xref: /freebsd/sys/dev/bge/if_bge.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include <dev/mii/miidevs.h>
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 
135 static struct bge_type bge_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
145 		"SysKonnect Gigabit Ethernet" },
146 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
147 		"Altima AC1000 Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int bge_probe		__P((device_t));
152 static int bge_attach		__P((device_t));
153 static int bge_detach		__P((device_t));
154 static void bge_release_resources
155 				__P((struct bge_softc *));
156 static void bge_txeof		__P((struct bge_softc *));
157 static void bge_rxeof		__P((struct bge_softc *));
158 
159 static void bge_tick		__P((void *));
160 static void bge_stats_update	__P((struct bge_softc *));
161 static int bge_encap		__P((struct bge_softc *, struct mbuf *,
162 					u_int32_t *));
163 
164 static void bge_intr		__P((void *));
165 static void bge_start		__P((struct ifnet *));
166 static int bge_ioctl		__P((struct ifnet *, u_long, caddr_t));
167 static void bge_init		__P((void *));
168 static void bge_stop		__P((struct bge_softc *));
169 static void bge_watchdog		__P((struct ifnet *));
170 static void bge_shutdown		__P((device_t));
171 static int bge_ifmedia_upd	__P((struct ifnet *));
172 static void bge_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173 
174 static u_int8_t	bge_eeprom_getbyte	__P((struct bge_softc *,
175 						int, u_int8_t *));
176 static int bge_read_eeprom	__P((struct bge_softc *, caddr_t, int, int));
177 
178 static u_int32_t bge_crc	__P((caddr_t));
179 static void bge_setmulti	__P((struct bge_softc *));
180 
181 static void bge_handle_events	__P((struct bge_softc *));
182 static int bge_alloc_jumbo_mem	__P((struct bge_softc *));
183 static void bge_free_jumbo_mem	__P((struct bge_softc *));
184 static void *bge_jalloc		__P((struct bge_softc *));
185 static void bge_jfree		__P((caddr_t, void *));
186 static int bge_newbuf_std	__P((struct bge_softc *, int, struct mbuf *));
187 static int bge_newbuf_jumbo	__P((struct bge_softc *, int, struct mbuf *));
188 static int bge_init_rx_ring_std	__P((struct bge_softc *));
189 static void bge_free_rx_ring_std	__P((struct bge_softc *));
190 static int bge_init_rx_ring_jumbo	__P((struct bge_softc *));
191 static void bge_free_rx_ring_jumbo	__P((struct bge_softc *));
192 static void bge_free_tx_ring	__P((struct bge_softc *));
193 static int bge_init_tx_ring	__P((struct bge_softc *));
194 
195 static int bge_chipinit		__P((struct bge_softc *));
196 static int bge_blockinit	__P((struct bge_softc *));
197 
198 #ifdef notdef
199 static u_int8_t bge_vpd_readbyte __P((struct bge_softc *, int));
200 static void bge_vpd_read_res	__P((struct bge_softc *,
201                                         struct vpd_res *, int));
202 static void bge_vpd_read	__P((struct bge_softc *));
203 #endif
204 
205 static u_int32_t bge_readmem_ind
206 				__P((struct bge_softc *, int));
207 static void bge_writemem_ind	__P((struct bge_softc *, int, int));
208 #ifdef notdef
209 static u_int32_t bge_readreg_ind
210 				__P((struct bge_softc *, int));
211 #endif
212 static void bge_writereg_ind	__P((struct bge_softc *, int, int));
213 
214 static int bge_miibus_readreg	__P((device_t, int, int));
215 static int bge_miibus_writereg	__P((device_t, int, int, int));
216 static void bge_miibus_statchg	__P((device_t));
217 
218 static void bge_reset		__P((struct bge_softc *));
219 static void bge_phy_hack	__P((struct bge_softc *));
220 
221 static device_method_t bge_methods[] = {
222 	/* Device interface */
223 	DEVMETHOD(device_probe,		bge_probe),
224 	DEVMETHOD(device_attach,	bge_attach),
225 	DEVMETHOD(device_detach,	bge_detach),
226 	DEVMETHOD(device_shutdown,	bge_shutdown),
227 
228 	/* bus interface */
229 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
230 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
231 
232 	/* MII interface */
233 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
234 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
235 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
236 
237 	{ 0, 0 }
238 };
239 
240 static driver_t bge_driver = {
241 	"bge",
242 	bge_methods,
243 	sizeof(struct bge_softc)
244 };
245 
246 static devclass_t bge_devclass;
247 
248 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
249 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
250 
251 static u_int32_t
252 bge_readmem_ind(sc, off)
253 	struct bge_softc *sc;
254 	int off;
255 {
256 	device_t dev;
257 
258 	dev = sc->bge_dev;
259 
260 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
261 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
262 }
263 
264 static void
265 bge_writemem_ind(sc, off, val)
266 	struct bge_softc *sc;
267 	int off, val;
268 {
269 	device_t dev;
270 
271 	dev = sc->bge_dev;
272 
273 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
274 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
275 
276 	return;
277 }
278 
279 #ifdef notdef
280 static u_int32_t
281 bge_readreg_ind(sc, off)
282 	struct bge_softc *sc;
283 	int off;
284 {
285 	device_t dev;
286 
287 	dev = sc->bge_dev;
288 
289 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
290 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
291 }
292 #endif
293 
294 static void
295 bge_writereg_ind(sc, off, val)
296 	struct bge_softc *sc;
297 	int off, val;
298 {
299 	device_t dev;
300 
301 	dev = sc->bge_dev;
302 
303 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
304 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
305 
306 	return;
307 }
308 
309 #ifdef notdef
310 static u_int8_t
311 bge_vpd_readbyte(sc, addr)
312 	struct bge_softc *sc;
313 	int addr;
314 {
315 	int i;
316 	device_t dev;
317 	u_int32_t val;
318 
319 	dev = sc->bge_dev;
320 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
321 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
322 		DELAY(10);
323 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
324 			break;
325 	}
326 
327 	if (i == BGE_TIMEOUT) {
328 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
329 		return(0);
330 	}
331 
332 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
333 
334 	return((val >> ((addr % 4) * 8)) & 0xFF);
335 }
336 
337 static void
338 bge_vpd_read_res(sc, res, addr)
339 	struct bge_softc *sc;
340 	struct vpd_res *res;
341 	int addr;
342 {
343 	int i;
344 	u_int8_t *ptr;
345 
346 	ptr = (u_int8_t *)res;
347 	for (i = 0; i < sizeof(struct vpd_res); i++)
348 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
349 
350 	return;
351 }
352 
353 static void
354 bge_vpd_read(sc)
355 	struct bge_softc *sc;
356 {
357 	int pos = 0, i;
358 	struct vpd_res res;
359 
360 	if (sc->bge_vpd_prodname != NULL)
361 		free(sc->bge_vpd_prodname, M_DEVBUF);
362 	if (sc->bge_vpd_readonly != NULL)
363 		free(sc->bge_vpd_readonly, M_DEVBUF);
364 	sc->bge_vpd_prodname = NULL;
365 	sc->bge_vpd_readonly = NULL;
366 
367 	bge_vpd_read_res(sc, &res, pos);
368 
369 	if (res.vr_id != VPD_RES_ID) {
370 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
371 			sc->bge_unit, VPD_RES_ID, res.vr_id);
372                 return;
373         }
374 
375 	pos += sizeof(res);
376 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 	for (i = 0; i < res.vr_len; i++)
378 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
379 	sc->bge_vpd_prodname[i] = '\0';
380 	pos += i;
381 
382 	bge_vpd_read_res(sc, &res, pos);
383 
384 	if (res.vr_id != VPD_RES_READ) {
385 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
386 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
387 		return;
388 	}
389 
390 	pos += sizeof(res);
391 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
392 	for (i = 0; i < res.vr_len + 1; i++)
393 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
394 
395 	return;
396 }
397 #endif
398 
399 /*
400  * Read a byte of data stored in the EEPROM at address 'addr.' The
401  * BCM570x supports both the traditional bitbang interface and an
402  * auto access interface for reading the EEPROM. We use the auto
403  * access method.
404  */
405 static u_int8_t
406 bge_eeprom_getbyte(sc, addr, dest)
407 	struct bge_softc *sc;
408 	int addr;
409 	u_int8_t *dest;
410 {
411 	int i;
412 	u_int32_t byte = 0;
413 
414 	/*
415 	 * Enable use of auto EEPROM access so we can avoid
416 	 * having to use the bitbang method.
417 	 */
418 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
419 
420 	/* Reset the EEPROM, load the clock period. */
421 	CSR_WRITE_4(sc, BGE_EE_ADDR,
422 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
423 	DELAY(20);
424 
425 	/* Issue the read EEPROM command. */
426 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
427 
428 	/* Wait for completion */
429 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
430 		DELAY(10);
431 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
432 			break;
433 	}
434 
435 	if (i == BGE_TIMEOUT) {
436 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
437 		return(0);
438 	}
439 
440 	/* Get result. */
441 	byte = CSR_READ_4(sc, BGE_EE_DATA);
442 
443         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
444 
445 	return(0);
446 }
447 
448 /*
449  * Read a sequence of bytes from the EEPROM.
450  */
451 static int
452 bge_read_eeprom(sc, dest, off, cnt)
453 	struct bge_softc *sc;
454 	caddr_t dest;
455 	int off;
456 	int cnt;
457 {
458 	int err = 0, i;
459 	u_int8_t byte = 0;
460 
461 	for (i = 0; i < cnt; i++) {
462 		err = bge_eeprom_getbyte(sc, off + i, &byte);
463 		if (err)
464 			break;
465 		*(dest + i) = byte;
466 	}
467 
468 	return(err ? 1 : 0);
469 }
470 
471 static int
472 bge_miibus_readreg(dev, phy, reg)
473 	device_t dev;
474 	int phy, reg;
475 {
476 	struct bge_softc *sc;
477 	struct ifnet *ifp;
478 	u_int32_t val;
479 	int i;
480 
481 	sc = device_get_softc(dev);
482 	ifp = &sc->arpcom.ac_if;
483 
484 	if (ifp->if_flags & IFF_RUNNING)
485 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
486 
487 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
488 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
489 
490 	for (i = 0; i < BGE_TIMEOUT; i++) {
491 		val = CSR_READ_4(sc, BGE_MI_COMM);
492 		if (!(val & BGE_MICOMM_BUSY))
493 			break;
494 	}
495 
496 	if (i == BGE_TIMEOUT) {
497 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
498 		return(0);
499 	}
500 
501 	val = CSR_READ_4(sc, BGE_MI_COMM);
502 
503 	if (ifp->if_flags & IFF_RUNNING)
504 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
505 
506 	if (val & BGE_MICOMM_READFAIL)
507 		return(0);
508 
509 	return(val & 0xFFFF);
510 }
511 
512 static int
513 bge_miibus_writereg(dev, phy, reg, val)
514 	device_t dev;
515 	int phy, reg, val;
516 {
517 	struct bge_softc *sc;
518 	int i;
519 
520 	sc = device_get_softc(dev);
521 
522 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
523 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
524 
525 	for (i = 0; i < BGE_TIMEOUT; i++) {
526 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
527 			break;
528 	}
529 
530 	if (i == BGE_TIMEOUT) {
531 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
532 		return(0);
533 	}
534 
535 	return(0);
536 }
537 
538 static void
539 bge_miibus_statchg(dev)
540 	device_t dev;
541 {
542 	struct bge_softc *sc;
543 	struct mii_data *mii;
544 
545 	sc = device_get_softc(dev);
546 	mii = device_get_softc(sc->bge_miibus);
547 
548 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
549 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) {
550 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
551 	} else {
552 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
553 	}
554 
555 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
556 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
557 	} else {
558 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
559 	}
560 
561 	bge_phy_hack(sc);
562 
563 	return;
564 }
565 
566 /*
567  * Handle events that have triggered interrupts.
568  */
569 static void
570 bge_handle_events(sc)
571 	struct bge_softc		*sc;
572 {
573 
574 	return;
575 }
576 
577 /*
578  * Memory management for jumbo frames.
579  */
580 
581 static int
582 bge_alloc_jumbo_mem(sc)
583 	struct bge_softc		*sc;
584 {
585 	caddr_t			ptr;
586 	register int		i;
587 	struct bge_jpool_entry   *entry;
588 
589 	/* Grab a big chunk o' storage. */
590 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
591 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
592 
593 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
594 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
595 		return(ENOBUFS);
596 	}
597 
598 	SLIST_INIT(&sc->bge_jfree_listhead);
599 	SLIST_INIT(&sc->bge_jinuse_listhead);
600 
601 	/*
602 	 * Now divide it up into 9K pieces and save the addresses
603 	 * in an array.
604 	 */
605 	ptr = sc->bge_cdata.bge_jumbo_buf;
606 	for (i = 0; i < BGE_JSLOTS; i++) {
607 		sc->bge_cdata.bge_jslots[i] = ptr;
608 		ptr += BGE_JLEN;
609 		entry = malloc(sizeof(struct bge_jpool_entry),
610 		    M_DEVBUF, M_NOWAIT);
611 		if (entry == NULL) {
612 			contigfree(sc->bge_cdata.bge_jumbo_buf,
613 			    BGE_JMEM, M_DEVBUF);
614 			sc->bge_cdata.bge_jumbo_buf = NULL;
615 			printf("bge%d: no memory for jumbo "
616 			    "buffer queue!\n", sc->bge_unit);
617 			return(ENOBUFS);
618 		}
619 		entry->slot = i;
620 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
621 		    entry, jpool_entries);
622 	}
623 
624 	return(0);
625 }
626 
627 static void
628 bge_free_jumbo_mem(sc)
629         struct bge_softc *sc;
630 {
631         int i;
632         struct bge_jpool_entry *entry;
633 
634 	for (i = 0; i < BGE_JSLOTS; i++) {
635 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
636 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
637 		free(entry, M_DEVBUF);
638 	}
639 
640 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
641 
642         return;
643 }
644 
645 /*
646  * Allocate a jumbo buffer.
647  */
648 static void *
649 bge_jalloc(sc)
650 	struct bge_softc		*sc;
651 {
652 	struct bge_jpool_entry   *entry;
653 
654 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
655 
656 	if (entry == NULL) {
657 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
658 		return(NULL);
659 	}
660 
661 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
662 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
663 	return(sc->bge_cdata.bge_jslots[entry->slot]);
664 }
665 
666 /*
667  * Release a jumbo buffer.
668  */
669 static void
670 bge_jfree(buf, args)
671 	caddr_t buf;
672 	void *args;
673 {
674 	struct bge_jpool_entry *entry;
675 	struct bge_softc *sc;
676 	int i;
677 
678 	/* Extract the softc struct pointer. */
679 	sc = (struct bge_softc *)args;
680 
681 	if (sc == NULL)
682 		panic("bge_jfree: can't find softc pointer!");
683 
684 	/* calculate the slot this buffer belongs to */
685 
686 	i = ((vm_offset_t)buf
687 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
688 
689 	if ((i < 0) || (i >= BGE_JSLOTS))
690 		panic("bge_jfree: asked to free buffer that we don't manage!");
691 
692 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
693 	if (entry == NULL)
694 		panic("bge_jfree: buffer not in use!");
695 	entry->slot = i;
696 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
697 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
698 
699 	return;
700 }
701 
702 
703 /*
704  * Intialize a standard receive ring descriptor.
705  */
706 static int
707 bge_newbuf_std(sc, i, m)
708 	struct bge_softc	*sc;
709 	int			i;
710 	struct mbuf		*m;
711 {
712 	struct mbuf		*m_new = NULL;
713 	struct bge_rx_bd	*r;
714 
715 	if (m == NULL) {
716 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
717 		if (m_new == NULL) {
718 			return(ENOBUFS);
719 		}
720 
721 		MCLGET(m_new, M_DONTWAIT);
722 		if (!(m_new->m_flags & M_EXT)) {
723 			m_freem(m_new);
724 			return(ENOBUFS);
725 		}
726 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
727 	} else {
728 		m_new = m;
729 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
730 		m_new->m_data = m_new->m_ext.ext_buf;
731 	}
732 
733 	m_adj(m_new, ETHER_ALIGN);
734 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
735 	r = &sc->bge_rdata->bge_rx_std_ring[i];
736 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
737 	r->bge_flags = BGE_RXBDFLAG_END;
738 	r->bge_len = m_new->m_len;
739 	r->bge_idx = i;
740 
741 	return(0);
742 }
743 
744 /*
745  * Initialize a jumbo receive ring descriptor. This allocates
746  * a jumbo buffer from the pool managed internally by the driver.
747  */
748 static int
749 bge_newbuf_jumbo(sc, i, m)
750 	struct bge_softc *sc;
751 	int i;
752 	struct mbuf *m;
753 {
754 	struct mbuf *m_new = NULL;
755 	struct bge_rx_bd *r;
756 
757 	if (m == NULL) {
758 		caddr_t			*buf = NULL;
759 
760 		/* Allocate the mbuf. */
761 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
762 		if (m_new == NULL) {
763 			return(ENOBUFS);
764 		}
765 
766 		/* Allocate the jumbo buffer */
767 		buf = bge_jalloc(sc);
768 		if (buf == NULL) {
769 			m_freem(m_new);
770 			printf("bge%d: jumbo allocation failed "
771 			    "-- packet dropped!\n", sc->bge_unit);
772 			return(ENOBUFS);
773 		}
774 
775 		/* Attach the buffer to the mbuf. */
776 		m_new->m_data = (void *) buf;
777 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
778 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
779 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
780 	} else {
781 		m_new = m;
782 		m_new->m_data = m_new->m_ext.ext_buf;
783 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
784 	}
785 
786 	m_adj(m_new, ETHER_ALIGN);
787 	/* Set up the descriptor. */
788 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
789 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
790 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
791 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
792 	r->bge_len = m_new->m_len;
793 	r->bge_idx = i;
794 
795 	return(0);
796 }
797 
798 /*
799  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
800  * that's 1MB or memory, which is a lot. For now, we fill only the first
801  * 256 ring entries and hope that our CPU is fast enough to keep up with
802  * the NIC.
803  */
804 static int
805 bge_init_rx_ring_std(sc)
806 	struct bge_softc *sc;
807 {
808 	int i;
809 
810 	for (i = 0; i < BGE_SSLOTS; i++) {
811 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
812 			return(ENOBUFS);
813 	};
814 
815 	sc->bge_std = i - 1;
816 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
817 
818 	return(0);
819 }
820 
821 static void
822 bge_free_rx_ring_std(sc)
823 	struct bge_softc *sc;
824 {
825 	int i;
826 
827 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
828 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
829 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
830 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
831 		}
832 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
833 		    sizeof(struct bge_rx_bd));
834 	}
835 
836 	return;
837 }
838 
839 static int
840 bge_init_rx_ring_jumbo(sc)
841 	struct bge_softc *sc;
842 {
843 	int i;
844 	struct bge_rcb *rcb;
845 	struct bge_rcb_opaque *rcbo;
846 
847 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
848 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
849 			return(ENOBUFS);
850 	};
851 
852 	sc->bge_jumbo = i - 1;
853 
854 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
855 	rcbo = (struct bge_rcb_opaque *)rcb;
856 	rcb->bge_flags = 0;
857 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
858 
859 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
860 
861 	return(0);
862 }
863 
864 static void
865 bge_free_rx_ring_jumbo(sc)
866 	struct bge_softc *sc;
867 {
868 	int i;
869 
870 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
871 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
872 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
873 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
874 		}
875 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
876 		    sizeof(struct bge_rx_bd));
877 	}
878 
879 	return;
880 }
881 
882 static void
883 bge_free_tx_ring(sc)
884 	struct bge_softc *sc;
885 {
886 	int i;
887 
888 	if (sc->bge_rdata->bge_tx_ring == NULL)
889 		return;
890 
891 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
892 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
893 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
894 			sc->bge_cdata.bge_tx_chain[i] = NULL;
895 		}
896 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
897 		    sizeof(struct bge_tx_bd));
898 	}
899 
900 	return;
901 }
902 
903 static int
904 bge_init_tx_ring(sc)
905 	struct bge_softc *sc;
906 {
907 	sc->bge_txcnt = 0;
908 	sc->bge_tx_saved_considx = 0;
909 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
910 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
911 
912 	return(0);
913 }
914 
915 #define BGE_POLY	0xEDB88320
916 
917 static u_int32_t
918 bge_crc(addr)
919 	caddr_t addr;
920 {
921 	u_int32_t idx, bit, data, crc;
922 
923 	/* Compute CRC for the address value. */
924 	crc = 0xFFFFFFFF; /* initial value */
925 
926 	for (idx = 0; idx < 6; idx++) {
927 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
928 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
929 	}
930 
931 	return(crc & 0x7F);
932 }
933 
934 static void
935 bge_setmulti(sc)
936 	struct bge_softc *sc;
937 {
938 	struct ifnet *ifp;
939 	struct ifmultiaddr *ifma;
940 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
941 	int h, i;
942 
943 	ifp = &sc->arpcom.ac_if;
944 
945 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
946 		for (i = 0; i < 4; i++)
947 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
948 		return;
949 	}
950 
951 	/* First, zot all the existing filters. */
952 	for (i = 0; i < 4; i++)
953 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
954 
955 	/* Now program new ones. */
956 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
957 		if (ifma->ifma_addr->sa_family != AF_LINK)
958 			continue;
959 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
960 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
961 	}
962 
963 	for (i = 0; i < 4; i++)
964 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
965 
966 	return;
967 }
968 
969 /*
970  * Do endian, PCI and DMA initialization. Also check the on-board ROM
971  * self-test results.
972  */
973 static int
974 bge_chipinit(sc)
975 	struct bge_softc *sc;
976 {
977 	u_int32_t		cachesize;
978 	int			i;
979 
980 	/* Set endianness before we access any non-PCI registers. */
981 #if BYTE_ORDER == BIG_ENDIAN
982 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
983 	    BGE_BIGENDIAN_INIT, 4);
984 #else
985 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
986 	    BGE_LITTLEENDIAN_INIT, 4);
987 #endif
988 
989 	/*
990 	 * Check the 'ROM failed' bit on the RX CPU to see if
991 	 * self-tests passed.
992 	 */
993 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
994 		printf("bge%d: RX CPU self-diagnostics failed!\n",
995 		    sc->bge_unit);
996 		return(ENODEV);
997 	}
998 
999 	/* Clear the MAC control register */
1000 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1001 
1002 	/*
1003 	 * Clear the MAC statistics block in the NIC's
1004 	 * internal memory.
1005 	 */
1006 	for (i = BGE_STATS_BLOCK;
1007 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1008 		BGE_MEMWIN_WRITE(sc, i, 0);
1009 
1010 	for (i = BGE_STATUS_BLOCK;
1011 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1012 		BGE_MEMWIN_WRITE(sc, i, 0);
1013 
1014 	/* Set up the PCI DMA control register. */
1015 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1016 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4);
1017 
1018 	/*
1019 	 * Set up general mode register.
1020 	 */
1021 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1022 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1023 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1024 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1025 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1026 
1027 	/* Get cache line size. */
1028 	cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1);
1029 
1030 	/*
1031 	 * Avoid violating PCI spec on certain chip revs.
1032 	 */
1033 	if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) {
1034 		switch(cachesize) {
1035 		case 1:
1036 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1037 			    BGE_PCI_WRITE_BNDRY_16BYTES, 4);
1038 			break;
1039 		case 2:
1040 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1041 			    BGE_PCI_WRITE_BNDRY_32BYTES, 4);
1042 			break;
1043 		case 4:
1044 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1045 			    BGE_PCI_WRITE_BNDRY_64BYTES, 4);
1046 			break;
1047 		case 8:
1048 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1049 			    BGE_PCI_WRITE_BNDRY_128BYTES, 4);
1050 			break;
1051 		case 16:
1052 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1053 			    BGE_PCI_WRITE_BNDRY_256BYTES, 4);
1054 			break;
1055 		case 32:
1056 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1057 			    BGE_PCI_WRITE_BNDRY_512BYTES, 4);
1058 			break;
1059 		case 64:
1060 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1061 			    BGE_PCI_WRITE_BNDRY_1024BYTES, 4);
1062 			break;
1063 		default:
1064 		/* Disable PCI memory write and invalidate. */
1065 			if (bootverbose)
1066 				printf("bge%d: cache line size %d not "
1067 				    "supported; disabling PCI MWI\n",
1068 				    sc->bge_unit, cachesize);
1069 			PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1070 			    PCIM_CMD_MWIEN, 4);
1071 			break;
1072 		}
1073 	}
1074 
1075 #ifdef __brokenalpha__
1076 	/*
1077 	 * Must insure that we do not cross an 8K (bytes) boundary
1078 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1079 	 * restriction on some ALPHA platforms with early revision
1080 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1081 	 */
1082 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1083 #endif
1084 
1085 	/* Set the timer prescaler (always 66Mhz) */
1086 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1087 
1088 	return(0);
1089 }
1090 
1091 static int
1092 bge_blockinit(sc)
1093 	struct bge_softc *sc;
1094 {
1095 	struct bge_rcb *rcb;
1096 	struct bge_rcb_opaque *rcbo;
1097 	int i;
1098 
1099 	/*
1100 	 * Initialize the memory window pointer register so that
1101 	 * we can access the first 32K of internal NIC RAM. This will
1102 	 * allow us to set up the TX send ring RCBs and the RX return
1103 	 * ring RCBs, plus other things which live in NIC memory.
1104 	 */
1105 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1106 
1107 	/* Configure mbuf memory pool */
1108 	if (sc->bge_extram) {
1109 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1110 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1111 	} else {
1112 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1113 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1114 	}
1115 
1116 	/* Configure DMA resource pool */
1117 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1118 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1119 
1120 	/* Configure mbuf pool watermarks */
1121 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1122 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1123 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1124 
1125 	/* Configure DMA resource watermarks */
1126 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1127 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1128 
1129 	/* Enable buffer manager */
1130 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1131 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1132 
1133 	/* Poll for buffer manager start indication */
1134 	for (i = 0; i < BGE_TIMEOUT; i++) {
1135 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1136 			break;
1137 		DELAY(10);
1138 	}
1139 
1140 	if (i == BGE_TIMEOUT) {
1141 		printf("bge%d: buffer manager failed to start\n",
1142 		    sc->bge_unit);
1143 		return(ENXIO);
1144 	}
1145 
1146 	/* Enable flow-through queues */
1147 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1148 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1149 
1150 	/* Wait until queue initialization is complete */
1151 	for (i = 0; i < BGE_TIMEOUT; i++) {
1152 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1153 			break;
1154 		DELAY(10);
1155 	}
1156 
1157 	if (i == BGE_TIMEOUT) {
1158 		printf("bge%d: flow-through queue init failed\n",
1159 		    sc->bge_unit);
1160 		return(ENXIO);
1161 	}
1162 
1163 	/* Initialize the standard RX ring control block */
1164 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1165 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1166 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1167 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1168 	if (sc->bge_extram)
1169 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1170 	else
1171 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1172 	rcb->bge_flags = 0;
1173 	rcbo = (struct bge_rcb_opaque *)rcb;
1174 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1175 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1176 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1177 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1178 
1179 	/*
1180 	 * Initialize the jumbo RX ring control block
1181 	 * We set the 'ring disabled' bit in the flags
1182 	 * field until we're actually ready to start
1183 	 * using this ring (i.e. once we set the MTU
1184 	 * high enough to require it).
1185 	 */
1186 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1187 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1188 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1189 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1190 	if (sc->bge_extram)
1191 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1192 	else
1193 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1194 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1195 
1196 	rcbo = (struct bge_rcb_opaque *)rcb;
1197 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1198 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1199 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1200 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1201 
1202 	/* Set up dummy disabled mini ring RCB */
1203 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1204 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1205 	rcbo = (struct bge_rcb_opaque *)rcb;
1206 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1207 
1208 	/*
1209 	 * Set the BD ring replentish thresholds. The recommended
1210 	 * values are 1/8th the number of descriptors allocated to
1211 	 * each ring.
1212 	 */
1213 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1214 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1215 
1216 	/*
1217 	 * Disable all unused send rings by setting the 'ring disabled'
1218 	 * bit in the flags field of all the TX send ring control blocks.
1219 	 * These are located in NIC memory.
1220 	 */
1221 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1222 	    BGE_SEND_RING_RCB);
1223 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1224 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1225 		rcb->bge_max_len = 0;
1226 		rcb->bge_nicaddr = 0;
1227 		rcb++;
1228 	}
1229 
1230 	/* Configure TX RCB 0 (we use only the first ring) */
1231 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1232 	    BGE_SEND_RING_RCB);
1233 	rcb->bge_hostaddr.bge_addr_hi = 0;
1234 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1235 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1236 	rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1237 	rcb->bge_max_len = BGE_TX_RING_CNT;
1238 	rcb->bge_flags = 0;
1239 
1240 	/* Disable all unused RX return rings */
1241 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1242 	    BGE_RX_RETURN_RING_RCB);
1243 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1244 		rcb->bge_hostaddr.bge_addr_hi = 0;
1245 		rcb->bge_hostaddr.bge_addr_lo = 0;
1246 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1247 		rcb->bge_max_len = BGE_RETURN_RING_CNT;
1248 		rcb->bge_nicaddr = 0;
1249 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1250 		    (i * (sizeof(u_int64_t))), 0);
1251 		rcb++;
1252 	}
1253 
1254 	/* Initialize RX ring indexes */
1255 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1256 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1257 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1258 
1259 	/*
1260 	 * Set up RX return ring 0
1261 	 * Note that the NIC address for RX return rings is 0x00000000.
1262 	 * The return rings live entirely within the host, so the
1263 	 * nicaddr field in the RCB isn't used.
1264 	 */
1265 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1266 	    BGE_RX_RETURN_RING_RCB);
1267 	rcb->bge_hostaddr.bge_addr_hi = 0;
1268 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1269 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1270 	rcb->bge_nicaddr = 0x00000000;
1271 	rcb->bge_max_len = BGE_RETURN_RING_CNT;
1272 	rcb->bge_flags = 0;
1273 
1274 	/* Set random backoff seed for TX */
1275 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1276 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1277 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1278 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1279 	    BGE_TX_BACKOFF_SEED_MASK);
1280 
1281 	/* Set inter-packet gap */
1282 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1283 
1284 	/*
1285 	 * Specify which ring to use for packets that don't match
1286 	 * any RX rules.
1287 	 */
1288 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1289 
1290 	/*
1291 	 * Configure number of RX lists. One interrupt distribution
1292 	 * list, sixteen active lists, one bad frames class.
1293 	 */
1294 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1295 
1296 	/* Inialize RX list placement stats mask. */
1297 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1298 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1299 
1300 	/* Disable host coalescing until we get it set up */
1301 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1302 
1303 	/* Poll to make sure it's shut down. */
1304 	for (i = 0; i < BGE_TIMEOUT; i++) {
1305 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1306 			break;
1307 		DELAY(10);
1308 	}
1309 
1310 	if (i == BGE_TIMEOUT) {
1311 		printf("bge%d: host coalescing engine failed to idle\n",
1312 		    sc->bge_unit);
1313 		return(ENXIO);
1314 	}
1315 
1316 	/* Set up host coalescing defaults */
1317 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1318 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1319 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1320 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1321 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1322 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1323 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1324 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1325 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1326 
1327 	/* Set up address of statistics block */
1328 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1329 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1330 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1331 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1332 
1333 	/* Set up address of status block */
1334 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1335 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1336 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1337 	    vtophys(&sc->bge_rdata->bge_status_block));
1338 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1339 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1340 
1341 	/* Turn on host coalescing state machine */
1342 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1343 
1344 	/* Turn on RX BD completion state machine and enable attentions */
1345 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1346 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1347 
1348 	/* Turn on RX list placement state machine */
1349 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1350 
1351 	/* Turn on RX list selector state machine. */
1352 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1353 
1354 	/* Turn on DMA, clear stats */
1355 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1356 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1357 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1358 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1359 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1360 
1361 	/* Set misc. local control, enable interrupts on attentions */
1362 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1363 
1364 #ifdef notdef
1365 	/* Assert GPIO pins for PHY reset */
1366 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1367 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1368 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1369 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1370 #endif
1371 
1372 	/* Turn on DMA completion state machine */
1373 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1374 
1375 	/* Turn on write DMA state machine */
1376 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1377 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1378 
1379 	/* Turn on read DMA state machine */
1380 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1381 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1382 
1383 	/* Turn on RX data completion state machine */
1384 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1385 
1386 	/* Turn on RX BD initiator state machine */
1387 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1388 
1389 	/* Turn on RX data and RX BD initiator state machine */
1390 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1391 
1392 	/* Turn on Mbuf cluster free state machine */
1393 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1394 
1395 	/* Turn on send BD completion state machine */
1396 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1397 
1398 	/* Turn on send data completion state machine */
1399 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1400 
1401 	/* Turn on send data initiator state machine */
1402 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1403 
1404 	/* Turn on send BD initiator state machine */
1405 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1406 
1407 	/* Turn on send BD selector state machine */
1408 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1409 
1410 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1411 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1412 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1413 
1414 	/* init LED register */
1415 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1416 
1417 	/* ack/clear link change events */
1418 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1419 	    BGE_MACSTAT_CFG_CHANGED);
1420 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1421 
1422 	/* Enable PHY auto polling (for MII/GMII only) */
1423 	if (sc->bge_tbi) {
1424 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1425 	} else
1426 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1427 
1428 	/* Enable link state change attentions. */
1429 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1430 
1431 	return(0);
1432 }
1433 
1434 /*
1435  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1436  * against our list and return its name if we find a match. Note
1437  * that since the Broadcom controller contains VPD support, we
1438  * can get the device name string from the controller itself instead
1439  * of the compiled-in string. This is a little slow, but it guarantees
1440  * we'll always announce the right product name.
1441  */
1442 static int
1443 bge_probe(dev)
1444 	device_t dev;
1445 {
1446 	struct bge_type *t;
1447 	struct bge_softc *sc;
1448 
1449 	t = bge_devs;
1450 
1451 	sc = device_get_softc(dev);
1452 	bzero(sc, sizeof(struct bge_softc));
1453 	sc->bge_unit = device_get_unit(dev);
1454 	sc->bge_dev = dev;
1455 
1456 	while(t->bge_name != NULL) {
1457 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1458 		    (pci_get_device(dev) == t->bge_did)) {
1459 #ifdef notdef
1460 			bge_vpd_read(sc);
1461 			device_set_desc(dev, sc->bge_vpd_prodname);
1462 #endif
1463 			device_set_desc(dev, t->bge_name);
1464 			return(0);
1465 		}
1466 		t++;
1467 	}
1468 
1469 	return(ENXIO);
1470 }
1471 
1472 static int
1473 bge_attach(dev)
1474 	device_t dev;
1475 {
1476 	int s;
1477 	u_int32_t command;
1478 	struct ifnet *ifp;
1479 	struct bge_softc *sc;
1480 	int unit, error = 0, rid;
1481 
1482 	s = splimp();
1483 
1484 	sc = device_get_softc(dev);
1485 	unit = device_get_unit(dev);
1486 	sc->bge_dev = dev;
1487 	sc->bge_unit = unit;
1488 
1489 	/*
1490 	 * Map control/status registers.
1491 	 */
1492 	pci_enable_busmaster(dev);
1493 	pci_enable_io(dev, SYS_RES_MEMORY);
1494 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1495 
1496 	if (!(command & PCIM_CMD_MEMEN)) {
1497 		printf("bge%d: failed to enable memory mapping!\n", unit);
1498 		error = ENXIO;
1499 		goto fail;
1500 	}
1501 
1502 	rid = BGE_PCI_BAR0;
1503 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1504 	    0, ~0, 1, RF_ACTIVE);
1505 
1506 	if (sc->bge_res == NULL) {
1507 		printf ("bge%d: couldn't map memory\n", unit);
1508 		error = ENXIO;
1509 		goto fail;
1510 	}
1511 
1512 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1513 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1514 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1515 
1516 	/*
1517 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1518 	 * broken and returns a physical address instead of a kernel
1519 	 * virtual address. Consequently, we need to do a little
1520 	 * extra mangling of the vhandle on the alpha. This should
1521 	 * eventually be fixed! The whole idea here is to get rid
1522 	 * of platform dependencies.
1523 	 */
1524 #ifdef __alpha__
1525 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1526 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1527 	else
1528 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1529 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1530 #endif
1531 
1532 	/* Allocate interrupt */
1533 	rid = 0;
1534 
1535 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1536 	    RF_SHAREABLE | RF_ACTIVE);
1537 
1538 	if (sc->bge_irq == NULL) {
1539 		printf("bge%d: couldn't map interrupt\n", unit);
1540 		error = ENXIO;
1541 		goto fail;
1542 	}
1543 
1544 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1545 	   bge_intr, sc, &sc->bge_intrhand);
1546 
1547 	if (error) {
1548 		bge_release_resources(sc);
1549 		printf("bge%d: couldn't set up irq\n", unit);
1550 		goto fail;
1551 	}
1552 
1553 	sc->bge_unit = unit;
1554 
1555 	/* Try to reset the chip. */
1556 	bge_reset(sc);
1557 
1558 	if (bge_chipinit(sc)) {
1559 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1560 		bge_release_resources(sc);
1561 		error = ENXIO;
1562 		goto fail;
1563 	}
1564 
1565 	/*
1566 	 * Get station address from the EEPROM.
1567 	 */
1568 	if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1569 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1570 		printf("bge%d: failed to read station address\n", unit);
1571 		bge_release_resources(sc);
1572 		error = ENXIO;
1573 		goto fail;
1574 	}
1575 
1576 	/*
1577 	 * A Broadcom chip was detected. Inform the world.
1578 	 */
1579 	printf("bge%d: Ethernet address: %6D\n", unit,
1580 	    sc->arpcom.ac_enaddr, ":");
1581 
1582 	/* Allocate the general information block and ring buffers. */
1583 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1584 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1585 
1586 	if (sc->bge_rdata == NULL) {
1587 		bge_release_resources(sc);
1588 		error = ENXIO;
1589 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1590 		goto fail;
1591 	}
1592 
1593 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1594 
1595 	/* Try to allocate memory for jumbo buffers. */
1596 	if (bge_alloc_jumbo_mem(sc)) {
1597 		printf("bge%d: jumbo buffer allocation "
1598 		    "failed\n", sc->bge_unit);
1599 		bge_release_resources(sc);
1600 		error = ENXIO;
1601 		goto fail;
1602 	}
1603 
1604 	/* Set default tuneable values. */
1605 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1606 	sc->bge_rx_coal_ticks = 150;
1607 	sc->bge_tx_coal_ticks = 150;
1608 	sc->bge_rx_max_coal_bds = 64;
1609 	sc->bge_tx_max_coal_bds = 128;
1610 
1611 	/* Set up ifnet structure */
1612 	ifp = &sc->arpcom.ac_if;
1613 	ifp->if_softc = sc;
1614 	ifp->if_unit = sc->bge_unit;
1615 	ifp->if_name = "bge";
1616 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1617 	ifp->if_ioctl = bge_ioctl;
1618 	ifp->if_output = ether_output;
1619 	ifp->if_start = bge_start;
1620 	ifp->if_watchdog = bge_watchdog;
1621 	ifp->if_init = bge_init;
1622 	ifp->if_mtu = ETHERMTU;
1623 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1624 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1625 	ifp->if_capabilities = IFCAP_HWCSUM;
1626 	ifp->if_capenable = ifp->if_capabilities;
1627 
1628 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1629 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1630 		sc->bge_tbi = 1;
1631 
1632 	if (sc->bge_tbi) {
1633 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1634 		    bge_ifmedia_upd, bge_ifmedia_sts);
1635 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1636 		ifmedia_add(&sc->bge_ifmedia,
1637 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1638 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1639 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1640 	} else {
1641 		/*
1642 		 * Do transceiver setup.
1643 		 */
1644 		if (mii_phy_probe(dev, &sc->bge_miibus,
1645 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1646 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1647 			bge_release_resources(sc);
1648 			bge_free_jumbo_mem(sc);
1649 			error = ENXIO;
1650 			goto fail;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Call MI attach routine.
1656 	 */
1657 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1658 	callout_handle_init(&sc->bge_stat_ch);
1659 
1660 fail:
1661 	splx(s);
1662 
1663 	return(error);
1664 }
1665 
1666 static int
1667 bge_detach(dev)
1668 	device_t dev;
1669 {
1670 	struct bge_softc *sc;
1671 	struct ifnet *ifp;
1672 	int s;
1673 
1674 	s = splimp();
1675 
1676 	sc = device_get_softc(dev);
1677 	ifp = &sc->arpcom.ac_if;
1678 
1679 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1680 	bge_stop(sc);
1681 	bge_reset(sc);
1682 
1683 	if (sc->bge_tbi) {
1684 		ifmedia_removeall(&sc->bge_ifmedia);
1685 	} else {
1686 		bus_generic_detach(dev);
1687 		device_delete_child(dev, sc->bge_miibus);
1688 	}
1689 
1690 	bge_release_resources(sc);
1691 	bge_free_jumbo_mem(sc);
1692 
1693 	splx(s);
1694 
1695 	return(0);
1696 }
1697 
1698 static void
1699 bge_release_resources(sc)
1700 	struct bge_softc *sc;
1701 {
1702         device_t dev;
1703 
1704         dev = sc->bge_dev;
1705 
1706 	if (sc->bge_vpd_prodname != NULL)
1707 		free(sc->bge_vpd_prodname, M_DEVBUF);
1708 
1709 	if (sc->bge_vpd_readonly != NULL)
1710 		free(sc->bge_vpd_readonly, M_DEVBUF);
1711 
1712         if (sc->bge_intrhand != NULL)
1713                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1714 
1715         if (sc->bge_irq != NULL)
1716 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1717 
1718         if (sc->bge_res != NULL)
1719 		bus_release_resource(dev, SYS_RES_MEMORY,
1720 		    BGE_PCI_BAR0, sc->bge_res);
1721 
1722         if (sc->bge_rdata != NULL)
1723 		contigfree(sc->bge_rdata,
1724 		    sizeof(struct bge_ring_data), M_DEVBUF);
1725 
1726         return;
1727 }
1728 
1729 static void
1730 bge_reset(sc)
1731 	struct bge_softc *sc;
1732 {
1733 	device_t dev;
1734 	u_int32_t cachesize, command, pcistate;
1735 	int i, val = 0;
1736 
1737 	dev = sc->bge_dev;
1738 
1739 	/* Save some important PCI state. */
1740 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1741 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1742 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1743 
1744 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1745 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1746 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1747 
1748 	/* Issue global reset */
1749 	bge_writereg_ind(sc, BGE_MISC_CFG,
1750 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1751 
1752 	DELAY(1000);
1753 
1754 	/* Reset some of the PCI state that got zapped by reset */
1755 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1756 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1757 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1758 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1759 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1760 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1761 
1762 	/*
1763 	 * Prevent PXE restart: write a magic number to the
1764 	 * general communications memory at 0xB50.
1765 	 */
1766 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1767 	/*
1768 	 * Poll the value location we just wrote until
1769 	 * we see the 1's complement of the magic number.
1770 	 * This indicates that the firmware initialization
1771 	 * is complete.
1772 	 */
1773 	for (i = 0; i < BGE_TIMEOUT; i++) {
1774 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1775 		if (val == ~BGE_MAGIC_NUMBER)
1776 			break;
1777 		DELAY(10);
1778 	}
1779 
1780 	if (i == BGE_TIMEOUT) {
1781 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1782 		return;
1783 	}
1784 
1785 	/*
1786 	 * XXX Wait for the value of the PCISTATE register to
1787 	 * return to its original pre-reset state. This is a
1788 	 * fairly good indicator of reset completion. If we don't
1789 	 * wait for the reset to fully complete, trying to read
1790 	 * from the device's non-PCI registers may yield garbage
1791 	 * results.
1792 	 */
1793 	for (i = 0; i < BGE_TIMEOUT; i++) {
1794 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1795 			break;
1796 		DELAY(10);
1797 	}
1798 
1799 	/* Enable memory arbiter. */
1800 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1801 
1802 	/* Fix up byte swapping */
1803 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1804 	    BGE_MODECTL_BYTESWAP_DATA);
1805 
1806 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1807 
1808 	DELAY(10000);
1809 
1810 	return;
1811 }
1812 
1813 /*
1814  * Frame reception handling. This is called if there's a frame
1815  * on the receive return list.
1816  *
1817  * Note: we have to be able to handle two possibilities here:
1818  * 1) the frame is from the jumbo recieve ring
1819  * 2) the frame is from the standard receive ring
1820  */
1821 
1822 static void
1823 bge_rxeof(sc)
1824 	struct bge_softc *sc;
1825 {
1826 	struct ifnet *ifp;
1827 	int stdcnt = 0, jumbocnt = 0;
1828 
1829 	ifp = &sc->arpcom.ac_if;
1830 
1831 	while(sc->bge_rx_saved_considx !=
1832 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1833 		struct bge_rx_bd	*cur_rx;
1834 		u_int32_t		rxidx;
1835 		struct ether_header	*eh;
1836 		struct mbuf		*m = NULL;
1837 		u_int16_t		vlan_tag = 0;
1838 		int			have_tag = 0;
1839 
1840 		cur_rx =
1841 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1842 
1843 		rxidx = cur_rx->bge_idx;
1844 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1845 
1846 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1847 			have_tag = 1;
1848 			vlan_tag = cur_rx->bge_vlan_tag;
1849 		}
1850 
1851 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1852 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1853 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1854 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1855 			jumbocnt++;
1856 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1857 				ifp->if_ierrors++;
1858 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1859 				continue;
1860 			}
1861 			if (bge_newbuf_jumbo(sc,
1862 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1863 				ifp->if_ierrors++;
1864 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1865 				continue;
1866 			}
1867 		} else {
1868 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1869 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1870 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1871 			stdcnt++;
1872 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1873 				ifp->if_ierrors++;
1874 				bge_newbuf_std(sc, sc->bge_std, m);
1875 				continue;
1876 			}
1877 			if (bge_newbuf_std(sc, sc->bge_std,
1878 			    NULL) == ENOBUFS) {
1879 				ifp->if_ierrors++;
1880 				bge_newbuf_std(sc, sc->bge_std, m);
1881 				continue;
1882 			}
1883 		}
1884 
1885 		ifp->if_ipackets++;
1886 		eh = mtod(m, struct ether_header *);
1887 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1888 		m->m_pkthdr.rcvif = ifp;
1889 
1890 		/* Remove header from mbuf and pass it on. */
1891 		m_adj(m, sizeof(struct ether_header));
1892 
1893 #if 0 /* currently broken for some packets, possibly related to TCP options */
1894 		if (ifp->if_hwassist) {
1895 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1896 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1897 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1898 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1899 				m->m_pkthdr.csum_data =
1900 				    cur_rx->bge_tcp_udp_csum;
1901 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1902 			}
1903 		}
1904 #endif
1905 
1906 		/*
1907 		 * If we received a packet with a vlan tag, pass it
1908 		 * to vlan_input() instead of ether_input().
1909 		 */
1910 		if (have_tag) {
1911 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1912 			have_tag = vlan_tag = 0;
1913 			continue;
1914 		}
1915 
1916 		ether_input(ifp, eh, m);
1917 	}
1918 
1919 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1920 	if (stdcnt)
1921 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1922 	if (jumbocnt)
1923 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1924 
1925 	return;
1926 }
1927 
1928 static void
1929 bge_txeof(sc)
1930 	struct bge_softc *sc;
1931 {
1932 	struct bge_tx_bd *cur_tx = NULL;
1933 	struct ifnet *ifp;
1934 
1935 	ifp = &sc->arpcom.ac_if;
1936 
1937 	/*
1938 	 * Go through our tx ring and free mbufs for those
1939 	 * frames that have been sent.
1940 	 */
1941 	while (sc->bge_tx_saved_considx !=
1942 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1943 		u_int32_t		idx = 0;
1944 
1945 		idx = sc->bge_tx_saved_considx;
1946 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1947 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1948 			ifp->if_opackets++;
1949 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1950 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1951 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1952 		}
1953 		sc->bge_txcnt--;
1954 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1955 		ifp->if_timer = 0;
1956 	}
1957 
1958 	if (cur_tx != NULL)
1959 		ifp->if_flags &= ~IFF_OACTIVE;
1960 
1961 	return;
1962 }
1963 
1964 static void
1965 bge_intr(xsc)
1966 	void *xsc;
1967 {
1968 	struct bge_softc *sc;
1969 	struct ifnet *ifp;
1970 
1971 	sc = xsc;
1972 	ifp = &sc->arpcom.ac_if;
1973 
1974 #ifdef notdef
1975 	/* Avoid this for now -- checking this register is expensive. */
1976 	/* Make sure this is really our interrupt. */
1977 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
1978 		return;
1979 #endif
1980 	/* Ack interrupt and stop others from occuring. */
1981 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
1982 
1983 	/* Process link state changes. */
1984 	if (sc->bge_rdata->bge_status_block.bge_status &
1985 	    BGE_STATFLAG_LINKSTATE_CHANGED) {
1986 		sc->bge_link = 0;
1987 		untimeout(bge_tick, sc, sc->bge_stat_ch);
1988 		bge_tick(sc);
1989 		/* ack the event to clear/reset it */
1990 		CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1991 		    BGE_MACSTAT_CFG_CHANGED);
1992 		CSR_WRITE_4(sc, BGE_MI_STS, 0);
1993 	}
1994 
1995 	if (ifp->if_flags & IFF_RUNNING) {
1996 		/* Check RX return ring producer/consumer */
1997 		bge_rxeof(sc);
1998 
1999 		/* Check TX ring producer/consumer */
2000 		bge_txeof(sc);
2001 	}
2002 
2003 	bge_handle_events(sc);
2004 
2005 	/* Re-enable interrupts. */
2006 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2007 
2008 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2009 		bge_start(ifp);
2010 
2011 	return;
2012 }
2013 
2014 static void
2015 bge_tick(xsc)
2016 	void *xsc;
2017 {
2018 	struct bge_softc *sc;
2019 	struct mii_data *mii = NULL;
2020 	struct ifmedia *ifm = NULL;
2021 	struct ifnet *ifp;
2022 	int s;
2023 
2024 	sc = xsc;
2025 	ifp = &sc->arpcom.ac_if;
2026 
2027 	s = splimp();
2028 
2029 	bge_stats_update(sc);
2030 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2031 	if (sc->bge_link)
2032 		return;
2033 
2034 	if (sc->bge_tbi) {
2035 		ifm = &sc->bge_ifmedia;
2036 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2037 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2038 			sc->bge_link++;
2039 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2040 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2041 			if (ifp->if_snd.ifq_head != NULL)
2042 				bge_start(ifp);
2043 		}
2044 		return;
2045 	}
2046 
2047 	mii = device_get_softc(sc->bge_miibus);
2048 	mii_tick(mii);
2049 
2050 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2051 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2052 		sc->bge_link++;
2053 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
2054 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2055 			printf("bge%d: gigabit link up\n",
2056 			   sc->bge_unit);
2057 		if (ifp->if_snd.ifq_head != NULL)
2058 			bge_start(ifp);
2059 	}
2060 
2061 	splx(s);
2062 
2063 	return;
2064 }
2065 
2066 static void
2067 bge_stats_update(sc)
2068 	struct bge_softc *sc;
2069 {
2070 	struct ifnet *ifp;
2071 	struct bge_stats *stats;
2072 
2073 	ifp = &sc->arpcom.ac_if;
2074 
2075 	stats = (struct bge_stats *)(sc->bge_vhandle +
2076 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2077 
2078 	ifp->if_collisions +=
2079 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2080 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2081 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2082 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2083 	   ifp->if_collisions;
2084 
2085 #ifdef notdef
2086 	ifp->if_collisions +=
2087 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2088 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2089 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2090 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2091 	   ifp->if_collisions;
2092 #endif
2093 
2094 	return;
2095 }
2096 
2097 /*
2098  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2099  * pointers to descriptors.
2100  */
2101 static int
2102 bge_encap(sc, m_head, txidx)
2103 	struct bge_softc *sc;
2104 	struct mbuf *m_head;
2105 	u_int32_t *txidx;
2106 {
2107 	struct bge_tx_bd	*f = NULL;
2108 	struct mbuf		*m;
2109 	u_int32_t		frag, cur, cnt = 0;
2110 	u_int16_t		csum_flags = 0;
2111 	struct ifvlan		*ifv = NULL;
2112 
2113 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2114 	    m_head->m_pkthdr.rcvif != NULL &&
2115 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2116 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2117 
2118 	m = m_head;
2119 	cur = frag = *txidx;
2120 
2121 	if (m_head->m_pkthdr.csum_flags) {
2122 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2123 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2124 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2125 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2126 		if (m_head->m_flags & M_LASTFRAG)
2127 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2128 		else if (m_head->m_flags & M_FRAG)
2129 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2130 	}
2131 
2132 	/*
2133  	 * Start packing the mbufs in this chain into
2134 	 * the fragment pointers. Stop when we run out
2135  	 * of fragments or hit the end of the mbuf chain.
2136 	 */
2137 	for (m = m_head; m != NULL; m = m->m_next) {
2138 		if (m->m_len != 0) {
2139 			f = &sc->bge_rdata->bge_tx_ring[frag];
2140 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2141 				break;
2142 			BGE_HOSTADDR(f->bge_addr) =
2143 			   vtophys(mtod(m, vm_offset_t));
2144 			f->bge_len = m->m_len;
2145 			f->bge_flags = csum_flags;
2146 			if (ifv != NULL) {
2147 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2148 				f->bge_vlan_tag = ifv->ifv_tag;
2149 			} else {
2150 				f->bge_vlan_tag = 0;
2151 			}
2152 			/*
2153 			 * Sanity check: avoid coming within 16 descriptors
2154 			 * of the end of the ring.
2155 			 */
2156 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2157 				return(ENOBUFS);
2158 			cur = frag;
2159 			BGE_INC(frag, BGE_TX_RING_CNT);
2160 			cnt++;
2161 		}
2162 	}
2163 
2164 	if (m != NULL)
2165 		return(ENOBUFS);
2166 
2167 	if (frag == sc->bge_tx_saved_considx)
2168 		return(ENOBUFS);
2169 
2170 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2171 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2172 	sc->bge_txcnt += cnt;
2173 
2174 	*txidx = frag;
2175 
2176 	return(0);
2177 }
2178 
2179 /*
2180  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2181  * to the mbuf data regions directly in the transmit descriptors.
2182  */
2183 static void
2184 bge_start(ifp)
2185 	struct ifnet *ifp;
2186 {
2187 	struct bge_softc *sc;
2188 	struct mbuf *m_head = NULL;
2189 	u_int32_t prodidx = 0;
2190 
2191 	sc = ifp->if_softc;
2192 
2193 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2194 		return;
2195 
2196 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2197 
2198 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2199 		IF_DEQUEUE(&ifp->if_snd, m_head);
2200 		if (m_head == NULL)
2201 			break;
2202 
2203 		/*
2204 		 * XXX
2205 		 * safety overkill.  If this is a fragmented packet chain
2206 		 * with delayed TCP/UDP checksums, then only encapsulate
2207 		 * it if we have enough descriptors to handle the entire
2208 		 * chain at once.
2209 		 * (paranoia -- may not actually be needed)
2210 		 */
2211 		if (m_head->m_flags & M_FIRSTFRAG &&
2212 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2213 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2214 			    m_head->m_pkthdr.csum_data + 16) {
2215 				IF_PREPEND(&ifp->if_snd, m_head);
2216 				ifp->if_flags |= IFF_OACTIVE;
2217 				break;
2218 			}
2219 		}
2220 
2221 		/*
2222 		 * Pack the data into the transmit ring. If we
2223 		 * don't have room, set the OACTIVE flag and wait
2224 		 * for the NIC to drain the ring.
2225 		 */
2226 		if (bge_encap(sc, m_head, &prodidx)) {
2227 			IF_PREPEND(&ifp->if_snd, m_head);
2228 			ifp->if_flags |= IFF_OACTIVE;
2229 			break;
2230 		}
2231 
2232 		/*
2233 		 * If there's a BPF listener, bounce a copy of this frame
2234 		 * to him.
2235 		 */
2236 		if (ifp->if_bpf)
2237 			bpf_mtap(ifp, m_head);
2238 	}
2239 
2240 	/* Transmit */
2241 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2242 
2243 	/*
2244 	 * Set a timeout in case the chip goes out to lunch.
2245 	 */
2246 	ifp->if_timer = 5;
2247 
2248 	return;
2249 }
2250 
2251 /*
2252  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2253  * program its internal DSP. Failing to do this can result in
2254  * massive packet loss at 1Gb speeds.
2255  */
2256 static void
2257 bge_phy_hack(sc)
2258 	struct bge_softc *sc;
2259 {
2260 	struct bge_bcom_hack bhack[] = {
2261 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2262 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2263 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2264 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2265 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2266 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2267 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2268 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2269 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2270 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2271 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2272 	{ 0, 0 } };
2273 	u_int16_t vid, did;
2274 	int i;
2275 
2276 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2277 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2278 
2279 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2280 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2281 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2282 		i = 0;
2283 		while(bhack[i].reg) {
2284 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2285 			    bhack[i].val);
2286 			i++;
2287 		}
2288 	}
2289 
2290 	return;
2291 }
2292 
2293 static void
2294 bge_init(xsc)
2295 	void *xsc;
2296 {
2297 	struct bge_softc *sc = xsc;
2298 	struct ifnet *ifp;
2299 	u_int16_t *m;
2300         int s;
2301 
2302 	s = splimp();
2303 
2304 	ifp = &sc->arpcom.ac_if;
2305 
2306 	if (ifp->if_flags & IFF_RUNNING)
2307 		return;
2308 
2309 	/* Cancel pending I/O and flush buffers. */
2310 	bge_stop(sc);
2311 	bge_reset(sc);
2312 	bge_chipinit(sc);
2313 
2314 	/*
2315 	 * Init the various state machines, ring
2316 	 * control blocks and firmware.
2317 	 */
2318 	if (bge_blockinit(sc)) {
2319 		printf("bge%d: initialization failure\n", sc->bge_unit);
2320 		splx(s);
2321 		return;
2322 	}
2323 
2324 	ifp = &sc->arpcom.ac_if;
2325 
2326 	/* Specify MTU. */
2327 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2328 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2329 
2330 	/* Load our MAC address. */
2331 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2332 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2333 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2334 
2335 	/* Enable or disable promiscuous mode as needed. */
2336 	if (ifp->if_flags & IFF_PROMISC) {
2337 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2338 	} else {
2339 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2340 	}
2341 
2342 	/* Program multicast filter. */
2343 	bge_setmulti(sc);
2344 
2345 	/* Init RX ring. */
2346 	bge_init_rx_ring_std(sc);
2347 
2348 	/* Init jumbo RX ring. */
2349 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2350 		bge_init_rx_ring_jumbo(sc);
2351 
2352 	/* Init our RX return ring index */
2353 	sc->bge_rx_saved_considx = 0;
2354 
2355 	/* Init TX ring. */
2356 	bge_init_tx_ring(sc);
2357 
2358 	/* Turn on transmitter */
2359 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2360 
2361 	/* Turn on receiver */
2362 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2363 
2364 	/* Tell firmware we're alive. */
2365 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2366 
2367 	/* Enable host interrupts. */
2368 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2369 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2370 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2371 
2372 	bge_ifmedia_upd(ifp);
2373 
2374 	ifp->if_flags |= IFF_RUNNING;
2375 	ifp->if_flags &= ~IFF_OACTIVE;
2376 
2377 	splx(s);
2378 
2379 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2380 
2381 	return;
2382 }
2383 
2384 /*
2385  * Set media options.
2386  */
2387 static int
2388 bge_ifmedia_upd(ifp)
2389 	struct ifnet *ifp;
2390 {
2391 	struct bge_softc *sc;
2392 	struct mii_data *mii;
2393 	struct ifmedia *ifm;
2394 
2395 	sc = ifp->if_softc;
2396 	ifm = &sc->bge_ifmedia;
2397 
2398 	/* If this is a 1000baseX NIC, enable the TBI port. */
2399 	if (sc->bge_tbi) {
2400 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2401 			return(EINVAL);
2402 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2403 		case IFM_AUTO:
2404 			break;
2405 		case IFM_1000_SX:
2406 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2407 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2408 				    BGE_MACMODE_HALF_DUPLEX);
2409 			} else {
2410 				BGE_SETBIT(sc, BGE_MAC_MODE,
2411 				    BGE_MACMODE_HALF_DUPLEX);
2412 			}
2413 			break;
2414 		default:
2415 			return(EINVAL);
2416 		}
2417 		return(0);
2418 	}
2419 
2420 	mii = device_get_softc(sc->bge_miibus);
2421 	sc->bge_link = 0;
2422 	if (mii->mii_instance) {
2423 		struct mii_softc *miisc;
2424 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2425 		    miisc = LIST_NEXT(miisc, mii_list))
2426 			mii_phy_reset(miisc);
2427 	}
2428 	bge_phy_hack(sc);
2429 	mii_mediachg(mii);
2430 
2431 	return(0);
2432 }
2433 
2434 /*
2435  * Report current media status.
2436  */
2437 static void
2438 bge_ifmedia_sts(ifp, ifmr)
2439 	struct ifnet *ifp;
2440 	struct ifmediareq *ifmr;
2441 {
2442 	struct bge_softc *sc;
2443 	struct mii_data *mii;
2444 
2445 	sc = ifp->if_softc;
2446 
2447 	if (sc->bge_tbi) {
2448 		ifmr->ifm_status = IFM_AVALID;
2449 		ifmr->ifm_active = IFM_ETHER;
2450 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2451 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2452 			ifmr->ifm_status |= IFM_ACTIVE;
2453 		ifmr->ifm_active |= IFM_1000_SX;
2454 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2455 			ifmr->ifm_active |= IFM_HDX;
2456 		else
2457 			ifmr->ifm_active |= IFM_FDX;
2458 		return;
2459 	}
2460 
2461 	mii = device_get_softc(sc->bge_miibus);
2462 	mii_pollstat(mii);
2463 	ifmr->ifm_active = mii->mii_media_active;
2464 	ifmr->ifm_status = mii->mii_media_status;
2465 
2466 	return;
2467 }
2468 
2469 static int
2470 bge_ioctl(ifp, command, data)
2471 	struct ifnet *ifp;
2472 	u_long command;
2473 	caddr_t data;
2474 {
2475 	struct bge_softc *sc = ifp->if_softc;
2476 	struct ifreq *ifr = (struct ifreq *) data;
2477 	int s, mask, error = 0;
2478 	struct mii_data *mii;
2479 
2480 	s = splimp();
2481 
2482 	switch(command) {
2483 	case SIOCSIFADDR:
2484 	case SIOCGIFADDR:
2485 		error = ether_ioctl(ifp, command, data);
2486 		break;
2487 	case SIOCSIFMTU:
2488 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2489 			error = EINVAL;
2490 		else {
2491 			ifp->if_mtu = ifr->ifr_mtu;
2492 			ifp->if_flags &= ~IFF_RUNNING;
2493 			bge_init(sc);
2494 		}
2495 		break;
2496 	case SIOCSIFFLAGS:
2497 		if (ifp->if_flags & IFF_UP) {
2498 			/*
2499 			 * If only the state of the PROMISC flag changed,
2500 			 * then just use the 'set promisc mode' command
2501 			 * instead of reinitializing the entire NIC. Doing
2502 			 * a full re-init means reloading the firmware and
2503 			 * waiting for it to start up, which may take a
2504 			 * second or two.
2505 			 */
2506 			if (ifp->if_flags & IFF_RUNNING &&
2507 			    ifp->if_flags & IFF_PROMISC &&
2508 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2509 				BGE_SETBIT(sc, BGE_RX_MODE,
2510 				    BGE_RXMODE_RX_PROMISC);
2511 			} else if (ifp->if_flags & IFF_RUNNING &&
2512 			    !(ifp->if_flags & IFF_PROMISC) &&
2513 			    sc->bge_if_flags & IFF_PROMISC) {
2514 				BGE_CLRBIT(sc, BGE_RX_MODE,
2515 				    BGE_RXMODE_RX_PROMISC);
2516 			} else
2517 				bge_init(sc);
2518 		} else {
2519 			if (ifp->if_flags & IFF_RUNNING) {
2520 				bge_stop(sc);
2521 			}
2522 		}
2523 		sc->bge_if_flags = ifp->if_flags;
2524 		error = 0;
2525 		break;
2526 	case SIOCADDMULTI:
2527 	case SIOCDELMULTI:
2528 		if (ifp->if_flags & IFF_RUNNING) {
2529 			bge_setmulti(sc);
2530 			error = 0;
2531 		}
2532 		break;
2533 	case SIOCSIFMEDIA:
2534 	case SIOCGIFMEDIA:
2535 		if (sc->bge_tbi) {
2536 			error = ifmedia_ioctl(ifp, ifr,
2537 			    &sc->bge_ifmedia, command);
2538 		} else {
2539 			mii = device_get_softc(sc->bge_miibus);
2540 			error = ifmedia_ioctl(ifp, ifr,
2541 			    &mii->mii_media, command);
2542 		}
2543 		break;
2544         case SIOCSIFCAP:
2545 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2546 		if (mask & IFCAP_HWCSUM) {
2547 			if (IFCAP_HWCSUM & ifp->if_capenable)
2548 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2549 			else
2550 				ifp->if_capenable |= IFCAP_HWCSUM;
2551 		}
2552 		error = 0;
2553 		break;
2554 	default:
2555 		error = EINVAL;
2556 		break;
2557 	}
2558 
2559 	(void)splx(s);
2560 
2561 	return(error);
2562 }
2563 
2564 static void
2565 bge_watchdog(ifp)
2566 	struct ifnet *ifp;
2567 {
2568 	struct bge_softc *sc;
2569 
2570 	sc = ifp->if_softc;
2571 
2572 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2573 
2574 	ifp->if_flags &= ~IFF_RUNNING;
2575 	bge_init(sc);
2576 
2577 	ifp->if_oerrors++;
2578 
2579 	return;
2580 }
2581 
2582 /*
2583  * Stop the adapter and free any mbufs allocated to the
2584  * RX and TX lists.
2585  */
2586 static void
2587 bge_stop(sc)
2588 	struct bge_softc *sc;
2589 {
2590 	struct ifnet *ifp;
2591 	struct ifmedia_entry *ifm;
2592 	struct mii_data *mii = NULL;
2593 	int mtmp, itmp;
2594 
2595 	ifp = &sc->arpcom.ac_if;
2596 
2597 	if (!sc->bge_tbi)
2598 		mii = device_get_softc(sc->bge_miibus);
2599 
2600 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2601 
2602 	/*
2603 	 * Disable all of the receiver blocks
2604 	 */
2605 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2606 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2607 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2608 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2609 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2610 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2611 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2612 
2613 	/*
2614 	 * Disable all of the transmit blocks
2615 	 */
2616 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2617 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2618 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2619 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2620 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2621 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2622 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2623 
2624 	/*
2625 	 * Shut down all of the memory managers and related
2626 	 * state machines.
2627 	 */
2628 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2629 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2630 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2631 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2632 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2633 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2634 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2635 
2636 	/* Disable host interrupts. */
2637 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2638 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2639 
2640 	/*
2641 	 * Tell firmware we're shutting down.
2642 	 */
2643 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2644 
2645 	/* Free the RX lists. */
2646 	bge_free_rx_ring_std(sc);
2647 
2648 	/* Free jumbo RX list. */
2649 	bge_free_rx_ring_jumbo(sc);
2650 
2651 	/* Free TX buffers. */
2652 	bge_free_tx_ring(sc);
2653 
2654 	/*
2655 	 * Isolate/power down the PHY, but leave the media selection
2656 	 * unchanged so that things will be put back to normal when
2657 	 * we bring the interface back up.
2658 	 */
2659 	if (!sc->bge_tbi) {
2660 		itmp = ifp->if_flags;
2661 		ifp->if_flags |= IFF_UP;
2662 		ifm = mii->mii_media.ifm_cur;
2663 		mtmp = ifm->ifm_media;
2664 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2665 		mii_mediachg(mii);
2666 		ifm->ifm_media = mtmp;
2667 		ifp->if_flags = itmp;
2668 	}
2669 
2670 	sc->bge_link = 0;
2671 
2672 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2673 
2674 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2675 
2676 	return;
2677 }
2678 
2679 /*
2680  * Stop all chip I/O so that the kernel's probe routines don't
2681  * get confused by errant DMAs when rebooting.
2682  */
2683 static void
2684 bge_shutdown(dev)
2685 	device_t dev;
2686 {
2687 	struct bge_softc *sc;
2688 
2689 	sc = device_get_softc(dev);
2690 
2691 	bge_stop(sc);
2692 	bge_reset(sc);
2693 
2694 	return;
2695 }
2696