xref: /freebsd/sys/dev/bge/if_bge.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
229 
230 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
231 
232 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
233 
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
235 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
236 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
237 
238 	{ 0, 0 }
239 };
240 
241 static const struct bge_vendor {
242 	uint16_t	v_id;
243 	const char	*v_name;
244 } bge_vendors[] = {
245 	{ ALTEON_VENDORID,	"Alteon" },
246 	{ ALTIMA_VENDORID,	"Altima" },
247 	{ APPLE_VENDORID,	"Apple" },
248 	{ BCOM_VENDORID,	"Broadcom" },
249 	{ SK_VENDORID,		"SysKonnect" },
250 	{ TC_VENDORID,		"3Com" },
251 	{ FJTSU_VENDORID,	"Fujitsu" },
252 
253 	{ 0, NULL }
254 };
255 
256 static const struct bge_revision {
257 	uint32_t	br_chipid;
258 	const char	*br_name;
259 } bge_revisions[] = {
260 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
261 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
262 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
263 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
264 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
265 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
266 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
267 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
268 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
269 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
270 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
271 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
272 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
273 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
274 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
275 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
276 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
277 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
278 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
279 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
280 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
281 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
282 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
283 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
284 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
285 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
286 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
287 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
288 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
289 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
290 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
291 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
292 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
293 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
294 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
295 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
296 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
297 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
298 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
299 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
300 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
301 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
302 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
303 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
304 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
305 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
306 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
307 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
308 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
309 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
310 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
311 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
312 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
313 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
314 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
315 	/* 5754 and 5787 share the same ASIC ID */
316 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
317 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
318 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
319 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
320 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
321 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
322 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
323 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
324 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
325 
326 	{ 0, NULL }
327 };
328 
329 /*
330  * Some defaults for major revisions, so that newer steppings
331  * that we don't know about have a shot at working.
332  */
333 static const struct bge_revision bge_majorrevs[] = {
334 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
335 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
336 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
337 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
338 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
339 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
340 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
341 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
342 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
343 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
344 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
345 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
346 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
347 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
348 	/* 5754 and 5787 share the same ASIC ID */
349 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
350 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
351 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
352 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
353 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
354 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
355 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
356 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
357 
358 	{ 0, NULL }
359 };
360 
361 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
362 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
363 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
364 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
365 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
366 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
367 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
368 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
369 
370 static uint32_t bge_chipid(device_t);
371 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
372 static const struct bge_revision * bge_lookup_rev(uint32_t);
373 
374 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
375 
376 static int bge_probe(device_t);
377 static int bge_attach(device_t);
378 static int bge_detach(device_t);
379 static int bge_suspend(device_t);
380 static int bge_resume(device_t);
381 static void bge_release_resources(struct bge_softc *);
382 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
383 static int bge_dma_alloc(struct bge_softc *);
384 static void bge_dma_free(struct bge_softc *);
385 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
386     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
387 
388 static void bge_devinfo(struct bge_softc *);
389 static int bge_mbox_reorder(struct bge_softc *);
390 
391 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
392 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
393 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
394 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
395 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
396 
397 static void bge_txeof(struct bge_softc *, uint16_t);
398 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
399 static int bge_rxeof(struct bge_softc *, uint16_t, int);
400 
401 static void bge_asf_driver_up (struct bge_softc *);
402 static void bge_tick(void *);
403 static void bge_stats_clear_regs(struct bge_softc *);
404 static void bge_stats_update(struct bge_softc *);
405 static void bge_stats_update_regs(struct bge_softc *);
406 static struct mbuf *bge_check_short_dma(struct mbuf *);
407 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
408     uint16_t *, uint16_t *);
409 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
410 
411 static void bge_intr(void *);
412 static int bge_msi_intr(void *);
413 static void bge_intr_task(void *, int);
414 static void bge_start_locked(struct ifnet *);
415 static void bge_start(struct ifnet *);
416 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
417 static void bge_init_locked(struct bge_softc *);
418 static void bge_init(void *);
419 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
420 static void bge_stop(struct bge_softc *);
421 static void bge_watchdog(struct bge_softc *);
422 static int bge_shutdown(device_t);
423 static int bge_ifmedia_upd_locked(struct ifnet *);
424 static int bge_ifmedia_upd(struct ifnet *);
425 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
426 
427 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
428 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
429 
430 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
431 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
432 
433 static void bge_setpromisc(struct bge_softc *);
434 static void bge_setmulti(struct bge_softc *);
435 static void bge_setvlan(struct bge_softc *);
436 
437 static __inline void bge_rxreuse_std(struct bge_softc *, int);
438 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
439 static int bge_newbuf_std(struct bge_softc *, int);
440 static int bge_newbuf_jumbo(struct bge_softc *, int);
441 static int bge_init_rx_ring_std(struct bge_softc *);
442 static void bge_free_rx_ring_std(struct bge_softc *);
443 static int bge_init_rx_ring_jumbo(struct bge_softc *);
444 static void bge_free_rx_ring_jumbo(struct bge_softc *);
445 static void bge_free_tx_ring(struct bge_softc *);
446 static int bge_init_tx_ring(struct bge_softc *);
447 
448 static int bge_chipinit(struct bge_softc *);
449 static int bge_blockinit(struct bge_softc *);
450 static uint32_t bge_dma_swap_options(struct bge_softc *);
451 
452 static int bge_has_eaddr(struct bge_softc *);
453 static uint32_t bge_readmem_ind(struct bge_softc *, int);
454 static void bge_writemem_ind(struct bge_softc *, int, int);
455 static void bge_writembx(struct bge_softc *, int, int);
456 #ifdef notdef
457 static uint32_t bge_readreg_ind(struct bge_softc *, int);
458 #endif
459 static void bge_writemem_direct(struct bge_softc *, int, int);
460 static void bge_writereg_ind(struct bge_softc *, int, int);
461 
462 static int bge_miibus_readreg(device_t, int, int);
463 static int bge_miibus_writereg(device_t, int, int, int);
464 static void bge_miibus_statchg(device_t);
465 #ifdef DEVICE_POLLING
466 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
467 #endif
468 
469 #define	BGE_RESET_SHUTDOWN	0
470 #define	BGE_RESET_START		1
471 #define	BGE_RESET_SUSPEND	2
472 static void bge_sig_post_reset(struct bge_softc *, int);
473 static void bge_sig_legacy(struct bge_softc *, int);
474 static void bge_sig_pre_reset(struct bge_softc *, int);
475 static void bge_stop_fw(struct bge_softc *);
476 static int bge_reset(struct bge_softc *);
477 static void bge_link_upd(struct bge_softc *);
478 
479 static void bge_ape_lock_init(struct bge_softc *);
480 static void bge_ape_read_fw_ver(struct bge_softc *);
481 static int bge_ape_lock(struct bge_softc *, int);
482 static void bge_ape_unlock(struct bge_softc *, int);
483 static void bge_ape_send_event(struct bge_softc *, uint32_t);
484 static void bge_ape_driver_state_change(struct bge_softc *, int);
485 
486 /*
487  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
488  * leak information to untrusted users.  It is also known to cause alignment
489  * traps on certain architectures.
490  */
491 #ifdef BGE_REGISTER_DEBUG
492 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
493 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
494 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
495 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
496 #endif
497 static void bge_add_sysctls(struct bge_softc *);
498 static void bge_add_sysctl_stats_regs(struct bge_softc *,
499     struct sysctl_ctx_list *, struct sysctl_oid_list *);
500 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
501     struct sysctl_oid_list *);
502 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
503 
504 static device_method_t bge_methods[] = {
505 	/* Device interface */
506 	DEVMETHOD(device_probe,		bge_probe),
507 	DEVMETHOD(device_attach,	bge_attach),
508 	DEVMETHOD(device_detach,	bge_detach),
509 	DEVMETHOD(device_shutdown,	bge_shutdown),
510 	DEVMETHOD(device_suspend,	bge_suspend),
511 	DEVMETHOD(device_resume,	bge_resume),
512 
513 	/* MII interface */
514 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
515 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
516 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
517 
518 	DEVMETHOD_END
519 };
520 
521 static driver_t bge_driver = {
522 	"bge",
523 	bge_methods,
524 	sizeof(struct bge_softc)
525 };
526 
527 static devclass_t bge_devclass;
528 
529 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
530 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
531 
532 static int bge_allow_asf = 1;
533 
534 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
535 
536 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
537 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
538 	"Allow ASF mode if available");
539 
540 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
541 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
542 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
543 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
544 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
545 
546 static int
547 bge_has_eaddr(struct bge_softc *sc)
548 {
549 #ifdef __sparc64__
550 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
551 	device_t dev;
552 	uint32_t subvendor;
553 
554 	dev = sc->bge_dev;
555 
556 	/*
557 	 * The on-board BGEs found in sun4u machines aren't fitted with
558 	 * an EEPROM which means that we have to obtain the MAC address
559 	 * via OFW and that some tests will always fail.  We distinguish
560 	 * such BGEs by the subvendor ID, which also has to be obtained
561 	 * from OFW instead of the PCI configuration space as the latter
562 	 * indicates Broadcom as the subvendor of the netboot interface.
563 	 * For early Blade 1500 and 2500 we even have to check the OFW
564 	 * device path as the subvendor ID always defaults to Broadcom
565 	 * there.
566 	 */
567 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
568 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
569 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
570 		return (0);
571 	memset(buf, 0, sizeof(buf));
572 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
573 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
574 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
575 			return (0);
576 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
577 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
578 			return (0);
579 	}
580 #endif
581 	return (1);
582 }
583 
584 static uint32_t
585 bge_readmem_ind(struct bge_softc *sc, int off)
586 {
587 	device_t dev;
588 	uint32_t val;
589 
590 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
591 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
592 		return (0);
593 
594 	dev = sc->bge_dev;
595 
596 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
597 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
598 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
599 	return (val);
600 }
601 
602 static void
603 bge_writemem_ind(struct bge_softc *sc, int off, int val)
604 {
605 	device_t dev;
606 
607 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
608 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
609 		return;
610 
611 	dev = sc->bge_dev;
612 
613 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
614 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
615 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
616 }
617 
618 #ifdef notdef
619 static uint32_t
620 bge_readreg_ind(struct bge_softc *sc, int off)
621 {
622 	device_t dev;
623 
624 	dev = sc->bge_dev;
625 
626 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
627 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
628 }
629 #endif
630 
631 static void
632 bge_writereg_ind(struct bge_softc *sc, int off, int val)
633 {
634 	device_t dev;
635 
636 	dev = sc->bge_dev;
637 
638 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
639 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
640 }
641 
642 static void
643 bge_writemem_direct(struct bge_softc *sc, int off, int val)
644 {
645 	CSR_WRITE_4(sc, off, val);
646 }
647 
648 static void
649 bge_writembx(struct bge_softc *sc, int off, int val)
650 {
651 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
652 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
653 
654 	CSR_WRITE_4(sc, off, val);
655 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
656 		CSR_READ_4(sc, off);
657 }
658 
659 /*
660  * Clear all stale locks and select the lock for this driver instance.
661  */
662 static void
663 bge_ape_lock_init(struct bge_softc *sc)
664 {
665 	uint32_t bit, regbase;
666 	int i;
667 
668 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
669 		regbase = BGE_APE_LOCK_GRANT;
670 	else
671 		regbase = BGE_APE_PER_LOCK_GRANT;
672 
673 	/* Clear any stale locks. */
674 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
675 		switch (i) {
676 		case BGE_APE_LOCK_PHY0:
677 		case BGE_APE_LOCK_PHY1:
678 		case BGE_APE_LOCK_PHY2:
679 		case BGE_APE_LOCK_PHY3:
680 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
681 			break;
682 		default:
683 			if (sc->bge_func_addr != 0)
684 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
685 			else
686 				bit = (1 << sc->bge_func_addr);
687 		}
688 		APE_WRITE_4(sc, regbase + 4 * i, bit);
689 	}
690 
691 	/* Select the PHY lock based on the device's function number. */
692 	switch (sc->bge_func_addr) {
693 	case 0:
694 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
695 		break;
696 	case 1:
697 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
698 		break;
699 	case 2:
700 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
701 		break;
702 	case 3:
703 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
704 		break;
705 	default:
706 		device_printf(sc->bge_dev,
707 		    "PHY lock not supported on this function\n");
708 	}
709 }
710 
711 /*
712  * Check for APE firmware, set flags, and print version info.
713  */
714 static void
715 bge_ape_read_fw_ver(struct bge_softc *sc)
716 {
717 	const char *fwtype;
718 	uint32_t apedata, features;
719 
720 	/* Check for a valid APE signature in shared memory. */
721 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
722 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
723 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
724 		return;
725 	}
726 
727 	/* Check if APE firmware is running. */
728 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
729 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
730 		device_printf(sc->bge_dev, "APE signature found "
731 		    "but FW status not ready! 0x%08x\n", apedata);
732 		return;
733 	}
734 
735 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
736 
737 	/* Fetch the APE firwmare type and version. */
738 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
739 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
740 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
741 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
742 		fwtype = "NCSI";
743 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
744 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
745 		fwtype = "DASH";
746 	} else
747 		fwtype = "UNKN";
748 
749 	/* Print the APE firmware version. */
750 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
751 	    fwtype,
752 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
753 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
754 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
755 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
756 }
757 
758 static int
759 bge_ape_lock(struct bge_softc *sc, int locknum)
760 {
761 	uint32_t bit, gnt, req, status;
762 	int i, off;
763 
764 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
765 		return (0);
766 
767 	/* Lock request/grant registers have different bases. */
768 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
769 		req = BGE_APE_LOCK_REQ;
770 		gnt = BGE_APE_LOCK_GRANT;
771 	} else {
772 		req = BGE_APE_PER_LOCK_REQ;
773 		gnt = BGE_APE_PER_LOCK_GRANT;
774 	}
775 
776 	off = 4 * locknum;
777 
778 	switch (locknum) {
779 	case BGE_APE_LOCK_GPIO:
780 		/* Lock required when using GPIO. */
781 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
782 			return (0);
783 		if (sc->bge_func_addr == 0)
784 			bit = BGE_APE_LOCK_REQ_DRIVER0;
785 		else
786 			bit = (1 << sc->bge_func_addr);
787 		break;
788 	case BGE_APE_LOCK_GRC:
789 		/* Lock required to reset the device. */
790 		if (sc->bge_func_addr == 0)
791 			bit = BGE_APE_LOCK_REQ_DRIVER0;
792 		else
793 			bit = (1 << sc->bge_func_addr);
794 		break;
795 	case BGE_APE_LOCK_MEM:
796 		/* Lock required when accessing certain APE memory. */
797 		if (sc->bge_func_addr == 0)
798 			bit = BGE_APE_LOCK_REQ_DRIVER0;
799 		else
800 			bit = (1 << sc->bge_func_addr);
801 		break;
802 	case BGE_APE_LOCK_PHY0:
803 	case BGE_APE_LOCK_PHY1:
804 	case BGE_APE_LOCK_PHY2:
805 	case BGE_APE_LOCK_PHY3:
806 		/* Lock required when accessing PHYs. */
807 		bit = BGE_APE_LOCK_REQ_DRIVER0;
808 		break;
809 	default:
810 		return (EINVAL);
811 	}
812 
813 	/* Request a lock. */
814 	APE_WRITE_4(sc, req + off, bit);
815 
816 	/* Wait up to 1 second to acquire lock. */
817 	for (i = 0; i < 20000; i++) {
818 		status = APE_READ_4(sc, gnt + off);
819 		if (status == bit)
820 			break;
821 		DELAY(50);
822 	}
823 
824 	/* Handle any errors. */
825 	if (status != bit) {
826 		device_printf(sc->bge_dev, "APE lock %d request failed! "
827 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
828 		    locknum, req + off, bit & 0xFFFF, gnt + off,
829 		    status & 0xFFFF);
830 		/* Revoke the lock request. */
831 		APE_WRITE_4(sc, gnt + off, bit);
832 		return (EBUSY);
833 	}
834 
835 	return (0);
836 }
837 
838 static void
839 bge_ape_unlock(struct bge_softc *sc, int locknum)
840 {
841 	uint32_t bit, gnt;
842 	int off;
843 
844 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
845 		return;
846 
847 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
848 		gnt = BGE_APE_LOCK_GRANT;
849 	else
850 		gnt = BGE_APE_PER_LOCK_GRANT;
851 
852 	off = 4 * locknum;
853 
854 	switch (locknum) {
855 	case BGE_APE_LOCK_GPIO:
856 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
857 			return;
858 		if (sc->bge_func_addr == 0)
859 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
860 		else
861 			bit = (1 << sc->bge_func_addr);
862 		break;
863 	case BGE_APE_LOCK_GRC:
864 		if (sc->bge_func_addr == 0)
865 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
866 		else
867 			bit = (1 << sc->bge_func_addr);
868 		break;
869 	case BGE_APE_LOCK_MEM:
870 		if (sc->bge_func_addr == 0)
871 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
872 		else
873 			bit = (1 << sc->bge_func_addr);
874 		break;
875 	case BGE_APE_LOCK_PHY0:
876 	case BGE_APE_LOCK_PHY1:
877 	case BGE_APE_LOCK_PHY2:
878 	case BGE_APE_LOCK_PHY3:
879 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
880 		break;
881 	default:
882 		return;
883 	}
884 
885 	APE_WRITE_4(sc, gnt + off, bit);
886 }
887 
888 /*
889  * Send an event to the APE firmware.
890  */
891 static void
892 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
893 {
894 	uint32_t apedata;
895 	int i;
896 
897 	/* NCSI does not support APE events. */
898 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 		return;
900 
901 	/* Wait up to 1ms for APE to service previous event. */
902 	for (i = 10; i > 0; i--) {
903 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
904 			break;
905 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
906 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
907 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
908 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
909 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
910 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
911 			break;
912 		}
913 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
914 		DELAY(100);
915 	}
916 	if (i == 0)
917 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
918 		    event);
919 }
920 
921 static void
922 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
923 {
924 	uint32_t apedata, event;
925 
926 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
927 		return;
928 
929 	switch (kind) {
930 	case BGE_RESET_START:
931 		/* If this is the first load, clear the load counter. */
932 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
933 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
934 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
935 		else {
936 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
937 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
938 		}
939 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
940 		    BGE_APE_HOST_SEG_SIG_MAGIC);
941 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
942 		    BGE_APE_HOST_SEG_LEN_MAGIC);
943 
944 		/* Add some version info if bge(4) supports it. */
945 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
946 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
947 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
948 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
949 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
950 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
951 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
952 		    BGE_APE_HOST_DRVR_STATE_START);
953 		event = BGE_APE_EVENT_STATUS_STATE_START;
954 		break;
955 	case BGE_RESET_SHUTDOWN:
956 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
957 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
958 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
959 		break;
960 	case BGE_RESET_SUSPEND:
961 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
962 		break;
963 	default:
964 		return;
965 	}
966 
967 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
968 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
969 }
970 
971 /*
972  * Map a single buffer address.
973  */
974 
975 static void
976 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
977 {
978 	struct bge_dmamap_arg *ctx;
979 
980 	if (error)
981 		return;
982 
983 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
984 
985 	ctx = arg;
986 	ctx->bge_busaddr = segs->ds_addr;
987 }
988 
989 static uint8_t
990 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
991 {
992 	uint32_t access, byte = 0;
993 	int i;
994 
995 	/* Lock. */
996 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
997 	for (i = 0; i < 8000; i++) {
998 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
999 			break;
1000 		DELAY(20);
1001 	}
1002 	if (i == 8000)
1003 		return (1);
1004 
1005 	/* Enable access. */
1006 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1007 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1008 
1009 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1010 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1011 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1012 		DELAY(10);
1013 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1014 			DELAY(10);
1015 			break;
1016 		}
1017 	}
1018 
1019 	if (i == BGE_TIMEOUT * 10) {
1020 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1021 		return (1);
1022 	}
1023 
1024 	/* Get result. */
1025 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1026 
1027 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1028 
1029 	/* Disable access. */
1030 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1031 
1032 	/* Unlock. */
1033 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1034 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1035 
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Read a sequence of bytes from NVRAM.
1041  */
1042 static int
1043 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1044 {
1045 	int err = 0, i;
1046 	uint8_t byte = 0;
1047 
1048 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1049 		return (1);
1050 
1051 	for (i = 0; i < cnt; i++) {
1052 		err = bge_nvram_getbyte(sc, off + i, &byte);
1053 		if (err)
1054 			break;
1055 		*(dest + i) = byte;
1056 	}
1057 
1058 	return (err ? 1 : 0);
1059 }
1060 
1061 /*
1062  * Read a byte of data stored in the EEPROM at address 'addr.' The
1063  * BCM570x supports both the traditional bitbang interface and an
1064  * auto access interface for reading the EEPROM. We use the auto
1065  * access method.
1066  */
1067 static uint8_t
1068 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1069 {
1070 	int i;
1071 	uint32_t byte = 0;
1072 
1073 	/*
1074 	 * Enable use of auto EEPROM access so we can avoid
1075 	 * having to use the bitbang method.
1076 	 */
1077 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1078 
1079 	/* Reset the EEPROM, load the clock period. */
1080 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1081 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1082 	DELAY(20);
1083 
1084 	/* Issue the read EEPROM command. */
1085 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1086 
1087 	/* Wait for completion */
1088 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1089 		DELAY(10);
1090 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1091 			break;
1092 	}
1093 
1094 	if (i == BGE_TIMEOUT * 10) {
1095 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1096 		return (1);
1097 	}
1098 
1099 	/* Get result. */
1100 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1101 
1102 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1103 
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Read a sequence of bytes from the EEPROM.
1109  */
1110 static int
1111 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1112 {
1113 	int i, error = 0;
1114 	uint8_t byte = 0;
1115 
1116 	for (i = 0; i < cnt; i++) {
1117 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1118 		if (error)
1119 			break;
1120 		*(dest + i) = byte;
1121 	}
1122 
1123 	return (error ? 1 : 0);
1124 }
1125 
1126 static int
1127 bge_miibus_readreg(device_t dev, int phy, int reg)
1128 {
1129 	struct bge_softc *sc;
1130 	uint32_t val;
1131 	int i;
1132 
1133 	sc = device_get_softc(dev);
1134 
1135 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1136 		return (0);
1137 
1138 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1139 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1140 		CSR_WRITE_4(sc, BGE_MI_MODE,
1141 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1142 		DELAY(80);
1143 	}
1144 
1145 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1146 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1147 
1148 	/* Poll for the PHY register access to complete. */
1149 	for (i = 0; i < BGE_TIMEOUT; i++) {
1150 		DELAY(10);
1151 		val = CSR_READ_4(sc, BGE_MI_COMM);
1152 		if ((val & BGE_MICOMM_BUSY) == 0) {
1153 			DELAY(5);
1154 			val = CSR_READ_4(sc, BGE_MI_COMM);
1155 			break;
1156 		}
1157 	}
1158 
1159 	if (i == BGE_TIMEOUT) {
1160 		device_printf(sc->bge_dev,
1161 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1162 		    phy, reg, val);
1163 		val = 0;
1164 	}
1165 
1166 	/* Restore the autopoll bit if necessary. */
1167 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1168 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1169 		DELAY(80);
1170 	}
1171 
1172 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173 
1174 	if (val & BGE_MICOMM_READFAIL)
1175 		return (0);
1176 
1177 	return (val & 0xFFFF);
1178 }
1179 
1180 static int
1181 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1182 {
1183 	struct bge_softc *sc;
1184 	int i;
1185 
1186 	sc = device_get_softc(dev);
1187 
1188 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1189 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1190 		return (0);
1191 
1192 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1193 		return (0);
1194 
1195 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1196 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1197 		CSR_WRITE_4(sc, BGE_MI_MODE,
1198 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1199 		DELAY(80);
1200 	}
1201 
1202 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1203 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1204 
1205 	for (i = 0; i < BGE_TIMEOUT; i++) {
1206 		DELAY(10);
1207 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1208 			DELAY(5);
1209 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1210 			break;
1211 		}
1212 	}
1213 
1214 	/* Restore the autopoll bit if necessary. */
1215 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1216 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1217 		DELAY(80);
1218 	}
1219 
1220 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1221 
1222 	if (i == BGE_TIMEOUT)
1223 		device_printf(sc->bge_dev,
1224 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1225 		    phy, reg, val);
1226 
1227 	return (0);
1228 }
1229 
1230 static void
1231 bge_miibus_statchg(device_t dev)
1232 {
1233 	struct bge_softc *sc;
1234 	struct mii_data *mii;
1235 	uint32_t mac_mode, rx_mode, tx_mode;
1236 
1237 	sc = device_get_softc(dev);
1238 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1239 		return;
1240 	mii = device_get_softc(sc->bge_miibus);
1241 
1242 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1243 	    (IFM_ACTIVE | IFM_AVALID)) {
1244 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1245 		case IFM_10_T:
1246 		case IFM_100_TX:
1247 			sc->bge_link = 1;
1248 			break;
1249 		case IFM_1000_T:
1250 		case IFM_1000_SX:
1251 		case IFM_2500_SX:
1252 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1253 				sc->bge_link = 1;
1254 			else
1255 				sc->bge_link = 0;
1256 			break;
1257 		default:
1258 			sc->bge_link = 0;
1259 			break;
1260 		}
1261 	} else
1262 		sc->bge_link = 0;
1263 	if (sc->bge_link == 0)
1264 		return;
1265 
1266 	/*
1267 	 * APE firmware touches these registers to keep the MAC
1268 	 * connected to the outside world.  Try to keep the
1269 	 * accesses atomic.
1270 	 */
1271 
1272 	/* Set the port mode (MII/GMII) to match the link speed. */
1273 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1274 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1275 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1276 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1277 
1278 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1279 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1280 		mac_mode |= BGE_PORTMODE_GMII;
1281 	else
1282 		mac_mode |= BGE_PORTMODE_MII;
1283 
1284 	/* Set MAC flow control behavior to match link flow control settings. */
1285 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1286 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1287 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
1288 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1289 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1290 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1291 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1292 	} else
1293 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1294 
1295 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1296 	DELAY(40);
1297 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1298 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1299 }
1300 
1301 /*
1302  * Intialize a standard receive ring descriptor.
1303  */
1304 static int
1305 bge_newbuf_std(struct bge_softc *sc, int i)
1306 {
1307 	struct mbuf *m;
1308 	struct bge_rx_bd *r;
1309 	bus_dma_segment_t segs[1];
1310 	bus_dmamap_t map;
1311 	int error, nsegs;
1312 
1313 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1314 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1315 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1316 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1317 		if (m == NULL)
1318 			return (ENOBUFS);
1319 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1320 	} else {
1321 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1322 		if (m == NULL)
1323 			return (ENOBUFS);
1324 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1325 	}
1326 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1327 		m_adj(m, ETHER_ALIGN);
1328 
1329 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1330 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1331 	if (error != 0) {
1332 		m_freem(m);
1333 		return (error);
1334 	}
1335 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1336 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1337 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1338 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1339 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1340 	}
1341 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1342 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1343 	sc->bge_cdata.bge_rx_std_sparemap = map;
1344 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1345 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1346 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1347 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1348 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1349 	r->bge_flags = BGE_RXBDFLAG_END;
1350 	r->bge_len = segs[0].ds_len;
1351 	r->bge_idx = i;
1352 
1353 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1354 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1355 
1356 	return (0);
1357 }
1358 
1359 /*
1360  * Initialize a jumbo receive ring descriptor. This allocates
1361  * a jumbo buffer from the pool managed internally by the driver.
1362  */
1363 static int
1364 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1365 {
1366 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1367 	bus_dmamap_t map;
1368 	struct bge_extrx_bd *r;
1369 	struct mbuf *m;
1370 	int error, nsegs;
1371 
1372 	MGETHDR(m, M_NOWAIT, MT_DATA);
1373 	if (m == NULL)
1374 		return (ENOBUFS);
1375 
1376 	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1377 	if (!(m->m_flags & M_EXT)) {
1378 		m_freem(m);
1379 		return (ENOBUFS);
1380 	}
1381 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1382 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1383 		m_adj(m, ETHER_ALIGN);
1384 
1385 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1386 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1387 	if (error != 0) {
1388 		m_freem(m);
1389 		return (error);
1390 	}
1391 
1392 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1393 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1394 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1395 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1396 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1397 	}
1398 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1399 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1400 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1401 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1402 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1403 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1404 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1405 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1406 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1407 
1408 	/*
1409 	 * Fill in the extended RX buffer descriptor.
1410 	 */
1411 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1412 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1413 	r->bge_idx = i;
1414 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1415 	switch (nsegs) {
1416 	case 4:
1417 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1418 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1419 		r->bge_len3 = segs[3].ds_len;
1420 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1421 	case 3:
1422 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1423 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1424 		r->bge_len2 = segs[2].ds_len;
1425 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1426 	case 2:
1427 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1428 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1429 		r->bge_len1 = segs[1].ds_len;
1430 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1431 	case 1:
1432 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1433 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1434 		r->bge_len0 = segs[0].ds_len;
1435 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1436 		break;
1437 	default:
1438 		panic("%s: %d segments\n", __func__, nsegs);
1439 	}
1440 
1441 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1442 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1443 
1444 	return (0);
1445 }
1446 
1447 static int
1448 bge_init_rx_ring_std(struct bge_softc *sc)
1449 {
1450 	int error, i;
1451 
1452 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1453 	sc->bge_std = 0;
1454 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1455 		if ((error = bge_newbuf_std(sc, i)) != 0)
1456 			return (error);
1457 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1458 	}
1459 
1460 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1461 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1462 
1463 	sc->bge_std = 0;
1464 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1465 
1466 	return (0);
1467 }
1468 
1469 static void
1470 bge_free_rx_ring_std(struct bge_softc *sc)
1471 {
1472 	int i;
1473 
1474 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1475 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1476 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1477 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1478 			    BUS_DMASYNC_POSTREAD);
1479 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1480 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1481 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1482 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1483 		}
1484 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1485 		    sizeof(struct bge_rx_bd));
1486 	}
1487 }
1488 
1489 static int
1490 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1491 {
1492 	struct bge_rcb *rcb;
1493 	int error, i;
1494 
1495 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1496 	sc->bge_jumbo = 0;
1497 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1498 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1499 			return (error);
1500 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1501 	}
1502 
1503 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1504 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1505 
1506 	sc->bge_jumbo = 0;
1507 
1508 	/* Enable the jumbo receive producer ring. */
1509 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1510 	rcb->bge_maxlen_flags =
1511 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1512 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1513 
1514 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1515 
1516 	return (0);
1517 }
1518 
1519 static void
1520 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1521 {
1522 	int i;
1523 
1524 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1525 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1526 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1527 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1528 			    BUS_DMASYNC_POSTREAD);
1529 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1530 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1531 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1532 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1533 		}
1534 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1535 		    sizeof(struct bge_extrx_bd));
1536 	}
1537 }
1538 
1539 static void
1540 bge_free_tx_ring(struct bge_softc *sc)
1541 {
1542 	int i;
1543 
1544 	if (sc->bge_ldata.bge_tx_ring == NULL)
1545 		return;
1546 
1547 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1548 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1549 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1550 			    sc->bge_cdata.bge_tx_dmamap[i],
1551 			    BUS_DMASYNC_POSTWRITE);
1552 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1553 			    sc->bge_cdata.bge_tx_dmamap[i]);
1554 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1555 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1556 		}
1557 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1558 		    sizeof(struct bge_tx_bd));
1559 	}
1560 }
1561 
1562 static int
1563 bge_init_tx_ring(struct bge_softc *sc)
1564 {
1565 	sc->bge_txcnt = 0;
1566 	sc->bge_tx_saved_considx = 0;
1567 
1568 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1569 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1570 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1571 
1572 	/* Initialize transmit producer index for host-memory send ring. */
1573 	sc->bge_tx_prodidx = 0;
1574 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1575 
1576 	/* 5700 b2 errata */
1577 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1578 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1579 
1580 	/* NIC-memory send ring not used; initialize to zero. */
1581 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1582 	/* 5700 b2 errata */
1583 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1584 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1585 
1586 	return (0);
1587 }
1588 
1589 static void
1590 bge_setpromisc(struct bge_softc *sc)
1591 {
1592 	struct ifnet *ifp;
1593 
1594 	BGE_LOCK_ASSERT(sc);
1595 
1596 	ifp = sc->bge_ifp;
1597 
1598 	/* Enable or disable promiscuous mode as needed. */
1599 	if (ifp->if_flags & IFF_PROMISC)
1600 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1601 	else
1602 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1603 }
1604 
1605 static void
1606 bge_setmulti(struct bge_softc *sc)
1607 {
1608 	struct ifnet *ifp;
1609 	struct ifmultiaddr *ifma;
1610 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1611 	int h, i;
1612 
1613 	BGE_LOCK_ASSERT(sc);
1614 
1615 	ifp = sc->bge_ifp;
1616 
1617 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1618 		for (i = 0; i < 4; i++)
1619 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1620 		return;
1621 	}
1622 
1623 	/* First, zot all the existing filters. */
1624 	for (i = 0; i < 4; i++)
1625 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1626 
1627 	/* Now program new ones. */
1628 	if_maddr_rlock(ifp);
1629 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1630 		if (ifma->ifma_addr->sa_family != AF_LINK)
1631 			continue;
1632 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1633 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1634 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1635 	}
1636 	if_maddr_runlock(ifp);
1637 
1638 	for (i = 0; i < 4; i++)
1639 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1640 }
1641 
1642 static void
1643 bge_setvlan(struct bge_softc *sc)
1644 {
1645 	struct ifnet *ifp;
1646 
1647 	BGE_LOCK_ASSERT(sc);
1648 
1649 	ifp = sc->bge_ifp;
1650 
1651 	/* Enable or disable VLAN tag stripping as needed. */
1652 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1653 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1654 	else
1655 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1656 }
1657 
1658 static void
1659 bge_sig_pre_reset(struct bge_softc *sc, int type)
1660 {
1661 
1662 	/*
1663 	 * Some chips don't like this so only do this if ASF is enabled
1664 	 */
1665 	if (sc->bge_asf_mode)
1666 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1667 
1668 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1669 		switch (type) {
1670 		case BGE_RESET_START:
1671 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1672 			    BGE_FW_DRV_STATE_START);
1673 			break;
1674 		case BGE_RESET_SHUTDOWN:
1675 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1676 			    BGE_FW_DRV_STATE_UNLOAD);
1677 			break;
1678 		case BGE_RESET_SUSPEND:
1679 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1680 			    BGE_FW_DRV_STATE_SUSPEND);
1681 			break;
1682 		}
1683 	}
1684 
1685 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1686 		bge_ape_driver_state_change(sc, type);
1687 }
1688 
1689 static void
1690 bge_sig_post_reset(struct bge_softc *sc, int type)
1691 {
1692 
1693 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1694 		switch (type) {
1695 		case BGE_RESET_START:
1696 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1697 			    BGE_FW_DRV_STATE_START_DONE);
1698 			/* START DONE */
1699 			break;
1700 		case BGE_RESET_SHUTDOWN:
1701 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1702 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1703 			break;
1704 		}
1705 	}
1706 	if (type == BGE_RESET_SHUTDOWN)
1707 		bge_ape_driver_state_change(sc, type);
1708 }
1709 
1710 static void
1711 bge_sig_legacy(struct bge_softc *sc, int type)
1712 {
1713 
1714 	if (sc->bge_asf_mode) {
1715 		switch (type) {
1716 		case BGE_RESET_START:
1717 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1718 			    BGE_FW_DRV_STATE_START);
1719 			break;
1720 		case BGE_RESET_SHUTDOWN:
1721 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1722 			    BGE_FW_DRV_STATE_UNLOAD);
1723 			break;
1724 		}
1725 	}
1726 }
1727 
1728 static void
1729 bge_stop_fw(struct bge_softc *sc)
1730 {
1731 	int i;
1732 
1733 	if (sc->bge_asf_mode) {
1734 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1735 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1736 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1737 
1738 		for (i = 0; i < 100; i++ ) {
1739 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1740 			    BGE_RX_CPU_DRV_EVENT))
1741 				break;
1742 			DELAY(10);
1743 		}
1744 	}
1745 }
1746 
1747 static uint32_t
1748 bge_dma_swap_options(struct bge_softc *sc)
1749 {
1750 	uint32_t dma_options;
1751 
1752 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1753 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1754 #if BYTE_ORDER == BIG_ENDIAN
1755 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1756 #endif
1757 	return (dma_options);
1758 }
1759 
1760 /*
1761  * Do endian, PCI and DMA initialization.
1762  */
1763 static int
1764 bge_chipinit(struct bge_softc *sc)
1765 {
1766 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1767 	uint16_t val;
1768 	int i;
1769 
1770 	/* Set endianness before we access any non-PCI registers. */
1771 	misc_ctl = BGE_INIT;
1772 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1773 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1774 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1775 
1776 	/*
1777 	 * Clear the MAC statistics block in the NIC's
1778 	 * internal memory.
1779 	 */
1780 	for (i = BGE_STATS_BLOCK;
1781 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1782 		BGE_MEMWIN_WRITE(sc, i, 0);
1783 
1784 	for (i = BGE_STATUS_BLOCK;
1785 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1786 		BGE_MEMWIN_WRITE(sc, i, 0);
1787 
1788 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1789 		/*
1790 		 *  Fix data corruption caused by non-qword write with WB.
1791 		 *  Fix master abort in PCI mode.
1792 		 *  Fix PCI latency timer.
1793 		 */
1794 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1795 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1796 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1797 	}
1798 
1799 	/*
1800 	 * Set up the PCI DMA control register.
1801 	 */
1802 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1803 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1804 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1805 		if (sc->bge_mps >= 256)
1806 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1807 		else
1808 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1809 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1810 		if (BGE_IS_5714_FAMILY(sc)) {
1811 			/* 256 bytes for read and write. */
1812 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1813 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1814 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1815 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1816 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1817 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1818 			/*
1819 			 * In the BCM5703, the DMA read watermark should
1820 			 * be set to less than or equal to the maximum
1821 			 * memory read byte count of the PCI-X command
1822 			 * register.
1823 			 */
1824 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1825 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1826 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1827 			/* 1536 bytes for read, 384 bytes for write. */
1828 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1829 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1830 		} else {
1831 			/* 384 bytes for read and write. */
1832 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1833 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1834 			    0x0F;
1835 		}
1836 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1837 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1838 			uint32_t tmp;
1839 
1840 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1841 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1842 			if (tmp == 6 || tmp == 7)
1843 				dma_rw_ctl |=
1844 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1845 
1846 			/* Set PCI-X DMA write workaround. */
1847 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1848 		}
1849 	} else {
1850 		/* Conventional PCI bus: 256 bytes for read and write. */
1851 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1852 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1853 
1854 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1855 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1856 			dma_rw_ctl |= 0x0F;
1857 	}
1858 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1859 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1860 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1861 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1862 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1863 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1864 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1865 	if (BGE_IS_5717_PLUS(sc)) {
1866 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1867 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1868 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1869 		/*
1870 		 * Enable HW workaround for controllers that misinterpret
1871 		 * a status tag update and leave interrupts permanently
1872 		 * disabled.
1873 		 */
1874 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1875 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1876 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1877 	}
1878 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1879 
1880 	/*
1881 	 * Set up general mode register.
1882 	 */
1883 	mode_ctl = bge_dma_swap_options(sc);
1884 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1885 		/* Retain Host-2-BMC settings written by APE firmware. */
1886 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1887 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1888 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1889 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1890 	}
1891 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1892 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1893 
1894 	/*
1895 	 * BCM5701 B5 have a bug causing data corruption when using
1896 	 * 64-bit DMA reads, which can be terminated early and then
1897 	 * completed later as 32-bit accesses, in combination with
1898 	 * certain bridges.
1899 	 */
1900 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1901 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1902 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1903 
1904 	/*
1905 	 * Tell the firmware the driver is running
1906 	 */
1907 	if (sc->bge_asf_mode & ASF_STACKUP)
1908 		mode_ctl |= BGE_MODECTL_STACKUP;
1909 
1910 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1911 
1912 	/*
1913 	 * Disable memory write invalidate.  Apparently it is not supported
1914 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1915 	 * as these chips need it even when using MSI.
1916 	 */
1917 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1918 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1919 
1920 	/* Set the timer prescaler (always 66 MHz). */
1921 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1922 
1923 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1924 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1925 		DELAY(40);	/* XXX */
1926 
1927 		/* Put PHY into ready state */
1928 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1929 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1930 		DELAY(40);
1931 	}
1932 
1933 	return (0);
1934 }
1935 
1936 static int
1937 bge_blockinit(struct bge_softc *sc)
1938 {
1939 	struct bge_rcb *rcb;
1940 	bus_size_t vrcb;
1941 	bge_hostaddr taddr;
1942 	uint32_t dmactl, val;
1943 	int i, limit;
1944 
1945 	/*
1946 	 * Initialize the memory window pointer register so that
1947 	 * we can access the first 32K of internal NIC RAM. This will
1948 	 * allow us to set up the TX send ring RCBs and the RX return
1949 	 * ring RCBs, plus other things which live in NIC memory.
1950 	 */
1951 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1952 
1953 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1954 
1955 	if (!(BGE_IS_5705_PLUS(sc))) {
1956 		/* Configure mbuf memory pool */
1957 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1958 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1960 		else
1961 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1962 
1963 		/* Configure DMA resource pool */
1964 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1965 		    BGE_DMA_DESCRIPTORS);
1966 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1967 	}
1968 
1969 	/* Configure mbuf pool watermarks */
1970 	if (BGE_IS_5717_PLUS(sc)) {
1971 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1972 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1973 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1974 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1975 		} else {
1976 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1977 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1978 		}
1979 	} else if (!BGE_IS_5705_PLUS(sc)) {
1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1981 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1982 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1983 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1986 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1987 	} else {
1988 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1991 	}
1992 
1993 	/* Configure DMA resource watermarks */
1994 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1995 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1996 
1997 	/* Enable buffer manager */
1998 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1999 	/*
2000 	 * Change the arbitration algorithm of TXMBUF read request to
2001 	 * round-robin instead of priority based for BCM5719.  When
2002 	 * TXFIFO is almost empty, RDMA will hold its request until
2003 	 * TXFIFO is not almost empty.
2004 	 */
2005 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2006 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2007 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2008 
2009 	/* Poll for buffer manager start indication */
2010 	for (i = 0; i < BGE_TIMEOUT; i++) {
2011 		DELAY(10);
2012 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2013 			break;
2014 	}
2015 
2016 	if (i == BGE_TIMEOUT) {
2017 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2018 		return (ENXIO);
2019 	}
2020 
2021 	/* Enable flow-through queues */
2022 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2023 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2024 
2025 	/* Wait until queue initialization is complete */
2026 	for (i = 0; i < BGE_TIMEOUT; i++) {
2027 		DELAY(10);
2028 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2029 			break;
2030 	}
2031 
2032 	if (i == BGE_TIMEOUT) {
2033 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2034 		return (ENXIO);
2035 	}
2036 
2037 	/*
2038 	 * Summary of rings supported by the controller:
2039 	 *
2040 	 * Standard Receive Producer Ring
2041 	 * - This ring is used to feed receive buffers for "standard"
2042 	 *   sized frames (typically 1536 bytes) to the controller.
2043 	 *
2044 	 * Jumbo Receive Producer Ring
2045 	 * - This ring is used to feed receive buffers for jumbo sized
2046 	 *   frames (i.e. anything bigger than the "standard" frames)
2047 	 *   to the controller.
2048 	 *
2049 	 * Mini Receive Producer Ring
2050 	 * - This ring is used to feed receive buffers for "mini"
2051 	 *   sized frames to the controller.
2052 	 * - This feature required external memory for the controller
2053 	 *   but was never used in a production system.  Should always
2054 	 *   be disabled.
2055 	 *
2056 	 * Receive Return Ring
2057 	 * - After the controller has placed an incoming frame into a
2058 	 *   receive buffer that buffer is moved into a receive return
2059 	 *   ring.  The driver is then responsible to passing the
2060 	 *   buffer up to the stack.  Many versions of the controller
2061 	 *   support multiple RR rings.
2062 	 *
2063 	 * Send Ring
2064 	 * - This ring is used for outgoing frames.  Many versions of
2065 	 *   the controller support multiple send rings.
2066 	 */
2067 
2068 	/* Initialize the standard receive producer ring control block. */
2069 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2070 	rcb->bge_hostaddr.bge_addr_lo =
2071 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2072 	rcb->bge_hostaddr.bge_addr_hi =
2073 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2074 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2075 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2076 	if (BGE_IS_5717_PLUS(sc)) {
2077 		/*
2078 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2079 		 * Bits 15-2 : Maximum RX frame size
2080 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2081 		 * Bit 0     : Reserved
2082 		 */
2083 		rcb->bge_maxlen_flags =
2084 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2085 	} else if (BGE_IS_5705_PLUS(sc)) {
2086 		/*
2087 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2088 		 * Bits 15-2 : Reserved (should be 0)
2089 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2090 		 * Bit 0     : Reserved
2091 		 */
2092 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2093 	} else {
2094 		/*
2095 		 * Ring size is always XXX entries
2096 		 * Bits 31-16: Maximum RX frame size
2097 		 * Bits 15-2 : Reserved (should be 0)
2098 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2099 		 * Bit 0     : Reserved
2100 		 */
2101 		rcb->bge_maxlen_flags =
2102 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2103 	}
2104 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2105 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2106 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2107 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2108 	else
2109 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2110 	/* Write the standard receive producer ring control block. */
2111 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2112 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2113 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2114 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2115 
2116 	/* Reset the standard receive producer ring producer index. */
2117 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2118 
2119 	/*
2120 	 * Initialize the jumbo RX producer ring control
2121 	 * block.  We set the 'ring disabled' bit in the
2122 	 * flags field until we're actually ready to start
2123 	 * using this ring (i.e. once we set the MTU
2124 	 * high enough to require it).
2125 	 */
2126 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2127 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2128 		/* Get the jumbo receive producer ring RCB parameters. */
2129 		rcb->bge_hostaddr.bge_addr_lo =
2130 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2131 		rcb->bge_hostaddr.bge_addr_hi =
2132 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2133 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2134 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2135 		    BUS_DMASYNC_PREREAD);
2136 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2137 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2138 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2139 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2140 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2141 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2142 		else
2143 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2144 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2145 		    rcb->bge_hostaddr.bge_addr_hi);
2146 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2147 		    rcb->bge_hostaddr.bge_addr_lo);
2148 		/* Program the jumbo receive producer ring RCB parameters. */
2149 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2150 		    rcb->bge_maxlen_flags);
2151 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2152 		/* Reset the jumbo receive producer ring producer index. */
2153 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2154 	}
2155 
2156 	/* Disable the mini receive producer ring RCB. */
2157 	if (BGE_IS_5700_FAMILY(sc)) {
2158 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2159 		rcb->bge_maxlen_flags =
2160 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2161 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2162 		    rcb->bge_maxlen_flags);
2163 		/* Reset the mini receive producer ring producer index. */
2164 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2165 	}
2166 
2167 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2168 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2169 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2170 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2171 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2172 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2173 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2174 	}
2175 	/*
2176 	 * The BD ring replenish thresholds control how often the
2177 	 * hardware fetches new BD's from the producer rings in host
2178 	 * memory.  Setting the value too low on a busy system can
2179 	 * starve the hardware and recue the throughpout.
2180 	 *
2181 	 * Set the BD ring replentish thresholds. The recommended
2182 	 * values are 1/8th the number of descriptors allocated to
2183 	 * each ring.
2184 	 * XXX The 5754 requires a lower threshold, so it might be a
2185 	 * requirement of all 575x family chips.  The Linux driver sets
2186 	 * the lower threshold for all 5705 family chips as well, but there
2187 	 * are reports that it might not need to be so strict.
2188 	 *
2189 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2190 	 * well.
2191 	 */
2192 	if (BGE_IS_5705_PLUS(sc))
2193 		val = 8;
2194 	else
2195 		val = BGE_STD_RX_RING_CNT / 8;
2196 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2197 	if (BGE_IS_JUMBO_CAPABLE(sc))
2198 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2199 		    BGE_JUMBO_RX_RING_CNT/8);
2200 	if (BGE_IS_5717_PLUS(sc)) {
2201 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2202 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2203 	}
2204 
2205 	/*
2206 	 * Disable all send rings by setting the 'ring disabled' bit
2207 	 * in the flags field of all the TX send ring control blocks,
2208 	 * located in NIC memory.
2209 	 */
2210 	if (!BGE_IS_5705_PLUS(sc))
2211 		/* 5700 to 5704 had 16 send rings. */
2212 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2213 	else
2214 		limit = 1;
2215 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2216 	for (i = 0; i < limit; i++) {
2217 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2218 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2219 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2220 		vrcb += sizeof(struct bge_rcb);
2221 	}
2222 
2223 	/* Configure send ring RCB 0 (we use only the first ring) */
2224 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2225 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2226 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2227 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2228 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2229 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2230 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2231 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2232 	else
2233 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2234 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2235 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2236 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2237 
2238 	/*
2239 	 * Disable all receive return rings by setting the
2240 	 * 'ring diabled' bit in the flags field of all the receive
2241 	 * return ring control blocks, located in NIC memory.
2242 	 */
2243 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2244 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2245 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2246 		/* Should be 17, use 16 until we get an SRAM map. */
2247 		limit = 16;
2248 	} else if (!BGE_IS_5705_PLUS(sc))
2249 		limit = BGE_RX_RINGS_MAX;
2250 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2251 	    BGE_IS_57765_PLUS(sc))
2252 		limit = 4;
2253 	else
2254 		limit = 1;
2255 	/* Disable all receive return rings. */
2256 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2257 	for (i = 0; i < limit; i++) {
2258 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2259 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2260 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2261 		    BGE_RCB_FLAG_RING_DISABLED);
2262 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2263 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2264 		    (i * (sizeof(uint64_t))), 0);
2265 		vrcb += sizeof(struct bge_rcb);
2266 	}
2267 
2268 	/*
2269 	 * Set up receive return ring 0.  Note that the NIC address
2270 	 * for RX return rings is 0x0.  The return rings live entirely
2271 	 * within the host, so the nicaddr field in the RCB isn't used.
2272 	 */
2273 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2274 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2275 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2276 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2277 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2278 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2279 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2280 
2281 	/* Set random backoff seed for TX */
2282 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2283 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2284 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2285 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
2286 	    BGE_TX_BACKOFF_SEED_MASK);
2287 
2288 	/* Set inter-packet gap */
2289 	val = 0x2620;
2290 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
2291 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2292 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2293 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2294 
2295 	/*
2296 	 * Specify which ring to use for packets that don't match
2297 	 * any RX rules.
2298 	 */
2299 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2300 
2301 	/*
2302 	 * Configure number of RX lists. One interrupt distribution
2303 	 * list, sixteen active lists, one bad frames class.
2304 	 */
2305 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2306 
2307 	/* Inialize RX list placement stats mask. */
2308 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2309 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2310 
2311 	/* Disable host coalescing until we get it set up */
2312 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2313 
2314 	/* Poll to make sure it's shut down. */
2315 	for (i = 0; i < BGE_TIMEOUT; i++) {
2316 		DELAY(10);
2317 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2318 			break;
2319 	}
2320 
2321 	if (i == BGE_TIMEOUT) {
2322 		device_printf(sc->bge_dev,
2323 		    "host coalescing engine failed to idle\n");
2324 		return (ENXIO);
2325 	}
2326 
2327 	/* Set up host coalescing defaults */
2328 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2329 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2330 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2331 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2332 	if (!(BGE_IS_5705_PLUS(sc))) {
2333 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2334 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2335 	}
2336 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2337 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2338 
2339 	/* Set up address of statistics block */
2340 	if (!(BGE_IS_5705_PLUS(sc))) {
2341 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2342 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2343 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2344 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2345 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2346 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2347 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2348 	}
2349 
2350 	/* Set up address of status block */
2351 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2352 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2353 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2354 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2355 
2356 	/* Set up status block size. */
2357 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2358 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2359 		val = BGE_STATBLKSZ_FULL;
2360 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2361 	} else {
2362 		val = BGE_STATBLKSZ_32BYTE;
2363 		bzero(sc->bge_ldata.bge_status_block, 32);
2364 	}
2365 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2366 	    sc->bge_cdata.bge_status_map,
2367 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2368 
2369 	/* Turn on host coalescing state machine */
2370 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2371 
2372 	/* Turn on RX BD completion state machine and enable attentions */
2373 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2374 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2375 
2376 	/* Turn on RX list placement state machine */
2377 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2378 
2379 	/* Turn on RX list selector state machine. */
2380 	if (!(BGE_IS_5705_PLUS(sc)))
2381 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2382 
2383 	/* Turn on DMA, clear stats. */
2384 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2385 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2386 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2387 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2388 
2389 	if (sc->bge_flags & BGE_FLAG_TBI)
2390 		val |= BGE_PORTMODE_TBI;
2391 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2392 		val |= BGE_PORTMODE_GMII;
2393 	else
2394 		val |= BGE_PORTMODE_MII;
2395 
2396 	/* Allow APE to send/receive frames. */
2397 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2398 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2399 
2400 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2401 	DELAY(40);
2402 
2403 	/* Set misc. local control, enable interrupts on attentions */
2404 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2405 
2406 #ifdef notdef
2407 	/* Assert GPIO pins for PHY reset */
2408 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2409 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2410 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2411 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2412 #endif
2413 
2414 	/* Turn on DMA completion state machine */
2415 	if (!(BGE_IS_5705_PLUS(sc)))
2416 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2417 
2418 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2419 
2420 	/* Enable host coalescing bug fix. */
2421 	if (BGE_IS_5755_PLUS(sc))
2422 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2423 
2424 	/* Request larger DMA burst size to get better performance. */
2425 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2426 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2427 
2428 	/* Turn on write DMA state machine */
2429 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2430 	DELAY(40);
2431 
2432 	/* Turn on read DMA state machine */
2433 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2434 
2435 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2436 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2437 
2438 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2439 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2440 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2441 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2442 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2443 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2444 	if (sc->bge_flags & BGE_FLAG_PCIE)
2445 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2446 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2447 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2448 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2449 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2450 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2451 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2452 	}
2453 
2454 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2455 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2456 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2457 		/*
2458 		 * Allow multiple outstanding read requests from
2459 		 * non-LSO read DMA engine.
2460 		 */
2461 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2462 	}
2463 
2464 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2465 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2466 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2467 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2468 	    BGE_IS_5717_PLUS(sc)) {
2469 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2470 		/*
2471 		 * Adjust tx margin to prevent TX data corruption and
2472 		 * fix internal FIFO overflow.
2473 		 */
2474 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2475 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2476 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2477 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2478 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2479 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2480 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2481 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2482 		}
2483 		/*
2484 		 * Enable fix for read DMA FIFO overruns.
2485 		 * The fix is to limit the number of RX BDs
2486 		 * the hardware would fetch at a fime.
2487 		 */
2488 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2489 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2490 	}
2491 
2492 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2493 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2494 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2495 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2496 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2497 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2498 		/*
2499 		 * Allow 4KB burst length reads for non-LSO frames.
2500 		 * Enable 512B burst length reads for buffer descriptors.
2501 		 */
2502 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2503 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2504 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2505 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2506 	}
2507 
2508 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2509 	DELAY(40);
2510 
2511 	/* Turn on RX data completion state machine */
2512 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2513 
2514 	/* Turn on RX BD initiator state machine */
2515 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2516 
2517 	/* Turn on RX data and RX BD initiator state machine */
2518 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2519 
2520 	/* Turn on Mbuf cluster free state machine */
2521 	if (!(BGE_IS_5705_PLUS(sc)))
2522 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2523 
2524 	/* Turn on send BD completion state machine */
2525 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2526 
2527 	/* Turn on send data completion state machine */
2528 	val = BGE_SDCMODE_ENABLE;
2529 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2530 		val |= BGE_SDCMODE_CDELAY;
2531 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2532 
2533 	/* Turn on send data initiator state machine */
2534 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2535 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2536 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2537 	else
2538 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2539 
2540 	/* Turn on send BD initiator state machine */
2541 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2542 
2543 	/* Turn on send BD selector state machine */
2544 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2545 
2546 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2547 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2548 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2549 
2550 	/* ack/clear link change events */
2551 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2552 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2553 	    BGE_MACSTAT_LINK_CHANGED);
2554 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2555 
2556 	/*
2557 	 * Enable attention when the link has changed state for
2558 	 * devices that use auto polling.
2559 	 */
2560 	if (sc->bge_flags & BGE_FLAG_TBI) {
2561 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2562 	} else {
2563 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2564 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2565 			DELAY(80);
2566 		}
2567 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2568 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2569 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2570 			    BGE_EVTENB_MI_INTERRUPT);
2571 	}
2572 
2573 	/*
2574 	 * Clear any pending link state attention.
2575 	 * Otherwise some link state change events may be lost until attention
2576 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2577 	 * It's not necessary on newer BCM chips - perhaps enabling link
2578 	 * state change attentions implies clearing pending attention.
2579 	 */
2580 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2581 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2582 	    BGE_MACSTAT_LINK_CHANGED);
2583 
2584 	/* Enable link state change attentions. */
2585 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2586 
2587 	return (0);
2588 }
2589 
2590 static const struct bge_revision *
2591 bge_lookup_rev(uint32_t chipid)
2592 {
2593 	const struct bge_revision *br;
2594 
2595 	for (br = bge_revisions; br->br_name != NULL; br++) {
2596 		if (br->br_chipid == chipid)
2597 			return (br);
2598 	}
2599 
2600 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2601 		if (br->br_chipid == BGE_ASICREV(chipid))
2602 			return (br);
2603 	}
2604 
2605 	return (NULL);
2606 }
2607 
2608 static const struct bge_vendor *
2609 bge_lookup_vendor(uint16_t vid)
2610 {
2611 	const struct bge_vendor *v;
2612 
2613 	for (v = bge_vendors; v->v_name != NULL; v++)
2614 		if (v->v_id == vid)
2615 			return (v);
2616 
2617 	return (NULL);
2618 }
2619 
2620 static uint32_t
2621 bge_chipid(device_t dev)
2622 {
2623 	uint32_t id;
2624 
2625 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2626 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2627 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2628 		/*
2629 		 * Find the ASCI revision.  Different chips use different
2630 		 * registers.
2631 		 */
2632 		switch (pci_get_device(dev)) {
2633 		case BCOM_DEVICEID_BCM5717:
2634 		case BCOM_DEVICEID_BCM5718:
2635 		case BCOM_DEVICEID_BCM5719:
2636 		case BCOM_DEVICEID_BCM5720:
2637 			id = pci_read_config(dev,
2638 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2639 			break;
2640 		case BCOM_DEVICEID_BCM57761:
2641 		case BCOM_DEVICEID_BCM57762:
2642 		case BCOM_DEVICEID_BCM57765:
2643 		case BCOM_DEVICEID_BCM57766:
2644 		case BCOM_DEVICEID_BCM57781:
2645 		case BCOM_DEVICEID_BCM57785:
2646 		case BCOM_DEVICEID_BCM57791:
2647 		case BCOM_DEVICEID_BCM57795:
2648 			id = pci_read_config(dev,
2649 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2650 			break;
2651 		default:
2652 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2653 		}
2654 	}
2655 	return (id);
2656 }
2657 
2658 /*
2659  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2660  * against our list and return its name if we find a match.
2661  *
2662  * Note that since the Broadcom controller contains VPD support, we
2663  * try to get the device name string from the controller itself instead
2664  * of the compiled-in string. It guarantees we'll always announce the
2665  * right product name. We fall back to the compiled-in string when
2666  * VPD is unavailable or corrupt.
2667  */
2668 static int
2669 bge_probe(device_t dev)
2670 {
2671 	char buf[96];
2672 	char model[64];
2673 	const struct bge_revision *br;
2674 	const char *pname;
2675 	struct bge_softc *sc;
2676 	const struct bge_type *t = bge_devs;
2677 	const struct bge_vendor *v;
2678 	uint32_t id;
2679 	uint16_t did, vid;
2680 
2681 	sc = device_get_softc(dev);
2682 	sc->bge_dev = dev;
2683 	vid = pci_get_vendor(dev);
2684 	did = pci_get_device(dev);
2685 	while(t->bge_vid != 0) {
2686 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2687 			id = bge_chipid(dev);
2688 			br = bge_lookup_rev(id);
2689 			if (bge_has_eaddr(sc) &&
2690 			    pci_get_vpd_ident(dev, &pname) == 0)
2691 				snprintf(model, sizeof(model), "%s", pname);
2692 			else {
2693 				v = bge_lookup_vendor(vid);
2694 				snprintf(model, sizeof(model), "%s %s",
2695 				    v != NULL ? v->v_name : "Unknown",
2696 				    br != NULL ? br->br_name :
2697 				    "NetXtreme/NetLink Ethernet Controller");
2698 			}
2699 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2700 			    model, br != NULL ? "" : "unknown ", id);
2701 			device_set_desc_copy(dev, buf);
2702 			return (BUS_PROBE_DEFAULT);
2703 		}
2704 		t++;
2705 	}
2706 
2707 	return (ENXIO);
2708 }
2709 
2710 static void
2711 bge_dma_free(struct bge_softc *sc)
2712 {
2713 	int i;
2714 
2715 	/* Destroy DMA maps for RX buffers. */
2716 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2717 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2718 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2719 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2720 	}
2721 	if (sc->bge_cdata.bge_rx_std_sparemap)
2722 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2723 		    sc->bge_cdata.bge_rx_std_sparemap);
2724 
2725 	/* Destroy DMA maps for jumbo RX buffers. */
2726 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2727 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2728 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2729 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2730 	}
2731 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2732 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2733 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2734 
2735 	/* Destroy DMA maps for TX buffers. */
2736 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2737 		if (sc->bge_cdata.bge_tx_dmamap[i])
2738 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2739 			    sc->bge_cdata.bge_tx_dmamap[i]);
2740 	}
2741 
2742 	if (sc->bge_cdata.bge_rx_mtag)
2743 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2744 	if (sc->bge_cdata.bge_mtag_jumbo)
2745 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2746 	if (sc->bge_cdata.bge_tx_mtag)
2747 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2748 
2749 	/* Destroy standard RX ring. */
2750 	if (sc->bge_cdata.bge_rx_std_ring_map)
2751 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2752 		    sc->bge_cdata.bge_rx_std_ring_map);
2753 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2754 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2755 		    sc->bge_ldata.bge_rx_std_ring,
2756 		    sc->bge_cdata.bge_rx_std_ring_map);
2757 
2758 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2759 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2760 
2761 	/* Destroy jumbo RX ring. */
2762 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2763 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2764 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2765 
2766 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2767 	    sc->bge_ldata.bge_rx_jumbo_ring)
2768 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2769 		    sc->bge_ldata.bge_rx_jumbo_ring,
2770 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2771 
2772 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2773 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2774 
2775 	/* Destroy RX return ring. */
2776 	if (sc->bge_cdata.bge_rx_return_ring_map)
2777 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2778 		    sc->bge_cdata.bge_rx_return_ring_map);
2779 
2780 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2781 	    sc->bge_ldata.bge_rx_return_ring)
2782 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2783 		    sc->bge_ldata.bge_rx_return_ring,
2784 		    sc->bge_cdata.bge_rx_return_ring_map);
2785 
2786 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2787 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2788 
2789 	/* Destroy TX ring. */
2790 	if (sc->bge_cdata.bge_tx_ring_map)
2791 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2792 		    sc->bge_cdata.bge_tx_ring_map);
2793 
2794 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2795 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2796 		    sc->bge_ldata.bge_tx_ring,
2797 		    sc->bge_cdata.bge_tx_ring_map);
2798 
2799 	if (sc->bge_cdata.bge_tx_ring_tag)
2800 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2801 
2802 	/* Destroy status block. */
2803 	if (sc->bge_cdata.bge_status_map)
2804 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2805 		    sc->bge_cdata.bge_status_map);
2806 
2807 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2808 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2809 		    sc->bge_ldata.bge_status_block,
2810 		    sc->bge_cdata.bge_status_map);
2811 
2812 	if (sc->bge_cdata.bge_status_tag)
2813 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2814 
2815 	/* Destroy statistics block. */
2816 	if (sc->bge_cdata.bge_stats_map)
2817 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2818 		    sc->bge_cdata.bge_stats_map);
2819 
2820 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2821 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2822 		    sc->bge_ldata.bge_stats,
2823 		    sc->bge_cdata.bge_stats_map);
2824 
2825 	if (sc->bge_cdata.bge_stats_tag)
2826 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2827 
2828 	if (sc->bge_cdata.bge_buffer_tag)
2829 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2830 
2831 	/* Destroy the parent tag. */
2832 	if (sc->bge_cdata.bge_parent_tag)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2834 }
2835 
2836 static int
2837 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2838     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2839     bus_addr_t *paddr, const char *msg)
2840 {
2841 	struct bge_dmamap_arg ctx;
2842 	int error;
2843 
2844 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2845 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2846 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2847 	if (error != 0) {
2848 		device_printf(sc->bge_dev,
2849 		    "could not create %s dma tag\n", msg);
2850 		return (ENOMEM);
2851 	}
2852 	/* Allocate DMA'able memory for ring. */
2853 	error = bus_dmamem_alloc(*tag, (void **)ring,
2854 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2855 	if (error != 0) {
2856 		device_printf(sc->bge_dev,
2857 		    "could not allocate DMA'able memory for %s\n", msg);
2858 		return (ENOMEM);
2859 	}
2860 	/* Load the address of the ring. */
2861 	ctx.bge_busaddr = 0;
2862 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2863 	    &ctx, BUS_DMA_NOWAIT);
2864 	if (error != 0) {
2865 		device_printf(sc->bge_dev,
2866 		    "could not load DMA'able memory for %s\n", msg);
2867 		return (ENOMEM);
2868 	}
2869 	*paddr = ctx.bge_busaddr;
2870 	return (0);
2871 }
2872 
2873 static int
2874 bge_dma_alloc(struct bge_softc *sc)
2875 {
2876 	bus_addr_t lowaddr;
2877 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2878 	int i, error;
2879 
2880 	lowaddr = BUS_SPACE_MAXADDR;
2881 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2882 		lowaddr = BGE_DMA_MAXADDR;
2883 	/*
2884 	 * Allocate the parent bus DMA tag appropriate for PCI.
2885 	 */
2886 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2887 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2888 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2889 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2890 	if (error != 0) {
2891 		device_printf(sc->bge_dev,
2892 		    "could not allocate parent dma tag\n");
2893 		return (ENOMEM);
2894 	}
2895 
2896 	/* Create tag for standard RX ring. */
2897 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2898 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2899 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2900 	    &sc->bge_cdata.bge_rx_std_ring_map,
2901 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2902 	if (error)
2903 		return (error);
2904 
2905 	/* Create tag for RX return ring. */
2906 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2907 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2908 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2909 	    &sc->bge_cdata.bge_rx_return_ring_map,
2910 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2911 	if (error)
2912 		return (error);
2913 
2914 	/* Create tag for TX ring. */
2915 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2916 	    &sc->bge_cdata.bge_tx_ring_tag,
2917 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2918 	    &sc->bge_cdata.bge_tx_ring_map,
2919 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2920 	if (error)
2921 		return (error);
2922 
2923 	/*
2924 	 * Create tag for status block.
2925 	 * Because we only use single Tx/Rx/Rx return ring, use
2926 	 * minimum status block size except BCM5700 AX/BX which
2927 	 * seems to want to see full status block size regardless
2928 	 * of configured number of ring.
2929 	 */
2930 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2931 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2932 		sbsz = BGE_STATUS_BLK_SZ;
2933 	else
2934 		sbsz = 32;
2935 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2936 	    &sc->bge_cdata.bge_status_tag,
2937 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2938 	    &sc->bge_cdata.bge_status_map,
2939 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2940 	if (error)
2941 		return (error);
2942 
2943 	/* Create tag for statistics block. */
2944 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2945 	    &sc->bge_cdata.bge_stats_tag,
2946 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2947 	    &sc->bge_cdata.bge_stats_map,
2948 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2949 	if (error)
2950 		return (error);
2951 
2952 	/* Create tag for jumbo RX ring. */
2953 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2954 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2955 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2956 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2957 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2958 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2959 		if (error)
2960 			return (error);
2961 	}
2962 
2963 	/* Create parent tag for buffers. */
2964 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2965 		/*
2966 		 * XXX
2967 		 * watchdog timeout issue was observed on BCM5704 which
2968 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2969 		 * Both limiting DMA address space to 32bits and flushing
2970 		 * mailbox write seem to address the issue.
2971 		 */
2972 		if (sc->bge_pcixcap != 0)
2973 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2974 	}
2975 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2976 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2977 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2978 	    &sc->bge_cdata.bge_buffer_tag);
2979 	if (error != 0) {
2980 		device_printf(sc->bge_dev,
2981 		    "could not allocate buffer dma tag\n");
2982 		return (ENOMEM);
2983 	}
2984 	/* Create tag for Tx mbufs. */
2985 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2986 		txsegsz = BGE_TSOSEG_SZ;
2987 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2988 	} else {
2989 		txsegsz = MCLBYTES;
2990 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2991 	}
2992 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2993 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2994 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2995 	    &sc->bge_cdata.bge_tx_mtag);
2996 
2997 	if (error) {
2998 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2999 		return (ENOMEM);
3000 	}
3001 
3002 	/* Create tag for Rx mbufs. */
3003 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3004 		rxmaxsegsz = MJUM9BYTES;
3005 	else
3006 		rxmaxsegsz = MCLBYTES;
3007 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3008 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3009 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3010 
3011 	if (error) {
3012 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3013 		return (ENOMEM);
3014 	}
3015 
3016 	/* Create DMA maps for RX buffers. */
3017 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3018 	    &sc->bge_cdata.bge_rx_std_sparemap);
3019 	if (error) {
3020 		device_printf(sc->bge_dev,
3021 		    "can't create spare DMA map for RX\n");
3022 		return (ENOMEM);
3023 	}
3024 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3025 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3026 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3027 		if (error) {
3028 			device_printf(sc->bge_dev,
3029 			    "can't create DMA map for RX\n");
3030 			return (ENOMEM);
3031 		}
3032 	}
3033 
3034 	/* Create DMA maps for TX buffers. */
3035 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3036 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3037 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3038 		if (error) {
3039 			device_printf(sc->bge_dev,
3040 			    "can't create DMA map for TX\n");
3041 			return (ENOMEM);
3042 		}
3043 	}
3044 
3045 	/* Create tags for jumbo RX buffers. */
3046 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3047 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3048 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3049 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3050 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3051 		if (error) {
3052 			device_printf(sc->bge_dev,
3053 			    "could not allocate jumbo dma tag\n");
3054 			return (ENOMEM);
3055 		}
3056 		/* Create DMA maps for jumbo RX buffers. */
3057 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3058 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3059 		if (error) {
3060 			device_printf(sc->bge_dev,
3061 			    "can't create spare DMA map for jumbo RX\n");
3062 			return (ENOMEM);
3063 		}
3064 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3065 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3066 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3067 			if (error) {
3068 				device_printf(sc->bge_dev,
3069 				    "can't create DMA map for jumbo RX\n");
3070 				return (ENOMEM);
3071 			}
3072 		}
3073 	}
3074 
3075 	return (0);
3076 }
3077 
3078 /*
3079  * Return true if this device has more than one port.
3080  */
3081 static int
3082 bge_has_multiple_ports(struct bge_softc *sc)
3083 {
3084 	device_t dev = sc->bge_dev;
3085 	u_int b, d, f, fscan, s;
3086 
3087 	d = pci_get_domain(dev);
3088 	b = pci_get_bus(dev);
3089 	s = pci_get_slot(dev);
3090 	f = pci_get_function(dev);
3091 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3092 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3093 			return (1);
3094 	return (0);
3095 }
3096 
3097 /*
3098  * Return true if MSI can be used with this device.
3099  */
3100 static int
3101 bge_can_use_msi(struct bge_softc *sc)
3102 {
3103 	int can_use_msi = 0;
3104 
3105 	if (sc->bge_msi == 0)
3106 		return (0);
3107 
3108 	/* Disable MSI for polling(4). */
3109 #ifdef DEVICE_POLLING
3110 	return (0);
3111 #endif
3112 	switch (sc->bge_asicrev) {
3113 	case BGE_ASICREV_BCM5714_A0:
3114 	case BGE_ASICREV_BCM5714:
3115 		/*
3116 		 * Apparently, MSI doesn't work when these chips are
3117 		 * configured in single-port mode.
3118 		 */
3119 		if (bge_has_multiple_ports(sc))
3120 			can_use_msi = 1;
3121 		break;
3122 	case BGE_ASICREV_BCM5750:
3123 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3124 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3125 			can_use_msi = 1;
3126 		break;
3127 	default:
3128 		if (BGE_IS_575X_PLUS(sc))
3129 			can_use_msi = 1;
3130 	}
3131 	return (can_use_msi);
3132 }
3133 
3134 static int
3135 bge_mbox_reorder(struct bge_softc *sc)
3136 {
3137 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3138 	static const struct mbox_reorder {
3139 		const uint16_t vendor;
3140 		const uint16_t device;
3141 		const char *desc;
3142 	} mbox_reorder_lists[] = {
3143 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3144 	};
3145 	devclass_t pci, pcib;
3146 	device_t bus, dev;
3147 	int i;
3148 
3149 	pci = devclass_find("pci");
3150 	pcib = devclass_find("pcib");
3151 	dev = sc->bge_dev;
3152 	bus = device_get_parent(dev);
3153 	for (;;) {
3154 		dev = device_get_parent(bus);
3155 		bus = device_get_parent(dev);
3156 		if (device_get_devclass(dev) != pcib)
3157 			break;
3158 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3159 			if (pci_get_vendor(dev) ==
3160 			    mbox_reorder_lists[i].vendor &&
3161 			    pci_get_device(dev) ==
3162 			    mbox_reorder_lists[i].device) {
3163 				device_printf(sc->bge_dev,
3164 				    "enabling MBOX workaround for %s\n",
3165 				    mbox_reorder_lists[i].desc);
3166 				return (1);
3167 			}
3168 		}
3169 		if (device_get_devclass(bus) != pci)
3170 			break;
3171 	}
3172 	return (0);
3173 }
3174 
3175 static void
3176 bge_devinfo(struct bge_softc *sc)
3177 {
3178 	uint32_t cfg, clk;
3179 
3180 	device_printf(sc->bge_dev,
3181 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3182 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3183 	if (sc->bge_flags & BGE_FLAG_PCIE)
3184 		printf("PCI-E\n");
3185 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3186 		printf("PCI-X ");
3187 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3188 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3189 			clk = 133;
3190 		else {
3191 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3192 			switch (clk) {
3193 			case 0:
3194 				clk = 33;
3195 				break;
3196 			case 2:
3197 				clk = 50;
3198 				break;
3199 			case 4:
3200 				clk = 66;
3201 				break;
3202 			case 6:
3203 				clk = 100;
3204 				break;
3205 			case 7:
3206 				clk = 133;
3207 				break;
3208 			}
3209 		}
3210 		printf("%u MHz\n", clk);
3211 	} else {
3212 		if (sc->bge_pcixcap != 0)
3213 			printf("PCI on PCI-X ");
3214 		else
3215 			printf("PCI ");
3216 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3217 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3218 			clk = 66;
3219 		else
3220 			clk = 33;
3221 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3222 			printf("%u MHz; 32bit\n", clk);
3223 		else
3224 			printf("%u MHz; 64bit\n", clk);
3225 	}
3226 }
3227 
3228 static int
3229 bge_attach(device_t dev)
3230 {
3231 	struct ifnet *ifp;
3232 	struct bge_softc *sc;
3233 	uint32_t hwcfg = 0, misccfg, pcistate;
3234 	u_char eaddr[ETHER_ADDR_LEN];
3235 	int capmask, error, msicount, reg, rid, trys;
3236 
3237 	sc = device_get_softc(dev);
3238 	sc->bge_dev = dev;
3239 
3240 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3241 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3242 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3243 
3244 	/*
3245 	 * Map control/status registers.
3246 	 */
3247 	pci_enable_busmaster(dev);
3248 
3249 	rid = PCIR_BAR(0);
3250 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3251 	    RF_ACTIVE);
3252 
3253 	if (sc->bge_res == NULL) {
3254 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3255 		error = ENXIO;
3256 		goto fail;
3257 	}
3258 
3259 	/* Save various chip information. */
3260 	sc->bge_func_addr = pci_get_function(dev);
3261 	sc->bge_chipid = bge_chipid(dev);
3262 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3263 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3264 
3265 	/* Set default PHY address. */
3266 	sc->bge_phy_addr = 1;
3267 	 /*
3268 	  * PHY address mapping for various devices.
3269 	  *
3270 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3271 	  * ---------+-------+-------+-------+-------+
3272 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3273 	  * BCM5704  |   1   |   X   |   1   |   X   |
3274 	  * BCM5717  |   1   |   8   |   2   |   9   |
3275 	  * BCM5719  |   1   |   8   |   2   |   9   |
3276 	  * BCM5720  |   1   |   8   |   2   |   9   |
3277 	  *
3278 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3279 	  * ---------+-------+-------+-------+-------+
3280 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3281 	  * BCM5704  |   X   |   X   |   X   |   X   |
3282 	  * BCM5717  |   X   |   X   |   X   |   X   |
3283 	  * BCM5719  |   3   |   10  |   4   |   11  |
3284 	  * BCM5720  |   X   |   X   |   X   |   X   |
3285 	  *
3286 	  * Other addresses may respond but they are not
3287 	  * IEEE compliant PHYs and should be ignored.
3288 	  */
3289 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3290 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3291 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3292 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3293 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3294 			    BGE_SGDIGSTS_IS_SERDES)
3295 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3296 			else
3297 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3298 		} else {
3299 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3300 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3301 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3302 			else
3303 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3304 		}
3305 	}
3306 
3307 	if (bge_has_eaddr(sc))
3308 		sc->bge_flags |= BGE_FLAG_EADDR;
3309 
3310 	/* Save chipset family. */
3311 	switch (sc->bge_asicrev) {
3312 	case BGE_ASICREV_BCM57765:
3313 	case BGE_ASICREV_BCM57766:
3314 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3315 		/* FALLTHROUGH */
3316 	case BGE_ASICREV_BCM5717:
3317 	case BGE_ASICREV_BCM5719:
3318 	case BGE_ASICREV_BCM5720:
3319 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3320 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3321 		    BGE_FLAG_JUMBO_FRAME;
3322 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3323 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3324 			/* Jumbo frame on BCM5719 A0 does not work. */
3325 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
3326 		}
3327 		break;
3328 	case BGE_ASICREV_BCM5755:
3329 	case BGE_ASICREV_BCM5761:
3330 	case BGE_ASICREV_BCM5784:
3331 	case BGE_ASICREV_BCM5785:
3332 	case BGE_ASICREV_BCM5787:
3333 	case BGE_ASICREV_BCM57780:
3334 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3335 		    BGE_FLAG_5705_PLUS;
3336 		break;
3337 	case BGE_ASICREV_BCM5700:
3338 	case BGE_ASICREV_BCM5701:
3339 	case BGE_ASICREV_BCM5703:
3340 	case BGE_ASICREV_BCM5704:
3341 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3342 		break;
3343 	case BGE_ASICREV_BCM5714_A0:
3344 	case BGE_ASICREV_BCM5780:
3345 	case BGE_ASICREV_BCM5714:
3346 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3347 		/* FALLTHROUGH */
3348 	case BGE_ASICREV_BCM5750:
3349 	case BGE_ASICREV_BCM5752:
3350 	case BGE_ASICREV_BCM5906:
3351 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3352 		/* FALLTHROUGH */
3353 	case BGE_ASICREV_BCM5705:
3354 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3355 		break;
3356 	}
3357 
3358 	/* Identify chips with APE processor. */
3359 	switch (sc->bge_asicrev) {
3360 	case BGE_ASICREV_BCM5717:
3361 	case BGE_ASICREV_BCM5719:
3362 	case BGE_ASICREV_BCM5720:
3363 	case BGE_ASICREV_BCM5761:
3364 		sc->bge_flags |= BGE_FLAG_APE;
3365 		break;
3366 	}
3367 
3368 	/* Chips with APE need BAR2 access for APE registers/memory. */
3369 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3370 		rid = PCIR_BAR(2);
3371 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3372 		    RF_ACTIVE);
3373 		if (sc->bge_res2 == NULL) {
3374 			device_printf (sc->bge_dev,
3375 			    "couldn't map BAR2 memory\n");
3376 			error = ENXIO;
3377 			goto fail;
3378 		}
3379 
3380 		/* Enable APE register/memory access by host driver. */
3381 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3382 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3383 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3384 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3385 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3386 
3387 		bge_ape_lock_init(sc);
3388 		bge_ape_read_fw_ver(sc);
3389 	}
3390 
3391 	/* Add SYSCTLs, requires the chipset family to be set. */
3392 	bge_add_sysctls(sc);
3393 
3394 	/* Identify the chips that use an CPMU. */
3395 	if (BGE_IS_5717_PLUS(sc) ||
3396 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3397 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3398 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3399 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3400 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3401 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3402 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3403 	else
3404 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3405 	/* Enable auto polling for BCM570[0-5]. */
3406 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3407 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3408 
3409 	/*
3410 	 * All Broadcom controllers have 4GB boundary DMA bug.
3411 	 * Whenever an address crosses a multiple of the 4GB boundary
3412 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3413 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3414 	 * state machine will lockup and cause the device to hang.
3415 	 */
3416 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3417 
3418 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3419 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3420 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3421 
3422 	/*
3423 	 * BCM5719 cannot handle DMA requests for DMA segments that
3424 	 * have larger than 4KB in size.  However the maximum DMA
3425 	 * segment size created in DMA tag is 4KB for TSO, so we
3426 	 * wouldn't encounter the issue here.
3427 	 */
3428 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3429 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3430 
3431 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3432 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3433 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3434 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3435 			sc->bge_flags |= BGE_FLAG_5788;
3436 	}
3437 
3438 	capmask = BMSR_DEFCAPMASK;
3439 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3440 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3441 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3442 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3443 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3444 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3445 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3446 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3447 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3448 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3449 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3450 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3451 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3452 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3453 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3454 		/* These chips are 10/100 only. */
3455 		capmask &= ~BMSR_EXTSTAT;
3456 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3457 	}
3458 
3459 	/*
3460 	 * Some controllers seem to require a special firmware to use
3461 	 * TSO. But the firmware is not available to FreeBSD and Linux
3462 	 * claims that the TSO performed by the firmware is slower than
3463 	 * hardware based TSO. Moreover the firmware based TSO has one
3464 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3465 	 * header is greater than 80 bytes. A workaround for the TSO
3466 	 * bug exist but it seems it's too expensive than not using
3467 	 * TSO at all. Some hardwares also have the TSO bug so limit
3468 	 * the TSO to the controllers that are not affected TSO issues
3469 	 * (e.g. 5755 or higher).
3470 	 */
3471 	if (BGE_IS_5717_PLUS(sc)) {
3472 		/* BCM5717 requires different TSO configuration. */
3473 		sc->bge_flags |= BGE_FLAG_TSO3;
3474 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3475 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3476 			/* TSO on BCM5719 A0 does not work. */
3477 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3478 		}
3479 	} else if (BGE_IS_5755_PLUS(sc)) {
3480 		/*
3481 		 * BCM5754 and BCM5787 shares the same ASIC id so
3482 		 * explicit device id check is required.
3483 		 * Due to unknown reason TSO does not work on BCM5755M.
3484 		 */
3485 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3486 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3487 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3488 			sc->bge_flags |= BGE_FLAG_TSO;
3489 	}
3490 
3491 	/*
3492 	 * Check if this is a PCI-X or PCI Express device.
3493 	 */
3494 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3495 		/*
3496 		 * Found a PCI Express capabilities register, this
3497 		 * must be a PCI Express device.
3498 		 */
3499 		sc->bge_flags |= BGE_FLAG_PCIE;
3500 		sc->bge_expcap = reg;
3501 		/* Extract supported maximum payload size. */
3502 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3503 		    PCIER_DEVICE_CAP, 2);
3504 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3505 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3506 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3507 			sc->bge_expmrq = 2048;
3508 		else
3509 			sc->bge_expmrq = 4096;
3510 		pci_set_max_read_req(dev, sc->bge_expmrq);
3511 	} else {
3512 		/*
3513 		 * Check if the device is in PCI-X Mode.
3514 		 * (This bit is not valid on PCI Express controllers.)
3515 		 */
3516 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3517 			sc->bge_pcixcap = reg;
3518 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3519 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3520 			sc->bge_flags |= BGE_FLAG_PCIX;
3521 	}
3522 
3523 	/*
3524 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3525 	 * not actually a MAC controller bug but an issue with the embedded
3526 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3527 	 */
3528 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3529 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3530 	/*
3531 	 * Some PCI-X bridges are known to trigger write reordering to
3532 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3533 	 * caused by out-of-order TX completions.  Enable workaround for
3534 	 * PCI-X devices that live behind these bridges.
3535 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3536 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3537 	 */
3538 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3539 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3540 	/*
3541 	 * Allocate the interrupt, using MSI if possible.  These devices
3542 	 * support 8 MSI messages, but only the first one is used in
3543 	 * normal operation.
3544 	 */
3545 	rid = 0;
3546 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3547 		sc->bge_msicap = reg;
3548 		if (bge_can_use_msi(sc)) {
3549 			msicount = pci_msi_count(dev);
3550 			if (msicount > 1)
3551 				msicount = 1;
3552 		} else
3553 			msicount = 0;
3554 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3555 			rid = 1;
3556 			sc->bge_flags |= BGE_FLAG_MSI;
3557 		}
3558 	}
3559 
3560 	/*
3561 	 * All controllers except BCM5700 supports tagged status but
3562 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3563 	 * MSI on BCM5717 does not work.
3564 	 */
3565 #ifndef DEVICE_POLLING
3566 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3567 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3568 #endif
3569 
3570 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3571 	    RF_SHAREABLE | RF_ACTIVE);
3572 
3573 	if (sc->bge_irq == NULL) {
3574 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3575 		error = ENXIO;
3576 		goto fail;
3577 	}
3578 
3579 	bge_devinfo(sc);
3580 
3581 	sc->bge_asf_mode = 0;
3582 	/* No ASF if APE present. */
3583 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3584 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3585 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3586 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3587 			    BGE_HWCFG_ASF) {
3588 				sc->bge_asf_mode |= ASF_ENABLE;
3589 				sc->bge_asf_mode |= ASF_STACKUP;
3590 				if (BGE_IS_575X_PLUS(sc))
3591 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3592 			}
3593 		}
3594 	}
3595 
3596 	bge_stop_fw(sc);
3597 	bge_sig_pre_reset(sc, BGE_RESET_START);
3598 	if (bge_reset(sc)) {
3599 		device_printf(sc->bge_dev, "chip reset failed\n");
3600 		error = ENXIO;
3601 		goto fail;
3602 	}
3603 
3604 	bge_sig_legacy(sc, BGE_RESET_START);
3605 	bge_sig_post_reset(sc, BGE_RESET_START);
3606 
3607 	if (bge_chipinit(sc)) {
3608 		device_printf(sc->bge_dev, "chip initialization failed\n");
3609 		error = ENXIO;
3610 		goto fail;
3611 	}
3612 
3613 	error = bge_get_eaddr(sc, eaddr);
3614 	if (error) {
3615 		device_printf(sc->bge_dev,
3616 		    "failed to read station address\n");
3617 		error = ENXIO;
3618 		goto fail;
3619 	}
3620 
3621 	/* 5705 limits RX return ring to 512 entries. */
3622 	if (BGE_IS_5717_PLUS(sc))
3623 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3624 	else if (BGE_IS_5705_PLUS(sc))
3625 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3626 	else
3627 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3628 
3629 	if (bge_dma_alloc(sc)) {
3630 		device_printf(sc->bge_dev,
3631 		    "failed to allocate DMA resources\n");
3632 		error = ENXIO;
3633 		goto fail;
3634 	}
3635 
3636 	/* Set default tuneable values. */
3637 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3638 	sc->bge_rx_coal_ticks = 150;
3639 	sc->bge_tx_coal_ticks = 150;
3640 	sc->bge_rx_max_coal_bds = 10;
3641 	sc->bge_tx_max_coal_bds = 10;
3642 
3643 	/* Initialize checksum features to use. */
3644 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3645 	if (sc->bge_forced_udpcsum != 0)
3646 		sc->bge_csum_features |= CSUM_UDP;
3647 
3648 	/* Set up ifnet structure */
3649 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3650 	if (ifp == NULL) {
3651 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3652 		error = ENXIO;
3653 		goto fail;
3654 	}
3655 	ifp->if_softc = sc;
3656 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3658 	ifp->if_ioctl = bge_ioctl;
3659 	ifp->if_start = bge_start;
3660 	ifp->if_init = bge_init;
3661 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3662 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3663 	IFQ_SET_READY(&ifp->if_snd);
3664 	ifp->if_hwassist = sc->bge_csum_features;
3665 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3666 	    IFCAP_VLAN_MTU;
3667 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3668 		ifp->if_hwassist |= CSUM_TSO;
3669 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3670 	}
3671 #ifdef IFCAP_VLAN_HWCSUM
3672 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3673 #endif
3674 	ifp->if_capenable = ifp->if_capabilities;
3675 #ifdef DEVICE_POLLING
3676 	ifp->if_capabilities |= IFCAP_POLLING;
3677 #endif
3678 
3679 	/*
3680 	 * 5700 B0 chips do not support checksumming correctly due
3681 	 * to hardware bugs.
3682 	 */
3683 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3684 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3685 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3686 		ifp->if_hwassist = 0;
3687 	}
3688 
3689 	/*
3690 	 * Figure out what sort of media we have by checking the
3691 	 * hardware config word in the first 32k of NIC internal memory,
3692 	 * or fall back to examining the EEPROM if necessary.
3693 	 * Note: on some BCM5700 cards, this value appears to be unset.
3694 	 * If that's the case, we have to rely on identifying the NIC
3695 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3696 	 * SK-9D41.
3697 	 */
3698 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3699 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3700 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3701 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3702 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3703 		    sizeof(hwcfg))) {
3704 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3705 			error = ENXIO;
3706 			goto fail;
3707 		}
3708 		hwcfg = ntohl(hwcfg);
3709 	}
3710 
3711 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3712 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3713 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3714 		if (BGE_IS_5705_PLUS(sc)) {
3715 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3716 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3717 		} else
3718 			sc->bge_flags |= BGE_FLAG_TBI;
3719 	}
3720 
3721 	/* Set various PHY bug flags. */
3722 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3723 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3724 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3725 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3726 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3727 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3728 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3729 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3730 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3731 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3732 	if ((BGE_IS_5705_PLUS(sc)) &&
3733 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3734 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3735 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3736 	    !BGE_IS_5717_PLUS(sc)) {
3737 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3738 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3739 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3740 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3741 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3742 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3743 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3744 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3745 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3746 		} else
3747 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3748 	}
3749 
3750 	/*
3751 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3752 	 * 5705 A0 and A1 chips.
3753 	 */
3754 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3755 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3756 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3757 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3758 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3759 
3760 	if (sc->bge_flags & BGE_FLAG_TBI) {
3761 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3762 		    bge_ifmedia_sts);
3763 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3764 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3765 		    0, NULL);
3766 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3767 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3768 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3769 	} else {
3770 		/*
3771 		 * Do transceiver setup and tell the firmware the
3772 		 * driver is down so we can try to get access the
3773 		 * probe if ASF is running.  Retry a couple of times
3774 		 * if we get a conflict with the ASF firmware accessing
3775 		 * the PHY.
3776 		 */
3777 		trys = 0;
3778 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3779 again:
3780 		bge_asf_driver_up(sc);
3781 
3782 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3783 		    bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3784 		    MIIF_DOPAUSE);
3785 		if (error != 0) {
3786 			if (trys++ < 4) {
3787 				device_printf(sc->bge_dev, "Try again\n");
3788 				bge_miibus_writereg(sc->bge_dev,
3789 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3790 				goto again;
3791 			}
3792 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3793 			goto fail;
3794 		}
3795 
3796 		/*
3797 		 * Now tell the firmware we are going up after probing the PHY
3798 		 */
3799 		if (sc->bge_asf_mode & ASF_STACKUP)
3800 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3801 	}
3802 
3803 	/*
3804 	 * When using the BCM5701 in PCI-X mode, data corruption has
3805 	 * been observed in the first few bytes of some received packets.
3806 	 * Aligning the packet buffer in memory eliminates the corruption.
3807 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3808 	 * which do not support unaligned accesses, we will realign the
3809 	 * payloads by copying the received packets.
3810 	 */
3811 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3812 	    sc->bge_flags & BGE_FLAG_PCIX)
3813                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3814 
3815 	/*
3816 	 * Call MI attach routine.
3817 	 */
3818 	ether_ifattach(ifp, eaddr);
3819 
3820 	/* Tell upper layer we support long frames. */
3821 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3822 
3823 	/*
3824 	 * Hookup IRQ last.
3825 	 */
3826 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3827 		/* Take advantage of single-shot MSI. */
3828 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3829 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3830 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3831 		    taskqueue_thread_enqueue, &sc->bge_tq);
3832 		if (sc->bge_tq == NULL) {
3833 			device_printf(dev, "could not create taskqueue.\n");
3834 			ether_ifdetach(ifp);
3835 			error = ENOMEM;
3836 			goto fail;
3837 		}
3838 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3839 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3840 		if (error != 0) {
3841 			device_printf(dev, "could not start threads.\n");
3842 			ether_ifdetach(ifp);
3843 			goto fail;
3844 		}
3845 		error = bus_setup_intr(dev, sc->bge_irq,
3846 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3847 		    &sc->bge_intrhand);
3848 	} else
3849 		error = bus_setup_intr(dev, sc->bge_irq,
3850 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3851 		    &sc->bge_intrhand);
3852 
3853 	if (error) {
3854 		ether_ifdetach(ifp);
3855 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3856 	}
3857 
3858 fail:
3859 	if (error)
3860 		bge_detach(dev);
3861 	return (error);
3862 }
3863 
3864 static int
3865 bge_detach(device_t dev)
3866 {
3867 	struct bge_softc *sc;
3868 	struct ifnet *ifp;
3869 
3870 	sc = device_get_softc(dev);
3871 	ifp = sc->bge_ifp;
3872 
3873 #ifdef DEVICE_POLLING
3874 	if (ifp->if_capenable & IFCAP_POLLING)
3875 		ether_poll_deregister(ifp);
3876 #endif
3877 
3878 	if (device_is_attached(dev)) {
3879 		ether_ifdetach(ifp);
3880 		BGE_LOCK(sc);
3881 		bge_stop(sc);
3882 		BGE_UNLOCK(sc);
3883 		callout_drain(&sc->bge_stat_ch);
3884 	}
3885 
3886 	if (sc->bge_tq)
3887 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3888 
3889 	if (sc->bge_flags & BGE_FLAG_TBI)
3890 		ifmedia_removeall(&sc->bge_ifmedia);
3891 	else if (sc->bge_miibus != NULL) {
3892 		bus_generic_detach(dev);
3893 		device_delete_child(dev, sc->bge_miibus);
3894 	}
3895 
3896 	bge_release_resources(sc);
3897 
3898 	return (0);
3899 }
3900 
3901 static void
3902 bge_release_resources(struct bge_softc *sc)
3903 {
3904 	device_t dev;
3905 
3906 	dev = sc->bge_dev;
3907 
3908 	if (sc->bge_tq != NULL)
3909 		taskqueue_free(sc->bge_tq);
3910 
3911 	if (sc->bge_intrhand != NULL)
3912 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3913 
3914 	if (sc->bge_irq != NULL)
3915 		bus_release_resource(dev, SYS_RES_IRQ,
3916 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3917 
3918 	if (sc->bge_flags & BGE_FLAG_MSI)
3919 		pci_release_msi(dev);
3920 
3921 	if (sc->bge_res != NULL)
3922 		bus_release_resource(dev, SYS_RES_MEMORY,
3923 		    PCIR_BAR(0), sc->bge_res);
3924 
3925 	if (sc->bge_res2 != NULL)
3926 		bus_release_resource(dev, SYS_RES_MEMORY,
3927 		    PCIR_BAR(2), sc->bge_res2);
3928 
3929 	if (sc->bge_ifp != NULL)
3930 		if_free(sc->bge_ifp);
3931 
3932 	bge_dma_free(sc);
3933 
3934 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3935 		BGE_LOCK_DESTROY(sc);
3936 }
3937 
3938 static int
3939 bge_reset(struct bge_softc *sc)
3940 {
3941 	device_t dev;
3942 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
3943 	void (*write_op)(struct bge_softc *, int, int);
3944 	uint16_t devctl;
3945 	int i;
3946 
3947 	dev = sc->bge_dev;
3948 
3949 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3950 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3951 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3952 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3953 
3954 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3955 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3956 		if (sc->bge_flags & BGE_FLAG_PCIE)
3957 			write_op = bge_writemem_direct;
3958 		else
3959 			write_op = bge_writemem_ind;
3960 	} else
3961 		write_op = bge_writereg_ind;
3962 
3963 	/* Take APE lock when performing reset. */
3964 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3965 
3966 	/* Save some important PCI state. */
3967 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3968 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3969 
3970 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3971 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3972 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3973 
3974 	/* Disable fastboot on controllers that support it. */
3975 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3976 	    BGE_IS_5755_PLUS(sc)) {
3977 		if (bootverbose)
3978 			device_printf(dev, "Disabling fastboot\n");
3979 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3980 	}
3981 
3982 	/*
3983 	 * Write the magic number to SRAM at offset 0xB50.
3984 	 * When firmware finishes its initialization it will
3985 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3986 	 */
3987 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3988 
3989 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3990 
3991 	/* XXX: Broadcom Linux driver. */
3992 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3993 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3994 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
3995 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3996 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
3997 		}
3998 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3999 			/* Prevent PCIE link training during global reset */
4000 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4001 			reset |= 1 << 29;
4002 		}
4003 	}
4004 
4005 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4006 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4007 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4008 		    val | BGE_VCPU_STATUS_DRV_RESET);
4009 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4010 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4011 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4012 	}
4013 
4014 	/*
4015 	 * Set GPHY Power Down Override to leave GPHY
4016 	 * powered up in D0 uninitialized.
4017 	 */
4018 	if (BGE_IS_5705_PLUS(sc) &&
4019 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4020 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4021 
4022 	/* Issue global reset */
4023 	write_op(sc, BGE_MISC_CFG, reset);
4024 
4025 	if (sc->bge_flags & BGE_FLAG_PCIE)
4026 		DELAY(100 * 1000);
4027 	else
4028 		DELAY(1000);
4029 
4030 	/* XXX: Broadcom Linux driver. */
4031 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4032 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4033 			DELAY(500000); /* wait for link training to complete */
4034 			val = pci_read_config(dev, 0xC4, 4);
4035 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4036 		}
4037 		devctl = pci_read_config(dev,
4038 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4039 		/* Clear enable no snoop and disable relaxed ordering. */
4040 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4041 		    PCIEM_CTL_NOSNOOP_ENABLE);
4042 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4043 		    devctl, 2);
4044 		pci_set_max_read_req(dev, sc->bge_expmrq);
4045 		/* Clear error status. */
4046 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4047 		    PCIEM_STA_CORRECTABLE_ERROR |
4048 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4049 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4050 	}
4051 
4052 	/* Reset some of the PCI state that got zapped by reset. */
4053 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4054 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4055 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4056 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4057 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4058 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4059 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4060 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4061 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4062 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4063 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4064 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4065 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4066 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4067 	/*
4068 	 * Disable PCI-X relaxed ordering to ensure status block update
4069 	 * comes first then packet buffer DMA. Otherwise driver may
4070 	 * read stale status block.
4071 	 */
4072 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4073 		devctl = pci_read_config(dev,
4074 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4075 		devctl &= ~PCIXM_COMMAND_ERO;
4076 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4077 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4078 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4079 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4080 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4081 			    PCIXM_COMMAND_MAX_READ);
4082 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4083 		}
4084 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4085 		    devctl, 2);
4086 	}
4087 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4088 	if (BGE_IS_5714_FAMILY(sc)) {
4089 		/* This chip disables MSI on reset. */
4090 		if (sc->bge_flags & BGE_FLAG_MSI) {
4091 			val = pci_read_config(dev,
4092 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4093 			pci_write_config(dev,
4094 			    sc->bge_msicap + PCIR_MSI_CTRL,
4095 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4096 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4097 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4098 			    val | BGE_MSIMODE_ENABLE);
4099 		}
4100 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4101 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4102 	} else
4103 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4104 
4105 	/* Fix up byte swapping. */
4106 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4107 
4108 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4109 	val = (val & ~mac_mode_mask) | mac_mode;
4110 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4111 	DELAY(40);
4112 
4113 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4114 
4115 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4116 		for (i = 0; i < BGE_TIMEOUT; i++) {
4117 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4118 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4119 				break;
4120 			DELAY(100);
4121 		}
4122 		if (i == BGE_TIMEOUT) {
4123 			device_printf(dev, "reset timed out\n");
4124 			return (1);
4125 		}
4126 	} else {
4127 		/*
4128 		 * Poll until we see the 1's complement of the magic number.
4129 		 * This indicates that the firmware initialization is complete.
4130 		 * We expect this to fail if no chip containing the Ethernet
4131 		 * address is fitted though.
4132 		 */
4133 		for (i = 0; i < BGE_TIMEOUT; i++) {
4134 			DELAY(10);
4135 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4136 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4137 				break;
4138 		}
4139 
4140 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4141 			device_printf(dev,
4142 			    "firmware handshake timed out, found 0x%08x\n",
4143 			    val);
4144 		/* BCM57765 A0 needs additional time before accessing. */
4145 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4146 			DELAY(10 * 1000);	/* XXX */
4147 	}
4148 
4149 	/*
4150 	 * The 5704 in TBI mode apparently needs some special
4151 	 * adjustment to insure the SERDES drive level is set
4152 	 * to 1.2V.
4153 	 */
4154 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4155 	    sc->bge_flags & BGE_FLAG_TBI) {
4156 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4157 		val = (val & ~0xFFF) | 0x880;
4158 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4159 	}
4160 
4161 	/* XXX: Broadcom Linux driver. */
4162 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4163 	    !BGE_IS_5717_PLUS(sc) &&
4164 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4165 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4166 		/* Enable Data FIFO protection. */
4167 		val = CSR_READ_4(sc, 0x7C00);
4168 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4169 	}
4170 
4171 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4172 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4173 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4174 
4175 	return (0);
4176 }
4177 
4178 static __inline void
4179 bge_rxreuse_std(struct bge_softc *sc, int i)
4180 {
4181 	struct bge_rx_bd *r;
4182 
4183 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4184 	r->bge_flags = BGE_RXBDFLAG_END;
4185 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4186 	r->bge_idx = i;
4187 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4188 }
4189 
4190 static __inline void
4191 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4192 {
4193 	struct bge_extrx_bd *r;
4194 
4195 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4196 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4197 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4198 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4199 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4200 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4201 	r->bge_idx = i;
4202 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4203 }
4204 
4205 /*
4206  * Frame reception handling. This is called if there's a frame
4207  * on the receive return list.
4208  *
4209  * Note: we have to be able to handle two possibilities here:
4210  * 1) the frame is from the jumbo receive ring
4211  * 2) the frame is from the standard receive ring
4212  */
4213 
4214 static int
4215 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4216 {
4217 	struct ifnet *ifp;
4218 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4219 	uint16_t rx_cons;
4220 
4221 	rx_cons = sc->bge_rx_saved_considx;
4222 
4223 	/* Nothing to do. */
4224 	if (rx_cons == rx_prod)
4225 		return (rx_npkts);
4226 
4227 	ifp = sc->bge_ifp;
4228 
4229 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4230 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4231 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4232 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4233 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4234 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4235 	    (MCLBYTES - ETHER_ALIGN))
4236 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4237 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4238 
4239 	while (rx_cons != rx_prod) {
4240 		struct bge_rx_bd	*cur_rx;
4241 		uint32_t		rxidx;
4242 		struct mbuf		*m = NULL;
4243 		uint16_t		vlan_tag = 0;
4244 		int			have_tag = 0;
4245 
4246 #ifdef DEVICE_POLLING
4247 		if (ifp->if_capenable & IFCAP_POLLING) {
4248 			if (sc->rxcycles <= 0)
4249 				break;
4250 			sc->rxcycles--;
4251 		}
4252 #endif
4253 
4254 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4255 
4256 		rxidx = cur_rx->bge_idx;
4257 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4258 
4259 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4260 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4261 			have_tag = 1;
4262 			vlan_tag = cur_rx->bge_vlan_tag;
4263 		}
4264 
4265 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4266 			jumbocnt++;
4267 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4268 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4269 				bge_rxreuse_jumbo(sc, rxidx);
4270 				continue;
4271 			}
4272 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4273 				bge_rxreuse_jumbo(sc, rxidx);
4274 				ifp->if_iqdrops++;
4275 				continue;
4276 			}
4277 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4278 		} else {
4279 			stdcnt++;
4280 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4281 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4282 				bge_rxreuse_std(sc, rxidx);
4283 				continue;
4284 			}
4285 			if (bge_newbuf_std(sc, rxidx) != 0) {
4286 				bge_rxreuse_std(sc, rxidx);
4287 				ifp->if_iqdrops++;
4288 				continue;
4289 			}
4290 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4291 		}
4292 
4293 		ifp->if_ipackets++;
4294 #ifndef __NO_STRICT_ALIGNMENT
4295 		/*
4296 		 * For architectures with strict alignment we must make sure
4297 		 * the payload is aligned.
4298 		 */
4299 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4300 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4301 			    cur_rx->bge_len);
4302 			m->m_data += ETHER_ALIGN;
4303 		}
4304 #endif
4305 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4306 		m->m_pkthdr.rcvif = ifp;
4307 
4308 		if (ifp->if_capenable & IFCAP_RXCSUM)
4309 			bge_rxcsum(sc, cur_rx, m);
4310 
4311 		/*
4312 		 * If we received a packet with a vlan tag,
4313 		 * attach that information to the packet.
4314 		 */
4315 		if (have_tag) {
4316 			m->m_pkthdr.ether_vtag = vlan_tag;
4317 			m->m_flags |= M_VLANTAG;
4318 		}
4319 
4320 		if (holdlck != 0) {
4321 			BGE_UNLOCK(sc);
4322 			(*ifp->if_input)(ifp, m);
4323 			BGE_LOCK(sc);
4324 		} else
4325 			(*ifp->if_input)(ifp, m);
4326 		rx_npkts++;
4327 
4328 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4329 			return (rx_npkts);
4330 	}
4331 
4332 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4333 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4334 	if (stdcnt > 0)
4335 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4336 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4337 
4338 	if (jumbocnt > 0)
4339 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4340 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4341 
4342 	sc->bge_rx_saved_considx = rx_cons;
4343 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4344 	if (stdcnt)
4345 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4346 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4347 	if (jumbocnt)
4348 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4349 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4350 #ifdef notyet
4351 	/*
4352 	 * This register wraps very quickly under heavy packet drops.
4353 	 * If you need correct statistics, you can enable this check.
4354 	 */
4355 	if (BGE_IS_5705_PLUS(sc))
4356 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4357 #endif
4358 	return (rx_npkts);
4359 }
4360 
4361 static void
4362 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4363 {
4364 
4365 	if (BGE_IS_5717_PLUS(sc)) {
4366 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4367 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4368 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4369 				if ((cur_rx->bge_error_flag &
4370 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4371 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4372 			}
4373 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4374 				m->m_pkthdr.csum_data =
4375 				    cur_rx->bge_tcp_udp_csum;
4376 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4377 				    CSUM_PSEUDO_HDR;
4378 			}
4379 		}
4380 	} else {
4381 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4382 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4383 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4384 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4385 		}
4386 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4387 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4388 			m->m_pkthdr.csum_data =
4389 			    cur_rx->bge_tcp_udp_csum;
4390 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4391 			    CSUM_PSEUDO_HDR;
4392 		}
4393 	}
4394 }
4395 
4396 static void
4397 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4398 {
4399 	struct bge_tx_bd *cur_tx;
4400 	struct ifnet *ifp;
4401 
4402 	BGE_LOCK_ASSERT(sc);
4403 
4404 	/* Nothing to do. */
4405 	if (sc->bge_tx_saved_considx == tx_cons)
4406 		return;
4407 
4408 	ifp = sc->bge_ifp;
4409 
4410 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4411 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4412 	/*
4413 	 * Go through our tx ring and free mbufs for those
4414 	 * frames that have been sent.
4415 	 */
4416 	while (sc->bge_tx_saved_considx != tx_cons) {
4417 		uint32_t		idx;
4418 
4419 		idx = sc->bge_tx_saved_considx;
4420 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4421 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4422 			ifp->if_opackets++;
4423 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4424 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4425 			    sc->bge_cdata.bge_tx_dmamap[idx],
4426 			    BUS_DMASYNC_POSTWRITE);
4427 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4428 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4429 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4430 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4431 		}
4432 		sc->bge_txcnt--;
4433 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4434 	}
4435 
4436 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4437 	if (sc->bge_txcnt == 0)
4438 		sc->bge_timer = 0;
4439 }
4440 
4441 #ifdef DEVICE_POLLING
4442 static int
4443 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4444 {
4445 	struct bge_softc *sc = ifp->if_softc;
4446 	uint16_t rx_prod, tx_cons;
4447 	uint32_t statusword;
4448 	int rx_npkts = 0;
4449 
4450 	BGE_LOCK(sc);
4451 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4452 		BGE_UNLOCK(sc);
4453 		return (rx_npkts);
4454 	}
4455 
4456 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4457 	    sc->bge_cdata.bge_status_map,
4458 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4459 	/* Fetch updates from the status block. */
4460 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4461 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4462 
4463 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4464 	/* Clear the status so the next pass only sees the changes. */
4465 	sc->bge_ldata.bge_status_block->bge_status = 0;
4466 
4467 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4468 	    sc->bge_cdata.bge_status_map,
4469 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4470 
4471 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4472 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4473 		sc->bge_link_evt++;
4474 
4475 	if (cmd == POLL_AND_CHECK_STATUS)
4476 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4477 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4478 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4479 			bge_link_upd(sc);
4480 
4481 	sc->rxcycles = count;
4482 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4483 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4484 		BGE_UNLOCK(sc);
4485 		return (rx_npkts);
4486 	}
4487 	bge_txeof(sc, tx_cons);
4488 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4489 		bge_start_locked(ifp);
4490 
4491 	BGE_UNLOCK(sc);
4492 	return (rx_npkts);
4493 }
4494 #endif /* DEVICE_POLLING */
4495 
4496 static int
4497 bge_msi_intr(void *arg)
4498 {
4499 	struct bge_softc *sc;
4500 
4501 	sc = (struct bge_softc *)arg;
4502 	/*
4503 	 * This interrupt is not shared and controller already
4504 	 * disabled further interrupt.
4505 	 */
4506 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4507 	return (FILTER_HANDLED);
4508 }
4509 
4510 static void
4511 bge_intr_task(void *arg, int pending)
4512 {
4513 	struct bge_softc *sc;
4514 	struct ifnet *ifp;
4515 	uint32_t status, status_tag;
4516 	uint16_t rx_prod, tx_cons;
4517 
4518 	sc = (struct bge_softc *)arg;
4519 	ifp = sc->bge_ifp;
4520 
4521 	BGE_LOCK(sc);
4522 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4523 		BGE_UNLOCK(sc);
4524 		return;
4525 	}
4526 
4527 	/* Get updated status block. */
4528 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4529 	    sc->bge_cdata.bge_status_map,
4530 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4531 
4532 	/* Save producer/consumer indices. */
4533 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4534 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4535 	status = sc->bge_ldata.bge_status_block->bge_status;
4536 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4537 	/* Dirty the status flag. */
4538 	sc->bge_ldata.bge_status_block->bge_status = 0;
4539 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4540 	    sc->bge_cdata.bge_status_map,
4541 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4542 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4543 		status_tag = 0;
4544 
4545 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4546 		bge_link_upd(sc);
4547 
4548 	/* Let controller work. */
4549 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4550 
4551 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4552 	    sc->bge_rx_saved_considx != rx_prod) {
4553 		/* Check RX return ring producer/consumer. */
4554 		BGE_UNLOCK(sc);
4555 		bge_rxeof(sc, rx_prod, 0);
4556 		BGE_LOCK(sc);
4557 	}
4558 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4559 		/* Check TX ring producer/consumer. */
4560 		bge_txeof(sc, tx_cons);
4561 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4562 			bge_start_locked(ifp);
4563 	}
4564 	BGE_UNLOCK(sc);
4565 }
4566 
4567 static void
4568 bge_intr(void *xsc)
4569 {
4570 	struct bge_softc *sc;
4571 	struct ifnet *ifp;
4572 	uint32_t statusword;
4573 	uint16_t rx_prod, tx_cons;
4574 
4575 	sc = xsc;
4576 
4577 	BGE_LOCK(sc);
4578 
4579 	ifp = sc->bge_ifp;
4580 
4581 #ifdef DEVICE_POLLING
4582 	if (ifp->if_capenable & IFCAP_POLLING) {
4583 		BGE_UNLOCK(sc);
4584 		return;
4585 	}
4586 #endif
4587 
4588 	/*
4589 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4590 	 * disable interrupts by writing nonzero like we used to, since with
4591 	 * our current organization this just gives complications and
4592 	 * pessimizations for re-enabling interrupts.  We used to have races
4593 	 * instead of the necessary complications.  Disabling interrupts
4594 	 * would just reduce the chance of a status update while we are
4595 	 * running (by switching to the interrupt-mode coalescence
4596 	 * parameters), but this chance is already very low so it is more
4597 	 * efficient to get another interrupt than prevent it.
4598 	 *
4599 	 * We do the ack first to ensure another interrupt if there is a
4600 	 * status update after the ack.  We don't check for the status
4601 	 * changing later because it is more efficient to get another
4602 	 * interrupt than prevent it, not quite as above (not checking is
4603 	 * a smaller optimization than not toggling the interrupt enable,
4604 	 * since checking doesn't involve PCI accesses and toggling require
4605 	 * the status check).  So toggling would probably be a pessimization
4606 	 * even with MSI.  It would only be needed for using a task queue.
4607 	 */
4608 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4609 
4610 	/*
4611 	 * Do the mandatory PCI flush as well as get the link status.
4612 	 */
4613 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4614 
4615 	/* Make sure the descriptor ring indexes are coherent. */
4616 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4617 	    sc->bge_cdata.bge_status_map,
4618 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4619 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4620 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4621 	sc->bge_ldata.bge_status_block->bge_status = 0;
4622 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4623 	    sc->bge_cdata.bge_status_map,
4624 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4625 
4626 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4627 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4628 	    statusword || sc->bge_link_evt)
4629 		bge_link_upd(sc);
4630 
4631 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4632 		/* Check RX return ring producer/consumer. */
4633 		bge_rxeof(sc, rx_prod, 1);
4634 	}
4635 
4636 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4637 		/* Check TX ring producer/consumer. */
4638 		bge_txeof(sc, tx_cons);
4639 	}
4640 
4641 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4642 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4643 		bge_start_locked(ifp);
4644 
4645 	BGE_UNLOCK(sc);
4646 }
4647 
4648 static void
4649 bge_asf_driver_up(struct bge_softc *sc)
4650 {
4651 	if (sc->bge_asf_mode & ASF_STACKUP) {
4652 		/* Send ASF heartbeat aprox. every 2s */
4653 		if (sc->bge_asf_count)
4654 			sc->bge_asf_count --;
4655 		else {
4656 			sc->bge_asf_count = 2;
4657 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4658 			    BGE_FW_CMD_DRV_ALIVE);
4659 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4660 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4661 			    BGE_FW_HB_TIMEOUT_SEC);
4662 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4663 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4664 			    BGE_RX_CPU_DRV_EVENT);
4665 		}
4666 	}
4667 }
4668 
4669 static void
4670 bge_tick(void *xsc)
4671 {
4672 	struct bge_softc *sc = xsc;
4673 	struct mii_data *mii = NULL;
4674 
4675 	BGE_LOCK_ASSERT(sc);
4676 
4677 	/* Synchronize with possible callout reset/stop. */
4678 	if (callout_pending(&sc->bge_stat_ch) ||
4679 	    !callout_active(&sc->bge_stat_ch))
4680 		return;
4681 
4682 	if (BGE_IS_5705_PLUS(sc))
4683 		bge_stats_update_regs(sc);
4684 	else
4685 		bge_stats_update(sc);
4686 
4687 	/* XXX Add APE heartbeat check here? */
4688 
4689 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4690 		mii = device_get_softc(sc->bge_miibus);
4691 		/*
4692 		 * Do not touch PHY if we have link up. This could break
4693 		 * IPMI/ASF mode or produce extra input errors
4694 		 * (extra errors was reported for bcm5701 & bcm5704).
4695 		 */
4696 		if (!sc->bge_link)
4697 			mii_tick(mii);
4698 	} else {
4699 		/*
4700 		 * Since in TBI mode auto-polling can't be used we should poll
4701 		 * link status manually. Here we register pending link event
4702 		 * and trigger interrupt.
4703 		 */
4704 #ifdef DEVICE_POLLING
4705 		/* In polling mode we poll link state in bge_poll(). */
4706 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4707 #endif
4708 		{
4709 		sc->bge_link_evt++;
4710 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4711 		    sc->bge_flags & BGE_FLAG_5788)
4712 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4713 		else
4714 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4715 		}
4716 	}
4717 
4718 	bge_asf_driver_up(sc);
4719 	bge_watchdog(sc);
4720 
4721 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4722 }
4723 
4724 static void
4725 bge_stats_update_regs(struct bge_softc *sc)
4726 {
4727 	struct ifnet *ifp;
4728 	struct bge_mac_stats *stats;
4729 
4730 	ifp = sc->bge_ifp;
4731 	stats = &sc->bge_mac_stats;
4732 
4733 	stats->ifHCOutOctets +=
4734 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4735 	stats->etherStatsCollisions +=
4736 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4737 	stats->outXonSent +=
4738 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4739 	stats->outXoffSent +=
4740 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4741 	stats->dot3StatsInternalMacTransmitErrors +=
4742 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4743 	stats->dot3StatsSingleCollisionFrames +=
4744 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4745 	stats->dot3StatsMultipleCollisionFrames +=
4746 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4747 	stats->dot3StatsDeferredTransmissions +=
4748 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4749 	stats->dot3StatsExcessiveCollisions +=
4750 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4751 	stats->dot3StatsLateCollisions +=
4752 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4753 	stats->ifHCOutUcastPkts +=
4754 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4755 	stats->ifHCOutMulticastPkts +=
4756 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4757 	stats->ifHCOutBroadcastPkts +=
4758 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4759 
4760 	stats->ifHCInOctets +=
4761 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4762 	stats->etherStatsFragments +=
4763 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4764 	stats->ifHCInUcastPkts +=
4765 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4766 	stats->ifHCInMulticastPkts +=
4767 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4768 	stats->ifHCInBroadcastPkts +=
4769 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4770 	stats->dot3StatsFCSErrors +=
4771 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4772 	stats->dot3StatsAlignmentErrors +=
4773 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4774 	stats->xonPauseFramesReceived +=
4775 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4776 	stats->xoffPauseFramesReceived +=
4777 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4778 	stats->macControlFramesReceived +=
4779 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4780 	stats->xoffStateEntered +=
4781 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4782 	stats->dot3StatsFramesTooLong +=
4783 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4784 	stats->etherStatsJabbers +=
4785 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4786 	stats->etherStatsUndersizePkts +=
4787 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4788 
4789 	stats->FramesDroppedDueToFilters +=
4790 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4791 	stats->DmaWriteQueueFull +=
4792 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4793 	stats->DmaWriteHighPriQueueFull +=
4794 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4795 	stats->NoMoreRxBDs +=
4796 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4797 	/*
4798 	 * XXX
4799 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4800 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4801 	 * includes number of unwanted multicast frames.  This comes
4802 	 * from silicon bug and known workaround to get rough(not
4803 	 * exact) counter is to enable interrupt on MBUF low water
4804 	 * attention.  This can be accomplished by setting
4805 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4806 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4807 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4808 	 * However that change would generate more interrupts and
4809 	 * there are still possibilities of losing multiple frames
4810 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4811 	 * Given that the workaround still would not get correct
4812 	 * counter I don't think it's worth to implement it.  So
4813 	 * ignore reading the counter on controllers that have the
4814 	 * silicon bug.
4815 	 */
4816 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4817 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4818 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4819 		stats->InputDiscards +=
4820 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4821 	stats->InputErrors +=
4822 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4823 	stats->RecvThresholdHit +=
4824 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4825 
4826 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4827 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4828 	    stats->InputErrors);
4829 }
4830 
4831 static void
4832 bge_stats_clear_regs(struct bge_softc *sc)
4833 {
4834 
4835 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4836 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4837 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4838 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4839 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4840 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4841 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4842 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4843 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4844 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4845 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4846 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4847 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4848 
4849 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4850 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4851 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4852 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4853 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4854 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4855 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4856 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4857 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4858 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4859 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4860 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4861 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4862 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4863 
4864 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4865 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4866 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4867 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4868 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4869 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4870 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4871 }
4872 
4873 static void
4874 bge_stats_update(struct bge_softc *sc)
4875 {
4876 	struct ifnet *ifp;
4877 	bus_size_t stats;
4878 	uint32_t cnt;	/* current register value */
4879 
4880 	ifp = sc->bge_ifp;
4881 
4882 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4883 
4884 #define	READ_STAT(sc, stats, stat) \
4885 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4886 
4887 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4888 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4889 	sc->bge_tx_collisions = cnt;
4890 
4891 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4892 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4893 	sc->bge_rx_nobds = cnt;
4894 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4895 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4896 	sc->bge_rx_inerrs = cnt;
4897 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4898 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4899 	sc->bge_rx_discards = cnt;
4900 
4901 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4902 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4903 	sc->bge_tx_discards = cnt;
4904 
4905 #undef	READ_STAT
4906 }
4907 
4908 /*
4909  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4910  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4911  * but when such padded frames employ the bge IP/TCP checksum offload,
4912  * the hardware checksum assist gives incorrect results (possibly
4913  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4914  * If we pad such runts with zeros, the onboard checksum comes out correct.
4915  */
4916 static __inline int
4917 bge_cksum_pad(struct mbuf *m)
4918 {
4919 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4920 	struct mbuf *last;
4921 
4922 	/* If there's only the packet-header and we can pad there, use it. */
4923 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4924 	    M_TRAILINGSPACE(m) >= padlen) {
4925 		last = m;
4926 	} else {
4927 		/*
4928 		 * Walk packet chain to find last mbuf. We will either
4929 		 * pad there, or append a new mbuf and pad it.
4930 		 */
4931 		for (last = m; last->m_next != NULL; last = last->m_next);
4932 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4933 			/* Allocate new empty mbuf, pad it. Compact later. */
4934 			struct mbuf *n;
4935 
4936 			MGET(n, M_NOWAIT, MT_DATA);
4937 			if (n == NULL)
4938 				return (ENOBUFS);
4939 			n->m_len = 0;
4940 			last->m_next = n;
4941 			last = n;
4942 		}
4943 	}
4944 
4945 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4946 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4947 	last->m_len += padlen;
4948 	m->m_pkthdr.len += padlen;
4949 
4950 	return (0);
4951 }
4952 
4953 static struct mbuf *
4954 bge_check_short_dma(struct mbuf *m)
4955 {
4956 	struct mbuf *n;
4957 	int found;
4958 
4959 	/*
4960 	 * If device receive two back-to-back send BDs with less than
4961 	 * or equal to 8 total bytes then the device may hang.  The two
4962 	 * back-to-back send BDs must in the same frame for this failure
4963 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4964 	 * send BDs are there. If this is the case, allocate new mbuf
4965 	 * and copy the frame to workaround the silicon bug.
4966 	 */
4967 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4968 		if (n->m_len < 8) {
4969 			found++;
4970 			if (found > 1)
4971 				break;
4972 			continue;
4973 		}
4974 		found = 0;
4975 	}
4976 
4977 	if (found > 1) {
4978 		n = m_defrag(m, M_NOWAIT);
4979 		if (n == NULL)
4980 			m_freem(m);
4981 	} else
4982 		n = m;
4983 	return (n);
4984 }
4985 
4986 static struct mbuf *
4987 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4988     uint16_t *flags)
4989 {
4990 	struct ip *ip;
4991 	struct tcphdr *tcp;
4992 	struct mbuf *n;
4993 	uint16_t hlen;
4994 	uint32_t poff;
4995 
4996 	if (M_WRITABLE(m) == 0) {
4997 		/* Get a writable copy. */
4998 		n = m_dup(m, M_NOWAIT);
4999 		m_freem(m);
5000 		if (n == NULL)
5001 			return (NULL);
5002 		m = n;
5003 	}
5004 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5005 	if (m == NULL)
5006 		return (NULL);
5007 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5008 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5009 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5010 	if (m == NULL)
5011 		return (NULL);
5012 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5013 	m = m_pullup(m, poff + (tcp->th_off << 2));
5014 	if (m == NULL)
5015 		return (NULL);
5016 	/*
5017 	 * It seems controller doesn't modify IP length and TCP pseudo
5018 	 * checksum. These checksum computed by upper stack should be 0.
5019 	 */
5020 	*mss = m->m_pkthdr.tso_segsz;
5021 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5022 	ip->ip_sum = 0;
5023 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5024 	/* Clear pseudo checksum computed by TCP stack. */
5025 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5026 	tcp->th_sum = 0;
5027 	/*
5028 	 * Broadcom controllers uses different descriptor format for
5029 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5030 	 * license issue and lower performance of firmware based TSO
5031 	 * we only support hardware based TSO.
5032 	 */
5033 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5034 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5035 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5036 		/*
5037 		 * For BCM5717 and newer controllers, hardware based TSO
5038 		 * uses the 14 lower bits of the bge_mss field to store the
5039 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5040 		 * the IP/TCP header length.  The upper 6 bits of the header
5041 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5042 		 * frames are supported.
5043 		 */
5044 		*mss |= ((hlen & 0x3) << 14);
5045 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5046 	} else {
5047 		/*
5048 		 * For BCM5755 and newer controllers, hardware based TSO uses
5049 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5050 		 * store the IP/TCP header length. Jumbo frames are not
5051 		 * supported.
5052 		 */
5053 		*mss |= (hlen << 11);
5054 	}
5055 	return (m);
5056 }
5057 
5058 /*
5059  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5060  * pointers to descriptors.
5061  */
5062 static int
5063 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5064 {
5065 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5066 	bus_dmamap_t		map;
5067 	struct bge_tx_bd	*d;
5068 	struct mbuf		*m = *m_head;
5069 	uint32_t		idx = *txidx;
5070 	uint16_t		csum_flags, mss, vlan_tag;
5071 	int			nsegs, i, error;
5072 
5073 	csum_flags = 0;
5074 	mss = 0;
5075 	vlan_tag = 0;
5076 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5077 	    m->m_next != NULL) {
5078 		*m_head = bge_check_short_dma(m);
5079 		if (*m_head == NULL)
5080 			return (ENOBUFS);
5081 		m = *m_head;
5082 	}
5083 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5084 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5085 		if (*m_head == NULL)
5086 			return (ENOBUFS);
5087 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5088 		    BGE_TXBDFLAG_CPU_POST_DMA;
5089 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5090 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5091 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5092 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5093 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5094 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5095 			    (error = bge_cksum_pad(m)) != 0) {
5096 				m_freem(m);
5097 				*m_head = NULL;
5098 				return (error);
5099 			}
5100 		}
5101 	}
5102 
5103 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5104 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5105 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5106 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5107 		if (sc->bge_forced_collapse > 0 &&
5108 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5109 			/*
5110 			 * Forcedly collapse mbuf chains to overcome hardware
5111 			 * limitation which only support a single outstanding
5112 			 * DMA read operation.
5113 			 */
5114 			if (sc->bge_forced_collapse == 1)
5115 				m = m_defrag(m, M_NOWAIT);
5116 			else
5117 				m = m_collapse(m, M_NOWAIT,
5118 				    sc->bge_forced_collapse);
5119 			if (m == NULL)
5120 				m = *m_head;
5121 			*m_head = m;
5122 		}
5123 	}
5124 
5125 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5126 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5127 	    &nsegs, BUS_DMA_NOWAIT);
5128 	if (error == EFBIG) {
5129 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5130 		if (m == NULL) {
5131 			m_freem(*m_head);
5132 			*m_head = NULL;
5133 			return (ENOBUFS);
5134 		}
5135 		*m_head = m;
5136 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5137 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5138 		if (error) {
5139 			m_freem(m);
5140 			*m_head = NULL;
5141 			return (error);
5142 		}
5143 	} else if (error != 0)
5144 		return (error);
5145 
5146 	/* Check if we have enough free send BDs. */
5147 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5148 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5149 		return (ENOBUFS);
5150 	}
5151 
5152 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5153 
5154 	if (m->m_flags & M_VLANTAG) {
5155 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5156 		vlan_tag = m->m_pkthdr.ether_vtag;
5157 	}
5158 	for (i = 0; ; i++) {
5159 		d = &sc->bge_ldata.bge_tx_ring[idx];
5160 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5161 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5162 		d->bge_len = segs[i].ds_len;
5163 		d->bge_flags = csum_flags;
5164 		d->bge_vlan_tag = vlan_tag;
5165 		d->bge_mss = mss;
5166 		if (i == nsegs - 1)
5167 			break;
5168 		BGE_INC(idx, BGE_TX_RING_CNT);
5169 	}
5170 
5171 	/* Mark the last segment as end of packet... */
5172 	d->bge_flags |= BGE_TXBDFLAG_END;
5173 
5174 	/*
5175 	 * Insure that the map for this transmission
5176 	 * is placed at the array index of the last descriptor
5177 	 * in this chain.
5178 	 */
5179 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5180 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5181 	sc->bge_cdata.bge_tx_chain[idx] = m;
5182 	sc->bge_txcnt += nsegs;
5183 
5184 	BGE_INC(idx, BGE_TX_RING_CNT);
5185 	*txidx = idx;
5186 
5187 	return (0);
5188 }
5189 
5190 /*
5191  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5192  * to the mbuf data regions directly in the transmit descriptors.
5193  */
5194 static void
5195 bge_start_locked(struct ifnet *ifp)
5196 {
5197 	struct bge_softc *sc;
5198 	struct mbuf *m_head;
5199 	uint32_t prodidx;
5200 	int count;
5201 
5202 	sc = ifp->if_softc;
5203 	BGE_LOCK_ASSERT(sc);
5204 
5205 	if (!sc->bge_link ||
5206 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5207 	    IFF_DRV_RUNNING)
5208 		return;
5209 
5210 	prodidx = sc->bge_tx_prodidx;
5211 
5212 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5213 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5214 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5215 			break;
5216 		}
5217 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5218 		if (m_head == NULL)
5219 			break;
5220 
5221 		/*
5222 		 * Pack the data into the transmit ring. If we
5223 		 * don't have room, set the OACTIVE flag and wait
5224 		 * for the NIC to drain the ring.
5225 		 */
5226 		if (bge_encap(sc, &m_head, &prodidx)) {
5227 			if (m_head == NULL)
5228 				break;
5229 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5230 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5231 			break;
5232 		}
5233 		++count;
5234 
5235 		/*
5236 		 * If there's a BPF listener, bounce a copy of this frame
5237 		 * to him.
5238 		 */
5239 #ifdef ETHER_BPF_MTAP
5240 		ETHER_BPF_MTAP(ifp, m_head);
5241 #else
5242 		BPF_MTAP(ifp, m_head);
5243 #endif
5244 	}
5245 
5246 	if (count > 0) {
5247 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5248 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5249 		/* Transmit. */
5250 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5251 		/* 5700 b2 errata */
5252 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5253 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5254 
5255 		sc->bge_tx_prodidx = prodidx;
5256 
5257 		/*
5258 		 * Set a timeout in case the chip goes out to lunch.
5259 		 */
5260 		sc->bge_timer = 5;
5261 	}
5262 }
5263 
5264 /*
5265  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5266  * to the mbuf data regions directly in the transmit descriptors.
5267  */
5268 static void
5269 bge_start(struct ifnet *ifp)
5270 {
5271 	struct bge_softc *sc;
5272 
5273 	sc = ifp->if_softc;
5274 	BGE_LOCK(sc);
5275 	bge_start_locked(ifp);
5276 	BGE_UNLOCK(sc);
5277 }
5278 
5279 static void
5280 bge_init_locked(struct bge_softc *sc)
5281 {
5282 	struct ifnet *ifp;
5283 	uint16_t *m;
5284 	uint32_t mode;
5285 
5286 	BGE_LOCK_ASSERT(sc);
5287 
5288 	ifp = sc->bge_ifp;
5289 
5290 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5291 		return;
5292 
5293 	/* Cancel pending I/O and flush buffers. */
5294 	bge_stop(sc);
5295 
5296 	bge_stop_fw(sc);
5297 	bge_sig_pre_reset(sc, BGE_RESET_START);
5298 	bge_reset(sc);
5299 	bge_sig_legacy(sc, BGE_RESET_START);
5300 	bge_sig_post_reset(sc, BGE_RESET_START);
5301 
5302 	bge_chipinit(sc);
5303 
5304 	/*
5305 	 * Init the various state machines, ring
5306 	 * control blocks and firmware.
5307 	 */
5308 	if (bge_blockinit(sc)) {
5309 		device_printf(sc->bge_dev, "initialization failure\n");
5310 		return;
5311 	}
5312 
5313 	ifp = sc->bge_ifp;
5314 
5315 	/* Specify MTU. */
5316 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5317 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5318 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5319 
5320 	/* Load our MAC address. */
5321 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5322 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5323 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5324 
5325 	/* Program promiscuous mode. */
5326 	bge_setpromisc(sc);
5327 
5328 	/* Program multicast filter. */
5329 	bge_setmulti(sc);
5330 
5331 	/* Program VLAN tag stripping. */
5332 	bge_setvlan(sc);
5333 
5334 	/* Override UDP checksum offloading. */
5335 	if (sc->bge_forced_udpcsum == 0)
5336 		sc->bge_csum_features &= ~CSUM_UDP;
5337 	else
5338 		sc->bge_csum_features |= CSUM_UDP;
5339 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5340 	    ifp->if_capenable & IFCAP_TXCSUM) {
5341 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5342 		ifp->if_hwassist |= sc->bge_csum_features;
5343 	}
5344 
5345 	/* Init RX ring. */
5346 	if (bge_init_rx_ring_std(sc) != 0) {
5347 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5348 		bge_stop(sc);
5349 		return;
5350 	}
5351 
5352 	/*
5353 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5354 	 * memory to insure that the chip has in fact read the first
5355 	 * entry of the ring.
5356 	 */
5357 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5358 		uint32_t		v, i;
5359 		for (i = 0; i < 10; i++) {
5360 			DELAY(20);
5361 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5362 			if (v == (MCLBYTES - ETHER_ALIGN))
5363 				break;
5364 		}
5365 		if (i == 10)
5366 			device_printf (sc->bge_dev,
5367 			    "5705 A0 chip failed to load RX ring\n");
5368 	}
5369 
5370 	/* Init jumbo RX ring. */
5371 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5372 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5373 	    (MCLBYTES - ETHER_ALIGN)) {
5374 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5375 			device_printf(sc->bge_dev,
5376 			    "no memory for jumbo Rx buffers.\n");
5377 			bge_stop(sc);
5378 			return;
5379 		}
5380 	}
5381 
5382 	/* Init our RX return ring index. */
5383 	sc->bge_rx_saved_considx = 0;
5384 
5385 	/* Init our RX/TX stat counters. */
5386 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5387 
5388 	/* Init TX ring. */
5389 	bge_init_tx_ring(sc);
5390 
5391 	/* Enable TX MAC state machine lockup fix. */
5392 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5393 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5394 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5395 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5396 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5397 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5398 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5399 	}
5400 	/* Turn on transmitter. */
5401 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5402 	DELAY(100);
5403 
5404 	/* Turn on receiver. */
5405 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5406 	if (BGE_IS_5755_PLUS(sc))
5407 		mode |= BGE_RXMODE_IPV6_ENABLE;
5408 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5409 	DELAY(10);
5410 
5411 	/*
5412 	 * Set the number of good frames to receive after RX MBUF
5413 	 * Low Watermark has been reached. After the RX MAC receives
5414 	 * this number of frames, it will drop subsequent incoming
5415 	 * frames until the MBUF High Watermark is reached.
5416 	 */
5417 	if (BGE_IS_57765_PLUS(sc))
5418 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5419 	else
5420 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5421 
5422 	/* Clear MAC statistics. */
5423 	if (BGE_IS_5705_PLUS(sc))
5424 		bge_stats_clear_regs(sc);
5425 
5426 	/* Tell firmware we're alive. */
5427 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5428 
5429 #ifdef DEVICE_POLLING
5430 	/* Disable interrupts if we are polling. */
5431 	if (ifp->if_capenable & IFCAP_POLLING) {
5432 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5433 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5434 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5435 	} else
5436 #endif
5437 
5438 	/* Enable host interrupts. */
5439 	{
5440 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5441 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5442 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5443 	}
5444 
5445 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5446 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5447 
5448 	bge_ifmedia_upd_locked(ifp);
5449 
5450 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5451 }
5452 
5453 static void
5454 bge_init(void *xsc)
5455 {
5456 	struct bge_softc *sc = xsc;
5457 
5458 	BGE_LOCK(sc);
5459 	bge_init_locked(sc);
5460 	BGE_UNLOCK(sc);
5461 }
5462 
5463 /*
5464  * Set media options.
5465  */
5466 static int
5467 bge_ifmedia_upd(struct ifnet *ifp)
5468 {
5469 	struct bge_softc *sc = ifp->if_softc;
5470 	int res;
5471 
5472 	BGE_LOCK(sc);
5473 	res = bge_ifmedia_upd_locked(ifp);
5474 	BGE_UNLOCK(sc);
5475 
5476 	return (res);
5477 }
5478 
5479 static int
5480 bge_ifmedia_upd_locked(struct ifnet *ifp)
5481 {
5482 	struct bge_softc *sc = ifp->if_softc;
5483 	struct mii_data *mii;
5484 	struct mii_softc *miisc;
5485 	struct ifmedia *ifm;
5486 
5487 	BGE_LOCK_ASSERT(sc);
5488 
5489 	ifm = &sc->bge_ifmedia;
5490 
5491 	/* If this is a 1000baseX NIC, enable the TBI port. */
5492 	if (sc->bge_flags & BGE_FLAG_TBI) {
5493 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5494 			return (EINVAL);
5495 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5496 		case IFM_AUTO:
5497 			/*
5498 			 * The BCM5704 ASIC appears to have a special
5499 			 * mechanism for programming the autoneg
5500 			 * advertisement registers in TBI mode.
5501 			 */
5502 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5503 				uint32_t sgdig;
5504 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5505 				if (sgdig & BGE_SGDIGSTS_DONE) {
5506 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5507 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5508 					sgdig |= BGE_SGDIGCFG_AUTO |
5509 					    BGE_SGDIGCFG_PAUSE_CAP |
5510 					    BGE_SGDIGCFG_ASYM_PAUSE;
5511 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5512 					    sgdig | BGE_SGDIGCFG_SEND);
5513 					DELAY(5);
5514 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5515 				}
5516 			}
5517 			break;
5518 		case IFM_1000_SX:
5519 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5520 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5521 				    BGE_MACMODE_HALF_DUPLEX);
5522 			} else {
5523 				BGE_SETBIT(sc, BGE_MAC_MODE,
5524 				    BGE_MACMODE_HALF_DUPLEX);
5525 			}
5526 			DELAY(40);
5527 			break;
5528 		default:
5529 			return (EINVAL);
5530 		}
5531 		return (0);
5532 	}
5533 
5534 	sc->bge_link_evt++;
5535 	mii = device_get_softc(sc->bge_miibus);
5536 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5537 		PHY_RESET(miisc);
5538 	mii_mediachg(mii);
5539 
5540 	/*
5541 	 * Force an interrupt so that we will call bge_link_upd
5542 	 * if needed and clear any pending link state attention.
5543 	 * Without this we are not getting any further interrupts
5544 	 * for link state changes and thus will not UP the link and
5545 	 * not be able to send in bge_start_locked. The only
5546 	 * way to get things working was to receive a packet and
5547 	 * get an RX intr.
5548 	 * bge_tick should help for fiber cards and we might not
5549 	 * need to do this here if BGE_FLAG_TBI is set but as
5550 	 * we poll for fiber anyway it should not harm.
5551 	 */
5552 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5553 	    sc->bge_flags & BGE_FLAG_5788)
5554 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5555 	else
5556 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5557 
5558 	return (0);
5559 }
5560 
5561 /*
5562  * Report current media status.
5563  */
5564 static void
5565 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5566 {
5567 	struct bge_softc *sc = ifp->if_softc;
5568 	struct mii_data *mii;
5569 
5570 	BGE_LOCK(sc);
5571 
5572 	if (sc->bge_flags & BGE_FLAG_TBI) {
5573 		ifmr->ifm_status = IFM_AVALID;
5574 		ifmr->ifm_active = IFM_ETHER;
5575 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5576 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5577 			ifmr->ifm_status |= IFM_ACTIVE;
5578 		else {
5579 			ifmr->ifm_active |= IFM_NONE;
5580 			BGE_UNLOCK(sc);
5581 			return;
5582 		}
5583 		ifmr->ifm_active |= IFM_1000_SX;
5584 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5585 			ifmr->ifm_active |= IFM_HDX;
5586 		else
5587 			ifmr->ifm_active |= IFM_FDX;
5588 		BGE_UNLOCK(sc);
5589 		return;
5590 	}
5591 
5592 	mii = device_get_softc(sc->bge_miibus);
5593 	mii_pollstat(mii);
5594 	ifmr->ifm_active = mii->mii_media_active;
5595 	ifmr->ifm_status = mii->mii_media_status;
5596 
5597 	BGE_UNLOCK(sc);
5598 }
5599 
5600 static int
5601 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5602 {
5603 	struct bge_softc *sc = ifp->if_softc;
5604 	struct ifreq *ifr = (struct ifreq *) data;
5605 	struct mii_data *mii;
5606 	int flags, mask, error = 0;
5607 
5608 	switch (command) {
5609 	case SIOCSIFMTU:
5610 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5611 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5612 			if (ifr->ifr_mtu < ETHERMIN ||
5613 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5614 				error = EINVAL;
5615 				break;
5616 			}
5617 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5618 			error = EINVAL;
5619 			break;
5620 		}
5621 		BGE_LOCK(sc);
5622 		if (ifp->if_mtu != ifr->ifr_mtu) {
5623 			ifp->if_mtu = ifr->ifr_mtu;
5624 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5625 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5626 				bge_init_locked(sc);
5627 			}
5628 		}
5629 		BGE_UNLOCK(sc);
5630 		break;
5631 	case SIOCSIFFLAGS:
5632 		BGE_LOCK(sc);
5633 		if (ifp->if_flags & IFF_UP) {
5634 			/*
5635 			 * If only the state of the PROMISC flag changed,
5636 			 * then just use the 'set promisc mode' command
5637 			 * instead of reinitializing the entire NIC. Doing
5638 			 * a full re-init means reloading the firmware and
5639 			 * waiting for it to start up, which may take a
5640 			 * second or two.  Similarly for ALLMULTI.
5641 			 */
5642 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5643 				flags = ifp->if_flags ^ sc->bge_if_flags;
5644 				if (flags & IFF_PROMISC)
5645 					bge_setpromisc(sc);
5646 				if (flags & IFF_ALLMULTI)
5647 					bge_setmulti(sc);
5648 			} else
5649 				bge_init_locked(sc);
5650 		} else {
5651 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5652 				bge_stop(sc);
5653 			}
5654 		}
5655 		sc->bge_if_flags = ifp->if_flags;
5656 		BGE_UNLOCK(sc);
5657 		error = 0;
5658 		break;
5659 	case SIOCADDMULTI:
5660 	case SIOCDELMULTI:
5661 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5662 			BGE_LOCK(sc);
5663 			bge_setmulti(sc);
5664 			BGE_UNLOCK(sc);
5665 			error = 0;
5666 		}
5667 		break;
5668 	case SIOCSIFMEDIA:
5669 	case SIOCGIFMEDIA:
5670 		if (sc->bge_flags & BGE_FLAG_TBI) {
5671 			error = ifmedia_ioctl(ifp, ifr,
5672 			    &sc->bge_ifmedia, command);
5673 		} else {
5674 			mii = device_get_softc(sc->bge_miibus);
5675 			error = ifmedia_ioctl(ifp, ifr,
5676 			    &mii->mii_media, command);
5677 		}
5678 		break;
5679 	case SIOCSIFCAP:
5680 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5681 #ifdef DEVICE_POLLING
5682 		if (mask & IFCAP_POLLING) {
5683 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5684 				error = ether_poll_register(bge_poll, ifp);
5685 				if (error)
5686 					return (error);
5687 				BGE_LOCK(sc);
5688 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5689 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5690 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5691 				ifp->if_capenable |= IFCAP_POLLING;
5692 				BGE_UNLOCK(sc);
5693 			} else {
5694 				error = ether_poll_deregister(ifp);
5695 				/* Enable interrupt even in error case */
5696 				BGE_LOCK(sc);
5697 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5698 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5699 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5700 				ifp->if_capenable &= ~IFCAP_POLLING;
5701 				BGE_UNLOCK(sc);
5702 			}
5703 		}
5704 #endif
5705 		if ((mask & IFCAP_TXCSUM) != 0 &&
5706 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5707 			ifp->if_capenable ^= IFCAP_TXCSUM;
5708 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5709 				ifp->if_hwassist |= sc->bge_csum_features;
5710 			else
5711 				ifp->if_hwassist &= ~sc->bge_csum_features;
5712 		}
5713 
5714 		if ((mask & IFCAP_RXCSUM) != 0 &&
5715 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5716 			ifp->if_capenable ^= IFCAP_RXCSUM;
5717 
5718 		if ((mask & IFCAP_TSO4) != 0 &&
5719 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5720 			ifp->if_capenable ^= IFCAP_TSO4;
5721 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5722 				ifp->if_hwassist |= CSUM_TSO;
5723 			else
5724 				ifp->if_hwassist &= ~CSUM_TSO;
5725 		}
5726 
5727 		if (mask & IFCAP_VLAN_MTU) {
5728 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5729 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5730 			bge_init(sc);
5731 		}
5732 
5733 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5734 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5735 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5736 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5737 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5738 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5739 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5740 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5741 			BGE_LOCK(sc);
5742 			bge_setvlan(sc);
5743 			BGE_UNLOCK(sc);
5744 		}
5745 #ifdef VLAN_CAPABILITIES
5746 		VLAN_CAPABILITIES(ifp);
5747 #endif
5748 		break;
5749 	default:
5750 		error = ether_ioctl(ifp, command, data);
5751 		break;
5752 	}
5753 
5754 	return (error);
5755 }
5756 
5757 static void
5758 bge_watchdog(struct bge_softc *sc)
5759 {
5760 	struct ifnet *ifp;
5761 
5762 	BGE_LOCK_ASSERT(sc);
5763 
5764 	if (sc->bge_timer == 0 || --sc->bge_timer)
5765 		return;
5766 
5767 	ifp = sc->bge_ifp;
5768 
5769 	if_printf(ifp, "watchdog timeout -- resetting\n");
5770 
5771 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5772 	bge_init_locked(sc);
5773 
5774 	ifp->if_oerrors++;
5775 }
5776 
5777 static void
5778 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5779 {
5780 	int i;
5781 
5782 	BGE_CLRBIT(sc, reg, bit);
5783 
5784 	for (i = 0; i < BGE_TIMEOUT; i++) {
5785 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5786 			return;
5787 		DELAY(100);
5788         }
5789 }
5790 
5791 /*
5792  * Stop the adapter and free any mbufs allocated to the
5793  * RX and TX lists.
5794  */
5795 static void
5796 bge_stop(struct bge_softc *sc)
5797 {
5798 	struct ifnet *ifp;
5799 
5800 	BGE_LOCK_ASSERT(sc);
5801 
5802 	ifp = sc->bge_ifp;
5803 
5804 	callout_stop(&sc->bge_stat_ch);
5805 
5806 	/* Disable host interrupts. */
5807 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5808 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5809 
5810 	/*
5811 	 * Tell firmware we're shutting down.
5812 	 */
5813 	bge_stop_fw(sc);
5814 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5815 
5816 	/*
5817 	 * Disable all of the receiver blocks.
5818 	 */
5819 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5820 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5821 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5822 	if (BGE_IS_5700_FAMILY(sc))
5823 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5824 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5825 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5826 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5827 
5828 	/*
5829 	 * Disable all of the transmit blocks.
5830 	 */
5831 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5832 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5833 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5834 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5835 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5836 	if (BGE_IS_5700_FAMILY(sc))
5837 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5838 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5839 
5840 	/*
5841 	 * Shut down all of the memory managers and related
5842 	 * state machines.
5843 	 */
5844 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5845 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5846 	if (BGE_IS_5700_FAMILY(sc))
5847 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5848 
5849 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5850 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5851 	if (!(BGE_IS_5705_PLUS(sc))) {
5852 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5853 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5854 	}
5855 	/* Update MAC statistics. */
5856 	if (BGE_IS_5705_PLUS(sc))
5857 		bge_stats_update_regs(sc);
5858 
5859 	bge_reset(sc);
5860 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5861 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5862 
5863 	/*
5864 	 * Keep the ASF firmware running if up.
5865 	 */
5866 	if (sc->bge_asf_mode & ASF_STACKUP)
5867 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5868 	else
5869 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5870 
5871 	/* Free the RX lists. */
5872 	bge_free_rx_ring_std(sc);
5873 
5874 	/* Free jumbo RX list. */
5875 	if (BGE_IS_JUMBO_CAPABLE(sc))
5876 		bge_free_rx_ring_jumbo(sc);
5877 
5878 	/* Free TX buffers. */
5879 	bge_free_tx_ring(sc);
5880 
5881 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5882 
5883 	/* Clear MAC's link state (PHY may still have link UP). */
5884 	if (bootverbose && sc->bge_link)
5885 		if_printf(sc->bge_ifp, "link DOWN\n");
5886 	sc->bge_link = 0;
5887 
5888 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5889 }
5890 
5891 /*
5892  * Stop all chip I/O so that the kernel's probe routines don't
5893  * get confused by errant DMAs when rebooting.
5894  */
5895 static int
5896 bge_shutdown(device_t dev)
5897 {
5898 	struct bge_softc *sc;
5899 
5900 	sc = device_get_softc(dev);
5901 	BGE_LOCK(sc);
5902 	bge_stop(sc);
5903 	BGE_UNLOCK(sc);
5904 
5905 	return (0);
5906 }
5907 
5908 static int
5909 bge_suspend(device_t dev)
5910 {
5911 	struct bge_softc *sc;
5912 
5913 	sc = device_get_softc(dev);
5914 	BGE_LOCK(sc);
5915 	bge_stop(sc);
5916 	BGE_UNLOCK(sc);
5917 
5918 	return (0);
5919 }
5920 
5921 static int
5922 bge_resume(device_t dev)
5923 {
5924 	struct bge_softc *sc;
5925 	struct ifnet *ifp;
5926 
5927 	sc = device_get_softc(dev);
5928 	BGE_LOCK(sc);
5929 	ifp = sc->bge_ifp;
5930 	if (ifp->if_flags & IFF_UP) {
5931 		bge_init_locked(sc);
5932 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5933 			bge_start_locked(ifp);
5934 	}
5935 	BGE_UNLOCK(sc);
5936 
5937 	return (0);
5938 }
5939 
5940 static void
5941 bge_link_upd(struct bge_softc *sc)
5942 {
5943 	struct mii_data *mii;
5944 	uint32_t link, status;
5945 
5946 	BGE_LOCK_ASSERT(sc);
5947 
5948 	/* Clear 'pending link event' flag. */
5949 	sc->bge_link_evt = 0;
5950 
5951 	/*
5952 	 * Process link state changes.
5953 	 * Grrr. The link status word in the status block does
5954 	 * not work correctly on the BCM5700 rev AX and BX chips,
5955 	 * according to all available information. Hence, we have
5956 	 * to enable MII interrupts in order to properly obtain
5957 	 * async link changes. Unfortunately, this also means that
5958 	 * we have to read the MAC status register to detect link
5959 	 * changes, thereby adding an additional register access to
5960 	 * the interrupt handler.
5961 	 *
5962 	 * XXX: perhaps link state detection procedure used for
5963 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5964 	 */
5965 
5966 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5967 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5968 		status = CSR_READ_4(sc, BGE_MAC_STS);
5969 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5970 			mii = device_get_softc(sc->bge_miibus);
5971 			mii_pollstat(mii);
5972 			if (!sc->bge_link &&
5973 			    mii->mii_media_status & IFM_ACTIVE &&
5974 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5975 				sc->bge_link++;
5976 				if (bootverbose)
5977 					if_printf(sc->bge_ifp, "link UP\n");
5978 			} else if (sc->bge_link &&
5979 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5980 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5981 				sc->bge_link = 0;
5982 				if (bootverbose)
5983 					if_printf(sc->bge_ifp, "link DOWN\n");
5984 			}
5985 
5986 			/* Clear the interrupt. */
5987 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5988 			    BGE_EVTENB_MI_INTERRUPT);
5989 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5990 			    BRGPHY_MII_ISR);
5991 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5992 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
5993 		}
5994 		return;
5995 	}
5996 
5997 	if (sc->bge_flags & BGE_FLAG_TBI) {
5998 		status = CSR_READ_4(sc, BGE_MAC_STS);
5999 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6000 			if (!sc->bge_link) {
6001 				sc->bge_link++;
6002 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6003 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6004 					    BGE_MACMODE_TBI_SEND_CFGS);
6005 					DELAY(40);
6006 				}
6007 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6008 				if (bootverbose)
6009 					if_printf(sc->bge_ifp, "link UP\n");
6010 				if_link_state_change(sc->bge_ifp,
6011 				    LINK_STATE_UP);
6012 			}
6013 		} else if (sc->bge_link) {
6014 			sc->bge_link = 0;
6015 			if (bootverbose)
6016 				if_printf(sc->bge_ifp, "link DOWN\n");
6017 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6018 		}
6019 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6020 		/*
6021 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6022 		 * in status word always set. Workaround this bug by reading
6023 		 * PHY link status directly.
6024 		 */
6025 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6026 
6027 		if (link != sc->bge_link ||
6028 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6029 			mii = device_get_softc(sc->bge_miibus);
6030 			mii_pollstat(mii);
6031 			if (!sc->bge_link &&
6032 			    mii->mii_media_status & IFM_ACTIVE &&
6033 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6034 				sc->bge_link++;
6035 				if (bootverbose)
6036 					if_printf(sc->bge_ifp, "link UP\n");
6037 			} else if (sc->bge_link &&
6038 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6039 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6040 				sc->bge_link = 0;
6041 				if (bootverbose)
6042 					if_printf(sc->bge_ifp, "link DOWN\n");
6043 			}
6044 		}
6045 	} else {
6046 		/*
6047 		 * For controllers that call mii_tick, we have to poll
6048 		 * link status.
6049 		 */
6050 		mii = device_get_softc(sc->bge_miibus);
6051 		mii_pollstat(mii);
6052 		bge_miibus_statchg(sc->bge_dev);
6053 	}
6054 
6055 	/* Disable MAC attention when link is up. */
6056 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6057 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6058 	    BGE_MACSTAT_LINK_CHANGED);
6059 }
6060 
6061 static void
6062 bge_add_sysctls(struct bge_softc *sc)
6063 {
6064 	struct sysctl_ctx_list *ctx;
6065 	struct sysctl_oid_list *children;
6066 	char tn[32];
6067 	int unit;
6068 
6069 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6070 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6071 
6072 #ifdef BGE_REGISTER_DEBUG
6073 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6074 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6075 	    "Debug Information");
6076 
6077 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6078 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6079 	    "MAC Register Read");
6080 
6081 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6082 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6083 	    "APE Register Read");
6084 
6085 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6086 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6087 	    "Memory Read");
6088 
6089 #endif
6090 
6091 	unit = device_get_unit(sc->bge_dev);
6092 	/*
6093 	 * A common design characteristic for many Broadcom client controllers
6094 	 * is that they only support a single outstanding DMA read operation
6095 	 * on the PCIe bus. This means that it will take twice as long to fetch
6096 	 * a TX frame that is split into header and payload buffers as it does
6097 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6098 	 * these controllers, coalescing buffers to reduce the number of memory
6099 	 * reads is effective way to get maximum performance(about 940Mbps).
6100 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6101 	 * performance is about 850Mbps. However forcing coalescing mbufs
6102 	 * consumes a lot of CPU cycles, so leave it off by default.
6103 	 */
6104 	sc->bge_forced_collapse = 0;
6105 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6106 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6107 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6108 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6109 	    "Number of fragmented TX buffers of a frame allowed before "
6110 	    "forced collapsing");
6111 
6112 	sc->bge_msi = 1;
6113 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6114 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6115 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6116 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6117 
6118 	/*
6119 	 * It seems all Broadcom controllers have a bug that can generate UDP
6120 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6121 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6122 	 * Even though the probability of generating such UDP datagrams is
6123 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6124 	 * into network so disable UDP checksum offloading by default.  Users
6125 	 * still override this behavior by setting a sysctl variable,
6126 	 * dev.bge.0.forced_udpcsum.
6127 	 */
6128 	sc->bge_forced_udpcsum = 0;
6129 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6130 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6131 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6132 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6133 	    "Enable UDP checksum offloading even if controller can "
6134 	    "generate UDP checksum value 0");
6135 
6136 	if (BGE_IS_5705_PLUS(sc))
6137 		bge_add_sysctl_stats_regs(sc, ctx, children);
6138 	else
6139 		bge_add_sysctl_stats(sc, ctx, children);
6140 }
6141 
6142 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6143 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6144 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6145 	    desc)
6146 
6147 static void
6148 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6149     struct sysctl_oid_list *parent)
6150 {
6151 	struct sysctl_oid *tree;
6152 	struct sysctl_oid_list *children, *schildren;
6153 
6154 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6155 	    NULL, "BGE Statistics");
6156 	schildren = children = SYSCTL_CHILDREN(tree);
6157 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6158 	    children, COSFramesDroppedDueToFilters,
6159 	    "FramesDroppedDueToFilters");
6160 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6161 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6162 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6163 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6164 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6165 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6166 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6167 	    children, ifInDiscards, "InputDiscards");
6168 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6169 	    children, ifInErrors, "InputErrors");
6170 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6171 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6172 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6173 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6174 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6175 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6176 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6177 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6178 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6179 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6180 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6181 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6182 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6183 	    children, nicInterrupts, "Interrupts");
6184 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6185 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6186 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6187 	    children, nicSendThresholdHit, "SendThresholdHit");
6188 
6189 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6190 	    NULL, "BGE RX Statistics");
6191 	children = SYSCTL_CHILDREN(tree);
6192 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6193 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6194 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6195 	    children, rxstats.etherStatsFragments, "Fragments");
6196 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6197 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6198 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6199 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6200 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6201 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6202 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6203 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6204 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6205 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6206 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6207 	    children, rxstats.xoffPauseFramesReceived,
6208 	    "xoffPauseFramesReceived");
6209 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6210 	    children, rxstats.macControlFramesReceived,
6211 	    "ControlFramesReceived");
6212 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6213 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6214 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6215 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6216 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6217 	    children, rxstats.etherStatsJabbers, "Jabbers");
6218 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6219 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6220 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6221 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6222 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6223 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6224 
6225 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6226 	    NULL, "BGE TX Statistics");
6227 	children = SYSCTL_CHILDREN(tree);
6228 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6229 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6230 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6231 	    children, txstats.etherStatsCollisions, "Collisions");
6232 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6233 	    children, txstats.outXonSent, "XonSent");
6234 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6235 	    children, txstats.outXoffSent, "XoffSent");
6236 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6237 	    children, txstats.flowControlDone, "flowControlDone");
6238 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6239 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6240 	    "InternalMacTransmitErrors");
6241 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6242 	    children, txstats.dot3StatsSingleCollisionFrames,
6243 	    "SingleCollisionFrames");
6244 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6245 	    children, txstats.dot3StatsMultipleCollisionFrames,
6246 	    "MultipleCollisionFrames");
6247 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6248 	    children, txstats.dot3StatsDeferredTransmissions,
6249 	    "DeferredTransmissions");
6250 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6251 	    children, txstats.dot3StatsExcessiveCollisions,
6252 	    "ExcessiveCollisions");
6253 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6254 	    children, txstats.dot3StatsLateCollisions,
6255 	    "LateCollisions");
6256 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6257 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6258 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6259 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6260 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6261 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6262 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6263 	    children, txstats.dot3StatsCarrierSenseErrors,
6264 	    "CarrierSenseErrors");
6265 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6266 	    children, txstats.ifOutDiscards, "Discards");
6267 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6268 	    children, txstats.ifOutErrors, "Errors");
6269 }
6270 
6271 #undef BGE_SYSCTL_STAT
6272 
6273 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6274 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6275 
6276 static void
6277 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6278     struct sysctl_oid_list *parent)
6279 {
6280 	struct sysctl_oid *tree;
6281 	struct sysctl_oid_list *child, *schild;
6282 	struct bge_mac_stats *stats;
6283 
6284 	stats = &sc->bge_mac_stats;
6285 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6286 	    NULL, "BGE Statistics");
6287 	schild = child = SYSCTL_CHILDREN(tree);
6288 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6289 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6290 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6291 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6292 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6293 	    &stats->DmaWriteHighPriQueueFull,
6294 	    "NIC DMA Write High Priority Queue Full");
6295 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6296 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6297 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6298 	    &stats->InputDiscards, "Discarded Input Frames");
6299 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6300 	    &stats->InputErrors, "Input Errors");
6301 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6302 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6303 
6304 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6305 	    NULL, "BGE RX Statistics");
6306 	child = SYSCTL_CHILDREN(tree);
6307 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6308 	    &stats->ifHCInOctets, "Inbound Octets");
6309 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6310 	    &stats->etherStatsFragments, "Fragments");
6311 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6312 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6313 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6314 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6315 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6316 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6317 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6318 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6319 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6320 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6321 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6322 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6323 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6324 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6325 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6326 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6327 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6328 	    &stats->xoffStateEntered, "XOFF State Entered");
6329 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6330 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6331 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6332 	    &stats->etherStatsJabbers, "Jabbers");
6333 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6334 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6335 
6336 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6337 	    NULL, "BGE TX Statistics");
6338 	child = SYSCTL_CHILDREN(tree);
6339 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6340 	    &stats->ifHCOutOctets, "Outbound Octets");
6341 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6342 	    &stats->etherStatsCollisions, "TX Collisions");
6343 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6344 	    &stats->outXonSent, "XON Sent");
6345 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6346 	    &stats->outXoffSent, "XOFF Sent");
6347 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6348 	    &stats->dot3StatsInternalMacTransmitErrors,
6349 	    "Internal MAC TX Errors");
6350 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6351 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6352 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6353 	    &stats->dot3StatsMultipleCollisionFrames,
6354 	    "Multiple Collision Frames");
6355 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6356 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6357 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6358 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6359 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6360 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6361 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6362 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6363 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6364 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6365 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6366 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6367 }
6368 
6369 #undef	BGE_SYSCTL_STAT_ADD64
6370 
6371 static int
6372 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6373 {
6374 	struct bge_softc *sc;
6375 	uint32_t result;
6376 	int offset;
6377 
6378 	sc = (struct bge_softc *)arg1;
6379 	offset = arg2;
6380 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6381 	    offsetof(bge_hostaddr, bge_addr_lo));
6382 	return (sysctl_handle_int(oidp, &result, 0, req));
6383 }
6384 
6385 #ifdef BGE_REGISTER_DEBUG
6386 static int
6387 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6388 {
6389 	struct bge_softc *sc;
6390 	uint16_t *sbdata;
6391 	int error, result, sbsz;
6392 	int i, j;
6393 
6394 	result = -1;
6395 	error = sysctl_handle_int(oidp, &result, 0, req);
6396 	if (error || (req->newptr == NULL))
6397 		return (error);
6398 
6399 	if (result == 1) {
6400 		sc = (struct bge_softc *)arg1;
6401 
6402 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6403 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6404 			sbsz = BGE_STATUS_BLK_SZ;
6405 		else
6406 			sbsz = 32;
6407 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6408 		printf("Status Block:\n");
6409 		BGE_LOCK(sc);
6410 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6411 		    sc->bge_cdata.bge_status_map,
6412 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6413 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6414 			printf("%06x:", i);
6415 			for (j = 0; j < 8; j++)
6416 				printf(" %04x", sbdata[i++]);
6417 			printf("\n");
6418 		}
6419 
6420 		printf("Registers:\n");
6421 		for (i = 0x800; i < 0xA00; ) {
6422 			printf("%06x:", i);
6423 			for (j = 0; j < 8; j++) {
6424 				printf(" %08x", CSR_READ_4(sc, i));
6425 				i += 4;
6426 			}
6427 			printf("\n");
6428 		}
6429 		BGE_UNLOCK(sc);
6430 
6431 		printf("Hardware Flags:\n");
6432 		if (BGE_IS_5717_PLUS(sc))
6433 			printf(" - 5717 Plus\n");
6434 		if (BGE_IS_5755_PLUS(sc))
6435 			printf(" - 5755 Plus\n");
6436 		if (BGE_IS_575X_PLUS(sc))
6437 			printf(" - 575X Plus\n");
6438 		if (BGE_IS_5705_PLUS(sc))
6439 			printf(" - 5705 Plus\n");
6440 		if (BGE_IS_5714_FAMILY(sc))
6441 			printf(" - 5714 Family\n");
6442 		if (BGE_IS_5700_FAMILY(sc))
6443 			printf(" - 5700 Family\n");
6444 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6445 			printf(" - Supports Jumbo Frames\n");
6446 		if (sc->bge_flags & BGE_FLAG_PCIX)
6447 			printf(" - PCI-X Bus\n");
6448 		if (sc->bge_flags & BGE_FLAG_PCIE)
6449 			printf(" - PCI Express Bus\n");
6450 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6451 			printf(" - No 3 LEDs\n");
6452 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6453 			printf(" - RX Alignment Bug\n");
6454 	}
6455 
6456 	return (error);
6457 }
6458 
6459 static int
6460 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6461 {
6462 	struct bge_softc *sc;
6463 	int error;
6464 	uint16_t result;
6465 	uint32_t val;
6466 
6467 	result = -1;
6468 	error = sysctl_handle_int(oidp, &result, 0, req);
6469 	if (error || (req->newptr == NULL))
6470 		return (error);
6471 
6472 	if (result < 0x8000) {
6473 		sc = (struct bge_softc *)arg1;
6474 		val = CSR_READ_4(sc, result);
6475 		printf("reg 0x%06X = 0x%08X\n", result, val);
6476 	}
6477 
6478 	return (error);
6479 }
6480 
6481 static int
6482 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6483 {
6484 	struct bge_softc *sc;
6485 	int error;
6486 	uint16_t result;
6487 	uint32_t val;
6488 
6489 	result = -1;
6490 	error = sysctl_handle_int(oidp, &result, 0, req);
6491 	if (error || (req->newptr == NULL))
6492 		return (error);
6493 
6494 	if (result < 0x8000) {
6495 		sc = (struct bge_softc *)arg1;
6496 		val = APE_READ_4(sc, result);
6497 		printf("reg 0x%06X = 0x%08X\n", result, val);
6498 	}
6499 
6500 	return (error);
6501 }
6502 
6503 static int
6504 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6505 {
6506 	struct bge_softc *sc;
6507 	int error;
6508 	uint16_t result;
6509 	uint32_t val;
6510 
6511 	result = -1;
6512 	error = sysctl_handle_int(oidp, &result, 0, req);
6513 	if (error || (req->newptr == NULL))
6514 		return (error);
6515 
6516 	if (result < 0x8000) {
6517 		sc = (struct bge_softc *)arg1;
6518 		val = bge_readmem_ind(sc, result);
6519 		printf("mem 0x%06X = 0x%08X\n", result, val);
6520 	}
6521 
6522 	return (error);
6523 }
6524 #endif
6525 
6526 static int
6527 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6528 {
6529 
6530 	if (sc->bge_flags & BGE_FLAG_EADDR)
6531 		return (1);
6532 
6533 #ifdef __sparc64__
6534 	OF_getetheraddr(sc->bge_dev, ether_addr);
6535 	return (0);
6536 #endif
6537 	return (1);
6538 }
6539 
6540 static int
6541 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6542 {
6543 	uint32_t mac_addr;
6544 
6545 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6546 	if ((mac_addr >> 16) == 0x484b) {
6547 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6548 		ether_addr[1] = (uint8_t)mac_addr;
6549 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6550 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6551 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6552 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6553 		ether_addr[5] = (uint8_t)mac_addr;
6554 		return (0);
6555 	}
6556 	return (1);
6557 }
6558 
6559 static int
6560 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6561 {
6562 	int mac_offset = BGE_EE_MAC_OFFSET;
6563 
6564 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6565 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6566 
6567 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6568 	    ETHER_ADDR_LEN));
6569 }
6570 
6571 static int
6572 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6573 {
6574 
6575 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6576 		return (1);
6577 
6578 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6579 	   ETHER_ADDR_LEN));
6580 }
6581 
6582 static int
6583 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6584 {
6585 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6586 		/* NOTE: Order is critical */
6587 		bge_get_eaddr_fw,
6588 		bge_get_eaddr_mem,
6589 		bge_get_eaddr_nvram,
6590 		bge_get_eaddr_eeprom,
6591 		NULL
6592 	};
6593 	const bge_eaddr_fcn_t *func;
6594 
6595 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6596 		if ((*func)(sc, eaddr) == 0)
6597 			break;
6598 	}
6599 	return (*func == NULL ? ENXIO : 0);
6600 }
6601