1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 /* 40 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver 41 * 42 * The Broadcom BCM5700 is based on technology originally developed by 43 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet 44 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 45 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 46 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 47 * frames, highly configurable RX filtering, and 16 RX and TX queues 48 * (which, along with RX filter rules, can be used for QOS applications). 49 * Other features, such as TCP segmentation, may be available as part 50 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 51 * firmware images can be stored in hardware and need not be compiled 52 * into the driver. 53 * 54 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 55 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 56 * 57 * The BCM5701 is a single-chip solution incorporating both the BCM5700 58 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 59 * does not support external SSRAM. 60 * 61 * Broadcom also produces a variation of the BCM5700 under the "Altima" 62 * brand name, which is functionally similar but lacks PCI-X support. 63 * 64 * Without external SSRAM, you can only have at most 4 TX rings, 65 * and the use of the mini RX ring is disabled. This seems to imply 66 * that these features are simply not available on the BCM5701. As a 67 * result, this driver does not implement any support for the mini RX 68 * ring. 69 */ 70 71 #ifdef HAVE_KERNEL_OPTION_HEADERS 72 #include "opt_device_polling.h" 73 #endif 74 75 #include <sys/param.h> 76 #include <sys/endian.h> 77 #include <sys/systm.h> 78 #include <sys/sockio.h> 79 #include <sys/mbuf.h> 80 #include <sys/malloc.h> 81 #include <sys/kernel.h> 82 #include <sys/module.h> 83 #include <sys/socket.h> 84 #include <sys/sysctl.h> 85 #include <sys/taskqueue.h> 86 87 #include <net/debugnet.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 95 #include <net/bpf.h> 96 97 #include <net/if_types.h> 98 #include <net/if_vlan_var.h> 99 100 #include <netinet/in_systm.h> 101 #include <netinet/in.h> 102 #include <netinet/ip.h> 103 #include <netinet/tcp.h> 104 105 #include <machine/bus.h> 106 #include <machine/resource.h> 107 #include <sys/bus.h> 108 #include <sys/rman.h> 109 110 #include <dev/mii/mii.h> 111 #include <dev/mii/miivar.h> 112 #include "miidevs.h" 113 #include <dev/mii/brgphyreg.h> 114 115 #include <dev/pci/pcireg.h> 116 #include <dev/pci/pcivar.h> 117 118 #include <dev/bge/if_bgereg.h> 119 120 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 121 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 122 123 MODULE_DEPEND(bge, pci, 1, 1, 1); 124 MODULE_DEPEND(bge, ether, 1, 1, 1); 125 MODULE_DEPEND(bge, miibus, 1, 1, 1); 126 127 /* "device miibus" required. See GENERIC if you get errors here. */ 128 #include "miibus_if.h" 129 130 /* 131 * Various supported device vendors/types and their names. Note: the 132 * spec seems to indicate that the hardware still has Alteon's vendor 133 * ID burned into it, though it will always be overriden by the vendor 134 * ID in the EEPROM. Just to be safe, we cover all possibilities. 135 */ 136 static const struct bge_type { 137 uint16_t bge_vid; 138 uint16_t bge_did; 139 } bge_devs[] = { 140 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 141 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 142 143 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 144 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 145 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 146 147 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 148 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717C }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5725 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5727 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5762 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57762 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57764 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57766 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57767 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 227 { BCOM_VENDORID, BCOM_DEVICEID_BCM57782 }, 228 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 229 { BCOM_VENDORID, BCOM_DEVICEID_BCM57786 }, 230 { BCOM_VENDORID, BCOM_DEVICEID_BCM57787 }, 231 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 232 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 233 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 234 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 235 236 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 237 238 { TC_VENDORID, TC_DEVICEID_3C996 }, 239 240 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 241 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 242 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 243 244 { 0, 0 } 245 }; 246 247 static const struct bge_vendor { 248 uint16_t v_id; 249 const char *v_name; 250 } bge_vendors[] = { 251 { ALTEON_VENDORID, "Alteon" }, 252 { ALTIMA_VENDORID, "Altima" }, 253 { APPLE_VENDORID, "Apple" }, 254 { BCOM_VENDORID, "Broadcom" }, 255 { SK_VENDORID, "SysKonnect" }, 256 { TC_VENDORID, "3Com" }, 257 { FJTSU_VENDORID, "Fujitsu" }, 258 259 { 0, NULL } 260 }; 261 262 static const struct bge_revision { 263 uint32_t br_chipid; 264 const char *br_name; 265 } bge_revisions[] = { 266 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 267 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 268 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 269 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 270 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 271 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 272 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 273 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 274 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 275 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 276 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 277 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 278 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 279 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 280 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 281 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 282 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 283 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 284 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 285 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 286 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 287 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 288 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 289 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 290 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 291 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 292 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 293 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 294 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 295 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 296 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 297 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 298 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 299 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 300 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 301 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 302 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 303 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 304 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 305 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 306 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 307 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 308 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 309 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 310 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 311 { BGE_CHIPID_BCM5717_C0, "BCM5717 C0" }, 312 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 313 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 314 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 315 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 316 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 317 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 318 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 319 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 320 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 321 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 322 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 323 /* 5754 and 5787 share the same ASIC ID */ 324 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 325 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 326 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 327 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 328 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 329 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 330 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 331 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 332 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 333 334 { 0, NULL } 335 }; 336 337 /* 338 * Some defaults for major revisions, so that newer steppings 339 * that we don't know about have a shot at working. 340 */ 341 static const struct bge_revision bge_majorrevs[] = { 342 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 343 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 344 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 345 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 346 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 347 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 348 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 349 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 350 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 351 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 352 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 353 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 354 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 355 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 356 /* 5754 and 5787 share the same ASIC ID */ 357 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 358 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 359 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 360 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 361 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 362 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 363 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 364 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 365 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 366 367 { 0, NULL } 368 }; 369 370 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 371 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 372 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 373 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 374 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 375 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 376 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 377 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS) 378 379 static uint32_t bge_chipid(device_t); 380 static const struct bge_vendor * bge_lookup_vendor(uint16_t); 381 static const struct bge_revision * bge_lookup_rev(uint32_t); 382 383 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 384 385 static int bge_probe(device_t); 386 static int bge_attach(device_t); 387 static int bge_detach(device_t); 388 static int bge_suspend(device_t); 389 static int bge_resume(device_t); 390 static void bge_release_resources(struct bge_softc *); 391 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 392 static int bge_dma_alloc(struct bge_softc *); 393 static void bge_dma_free(struct bge_softc *); 394 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 395 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 396 397 static void bge_devinfo(struct bge_softc *); 398 static int bge_mbox_reorder(struct bge_softc *); 399 400 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 401 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 402 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 403 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 404 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 405 406 static void bge_txeof(struct bge_softc *, uint16_t); 407 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 408 static int bge_rxeof(struct bge_softc *, uint16_t, int); 409 410 static void bge_asf_driver_up (struct bge_softc *); 411 static void bge_tick(void *); 412 static void bge_stats_clear_regs(struct bge_softc *); 413 static void bge_stats_update(struct bge_softc *); 414 static void bge_stats_update_regs(struct bge_softc *); 415 static struct mbuf *bge_check_short_dma(struct mbuf *); 416 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 417 uint16_t *, uint16_t *); 418 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 419 420 static void bge_intr(void *); 421 static int bge_msi_intr(void *); 422 static void bge_intr_task(void *, int); 423 static void bge_start(if_t); 424 static void bge_start_locked(if_t); 425 static void bge_start_tx(struct bge_softc *, uint32_t); 426 static int bge_ioctl(if_t, u_long, caddr_t); 427 static void bge_init_locked(struct bge_softc *); 428 static void bge_init(void *); 429 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 430 static void bge_stop(struct bge_softc *); 431 static void bge_watchdog(struct bge_softc *); 432 static int bge_shutdown(device_t); 433 static int bge_ifmedia_upd_locked(if_t); 434 static int bge_ifmedia_upd(if_t); 435 static void bge_ifmedia_sts(if_t, struct ifmediareq *); 436 static uint64_t bge_get_counter(if_t, ift_counter); 437 438 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 439 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 440 441 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 442 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 443 444 static void bge_setpromisc(struct bge_softc *); 445 static void bge_setmulti(struct bge_softc *); 446 static void bge_setvlan(struct bge_softc *); 447 448 static __inline void bge_rxreuse_std(struct bge_softc *, int); 449 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 450 static int bge_newbuf_std(struct bge_softc *, int); 451 static int bge_newbuf_jumbo(struct bge_softc *, int); 452 static int bge_init_rx_ring_std(struct bge_softc *); 453 static void bge_free_rx_ring_std(struct bge_softc *); 454 static int bge_init_rx_ring_jumbo(struct bge_softc *); 455 static void bge_free_rx_ring_jumbo(struct bge_softc *); 456 static void bge_free_tx_ring(struct bge_softc *); 457 static int bge_init_tx_ring(struct bge_softc *); 458 459 static int bge_chipinit(struct bge_softc *); 460 static int bge_blockinit(struct bge_softc *); 461 static uint32_t bge_dma_swap_options(struct bge_softc *); 462 463 static int bge_has_eaddr(struct bge_softc *); 464 static uint32_t bge_readmem_ind(struct bge_softc *, int); 465 static void bge_writemem_ind(struct bge_softc *, int, int); 466 static void bge_writembx(struct bge_softc *, int, int); 467 #ifdef notdef 468 static uint32_t bge_readreg_ind(struct bge_softc *, int); 469 #endif 470 static void bge_writemem_direct(struct bge_softc *, int, int); 471 static void bge_writereg_ind(struct bge_softc *, int, int); 472 473 static int bge_miibus_readreg(device_t, int, int); 474 static int bge_miibus_writereg(device_t, int, int, int); 475 static void bge_miibus_statchg(device_t); 476 #ifdef DEVICE_POLLING 477 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count); 478 #endif 479 480 #define BGE_RESET_SHUTDOWN 0 481 #define BGE_RESET_START 1 482 #define BGE_RESET_SUSPEND 2 483 static void bge_sig_post_reset(struct bge_softc *, int); 484 static void bge_sig_legacy(struct bge_softc *, int); 485 static void bge_sig_pre_reset(struct bge_softc *, int); 486 static void bge_stop_fw(struct bge_softc *); 487 static int bge_reset(struct bge_softc *); 488 static void bge_link_upd(struct bge_softc *); 489 490 static void bge_ape_lock_init(struct bge_softc *); 491 static void bge_ape_read_fw_ver(struct bge_softc *); 492 static int bge_ape_lock(struct bge_softc *, int); 493 static void bge_ape_unlock(struct bge_softc *, int); 494 static void bge_ape_send_event(struct bge_softc *, uint32_t); 495 static void bge_ape_driver_state_change(struct bge_softc *, int); 496 497 /* 498 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 499 * leak information to untrusted users. It is also known to cause alignment 500 * traps on certain architectures. 501 */ 502 #ifdef BGE_REGISTER_DEBUG 503 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 504 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 505 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 506 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 507 #endif 508 static void bge_add_sysctls(struct bge_softc *); 509 static void bge_add_sysctl_stats_regs(struct bge_softc *, 510 struct sysctl_ctx_list *, struct sysctl_oid_list *); 511 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 512 struct sysctl_oid_list *); 513 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 514 515 DEBUGNET_DEFINE(bge); 516 517 static device_method_t bge_methods[] = { 518 /* Device interface */ 519 DEVMETHOD(device_probe, bge_probe), 520 DEVMETHOD(device_attach, bge_attach), 521 DEVMETHOD(device_detach, bge_detach), 522 DEVMETHOD(device_shutdown, bge_shutdown), 523 DEVMETHOD(device_suspend, bge_suspend), 524 DEVMETHOD(device_resume, bge_resume), 525 526 /* MII interface */ 527 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 528 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 529 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 530 531 DEVMETHOD_END 532 }; 533 534 static driver_t bge_driver = { 535 "bge", 536 bge_methods, 537 sizeof(struct bge_softc) 538 }; 539 540 static devclass_t bge_devclass; 541 542 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 543 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs, 544 nitems(bge_devs) - 1); 545 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 546 547 static int bge_allow_asf = 1; 548 549 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 550 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0, 551 "Allow ASF mode if available"); 552 553 static int 554 bge_has_eaddr(struct bge_softc *sc) 555 { 556 return (1); 557 } 558 559 static uint32_t 560 bge_readmem_ind(struct bge_softc *sc, int off) 561 { 562 device_t dev; 563 uint32_t val; 564 565 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 566 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 567 return (0); 568 569 dev = sc->bge_dev; 570 571 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 572 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 573 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 574 return (val); 575 } 576 577 static void 578 bge_writemem_ind(struct bge_softc *sc, int off, int val) 579 { 580 device_t dev; 581 582 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 583 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 584 return; 585 586 dev = sc->bge_dev; 587 588 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 589 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 590 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 591 } 592 593 #ifdef notdef 594 static uint32_t 595 bge_readreg_ind(struct bge_softc *sc, int off) 596 { 597 device_t dev; 598 599 dev = sc->bge_dev; 600 601 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 602 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 603 } 604 #endif 605 606 static void 607 bge_writereg_ind(struct bge_softc *sc, int off, int val) 608 { 609 device_t dev; 610 611 dev = sc->bge_dev; 612 613 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 614 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 615 } 616 617 static void 618 bge_writemem_direct(struct bge_softc *sc, int off, int val) 619 { 620 CSR_WRITE_4(sc, off, val); 621 } 622 623 static void 624 bge_writembx(struct bge_softc *sc, int off, int val) 625 { 626 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 627 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 628 629 CSR_WRITE_4(sc, off, val); 630 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 631 CSR_READ_4(sc, off); 632 } 633 634 /* 635 * Clear all stale locks and select the lock for this driver instance. 636 */ 637 static void 638 bge_ape_lock_init(struct bge_softc *sc) 639 { 640 uint32_t bit, regbase; 641 int i; 642 643 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 644 regbase = BGE_APE_LOCK_GRANT; 645 else 646 regbase = BGE_APE_PER_LOCK_GRANT; 647 648 /* Clear any stale locks. */ 649 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 650 switch (i) { 651 case BGE_APE_LOCK_PHY0: 652 case BGE_APE_LOCK_PHY1: 653 case BGE_APE_LOCK_PHY2: 654 case BGE_APE_LOCK_PHY3: 655 bit = BGE_APE_LOCK_GRANT_DRIVER0; 656 break; 657 default: 658 if (sc->bge_func_addr == 0) 659 bit = BGE_APE_LOCK_GRANT_DRIVER0; 660 else 661 bit = (1 << sc->bge_func_addr); 662 } 663 APE_WRITE_4(sc, regbase + 4 * i, bit); 664 } 665 666 /* Select the PHY lock based on the device's function number. */ 667 switch (sc->bge_func_addr) { 668 case 0: 669 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 670 break; 671 case 1: 672 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 673 break; 674 case 2: 675 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 676 break; 677 case 3: 678 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 679 break; 680 default: 681 device_printf(sc->bge_dev, 682 "PHY lock not supported on this function\n"); 683 } 684 } 685 686 /* 687 * Check for APE firmware, set flags, and print version info. 688 */ 689 static void 690 bge_ape_read_fw_ver(struct bge_softc *sc) 691 { 692 const char *fwtype; 693 uint32_t apedata, features; 694 695 /* Check for a valid APE signature in shared memory. */ 696 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 697 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 698 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 699 return; 700 } 701 702 /* Check if APE firmware is running. */ 703 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 704 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 705 device_printf(sc->bge_dev, "APE signature found " 706 "but FW status not ready! 0x%08x\n", apedata); 707 return; 708 } 709 710 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 711 712 /* Fetch the APE firwmare type and version. */ 713 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 714 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 715 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 716 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 717 fwtype = "NCSI"; 718 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 719 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 720 fwtype = "DASH"; 721 } else 722 fwtype = "UNKN"; 723 724 /* Print the APE firmware version. */ 725 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 726 fwtype, 727 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 728 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 729 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 730 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 731 } 732 733 static int 734 bge_ape_lock(struct bge_softc *sc, int locknum) 735 { 736 uint32_t bit, gnt, req, status; 737 int i, off; 738 739 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 740 return (0); 741 742 /* Lock request/grant registers have different bases. */ 743 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 744 req = BGE_APE_LOCK_REQ; 745 gnt = BGE_APE_LOCK_GRANT; 746 } else { 747 req = BGE_APE_PER_LOCK_REQ; 748 gnt = BGE_APE_PER_LOCK_GRANT; 749 } 750 751 off = 4 * locknum; 752 753 switch (locknum) { 754 case BGE_APE_LOCK_GPIO: 755 /* Lock required when using GPIO. */ 756 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 757 return (0); 758 if (sc->bge_func_addr == 0) 759 bit = BGE_APE_LOCK_REQ_DRIVER0; 760 else 761 bit = (1 << sc->bge_func_addr); 762 break; 763 case BGE_APE_LOCK_GRC: 764 /* Lock required to reset the device. */ 765 if (sc->bge_func_addr == 0) 766 bit = BGE_APE_LOCK_REQ_DRIVER0; 767 else 768 bit = (1 << sc->bge_func_addr); 769 break; 770 case BGE_APE_LOCK_MEM: 771 /* Lock required when accessing certain APE memory. */ 772 if (sc->bge_func_addr == 0) 773 bit = BGE_APE_LOCK_REQ_DRIVER0; 774 else 775 bit = (1 << sc->bge_func_addr); 776 break; 777 case BGE_APE_LOCK_PHY0: 778 case BGE_APE_LOCK_PHY1: 779 case BGE_APE_LOCK_PHY2: 780 case BGE_APE_LOCK_PHY3: 781 /* Lock required when accessing PHYs. */ 782 bit = BGE_APE_LOCK_REQ_DRIVER0; 783 break; 784 default: 785 return (EINVAL); 786 } 787 788 /* Request a lock. */ 789 APE_WRITE_4(sc, req + off, bit); 790 791 /* Wait up to 1 second to acquire lock. */ 792 for (i = 0; i < 20000; i++) { 793 status = APE_READ_4(sc, gnt + off); 794 if (status == bit) 795 break; 796 DELAY(50); 797 } 798 799 /* Handle any errors. */ 800 if (status != bit) { 801 device_printf(sc->bge_dev, "APE lock %d request failed! " 802 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 803 locknum, req + off, bit & 0xFFFF, gnt + off, 804 status & 0xFFFF); 805 /* Revoke the lock request. */ 806 APE_WRITE_4(sc, gnt + off, bit); 807 return (EBUSY); 808 } 809 810 return (0); 811 } 812 813 static void 814 bge_ape_unlock(struct bge_softc *sc, int locknum) 815 { 816 uint32_t bit, gnt; 817 int off; 818 819 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 820 return; 821 822 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 823 gnt = BGE_APE_LOCK_GRANT; 824 else 825 gnt = BGE_APE_PER_LOCK_GRANT; 826 827 off = 4 * locknum; 828 829 switch (locknum) { 830 case BGE_APE_LOCK_GPIO: 831 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 832 return; 833 if (sc->bge_func_addr == 0) 834 bit = BGE_APE_LOCK_GRANT_DRIVER0; 835 else 836 bit = (1 << sc->bge_func_addr); 837 break; 838 case BGE_APE_LOCK_GRC: 839 if (sc->bge_func_addr == 0) 840 bit = BGE_APE_LOCK_GRANT_DRIVER0; 841 else 842 bit = (1 << sc->bge_func_addr); 843 break; 844 case BGE_APE_LOCK_MEM: 845 if (sc->bge_func_addr == 0) 846 bit = BGE_APE_LOCK_GRANT_DRIVER0; 847 else 848 bit = (1 << sc->bge_func_addr); 849 break; 850 case BGE_APE_LOCK_PHY0: 851 case BGE_APE_LOCK_PHY1: 852 case BGE_APE_LOCK_PHY2: 853 case BGE_APE_LOCK_PHY3: 854 bit = BGE_APE_LOCK_GRANT_DRIVER0; 855 break; 856 default: 857 return; 858 } 859 860 APE_WRITE_4(sc, gnt + off, bit); 861 } 862 863 /* 864 * Send an event to the APE firmware. 865 */ 866 static void 867 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 868 { 869 uint32_t apedata; 870 int i; 871 872 /* NCSI does not support APE events. */ 873 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 874 return; 875 876 /* Wait up to 1ms for APE to service previous event. */ 877 for (i = 10; i > 0; i--) { 878 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 879 break; 880 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 881 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 882 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 883 BGE_APE_EVENT_STATUS_EVENT_PENDING); 884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 885 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 886 break; 887 } 888 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 889 DELAY(100); 890 } 891 if (i == 0) 892 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 893 event); 894 } 895 896 static void 897 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 898 { 899 uint32_t apedata, event; 900 901 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 902 return; 903 904 switch (kind) { 905 case BGE_RESET_START: 906 /* If this is the first load, clear the load counter. */ 907 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 908 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 910 else { 911 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 912 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 913 } 914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 915 BGE_APE_HOST_SEG_SIG_MAGIC); 916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 917 BGE_APE_HOST_SEG_LEN_MAGIC); 918 919 /* Add some version info if bge(4) supports it. */ 920 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 921 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 922 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 923 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 924 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 925 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 926 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 927 BGE_APE_HOST_DRVR_STATE_START); 928 event = BGE_APE_EVENT_STATUS_STATE_START; 929 break; 930 case BGE_RESET_SHUTDOWN: 931 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 932 BGE_APE_HOST_DRVR_STATE_UNLOAD); 933 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 934 break; 935 case BGE_RESET_SUSPEND: 936 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 937 break; 938 default: 939 return; 940 } 941 942 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 943 BGE_APE_EVENT_STATUS_STATE_CHNGE); 944 } 945 946 /* 947 * Map a single buffer address. 948 */ 949 950 static void 951 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 952 { 953 struct bge_dmamap_arg *ctx; 954 955 if (error) 956 return; 957 958 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 959 960 ctx = arg; 961 ctx->bge_busaddr = segs->ds_addr; 962 } 963 964 static uint8_t 965 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 966 { 967 uint32_t access, byte = 0; 968 int i; 969 970 /* Lock. */ 971 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 972 for (i = 0; i < 8000; i++) { 973 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 974 break; 975 DELAY(20); 976 } 977 if (i == 8000) 978 return (1); 979 980 /* Enable access. */ 981 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 982 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 983 984 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 985 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 986 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 987 DELAY(10); 988 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 989 DELAY(10); 990 break; 991 } 992 } 993 994 if (i == BGE_TIMEOUT * 10) { 995 if_printf(sc->bge_ifp, "nvram read timed out\n"); 996 return (1); 997 } 998 999 /* Get result. */ 1000 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 1001 1002 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 1003 1004 /* Disable access. */ 1005 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1006 1007 /* Unlock. */ 1008 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1009 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1010 1011 return (0); 1012 } 1013 1014 /* 1015 * Read a sequence of bytes from NVRAM. 1016 */ 1017 static int 1018 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1019 { 1020 int err = 0, i; 1021 uint8_t byte = 0; 1022 1023 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1024 return (1); 1025 1026 for (i = 0; i < cnt; i++) { 1027 err = bge_nvram_getbyte(sc, off + i, &byte); 1028 if (err) 1029 break; 1030 *(dest + i) = byte; 1031 } 1032 1033 return (err ? 1 : 0); 1034 } 1035 1036 /* 1037 * Read a byte of data stored in the EEPROM at address 'addr.' The 1038 * BCM570x supports both the traditional bitbang interface and an 1039 * auto access interface for reading the EEPROM. We use the auto 1040 * access method. 1041 */ 1042 static uint8_t 1043 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1044 { 1045 int i; 1046 uint32_t byte = 0; 1047 1048 /* 1049 * Enable use of auto EEPROM access so we can avoid 1050 * having to use the bitbang method. 1051 */ 1052 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1053 1054 /* Reset the EEPROM, load the clock period. */ 1055 CSR_WRITE_4(sc, BGE_EE_ADDR, 1056 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1057 DELAY(20); 1058 1059 /* Issue the read EEPROM command. */ 1060 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1061 1062 /* Wait for completion */ 1063 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1064 DELAY(10); 1065 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1066 break; 1067 } 1068 1069 if (i == BGE_TIMEOUT * 10) { 1070 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1071 return (1); 1072 } 1073 1074 /* Get result. */ 1075 byte = CSR_READ_4(sc, BGE_EE_DATA); 1076 1077 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * Read a sequence of bytes from the EEPROM. 1084 */ 1085 static int 1086 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1087 { 1088 int i, error = 0; 1089 uint8_t byte = 0; 1090 1091 for (i = 0; i < cnt; i++) { 1092 error = bge_eeprom_getbyte(sc, off + i, &byte); 1093 if (error) 1094 break; 1095 *(dest + i) = byte; 1096 } 1097 1098 return (error ? 1 : 0); 1099 } 1100 1101 static int 1102 bge_miibus_readreg(device_t dev, int phy, int reg) 1103 { 1104 struct bge_softc *sc; 1105 uint32_t val; 1106 int i; 1107 1108 sc = device_get_softc(dev); 1109 1110 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1111 return (0); 1112 1113 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1114 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1115 CSR_WRITE_4(sc, BGE_MI_MODE, 1116 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1117 DELAY(80); 1118 } 1119 1120 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1121 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1122 1123 /* Poll for the PHY register access to complete. */ 1124 for (i = 0; i < BGE_TIMEOUT; i++) { 1125 DELAY(10); 1126 val = CSR_READ_4(sc, BGE_MI_COMM); 1127 if ((val & BGE_MICOMM_BUSY) == 0) { 1128 DELAY(5); 1129 val = CSR_READ_4(sc, BGE_MI_COMM); 1130 break; 1131 } 1132 } 1133 1134 if (i == BGE_TIMEOUT) { 1135 device_printf(sc->bge_dev, 1136 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1137 phy, reg, val); 1138 val = 0; 1139 } 1140 1141 /* Restore the autopoll bit if necessary. */ 1142 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1143 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1144 DELAY(80); 1145 } 1146 1147 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1148 1149 if (val & BGE_MICOMM_READFAIL) 1150 return (0); 1151 1152 return (val & 0xFFFF); 1153 } 1154 1155 static int 1156 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1157 { 1158 struct bge_softc *sc; 1159 int i; 1160 1161 sc = device_get_softc(dev); 1162 1163 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1164 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1165 return (0); 1166 1167 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1168 return (0); 1169 1170 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1171 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1172 CSR_WRITE_4(sc, BGE_MI_MODE, 1173 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1174 DELAY(80); 1175 } 1176 1177 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1178 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1179 1180 for (i = 0; i < BGE_TIMEOUT; i++) { 1181 DELAY(10); 1182 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1183 DELAY(5); 1184 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1185 break; 1186 } 1187 } 1188 1189 /* Restore the autopoll bit if necessary. */ 1190 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1191 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1192 DELAY(80); 1193 } 1194 1195 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1196 1197 if (i == BGE_TIMEOUT) 1198 device_printf(sc->bge_dev, 1199 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1200 phy, reg, val); 1201 1202 return (0); 1203 } 1204 1205 static void 1206 bge_miibus_statchg(device_t dev) 1207 { 1208 struct bge_softc *sc; 1209 struct mii_data *mii; 1210 uint32_t mac_mode, rx_mode, tx_mode; 1211 1212 sc = device_get_softc(dev); 1213 if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0) 1214 return; 1215 mii = device_get_softc(sc->bge_miibus); 1216 1217 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1218 (IFM_ACTIVE | IFM_AVALID)) { 1219 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1220 case IFM_10_T: 1221 case IFM_100_TX: 1222 sc->bge_link = 1; 1223 break; 1224 case IFM_1000_T: 1225 case IFM_1000_SX: 1226 case IFM_2500_SX: 1227 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1228 sc->bge_link = 1; 1229 else 1230 sc->bge_link = 0; 1231 break; 1232 default: 1233 sc->bge_link = 0; 1234 break; 1235 } 1236 } else 1237 sc->bge_link = 0; 1238 if (sc->bge_link == 0) 1239 return; 1240 1241 /* 1242 * APE firmware touches these registers to keep the MAC 1243 * connected to the outside world. Try to keep the 1244 * accesses atomic. 1245 */ 1246 1247 /* Set the port mode (MII/GMII) to match the link speed. */ 1248 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1249 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1250 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1251 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1252 1253 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1254 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1255 mac_mode |= BGE_PORTMODE_GMII; 1256 else 1257 mac_mode |= BGE_PORTMODE_MII; 1258 1259 /* Set MAC flow control behavior to match link flow control settings. */ 1260 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1261 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1262 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1263 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1264 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1265 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1266 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1267 } else 1268 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1269 1270 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1271 DELAY(40); 1272 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1273 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1274 } 1275 1276 /* 1277 * Intialize a standard receive ring descriptor. 1278 */ 1279 static int 1280 bge_newbuf_std(struct bge_softc *sc, int i) 1281 { 1282 struct mbuf *m; 1283 struct bge_rx_bd *r; 1284 bus_dma_segment_t segs[1]; 1285 bus_dmamap_t map; 1286 int error, nsegs; 1287 1288 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1289 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 1290 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1291 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1292 if (m == NULL) 1293 return (ENOBUFS); 1294 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1295 } else { 1296 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1297 if (m == NULL) 1298 return (ENOBUFS); 1299 m->m_len = m->m_pkthdr.len = MCLBYTES; 1300 } 1301 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1302 m_adj(m, ETHER_ALIGN); 1303 1304 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1305 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1306 if (error != 0) { 1307 m_freem(m); 1308 return (error); 1309 } 1310 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1311 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1312 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1313 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1314 sc->bge_cdata.bge_rx_std_dmamap[i]); 1315 } 1316 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1317 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1318 sc->bge_cdata.bge_rx_std_sparemap = map; 1319 sc->bge_cdata.bge_rx_std_chain[i] = m; 1320 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1321 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1322 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1323 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1324 r->bge_flags = BGE_RXBDFLAG_END; 1325 r->bge_len = segs[0].ds_len; 1326 r->bge_idx = i; 1327 1328 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1329 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * Initialize a jumbo receive ring descriptor. This allocates 1336 * a jumbo buffer from the pool managed internally by the driver. 1337 */ 1338 static int 1339 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1340 { 1341 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1342 bus_dmamap_t map; 1343 struct bge_extrx_bd *r; 1344 struct mbuf *m; 1345 int error, nsegs; 1346 1347 MGETHDR(m, M_NOWAIT, MT_DATA); 1348 if (m == NULL) 1349 return (ENOBUFS); 1350 1351 if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) { 1352 m_freem(m); 1353 return (ENOBUFS); 1354 } 1355 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1356 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1357 m_adj(m, ETHER_ALIGN); 1358 1359 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1360 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1361 if (error != 0) { 1362 m_freem(m); 1363 return (error); 1364 } 1365 1366 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1367 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1368 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1369 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1370 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1371 } 1372 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1373 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1374 sc->bge_cdata.bge_rx_jumbo_sparemap; 1375 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1376 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1377 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1378 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1379 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1380 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1381 1382 /* 1383 * Fill in the extended RX buffer descriptor. 1384 */ 1385 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1386 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1387 r->bge_idx = i; 1388 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1389 switch (nsegs) { 1390 case 4: 1391 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1392 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1393 r->bge_len3 = segs[3].ds_len; 1394 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1395 case 3: 1396 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1397 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1398 r->bge_len2 = segs[2].ds_len; 1399 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1400 case 2: 1401 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1402 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1403 r->bge_len1 = segs[1].ds_len; 1404 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1405 case 1: 1406 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1407 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1408 r->bge_len0 = segs[0].ds_len; 1409 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1410 break; 1411 default: 1412 panic("%s: %d segments\n", __func__, nsegs); 1413 } 1414 1415 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1416 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1417 1418 return (0); 1419 } 1420 1421 static int 1422 bge_init_rx_ring_std(struct bge_softc *sc) 1423 { 1424 int error, i; 1425 1426 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1427 sc->bge_std = 0; 1428 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1429 if ((error = bge_newbuf_std(sc, i)) != 0) 1430 return (error); 1431 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1432 } 1433 1434 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1435 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1436 1437 sc->bge_std = 0; 1438 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1439 1440 return (0); 1441 } 1442 1443 static void 1444 bge_free_rx_ring_std(struct bge_softc *sc) 1445 { 1446 int i; 1447 1448 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1449 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1450 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1451 sc->bge_cdata.bge_rx_std_dmamap[i], 1452 BUS_DMASYNC_POSTREAD); 1453 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1454 sc->bge_cdata.bge_rx_std_dmamap[i]); 1455 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1456 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1457 } 1458 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1459 sizeof(struct bge_rx_bd)); 1460 } 1461 } 1462 1463 static int 1464 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1465 { 1466 struct bge_rcb *rcb; 1467 int error, i; 1468 1469 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1470 sc->bge_jumbo = 0; 1471 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1472 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1473 return (error); 1474 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1475 } 1476 1477 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1478 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1479 1480 sc->bge_jumbo = 0; 1481 1482 /* Enable the jumbo receive producer ring. */ 1483 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1484 rcb->bge_maxlen_flags = 1485 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1486 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1487 1488 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1489 1490 return (0); 1491 } 1492 1493 static void 1494 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1495 { 1496 int i; 1497 1498 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1499 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1500 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1501 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1502 BUS_DMASYNC_POSTREAD); 1503 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1504 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1505 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1506 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1507 } 1508 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1509 sizeof(struct bge_extrx_bd)); 1510 } 1511 } 1512 1513 static void 1514 bge_free_tx_ring(struct bge_softc *sc) 1515 { 1516 int i; 1517 1518 if (sc->bge_ldata.bge_tx_ring == NULL) 1519 return; 1520 1521 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1522 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1523 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1524 sc->bge_cdata.bge_tx_dmamap[i], 1525 BUS_DMASYNC_POSTWRITE); 1526 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1527 sc->bge_cdata.bge_tx_dmamap[i]); 1528 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1529 sc->bge_cdata.bge_tx_chain[i] = NULL; 1530 } 1531 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1532 sizeof(struct bge_tx_bd)); 1533 } 1534 } 1535 1536 static int 1537 bge_init_tx_ring(struct bge_softc *sc) 1538 { 1539 sc->bge_txcnt = 0; 1540 sc->bge_tx_saved_considx = 0; 1541 1542 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1543 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1544 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1545 1546 /* Initialize transmit producer index for host-memory send ring. */ 1547 sc->bge_tx_prodidx = 0; 1548 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1549 1550 /* 5700 b2 errata */ 1551 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1552 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1553 1554 /* NIC-memory send ring not used; initialize to zero. */ 1555 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1556 /* 5700 b2 errata */ 1557 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1558 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1559 1560 return (0); 1561 } 1562 1563 static void 1564 bge_setpromisc(struct bge_softc *sc) 1565 { 1566 if_t ifp; 1567 1568 BGE_LOCK_ASSERT(sc); 1569 1570 ifp = sc->bge_ifp; 1571 1572 /* Enable or disable promiscuous mode as needed. */ 1573 if (if_getflags(ifp) & IFF_PROMISC) 1574 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1575 else 1576 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1577 } 1578 1579 static u_int 1580 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1581 { 1582 uint32_t *hashes = arg; 1583 int h; 1584 1585 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F; 1586 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1587 1588 return (1); 1589 } 1590 1591 static void 1592 bge_setmulti(struct bge_softc *sc) 1593 { 1594 if_t ifp; 1595 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1596 int i; 1597 1598 BGE_LOCK_ASSERT(sc); 1599 1600 ifp = sc->bge_ifp; 1601 1602 if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { 1603 for (i = 0; i < 4; i++) 1604 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1605 return; 1606 } 1607 1608 /* First, zot all the existing filters. */ 1609 for (i = 0; i < 4; i++) 1610 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1611 1612 if_foreach_llmaddr(ifp, bge_hash_maddr, hashes); 1613 1614 for (i = 0; i < 4; i++) 1615 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1616 } 1617 1618 static void 1619 bge_setvlan(struct bge_softc *sc) 1620 { 1621 if_t ifp; 1622 1623 BGE_LOCK_ASSERT(sc); 1624 1625 ifp = sc->bge_ifp; 1626 1627 /* Enable or disable VLAN tag stripping as needed. */ 1628 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 1629 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1630 else 1631 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1632 } 1633 1634 static void 1635 bge_sig_pre_reset(struct bge_softc *sc, int type) 1636 { 1637 1638 /* 1639 * Some chips don't like this so only do this if ASF is enabled 1640 */ 1641 if (sc->bge_asf_mode) 1642 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1643 1644 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1645 switch (type) { 1646 case BGE_RESET_START: 1647 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1648 BGE_FW_DRV_STATE_START); 1649 break; 1650 case BGE_RESET_SHUTDOWN: 1651 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1652 BGE_FW_DRV_STATE_UNLOAD); 1653 break; 1654 case BGE_RESET_SUSPEND: 1655 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1656 BGE_FW_DRV_STATE_SUSPEND); 1657 break; 1658 } 1659 } 1660 1661 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1662 bge_ape_driver_state_change(sc, type); 1663 } 1664 1665 static void 1666 bge_sig_post_reset(struct bge_softc *sc, int type) 1667 { 1668 1669 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1670 switch (type) { 1671 case BGE_RESET_START: 1672 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1673 BGE_FW_DRV_STATE_START_DONE); 1674 /* START DONE */ 1675 break; 1676 case BGE_RESET_SHUTDOWN: 1677 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1678 BGE_FW_DRV_STATE_UNLOAD_DONE); 1679 break; 1680 } 1681 } 1682 if (type == BGE_RESET_SHUTDOWN) 1683 bge_ape_driver_state_change(sc, type); 1684 } 1685 1686 static void 1687 bge_sig_legacy(struct bge_softc *sc, int type) 1688 { 1689 1690 if (sc->bge_asf_mode) { 1691 switch (type) { 1692 case BGE_RESET_START: 1693 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1694 BGE_FW_DRV_STATE_START); 1695 break; 1696 case BGE_RESET_SHUTDOWN: 1697 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1698 BGE_FW_DRV_STATE_UNLOAD); 1699 break; 1700 } 1701 } 1702 } 1703 1704 static void 1705 bge_stop_fw(struct bge_softc *sc) 1706 { 1707 int i; 1708 1709 if (sc->bge_asf_mode) { 1710 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1711 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1712 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1713 1714 for (i = 0; i < 100; i++ ) { 1715 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1716 BGE_RX_CPU_DRV_EVENT)) 1717 break; 1718 DELAY(10); 1719 } 1720 } 1721 } 1722 1723 static uint32_t 1724 bge_dma_swap_options(struct bge_softc *sc) 1725 { 1726 uint32_t dma_options; 1727 1728 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1729 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1730 #if BYTE_ORDER == BIG_ENDIAN 1731 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1732 #endif 1733 return (dma_options); 1734 } 1735 1736 /* 1737 * Do endian, PCI and DMA initialization. 1738 */ 1739 static int 1740 bge_chipinit(struct bge_softc *sc) 1741 { 1742 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1743 uint16_t val; 1744 int i; 1745 1746 /* Set endianness before we access any non-PCI registers. */ 1747 misc_ctl = BGE_INIT; 1748 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1749 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1750 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1751 1752 /* 1753 * Clear the MAC statistics block in the NIC's 1754 * internal memory. 1755 */ 1756 for (i = BGE_STATS_BLOCK; 1757 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1758 BGE_MEMWIN_WRITE(sc, i, 0); 1759 1760 for (i = BGE_STATUS_BLOCK; 1761 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1762 BGE_MEMWIN_WRITE(sc, i, 0); 1763 1764 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1765 /* 1766 * Fix data corruption caused by non-qword write with WB. 1767 * Fix master abort in PCI mode. 1768 * Fix PCI latency timer. 1769 */ 1770 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1771 val |= (1 << 10) | (1 << 12) | (1 << 13); 1772 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1773 } 1774 1775 if (sc->bge_asicrev == BGE_ASICREV_BCM57765 || 1776 sc->bge_asicrev == BGE_ASICREV_BCM57766) { 1777 /* 1778 * For the 57766 and non Ax versions of 57765, bootcode 1779 * needs to setup the PCIE Fast Training Sequence (FTS) 1780 * value to prevent transmit hangs. 1781 */ 1782 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) { 1783 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 1784 CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | 1785 BGE_CPMU_PADRNG_CTL_RDIV2); 1786 } 1787 } 1788 1789 /* 1790 * Set up the PCI DMA control register. 1791 */ 1792 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1793 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1794 if (sc->bge_flags & BGE_FLAG_PCIE) { 1795 if (sc->bge_mps >= 256) 1796 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1797 else 1798 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1799 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1800 if (BGE_IS_5714_FAMILY(sc)) { 1801 /* 256 bytes for read and write. */ 1802 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1803 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1804 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1805 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1806 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1807 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1808 /* 1809 * In the BCM5703, the DMA read watermark should 1810 * be set to less than or equal to the maximum 1811 * memory read byte count of the PCI-X command 1812 * register. 1813 */ 1814 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1815 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1816 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1817 /* 1536 bytes for read, 384 bytes for write. */ 1818 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1819 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1820 } else { 1821 /* 384 bytes for read and write. */ 1822 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1823 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1824 0x0F; 1825 } 1826 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1827 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1828 uint32_t tmp; 1829 1830 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1831 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1832 if (tmp == 6 || tmp == 7) 1833 dma_rw_ctl |= 1834 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1835 1836 /* Set PCI-X DMA write workaround. */ 1837 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1838 } 1839 } else { 1840 /* Conventional PCI bus: 256 bytes for read and write. */ 1841 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1842 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1843 1844 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1845 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1846 dma_rw_ctl |= 0x0F; 1847 } 1848 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1849 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1850 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1851 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1852 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1853 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1854 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1855 if (BGE_IS_5717_PLUS(sc)) { 1856 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1857 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1858 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1859 /* 1860 * Enable HW workaround for controllers that misinterpret 1861 * a status tag update and leave interrupts permanently 1862 * disabled. 1863 */ 1864 if (!BGE_IS_57765_PLUS(sc) && 1865 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1866 sc->bge_asicrev != BGE_ASICREV_BCM5762) 1867 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1868 } 1869 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1870 1871 /* 1872 * Set up general mode register. 1873 */ 1874 mode_ctl = bge_dma_swap_options(sc); 1875 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 1876 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 1877 /* Retain Host-2-BMC settings written by APE firmware. */ 1878 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1879 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1880 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1881 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1882 } 1883 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1884 BGE_MODECTL_TX_NO_PHDR_CSUM; 1885 1886 /* 1887 * BCM5701 B5 have a bug causing data corruption when using 1888 * 64-bit DMA reads, which can be terminated early and then 1889 * completed later as 32-bit accesses, in combination with 1890 * certain bridges. 1891 */ 1892 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1893 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1894 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1895 1896 /* 1897 * Tell the firmware the driver is running 1898 */ 1899 if (sc->bge_asf_mode & ASF_STACKUP) 1900 mode_ctl |= BGE_MODECTL_STACKUP; 1901 1902 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1903 1904 /* 1905 * Disable memory write invalidate. Apparently it is not supported 1906 * properly by these devices. 1907 */ 1908 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1909 1910 /* Set the timer prescaler (always 66 MHz). */ 1911 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1912 1913 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1914 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1915 DELAY(40); /* XXX */ 1916 1917 /* Put PHY into ready state */ 1918 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1919 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1920 DELAY(40); 1921 } 1922 1923 return (0); 1924 } 1925 1926 static int 1927 bge_blockinit(struct bge_softc *sc) 1928 { 1929 struct bge_rcb *rcb; 1930 bus_size_t vrcb; 1931 bge_hostaddr taddr; 1932 uint32_t dmactl, rdmareg, val; 1933 int i, limit; 1934 1935 /* 1936 * Initialize the memory window pointer register so that 1937 * we can access the first 32K of internal NIC RAM. This will 1938 * allow us to set up the TX send ring RCBs and the RX return 1939 * ring RCBs, plus other things which live in NIC memory. 1940 */ 1941 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1942 1943 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1944 1945 if (!(BGE_IS_5705_PLUS(sc))) { 1946 /* Configure mbuf memory pool */ 1947 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1948 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1949 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1950 else 1951 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1952 1953 /* Configure DMA resource pool */ 1954 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1955 BGE_DMA_DESCRIPTORS); 1956 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1957 } 1958 1959 /* Configure mbuf pool watermarks */ 1960 if (BGE_IS_5717_PLUS(sc)) { 1961 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1962 if (if_getmtu(sc->bge_ifp) > ETHERMTU) { 1963 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1964 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1965 } else { 1966 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1968 } 1969 } else if (!BGE_IS_5705_PLUS(sc)) { 1970 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1973 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1974 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1976 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1977 } else { 1978 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1979 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1981 } 1982 1983 /* Configure DMA resource watermarks */ 1984 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1985 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1986 1987 /* Enable buffer manager */ 1988 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1989 /* 1990 * Change the arbitration algorithm of TXMBUF read request to 1991 * round-robin instead of priority based for BCM5719. When 1992 * TXFIFO is almost empty, RDMA will hold its request until 1993 * TXFIFO is not almost empty. 1994 */ 1995 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1996 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1997 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1998 1999 /* Poll for buffer manager start indication */ 2000 for (i = 0; i < BGE_TIMEOUT; i++) { 2001 DELAY(10); 2002 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2003 break; 2004 } 2005 2006 if (i == BGE_TIMEOUT) { 2007 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2008 return (ENXIO); 2009 } 2010 2011 /* Enable flow-through queues */ 2012 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2013 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2014 2015 /* Wait until queue initialization is complete */ 2016 for (i = 0; i < BGE_TIMEOUT; i++) { 2017 DELAY(10); 2018 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2019 break; 2020 } 2021 2022 if (i == BGE_TIMEOUT) { 2023 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2024 return (ENXIO); 2025 } 2026 2027 /* 2028 * Summary of rings supported by the controller: 2029 * 2030 * Standard Receive Producer Ring 2031 * - This ring is used to feed receive buffers for "standard" 2032 * sized frames (typically 1536 bytes) to the controller. 2033 * 2034 * Jumbo Receive Producer Ring 2035 * - This ring is used to feed receive buffers for jumbo sized 2036 * frames (i.e. anything bigger than the "standard" frames) 2037 * to the controller. 2038 * 2039 * Mini Receive Producer Ring 2040 * - This ring is used to feed receive buffers for "mini" 2041 * sized frames to the controller. 2042 * - This feature required external memory for the controller 2043 * but was never used in a production system. Should always 2044 * be disabled. 2045 * 2046 * Receive Return Ring 2047 * - After the controller has placed an incoming frame into a 2048 * receive buffer that buffer is moved into a receive return 2049 * ring. The driver is then responsible to passing the 2050 * buffer up to the stack. Many versions of the controller 2051 * support multiple RR rings. 2052 * 2053 * Send Ring 2054 * - This ring is used for outgoing frames. Many versions of 2055 * the controller support multiple send rings. 2056 */ 2057 2058 /* Initialize the standard receive producer ring control block. */ 2059 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2060 rcb->bge_hostaddr.bge_addr_lo = 2061 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2062 rcb->bge_hostaddr.bge_addr_hi = 2063 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2064 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2065 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2066 if (BGE_IS_5717_PLUS(sc)) { 2067 /* 2068 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2069 * Bits 15-2 : Maximum RX frame size 2070 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2071 * Bit 0 : Reserved 2072 */ 2073 rcb->bge_maxlen_flags = 2074 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2075 } else if (BGE_IS_5705_PLUS(sc)) { 2076 /* 2077 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2078 * Bits 15-2 : Reserved (should be 0) 2079 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2080 * Bit 0 : Reserved 2081 */ 2082 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2083 } else { 2084 /* 2085 * Ring size is always XXX entries 2086 * Bits 31-16: Maximum RX frame size 2087 * Bits 15-2 : Reserved (should be 0) 2088 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2089 * Bit 0 : Reserved 2090 */ 2091 rcb->bge_maxlen_flags = 2092 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2093 } 2094 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2095 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2096 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2097 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2098 else 2099 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2100 /* Write the standard receive producer ring control block. */ 2101 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2102 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2103 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2104 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2105 2106 /* Reset the standard receive producer ring producer index. */ 2107 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2108 2109 /* 2110 * Initialize the jumbo RX producer ring control 2111 * block. We set the 'ring disabled' bit in the 2112 * flags field until we're actually ready to start 2113 * using this ring (i.e. once we set the MTU 2114 * high enough to require it). 2115 */ 2116 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2117 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2118 /* Get the jumbo receive producer ring RCB parameters. */ 2119 rcb->bge_hostaddr.bge_addr_lo = 2120 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2121 rcb->bge_hostaddr.bge_addr_hi = 2122 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2123 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2124 sc->bge_cdata.bge_rx_jumbo_ring_map, 2125 BUS_DMASYNC_PREREAD); 2126 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2127 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2128 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2129 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2130 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2131 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2132 else 2133 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2134 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2135 rcb->bge_hostaddr.bge_addr_hi); 2136 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2137 rcb->bge_hostaddr.bge_addr_lo); 2138 /* Program the jumbo receive producer ring RCB parameters. */ 2139 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2140 rcb->bge_maxlen_flags); 2141 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2142 /* Reset the jumbo receive producer ring producer index. */ 2143 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2144 } 2145 2146 /* Disable the mini receive producer ring RCB. */ 2147 if (BGE_IS_5700_FAMILY(sc)) { 2148 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2149 rcb->bge_maxlen_flags = 2150 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2151 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2152 rcb->bge_maxlen_flags); 2153 /* Reset the mini receive producer ring producer index. */ 2154 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2155 } 2156 2157 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2158 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2159 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2160 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2161 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2162 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2163 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2164 } 2165 /* 2166 * The BD ring replenish thresholds control how often the 2167 * hardware fetches new BD's from the producer rings in host 2168 * memory. Setting the value too low on a busy system can 2169 * starve the hardware and recue the throughpout. 2170 * 2171 * Set the BD ring replentish thresholds. The recommended 2172 * values are 1/8th the number of descriptors allocated to 2173 * each ring. 2174 * XXX The 5754 requires a lower threshold, so it might be a 2175 * requirement of all 575x family chips. The Linux driver sets 2176 * the lower threshold for all 5705 family chips as well, but there 2177 * are reports that it might not need to be so strict. 2178 * 2179 * XXX Linux does some extra fiddling here for the 5906 parts as 2180 * well. 2181 */ 2182 if (BGE_IS_5705_PLUS(sc)) 2183 val = 8; 2184 else 2185 val = BGE_STD_RX_RING_CNT / 8; 2186 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2187 if (BGE_IS_JUMBO_CAPABLE(sc)) 2188 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2189 BGE_JUMBO_RX_RING_CNT/8); 2190 if (BGE_IS_5717_PLUS(sc)) { 2191 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2192 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2193 } 2194 2195 /* 2196 * Disable all send rings by setting the 'ring disabled' bit 2197 * in the flags field of all the TX send ring control blocks, 2198 * located in NIC memory. 2199 */ 2200 if (!BGE_IS_5705_PLUS(sc)) 2201 /* 5700 to 5704 had 16 send rings. */ 2202 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2203 else if (BGE_IS_57765_PLUS(sc) || 2204 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2205 limit = 2; 2206 else if (BGE_IS_5717_PLUS(sc)) 2207 limit = 4; 2208 else 2209 limit = 1; 2210 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2211 for (i = 0; i < limit; i++) { 2212 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2213 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2214 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2215 vrcb += sizeof(struct bge_rcb); 2216 } 2217 2218 /* Configure send ring RCB 0 (we use only the first ring) */ 2219 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2220 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2221 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2222 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2223 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2224 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2225 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2226 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2227 else 2228 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2229 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2230 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2231 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2232 2233 /* 2234 * Disable all receive return rings by setting the 2235 * 'ring diabled' bit in the flags field of all the receive 2236 * return ring control blocks, located in NIC memory. 2237 */ 2238 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2239 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2240 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2241 /* Should be 17, use 16 until we get an SRAM map. */ 2242 limit = 16; 2243 } else if (!BGE_IS_5705_PLUS(sc)) 2244 limit = BGE_RX_RINGS_MAX; 2245 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2246 sc->bge_asicrev == BGE_ASICREV_BCM5762 || 2247 BGE_IS_57765_PLUS(sc)) 2248 limit = 4; 2249 else 2250 limit = 1; 2251 /* Disable all receive return rings. */ 2252 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2253 for (i = 0; i < limit; i++) { 2254 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2255 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2256 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2257 BGE_RCB_FLAG_RING_DISABLED); 2258 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2259 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2260 (i * (sizeof(uint64_t))), 0); 2261 vrcb += sizeof(struct bge_rcb); 2262 } 2263 2264 /* 2265 * Set up receive return ring 0. Note that the NIC address 2266 * for RX return rings is 0x0. The return rings live entirely 2267 * within the host, so the nicaddr field in the RCB isn't used. 2268 */ 2269 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2270 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2271 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2272 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2273 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2274 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2275 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2276 2277 /* Set random backoff seed for TX */ 2278 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2279 (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 2280 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 2281 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) & 2282 BGE_TX_BACKOFF_SEED_MASK); 2283 2284 /* Set inter-packet gap */ 2285 val = 0x2620; 2286 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2287 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2288 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2289 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2290 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2291 2292 /* 2293 * Specify which ring to use for packets that don't match 2294 * any RX rules. 2295 */ 2296 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2297 2298 /* 2299 * Configure number of RX lists. One interrupt distribution 2300 * list, sixteen active lists, one bad frames class. 2301 */ 2302 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2303 2304 /* Inialize RX list placement stats mask. */ 2305 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2306 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2307 2308 /* Disable host coalescing until we get it set up */ 2309 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2310 2311 /* Poll to make sure it's shut down. */ 2312 for (i = 0; i < BGE_TIMEOUT; i++) { 2313 DELAY(10); 2314 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2315 break; 2316 } 2317 2318 if (i == BGE_TIMEOUT) { 2319 device_printf(sc->bge_dev, 2320 "host coalescing engine failed to idle\n"); 2321 return (ENXIO); 2322 } 2323 2324 /* Set up host coalescing defaults */ 2325 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2326 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2327 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2328 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2329 if (!(BGE_IS_5705_PLUS(sc))) { 2330 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2331 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2332 } 2333 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2334 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2335 2336 /* Set up address of statistics block */ 2337 if (!(BGE_IS_5705_PLUS(sc))) { 2338 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2339 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2340 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2341 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2342 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2343 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2344 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2345 } 2346 2347 /* Set up address of status block */ 2348 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2349 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2350 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2351 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2352 2353 /* Set up status block size. */ 2354 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2355 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2356 val = BGE_STATBLKSZ_FULL; 2357 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2358 } else { 2359 val = BGE_STATBLKSZ_32BYTE; 2360 bzero(sc->bge_ldata.bge_status_block, 32); 2361 } 2362 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2363 sc->bge_cdata.bge_status_map, 2364 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2365 2366 /* Turn on host coalescing state machine */ 2367 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2368 2369 /* Turn on RX BD completion state machine and enable attentions */ 2370 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2371 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2372 2373 /* Turn on RX list placement state machine */ 2374 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2375 2376 /* Turn on RX list selector state machine. */ 2377 if (!(BGE_IS_5705_PLUS(sc))) 2378 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2379 2380 /* Turn on DMA, clear stats. */ 2381 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2382 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2383 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2384 BGE_MACMODE_FRMHDR_DMA_ENB; 2385 2386 if (sc->bge_flags & BGE_FLAG_TBI) 2387 val |= BGE_PORTMODE_TBI; 2388 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2389 val |= BGE_PORTMODE_GMII; 2390 else 2391 val |= BGE_PORTMODE_MII; 2392 2393 /* Allow APE to send/receive frames. */ 2394 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2395 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2396 2397 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2398 DELAY(40); 2399 2400 /* Set misc. local control, enable interrupts on attentions */ 2401 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2402 2403 #ifdef notdef 2404 /* Assert GPIO pins for PHY reset */ 2405 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2406 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2407 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2408 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2409 #endif 2410 2411 /* Turn on DMA completion state machine */ 2412 if (!(BGE_IS_5705_PLUS(sc))) 2413 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2414 2415 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2416 2417 /* Enable host coalescing bug fix. */ 2418 if (BGE_IS_5755_PLUS(sc)) 2419 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2420 2421 /* Request larger DMA burst size to get better performance. */ 2422 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2423 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2424 2425 /* Turn on write DMA state machine */ 2426 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2427 DELAY(40); 2428 2429 /* Turn on read DMA state machine */ 2430 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2431 2432 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2433 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2434 2435 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2436 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2437 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2438 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2439 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2440 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2441 if (sc->bge_flags & BGE_FLAG_PCIE) 2442 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2443 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2444 val |= BGE_RDMAMODE_TSO4_ENABLE; 2445 if (sc->bge_flags & BGE_FLAG_TSO3 || 2446 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2447 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2448 val |= BGE_RDMAMODE_TSO6_ENABLE; 2449 } 2450 2451 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2452 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2453 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2454 BGE_RDMAMODE_H2BNC_VLAN_DET; 2455 /* 2456 * Allow multiple outstanding read requests from 2457 * non-LSO read DMA engine. 2458 */ 2459 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2460 } 2461 2462 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2463 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2464 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2465 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2466 BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { 2467 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 2468 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2469 else 2470 rdmareg = BGE_RDMA_RSRVCTRL; 2471 dmactl = CSR_READ_4(sc, rdmareg); 2472 /* 2473 * Adjust tx margin to prevent TX data corruption and 2474 * fix internal FIFO overflow. 2475 */ 2476 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2477 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2478 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2479 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2480 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2481 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2482 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2483 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2484 } 2485 /* 2486 * Enable fix for read DMA FIFO overruns. 2487 * The fix is to limit the number of RX BDs 2488 * the hardware would fetch at a fime. 2489 */ 2490 CSR_WRITE_4(sc, rdmareg, dmactl | 2491 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2492 } 2493 2494 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2495 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2496 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2497 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2498 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2499 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2500 /* 2501 * Allow 4KB burst length reads for non-LSO frames. 2502 * Enable 512B burst length reads for buffer descriptors. 2503 */ 2504 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2505 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2506 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2507 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2508 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2509 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2510 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2511 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2512 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2513 } 2514 2515 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2516 DELAY(40); 2517 2518 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 2519 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2520 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2521 if ((val & 0xFFFF) > BGE_FRAMELEN) 2522 break; 2523 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2524 break; 2525 } 2526 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2527 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2528 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2529 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2530 else 2531 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2532 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2533 } 2534 } 2535 2536 /* Turn on RX data completion state machine */ 2537 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2538 2539 /* Turn on RX BD initiator state machine */ 2540 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2541 2542 /* Turn on RX data and RX BD initiator state machine */ 2543 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2544 2545 /* Turn on Mbuf cluster free state machine */ 2546 if (!(BGE_IS_5705_PLUS(sc))) 2547 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2548 2549 /* Turn on send BD completion state machine */ 2550 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2551 2552 /* Turn on send data completion state machine */ 2553 val = BGE_SDCMODE_ENABLE; 2554 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2555 val |= BGE_SDCMODE_CDELAY; 2556 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2557 2558 /* Turn on send data initiator state machine */ 2559 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2560 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2561 BGE_SDIMODE_HW_LSO_PRE_DMA); 2562 else 2563 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2564 2565 /* Turn on send BD initiator state machine */ 2566 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2567 2568 /* Turn on send BD selector state machine */ 2569 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2570 2571 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2572 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2573 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2574 2575 /* ack/clear link change events */ 2576 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2577 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2578 BGE_MACSTAT_LINK_CHANGED); 2579 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2580 2581 /* 2582 * Enable attention when the link has changed state for 2583 * devices that use auto polling. 2584 */ 2585 if (sc->bge_flags & BGE_FLAG_TBI) { 2586 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2587 } else { 2588 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2589 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2590 DELAY(80); 2591 } 2592 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2593 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2594 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2595 BGE_EVTENB_MI_INTERRUPT); 2596 } 2597 2598 /* 2599 * Clear any pending link state attention. 2600 * Otherwise some link state change events may be lost until attention 2601 * is cleared by bge_intr() -> bge_link_upd() sequence. 2602 * It's not necessary on newer BCM chips - perhaps enabling link 2603 * state change attentions implies clearing pending attention. 2604 */ 2605 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2606 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2607 BGE_MACSTAT_LINK_CHANGED); 2608 2609 /* Enable link state change attentions. */ 2610 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2611 2612 return (0); 2613 } 2614 2615 static const struct bge_revision * 2616 bge_lookup_rev(uint32_t chipid) 2617 { 2618 const struct bge_revision *br; 2619 2620 for (br = bge_revisions; br->br_name != NULL; br++) { 2621 if (br->br_chipid == chipid) 2622 return (br); 2623 } 2624 2625 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2626 if (br->br_chipid == BGE_ASICREV(chipid)) 2627 return (br); 2628 } 2629 2630 return (NULL); 2631 } 2632 2633 static const struct bge_vendor * 2634 bge_lookup_vendor(uint16_t vid) 2635 { 2636 const struct bge_vendor *v; 2637 2638 for (v = bge_vendors; v->v_name != NULL; v++) 2639 if (v->v_id == vid) 2640 return (v); 2641 2642 return (NULL); 2643 } 2644 2645 static uint32_t 2646 bge_chipid(device_t dev) 2647 { 2648 uint32_t id; 2649 2650 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2651 BGE_PCIMISCCTL_ASICREV_SHIFT; 2652 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2653 /* 2654 * Find the ASCI revision. Different chips use different 2655 * registers. 2656 */ 2657 switch (pci_get_device(dev)) { 2658 case BCOM_DEVICEID_BCM5717C: 2659 /* 5717 C0 seems to belong to 5720 line. */ 2660 id = BGE_CHIPID_BCM5720_A0; 2661 break; 2662 case BCOM_DEVICEID_BCM5717: 2663 case BCOM_DEVICEID_BCM5718: 2664 case BCOM_DEVICEID_BCM5719: 2665 case BCOM_DEVICEID_BCM5720: 2666 case BCOM_DEVICEID_BCM5725: 2667 case BCOM_DEVICEID_BCM5727: 2668 case BCOM_DEVICEID_BCM5762: 2669 case BCOM_DEVICEID_BCM57764: 2670 case BCOM_DEVICEID_BCM57767: 2671 case BCOM_DEVICEID_BCM57787: 2672 id = pci_read_config(dev, 2673 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2674 break; 2675 case BCOM_DEVICEID_BCM57761: 2676 case BCOM_DEVICEID_BCM57762: 2677 case BCOM_DEVICEID_BCM57765: 2678 case BCOM_DEVICEID_BCM57766: 2679 case BCOM_DEVICEID_BCM57781: 2680 case BCOM_DEVICEID_BCM57782: 2681 case BCOM_DEVICEID_BCM57785: 2682 case BCOM_DEVICEID_BCM57786: 2683 case BCOM_DEVICEID_BCM57791: 2684 case BCOM_DEVICEID_BCM57795: 2685 id = pci_read_config(dev, 2686 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2687 break; 2688 default: 2689 id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); 2690 } 2691 } 2692 return (id); 2693 } 2694 2695 /* 2696 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2697 * against our list and return its name if we find a match. 2698 * 2699 * Note that since the Broadcom controller contains VPD support, we 2700 * try to get the device name string from the controller itself instead 2701 * of the compiled-in string. It guarantees we'll always announce the 2702 * right product name. We fall back to the compiled-in string when 2703 * VPD is unavailable or corrupt. 2704 */ 2705 static int 2706 bge_probe(device_t dev) 2707 { 2708 char buf[96]; 2709 char model[64]; 2710 const struct bge_revision *br; 2711 const char *pname; 2712 struct bge_softc *sc; 2713 const struct bge_type *t = bge_devs; 2714 const struct bge_vendor *v; 2715 uint32_t id; 2716 uint16_t did, vid; 2717 2718 sc = device_get_softc(dev); 2719 sc->bge_dev = dev; 2720 vid = pci_get_vendor(dev); 2721 did = pci_get_device(dev); 2722 while(t->bge_vid != 0) { 2723 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2724 id = bge_chipid(dev); 2725 br = bge_lookup_rev(id); 2726 if (bge_has_eaddr(sc) && 2727 pci_get_vpd_ident(dev, &pname) == 0) 2728 snprintf(model, sizeof(model), "%s", pname); 2729 else { 2730 v = bge_lookup_vendor(vid); 2731 snprintf(model, sizeof(model), "%s %s", 2732 v != NULL ? v->v_name : "Unknown", 2733 br != NULL ? br->br_name : 2734 "NetXtreme/NetLink Ethernet Controller"); 2735 } 2736 snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x", 2737 model, br != NULL ? "" : "unknown ", id); 2738 device_set_desc_copy(dev, buf); 2739 return (BUS_PROBE_DEFAULT); 2740 } 2741 t++; 2742 } 2743 2744 return (ENXIO); 2745 } 2746 2747 static void 2748 bge_dma_free(struct bge_softc *sc) 2749 { 2750 int i; 2751 2752 /* Destroy DMA maps for RX buffers. */ 2753 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2754 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2755 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2756 sc->bge_cdata.bge_rx_std_dmamap[i]); 2757 } 2758 if (sc->bge_cdata.bge_rx_std_sparemap) 2759 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2760 sc->bge_cdata.bge_rx_std_sparemap); 2761 2762 /* Destroy DMA maps for jumbo RX buffers. */ 2763 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2764 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2765 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2766 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2767 } 2768 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2769 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2770 sc->bge_cdata.bge_rx_jumbo_sparemap); 2771 2772 /* Destroy DMA maps for TX buffers. */ 2773 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2774 if (sc->bge_cdata.bge_tx_dmamap[i]) 2775 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2776 sc->bge_cdata.bge_tx_dmamap[i]); 2777 } 2778 2779 if (sc->bge_cdata.bge_rx_mtag) 2780 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2781 if (sc->bge_cdata.bge_mtag_jumbo) 2782 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2783 if (sc->bge_cdata.bge_tx_mtag) 2784 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2785 2786 /* Destroy standard RX ring. */ 2787 if (sc->bge_ldata.bge_rx_std_ring_paddr) 2788 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2789 sc->bge_cdata.bge_rx_std_ring_map); 2790 if (sc->bge_ldata.bge_rx_std_ring) 2791 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2792 sc->bge_ldata.bge_rx_std_ring, 2793 sc->bge_cdata.bge_rx_std_ring_map); 2794 2795 if (sc->bge_cdata.bge_rx_std_ring_tag) 2796 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2797 2798 /* Destroy jumbo RX ring. */ 2799 if (sc->bge_ldata.bge_rx_jumbo_ring_paddr) 2800 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2801 sc->bge_cdata.bge_rx_jumbo_ring_map); 2802 2803 if (sc->bge_ldata.bge_rx_jumbo_ring) 2804 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2805 sc->bge_ldata.bge_rx_jumbo_ring, 2806 sc->bge_cdata.bge_rx_jumbo_ring_map); 2807 2808 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2809 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2810 2811 /* Destroy RX return ring. */ 2812 if (sc->bge_ldata.bge_rx_return_ring_paddr) 2813 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2814 sc->bge_cdata.bge_rx_return_ring_map); 2815 2816 if (sc->bge_ldata.bge_rx_return_ring) 2817 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2818 sc->bge_ldata.bge_rx_return_ring, 2819 sc->bge_cdata.bge_rx_return_ring_map); 2820 2821 if (sc->bge_cdata.bge_rx_return_ring_tag) 2822 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2823 2824 /* Destroy TX ring. */ 2825 if (sc->bge_ldata.bge_tx_ring_paddr) 2826 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2827 sc->bge_cdata.bge_tx_ring_map); 2828 2829 if (sc->bge_ldata.bge_tx_ring) 2830 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2831 sc->bge_ldata.bge_tx_ring, 2832 sc->bge_cdata.bge_tx_ring_map); 2833 2834 if (sc->bge_cdata.bge_tx_ring_tag) 2835 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2836 2837 /* Destroy status block. */ 2838 if (sc->bge_ldata.bge_status_block_paddr) 2839 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2840 sc->bge_cdata.bge_status_map); 2841 2842 if (sc->bge_ldata.bge_status_block) 2843 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2844 sc->bge_ldata.bge_status_block, 2845 sc->bge_cdata.bge_status_map); 2846 2847 if (sc->bge_cdata.bge_status_tag) 2848 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2849 2850 /* Destroy statistics block. */ 2851 if (sc->bge_ldata.bge_stats_paddr) 2852 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2853 sc->bge_cdata.bge_stats_map); 2854 2855 if (sc->bge_ldata.bge_stats) 2856 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2857 sc->bge_ldata.bge_stats, 2858 sc->bge_cdata.bge_stats_map); 2859 2860 if (sc->bge_cdata.bge_stats_tag) 2861 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2862 2863 if (sc->bge_cdata.bge_buffer_tag) 2864 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2865 2866 /* Destroy the parent tag. */ 2867 if (sc->bge_cdata.bge_parent_tag) 2868 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2869 } 2870 2871 static int 2872 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2873 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2874 bus_addr_t *paddr, const char *msg) 2875 { 2876 struct bge_dmamap_arg ctx; 2877 bus_addr_t lowaddr; 2878 bus_size_t ring_end; 2879 int error; 2880 2881 lowaddr = BUS_SPACE_MAXADDR; 2882 again: 2883 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2884 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2885 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2886 if (error != 0) { 2887 device_printf(sc->bge_dev, 2888 "could not create %s dma tag\n", msg); 2889 return (ENOMEM); 2890 } 2891 /* Allocate DMA'able memory for ring. */ 2892 error = bus_dmamem_alloc(*tag, (void **)ring, 2893 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2894 if (error != 0) { 2895 device_printf(sc->bge_dev, 2896 "could not allocate DMA'able memory for %s\n", msg); 2897 return (ENOMEM); 2898 } 2899 /* Load the address of the ring. */ 2900 ctx.bge_busaddr = 0; 2901 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2902 &ctx, BUS_DMA_NOWAIT); 2903 if (error != 0) { 2904 device_printf(sc->bge_dev, 2905 "could not load DMA'able memory for %s\n", msg); 2906 return (ENOMEM); 2907 } 2908 *paddr = ctx.bge_busaddr; 2909 ring_end = *paddr + maxsize; 2910 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2911 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2912 /* 2913 * 4GB boundary crossed. Limit maximum allowable DMA 2914 * address space to 32bit and try again. 2915 */ 2916 bus_dmamap_unload(*tag, *map); 2917 bus_dmamem_free(*tag, *ring, *map); 2918 bus_dma_tag_destroy(*tag); 2919 if (bootverbose) 2920 device_printf(sc->bge_dev, "4GB boundary crossed, " 2921 "limit DMA address space to 32bit for %s\n", msg); 2922 *ring = NULL; 2923 *tag = NULL; 2924 *map = NULL; 2925 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2926 goto again; 2927 } 2928 return (0); 2929 } 2930 2931 static int 2932 bge_dma_alloc(struct bge_softc *sc) 2933 { 2934 bus_addr_t lowaddr; 2935 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2936 int i, error; 2937 2938 lowaddr = BUS_SPACE_MAXADDR; 2939 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2940 lowaddr = BGE_DMA_MAXADDR; 2941 /* 2942 * Allocate the parent bus DMA tag appropriate for PCI. 2943 */ 2944 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2945 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2946 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2947 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2948 if (error != 0) { 2949 device_printf(sc->bge_dev, 2950 "could not allocate parent dma tag\n"); 2951 return (ENOMEM); 2952 } 2953 2954 /* Create tag for standard RX ring. */ 2955 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2956 &sc->bge_cdata.bge_rx_std_ring_tag, 2957 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2958 &sc->bge_cdata.bge_rx_std_ring_map, 2959 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2960 if (error) 2961 return (error); 2962 2963 /* Create tag for RX return ring. */ 2964 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2965 &sc->bge_cdata.bge_rx_return_ring_tag, 2966 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2967 &sc->bge_cdata.bge_rx_return_ring_map, 2968 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2969 if (error) 2970 return (error); 2971 2972 /* Create tag for TX ring. */ 2973 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2974 &sc->bge_cdata.bge_tx_ring_tag, 2975 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2976 &sc->bge_cdata.bge_tx_ring_map, 2977 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2978 if (error) 2979 return (error); 2980 2981 /* 2982 * Create tag for status block. 2983 * Because we only use single Tx/Rx/Rx return ring, use 2984 * minimum status block size except BCM5700 AX/BX which 2985 * seems to want to see full status block size regardless 2986 * of configured number of ring. 2987 */ 2988 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2989 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2990 sbsz = BGE_STATUS_BLK_SZ; 2991 else 2992 sbsz = 32; 2993 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2994 &sc->bge_cdata.bge_status_tag, 2995 (uint8_t **)&sc->bge_ldata.bge_status_block, 2996 &sc->bge_cdata.bge_status_map, 2997 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2998 if (error) 2999 return (error); 3000 3001 /* Create tag for statistics block. */ 3002 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 3003 &sc->bge_cdata.bge_stats_tag, 3004 (uint8_t **)&sc->bge_ldata.bge_stats, 3005 &sc->bge_cdata.bge_stats_map, 3006 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 3007 if (error) 3008 return (error); 3009 3010 /* Create tag for jumbo RX ring. */ 3011 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3012 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 3013 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 3014 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 3015 &sc->bge_cdata.bge_rx_jumbo_ring_map, 3016 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 3017 if (error) 3018 return (error); 3019 } 3020 3021 /* Create parent tag for buffers. */ 3022 boundary = 0; 3023 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 3024 boundary = BGE_DMA_BNDRY; 3025 /* 3026 * XXX 3027 * watchdog timeout issue was observed on BCM5704 which 3028 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 3029 * Both limiting DMA address space to 32bits and flushing 3030 * mailbox write seem to address the issue. 3031 */ 3032 if (sc->bge_pcixcap != 0) 3033 lowaddr = BUS_SPACE_MAXADDR_32BIT; 3034 } 3035 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 3036 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 3037 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 3038 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 3039 if (error != 0) { 3040 device_printf(sc->bge_dev, 3041 "could not allocate buffer dma tag\n"); 3042 return (ENOMEM); 3043 } 3044 /* Create tag for Tx mbufs. */ 3045 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 3046 txsegsz = BGE_TSOSEG_SZ; 3047 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 3048 } else { 3049 txsegsz = MCLBYTES; 3050 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 3051 } 3052 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 3053 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 3054 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 3055 &sc->bge_cdata.bge_tx_mtag); 3056 3057 if (error) { 3058 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 3059 return (ENOMEM); 3060 } 3061 3062 /* Create tag for Rx mbufs. */ 3063 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 3064 rxmaxsegsz = MJUM9BYTES; 3065 else 3066 rxmaxsegsz = MCLBYTES; 3067 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 3068 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 3069 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 3070 3071 if (error) { 3072 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 3073 return (ENOMEM); 3074 } 3075 3076 /* Create DMA maps for RX buffers. */ 3077 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3078 &sc->bge_cdata.bge_rx_std_sparemap); 3079 if (error) { 3080 device_printf(sc->bge_dev, 3081 "can't create spare DMA map for RX\n"); 3082 return (ENOMEM); 3083 } 3084 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3085 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3086 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3087 if (error) { 3088 device_printf(sc->bge_dev, 3089 "can't create DMA map for RX\n"); 3090 return (ENOMEM); 3091 } 3092 } 3093 3094 /* Create DMA maps for TX buffers. */ 3095 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3096 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3097 &sc->bge_cdata.bge_tx_dmamap[i]); 3098 if (error) { 3099 device_printf(sc->bge_dev, 3100 "can't create DMA map for TX\n"); 3101 return (ENOMEM); 3102 } 3103 } 3104 3105 /* Create tags for jumbo RX buffers. */ 3106 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3107 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3108 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3109 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3110 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3111 if (error) { 3112 device_printf(sc->bge_dev, 3113 "could not allocate jumbo dma tag\n"); 3114 return (ENOMEM); 3115 } 3116 /* Create DMA maps for jumbo RX buffers. */ 3117 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3118 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3119 if (error) { 3120 device_printf(sc->bge_dev, 3121 "can't create spare DMA map for jumbo RX\n"); 3122 return (ENOMEM); 3123 } 3124 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3125 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3126 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3127 if (error) { 3128 device_printf(sc->bge_dev, 3129 "can't create DMA map for jumbo RX\n"); 3130 return (ENOMEM); 3131 } 3132 } 3133 } 3134 3135 return (0); 3136 } 3137 3138 /* 3139 * Return true if this device has more than one port. 3140 */ 3141 static int 3142 bge_has_multiple_ports(struct bge_softc *sc) 3143 { 3144 device_t dev = sc->bge_dev; 3145 u_int b, d, f, fscan, s; 3146 3147 d = pci_get_domain(dev); 3148 b = pci_get_bus(dev); 3149 s = pci_get_slot(dev); 3150 f = pci_get_function(dev); 3151 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3152 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3153 return (1); 3154 return (0); 3155 } 3156 3157 /* 3158 * Return true if MSI can be used with this device. 3159 */ 3160 static int 3161 bge_can_use_msi(struct bge_softc *sc) 3162 { 3163 int can_use_msi = 0; 3164 3165 if (sc->bge_msi == 0) 3166 return (0); 3167 3168 /* Disable MSI for polling(4). */ 3169 #ifdef DEVICE_POLLING 3170 return (0); 3171 #endif 3172 switch (sc->bge_asicrev) { 3173 case BGE_ASICREV_BCM5714_A0: 3174 case BGE_ASICREV_BCM5714: 3175 /* 3176 * Apparently, MSI doesn't work when these chips are 3177 * configured in single-port mode. 3178 */ 3179 if (bge_has_multiple_ports(sc)) 3180 can_use_msi = 1; 3181 break; 3182 case BGE_ASICREV_BCM5750: 3183 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3184 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3185 can_use_msi = 1; 3186 break; 3187 case BGE_ASICREV_BCM5784: 3188 /* 3189 * Prevent infinite "watchdog timeout" errors 3190 * in some MacBook Pro and make it work out-of-the-box. 3191 */ 3192 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX) 3193 break; 3194 /* FALLTHROUGH */ 3195 default: 3196 if (BGE_IS_575X_PLUS(sc)) 3197 can_use_msi = 1; 3198 } 3199 return (can_use_msi); 3200 } 3201 3202 static int 3203 bge_mbox_reorder(struct bge_softc *sc) 3204 { 3205 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3206 static const struct mbox_reorder { 3207 const uint16_t vendor; 3208 const uint16_t device; 3209 const char *desc; 3210 } mbox_reorder_lists[] = { 3211 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3212 }; 3213 devclass_t pci, pcib; 3214 device_t bus, dev; 3215 int i; 3216 3217 pci = devclass_find("pci"); 3218 pcib = devclass_find("pcib"); 3219 dev = sc->bge_dev; 3220 bus = device_get_parent(dev); 3221 for (;;) { 3222 dev = device_get_parent(bus); 3223 bus = device_get_parent(dev); 3224 if (device_get_devclass(dev) != pcib) 3225 break; 3226 if (device_get_devclass(bus) != pci) 3227 break; 3228 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3229 if (pci_get_vendor(dev) == 3230 mbox_reorder_lists[i].vendor && 3231 pci_get_device(dev) == 3232 mbox_reorder_lists[i].device) { 3233 device_printf(sc->bge_dev, 3234 "enabling MBOX workaround for %s\n", 3235 mbox_reorder_lists[i].desc); 3236 return (1); 3237 } 3238 } 3239 } 3240 return (0); 3241 } 3242 3243 static void 3244 bge_devinfo(struct bge_softc *sc) 3245 { 3246 uint32_t cfg, clk; 3247 3248 device_printf(sc->bge_dev, 3249 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3250 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3251 if (sc->bge_flags & BGE_FLAG_PCIE) 3252 printf("PCI-E\n"); 3253 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3254 printf("PCI-X "); 3255 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3256 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3257 clk = 133; 3258 else { 3259 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3260 switch (clk) { 3261 case 0: 3262 clk = 33; 3263 break; 3264 case 2: 3265 clk = 50; 3266 break; 3267 case 4: 3268 clk = 66; 3269 break; 3270 case 6: 3271 clk = 100; 3272 break; 3273 case 7: 3274 clk = 133; 3275 break; 3276 } 3277 } 3278 printf("%u MHz\n", clk); 3279 } else { 3280 if (sc->bge_pcixcap != 0) 3281 printf("PCI on PCI-X "); 3282 else 3283 printf("PCI "); 3284 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3285 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3286 clk = 66; 3287 else 3288 clk = 33; 3289 if (cfg & BGE_PCISTATE_32BIT_BUS) 3290 printf("%u MHz; 32bit\n", clk); 3291 else 3292 printf("%u MHz; 64bit\n", clk); 3293 } 3294 } 3295 3296 static int 3297 bge_attach(device_t dev) 3298 { 3299 if_t ifp; 3300 struct bge_softc *sc; 3301 uint32_t hwcfg = 0, misccfg, pcistate; 3302 u_char eaddr[ETHER_ADDR_LEN]; 3303 int capmask, error, reg, rid, trys; 3304 3305 sc = device_get_softc(dev); 3306 sc->bge_dev = dev; 3307 3308 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3309 NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3310 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3311 3312 pci_enable_busmaster(dev); 3313 3314 /* 3315 * Allocate control/status registers. 3316 */ 3317 rid = PCIR_BAR(0); 3318 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3319 RF_ACTIVE); 3320 3321 if (sc->bge_res == NULL) { 3322 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3323 error = ENXIO; 3324 goto fail; 3325 } 3326 3327 /* Save various chip information. */ 3328 sc->bge_func_addr = pci_get_function(dev); 3329 sc->bge_chipid = bge_chipid(dev); 3330 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3331 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3332 3333 /* Set default PHY address. */ 3334 sc->bge_phy_addr = 1; 3335 /* 3336 * PHY address mapping for various devices. 3337 * 3338 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3339 * ---------+-------+-------+-------+-------+ 3340 * BCM57XX | 1 | X | X | X | 3341 * BCM5704 | 1 | X | 1 | X | 3342 * BCM5717 | 1 | 8 | 2 | 9 | 3343 * BCM5719 | 1 | 8 | 2 | 9 | 3344 * BCM5720 | 1 | 8 | 2 | 9 | 3345 * 3346 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3347 * ---------+-------+-------+-------+-------+ 3348 * BCM57XX | X | X | X | X | 3349 * BCM5704 | X | X | X | X | 3350 * BCM5717 | X | X | X | X | 3351 * BCM5719 | 3 | 10 | 4 | 11 | 3352 * BCM5720 | X | X | X | X | 3353 * 3354 * Other addresses may respond but they are not 3355 * IEEE compliant PHYs and should be ignored. 3356 */ 3357 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3358 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3359 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3360 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3361 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3362 BGE_SGDIGSTS_IS_SERDES) 3363 sc->bge_phy_addr = sc->bge_func_addr + 8; 3364 else 3365 sc->bge_phy_addr = sc->bge_func_addr + 1; 3366 } else { 3367 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3368 BGE_CPMU_PHY_STRAP_IS_SERDES) 3369 sc->bge_phy_addr = sc->bge_func_addr + 8; 3370 else 3371 sc->bge_phy_addr = sc->bge_func_addr + 1; 3372 } 3373 } 3374 3375 if (bge_has_eaddr(sc)) 3376 sc->bge_flags |= BGE_FLAG_EADDR; 3377 3378 /* Save chipset family. */ 3379 switch (sc->bge_asicrev) { 3380 case BGE_ASICREV_BCM5762: 3381 case BGE_ASICREV_BCM57765: 3382 case BGE_ASICREV_BCM57766: 3383 sc->bge_flags |= BGE_FLAG_57765_PLUS; 3384 /* FALLTHROUGH */ 3385 case BGE_ASICREV_BCM5717: 3386 case BGE_ASICREV_BCM5719: 3387 case BGE_ASICREV_BCM5720: 3388 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3389 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3390 BGE_FLAG_JUMBO_FRAME; 3391 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3392 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3393 /* 3394 * Enable work around for DMA engine miscalculation 3395 * of TXMBUF available space. 3396 */ 3397 sc->bge_flags |= BGE_FLAG_RDMA_BUG; 3398 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3399 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3400 /* Jumbo frame on BCM5719 A0 does not work. */ 3401 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3402 } 3403 } 3404 break; 3405 case BGE_ASICREV_BCM5755: 3406 case BGE_ASICREV_BCM5761: 3407 case BGE_ASICREV_BCM5784: 3408 case BGE_ASICREV_BCM5785: 3409 case BGE_ASICREV_BCM5787: 3410 case BGE_ASICREV_BCM57780: 3411 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3412 BGE_FLAG_5705_PLUS; 3413 break; 3414 case BGE_ASICREV_BCM5700: 3415 case BGE_ASICREV_BCM5701: 3416 case BGE_ASICREV_BCM5703: 3417 case BGE_ASICREV_BCM5704: 3418 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3419 break; 3420 case BGE_ASICREV_BCM5714_A0: 3421 case BGE_ASICREV_BCM5780: 3422 case BGE_ASICREV_BCM5714: 3423 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3424 /* FALLTHROUGH */ 3425 case BGE_ASICREV_BCM5750: 3426 case BGE_ASICREV_BCM5752: 3427 case BGE_ASICREV_BCM5906: 3428 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3429 /* FALLTHROUGH */ 3430 case BGE_ASICREV_BCM5705: 3431 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3432 break; 3433 } 3434 3435 /* Identify chips with APE processor. */ 3436 switch (sc->bge_asicrev) { 3437 case BGE_ASICREV_BCM5717: 3438 case BGE_ASICREV_BCM5719: 3439 case BGE_ASICREV_BCM5720: 3440 case BGE_ASICREV_BCM5761: 3441 case BGE_ASICREV_BCM5762: 3442 sc->bge_flags |= BGE_FLAG_APE; 3443 break; 3444 } 3445 3446 /* Chips with APE need BAR2 access for APE registers/memory. */ 3447 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3448 rid = PCIR_BAR(2); 3449 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3450 RF_ACTIVE); 3451 if (sc->bge_res2 == NULL) { 3452 device_printf (sc->bge_dev, 3453 "couldn't map BAR2 memory\n"); 3454 error = ENXIO; 3455 goto fail; 3456 } 3457 3458 /* Enable APE register/memory access by host driver. */ 3459 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3460 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3461 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3462 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3463 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3464 3465 bge_ape_lock_init(sc); 3466 bge_ape_read_fw_ver(sc); 3467 } 3468 3469 /* Add SYSCTLs, requires the chipset family to be set. */ 3470 bge_add_sysctls(sc); 3471 3472 /* Identify the chips that use an CPMU. */ 3473 if (BGE_IS_5717_PLUS(sc) || 3474 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3475 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3476 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3477 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3478 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3479 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3480 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3481 else 3482 sc->bge_mi_mode = BGE_MIMODE_BASE; 3483 /* Enable auto polling for BCM570[0-5]. */ 3484 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3485 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3486 3487 /* 3488 * All Broadcom controllers have 4GB boundary DMA bug. 3489 * Whenever an address crosses a multiple of the 4GB boundary 3490 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3491 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3492 * state machine will lockup and cause the device to hang. 3493 */ 3494 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3495 3496 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3497 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3498 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3499 3500 /* 3501 * BCM5719 cannot handle DMA requests for DMA segments that 3502 * have larger than 4KB in size. However the maximum DMA 3503 * segment size created in DMA tag is 4KB for TSO, so we 3504 * wouldn't encounter the issue here. 3505 */ 3506 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3507 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3508 3509 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3510 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3511 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3512 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3513 sc->bge_flags |= BGE_FLAG_5788; 3514 } 3515 3516 capmask = BMSR_DEFCAPMASK; 3517 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3518 (misccfg == 0x4000 || misccfg == 0x8000)) || 3519 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3520 pci_get_vendor(dev) == BCOM_VENDORID && 3521 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3522 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3523 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3524 (pci_get_vendor(dev) == BCOM_VENDORID && 3525 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3526 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3527 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3528 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3529 pci_get_device(dev) == BCOM_DEVICEID_BCM57791 || 3530 pci_get_device(dev) == BCOM_DEVICEID_BCM57795 || 3531 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3532 /* These chips are 10/100 only. */ 3533 capmask &= ~BMSR_EXTSTAT; 3534 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3535 } 3536 3537 /* 3538 * Some controllers seem to require a special firmware to use 3539 * TSO. But the firmware is not available to FreeBSD and Linux 3540 * claims that the TSO performed by the firmware is slower than 3541 * hardware based TSO. Moreover the firmware based TSO has one 3542 * known bug which can't handle TSO if Ethernet header + IP/TCP 3543 * header is greater than 80 bytes. A workaround for the TSO 3544 * bug exist but it seems it's too expensive than not using 3545 * TSO at all. Some hardwares also have the TSO bug so limit 3546 * the TSO to the controllers that are not affected TSO issues 3547 * (e.g. 5755 or higher). 3548 */ 3549 if (BGE_IS_5717_PLUS(sc)) { 3550 /* BCM5717 requires different TSO configuration. */ 3551 sc->bge_flags |= BGE_FLAG_TSO3; 3552 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3553 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3554 /* TSO on BCM5719 A0 does not work. */ 3555 sc->bge_flags &= ~BGE_FLAG_TSO3; 3556 } 3557 } else if (BGE_IS_5755_PLUS(sc)) { 3558 /* 3559 * BCM5754 and BCM5787 shares the same ASIC id so 3560 * explicit device id check is required. 3561 * Due to unknown reason TSO does not work on BCM5755M. 3562 */ 3563 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3564 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3565 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3566 sc->bge_flags |= BGE_FLAG_TSO; 3567 } 3568 3569 /* 3570 * Check if this is a PCI-X or PCI Express device. 3571 */ 3572 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3573 /* 3574 * Found a PCI Express capabilities register, this 3575 * must be a PCI Express device. 3576 */ 3577 sc->bge_flags |= BGE_FLAG_PCIE; 3578 sc->bge_expcap = reg; 3579 /* Extract supported maximum payload size. */ 3580 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3581 PCIER_DEVICE_CAP, 2); 3582 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3583 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3584 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3585 sc->bge_expmrq = 2048; 3586 else 3587 sc->bge_expmrq = 4096; 3588 pci_set_max_read_req(dev, sc->bge_expmrq); 3589 } else { 3590 /* 3591 * Check if the device is in PCI-X Mode. 3592 * (This bit is not valid on PCI Express controllers.) 3593 */ 3594 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3595 sc->bge_pcixcap = reg; 3596 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3597 BGE_PCISTATE_PCI_BUSMODE) == 0) 3598 sc->bge_flags |= BGE_FLAG_PCIX; 3599 } 3600 3601 /* 3602 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3603 * not actually a MAC controller bug but an issue with the embedded 3604 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3605 */ 3606 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3607 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3608 /* 3609 * Some PCI-X bridges are known to trigger write reordering to 3610 * the mailbox registers. Typical phenomena is watchdog timeouts 3611 * caused by out-of-order TX completions. Enable workaround for 3612 * PCI-X devices that live behind these bridges. 3613 * Note, PCI-X controllers can run in PCI mode so we can't use 3614 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3615 */ 3616 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3617 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3618 /* 3619 * Allocate the interrupt, using MSI if possible. These devices 3620 * support 8 MSI messages, but only the first one is used in 3621 * normal operation. 3622 */ 3623 rid = 0; 3624 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3625 sc->bge_msicap = reg; 3626 reg = 1; 3627 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) { 3628 rid = 1; 3629 sc->bge_flags |= BGE_FLAG_MSI; 3630 } 3631 } 3632 3633 /* 3634 * All controllers except BCM5700 supports tagged status but 3635 * we use tagged status only for MSI case on BCM5717. Otherwise 3636 * MSI on BCM5717 does not work. 3637 */ 3638 #ifndef DEVICE_POLLING 3639 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3640 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3641 #endif 3642 3643 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3644 RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); 3645 3646 if (sc->bge_irq == NULL) { 3647 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3648 error = ENXIO; 3649 goto fail; 3650 } 3651 3652 bge_devinfo(sc); 3653 3654 sc->bge_asf_mode = 0; 3655 /* No ASF if APE present. */ 3656 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3657 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3658 BGE_SRAM_DATA_SIG_MAGIC)) { 3659 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3660 BGE_HWCFG_ASF) { 3661 sc->bge_asf_mode |= ASF_ENABLE; 3662 sc->bge_asf_mode |= ASF_STACKUP; 3663 if (BGE_IS_575X_PLUS(sc)) 3664 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3665 } 3666 } 3667 } 3668 3669 bge_stop_fw(sc); 3670 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3671 if (bge_reset(sc)) { 3672 device_printf(sc->bge_dev, "chip reset failed\n"); 3673 error = ENXIO; 3674 goto fail; 3675 } 3676 3677 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3678 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3679 3680 if (bge_chipinit(sc)) { 3681 device_printf(sc->bge_dev, "chip initialization failed\n"); 3682 error = ENXIO; 3683 goto fail; 3684 } 3685 3686 error = bge_get_eaddr(sc, eaddr); 3687 if (error) { 3688 device_printf(sc->bge_dev, 3689 "failed to read station address\n"); 3690 error = ENXIO; 3691 goto fail; 3692 } 3693 3694 /* 5705 limits RX return ring to 512 entries. */ 3695 if (BGE_IS_5717_PLUS(sc)) 3696 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3697 else if (BGE_IS_5705_PLUS(sc)) 3698 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3699 else 3700 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3701 3702 if (bge_dma_alloc(sc)) { 3703 device_printf(sc->bge_dev, 3704 "failed to allocate DMA resources\n"); 3705 error = ENXIO; 3706 goto fail; 3707 } 3708 3709 /* Set default tuneable values. */ 3710 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3711 sc->bge_rx_coal_ticks = 150; 3712 sc->bge_tx_coal_ticks = 150; 3713 sc->bge_rx_max_coal_bds = 10; 3714 sc->bge_tx_max_coal_bds = 10; 3715 3716 /* Initialize checksum features to use. */ 3717 sc->bge_csum_features = BGE_CSUM_FEATURES; 3718 if (sc->bge_forced_udpcsum != 0) 3719 sc->bge_csum_features |= CSUM_UDP; 3720 3721 /* Set up ifnet structure */ 3722 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3723 if (ifp == NULL) { 3724 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3725 error = ENXIO; 3726 goto fail; 3727 } 3728 if_setsoftc(ifp, sc); 3729 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3730 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 3731 if_setioctlfn(ifp, bge_ioctl); 3732 if_setstartfn(ifp, bge_start); 3733 if_setinitfn(ifp, bge_init); 3734 if_setgetcounterfn(ifp, bge_get_counter); 3735 if_setsendqlen(ifp, BGE_TX_RING_CNT - 1); 3736 if_setsendqready(ifp); 3737 if_sethwassist(ifp, sc->bge_csum_features); 3738 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3739 IFCAP_VLAN_MTU); 3740 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3741 if_sethwassistbits(ifp, CSUM_TSO, 0); 3742 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0); 3743 } 3744 #ifdef IFCAP_VLAN_HWCSUM 3745 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 3746 #endif 3747 if_setcapenable(ifp, if_getcapabilities(ifp)); 3748 #ifdef DEVICE_POLLING 3749 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 3750 #endif 3751 3752 /* 3753 * 5700 B0 chips do not support checksumming correctly due 3754 * to hardware bugs. 3755 */ 3756 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3757 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM); 3758 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM); 3759 if_sethwassist(ifp, 0); 3760 } 3761 3762 /* 3763 * Figure out what sort of media we have by checking the 3764 * hardware config word in the first 32k of NIC internal memory, 3765 * or fall back to examining the EEPROM if necessary. 3766 * Note: on some BCM5700 cards, this value appears to be unset. 3767 * If that's the case, we have to rely on identifying the NIC 3768 * by its PCI subsystem ID, as we do below for the SysKonnect 3769 * SK-9D41. 3770 */ 3771 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3772 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3773 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3774 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3775 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3776 sizeof(hwcfg))) { 3777 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3778 error = ENXIO; 3779 goto fail; 3780 } 3781 hwcfg = ntohl(hwcfg); 3782 } 3783 3784 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3785 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3786 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3787 if (BGE_IS_5705_PLUS(sc)) { 3788 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3789 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3790 } else 3791 sc->bge_flags |= BGE_FLAG_TBI; 3792 } 3793 3794 /* Set various PHY bug flags. */ 3795 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3796 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3797 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3798 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3799 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3800 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3801 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3802 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3803 if (pci_get_subvendor(dev) == DELL_VENDORID) 3804 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3805 if ((BGE_IS_5705_PLUS(sc)) && 3806 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3807 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3808 sc->bge_asicrev != BGE_ASICREV_BCM57780 && 3809 !BGE_IS_5717_PLUS(sc)) { 3810 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3811 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3812 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3813 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3814 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3815 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3816 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3817 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3818 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3819 } else 3820 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3821 } 3822 3823 /* 3824 * Don't enable Ethernet@WireSpeed for the 5700 or the 3825 * 5705 A0 and A1 chips. 3826 */ 3827 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3828 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3829 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3830 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3831 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3832 3833 if (sc->bge_flags & BGE_FLAG_TBI) { 3834 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3835 bge_ifmedia_sts); 3836 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3837 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3838 0, NULL); 3839 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3840 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3841 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3842 } else { 3843 /* 3844 * Do transceiver setup and tell the firmware the 3845 * driver is down so we can try to get access the 3846 * probe if ASF is running. Retry a couple of times 3847 * if we get a conflict with the ASF firmware accessing 3848 * the PHY. 3849 */ 3850 trys = 0; 3851 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3852 again: 3853 bge_asf_driver_up(sc); 3854 3855 error = mii_attach(dev, &sc->bge_miibus, ifp, 3856 (ifm_change_cb_t)bge_ifmedia_upd, 3857 (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 3858 MII_OFFSET_ANY, MIIF_DOPAUSE); 3859 if (error != 0) { 3860 if (trys++ < 4) { 3861 device_printf(sc->bge_dev, "Try again\n"); 3862 bge_miibus_writereg(sc->bge_dev, 3863 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3864 goto again; 3865 } 3866 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3867 goto fail; 3868 } 3869 3870 /* 3871 * Now tell the firmware we are going up after probing the PHY 3872 */ 3873 if (sc->bge_asf_mode & ASF_STACKUP) 3874 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3875 } 3876 3877 /* 3878 * When using the BCM5701 in PCI-X mode, data corruption has 3879 * been observed in the first few bytes of some received packets. 3880 * Aligning the packet buffer in memory eliminates the corruption. 3881 * Unfortunately, this misaligns the packet payloads. On platforms 3882 * which do not support unaligned accesses, we will realign the 3883 * payloads by copying the received packets. 3884 */ 3885 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3886 sc->bge_flags & BGE_FLAG_PCIX) 3887 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3888 3889 /* 3890 * Call MI attach routine. 3891 */ 3892 ether_ifattach(ifp, eaddr); 3893 3894 /* Tell upper layer we support long frames. */ 3895 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 3896 3897 /* 3898 * Hookup IRQ last. 3899 */ 3900 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3901 /* Take advantage of single-shot MSI. */ 3902 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3903 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3904 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3905 taskqueue_thread_enqueue, &sc->bge_tq); 3906 if (sc->bge_tq == NULL) { 3907 device_printf(dev, "could not create taskqueue.\n"); 3908 ether_ifdetach(ifp); 3909 error = ENOMEM; 3910 goto fail; 3911 } 3912 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, 3913 "%s taskq", device_get_nameunit(sc->bge_dev)); 3914 if (error != 0) { 3915 device_printf(dev, "could not start threads.\n"); 3916 ether_ifdetach(ifp); 3917 goto fail; 3918 } 3919 error = bus_setup_intr(dev, sc->bge_irq, 3920 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3921 &sc->bge_intrhand); 3922 } else 3923 error = bus_setup_intr(dev, sc->bge_irq, 3924 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3925 &sc->bge_intrhand); 3926 3927 if (error) { 3928 ether_ifdetach(ifp); 3929 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3930 goto fail; 3931 } 3932 3933 /* Attach driver debugnet methods. */ 3934 DEBUGNET_SET(ifp, bge); 3935 3936 fail: 3937 if (error) 3938 bge_detach(dev); 3939 return (error); 3940 } 3941 3942 static int 3943 bge_detach(device_t dev) 3944 { 3945 struct bge_softc *sc; 3946 if_t ifp; 3947 3948 sc = device_get_softc(dev); 3949 ifp = sc->bge_ifp; 3950 3951 #ifdef DEVICE_POLLING 3952 if (if_getcapenable(ifp) & IFCAP_POLLING) 3953 ether_poll_deregister(ifp); 3954 #endif 3955 3956 if (device_is_attached(dev)) { 3957 ether_ifdetach(ifp); 3958 BGE_LOCK(sc); 3959 bge_stop(sc); 3960 BGE_UNLOCK(sc); 3961 callout_drain(&sc->bge_stat_ch); 3962 } 3963 3964 if (sc->bge_tq) 3965 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3966 3967 if (sc->bge_flags & BGE_FLAG_TBI) 3968 ifmedia_removeall(&sc->bge_ifmedia); 3969 else if (sc->bge_miibus != NULL) { 3970 bus_generic_detach(dev); 3971 device_delete_child(dev, sc->bge_miibus); 3972 } 3973 3974 bge_release_resources(sc); 3975 3976 return (0); 3977 } 3978 3979 static void 3980 bge_release_resources(struct bge_softc *sc) 3981 { 3982 device_t dev; 3983 3984 dev = sc->bge_dev; 3985 3986 if (sc->bge_tq != NULL) 3987 taskqueue_free(sc->bge_tq); 3988 3989 if (sc->bge_intrhand != NULL) 3990 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3991 3992 if (sc->bge_irq != NULL) { 3993 bus_release_resource(dev, SYS_RES_IRQ, 3994 rman_get_rid(sc->bge_irq), sc->bge_irq); 3995 pci_release_msi(dev); 3996 } 3997 3998 if (sc->bge_res != NULL) 3999 bus_release_resource(dev, SYS_RES_MEMORY, 4000 rman_get_rid(sc->bge_res), sc->bge_res); 4001 4002 if (sc->bge_res2 != NULL) 4003 bus_release_resource(dev, SYS_RES_MEMORY, 4004 rman_get_rid(sc->bge_res2), sc->bge_res2); 4005 4006 if (sc->bge_ifp != NULL) 4007 if_free(sc->bge_ifp); 4008 4009 bge_dma_free(sc); 4010 4011 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 4012 BGE_LOCK_DESTROY(sc); 4013 } 4014 4015 static int 4016 bge_reset(struct bge_softc *sc) 4017 { 4018 device_t dev; 4019 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 4020 void (*write_op)(struct bge_softc *, int, int); 4021 uint16_t devctl; 4022 int i; 4023 4024 dev = sc->bge_dev; 4025 4026 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4027 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4028 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4029 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4030 4031 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4032 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 4033 if (sc->bge_flags & BGE_FLAG_PCIE) 4034 write_op = bge_writemem_direct; 4035 else 4036 write_op = bge_writemem_ind; 4037 } else 4038 write_op = bge_writereg_ind; 4039 4040 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 4041 sc->bge_asicrev != BGE_ASICREV_BCM5701) { 4042 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4043 for (i = 0; i < 8000; i++) { 4044 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4045 BGE_NVRAMSWARB_GNT1) 4046 break; 4047 DELAY(20); 4048 } 4049 if (i == 8000) { 4050 if (bootverbose) 4051 device_printf(dev, "NVRAM lock timedout!\n"); 4052 } 4053 } 4054 /* Take APE lock when performing reset. */ 4055 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4056 4057 /* Save some important PCI state. */ 4058 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 4059 command = pci_read_config(dev, BGE_PCI_CMD, 4); 4060 4061 pci_write_config(dev, BGE_PCI_MISC_CTL, 4062 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4063 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4064 4065 /* Disable fastboot on controllers that support it. */ 4066 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 4067 BGE_IS_5755_PLUS(sc)) { 4068 if (bootverbose) 4069 device_printf(dev, "Disabling fastboot\n"); 4070 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 4071 } 4072 4073 /* 4074 * Write the magic number to SRAM at offset 0xB50. 4075 * When firmware finishes its initialization it will 4076 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 4077 */ 4078 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4079 4080 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4081 4082 /* XXX: Broadcom Linux driver. */ 4083 if (sc->bge_flags & BGE_FLAG_PCIE) { 4084 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 4085 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4086 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4087 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4088 } 4089 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4090 /* Prevent PCIE link training during global reset */ 4091 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4092 reset |= 1 << 29; 4093 } 4094 } 4095 4096 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4097 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4098 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4099 val | BGE_VCPU_STATUS_DRV_RESET); 4100 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4101 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4102 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4103 } 4104 4105 /* 4106 * Set GPHY Power Down Override to leave GPHY 4107 * powered up in D0 uninitialized. 4108 */ 4109 if (BGE_IS_5705_PLUS(sc) && 4110 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4111 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4112 4113 /* Issue global reset */ 4114 write_op(sc, BGE_MISC_CFG, reset); 4115 4116 if (sc->bge_flags & BGE_FLAG_PCIE) 4117 DELAY(100 * 1000); 4118 else 4119 DELAY(1000); 4120 4121 /* XXX: Broadcom Linux driver. */ 4122 if (sc->bge_flags & BGE_FLAG_PCIE) { 4123 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4124 DELAY(500000); /* wait for link training to complete */ 4125 val = pci_read_config(dev, 0xC4, 4); 4126 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4127 } 4128 devctl = pci_read_config(dev, 4129 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4130 /* Clear enable no snoop and disable relaxed ordering. */ 4131 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4132 PCIEM_CTL_NOSNOOP_ENABLE); 4133 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4134 devctl, 2); 4135 pci_set_max_read_req(dev, sc->bge_expmrq); 4136 /* Clear error status. */ 4137 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4138 PCIEM_STA_CORRECTABLE_ERROR | 4139 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4140 PCIEM_STA_UNSUPPORTED_REQ, 2); 4141 } 4142 4143 /* Reset some of the PCI state that got zapped by reset. */ 4144 pci_write_config(dev, BGE_PCI_MISC_CTL, 4145 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4146 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4147 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4148 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4149 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4150 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4151 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4152 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4153 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4154 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4155 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4156 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4157 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4158 /* 4159 * Disable PCI-X relaxed ordering to ensure status block update 4160 * comes first then packet buffer DMA. Otherwise driver may 4161 * read stale status block. 4162 */ 4163 if (sc->bge_flags & BGE_FLAG_PCIX) { 4164 devctl = pci_read_config(dev, 4165 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4166 devctl &= ~PCIXM_COMMAND_ERO; 4167 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4168 devctl &= ~PCIXM_COMMAND_MAX_READ; 4169 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4170 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4171 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4172 PCIXM_COMMAND_MAX_READ); 4173 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4174 } 4175 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4176 devctl, 2); 4177 } 4178 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4179 if (BGE_IS_5714_FAMILY(sc)) { 4180 /* This chip disables MSI on reset. */ 4181 if (sc->bge_flags & BGE_FLAG_MSI) { 4182 val = pci_read_config(dev, 4183 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4184 pci_write_config(dev, 4185 sc->bge_msicap + PCIR_MSI_CTRL, 4186 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4187 val = CSR_READ_4(sc, BGE_MSI_MODE); 4188 CSR_WRITE_4(sc, BGE_MSI_MODE, 4189 val | BGE_MSIMODE_ENABLE); 4190 } 4191 val = CSR_READ_4(sc, BGE_MARB_MODE); 4192 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4193 } else 4194 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4195 4196 /* Fix up byte swapping. */ 4197 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4198 4199 val = CSR_READ_4(sc, BGE_MAC_MODE); 4200 val = (val & ~mac_mode_mask) | mac_mode; 4201 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4202 DELAY(40); 4203 4204 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4205 4206 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4207 for (i = 0; i < BGE_TIMEOUT; i++) { 4208 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4209 if (val & BGE_VCPU_STATUS_INIT_DONE) 4210 break; 4211 DELAY(100); 4212 } 4213 if (i == BGE_TIMEOUT) { 4214 device_printf(dev, "reset timed out\n"); 4215 return (1); 4216 } 4217 } else { 4218 /* 4219 * Poll until we see the 1's complement of the magic number. 4220 * This indicates that the firmware initialization is complete. 4221 * We expect this to fail if no chip containing the Ethernet 4222 * address is fitted though. 4223 */ 4224 for (i = 0; i < BGE_TIMEOUT; i++) { 4225 DELAY(10); 4226 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4227 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4228 break; 4229 } 4230 4231 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4232 device_printf(dev, 4233 "firmware handshake timed out, found 0x%08x\n", 4234 val); 4235 /* BCM57765 A0 needs additional time before accessing. */ 4236 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4237 DELAY(10 * 1000); /* XXX */ 4238 } 4239 4240 /* 4241 * The 5704 in TBI mode apparently needs some special 4242 * adjustment to insure the SERDES drive level is set 4243 * to 1.2V. 4244 */ 4245 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4246 sc->bge_flags & BGE_FLAG_TBI) { 4247 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4248 val = (val & ~0xFFF) | 0x880; 4249 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4250 } 4251 4252 /* XXX: Broadcom Linux driver. */ 4253 if (sc->bge_flags & BGE_FLAG_PCIE && 4254 !BGE_IS_5717_PLUS(sc) && 4255 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4256 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4257 /* Enable Data FIFO protection. */ 4258 val = CSR_READ_4(sc, 0x7C00); 4259 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4260 } 4261 4262 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4263 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4264 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4265 4266 return (0); 4267 } 4268 4269 static __inline void 4270 bge_rxreuse_std(struct bge_softc *sc, int i) 4271 { 4272 struct bge_rx_bd *r; 4273 4274 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4275 r->bge_flags = BGE_RXBDFLAG_END; 4276 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4277 r->bge_idx = i; 4278 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4279 } 4280 4281 static __inline void 4282 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4283 { 4284 struct bge_extrx_bd *r; 4285 4286 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4287 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4288 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4289 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4290 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4291 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4292 r->bge_idx = i; 4293 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4294 } 4295 4296 /* 4297 * Frame reception handling. This is called if there's a frame 4298 * on the receive return list. 4299 * 4300 * Note: we have to be able to handle two possibilities here: 4301 * 1) the frame is from the jumbo receive ring 4302 * 2) the frame is from the standard receive ring 4303 */ 4304 4305 static int 4306 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4307 { 4308 if_t ifp; 4309 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4310 uint16_t rx_cons; 4311 4312 rx_cons = sc->bge_rx_saved_considx; 4313 4314 /* Nothing to do. */ 4315 if (rx_cons == rx_prod) 4316 return (rx_npkts); 4317 4318 ifp = sc->bge_ifp; 4319 4320 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4321 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4322 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4323 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4324 if (BGE_IS_JUMBO_CAPABLE(sc) && 4325 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 4326 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) 4327 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4328 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4329 4330 while (rx_cons != rx_prod) { 4331 struct bge_rx_bd *cur_rx; 4332 uint32_t rxidx; 4333 struct mbuf *m = NULL; 4334 uint16_t vlan_tag = 0; 4335 int have_tag = 0; 4336 4337 #ifdef DEVICE_POLLING 4338 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4339 if (sc->rxcycles <= 0) 4340 break; 4341 sc->rxcycles--; 4342 } 4343 #endif 4344 4345 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4346 4347 rxidx = cur_rx->bge_idx; 4348 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4349 4350 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 4351 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4352 have_tag = 1; 4353 vlan_tag = cur_rx->bge_vlan_tag; 4354 } 4355 4356 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4357 jumbocnt++; 4358 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4359 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4360 bge_rxreuse_jumbo(sc, rxidx); 4361 continue; 4362 } 4363 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4364 bge_rxreuse_jumbo(sc, rxidx); 4365 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4366 continue; 4367 } 4368 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4369 } else { 4370 stdcnt++; 4371 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4372 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4373 bge_rxreuse_std(sc, rxidx); 4374 continue; 4375 } 4376 if (bge_newbuf_std(sc, rxidx) != 0) { 4377 bge_rxreuse_std(sc, rxidx); 4378 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4379 continue; 4380 } 4381 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4382 } 4383 4384 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 4385 #ifndef __NO_STRICT_ALIGNMENT 4386 /* 4387 * For architectures with strict alignment we must make sure 4388 * the payload is aligned. 4389 */ 4390 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4391 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4392 cur_rx->bge_len); 4393 m->m_data += ETHER_ALIGN; 4394 } 4395 #endif 4396 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4397 m->m_pkthdr.rcvif = ifp; 4398 4399 if (if_getcapenable(ifp) & IFCAP_RXCSUM) 4400 bge_rxcsum(sc, cur_rx, m); 4401 4402 /* 4403 * If we received a packet with a vlan tag, 4404 * attach that information to the packet. 4405 */ 4406 if (have_tag) { 4407 m->m_pkthdr.ether_vtag = vlan_tag; 4408 m->m_flags |= M_VLANTAG; 4409 } 4410 4411 if (holdlck != 0) { 4412 BGE_UNLOCK(sc); 4413 if_input(ifp, m); 4414 BGE_LOCK(sc); 4415 } else 4416 if_input(ifp, m); 4417 rx_npkts++; 4418 4419 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4420 return (rx_npkts); 4421 } 4422 4423 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4424 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4425 if (stdcnt > 0) 4426 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4427 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4428 4429 if (jumbocnt > 0) 4430 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4431 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4432 4433 sc->bge_rx_saved_considx = rx_cons; 4434 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4435 if (stdcnt) 4436 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4437 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4438 if (jumbocnt) 4439 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4440 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4441 #ifdef notyet 4442 /* 4443 * This register wraps very quickly under heavy packet drops. 4444 * If you need correct statistics, you can enable this check. 4445 */ 4446 if (BGE_IS_5705_PLUS(sc)) 4447 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4448 #endif 4449 return (rx_npkts); 4450 } 4451 4452 static void 4453 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4454 { 4455 4456 if (BGE_IS_5717_PLUS(sc)) { 4457 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4458 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4459 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4460 if ((cur_rx->bge_error_flag & 4461 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4462 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4463 } 4464 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4465 m->m_pkthdr.csum_data = 4466 cur_rx->bge_tcp_udp_csum; 4467 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4468 CSUM_PSEUDO_HDR; 4469 } 4470 } 4471 } else { 4472 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4473 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4474 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4475 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4476 } 4477 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4478 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4479 m->m_pkthdr.csum_data = 4480 cur_rx->bge_tcp_udp_csum; 4481 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4482 CSUM_PSEUDO_HDR; 4483 } 4484 } 4485 } 4486 4487 static void 4488 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4489 { 4490 struct bge_tx_bd *cur_tx; 4491 if_t ifp; 4492 4493 BGE_LOCK_ASSERT(sc); 4494 4495 /* Nothing to do. */ 4496 if (sc->bge_tx_saved_considx == tx_cons) 4497 return; 4498 4499 ifp = sc->bge_ifp; 4500 4501 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4502 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4503 /* 4504 * Go through our tx ring and free mbufs for those 4505 * frames that have been sent. 4506 */ 4507 while (sc->bge_tx_saved_considx != tx_cons) { 4508 uint32_t idx; 4509 4510 idx = sc->bge_tx_saved_considx; 4511 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4512 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4513 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4514 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4515 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4516 sc->bge_cdata.bge_tx_dmamap[idx], 4517 BUS_DMASYNC_POSTWRITE); 4518 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4519 sc->bge_cdata.bge_tx_dmamap[idx]); 4520 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4521 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4522 } 4523 sc->bge_txcnt--; 4524 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4525 } 4526 4527 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 4528 if (sc->bge_txcnt == 0) 4529 sc->bge_timer = 0; 4530 } 4531 4532 #ifdef DEVICE_POLLING 4533 static int 4534 bge_poll(if_t ifp, enum poll_cmd cmd, int count) 4535 { 4536 struct bge_softc *sc = if_getsoftc(ifp); 4537 uint16_t rx_prod, tx_cons; 4538 uint32_t statusword; 4539 int rx_npkts = 0; 4540 4541 BGE_LOCK(sc); 4542 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4543 BGE_UNLOCK(sc); 4544 return (rx_npkts); 4545 } 4546 4547 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4548 sc->bge_cdata.bge_status_map, 4549 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4550 /* Fetch updates from the status block. */ 4551 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4552 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4553 4554 statusword = sc->bge_ldata.bge_status_block->bge_status; 4555 /* Clear the status so the next pass only sees the changes. */ 4556 sc->bge_ldata.bge_status_block->bge_status = 0; 4557 4558 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4559 sc->bge_cdata.bge_status_map, 4560 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4561 4562 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4563 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4564 sc->bge_link_evt++; 4565 4566 if (cmd == POLL_AND_CHECK_STATUS) 4567 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4568 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4569 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4570 bge_link_upd(sc); 4571 4572 sc->rxcycles = count; 4573 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4574 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4575 BGE_UNLOCK(sc); 4576 return (rx_npkts); 4577 } 4578 bge_txeof(sc, tx_cons); 4579 if (!if_sendq_empty(ifp)) 4580 bge_start_locked(ifp); 4581 4582 BGE_UNLOCK(sc); 4583 return (rx_npkts); 4584 } 4585 #endif /* DEVICE_POLLING */ 4586 4587 static int 4588 bge_msi_intr(void *arg) 4589 { 4590 struct bge_softc *sc; 4591 4592 sc = (struct bge_softc *)arg; 4593 /* 4594 * This interrupt is not shared and controller already 4595 * disabled further interrupt. 4596 */ 4597 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4598 return (FILTER_HANDLED); 4599 } 4600 4601 static void 4602 bge_intr_task(void *arg, int pending) 4603 { 4604 struct bge_softc *sc; 4605 if_t ifp; 4606 uint32_t status, status_tag; 4607 uint16_t rx_prod, tx_cons; 4608 4609 sc = (struct bge_softc *)arg; 4610 ifp = sc->bge_ifp; 4611 4612 BGE_LOCK(sc); 4613 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4614 BGE_UNLOCK(sc); 4615 return; 4616 } 4617 4618 /* Get updated status block. */ 4619 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4620 sc->bge_cdata.bge_status_map, 4621 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4622 4623 /* Save producer/consumer indices. */ 4624 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4625 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4626 status = sc->bge_ldata.bge_status_block->bge_status; 4627 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4628 /* Dirty the status flag. */ 4629 sc->bge_ldata.bge_status_block->bge_status = 0; 4630 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4631 sc->bge_cdata.bge_status_map, 4632 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4633 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4634 status_tag = 0; 4635 4636 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4637 bge_link_upd(sc); 4638 4639 /* Let controller work. */ 4640 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4641 4642 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4643 sc->bge_rx_saved_considx != rx_prod) { 4644 /* Check RX return ring producer/consumer. */ 4645 BGE_UNLOCK(sc); 4646 bge_rxeof(sc, rx_prod, 0); 4647 BGE_LOCK(sc); 4648 } 4649 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4650 /* Check TX ring producer/consumer. */ 4651 bge_txeof(sc, tx_cons); 4652 if (!if_sendq_empty(ifp)) 4653 bge_start_locked(ifp); 4654 } 4655 BGE_UNLOCK(sc); 4656 } 4657 4658 static void 4659 bge_intr(void *xsc) 4660 { 4661 struct bge_softc *sc; 4662 if_t ifp; 4663 uint32_t statusword; 4664 uint16_t rx_prod, tx_cons; 4665 4666 sc = xsc; 4667 4668 BGE_LOCK(sc); 4669 4670 ifp = sc->bge_ifp; 4671 4672 #ifdef DEVICE_POLLING 4673 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4674 BGE_UNLOCK(sc); 4675 return; 4676 } 4677 #endif 4678 4679 /* 4680 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4681 * disable interrupts by writing nonzero like we used to, since with 4682 * our current organization this just gives complications and 4683 * pessimizations for re-enabling interrupts. We used to have races 4684 * instead of the necessary complications. Disabling interrupts 4685 * would just reduce the chance of a status update while we are 4686 * running (by switching to the interrupt-mode coalescence 4687 * parameters), but this chance is already very low so it is more 4688 * efficient to get another interrupt than prevent it. 4689 * 4690 * We do the ack first to ensure another interrupt if there is a 4691 * status update after the ack. We don't check for the status 4692 * changing later because it is more efficient to get another 4693 * interrupt than prevent it, not quite as above (not checking is 4694 * a smaller optimization than not toggling the interrupt enable, 4695 * since checking doesn't involve PCI accesses and toggling require 4696 * the status check). So toggling would probably be a pessimization 4697 * even with MSI. It would only be needed for using a task queue. 4698 */ 4699 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4700 4701 /* 4702 * Do the mandatory PCI flush as well as get the link status. 4703 */ 4704 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4705 4706 /* Make sure the descriptor ring indexes are coherent. */ 4707 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4708 sc->bge_cdata.bge_status_map, 4709 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4710 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4711 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4712 sc->bge_ldata.bge_status_block->bge_status = 0; 4713 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4714 sc->bge_cdata.bge_status_map, 4715 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4716 4717 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4718 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4719 statusword || sc->bge_link_evt) 4720 bge_link_upd(sc); 4721 4722 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4723 /* Check RX return ring producer/consumer. */ 4724 bge_rxeof(sc, rx_prod, 1); 4725 } 4726 4727 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4728 /* Check TX ring producer/consumer. */ 4729 bge_txeof(sc, tx_cons); 4730 } 4731 4732 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4733 !if_sendq_empty(ifp)) 4734 bge_start_locked(ifp); 4735 4736 BGE_UNLOCK(sc); 4737 } 4738 4739 static void 4740 bge_asf_driver_up(struct bge_softc *sc) 4741 { 4742 if (sc->bge_asf_mode & ASF_STACKUP) { 4743 /* Send ASF heartbeat aprox. every 2s */ 4744 if (sc->bge_asf_count) 4745 sc->bge_asf_count --; 4746 else { 4747 sc->bge_asf_count = 2; 4748 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4749 BGE_FW_CMD_DRV_ALIVE); 4750 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4751 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4752 BGE_FW_HB_TIMEOUT_SEC); 4753 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4754 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4755 BGE_RX_CPU_DRV_EVENT); 4756 } 4757 } 4758 } 4759 4760 static void 4761 bge_tick(void *xsc) 4762 { 4763 struct bge_softc *sc = xsc; 4764 struct mii_data *mii = NULL; 4765 4766 BGE_LOCK_ASSERT(sc); 4767 4768 /* Synchronize with possible callout reset/stop. */ 4769 if (callout_pending(&sc->bge_stat_ch) || 4770 !callout_active(&sc->bge_stat_ch)) 4771 return; 4772 4773 if (BGE_IS_5705_PLUS(sc)) 4774 bge_stats_update_regs(sc); 4775 else 4776 bge_stats_update(sc); 4777 4778 /* XXX Add APE heartbeat check here? */ 4779 4780 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4781 mii = device_get_softc(sc->bge_miibus); 4782 /* 4783 * Do not touch PHY if we have link up. This could break 4784 * IPMI/ASF mode or produce extra input errors 4785 * (extra errors was reported for bcm5701 & bcm5704). 4786 */ 4787 if (!sc->bge_link) 4788 mii_tick(mii); 4789 } else { 4790 /* 4791 * Since in TBI mode auto-polling can't be used we should poll 4792 * link status manually. Here we register pending link event 4793 * and trigger interrupt. 4794 */ 4795 #ifdef DEVICE_POLLING 4796 /* In polling mode we poll link state in bge_poll(). */ 4797 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING)) 4798 #endif 4799 { 4800 sc->bge_link_evt++; 4801 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4802 sc->bge_flags & BGE_FLAG_5788) 4803 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4804 else 4805 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4806 } 4807 } 4808 4809 bge_asf_driver_up(sc); 4810 bge_watchdog(sc); 4811 4812 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4813 } 4814 4815 static void 4816 bge_stats_update_regs(struct bge_softc *sc) 4817 { 4818 if_t ifp; 4819 struct bge_mac_stats *stats; 4820 uint32_t val; 4821 4822 ifp = sc->bge_ifp; 4823 stats = &sc->bge_mac_stats; 4824 4825 stats->ifHCOutOctets += 4826 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4827 stats->etherStatsCollisions += 4828 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4829 stats->outXonSent += 4830 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4831 stats->outXoffSent += 4832 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4833 stats->dot3StatsInternalMacTransmitErrors += 4834 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4835 stats->dot3StatsSingleCollisionFrames += 4836 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4837 stats->dot3StatsMultipleCollisionFrames += 4838 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4839 stats->dot3StatsDeferredTransmissions += 4840 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4841 stats->dot3StatsExcessiveCollisions += 4842 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4843 stats->dot3StatsLateCollisions += 4844 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4845 stats->ifHCOutUcastPkts += 4846 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4847 stats->ifHCOutMulticastPkts += 4848 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4849 stats->ifHCOutBroadcastPkts += 4850 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4851 4852 stats->ifHCInOctets += 4853 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4854 stats->etherStatsFragments += 4855 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4856 stats->ifHCInUcastPkts += 4857 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4858 stats->ifHCInMulticastPkts += 4859 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4860 stats->ifHCInBroadcastPkts += 4861 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4862 stats->dot3StatsFCSErrors += 4863 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4864 stats->dot3StatsAlignmentErrors += 4865 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4866 stats->xonPauseFramesReceived += 4867 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4868 stats->xoffPauseFramesReceived += 4869 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4870 stats->macControlFramesReceived += 4871 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4872 stats->xoffStateEntered += 4873 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4874 stats->dot3StatsFramesTooLong += 4875 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4876 stats->etherStatsJabbers += 4877 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4878 stats->etherStatsUndersizePkts += 4879 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4880 4881 stats->FramesDroppedDueToFilters += 4882 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4883 stats->DmaWriteQueueFull += 4884 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4885 stats->DmaWriteHighPriQueueFull += 4886 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4887 stats->NoMoreRxBDs += 4888 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4889 /* 4890 * XXX 4891 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4892 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4893 * includes number of unwanted multicast frames. This comes 4894 * from silicon bug and known workaround to get rough(not 4895 * exact) counter is to enable interrupt on MBUF low water 4896 * attention. This can be accomplished by setting 4897 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4898 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4899 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4900 * However that change would generate more interrupts and 4901 * there are still possibilities of losing multiple frames 4902 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4903 * Given that the workaround still would not get correct 4904 * counter I don't think it's worth to implement it. So 4905 * ignore reading the counter on controllers that have the 4906 * silicon bug. 4907 */ 4908 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4909 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4910 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4911 stats->InputDiscards += 4912 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4913 stats->InputErrors += 4914 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4915 stats->RecvThresholdHit += 4916 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4917 4918 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 4919 /* 4920 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4921 * frames, it's safe to disable workaround for DMA engine's 4922 * miscalculation of TXMBUF space. 4923 */ 4924 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts + 4925 stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) { 4926 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4927 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 4928 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4929 else 4930 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4931 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4932 sc->bge_flags &= ~BGE_FLAG_RDMA_BUG; 4933 } 4934 } 4935 } 4936 4937 static void 4938 bge_stats_clear_regs(struct bge_softc *sc) 4939 { 4940 4941 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4942 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4943 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4944 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4945 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4946 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4947 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4948 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4949 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4950 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4951 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4952 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4953 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4954 4955 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4956 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4957 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4958 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4959 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4960 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4961 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4962 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4963 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4964 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4965 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4966 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4967 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4968 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4969 4970 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4971 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4972 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4973 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4974 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4975 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4976 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4977 } 4978 4979 static void 4980 bge_stats_update(struct bge_softc *sc) 4981 { 4982 if_t ifp; 4983 bus_size_t stats; 4984 uint32_t cnt; /* current register value */ 4985 4986 ifp = sc->bge_ifp; 4987 4988 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4989 4990 #define READ_STAT(sc, stats, stat) \ 4991 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4992 4993 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4994 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions); 4995 sc->bge_tx_collisions = cnt; 4996 4997 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4998 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds); 4999 sc->bge_rx_nobds = cnt; 5000 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 5001 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs); 5002 sc->bge_rx_inerrs = cnt; 5003 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 5004 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards); 5005 sc->bge_rx_discards = cnt; 5006 5007 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 5008 if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards); 5009 sc->bge_tx_discards = cnt; 5010 5011 #undef READ_STAT 5012 } 5013 5014 /* 5015 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 5016 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 5017 * but when such padded frames employ the bge IP/TCP checksum offload, 5018 * the hardware checksum assist gives incorrect results (possibly 5019 * from incorporating its own padding into the UDP/TCP checksum; who knows). 5020 * If we pad such runts with zeros, the onboard checksum comes out correct. 5021 */ 5022 static __inline int 5023 bge_cksum_pad(struct mbuf *m) 5024 { 5025 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 5026 struct mbuf *last; 5027 5028 /* If there's only the packet-header and we can pad there, use it. */ 5029 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 5030 M_TRAILINGSPACE(m) >= padlen) { 5031 last = m; 5032 } else { 5033 /* 5034 * Walk packet chain to find last mbuf. We will either 5035 * pad there, or append a new mbuf and pad it. 5036 */ 5037 for (last = m; last->m_next != NULL; last = last->m_next); 5038 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 5039 /* Allocate new empty mbuf, pad it. Compact later. */ 5040 struct mbuf *n; 5041 5042 MGET(n, M_NOWAIT, MT_DATA); 5043 if (n == NULL) 5044 return (ENOBUFS); 5045 n->m_len = 0; 5046 last->m_next = n; 5047 last = n; 5048 } 5049 } 5050 5051 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 5052 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 5053 last->m_len += padlen; 5054 m->m_pkthdr.len += padlen; 5055 5056 return (0); 5057 } 5058 5059 static struct mbuf * 5060 bge_check_short_dma(struct mbuf *m) 5061 { 5062 struct mbuf *n; 5063 int found; 5064 5065 /* 5066 * If device receive two back-to-back send BDs with less than 5067 * or equal to 8 total bytes then the device may hang. The two 5068 * back-to-back send BDs must in the same frame for this failure 5069 * to occur. Scan mbuf chains and see whether two back-to-back 5070 * send BDs are there. If this is the case, allocate new mbuf 5071 * and copy the frame to workaround the silicon bug. 5072 */ 5073 for (n = m, found = 0; n != NULL; n = n->m_next) { 5074 if (n->m_len < 8) { 5075 found++; 5076 if (found > 1) 5077 break; 5078 continue; 5079 } 5080 found = 0; 5081 } 5082 5083 if (found > 1) { 5084 n = m_defrag(m, M_NOWAIT); 5085 if (n == NULL) 5086 m_freem(m); 5087 } else 5088 n = m; 5089 return (n); 5090 } 5091 5092 static struct mbuf * 5093 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 5094 uint16_t *flags) 5095 { 5096 struct ip *ip; 5097 struct tcphdr *tcp; 5098 struct mbuf *n; 5099 uint16_t hlen; 5100 uint32_t poff; 5101 5102 if (M_WRITABLE(m) == 0) { 5103 /* Get a writable copy. */ 5104 n = m_dup(m, M_NOWAIT); 5105 m_freem(m); 5106 if (n == NULL) 5107 return (NULL); 5108 m = n; 5109 } 5110 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5111 if (m == NULL) 5112 return (NULL); 5113 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5114 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5115 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5116 if (m == NULL) 5117 return (NULL); 5118 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5119 m = m_pullup(m, poff + (tcp->th_off << 2)); 5120 if (m == NULL) 5121 return (NULL); 5122 /* 5123 * It seems controller doesn't modify IP length and TCP pseudo 5124 * checksum. These checksum computed by upper stack should be 0. 5125 */ 5126 *mss = m->m_pkthdr.tso_segsz; 5127 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5128 ip->ip_sum = 0; 5129 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5130 /* Clear pseudo checksum computed by TCP stack. */ 5131 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5132 tcp->th_sum = 0; 5133 /* 5134 * Broadcom controllers uses different descriptor format for 5135 * TSO depending on ASIC revision. Due to TSO-capable firmware 5136 * license issue and lower performance of firmware based TSO 5137 * we only support hardware based TSO. 5138 */ 5139 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5140 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5141 if (sc->bge_flags & BGE_FLAG_TSO3) { 5142 /* 5143 * For BCM5717 and newer controllers, hardware based TSO 5144 * uses the 14 lower bits of the bge_mss field to store the 5145 * MSS and the upper 2 bits to store the lowest 2 bits of 5146 * the IP/TCP header length. The upper 6 bits of the header 5147 * length are stored in the bge_flags[14:10,4] field. Jumbo 5148 * frames are supported. 5149 */ 5150 *mss |= ((hlen & 0x3) << 14); 5151 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5152 } else { 5153 /* 5154 * For BCM5755 and newer controllers, hardware based TSO uses 5155 * the lower 11 bits to store the MSS and the upper 5 bits to 5156 * store the IP/TCP header length. Jumbo frames are not 5157 * supported. 5158 */ 5159 *mss |= (hlen << 11); 5160 } 5161 return (m); 5162 } 5163 5164 /* 5165 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5166 * pointers to descriptors. 5167 */ 5168 static int 5169 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5170 { 5171 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5172 bus_dmamap_t map; 5173 struct bge_tx_bd *d; 5174 struct mbuf *m = *m_head; 5175 uint32_t idx = *txidx; 5176 uint16_t csum_flags, mss, vlan_tag; 5177 int nsegs, i, error; 5178 5179 csum_flags = 0; 5180 mss = 0; 5181 vlan_tag = 0; 5182 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5183 m->m_next != NULL) { 5184 *m_head = bge_check_short_dma(m); 5185 if (*m_head == NULL) 5186 return (ENOBUFS); 5187 m = *m_head; 5188 } 5189 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5190 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5191 if (*m_head == NULL) 5192 return (ENOBUFS); 5193 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5194 BGE_TXBDFLAG_CPU_POST_DMA; 5195 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5196 if (m->m_pkthdr.csum_flags & CSUM_IP) 5197 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5198 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5199 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5200 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5201 (error = bge_cksum_pad(m)) != 0) { 5202 m_freem(m); 5203 *m_head = NULL; 5204 return (error); 5205 } 5206 } 5207 } 5208 5209 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5210 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5211 m->m_pkthdr.len > ETHER_MAX_LEN) 5212 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5213 if (sc->bge_forced_collapse > 0 && 5214 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5215 /* 5216 * Forcedly collapse mbuf chains to overcome hardware 5217 * limitation which only support a single outstanding 5218 * DMA read operation. 5219 */ 5220 if (sc->bge_forced_collapse == 1) 5221 m = m_defrag(m, M_NOWAIT); 5222 else 5223 m = m_collapse(m, M_NOWAIT, 5224 sc->bge_forced_collapse); 5225 if (m == NULL) 5226 m = *m_head; 5227 *m_head = m; 5228 } 5229 } 5230 5231 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5232 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5233 &nsegs, BUS_DMA_NOWAIT); 5234 if (error == EFBIG) { 5235 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW); 5236 if (m == NULL) { 5237 m_freem(*m_head); 5238 *m_head = NULL; 5239 return (ENOBUFS); 5240 } 5241 *m_head = m; 5242 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5243 m, segs, &nsegs, BUS_DMA_NOWAIT); 5244 if (error) { 5245 m_freem(m); 5246 *m_head = NULL; 5247 return (error); 5248 } 5249 } else if (error != 0) 5250 return (error); 5251 5252 /* Check if we have enough free send BDs. */ 5253 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5254 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5255 return (ENOBUFS); 5256 } 5257 5258 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5259 5260 if (m->m_flags & M_VLANTAG) { 5261 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5262 vlan_tag = m->m_pkthdr.ether_vtag; 5263 } 5264 5265 if (sc->bge_asicrev == BGE_ASICREV_BCM5762 && 5266 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5267 /* 5268 * 5725 family of devices corrupts TSO packets when TSO DMA 5269 * buffers cross into regions which are within MSS bytes of 5270 * a 4GB boundary. If we encounter the condition, drop the 5271 * packet. 5272 */ 5273 for (i = 0; ; i++) { 5274 d = &sc->bge_ldata.bge_tx_ring[idx]; 5275 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5276 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5277 d->bge_len = segs[i].ds_len; 5278 if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss < 5279 d->bge_addr.bge_addr_lo) 5280 break; 5281 d->bge_flags = csum_flags; 5282 d->bge_vlan_tag = vlan_tag; 5283 d->bge_mss = mss; 5284 if (i == nsegs - 1) 5285 break; 5286 BGE_INC(idx, BGE_TX_RING_CNT); 5287 } 5288 if (i != nsegs - 1) { 5289 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, 5290 BUS_DMASYNC_POSTWRITE); 5291 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5292 m_freem(*m_head); 5293 *m_head = NULL; 5294 return (EIO); 5295 } 5296 } else { 5297 for (i = 0; ; i++) { 5298 d = &sc->bge_ldata.bge_tx_ring[idx]; 5299 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5300 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5301 d->bge_len = segs[i].ds_len; 5302 d->bge_flags = csum_flags; 5303 d->bge_vlan_tag = vlan_tag; 5304 d->bge_mss = mss; 5305 if (i == nsegs - 1) 5306 break; 5307 BGE_INC(idx, BGE_TX_RING_CNT); 5308 } 5309 } 5310 5311 /* Mark the last segment as end of packet... */ 5312 d->bge_flags |= BGE_TXBDFLAG_END; 5313 5314 /* 5315 * Insure that the map for this transmission 5316 * is placed at the array index of the last descriptor 5317 * in this chain. 5318 */ 5319 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5320 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5321 sc->bge_cdata.bge_tx_chain[idx] = m; 5322 sc->bge_txcnt += nsegs; 5323 5324 BGE_INC(idx, BGE_TX_RING_CNT); 5325 *txidx = idx; 5326 5327 return (0); 5328 } 5329 5330 /* 5331 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5332 * to the mbuf data regions directly in the transmit descriptors. 5333 */ 5334 static void 5335 bge_start_locked(if_t ifp) 5336 { 5337 struct bge_softc *sc; 5338 struct mbuf *m_head; 5339 uint32_t prodidx; 5340 int count; 5341 5342 sc = if_getsoftc(ifp); 5343 BGE_LOCK_ASSERT(sc); 5344 5345 if (!sc->bge_link || 5346 (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5347 IFF_DRV_RUNNING) 5348 return; 5349 5350 prodidx = sc->bge_tx_prodidx; 5351 5352 for (count = 0; !if_sendq_empty(ifp);) { 5353 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5354 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5355 break; 5356 } 5357 m_head = if_dequeue(ifp); 5358 if (m_head == NULL) 5359 break; 5360 5361 /* 5362 * Pack the data into the transmit ring. If we 5363 * don't have room, set the OACTIVE flag and wait 5364 * for the NIC to drain the ring. 5365 */ 5366 if (bge_encap(sc, &m_head, &prodidx)) { 5367 if (m_head == NULL) 5368 break; 5369 if_sendq_prepend(ifp, m_head); 5370 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5371 break; 5372 } 5373 ++count; 5374 5375 /* 5376 * If there's a BPF listener, bounce a copy of this frame 5377 * to him. 5378 */ 5379 if_bpfmtap(ifp, m_head); 5380 } 5381 5382 if (count > 0) 5383 bge_start_tx(sc, prodidx); 5384 } 5385 5386 static void 5387 bge_start_tx(struct bge_softc *sc, uint32_t prodidx) 5388 { 5389 5390 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5391 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5392 /* Transmit. */ 5393 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5394 /* 5700 b2 errata */ 5395 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5396 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5397 5398 sc->bge_tx_prodidx = prodidx; 5399 5400 /* Set a timeout in case the chip goes out to lunch. */ 5401 sc->bge_timer = BGE_TX_TIMEOUT; 5402 } 5403 5404 /* 5405 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5406 * to the mbuf data regions directly in the transmit descriptors. 5407 */ 5408 static void 5409 bge_start(if_t ifp) 5410 { 5411 struct bge_softc *sc; 5412 5413 sc = if_getsoftc(ifp); 5414 BGE_LOCK(sc); 5415 bge_start_locked(ifp); 5416 BGE_UNLOCK(sc); 5417 } 5418 5419 static void 5420 bge_init_locked(struct bge_softc *sc) 5421 { 5422 if_t ifp; 5423 uint16_t *m; 5424 uint32_t mode; 5425 5426 BGE_LOCK_ASSERT(sc); 5427 5428 ifp = sc->bge_ifp; 5429 5430 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5431 return; 5432 5433 /* Cancel pending I/O and flush buffers. */ 5434 bge_stop(sc); 5435 5436 bge_stop_fw(sc); 5437 bge_sig_pre_reset(sc, BGE_RESET_START); 5438 bge_reset(sc); 5439 bge_sig_legacy(sc, BGE_RESET_START); 5440 bge_sig_post_reset(sc, BGE_RESET_START); 5441 5442 bge_chipinit(sc); 5443 5444 /* 5445 * Init the various state machines, ring 5446 * control blocks and firmware. 5447 */ 5448 if (bge_blockinit(sc)) { 5449 device_printf(sc->bge_dev, "initialization failure\n"); 5450 return; 5451 } 5452 5453 ifp = sc->bge_ifp; 5454 5455 /* Specify MTU. */ 5456 CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) + 5457 ETHER_HDR_LEN + ETHER_CRC_LEN + 5458 (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5459 5460 /* Load our MAC address. */ 5461 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 5462 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5463 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5464 5465 /* Program promiscuous mode. */ 5466 bge_setpromisc(sc); 5467 5468 /* Program multicast filter. */ 5469 bge_setmulti(sc); 5470 5471 /* Program VLAN tag stripping. */ 5472 bge_setvlan(sc); 5473 5474 /* Override UDP checksum offloading. */ 5475 if (sc->bge_forced_udpcsum == 0) 5476 sc->bge_csum_features &= ~CSUM_UDP; 5477 else 5478 sc->bge_csum_features |= CSUM_UDP; 5479 if (if_getcapabilities(ifp) & IFCAP_TXCSUM && 5480 if_getcapenable(ifp) & IFCAP_TXCSUM) { 5481 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP)); 5482 if_sethwassistbits(ifp, sc->bge_csum_features, 0); 5483 } 5484 5485 /* Init RX ring. */ 5486 if (bge_init_rx_ring_std(sc) != 0) { 5487 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5488 bge_stop(sc); 5489 return; 5490 } 5491 5492 /* 5493 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5494 * memory to insure that the chip has in fact read the first 5495 * entry of the ring. 5496 */ 5497 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5498 uint32_t v, i; 5499 for (i = 0; i < 10; i++) { 5500 DELAY(20); 5501 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5502 if (v == (MCLBYTES - ETHER_ALIGN)) 5503 break; 5504 } 5505 if (i == 10) 5506 device_printf (sc->bge_dev, 5507 "5705 A0 chip failed to load RX ring\n"); 5508 } 5509 5510 /* Init jumbo RX ring. */ 5511 if (BGE_IS_JUMBO_CAPABLE(sc) && 5512 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 5513 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { 5514 if (bge_init_rx_ring_jumbo(sc) != 0) { 5515 device_printf(sc->bge_dev, 5516 "no memory for jumbo Rx buffers.\n"); 5517 bge_stop(sc); 5518 return; 5519 } 5520 } 5521 5522 /* Init our RX return ring index. */ 5523 sc->bge_rx_saved_considx = 0; 5524 5525 /* Init our RX/TX stat counters. */ 5526 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5527 5528 /* Init TX ring. */ 5529 bge_init_tx_ring(sc); 5530 5531 /* Enable TX MAC state machine lockup fix. */ 5532 mode = CSR_READ_4(sc, BGE_TX_MODE); 5533 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5534 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5535 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 5536 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 5537 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5538 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5539 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5540 } 5541 /* Turn on transmitter. */ 5542 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5543 DELAY(100); 5544 5545 /* Turn on receiver. */ 5546 mode = CSR_READ_4(sc, BGE_RX_MODE); 5547 if (BGE_IS_5755_PLUS(sc)) 5548 mode |= BGE_RXMODE_IPV6_ENABLE; 5549 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 5550 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5551 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5552 DELAY(10); 5553 5554 /* 5555 * Set the number of good frames to receive after RX MBUF 5556 * Low Watermark has been reached. After the RX MAC receives 5557 * this number of frames, it will drop subsequent incoming 5558 * frames until the MBUF High Watermark is reached. 5559 */ 5560 if (BGE_IS_57765_PLUS(sc)) 5561 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5562 else 5563 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5564 5565 /* Clear MAC statistics. */ 5566 if (BGE_IS_5705_PLUS(sc)) 5567 bge_stats_clear_regs(sc); 5568 5569 /* Tell firmware we're alive. */ 5570 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5571 5572 #ifdef DEVICE_POLLING 5573 /* Disable interrupts if we are polling. */ 5574 if (if_getcapenable(ifp) & IFCAP_POLLING) { 5575 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5576 BGE_PCIMISCCTL_MASK_PCI_INTR); 5577 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5578 } else 5579 #endif 5580 5581 /* Enable host interrupts. */ 5582 { 5583 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5584 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5585 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5586 } 5587 5588 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 5589 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 5590 5591 bge_ifmedia_upd_locked(ifp); 5592 5593 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5594 } 5595 5596 static void 5597 bge_init(void *xsc) 5598 { 5599 struct bge_softc *sc = xsc; 5600 5601 BGE_LOCK(sc); 5602 bge_init_locked(sc); 5603 BGE_UNLOCK(sc); 5604 } 5605 5606 /* 5607 * Set media options. 5608 */ 5609 static int 5610 bge_ifmedia_upd(if_t ifp) 5611 { 5612 struct bge_softc *sc = if_getsoftc(ifp); 5613 int res; 5614 5615 BGE_LOCK(sc); 5616 res = bge_ifmedia_upd_locked(ifp); 5617 BGE_UNLOCK(sc); 5618 5619 return (res); 5620 } 5621 5622 static int 5623 bge_ifmedia_upd_locked(if_t ifp) 5624 { 5625 struct bge_softc *sc = if_getsoftc(ifp); 5626 struct mii_data *mii; 5627 struct mii_softc *miisc; 5628 struct ifmedia *ifm; 5629 5630 BGE_LOCK_ASSERT(sc); 5631 5632 ifm = &sc->bge_ifmedia; 5633 5634 /* If this is a 1000baseX NIC, enable the TBI port. */ 5635 if (sc->bge_flags & BGE_FLAG_TBI) { 5636 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5637 return (EINVAL); 5638 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5639 case IFM_AUTO: 5640 /* 5641 * The BCM5704 ASIC appears to have a special 5642 * mechanism for programming the autoneg 5643 * advertisement registers in TBI mode. 5644 */ 5645 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5646 uint32_t sgdig; 5647 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5648 if (sgdig & BGE_SGDIGSTS_DONE) { 5649 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5650 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5651 sgdig |= BGE_SGDIGCFG_AUTO | 5652 BGE_SGDIGCFG_PAUSE_CAP | 5653 BGE_SGDIGCFG_ASYM_PAUSE; 5654 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5655 sgdig | BGE_SGDIGCFG_SEND); 5656 DELAY(5); 5657 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5658 } 5659 } 5660 break; 5661 case IFM_1000_SX: 5662 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5663 BGE_CLRBIT(sc, BGE_MAC_MODE, 5664 BGE_MACMODE_HALF_DUPLEX); 5665 } else { 5666 BGE_SETBIT(sc, BGE_MAC_MODE, 5667 BGE_MACMODE_HALF_DUPLEX); 5668 } 5669 DELAY(40); 5670 break; 5671 default: 5672 return (EINVAL); 5673 } 5674 return (0); 5675 } 5676 5677 sc->bge_link_evt++; 5678 mii = device_get_softc(sc->bge_miibus); 5679 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5680 PHY_RESET(miisc); 5681 mii_mediachg(mii); 5682 5683 /* 5684 * Force an interrupt so that we will call bge_link_upd 5685 * if needed and clear any pending link state attention. 5686 * Without this we are not getting any further interrupts 5687 * for link state changes and thus will not UP the link and 5688 * not be able to send in bge_start_locked. The only 5689 * way to get things working was to receive a packet and 5690 * get an RX intr. 5691 * bge_tick should help for fiber cards and we might not 5692 * need to do this here if BGE_FLAG_TBI is set but as 5693 * we poll for fiber anyway it should not harm. 5694 */ 5695 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5696 sc->bge_flags & BGE_FLAG_5788) 5697 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5698 else 5699 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5700 5701 return (0); 5702 } 5703 5704 /* 5705 * Report current media status. 5706 */ 5707 static void 5708 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 5709 { 5710 struct bge_softc *sc = if_getsoftc(ifp); 5711 struct mii_data *mii; 5712 5713 BGE_LOCK(sc); 5714 5715 if ((if_getflags(ifp) & IFF_UP) == 0) { 5716 BGE_UNLOCK(sc); 5717 return; 5718 } 5719 if (sc->bge_flags & BGE_FLAG_TBI) { 5720 ifmr->ifm_status = IFM_AVALID; 5721 ifmr->ifm_active = IFM_ETHER; 5722 if (CSR_READ_4(sc, BGE_MAC_STS) & 5723 BGE_MACSTAT_TBI_PCS_SYNCHED) 5724 ifmr->ifm_status |= IFM_ACTIVE; 5725 else { 5726 ifmr->ifm_active |= IFM_NONE; 5727 BGE_UNLOCK(sc); 5728 return; 5729 } 5730 ifmr->ifm_active |= IFM_1000_SX; 5731 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5732 ifmr->ifm_active |= IFM_HDX; 5733 else 5734 ifmr->ifm_active |= IFM_FDX; 5735 BGE_UNLOCK(sc); 5736 return; 5737 } 5738 5739 mii = device_get_softc(sc->bge_miibus); 5740 mii_pollstat(mii); 5741 ifmr->ifm_active = mii->mii_media_active; 5742 ifmr->ifm_status = mii->mii_media_status; 5743 5744 BGE_UNLOCK(sc); 5745 } 5746 5747 static int 5748 bge_ioctl(if_t ifp, u_long command, caddr_t data) 5749 { 5750 struct bge_softc *sc = if_getsoftc(ifp); 5751 struct ifreq *ifr = (struct ifreq *) data; 5752 struct mii_data *mii; 5753 int flags, mask, error = 0; 5754 5755 switch (command) { 5756 case SIOCSIFMTU: 5757 if (BGE_IS_JUMBO_CAPABLE(sc) || 5758 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5759 if (ifr->ifr_mtu < ETHERMIN || 5760 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5761 error = EINVAL; 5762 break; 5763 } 5764 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5765 error = EINVAL; 5766 break; 5767 } 5768 BGE_LOCK(sc); 5769 if (if_getmtu(ifp) != ifr->ifr_mtu) { 5770 if_setmtu(ifp, ifr->ifr_mtu); 5771 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5772 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5773 bge_init_locked(sc); 5774 } 5775 } 5776 BGE_UNLOCK(sc); 5777 break; 5778 case SIOCSIFFLAGS: 5779 BGE_LOCK(sc); 5780 if (if_getflags(ifp) & IFF_UP) { 5781 /* 5782 * If only the state of the PROMISC flag changed, 5783 * then just use the 'set promisc mode' command 5784 * instead of reinitializing the entire NIC. Doing 5785 * a full re-init means reloading the firmware and 5786 * waiting for it to start up, which may take a 5787 * second or two. Similarly for ALLMULTI. 5788 */ 5789 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5790 flags = if_getflags(ifp) ^ sc->bge_if_flags; 5791 if (flags & IFF_PROMISC) 5792 bge_setpromisc(sc); 5793 if (flags & IFF_ALLMULTI) 5794 bge_setmulti(sc); 5795 } else 5796 bge_init_locked(sc); 5797 } else { 5798 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5799 bge_stop(sc); 5800 } 5801 } 5802 sc->bge_if_flags = if_getflags(ifp); 5803 BGE_UNLOCK(sc); 5804 error = 0; 5805 break; 5806 case SIOCADDMULTI: 5807 case SIOCDELMULTI: 5808 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5809 BGE_LOCK(sc); 5810 bge_setmulti(sc); 5811 BGE_UNLOCK(sc); 5812 error = 0; 5813 } 5814 break; 5815 case SIOCSIFMEDIA: 5816 case SIOCGIFMEDIA: 5817 if (sc->bge_flags & BGE_FLAG_TBI) { 5818 error = ifmedia_ioctl(ifp, ifr, 5819 &sc->bge_ifmedia, command); 5820 } else { 5821 mii = device_get_softc(sc->bge_miibus); 5822 error = ifmedia_ioctl(ifp, ifr, 5823 &mii->mii_media, command); 5824 } 5825 break; 5826 case SIOCSIFCAP: 5827 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 5828 #ifdef DEVICE_POLLING 5829 if (mask & IFCAP_POLLING) { 5830 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5831 error = ether_poll_register(bge_poll, ifp); 5832 if (error) 5833 return (error); 5834 BGE_LOCK(sc); 5835 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5836 BGE_PCIMISCCTL_MASK_PCI_INTR); 5837 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5838 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 5839 BGE_UNLOCK(sc); 5840 } else { 5841 error = ether_poll_deregister(ifp); 5842 /* Enable interrupt even in error case */ 5843 BGE_LOCK(sc); 5844 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5845 BGE_PCIMISCCTL_MASK_PCI_INTR); 5846 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5847 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 5848 BGE_UNLOCK(sc); 5849 } 5850 } 5851 #endif 5852 if ((mask & IFCAP_TXCSUM) != 0 && 5853 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 5854 if_togglecapenable(ifp, IFCAP_TXCSUM); 5855 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 5856 if_sethwassistbits(ifp, 5857 sc->bge_csum_features, 0); 5858 else 5859 if_sethwassistbits(ifp, 0, 5860 sc->bge_csum_features); 5861 } 5862 5863 if ((mask & IFCAP_RXCSUM) != 0 && 5864 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 5865 if_togglecapenable(ifp, IFCAP_RXCSUM); 5866 5867 if ((mask & IFCAP_TSO4) != 0 && 5868 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 5869 if_togglecapenable(ifp, IFCAP_TSO4); 5870 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 5871 if_sethwassistbits(ifp, CSUM_TSO, 0); 5872 else 5873 if_sethwassistbits(ifp, 0, CSUM_TSO); 5874 } 5875 5876 if (mask & IFCAP_VLAN_MTU) { 5877 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 5878 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5879 bge_init(sc); 5880 } 5881 5882 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5883 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 5884 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 5885 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5886 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 5887 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 5888 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 5889 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 5890 BGE_LOCK(sc); 5891 bge_setvlan(sc); 5892 BGE_UNLOCK(sc); 5893 } 5894 #ifdef VLAN_CAPABILITIES 5895 if_vlancap(ifp); 5896 #endif 5897 break; 5898 default: 5899 error = ether_ioctl(ifp, command, data); 5900 break; 5901 } 5902 5903 return (error); 5904 } 5905 5906 static void 5907 bge_watchdog(struct bge_softc *sc) 5908 { 5909 if_t ifp; 5910 uint32_t status; 5911 5912 BGE_LOCK_ASSERT(sc); 5913 5914 if (sc->bge_timer == 0 || --sc->bge_timer) 5915 return; 5916 5917 /* If pause frames are active then don't reset the hardware. */ 5918 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 5919 status = CSR_READ_4(sc, BGE_RX_STS); 5920 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 5921 /* 5922 * If link partner has us in XOFF state then wait for 5923 * the condition to clear. 5924 */ 5925 CSR_WRITE_4(sc, BGE_RX_STS, status); 5926 sc->bge_timer = BGE_TX_TIMEOUT; 5927 return; 5928 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 5929 (status & BGE_RXSTAT_RCVD_XON) != 0) { 5930 /* 5931 * If link partner has us in XOFF state then wait for 5932 * the condition to clear. 5933 */ 5934 CSR_WRITE_4(sc, BGE_RX_STS, status); 5935 sc->bge_timer = BGE_TX_TIMEOUT; 5936 return; 5937 } 5938 /* 5939 * Any other condition is unexpected and the controller 5940 * should be reset. 5941 */ 5942 } 5943 5944 ifp = sc->bge_ifp; 5945 5946 if_printf(ifp, "watchdog timeout -- resetting\n"); 5947 5948 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5949 bge_init_locked(sc); 5950 5951 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 5952 } 5953 5954 static void 5955 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5956 { 5957 int i; 5958 5959 BGE_CLRBIT(sc, reg, bit); 5960 5961 for (i = 0; i < BGE_TIMEOUT; i++) { 5962 if ((CSR_READ_4(sc, reg) & bit) == 0) 5963 return; 5964 DELAY(100); 5965 } 5966 } 5967 5968 /* 5969 * Stop the adapter and free any mbufs allocated to the 5970 * RX and TX lists. 5971 */ 5972 static void 5973 bge_stop(struct bge_softc *sc) 5974 { 5975 if_t ifp; 5976 5977 BGE_LOCK_ASSERT(sc); 5978 5979 ifp = sc->bge_ifp; 5980 5981 callout_stop(&sc->bge_stat_ch); 5982 5983 /* Disable host interrupts. */ 5984 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5985 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5986 5987 /* 5988 * Tell firmware we're shutting down. 5989 */ 5990 bge_stop_fw(sc); 5991 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5992 5993 /* 5994 * Disable all of the receiver blocks. 5995 */ 5996 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5997 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5998 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5999 if (BGE_IS_5700_FAMILY(sc)) 6000 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 6001 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 6002 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 6003 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 6004 6005 /* 6006 * Disable all of the transmit blocks. 6007 */ 6008 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 6009 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 6010 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 6011 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 6012 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 6013 if (BGE_IS_5700_FAMILY(sc)) 6014 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 6015 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 6016 6017 /* 6018 * Shut down all of the memory managers and related 6019 * state machines. 6020 */ 6021 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6022 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6023 if (BGE_IS_5700_FAMILY(sc)) 6024 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6025 6026 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6027 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6028 if (!(BGE_IS_5705_PLUS(sc))) { 6029 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6030 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6031 } 6032 /* Update MAC statistics. */ 6033 if (BGE_IS_5705_PLUS(sc)) 6034 bge_stats_update_regs(sc); 6035 6036 bge_reset(sc); 6037 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6038 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6039 6040 /* 6041 * Keep the ASF firmware running if up. 6042 */ 6043 if (sc->bge_asf_mode & ASF_STACKUP) 6044 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6045 else 6046 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6047 6048 /* Free the RX lists. */ 6049 bge_free_rx_ring_std(sc); 6050 6051 /* Free jumbo RX list. */ 6052 if (BGE_IS_JUMBO_CAPABLE(sc)) 6053 bge_free_rx_ring_jumbo(sc); 6054 6055 /* Free TX buffers. */ 6056 bge_free_tx_ring(sc); 6057 6058 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6059 6060 /* Clear MAC's link state (PHY may still have link UP). */ 6061 if (bootverbose && sc->bge_link) 6062 if_printf(sc->bge_ifp, "link DOWN\n"); 6063 sc->bge_link = 0; 6064 6065 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 6066 } 6067 6068 /* 6069 * Stop all chip I/O so that the kernel's probe routines don't 6070 * get confused by errant DMAs when rebooting. 6071 */ 6072 static int 6073 bge_shutdown(device_t dev) 6074 { 6075 struct bge_softc *sc; 6076 6077 sc = device_get_softc(dev); 6078 BGE_LOCK(sc); 6079 bge_stop(sc); 6080 BGE_UNLOCK(sc); 6081 6082 return (0); 6083 } 6084 6085 static int 6086 bge_suspend(device_t dev) 6087 { 6088 struct bge_softc *sc; 6089 6090 sc = device_get_softc(dev); 6091 BGE_LOCK(sc); 6092 bge_stop(sc); 6093 BGE_UNLOCK(sc); 6094 6095 return (0); 6096 } 6097 6098 static int 6099 bge_resume(device_t dev) 6100 { 6101 struct bge_softc *sc; 6102 if_t ifp; 6103 6104 sc = device_get_softc(dev); 6105 BGE_LOCK(sc); 6106 ifp = sc->bge_ifp; 6107 if (if_getflags(ifp) & IFF_UP) { 6108 bge_init_locked(sc); 6109 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6110 bge_start_locked(ifp); 6111 } 6112 BGE_UNLOCK(sc); 6113 6114 return (0); 6115 } 6116 6117 static void 6118 bge_link_upd(struct bge_softc *sc) 6119 { 6120 struct mii_data *mii; 6121 uint32_t link, status; 6122 6123 BGE_LOCK_ASSERT(sc); 6124 6125 /* Clear 'pending link event' flag. */ 6126 sc->bge_link_evt = 0; 6127 6128 /* 6129 * Process link state changes. 6130 * Grrr. The link status word in the status block does 6131 * not work correctly on the BCM5700 rev AX and BX chips, 6132 * according to all available information. Hence, we have 6133 * to enable MII interrupts in order to properly obtain 6134 * async link changes. Unfortunately, this also means that 6135 * we have to read the MAC status register to detect link 6136 * changes, thereby adding an additional register access to 6137 * the interrupt handler. 6138 * 6139 * XXX: perhaps link state detection procedure used for 6140 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 6141 */ 6142 6143 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6144 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 6145 status = CSR_READ_4(sc, BGE_MAC_STS); 6146 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6147 mii = device_get_softc(sc->bge_miibus); 6148 mii_pollstat(mii); 6149 if (!sc->bge_link && 6150 mii->mii_media_status & IFM_ACTIVE && 6151 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6152 sc->bge_link++; 6153 if (bootverbose) 6154 if_printf(sc->bge_ifp, "link UP\n"); 6155 } else if (sc->bge_link && 6156 (!(mii->mii_media_status & IFM_ACTIVE) || 6157 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6158 sc->bge_link = 0; 6159 if (bootverbose) 6160 if_printf(sc->bge_ifp, "link DOWN\n"); 6161 } 6162 6163 /* Clear the interrupt. */ 6164 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6165 BGE_EVTENB_MI_INTERRUPT); 6166 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6167 BRGPHY_MII_ISR); 6168 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6169 BRGPHY_MII_IMR, BRGPHY_INTRS); 6170 } 6171 return; 6172 } 6173 6174 if (sc->bge_flags & BGE_FLAG_TBI) { 6175 status = CSR_READ_4(sc, BGE_MAC_STS); 6176 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6177 if (!sc->bge_link) { 6178 sc->bge_link++; 6179 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6180 BGE_CLRBIT(sc, BGE_MAC_MODE, 6181 BGE_MACMODE_TBI_SEND_CFGS); 6182 DELAY(40); 6183 } 6184 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6185 if (bootverbose) 6186 if_printf(sc->bge_ifp, "link UP\n"); 6187 if_link_state_change(sc->bge_ifp, 6188 LINK_STATE_UP); 6189 } 6190 } else if (sc->bge_link) { 6191 sc->bge_link = 0; 6192 if (bootverbose) 6193 if_printf(sc->bge_ifp, "link DOWN\n"); 6194 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6195 } 6196 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6197 /* 6198 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6199 * in status word always set. Workaround this bug by reading 6200 * PHY link status directly. 6201 */ 6202 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6203 6204 if (link != sc->bge_link || 6205 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6206 mii = device_get_softc(sc->bge_miibus); 6207 mii_pollstat(mii); 6208 if (!sc->bge_link && 6209 mii->mii_media_status & IFM_ACTIVE && 6210 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6211 sc->bge_link++; 6212 if (bootverbose) 6213 if_printf(sc->bge_ifp, "link UP\n"); 6214 } else if (sc->bge_link && 6215 (!(mii->mii_media_status & IFM_ACTIVE) || 6216 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6217 sc->bge_link = 0; 6218 if (bootverbose) 6219 if_printf(sc->bge_ifp, "link DOWN\n"); 6220 } 6221 } 6222 } else { 6223 /* 6224 * For controllers that call mii_tick, we have to poll 6225 * link status. 6226 */ 6227 mii = device_get_softc(sc->bge_miibus); 6228 mii_pollstat(mii); 6229 bge_miibus_statchg(sc->bge_dev); 6230 } 6231 6232 /* Disable MAC attention when link is up. */ 6233 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6234 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6235 BGE_MACSTAT_LINK_CHANGED); 6236 } 6237 6238 static void 6239 bge_add_sysctls(struct bge_softc *sc) 6240 { 6241 struct sysctl_ctx_list *ctx; 6242 struct sysctl_oid_list *children; 6243 int unit; 6244 6245 ctx = device_get_sysctl_ctx(sc->bge_dev); 6246 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6247 6248 #ifdef BGE_REGISTER_DEBUG 6249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6250 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 6251 "Debug Information"); 6252 6253 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6254 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 6255 "MAC Register Read"); 6256 6257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6258 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I", 6259 "APE Register Read"); 6260 6261 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6262 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 6263 "Memory Read"); 6264 6265 #endif 6266 6267 unit = device_get_unit(sc->bge_dev); 6268 /* 6269 * A common design characteristic for many Broadcom client controllers 6270 * is that they only support a single outstanding DMA read operation 6271 * on the PCIe bus. This means that it will take twice as long to fetch 6272 * a TX frame that is split into header and payload buffers as it does 6273 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6274 * these controllers, coalescing buffers to reduce the number of memory 6275 * reads is effective way to get maximum performance(about 940Mbps). 6276 * Without collapsing TX buffers the maximum TCP bulk transfer 6277 * performance is about 850Mbps. However forcing coalescing mbufs 6278 * consumes a lot of CPU cycles, so leave it off by default. 6279 */ 6280 sc->bge_forced_collapse = 0; 6281 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6282 CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0, 6283 "Number of fragmented TX buffers of a frame allowed before " 6284 "forced collapsing"); 6285 6286 sc->bge_msi = 1; 6287 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6288 CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI"); 6289 6290 /* 6291 * It seems all Broadcom controllers have a bug that can generate UDP 6292 * datagrams with checksum value 0 when TX UDP checksum offloading is 6293 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6294 * Even though the probability of generating such UDP datagrams is 6295 * low, I don't want to see FreeBSD boxes to inject such datagrams 6296 * into network so disable UDP checksum offloading by default. Users 6297 * still override this behavior by setting a sysctl variable, 6298 * dev.bge.0.forced_udpcsum. 6299 */ 6300 sc->bge_forced_udpcsum = 0; 6301 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6302 CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0, 6303 "Enable UDP checksum offloading even if controller can " 6304 "generate UDP checksum value 0"); 6305 6306 if (BGE_IS_5705_PLUS(sc)) 6307 bge_add_sysctl_stats_regs(sc, ctx, children); 6308 else 6309 bge_add_sysctl_stats(sc, ctx, children); 6310 } 6311 6312 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6313 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 6314 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 6315 desc) 6316 6317 static void 6318 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6319 struct sysctl_oid_list *parent) 6320 { 6321 struct sysctl_oid *tree; 6322 struct sysctl_oid_list *children, *schildren; 6323 6324 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6325 NULL, "BGE Statistics"); 6326 schildren = children = SYSCTL_CHILDREN(tree); 6327 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6328 children, COSFramesDroppedDueToFilters, 6329 "FramesDroppedDueToFilters"); 6330 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6331 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6332 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6333 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6334 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6335 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6336 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6337 children, ifInDiscards, "InputDiscards"); 6338 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6339 children, ifInErrors, "InputErrors"); 6340 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6341 children, nicRecvThresholdHit, "RecvThresholdHit"); 6342 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6343 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6344 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6345 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6346 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6347 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6348 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6349 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6350 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6351 children, nicRingStatusUpdate, "RingStatusUpdate"); 6352 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6353 children, nicInterrupts, "Interrupts"); 6354 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6355 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6356 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6357 children, nicSendThresholdHit, "SendThresholdHit"); 6358 6359 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 6360 NULL, "BGE RX Statistics"); 6361 children = SYSCTL_CHILDREN(tree); 6362 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6363 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6364 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6365 children, rxstats.etherStatsFragments, "Fragments"); 6366 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6367 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6368 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6369 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6370 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6371 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6372 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6373 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6374 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6375 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6376 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6377 children, rxstats.xoffPauseFramesReceived, 6378 "xoffPauseFramesReceived"); 6379 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6380 children, rxstats.macControlFramesReceived, 6381 "ControlFramesReceived"); 6382 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6383 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6384 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6385 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6386 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6387 children, rxstats.etherStatsJabbers, "Jabbers"); 6388 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6389 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6390 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6391 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6392 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6393 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6394 6395 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 6396 NULL, "BGE TX Statistics"); 6397 children = SYSCTL_CHILDREN(tree); 6398 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6399 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6400 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6401 children, txstats.etherStatsCollisions, "Collisions"); 6402 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6403 children, txstats.outXonSent, "XonSent"); 6404 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6405 children, txstats.outXoffSent, "XoffSent"); 6406 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6407 children, txstats.flowControlDone, "flowControlDone"); 6408 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6409 children, txstats.dot3StatsInternalMacTransmitErrors, 6410 "InternalMacTransmitErrors"); 6411 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6412 children, txstats.dot3StatsSingleCollisionFrames, 6413 "SingleCollisionFrames"); 6414 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6415 children, txstats.dot3StatsMultipleCollisionFrames, 6416 "MultipleCollisionFrames"); 6417 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6418 children, txstats.dot3StatsDeferredTransmissions, 6419 "DeferredTransmissions"); 6420 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6421 children, txstats.dot3StatsExcessiveCollisions, 6422 "ExcessiveCollisions"); 6423 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6424 children, txstats.dot3StatsLateCollisions, 6425 "LateCollisions"); 6426 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6427 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6428 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6429 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6430 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6431 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6432 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6433 children, txstats.dot3StatsCarrierSenseErrors, 6434 "CarrierSenseErrors"); 6435 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6436 children, txstats.ifOutDiscards, "Discards"); 6437 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6438 children, txstats.ifOutErrors, "Errors"); 6439 } 6440 6441 #undef BGE_SYSCTL_STAT 6442 6443 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6444 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6445 6446 static void 6447 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6448 struct sysctl_oid_list *parent) 6449 { 6450 struct sysctl_oid *tree; 6451 struct sysctl_oid_list *child, *schild; 6452 struct bge_mac_stats *stats; 6453 6454 stats = &sc->bge_mac_stats; 6455 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6456 NULL, "BGE Statistics"); 6457 schild = child = SYSCTL_CHILDREN(tree); 6458 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6459 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6460 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6461 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6462 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6463 &stats->DmaWriteHighPriQueueFull, 6464 "NIC DMA Write High Priority Queue Full"); 6465 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6466 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6467 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6468 &stats->InputDiscards, "Discarded Input Frames"); 6469 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6470 &stats->InputErrors, "Input Errors"); 6471 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6472 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6473 6474 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 6475 NULL, "BGE RX Statistics"); 6476 child = SYSCTL_CHILDREN(tree); 6477 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6478 &stats->ifHCInOctets, "Inbound Octets"); 6479 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6480 &stats->etherStatsFragments, "Fragments"); 6481 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6482 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6483 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6484 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6485 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6486 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6487 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6488 &stats->dot3StatsFCSErrors, "FCS Errors"); 6489 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6490 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6491 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6492 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6493 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6494 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6495 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6496 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6497 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6498 &stats->xoffStateEntered, "XOFF State Entered"); 6499 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6500 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6501 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6502 &stats->etherStatsJabbers, "Jabbers"); 6503 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6504 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6505 6506 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 6507 NULL, "BGE TX Statistics"); 6508 child = SYSCTL_CHILDREN(tree); 6509 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6510 &stats->ifHCOutOctets, "Outbound Octets"); 6511 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6512 &stats->etherStatsCollisions, "TX Collisions"); 6513 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6514 &stats->outXonSent, "XON Sent"); 6515 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6516 &stats->outXoffSent, "XOFF Sent"); 6517 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6518 &stats->dot3StatsInternalMacTransmitErrors, 6519 "Internal MAC TX Errors"); 6520 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6521 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6522 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6523 &stats->dot3StatsMultipleCollisionFrames, 6524 "Multiple Collision Frames"); 6525 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6526 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6527 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6528 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6529 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6530 &stats->dot3StatsLateCollisions, "Late Collisions"); 6531 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6532 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6533 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6534 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6535 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6536 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6537 } 6538 6539 #undef BGE_SYSCTL_STAT_ADD64 6540 6541 static int 6542 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6543 { 6544 struct bge_softc *sc; 6545 uint32_t result; 6546 int offset; 6547 6548 sc = (struct bge_softc *)arg1; 6549 offset = arg2; 6550 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6551 offsetof(bge_hostaddr, bge_addr_lo)); 6552 return (sysctl_handle_int(oidp, &result, 0, req)); 6553 } 6554 6555 #ifdef BGE_REGISTER_DEBUG 6556 static int 6557 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6558 { 6559 struct bge_softc *sc; 6560 uint16_t *sbdata; 6561 int error, result, sbsz; 6562 int i, j; 6563 6564 result = -1; 6565 error = sysctl_handle_int(oidp, &result, 0, req); 6566 if (error || (req->newptr == NULL)) 6567 return (error); 6568 6569 if (result == 1) { 6570 sc = (struct bge_softc *)arg1; 6571 6572 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6573 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6574 sbsz = BGE_STATUS_BLK_SZ; 6575 else 6576 sbsz = 32; 6577 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6578 printf("Status Block:\n"); 6579 BGE_LOCK(sc); 6580 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6581 sc->bge_cdata.bge_status_map, 6582 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6583 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6584 printf("%06x:", i); 6585 for (j = 0; j < 8; j++) 6586 printf(" %04x", sbdata[i++]); 6587 printf("\n"); 6588 } 6589 6590 printf("Registers:\n"); 6591 for (i = 0x800; i < 0xA00; ) { 6592 printf("%06x:", i); 6593 for (j = 0; j < 8; j++) { 6594 printf(" %08x", CSR_READ_4(sc, i)); 6595 i += 4; 6596 } 6597 printf("\n"); 6598 } 6599 BGE_UNLOCK(sc); 6600 6601 printf("Hardware Flags:\n"); 6602 if (BGE_IS_5717_PLUS(sc)) 6603 printf(" - 5717 Plus\n"); 6604 if (BGE_IS_5755_PLUS(sc)) 6605 printf(" - 5755 Plus\n"); 6606 if (BGE_IS_575X_PLUS(sc)) 6607 printf(" - 575X Plus\n"); 6608 if (BGE_IS_5705_PLUS(sc)) 6609 printf(" - 5705 Plus\n"); 6610 if (BGE_IS_5714_FAMILY(sc)) 6611 printf(" - 5714 Family\n"); 6612 if (BGE_IS_5700_FAMILY(sc)) 6613 printf(" - 5700 Family\n"); 6614 if (sc->bge_flags & BGE_FLAG_JUMBO) 6615 printf(" - Supports Jumbo Frames\n"); 6616 if (sc->bge_flags & BGE_FLAG_PCIX) 6617 printf(" - PCI-X Bus\n"); 6618 if (sc->bge_flags & BGE_FLAG_PCIE) 6619 printf(" - PCI Express Bus\n"); 6620 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6621 printf(" - No 3 LEDs\n"); 6622 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6623 printf(" - RX Alignment Bug\n"); 6624 } 6625 6626 return (error); 6627 } 6628 6629 static int 6630 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6631 { 6632 struct bge_softc *sc; 6633 int error; 6634 uint16_t result; 6635 uint32_t val; 6636 6637 result = -1; 6638 error = sysctl_handle_int(oidp, &result, 0, req); 6639 if (error || (req->newptr == NULL)) 6640 return (error); 6641 6642 if (result < 0x8000) { 6643 sc = (struct bge_softc *)arg1; 6644 val = CSR_READ_4(sc, result); 6645 printf("reg 0x%06X = 0x%08X\n", result, val); 6646 } 6647 6648 return (error); 6649 } 6650 6651 static int 6652 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6653 { 6654 struct bge_softc *sc; 6655 int error; 6656 uint16_t result; 6657 uint32_t val; 6658 6659 result = -1; 6660 error = sysctl_handle_int(oidp, &result, 0, req); 6661 if (error || (req->newptr == NULL)) 6662 return (error); 6663 6664 if (result < 0x8000) { 6665 sc = (struct bge_softc *)arg1; 6666 val = APE_READ_4(sc, result); 6667 printf("reg 0x%06X = 0x%08X\n", result, val); 6668 } 6669 6670 return (error); 6671 } 6672 6673 static int 6674 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6675 { 6676 struct bge_softc *sc; 6677 int error; 6678 uint16_t result; 6679 uint32_t val; 6680 6681 result = -1; 6682 error = sysctl_handle_int(oidp, &result, 0, req); 6683 if (error || (req->newptr == NULL)) 6684 return (error); 6685 6686 if (result < 0x8000) { 6687 sc = (struct bge_softc *)arg1; 6688 val = bge_readmem_ind(sc, result); 6689 printf("mem 0x%06X = 0x%08X\n", result, val); 6690 } 6691 6692 return (error); 6693 } 6694 #endif 6695 6696 static int 6697 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6698 { 6699 return (1); 6700 } 6701 6702 static int 6703 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6704 { 6705 uint32_t mac_addr; 6706 6707 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6708 if ((mac_addr >> 16) == 0x484b) { 6709 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6710 ether_addr[1] = (uint8_t)mac_addr; 6711 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6712 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6713 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6714 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6715 ether_addr[5] = (uint8_t)mac_addr; 6716 return (0); 6717 } 6718 return (1); 6719 } 6720 6721 static int 6722 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6723 { 6724 int mac_offset = BGE_EE_MAC_OFFSET; 6725 6726 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6727 mac_offset = BGE_EE_MAC_OFFSET_5906; 6728 6729 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6730 ETHER_ADDR_LEN)); 6731 } 6732 6733 static int 6734 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6735 { 6736 6737 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6738 return (1); 6739 6740 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6741 ETHER_ADDR_LEN)); 6742 } 6743 6744 static int 6745 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6746 { 6747 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6748 /* NOTE: Order is critical */ 6749 bge_get_eaddr_fw, 6750 bge_get_eaddr_mem, 6751 bge_get_eaddr_nvram, 6752 bge_get_eaddr_eeprom, 6753 NULL 6754 }; 6755 const bge_eaddr_fcn_t *func; 6756 6757 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6758 if ((*func)(sc, eaddr) == 0) 6759 break; 6760 } 6761 return (*func == NULL ? ENXIO : 0); 6762 } 6763 6764 static uint64_t 6765 bge_get_counter(if_t ifp, ift_counter cnt) 6766 { 6767 struct bge_softc *sc; 6768 struct bge_mac_stats *stats; 6769 6770 sc = if_getsoftc(ifp); 6771 if (!BGE_IS_5705_PLUS(sc)) 6772 return (if_get_counter_default(ifp, cnt)); 6773 stats = &sc->bge_mac_stats; 6774 6775 switch (cnt) { 6776 case IFCOUNTER_IERRORS: 6777 return (stats->NoMoreRxBDs + stats->InputDiscards + 6778 stats->InputErrors); 6779 case IFCOUNTER_COLLISIONS: 6780 return (stats->etherStatsCollisions); 6781 default: 6782 return (if_get_counter_default(ifp, cnt)); 6783 } 6784 } 6785 6786 #ifdef DEBUGNET 6787 static void 6788 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 6789 { 6790 struct bge_softc *sc; 6791 6792 sc = if_getsoftc(ifp); 6793 BGE_LOCK(sc); 6794 *nrxr = sc->bge_return_ring_cnt; 6795 *ncl = DEBUGNET_MAX_IN_FLIGHT; 6796 if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 && 6797 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 6798 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) 6799 *clsize = MJUM9BYTES; 6800 else 6801 *clsize = MCLBYTES; 6802 BGE_UNLOCK(sc); 6803 } 6804 6805 static void 6806 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 6807 { 6808 } 6809 6810 static int 6811 bge_debugnet_transmit(if_t ifp, struct mbuf *m) 6812 { 6813 struct bge_softc *sc; 6814 uint32_t prodidx; 6815 int error; 6816 6817 sc = if_getsoftc(ifp); 6818 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6819 IFF_DRV_RUNNING) 6820 return (1); 6821 6822 prodidx = sc->bge_tx_prodidx; 6823 error = bge_encap(sc, &m, &prodidx); 6824 if (error == 0) 6825 bge_start_tx(sc, prodidx); 6826 return (error); 6827 } 6828 6829 static int 6830 bge_debugnet_poll(if_t ifp, int count) 6831 { 6832 struct bge_softc *sc; 6833 uint32_t rx_prod, tx_cons; 6834 6835 sc = if_getsoftc(ifp); 6836 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6837 IFF_DRV_RUNNING) 6838 return (1); 6839 6840 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6841 sc->bge_cdata.bge_status_map, 6842 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6843 6844 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 6845 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 6846 6847 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6848 sc->bge_cdata.bge_status_map, 6849 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6850 6851 (void)bge_rxeof(sc, rx_prod, 0); 6852 bge_txeof(sc, tx_cons); 6853 return (0); 6854 } 6855 #endif /* DEBUGNET */ 6856