xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(void *);
106 static int	bwi_ioctl(struct ifnet *, u_long, caddr_t);
107 static void	bwi_start(struct ifnet *);
108 static void	bwi_start_locked(struct ifnet *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_set_channel(struct ieee80211com *);
114 static void	bwi_scan_end(struct ieee80211com *);
115 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
116 static void	bwi_updateslot(struct ifnet *);
117 static int	bwi_media_change(struct ifnet *);
118 
119 static void	bwi_calibrate(void *);
120 
121 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
122 static int	bwi_calc_noise(struct bwi_softc *);
123 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
124 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
125 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
126 
127 static void	bwi_restart(void *, int);
128 static void	bwi_init_statechg(struct bwi_softc *, int);
129 static void	bwi_stop(struct bwi_softc *, int);
130 static void	bwi_stop_locked(struct bwi_softc *, int);
131 static int	bwi_newbuf(struct bwi_softc *, int, int);
132 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
133 			  struct ieee80211_node *);
134 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
135 			  struct ieee80211_node *,
136 			  const struct ieee80211_bpf_params *);
137 
138 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
139 				       bus_addr_t, int, int);
140 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
141 
142 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
143 static int	bwi_init_rx_ring32(struct bwi_softc *);
144 static int	bwi_init_txstats32(struct bwi_softc *);
145 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
146 static void	bwi_free_rx_ring32(struct bwi_softc *);
147 static void	bwi_free_txstats32(struct bwi_softc *);
148 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
149 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
150 				    int, bus_addr_t, int);
151 static int	bwi_rxeof32(struct bwi_softc *);
152 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
153 static void	bwi_txeof_status32(struct bwi_softc *);
154 
155 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
156 static int	bwi_init_rx_ring64(struct bwi_softc *);
157 static int	bwi_init_txstats64(struct bwi_softc *);
158 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
159 static void	bwi_free_rx_ring64(struct bwi_softc *);
160 static void	bwi_free_txstats64(struct bwi_softc *);
161 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
162 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
163 				    int, bus_addr_t, int);
164 static int	bwi_rxeof64(struct bwi_softc *);
165 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
166 static void	bwi_txeof_status64(struct bwi_softc *);
167 
168 static int	bwi_rxeof(struct bwi_softc *, int);
169 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
170 static void	bwi_txeof(struct bwi_softc *);
171 static void	bwi_txeof_status(struct bwi_softc *, int);
172 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
173 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
174 
175 static int	bwi_dma_alloc(struct bwi_softc *);
176 static void	bwi_dma_free(struct bwi_softc *);
177 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
178 				   struct bwi_ring_data *, bus_size_t,
179 				   uint32_t);
180 static int	bwi_dma_mbuf_create(struct bwi_softc *);
181 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
182 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
183 static void	bwi_dma_txstats_free(struct bwi_softc *);
184 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
185 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
186 				 bus_size_t, int);
187 
188 static void	bwi_power_on(struct bwi_softc *, int);
189 static int	bwi_power_off(struct bwi_softc *, int);
190 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
191 static int	bwi_set_clock_delay(struct bwi_softc *);
192 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
193 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
194 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
195 				    const uint8_t *);
196 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
197 
198 static void	bwi_get_card_flags(struct bwi_softc *);
199 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
200 
201 static int	bwi_bus_attach(struct bwi_softc *);
202 static int	bwi_bbp_attach(struct bwi_softc *);
203 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
204 static void	bwi_bbp_power_off(struct bwi_softc *);
205 
206 static const char *bwi_regwin_name(const struct bwi_regwin *);
207 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
208 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
209 static int	bwi_regwin_select(struct bwi_softc *, int);
210 
211 static void	bwi_led_attach(struct bwi_softc *);
212 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
213 static void	bwi_led_event(struct bwi_softc *, int);
214 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
215 static void	bwi_led_blink_next(void *);
216 static void	bwi_led_blink_end(void *);
217 
218 static const struct {
219 	uint16_t	did_min;
220 	uint16_t	did_max;
221 	uint16_t	bbp_id;
222 } bwi_bbpid_map[] = {
223 	{ 0x4301, 0x4301, 0x4301 },
224 	{ 0x4305, 0x4307, 0x4307 },
225 	{ 0x4402, 0x4403, 0x4402 },
226 	{ 0x4610, 0x4615, 0x4610 },
227 	{ 0x4710, 0x4715, 0x4710 },
228 	{ 0x4720, 0x4725, 0x4309 }
229 };
230 
231 static const struct {
232 	uint16_t	bbp_id;
233 	int		nregwin;
234 } bwi_regwin_count[] = {
235 	{ 0x4301, 5 },
236 	{ 0x4306, 6 },
237 	{ 0x4307, 5 },
238 	{ 0x4310, 8 },
239 	{ 0x4401, 3 },
240 	{ 0x4402, 3 },
241 	{ 0x4610, 9 },
242 	{ 0x4704, 9 },
243 	{ 0x4710, 9 },
244 	{ 0x5365, 7 }
245 };
246 
247 #define CLKSRC(src) 				\
248 [BWI_CLKSRC_ ## src] = {			\
249 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
250 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
251 }
252 
253 static const struct {
254 	u_int	freq_min;
255 	u_int	freq_max;
256 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
257 	CLKSRC(LP_OSC),
258 	CLKSRC(CS_OSC),
259 	CLKSRC(PCI)
260 };
261 
262 #undef CLKSRC
263 
264 #define VENDOR_LED_ACT(vendor)				\
265 {							\
266 	.vid = PCI_VENDOR_##vendor,			\
267 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
268 }
269 
270 static const struct {
271 #define	PCI_VENDOR_COMPAQ	0x0e11
272 #define	PCI_VENDOR_LINKSYS	0x1737
273 	uint16_t	vid;
274 	uint8_t		led_act[BWI_LED_MAX];
275 } bwi_vendor_led_act[] = {
276 	VENDOR_LED_ACT(COMPAQ),
277 	VENDOR_LED_ACT(LINKSYS)
278 #undef PCI_VENDOR_LINKSYS
279 #undef PCI_VENDOR_COMPAQ
280 };
281 
282 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
283 	{ BWI_VENDOR_LED_ACT_DEFAULT };
284 
285 #undef VENDOR_LED_ACT
286 
287 static const struct {
288 	int	on_dur;
289 	int	off_dur;
290 } bwi_led_duration[109] = {
291 	[0]	= { 400, 100 },
292 	[2]	= { 150, 75 },
293 	[4]	= { 90, 45 },
294 	[11]	= { 66, 34 },
295 	[12]	= { 53, 26 },
296 	[18]	= { 42, 21 },
297 	[22]	= { 35, 17 },
298 	[24]	= { 32, 16 },
299 	[36]	= { 21, 10 },
300 	[48]	= { 16, 8 },
301 	[72]	= { 11, 5 },
302 	[96]	= { 9, 4 },
303 	[108]	= { 7, 3 }
304 };
305 
306 #ifdef BWI_DEBUG
307 #ifdef BWI_DEBUG_VERBOSE
308 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
309 #else
310 static uint32_t	bwi_debug;
311 #endif
312 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
313 #endif	/* BWI_DEBUG */
314 
315 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
316 
317 uint16_t
318 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
319 {
320 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
321 }
322 
323 static __inline void
324 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
325 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
326 		 int tx)
327 {
328 	struct bwi_desc32 *desc = &desc_array[desc_idx];
329 	uint32_t ctrl, addr, addr_hi, addr_lo;
330 
331 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
332 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
333 
334 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
335 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
336 
337 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
338 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
339 	if (desc_idx == ndesc - 1)
340 		ctrl |= BWI_DESC32_C_EOR;
341 	if (tx) {
342 		/* XXX */
343 		ctrl |= BWI_DESC32_C_FRAME_START |
344 			BWI_DESC32_C_FRAME_END |
345 			BWI_DESC32_C_INTR;
346 	}
347 
348 	desc->addr = htole32(addr);
349 	desc->ctrl = htole32(ctrl);
350 }
351 
352 int
353 bwi_attach(struct bwi_softc *sc)
354 {
355 	struct ieee80211com *ic;
356 	device_t dev = sc->sc_dev;
357 	struct ifnet *ifp;
358 	struct bwi_mac *mac;
359 	struct bwi_phy *phy;
360 	int i, error;
361 	uint8_t bands;
362 	uint8_t macaddr[IEEE80211_ADDR_LEN];
363 
364 	BWI_LOCK_INIT(sc);
365 
366 	/*
367 	 * Initialize taskq and various tasks
368 	 */
369 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
370 		taskqueue_thread_enqueue, &sc->sc_tq);
371 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
372 		device_get_nameunit(dev));
373 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
374 
375 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
376 
377 	/*
378 	 * Initialize sysctl variables
379 	 */
380 	sc->sc_fw_version = BWI_FW_VERSION3;
381 	sc->sc_led_idle = (2350 * hz) / 1000;
382 	sc->sc_led_blink = 1;
383 	sc->sc_txpwr_calib = 1;
384 #ifdef BWI_DEBUG
385 	sc->sc_debug = bwi_debug;
386 #endif
387 	bwi_power_on(sc, 1);
388 
389 	error = bwi_bbp_attach(sc);
390 	if (error)
391 		goto fail;
392 
393 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
394 	if (error)
395 		goto fail;
396 
397 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
398 		error = bwi_set_clock_delay(sc);
399 		if (error)
400 			goto fail;
401 
402 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
403 		if (error)
404 			goto fail;
405 
406 		error = bwi_get_pwron_delay(sc);
407 		if (error)
408 			goto fail;
409 	}
410 
411 	error = bwi_bus_attach(sc);
412 	if (error)
413 		goto fail;
414 
415 	bwi_get_card_flags(sc);
416 
417 	bwi_led_attach(sc);
418 
419 	for (i = 0; i < sc->sc_nmac; ++i) {
420 		struct bwi_regwin *old;
421 
422 		mac = &sc->sc_mac[i];
423 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
424 		if (error)
425 			goto fail;
426 
427 		error = bwi_mac_lateattach(mac);
428 		if (error)
429 			goto fail;
430 
431 		error = bwi_regwin_switch(sc, old, NULL);
432 		if (error)
433 			goto fail;
434 	}
435 
436 	/*
437 	 * XXX First MAC is known to exist
438 	 * TODO2
439 	 */
440 	mac = &sc->sc_mac[0];
441 	phy = &mac->mac_phy;
442 
443 	bwi_bbp_power_off(sc);
444 
445 	error = bwi_dma_alloc(sc);
446 	if (error)
447 		goto fail;
448 
449 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
450 	if (ifp == NULL) {
451 		device_printf(dev, "can not if_alloc()\n");
452 		error = ENOSPC;
453 		goto fail;
454 	}
455 	ic = ifp->if_l2com;
456 
457 	/* set these up early for if_printf use */
458 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
459 
460 	ifp->if_softc = sc;
461 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
462 	ifp->if_init = bwi_init;
463 	ifp->if_ioctl = bwi_ioctl;
464 	ifp->if_start = bwi_start;
465 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
466 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
467 	IFQ_SET_READY(&ifp->if_snd);
468 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
469 
470 	/*
471 	 * Setup ratesets, phytype, channels and get MAC address
472 	 */
473 	bands = 0;
474 	if (phy->phy_mode == IEEE80211_MODE_11B ||
475 	    phy->phy_mode == IEEE80211_MODE_11G) {
476 		setbit(&bands, IEEE80211_MODE_11B);
477 		if (phy->phy_mode == IEEE80211_MODE_11B) {
478 			ic->ic_phytype = IEEE80211_T_DS;
479 		} else {
480 			ic->ic_phytype = IEEE80211_T_OFDM;
481 			setbit(&bands, IEEE80211_MODE_11G);
482 		}
483 
484 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, macaddr);
485 		if (IEEE80211_IS_MULTICAST(macaddr)) {
486 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, macaddr);
487 			if (IEEE80211_IS_MULTICAST(macaddr)) {
488 				device_printf(dev,
489 				    "invalid MAC address: %6D\n",
490 				    macaddr, ":");
491 			}
492 		}
493 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
494 		/* TODO:11A */
495 		setbit(&bands, IEEE80211_MODE_11A);
496 		error = ENXIO;
497 		goto fail;
498 	} else {
499 		panic("unknown phymode %d\n", phy->phy_mode);
500 	}
501 
502 	/* Get locale */
503 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
504 				   BWI_SPROM_CARD_INFO_LOCALE);
505 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
506 	/* XXX use locale */
507 	ieee80211_init_channels(ic, NULL, &bands);
508 
509 	ic->ic_ifp = ifp;
510 	ic->ic_caps = IEEE80211_C_STA |
511 		      IEEE80211_C_SHSLOT |
512 		      IEEE80211_C_SHPREAMBLE |
513 		      IEEE80211_C_WPA |
514 		      IEEE80211_C_BGSCAN |
515 		      IEEE80211_C_MONITOR;
516 	ic->ic_opmode = IEEE80211_M_STA;
517 	ieee80211_ifattach(ic, macaddr);
518 
519 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
520 
521 	/* override default methods */
522 	ic->ic_vap_create = bwi_vap_create;
523 	ic->ic_vap_delete = bwi_vap_delete;
524 	ic->ic_raw_xmit = bwi_raw_xmit;
525 	ic->ic_updateslot = bwi_updateslot;
526 	ic->ic_scan_start = bwi_scan_start;
527 	ic->ic_scan_end = bwi_scan_end;
528 	ic->ic_set_channel = bwi_set_channel;
529 
530 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
531 
532 	ieee80211_radiotap_attach(ic,
533 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
534 		BWI_TX_RADIOTAP_PRESENT,
535 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
536 		BWI_RX_RADIOTAP_PRESENT);
537 
538 	/*
539 	 * Add sysctl nodes
540 	 */
541 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
542 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
543 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
544 		        "Firmware version");
545 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
546 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
547 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
548 		        "# ticks before LED enters idle state");
549 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
550 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
551 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
552 		       "Allow LED to blink");
553 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
554 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
555 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
556 		       "Enable software TX power calibration");
557 #ifdef BWI_DEBUG
558 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
559 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
560 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
561 #endif
562 	if (bootverbose)
563 		ieee80211_announce(ic);
564 
565 	return (0);
566 fail:
567 	BWI_LOCK_DESTROY(sc);
568 	return (error);
569 }
570 
571 int
572 bwi_detach(struct bwi_softc *sc)
573 {
574 	struct ifnet *ifp = sc->sc_ifp;
575 	struct ieee80211com *ic = ifp->if_l2com;
576 	int i;
577 
578 	bwi_stop(sc, 1);
579 	callout_drain(&sc->sc_led_blink_ch);
580 	callout_drain(&sc->sc_calib_ch);
581 	callout_drain(&sc->sc_watchdog_timer);
582 	ieee80211_ifdetach(ic);
583 
584 	for (i = 0; i < sc->sc_nmac; ++i)
585 		bwi_mac_detach(&sc->sc_mac[i]);
586 	bwi_dma_free(sc);
587 	if_free(ifp);
588 	taskqueue_free(sc->sc_tq);
589 
590 	BWI_LOCK_DESTROY(sc);
591 
592 	return (0);
593 }
594 
595 static struct ieee80211vap *
596 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
597     enum ieee80211_opmode opmode, int flags,
598     const uint8_t bssid[IEEE80211_ADDR_LEN],
599     const uint8_t mac[IEEE80211_ADDR_LEN])
600 {
601 	struct bwi_vap *bvp;
602 	struct ieee80211vap *vap;
603 
604 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
605 		return NULL;
606 	bvp = (struct bwi_vap *) malloc(sizeof(struct bwi_vap),
607 	    M_80211_VAP, M_WAITOK | M_ZERO);
608 	if (bvp == NULL)
609 		return NULL;
610 	vap = &bvp->bv_vap;
611 	/* enable s/w bmiss handling for sta mode */
612 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
613 	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
614 
615 	/* override default methods */
616 	bvp->bv_newstate = vap->iv_newstate;
617 	vap->iv_newstate = bwi_newstate;
618 #if 0
619 	vap->iv_update_beacon = bwi_beacon_update;
620 #endif
621 	ieee80211_ratectl_init(vap);
622 
623 	/* complete setup */
624 	ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status);
625 	ic->ic_opmode = opmode;
626 	return vap;
627 }
628 
629 static void
630 bwi_vap_delete(struct ieee80211vap *vap)
631 {
632 	struct bwi_vap *bvp = BWI_VAP(vap);
633 
634 	ieee80211_ratectl_deinit(vap);
635 	ieee80211_vap_detach(vap);
636 	free(bvp, M_80211_VAP);
637 }
638 
639 void
640 bwi_suspend(struct bwi_softc *sc)
641 {
642 	bwi_stop(sc, 1);
643 }
644 
645 void
646 bwi_resume(struct bwi_softc *sc)
647 {
648 	struct ifnet *ifp = sc->sc_ifp;
649 
650 	if (ifp->if_flags & IFF_UP)
651 		bwi_init(sc);
652 }
653 
654 int
655 bwi_shutdown(struct bwi_softc *sc)
656 {
657 	bwi_stop(sc, 1);
658 	return 0;
659 }
660 
661 static void
662 bwi_power_on(struct bwi_softc *sc, int with_pll)
663 {
664 	uint32_t gpio_in, gpio_out, gpio_en;
665 	uint16_t status;
666 
667 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
668 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
669 		goto back;
670 
671 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
672 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
673 
674 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
675 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
676 	if (with_pll) {
677 		/* Turn off PLL first */
678 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
679 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
680 	}
681 
682 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
683 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
684 	DELAY(1000);
685 
686 	if (with_pll) {
687 		/* Turn on PLL */
688 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
689 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
690 		DELAY(5000);
691 	}
692 
693 back:
694 	/* Clear "Signaled Target Abort" */
695 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
696 	status &= ~PCIM_STATUS_STABORT;
697 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
698 }
699 
700 static int
701 bwi_power_off(struct bwi_softc *sc, int with_pll)
702 {
703 	uint32_t gpio_out, gpio_en;
704 
705 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
706 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
707 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
708 
709 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
710 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
711 	if (with_pll) {
712 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
713 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
714 	}
715 
716 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
717 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
718 	return 0;
719 }
720 
721 int
722 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
723 		  struct bwi_regwin **old_rw)
724 {
725 	int error;
726 
727 	if (old_rw != NULL)
728 		*old_rw = NULL;
729 
730 	if (!BWI_REGWIN_EXIST(rw))
731 		return EINVAL;
732 
733 	if (sc->sc_cur_regwin != rw) {
734 		error = bwi_regwin_select(sc, rw->rw_id);
735 		if (error) {
736 			device_printf(sc->sc_dev, "can't select regwin %d\n",
737 				  rw->rw_id);
738 			return error;
739 		}
740 	}
741 
742 	if (old_rw != NULL)
743 		*old_rw = sc->sc_cur_regwin;
744 	sc->sc_cur_regwin = rw;
745 	return 0;
746 }
747 
748 static int
749 bwi_regwin_select(struct bwi_softc *sc, int id)
750 {
751 	uint32_t win = BWI_PCIM_REGWIN(id);
752 	int i;
753 
754 #define RETRY_MAX	50
755 	for (i = 0; i < RETRY_MAX; ++i) {
756 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
757 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
758 			return 0;
759 		DELAY(10);
760 	}
761 #undef RETRY_MAX
762 
763 	return ENXIO;
764 }
765 
766 static void
767 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
768 {
769 	uint32_t val;
770 
771 	val = CSR_READ_4(sc, BWI_ID_HI);
772 	*type = BWI_ID_HI_REGWIN_TYPE(val);
773 	*rev = BWI_ID_HI_REGWIN_REV(val);
774 
775 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
776 		"vendor 0x%04x\n", *type, *rev,
777 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
778 }
779 
780 static int
781 bwi_bbp_attach(struct bwi_softc *sc)
782 {
783 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
784 	uint16_t bbp_id, rw_type;
785 	uint8_t rw_rev;
786 	uint32_t info;
787 	int error, nregwin, i;
788 
789 	/*
790 	 * Get 0th regwin information
791 	 * NOTE: 0th regwin should exist
792 	 */
793 	error = bwi_regwin_select(sc, 0);
794 	if (error) {
795 		device_printf(sc->sc_dev, "can't select regwin 0\n");
796 		return error;
797 	}
798 	bwi_regwin_info(sc, &rw_type, &rw_rev);
799 
800 	/*
801 	 * Find out BBP id
802 	 */
803 	bbp_id = 0;
804 	info = 0;
805 	if (rw_type == BWI_REGWIN_T_COM) {
806 		info = CSR_READ_4(sc, BWI_INFO);
807 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
808 
809 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
810 
811 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
812 	} else {
813 		for (i = 0; i < N(bwi_bbpid_map); ++i) {
814 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
815 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
816 				bbp_id = bwi_bbpid_map[i].bbp_id;
817 				break;
818 			}
819 		}
820 		if (bbp_id == 0) {
821 			device_printf(sc->sc_dev, "no BBP id for device id "
822 				      "0x%04x\n", sc->sc_pci_did);
823 			return ENXIO;
824 		}
825 
826 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
827 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
828 	}
829 
830 	/*
831 	 * Find out number of regwins
832 	 */
833 	nregwin = 0;
834 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
835 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
836 	} else {
837 		for (i = 0; i < N(bwi_regwin_count); ++i) {
838 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
839 				nregwin = bwi_regwin_count[i].nregwin;
840 				break;
841 			}
842 		}
843 		if (nregwin == 0) {
844 			device_printf(sc->sc_dev, "no number of win for "
845 				      "BBP id 0x%04x\n", bbp_id);
846 			return ENXIO;
847 		}
848 	}
849 
850 	/* Record BBP id/rev for later using */
851 	sc->sc_bbp_id = bbp_id;
852 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
853 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
854 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
855 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
856 
857 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
858 		nregwin, sc->sc_cap);
859 
860 	/*
861 	 * Create rest of the regwins
862 	 */
863 
864 	/* Don't re-create common regwin, if it is already created */
865 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
866 
867 	for (; i < nregwin; ++i) {
868 		/*
869 		 * Get regwin information
870 		 */
871 		error = bwi_regwin_select(sc, i);
872 		if (error) {
873 			device_printf(sc->sc_dev,
874 				      "can't select regwin %d\n", i);
875 			return error;
876 		}
877 		bwi_regwin_info(sc, &rw_type, &rw_rev);
878 
879 		/*
880 		 * Try attach:
881 		 * 1) Bus (PCI/PCIE) regwin
882 		 * 2) MAC regwin
883 		 * Ignore rest types of regwin
884 		 */
885 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
886 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
887 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
888 				device_printf(sc->sc_dev,
889 					      "bus regwin already exists\n");
890 			} else {
891 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
892 						  rw_type, rw_rev);
893 			}
894 		} else if (rw_type == BWI_REGWIN_T_MAC) {
895 			/* XXX ignore return value */
896 			bwi_mac_attach(sc, i, rw_rev);
897 		}
898 	}
899 
900 	/* At least one MAC shold exist */
901 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
902 		device_printf(sc->sc_dev, "no MAC was found\n");
903 		return ENXIO;
904 	}
905 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
906 
907 	/* Bus regwin must exist */
908 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
909 		device_printf(sc->sc_dev, "no bus regwin was found\n");
910 		return ENXIO;
911 	}
912 
913 	/* Start with first MAC */
914 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
915 	if (error)
916 		return error;
917 
918 	return 0;
919 #undef N
920 }
921 
922 int
923 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
924 {
925 	struct bwi_regwin *old, *bus;
926 	uint32_t val;
927 	int error;
928 
929 	bus = &sc->sc_bus_regwin;
930 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
931 
932 	/*
933 	 * Tell bus to generate requested interrupts
934 	 */
935 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
936 		/*
937 		 * NOTE: Read BWI_FLAGS from MAC regwin
938 		 */
939 		val = CSR_READ_4(sc, BWI_FLAGS);
940 
941 		error = bwi_regwin_switch(sc, bus, &old);
942 		if (error)
943 			return error;
944 
945 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
946 	} else {
947 		uint32_t mac_mask;
948 
949 		mac_mask = 1 << mac->mac_id;
950 
951 		error = bwi_regwin_switch(sc, bus, &old);
952 		if (error)
953 			return error;
954 
955 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
956 		val |= mac_mask << 8;
957 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
958 	}
959 
960 	if (sc->sc_flags & BWI_F_BUS_INITED)
961 		goto back;
962 
963 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
964 		/*
965 		 * Enable prefetch and burst
966 		 */
967 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
968 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
969 
970 		if (bus->rw_rev < 5) {
971 			struct bwi_regwin *com = &sc->sc_com_regwin;
972 
973 			/*
974 			 * Configure timeouts for bus operation
975 			 */
976 
977 			/*
978 			 * Set service timeout and request timeout
979 			 */
980 			CSR_SETBITS_4(sc, BWI_CONF_LO,
981 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
982 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
983 
984 			/*
985 			 * If there is common regwin, we switch to that regwin
986 			 * and switch back to bus regwin once we have done.
987 			 */
988 			if (BWI_REGWIN_EXIST(com)) {
989 				error = bwi_regwin_switch(sc, com, NULL);
990 				if (error)
991 					return error;
992 			}
993 
994 			/* Let bus know what we have changed */
995 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
996 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
997 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
998 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
999 
1000 			if (BWI_REGWIN_EXIST(com)) {
1001 				error = bwi_regwin_switch(sc, bus, NULL);
1002 				if (error)
1003 					return error;
1004 			}
1005 		} else if (bus->rw_rev >= 11) {
1006 			/*
1007 			 * Enable memory read multiple
1008 			 */
1009 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
1010 		}
1011 	} else {
1012 		/* TODO:PCIE */
1013 	}
1014 
1015 	sc->sc_flags |= BWI_F_BUS_INITED;
1016 back:
1017 	return bwi_regwin_switch(sc, old, NULL);
1018 }
1019 
1020 static void
1021 bwi_get_card_flags(struct bwi_softc *sc)
1022 {
1023 #define	PCI_VENDOR_APPLE 0x106b
1024 #define	PCI_VENDOR_DELL  0x1028
1025 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1026 	if (sc->sc_card_flags == 0xffff)
1027 		sc->sc_card_flags = 0;
1028 
1029 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1030 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1031 	    sc->sc_pci_revid == 0x74)
1032 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1033 
1034 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1035 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1036 	    sc->sc_pci_revid > 0x40)
1037 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1038 
1039 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1040 #undef PCI_VENDOR_DELL
1041 #undef PCI_VENDOR_APPLE
1042 }
1043 
1044 static void
1045 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1046 {
1047 	int i;
1048 
1049 	for (i = 0; i < 3; ++i) {
1050 		*((uint16_t *)eaddr + i) =
1051 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1052 	}
1053 }
1054 
1055 static void
1056 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1057 {
1058 	struct bwi_regwin *com;
1059 	uint32_t val;
1060 	u_int div;
1061 	int src;
1062 
1063 	bzero(freq, sizeof(*freq));
1064 	com = &sc->sc_com_regwin;
1065 
1066 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1067 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1068 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1069 
1070 	/*
1071 	 * Calculate clock frequency
1072 	 */
1073 	src = -1;
1074 	div = 0;
1075 	if (com->rw_rev < 6) {
1076 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1077 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1078 			src = BWI_CLKSRC_PCI;
1079 			div = 64;
1080 		} else {
1081 			src = BWI_CLKSRC_CS_OSC;
1082 			div = 32;
1083 		}
1084 	} else if (com->rw_rev < 10) {
1085 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1086 
1087 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1088 		if (src == BWI_CLKSRC_LP_OSC) {
1089 			div = 1;
1090 		} else {
1091 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1092 
1093 			/* Unknown source */
1094 			if (src >= BWI_CLKSRC_MAX)
1095 				src = BWI_CLKSRC_CS_OSC;
1096 		}
1097 	} else {
1098 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1099 
1100 		src = BWI_CLKSRC_CS_OSC;
1101 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1102 	}
1103 
1104 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1105 	KASSERT(div != 0, ("div zero"));
1106 
1107 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1108 		src == BWI_CLKSRC_PCI ? "PCI" :
1109 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1110 
1111 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1112 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1113 
1114 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1115 		freq->clkfreq_min, freq->clkfreq_max);
1116 }
1117 
1118 static int
1119 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1120 {
1121 	struct bwi_regwin *old, *com;
1122 	uint32_t clk_ctrl, clk_src;
1123 	int error, pwr_off = 0;
1124 
1125 	com = &sc->sc_com_regwin;
1126 	if (!BWI_REGWIN_EXIST(com))
1127 		return 0;
1128 
1129 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1130 		return 0;
1131 
1132 	/*
1133 	 * For common regwin whose rev is [6, 10), the chip
1134 	 * must be capable to change clock mode.
1135 	 */
1136 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1137 		return 0;
1138 
1139 	error = bwi_regwin_switch(sc, com, &old);
1140 	if (error)
1141 		return error;
1142 
1143 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1144 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1145 
1146 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1147 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1148 
1149 	switch (clk_mode) {
1150 	case BWI_CLOCK_MODE_FAST:
1151 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1152 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1153 		break;
1154 	case BWI_CLOCK_MODE_SLOW:
1155 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1156 		break;
1157 	case BWI_CLOCK_MODE_DYN:
1158 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1159 			      BWI_CLOCK_CTRL_IGNPLL |
1160 			      BWI_CLOCK_CTRL_NODYN);
1161 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1162 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1163 			pwr_off = 1;
1164 		}
1165 		break;
1166 	}
1167 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1168 
1169 	if (pwr_off)
1170 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1171 
1172 	return bwi_regwin_switch(sc, old, NULL);
1173 }
1174 
1175 static int
1176 bwi_set_clock_delay(struct bwi_softc *sc)
1177 {
1178 	struct bwi_regwin *old, *com;
1179 	int error;
1180 
1181 	com = &sc->sc_com_regwin;
1182 	if (!BWI_REGWIN_EXIST(com))
1183 		return 0;
1184 
1185 	error = bwi_regwin_switch(sc, com, &old);
1186 	if (error)
1187 		return error;
1188 
1189 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1190 		if (sc->sc_bbp_rev == 0)
1191 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1192 		else if (sc->sc_bbp_rev == 1)
1193 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1194 	}
1195 
1196 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1197 		if (com->rw_rev >= 10) {
1198 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1199 		} else {
1200 			struct bwi_clock_freq freq;
1201 
1202 			bwi_get_clock_freq(sc, &freq);
1203 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1204 				howmany(freq.clkfreq_max * 150, 1000000));
1205 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1206 				howmany(freq.clkfreq_max * 15, 1000000));
1207 		}
1208 	}
1209 
1210 	return bwi_regwin_switch(sc, old, NULL);
1211 }
1212 
1213 static void
1214 bwi_init(void *xsc)
1215 {
1216 	struct bwi_softc *sc = xsc;
1217 	struct ifnet *ifp = sc->sc_ifp;
1218 	struct ieee80211com *ic = ifp->if_l2com;
1219 
1220 	BWI_LOCK(sc);
1221 	bwi_init_statechg(sc, 1);
1222 	BWI_UNLOCK(sc);
1223 
1224 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1225 		ieee80211_start_all(ic);		/* start all vap's */
1226 }
1227 
1228 static void
1229 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1230 {
1231 	struct ifnet *ifp = sc->sc_ifp;
1232 	struct bwi_mac *mac;
1233 	int error;
1234 
1235 	bwi_stop_locked(sc, statechg);
1236 
1237 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1238 
1239 	/* TODO: 2 MAC */
1240 
1241 	mac = &sc->sc_mac[0];
1242 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1243 	if (error) {
1244 		if_printf(ifp, "%s: error %d on regwin switch\n",
1245 		    __func__, error);
1246 		goto bad;
1247 	}
1248 	error = bwi_mac_init(mac);
1249 	if (error) {
1250 		if_printf(ifp, "%s: error %d on MAC init\n", __func__, error);
1251 		goto bad;
1252 	}
1253 
1254 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1255 
1256 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1257 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, IF_LLADDR(ifp));
1258 
1259 	bwi_mac_reset_hwkeys(mac);
1260 
1261 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1262 		int i;
1263 
1264 #define NRETRY	1000
1265 		/*
1266 		 * Drain any possible pending TX status
1267 		 */
1268 		for (i = 0; i < NRETRY; ++i) {
1269 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1270 			     BWI_TXSTATUS0_VALID) == 0)
1271 				break;
1272 			CSR_READ_4(sc, BWI_TXSTATUS1);
1273 		}
1274 		if (i == NRETRY)
1275 			if_printf(ifp, "%s: can't drain TX status\n", __func__);
1276 #undef NRETRY
1277 	}
1278 
1279 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1280 		bwi_mac_updateslot(mac, 1);
1281 
1282 	/* Start MAC */
1283 	error = bwi_mac_start(mac);
1284 	if (error) {
1285 		if_printf(ifp, "%s: error %d starting MAC\n", __func__, error);
1286 		goto bad;
1287 	}
1288 
1289 	/* Clear stop flag before enabling interrupt */
1290 	sc->sc_flags &= ~BWI_F_STOP;
1291 
1292 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1293 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1294 
1295 	/* Enable intrs */
1296 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1297 	return;
1298 bad:
1299 	bwi_stop_locked(sc, 1);
1300 }
1301 
1302 static int
1303 bwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1304 {
1305 #define	IS_RUNNING(ifp) \
1306 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1307 	struct bwi_softc *sc = ifp->if_softc;
1308 	struct ieee80211com *ic = ifp->if_l2com;
1309 	struct ifreq *ifr = (struct ifreq *) data;
1310 	int error = 0, startall = 0;
1311 
1312 	switch (cmd) {
1313 	case SIOCSIFFLAGS:
1314 		BWI_LOCK(sc);
1315 		if (IS_RUNNING(ifp)) {
1316 			struct bwi_mac *mac;
1317 			int promisc = -1;
1318 
1319 			KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1320 			    ("current regwin type %d",
1321 			    sc->sc_cur_regwin->rw_type));
1322 			mac = (struct bwi_mac *)sc->sc_cur_regwin;
1323 
1324 			if ((ifp->if_flags & IFF_PROMISC) &&
1325 			    (sc->sc_flags & BWI_F_PROMISC) == 0) {
1326 				promisc = 1;
1327 				sc->sc_flags |= BWI_F_PROMISC;
1328 			} else if ((ifp->if_flags & IFF_PROMISC) == 0 &&
1329 				   (sc->sc_flags & BWI_F_PROMISC)) {
1330 				promisc = 0;
1331 				sc->sc_flags &= ~BWI_F_PROMISC;
1332 			}
1333 
1334 			if (promisc >= 0)
1335 				bwi_mac_set_promisc(mac, promisc);
1336 		}
1337 
1338 		if (ifp->if_flags & IFF_UP) {
1339 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1340 				bwi_init_statechg(sc, 1);
1341 				startall = 1;
1342 			}
1343 		} else {
1344 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1345 				bwi_stop_locked(sc, 1);
1346 		}
1347 		BWI_UNLOCK(sc);
1348 		if (startall)
1349 			ieee80211_start_all(ic);
1350 		break;
1351 	case SIOCGIFMEDIA:
1352 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1353 		break;
1354 	case SIOCGIFADDR:
1355 		error = ether_ioctl(ifp, cmd, data);
1356 		break;
1357 	default:
1358 		error = EINVAL;
1359 		break;
1360 	}
1361 	return error;
1362 #undef IS_RUNNING
1363 }
1364 
1365 static void
1366 bwi_start(struct ifnet *ifp)
1367 {
1368 	struct bwi_softc *sc = ifp->if_softc;
1369 
1370 	BWI_LOCK(sc);
1371 	bwi_start_locked(ifp);
1372 	BWI_UNLOCK(sc);
1373 }
1374 
1375 static void
1376 bwi_start_locked(struct ifnet *ifp)
1377 {
1378 	struct bwi_softc *sc = ifp->if_softc;
1379 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1380 	struct ieee80211_frame *wh;
1381 	struct ieee80211_node *ni;
1382 	struct ieee80211_key *k;
1383 	struct mbuf *m;
1384 	int trans, idx;
1385 
1386 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1387 		return;
1388 
1389 	trans = 0;
1390 	idx = tbd->tbd_idx;
1391 
1392 	while (tbd->tbd_buf[idx].tb_mbuf == NULL) {
1393 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1394 		if (m == NULL)
1395 			break;
1396 
1397 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1398 		wh = mtod(m, struct ieee80211_frame *);
1399 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1400 			k = ieee80211_crypto_encap(ni, m);
1401 			if (k == NULL) {
1402 				ieee80211_free_node(ni);
1403 				m_freem(m);
1404 				ifp->if_oerrors++;
1405 				continue;
1406 			}
1407 		}
1408 		wh = NULL;	/* Catch any invalid use */
1409 
1410 		if (bwi_encap(sc, idx, m, ni) != 0) {
1411 			/* 'm' is freed in bwi_encap() if we reach here */
1412 			if (ni != NULL)
1413 				ieee80211_free_node(ni);
1414 			ifp->if_oerrors++;
1415 			continue;
1416 		}
1417 
1418 		trans = 1;
1419 		tbd->tbd_used++;
1420 		idx = (idx + 1) % BWI_TX_NDESC;
1421 
1422 		ifp->if_opackets++;
1423 
1424 		if (tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC) {
1425 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1426 			break;
1427 		}
1428 	}
1429 	tbd->tbd_idx = idx;
1430 
1431 	if (trans)
1432 		sc->sc_tx_timer = 5;
1433 }
1434 
1435 static int
1436 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1437 	const struct ieee80211_bpf_params *params)
1438 {
1439 	struct ieee80211com *ic = ni->ni_ic;
1440 	struct ifnet *ifp = ic->ic_ifp;
1441 	struct bwi_softc *sc = ifp->if_softc;
1442 	/* XXX wme? */
1443 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1444 	int idx, error;
1445 
1446 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1447 		ieee80211_free_node(ni);
1448 		m_freem(m);
1449 		return ENETDOWN;
1450 	}
1451 
1452 	BWI_LOCK(sc);
1453 	idx = tbd->tbd_idx;
1454 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1455 	if (params == NULL) {
1456 		/*
1457 		 * Legacy path; interpret frame contents to decide
1458 		 * precisely how to send the frame.
1459 		 */
1460 		error = bwi_encap(sc, idx, m, ni);
1461 	} else {
1462 		/*
1463 		 * Caller supplied explicit parameters to use in
1464 		 * sending the frame.
1465 		 */
1466 		error = bwi_encap_raw(sc, idx, m, ni, params);
1467 	}
1468 	if (error == 0) {
1469 		ifp->if_opackets++;
1470 		if (++tbd->tbd_used + BWI_TX_NSPRDESC >= BWI_TX_NDESC)
1471 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1472 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1473 		sc->sc_tx_timer = 5;
1474 	} else {
1475 		/* NB: m is reclaimed on encap failure */
1476 		ieee80211_free_node(ni);
1477 		ifp->if_oerrors++;
1478 	}
1479 	BWI_UNLOCK(sc);
1480 	return error;
1481 }
1482 
1483 static void
1484 bwi_watchdog(void *arg)
1485 {
1486 	struct bwi_softc *sc;
1487 	struct ifnet *ifp;
1488 
1489 	sc = arg;
1490 	ifp = sc->sc_ifp;
1491 	BWI_ASSERT_LOCKED(sc);
1492 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1493 		if_printf(ifp, "watchdog timeout\n");
1494 		ifp->if_oerrors++;
1495 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1496 	}
1497 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1498 }
1499 
1500 static void
1501 bwi_stop(struct bwi_softc *sc, int statechg)
1502 {
1503 	BWI_LOCK(sc);
1504 	bwi_stop_locked(sc, statechg);
1505 	BWI_UNLOCK(sc);
1506 }
1507 
1508 static void
1509 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1510 {
1511 	struct ifnet *ifp = sc->sc_ifp;
1512 	struct bwi_mac *mac;
1513 	int i, error, pwr_off = 0;
1514 
1515 	BWI_ASSERT_LOCKED(sc);
1516 
1517 	callout_stop(&sc->sc_calib_ch);
1518 	callout_stop(&sc->sc_led_blink_ch);
1519 	sc->sc_led_blinking = 0;
1520 	sc->sc_flags |= BWI_F_STOP;
1521 
1522 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1523 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1524 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1525 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1526 
1527 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1528 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1529 		bwi_mac_stop(mac);
1530 	}
1531 
1532 	for (i = 0; i < sc->sc_nmac; ++i) {
1533 		struct bwi_regwin *old_rw;
1534 
1535 		mac = &sc->sc_mac[i];
1536 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1537 			continue;
1538 
1539 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1540 		if (error)
1541 			continue;
1542 
1543 		bwi_mac_shutdown(mac);
1544 		pwr_off = 1;
1545 
1546 		bwi_regwin_switch(sc, old_rw, NULL);
1547 	}
1548 
1549 	if (pwr_off)
1550 		bwi_bbp_power_off(sc);
1551 
1552 	sc->sc_tx_timer = 0;
1553 	callout_stop(&sc->sc_watchdog_timer);
1554 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1555 }
1556 
1557 void
1558 bwi_intr(void *xsc)
1559 {
1560 	struct bwi_softc *sc = xsc;
1561 	struct ifnet *ifp = sc->sc_ifp;
1562 	struct bwi_mac *mac;
1563 	uint32_t intr_status;
1564 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1565 	int i, txrx_error, tx = 0, rx_data = -1;
1566 
1567 	BWI_LOCK(sc);
1568 
1569 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1570 	    (sc->sc_flags & BWI_F_STOP)) {
1571 		BWI_UNLOCK(sc);
1572 		return;
1573 	}
1574 	/*
1575 	 * Get interrupt status
1576 	 */
1577 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1578 	if (intr_status == 0xffffffff) {	/* Not for us */
1579 		BWI_UNLOCK(sc);
1580 		return;
1581 	}
1582 
1583 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1584 
1585 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1586 	if (intr_status == 0) {		/* Nothing is interesting */
1587 		BWI_UNLOCK(sc);
1588 		return;
1589 	}
1590 
1591 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1592 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1593 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1594 
1595 	txrx_error = 0;
1596 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1597 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1598 		uint32_t mask;
1599 
1600 		if (BWI_TXRX_IS_RX(i))
1601 			mask = BWI_TXRX_RX_INTRS;
1602 		else
1603 			mask = BWI_TXRX_TX_INTRS;
1604 
1605 		txrx_intr_status[i] =
1606 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1607 
1608 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1609 			 i, txrx_intr_status[i]);
1610 
1611 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1612 			if_printf(ifp,
1613 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1614 			    __func__, i, txrx_intr_status[i]);
1615 			txrx_error = 1;
1616 		}
1617 	}
1618 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1619 
1620 	/*
1621 	 * Acknowledge interrupt
1622 	 */
1623 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1624 
1625 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1626 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1627 
1628 	/* Disable all interrupts */
1629 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1630 
1631 	/*
1632 	 * http://bcm-specs.sipsolutions.net/Interrupts
1633 	 * Says for this bit (0x800):
1634 	 * "Fatal Error
1635 	 *
1636 	 * We got this one while testing things when by accident the
1637 	 * template ram wasn't set to big endian when it should have
1638 	 * been after writing the initial values. It keeps on being
1639 	 * triggered, the only way to stop it seems to shut down the
1640 	 * chip."
1641 	 *
1642 	 * Suggesting that we should never get it and if we do we're not
1643 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1644 	 * it is valid only on mac version 5 and higher, but I couldn't
1645 	 * find a reference for that...  Since I see them from time to time
1646 	 * on my card, this suggests an error in the tx path still...
1647 	 */
1648 	if (intr_status & BWI_INTR_PHY_TXERR) {
1649 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1650 			if_printf(ifp, "%s: intr PHY TX error\n", __func__);
1651 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1652 			BWI_UNLOCK(sc);
1653 			return;
1654 		}
1655 	}
1656 
1657 	if (txrx_error) {
1658 		/* TODO: reset device */
1659 	}
1660 
1661 	if (intr_status & BWI_INTR_TBTT)
1662 		bwi_mac_config_ps(mac);
1663 
1664 	if (intr_status & BWI_INTR_EO_ATIM)
1665 		if_printf(ifp, "EO_ATIM\n");
1666 
1667 	if (intr_status & BWI_INTR_PMQ) {
1668 		for (;;) {
1669 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1670 				break;
1671 		}
1672 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1673 	}
1674 
1675 	if (intr_status & BWI_INTR_NOISE)
1676 		if_printf(ifp, "intr noise\n");
1677 
1678 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1679 		rx_data = sc->sc_rxeof(sc);
1680 		if (sc->sc_flags & BWI_F_STOP) {
1681 			BWI_UNLOCK(sc);
1682 			return;
1683 		}
1684 	}
1685 
1686 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1687 		sc->sc_txeof_status(sc);
1688 		tx = 1;
1689 	}
1690 
1691 	if (intr_status & BWI_INTR_TX_DONE) {
1692 		bwi_txeof(sc);
1693 		tx = 1;
1694 	}
1695 
1696 	/* Re-enable interrupts */
1697 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1698 
1699 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1700 		int evt = BWI_LED_EVENT_NONE;
1701 
1702 		if (tx && rx_data > 0) {
1703 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1704 				evt = BWI_LED_EVENT_RX;
1705 			else
1706 				evt = BWI_LED_EVENT_TX;
1707 		} else if (tx) {
1708 			evt = BWI_LED_EVENT_TX;
1709 		} else if (rx_data > 0) {
1710 			evt = BWI_LED_EVENT_RX;
1711 		} else if (rx_data == 0) {
1712 			evt = BWI_LED_EVENT_POLL;
1713 		}
1714 
1715 		if (evt != BWI_LED_EVENT_NONE)
1716 			bwi_led_event(sc, evt);
1717 	}
1718 
1719 	BWI_UNLOCK(sc);
1720 }
1721 
1722 static void
1723 bwi_scan_start(struct ieee80211com *ic)
1724 {
1725 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1726 
1727 	BWI_LOCK(sc);
1728 	/* Enable MAC beacon promiscuity */
1729 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1730 	BWI_UNLOCK(sc);
1731 }
1732 
1733 static void
1734 bwi_set_channel(struct ieee80211com *ic)
1735 {
1736 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1737 	struct ieee80211_channel *c = ic->ic_curchan;
1738 	struct bwi_mac *mac;
1739 
1740 	BWI_LOCK(sc);
1741 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1742 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1743 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1744 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1745 
1746 	sc->sc_rates = ieee80211_get_ratetable(c);
1747 
1748 	/*
1749 	 * Setup radio tap channel freq and flags
1750 	 */
1751 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
1752 		htole16(c->ic_freq);
1753 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
1754 		htole16(c->ic_flags & 0xffff);
1755 
1756 	BWI_UNLOCK(sc);
1757 }
1758 
1759 static void
1760 bwi_scan_end(struct ieee80211com *ic)
1761 {
1762 	struct bwi_softc *sc = ic->ic_ifp->if_softc;
1763 
1764 	BWI_LOCK(sc);
1765 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1766 	BWI_UNLOCK(sc);
1767 }
1768 
1769 static int
1770 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1771 {
1772 	struct bwi_vap *bvp = BWI_VAP(vap);
1773 	struct ieee80211com *ic= vap->iv_ic;
1774 	struct ifnet *ifp = ic->ic_ifp;
1775 	enum ieee80211_state ostate = vap->iv_state;
1776 	struct bwi_softc *sc = ifp->if_softc;
1777 	struct bwi_mac *mac;
1778 	int error;
1779 
1780 	BWI_LOCK(sc);
1781 
1782 	callout_stop(&sc->sc_calib_ch);
1783 
1784 	if (nstate == IEEE80211_S_INIT)
1785 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1786 
1787 	bwi_led_newstate(sc, nstate);
1788 
1789 	error = bvp->bv_newstate(vap, nstate, arg);
1790 	if (error != 0)
1791 		goto back;
1792 
1793 	/*
1794 	 * Clear the BSSID when we stop a STA
1795 	 */
1796 	if (vap->iv_opmode == IEEE80211_M_STA) {
1797 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1798 			/*
1799 			 * Clear out the BSSID.  If we reassociate to
1800 			 * the same AP, this will reinialize things
1801 			 * correctly...
1802 			 */
1803 			if (ic->ic_opmode == IEEE80211_M_STA &&
1804 			    !(sc->sc_flags & BWI_F_STOP))
1805 				bwi_set_bssid(sc, bwi_zero_addr);
1806 		}
1807 	}
1808 
1809 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1810 		/* Nothing to do */
1811 	} else if (nstate == IEEE80211_S_RUN) {
1812 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1813 
1814 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1815 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1816 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1817 
1818 		/* Initial TX power calibration */
1819 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1820 #ifdef notyet
1821 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1822 #else
1823 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1824 #endif
1825 
1826 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1827 	}
1828 back:
1829 	BWI_UNLOCK(sc);
1830 
1831 	return error;
1832 }
1833 
1834 static int
1835 bwi_media_change(struct ifnet *ifp)
1836 {
1837 	int error = ieee80211_media_change(ifp);
1838 	/* NB: only the fixed rate can change and that doesn't need a reset */
1839 	return (error == ENETRESET ? 0 : error);
1840 }
1841 
1842 static int
1843 bwi_dma_alloc(struct bwi_softc *sc)
1844 {
1845 	int error, i, has_txstats;
1846 	bus_addr_t lowaddr = 0;
1847 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1848 	uint32_t txrx_ctrl_step = 0;
1849 
1850 	has_txstats = 0;
1851 	for (i = 0; i < sc->sc_nmac; ++i) {
1852 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1853 			has_txstats = 1;
1854 			break;
1855 		}
1856 	}
1857 
1858 	switch (sc->sc_bus_space) {
1859 	case BWI_BUS_SPACE_30BIT:
1860 	case BWI_BUS_SPACE_32BIT:
1861 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1862 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1863 		else
1864 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1865 		desc_sz = sizeof(struct bwi_desc32);
1866 		txrx_ctrl_step = 0x20;
1867 
1868 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1869 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1870 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1871 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1872 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1873 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1874 		sc->sc_rxeof = bwi_rxeof32;
1875 		sc->sc_start_tx = bwi_start_tx32;
1876 		if (has_txstats) {
1877 			sc->sc_init_txstats = bwi_init_txstats32;
1878 			sc->sc_free_txstats = bwi_free_txstats32;
1879 			sc->sc_txeof_status = bwi_txeof_status32;
1880 		}
1881 		break;
1882 
1883 	case BWI_BUS_SPACE_64BIT:
1884 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1885 		desc_sz = sizeof(struct bwi_desc64);
1886 		txrx_ctrl_step = 0x40;
1887 
1888 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1889 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1890 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1891 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1892 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1893 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1894 		sc->sc_rxeof = bwi_rxeof64;
1895 		sc->sc_start_tx = bwi_start_tx64;
1896 		if (has_txstats) {
1897 			sc->sc_init_txstats = bwi_init_txstats64;
1898 			sc->sc_free_txstats = bwi_free_txstats64;
1899 			sc->sc_txeof_status = bwi_txeof_status64;
1900 		}
1901 		break;
1902 	}
1903 
1904 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1905 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1906 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1907 
1908 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1909 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1910 
1911 	/*
1912 	 * Create top level DMA tag
1913 	 */
1914 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1915 			       BWI_ALIGN, 0,		/* alignment, bounds */
1916 			       lowaddr,			/* lowaddr */
1917 			       BUS_SPACE_MAXADDR,	/* highaddr */
1918 			       NULL, NULL,		/* filter, filterarg */
1919 			       MAXBSIZE,		/* maxsize */
1920 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1921 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1922 			       BUS_DMA_ALLOCNOW,	/* flags */
1923 			       NULL, NULL,		/* lockfunc, lockarg */
1924 			       &sc->sc_parent_dtag);
1925 	if (error) {
1926 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1927 		return error;
1928 	}
1929 
1930 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1931 
1932 	/*
1933 	 * Create TX ring DMA stuffs
1934 	 */
1935 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1936 				BWI_RING_ALIGN, 0,
1937 				BUS_SPACE_MAXADDR,
1938 				BUS_SPACE_MAXADDR,
1939 				NULL, NULL,
1940 				tx_ring_sz,
1941 				1,
1942 				BUS_SPACE_MAXSIZE_32BIT,
1943 				BUS_DMA_ALLOCNOW,
1944 				NULL, NULL,
1945 				&sc->sc_txring_dtag);
1946 	if (error) {
1947 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1948 		return error;
1949 	}
1950 
1951 	for (i = 0; i < BWI_TX_NRING; ++i) {
1952 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1953 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1954 					   TXRX_CTRL(i));
1955 		if (error) {
1956 			device_printf(sc->sc_dev, "%dth TX ring "
1957 				      "DMA alloc failed\n", i);
1958 			return error;
1959 		}
1960 	}
1961 
1962 	/*
1963 	 * Create RX ring DMA stuffs
1964 	 */
1965 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1966 				BWI_RING_ALIGN, 0,
1967 				BUS_SPACE_MAXADDR,
1968 				BUS_SPACE_MAXADDR,
1969 				NULL, NULL,
1970 				rx_ring_sz,
1971 				1,
1972 				BUS_SPACE_MAXSIZE_32BIT,
1973 				BUS_DMA_ALLOCNOW,
1974 				NULL, NULL,
1975 				&sc->sc_rxring_dtag);
1976 	if (error) {
1977 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1978 		return error;
1979 	}
1980 
1981 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1982 				   rx_ring_sz, TXRX_CTRL(0));
1983 	if (error) {
1984 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1985 		return error;
1986 	}
1987 
1988 	if (has_txstats) {
1989 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1990 		if (error) {
1991 			device_printf(sc->sc_dev,
1992 				      "TX stats DMA alloc failed\n");
1993 			return error;
1994 		}
1995 	}
1996 
1997 #undef TXRX_CTRL
1998 
1999 	return bwi_dma_mbuf_create(sc);
2000 }
2001 
2002 static void
2003 bwi_dma_free(struct bwi_softc *sc)
2004 {
2005 	if (sc->sc_txring_dtag != NULL) {
2006 		int i;
2007 
2008 		for (i = 0; i < BWI_TX_NRING; ++i) {
2009 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
2010 
2011 			if (rd->rdata_desc != NULL) {
2012 				bus_dmamap_unload(sc->sc_txring_dtag,
2013 						  rd->rdata_dmap);
2014 				bus_dmamem_free(sc->sc_txring_dtag,
2015 						rd->rdata_desc,
2016 						rd->rdata_dmap);
2017 			}
2018 		}
2019 		bus_dma_tag_destroy(sc->sc_txring_dtag);
2020 	}
2021 
2022 	if (sc->sc_rxring_dtag != NULL) {
2023 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2024 
2025 		if (rd->rdata_desc != NULL) {
2026 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
2027 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
2028 					rd->rdata_dmap);
2029 		}
2030 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
2031 	}
2032 
2033 	bwi_dma_txstats_free(sc);
2034 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2035 
2036 	if (sc->sc_parent_dtag != NULL)
2037 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2038 }
2039 
2040 static int
2041 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2042 		   struct bwi_ring_data *rd, bus_size_t size,
2043 		   uint32_t txrx_ctrl)
2044 {
2045 	int error;
2046 
2047 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2048 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2049 				 &rd->rdata_dmap);
2050 	if (error) {
2051 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2052 		return error;
2053 	}
2054 
2055 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2056 				bwi_dma_ring_addr, &rd->rdata_paddr,
2057 				BUS_DMA_NOWAIT);
2058 	if (error) {
2059 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2060 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2061 		rd->rdata_desc = NULL;
2062 		return error;
2063 	}
2064 
2065 	rd->rdata_txrx_ctrl = txrx_ctrl;
2066 	return 0;
2067 }
2068 
2069 static int
2070 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2071 		      bus_size_t desc_sz)
2072 {
2073 	struct bwi_txstats_data *st;
2074 	bus_size_t dma_size;
2075 	int error;
2076 
2077 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2078 	if (st == NULL) {
2079 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2080 		return ENOMEM;
2081 	}
2082 	sc->sc_txstats = st;
2083 
2084 	/*
2085 	 * Create TX stats descriptor DMA stuffs
2086 	 */
2087 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2088 
2089 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2090 				BWI_RING_ALIGN,
2091 				0,
2092 				BUS_SPACE_MAXADDR,
2093 				BUS_SPACE_MAXADDR,
2094 				NULL, NULL,
2095 				dma_size,
2096 				1,
2097 				BUS_SPACE_MAXSIZE_32BIT,
2098 				BUS_DMA_ALLOCNOW,
2099 				NULL, NULL,
2100 				&st->stats_ring_dtag);
2101 	if (error) {
2102 		device_printf(sc->sc_dev, "can't create txstats ring "
2103 			      "DMA tag\n");
2104 		return error;
2105 	}
2106 
2107 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2108 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2109 				 &st->stats_ring_dmap);
2110 	if (error) {
2111 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2112 			      "DMA mem\n");
2113 		bus_dma_tag_destroy(st->stats_ring_dtag);
2114 		st->stats_ring_dtag = NULL;
2115 		return error;
2116 	}
2117 
2118 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2119 				st->stats_ring, dma_size,
2120 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2121 				BUS_DMA_NOWAIT);
2122 	if (error) {
2123 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2124 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2125 				st->stats_ring_dmap);
2126 		bus_dma_tag_destroy(st->stats_ring_dtag);
2127 		st->stats_ring_dtag = NULL;
2128 		return error;
2129 	}
2130 
2131 	/*
2132 	 * Create TX stats DMA stuffs
2133 	 */
2134 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2135 			   BWI_ALIGN);
2136 
2137 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2138 				BWI_ALIGN,
2139 				0,
2140 				BUS_SPACE_MAXADDR,
2141 				BUS_SPACE_MAXADDR,
2142 				NULL, NULL,
2143 				dma_size,
2144 				1,
2145 				BUS_SPACE_MAXSIZE_32BIT,
2146 				BUS_DMA_ALLOCNOW,
2147 				NULL, NULL,
2148 				&st->stats_dtag);
2149 	if (error) {
2150 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2151 		return error;
2152 	}
2153 
2154 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2155 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2156 				 &st->stats_dmap);
2157 	if (error) {
2158 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2159 		bus_dma_tag_destroy(st->stats_dtag);
2160 		st->stats_dtag = NULL;
2161 		return error;
2162 	}
2163 
2164 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2165 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2166 				BUS_DMA_NOWAIT);
2167 	if (error) {
2168 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2169 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2170 		bus_dma_tag_destroy(st->stats_dtag);
2171 		st->stats_dtag = NULL;
2172 		return error;
2173 	}
2174 
2175 	st->stats_ctrl_base = ctrl_base;
2176 	return 0;
2177 }
2178 
2179 static void
2180 bwi_dma_txstats_free(struct bwi_softc *sc)
2181 {
2182 	struct bwi_txstats_data *st;
2183 
2184 	if (sc->sc_txstats == NULL)
2185 		return;
2186 	st = sc->sc_txstats;
2187 
2188 	if (st->stats_ring_dtag != NULL) {
2189 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2190 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2191 				st->stats_ring_dmap);
2192 		bus_dma_tag_destroy(st->stats_ring_dtag);
2193 	}
2194 
2195 	if (st->stats_dtag != NULL) {
2196 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2197 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2198 		bus_dma_tag_destroy(st->stats_dtag);
2199 	}
2200 
2201 	free(st, M_DEVBUF);
2202 }
2203 
2204 static void
2205 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2206 {
2207 	KASSERT(nseg == 1, ("too many segments\n"));
2208 	*((bus_addr_t *)arg) = seg->ds_addr;
2209 }
2210 
2211 static int
2212 bwi_dma_mbuf_create(struct bwi_softc *sc)
2213 {
2214 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2215 	int i, j, k, ntx, error;
2216 
2217 	/*
2218 	 * Create TX/RX mbuf DMA tag
2219 	 */
2220 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2221 				1,
2222 				0,
2223 				BUS_SPACE_MAXADDR,
2224 				BUS_SPACE_MAXADDR,
2225 				NULL, NULL,
2226 				MCLBYTES,
2227 				1,
2228 				BUS_SPACE_MAXSIZE_32BIT,
2229 				BUS_DMA_ALLOCNOW,
2230 				NULL, NULL,
2231 				&sc->sc_buf_dtag);
2232 	if (error) {
2233 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2234 		return error;
2235 	}
2236 
2237 	ntx = 0;
2238 
2239 	/*
2240 	 * Create TX mbuf DMA map
2241 	 */
2242 	for (i = 0; i < BWI_TX_NRING; ++i) {
2243 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2244 
2245 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2246 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2247 						  &tbd->tbd_buf[j].tb_dmap);
2248 			if (error) {
2249 				device_printf(sc->sc_dev, "can't create "
2250 					      "%dth tbd, %dth DMA map\n", i, j);
2251 
2252 				ntx = i;
2253 				for (k = 0; k < j; ++k) {
2254 					bus_dmamap_destroy(sc->sc_buf_dtag,
2255 						tbd->tbd_buf[k].tb_dmap);
2256 				}
2257 				goto fail;
2258 			}
2259 		}
2260 	}
2261 	ntx = BWI_TX_NRING;
2262 
2263 	/*
2264 	 * Create RX mbuf DMA map and a spare DMA map
2265 	 */
2266 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2267 				  &rbd->rbd_tmp_dmap);
2268 	if (error) {
2269 		device_printf(sc->sc_dev,
2270 			      "can't create spare RX buf DMA map\n");
2271 		goto fail;
2272 	}
2273 
2274 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2275 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2276 					  &rbd->rbd_buf[j].rb_dmap);
2277 		if (error) {
2278 			device_printf(sc->sc_dev, "can't create %dth "
2279 				      "RX buf DMA map\n", j);
2280 
2281 			for (k = 0; k < j; ++k) {
2282 				bus_dmamap_destroy(sc->sc_buf_dtag,
2283 					rbd->rbd_buf[j].rb_dmap);
2284 			}
2285 			bus_dmamap_destroy(sc->sc_buf_dtag,
2286 					   rbd->rbd_tmp_dmap);
2287 			goto fail;
2288 		}
2289 	}
2290 
2291 	return 0;
2292 fail:
2293 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2294 	return error;
2295 }
2296 
2297 static void
2298 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2299 {
2300 	int i, j;
2301 
2302 	if (sc->sc_buf_dtag == NULL)
2303 		return;
2304 
2305 	for (i = 0; i < ntx; ++i) {
2306 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2307 
2308 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2309 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2310 
2311 			if (tb->tb_mbuf != NULL) {
2312 				bus_dmamap_unload(sc->sc_buf_dtag,
2313 						  tb->tb_dmap);
2314 				m_freem(tb->tb_mbuf);
2315 			}
2316 			if (tb->tb_ni != NULL)
2317 				ieee80211_free_node(tb->tb_ni);
2318 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2319 		}
2320 	}
2321 
2322 	if (nrx) {
2323 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2324 
2325 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2326 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2327 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2328 
2329 			if (rb->rb_mbuf != NULL) {
2330 				bus_dmamap_unload(sc->sc_buf_dtag,
2331 						  rb->rb_dmap);
2332 				m_freem(rb->rb_mbuf);
2333 			}
2334 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2335 		}
2336 	}
2337 
2338 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2339 	sc->sc_buf_dtag = NULL;
2340 }
2341 
2342 static void
2343 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2344 {
2345 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2346 }
2347 
2348 static void
2349 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2350 {
2351 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2352 }
2353 
2354 static int
2355 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2356 {
2357 	struct bwi_ring_data *rd;
2358 	struct bwi_txbuf_data *tbd;
2359 	uint32_t val, addr_hi, addr_lo;
2360 
2361 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2362 	rd = &sc->sc_tx_rdata[ring_idx];
2363 	tbd = &sc->sc_tx_bdata[ring_idx];
2364 
2365 	tbd->tbd_idx = 0;
2366 	tbd->tbd_used = 0;
2367 
2368 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2369 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2370 			BUS_DMASYNC_PREWRITE);
2371 
2372 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2373 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2374 
2375 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2376 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2377 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2378 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2379 
2380 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2381 	      BWI_TXRX32_CTRL_ENABLE;
2382 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2383 
2384 	return 0;
2385 }
2386 
2387 static void
2388 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2389 		       bus_addr_t paddr, int hdr_size, int ndesc)
2390 {
2391 	uint32_t val, addr_hi, addr_lo;
2392 
2393 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2394 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2395 
2396 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2397 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2398 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2399 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2400 
2401 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2402 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2403 	      BWI_TXRX32_CTRL_ENABLE;
2404 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2405 
2406 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2407 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2408 }
2409 
2410 static int
2411 bwi_init_rx_ring32(struct bwi_softc *sc)
2412 {
2413 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2414 	int i, error;
2415 
2416 	sc->sc_rx_bdata.rbd_idx = 0;
2417 
2418 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2419 		error = bwi_newbuf(sc, i, 1);
2420 		if (error) {
2421 			device_printf(sc->sc_dev,
2422 				  "can't allocate %dth RX buffer\n", i);
2423 			return error;
2424 		}
2425 	}
2426 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2427 			BUS_DMASYNC_PREWRITE);
2428 
2429 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2430 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2431 	return 0;
2432 }
2433 
2434 static int
2435 bwi_init_txstats32(struct bwi_softc *sc)
2436 {
2437 	struct bwi_txstats_data *st = sc->sc_txstats;
2438 	bus_addr_t stats_paddr;
2439 	int i;
2440 
2441 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2442 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2443 
2444 	st->stats_idx = 0;
2445 
2446 	stats_paddr = st->stats_paddr;
2447 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2448 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2449 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2450 		stats_paddr += sizeof(struct bwi_txstats);
2451 	}
2452 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2453 			BUS_DMASYNC_PREWRITE);
2454 
2455 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2456 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2457 	return 0;
2458 }
2459 
2460 static void
2461 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2462 		    int buf_len)
2463 {
2464 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2465 
2466 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2467 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2468 			 paddr, buf_len, 0);
2469 }
2470 
2471 static void
2472 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2473 		    int buf_idx, bus_addr_t paddr, int buf_len)
2474 {
2475 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2476 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2477 			 paddr, buf_len, 1);
2478 }
2479 
2480 static int
2481 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2482 {
2483 	/* TODO:64 */
2484 	return EOPNOTSUPP;
2485 }
2486 
2487 static int
2488 bwi_init_rx_ring64(struct bwi_softc *sc)
2489 {
2490 	/* TODO:64 */
2491 	return EOPNOTSUPP;
2492 }
2493 
2494 static int
2495 bwi_init_txstats64(struct bwi_softc *sc)
2496 {
2497 	/* TODO:64 */
2498 	return EOPNOTSUPP;
2499 }
2500 
2501 static void
2502 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2503 		    int buf_len)
2504 {
2505 	/* TODO:64 */
2506 }
2507 
2508 static void
2509 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2510 		    int buf_idx, bus_addr_t paddr, int buf_len)
2511 {
2512 	/* TODO:64 */
2513 }
2514 
2515 static void
2516 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2517 		 bus_size_t mapsz __unused, int error)
2518 {
2519         if (!error) {
2520 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2521 		*((bus_addr_t *)arg) = seg->ds_addr;
2522 	}
2523 }
2524 
2525 static int
2526 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2527 {
2528 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2529 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2530 	struct bwi_rxbuf_hdr *hdr;
2531 	bus_dmamap_t map;
2532 	bus_addr_t paddr;
2533 	struct mbuf *m;
2534 	int error;
2535 
2536 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2537 
2538 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2539 	if (m == NULL) {
2540 		error = ENOBUFS;
2541 
2542 		/*
2543 		 * If the NIC is up and running, we need to:
2544 		 * - Clear RX buffer's header.
2545 		 * - Restore RX descriptor settings.
2546 		 */
2547 		if (init)
2548 			return error;
2549 		else
2550 			goto back;
2551 	}
2552 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2553 
2554 	/*
2555 	 * Try to load RX buf into temporary DMA map
2556 	 */
2557 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2558 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2559 	if (error) {
2560 		m_freem(m);
2561 
2562 		/*
2563 		 * See the comment above
2564 		 */
2565 		if (init)
2566 			return error;
2567 		else
2568 			goto back;
2569 	}
2570 
2571 	if (!init)
2572 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2573 	rxbuf->rb_mbuf = m;
2574 	rxbuf->rb_paddr = paddr;
2575 
2576 	/*
2577 	 * Swap RX buf's DMA map with the loaded temporary one
2578 	 */
2579 	map = rxbuf->rb_dmap;
2580 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2581 	rbd->rbd_tmp_dmap = map;
2582 
2583 back:
2584 	/*
2585 	 * Clear RX buf header
2586 	 */
2587 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2588 	bzero(hdr, sizeof(*hdr));
2589 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2590 
2591 	/*
2592 	 * Setup RX buf descriptor
2593 	 */
2594 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2595 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2596 	return error;
2597 }
2598 
2599 static void
2600 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2601 		    const uint8_t *addr)
2602 {
2603 	int i;
2604 
2605 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2606 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2607 
2608 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2609 		uint16_t addr_val;
2610 
2611 		addr_val = (uint16_t)addr[i * 2] |
2612 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2613 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2614 	}
2615 }
2616 
2617 static int
2618 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2619 {
2620 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2621 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2622 	struct ifnet *ifp = sc->sc_ifp;
2623 	struct ieee80211com *ic = ifp->if_l2com;
2624 	int idx, rx_data = 0;
2625 
2626 	idx = rbd->rbd_idx;
2627 	while (idx != end_idx) {
2628 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2629 		struct bwi_rxbuf_hdr *hdr;
2630 		struct ieee80211_frame_min *wh;
2631 		struct ieee80211_node *ni;
2632 		struct mbuf *m;
2633 		uint32_t plcp;
2634 		uint16_t flags2;
2635 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2636 
2637 		m = rb->rb_mbuf;
2638 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2639 				BUS_DMASYNC_POSTREAD);
2640 
2641 		if (bwi_newbuf(sc, idx, 0)) {
2642 			ifp->if_ierrors++;
2643 			goto next;
2644 		}
2645 
2646 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2647 		flags2 = le16toh(hdr->rxh_flags2);
2648 
2649 		hdr_extra = 0;
2650 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2651 			hdr_extra = 2;
2652 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2653 
2654 		buflen = le16toh(hdr->rxh_buflen);
2655 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2656 			if_printf(ifp, "%s: zero length data, hdr_extra %d\n",
2657 				  __func__, hdr_extra);
2658 			ifp->if_ierrors++;
2659 			m_freem(m);
2660 			goto next;
2661 		}
2662 
2663 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2664 		rssi = bwi_calc_rssi(sc, hdr);
2665 		noise = bwi_calc_noise(sc);
2666 
2667 		m->m_pkthdr.rcvif = ifp;
2668 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2669 		m_adj(m, sizeof(*hdr) + wh_ofs);
2670 
2671 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2672 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2673 		else
2674 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2675 
2676 		/* RX radio tap */
2677 		if (ieee80211_radiotap_active(ic))
2678 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2679 
2680 		m_adj(m, -IEEE80211_CRC_LEN);
2681 
2682 		BWI_UNLOCK(sc);
2683 
2684 		wh = mtod(m, struct ieee80211_frame_min *);
2685 		ni = ieee80211_find_rxnode(ic, wh);
2686 		if (ni != NULL) {
2687 			type = ieee80211_input(ni, m, rssi - noise, noise);
2688 			ieee80211_free_node(ni);
2689 		} else
2690 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2691 		if (type == IEEE80211_FC0_TYPE_DATA) {
2692 			rx_data = 1;
2693 			sc->sc_rx_rate = rate;
2694 		}
2695 
2696 		BWI_LOCK(sc);
2697 next:
2698 		idx = (idx + 1) % BWI_RX_NDESC;
2699 
2700 		if (sc->sc_flags & BWI_F_STOP) {
2701 			/*
2702 			 * Take the fast lane, don't do
2703 			 * any damage to softc
2704 			 */
2705 			return -1;
2706 		}
2707 	}
2708 
2709 	rbd->rbd_idx = idx;
2710 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2711 			BUS_DMASYNC_PREWRITE);
2712 
2713 	return rx_data;
2714 }
2715 
2716 static int
2717 bwi_rxeof32(struct bwi_softc *sc)
2718 {
2719 	uint32_t val, rx_ctrl;
2720 	int end_idx, rx_data;
2721 
2722 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2723 
2724 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2725 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2726 		  sizeof(struct bwi_desc32);
2727 
2728 	rx_data = bwi_rxeof(sc, end_idx);
2729 	if (rx_data >= 0) {
2730 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2731 			    end_idx * sizeof(struct bwi_desc32));
2732 	}
2733 	return rx_data;
2734 }
2735 
2736 static int
2737 bwi_rxeof64(struct bwi_softc *sc)
2738 {
2739 	/* TODO:64 */
2740 	return 0;
2741 }
2742 
2743 static void
2744 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2745 {
2746 	int i;
2747 
2748 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2749 
2750 #define NRETRY 10
2751 
2752 	for (i = 0; i < NRETRY; ++i) {
2753 		uint32_t status;
2754 
2755 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2756 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2757 		    BWI_RX32_STATUS_STATE_DISABLED)
2758 			break;
2759 
2760 		DELAY(1000);
2761 	}
2762 	if (i == NRETRY)
2763 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2764 
2765 #undef NRETRY
2766 
2767 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2768 }
2769 
2770 static void
2771 bwi_free_txstats32(struct bwi_softc *sc)
2772 {
2773 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2774 }
2775 
2776 static void
2777 bwi_free_rx_ring32(struct bwi_softc *sc)
2778 {
2779 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2780 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2781 	int i;
2782 
2783 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2784 
2785 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2786 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2787 
2788 		if (rb->rb_mbuf != NULL) {
2789 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2790 			m_freem(rb->rb_mbuf);
2791 			rb->rb_mbuf = NULL;
2792 		}
2793 	}
2794 }
2795 
2796 static void
2797 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2798 {
2799 	struct bwi_ring_data *rd;
2800 	struct bwi_txbuf_data *tbd;
2801 	struct ifnet *ifp = sc->sc_ifp;
2802 	uint32_t state, val;
2803 	int i;
2804 
2805 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2806 	rd = &sc->sc_tx_rdata[ring_idx];
2807 	tbd = &sc->sc_tx_bdata[ring_idx];
2808 
2809 #define NRETRY 10
2810 
2811 	for (i = 0; i < NRETRY; ++i) {
2812 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2813 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2814 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2815 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2816 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2817 			break;
2818 
2819 		DELAY(1000);
2820 	}
2821 	if (i == NRETRY) {
2822 		if_printf(ifp, "%s: wait for TX ring(%d) stable timed out\n",
2823 			  __func__, ring_idx);
2824 	}
2825 
2826 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2827 	for (i = 0; i < NRETRY; ++i) {
2828 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2829 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2830 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2831 			break;
2832 
2833 		DELAY(1000);
2834 	}
2835 	if (i == NRETRY)
2836 		if_printf(ifp, "%s: reset TX ring (%d) timed out\n",
2837 		     __func__, ring_idx);
2838 
2839 #undef NRETRY
2840 
2841 	DELAY(1000);
2842 
2843 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2844 
2845 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2846 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2847 
2848 		if (tb->tb_mbuf != NULL) {
2849 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2850 			m_freem(tb->tb_mbuf);
2851 			tb->tb_mbuf = NULL;
2852 		}
2853 		if (tb->tb_ni != NULL) {
2854 			ieee80211_free_node(tb->tb_ni);
2855 			tb->tb_ni = NULL;
2856 		}
2857 	}
2858 }
2859 
2860 static void
2861 bwi_free_txstats64(struct bwi_softc *sc)
2862 {
2863 	/* TODO:64 */
2864 }
2865 
2866 static void
2867 bwi_free_rx_ring64(struct bwi_softc *sc)
2868 {
2869 	/* TODO:64 */
2870 }
2871 
2872 static void
2873 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2874 {
2875 	/* TODO:64 */
2876 }
2877 
2878 /* XXX does not belong here */
2879 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2880 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2881 
2882 static __inline void
2883 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2884 {
2885 	uint32_t plcp;
2886 
2887 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2888 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2889 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2890 	*plcp0 = htole32(plcp);
2891 }
2892 
2893 static __inline void
2894 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2895 		   uint8_t rate)
2896 {
2897 	int len, service, pkt_bitlen;
2898 
2899 	pkt_bitlen = pkt_len * NBBY;
2900 	len = howmany(pkt_bitlen * 2, rate);
2901 
2902 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2903 	if (rate == (11 * 2)) {
2904 		int pkt_bitlen1;
2905 
2906 		/*
2907 		 * PLCP service field needs to be adjusted,
2908 		 * if TX rate is 11Mbytes/s
2909 		 */
2910 		pkt_bitlen1 = len * 11;
2911 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2912 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2913 	}
2914 
2915 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2916 	plcp->i_service = service;
2917 	plcp->i_length = htole16(len);
2918 	/* NOTE: do NOT touch i_crc */
2919 }
2920 
2921 static __inline void
2922 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2923 	void *plcp, int pkt_len, uint8_t rate)
2924 {
2925 	enum ieee80211_phytype modtype;
2926 
2927 	/*
2928 	 * Assume caller has zeroed 'plcp'
2929 	 */
2930 	modtype = ieee80211_rate2phytype(rt, rate);
2931 	if (modtype == IEEE80211_T_OFDM)
2932 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2933 	else if (modtype == IEEE80211_T_DS)
2934 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2935 	else
2936 		panic("unsupport modulation type %u\n", modtype);
2937 }
2938 
2939 static int
2940 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2941 	  struct ieee80211_node *ni)
2942 {
2943 	struct ieee80211vap *vap = ni->ni_vap;
2944 	struct ifnet *ifp = sc->sc_ifp;
2945 	struct ieee80211com *ic = ifp->if_l2com;
2946 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2947 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2948 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2949 	struct bwi_mac *mac;
2950 	struct bwi_txbuf_hdr *hdr;
2951 	struct ieee80211_frame *wh;
2952 	const struct ieee80211_txparam *tp;
2953 	uint8_t rate, rate_fb;
2954 	uint32_t mac_ctrl;
2955 	uint16_t phy_ctrl;
2956 	bus_addr_t paddr;
2957 	int type, ismcast, pkt_len, error, rix;
2958 #if 0
2959 	const uint8_t *p;
2960 	int i;
2961 #endif
2962 
2963 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2964 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2965 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2966 
2967 	wh = mtod(m, struct ieee80211_frame *);
2968 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2969 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2970 
2971 	/* Get 802.11 frame len before prepending TX header */
2972 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2973 
2974 	/*
2975 	 * Find TX rate
2976 	 */
2977 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2978 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2979 		rate = rate_fb = tp->mgmtrate;
2980 	} else if (ismcast) {
2981 		rate = rate_fb = tp->mcastrate;
2982 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2983 		rate = rate_fb = tp->ucastrate;
2984 	} else {
2985 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2986 		rate = ni->ni_txrate;
2987 
2988 		if (rix > 0) {
2989 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2990 				  IEEE80211_RATE_VAL;
2991 		} else {
2992 			rate_fb = rate;
2993 		}
2994 	}
2995 	tb->tb_rate[0] = rate;
2996 	tb->tb_rate[1] = rate_fb;
2997 	sc->sc_tx_rate = rate;
2998 
2999 	/*
3000 	 * TX radio tap
3001 	 */
3002 	if (ieee80211_radiotap_active_vap(vap)) {
3003 		sc->sc_tx_th.wt_flags = 0;
3004 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3005 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3006 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
3007 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3008 		    rate != (1 * 2)) {
3009 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3010 		}
3011 		sc->sc_tx_th.wt_rate = rate;
3012 
3013 		ieee80211_radiotap_tx(vap, m);
3014 	}
3015 
3016 	/*
3017 	 * Setup the embedded TX header
3018 	 */
3019 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3020 	if (m == NULL) {
3021 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3022 		return ENOBUFS;
3023 	}
3024 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3025 
3026 	bzero(hdr, sizeof(*hdr));
3027 
3028 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3029 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3030 
3031 	if (!ismcast) {
3032 		uint16_t dur;
3033 
3034 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
3035 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
3036 
3037 		hdr->txh_fb_duration = htole16(dur);
3038 	}
3039 
3040 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3041 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3042 
3043 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3044 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3045 
3046 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3047 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3048 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3049 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3050 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3051 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3052 
3053 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3054 	if (!ismcast)
3055 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3056 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3057 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3058 
3059 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3060 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3061 
3062 	/* Catch any further usage */
3063 	hdr = NULL;
3064 	wh = NULL;
3065 
3066 	/* DMA load */
3067 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3068 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3069 	if (error && error != EFBIG) {
3070 		if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3071 		    __func__, error);
3072 		goto back;
3073 	}
3074 
3075 	if (error) {	/* error == EFBIG */
3076 		struct mbuf *m_new;
3077 
3078 		m_new = m_defrag(m, M_NOWAIT);
3079 		if (m_new == NULL) {
3080 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3081 			    __func__);
3082 			error = ENOBUFS;
3083 			goto back;
3084 		} else {
3085 			m = m_new;
3086 		}
3087 
3088 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3089 					     bwi_dma_buf_addr, &paddr,
3090 					     BUS_DMA_NOWAIT);
3091 		if (error) {
3092 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3093 			    __func__, error);
3094 			goto back;
3095 		}
3096 	}
3097 	error = 0;
3098 
3099 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3100 
3101 	tb->tb_mbuf = m;
3102 	tb->tb_ni = ni;
3103 
3104 #if 0
3105 	p = mtod(m, const uint8_t *);
3106 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3107 		if (i != 0 && i % 8 == 0)
3108 			printf("\n");
3109 		printf("%02x ", p[i]);
3110 	}
3111 	printf("\n");
3112 #endif
3113 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3114 		idx, pkt_len, m->m_pkthdr.len);
3115 
3116 	/* Setup TX descriptor */
3117 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3118 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3119 			BUS_DMASYNC_PREWRITE);
3120 
3121 	/* Kick start */
3122 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3123 
3124 back:
3125 	if (error)
3126 		m_freem(m);
3127 	return error;
3128 }
3129 
3130 static int
3131 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3132 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3133 {
3134 	struct ifnet *ifp = sc->sc_ifp;
3135 	struct ieee80211vap *vap = ni->ni_vap;
3136 	struct ieee80211com *ic = ni->ni_ic;
3137 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3138 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3139 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3140 	struct bwi_mac *mac;
3141 	struct bwi_txbuf_hdr *hdr;
3142 	struct ieee80211_frame *wh;
3143 	uint8_t rate, rate_fb;
3144 	uint32_t mac_ctrl;
3145 	uint16_t phy_ctrl;
3146 	bus_addr_t paddr;
3147 	int ismcast, pkt_len, error;
3148 
3149 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3150 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3151 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3152 
3153 	wh = mtod(m, struct ieee80211_frame *);
3154 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3155 
3156 	/* Get 802.11 frame len before prepending TX header */
3157 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3158 
3159 	/*
3160 	 * Find TX rate
3161 	 */
3162 	rate = params->ibp_rate0;
3163 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3164 		/* XXX fall back to mcast/mgmt rate? */
3165 		m_freem(m);
3166 		return EINVAL;
3167 	}
3168 	if (params->ibp_try1 != 0) {
3169 		rate_fb = params->ibp_rate1;
3170 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3171 			/* XXX fall back to rate0? */
3172 			m_freem(m);
3173 			return EINVAL;
3174 		}
3175 	} else
3176 		rate_fb = rate;
3177 	tb->tb_rate[0] = rate;
3178 	tb->tb_rate[1] = rate_fb;
3179 	sc->sc_tx_rate = rate;
3180 
3181 	/*
3182 	 * TX radio tap
3183 	 */
3184 	if (ieee80211_radiotap_active_vap(vap)) {
3185 		sc->sc_tx_th.wt_flags = 0;
3186 		/* XXX IEEE80211_BPF_CRYPTO */
3187 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3188 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3189 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3190 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3191 		sc->sc_tx_th.wt_rate = rate;
3192 
3193 		ieee80211_radiotap_tx(vap, m);
3194 	}
3195 
3196 	/*
3197 	 * Setup the embedded TX header
3198 	 */
3199 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3200 	if (m == NULL) {
3201 		if_printf(ifp, "%s: prepend TX header failed\n", __func__);
3202 		return ENOBUFS;
3203 	}
3204 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3205 
3206 	bzero(hdr, sizeof(*hdr));
3207 
3208 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3209 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3210 
3211 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3212 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3213 		uint16_t dur;
3214 
3215 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3216 
3217 		hdr->txh_fb_duration = htole16(dur);
3218 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3219 	}
3220 
3221 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3222 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3223 
3224 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3225 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3226 
3227 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3228 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3229 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3230 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3231 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3232 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3233 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3234 
3235 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3236 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3237 
3238 	/* Catch any further usage */
3239 	hdr = NULL;
3240 	wh = NULL;
3241 
3242 	/* DMA load */
3243 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3244 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3245 	if (error != 0) {
3246 		struct mbuf *m_new;
3247 
3248 		if (error != EFBIG) {
3249 			if_printf(ifp, "%s: can't load TX buffer (1) %d\n",
3250 			    __func__, error);
3251 			goto back;
3252 		}
3253 		m_new = m_defrag(m, M_NOWAIT);
3254 		if (m_new == NULL) {
3255 			if_printf(ifp, "%s: can't defrag TX buffer\n",
3256 			    __func__);
3257 			error = ENOBUFS;
3258 			goto back;
3259 		}
3260 		m = m_new;
3261 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3262 					     bwi_dma_buf_addr, &paddr,
3263 					     BUS_DMA_NOWAIT);
3264 		if (error) {
3265 			if_printf(ifp, "%s: can't load TX buffer (2) %d\n",
3266 			    __func__, error);
3267 			goto back;
3268 		}
3269 	}
3270 
3271 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3272 
3273 	tb->tb_mbuf = m;
3274 	tb->tb_ni = ni;
3275 
3276 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3277 		idx, pkt_len, m->m_pkthdr.len);
3278 
3279 	/* Setup TX descriptor */
3280 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3281 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3282 			BUS_DMASYNC_PREWRITE);
3283 
3284 	/* Kick start */
3285 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3286 back:
3287 	if (error)
3288 		m_freem(m);
3289 	return error;
3290 }
3291 
3292 static void
3293 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3294 {
3295 	idx = (idx + 1) % BWI_TX_NDESC;
3296 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3297 		    idx * sizeof(struct bwi_desc32));
3298 }
3299 
3300 static void
3301 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3302 {
3303 	/* TODO:64 */
3304 }
3305 
3306 static void
3307 bwi_txeof_status32(struct bwi_softc *sc)
3308 {
3309 	struct ifnet *ifp = sc->sc_ifp;
3310 	uint32_t val, ctrl_base;
3311 	int end_idx;
3312 
3313 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3314 
3315 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3316 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3317 		  sizeof(struct bwi_desc32);
3318 
3319 	bwi_txeof_status(sc, end_idx);
3320 
3321 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3322 		    end_idx * sizeof(struct bwi_desc32));
3323 
3324 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3325 		ifp->if_start(ifp);
3326 }
3327 
3328 static void
3329 bwi_txeof_status64(struct bwi_softc *sc)
3330 {
3331 	/* TODO:64 */
3332 }
3333 
3334 static void
3335 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3336 {
3337 	struct ifnet *ifp = sc->sc_ifp;
3338 	struct bwi_txbuf_data *tbd;
3339 	struct bwi_txbuf *tb;
3340 	int ring_idx, buf_idx;
3341 	struct ieee80211_node *ni;
3342 	struct ieee80211vap *vap;
3343 
3344 	if (tx_id == 0) {
3345 		if_printf(ifp, "%s: zero tx id\n", __func__);
3346 		return;
3347 	}
3348 
3349 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3350 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3351 
3352 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3353 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3354 
3355 	tbd = &sc->sc_tx_bdata[ring_idx];
3356 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3357 	tbd->tbd_used--;
3358 
3359 	tb = &tbd->tbd_buf[buf_idx];
3360 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3361 		"acked %d, data_txcnt %d, ni %p\n",
3362 		buf_idx, acked, data_txcnt, tb->tb_ni);
3363 
3364 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3365 
3366 	ni = tb->tb_ni;
3367 	if (tb->tb_ni != NULL) {
3368 		const struct bwi_txbuf_hdr *hdr =
3369 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3370 		vap = ni->ni_vap;
3371 
3372 		/* NB: update rate control only for unicast frames */
3373 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3374 			/*
3375 			 * Feed back 'acked and data_txcnt'.  Note that the
3376 			 * generic AMRR code only understands one tx rate
3377 			 * and the estimator doesn't handle real retry counts
3378 			 * well so to avoid over-aggressive downshifting we
3379 			 * treat any number of retries as "1".
3380 			 */
3381 			ieee80211_ratectl_tx_complete(vap, ni,
3382 			    (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS :
3383 			        IEEE80211_RATECTL_TX_FAILURE, &acked, NULL);
3384 		}
3385 
3386 		/*
3387 		 * Do any tx complete callback.  Note this must
3388 		 * be done before releasing the node reference.
3389 		 */
3390 		if (tb->tb_mbuf->m_flags & M_TXCB)
3391 			ieee80211_process_callback(ni, tb->tb_mbuf, !acked);
3392 
3393 		ieee80211_free_node(tb->tb_ni);
3394 		tb->tb_ni = NULL;
3395 	}
3396 	m_freem(tb->tb_mbuf);
3397 	tb->tb_mbuf = NULL;
3398 
3399 	if (tbd->tbd_used == 0)
3400 		sc->sc_tx_timer = 0;
3401 
3402 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3403 }
3404 
3405 static void
3406 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3407 {
3408 	struct bwi_txstats_data *st = sc->sc_txstats;
3409 	int idx;
3410 
3411 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3412 
3413 	idx = st->stats_idx;
3414 	while (idx != end_idx) {
3415 		const struct bwi_txstats *stats = &st->stats[idx];
3416 
3417 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3418 			int data_txcnt;
3419 
3420 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3421 						BWI_TXS_TXCNT_DATA);
3422 			_bwi_txeof(sc, le16toh(stats->txs_id),
3423 				   stats->txs_flags & BWI_TXS_F_ACKED,
3424 				   data_txcnt);
3425 		}
3426 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3427 	}
3428 	st->stats_idx = idx;
3429 }
3430 
3431 static void
3432 bwi_txeof(struct bwi_softc *sc)
3433 {
3434 	struct ifnet *ifp = sc->sc_ifp;
3435 
3436 	for (;;) {
3437 		uint32_t tx_status0, tx_status1;
3438 		uint16_t tx_id;
3439 		int data_txcnt;
3440 
3441 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3442 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3443 			break;
3444 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3445 
3446 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3447 		data_txcnt = __SHIFTOUT(tx_status0,
3448 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3449 
3450 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3451 			continue;
3452 
3453 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3454 		    data_txcnt);
3455 	}
3456 
3457 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
3458 		ifp->if_start(ifp);
3459 }
3460 
3461 static int
3462 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3463 {
3464 	bwi_power_on(sc, 1);
3465 	return bwi_set_clock_mode(sc, clk_mode);
3466 }
3467 
3468 static void
3469 bwi_bbp_power_off(struct bwi_softc *sc)
3470 {
3471 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3472 	bwi_power_off(sc, 1);
3473 }
3474 
3475 static int
3476 bwi_get_pwron_delay(struct bwi_softc *sc)
3477 {
3478 	struct bwi_regwin *com, *old;
3479 	struct bwi_clock_freq freq;
3480 	uint32_t val;
3481 	int error;
3482 
3483 	com = &sc->sc_com_regwin;
3484 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3485 
3486 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3487 		return 0;
3488 
3489 	error = bwi_regwin_switch(sc, com, &old);
3490 	if (error)
3491 		return error;
3492 
3493 	bwi_get_clock_freq(sc, &freq);
3494 
3495 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3496 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3497 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3498 
3499 	return bwi_regwin_switch(sc, old, NULL);
3500 }
3501 
3502 static int
3503 bwi_bus_attach(struct bwi_softc *sc)
3504 {
3505 	struct bwi_regwin *bus, *old;
3506 	int error;
3507 
3508 	bus = &sc->sc_bus_regwin;
3509 
3510 	error = bwi_regwin_switch(sc, bus, &old);
3511 	if (error)
3512 		return error;
3513 
3514 	if (!bwi_regwin_is_enabled(sc, bus))
3515 		bwi_regwin_enable(sc, bus, 0);
3516 
3517 	/* Disable interripts */
3518 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3519 
3520 	return bwi_regwin_switch(sc, old, NULL);
3521 }
3522 
3523 static const char *
3524 bwi_regwin_name(const struct bwi_regwin *rw)
3525 {
3526 	switch (rw->rw_type) {
3527 	case BWI_REGWIN_T_COM:
3528 		return "COM";
3529 	case BWI_REGWIN_T_BUSPCI:
3530 		return "PCI";
3531 	case BWI_REGWIN_T_MAC:
3532 		return "MAC";
3533 	case BWI_REGWIN_T_BUSPCIE:
3534 		return "PCIE";
3535 	}
3536 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3537 	return NULL;
3538 }
3539 
3540 static uint32_t
3541 bwi_regwin_disable_bits(struct bwi_softc *sc)
3542 {
3543 	uint32_t busrev;
3544 
3545 	/* XXX cache this */
3546 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3547 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3548 		"bus rev %u\n", busrev);
3549 
3550 	if (busrev == BWI_BUSREV_0)
3551 		return BWI_STATE_LO_DISABLE1;
3552 	else if (busrev == BWI_BUSREV_1)
3553 		return BWI_STATE_LO_DISABLE2;
3554 	else
3555 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3556 }
3557 
3558 int
3559 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3560 {
3561 	uint32_t val, disable_bits;
3562 
3563 	disable_bits = bwi_regwin_disable_bits(sc);
3564 	val = CSR_READ_4(sc, BWI_STATE_LO);
3565 
3566 	if ((val & (BWI_STATE_LO_CLOCK |
3567 		    BWI_STATE_LO_RESET |
3568 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3569 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3570 			bwi_regwin_name(rw));
3571 		return 1;
3572 	} else {
3573 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3574 			bwi_regwin_name(rw));
3575 		return 0;
3576 	}
3577 }
3578 
3579 void
3580 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3581 {
3582 	uint32_t state_lo, disable_bits;
3583 	int i;
3584 
3585 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3586 
3587 	/*
3588 	 * If current regwin is in 'reset' state, it was already disabled.
3589 	 */
3590 	if (state_lo & BWI_STATE_LO_RESET) {
3591 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3592 			"%s was already disabled\n", bwi_regwin_name(rw));
3593 		return;
3594 	}
3595 
3596 	disable_bits = bwi_regwin_disable_bits(sc);
3597 
3598 	/*
3599 	 * Disable normal clock
3600 	 */
3601 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3602 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3603 
3604 	/*
3605 	 * Wait until normal clock is disabled
3606 	 */
3607 #define NRETRY	1000
3608 	for (i = 0; i < NRETRY; ++i) {
3609 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3610 		if (state_lo & disable_bits)
3611 			break;
3612 		DELAY(10);
3613 	}
3614 	if (i == NRETRY) {
3615 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3616 			      bwi_regwin_name(rw));
3617 	}
3618 
3619 	for (i = 0; i < NRETRY; ++i) {
3620 		uint32_t state_hi;
3621 
3622 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3623 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3624 			break;
3625 		DELAY(10);
3626 	}
3627 	if (i == NRETRY) {
3628 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3629 			      bwi_regwin_name(rw));
3630 	}
3631 #undef NRETRY
3632 
3633 	/*
3634 	 * Reset and disable regwin with gated clock
3635 	 */
3636 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3637 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3638 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3639 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3640 
3641 	/* Flush pending bus write */
3642 	CSR_READ_4(sc, BWI_STATE_LO);
3643 	DELAY(1);
3644 
3645 	/* Reset and disable regwin */
3646 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3647 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3648 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3649 
3650 	/* Flush pending bus write */
3651 	CSR_READ_4(sc, BWI_STATE_LO);
3652 	DELAY(1);
3653 }
3654 
3655 void
3656 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3657 {
3658 	uint32_t state_lo, state_hi, imstate;
3659 
3660 	bwi_regwin_disable(sc, rw, flags);
3661 
3662 	/* Reset regwin with gated clock */
3663 	state_lo = BWI_STATE_LO_RESET |
3664 		   BWI_STATE_LO_CLOCK |
3665 		   BWI_STATE_LO_GATED_CLOCK |
3666 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3667 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3668 
3669 	/* Flush pending bus write */
3670 	CSR_READ_4(sc, BWI_STATE_LO);
3671 	DELAY(1);
3672 
3673 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3674 	if (state_hi & BWI_STATE_HI_SERROR)
3675 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3676 
3677 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3678 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3679 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3680 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3681 	}
3682 
3683 	/* Enable regwin with gated clock */
3684 	state_lo = BWI_STATE_LO_CLOCK |
3685 		   BWI_STATE_LO_GATED_CLOCK |
3686 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3687 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3688 
3689 	/* Flush pending bus write */
3690 	CSR_READ_4(sc, BWI_STATE_LO);
3691 	DELAY(1);
3692 
3693 	/* Enable regwin with normal clock */
3694 	state_lo = BWI_STATE_LO_CLOCK |
3695 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3696 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3697 
3698 	/* Flush pending bus write */
3699 	CSR_READ_4(sc, BWI_STATE_LO);
3700 	DELAY(1);
3701 }
3702 
3703 static void
3704 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3705 {
3706 	struct ifnet *ifp = sc->sc_ifp;
3707 	struct bwi_mac *mac;
3708 	struct bwi_myaddr_bssid buf;
3709 	const uint8_t *p;
3710 	uint32_t val;
3711 	int n, i;
3712 
3713 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3714 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3715 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3716 
3717 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3718 
3719 	bcopy(IF_LLADDR(ifp), buf.myaddr, sizeof(buf.myaddr));
3720 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3721 
3722 	n = sizeof(buf) / sizeof(val);
3723 	p = (const uint8_t *)&buf;
3724 	for (i = 0; i < n; ++i) {
3725 		int j;
3726 
3727 		val = 0;
3728 		for (j = 0; j < sizeof(val); ++j)
3729 			val |= ((uint32_t)(*p++)) << (j * 8);
3730 
3731 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3732 	}
3733 }
3734 
3735 static void
3736 bwi_updateslot(struct ifnet *ifp)
3737 {
3738 	struct bwi_softc *sc = ifp->if_softc;
3739 	struct ieee80211com *ic = ifp->if_l2com;
3740 	struct bwi_mac *mac;
3741 
3742 	BWI_LOCK(sc);
3743 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3744 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3745 
3746 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3747 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3748 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3749 
3750 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3751 	}
3752 	BWI_UNLOCK(sc);
3753 }
3754 
3755 static void
3756 bwi_calibrate(void *xsc)
3757 {
3758 	struct bwi_softc *sc = xsc;
3759 #ifdef INVARIANTS
3760 	struct ifnet *ifp = sc->sc_ifp;
3761 	struct ieee80211com *ic = ifp->if_l2com;
3762 #endif
3763 	struct bwi_mac *mac;
3764 
3765 	BWI_ASSERT_LOCKED(sc);
3766 
3767 	KASSERT(ic->ic_opmode != IEEE80211_M_MONITOR,
3768 	    ("opmode %d", ic->ic_opmode));
3769 
3770 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3771 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3772 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3773 
3774 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3775 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3776 
3777 	/* XXX 15 seconds */
3778 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3779 }
3780 
3781 static int
3782 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3783 {
3784 	struct bwi_mac *mac;
3785 
3786 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3787 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3788 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3789 
3790 	return bwi_rf_calc_rssi(mac, hdr);
3791 }
3792 
3793 static int
3794 bwi_calc_noise(struct bwi_softc *sc)
3795 {
3796 	struct bwi_mac *mac;
3797 
3798 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3799 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3800 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3801 
3802 	return bwi_rf_calc_noise(mac);
3803 }
3804 
3805 static __inline uint8_t
3806 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3807 {
3808 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3809 	return (ieee80211_plcp2rate(plcp, type));
3810 }
3811 
3812 static void
3813 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3814     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3815 {
3816 	const struct ieee80211_frame_min *wh;
3817 
3818 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3819 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3820 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3821 
3822 	wh = mtod(m, const struct ieee80211_frame_min *);
3823 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3824 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3825 
3826 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */
3827 	sc->sc_rx_th.wr_rate = rate;
3828 	sc->sc_rx_th.wr_antsignal = rssi;
3829 	sc->sc_rx_th.wr_antnoise = noise;
3830 }
3831 
3832 static void
3833 bwi_led_attach(struct bwi_softc *sc)
3834 {
3835 	const uint8_t *led_act = NULL;
3836 	uint16_t gpio, val[BWI_LED_MAX];
3837 	int i;
3838 
3839 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
3840 
3841 	for (i = 0; i < N(bwi_vendor_led_act); ++i) {
3842 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3843 			led_act = bwi_vendor_led_act[i].led_act;
3844 			break;
3845 		}
3846 	}
3847 	if (led_act == NULL)
3848 		led_act = bwi_default_led_act;
3849 
3850 #undef N
3851 
3852 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3853 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3854 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3855 
3856 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3857 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3858 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3859 
3860 	for (i = 0; i < BWI_LED_MAX; ++i) {
3861 		struct bwi_led *led = &sc->sc_leds[i];
3862 
3863 		if (val[i] == 0xff) {
3864 			led->l_act = led_act[i];
3865 		} else {
3866 			if (val[i] & BWI_LED_ACT_LOW)
3867 				led->l_flags |= BWI_LED_F_ACTLOW;
3868 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3869 		}
3870 		led->l_mask = (1 << i);
3871 
3872 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3873 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3874 		    led->l_act == BWI_LED_ACT_BLINK) {
3875 			led->l_flags |= BWI_LED_F_BLINK;
3876 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3877 				led->l_flags |= BWI_LED_F_POLLABLE;
3878 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3879 				led->l_flags |= BWI_LED_F_SLOW;
3880 
3881 			if (sc->sc_blink_led == NULL) {
3882 				sc->sc_blink_led = led;
3883 				if (led->l_flags & BWI_LED_F_SLOW)
3884 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3885 			}
3886 		}
3887 
3888 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3889 			"%dth led, act %d, lowact %d\n", i,
3890 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3891 	}
3892 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3893 }
3894 
3895 static __inline uint16_t
3896 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3897 {
3898 	if (led->l_flags & BWI_LED_F_ACTLOW)
3899 		on = !on;
3900 	if (on)
3901 		val |= led->l_mask;
3902 	else
3903 		val &= ~led->l_mask;
3904 	return val;
3905 }
3906 
3907 static void
3908 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3909 {
3910 	struct ifnet *ifp = sc->sc_ifp;
3911 	struct ieee80211com *ic = ifp->if_l2com;
3912 	uint16_t val;
3913 	int i;
3914 
3915 	if (nstate == IEEE80211_S_INIT) {
3916 		callout_stop(&sc->sc_led_blink_ch);
3917 		sc->sc_led_blinking = 0;
3918 	}
3919 
3920 	if ((ic->ic_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3921 		return;
3922 
3923 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3924 	for (i = 0; i < BWI_LED_MAX; ++i) {
3925 		struct bwi_led *led = &sc->sc_leds[i];
3926 		int on;
3927 
3928 		if (led->l_act == BWI_LED_ACT_UNKN ||
3929 		    led->l_act == BWI_LED_ACT_NULL)
3930 			continue;
3931 
3932 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3933 		    nstate != IEEE80211_S_INIT)
3934 		    	continue;
3935 
3936 		switch (led->l_act) {
3937 		case BWI_LED_ACT_ON:	/* Always on */
3938 			on = 1;
3939 			break;
3940 		case BWI_LED_ACT_OFF:	/* Always off */
3941 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3942 			on = 0;
3943 			break;
3944 		default:
3945 			on = 1;
3946 			switch (nstate) {
3947 			case IEEE80211_S_INIT:
3948 				on = 0;
3949 				break;
3950 			case IEEE80211_S_RUN:
3951 				if (led->l_act == BWI_LED_ACT_11G &&
3952 				    ic->ic_curmode != IEEE80211_MODE_11G)
3953 					on = 0;
3954 				break;
3955 			default:
3956 				if (led->l_act == BWI_LED_ACT_ASSOC)
3957 					on = 0;
3958 				break;
3959 			}
3960 			break;
3961 		}
3962 
3963 		val = bwi_led_onoff(led, val, on);
3964 	}
3965 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3966 }
3967 static void
3968 bwi_led_event(struct bwi_softc *sc, int event)
3969 {
3970 	struct bwi_led *led = sc->sc_blink_led;
3971 	int rate;
3972 
3973 	if (event == BWI_LED_EVENT_POLL) {
3974 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3975 			return;
3976 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3977 			return;
3978 	}
3979 
3980 	sc->sc_led_ticks = ticks;
3981 	if (sc->sc_led_blinking)
3982 		return;
3983 
3984 	switch (event) {
3985 	case BWI_LED_EVENT_RX:
3986 		rate = sc->sc_rx_rate;
3987 		break;
3988 	case BWI_LED_EVENT_TX:
3989 		rate = sc->sc_tx_rate;
3990 		break;
3991 	case BWI_LED_EVENT_POLL:
3992 		rate = 0;
3993 		break;
3994 	default:
3995 		panic("unknown LED event %d\n", event);
3996 		break;
3997 	}
3998 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3999 	    bwi_led_duration[rate].off_dur);
4000 }
4001 
4002 static void
4003 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
4004 {
4005 	struct bwi_led *led = sc->sc_blink_led;
4006 	uint16_t val;
4007 
4008 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4009 	val = bwi_led_onoff(led, val, 1);
4010 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4011 
4012 	if (led->l_flags & BWI_LED_F_SLOW) {
4013 		BWI_LED_SLOWDOWN(on_dur);
4014 		BWI_LED_SLOWDOWN(off_dur);
4015 	}
4016 
4017 	sc->sc_led_blinking = 1;
4018 	sc->sc_led_blink_offdur = off_dur;
4019 
4020 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
4021 }
4022 
4023 static void
4024 bwi_led_blink_next(void *xsc)
4025 {
4026 	struct bwi_softc *sc = xsc;
4027 	uint16_t val;
4028 
4029 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
4030 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
4031 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
4032 
4033 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
4034 	    bwi_led_blink_end, sc);
4035 }
4036 
4037 static void
4038 bwi_led_blink_end(void *xsc)
4039 {
4040 	struct bwi_softc *sc = xsc;
4041 	sc->sc_led_blinking = 0;
4042 }
4043 
4044 static void
4045 bwi_restart(void *xsc, int pending)
4046 {
4047 	struct bwi_softc *sc = xsc;
4048 	struct ifnet *ifp = sc->sc_ifp;
4049 
4050 	if_printf(ifp, "%s begin, help!\n", __func__);
4051 	BWI_LOCK(sc);
4052 	bwi_init_statechg(xsc, 0);
4053 #if 0
4054 	bwi_start_locked(ifp);
4055 #endif
4056 	BWI_UNLOCK(sc);
4057 }
4058