1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD$ 34 */ 35 36 /* 37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Engineer, Wind River Systems 41 */ 42 43 /* 44 * The Broadcom BCM5700 is based on technology originally developed by 45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 49 * frames, highly configurable RX filtering, and 16 RX and TX queues 50 * (which, along with RX filter rules, can be used for QOS applications). 51 * Other features, such as TCP segmentation, may be available as part 52 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 53 * firmware images can be stored in hardware and need not be compiled 54 * into the driver. 55 * 56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 58 * 59 * The BCM5701 is a single-chip solution incorporating both the BCM5700 60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700 61 * does not support external SSRAM. 62 * 63 * Broadcom also produces a variation of the BCM5700 under the "Altima" 64 * brand name, which is functionally similar but lacks PCI-X support. 65 * 66 * Without external SSRAM, you can only have at most 4 TX rings, 67 * and the use of the mini RX ring is disabled. This seems to imply 68 * that these features are simply not available on the BCM5701. As a 69 * result, this driver does not implement any support for the mini RX 70 * ring. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/sockio.h> 76 #include <sys/mbuf.h> 77 #include <sys/malloc.h> 78 #include <sys/kernel.h> 79 #include <sys/socket.h> 80 #include <sys/queue.h> 81 82 #include <net/if.h> 83 #include <net/if_arp.h> 84 #include <net/ethernet.h> 85 #include <net/if_dl.h> 86 #include <net/if_media.h> 87 88 #include <net/bpf.h> 89 90 #include <net/if_types.h> 91 #include <net/if_vlan_var.h> 92 93 #include <netinet/in_systm.h> 94 #include <netinet/in.h> 95 #include <netinet/ip.h> 96 97 #include <vm/vm.h> /* for vtophys */ 98 #include <vm/pmap.h> /* for vtophys */ 99 #include <machine/clock.h> /* for DELAY */ 100 #include <machine/bus_memio.h> 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include <dev/mii/miidevs.h> 109 #include <dev/mii/brgphyreg.h> 110 111 #include <pci/pcireg.h> 112 #include <pci/pcivar.h> 113 114 #include <dev/bge/if_bgereg.h> 115 116 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS) 117 118 MODULE_DEPEND(bge, miibus, 1, 1, 1); 119 120 /* "controller miibus0" required. See GENERIC if you get errors here. */ 121 #include "miibus_if.h" 122 123 #if !defined(lint) 124 static const char rcsid[] = 125 "$FreeBSD$"; 126 #endif 127 128 /* 129 * Various supported device vendors/types and their names. Note: the 130 * spec seems to indicate that the hardware still has Alteon's vendor 131 * ID burned into it, though it will always be overriden by the vendor 132 * ID in the EEPROM. Just to be safe, we cover all possibilities. 133 */ 134 135 static struct bge_type bge_devs[] = { 136 { ALT_VENDORID, ALT_DEVICEID_BCM5700, 137 "Broadcom BCM5700 Gigabit Ethernet" }, 138 { ALT_VENDORID, ALT_DEVICEID_BCM5701, 139 "Broadcom BCM5701 Gigabit Ethernet" }, 140 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700, 141 "Broadcom BCM5700 Gigabit Ethernet" }, 142 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701, 143 "Broadcom BCM5701 Gigabit Ethernet" }, 144 { SK_VENDORID, SK_DEVICEID_ALTIMA, 145 "SysKonnect Gigabit Ethernet" }, 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000, 147 "Altima AC1000 Gigabit Ethernet" }, 148 { 0, 0, NULL } 149 }; 150 151 static int bge_probe __P((device_t)); 152 static int bge_attach __P((device_t)); 153 static int bge_detach __P((device_t)); 154 static void bge_release_resources 155 __P((struct bge_softc *)); 156 static void bge_txeof __P((struct bge_softc *)); 157 static void bge_rxeof __P((struct bge_softc *)); 158 159 static void bge_tick __P((void *)); 160 static void bge_stats_update __P((struct bge_softc *)); 161 static int bge_encap __P((struct bge_softc *, struct mbuf *, 162 u_int32_t *)); 163 164 static void bge_intr __P((void *)); 165 static void bge_start __P((struct ifnet *)); 166 static int bge_ioctl __P((struct ifnet *, u_long, caddr_t)); 167 static void bge_init __P((void *)); 168 static void bge_stop __P((struct bge_softc *)); 169 static void bge_watchdog __P((struct ifnet *)); 170 static void bge_shutdown __P((device_t)); 171 static int bge_ifmedia_upd __P((struct ifnet *)); 172 static void bge_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); 173 174 static u_int8_t bge_eeprom_getbyte __P((struct bge_softc *, 175 int, u_int8_t *)); 176 static int bge_read_eeprom __P((struct bge_softc *, caddr_t, int, int)); 177 178 static u_int32_t bge_crc __P((caddr_t)); 179 static void bge_setmulti __P((struct bge_softc *)); 180 181 static void bge_handle_events __P((struct bge_softc *)); 182 static int bge_alloc_jumbo_mem __P((struct bge_softc *)); 183 static void bge_free_jumbo_mem __P((struct bge_softc *)); 184 static void *bge_jalloc __P((struct bge_softc *)); 185 static void bge_jfree __P((caddr_t, void *)); 186 static int bge_newbuf_std __P((struct bge_softc *, int, struct mbuf *)); 187 static int bge_newbuf_jumbo __P((struct bge_softc *, int, struct mbuf *)); 188 static int bge_init_rx_ring_std __P((struct bge_softc *)); 189 static void bge_free_rx_ring_std __P((struct bge_softc *)); 190 static int bge_init_rx_ring_jumbo __P((struct bge_softc *)); 191 static void bge_free_rx_ring_jumbo __P((struct bge_softc *)); 192 static void bge_free_tx_ring __P((struct bge_softc *)); 193 static int bge_init_tx_ring __P((struct bge_softc *)); 194 195 static int bge_chipinit __P((struct bge_softc *)); 196 static int bge_blockinit __P((struct bge_softc *)); 197 198 #ifdef notdef 199 static u_int8_t bge_vpd_readbyte __P((struct bge_softc *, int)); 200 static void bge_vpd_read_res __P((struct bge_softc *, 201 struct vpd_res *, int)); 202 static void bge_vpd_read __P((struct bge_softc *)); 203 #endif 204 205 static u_int32_t bge_readmem_ind 206 __P((struct bge_softc *, int)); 207 static void bge_writemem_ind __P((struct bge_softc *, int, int)); 208 #ifdef notdef 209 static u_int32_t bge_readreg_ind 210 __P((struct bge_softc *, int)); 211 #endif 212 static void bge_writereg_ind __P((struct bge_softc *, int, int)); 213 214 static int bge_miibus_readreg __P((device_t, int, int)); 215 static int bge_miibus_writereg __P((device_t, int, int, int)); 216 static void bge_miibus_statchg __P((device_t)); 217 218 static void bge_reset __P((struct bge_softc *)); 219 static void bge_phy_hack __P((struct bge_softc *)); 220 221 static device_method_t bge_methods[] = { 222 /* Device interface */ 223 DEVMETHOD(device_probe, bge_probe), 224 DEVMETHOD(device_attach, bge_attach), 225 DEVMETHOD(device_detach, bge_detach), 226 DEVMETHOD(device_shutdown, bge_shutdown), 227 228 /* bus interface */ 229 DEVMETHOD(bus_print_child, bus_generic_print_child), 230 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 231 232 /* MII interface */ 233 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 234 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 235 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 236 237 { 0, 0 } 238 }; 239 240 static driver_t bge_driver = { 241 "bge", 242 bge_methods, 243 sizeof(struct bge_softc) 244 }; 245 246 static devclass_t bge_devclass; 247 248 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0); 249 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 250 251 static u_int32_t 252 bge_readmem_ind(sc, off) 253 struct bge_softc *sc; 254 int off; 255 { 256 device_t dev; 257 258 dev = sc->bge_dev; 259 260 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 261 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); 262 } 263 264 static void 265 bge_writemem_ind(sc, off, val) 266 struct bge_softc *sc; 267 int off, val; 268 { 269 device_t dev; 270 271 dev = sc->bge_dev; 272 273 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 274 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 275 276 return; 277 } 278 279 #ifdef notdef 280 static u_int32_t 281 bge_readreg_ind(sc, off) 282 struct bge_softc *sc; 283 int off; 284 { 285 device_t dev; 286 287 dev = sc->bge_dev; 288 289 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 290 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 291 } 292 #endif 293 294 static void 295 bge_writereg_ind(sc, off, val) 296 struct bge_softc *sc; 297 int off, val; 298 { 299 device_t dev; 300 301 dev = sc->bge_dev; 302 303 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 304 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 305 306 return; 307 } 308 309 #ifdef notdef 310 static u_int8_t 311 bge_vpd_readbyte(sc, addr) 312 struct bge_softc *sc; 313 int addr; 314 { 315 int i; 316 device_t dev; 317 u_int32_t val; 318 319 dev = sc->bge_dev; 320 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); 321 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 322 DELAY(10); 323 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) 324 break; 325 } 326 327 if (i == BGE_TIMEOUT) { 328 printf("bge%d: VPD read timed out\n", sc->bge_unit); 329 return(0); 330 } 331 332 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); 333 334 return((val >> ((addr % 4) * 8)) & 0xFF); 335 } 336 337 static void 338 bge_vpd_read_res(sc, res, addr) 339 struct bge_softc *sc; 340 struct vpd_res *res; 341 int addr; 342 { 343 int i; 344 u_int8_t *ptr; 345 346 ptr = (u_int8_t *)res; 347 for (i = 0; i < sizeof(struct vpd_res); i++) 348 ptr[i] = bge_vpd_readbyte(sc, i + addr); 349 350 return; 351 } 352 353 static void 354 bge_vpd_read(sc) 355 struct bge_softc *sc; 356 { 357 int pos = 0, i; 358 struct vpd_res res; 359 360 if (sc->bge_vpd_prodname != NULL) 361 free(sc->bge_vpd_prodname, M_DEVBUF); 362 if (sc->bge_vpd_readonly != NULL) 363 free(sc->bge_vpd_readonly, M_DEVBUF); 364 sc->bge_vpd_prodname = NULL; 365 sc->bge_vpd_readonly = NULL; 366 367 bge_vpd_read_res(sc, &res, pos); 368 369 if (res.vr_id != VPD_RES_ID) { 370 printf("bge%d: bad VPD resource id: expected %x got %x\n", 371 sc->bge_unit, VPD_RES_ID, res.vr_id); 372 return; 373 } 374 375 pos += sizeof(res); 376 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 377 for (i = 0; i < res.vr_len; i++) 378 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); 379 sc->bge_vpd_prodname[i] = '\0'; 380 pos += i; 381 382 bge_vpd_read_res(sc, &res, pos); 383 384 if (res.vr_id != VPD_RES_READ) { 385 printf("bge%d: bad VPD resource id: expected %x got %x\n", 386 sc->bge_unit, VPD_RES_READ, res.vr_id); 387 return; 388 } 389 390 pos += sizeof(res); 391 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 392 for (i = 0; i < res.vr_len + 1; i++) 393 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); 394 395 return; 396 } 397 #endif 398 399 /* 400 * Read a byte of data stored in the EEPROM at address 'addr.' The 401 * BCM570x supports both the traditional bitbang interface and an 402 * auto access interface for reading the EEPROM. We use the auto 403 * access method. 404 */ 405 static u_int8_t 406 bge_eeprom_getbyte(sc, addr, dest) 407 struct bge_softc *sc; 408 int addr; 409 u_int8_t *dest; 410 { 411 int i; 412 u_int32_t byte = 0; 413 414 /* 415 * Enable use of auto EEPROM access so we can avoid 416 * having to use the bitbang method. 417 */ 418 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 419 420 /* Reset the EEPROM, load the clock period. */ 421 CSR_WRITE_4(sc, BGE_EE_ADDR, 422 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 423 DELAY(20); 424 425 /* Issue the read EEPROM command. */ 426 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 427 428 /* Wait for completion */ 429 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 430 DELAY(10); 431 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 432 break; 433 } 434 435 if (i == BGE_TIMEOUT) { 436 printf("bge%d: eeprom read timed out\n", sc->bge_unit); 437 return(0); 438 } 439 440 /* Get result. */ 441 byte = CSR_READ_4(sc, BGE_EE_DATA); 442 443 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 444 445 return(0); 446 } 447 448 /* 449 * Read a sequence of bytes from the EEPROM. 450 */ 451 static int 452 bge_read_eeprom(sc, dest, off, cnt) 453 struct bge_softc *sc; 454 caddr_t dest; 455 int off; 456 int cnt; 457 { 458 int err = 0, i; 459 u_int8_t byte = 0; 460 461 for (i = 0; i < cnt; i++) { 462 err = bge_eeprom_getbyte(sc, off + i, &byte); 463 if (err) 464 break; 465 *(dest + i) = byte; 466 } 467 468 return(err ? 1 : 0); 469 } 470 471 static int 472 bge_miibus_readreg(dev, phy, reg) 473 device_t dev; 474 int phy, reg; 475 { 476 struct bge_softc *sc; 477 struct ifnet *ifp; 478 u_int32_t val; 479 int i; 480 481 sc = device_get_softc(dev); 482 ifp = &sc->arpcom.ac_if; 483 484 if (ifp->if_flags & IFF_RUNNING) 485 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 486 487 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| 488 BGE_MIPHY(phy)|BGE_MIREG(reg)); 489 490 for (i = 0; i < BGE_TIMEOUT; i++) { 491 val = CSR_READ_4(sc, BGE_MI_COMM); 492 if (!(val & BGE_MICOMM_BUSY)) 493 break; 494 } 495 496 if (i == BGE_TIMEOUT) { 497 printf("bge%d: PHY read timed out\n", sc->bge_unit); 498 return(0); 499 } 500 501 val = CSR_READ_4(sc, BGE_MI_COMM); 502 503 if (ifp->if_flags & IFF_RUNNING) 504 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 505 506 if (val & BGE_MICOMM_READFAIL) 507 return(0); 508 509 return(val & 0xFFFF); 510 } 511 512 static int 513 bge_miibus_writereg(dev, phy, reg, val) 514 device_t dev; 515 int phy, reg, val; 516 { 517 struct bge_softc *sc; 518 int i; 519 520 sc = device_get_softc(dev); 521 522 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| 523 BGE_MIPHY(phy)|BGE_MIREG(reg)|val); 524 525 for (i = 0; i < BGE_TIMEOUT; i++) { 526 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) 527 break; 528 } 529 530 if (i == BGE_TIMEOUT) { 531 printf("bge%d: PHY read timed out\n", sc->bge_unit); 532 return(0); 533 } 534 535 return(0); 536 } 537 538 static void 539 bge_miibus_statchg(dev) 540 device_t dev; 541 { 542 struct bge_softc *sc; 543 struct mii_data *mii; 544 545 sc = device_get_softc(dev); 546 mii = device_get_softc(sc->bge_miibus); 547 548 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 549 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) { 550 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 551 } else { 552 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 553 } 554 555 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 556 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 557 } else { 558 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 559 } 560 561 bge_phy_hack(sc); 562 563 return; 564 } 565 566 /* 567 * Handle events that have triggered interrupts. 568 */ 569 static void 570 bge_handle_events(sc) 571 struct bge_softc *sc; 572 { 573 574 return; 575 } 576 577 /* 578 * Memory management for jumbo frames. 579 */ 580 581 static int 582 bge_alloc_jumbo_mem(sc) 583 struct bge_softc *sc; 584 { 585 caddr_t ptr; 586 register int i; 587 struct bge_jpool_entry *entry; 588 589 /* Grab a big chunk o' storage. */ 590 sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF, 591 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 592 593 if (sc->bge_cdata.bge_jumbo_buf == NULL) { 594 printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit); 595 return(ENOBUFS); 596 } 597 598 SLIST_INIT(&sc->bge_jfree_listhead); 599 SLIST_INIT(&sc->bge_jinuse_listhead); 600 601 /* 602 * Now divide it up into 9K pieces and save the addresses 603 * in an array. 604 */ 605 ptr = sc->bge_cdata.bge_jumbo_buf; 606 for (i = 0; i < BGE_JSLOTS; i++) { 607 sc->bge_cdata.bge_jslots[i] = ptr; 608 ptr += BGE_JLEN; 609 entry = malloc(sizeof(struct bge_jpool_entry), 610 M_DEVBUF, M_NOWAIT); 611 if (entry == NULL) { 612 contigfree(sc->bge_cdata.bge_jumbo_buf, 613 BGE_JMEM, M_DEVBUF); 614 sc->bge_cdata.bge_jumbo_buf = NULL; 615 printf("bge%d: no memory for jumbo " 616 "buffer queue!\n", sc->bge_unit); 617 return(ENOBUFS); 618 } 619 entry->slot = i; 620 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 621 entry, jpool_entries); 622 } 623 624 return(0); 625 } 626 627 static void 628 bge_free_jumbo_mem(sc) 629 struct bge_softc *sc; 630 { 631 int i; 632 struct bge_jpool_entry *entry; 633 634 for (i = 0; i < BGE_JSLOTS; i++) { 635 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 636 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 637 free(entry, M_DEVBUF); 638 } 639 640 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); 641 642 return; 643 } 644 645 /* 646 * Allocate a jumbo buffer. 647 */ 648 static void * 649 bge_jalloc(sc) 650 struct bge_softc *sc; 651 { 652 struct bge_jpool_entry *entry; 653 654 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 655 656 if (entry == NULL) { 657 printf("bge%d: no free jumbo buffers\n", sc->bge_unit); 658 return(NULL); 659 } 660 661 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 662 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 663 return(sc->bge_cdata.bge_jslots[entry->slot]); 664 } 665 666 /* 667 * Release a jumbo buffer. 668 */ 669 static void 670 bge_jfree(buf, args) 671 caddr_t buf; 672 void *args; 673 { 674 struct bge_jpool_entry *entry; 675 struct bge_softc *sc; 676 int i; 677 678 /* Extract the softc struct pointer. */ 679 sc = (struct bge_softc *)args; 680 681 if (sc == NULL) 682 panic("bge_jfree: can't find softc pointer!"); 683 684 /* calculate the slot this buffer belongs to */ 685 686 i = ((vm_offset_t)buf 687 - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 688 689 if ((i < 0) || (i >= BGE_JSLOTS)) 690 panic("bge_jfree: asked to free buffer that we don't manage!"); 691 692 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 693 if (entry == NULL) 694 panic("bge_jfree: buffer not in use!"); 695 entry->slot = i; 696 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 697 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 698 699 return; 700 } 701 702 703 /* 704 * Intialize a standard receive ring descriptor. 705 */ 706 static int 707 bge_newbuf_std(sc, i, m) 708 struct bge_softc *sc; 709 int i; 710 struct mbuf *m; 711 { 712 struct mbuf *m_new = NULL; 713 struct bge_rx_bd *r; 714 715 if (m == NULL) { 716 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 717 if (m_new == NULL) { 718 return(ENOBUFS); 719 } 720 721 MCLGET(m_new, M_DONTWAIT); 722 if (!(m_new->m_flags & M_EXT)) { 723 m_freem(m_new); 724 return(ENOBUFS); 725 } 726 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 727 } else { 728 m_new = m; 729 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 730 m_new->m_data = m_new->m_ext.ext_buf; 731 } 732 733 m_adj(m_new, ETHER_ALIGN); 734 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 735 r = &sc->bge_rdata->bge_rx_std_ring[i]; 736 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 737 r->bge_flags = BGE_RXBDFLAG_END; 738 r->bge_len = m_new->m_len; 739 r->bge_idx = i; 740 741 return(0); 742 } 743 744 /* 745 * Initialize a jumbo receive ring descriptor. This allocates 746 * a jumbo buffer from the pool managed internally by the driver. 747 */ 748 static int 749 bge_newbuf_jumbo(sc, i, m) 750 struct bge_softc *sc; 751 int i; 752 struct mbuf *m; 753 { 754 struct mbuf *m_new = NULL; 755 struct bge_rx_bd *r; 756 757 if (m == NULL) { 758 caddr_t *buf = NULL; 759 760 /* Allocate the mbuf. */ 761 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 762 if (m_new == NULL) { 763 return(ENOBUFS); 764 } 765 766 /* Allocate the jumbo buffer */ 767 buf = bge_jalloc(sc); 768 if (buf == NULL) { 769 m_freem(m_new); 770 printf("bge%d: jumbo allocation failed " 771 "-- packet dropped!\n", sc->bge_unit); 772 return(ENOBUFS); 773 } 774 775 /* Attach the buffer to the mbuf. */ 776 m_new->m_data = (void *) buf; 777 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 778 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree, 779 (struct bge_softc *)sc, 0, EXT_NET_DRV); 780 } else { 781 m_new = m; 782 m_new->m_data = m_new->m_ext.ext_buf; 783 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 784 } 785 786 m_adj(m_new, ETHER_ALIGN); 787 /* Set up the descriptor. */ 788 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 789 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 790 BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t)); 791 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; 792 r->bge_len = m_new->m_len; 793 r->bge_idx = i; 794 795 return(0); 796 } 797 798 /* 799 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 800 * that's 1MB or memory, which is a lot. For now, we fill only the first 801 * 256 ring entries and hope that our CPU is fast enough to keep up with 802 * the NIC. 803 */ 804 static int 805 bge_init_rx_ring_std(sc) 806 struct bge_softc *sc; 807 { 808 int i; 809 810 for (i = 0; i < BGE_SSLOTS; i++) { 811 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) 812 return(ENOBUFS); 813 }; 814 815 sc->bge_std = i - 1; 816 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 817 818 return(0); 819 } 820 821 static void 822 bge_free_rx_ring_std(sc) 823 struct bge_softc *sc; 824 { 825 int i; 826 827 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 828 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 829 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 830 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 831 } 832 bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i], 833 sizeof(struct bge_rx_bd)); 834 } 835 836 return; 837 } 838 839 static int 840 bge_init_rx_ring_jumbo(sc) 841 struct bge_softc *sc; 842 { 843 int i; 844 struct bge_rcb *rcb; 845 struct bge_rcb_opaque *rcbo; 846 847 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 848 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 849 return(ENOBUFS); 850 }; 851 852 sc->bge_jumbo = i - 1; 853 854 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 855 rcbo = (struct bge_rcb_opaque *)rcb; 856 rcb->bge_flags = 0; 857 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 858 859 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 860 861 return(0); 862 } 863 864 static void 865 bge_free_rx_ring_jumbo(sc) 866 struct bge_softc *sc; 867 { 868 int i; 869 870 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 871 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 872 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 873 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 874 } 875 bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 876 sizeof(struct bge_rx_bd)); 877 } 878 879 return; 880 } 881 882 static void 883 bge_free_tx_ring(sc) 884 struct bge_softc *sc; 885 { 886 int i; 887 888 if (sc->bge_rdata->bge_tx_ring == NULL) 889 return; 890 891 for (i = 0; i < BGE_TX_RING_CNT; i++) { 892 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 893 m_freem(sc->bge_cdata.bge_tx_chain[i]); 894 sc->bge_cdata.bge_tx_chain[i] = NULL; 895 } 896 bzero((char *)&sc->bge_rdata->bge_tx_ring[i], 897 sizeof(struct bge_tx_bd)); 898 } 899 900 return; 901 } 902 903 static int 904 bge_init_tx_ring(sc) 905 struct bge_softc *sc; 906 { 907 sc->bge_txcnt = 0; 908 sc->bge_tx_saved_considx = 0; 909 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); 910 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 911 912 return(0); 913 } 914 915 #define BGE_POLY 0xEDB88320 916 917 static u_int32_t 918 bge_crc(addr) 919 caddr_t addr; 920 { 921 u_int32_t idx, bit, data, crc; 922 923 /* Compute CRC for the address value. */ 924 crc = 0xFFFFFFFF; /* initial value */ 925 926 for (idx = 0; idx < 6; idx++) { 927 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) 928 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0); 929 } 930 931 return(crc & 0x7F); 932 } 933 934 static void 935 bge_setmulti(sc) 936 struct bge_softc *sc; 937 { 938 struct ifnet *ifp; 939 struct ifmultiaddr *ifma; 940 u_int32_t hashes[4] = { 0, 0, 0, 0 }; 941 int h, i; 942 943 ifp = &sc->arpcom.ac_if; 944 945 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 946 for (i = 0; i < 4; i++) 947 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 948 return; 949 } 950 951 /* First, zot all the existing filters. */ 952 for (i = 0; i < 4; i++) 953 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 954 955 /* Now program new ones. */ 956 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 957 if (ifma->ifma_addr->sa_family != AF_LINK) 958 continue; 959 h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 960 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 961 } 962 963 for (i = 0; i < 4; i++) 964 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 965 966 return; 967 } 968 969 /* 970 * Do endian, PCI and DMA initialization. Also check the on-board ROM 971 * self-test results. 972 */ 973 static int 974 bge_chipinit(sc) 975 struct bge_softc *sc; 976 { 977 u_int32_t cachesize; 978 int i; 979 980 /* Set endianness before we access any non-PCI registers. */ 981 #if BYTE_ORDER == BIG_ENDIAN 982 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 983 BGE_BIGENDIAN_INIT, 4); 984 #else 985 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, 986 BGE_LITTLEENDIAN_INIT, 4); 987 #endif 988 989 /* 990 * Check the 'ROM failed' bit on the RX CPU to see if 991 * self-tests passed. 992 */ 993 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { 994 printf("bge%d: RX CPU self-diagnostics failed!\n", 995 sc->bge_unit); 996 return(ENODEV); 997 } 998 999 /* Clear the MAC control register */ 1000 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1001 1002 /* 1003 * Clear the MAC statistics block in the NIC's 1004 * internal memory. 1005 */ 1006 for (i = BGE_STATS_BLOCK; 1007 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1008 BGE_MEMWIN_WRITE(sc, i, 0); 1009 1010 for (i = BGE_STATUS_BLOCK; 1011 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) 1012 BGE_MEMWIN_WRITE(sc, i, 0); 1013 1014 /* Set up the PCI DMA control register. */ 1015 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1016 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4); 1017 1018 /* 1019 * Set up general mode register. 1020 */ 1021 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| 1022 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| 1023 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| 1024 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM| 1025 BGE_MODECTL_RX_NO_PHDR_CSUM); 1026 1027 /* Get cache line size. */ 1028 cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1); 1029 1030 /* 1031 * Avoid violating PCI spec on certain chip revs. 1032 */ 1033 if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) { 1034 switch(cachesize) { 1035 case 1: 1036 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1037 BGE_PCI_WRITE_BNDRY_16BYTES, 4); 1038 break; 1039 case 2: 1040 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1041 BGE_PCI_WRITE_BNDRY_32BYTES, 4); 1042 break; 1043 case 4: 1044 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1045 BGE_PCI_WRITE_BNDRY_64BYTES, 4); 1046 break; 1047 case 8: 1048 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1049 BGE_PCI_WRITE_BNDRY_128BYTES, 4); 1050 break; 1051 case 16: 1052 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1053 BGE_PCI_WRITE_BNDRY_256BYTES, 4); 1054 break; 1055 case 32: 1056 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1057 BGE_PCI_WRITE_BNDRY_512BYTES, 4); 1058 break; 1059 case 64: 1060 PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL, 1061 BGE_PCI_WRITE_BNDRY_1024BYTES, 4); 1062 break; 1063 default: 1064 /* Disable PCI memory write and invalidate. */ 1065 if (bootverbose) 1066 printf("bge%d: cache line size %d not " 1067 "supported; disabling PCI MWI\n", 1068 sc->bge_unit, cachesize); 1069 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1070 PCIM_CMD_MWIEN, 4); 1071 break; 1072 } 1073 } 1074 1075 #ifdef __brokenalpha__ 1076 /* 1077 * Must insure that we do not cross an 8K (bytes) boundary 1078 * for DMA reads. Our highest limit is 1K bytes. This is a 1079 * restriction on some ALPHA platforms with early revision 1080 * 21174 PCI chipsets, such as the AlphaPC 164lx 1081 */ 1082 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); 1083 #endif 1084 1085 /* Set the timer prescaler (always 66Mhz) */ 1086 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); 1087 1088 return(0); 1089 } 1090 1091 static int 1092 bge_blockinit(sc) 1093 struct bge_softc *sc; 1094 { 1095 struct bge_rcb *rcb; 1096 struct bge_rcb_opaque *rcbo; 1097 int i; 1098 1099 /* 1100 * Initialize the memory window pointer register so that 1101 * we can access the first 32K of internal NIC RAM. This will 1102 * allow us to set up the TX send ring RCBs and the RX return 1103 * ring RCBs, plus other things which live in NIC memory. 1104 */ 1105 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1106 1107 /* Configure mbuf memory pool */ 1108 if (sc->bge_extram) { 1109 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM); 1110 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1111 } else { 1112 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1113 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1114 } 1115 1116 /* Configure DMA resource pool */ 1117 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); 1118 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1119 1120 /* Configure mbuf pool watermarks */ 1121 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24); 1122 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24); 1123 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48); 1124 1125 /* Configure DMA resource watermarks */ 1126 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1127 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1128 1129 /* Enable buffer manager */ 1130 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1131 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); 1132 1133 /* Poll for buffer manager start indication */ 1134 for (i = 0; i < BGE_TIMEOUT; i++) { 1135 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1136 break; 1137 DELAY(10); 1138 } 1139 1140 if (i == BGE_TIMEOUT) { 1141 printf("bge%d: buffer manager failed to start\n", 1142 sc->bge_unit); 1143 return(ENXIO); 1144 } 1145 1146 /* Enable flow-through queues */ 1147 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1148 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1149 1150 /* Wait until queue initialization is complete */ 1151 for (i = 0; i < BGE_TIMEOUT; i++) { 1152 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1153 break; 1154 DELAY(10); 1155 } 1156 1157 if (i == BGE_TIMEOUT) { 1158 printf("bge%d: flow-through queue init failed\n", 1159 sc->bge_unit); 1160 return(ENXIO); 1161 } 1162 1163 /* Initialize the standard RX ring control block */ 1164 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 1165 BGE_HOSTADDR(rcb->bge_hostaddr) = 1166 vtophys(&sc->bge_rdata->bge_rx_std_ring); 1167 rcb->bge_max_len = BGE_MAX_FRAMELEN; 1168 if (sc->bge_extram) 1169 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; 1170 else 1171 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1172 rcb->bge_flags = 0; 1173 rcbo = (struct bge_rcb_opaque *)rcb; 1174 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0); 1175 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1); 1176 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1177 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3); 1178 1179 /* 1180 * Initialize the jumbo RX ring control block 1181 * We set the 'ring disabled' bit in the flags 1182 * field until we're actually ready to start 1183 * using this ring (i.e. once we set the MTU 1184 * high enough to require it). 1185 */ 1186 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1187 BGE_HOSTADDR(rcb->bge_hostaddr) = 1188 vtophys(&sc->bge_rdata->bge_rx_jumbo_ring); 1189 rcb->bge_max_len = BGE_MAX_FRAMELEN; 1190 if (sc->bge_extram) 1191 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; 1192 else 1193 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1194 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1195 1196 rcbo = (struct bge_rcb_opaque *)rcb; 1197 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0); 1198 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1); 1199 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1200 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3); 1201 1202 /* Set up dummy disabled mini ring RCB */ 1203 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 1204 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1205 rcbo = (struct bge_rcb_opaque *)rcb; 1206 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2); 1207 1208 /* 1209 * Set the BD ring replentish thresholds. The recommended 1210 * values are 1/8th the number of descriptors allocated to 1211 * each ring. 1212 */ 1213 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); 1214 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); 1215 1216 /* 1217 * Disable all unused send rings by setting the 'ring disabled' 1218 * bit in the flags field of all the TX send ring control blocks. 1219 * These are located in NIC memory. 1220 */ 1221 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1222 BGE_SEND_RING_RCB); 1223 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { 1224 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1225 rcb->bge_max_len = 0; 1226 rcb->bge_nicaddr = 0; 1227 rcb++; 1228 } 1229 1230 /* Configure TX RCB 0 (we use only the first ring) */ 1231 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1232 BGE_SEND_RING_RCB); 1233 rcb->bge_hostaddr.bge_addr_hi = 0; 1234 BGE_HOSTADDR(rcb->bge_hostaddr) = 1235 vtophys(&sc->bge_rdata->bge_tx_ring); 1236 rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); 1237 rcb->bge_max_len = BGE_TX_RING_CNT; 1238 rcb->bge_flags = 0; 1239 1240 /* Disable all unused RX return rings */ 1241 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1242 BGE_RX_RETURN_RING_RCB); 1243 for (i = 0; i < BGE_RX_RINGS_MAX; i++) { 1244 rcb->bge_hostaddr.bge_addr_hi = 0; 1245 rcb->bge_hostaddr.bge_addr_lo = 0; 1246 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED; 1247 rcb->bge_max_len = BGE_RETURN_RING_CNT; 1248 rcb->bge_nicaddr = 0; 1249 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + 1250 (i * (sizeof(u_int64_t))), 0); 1251 rcb++; 1252 } 1253 1254 /* Initialize RX ring indexes */ 1255 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1256 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1257 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1258 1259 /* 1260 * Set up RX return ring 0 1261 * Note that the NIC address for RX return rings is 0x00000000. 1262 * The return rings live entirely within the host, so the 1263 * nicaddr field in the RCB isn't used. 1264 */ 1265 rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + 1266 BGE_RX_RETURN_RING_RCB); 1267 rcb->bge_hostaddr.bge_addr_hi = 0; 1268 BGE_HOSTADDR(rcb->bge_hostaddr) = 1269 vtophys(&sc->bge_rdata->bge_rx_return_ring); 1270 rcb->bge_nicaddr = 0x00000000; 1271 rcb->bge_max_len = BGE_RETURN_RING_CNT; 1272 rcb->bge_flags = 0; 1273 1274 /* Set random backoff seed for TX */ 1275 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1276 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + 1277 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + 1278 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + 1279 BGE_TX_BACKOFF_SEED_MASK); 1280 1281 /* Set inter-packet gap */ 1282 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1283 1284 /* 1285 * Specify which ring to use for packets that don't match 1286 * any RX rules. 1287 */ 1288 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1289 1290 /* 1291 * Configure number of RX lists. One interrupt distribution 1292 * list, sixteen active lists, one bad frames class. 1293 */ 1294 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1295 1296 /* Inialize RX list placement stats mask. */ 1297 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1298 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1299 1300 /* Disable host coalescing until we get it set up */ 1301 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1302 1303 /* Poll to make sure it's shut down. */ 1304 for (i = 0; i < BGE_TIMEOUT; i++) { 1305 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1306 break; 1307 DELAY(10); 1308 } 1309 1310 if (i == BGE_TIMEOUT) { 1311 printf("bge%d: host coalescing engine failed to idle\n", 1312 sc->bge_unit); 1313 return(ENXIO); 1314 } 1315 1316 /* Set up host coalescing defaults */ 1317 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1318 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1319 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1320 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1321 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1322 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1323 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 1324 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 1325 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1326 1327 /* Set up address of statistics block */ 1328 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1329 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); 1330 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1331 vtophys(&sc->bge_rdata->bge_info.bge_stats)); 1332 1333 /* Set up address of status block */ 1334 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1335 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0); 1336 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1337 vtophys(&sc->bge_rdata->bge_status_block)); 1338 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 1339 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 1340 1341 /* Turn on host coalescing state machine */ 1342 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 1343 1344 /* Turn on RX BD completion state machine and enable attentions */ 1345 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1346 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); 1347 1348 /* Turn on RX list placement state machine */ 1349 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1350 1351 /* Turn on RX list selector state machine. */ 1352 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1353 1354 /* Turn on DMA, clear stats */ 1355 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| 1356 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| 1357 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| 1358 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| 1359 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); 1360 1361 /* Set misc. local control, enable interrupts on attentions */ 1362 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1363 1364 #ifdef notdef 1365 /* Assert GPIO pins for PHY reset */ 1366 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| 1367 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); 1368 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| 1369 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); 1370 #endif 1371 1372 /* Turn on DMA completion state machine */ 1373 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1374 1375 /* Turn on write DMA state machine */ 1376 CSR_WRITE_4(sc, BGE_WDMA_MODE, 1377 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); 1378 1379 /* Turn on read DMA state machine */ 1380 CSR_WRITE_4(sc, BGE_RDMA_MODE, 1381 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); 1382 1383 /* Turn on RX data completion state machine */ 1384 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 1385 1386 /* Turn on RX BD initiator state machine */ 1387 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 1388 1389 /* Turn on RX data and RX BD initiator state machine */ 1390 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 1391 1392 /* Turn on Mbuf cluster free state machine */ 1393 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 1394 1395 /* Turn on send BD completion state machine */ 1396 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 1397 1398 /* Turn on send data completion state machine */ 1399 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 1400 1401 /* Turn on send data initiator state machine */ 1402 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 1403 1404 /* Turn on send BD initiator state machine */ 1405 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 1406 1407 /* Turn on send BD selector state machine */ 1408 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 1409 1410 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 1411 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 1412 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); 1413 1414 /* init LED register */ 1415 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000); 1416 1417 /* ack/clear link change events */ 1418 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1419 BGE_MACSTAT_CFG_CHANGED); 1420 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1421 1422 /* Enable PHY auto polling (for MII/GMII only) */ 1423 if (sc->bge_tbi) { 1424 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 1425 } else 1426 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); 1427 1428 /* Enable link state change attentions. */ 1429 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 1430 1431 return(0); 1432 } 1433 1434 /* 1435 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 1436 * against our list and return its name if we find a match. Note 1437 * that since the Broadcom controller contains VPD support, we 1438 * can get the device name string from the controller itself instead 1439 * of the compiled-in string. This is a little slow, but it guarantees 1440 * we'll always announce the right product name. 1441 */ 1442 static int 1443 bge_probe(dev) 1444 device_t dev; 1445 { 1446 struct bge_type *t; 1447 struct bge_softc *sc; 1448 1449 t = bge_devs; 1450 1451 sc = device_get_softc(dev); 1452 bzero(sc, sizeof(struct bge_softc)); 1453 sc->bge_unit = device_get_unit(dev); 1454 sc->bge_dev = dev; 1455 1456 while(t->bge_name != NULL) { 1457 if ((pci_get_vendor(dev) == t->bge_vid) && 1458 (pci_get_device(dev) == t->bge_did)) { 1459 #ifdef notdef 1460 bge_vpd_read(sc); 1461 device_set_desc(dev, sc->bge_vpd_prodname); 1462 #endif 1463 device_set_desc(dev, t->bge_name); 1464 return(0); 1465 } 1466 t++; 1467 } 1468 1469 return(ENXIO); 1470 } 1471 1472 static int 1473 bge_attach(dev) 1474 device_t dev; 1475 { 1476 int s; 1477 u_int32_t command; 1478 struct ifnet *ifp; 1479 struct bge_softc *sc; 1480 int unit, error = 0, rid; 1481 1482 s = splimp(); 1483 1484 sc = device_get_softc(dev); 1485 unit = device_get_unit(dev); 1486 sc->bge_dev = dev; 1487 sc->bge_unit = unit; 1488 1489 /* 1490 * Map control/status registers. 1491 */ 1492 pci_enable_busmaster(dev); 1493 pci_enable_io(dev, SYS_RES_MEMORY); 1494 command = pci_read_config(dev, PCIR_COMMAND, 4); 1495 1496 if (!(command & PCIM_CMD_MEMEN)) { 1497 printf("bge%d: failed to enable memory mapping!\n", unit); 1498 error = ENXIO; 1499 goto fail; 1500 } 1501 1502 rid = BGE_PCI_BAR0; 1503 sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 1504 0, ~0, 1, RF_ACTIVE); 1505 1506 if (sc->bge_res == NULL) { 1507 printf ("bge%d: couldn't map memory\n", unit); 1508 error = ENXIO; 1509 goto fail; 1510 } 1511 1512 sc->bge_btag = rman_get_bustag(sc->bge_res); 1513 sc->bge_bhandle = rman_get_bushandle(sc->bge_res); 1514 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); 1515 1516 /* 1517 * XXX FIXME: rman_get_virtual() on the alpha is currently 1518 * broken and returns a physical address instead of a kernel 1519 * virtual address. Consequently, we need to do a little 1520 * extra mangling of the vhandle on the alpha. This should 1521 * eventually be fixed! The whole idea here is to get rid 1522 * of platform dependencies. 1523 */ 1524 #ifdef __alpha__ 1525 if (pci_cvt_to_bwx(sc->bge_vhandle)) 1526 sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle); 1527 else 1528 sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle); 1529 sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle); 1530 #endif 1531 1532 /* Allocate interrupt */ 1533 rid = 0; 1534 1535 sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 1536 RF_SHAREABLE | RF_ACTIVE); 1537 1538 if (sc->bge_irq == NULL) { 1539 printf("bge%d: couldn't map interrupt\n", unit); 1540 error = ENXIO; 1541 goto fail; 1542 } 1543 1544 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET, 1545 bge_intr, sc, &sc->bge_intrhand); 1546 1547 if (error) { 1548 bge_release_resources(sc); 1549 printf("bge%d: couldn't set up irq\n", unit); 1550 goto fail; 1551 } 1552 1553 sc->bge_unit = unit; 1554 1555 /* Try to reset the chip. */ 1556 bge_reset(sc); 1557 1558 if (bge_chipinit(sc)) { 1559 printf("bge%d: chip initialization failed\n", sc->bge_unit); 1560 bge_release_resources(sc); 1561 error = ENXIO; 1562 goto fail; 1563 } 1564 1565 /* 1566 * Get station address from the EEPROM. 1567 */ 1568 if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 1569 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 1570 printf("bge%d: failed to read station address\n", unit); 1571 bge_release_resources(sc); 1572 error = ENXIO; 1573 goto fail; 1574 } 1575 1576 /* 1577 * A Broadcom chip was detected. Inform the world. 1578 */ 1579 printf("bge%d: Ethernet address: %6D\n", unit, 1580 sc->arpcom.ac_enaddr, ":"); 1581 1582 /* Allocate the general information block and ring buffers. */ 1583 sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF, 1584 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1585 1586 if (sc->bge_rdata == NULL) { 1587 bge_release_resources(sc); 1588 error = ENXIO; 1589 printf("bge%d: no memory for list buffers!\n", sc->bge_unit); 1590 goto fail; 1591 } 1592 1593 bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); 1594 1595 /* Try to allocate memory for jumbo buffers. */ 1596 if (bge_alloc_jumbo_mem(sc)) { 1597 printf("bge%d: jumbo buffer allocation " 1598 "failed\n", sc->bge_unit); 1599 bge_release_resources(sc); 1600 error = ENXIO; 1601 goto fail; 1602 } 1603 1604 /* Set default tuneable values. */ 1605 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 1606 sc->bge_rx_coal_ticks = 150; 1607 sc->bge_tx_coal_ticks = 150; 1608 sc->bge_rx_max_coal_bds = 64; 1609 sc->bge_tx_max_coal_bds = 128; 1610 1611 /* Set up ifnet structure */ 1612 ifp = &sc->arpcom.ac_if; 1613 ifp->if_softc = sc; 1614 ifp->if_unit = sc->bge_unit; 1615 ifp->if_name = "bge"; 1616 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1617 ifp->if_ioctl = bge_ioctl; 1618 ifp->if_output = ether_output; 1619 ifp->if_start = bge_start; 1620 ifp->if_watchdog = bge_watchdog; 1621 ifp->if_init = bge_init; 1622 ifp->if_mtu = ETHERMTU; 1623 ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1; 1624 ifp->if_hwassist = BGE_CSUM_FEATURES; 1625 ifp->if_capabilities = IFCAP_HWCSUM; 1626 ifp->if_capenable = ifp->if_capabilities; 1627 1628 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 1629 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41) 1630 sc->bge_tbi = 1; 1631 1632 if (sc->bge_tbi) { 1633 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, 1634 bge_ifmedia_upd, bge_ifmedia_sts); 1635 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 1636 ifmedia_add(&sc->bge_ifmedia, 1637 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 1638 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 1639 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); 1640 } else { 1641 /* 1642 * Do transceiver setup. 1643 */ 1644 if (mii_phy_probe(dev, &sc->bge_miibus, 1645 bge_ifmedia_upd, bge_ifmedia_sts)) { 1646 printf("bge%d: MII without any PHY!\n", sc->bge_unit); 1647 bge_release_resources(sc); 1648 bge_free_jumbo_mem(sc); 1649 error = ENXIO; 1650 goto fail; 1651 } 1652 } 1653 1654 /* 1655 * Call MI attach routine. 1656 */ 1657 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 1658 callout_handle_init(&sc->bge_stat_ch); 1659 1660 fail: 1661 splx(s); 1662 1663 return(error); 1664 } 1665 1666 static int 1667 bge_detach(dev) 1668 device_t dev; 1669 { 1670 struct bge_softc *sc; 1671 struct ifnet *ifp; 1672 int s; 1673 1674 s = splimp(); 1675 1676 sc = device_get_softc(dev); 1677 ifp = &sc->arpcom.ac_if; 1678 1679 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); 1680 bge_stop(sc); 1681 bge_reset(sc); 1682 1683 if (sc->bge_tbi) { 1684 ifmedia_removeall(&sc->bge_ifmedia); 1685 } else { 1686 bus_generic_detach(dev); 1687 device_delete_child(dev, sc->bge_miibus); 1688 } 1689 1690 bge_release_resources(sc); 1691 bge_free_jumbo_mem(sc); 1692 1693 splx(s); 1694 1695 return(0); 1696 } 1697 1698 static void 1699 bge_release_resources(sc) 1700 struct bge_softc *sc; 1701 { 1702 device_t dev; 1703 1704 dev = sc->bge_dev; 1705 1706 if (sc->bge_vpd_prodname != NULL) 1707 free(sc->bge_vpd_prodname, M_DEVBUF); 1708 1709 if (sc->bge_vpd_readonly != NULL) 1710 free(sc->bge_vpd_readonly, M_DEVBUF); 1711 1712 if (sc->bge_intrhand != NULL) 1713 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 1714 1715 if (sc->bge_irq != NULL) 1716 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); 1717 1718 if (sc->bge_res != NULL) 1719 bus_release_resource(dev, SYS_RES_MEMORY, 1720 BGE_PCI_BAR0, sc->bge_res); 1721 1722 if (sc->bge_rdata != NULL) 1723 contigfree(sc->bge_rdata, 1724 sizeof(struct bge_ring_data), M_DEVBUF); 1725 1726 return; 1727 } 1728 1729 static void 1730 bge_reset(sc) 1731 struct bge_softc *sc; 1732 { 1733 device_t dev; 1734 u_int32_t cachesize, command, pcistate; 1735 int i, val = 0; 1736 1737 dev = sc->bge_dev; 1738 1739 /* Save some important PCI state. */ 1740 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 1741 command = pci_read_config(dev, BGE_PCI_CMD, 4); 1742 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 1743 1744 pci_write_config(dev, BGE_PCI_MISC_CTL, 1745 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1746 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1747 1748 /* Issue global reset */ 1749 bge_writereg_ind(sc, BGE_MISC_CFG, 1750 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1)); 1751 1752 DELAY(1000); 1753 1754 /* Reset some of the PCI state that got zapped by reset */ 1755 pci_write_config(dev, BGE_PCI_MISC_CTL, 1756 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| 1757 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); 1758 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 1759 pci_write_config(dev, BGE_PCI_CMD, command, 4); 1760 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); 1761 1762 /* 1763 * Prevent PXE restart: write a magic number to the 1764 * general communications memory at 0xB50. 1765 */ 1766 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1767 /* 1768 * Poll the value location we just wrote until 1769 * we see the 1's complement of the magic number. 1770 * This indicates that the firmware initialization 1771 * is complete. 1772 */ 1773 for (i = 0; i < BGE_TIMEOUT; i++) { 1774 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 1775 if (val == ~BGE_MAGIC_NUMBER) 1776 break; 1777 DELAY(10); 1778 } 1779 1780 if (i == BGE_TIMEOUT) { 1781 printf("bge%d: firmware handshake timed out\n", sc->bge_unit); 1782 return; 1783 } 1784 1785 /* 1786 * XXX Wait for the value of the PCISTATE register to 1787 * return to its original pre-reset state. This is a 1788 * fairly good indicator of reset completion. If we don't 1789 * wait for the reset to fully complete, trying to read 1790 * from the device's non-PCI registers may yield garbage 1791 * results. 1792 */ 1793 for (i = 0; i < BGE_TIMEOUT; i++) { 1794 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 1795 break; 1796 DELAY(10); 1797 } 1798 1799 /* Enable memory arbiter. */ 1800 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 1801 1802 /* Fix up byte swapping */ 1803 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| 1804 BGE_MODECTL_BYTESWAP_DATA); 1805 1806 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1807 1808 DELAY(10000); 1809 1810 return; 1811 } 1812 1813 /* 1814 * Frame reception handling. This is called if there's a frame 1815 * on the receive return list. 1816 * 1817 * Note: we have to be able to handle two possibilities here: 1818 * 1) the frame is from the jumbo recieve ring 1819 * 2) the frame is from the standard receive ring 1820 */ 1821 1822 static void 1823 bge_rxeof(sc) 1824 struct bge_softc *sc; 1825 { 1826 struct ifnet *ifp; 1827 int stdcnt = 0, jumbocnt = 0; 1828 1829 ifp = &sc->arpcom.ac_if; 1830 1831 while(sc->bge_rx_saved_considx != 1832 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { 1833 struct bge_rx_bd *cur_rx; 1834 u_int32_t rxidx; 1835 struct ether_header *eh; 1836 struct mbuf *m = NULL; 1837 u_int16_t vlan_tag = 0; 1838 int have_tag = 0; 1839 1840 cur_rx = 1841 &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx]; 1842 1843 rxidx = cur_rx->bge_idx; 1844 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT); 1845 1846 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 1847 have_tag = 1; 1848 vlan_tag = cur_rx->bge_vlan_tag; 1849 } 1850 1851 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 1852 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1853 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 1854 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 1855 jumbocnt++; 1856 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1857 ifp->if_ierrors++; 1858 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1859 continue; 1860 } 1861 if (bge_newbuf_jumbo(sc, 1862 sc->bge_jumbo, NULL) == ENOBUFS) { 1863 ifp->if_ierrors++; 1864 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 1865 continue; 1866 } 1867 } else { 1868 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1869 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 1870 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 1871 stdcnt++; 1872 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 1873 ifp->if_ierrors++; 1874 bge_newbuf_std(sc, sc->bge_std, m); 1875 continue; 1876 } 1877 if (bge_newbuf_std(sc, sc->bge_std, 1878 NULL) == ENOBUFS) { 1879 ifp->if_ierrors++; 1880 bge_newbuf_std(sc, sc->bge_std, m); 1881 continue; 1882 } 1883 } 1884 1885 ifp->if_ipackets++; 1886 eh = mtod(m, struct ether_header *); 1887 m->m_pkthdr.len = m->m_len = cur_rx->bge_len; 1888 m->m_pkthdr.rcvif = ifp; 1889 1890 /* Remove header from mbuf and pass it on. */ 1891 m_adj(m, sizeof(struct ether_header)); 1892 1893 #if 0 /* currently broken for some packets, possibly related to TCP options */ 1894 if (ifp->if_hwassist) { 1895 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1896 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) 1897 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1898 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 1899 m->m_pkthdr.csum_data = 1900 cur_rx->bge_tcp_udp_csum; 1901 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; 1902 } 1903 } 1904 #endif 1905 1906 /* 1907 * If we received a packet with a vlan tag, pass it 1908 * to vlan_input() instead of ether_input(). 1909 */ 1910 if (have_tag) { 1911 VLAN_INPUT_TAG(eh, m, vlan_tag); 1912 have_tag = vlan_tag = 0; 1913 continue; 1914 } 1915 1916 ether_input(ifp, eh, m); 1917 } 1918 1919 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 1920 if (stdcnt) 1921 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1922 if (jumbocnt) 1923 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1924 1925 return; 1926 } 1927 1928 static void 1929 bge_txeof(sc) 1930 struct bge_softc *sc; 1931 { 1932 struct bge_tx_bd *cur_tx = NULL; 1933 struct ifnet *ifp; 1934 1935 ifp = &sc->arpcom.ac_if; 1936 1937 /* 1938 * Go through our tx ring and free mbufs for those 1939 * frames that have been sent. 1940 */ 1941 while (sc->bge_tx_saved_considx != 1942 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { 1943 u_int32_t idx = 0; 1944 1945 idx = sc->bge_tx_saved_considx; 1946 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 1947 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 1948 ifp->if_opackets++; 1949 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 1950 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 1951 sc->bge_cdata.bge_tx_chain[idx] = NULL; 1952 } 1953 sc->bge_txcnt--; 1954 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 1955 ifp->if_timer = 0; 1956 } 1957 1958 if (cur_tx != NULL) 1959 ifp->if_flags &= ~IFF_OACTIVE; 1960 1961 return; 1962 } 1963 1964 static void 1965 bge_intr(xsc) 1966 void *xsc; 1967 { 1968 struct bge_softc *sc; 1969 struct ifnet *ifp; 1970 1971 sc = xsc; 1972 ifp = &sc->arpcom.ac_if; 1973 1974 #ifdef notdef 1975 /* Avoid this for now -- checking this register is expensive. */ 1976 /* Make sure this is really our interrupt. */ 1977 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) 1978 return; 1979 #endif 1980 /* Ack interrupt and stop others from occuring. */ 1981 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 1982 1983 /* Process link state changes. */ 1984 if (sc->bge_rdata->bge_status_block.bge_status & 1985 BGE_STATFLAG_LINKSTATE_CHANGED) { 1986 sc->bge_link = 0; 1987 untimeout(bge_tick, sc, sc->bge_stat_ch); 1988 bge_tick(sc); 1989 /* ack the event to clear/reset it */ 1990 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 1991 BGE_MACSTAT_CFG_CHANGED); 1992 CSR_WRITE_4(sc, BGE_MI_STS, 0); 1993 } 1994 1995 if (ifp->if_flags & IFF_RUNNING) { 1996 /* Check RX return ring producer/consumer */ 1997 bge_rxeof(sc); 1998 1999 /* Check TX ring producer/consumer */ 2000 bge_txeof(sc); 2001 } 2002 2003 bge_handle_events(sc); 2004 2005 /* Re-enable interrupts. */ 2006 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2007 2008 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) 2009 bge_start(ifp); 2010 2011 return; 2012 } 2013 2014 static void 2015 bge_tick(xsc) 2016 void *xsc; 2017 { 2018 struct bge_softc *sc; 2019 struct mii_data *mii = NULL; 2020 struct ifmedia *ifm = NULL; 2021 struct ifnet *ifp; 2022 int s; 2023 2024 sc = xsc; 2025 ifp = &sc->arpcom.ac_if; 2026 2027 s = splimp(); 2028 2029 bge_stats_update(sc); 2030 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2031 if (sc->bge_link) 2032 return; 2033 2034 if (sc->bge_tbi) { 2035 ifm = &sc->bge_ifmedia; 2036 if (CSR_READ_4(sc, BGE_MAC_STS) & 2037 BGE_MACSTAT_TBI_PCS_SYNCHED) { 2038 sc->bge_link++; 2039 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 2040 printf("bge%d: gigabit link up\n", sc->bge_unit); 2041 if (ifp->if_snd.ifq_head != NULL) 2042 bge_start(ifp); 2043 } 2044 return; 2045 } 2046 2047 mii = device_get_softc(sc->bge_miibus); 2048 mii_tick(mii); 2049 2050 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE && 2051 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 2052 sc->bge_link++; 2053 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX || 2054 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 2055 printf("bge%d: gigabit link up\n", 2056 sc->bge_unit); 2057 if (ifp->if_snd.ifq_head != NULL) 2058 bge_start(ifp); 2059 } 2060 2061 splx(s); 2062 2063 return; 2064 } 2065 2066 static void 2067 bge_stats_update(sc) 2068 struct bge_softc *sc; 2069 { 2070 struct ifnet *ifp; 2071 struct bge_stats *stats; 2072 2073 ifp = &sc->arpcom.ac_if; 2074 2075 stats = (struct bge_stats *)(sc->bge_vhandle + 2076 BGE_MEMWIN_START + BGE_STATS_BLOCK); 2077 2078 ifp->if_collisions += 2079 (stats->dot3StatsSingleCollisionFrames.bge_addr_lo + 2080 stats->dot3StatsMultipleCollisionFrames.bge_addr_lo + 2081 stats->dot3StatsExcessiveCollisions.bge_addr_lo + 2082 stats->dot3StatsLateCollisions.bge_addr_lo) - 2083 ifp->if_collisions; 2084 2085 #ifdef notdef 2086 ifp->if_collisions += 2087 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 2088 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 2089 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 2090 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 2091 ifp->if_collisions; 2092 #endif 2093 2094 return; 2095 } 2096 2097 /* 2098 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2099 * pointers to descriptors. 2100 */ 2101 static int 2102 bge_encap(sc, m_head, txidx) 2103 struct bge_softc *sc; 2104 struct mbuf *m_head; 2105 u_int32_t *txidx; 2106 { 2107 struct bge_tx_bd *f = NULL; 2108 struct mbuf *m; 2109 u_int32_t frag, cur, cnt = 0; 2110 u_int16_t csum_flags = 0; 2111 struct ifvlan *ifv = NULL; 2112 2113 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && 2114 m_head->m_pkthdr.rcvif != NULL && 2115 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) 2116 ifv = m_head->m_pkthdr.rcvif->if_softc; 2117 2118 m = m_head; 2119 cur = frag = *txidx; 2120 2121 if (m_head->m_pkthdr.csum_flags) { 2122 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 2123 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 2124 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 2125 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 2126 if (m_head->m_flags & M_LASTFRAG) 2127 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 2128 else if (m_head->m_flags & M_FRAG) 2129 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 2130 } 2131 2132 /* 2133 * Start packing the mbufs in this chain into 2134 * the fragment pointers. Stop when we run out 2135 * of fragments or hit the end of the mbuf chain. 2136 */ 2137 for (m = m_head; m != NULL; m = m->m_next) { 2138 if (m->m_len != 0) { 2139 f = &sc->bge_rdata->bge_tx_ring[frag]; 2140 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 2141 break; 2142 BGE_HOSTADDR(f->bge_addr) = 2143 vtophys(mtod(m, vm_offset_t)); 2144 f->bge_len = m->m_len; 2145 f->bge_flags = csum_flags; 2146 if (ifv != NULL) { 2147 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 2148 f->bge_vlan_tag = ifv->ifv_tag; 2149 } else { 2150 f->bge_vlan_tag = 0; 2151 } 2152 /* 2153 * Sanity check: avoid coming within 16 descriptors 2154 * of the end of the ring. 2155 */ 2156 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) 2157 return(ENOBUFS); 2158 cur = frag; 2159 BGE_INC(frag, BGE_TX_RING_CNT); 2160 cnt++; 2161 } 2162 } 2163 2164 if (m != NULL) 2165 return(ENOBUFS); 2166 2167 if (frag == sc->bge_tx_saved_considx) 2168 return(ENOBUFS); 2169 2170 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 2171 sc->bge_cdata.bge_tx_chain[cur] = m_head; 2172 sc->bge_txcnt += cnt; 2173 2174 *txidx = frag; 2175 2176 return(0); 2177 } 2178 2179 /* 2180 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2181 * to the mbuf data regions directly in the transmit descriptors. 2182 */ 2183 static void 2184 bge_start(ifp) 2185 struct ifnet *ifp; 2186 { 2187 struct bge_softc *sc; 2188 struct mbuf *m_head = NULL; 2189 u_int32_t prodidx = 0; 2190 2191 sc = ifp->if_softc; 2192 2193 if (!sc->bge_link && ifp->if_snd.ifq_len < 10) 2194 return; 2195 2196 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); 2197 2198 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 2199 IF_DEQUEUE(&ifp->if_snd, m_head); 2200 if (m_head == NULL) 2201 break; 2202 2203 /* 2204 * XXX 2205 * safety overkill. If this is a fragmented packet chain 2206 * with delayed TCP/UDP checksums, then only encapsulate 2207 * it if we have enough descriptors to handle the entire 2208 * chain at once. 2209 * (paranoia -- may not actually be needed) 2210 */ 2211 if (m_head->m_flags & M_FIRSTFRAG && 2212 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 2213 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 2214 m_head->m_pkthdr.csum_data + 16) { 2215 IF_PREPEND(&ifp->if_snd, m_head); 2216 ifp->if_flags |= IFF_OACTIVE; 2217 break; 2218 } 2219 } 2220 2221 /* 2222 * Pack the data into the transmit ring. If we 2223 * don't have room, set the OACTIVE flag and wait 2224 * for the NIC to drain the ring. 2225 */ 2226 if (bge_encap(sc, m_head, &prodidx)) { 2227 IF_PREPEND(&ifp->if_snd, m_head); 2228 ifp->if_flags |= IFF_OACTIVE; 2229 break; 2230 } 2231 2232 /* 2233 * If there's a BPF listener, bounce a copy of this frame 2234 * to him. 2235 */ 2236 if (ifp->if_bpf) 2237 bpf_mtap(ifp, m_head); 2238 } 2239 2240 /* Transmit */ 2241 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 2242 2243 /* 2244 * Set a timeout in case the chip goes out to lunch. 2245 */ 2246 ifp->if_timer = 5; 2247 2248 return; 2249 } 2250 2251 /* 2252 * If we have a BCM5400 or BCM5401 PHY, we need to properly 2253 * program its internal DSP. Failing to do this can result in 2254 * massive packet loss at 1Gb speeds. 2255 */ 2256 static void 2257 bge_phy_hack(sc) 2258 struct bge_softc *sc; 2259 { 2260 struct bge_bcom_hack bhack[] = { 2261 { BRGPHY_MII_AUXCTL, 0x4C20 }, 2262 { BRGPHY_MII_DSP_ADDR_REG, 0x0012 }, 2263 { BRGPHY_MII_DSP_RW_PORT, 0x1804 }, 2264 { BRGPHY_MII_DSP_ADDR_REG, 0x0013 }, 2265 { BRGPHY_MII_DSP_RW_PORT, 0x1204 }, 2266 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, 2267 { BRGPHY_MII_DSP_RW_PORT, 0x0132 }, 2268 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 }, 2269 { BRGPHY_MII_DSP_RW_PORT, 0x0232 }, 2270 { BRGPHY_MII_DSP_ADDR_REG, 0x201F }, 2271 { BRGPHY_MII_DSP_RW_PORT, 0x0A20 }, 2272 { 0, 0 } }; 2273 u_int16_t vid, did; 2274 int i; 2275 2276 vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1); 2277 did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2); 2278 2279 if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM && 2280 (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 || 2281 MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) { 2282 i = 0; 2283 while(bhack[i].reg) { 2284 bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg, 2285 bhack[i].val); 2286 i++; 2287 } 2288 } 2289 2290 return; 2291 } 2292 2293 static void 2294 bge_init(xsc) 2295 void *xsc; 2296 { 2297 struct bge_softc *sc = xsc; 2298 struct ifnet *ifp; 2299 u_int16_t *m; 2300 int s; 2301 2302 s = splimp(); 2303 2304 ifp = &sc->arpcom.ac_if; 2305 2306 if (ifp->if_flags & IFF_RUNNING) 2307 return; 2308 2309 /* Cancel pending I/O and flush buffers. */ 2310 bge_stop(sc); 2311 bge_reset(sc); 2312 bge_chipinit(sc); 2313 2314 /* 2315 * Init the various state machines, ring 2316 * control blocks and firmware. 2317 */ 2318 if (bge_blockinit(sc)) { 2319 printf("bge%d: initialization failure\n", sc->bge_unit); 2320 splx(s); 2321 return; 2322 } 2323 2324 ifp = &sc->arpcom.ac_if; 2325 2326 /* Specify MTU. */ 2327 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 2328 ETHER_HDR_LEN + ETHER_CRC_LEN); 2329 2330 /* Load our MAC address. */ 2331 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 2332 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 2333 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 2334 2335 /* Enable or disable promiscuous mode as needed. */ 2336 if (ifp->if_flags & IFF_PROMISC) { 2337 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2338 } else { 2339 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 2340 } 2341 2342 /* Program multicast filter. */ 2343 bge_setmulti(sc); 2344 2345 /* Init RX ring. */ 2346 bge_init_rx_ring_std(sc); 2347 2348 /* Init jumbo RX ring. */ 2349 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2350 bge_init_rx_ring_jumbo(sc); 2351 2352 /* Init our RX return ring index */ 2353 sc->bge_rx_saved_considx = 0; 2354 2355 /* Init TX ring. */ 2356 bge_init_tx_ring(sc); 2357 2358 /* Turn on transmitter */ 2359 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 2360 2361 /* Turn on receiver */ 2362 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2363 2364 /* Tell firmware we're alive. */ 2365 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2366 2367 /* Enable host interrupts. */ 2368 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 2369 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2370 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); 2371 2372 bge_ifmedia_upd(ifp); 2373 2374 ifp->if_flags |= IFF_RUNNING; 2375 ifp->if_flags &= ~IFF_OACTIVE; 2376 2377 splx(s); 2378 2379 sc->bge_stat_ch = timeout(bge_tick, sc, hz); 2380 2381 return; 2382 } 2383 2384 /* 2385 * Set media options. 2386 */ 2387 static int 2388 bge_ifmedia_upd(ifp) 2389 struct ifnet *ifp; 2390 { 2391 struct bge_softc *sc; 2392 struct mii_data *mii; 2393 struct ifmedia *ifm; 2394 2395 sc = ifp->if_softc; 2396 ifm = &sc->bge_ifmedia; 2397 2398 /* If this is a 1000baseX NIC, enable the TBI port. */ 2399 if (sc->bge_tbi) { 2400 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 2401 return(EINVAL); 2402 switch(IFM_SUBTYPE(ifm->ifm_media)) { 2403 case IFM_AUTO: 2404 break; 2405 case IFM_1000_SX: 2406 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 2407 BGE_CLRBIT(sc, BGE_MAC_MODE, 2408 BGE_MACMODE_HALF_DUPLEX); 2409 } else { 2410 BGE_SETBIT(sc, BGE_MAC_MODE, 2411 BGE_MACMODE_HALF_DUPLEX); 2412 } 2413 break; 2414 default: 2415 return(EINVAL); 2416 } 2417 return(0); 2418 } 2419 2420 mii = device_get_softc(sc->bge_miibus); 2421 sc->bge_link = 0; 2422 if (mii->mii_instance) { 2423 struct mii_softc *miisc; 2424 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 2425 miisc = LIST_NEXT(miisc, mii_list)) 2426 mii_phy_reset(miisc); 2427 } 2428 bge_phy_hack(sc); 2429 mii_mediachg(mii); 2430 2431 return(0); 2432 } 2433 2434 /* 2435 * Report current media status. 2436 */ 2437 static void 2438 bge_ifmedia_sts(ifp, ifmr) 2439 struct ifnet *ifp; 2440 struct ifmediareq *ifmr; 2441 { 2442 struct bge_softc *sc; 2443 struct mii_data *mii; 2444 2445 sc = ifp->if_softc; 2446 2447 if (sc->bge_tbi) { 2448 ifmr->ifm_status = IFM_AVALID; 2449 ifmr->ifm_active = IFM_ETHER; 2450 if (CSR_READ_4(sc, BGE_MAC_STS) & 2451 BGE_MACSTAT_TBI_PCS_SYNCHED) 2452 ifmr->ifm_status |= IFM_ACTIVE; 2453 ifmr->ifm_active |= IFM_1000_SX; 2454 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 2455 ifmr->ifm_active |= IFM_HDX; 2456 else 2457 ifmr->ifm_active |= IFM_FDX; 2458 return; 2459 } 2460 2461 mii = device_get_softc(sc->bge_miibus); 2462 mii_pollstat(mii); 2463 ifmr->ifm_active = mii->mii_media_active; 2464 ifmr->ifm_status = mii->mii_media_status; 2465 2466 return; 2467 } 2468 2469 static int 2470 bge_ioctl(ifp, command, data) 2471 struct ifnet *ifp; 2472 u_long command; 2473 caddr_t data; 2474 { 2475 struct bge_softc *sc = ifp->if_softc; 2476 struct ifreq *ifr = (struct ifreq *) data; 2477 int s, mask, error = 0; 2478 struct mii_data *mii; 2479 2480 s = splimp(); 2481 2482 switch(command) { 2483 case SIOCSIFADDR: 2484 case SIOCGIFADDR: 2485 error = ether_ioctl(ifp, command, data); 2486 break; 2487 case SIOCSIFMTU: 2488 if (ifr->ifr_mtu > BGE_JUMBO_MTU) 2489 error = EINVAL; 2490 else { 2491 ifp->if_mtu = ifr->ifr_mtu; 2492 ifp->if_flags &= ~IFF_RUNNING; 2493 bge_init(sc); 2494 } 2495 break; 2496 case SIOCSIFFLAGS: 2497 if (ifp->if_flags & IFF_UP) { 2498 /* 2499 * If only the state of the PROMISC flag changed, 2500 * then just use the 'set promisc mode' command 2501 * instead of reinitializing the entire NIC. Doing 2502 * a full re-init means reloading the firmware and 2503 * waiting for it to start up, which may take a 2504 * second or two. 2505 */ 2506 if (ifp->if_flags & IFF_RUNNING && 2507 ifp->if_flags & IFF_PROMISC && 2508 !(sc->bge_if_flags & IFF_PROMISC)) { 2509 BGE_SETBIT(sc, BGE_RX_MODE, 2510 BGE_RXMODE_RX_PROMISC); 2511 } else if (ifp->if_flags & IFF_RUNNING && 2512 !(ifp->if_flags & IFF_PROMISC) && 2513 sc->bge_if_flags & IFF_PROMISC) { 2514 BGE_CLRBIT(sc, BGE_RX_MODE, 2515 BGE_RXMODE_RX_PROMISC); 2516 } else 2517 bge_init(sc); 2518 } else { 2519 if (ifp->if_flags & IFF_RUNNING) { 2520 bge_stop(sc); 2521 } 2522 } 2523 sc->bge_if_flags = ifp->if_flags; 2524 error = 0; 2525 break; 2526 case SIOCADDMULTI: 2527 case SIOCDELMULTI: 2528 if (ifp->if_flags & IFF_RUNNING) { 2529 bge_setmulti(sc); 2530 error = 0; 2531 } 2532 break; 2533 case SIOCSIFMEDIA: 2534 case SIOCGIFMEDIA: 2535 if (sc->bge_tbi) { 2536 error = ifmedia_ioctl(ifp, ifr, 2537 &sc->bge_ifmedia, command); 2538 } else { 2539 mii = device_get_softc(sc->bge_miibus); 2540 error = ifmedia_ioctl(ifp, ifr, 2541 &mii->mii_media, command); 2542 } 2543 break; 2544 case SIOCSIFCAP: 2545 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2546 if (mask & IFCAP_HWCSUM) { 2547 if (IFCAP_HWCSUM & ifp->if_capenable) 2548 ifp->if_capenable &= ~IFCAP_HWCSUM; 2549 else 2550 ifp->if_capenable |= IFCAP_HWCSUM; 2551 } 2552 error = 0; 2553 break; 2554 default: 2555 error = EINVAL; 2556 break; 2557 } 2558 2559 (void)splx(s); 2560 2561 return(error); 2562 } 2563 2564 static void 2565 bge_watchdog(ifp) 2566 struct ifnet *ifp; 2567 { 2568 struct bge_softc *sc; 2569 2570 sc = ifp->if_softc; 2571 2572 printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit); 2573 2574 ifp->if_flags &= ~IFF_RUNNING; 2575 bge_init(sc); 2576 2577 ifp->if_oerrors++; 2578 2579 return; 2580 } 2581 2582 /* 2583 * Stop the adapter and free any mbufs allocated to the 2584 * RX and TX lists. 2585 */ 2586 static void 2587 bge_stop(sc) 2588 struct bge_softc *sc; 2589 { 2590 struct ifnet *ifp; 2591 struct ifmedia_entry *ifm; 2592 struct mii_data *mii = NULL; 2593 int mtmp, itmp; 2594 2595 ifp = &sc->arpcom.ac_if; 2596 2597 if (!sc->bge_tbi) 2598 mii = device_get_softc(sc->bge_miibus); 2599 2600 untimeout(bge_tick, sc, sc->bge_stat_ch); 2601 2602 /* 2603 * Disable all of the receiver blocks 2604 */ 2605 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 2606 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2607 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2608 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2609 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 2610 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2611 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 2612 2613 /* 2614 * Disable all of the transmit blocks 2615 */ 2616 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2617 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2618 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2619 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 2620 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 2621 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2622 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2623 2624 /* 2625 * Shut down all of the memory managers and related 2626 * state machines. 2627 */ 2628 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 2629 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 2630 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2631 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2632 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2633 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 2634 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 2635 2636 /* Disable host interrupts. */ 2637 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 2638 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); 2639 2640 /* 2641 * Tell firmware we're shutting down. 2642 */ 2643 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 2644 2645 /* Free the RX lists. */ 2646 bge_free_rx_ring_std(sc); 2647 2648 /* Free jumbo RX list. */ 2649 bge_free_rx_ring_jumbo(sc); 2650 2651 /* Free TX buffers. */ 2652 bge_free_tx_ring(sc); 2653 2654 /* 2655 * Isolate/power down the PHY, but leave the media selection 2656 * unchanged so that things will be put back to normal when 2657 * we bring the interface back up. 2658 */ 2659 if (!sc->bge_tbi) { 2660 itmp = ifp->if_flags; 2661 ifp->if_flags |= IFF_UP; 2662 ifm = mii->mii_media.ifm_cur; 2663 mtmp = ifm->ifm_media; 2664 ifm->ifm_media = IFM_ETHER|IFM_NONE; 2665 mii_mediachg(mii); 2666 ifm->ifm_media = mtmp; 2667 ifp->if_flags = itmp; 2668 } 2669 2670 sc->bge_link = 0; 2671 2672 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 2673 2674 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2675 2676 return; 2677 } 2678 2679 /* 2680 * Stop all chip I/O so that the kernel's probe routines don't 2681 * get confused by errant DMAs when rebooting. 2682 */ 2683 static void 2684 bge_shutdown(dev) 2685 device_t dev; 2686 { 2687 struct bge_softc *sc; 2688 2689 sc = device_get_softc(dev); 2690 2691 bge_stop(sc); 2692 bge_reset(sc); 2693 2694 return; 2695 } 2696