bwi_regwin_name(const struct bwi_regwin *rw) 3525 { 3526 switch (rw->rw_type) { 3527 case BWI_REGWIN_T_COM: 3528 return "COM"; 3529 case BWI_REGWIN_T_BUSPCI: 3530 return "PCI"; 3531 case BWI_REGWIN_T_MAC: 3532 return "MAC"; 3533 case BWI_REGWIN_T_BUSPCIE: 3534 return "PCIE"; 3535 } 3536 panic("unknown regwin type 0x%04x\n", rw->rw_type); 3537 return NULL; 3538 } 3539 3540 static uint32_t 3541 bwi_regwin_disable_bits(struct bwi_softc *sc) 3542 { 3543 uint32_t busrev; 3544 3545 /* XXX cache this */ 3546 busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK); 3547 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC, 3548 "bus rev %u\n", busrev); 3549 3550 if (busrev == BWI_BUSREV_0) 3551 return BWI_STATE_LO_DISABLE1; 3552 else if (busrev == BWI_BUSREV_1) 3553 return BWI_STATE_LO_DISABLE2; 3554 else 3555 return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2); 3556 } 3557 3558 int 3559 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw) 3560 { 3561 uint32_t val, disable_bits; 3562 3563 disable_bits = bwi_regwin_disable_bits(sc); 3564 val = CSR_READ_4(sc, BWI_STATE_LO); 3565 3566 if ((val & (BWI_STATE_LO_CLOCK | 3567 BWI_STATE_LO_RESET | 3568 disable_bits)) == BWI_STATE_LO_CLOCK) { 3569 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n", 3570 bwi_regwin_name(rw)); 3571 return 1; 3572 } else { 3573 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n", 3574 bwi_regwin_name(rw)); 3575 return 0; 3576 } 3577 } 3578 3579 void 3580 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3581 { 3582 uint32_t state_lo, disable_bits; 3583 int i; 3584 3585 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3586 3587 /* 3588 * If current regwin is in 'reset' state, it was already disabled. 3589 */ 3590 if (state_lo & BWI_STATE_LO_RESET) { 3591 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, 3592 "%s was already disabled\n", bwi_regwin_name(rw)); 3593 return; 3594 } 3595 3596 disable_bits = bwi_regwin_disable_bits(sc); 3597 3598 /* 3599 * Disable normal clock 3600 */ 3601 state_lo = BWI_STATE_LO_CLOCK | disable_bits; 3602 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3603 3604 /* 3605 * Wait until normal clock is disabled 3606 */ 3607 #define NRETRY 1000 3608 for (i = 0; i < NRETRY; ++i) { 3609 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3610 if (state_lo & disable_bits) 3611 break; 3612 DELAY(10); 3613 } 3614 if (i == NRETRY) { 3615 device_printf(sc->sc_dev, "%s disable clock timeout\n", 3616 bwi_regwin_name(rw)); 3617 } 3618 3619 for (i = 0; i < NRETRY; ++i) { 3620 uint32_t state_hi; 3621 3622 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3623 if ((state_hi & BWI_STATE_HI_BUSY) == 0) 3624 break; 3625 DELAY(10); 3626 } 3627 if (i == NRETRY) { 3628 device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n", 3629 bwi_regwin_name(rw)); 3630 } 3631 #undef NRETRY 3632 3633 /* 3634 * Reset and disable regwin with gated clock 3635 */ 3636 state_lo = BWI_STATE_LO_RESET | disable_bits | 3637 BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | 3638 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3639 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3640 3641 /* Flush pending bus write */ 3642 CSR_READ_4(sc, BWI_STATE_LO); 3643 DELAY(1); 3644 3645 /* Reset and disable regwin */ 3646 state_lo = BWI_STATE_LO_RESET | disable_bits | 3647 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3648 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3649 3650 /* Flush pending bus write */ 3651 CSR_READ_4(sc, BWI_STATE_LO); 3652 DELAY(1); 3653 } 3654 3655 void 3656 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3657 { 3658 uint32_t state_lo, state_hi, imstate; 3659 3660 bwi_regwin_disable(sc, rw, flags); 3661 3662 /* Reset regwin with gated clock */ 3663 state_lo = BWI_STATE_LO_RESET | 3664 BWI_STATE_LO_CLOCK | 3665 BWI_STATE_LO_GATED_CLOCK | 3666 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3667 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3668 3669 /* Flush pending bus write */ 3670 CSR_READ_4(sc, BWI_STATE_LO); 3671 DELAY(1); 3672 3673 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3674 if (state_hi & BWI_STATE_HI_SERROR) 3675 CSR_WRITE_4(sc, BWI_STATE_HI, 0); 3676 3677 imstate = CSR_READ_4(sc, BWI_IMSTATE); 3678 if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) { 3679 imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT); 3680 CSR_WRITE_4(sc, BWI_IMSTATE, imstate); 3681 } 3682 3683 /* Enable regwin with gated clock */ 3684 state_lo = BWI_STATE_LO_CLOCK | 3685 BWI_STATE_LO_GATED_CLOCK | 3686 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3687 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3688 3689 /* Flush pending bus write */ 3690 CSR_READ_4(sc, BWI_STATE_LO); 3691 DELAY(1); 3692 3693 /* Enable regwin with normal clock */ 3694 state_lo = BWI_STATE_LO_CLOCK | 3695 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3696 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3697 3698 /* Flush pending bus write */ 3699 CSR_READ_4(sc, BWI_STATE_LO); 3700 DELAY(1); 3701 } 3702 3703 static void 3704 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid) 3705 { 3706 struct ifnet *ifp = sc->sc_ifp; 3707 struct bwi_mac *mac; 3708 struct bwi_myaddr_bssid buf; 3709 const uint8_t *p; 3710 uint32_t val; 3711 int n, i; 3712 3713 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3714 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3715 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3716 3717 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid); 3718 3719 bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr)); 3720 bcopy(bssid, buf.bssid, sizeof(buf.bssid)); 3721 3722 n = sizeof(buf) / sizeof(val); 3723 p = (const uint8_t *)&buf; 3724 for (i = 0; i < n; ++i) { 3725 int j; 3726 3727 val = 0; 3728 for (j = 0; j < sizeof(val); ++j) 3729 val |= ((uint32_t)(*p++)) << (j * 8); 3730 3731 TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val); 3732 } 3733 } 3734 3735 static void 3736 bwi_updateslot(struct ifnet *ifp) 3737 { 3738 struct bwi_softc *sc = ifp->if_softc; 3739 struct ieee80211com *ic = ifp->if_l2com; 3740 struct bwi_mac *mac; 3741 3742 BWI_LOCK(sc); 3743 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3744 DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__); 3745 3746 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3747 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3748 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3749 3750 bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT)); 3751 } 3752 BWI_UNLOCK(sc); 3753 } 3754 3755 static void 3756 bwi_calibrate(void *xsc) 3757 { 3758 struct bwi_softc *sc = xsc; 3759 #ifdef INVARIANTS 3760 struct ifnet *ifp = sc->sc_ifp; 3761 struct ieee80211com *ic = ifp->if_l2com; 3762 #endif 3763 struct bwi_mac *mac; 3764 3765 BWI_ASSERT_LOCKED(sc); 3766 3767 KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR, 3768 ("opmode %d", ic->ic_opmode)); 3769 3770 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3771 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3772 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3773 3774 bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type); 3775 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 3776 3777 /* XXX 15 seconds */ 3778 callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc); 3779 } 3780 3781 static int 3782 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr) 3783 { 3784 struct bwi_mac *mac; 3785 3786 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3787 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3788 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3789 3790 return bwi_rf_calc_rssi(mac, hdr); 3791 } 3792 3793 static int 3794 bwi_calc_noise(struct bwi_softc *sc) 3795 { 3796 struct bwi_mac *mac; 3797 3798 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3799 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3800 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3801 3802 return bwi_rf_calc_noise(mac); 3803 } 3804 3805 static __inline uint8_t 3806 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type) 3807 { 3808 uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK; 3809 return (ieee80211_plcp2rate(plcp, type)); 3810 } 3811 3812 static void 3813 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m, 3814 struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise) 3815 { 3816 const struct ieee80211_frame_min *wh; 3817 3818 sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS; 3819 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE) 3820 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3821 3822 wh = mtod(m, const struct ieee80211_frame_min *); 3823 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3824 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; 3825 3826 sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */ 3827 sc->sc_rx_th.wr_rate = rate; 3828 sc->sc_rx_th.wr_antsignal = rssi; 3829 sc->sc_rx_th.wr_antnoise = noise; 3830 } 3831 3832 static void 3833 bwi_led_attach(struct bwi_softc *sc) 3834 { 3835 const uint8_t *led_act = NULL; 3836 uint16_t gpio, val[BWI_LED_MAX]; 3837 int i; 3838 3839 #define N(arr) (int)(sizeof(arr) / sizeof(arr[0])) 3840 3841 for (i = 0; i < N(bwi_vendor_led_act); ++i) { 3842 if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) { 3843 led_act = bwi_vendor_led_act[i].led_act; 3844 break; 3845 } 3846 } 3847 if (led_act == NULL) 3848 led_act = bwi_default_led_act; 3849 3850 #undef N 3851 3852 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01); 3853 val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0); 3854 val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1); 3855 3856 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23); 3857 val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2); 3858 val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3); 3859 3860 for (i = 0; i < BWI_LED_MAX; ++i) { 3861 struct bwi_led *led = &sc->sc_leds[i]; 3862 3863 if (val[i] == 0xff) { 3864 led->l_act = led_act[i]; 3865 } else { 3866 if (val[i] & BWI_LED_ACT_LOW) 3867 led->l_flags |= BWI_LED_F_ACTLOW; 3868 led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK); 3869 } 3870 led->l_mask = (1 << i); 3871 3872 if (led->l_act == BWI_LED_ACT_BLINK_SLOW || 3873 led->l_act == BWI_LED_ACT_BLINK_POLL || 3874 led->l_act == BWI_LED_ACT_BLINK) { 3875 led->l_flags |= BWI_LED_F_BLINK; 3876 if (led->l_act == BWI_LED_ACT_BLINK_POLL) 3877 led->l_flags |= BWI_LED_F_POLLABLE; 3878 else if (led->l_act == BWI_LED_ACT_BLINK_SLOW) 3879 led->l_flags |= BWI_LED_F_SLOW; 3880 3881 if (sc->sc_blink_led == NULL) { 3882 sc->sc_blink_led = led; 3883 if (led->l_flags & BWI_LED_F_SLOW) 3884 BWI_LED_SLOWDOWN(sc->sc_led_idle); 3885 } 3886 } 3887 3888 DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH, 3889 "%dth led, act %d, lowact %d\n", i, 3890 led->l_act, led->l_flags & BWI_LED_F_ACTLOW); 3891 } 3892 callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); 3893 } 3894 3895 static __inline uint16_t 3896 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on) 3897 { 3898 if (led->l_flags & BWI_LED_F_ACTLOW) 3899 on = !on; 3900 if (on) 3901 val |= led->l_mask; 3902 else 3903 val &= ~led->l_mask; 3904 return val; 3905 } 3906 3907 static void 3908 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate) 3909 { 3910 struct ifnet *ifp = sc->sc_ifp; 3911 struct ieee80211com *ic = ifp->if_l2com; 3912 uint16_t val; 3913 int i; 3914 3915 if (nstate == IEEE80211_S_INIT) { 3916 callout_stop(&sc->sc_led_blink_ch); 3917 sc->sc_led_blinking = 0; 3918 } 3919 3920 if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 3921 return; 3922 3923 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3924 for (i = 0; i < BWI_LED_MAX; ++i) { 3925 struct bwi_led *led = &sc->sc_leds[i]; 3926 int on; 3927 3928 if (led->l_act == BWI_LED_ACT_UNKN || 3929 led->l_act == BWI_LED_ACT_NULL) 3930 continue; 3931 3932 if ((led->l_flags & BWI_LED_F_BLINK) && 3933 nstate != IEEE80211_S_INIT) 3934 continue; 3935 3936 switch (led->l_act) { 3937 case BWI_LED_ACT_ON: /* Always on */ 3938 on = 1; 3939 break; 3940 case BWI_LED_ACT_OFF: /* Always off */ 3941 case BWI_LED_ACT_5GHZ: /* TODO: 11A */ 3942 on = 0; 3943 break; 3944 default: 3945 on = 1; 3946 switch (nstate) { 3947 case IEEE80211_S_INIT: 3948 on = 0; 3949 break; 3950 case IEEE80211_S_RUN: 3951 if (led->l_act == BWI_LED_ACT_11G && 3952 ic->ic_curmode != IEEE80211_MODE_11G) 3953 on = 0; 3954 break; 3955 default: 3956 if (led->l_act == BWI_LED_ACT_ASSOC) 3957 on = 0; 3958 break; 3959 } 3960 break; 3961 } 3962 3963 val = bwi_led_onoff(led, val, on); 3964 } 3965 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3966 } 3967 static void 3968 bwi_led_event(struct bwi_softc *sc, int event) 3969 { 3970 struct bwi_led *led = sc->sc_blink_led; 3971 int rate; 3972 3973 if (event == BWI_LED_EVENT_POLL) { 3974 if ((led->l_flags & BWI_LED_F_POLLABLE) == 0) 3975 return; 3976 if (ticks - sc->sc_led_ticks < sc->sc_led_idle) 3977 return; 3978 } 3979 3980 sc->sc_led_ticks = ticks; 3981 if (sc->sc_led_blinking) 3982 return; 3983 3984 switch (event) { 3985 case BWI_LED_EVENT_RX: 3986 rate = sc->sc_rx_rate; 3987 break; 3988 case BWI_LED_EVENT_TX: 3989 rate = sc->sc_tx_rate; 3990 break; 3991 case BWI_LED_EVENT_POLL: 3992 rate = 0; 3993 break; 3994 default: 3995 panic("unknown LED event %d\n", event); 3996 break; 3997 } 3998 bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur, 3999 bwi_led_duration[rate].off_dur); 4000 } 4001 4002 static void 4003 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur) 4004 { 4005 struct bwi_led *led = sc->sc_blink_led; 4006 uint16_t val; 4007 4008 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 4009 val = bwi_led_onoff(led, val, 1); 4010 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 4011 4012 if (led->l_flags & BWI_LED_F_SLOW) { 4013 BWI_LED_SLOWDOWN(on_dur); 4014 BWI_LED_SLOWDOWN(off_dur); 4015 } 4016 4017 sc->sc_led_blinking = 1; 4018 sc->sc_led_blink_offdur = off_dur; 4019 4020 callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc); 4021 } 4022 4023 static void 4024 bwi_led_blink_next(void *xsc) 4025 { 4026 struct bwi_softc *sc = xsc; 4027 uint16_t val; 4028 4029 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 4030 val = bwi_led_onoff(sc->sc_blink_led, val, 0); 4031 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 4032 4033 callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, 4034 bwi_led_blink_end, sc); 4035 } 4036 4037 static void 4038 bwi_led_blink_end(void *xsc) 4039 { 4040 struct bwi_softc *sc = xsc; 4041 sc->sc_led_blinking = 0; 4042 } 4043 4044 static void 4045 bwi_restart(void *xsc, int pending) 4046 { 4047 struct bwi_softc *sc = xsc; 4048 struct ifnet *ifp = sc->sc_ifp; 4049 4050 if_printf(ifp, "%s begin, help!\n", __func__); 4051 BWI_LOCK(sc); 4052 bwi_init_statechg(xsc, 0); 4053 #if 0 4054 bwi_start_locked(ifp); 4055 #endif 4056 BWI_UNLOCK(sc); 4057 } 4058