1 /* 2 * Copyright (c) 2007 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Sepherosa Ziehau <sepherosa@gmail.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $ 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_inet.h" 41 #include "opt_bwi.h" 42 #include "opt_wlan.h" 43 44 #include <sys/param.h> 45 #include <sys/endian.h> 46 #include <sys/kernel.h> 47 #include <sys/bus.h> 48 #include <sys/malloc.h> 49 #include <sys/proc.h> 50 #include <sys/rman.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 #include <sys/systm.h> 55 #include <sys/taskqueue.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_types.h> 62 #include <net/if_arp.h> 63 #include <net/ethernet.h> 64 #include <net/if_llc.h> 65 66 #include <net80211/ieee80211_var.h> 67 #include <net80211/ieee80211_radiotap.h> 68 #include <net80211/ieee80211_regdomain.h> 69 #include <net80211/ieee80211_phy.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <net/bpf.h> 73 74 #ifdef INET 75 #include <netinet/in.h> 76 #include <netinet/if_ether.h> 77 #endif 78 79 #include <machine/bus.h> 80 81 #include <dev/pci/pcivar.h> 82 #include <dev/pci/pcireg.h> 83 84 #include <dev/bwi/bitops.h> 85 #include <dev/bwi/if_bwireg.h> 86 #include <dev/bwi/if_bwivar.h> 87 #include <dev/bwi/bwimac.h> 88 #include <dev/bwi/bwirf.h> 89 90 struct bwi_clock_freq { 91 u_int clkfreq_min; 92 u_int clkfreq_max; 93 }; 94 95 struct bwi_myaddr_bssid { 96 uint8_t myaddr[IEEE80211_ADDR_LEN]; 97 uint8_t bssid[IEEE80211_ADDR_LEN]; 98 } __packed; 99 100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *, 101 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 102 const uint8_t [IEEE80211_ADDR_LEN], 103 const uint8_t [IEEE80211_ADDR_LEN]); 104 static void bwi_vap_delete(struct ieee80211vap *); 105 static void bwi_init(struct bwi_softc *); 106 static void bwi_parent(struct ieee80211com *); 107 static int bwi_transmit(struct ieee80211com *, struct mbuf *); 108 static void bwi_start_locked(struct bwi_softc *); 109 static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 110 const struct ieee80211_bpf_params *); 111 static void bwi_watchdog(void *); 112 static void bwi_scan_start(struct ieee80211com *); 113 static void bwi_getradiocaps(struct ieee80211com *, int, int *, 114 struct ieee80211_channel[]); 115 static void bwi_set_channel(struct ieee80211com *); 116 static void bwi_scan_end(struct ieee80211com *); 117 static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 118 static void bwi_updateslot(struct ieee80211com *); 119 static int bwi_media_change(struct ifnet *); 120 121 static void bwi_calibrate(void *); 122 123 static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *); 124 static int bwi_calc_noise(struct bwi_softc *); 125 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype); 126 static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *, 127 struct bwi_rxbuf_hdr *, const void *, int, int, int); 128 129 static void bwi_restart(void *, int); 130 static void bwi_init_statechg(struct bwi_softc *, int); 131 static void bwi_stop(struct bwi_softc *, int); 132 static void bwi_stop_locked(struct bwi_softc *, int); 133 static int bwi_newbuf(struct bwi_softc *, int, int); 134 static int bwi_encap(struct bwi_softc *, int, struct mbuf *, 135 struct ieee80211_node *); 136 static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *, 137 struct ieee80211_node *, 138 const struct ieee80211_bpf_params *); 139 140 static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t, 141 bus_addr_t, int, int); 142 static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t); 143 144 static int bwi_init_tx_ring32(struct bwi_softc *, int); 145 static int bwi_init_rx_ring32(struct bwi_softc *); 146 static int bwi_init_txstats32(struct bwi_softc *); 147 static void bwi_free_tx_ring32(struct bwi_softc *, int); 148 static void bwi_free_rx_ring32(struct bwi_softc *); 149 static void bwi_free_txstats32(struct bwi_softc *); 150 static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int); 151 static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *, 152 int, bus_addr_t, int); 153 static int bwi_rxeof32(struct bwi_softc *); 154 static void bwi_start_tx32(struct bwi_softc *, uint32_t, int); 155 static void bwi_txeof_status32(struct bwi_softc *); 156 157 static int bwi_init_tx_ring64(struct bwi_softc *, int); 158 static int bwi_init_rx_ring64(struct bwi_softc *); 159 static int bwi_init_txstats64(struct bwi_softc *); 160 static void bwi_free_tx_ring64(struct bwi_softc *, int); 161 static void bwi_free_rx_ring64(struct bwi_softc *); 162 static void bwi_free_txstats64(struct bwi_softc *); 163 static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int); 164 static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *, 165 int, bus_addr_t, int); 166 static int bwi_rxeof64(struct bwi_softc *); 167 static void bwi_start_tx64(struct bwi_softc *, uint32_t, int); 168 static void bwi_txeof_status64(struct bwi_softc *); 169 170 static int bwi_rxeof(struct bwi_softc *, int); 171 static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int); 172 static void bwi_txeof(struct bwi_softc *); 173 static void bwi_txeof_status(struct bwi_softc *, int); 174 static void bwi_enable_intrs(struct bwi_softc *, uint32_t); 175 static void bwi_disable_intrs(struct bwi_softc *, uint32_t); 176 177 static int bwi_dma_alloc(struct bwi_softc *); 178 static void bwi_dma_free(struct bwi_softc *); 179 static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t, 180 struct bwi_ring_data *, bus_size_t, 181 uint32_t); 182 static int bwi_dma_mbuf_create(struct bwi_softc *); 183 static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int); 184 static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t); 185 static void bwi_dma_txstats_free(struct bwi_softc *); 186 static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int); 187 static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int, 188 bus_size_t, int); 189 190 static void bwi_power_on(struct bwi_softc *, int); 191 static int bwi_power_off(struct bwi_softc *, int); 192 static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode); 193 static int bwi_set_clock_delay(struct bwi_softc *); 194 static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *); 195 static int bwi_get_pwron_delay(struct bwi_softc *sc); 196 static void bwi_set_addr_filter(struct bwi_softc *, uint16_t, 197 const uint8_t *); 198 static void bwi_set_bssid(struct bwi_softc *, const uint8_t *); 199 200 static void bwi_get_card_flags(struct bwi_softc *); 201 static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *); 202 203 static int bwi_bus_attach(struct bwi_softc *); 204 static int bwi_bbp_attach(struct bwi_softc *); 205 static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode); 206 static void bwi_bbp_power_off(struct bwi_softc *); 207 208 static const char *bwi_regwin_name(const struct bwi_regwin *); 209 static uint32_t bwi_regwin_disable_bits(struct bwi_softc *); 210 static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *); 211 static int bwi_regwin_select(struct bwi_softc *, int); 212 213 static void bwi_led_attach(struct bwi_softc *); 214 static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state); 215 static void bwi_led_event(struct bwi_softc *, int); 216 static void bwi_led_blink_start(struct bwi_softc *, int, int); 217 static void bwi_led_blink_next(void *); 218 static void bwi_led_blink_end(void *); 219 220 static const struct { 221 uint16_t did_min; 222 uint16_t did_max; 223 uint16_t bbp_id; 224 } bwi_bbpid_map[] = { 225 { 0x4301, 0x4301, 0x4301 }, 226 { 0x4305, 0x4307, 0x4307 }, 227 { 0x4402, 0x4403, 0x4402 }, 228 { 0x4610, 0x4615, 0x4610 }, 229 { 0x4710, 0x4715, 0x4710 }, 230 { 0x4720, 0x4725, 0x4309 } 231 }; 232 233 static const struct { 234 uint16_t bbp_id; 235 int nregwin; 236 } bwi_regwin_count[] = { 237 { 0x4301, 5 }, 238 { 0x4306, 6 }, 239 { 0x4307, 5 }, 240 { 0x4310, 8 }, 241 { 0x4401, 3 }, 242 { 0x4402, 3 }, 243 { 0x4610, 9 }, 244 { 0x4704, 9 }, 245 { 0x4710, 9 }, 246 { 0x5365, 7 } 247 }; 248 249 #define CLKSRC(src) \ 250 [BWI_CLKSRC_ ## src] = { \ 251 .freq_min = BWI_CLKSRC_ ##src## _FMIN, \ 252 .freq_max = BWI_CLKSRC_ ##src## _FMAX \ 253 } 254 255 static const struct { 256 u_int freq_min; 257 u_int freq_max; 258 } bwi_clkfreq[BWI_CLKSRC_MAX] = { 259 CLKSRC(LP_OSC), 260 CLKSRC(CS_OSC), 261 CLKSRC(PCI) 262 }; 263 264 #undef CLKSRC 265 266 #define VENDOR_LED_ACT(vendor) \ 267 { \ 268 .vid = PCI_VENDOR_##vendor, \ 269 .led_act = { BWI_VENDOR_LED_ACT_##vendor } \ 270 } 271 272 static const struct { 273 #define PCI_VENDOR_COMPAQ 0x0e11 274 #define PCI_VENDOR_LINKSYS 0x1737 275 uint16_t vid; 276 uint8_t led_act[BWI_LED_MAX]; 277 } bwi_vendor_led_act[] = { 278 VENDOR_LED_ACT(COMPAQ), 279 VENDOR_LED_ACT(LINKSYS) 280 #undef PCI_VENDOR_LINKSYS 281 #undef PCI_VENDOR_COMPAQ 282 }; 283 284 static const uint8_t bwi_default_led_act[BWI_LED_MAX] = 285 { BWI_VENDOR_LED_ACT_DEFAULT }; 286 287 #undef VENDOR_LED_ACT 288 289 static const struct { 290 int on_dur; 291 int off_dur; 292 } bwi_led_duration[109] = { 293 [0] = { 400, 100 }, 294 [2] = { 150, 75 }, 295 [4] = { 90, 45 }, 296 [11] = { 66, 34 }, 297 [12] = { 53, 26 }, 298 [18] = { 42, 21 }, 299 [22] = { 35, 17 }, 300 [24] = { 32, 16 }, 301 [36] = { 21, 10 }, 302 [48] = { 16, 8 }, 303 [72] = { 11, 5 }, 304 [96] = { 9, 4 }, 305 [108] = { 7, 3 } 306 }; 307 308 static const uint8_t bwi_chan_2ghz[] = 309 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 310 311 #ifdef BWI_DEBUG 312 #ifdef BWI_DEBUG_VERBOSE 313 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER; 314 #else 315 static uint32_t bwi_debug; 316 #endif 317 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug); 318 #endif /* BWI_DEBUG */ 319 320 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN]; 321 322 uint16_t 323 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs) 324 { 325 return CSR_READ_2(sc, ofs + BWI_SPROM_START); 326 } 327 328 static __inline void 329 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array, 330 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, 331 int tx) 332 { 333 struct bwi_desc32 *desc = &desc_array[desc_idx]; 334 uint32_t ctrl, addr, addr_hi, addr_lo; 335 336 addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK); 337 addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK); 338 339 addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) | 340 __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK); 341 342 ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) | 343 __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK); 344 if (desc_idx == ndesc - 1) 345 ctrl |= BWI_DESC32_C_EOR; 346 if (tx) { 347 /* XXX */ 348 ctrl |= BWI_DESC32_C_FRAME_START | 349 BWI_DESC32_C_FRAME_END | 350 BWI_DESC32_C_INTR; 351 } 352 353 desc->addr = htole32(addr); 354 desc->ctrl = htole32(ctrl); 355 } 356 357 int 358 bwi_attach(struct bwi_softc *sc) 359 { 360 struct ieee80211com *ic = &sc->sc_ic; 361 device_t dev = sc->sc_dev; 362 struct bwi_mac *mac; 363 struct bwi_phy *phy; 364 int i, error; 365 366 BWI_LOCK_INIT(sc); 367 368 /* 369 * Initialize taskq and various tasks 370 */ 371 sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO, 372 taskqueue_thread_enqueue, &sc->sc_tq); 373 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 374 device_get_nameunit(dev)); 375 TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc); 376 callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0); 377 mbufq_init(&sc->sc_snd, ifqmaxlen); 378 379 /* 380 * Initialize sysctl variables 381 */ 382 sc->sc_fw_version = BWI_FW_VERSION3; 383 sc->sc_led_idle = (2350 * hz) / 1000; 384 sc->sc_led_blink = 1; 385 sc->sc_txpwr_calib = 1; 386 #ifdef BWI_DEBUG 387 sc->sc_debug = bwi_debug; 388 #endif 389 bwi_power_on(sc, 1); 390 391 error = bwi_bbp_attach(sc); 392 if (error) 393 goto fail; 394 395 error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 396 if (error) 397 goto fail; 398 399 if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) { 400 error = bwi_set_clock_delay(sc); 401 if (error) 402 goto fail; 403 404 error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST); 405 if (error) 406 goto fail; 407 408 error = bwi_get_pwron_delay(sc); 409 if (error) 410 goto fail; 411 } 412 413 error = bwi_bus_attach(sc); 414 if (error) 415 goto fail; 416 417 bwi_get_card_flags(sc); 418 419 bwi_led_attach(sc); 420 421 for (i = 0; i < sc->sc_nmac; ++i) { 422 struct bwi_regwin *old; 423 424 mac = &sc->sc_mac[i]; 425 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old); 426 if (error) 427 goto fail; 428 429 error = bwi_mac_lateattach(mac); 430 if (error) 431 goto fail; 432 433 error = bwi_regwin_switch(sc, old, NULL); 434 if (error) 435 goto fail; 436 } 437 438 /* 439 * XXX First MAC is known to exist 440 * TODO2 441 */ 442 mac = &sc->sc_mac[0]; 443 phy = &mac->mac_phy; 444 445 bwi_bbp_power_off(sc); 446 447 error = bwi_dma_alloc(sc); 448 if (error) 449 goto fail; 450 451 error = bwi_mac_fw_alloc(mac); 452 if (error) 453 goto fail; 454 455 callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0); 456 457 /* 458 * Setup ratesets, phytype, channels and get MAC address 459 */ 460 if (phy->phy_mode == IEEE80211_MODE_11B || 461 phy->phy_mode == IEEE80211_MODE_11G) { 462 if (phy->phy_mode == IEEE80211_MODE_11B) { 463 ic->ic_phytype = IEEE80211_T_DS; 464 } else { 465 ic->ic_phytype = IEEE80211_T_OFDM; 466 } 467 468 bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr); 469 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { 470 bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr); 471 if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { 472 device_printf(dev, 473 "invalid MAC address: %6D\n", 474 ic->ic_macaddr, ":"); 475 } 476 } 477 } else if (phy->phy_mode == IEEE80211_MODE_11A) { 478 /* TODO:11A */ 479 error = ENXIO; 480 goto fail; 481 } else { 482 panic("unknown phymode %d\n", phy->phy_mode); 483 } 484 485 /* Get locale */ 486 sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO), 487 BWI_SPROM_CARD_INFO_LOCALE); 488 DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale); 489 /* XXX use locale */ 490 bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 491 ic->ic_channels); 492 493 ic->ic_softc = sc; 494 ic->ic_name = device_get_nameunit(dev); 495 ic->ic_caps = IEEE80211_C_STA | 496 IEEE80211_C_SHSLOT | 497 IEEE80211_C_SHPREAMBLE | 498 IEEE80211_C_WPA | 499 IEEE80211_C_BGSCAN | 500 IEEE80211_C_MONITOR; 501 ic->ic_opmode = IEEE80211_M_STA; 502 ieee80211_ifattach(ic); 503 504 ic->ic_headroom = sizeof(struct bwi_txbuf_hdr); 505 506 /* override default methods */ 507 ic->ic_vap_create = bwi_vap_create; 508 ic->ic_vap_delete = bwi_vap_delete; 509 ic->ic_raw_xmit = bwi_raw_xmit; 510 ic->ic_updateslot = bwi_updateslot; 511 ic->ic_scan_start = bwi_scan_start; 512 ic->ic_scan_end = bwi_scan_end; 513 ic->ic_getradiocaps = bwi_getradiocaps; 514 ic->ic_set_channel = bwi_set_channel; 515 ic->ic_transmit = bwi_transmit; 516 ic->ic_parent = bwi_parent; 517 518 sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan); 519 520 ieee80211_radiotap_attach(ic, 521 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 522 BWI_TX_RADIOTAP_PRESENT, 523 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 524 BWI_RX_RADIOTAP_PRESENT); 525 526 /* 527 * Add sysctl nodes 528 */ 529 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 530 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 531 "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0, 532 "Firmware version"); 533 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 534 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 535 "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0, 536 "# ticks before LED enters idle state"); 537 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 538 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 539 "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0, 540 "Allow LED to blink"); 541 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 542 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 543 "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0, 544 "Enable software TX power calibration"); 545 #ifdef BWI_DEBUG 546 SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), 547 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 548 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); 549 #endif 550 if (bootverbose) 551 ieee80211_announce(ic); 552 553 return (0); 554 fail: 555 BWI_LOCK_DESTROY(sc); 556 return (error); 557 } 558 559 int 560 bwi_detach(struct bwi_softc *sc) 561 { 562 struct ieee80211com *ic = &sc->sc_ic; 563 int i; 564 565 bwi_stop(sc, 1); 566 callout_drain(&sc->sc_led_blink_ch); 567 callout_drain(&sc->sc_calib_ch); 568 callout_drain(&sc->sc_watchdog_timer); 569 ieee80211_ifdetach(ic); 570 571 for (i = 0; i < sc->sc_nmac; ++i) 572 bwi_mac_detach(&sc->sc_mac[i]); 573 bwi_dma_free(sc); 574 taskqueue_free(sc->sc_tq); 575 mbufq_drain(&sc->sc_snd); 576 577 BWI_LOCK_DESTROY(sc); 578 579 return (0); 580 } 581 582 static struct ieee80211vap * 583 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 584 enum ieee80211_opmode opmode, int flags, 585 const uint8_t bssid[IEEE80211_ADDR_LEN], 586 const uint8_t mac[IEEE80211_ADDR_LEN]) 587 { 588 struct bwi_vap *bvp; 589 struct ieee80211vap *vap; 590 591 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 592 return NULL; 593 bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 594 vap = &bvp->bv_vap; 595 /* enable s/w bmiss handling for sta mode */ 596 ieee80211_vap_setup(ic, vap, name, unit, opmode, 597 flags | IEEE80211_CLONE_NOBEACONS, bssid); 598 599 /* override default methods */ 600 bvp->bv_newstate = vap->iv_newstate; 601 vap->iv_newstate = bwi_newstate; 602 #if 0 603 vap->iv_update_beacon = bwi_beacon_update; 604 #endif 605 ieee80211_ratectl_init(vap); 606 607 /* complete setup */ 608 ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status, 609 mac); 610 ic->ic_opmode = opmode; 611 return vap; 612 } 613 614 static void 615 bwi_vap_delete(struct ieee80211vap *vap) 616 { 617 struct bwi_vap *bvp = BWI_VAP(vap); 618 619 ieee80211_ratectl_deinit(vap); 620 ieee80211_vap_detach(vap); 621 free(bvp, M_80211_VAP); 622 } 623 624 void 625 bwi_suspend(struct bwi_softc *sc) 626 { 627 bwi_stop(sc, 1); 628 } 629 630 void 631 bwi_resume(struct bwi_softc *sc) 632 { 633 634 if (sc->sc_ic.ic_nrunning > 0) 635 bwi_init(sc); 636 } 637 638 int 639 bwi_shutdown(struct bwi_softc *sc) 640 { 641 bwi_stop(sc, 1); 642 return 0; 643 } 644 645 static void 646 bwi_power_on(struct bwi_softc *sc, int with_pll) 647 { 648 uint32_t gpio_in, gpio_out, gpio_en; 649 uint16_t status; 650 651 gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); 652 if (gpio_in & BWI_PCIM_GPIO_PWR_ON) 653 goto back; 654 655 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 656 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 657 658 gpio_out |= BWI_PCIM_GPIO_PWR_ON; 659 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 660 if (with_pll) { 661 /* Turn off PLL first */ 662 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 663 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 664 } 665 666 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 667 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 668 DELAY(1000); 669 670 if (with_pll) { 671 /* Turn on PLL */ 672 gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF; 673 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 674 DELAY(5000); 675 } 676 677 back: 678 /* Clear "Signaled Target Abort" */ 679 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); 680 status &= ~PCIM_STATUS_STABORT; 681 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); 682 } 683 684 static int 685 bwi_power_off(struct bwi_softc *sc, int with_pll) 686 { 687 uint32_t gpio_out, gpio_en; 688 689 pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */ 690 gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 691 gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); 692 693 gpio_out &= ~BWI_PCIM_GPIO_PWR_ON; 694 gpio_en |= BWI_PCIM_GPIO_PWR_ON; 695 if (with_pll) { 696 gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; 697 gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; 698 } 699 700 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); 701 pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); 702 return 0; 703 } 704 705 int 706 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw, 707 struct bwi_regwin **old_rw) 708 { 709 int error; 710 711 if (old_rw != NULL) 712 *old_rw = NULL; 713 714 if (!BWI_REGWIN_EXIST(rw)) 715 return EINVAL; 716 717 if (sc->sc_cur_regwin != rw) { 718 error = bwi_regwin_select(sc, rw->rw_id); 719 if (error) { 720 device_printf(sc->sc_dev, "can't select regwin %d\n", 721 rw->rw_id); 722 return error; 723 } 724 } 725 726 if (old_rw != NULL) 727 *old_rw = sc->sc_cur_regwin; 728 sc->sc_cur_regwin = rw; 729 return 0; 730 } 731 732 static int 733 bwi_regwin_select(struct bwi_softc *sc, int id) 734 { 735 uint32_t win = BWI_PCIM_REGWIN(id); 736 int i; 737 738 #define RETRY_MAX 50 739 for (i = 0; i < RETRY_MAX; ++i) { 740 pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4); 741 if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win) 742 return 0; 743 DELAY(10); 744 } 745 #undef RETRY_MAX 746 747 return ENXIO; 748 } 749 750 static void 751 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev) 752 { 753 uint32_t val; 754 755 val = CSR_READ_4(sc, BWI_ID_HI); 756 *type = BWI_ID_HI_REGWIN_TYPE(val); 757 *rev = BWI_ID_HI_REGWIN_REV(val); 758 759 DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, " 760 "vendor 0x%04x\n", *type, *rev, 761 __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK)); 762 } 763 764 static int 765 bwi_bbp_attach(struct bwi_softc *sc) 766 { 767 uint16_t bbp_id, rw_type; 768 uint8_t rw_rev; 769 uint32_t info; 770 int error, nregwin, i; 771 772 /* 773 * Get 0th regwin information 774 * NOTE: 0th regwin should exist 775 */ 776 error = bwi_regwin_select(sc, 0); 777 if (error) { 778 device_printf(sc->sc_dev, "can't select regwin 0\n"); 779 return error; 780 } 781 bwi_regwin_info(sc, &rw_type, &rw_rev); 782 783 /* 784 * Find out BBP id 785 */ 786 bbp_id = 0; 787 info = 0; 788 if (rw_type == BWI_REGWIN_T_COM) { 789 info = CSR_READ_4(sc, BWI_INFO); 790 bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK); 791 792 BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev); 793 794 sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY); 795 } else { 796 for (i = 0; i < nitems(bwi_bbpid_map); ++i) { 797 if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min && 798 sc->sc_pci_did <= bwi_bbpid_map[i].did_max) { 799 bbp_id = bwi_bbpid_map[i].bbp_id; 800 break; 801 } 802 } 803 if (bbp_id == 0) { 804 device_printf(sc->sc_dev, "no BBP id for device id " 805 "0x%04x\n", sc->sc_pci_did); 806 return ENXIO; 807 } 808 809 info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) | 810 __SHIFTIN(0, BWI_INFO_BBPPKG_MASK); 811 } 812 813 /* 814 * Find out number of regwins 815 */ 816 nregwin = 0; 817 if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) { 818 nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK); 819 } else { 820 for (i = 0; i < nitems(bwi_regwin_count); ++i) { 821 if (bwi_regwin_count[i].bbp_id == bbp_id) { 822 nregwin = bwi_regwin_count[i].nregwin; 823 break; 824 } 825 } 826 if (nregwin == 0) { 827 device_printf(sc->sc_dev, "no number of win for " 828 "BBP id 0x%04x\n", bbp_id); 829 return ENXIO; 830 } 831 } 832 833 /* Record BBP id/rev for later using */ 834 sc->sc_bbp_id = bbp_id; 835 sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK); 836 sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK); 837 device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n", 838 sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg); 839 840 DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n", 841 nregwin, sc->sc_cap); 842 843 /* 844 * Create rest of the regwins 845 */ 846 847 /* Don't re-create common regwin, if it is already created */ 848 i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0; 849 850 for (; i < nregwin; ++i) { 851 /* 852 * Get regwin information 853 */ 854 error = bwi_regwin_select(sc, i); 855 if (error) { 856 device_printf(sc->sc_dev, 857 "can't select regwin %d\n", i); 858 return error; 859 } 860 bwi_regwin_info(sc, &rw_type, &rw_rev); 861 862 /* 863 * Try attach: 864 * 1) Bus (PCI/PCIE) regwin 865 * 2) MAC regwin 866 * Ignore rest types of regwin 867 */ 868 if (rw_type == BWI_REGWIN_T_BUSPCI || 869 rw_type == BWI_REGWIN_T_BUSPCIE) { 870 if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 871 device_printf(sc->sc_dev, 872 "bus regwin already exists\n"); 873 } else { 874 BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i, 875 rw_type, rw_rev); 876 } 877 } else if (rw_type == BWI_REGWIN_T_MAC) { 878 /* XXX ignore return value */ 879 bwi_mac_attach(sc, i, rw_rev); 880 } 881 } 882 883 /* At least one MAC shold exist */ 884 if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) { 885 device_printf(sc->sc_dev, "no MAC was found\n"); 886 return ENXIO; 887 } 888 KASSERT(sc->sc_nmac > 0, ("no mac's")); 889 890 /* Bus regwin must exist */ 891 if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { 892 device_printf(sc->sc_dev, "no bus regwin was found\n"); 893 return ENXIO; 894 } 895 896 /* Start with first MAC */ 897 error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL); 898 if (error) 899 return error; 900 901 return 0; 902 } 903 904 int 905 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac) 906 { 907 struct bwi_regwin *old, *bus; 908 uint32_t val; 909 int error; 910 911 bus = &sc->sc_bus_regwin; 912 KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin")); 913 914 /* 915 * Tell bus to generate requested interrupts 916 */ 917 if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) { 918 /* 919 * NOTE: Read BWI_FLAGS from MAC regwin 920 */ 921 val = CSR_READ_4(sc, BWI_FLAGS); 922 923 error = bwi_regwin_switch(sc, bus, &old); 924 if (error) 925 return error; 926 927 CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK)); 928 } else { 929 uint32_t mac_mask; 930 931 mac_mask = 1 << mac->mac_id; 932 933 error = bwi_regwin_switch(sc, bus, &old); 934 if (error) 935 return error; 936 937 val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4); 938 val |= mac_mask << 8; 939 pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4); 940 } 941 942 if (sc->sc_flags & BWI_F_BUS_INITED) 943 goto back; 944 945 if (bus->rw_type == BWI_REGWIN_T_BUSPCI) { 946 /* 947 * Enable prefetch and burst 948 */ 949 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, 950 BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST); 951 952 if (bus->rw_rev < 5) { 953 struct bwi_regwin *com = &sc->sc_com_regwin; 954 955 /* 956 * Configure timeouts for bus operation 957 */ 958 959 /* 960 * Set service timeout and request timeout 961 */ 962 CSR_SETBITS_4(sc, BWI_CONF_LO, 963 __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) | 964 __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK)); 965 966 /* 967 * If there is common regwin, we switch to that regwin 968 * and switch back to bus regwin once we have done. 969 */ 970 if (BWI_REGWIN_EXIST(com)) { 971 error = bwi_regwin_switch(sc, com, NULL); 972 if (error) 973 return error; 974 } 975 976 /* Let bus know what we have changed */ 977 CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC); 978 CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */ 979 CSR_WRITE_4(sc, BWI_BUS_DATA, 0); 980 CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */ 981 982 if (BWI_REGWIN_EXIST(com)) { 983 error = bwi_regwin_switch(sc, bus, NULL); 984 if (error) 985 return error; 986 } 987 } else if (bus->rw_rev >= 11) { 988 /* 989 * Enable memory read multiple 990 */ 991 CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM); 992 } 993 } else { 994 /* TODO:PCIE */ 995 } 996 997 sc->sc_flags |= BWI_F_BUS_INITED; 998 back: 999 return bwi_regwin_switch(sc, old, NULL); 1000 } 1001 1002 static void 1003 bwi_get_card_flags(struct bwi_softc *sc) 1004 { 1005 #define PCI_VENDOR_APPLE 0x106b 1006 #define PCI_VENDOR_DELL 0x1028 1007 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS); 1008 if (sc->sc_card_flags == 0xffff) 1009 sc->sc_card_flags = 0; 1010 1011 if (sc->sc_pci_subvid == PCI_VENDOR_DELL && 1012 sc->sc_bbp_id == BWI_BBPID_BCM4301 && 1013 sc->sc_pci_revid == 0x74) 1014 sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST; 1015 1016 if (sc->sc_pci_subvid == PCI_VENDOR_APPLE && 1017 sc->sc_pci_subdid == 0x4e && /* XXX */ 1018 sc->sc_pci_revid > 0x40) 1019 sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9; 1020 1021 DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags); 1022 #undef PCI_VENDOR_DELL 1023 #undef PCI_VENDOR_APPLE 1024 } 1025 1026 static void 1027 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr) 1028 { 1029 int i; 1030 1031 for (i = 0; i < 3; ++i) { 1032 *((uint16_t *)eaddr + i) = 1033 htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i)); 1034 } 1035 } 1036 1037 static void 1038 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq) 1039 { 1040 struct bwi_regwin *com; 1041 uint32_t val; 1042 u_int div; 1043 int src; 1044 1045 bzero(freq, sizeof(*freq)); 1046 com = &sc->sc_com_regwin; 1047 1048 KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist")); 1049 KASSERT(sc->sc_cur_regwin == com, ("wrong regwin")); 1050 KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode")); 1051 1052 /* 1053 * Calculate clock frequency 1054 */ 1055 src = -1; 1056 div = 0; 1057 if (com->rw_rev < 6) { 1058 val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); 1059 if (val & BWI_PCIM_GPIO_OUT_CLKSRC) { 1060 src = BWI_CLKSRC_PCI; 1061 div = 64; 1062 } else { 1063 src = BWI_CLKSRC_CS_OSC; 1064 div = 32; 1065 } 1066 } else if (com->rw_rev < 10) { 1067 val = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1068 1069 src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC); 1070 if (src == BWI_CLKSRC_LP_OSC) { 1071 div = 1; 1072 } else { 1073 div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2; 1074 1075 /* Unknown source */ 1076 if (src >= BWI_CLKSRC_MAX) 1077 src = BWI_CLKSRC_CS_OSC; 1078 } 1079 } else { 1080 val = CSR_READ_4(sc, BWI_CLOCK_INFO); 1081 1082 src = BWI_CLKSRC_CS_OSC; 1083 div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2; 1084 } 1085 1086 KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src)); 1087 KASSERT(div != 0, ("div zero")); 1088 1089 DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n", 1090 src == BWI_CLKSRC_PCI ? "PCI" : 1091 (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC")); 1092 1093 freq->clkfreq_min = bwi_clkfreq[src].freq_min / div; 1094 freq->clkfreq_max = bwi_clkfreq[src].freq_max / div; 1095 1096 DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n", 1097 freq->clkfreq_min, freq->clkfreq_max); 1098 } 1099 1100 static int 1101 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 1102 { 1103 struct bwi_regwin *old, *com; 1104 uint32_t clk_ctrl, clk_src; 1105 int error, pwr_off = 0; 1106 1107 com = &sc->sc_com_regwin; 1108 if (!BWI_REGWIN_EXIST(com)) 1109 return 0; 1110 1111 if (com->rw_rev >= 10 || com->rw_rev < 6) 1112 return 0; 1113 1114 /* 1115 * For common regwin whose rev is [6, 10), the chip 1116 * must be capable to change clock mode. 1117 */ 1118 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 1119 return 0; 1120 1121 error = bwi_regwin_switch(sc, com, &old); 1122 if (error) 1123 return error; 1124 1125 if (clk_mode == BWI_CLOCK_MODE_FAST) 1126 bwi_power_on(sc, 0); /* Don't turn on PLL */ 1127 1128 clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL); 1129 clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC); 1130 1131 switch (clk_mode) { 1132 case BWI_CLOCK_MODE_FAST: 1133 clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW; 1134 clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL; 1135 break; 1136 case BWI_CLOCK_MODE_SLOW: 1137 clk_ctrl |= BWI_CLOCK_CTRL_SLOW; 1138 break; 1139 case BWI_CLOCK_MODE_DYN: 1140 clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW | 1141 BWI_CLOCK_CTRL_IGNPLL | 1142 BWI_CLOCK_CTRL_NODYN); 1143 if (clk_src != BWI_CLKSRC_CS_OSC) { 1144 clk_ctrl |= BWI_CLOCK_CTRL_NODYN; 1145 pwr_off = 1; 1146 } 1147 break; 1148 } 1149 CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl); 1150 1151 if (pwr_off) 1152 bwi_power_off(sc, 0); /* Leave PLL as it is */ 1153 1154 return bwi_regwin_switch(sc, old, NULL); 1155 } 1156 1157 static int 1158 bwi_set_clock_delay(struct bwi_softc *sc) 1159 { 1160 struct bwi_regwin *old, *com; 1161 int error; 1162 1163 com = &sc->sc_com_regwin; 1164 if (!BWI_REGWIN_EXIST(com)) 1165 return 0; 1166 1167 error = bwi_regwin_switch(sc, com, &old); 1168 if (error) 1169 return error; 1170 1171 if (sc->sc_bbp_id == BWI_BBPID_BCM4321) { 1172 if (sc->sc_bbp_rev == 0) 1173 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0); 1174 else if (sc->sc_bbp_rev == 1) 1175 CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1); 1176 } 1177 1178 if (sc->sc_cap & BWI_CAP_CLKMODE) { 1179 if (com->rw_rev >= 10) { 1180 CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000); 1181 } else { 1182 struct bwi_clock_freq freq; 1183 1184 bwi_get_clock_freq(sc, &freq); 1185 CSR_WRITE_4(sc, BWI_PLL_ON_DELAY, 1186 howmany(freq.clkfreq_max * 150, 1000000)); 1187 CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY, 1188 howmany(freq.clkfreq_max * 15, 1000000)); 1189 } 1190 } 1191 1192 return bwi_regwin_switch(sc, old, NULL); 1193 } 1194 1195 static void 1196 bwi_init(struct bwi_softc *sc) 1197 { 1198 struct ieee80211com *ic = &sc->sc_ic; 1199 1200 BWI_LOCK(sc); 1201 bwi_init_statechg(sc, 1); 1202 BWI_UNLOCK(sc); 1203 1204 if (sc->sc_flags & BWI_F_RUNNING) 1205 ieee80211_start_all(ic); /* start all vap's */ 1206 } 1207 1208 static void 1209 bwi_init_statechg(struct bwi_softc *sc, int statechg) 1210 { 1211 struct bwi_mac *mac; 1212 int error; 1213 1214 BWI_ASSERT_LOCKED(sc); 1215 1216 bwi_stop_locked(sc, statechg); 1217 1218 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); 1219 1220 /* TODO: 2 MAC */ 1221 1222 mac = &sc->sc_mac[0]; 1223 error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL); 1224 if (error) { 1225 device_printf(sc->sc_dev, "%s: error %d on regwin switch\n", 1226 __func__, error); 1227 goto bad; 1228 } 1229 error = bwi_mac_init(mac); 1230 if (error) { 1231 device_printf(sc->sc_dev, "%s: error %d on MAC init\n", 1232 __func__, error); 1233 goto bad; 1234 } 1235 1236 bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN); 1237 1238 bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */ 1239 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr); 1240 1241 bwi_mac_reset_hwkeys(mac); 1242 1243 if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) { 1244 int i; 1245 1246 #define NRETRY 1000 1247 /* 1248 * Drain any possible pending TX status 1249 */ 1250 for (i = 0; i < NRETRY; ++i) { 1251 if ((CSR_READ_4(sc, BWI_TXSTATUS0) & 1252 BWI_TXSTATUS0_VALID) == 0) 1253 break; 1254 CSR_READ_4(sc, BWI_TXSTATUS1); 1255 } 1256 if (i == NRETRY) 1257 device_printf(sc->sc_dev, 1258 "%s: can't drain TX status\n", __func__); 1259 #undef NRETRY 1260 } 1261 1262 if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G) 1263 bwi_mac_updateslot(mac, 1); 1264 1265 /* Start MAC */ 1266 error = bwi_mac_start(mac); 1267 if (error) { 1268 device_printf(sc->sc_dev, "%s: error %d starting MAC\n", 1269 __func__, error); 1270 goto bad; 1271 } 1272 1273 /* Clear stop flag before enabling interrupt */ 1274 sc->sc_flags &= ~BWI_F_STOP; 1275 sc->sc_flags |= BWI_F_RUNNING; 1276 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1277 1278 /* Enable intrs */ 1279 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1280 return; 1281 bad: 1282 bwi_stop_locked(sc, 1); 1283 } 1284 1285 static void 1286 bwi_parent(struct ieee80211com *ic) 1287 { 1288 struct bwi_softc *sc = ic->ic_softc; 1289 int startall = 0; 1290 1291 BWI_LOCK(sc); 1292 if (ic->ic_nrunning > 0) { 1293 struct bwi_mac *mac; 1294 int promisc = -1; 1295 1296 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1297 ("current regwin type %d", 1298 sc->sc_cur_regwin->rw_type)); 1299 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1300 1301 if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) { 1302 promisc = 1; 1303 sc->sc_flags |= BWI_F_PROMISC; 1304 } else if (ic->ic_promisc == 0 && 1305 (sc->sc_flags & BWI_F_PROMISC) != 0) { 1306 promisc = 0; 1307 sc->sc_flags &= ~BWI_F_PROMISC; 1308 } 1309 1310 if (promisc >= 0) 1311 bwi_mac_set_promisc(mac, promisc); 1312 } 1313 if (ic->ic_nrunning > 0) { 1314 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1315 bwi_init_statechg(sc, 1); 1316 startall = 1; 1317 } 1318 } else if (sc->sc_flags & BWI_F_RUNNING) 1319 bwi_stop_locked(sc, 1); 1320 BWI_UNLOCK(sc); 1321 if (startall) 1322 ieee80211_start_all(ic); 1323 } 1324 1325 static int 1326 bwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1327 { 1328 struct bwi_softc *sc = ic->ic_softc; 1329 int error; 1330 1331 BWI_LOCK(sc); 1332 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1333 BWI_UNLOCK(sc); 1334 return (ENXIO); 1335 } 1336 error = mbufq_enqueue(&sc->sc_snd, m); 1337 if (error) { 1338 BWI_UNLOCK(sc); 1339 return (error); 1340 } 1341 bwi_start_locked(sc); 1342 BWI_UNLOCK(sc); 1343 return (0); 1344 } 1345 1346 static void 1347 bwi_start_locked(struct bwi_softc *sc) 1348 { 1349 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1350 struct ieee80211_frame *wh; 1351 struct ieee80211_node *ni; 1352 struct mbuf *m; 1353 int trans, idx; 1354 1355 BWI_ASSERT_LOCKED(sc); 1356 1357 trans = 0; 1358 idx = tbd->tbd_idx; 1359 1360 while (tbd->tbd_buf[idx].tb_mbuf == NULL && 1361 tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC && 1362 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1363 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1364 wh = mtod(m, struct ieee80211_frame *); 1365 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 && 1366 ieee80211_crypto_encap(ni, m) == NULL) { 1367 if_inc_counter(ni->ni_vap->iv_ifp, 1368 IFCOUNTER_OERRORS, 1); 1369 ieee80211_free_node(ni); 1370 m_freem(m); 1371 continue; 1372 } 1373 if (bwi_encap(sc, idx, m, ni) != 0) { 1374 /* 'm' is freed in bwi_encap() if we reach here */ 1375 if (ni != NULL) { 1376 if_inc_counter(ni->ni_vap->iv_ifp, 1377 IFCOUNTER_OERRORS, 1); 1378 ieee80211_free_node(ni); 1379 } else 1380 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1381 continue; 1382 } 1383 trans = 1; 1384 tbd->tbd_used++; 1385 idx = (idx + 1) % BWI_TX_NDESC; 1386 } 1387 1388 tbd->tbd_idx = idx; 1389 if (trans) 1390 sc->sc_tx_timer = 5; 1391 } 1392 1393 static int 1394 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1395 const struct ieee80211_bpf_params *params) 1396 { 1397 struct ieee80211com *ic = ni->ni_ic; 1398 struct bwi_softc *sc = ic->ic_softc; 1399 /* XXX wme? */ 1400 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 1401 int idx, error; 1402 1403 if ((sc->sc_flags & BWI_F_RUNNING) == 0) { 1404 m_freem(m); 1405 return ENETDOWN; 1406 } 1407 1408 BWI_LOCK(sc); 1409 idx = tbd->tbd_idx; 1410 KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx)); 1411 if (params == NULL) { 1412 /* 1413 * Legacy path; interpret frame contents to decide 1414 * precisely how to send the frame. 1415 */ 1416 error = bwi_encap(sc, idx, m, ni); 1417 } else { 1418 /* 1419 * Caller supplied explicit parameters to use in 1420 * sending the frame. 1421 */ 1422 error = bwi_encap_raw(sc, idx, m, ni, params); 1423 } 1424 if (error == 0) { 1425 tbd->tbd_used++; 1426 tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC; 1427 sc->sc_tx_timer = 5; 1428 } 1429 BWI_UNLOCK(sc); 1430 return error; 1431 } 1432 1433 static void 1434 bwi_watchdog(void *arg) 1435 { 1436 struct bwi_softc *sc; 1437 1438 sc = arg; 1439 BWI_ASSERT_LOCKED(sc); 1440 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { 1441 device_printf(sc->sc_dev, "watchdog timeout\n"); 1442 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1443 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1444 } 1445 callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); 1446 } 1447 1448 static void 1449 bwi_stop(struct bwi_softc *sc, int statechg) 1450 { 1451 BWI_LOCK(sc); 1452 bwi_stop_locked(sc, statechg); 1453 BWI_UNLOCK(sc); 1454 } 1455 1456 static void 1457 bwi_stop_locked(struct bwi_softc *sc, int statechg) 1458 { 1459 struct bwi_mac *mac; 1460 int i, error, pwr_off = 0; 1461 1462 BWI_ASSERT_LOCKED(sc); 1463 1464 callout_stop(&sc->sc_calib_ch); 1465 callout_stop(&sc->sc_led_blink_ch); 1466 sc->sc_led_blinking = 0; 1467 sc->sc_flags |= BWI_F_STOP; 1468 1469 if (sc->sc_flags & BWI_F_RUNNING) { 1470 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1471 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1472 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1473 1474 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1475 CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1476 bwi_mac_stop(mac); 1477 } 1478 1479 for (i = 0; i < sc->sc_nmac; ++i) { 1480 struct bwi_regwin *old_rw; 1481 1482 mac = &sc->sc_mac[i]; 1483 if ((mac->mac_flags & BWI_MAC_F_INITED) == 0) 1484 continue; 1485 1486 error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw); 1487 if (error) 1488 continue; 1489 1490 bwi_mac_shutdown(mac); 1491 pwr_off = 1; 1492 1493 bwi_regwin_switch(sc, old_rw, NULL); 1494 } 1495 1496 if (pwr_off) 1497 bwi_bbp_power_off(sc); 1498 1499 sc->sc_tx_timer = 0; 1500 callout_stop(&sc->sc_watchdog_timer); 1501 sc->sc_flags &= ~BWI_F_RUNNING; 1502 } 1503 1504 void 1505 bwi_intr(void *xsc) 1506 { 1507 struct bwi_softc *sc = xsc; 1508 struct bwi_mac *mac; 1509 uint32_t intr_status; 1510 uint32_t txrx_intr_status[BWI_TXRX_NRING]; 1511 int i, txrx_error, tx = 0, rx_data = -1; 1512 1513 BWI_LOCK(sc); 1514 1515 if ((sc->sc_flags & BWI_F_RUNNING) == 0 || 1516 (sc->sc_flags & BWI_F_STOP)) { 1517 BWI_UNLOCK(sc); 1518 return; 1519 } 1520 /* 1521 * Get interrupt status 1522 */ 1523 intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS); 1524 if (intr_status == 0xffffffff) { /* Not for us */ 1525 BWI_UNLOCK(sc); 1526 return; 1527 } 1528 1529 DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status); 1530 1531 intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK); 1532 if (intr_status == 0) { /* Nothing is interesting */ 1533 BWI_UNLOCK(sc); 1534 return; 1535 } 1536 1537 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1538 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1539 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1540 1541 txrx_error = 0; 1542 DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr"); 1543 for (i = 0; i < BWI_TXRX_NRING; ++i) { 1544 uint32_t mask; 1545 1546 if (BWI_TXRX_IS_RX(i)) 1547 mask = BWI_TXRX_RX_INTRS; 1548 else 1549 mask = BWI_TXRX_TX_INTRS; 1550 1551 txrx_intr_status[i] = 1552 CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask; 1553 1554 _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x", 1555 i, txrx_intr_status[i]); 1556 1557 if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) { 1558 device_printf(sc->sc_dev, 1559 "%s: intr fatal TX/RX (%d) error 0x%08x\n", 1560 __func__, i, txrx_intr_status[i]); 1561 txrx_error = 1; 1562 } 1563 } 1564 _DPRINTF(sc, BWI_DBG_INTR, "%s\n", ""); 1565 1566 /* 1567 * Acknowledge interrupt 1568 */ 1569 CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status); 1570 1571 for (i = 0; i < BWI_TXRX_NRING; ++i) 1572 CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]); 1573 1574 /* Disable all interrupts */ 1575 bwi_disable_intrs(sc, BWI_ALL_INTRS); 1576 1577 /* 1578 * http://bcm-specs.sipsolutions.net/Interrupts 1579 * Says for this bit (0x800): 1580 * "Fatal Error 1581 * 1582 * We got this one while testing things when by accident the 1583 * template ram wasn't set to big endian when it should have 1584 * been after writing the initial values. It keeps on being 1585 * triggered, the only way to stop it seems to shut down the 1586 * chip." 1587 * 1588 * Suggesting that we should never get it and if we do we're not 1589 * feeding TX packets into the MAC correctly if we do... Apparently, 1590 * it is valid only on mac version 5 and higher, but I couldn't 1591 * find a reference for that... Since I see them from time to time 1592 * on my card, this suggests an error in the tx path still... 1593 */ 1594 if (intr_status & BWI_INTR_PHY_TXERR) { 1595 if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) { 1596 device_printf(sc->sc_dev, "%s: intr PHY TX error\n", 1597 __func__); 1598 taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); 1599 BWI_UNLOCK(sc); 1600 return; 1601 } 1602 } 1603 1604 if (txrx_error) { 1605 /* TODO: reset device */ 1606 } 1607 1608 if (intr_status & BWI_INTR_TBTT) 1609 bwi_mac_config_ps(mac); 1610 1611 if (intr_status & BWI_INTR_EO_ATIM) 1612 device_printf(sc->sc_dev, "EO_ATIM\n"); 1613 1614 if (intr_status & BWI_INTR_PMQ) { 1615 for (;;) { 1616 if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0) 1617 break; 1618 } 1619 CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2); 1620 } 1621 1622 if (intr_status & BWI_INTR_NOISE) 1623 device_printf(sc->sc_dev, "intr noise\n"); 1624 1625 if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) { 1626 rx_data = sc->sc_rxeof(sc); 1627 if (sc->sc_flags & BWI_F_STOP) { 1628 BWI_UNLOCK(sc); 1629 return; 1630 } 1631 } 1632 1633 if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) { 1634 sc->sc_txeof_status(sc); 1635 tx = 1; 1636 } 1637 1638 if (intr_status & BWI_INTR_TX_DONE) { 1639 bwi_txeof(sc); 1640 tx = 1; 1641 } 1642 1643 /* Re-enable interrupts */ 1644 bwi_enable_intrs(sc, BWI_INIT_INTRS); 1645 1646 if (sc->sc_blink_led != NULL && sc->sc_led_blink) { 1647 int evt = BWI_LED_EVENT_NONE; 1648 1649 if (tx && rx_data > 0) { 1650 if (sc->sc_rx_rate > sc->sc_tx_rate) 1651 evt = BWI_LED_EVENT_RX; 1652 else 1653 evt = BWI_LED_EVENT_TX; 1654 } else if (tx) { 1655 evt = BWI_LED_EVENT_TX; 1656 } else if (rx_data > 0) { 1657 evt = BWI_LED_EVENT_RX; 1658 } else if (rx_data == 0) { 1659 evt = BWI_LED_EVENT_POLL; 1660 } 1661 1662 if (evt != BWI_LED_EVENT_NONE) 1663 bwi_led_event(sc, evt); 1664 } 1665 1666 BWI_UNLOCK(sc); 1667 } 1668 1669 static void 1670 bwi_scan_start(struct ieee80211com *ic) 1671 { 1672 struct bwi_softc *sc = ic->ic_softc; 1673 1674 BWI_LOCK(sc); 1675 /* Enable MAC beacon promiscuity */ 1676 CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1677 BWI_UNLOCK(sc); 1678 } 1679 1680 static void 1681 bwi_getradiocaps(struct ieee80211com *ic, 1682 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1683 { 1684 struct bwi_softc *sc = ic->ic_softc; 1685 struct bwi_mac *mac; 1686 struct bwi_phy *phy; 1687 uint8_t bands[IEEE80211_MODE_BYTES]; 1688 1689 /* 1690 * XXX First MAC is known to exist 1691 * TODO2 1692 */ 1693 mac = &sc->sc_mac[0]; 1694 phy = &mac->mac_phy; 1695 1696 memset(bands, 0, sizeof(bands)); 1697 switch (phy->phy_mode) { 1698 case IEEE80211_MODE_11G: 1699 setbit(bands, IEEE80211_MODE_11G); 1700 /* FALLTHROUGH */ 1701 case IEEE80211_MODE_11B: 1702 setbit(bands, IEEE80211_MODE_11B); 1703 break; 1704 case IEEE80211_MODE_11A: 1705 /* TODO:11A */ 1706 setbit(bands, IEEE80211_MODE_11A); 1707 device_printf(sc->sc_dev, "no 11a support\n"); 1708 return; 1709 default: 1710 panic("unknown phymode %d\n", phy->phy_mode); 1711 } 1712 1713 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1714 bwi_chan_2ghz, nitems(bwi_chan_2ghz), bands, 0); 1715 } 1716 1717 static void 1718 bwi_set_channel(struct ieee80211com *ic) 1719 { 1720 struct bwi_softc *sc = ic->ic_softc; 1721 struct ieee80211_channel *c = ic->ic_curchan; 1722 struct bwi_mac *mac; 1723 1724 BWI_LOCK(sc); 1725 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1726 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1727 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1728 bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0); 1729 1730 sc->sc_rates = ieee80211_get_ratetable(c); 1731 1732 /* 1733 * Setup radio tap channel freq and flags 1734 */ 1735 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 1736 htole16(c->ic_freq); 1737 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 1738 htole16(c->ic_flags & 0xffff); 1739 1740 BWI_UNLOCK(sc); 1741 } 1742 1743 static void 1744 bwi_scan_end(struct ieee80211com *ic) 1745 { 1746 struct bwi_softc *sc = ic->ic_softc; 1747 1748 BWI_LOCK(sc); 1749 CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); 1750 BWI_UNLOCK(sc); 1751 } 1752 1753 static int 1754 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1755 { 1756 struct bwi_vap *bvp = BWI_VAP(vap); 1757 struct ieee80211com *ic= vap->iv_ic; 1758 struct bwi_softc *sc = ic->ic_softc; 1759 enum ieee80211_state ostate = vap->iv_state; 1760 struct bwi_mac *mac; 1761 int error; 1762 1763 BWI_LOCK(sc); 1764 1765 callout_stop(&sc->sc_calib_ch); 1766 1767 if (nstate == IEEE80211_S_INIT) 1768 sc->sc_txpwrcb_type = BWI_TXPWR_INIT; 1769 1770 bwi_led_newstate(sc, nstate); 1771 1772 error = bvp->bv_newstate(vap, nstate, arg); 1773 if (error != 0) 1774 goto back; 1775 1776 /* 1777 * Clear the BSSID when we stop a STA 1778 */ 1779 if (vap->iv_opmode == IEEE80211_M_STA) { 1780 if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { 1781 /* 1782 * Clear out the BSSID. If we reassociate to 1783 * the same AP, this will reinialize things 1784 * correctly... 1785 */ 1786 if (ic->ic_opmode == IEEE80211_M_STA && 1787 !(sc->sc_flags & BWI_F_STOP)) 1788 bwi_set_bssid(sc, bwi_zero_addr); 1789 } 1790 } 1791 1792 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1793 /* Nothing to do */ 1794 } else if (nstate == IEEE80211_S_RUN) { 1795 bwi_set_bssid(sc, vap->iv_bss->ni_bssid); 1796 1797 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 1798 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 1799 mac = (struct bwi_mac *)sc->sc_cur_regwin; 1800 1801 /* Initial TX power calibration */ 1802 bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT); 1803 #ifdef notyet 1804 sc->sc_txpwrcb_type = BWI_TXPWR_FORCE; 1805 #else 1806 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 1807 #endif 1808 1809 callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc); 1810 } 1811 back: 1812 BWI_UNLOCK(sc); 1813 1814 return error; 1815 } 1816 1817 static int 1818 bwi_media_change(struct ifnet *ifp) 1819 { 1820 int error = ieee80211_media_change(ifp); 1821 /* NB: only the fixed rate can change and that doesn't need a reset */ 1822 return (error == ENETRESET ? 0 : error); 1823 } 1824 1825 static int 1826 bwi_dma_alloc(struct bwi_softc *sc) 1827 { 1828 int error, i, has_txstats; 1829 bus_addr_t lowaddr = 0; 1830 bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0; 1831 uint32_t txrx_ctrl_step = 0; 1832 1833 has_txstats = 0; 1834 for (i = 0; i < sc->sc_nmac; ++i) { 1835 if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) { 1836 has_txstats = 1; 1837 break; 1838 } 1839 } 1840 1841 switch (sc->sc_bus_space) { 1842 case BWI_BUS_SPACE_30BIT: 1843 case BWI_BUS_SPACE_32BIT: 1844 if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) 1845 lowaddr = BWI_BUS_SPACE_MAXADDR; 1846 else 1847 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1848 desc_sz = sizeof(struct bwi_desc32); 1849 txrx_ctrl_step = 0x20; 1850 1851 sc->sc_init_tx_ring = bwi_init_tx_ring32; 1852 sc->sc_free_tx_ring = bwi_free_tx_ring32; 1853 sc->sc_init_rx_ring = bwi_init_rx_ring32; 1854 sc->sc_free_rx_ring = bwi_free_rx_ring32; 1855 sc->sc_setup_rxdesc = bwi_setup_rx_desc32; 1856 sc->sc_setup_txdesc = bwi_setup_tx_desc32; 1857 sc->sc_rxeof = bwi_rxeof32; 1858 sc->sc_start_tx = bwi_start_tx32; 1859 if (has_txstats) { 1860 sc->sc_init_txstats = bwi_init_txstats32; 1861 sc->sc_free_txstats = bwi_free_txstats32; 1862 sc->sc_txeof_status = bwi_txeof_status32; 1863 } 1864 break; 1865 1866 case BWI_BUS_SPACE_64BIT: 1867 lowaddr = BUS_SPACE_MAXADDR; /* XXX */ 1868 desc_sz = sizeof(struct bwi_desc64); 1869 txrx_ctrl_step = 0x40; 1870 1871 sc->sc_init_tx_ring = bwi_init_tx_ring64; 1872 sc->sc_free_tx_ring = bwi_free_tx_ring64; 1873 sc->sc_init_rx_ring = bwi_init_rx_ring64; 1874 sc->sc_free_rx_ring = bwi_free_rx_ring64; 1875 sc->sc_setup_rxdesc = bwi_setup_rx_desc64; 1876 sc->sc_setup_txdesc = bwi_setup_tx_desc64; 1877 sc->sc_rxeof = bwi_rxeof64; 1878 sc->sc_start_tx = bwi_start_tx64; 1879 if (has_txstats) { 1880 sc->sc_init_txstats = bwi_init_txstats64; 1881 sc->sc_free_txstats = bwi_free_txstats64; 1882 sc->sc_txeof_status = bwi_txeof_status64; 1883 } 1884 break; 1885 } 1886 1887 KASSERT(lowaddr != 0, ("lowaddr zero")); 1888 KASSERT(desc_sz != 0, ("desc_sz zero")); 1889 KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero")); 1890 1891 tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN); 1892 rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN); 1893 1894 /* 1895 * Create top level DMA tag 1896 */ 1897 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1898 BWI_ALIGN, 0, /* alignment, bounds */ 1899 lowaddr, /* lowaddr */ 1900 BUS_SPACE_MAXADDR, /* highaddr */ 1901 NULL, NULL, /* filter, filterarg */ 1902 BUS_SPACE_MAXSIZE, /* maxsize */ 1903 BUS_SPACE_UNRESTRICTED, /* nsegments */ 1904 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1905 0, /* flags */ 1906 NULL, NULL, /* lockfunc, lockarg */ 1907 &sc->sc_parent_dtag); 1908 if (error) { 1909 device_printf(sc->sc_dev, "can't create parent DMA tag\n"); 1910 return error; 1911 } 1912 1913 #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step) 1914 1915 /* 1916 * Create TX ring DMA stuffs 1917 */ 1918 error = bus_dma_tag_create(sc->sc_parent_dtag, 1919 BWI_RING_ALIGN, 0, 1920 BUS_SPACE_MAXADDR, 1921 BUS_SPACE_MAXADDR, 1922 NULL, NULL, 1923 tx_ring_sz, 1924 1, 1925 tx_ring_sz, 1926 0, 1927 NULL, NULL, 1928 &sc->sc_txring_dtag); 1929 if (error) { 1930 device_printf(sc->sc_dev, "can't create TX ring DMA tag\n"); 1931 return error; 1932 } 1933 1934 for (i = 0; i < BWI_TX_NRING; ++i) { 1935 error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag, 1936 &sc->sc_tx_rdata[i], tx_ring_sz, 1937 TXRX_CTRL(i)); 1938 if (error) { 1939 device_printf(sc->sc_dev, "%dth TX ring " 1940 "DMA alloc failed\n", i); 1941 return error; 1942 } 1943 } 1944 1945 /* 1946 * Create RX ring DMA stuffs 1947 */ 1948 error = bus_dma_tag_create(sc->sc_parent_dtag, 1949 BWI_RING_ALIGN, 0, 1950 BUS_SPACE_MAXADDR, 1951 BUS_SPACE_MAXADDR, 1952 NULL, NULL, 1953 rx_ring_sz, 1954 1, 1955 rx_ring_sz, 1956 0, 1957 NULL, NULL, 1958 &sc->sc_rxring_dtag); 1959 if (error) { 1960 device_printf(sc->sc_dev, "can't create RX ring DMA tag\n"); 1961 return error; 1962 } 1963 1964 error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata, 1965 rx_ring_sz, TXRX_CTRL(0)); 1966 if (error) { 1967 device_printf(sc->sc_dev, "RX ring DMA alloc failed\n"); 1968 return error; 1969 } 1970 1971 if (has_txstats) { 1972 error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz); 1973 if (error) { 1974 device_printf(sc->sc_dev, 1975 "TX stats DMA alloc failed\n"); 1976 return error; 1977 } 1978 } 1979 1980 #undef TXRX_CTRL 1981 1982 return bwi_dma_mbuf_create(sc); 1983 } 1984 1985 static void 1986 bwi_dma_free(struct bwi_softc *sc) 1987 { 1988 if (sc->sc_txring_dtag != NULL) { 1989 int i; 1990 1991 for (i = 0; i < BWI_TX_NRING; ++i) { 1992 struct bwi_ring_data *rd = &sc->sc_tx_rdata[i]; 1993 1994 if (rd->rdata_desc != NULL) { 1995 bus_dmamap_unload(sc->sc_txring_dtag, 1996 rd->rdata_dmap); 1997 bus_dmamem_free(sc->sc_txring_dtag, 1998 rd->rdata_desc, 1999 rd->rdata_dmap); 2000 } 2001 } 2002 bus_dma_tag_destroy(sc->sc_txring_dtag); 2003 } 2004 2005 if (sc->sc_rxring_dtag != NULL) { 2006 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2007 2008 if (rd->rdata_desc != NULL) { 2009 bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap); 2010 bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc, 2011 rd->rdata_dmap); 2012 } 2013 bus_dma_tag_destroy(sc->sc_rxring_dtag); 2014 } 2015 2016 bwi_dma_txstats_free(sc); 2017 bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1); 2018 2019 if (sc->sc_parent_dtag != NULL) 2020 bus_dma_tag_destroy(sc->sc_parent_dtag); 2021 } 2022 2023 static int 2024 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag, 2025 struct bwi_ring_data *rd, bus_size_t size, 2026 uint32_t txrx_ctrl) 2027 { 2028 int error; 2029 2030 error = bus_dmamem_alloc(dtag, &rd->rdata_desc, 2031 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2032 &rd->rdata_dmap); 2033 if (error) { 2034 device_printf(sc->sc_dev, "can't allocate DMA mem\n"); 2035 return error; 2036 } 2037 2038 error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size, 2039 bwi_dma_ring_addr, &rd->rdata_paddr, 2040 BUS_DMA_NOWAIT); 2041 if (error) { 2042 device_printf(sc->sc_dev, "can't load DMA mem\n"); 2043 bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap); 2044 rd->rdata_desc = NULL; 2045 return error; 2046 } 2047 2048 rd->rdata_txrx_ctrl = txrx_ctrl; 2049 return 0; 2050 } 2051 2052 static int 2053 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base, 2054 bus_size_t desc_sz) 2055 { 2056 struct bwi_txstats_data *st; 2057 bus_size_t dma_size; 2058 int error; 2059 2060 st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO); 2061 if (st == NULL) { 2062 device_printf(sc->sc_dev, "can't allocate txstats data\n"); 2063 return ENOMEM; 2064 } 2065 sc->sc_txstats = st; 2066 2067 /* 2068 * Create TX stats descriptor DMA stuffs 2069 */ 2070 dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN); 2071 2072 error = bus_dma_tag_create(sc->sc_parent_dtag, 2073 BWI_RING_ALIGN, 2074 0, 2075 BUS_SPACE_MAXADDR, 2076 BUS_SPACE_MAXADDR, 2077 NULL, NULL, 2078 dma_size, 2079 1, 2080 dma_size, 2081 0, 2082 NULL, NULL, 2083 &st->stats_ring_dtag); 2084 if (error) { 2085 device_printf(sc->sc_dev, "can't create txstats ring " 2086 "DMA tag\n"); 2087 return error; 2088 } 2089 2090 error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring, 2091 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2092 &st->stats_ring_dmap); 2093 if (error) { 2094 device_printf(sc->sc_dev, "can't allocate txstats ring " 2095 "DMA mem\n"); 2096 bus_dma_tag_destroy(st->stats_ring_dtag); 2097 st->stats_ring_dtag = NULL; 2098 return error; 2099 } 2100 2101 error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap, 2102 st->stats_ring, dma_size, 2103 bwi_dma_ring_addr, &st->stats_ring_paddr, 2104 BUS_DMA_NOWAIT); 2105 if (error) { 2106 device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n"); 2107 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2108 st->stats_ring_dmap); 2109 bus_dma_tag_destroy(st->stats_ring_dtag); 2110 st->stats_ring_dtag = NULL; 2111 return error; 2112 } 2113 2114 /* 2115 * Create TX stats DMA stuffs 2116 */ 2117 dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC, 2118 BWI_ALIGN); 2119 2120 error = bus_dma_tag_create(sc->sc_parent_dtag, 2121 BWI_ALIGN, 2122 0, 2123 BUS_SPACE_MAXADDR, 2124 BUS_SPACE_MAXADDR, 2125 NULL, NULL, 2126 dma_size, 2127 1, 2128 dma_size, 2129 0, 2130 NULL, NULL, 2131 &st->stats_dtag); 2132 if (error) { 2133 device_printf(sc->sc_dev, "can't create txstats DMA tag\n"); 2134 return error; 2135 } 2136 2137 error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats, 2138 BUS_DMA_WAITOK | BUS_DMA_ZERO, 2139 &st->stats_dmap); 2140 if (error) { 2141 device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n"); 2142 bus_dma_tag_destroy(st->stats_dtag); 2143 st->stats_dtag = NULL; 2144 return error; 2145 } 2146 2147 error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats, 2148 dma_size, bwi_dma_ring_addr, &st->stats_paddr, 2149 BUS_DMA_NOWAIT); 2150 if (error) { 2151 device_printf(sc->sc_dev, "can't load txstats DMA mem\n"); 2152 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2153 bus_dma_tag_destroy(st->stats_dtag); 2154 st->stats_dtag = NULL; 2155 return error; 2156 } 2157 2158 st->stats_ctrl_base = ctrl_base; 2159 return 0; 2160 } 2161 2162 static void 2163 bwi_dma_txstats_free(struct bwi_softc *sc) 2164 { 2165 struct bwi_txstats_data *st; 2166 2167 if (sc->sc_txstats == NULL) 2168 return; 2169 st = sc->sc_txstats; 2170 2171 if (st->stats_ring_dtag != NULL) { 2172 bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap); 2173 bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, 2174 st->stats_ring_dmap); 2175 bus_dma_tag_destroy(st->stats_ring_dtag); 2176 } 2177 2178 if (st->stats_dtag != NULL) { 2179 bus_dmamap_unload(st->stats_dtag, st->stats_dmap); 2180 bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); 2181 bus_dma_tag_destroy(st->stats_dtag); 2182 } 2183 2184 free(st, M_DEVBUF); 2185 } 2186 2187 static void 2188 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) 2189 { 2190 KASSERT(nseg == 1, ("too many segments\n")); 2191 *((bus_addr_t *)arg) = seg->ds_addr; 2192 } 2193 2194 static int 2195 bwi_dma_mbuf_create(struct bwi_softc *sc) 2196 { 2197 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2198 int i, j, k, ntx, error; 2199 2200 /* 2201 * Create TX/RX mbuf DMA tag 2202 */ 2203 error = bus_dma_tag_create(sc->sc_parent_dtag, 2204 1, 2205 0, 2206 BUS_SPACE_MAXADDR, 2207 BUS_SPACE_MAXADDR, 2208 NULL, NULL, 2209 MCLBYTES, 2210 1, 2211 MCLBYTES, 2212 BUS_DMA_ALLOCNOW, 2213 NULL, NULL, 2214 &sc->sc_buf_dtag); 2215 if (error) { 2216 device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); 2217 return error; 2218 } 2219 2220 ntx = 0; 2221 2222 /* 2223 * Create TX mbuf DMA map 2224 */ 2225 for (i = 0; i < BWI_TX_NRING; ++i) { 2226 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2227 2228 for (j = 0; j < BWI_TX_NDESC; ++j) { 2229 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2230 &tbd->tbd_buf[j].tb_dmap); 2231 if (error) { 2232 device_printf(sc->sc_dev, "can't create " 2233 "%dth tbd, %dth DMA map\n", i, j); 2234 2235 ntx = i; 2236 for (k = 0; k < j; ++k) { 2237 bus_dmamap_destroy(sc->sc_buf_dtag, 2238 tbd->tbd_buf[k].tb_dmap); 2239 } 2240 goto fail; 2241 } 2242 } 2243 } 2244 ntx = BWI_TX_NRING; 2245 2246 /* 2247 * Create RX mbuf DMA map and a spare DMA map 2248 */ 2249 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2250 &rbd->rbd_tmp_dmap); 2251 if (error) { 2252 device_printf(sc->sc_dev, 2253 "can't create spare RX buf DMA map\n"); 2254 goto fail; 2255 } 2256 2257 for (j = 0; j < BWI_RX_NDESC; ++j) { 2258 error = bus_dmamap_create(sc->sc_buf_dtag, 0, 2259 &rbd->rbd_buf[j].rb_dmap); 2260 if (error) { 2261 device_printf(sc->sc_dev, "can't create %dth " 2262 "RX buf DMA map\n", j); 2263 2264 for (k = 0; k < j; ++k) { 2265 bus_dmamap_destroy(sc->sc_buf_dtag, 2266 rbd->rbd_buf[j].rb_dmap); 2267 } 2268 bus_dmamap_destroy(sc->sc_buf_dtag, 2269 rbd->rbd_tmp_dmap); 2270 goto fail; 2271 } 2272 } 2273 2274 return 0; 2275 fail: 2276 bwi_dma_mbuf_destroy(sc, ntx, 0); 2277 return error; 2278 } 2279 2280 static void 2281 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx) 2282 { 2283 int i, j; 2284 2285 if (sc->sc_buf_dtag == NULL) 2286 return; 2287 2288 for (i = 0; i < ntx; ++i) { 2289 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; 2290 2291 for (j = 0; j < BWI_TX_NDESC; ++j) { 2292 struct bwi_txbuf *tb = &tbd->tbd_buf[j]; 2293 2294 if (tb->tb_mbuf != NULL) { 2295 bus_dmamap_unload(sc->sc_buf_dtag, 2296 tb->tb_dmap); 2297 m_freem(tb->tb_mbuf); 2298 } 2299 if (tb->tb_ni != NULL) 2300 ieee80211_free_node(tb->tb_ni); 2301 bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap); 2302 } 2303 } 2304 2305 if (nrx) { 2306 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2307 2308 bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); 2309 for (j = 0; j < BWI_RX_NDESC; ++j) { 2310 struct bwi_rxbuf *rb = &rbd->rbd_buf[j]; 2311 2312 if (rb->rb_mbuf != NULL) { 2313 bus_dmamap_unload(sc->sc_buf_dtag, 2314 rb->rb_dmap); 2315 m_freem(rb->rb_mbuf); 2316 } 2317 bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap); 2318 } 2319 } 2320 2321 bus_dma_tag_destroy(sc->sc_buf_dtag); 2322 sc->sc_buf_dtag = NULL; 2323 } 2324 2325 static void 2326 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs) 2327 { 2328 CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs); 2329 } 2330 2331 static void 2332 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs) 2333 { 2334 CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs); 2335 } 2336 2337 static int 2338 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx) 2339 { 2340 struct bwi_ring_data *rd; 2341 struct bwi_txbuf_data *tbd; 2342 uint32_t val, addr_hi, addr_lo; 2343 2344 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2345 rd = &sc->sc_tx_rdata[ring_idx]; 2346 tbd = &sc->sc_tx_bdata[ring_idx]; 2347 2348 tbd->tbd_idx = 0; 2349 tbd->tbd_used = 0; 2350 2351 bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC); 2352 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 2353 BUS_DMASYNC_PREWRITE); 2354 2355 addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2356 addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2357 2358 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2359 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2360 BWI_TXRX32_RINGINFO_FUNC_MASK); 2361 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val); 2362 2363 val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2364 BWI_TXRX32_CTRL_ENABLE; 2365 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val); 2366 2367 return 0; 2368 } 2369 2370 static void 2371 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base, 2372 bus_addr_t paddr, int hdr_size, int ndesc) 2373 { 2374 uint32_t val, addr_hi, addr_lo; 2375 2376 addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); 2377 addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); 2378 2379 val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | 2380 __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, 2381 BWI_TXRX32_RINGINFO_FUNC_MASK); 2382 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val); 2383 2384 val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) | 2385 __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | 2386 BWI_TXRX32_CTRL_ENABLE; 2387 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val); 2388 2389 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 2390 (ndesc - 1) * sizeof(struct bwi_desc32)); 2391 } 2392 2393 static int 2394 bwi_init_rx_ring32(struct bwi_softc *sc) 2395 { 2396 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2397 int i, error; 2398 2399 sc->sc_rx_bdata.rbd_idx = 0; 2400 2401 for (i = 0; i < BWI_RX_NDESC; ++i) { 2402 error = bwi_newbuf(sc, i, 1); 2403 if (error) { 2404 device_printf(sc->sc_dev, 2405 "can't allocate %dth RX buffer\n", i); 2406 return error; 2407 } 2408 } 2409 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2410 BUS_DMASYNC_PREWRITE); 2411 2412 bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr, 2413 sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC); 2414 return 0; 2415 } 2416 2417 static int 2418 bwi_init_txstats32(struct bwi_softc *sc) 2419 { 2420 struct bwi_txstats_data *st = sc->sc_txstats; 2421 bus_addr_t stats_paddr; 2422 int i; 2423 2424 bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats)); 2425 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE); 2426 2427 st->stats_idx = 0; 2428 2429 stats_paddr = st->stats_paddr; 2430 for (i = 0; i < BWI_TXSTATS_NDESC; ++i) { 2431 bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i, 2432 stats_paddr, sizeof(struct bwi_txstats), 0); 2433 stats_paddr += sizeof(struct bwi_txstats); 2434 } 2435 bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap, 2436 BUS_DMASYNC_PREWRITE); 2437 2438 bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base, 2439 st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC); 2440 return 0; 2441 } 2442 2443 static void 2444 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2445 int buf_len) 2446 { 2447 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2448 2449 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2450 bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx, 2451 paddr, buf_len, 0); 2452 } 2453 2454 static void 2455 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd, 2456 int buf_idx, bus_addr_t paddr, int buf_len) 2457 { 2458 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 2459 bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx, 2460 paddr, buf_len, 1); 2461 } 2462 2463 static int 2464 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx) 2465 { 2466 /* TODO:64 */ 2467 return EOPNOTSUPP; 2468 } 2469 2470 static int 2471 bwi_init_rx_ring64(struct bwi_softc *sc) 2472 { 2473 /* TODO:64 */ 2474 return EOPNOTSUPP; 2475 } 2476 2477 static int 2478 bwi_init_txstats64(struct bwi_softc *sc) 2479 { 2480 /* TODO:64 */ 2481 return EOPNOTSUPP; 2482 } 2483 2484 static void 2485 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, 2486 int buf_len) 2487 { 2488 /* TODO:64 */ 2489 } 2490 2491 static void 2492 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd, 2493 int buf_idx, bus_addr_t paddr, int buf_len) 2494 { 2495 /* TODO:64 */ 2496 } 2497 2498 static void 2499 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, 2500 bus_size_t mapsz __unused, int error) 2501 { 2502 if (!error) { 2503 KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); 2504 *((bus_addr_t *)arg) = seg->ds_addr; 2505 } 2506 } 2507 2508 static int 2509 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init) 2510 { 2511 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2512 struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx]; 2513 struct bwi_rxbuf_hdr *hdr; 2514 bus_dmamap_t map; 2515 bus_addr_t paddr; 2516 struct mbuf *m; 2517 int error; 2518 2519 KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); 2520 2521 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2522 if (m == NULL) { 2523 error = ENOBUFS; 2524 2525 /* 2526 * If the NIC is up and running, we need to: 2527 * - Clear RX buffer's header. 2528 * - Restore RX descriptor settings. 2529 */ 2530 if (init) 2531 return error; 2532 else 2533 goto back; 2534 } 2535 m->m_len = m->m_pkthdr.len = MCLBYTES; 2536 2537 /* 2538 * Try to load RX buf into temporary DMA map 2539 */ 2540 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m, 2541 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 2542 if (error) { 2543 m_freem(m); 2544 2545 /* 2546 * See the comment above 2547 */ 2548 if (init) 2549 return error; 2550 else 2551 goto back; 2552 } 2553 2554 if (!init) 2555 bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap); 2556 rxbuf->rb_mbuf = m; 2557 rxbuf->rb_paddr = paddr; 2558 2559 /* 2560 * Swap RX buf's DMA map with the loaded temporary one 2561 */ 2562 map = rxbuf->rb_dmap; 2563 rxbuf->rb_dmap = rbd->rbd_tmp_dmap; 2564 rbd->rbd_tmp_dmap = map; 2565 2566 back: 2567 /* 2568 * Clear RX buf header 2569 */ 2570 hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *); 2571 bzero(hdr, sizeof(*hdr)); 2572 bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE); 2573 2574 /* 2575 * Setup RX buf descriptor 2576 */ 2577 sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr, 2578 rxbuf->rb_mbuf->m_len - sizeof(*hdr)); 2579 return error; 2580 } 2581 2582 static void 2583 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs, 2584 const uint8_t *addr) 2585 { 2586 int i; 2587 2588 CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL, 2589 BWI_ADDR_FILTER_CTRL_SET | addr_ofs); 2590 2591 for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) { 2592 uint16_t addr_val; 2593 2594 addr_val = (uint16_t)addr[i * 2] | 2595 (((uint16_t)addr[(i * 2) + 1]) << 8); 2596 CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val); 2597 } 2598 } 2599 2600 static int 2601 bwi_rxeof(struct bwi_softc *sc, int end_idx) 2602 { 2603 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2604 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2605 struct ieee80211com *ic = &sc->sc_ic; 2606 int idx, rx_data = 0; 2607 2608 idx = rbd->rbd_idx; 2609 while (idx != end_idx) { 2610 struct bwi_rxbuf *rb = &rbd->rbd_buf[idx]; 2611 struct bwi_rxbuf_hdr *hdr; 2612 struct ieee80211_frame_min *wh; 2613 struct ieee80211_node *ni; 2614 struct mbuf *m; 2615 uint32_t plcp; 2616 uint16_t flags2; 2617 int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate; 2618 2619 m = rb->rb_mbuf; 2620 bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap, 2621 BUS_DMASYNC_POSTREAD); 2622 2623 if (bwi_newbuf(sc, idx, 0)) { 2624 counter_u64_add(ic->ic_ierrors, 1); 2625 goto next; 2626 } 2627 2628 hdr = mtod(m, struct bwi_rxbuf_hdr *); 2629 flags2 = le16toh(hdr->rxh_flags2); 2630 2631 hdr_extra = 0; 2632 if (flags2 & BWI_RXH_F2_TYPE2FRAME) 2633 hdr_extra = 2; 2634 wh_ofs = hdr_extra + 6; /* XXX magic number */ 2635 2636 buflen = le16toh(hdr->rxh_buflen); 2637 if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) { 2638 device_printf(sc->sc_dev, 2639 "%s: zero length data, hdr_extra %d\n", 2640 __func__, hdr_extra); 2641 counter_u64_add(ic->ic_ierrors, 1); 2642 m_freem(m); 2643 goto next; 2644 } 2645 2646 bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp)); 2647 rssi = bwi_calc_rssi(sc, hdr); 2648 noise = bwi_calc_noise(sc); 2649 2650 m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr); 2651 m_adj(m, sizeof(*hdr) + wh_ofs); 2652 2653 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM) 2654 rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM); 2655 else 2656 rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK); 2657 2658 /* RX radio tap */ 2659 if (ieee80211_radiotap_active(ic)) 2660 bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise); 2661 2662 m_adj(m, -IEEE80211_CRC_LEN); 2663 2664 BWI_UNLOCK(sc); 2665 2666 wh = mtod(m, struct ieee80211_frame_min *); 2667 ni = ieee80211_find_rxnode(ic, wh); 2668 if (ni != NULL) { 2669 type = ieee80211_input(ni, m, rssi - noise, noise); 2670 ieee80211_free_node(ni); 2671 } else 2672 type = ieee80211_input_all(ic, m, rssi - noise, noise); 2673 if (type == IEEE80211_FC0_TYPE_DATA) { 2674 rx_data = 1; 2675 sc->sc_rx_rate = rate; 2676 } 2677 2678 BWI_LOCK(sc); 2679 next: 2680 idx = (idx + 1) % BWI_RX_NDESC; 2681 2682 if (sc->sc_flags & BWI_F_STOP) { 2683 /* 2684 * Take the fast lane, don't do 2685 * any damage to softc 2686 */ 2687 return -1; 2688 } 2689 } 2690 2691 rbd->rbd_idx = idx; 2692 bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, 2693 BUS_DMASYNC_PREWRITE); 2694 2695 return rx_data; 2696 } 2697 2698 static int 2699 bwi_rxeof32(struct bwi_softc *sc) 2700 { 2701 uint32_t val, rx_ctrl; 2702 int end_idx, rx_data; 2703 2704 rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl; 2705 2706 val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2707 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 2708 sizeof(struct bwi_desc32); 2709 2710 rx_data = bwi_rxeof(sc, end_idx); 2711 if (rx_data >= 0) { 2712 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX, 2713 end_idx * sizeof(struct bwi_desc32)); 2714 } 2715 return rx_data; 2716 } 2717 2718 static int 2719 bwi_rxeof64(struct bwi_softc *sc) 2720 { 2721 /* TODO:64 */ 2722 return 0; 2723 } 2724 2725 static void 2726 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl) 2727 { 2728 int i; 2729 2730 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0); 2731 2732 #define NRETRY 10 2733 2734 for (i = 0; i < NRETRY; ++i) { 2735 uint32_t status; 2736 2737 status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); 2738 if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) == 2739 BWI_RX32_STATUS_STATE_DISABLED) 2740 break; 2741 2742 DELAY(1000); 2743 } 2744 if (i == NRETRY) 2745 device_printf(sc->sc_dev, "reset rx ring timedout\n"); 2746 2747 #undef NRETRY 2748 2749 CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0); 2750 } 2751 2752 static void 2753 bwi_free_txstats32(struct bwi_softc *sc) 2754 { 2755 bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base); 2756 } 2757 2758 static void 2759 bwi_free_rx_ring32(struct bwi_softc *sc) 2760 { 2761 struct bwi_ring_data *rd = &sc->sc_rx_rdata; 2762 struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; 2763 int i; 2764 2765 bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl); 2766 2767 for (i = 0; i < BWI_RX_NDESC; ++i) { 2768 struct bwi_rxbuf *rb = &rbd->rbd_buf[i]; 2769 2770 if (rb->rb_mbuf != NULL) { 2771 bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); 2772 m_freem(rb->rb_mbuf); 2773 rb->rb_mbuf = NULL; 2774 } 2775 } 2776 } 2777 2778 static void 2779 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx) 2780 { 2781 struct bwi_ring_data *rd; 2782 struct bwi_txbuf_data *tbd; 2783 uint32_t state, val; 2784 int i; 2785 2786 KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); 2787 rd = &sc->sc_tx_rdata[ring_idx]; 2788 tbd = &sc->sc_tx_bdata[ring_idx]; 2789 2790 #define NRETRY 10 2791 2792 for (i = 0; i < NRETRY; ++i) { 2793 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2794 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2795 if (state == BWI_TX32_STATUS_STATE_DISABLED || 2796 state == BWI_TX32_STATUS_STATE_IDLE || 2797 state == BWI_TX32_STATUS_STATE_STOPPED) 2798 break; 2799 2800 DELAY(1000); 2801 } 2802 if (i == NRETRY) { 2803 device_printf(sc->sc_dev, 2804 "%s: wait for TX ring(%d) stable timed out\n", 2805 __func__, ring_idx); 2806 } 2807 2808 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0); 2809 for (i = 0; i < NRETRY; ++i) { 2810 val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); 2811 state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); 2812 if (state == BWI_TX32_STATUS_STATE_DISABLED) 2813 break; 2814 2815 DELAY(1000); 2816 } 2817 if (i == NRETRY) 2818 device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n", 2819 __func__, ring_idx); 2820 2821 #undef NRETRY 2822 2823 DELAY(1000); 2824 2825 CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0); 2826 2827 for (i = 0; i < BWI_TX_NDESC; ++i) { 2828 struct bwi_txbuf *tb = &tbd->tbd_buf[i]; 2829 2830 if (tb->tb_mbuf != NULL) { 2831 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 2832 m_freem(tb->tb_mbuf); 2833 tb->tb_mbuf = NULL; 2834 } 2835 if (tb->tb_ni != NULL) { 2836 ieee80211_free_node(tb->tb_ni); 2837 tb->tb_ni = NULL; 2838 } 2839 } 2840 } 2841 2842 static void 2843 bwi_free_txstats64(struct bwi_softc *sc) 2844 { 2845 /* TODO:64 */ 2846 } 2847 2848 static void 2849 bwi_free_rx_ring64(struct bwi_softc *sc) 2850 { 2851 /* TODO:64 */ 2852 } 2853 2854 static void 2855 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx) 2856 { 2857 /* TODO:64 */ 2858 } 2859 2860 /* XXX does not belong here */ 2861 #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0) 2862 #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5) 2863 2864 static __inline void 2865 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate) 2866 { 2867 uint32_t plcp; 2868 2869 plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM), 2870 IEEE80211_OFDM_PLCP_RATE_MASK) | 2871 __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK); 2872 *plcp0 = htole32(plcp); 2873 } 2874 2875 static __inline void 2876 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len, 2877 uint8_t rate) 2878 { 2879 int len, service, pkt_bitlen; 2880 2881 pkt_bitlen = pkt_len * NBBY; 2882 len = howmany(pkt_bitlen * 2, rate); 2883 2884 service = IEEE80211_PLCP_SERVICE_LOCKED; 2885 if (rate == (11 * 2)) { 2886 int pkt_bitlen1; 2887 2888 /* 2889 * PLCP service field needs to be adjusted, 2890 * if TX rate is 11Mbytes/s 2891 */ 2892 pkt_bitlen1 = len * 11; 2893 if (pkt_bitlen1 - pkt_bitlen >= NBBY) 2894 service |= IEEE80211_PLCP_SERVICE_LENEXT7; 2895 } 2896 2897 plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK); 2898 plcp->i_service = service; 2899 plcp->i_length = htole16(len); 2900 /* NOTE: do NOT touch i_crc */ 2901 } 2902 2903 static __inline void 2904 bwi_plcp_header(const struct ieee80211_rate_table *rt, 2905 void *plcp, int pkt_len, uint8_t rate) 2906 { 2907 enum ieee80211_phytype modtype; 2908 2909 /* 2910 * Assume caller has zeroed 'plcp' 2911 */ 2912 modtype = ieee80211_rate2phytype(rt, rate); 2913 if (modtype == IEEE80211_T_OFDM) 2914 bwi_ofdm_plcp_header(plcp, pkt_len, rate); 2915 else if (modtype == IEEE80211_T_DS) 2916 bwi_ds_plcp_header(plcp, pkt_len, rate); 2917 else 2918 panic("unsupport modulation type %u\n", modtype); 2919 } 2920 2921 static int 2922 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m, 2923 struct ieee80211_node *ni) 2924 { 2925 struct ieee80211vap *vap = ni->ni_vap; 2926 struct ieee80211com *ic = &sc->sc_ic; 2927 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 2928 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 2929 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 2930 struct bwi_mac *mac; 2931 struct bwi_txbuf_hdr *hdr; 2932 struct ieee80211_frame *wh; 2933 const struct ieee80211_txparam *tp = ni->ni_txparms; 2934 uint8_t rate, rate_fb; 2935 uint32_t mac_ctrl; 2936 uint16_t phy_ctrl; 2937 bus_addr_t paddr; 2938 int type, ismcast, pkt_len, error, rix; 2939 #if 0 2940 const uint8_t *p; 2941 int i; 2942 #endif 2943 2944 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 2945 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 2946 mac = (struct bwi_mac *)sc->sc_cur_regwin; 2947 2948 wh = mtod(m, struct ieee80211_frame *); 2949 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2950 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2951 2952 /* Get 802.11 frame len before prepending TX header */ 2953 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 2954 2955 /* 2956 * Find TX rate 2957 */ 2958 if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) { 2959 rate = rate_fb = tp->mgmtrate; 2960 } else if (ismcast) { 2961 rate = rate_fb = tp->mcastrate; 2962 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 2963 rate = rate_fb = tp->ucastrate; 2964 } else { 2965 rix = ieee80211_ratectl_rate(ni, NULL, pkt_len); 2966 rate = ni->ni_txrate; 2967 2968 if (rix > 0) { 2969 rate_fb = ni->ni_rates.rs_rates[rix-1] & 2970 IEEE80211_RATE_VAL; 2971 } else { 2972 rate_fb = rate; 2973 } 2974 } 2975 tb->tb_rate[0] = rate; 2976 tb->tb_rate[1] = rate_fb; 2977 sc->sc_tx_rate = rate; 2978 2979 /* 2980 * TX radio tap 2981 */ 2982 if (ieee80211_radiotap_active_vap(vap)) { 2983 sc->sc_tx_th.wt_flags = 0; 2984 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 2985 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2986 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS && 2987 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2988 rate != (1 * 2)) { 2989 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2990 } 2991 sc->sc_tx_th.wt_rate = rate; 2992 2993 ieee80211_radiotap_tx(vap, m); 2994 } 2995 2996 /* 2997 * Setup the embedded TX header 2998 */ 2999 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 3000 if (m == NULL) { 3001 device_printf(sc->sc_dev, "%s: prepend TX header failed\n", 3002 __func__); 3003 return ENOBUFS; 3004 } 3005 hdr = mtod(m, struct bwi_txbuf_hdr *); 3006 3007 bzero(hdr, sizeof(*hdr)); 3008 3009 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 3010 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 3011 3012 if (!ismcast) { 3013 uint16_t dur; 3014 3015 dur = ieee80211_ack_duration(sc->sc_rates, rate, 3016 ic->ic_flags & ~IEEE80211_F_SHPREAMBLE); 3017 3018 hdr->txh_fb_duration = htole16(dur); 3019 } 3020 3021 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3022 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3023 3024 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3025 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3026 3027 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3028 BWI_TXH_PHY_C_ANTMODE_MASK); 3029 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) 3030 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3031 else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1)) 3032 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3033 3034 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3035 if (!ismcast) 3036 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3037 if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM) 3038 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3039 3040 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3041 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3042 3043 /* Catch any further usage */ 3044 hdr = NULL; 3045 wh = NULL; 3046 3047 /* DMA load */ 3048 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3049 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3050 if (error && error != EFBIG) { 3051 device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", 3052 __func__, error); 3053 goto back; 3054 } 3055 3056 if (error) { /* error == EFBIG */ 3057 struct mbuf *m_new; 3058 3059 m_new = m_defrag(m, M_NOWAIT); 3060 if (m_new == NULL) { 3061 device_printf(sc->sc_dev, 3062 "%s: can't defrag TX buffer\n", __func__); 3063 error = ENOBUFS; 3064 goto back; 3065 } else { 3066 m = m_new; 3067 } 3068 3069 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3070 bwi_dma_buf_addr, &paddr, 3071 BUS_DMA_NOWAIT); 3072 if (error) { 3073 device_printf(sc->sc_dev, 3074 "%s: can't load TX buffer (2) %d\n", 3075 __func__, error); 3076 goto back; 3077 } 3078 } 3079 error = 0; 3080 3081 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3082 3083 tb->tb_mbuf = m; 3084 tb->tb_ni = ni; 3085 3086 #if 0 3087 p = mtod(m, const uint8_t *); 3088 for (i = 0; i < m->m_pkthdr.len; ++i) { 3089 if (i != 0 && i % 8 == 0) 3090 printf("\n"); 3091 printf("%02x ", p[i]); 3092 } 3093 printf("\n"); 3094 #endif 3095 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3096 idx, pkt_len, m->m_pkthdr.len); 3097 3098 /* Setup TX descriptor */ 3099 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3100 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3101 BUS_DMASYNC_PREWRITE); 3102 3103 /* Kick start */ 3104 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3105 3106 back: 3107 if (error) 3108 m_freem(m); 3109 return error; 3110 } 3111 3112 static int 3113 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m, 3114 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 3115 { 3116 struct ieee80211vap *vap = ni->ni_vap; 3117 struct ieee80211com *ic = ni->ni_ic; 3118 struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; 3119 struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; 3120 struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; 3121 struct bwi_mac *mac; 3122 struct bwi_txbuf_hdr *hdr; 3123 struct ieee80211_frame *wh; 3124 uint8_t rate, rate_fb; 3125 uint32_t mac_ctrl; 3126 uint16_t phy_ctrl; 3127 bus_addr_t paddr; 3128 int ismcast, pkt_len, error; 3129 3130 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3131 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3132 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3133 3134 wh = mtod(m, struct ieee80211_frame *); 3135 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3136 3137 /* Get 802.11 frame len before prepending TX header */ 3138 pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3139 3140 /* 3141 * Find TX rate 3142 */ 3143 rate = params->ibp_rate0; 3144 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3145 /* XXX fall back to mcast/mgmt rate? */ 3146 m_freem(m); 3147 return EINVAL; 3148 } 3149 if (params->ibp_try1 != 0) { 3150 rate_fb = params->ibp_rate1; 3151 if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) { 3152 /* XXX fall back to rate0? */ 3153 m_freem(m); 3154 return EINVAL; 3155 } 3156 } else 3157 rate_fb = rate; 3158 tb->tb_rate[0] = rate; 3159 tb->tb_rate[1] = rate_fb; 3160 sc->sc_tx_rate = rate; 3161 3162 /* 3163 * TX radio tap 3164 */ 3165 if (ieee80211_radiotap_active_vap(vap)) { 3166 sc->sc_tx_th.wt_flags = 0; 3167 /* XXX IEEE80211_BPF_CRYPTO */ 3168 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3169 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3170 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3171 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3172 sc->sc_tx_th.wt_rate = rate; 3173 3174 ieee80211_radiotap_tx(vap, m); 3175 } 3176 3177 /* 3178 * Setup the embedded TX header 3179 */ 3180 M_PREPEND(m, sizeof(*hdr), M_NOWAIT); 3181 if (m == NULL) { 3182 device_printf(sc->sc_dev, "%s: prepend TX header failed\n", 3183 __func__); 3184 return ENOBUFS; 3185 } 3186 hdr = mtod(m, struct bwi_txbuf_hdr *); 3187 3188 bzero(hdr, sizeof(*hdr)); 3189 3190 bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); 3191 bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); 3192 3193 mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; 3194 if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { 3195 uint16_t dur; 3196 3197 dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0); 3198 3199 hdr->txh_fb_duration = htole16(dur); 3200 mac_ctrl |= BWI_TXH_MAC_C_ACK; 3201 } 3202 3203 hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | 3204 __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); 3205 3206 bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); 3207 bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); 3208 3209 phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, 3210 BWI_TXH_PHY_C_ANTMODE_MASK); 3211 if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) { 3212 phy_ctrl |= BWI_TXH_PHY_C_OFDM; 3213 mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; 3214 } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 3215 phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; 3216 3217 hdr->txh_mac_ctrl = htole32(mac_ctrl); 3218 hdr->txh_phy_ctrl = htole16(phy_ctrl); 3219 3220 /* Catch any further usage */ 3221 hdr = NULL; 3222 wh = NULL; 3223 3224 /* DMA load */ 3225 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3226 bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); 3227 if (error != 0) { 3228 struct mbuf *m_new; 3229 3230 if (error != EFBIG) { 3231 device_printf(sc->sc_dev, 3232 "%s: can't load TX buffer (1) %d\n", 3233 __func__, error); 3234 goto back; 3235 } 3236 m_new = m_defrag(m, M_NOWAIT); 3237 if (m_new == NULL) { 3238 device_printf(sc->sc_dev, 3239 "%s: can't defrag TX buffer\n", __func__); 3240 error = ENOBUFS; 3241 goto back; 3242 } 3243 m = m_new; 3244 error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, 3245 bwi_dma_buf_addr, &paddr, 3246 BUS_DMA_NOWAIT); 3247 if (error) { 3248 device_printf(sc->sc_dev, 3249 "%s: can't load TX buffer (2) %d\n", 3250 __func__, error); 3251 goto back; 3252 } 3253 } 3254 3255 bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); 3256 3257 tb->tb_mbuf = m; 3258 tb->tb_ni = ni; 3259 3260 DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", 3261 idx, pkt_len, m->m_pkthdr.len); 3262 3263 /* Setup TX descriptor */ 3264 sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); 3265 bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, 3266 BUS_DMASYNC_PREWRITE); 3267 3268 /* Kick start */ 3269 sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); 3270 back: 3271 if (error) 3272 m_freem(m); 3273 return error; 3274 } 3275 3276 static void 3277 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3278 { 3279 idx = (idx + 1) % BWI_TX_NDESC; 3280 CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX, 3281 idx * sizeof(struct bwi_desc32)); 3282 } 3283 3284 static void 3285 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) 3286 { 3287 /* TODO:64 */ 3288 } 3289 3290 static void 3291 bwi_txeof_status32(struct bwi_softc *sc) 3292 { 3293 uint32_t val, ctrl_base; 3294 int end_idx; 3295 3296 ctrl_base = sc->sc_txstats->stats_ctrl_base; 3297 3298 val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS); 3299 end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / 3300 sizeof(struct bwi_desc32); 3301 3302 bwi_txeof_status(sc, end_idx); 3303 3304 CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, 3305 end_idx * sizeof(struct bwi_desc32)); 3306 3307 bwi_start_locked(sc); 3308 } 3309 3310 static void 3311 bwi_txeof_status64(struct bwi_softc *sc) 3312 { 3313 /* TODO:64 */ 3314 } 3315 3316 static void 3317 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt) 3318 { 3319 struct bwi_txbuf_data *tbd; 3320 struct bwi_txbuf *tb; 3321 int ring_idx, buf_idx; 3322 struct ieee80211_node *ni; 3323 3324 if (tx_id == 0) { 3325 device_printf(sc->sc_dev, "%s: zero tx id\n", __func__); 3326 return; 3327 } 3328 3329 ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK); 3330 buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK); 3331 3332 KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx)); 3333 KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); 3334 3335 tbd = &sc->sc_tx_bdata[ring_idx]; 3336 KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used)); 3337 tbd->tbd_used--; 3338 3339 tb = &tbd->tbd_buf[buf_idx]; 3340 DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, " 3341 "acked %d, data_txcnt %d, ni %p\n", 3342 buf_idx, acked, data_txcnt, tb->tb_ni); 3343 3344 bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); 3345 3346 if ((ni = tb->tb_ni) != NULL) { 3347 const struct bwi_txbuf_hdr *hdr = 3348 mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *); 3349 struct ieee80211_ratectl_tx_status txs; 3350 3351 /* NB: update rate control only for unicast frames */ 3352 if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) { 3353 /* 3354 * Feed back 'acked and data_txcnt'. Note that the 3355 * generic AMRR code only understands one tx rate 3356 * and the estimator doesn't handle real retry counts 3357 * well so to avoid over-aggressive downshifting we 3358 * treat any number of retries as "1". 3359 */ 3360 txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY; 3361 txs.long_retries = acked; 3362 if (data_txcnt > 1) 3363 txs.status = IEEE80211_RATECTL_TX_SUCCESS; 3364 else { 3365 txs.status = 3366 IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3367 } 3368 ieee80211_ratectl_tx_complete(ni, &txs); 3369 } 3370 ieee80211_tx_complete(ni, tb->tb_mbuf, !acked); 3371 tb->tb_ni = NULL; 3372 } else 3373 m_freem(tb->tb_mbuf); 3374 tb->tb_mbuf = NULL; 3375 3376 if (tbd->tbd_used == 0) 3377 sc->sc_tx_timer = 0; 3378 } 3379 3380 static void 3381 bwi_txeof_status(struct bwi_softc *sc, int end_idx) 3382 { 3383 struct bwi_txstats_data *st = sc->sc_txstats; 3384 int idx; 3385 3386 bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD); 3387 3388 idx = st->stats_idx; 3389 while (idx != end_idx) { 3390 const struct bwi_txstats *stats = &st->stats[idx]; 3391 3392 if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) { 3393 int data_txcnt; 3394 3395 data_txcnt = __SHIFTOUT(stats->txs_txcnt, 3396 BWI_TXS_TXCNT_DATA); 3397 _bwi_txeof(sc, le16toh(stats->txs_id), 3398 stats->txs_flags & BWI_TXS_F_ACKED, 3399 data_txcnt); 3400 } 3401 idx = (idx + 1) % BWI_TXSTATS_NDESC; 3402 } 3403 st->stats_idx = idx; 3404 } 3405 3406 static void 3407 bwi_txeof(struct bwi_softc *sc) 3408 { 3409 3410 for (;;) { 3411 uint32_t tx_status0, tx_status1; 3412 uint16_t tx_id; 3413 int data_txcnt; 3414 3415 tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0); 3416 if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0) 3417 break; 3418 tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1); 3419 3420 tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK); 3421 data_txcnt = __SHIFTOUT(tx_status0, 3422 BWI_TXSTATUS0_DATA_TXCNT_MASK); 3423 3424 if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING)) 3425 continue; 3426 3427 _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED, 3428 data_txcnt); 3429 } 3430 3431 bwi_start_locked(sc); 3432 } 3433 3434 static int 3435 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) 3436 { 3437 bwi_power_on(sc, 1); 3438 return bwi_set_clock_mode(sc, clk_mode); 3439 } 3440 3441 static void 3442 bwi_bbp_power_off(struct bwi_softc *sc) 3443 { 3444 bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW); 3445 bwi_power_off(sc, 1); 3446 } 3447 3448 static int 3449 bwi_get_pwron_delay(struct bwi_softc *sc) 3450 { 3451 struct bwi_regwin *com, *old; 3452 struct bwi_clock_freq freq; 3453 uint32_t val; 3454 int error; 3455 3456 com = &sc->sc_com_regwin; 3457 KASSERT(BWI_REGWIN_EXIST(com), ("no regwin")); 3458 3459 if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) 3460 return 0; 3461 3462 error = bwi_regwin_switch(sc, com, &old); 3463 if (error) 3464 return error; 3465 3466 bwi_get_clock_freq(sc, &freq); 3467 3468 val = CSR_READ_4(sc, BWI_PLL_ON_DELAY); 3469 sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min); 3470 DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay); 3471 3472 return bwi_regwin_switch(sc, old, NULL); 3473 } 3474 3475 static int 3476 bwi_bus_attach(struct bwi_softc *sc) 3477 { 3478 struct bwi_regwin *bus, *old; 3479 int error; 3480 3481 bus = &sc->sc_bus_regwin; 3482 3483 error = bwi_regwin_switch(sc, bus, &old); 3484 if (error) 3485 return error; 3486 3487 if (!bwi_regwin_is_enabled(sc, bus)) 3488 bwi_regwin_enable(sc, bus, 0); 3489 3490 /* Disable interripts */ 3491 CSR_WRITE_4(sc, BWI_INTRVEC, 0); 3492 3493 return bwi_regwin_switch(sc, old, NULL); 3494 } 3495 3496 static const char * 3497 bwi_regwin_name(const struct bwi_regwin *rw) 3498 { 3499 switch (rw->rw_type) { 3500 case BWI_REGWIN_T_COM: 3501 return "COM"; 3502 case BWI_REGWIN_T_BUSPCI: 3503 return "PCI"; 3504 case BWI_REGWIN_T_MAC: 3505 return "MAC"; 3506 case BWI_REGWIN_T_BUSPCIE: 3507 return "PCIE"; 3508 } 3509 panic("unknown regwin type 0x%04x\n", rw->rw_type); 3510 return NULL; 3511 } 3512 3513 static uint32_t 3514 bwi_regwin_disable_bits(struct bwi_softc *sc) 3515 { 3516 uint32_t busrev; 3517 3518 /* XXX cache this */ 3519 busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK); 3520 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC, 3521 "bus rev %u\n", busrev); 3522 3523 if (busrev == BWI_BUSREV_0) 3524 return BWI_STATE_LO_DISABLE1; 3525 else if (busrev == BWI_BUSREV_1) 3526 return BWI_STATE_LO_DISABLE2; 3527 else 3528 return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2); 3529 } 3530 3531 int 3532 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw) 3533 { 3534 uint32_t val, disable_bits; 3535 3536 disable_bits = bwi_regwin_disable_bits(sc); 3537 val = CSR_READ_4(sc, BWI_STATE_LO); 3538 3539 if ((val & (BWI_STATE_LO_CLOCK | 3540 BWI_STATE_LO_RESET | 3541 disable_bits)) == BWI_STATE_LO_CLOCK) { 3542 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n", 3543 bwi_regwin_name(rw)); 3544 return 1; 3545 } else { 3546 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n", 3547 bwi_regwin_name(rw)); 3548 return 0; 3549 } 3550 } 3551 3552 void 3553 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3554 { 3555 uint32_t state_lo, disable_bits; 3556 int i; 3557 3558 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3559 3560 /* 3561 * If current regwin is in 'reset' state, it was already disabled. 3562 */ 3563 if (state_lo & BWI_STATE_LO_RESET) { 3564 DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, 3565 "%s was already disabled\n", bwi_regwin_name(rw)); 3566 return; 3567 } 3568 3569 disable_bits = bwi_regwin_disable_bits(sc); 3570 3571 /* 3572 * Disable normal clock 3573 */ 3574 state_lo = BWI_STATE_LO_CLOCK | disable_bits; 3575 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3576 3577 /* 3578 * Wait until normal clock is disabled 3579 */ 3580 #define NRETRY 1000 3581 for (i = 0; i < NRETRY; ++i) { 3582 state_lo = CSR_READ_4(sc, BWI_STATE_LO); 3583 if (state_lo & disable_bits) 3584 break; 3585 DELAY(10); 3586 } 3587 if (i == NRETRY) { 3588 device_printf(sc->sc_dev, "%s disable clock timeout\n", 3589 bwi_regwin_name(rw)); 3590 } 3591 3592 for (i = 0; i < NRETRY; ++i) { 3593 uint32_t state_hi; 3594 3595 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3596 if ((state_hi & BWI_STATE_HI_BUSY) == 0) 3597 break; 3598 DELAY(10); 3599 } 3600 if (i == NRETRY) { 3601 device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n", 3602 bwi_regwin_name(rw)); 3603 } 3604 #undef NRETRY 3605 3606 /* 3607 * Reset and disable regwin with gated clock 3608 */ 3609 state_lo = BWI_STATE_LO_RESET | disable_bits | 3610 BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | 3611 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3612 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3613 3614 /* Flush pending bus write */ 3615 CSR_READ_4(sc, BWI_STATE_LO); 3616 DELAY(1); 3617 3618 /* Reset and disable regwin */ 3619 state_lo = BWI_STATE_LO_RESET | disable_bits | 3620 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3621 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3622 3623 /* Flush pending bus write */ 3624 CSR_READ_4(sc, BWI_STATE_LO); 3625 DELAY(1); 3626 } 3627 3628 void 3629 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) 3630 { 3631 uint32_t state_lo, state_hi, imstate; 3632 3633 bwi_regwin_disable(sc, rw, flags); 3634 3635 /* Reset regwin with gated clock */ 3636 state_lo = BWI_STATE_LO_RESET | 3637 BWI_STATE_LO_CLOCK | 3638 BWI_STATE_LO_GATED_CLOCK | 3639 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3640 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3641 3642 /* Flush pending bus write */ 3643 CSR_READ_4(sc, BWI_STATE_LO); 3644 DELAY(1); 3645 3646 state_hi = CSR_READ_4(sc, BWI_STATE_HI); 3647 if (state_hi & BWI_STATE_HI_SERROR) 3648 CSR_WRITE_4(sc, BWI_STATE_HI, 0); 3649 3650 imstate = CSR_READ_4(sc, BWI_IMSTATE); 3651 if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) { 3652 imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT); 3653 CSR_WRITE_4(sc, BWI_IMSTATE, imstate); 3654 } 3655 3656 /* Enable regwin with gated clock */ 3657 state_lo = BWI_STATE_LO_CLOCK | 3658 BWI_STATE_LO_GATED_CLOCK | 3659 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3660 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3661 3662 /* Flush pending bus write */ 3663 CSR_READ_4(sc, BWI_STATE_LO); 3664 DELAY(1); 3665 3666 /* Enable regwin with normal clock */ 3667 state_lo = BWI_STATE_LO_CLOCK | 3668 __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); 3669 CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); 3670 3671 /* Flush pending bus write */ 3672 CSR_READ_4(sc, BWI_STATE_LO); 3673 DELAY(1); 3674 } 3675 3676 static void 3677 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid) 3678 { 3679 struct bwi_mac *mac; 3680 struct bwi_myaddr_bssid buf; 3681 const uint8_t *p; 3682 uint32_t val; 3683 int n, i; 3684 3685 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3686 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3687 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3688 3689 bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid); 3690 3691 bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr)); 3692 bcopy(bssid, buf.bssid, sizeof(buf.bssid)); 3693 3694 n = sizeof(buf) / sizeof(val); 3695 p = (const uint8_t *)&buf; 3696 for (i = 0; i < n; ++i) { 3697 int j; 3698 3699 val = 0; 3700 for (j = 0; j < sizeof(val); ++j) 3701 val |= ((uint32_t)(*p++)) << (j * 8); 3702 3703 TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val); 3704 } 3705 } 3706 3707 static void 3708 bwi_updateslot(struct ieee80211com *ic) 3709 { 3710 struct bwi_softc *sc = ic->ic_softc; 3711 struct bwi_mac *mac; 3712 3713 BWI_LOCK(sc); 3714 if (sc->sc_flags & BWI_F_RUNNING) { 3715 DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__); 3716 3717 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3718 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3719 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3720 3721 bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT)); 3722 } 3723 BWI_UNLOCK(sc); 3724 } 3725 3726 static void 3727 bwi_calibrate(void *xsc) 3728 { 3729 struct bwi_softc *sc = xsc; 3730 struct bwi_mac *mac; 3731 3732 BWI_ASSERT_LOCKED(sc); 3733 3734 KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR, 3735 ("opmode %d", sc->sc_ic.ic_opmode)); 3736 3737 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3738 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3739 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3740 3741 bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type); 3742 sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; 3743 3744 /* XXX 15 seconds */ 3745 callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc); 3746 } 3747 3748 static int 3749 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr) 3750 { 3751 struct bwi_mac *mac; 3752 3753 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3754 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3755 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3756 3757 return bwi_rf_calc_rssi(mac, hdr); 3758 } 3759 3760 static int 3761 bwi_calc_noise(struct bwi_softc *sc) 3762 { 3763 struct bwi_mac *mac; 3764 3765 KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, 3766 ("current regwin type %d", sc->sc_cur_regwin->rw_type)); 3767 mac = (struct bwi_mac *)sc->sc_cur_regwin; 3768 3769 return bwi_rf_calc_noise(mac); 3770 } 3771 3772 static __inline uint8_t 3773 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type) 3774 { 3775 uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK; 3776 return (ieee80211_plcp2rate(plcp, type)); 3777 } 3778 3779 static void 3780 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m, 3781 struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise) 3782 { 3783 const struct ieee80211_frame_min *wh; 3784 3785 sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS; 3786 if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE) 3787 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3788 3789 wh = mtod(m, const struct ieee80211_frame_min *); 3790 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 3791 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; 3792 3793 sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */ 3794 sc->sc_rx_th.wr_rate = rate; 3795 sc->sc_rx_th.wr_antsignal = rssi; 3796 sc->sc_rx_th.wr_antnoise = noise; 3797 } 3798 3799 static void 3800 bwi_led_attach(struct bwi_softc *sc) 3801 { 3802 const uint8_t *led_act = NULL; 3803 uint16_t gpio, val[BWI_LED_MAX]; 3804 int i; 3805 3806 for (i = 0; i < nitems(bwi_vendor_led_act); ++i) { 3807 if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) { 3808 led_act = bwi_vendor_led_act[i].led_act; 3809 break; 3810 } 3811 } 3812 if (led_act == NULL) 3813 led_act = bwi_default_led_act; 3814 3815 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01); 3816 val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0); 3817 val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1); 3818 3819 gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23); 3820 val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2); 3821 val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3); 3822 3823 for (i = 0; i < BWI_LED_MAX; ++i) { 3824 struct bwi_led *led = &sc->sc_leds[i]; 3825 3826 if (val[i] == 0xff) { 3827 led->l_act = led_act[i]; 3828 } else { 3829 if (val[i] & BWI_LED_ACT_LOW) 3830 led->l_flags |= BWI_LED_F_ACTLOW; 3831 led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK); 3832 } 3833 led->l_mask = (1 << i); 3834 3835 if (led->l_act == BWI_LED_ACT_BLINK_SLOW || 3836 led->l_act == BWI_LED_ACT_BLINK_POLL || 3837 led->l_act == BWI_LED_ACT_BLINK) { 3838 led->l_flags |= BWI_LED_F_BLINK; 3839 if (led->l_act == BWI_LED_ACT_BLINK_POLL) 3840 led->l_flags |= BWI_LED_F_POLLABLE; 3841 else if (led->l_act == BWI_LED_ACT_BLINK_SLOW) 3842 led->l_flags |= BWI_LED_F_SLOW; 3843 3844 if (sc->sc_blink_led == NULL) { 3845 sc->sc_blink_led = led; 3846 if (led->l_flags & BWI_LED_F_SLOW) 3847 BWI_LED_SLOWDOWN(sc->sc_led_idle); 3848 } 3849 } 3850 3851 DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH, 3852 "%dth led, act %d, lowact %d\n", i, 3853 led->l_act, led->l_flags & BWI_LED_F_ACTLOW); 3854 } 3855 callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); 3856 } 3857 3858 static __inline uint16_t 3859 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on) 3860 { 3861 if (led->l_flags & BWI_LED_F_ACTLOW) 3862 on = !on; 3863 if (on) 3864 val |= led->l_mask; 3865 else 3866 val &= ~led->l_mask; 3867 return val; 3868 } 3869 3870 static void 3871 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate) 3872 { 3873 struct ieee80211com *ic = &sc->sc_ic; 3874 uint16_t val; 3875 int i; 3876 3877 if (nstate == IEEE80211_S_INIT) { 3878 callout_stop(&sc->sc_led_blink_ch); 3879 sc->sc_led_blinking = 0; 3880 } 3881 3882 if ((sc->sc_flags & BWI_F_RUNNING) == 0) 3883 return; 3884 3885 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3886 for (i = 0; i < BWI_LED_MAX; ++i) { 3887 struct bwi_led *led = &sc->sc_leds[i]; 3888 int on; 3889 3890 if (led->l_act == BWI_LED_ACT_UNKN || 3891 led->l_act == BWI_LED_ACT_NULL) 3892 continue; 3893 3894 if ((led->l_flags & BWI_LED_F_BLINK) && 3895 nstate != IEEE80211_S_INIT) 3896 continue; 3897 3898 switch (led->l_act) { 3899 case BWI_LED_ACT_ON: /* Always on */ 3900 on = 1; 3901 break; 3902 case BWI_LED_ACT_OFF: /* Always off */ 3903 case BWI_LED_ACT_5GHZ: /* TODO: 11A */ 3904 on = 0; 3905 break; 3906 default: 3907 on = 1; 3908 switch (nstate) { 3909 case IEEE80211_S_INIT: 3910 on = 0; 3911 break; 3912 case IEEE80211_S_RUN: 3913 if (led->l_act == BWI_LED_ACT_11G && 3914 ic->ic_curmode != IEEE80211_MODE_11G) 3915 on = 0; 3916 break; 3917 default: 3918 if (led->l_act == BWI_LED_ACT_ASSOC) 3919 on = 0; 3920 break; 3921 } 3922 break; 3923 } 3924 3925 val = bwi_led_onoff(led, val, on); 3926 } 3927 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3928 } 3929 static void 3930 bwi_led_event(struct bwi_softc *sc, int event) 3931 { 3932 struct bwi_led *led = sc->sc_blink_led; 3933 int rate; 3934 3935 if (event == BWI_LED_EVENT_POLL) { 3936 if ((led->l_flags & BWI_LED_F_POLLABLE) == 0) 3937 return; 3938 if (ticks - sc->sc_led_ticks < sc->sc_led_idle) 3939 return; 3940 } 3941 3942 sc->sc_led_ticks = ticks; 3943 if (sc->sc_led_blinking) 3944 return; 3945 3946 switch (event) { 3947 case BWI_LED_EVENT_RX: 3948 rate = sc->sc_rx_rate; 3949 break; 3950 case BWI_LED_EVENT_TX: 3951 rate = sc->sc_tx_rate; 3952 break; 3953 case BWI_LED_EVENT_POLL: 3954 rate = 0; 3955 break; 3956 default: 3957 panic("unknown LED event %d\n", event); 3958 break; 3959 } 3960 bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur, 3961 bwi_led_duration[rate].off_dur); 3962 } 3963 3964 static void 3965 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur) 3966 { 3967 struct bwi_led *led = sc->sc_blink_led; 3968 uint16_t val; 3969 3970 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3971 val = bwi_led_onoff(led, val, 1); 3972 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3973 3974 if (led->l_flags & BWI_LED_F_SLOW) { 3975 BWI_LED_SLOWDOWN(on_dur); 3976 BWI_LED_SLOWDOWN(off_dur); 3977 } 3978 3979 sc->sc_led_blinking = 1; 3980 sc->sc_led_blink_offdur = off_dur; 3981 3982 callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc); 3983 } 3984 3985 static void 3986 bwi_led_blink_next(void *xsc) 3987 { 3988 struct bwi_softc *sc = xsc; 3989 uint16_t val; 3990 3991 val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); 3992 val = bwi_led_onoff(sc->sc_blink_led, val, 0); 3993 CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); 3994 3995 callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, 3996 bwi_led_blink_end, sc); 3997 } 3998 3999 static void 4000 bwi_led_blink_end(void *xsc) 4001 { 4002 struct bwi_softc *sc = xsc; 4003 sc->sc_led_blinking = 0; 4004 } 4005 4006 static void 4007 bwi_restart(void *xsc, int pending) 4008 { 4009 struct bwi_softc *sc = xsc; 4010 4011 device_printf(sc->sc_dev, "%s begin, help!\n", __func__); 4012 BWI_LOCK(sc); 4013 bwi_init_statechg(sc, 0); 4014 #if 0 4015 bwi_start_locked(sc); 4016 #endif 4017 BWI_UNLOCK(sc); 4018 } 4019