1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 /* 38 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/debugnet.h> 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/if_arp.h> 89 #include <net/ethernet.h> 90 #include <net/if_dl.h> 91 #include <net/if_media.h> 92 93 #include <net/bpf.h> 94 95 #include <net/if_types.h> 96 #include <net/if_vlan_var.h> 97 98 #include <netinet/in_systm.h> 99 #include <netinet/in.h> 100 #include <netinet/ip.h> 101 #include <netinet/tcp.h> 102 103 #include <machine/bus.h> 104 #include <machine/resource.h> 105 #include <sys/bus.h> 106 #include <sys/rman.h> 107 108 #include <dev/mii/mii.h> 109 #include <dev/mii/miivar.h> 110 #include "miidevs.h" 111 #include <dev/mii/brgphyreg.h> 112 113 #include <dev/pci/pcireg.h> 114 #include <dev/pci/pcivar.h> 115 116 #include <dev/bge/if_bgereg.h> 117 118 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 119 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 120 121 MODULE_DEPEND(bge, pci, 1, 1, 1); 122 MODULE_DEPEND(bge, ether, 1, 1, 1); 123 MODULE_DEPEND(bge, miibus, 1, 1, 1); 124 125 /* "device miibus" required. See GENERIC if you get errors here. */ 126 #include "miibus_if.h" 127 128 /* 129 * Various supported device vendors/types and their names. Note: the 130 * spec seems to indicate that the hardware still has Alteon's vendor 131 * ID burned into it, though it will always be overridden by the vendor 132 * ID in the EEPROM. Just to be safe, we cover all possibilities. 133 */ 134 static const struct bge_type { 135 uint16_t bge_vid; 136 uint16_t bge_did; 137 } bge_devs[] = { 138 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 139 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 140 141 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 142 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 143 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 144 145 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 146 147 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 148 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5725 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5727 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5762 }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57762 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57764 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57766 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57767 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57782 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 227 { BCOM_VENDORID, BCOM_DEVICEID_BCM57786 }, 228 { BCOM_VENDORID, BCOM_DEVICEID_BCM57787 }, 229 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 230 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 231 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 232 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 233 234 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 235 236 { TC_VENDORID, TC_DEVICEID_3C996 }, 237 238 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 239 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 240 { 0, 0 } 241 }; 242 243 static const struct bge_vendor { 244 uint16_t v_id; 245 const char *v_name; 246 } bge_vendors[] = { 247 { ALTEON_VENDORID, "Alteon" }, 248 { ALTIMA_VENDORID, "Altima" }, 249 { APPLE_VENDORID, "Apple" }, 250 { BCOM_VENDORID, "Broadcom" }, 251 { SK_VENDORID, "SysKonnect" }, 252 { TC_VENDORID, "3Com" }, 253 { FJTSU_VENDORID, "Fujitsu" }, 254 { 0, NULL } 255 }; 256 257 static const struct bge_revision { 258 uint32_t br_chipid; 259 const char *br_name; 260 } bge_revisions[] = { 261 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 262 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 263 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 264 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 265 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 266 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 267 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 268 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 269 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 270 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 271 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 272 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 273 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 274 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 275 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 276 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 277 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 278 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 279 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 280 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 281 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 282 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 283 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 284 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 285 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 286 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 287 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 288 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 289 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 290 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 291 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 292 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 293 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 294 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 295 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 296 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 297 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 298 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 299 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 300 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 301 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 302 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 303 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 304 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 305 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 306 { BGE_CHIPID_BCM5717_C0, "BCM5717 C0" }, 307 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 308 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 309 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 310 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 311 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 312 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 313 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 314 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 315 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 316 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 317 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 318 /* 5754 and 5787 share the same ASIC ID */ 319 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 320 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 321 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 322 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 323 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 324 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 325 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 326 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 327 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 328 { 0, NULL } 329 }; 330 331 /* 332 * Some defaults for major revisions, so that newer steppings 333 * that we don't know about have a shot at working. 334 */ 335 static const struct bge_revision bge_majorrevs[] = { 336 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 337 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 338 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 339 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 340 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 341 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 342 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 343 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 344 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 345 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 346 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 347 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 348 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 349 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 350 /* 5754 and 5787 share the same ASIC ID */ 351 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 352 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 353 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 354 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 355 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 356 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 357 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 358 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 359 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 360 { 0, NULL } 361 }; 362 363 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 364 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 365 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 366 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 367 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 368 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 369 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 370 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS) 371 372 static uint32_t bge_chipid(device_t); 373 static const struct bge_vendor * bge_lookup_vendor(uint16_t); 374 static const struct bge_revision * bge_lookup_rev(uint32_t); 375 376 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 377 378 static int bge_probe(device_t); 379 static int bge_attach(device_t); 380 static int bge_detach(device_t); 381 static int bge_suspend(device_t); 382 static int bge_resume(device_t); 383 static void bge_release_resources(struct bge_softc *); 384 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 385 static int bge_dma_alloc(struct bge_softc *); 386 static void bge_dma_free(struct bge_softc *); 387 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 388 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 389 390 static void bge_devinfo(struct bge_softc *); 391 static int bge_mbox_reorder(struct bge_softc *); 392 393 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 394 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 395 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 396 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 397 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 398 399 static void bge_txeof(struct bge_softc *, uint16_t); 400 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 401 static int bge_rxeof(struct bge_softc *, uint16_t, int); 402 403 static void bge_asf_driver_up (struct bge_softc *); 404 static void bge_tick(void *); 405 static void bge_stats_clear_regs(struct bge_softc *); 406 static void bge_stats_update(struct bge_softc *); 407 static void bge_stats_update_regs(struct bge_softc *); 408 static struct mbuf *bge_check_short_dma(struct mbuf *); 409 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 410 uint16_t *, uint16_t *); 411 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 412 413 static void bge_intr(void *); 414 static int bge_msi_intr(void *); 415 static void bge_intr_task(void *, int); 416 static void bge_start(if_t); 417 static void bge_start_locked(if_t); 418 static void bge_start_tx(struct bge_softc *, uint32_t); 419 static int bge_ioctl(if_t, u_long, caddr_t); 420 static void bge_init_locked(struct bge_softc *); 421 static void bge_init(void *); 422 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 423 static void bge_stop(struct bge_softc *); 424 static void bge_watchdog(struct bge_softc *); 425 static int bge_shutdown(device_t); 426 static int bge_ifmedia_upd_locked(if_t); 427 static int bge_ifmedia_upd(if_t); 428 static void bge_ifmedia_sts(if_t, struct ifmediareq *); 429 static uint64_t bge_get_counter(if_t, ift_counter); 430 431 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 432 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 433 434 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 435 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 436 437 static void bge_setpromisc(struct bge_softc *); 438 static void bge_setmulti(struct bge_softc *); 439 static void bge_setvlan(struct bge_softc *); 440 441 static __inline void bge_rxreuse_std(struct bge_softc *, int); 442 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 443 static int bge_newbuf_std(struct bge_softc *, int); 444 static int bge_newbuf_jumbo(struct bge_softc *, int); 445 static int bge_init_rx_ring_std(struct bge_softc *); 446 static void bge_free_rx_ring_std(struct bge_softc *); 447 static int bge_init_rx_ring_jumbo(struct bge_softc *); 448 static void bge_free_rx_ring_jumbo(struct bge_softc *); 449 static void bge_free_tx_ring(struct bge_softc *); 450 static int bge_init_tx_ring(struct bge_softc *); 451 452 static int bge_chipinit(struct bge_softc *); 453 static int bge_blockinit(struct bge_softc *); 454 static uint32_t bge_dma_swap_options(struct bge_softc *); 455 456 static int bge_has_eaddr(struct bge_softc *); 457 static uint32_t bge_readmem_ind(struct bge_softc *, int); 458 static void bge_writemem_ind(struct bge_softc *, int, int); 459 static void bge_writembx(struct bge_softc *, int, int); 460 #ifdef notdef 461 static uint32_t bge_readreg_ind(struct bge_softc *, int); 462 #endif 463 static void bge_writemem_direct(struct bge_softc *, int, int); 464 static void bge_writereg_ind(struct bge_softc *, int, int); 465 466 static int bge_miibus_readreg(device_t, int, int); 467 static int bge_miibus_writereg(device_t, int, int, int); 468 static void bge_miibus_statchg(device_t); 469 #ifdef DEVICE_POLLING 470 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count); 471 #endif 472 473 #define BGE_RESET_SHUTDOWN 0 474 #define BGE_RESET_START 1 475 #define BGE_RESET_SUSPEND 2 476 static void bge_sig_post_reset(struct bge_softc *, int); 477 static void bge_sig_legacy(struct bge_softc *, int); 478 static void bge_sig_pre_reset(struct bge_softc *, int); 479 static void bge_stop_fw(struct bge_softc *); 480 static int bge_reset(struct bge_softc *); 481 static void bge_link_upd(struct bge_softc *); 482 483 static void bge_ape_lock_init(struct bge_softc *); 484 static void bge_ape_read_fw_ver(struct bge_softc *); 485 static int bge_ape_lock(struct bge_softc *, int); 486 static void bge_ape_unlock(struct bge_softc *, int); 487 static void bge_ape_send_event(struct bge_softc *, uint32_t); 488 static void bge_ape_driver_state_change(struct bge_softc *, int); 489 490 /* 491 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 492 * leak information to untrusted users. It is also known to cause alignment 493 * traps on certain architectures. 494 */ 495 #ifdef BGE_REGISTER_DEBUG 496 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 497 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 498 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 499 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 500 #endif 501 static void bge_add_sysctls(struct bge_softc *); 502 static void bge_add_sysctl_stats_regs(struct bge_softc *, 503 struct sysctl_ctx_list *, struct sysctl_oid_list *); 504 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 505 struct sysctl_oid_list *); 506 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 507 508 DEBUGNET_DEFINE(bge); 509 510 static device_method_t bge_methods[] = { 511 /* Device interface */ 512 DEVMETHOD(device_probe, bge_probe), 513 DEVMETHOD(device_attach, bge_attach), 514 DEVMETHOD(device_detach, bge_detach), 515 DEVMETHOD(device_shutdown, bge_shutdown), 516 DEVMETHOD(device_suspend, bge_suspend), 517 DEVMETHOD(device_resume, bge_resume), 518 519 /* MII interface */ 520 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 521 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 522 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 523 524 DEVMETHOD_END 525 }; 526 527 static driver_t bge_driver = { 528 "bge", 529 bge_methods, 530 sizeof(struct bge_softc) 531 }; 532 533 DRIVER_MODULE(bge, pci, bge_driver, 0, 0); 534 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs, 535 nitems(bge_devs) - 1); 536 DRIVER_MODULE(miibus, bge, miibus_driver, 0, 0); 537 538 static int bge_allow_asf = 1; 539 540 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 541 "BGE driver parameters"); 542 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0, 543 "Allow ASF mode if available"); 544 545 static int 546 bge_has_eaddr(struct bge_softc *sc) 547 { 548 return (1); 549 } 550 551 static uint32_t 552 bge_readmem_ind(struct bge_softc *sc, int off) 553 { 554 device_t dev; 555 uint32_t val; 556 557 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 558 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 559 return (0); 560 561 dev = sc->bge_dev; 562 563 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 564 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 565 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 566 return (val); 567 } 568 569 static void 570 bge_writemem_ind(struct bge_softc *sc, int off, int val) 571 { 572 device_t dev; 573 574 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 575 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 576 return; 577 578 dev = sc->bge_dev; 579 580 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 581 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 582 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 583 } 584 585 #ifdef notdef 586 static uint32_t 587 bge_readreg_ind(struct bge_softc *sc, int off) 588 { 589 device_t dev; 590 591 dev = sc->bge_dev; 592 593 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 594 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 595 } 596 #endif 597 598 static void 599 bge_writereg_ind(struct bge_softc *sc, int off, int val) 600 { 601 device_t dev; 602 603 dev = sc->bge_dev; 604 605 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 606 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 607 } 608 609 static void 610 bge_writemem_direct(struct bge_softc *sc, int off, int val) 611 { 612 CSR_WRITE_4(sc, off, val); 613 } 614 615 static void 616 bge_writembx(struct bge_softc *sc, int off, int val) 617 { 618 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 619 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 620 621 CSR_WRITE_4(sc, off, val); 622 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 623 CSR_READ_4(sc, off); 624 } 625 626 /* 627 * Clear all stale locks and select the lock for this driver instance. 628 */ 629 static void 630 bge_ape_lock_init(struct bge_softc *sc) 631 { 632 uint32_t bit, regbase; 633 int i; 634 635 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 636 regbase = BGE_APE_LOCK_GRANT; 637 else 638 regbase = BGE_APE_PER_LOCK_GRANT; 639 640 /* Clear any stale locks. */ 641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 642 switch (i) { 643 case BGE_APE_LOCK_PHY0: 644 case BGE_APE_LOCK_PHY1: 645 case BGE_APE_LOCK_PHY2: 646 case BGE_APE_LOCK_PHY3: 647 bit = BGE_APE_LOCK_GRANT_DRIVER0; 648 break; 649 default: 650 if (sc->bge_func_addr == 0) 651 bit = BGE_APE_LOCK_GRANT_DRIVER0; 652 else 653 bit = (1 << sc->bge_func_addr); 654 } 655 APE_WRITE_4(sc, regbase + 4 * i, bit); 656 } 657 658 /* Select the PHY lock based on the device's function number. */ 659 switch (sc->bge_func_addr) { 660 case 0: 661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 662 break; 663 case 1: 664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 665 break; 666 case 2: 667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 668 break; 669 case 3: 670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 671 break; 672 default: 673 device_printf(sc->bge_dev, 674 "PHY lock not supported on this function\n"); 675 } 676 } 677 678 /* 679 * Check for APE firmware, set flags, and print version info. 680 */ 681 static void 682 bge_ape_read_fw_ver(struct bge_softc *sc) 683 { 684 const char *fwtype; 685 uint32_t apedata, features; 686 687 /* Check for a valid APE signature in shared memory. */ 688 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 689 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 690 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 691 return; 692 } 693 694 /* Check if APE firmware is running. */ 695 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 696 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 697 device_printf(sc->bge_dev, "APE signature found " 698 "but FW status not ready! 0x%08x\n", apedata); 699 return; 700 } 701 702 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 703 704 /* Fetch the APE firmware type and version. */ 705 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 706 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 707 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 708 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 709 fwtype = "NCSI"; 710 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 711 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 712 fwtype = "DASH"; 713 } else 714 fwtype = "UNKN"; 715 716 /* Print the APE firmware version. */ 717 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 718 fwtype, 719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 722 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 723 } 724 725 static int 726 bge_ape_lock(struct bge_softc *sc, int locknum) 727 { 728 uint32_t bit, gnt, req, status; 729 int i, off; 730 731 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 732 return (0); 733 734 /* Lock request/grant registers have different bases. */ 735 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 736 req = BGE_APE_LOCK_REQ; 737 gnt = BGE_APE_LOCK_GRANT; 738 } else { 739 req = BGE_APE_PER_LOCK_REQ; 740 gnt = BGE_APE_PER_LOCK_GRANT; 741 } 742 743 off = 4 * locknum; 744 745 switch (locknum) { 746 case BGE_APE_LOCK_GPIO: 747 /* Lock required when using GPIO. */ 748 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 749 return (0); 750 if (sc->bge_func_addr == 0) 751 bit = BGE_APE_LOCK_REQ_DRIVER0; 752 else 753 bit = (1 << sc->bge_func_addr); 754 break; 755 case BGE_APE_LOCK_GRC: 756 /* Lock required to reset the device. */ 757 if (sc->bge_func_addr == 0) 758 bit = BGE_APE_LOCK_REQ_DRIVER0; 759 else 760 bit = (1 << sc->bge_func_addr); 761 break; 762 case BGE_APE_LOCK_MEM: 763 /* Lock required when accessing certain APE memory. */ 764 if (sc->bge_func_addr == 0) 765 bit = BGE_APE_LOCK_REQ_DRIVER0; 766 else 767 bit = (1 << sc->bge_func_addr); 768 break; 769 case BGE_APE_LOCK_PHY0: 770 case BGE_APE_LOCK_PHY1: 771 case BGE_APE_LOCK_PHY2: 772 case BGE_APE_LOCK_PHY3: 773 /* Lock required when accessing PHYs. */ 774 bit = BGE_APE_LOCK_REQ_DRIVER0; 775 break; 776 default: 777 return (EINVAL); 778 } 779 780 /* Request a lock. */ 781 APE_WRITE_4(sc, req + off, bit); 782 783 /* Wait up to 1 second to acquire lock. */ 784 for (i = 0; i < 20000; i++) { 785 status = APE_READ_4(sc, gnt + off); 786 if (status == bit) 787 break; 788 DELAY(50); 789 } 790 791 /* Handle any errors. */ 792 if (status != bit) { 793 device_printf(sc->bge_dev, "APE lock %d request failed! " 794 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 795 locknum, req + off, bit & 0xFFFF, gnt + off, 796 status & 0xFFFF); 797 /* Revoke the lock request. */ 798 APE_WRITE_4(sc, gnt + off, bit); 799 return (EBUSY); 800 } 801 802 return (0); 803 } 804 805 static void 806 bge_ape_unlock(struct bge_softc *sc, int locknum) 807 { 808 uint32_t bit, gnt; 809 int off; 810 811 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 812 return; 813 814 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 815 gnt = BGE_APE_LOCK_GRANT; 816 else 817 gnt = BGE_APE_PER_LOCK_GRANT; 818 819 off = 4 * locknum; 820 821 switch (locknum) { 822 case BGE_APE_LOCK_GPIO: 823 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 824 return; 825 if (sc->bge_func_addr == 0) 826 bit = BGE_APE_LOCK_GRANT_DRIVER0; 827 else 828 bit = (1 << sc->bge_func_addr); 829 break; 830 case BGE_APE_LOCK_GRC: 831 if (sc->bge_func_addr == 0) 832 bit = BGE_APE_LOCK_GRANT_DRIVER0; 833 else 834 bit = (1 << sc->bge_func_addr); 835 break; 836 case BGE_APE_LOCK_MEM: 837 if (sc->bge_func_addr == 0) 838 bit = BGE_APE_LOCK_GRANT_DRIVER0; 839 else 840 bit = (1 << sc->bge_func_addr); 841 break; 842 case BGE_APE_LOCK_PHY0: 843 case BGE_APE_LOCK_PHY1: 844 case BGE_APE_LOCK_PHY2: 845 case BGE_APE_LOCK_PHY3: 846 bit = BGE_APE_LOCK_GRANT_DRIVER0; 847 break; 848 default: 849 return; 850 } 851 852 APE_WRITE_4(sc, gnt + off, bit); 853 } 854 855 /* 856 * Send an event to the APE firmware. 857 */ 858 static void 859 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 860 { 861 uint32_t apedata; 862 int i; 863 864 /* NCSI does not support APE events. */ 865 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 866 return; 867 868 /* Wait up to 1ms for APE to service previous event. */ 869 for (i = 10; i > 0; i--) { 870 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 871 break; 872 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 873 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 874 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 875 BGE_APE_EVENT_STATUS_EVENT_PENDING); 876 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 877 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 878 break; 879 } 880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 881 DELAY(100); 882 } 883 if (i == 0) 884 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 885 event); 886 } 887 888 static void 889 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 890 { 891 uint32_t apedata, event; 892 893 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 894 return; 895 896 switch (kind) { 897 case BGE_RESET_START: 898 /* If this is the first load, clear the load counter. */ 899 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 900 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 901 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 902 else { 903 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 904 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 905 } 906 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 907 BGE_APE_HOST_SEG_SIG_MAGIC); 908 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 909 BGE_APE_HOST_SEG_LEN_MAGIC); 910 911 /* Add some version info if bge(4) supports it. */ 912 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 913 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 914 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 915 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 916 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 917 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 918 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 919 BGE_APE_HOST_DRVR_STATE_START); 920 event = BGE_APE_EVENT_STATUS_STATE_START; 921 break; 922 case BGE_RESET_SHUTDOWN: 923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 924 BGE_APE_HOST_DRVR_STATE_UNLOAD); 925 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 926 break; 927 case BGE_RESET_SUSPEND: 928 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 929 break; 930 default: 931 return; 932 } 933 934 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 935 BGE_APE_EVENT_STATUS_STATE_CHNGE); 936 } 937 938 /* 939 * Map a single buffer address. 940 */ 941 942 static void 943 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 944 { 945 struct bge_dmamap_arg *ctx; 946 947 if (error) 948 return; 949 950 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 951 952 ctx = arg; 953 ctx->bge_busaddr = segs->ds_addr; 954 } 955 956 static uint8_t 957 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 958 { 959 uint32_t access, byte = 0; 960 int i; 961 962 /* Lock. */ 963 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 964 for (i = 0; i < 8000; i++) { 965 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 966 break; 967 DELAY(20); 968 } 969 if (i == 8000) 970 return (1); 971 972 /* Enable access. */ 973 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 974 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 975 976 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 977 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 978 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 979 DELAY(10); 980 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 981 DELAY(10); 982 break; 983 } 984 } 985 986 if (i == BGE_TIMEOUT * 10) { 987 if_printf(sc->bge_ifp, "nvram read timed out\n"); 988 return (1); 989 } 990 991 /* Get result. */ 992 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 993 994 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 995 996 /* Disable access. */ 997 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 998 999 /* Unlock. */ 1000 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1001 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1002 1003 return (0); 1004 } 1005 1006 /* 1007 * Read a sequence of bytes from NVRAM. 1008 */ 1009 static int 1010 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1011 { 1012 int err = 0, i; 1013 uint8_t byte = 0; 1014 1015 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1016 return (1); 1017 1018 for (i = 0; i < cnt; i++) { 1019 err = bge_nvram_getbyte(sc, off + i, &byte); 1020 if (err) 1021 break; 1022 *(dest + i) = byte; 1023 } 1024 1025 return (err ? 1 : 0); 1026 } 1027 1028 /* 1029 * Read a byte of data stored in the EEPROM at address 'addr.' The 1030 * BCM570x supports both the traditional bitbang interface and an 1031 * auto access interface for reading the EEPROM. We use the auto 1032 * access method. 1033 */ 1034 static uint8_t 1035 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1036 { 1037 int i; 1038 uint32_t byte = 0; 1039 1040 /* 1041 * Enable use of auto EEPROM access so we can avoid 1042 * having to use the bitbang method. 1043 */ 1044 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1045 1046 /* Reset the EEPROM, load the clock period. */ 1047 CSR_WRITE_4(sc, BGE_EE_ADDR, 1048 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1049 DELAY(20); 1050 1051 /* Issue the read EEPROM command. */ 1052 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1053 1054 /* Wait for completion */ 1055 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1056 DELAY(10); 1057 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1058 break; 1059 } 1060 1061 if (i == BGE_TIMEOUT * 10) { 1062 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1063 return (1); 1064 } 1065 1066 /* Get result. */ 1067 byte = CSR_READ_4(sc, BGE_EE_DATA); 1068 1069 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1070 1071 return (0); 1072 } 1073 1074 /* 1075 * Read a sequence of bytes from the EEPROM. 1076 */ 1077 static int 1078 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1079 { 1080 int i, error = 0; 1081 uint8_t byte = 0; 1082 1083 for (i = 0; i < cnt; i++) { 1084 error = bge_eeprom_getbyte(sc, off + i, &byte); 1085 if (error) 1086 break; 1087 *(dest + i) = byte; 1088 } 1089 1090 return (error ? 1 : 0); 1091 } 1092 1093 static int 1094 bge_miibus_readreg(device_t dev, int phy, int reg) 1095 { 1096 struct bge_softc *sc; 1097 uint32_t val; 1098 int i; 1099 1100 sc = device_get_softc(dev); 1101 1102 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1103 return (0); 1104 1105 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1106 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1107 CSR_WRITE_4(sc, BGE_MI_MODE, 1108 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1109 DELAY(80); 1110 } 1111 1112 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1113 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1114 1115 /* Poll for the PHY register access to complete. */ 1116 for (i = 0; i < BGE_TIMEOUT; i++) { 1117 DELAY(10); 1118 val = CSR_READ_4(sc, BGE_MI_COMM); 1119 if ((val & BGE_MICOMM_BUSY) == 0) { 1120 DELAY(5); 1121 val = CSR_READ_4(sc, BGE_MI_COMM); 1122 break; 1123 } 1124 } 1125 1126 if (i == BGE_TIMEOUT) { 1127 device_printf(sc->bge_dev, 1128 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1129 phy, reg, val); 1130 val = 0; 1131 } 1132 1133 /* Restore the autopoll bit if necessary. */ 1134 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1135 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1136 DELAY(80); 1137 } 1138 1139 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1140 1141 if (val & BGE_MICOMM_READFAIL) 1142 return (0); 1143 1144 return (val & 0xFFFF); 1145 } 1146 1147 static int 1148 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1149 { 1150 struct bge_softc *sc; 1151 int i; 1152 1153 sc = device_get_softc(dev); 1154 1155 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1156 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1157 return (0); 1158 1159 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1160 return (0); 1161 1162 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1163 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1164 CSR_WRITE_4(sc, BGE_MI_MODE, 1165 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1166 DELAY(80); 1167 } 1168 1169 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1170 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1171 1172 for (i = 0; i < BGE_TIMEOUT; i++) { 1173 DELAY(10); 1174 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1175 DELAY(5); 1176 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1177 break; 1178 } 1179 } 1180 1181 /* Restore the autopoll bit if necessary. */ 1182 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1183 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1184 DELAY(80); 1185 } 1186 1187 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1188 1189 if (i == BGE_TIMEOUT) 1190 device_printf(sc->bge_dev, 1191 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1192 phy, reg, val); 1193 1194 return (0); 1195 } 1196 1197 static void 1198 bge_miibus_statchg(device_t dev) 1199 { 1200 struct bge_softc *sc; 1201 struct mii_data *mii; 1202 uint32_t mac_mode, rx_mode, tx_mode; 1203 1204 sc = device_get_softc(dev); 1205 if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0) 1206 return; 1207 mii = device_get_softc(sc->bge_miibus); 1208 1209 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1210 (IFM_ACTIVE | IFM_AVALID)) { 1211 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1212 case IFM_10_T: 1213 case IFM_100_TX: 1214 sc->bge_link = 1; 1215 break; 1216 case IFM_1000_T: 1217 case IFM_1000_SX: 1218 case IFM_2500_SX: 1219 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1220 sc->bge_link = 1; 1221 else 1222 sc->bge_link = 0; 1223 break; 1224 default: 1225 sc->bge_link = 0; 1226 break; 1227 } 1228 } else 1229 sc->bge_link = 0; 1230 if (sc->bge_link == 0) 1231 return; 1232 1233 /* 1234 * APE firmware touches these registers to keep the MAC 1235 * connected to the outside world. Try to keep the 1236 * accesses atomic. 1237 */ 1238 1239 /* Set the port mode (MII/GMII) to match the link speed. */ 1240 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1241 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1242 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1243 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1244 1245 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1246 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1247 mac_mode |= BGE_PORTMODE_GMII; 1248 else 1249 mac_mode |= BGE_PORTMODE_MII; 1250 1251 /* Set MAC flow control behavior to match link flow control settings. */ 1252 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1253 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1254 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1255 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1256 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1257 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1258 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1259 } else 1260 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1261 1262 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1263 DELAY(40); 1264 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1265 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1266 } 1267 1268 /* 1269 * Intialize a standard receive ring descriptor. 1270 */ 1271 static int 1272 bge_newbuf_std(struct bge_softc *sc, int i) 1273 { 1274 struct mbuf *m; 1275 struct bge_rx_bd *r; 1276 bus_dma_segment_t segs[1]; 1277 bus_dmamap_t map; 1278 int error, nsegs; 1279 1280 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1281 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 1282 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1283 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1284 if (m == NULL) 1285 return (ENOBUFS); 1286 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1287 } else { 1288 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1289 if (m == NULL) 1290 return (ENOBUFS); 1291 m->m_len = m->m_pkthdr.len = MCLBYTES; 1292 } 1293 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1294 m_adj(m, ETHER_ALIGN); 1295 1296 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1297 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1298 if (error != 0) { 1299 m_freem(m); 1300 return (error); 1301 } 1302 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1303 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1304 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1305 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1306 sc->bge_cdata.bge_rx_std_dmamap[i]); 1307 } 1308 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1309 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1310 sc->bge_cdata.bge_rx_std_sparemap = map; 1311 sc->bge_cdata.bge_rx_std_chain[i] = m; 1312 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1313 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1314 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1315 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1316 r->bge_flags = BGE_RXBDFLAG_END; 1317 r->bge_len = segs[0].ds_len; 1318 r->bge_idx = i; 1319 1320 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1321 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1322 1323 return (0); 1324 } 1325 1326 /* 1327 * Initialize a jumbo receive ring descriptor. This allocates 1328 * a jumbo buffer from the pool managed internally by the driver. 1329 */ 1330 static int 1331 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1332 { 1333 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1334 bus_dmamap_t map; 1335 struct bge_extrx_bd *r; 1336 struct mbuf *m; 1337 int error, nsegs; 1338 1339 MGETHDR(m, M_NOWAIT, MT_DATA); 1340 if (m == NULL) 1341 return (ENOBUFS); 1342 1343 if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) { 1344 m_freem(m); 1345 return (ENOBUFS); 1346 } 1347 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1348 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1349 m_adj(m, ETHER_ALIGN); 1350 1351 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1352 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1353 if (error != 0) { 1354 m_freem(m); 1355 return (error); 1356 } 1357 1358 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1359 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1360 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1361 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1362 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1363 } 1364 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1365 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1366 sc->bge_cdata.bge_rx_jumbo_sparemap; 1367 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1368 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1369 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1370 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1371 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1372 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1373 1374 /* 1375 * Fill in the extended RX buffer descriptor. 1376 */ 1377 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1378 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1379 r->bge_idx = i; 1380 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1381 switch (nsegs) { 1382 case 4: 1383 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1384 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1385 r->bge_len3 = segs[3].ds_len; 1386 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1387 case 3: 1388 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1389 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1390 r->bge_len2 = segs[2].ds_len; 1391 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1392 case 2: 1393 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1394 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1395 r->bge_len1 = segs[1].ds_len; 1396 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1397 case 1: 1398 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1399 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1400 r->bge_len0 = segs[0].ds_len; 1401 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1402 break; 1403 default: 1404 panic("%s: %d segments\n", __func__, nsegs); 1405 } 1406 1407 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1408 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 bge_init_rx_ring_std(struct bge_softc *sc) 1415 { 1416 int error, i; 1417 1418 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1419 sc->bge_std = 0; 1420 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1421 if ((error = bge_newbuf_std(sc, i)) != 0) 1422 return (error); 1423 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1424 } 1425 1426 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1427 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1428 1429 sc->bge_std = 0; 1430 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1431 1432 return (0); 1433 } 1434 1435 static void 1436 bge_free_rx_ring_std(struct bge_softc *sc) 1437 { 1438 int i; 1439 1440 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1441 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1442 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1443 sc->bge_cdata.bge_rx_std_dmamap[i], 1444 BUS_DMASYNC_POSTREAD); 1445 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1446 sc->bge_cdata.bge_rx_std_dmamap[i]); 1447 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1448 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1449 } 1450 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1451 sizeof(struct bge_rx_bd)); 1452 } 1453 } 1454 1455 static int 1456 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1457 { 1458 struct bge_rcb *rcb; 1459 int error, i; 1460 1461 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1462 sc->bge_jumbo = 0; 1463 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1464 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1465 return (error); 1466 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1467 } 1468 1469 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1470 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1471 1472 sc->bge_jumbo = 0; 1473 1474 /* Enable the jumbo receive producer ring. */ 1475 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1476 rcb->bge_maxlen_flags = 1477 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1478 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1479 1480 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1481 1482 return (0); 1483 } 1484 1485 static void 1486 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1487 { 1488 int i; 1489 1490 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1491 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1492 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1493 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1494 BUS_DMASYNC_POSTREAD); 1495 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1496 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1497 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1498 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1499 } 1500 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1501 sizeof(struct bge_extrx_bd)); 1502 } 1503 } 1504 1505 static void 1506 bge_free_tx_ring(struct bge_softc *sc) 1507 { 1508 int i; 1509 1510 if (sc->bge_ldata.bge_tx_ring == NULL) 1511 return; 1512 1513 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1514 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1515 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1516 sc->bge_cdata.bge_tx_dmamap[i], 1517 BUS_DMASYNC_POSTWRITE); 1518 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1519 sc->bge_cdata.bge_tx_dmamap[i]); 1520 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1521 sc->bge_cdata.bge_tx_chain[i] = NULL; 1522 } 1523 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1524 sizeof(struct bge_tx_bd)); 1525 } 1526 } 1527 1528 static int 1529 bge_init_tx_ring(struct bge_softc *sc) 1530 { 1531 sc->bge_txcnt = 0; 1532 sc->bge_tx_saved_considx = 0; 1533 1534 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1535 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1536 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1537 1538 /* Initialize transmit producer index for host-memory send ring. */ 1539 sc->bge_tx_prodidx = 0; 1540 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1541 1542 /* 5700 b2 errata */ 1543 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1544 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1545 1546 /* NIC-memory send ring not used; initialize to zero. */ 1547 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1548 /* 5700 b2 errata */ 1549 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1550 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1551 1552 return (0); 1553 } 1554 1555 static void 1556 bge_setpromisc(struct bge_softc *sc) 1557 { 1558 if_t ifp; 1559 1560 BGE_LOCK_ASSERT(sc); 1561 1562 ifp = sc->bge_ifp; 1563 1564 /* Enable or disable promiscuous mode as needed. */ 1565 if (if_getflags(ifp) & IFF_PROMISC) 1566 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1567 else 1568 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1569 } 1570 1571 static u_int 1572 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1573 { 1574 uint32_t *hashes = arg; 1575 int h; 1576 1577 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F; 1578 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1579 1580 return (1); 1581 } 1582 1583 static void 1584 bge_setmulti(struct bge_softc *sc) 1585 { 1586 if_t ifp; 1587 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1588 int i; 1589 1590 BGE_LOCK_ASSERT(sc); 1591 1592 ifp = sc->bge_ifp; 1593 1594 if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { 1595 for (i = 0; i < 4; i++) 1596 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1597 return; 1598 } 1599 1600 /* First, zot all the existing filters. */ 1601 for (i = 0; i < 4; i++) 1602 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1603 1604 if_foreach_llmaddr(ifp, bge_hash_maddr, hashes); 1605 1606 for (i = 0; i < 4; i++) 1607 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1608 } 1609 1610 static void 1611 bge_setvlan(struct bge_softc *sc) 1612 { 1613 if_t ifp; 1614 1615 BGE_LOCK_ASSERT(sc); 1616 1617 ifp = sc->bge_ifp; 1618 1619 /* Enable or disable VLAN tag stripping as needed. */ 1620 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 1621 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1622 else 1623 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1624 } 1625 1626 static void 1627 bge_sig_pre_reset(struct bge_softc *sc, int type) 1628 { 1629 1630 /* 1631 * Some chips don't like this so only do this if ASF is enabled 1632 */ 1633 if (sc->bge_asf_mode) 1634 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1635 1636 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1637 switch (type) { 1638 case BGE_RESET_START: 1639 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1640 BGE_FW_DRV_STATE_START); 1641 break; 1642 case BGE_RESET_SHUTDOWN: 1643 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1644 BGE_FW_DRV_STATE_UNLOAD); 1645 break; 1646 case BGE_RESET_SUSPEND: 1647 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1648 BGE_FW_DRV_STATE_SUSPEND); 1649 break; 1650 } 1651 } 1652 1653 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1654 bge_ape_driver_state_change(sc, type); 1655 } 1656 1657 static void 1658 bge_sig_post_reset(struct bge_softc *sc, int type) 1659 { 1660 1661 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1662 switch (type) { 1663 case BGE_RESET_START: 1664 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1665 BGE_FW_DRV_STATE_START_DONE); 1666 /* START DONE */ 1667 break; 1668 case BGE_RESET_SHUTDOWN: 1669 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1670 BGE_FW_DRV_STATE_UNLOAD_DONE); 1671 break; 1672 } 1673 } 1674 if (type == BGE_RESET_SHUTDOWN) 1675 bge_ape_driver_state_change(sc, type); 1676 } 1677 1678 static void 1679 bge_sig_legacy(struct bge_softc *sc, int type) 1680 { 1681 1682 if (sc->bge_asf_mode) { 1683 switch (type) { 1684 case BGE_RESET_START: 1685 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1686 BGE_FW_DRV_STATE_START); 1687 break; 1688 case BGE_RESET_SHUTDOWN: 1689 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1690 BGE_FW_DRV_STATE_UNLOAD); 1691 break; 1692 } 1693 } 1694 } 1695 1696 static void 1697 bge_stop_fw(struct bge_softc *sc) 1698 { 1699 int i; 1700 1701 if (sc->bge_asf_mode) { 1702 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1703 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1704 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1705 1706 for (i = 0; i < 100; i++ ) { 1707 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1708 BGE_RX_CPU_DRV_EVENT)) 1709 break; 1710 DELAY(10); 1711 } 1712 } 1713 } 1714 1715 static uint32_t 1716 bge_dma_swap_options(struct bge_softc *sc) 1717 { 1718 uint32_t dma_options; 1719 1720 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1721 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1722 #if BYTE_ORDER == BIG_ENDIAN 1723 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1724 #endif 1725 return (dma_options); 1726 } 1727 1728 /* 1729 * Do endian, PCI and DMA initialization. 1730 */ 1731 static int 1732 bge_chipinit(struct bge_softc *sc) 1733 { 1734 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1735 uint16_t val; 1736 int i; 1737 1738 /* Set endianness before we access any non-PCI registers. */ 1739 misc_ctl = BGE_INIT; 1740 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1741 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1742 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1743 1744 /* 1745 * Clear the MAC statistics block in the NIC's 1746 * internal memory. 1747 */ 1748 for (i = BGE_STATS_BLOCK; 1749 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1750 BGE_MEMWIN_WRITE(sc, i, 0); 1751 1752 for (i = BGE_STATUS_BLOCK; 1753 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1754 BGE_MEMWIN_WRITE(sc, i, 0); 1755 1756 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1757 /* 1758 * Fix data corruption caused by non-qword write with WB. 1759 * Fix master abort in PCI mode. 1760 * Fix PCI latency timer. 1761 */ 1762 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1763 val |= (1 << 10) | (1 << 12) | (1 << 13); 1764 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1765 } 1766 1767 if (sc->bge_asicrev == BGE_ASICREV_BCM57765 || 1768 sc->bge_asicrev == BGE_ASICREV_BCM57766) { 1769 /* 1770 * For the 57766 and non Ax versions of 57765, bootcode 1771 * needs to setup the PCIE Fast Training Sequence (FTS) 1772 * value to prevent transmit hangs. 1773 */ 1774 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) { 1775 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 1776 CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | 1777 BGE_CPMU_PADRNG_CTL_RDIV2); 1778 } 1779 } 1780 1781 /* 1782 * Set up the PCI DMA control register. 1783 */ 1784 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1785 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1786 if (sc->bge_flags & BGE_FLAG_PCIE) { 1787 if (sc->bge_mps >= 256) 1788 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1789 else 1790 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1791 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1792 if (BGE_IS_5714_FAMILY(sc)) { 1793 /* 256 bytes for read and write. */ 1794 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1795 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1796 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1797 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1798 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1799 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1800 /* 1801 * In the BCM5703, the DMA read watermark should 1802 * be set to less than or equal to the maximum 1803 * memory read byte count of the PCI-X command 1804 * register. 1805 */ 1806 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1807 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1808 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1809 /* 1536 bytes for read, 384 bytes for write. */ 1810 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1811 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1812 } else { 1813 /* 384 bytes for read and write. */ 1814 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1815 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1816 0x0F; 1817 } 1818 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1819 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1820 uint32_t tmp; 1821 1822 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1823 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1824 if (tmp == 6 || tmp == 7) 1825 dma_rw_ctl |= 1826 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1827 1828 /* Set PCI-X DMA write workaround. */ 1829 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1830 } 1831 } else { 1832 /* Conventional PCI bus: 256 bytes for read and write. */ 1833 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1834 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1835 1836 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1837 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1838 dma_rw_ctl |= 0x0F; 1839 } 1840 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1841 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1842 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1843 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1844 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1845 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1846 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1847 if (BGE_IS_5717_PLUS(sc)) { 1848 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1849 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1850 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1851 /* 1852 * Enable HW workaround for controllers that misinterpret 1853 * a status tag update and leave interrupts permanently 1854 * disabled. 1855 */ 1856 if (!BGE_IS_57765_PLUS(sc) && 1857 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1858 sc->bge_asicrev != BGE_ASICREV_BCM5762) 1859 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1860 } 1861 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1862 1863 /* 1864 * Set up general mode register. 1865 */ 1866 mode_ctl = bge_dma_swap_options(sc); 1867 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 1868 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 1869 /* Retain Host-2-BMC settings written by APE firmware. */ 1870 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1871 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1872 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1873 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1874 } 1875 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1876 BGE_MODECTL_TX_NO_PHDR_CSUM; 1877 1878 /* 1879 * BCM5701 B5 have a bug causing data corruption when using 1880 * 64-bit DMA reads, which can be terminated early and then 1881 * completed later as 32-bit accesses, in combination with 1882 * certain bridges. 1883 */ 1884 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1885 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1886 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1887 1888 /* 1889 * Tell the firmware the driver is running 1890 */ 1891 if (sc->bge_asf_mode & ASF_STACKUP) 1892 mode_ctl |= BGE_MODECTL_STACKUP; 1893 1894 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1895 1896 /* 1897 * Disable memory write invalidate. Apparently it is not supported 1898 * properly by these devices. 1899 */ 1900 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1901 1902 /* Set the timer prescaler (always 66 MHz). */ 1903 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1904 1905 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1906 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1907 DELAY(40); /* XXX */ 1908 1909 /* Put PHY into ready state */ 1910 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1911 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1912 DELAY(40); 1913 } 1914 1915 return (0); 1916 } 1917 1918 static int 1919 bge_blockinit(struct bge_softc *sc) 1920 { 1921 struct bge_rcb *rcb; 1922 bus_size_t vrcb; 1923 caddr_t lladdr; 1924 bge_hostaddr taddr; 1925 uint32_t dmactl, rdmareg, val; 1926 int i, limit; 1927 1928 /* 1929 * Initialize the memory window pointer register so that 1930 * we can access the first 32K of internal NIC RAM. This will 1931 * allow us to set up the TX send ring RCBs and the RX return 1932 * ring RCBs, plus other things which live in NIC memory. 1933 */ 1934 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1935 1936 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1937 1938 if (!(BGE_IS_5705_PLUS(sc))) { 1939 /* Configure mbuf memory pool */ 1940 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1941 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1942 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1943 else 1944 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1945 1946 /* Configure DMA resource pool */ 1947 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1948 BGE_DMA_DESCRIPTORS); 1949 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1950 } 1951 1952 /* Configure mbuf pool watermarks */ 1953 if (BGE_IS_5717_PLUS(sc)) { 1954 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1955 if (if_getmtu(sc->bge_ifp) > ETHERMTU) { 1956 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1957 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1958 } else { 1959 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1960 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1961 } 1962 } else if (!BGE_IS_5705_PLUS(sc)) { 1963 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1964 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1965 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1966 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1969 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1970 } else { 1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1973 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1974 } 1975 1976 /* Configure DMA resource watermarks */ 1977 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1978 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1979 1980 /* Enable buffer manager */ 1981 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1982 /* 1983 * Change the arbitration algorithm of TXMBUF read request to 1984 * round-robin instead of priority based for BCM5719. When 1985 * TXFIFO is almost empty, RDMA will hold its request until 1986 * TXFIFO is not almost empty. 1987 */ 1988 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1989 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1990 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1991 1992 /* Poll for buffer manager start indication */ 1993 for (i = 0; i < BGE_TIMEOUT; i++) { 1994 DELAY(10); 1995 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1996 break; 1997 } 1998 1999 if (i == BGE_TIMEOUT) { 2000 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2001 return (ENXIO); 2002 } 2003 2004 /* Enable flow-through queues */ 2005 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2006 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2007 2008 /* Wait until queue initialization is complete */ 2009 for (i = 0; i < BGE_TIMEOUT; i++) { 2010 DELAY(10); 2011 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2012 break; 2013 } 2014 2015 if (i == BGE_TIMEOUT) { 2016 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2017 return (ENXIO); 2018 } 2019 2020 /* 2021 * Summary of rings supported by the controller: 2022 * 2023 * Standard Receive Producer Ring 2024 * - This ring is used to feed receive buffers for "standard" 2025 * sized frames (typically 1536 bytes) to the controller. 2026 * 2027 * Jumbo Receive Producer Ring 2028 * - This ring is used to feed receive buffers for jumbo sized 2029 * frames (i.e. anything bigger than the "standard" frames) 2030 * to the controller. 2031 * 2032 * Mini Receive Producer Ring 2033 * - This ring is used to feed receive buffers for "mini" 2034 * sized frames to the controller. 2035 * - This feature required external memory for the controller 2036 * but was never used in a production system. Should always 2037 * be disabled. 2038 * 2039 * Receive Return Ring 2040 * - After the controller has placed an incoming frame into a 2041 * receive buffer that buffer is moved into a receive return 2042 * ring. The driver is then responsible to passing the 2043 * buffer up to the stack. Many versions of the controller 2044 * support multiple RR rings. 2045 * 2046 * Send Ring 2047 * - This ring is used for outgoing frames. Many versions of 2048 * the controller support multiple send rings. 2049 */ 2050 2051 /* Initialize the standard receive producer ring control block. */ 2052 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2053 rcb->bge_hostaddr.bge_addr_lo = 2054 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2055 rcb->bge_hostaddr.bge_addr_hi = 2056 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2057 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2058 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2059 if (BGE_IS_5717_PLUS(sc)) { 2060 /* 2061 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2062 * Bits 15-2 : Maximum RX frame size 2063 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2064 * Bit 0 : Reserved 2065 */ 2066 rcb->bge_maxlen_flags = 2067 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2068 } else if (BGE_IS_5705_PLUS(sc)) { 2069 /* 2070 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2071 * Bits 15-2 : Reserved (should be 0) 2072 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2073 * Bit 0 : Reserved 2074 */ 2075 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2076 } else { 2077 /* 2078 * Ring size is always XXX entries 2079 * Bits 31-16: Maximum RX frame size 2080 * Bits 15-2 : Reserved (should be 0) 2081 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2082 * Bit 0 : Reserved 2083 */ 2084 rcb->bge_maxlen_flags = 2085 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2086 } 2087 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2088 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2089 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2090 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2091 else 2092 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2093 /* Write the standard receive producer ring control block. */ 2094 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2095 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2096 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2097 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2098 2099 /* Reset the standard receive producer ring producer index. */ 2100 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2101 2102 /* 2103 * Initialize the jumbo RX producer ring control 2104 * block. We set the 'ring disabled' bit in the 2105 * flags field until we're actually ready to start 2106 * using this ring (i.e. once we set the MTU 2107 * high enough to require it). 2108 */ 2109 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2110 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2111 /* Get the jumbo receive producer ring RCB parameters. */ 2112 rcb->bge_hostaddr.bge_addr_lo = 2113 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2114 rcb->bge_hostaddr.bge_addr_hi = 2115 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2116 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2117 sc->bge_cdata.bge_rx_jumbo_ring_map, 2118 BUS_DMASYNC_PREREAD); 2119 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2120 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2121 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2122 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2123 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2124 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2125 else 2126 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2127 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2128 rcb->bge_hostaddr.bge_addr_hi); 2129 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2130 rcb->bge_hostaddr.bge_addr_lo); 2131 /* Program the jumbo receive producer ring RCB parameters. */ 2132 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2133 rcb->bge_maxlen_flags); 2134 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2135 /* Reset the jumbo receive producer ring producer index. */ 2136 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2137 } 2138 2139 /* Disable the mini receive producer ring RCB. */ 2140 if (BGE_IS_5700_FAMILY(sc)) { 2141 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2142 rcb->bge_maxlen_flags = 2143 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2144 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2145 rcb->bge_maxlen_flags); 2146 /* Reset the mini receive producer ring producer index. */ 2147 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2148 } 2149 2150 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2151 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2152 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2153 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2154 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2155 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2156 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2157 } 2158 /* 2159 * The BD ring replenish thresholds control how often the 2160 * hardware fetches new BD's from the producer rings in host 2161 * memory. Setting the value too low on a busy system can 2162 * starve the hardware and reduce the throughput. 2163 * 2164 * Set the BD ring replentish thresholds. The recommended 2165 * values are 1/8th the number of descriptors allocated to 2166 * each ring. 2167 * XXX The 5754 requires a lower threshold, so it might be a 2168 * requirement of all 575x family chips. The Linux driver sets 2169 * the lower threshold for all 5705 family chips as well, but there 2170 * are reports that it might not need to be so strict. 2171 * 2172 * XXX Linux does some extra fiddling here for the 5906 parts as 2173 * well. 2174 */ 2175 if (BGE_IS_5705_PLUS(sc)) 2176 val = 8; 2177 else 2178 val = BGE_STD_RX_RING_CNT / 8; 2179 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2180 if (BGE_IS_JUMBO_CAPABLE(sc)) 2181 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2182 BGE_JUMBO_RX_RING_CNT/8); 2183 if (BGE_IS_5717_PLUS(sc)) { 2184 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2185 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2186 } 2187 2188 /* 2189 * Disable all send rings by setting the 'ring disabled' bit 2190 * in the flags field of all the TX send ring control blocks, 2191 * located in NIC memory. 2192 */ 2193 if (!BGE_IS_5705_PLUS(sc)) 2194 /* 5700 to 5704 had 16 send rings. */ 2195 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2196 else if (BGE_IS_57765_PLUS(sc) || 2197 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2198 limit = 2; 2199 else if (BGE_IS_5717_PLUS(sc)) 2200 limit = 4; 2201 else 2202 limit = 1; 2203 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2204 for (i = 0; i < limit; i++) { 2205 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2206 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2207 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2208 vrcb += sizeof(struct bge_rcb); 2209 } 2210 2211 /* Configure send ring RCB 0 (we use only the first ring) */ 2212 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2213 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2214 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2215 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2216 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2217 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2218 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2219 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2220 else 2221 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2222 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2223 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2224 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2225 2226 /* 2227 * Disable all receive return rings by setting the 2228 * 'ring diabled' bit in the flags field of all the receive 2229 * return ring control blocks, located in NIC memory. 2230 */ 2231 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2232 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2233 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2234 /* Should be 17, use 16 until we get an SRAM map. */ 2235 limit = 16; 2236 } else if (!BGE_IS_5705_PLUS(sc)) 2237 limit = BGE_RX_RINGS_MAX; 2238 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2239 sc->bge_asicrev == BGE_ASICREV_BCM5762 || 2240 BGE_IS_57765_PLUS(sc)) 2241 limit = 4; 2242 else 2243 limit = 1; 2244 /* Disable all receive return rings. */ 2245 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2246 for (i = 0; i < limit; i++) { 2247 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2248 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2249 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2250 BGE_RCB_FLAG_RING_DISABLED); 2251 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2252 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2253 (i * (sizeof(uint64_t))), 0); 2254 vrcb += sizeof(struct bge_rcb); 2255 } 2256 2257 /* 2258 * Set up receive return ring 0. Note that the NIC address 2259 * for RX return rings is 0x0. The return rings live entirely 2260 * within the host, so the nicaddr field in the RCB isn't used. 2261 */ 2262 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2263 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2264 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2265 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2266 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2267 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2268 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2269 2270 lladdr = if_getlladdr(sc->bge_ifp); 2271 /* Set random backoff seed for TX */ 2272 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2273 (lladdr[0] + lladdr[1] + 2274 lladdr[2] + lladdr[3] + 2275 lladdr[4] + lladdr[5]) & 2276 BGE_TX_BACKOFF_SEED_MASK); 2277 2278 /* Set inter-packet gap */ 2279 val = 0x2620; 2280 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2281 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2282 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2283 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2284 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2285 2286 /* 2287 * Specify which ring to use for packets that don't match 2288 * any RX rules. 2289 */ 2290 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2291 2292 /* 2293 * Configure number of RX lists. One interrupt distribution 2294 * list, sixteen active lists, one bad frames class. 2295 */ 2296 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2297 2298 /* Initialize RX list placement stats mask. */ 2299 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2300 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2301 2302 /* Disable host coalescing until we get it set up */ 2303 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2304 2305 /* Poll to make sure it's shut down. */ 2306 for (i = 0; i < BGE_TIMEOUT; i++) { 2307 DELAY(10); 2308 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2309 break; 2310 } 2311 2312 if (i == BGE_TIMEOUT) { 2313 device_printf(sc->bge_dev, 2314 "host coalescing engine failed to idle\n"); 2315 return (ENXIO); 2316 } 2317 2318 /* Set up host coalescing defaults */ 2319 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2320 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2321 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2322 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2323 if (!(BGE_IS_5705_PLUS(sc))) { 2324 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2325 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2326 } 2327 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2328 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2329 2330 /* Set up address of statistics block */ 2331 if (!(BGE_IS_5705_PLUS(sc))) { 2332 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2333 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2334 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2335 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2336 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2337 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2338 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2339 } 2340 2341 /* Set up address of status block */ 2342 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2343 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2344 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2345 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2346 2347 /* Set up status block size. */ 2348 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2349 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2350 val = BGE_STATBLKSZ_FULL; 2351 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2352 } else { 2353 val = BGE_STATBLKSZ_32BYTE; 2354 bzero(sc->bge_ldata.bge_status_block, 32); 2355 } 2356 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2357 sc->bge_cdata.bge_status_map, 2358 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2359 2360 /* Turn on host coalescing state machine */ 2361 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2362 2363 /* Turn on RX BD completion state machine and enable attentions */ 2364 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2365 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2366 2367 /* Turn on RX list placement state machine */ 2368 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2369 2370 /* Turn on RX list selector state machine. */ 2371 if (!(BGE_IS_5705_PLUS(sc))) 2372 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2373 2374 /* Turn on DMA, clear stats. */ 2375 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2376 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2377 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2378 BGE_MACMODE_FRMHDR_DMA_ENB; 2379 2380 if (sc->bge_flags & BGE_FLAG_TBI) 2381 val |= BGE_PORTMODE_TBI; 2382 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2383 val |= BGE_PORTMODE_GMII; 2384 else 2385 val |= BGE_PORTMODE_MII; 2386 2387 /* Allow APE to send/receive frames. */ 2388 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2389 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2390 2391 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2392 DELAY(40); 2393 2394 /* Set misc. local control, enable interrupts on attentions */ 2395 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2396 2397 #ifdef notdef 2398 /* Assert GPIO pins for PHY reset */ 2399 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2400 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2401 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2402 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2403 #endif 2404 2405 /* Turn on DMA completion state machine */ 2406 if (!(BGE_IS_5705_PLUS(sc))) 2407 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2408 2409 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2410 2411 /* Enable host coalescing bug fix. */ 2412 if (BGE_IS_5755_PLUS(sc)) 2413 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2414 2415 /* Request larger DMA burst size to get better performance. */ 2416 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2417 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2418 2419 /* Turn on write DMA state machine */ 2420 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2421 DELAY(40); 2422 2423 /* Turn on read DMA state machine */ 2424 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2425 2426 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2427 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2428 2429 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2430 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2431 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2432 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2433 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2434 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2435 if (sc->bge_flags & BGE_FLAG_PCIE) 2436 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2437 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2438 val |= BGE_RDMAMODE_TSO4_ENABLE; 2439 if (sc->bge_flags & BGE_FLAG_TSO3 || 2440 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2441 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2442 val |= BGE_RDMAMODE_TSO6_ENABLE; 2443 } 2444 2445 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2446 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2447 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2448 BGE_RDMAMODE_H2BNC_VLAN_DET; 2449 /* 2450 * Allow multiple outstanding read requests from 2451 * non-LSO read DMA engine. 2452 */ 2453 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2454 } 2455 2456 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2457 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2458 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2459 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2460 BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { 2461 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 2462 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2463 else 2464 rdmareg = BGE_RDMA_RSRVCTRL; 2465 dmactl = CSR_READ_4(sc, rdmareg); 2466 /* 2467 * Adjust tx margin to prevent TX data corruption and 2468 * fix internal FIFO overflow. 2469 */ 2470 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2471 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2472 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2473 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2474 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2475 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2476 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2477 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2478 } 2479 /* 2480 * Enable fix for read DMA FIFO overruns. 2481 * The fix is to limit the number of RX BDs 2482 * the hardware would fetch at a fime. 2483 */ 2484 CSR_WRITE_4(sc, rdmareg, dmactl | 2485 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2486 } 2487 2488 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2489 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2490 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2491 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2492 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2493 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2494 /* 2495 * Allow 4KB burst length reads for non-LSO frames. 2496 * Enable 512B burst length reads for buffer descriptors. 2497 */ 2498 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2499 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2500 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2501 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2502 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2503 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2504 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2505 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2506 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2507 } 2508 2509 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2510 DELAY(40); 2511 2512 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 2513 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2514 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2515 if ((val & 0xFFFF) > BGE_FRAMELEN) 2516 break; 2517 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2518 break; 2519 } 2520 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2521 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2522 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2523 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2524 else 2525 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2526 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2527 } 2528 } 2529 2530 /* Turn on RX data completion state machine */ 2531 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2532 2533 /* Turn on RX BD initiator state machine */ 2534 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2535 2536 /* Turn on RX data and RX BD initiator state machine */ 2537 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2538 2539 /* Turn on Mbuf cluster free state machine */ 2540 if (!(BGE_IS_5705_PLUS(sc))) 2541 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2542 2543 /* Turn on send BD completion state machine */ 2544 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2545 2546 /* Turn on send data completion state machine */ 2547 val = BGE_SDCMODE_ENABLE; 2548 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2549 val |= BGE_SDCMODE_CDELAY; 2550 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2551 2552 /* Turn on send data initiator state machine */ 2553 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2554 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2555 BGE_SDIMODE_HW_LSO_PRE_DMA); 2556 else 2557 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2558 2559 /* Turn on send BD initiator state machine */ 2560 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2561 2562 /* Turn on send BD selector state machine */ 2563 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2564 2565 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2566 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2567 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2568 2569 /* ack/clear link change events */ 2570 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2571 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2572 BGE_MACSTAT_LINK_CHANGED); 2573 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2574 2575 /* 2576 * Enable attention when the link has changed state for 2577 * devices that use auto polling. 2578 */ 2579 if (sc->bge_flags & BGE_FLAG_TBI) { 2580 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2581 } else { 2582 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2583 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2584 DELAY(80); 2585 } 2586 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2587 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2588 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2589 BGE_EVTENB_MI_INTERRUPT); 2590 } 2591 2592 /* 2593 * Clear any pending link state attention. 2594 * Otherwise some link state change events may be lost until attention 2595 * is cleared by bge_intr() -> bge_link_upd() sequence. 2596 * It's not necessary on newer BCM chips - perhaps enabling link 2597 * state change attentions implies clearing pending attention. 2598 */ 2599 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2600 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2601 BGE_MACSTAT_LINK_CHANGED); 2602 2603 /* Enable link state change attentions. */ 2604 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2605 2606 return (0); 2607 } 2608 2609 static const struct bge_revision * 2610 bge_lookup_rev(uint32_t chipid) 2611 { 2612 const struct bge_revision *br; 2613 2614 for (br = bge_revisions; br->br_name != NULL; br++) { 2615 if (br->br_chipid == chipid) 2616 return (br); 2617 } 2618 2619 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2620 if (br->br_chipid == BGE_ASICREV(chipid)) 2621 return (br); 2622 } 2623 2624 return (NULL); 2625 } 2626 2627 static const struct bge_vendor * 2628 bge_lookup_vendor(uint16_t vid) 2629 { 2630 const struct bge_vendor *v; 2631 2632 for (v = bge_vendors; v->v_name != NULL; v++) 2633 if (v->v_id == vid) 2634 return (v); 2635 2636 return (NULL); 2637 } 2638 2639 static uint32_t 2640 bge_chipid(device_t dev) 2641 { 2642 uint32_t id; 2643 2644 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2645 BGE_PCIMISCCTL_ASICREV_SHIFT; 2646 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2647 /* 2648 * Find the ASCI revision. Different chips use different 2649 * registers. 2650 */ 2651 switch (pci_get_device(dev)) { 2652 case BCOM_DEVICEID_BCM5717C: 2653 /* 5717 C0 seems to belong to 5720 line. */ 2654 id = BGE_CHIPID_BCM5720_A0; 2655 break; 2656 case BCOM_DEVICEID_BCM5717: 2657 case BCOM_DEVICEID_BCM5718: 2658 case BCOM_DEVICEID_BCM5719: 2659 case BCOM_DEVICEID_BCM5720: 2660 case BCOM_DEVICEID_BCM5725: 2661 case BCOM_DEVICEID_BCM5727: 2662 case BCOM_DEVICEID_BCM5762: 2663 case BCOM_DEVICEID_BCM57764: 2664 case BCOM_DEVICEID_BCM57767: 2665 case BCOM_DEVICEID_BCM57787: 2666 id = pci_read_config(dev, 2667 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2668 break; 2669 case BCOM_DEVICEID_BCM57761: 2670 case BCOM_DEVICEID_BCM57762: 2671 case BCOM_DEVICEID_BCM57765: 2672 case BCOM_DEVICEID_BCM57766: 2673 case BCOM_DEVICEID_BCM57781: 2674 case BCOM_DEVICEID_BCM57782: 2675 case BCOM_DEVICEID_BCM57785: 2676 case BCOM_DEVICEID_BCM57786: 2677 case BCOM_DEVICEID_BCM57791: 2678 case BCOM_DEVICEID_BCM57795: 2679 id = pci_read_config(dev, 2680 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2681 break; 2682 default: 2683 id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); 2684 } 2685 } 2686 return (id); 2687 } 2688 2689 /* 2690 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2691 * against our list and return its name if we find a match. 2692 * 2693 * Note that since the Broadcom controller contains VPD support, we 2694 * try to get the device name string from the controller itself instead 2695 * of the compiled-in string. It guarantees we'll always announce the 2696 * right product name. We fall back to the compiled-in string when 2697 * VPD is unavailable or corrupt. 2698 */ 2699 static int 2700 bge_probe(device_t dev) 2701 { 2702 char model[64]; 2703 const struct bge_revision *br; 2704 const char *pname; 2705 struct bge_softc *sc; 2706 const struct bge_type *t = bge_devs; 2707 const struct bge_vendor *v; 2708 uint32_t id; 2709 uint16_t did, vid; 2710 2711 sc = device_get_softc(dev); 2712 sc->bge_dev = dev; 2713 vid = pci_get_vendor(dev); 2714 did = pci_get_device(dev); 2715 while(t->bge_vid != 0) { 2716 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2717 id = bge_chipid(dev); 2718 br = bge_lookup_rev(id); 2719 if (bge_has_eaddr(sc) && 2720 pci_get_vpd_ident(dev, &pname) == 0) 2721 snprintf(model, sizeof(model), "%s", pname); 2722 else { 2723 v = bge_lookup_vendor(vid); 2724 snprintf(model, sizeof(model), "%s %s", 2725 v != NULL ? v->v_name : "Unknown", 2726 br != NULL ? br->br_name : 2727 "NetXtreme/NetLink Ethernet Controller"); 2728 } 2729 device_set_descf(dev, "%s, %sASIC rev. %#08x", 2730 model, br != NULL ? "" : "unknown ", id); 2731 return (BUS_PROBE_DEFAULT); 2732 } 2733 t++; 2734 } 2735 2736 return (ENXIO); 2737 } 2738 2739 static void 2740 bge_dma_free(struct bge_softc *sc) 2741 { 2742 int i; 2743 2744 /* Destroy DMA maps for RX buffers. */ 2745 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2746 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2747 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2748 sc->bge_cdata.bge_rx_std_dmamap[i]); 2749 } 2750 if (sc->bge_cdata.bge_rx_std_sparemap) 2751 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2752 sc->bge_cdata.bge_rx_std_sparemap); 2753 2754 /* Destroy DMA maps for jumbo RX buffers. */ 2755 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2756 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2757 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2758 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2759 } 2760 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2761 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2762 sc->bge_cdata.bge_rx_jumbo_sparemap); 2763 2764 /* Destroy DMA maps for TX buffers. */ 2765 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2766 if (sc->bge_cdata.bge_tx_dmamap[i]) 2767 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2768 sc->bge_cdata.bge_tx_dmamap[i]); 2769 } 2770 2771 if (sc->bge_cdata.bge_rx_mtag) 2772 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2773 if (sc->bge_cdata.bge_mtag_jumbo) 2774 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2775 if (sc->bge_cdata.bge_tx_mtag) 2776 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2777 2778 /* Destroy standard RX ring. */ 2779 if (sc->bge_ldata.bge_rx_std_ring_paddr) 2780 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2781 sc->bge_cdata.bge_rx_std_ring_map); 2782 if (sc->bge_ldata.bge_rx_std_ring) 2783 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2784 sc->bge_ldata.bge_rx_std_ring, 2785 sc->bge_cdata.bge_rx_std_ring_map); 2786 2787 if (sc->bge_cdata.bge_rx_std_ring_tag) 2788 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2789 2790 /* Destroy jumbo RX ring. */ 2791 if (sc->bge_ldata.bge_rx_jumbo_ring_paddr) 2792 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2793 sc->bge_cdata.bge_rx_jumbo_ring_map); 2794 2795 if (sc->bge_ldata.bge_rx_jumbo_ring) 2796 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2797 sc->bge_ldata.bge_rx_jumbo_ring, 2798 sc->bge_cdata.bge_rx_jumbo_ring_map); 2799 2800 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2801 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2802 2803 /* Destroy RX return ring. */ 2804 if (sc->bge_ldata.bge_rx_return_ring_paddr) 2805 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2806 sc->bge_cdata.bge_rx_return_ring_map); 2807 2808 if (sc->bge_ldata.bge_rx_return_ring) 2809 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2810 sc->bge_ldata.bge_rx_return_ring, 2811 sc->bge_cdata.bge_rx_return_ring_map); 2812 2813 if (sc->bge_cdata.bge_rx_return_ring_tag) 2814 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2815 2816 /* Destroy TX ring. */ 2817 if (sc->bge_ldata.bge_tx_ring_paddr) 2818 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2819 sc->bge_cdata.bge_tx_ring_map); 2820 2821 if (sc->bge_ldata.bge_tx_ring) 2822 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2823 sc->bge_ldata.bge_tx_ring, 2824 sc->bge_cdata.bge_tx_ring_map); 2825 2826 if (sc->bge_cdata.bge_tx_ring_tag) 2827 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2828 2829 /* Destroy status block. */ 2830 if (sc->bge_ldata.bge_status_block_paddr) 2831 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2832 sc->bge_cdata.bge_status_map); 2833 2834 if (sc->bge_ldata.bge_status_block) 2835 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2836 sc->bge_ldata.bge_status_block, 2837 sc->bge_cdata.bge_status_map); 2838 2839 if (sc->bge_cdata.bge_status_tag) 2840 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2841 2842 /* Destroy statistics block. */ 2843 if (sc->bge_ldata.bge_stats_paddr) 2844 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2845 sc->bge_cdata.bge_stats_map); 2846 2847 if (sc->bge_ldata.bge_stats) 2848 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2849 sc->bge_ldata.bge_stats, 2850 sc->bge_cdata.bge_stats_map); 2851 2852 if (sc->bge_cdata.bge_stats_tag) 2853 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2854 2855 if (sc->bge_cdata.bge_buffer_tag) 2856 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2857 2858 /* Destroy the parent tag. */ 2859 if (sc->bge_cdata.bge_parent_tag) 2860 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2861 } 2862 2863 static int 2864 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2865 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2866 bus_addr_t *paddr, const char *msg) 2867 { 2868 struct bge_dmamap_arg ctx; 2869 bus_addr_t lowaddr; 2870 bus_size_t ring_end; 2871 int error; 2872 2873 lowaddr = BUS_SPACE_MAXADDR; 2874 again: 2875 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2876 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2877 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2878 if (error != 0) { 2879 device_printf(sc->bge_dev, 2880 "could not create %s dma tag\n", msg); 2881 return (ENOMEM); 2882 } 2883 /* Allocate DMA'able memory for ring. */ 2884 error = bus_dmamem_alloc(*tag, (void **)ring, 2885 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2886 if (error != 0) { 2887 device_printf(sc->bge_dev, 2888 "could not allocate DMA'able memory for %s\n", msg); 2889 return (ENOMEM); 2890 } 2891 /* Load the address of the ring. */ 2892 ctx.bge_busaddr = 0; 2893 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2894 &ctx, BUS_DMA_NOWAIT); 2895 if (error != 0) { 2896 device_printf(sc->bge_dev, 2897 "could not load DMA'able memory for %s\n", msg); 2898 return (ENOMEM); 2899 } 2900 *paddr = ctx.bge_busaddr; 2901 ring_end = *paddr + maxsize; 2902 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2903 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2904 /* 2905 * 4GB boundary crossed. Limit maximum allowable DMA 2906 * address space to 32bit and try again. 2907 */ 2908 bus_dmamap_unload(*tag, *map); 2909 bus_dmamem_free(*tag, *ring, *map); 2910 bus_dma_tag_destroy(*tag); 2911 if (bootverbose) 2912 device_printf(sc->bge_dev, "4GB boundary crossed, " 2913 "limit DMA address space to 32bit for %s\n", msg); 2914 *ring = NULL; 2915 *tag = NULL; 2916 *map = NULL; 2917 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2918 goto again; 2919 } 2920 return (0); 2921 } 2922 2923 static int 2924 bge_dma_alloc(struct bge_softc *sc) 2925 { 2926 bus_addr_t lowaddr; 2927 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2928 int i, error; 2929 2930 lowaddr = BUS_SPACE_MAXADDR; 2931 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2932 lowaddr = BGE_DMA_MAXADDR; 2933 /* 2934 * Allocate the parent bus DMA tag appropriate for PCI. 2935 */ 2936 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2937 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2938 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2939 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2940 if (error != 0) { 2941 device_printf(sc->bge_dev, 2942 "could not allocate parent dma tag\n"); 2943 return (ENOMEM); 2944 } 2945 2946 /* Create tag for standard RX ring. */ 2947 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2948 &sc->bge_cdata.bge_rx_std_ring_tag, 2949 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2950 &sc->bge_cdata.bge_rx_std_ring_map, 2951 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2952 if (error) 2953 return (error); 2954 2955 /* Create tag for RX return ring. */ 2956 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2957 &sc->bge_cdata.bge_rx_return_ring_tag, 2958 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2959 &sc->bge_cdata.bge_rx_return_ring_map, 2960 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2961 if (error) 2962 return (error); 2963 2964 /* Create tag for TX ring. */ 2965 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2966 &sc->bge_cdata.bge_tx_ring_tag, 2967 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2968 &sc->bge_cdata.bge_tx_ring_map, 2969 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2970 if (error) 2971 return (error); 2972 2973 /* 2974 * Create tag for status block. 2975 * Because we only use single Tx/Rx/Rx return ring, use 2976 * minimum status block size except BCM5700 AX/BX which 2977 * seems to want to see full status block size regardless 2978 * of configured number of ring. 2979 */ 2980 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2981 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2982 sbsz = BGE_STATUS_BLK_SZ; 2983 else 2984 sbsz = 32; 2985 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2986 &sc->bge_cdata.bge_status_tag, 2987 (uint8_t **)&sc->bge_ldata.bge_status_block, 2988 &sc->bge_cdata.bge_status_map, 2989 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2990 if (error) 2991 return (error); 2992 2993 /* Create tag for statistics block. */ 2994 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2995 &sc->bge_cdata.bge_stats_tag, 2996 (uint8_t **)&sc->bge_ldata.bge_stats, 2997 &sc->bge_cdata.bge_stats_map, 2998 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2999 if (error) 3000 return (error); 3001 3002 /* Create tag for jumbo RX ring. */ 3003 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3004 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 3005 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 3006 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 3007 &sc->bge_cdata.bge_rx_jumbo_ring_map, 3008 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 3009 if (error) 3010 return (error); 3011 } 3012 3013 /* Create parent tag for buffers. */ 3014 boundary = 0; 3015 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 3016 boundary = BGE_DMA_BNDRY; 3017 /* 3018 * XXX 3019 * watchdog timeout issue was observed on BCM5704 which 3020 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 3021 * Both limiting DMA address space to 32bits and flushing 3022 * mailbox write seem to address the issue. 3023 */ 3024 if (sc->bge_pcixcap != 0) 3025 lowaddr = BUS_SPACE_MAXADDR_32BIT; 3026 } 3027 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 3028 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 3029 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 3030 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 3031 if (error != 0) { 3032 device_printf(sc->bge_dev, 3033 "could not allocate buffer dma tag\n"); 3034 return (ENOMEM); 3035 } 3036 /* Create tag for Tx mbufs. */ 3037 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 3038 txsegsz = BGE_TSOSEG_SZ; 3039 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 3040 } else { 3041 txsegsz = MCLBYTES; 3042 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 3043 } 3044 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 3045 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 3046 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 3047 &sc->bge_cdata.bge_tx_mtag); 3048 3049 if (error) { 3050 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 3051 return (ENOMEM); 3052 } 3053 3054 /* Create tag for Rx mbufs. */ 3055 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 3056 rxmaxsegsz = MJUM9BYTES; 3057 else 3058 rxmaxsegsz = MCLBYTES; 3059 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 3060 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 3061 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 3062 3063 if (error) { 3064 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 3065 return (ENOMEM); 3066 } 3067 3068 /* Create DMA maps for RX buffers. */ 3069 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3070 &sc->bge_cdata.bge_rx_std_sparemap); 3071 if (error) { 3072 device_printf(sc->bge_dev, 3073 "can't create spare DMA map for RX\n"); 3074 return (ENOMEM); 3075 } 3076 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3077 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3078 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3079 if (error) { 3080 device_printf(sc->bge_dev, 3081 "can't create DMA map for RX\n"); 3082 return (ENOMEM); 3083 } 3084 } 3085 3086 /* Create DMA maps for TX buffers. */ 3087 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3088 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3089 &sc->bge_cdata.bge_tx_dmamap[i]); 3090 if (error) { 3091 device_printf(sc->bge_dev, 3092 "can't create DMA map for TX\n"); 3093 return (ENOMEM); 3094 } 3095 } 3096 3097 /* Create tags for jumbo RX buffers. */ 3098 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3099 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3100 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3101 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3102 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3103 if (error) { 3104 device_printf(sc->bge_dev, 3105 "could not allocate jumbo dma tag\n"); 3106 return (ENOMEM); 3107 } 3108 /* Create DMA maps for jumbo RX buffers. */ 3109 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3110 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3111 if (error) { 3112 device_printf(sc->bge_dev, 3113 "can't create spare DMA map for jumbo RX\n"); 3114 return (ENOMEM); 3115 } 3116 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3117 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3118 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3119 if (error) { 3120 device_printf(sc->bge_dev, 3121 "can't create DMA map for jumbo RX\n"); 3122 return (ENOMEM); 3123 } 3124 } 3125 } 3126 3127 return (0); 3128 } 3129 3130 /* 3131 * Return true if this device has more than one port. 3132 */ 3133 static int 3134 bge_has_multiple_ports(struct bge_softc *sc) 3135 { 3136 device_t dev = sc->bge_dev; 3137 u_int b, d, f, fscan, s; 3138 3139 d = pci_get_domain(dev); 3140 b = pci_get_bus(dev); 3141 s = pci_get_slot(dev); 3142 f = pci_get_function(dev); 3143 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3144 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3145 return (1); 3146 return (0); 3147 } 3148 3149 /* 3150 * Return true if MSI can be used with this device. 3151 */ 3152 static int 3153 bge_can_use_msi(struct bge_softc *sc) 3154 { 3155 int can_use_msi = 0; 3156 3157 if (sc->bge_msi == 0) 3158 return (0); 3159 3160 /* Disable MSI for polling(4). */ 3161 #ifdef DEVICE_POLLING 3162 return (0); 3163 #endif 3164 switch (sc->bge_asicrev) { 3165 case BGE_ASICREV_BCM5714_A0: 3166 case BGE_ASICREV_BCM5714: 3167 /* 3168 * Apparently, MSI doesn't work when these chips are 3169 * configured in single-port mode. 3170 */ 3171 if (bge_has_multiple_ports(sc)) 3172 can_use_msi = 1; 3173 break; 3174 case BGE_ASICREV_BCM5750: 3175 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3176 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3177 can_use_msi = 1; 3178 break; 3179 case BGE_ASICREV_BCM5784: 3180 /* 3181 * Prevent infinite "watchdog timeout" errors 3182 * in some MacBook Pro and make it work out-of-the-box. 3183 */ 3184 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX) 3185 break; 3186 /* FALLTHROUGH */ 3187 default: 3188 if (BGE_IS_575X_PLUS(sc)) 3189 can_use_msi = 1; 3190 } 3191 return (can_use_msi); 3192 } 3193 3194 static int 3195 bge_mbox_reorder(struct bge_softc *sc) 3196 { 3197 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3198 static const struct mbox_reorder { 3199 const uint16_t vendor; 3200 const uint16_t device; 3201 const char *desc; 3202 } mbox_reorder_lists[] = { 3203 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3204 }; 3205 devclass_t pci, pcib; 3206 device_t bus, dev; 3207 int i; 3208 3209 pci = devclass_find("pci"); 3210 pcib = devclass_find("pcib"); 3211 dev = sc->bge_dev; 3212 bus = device_get_parent(dev); 3213 for (;;) { 3214 dev = device_get_parent(bus); 3215 bus = device_get_parent(dev); 3216 if (device_get_devclass(dev) != pcib) 3217 break; 3218 if (device_get_devclass(bus) != pci) 3219 break; 3220 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3221 if (pci_get_vendor(dev) == 3222 mbox_reorder_lists[i].vendor && 3223 pci_get_device(dev) == 3224 mbox_reorder_lists[i].device) { 3225 device_printf(sc->bge_dev, 3226 "enabling MBOX workaround for %s\n", 3227 mbox_reorder_lists[i].desc); 3228 return (1); 3229 } 3230 } 3231 } 3232 return (0); 3233 } 3234 3235 static void 3236 bge_devinfo(struct bge_softc *sc) 3237 { 3238 uint32_t cfg, clk; 3239 3240 device_printf(sc->bge_dev, 3241 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3242 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3243 if (sc->bge_flags & BGE_FLAG_PCIE) 3244 printf("PCI-E\n"); 3245 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3246 printf("PCI-X "); 3247 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3248 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3249 clk = 133; 3250 else { 3251 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3252 switch (clk) { 3253 case 0: 3254 clk = 33; 3255 break; 3256 case 2: 3257 clk = 50; 3258 break; 3259 case 4: 3260 clk = 66; 3261 break; 3262 case 6: 3263 clk = 100; 3264 break; 3265 case 7: 3266 clk = 133; 3267 break; 3268 } 3269 } 3270 printf("%u MHz\n", clk); 3271 } else { 3272 if (sc->bge_pcixcap != 0) 3273 printf("PCI on PCI-X "); 3274 else 3275 printf("PCI "); 3276 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3277 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3278 clk = 66; 3279 else 3280 clk = 33; 3281 if (cfg & BGE_PCISTATE_32BIT_BUS) 3282 printf("%u MHz; 32bit\n", clk); 3283 else 3284 printf("%u MHz; 64bit\n", clk); 3285 } 3286 } 3287 3288 static int 3289 bge_attach(device_t dev) 3290 { 3291 if_t ifp; 3292 struct bge_softc *sc; 3293 uint32_t hwcfg = 0, misccfg, pcistate; 3294 u_char eaddr[ETHER_ADDR_LEN]; 3295 int capmask, error, reg, rid, trys; 3296 3297 sc = device_get_softc(dev); 3298 sc->bge_dev = dev; 3299 3300 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3301 NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3302 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3303 3304 pci_enable_busmaster(dev); 3305 3306 /* 3307 * Allocate control/status registers. 3308 */ 3309 rid = PCIR_BAR(0); 3310 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3311 RF_ACTIVE); 3312 3313 if (sc->bge_res == NULL) { 3314 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3315 error = ENXIO; 3316 goto fail; 3317 } 3318 3319 /* Save various chip information. */ 3320 sc->bge_func_addr = pci_get_function(dev); 3321 sc->bge_chipid = bge_chipid(dev); 3322 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3323 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3324 3325 /* Set default PHY address. */ 3326 sc->bge_phy_addr = 1; 3327 /* 3328 * PHY address mapping for various devices. 3329 * 3330 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3331 * ---------+-------+-------+-------+-------+ 3332 * BCM57XX | 1 | X | X | X | 3333 * BCM5704 | 1 | X | 1 | X | 3334 * BCM5717 | 1 | 8 | 2 | 9 | 3335 * BCM5719 | 1 | 8 | 2 | 9 | 3336 * BCM5720 | 1 | 8 | 2 | 9 | 3337 * 3338 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3339 * ---------+-------+-------+-------+-------+ 3340 * BCM57XX | X | X | X | X | 3341 * BCM5704 | X | X | X | X | 3342 * BCM5717 | X | X | X | X | 3343 * BCM5719 | 3 | 10 | 4 | 11 | 3344 * BCM5720 | X | X | X | X | 3345 * 3346 * Other addresses may respond but they are not 3347 * IEEE compliant PHYs and should be ignored. 3348 */ 3349 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3350 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3351 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3352 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3353 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3354 BGE_SGDIGSTS_IS_SERDES) 3355 sc->bge_phy_addr = sc->bge_func_addr + 8; 3356 else 3357 sc->bge_phy_addr = sc->bge_func_addr + 1; 3358 } else { 3359 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3360 BGE_CPMU_PHY_STRAP_IS_SERDES) 3361 sc->bge_phy_addr = sc->bge_func_addr + 8; 3362 else 3363 sc->bge_phy_addr = sc->bge_func_addr + 1; 3364 } 3365 } 3366 3367 if (bge_has_eaddr(sc)) 3368 sc->bge_flags |= BGE_FLAG_EADDR; 3369 3370 /* Save chipset family. */ 3371 switch (sc->bge_asicrev) { 3372 case BGE_ASICREV_BCM5762: 3373 case BGE_ASICREV_BCM57765: 3374 case BGE_ASICREV_BCM57766: 3375 sc->bge_flags |= BGE_FLAG_57765_PLUS; 3376 /* FALLTHROUGH */ 3377 case BGE_ASICREV_BCM5717: 3378 case BGE_ASICREV_BCM5719: 3379 case BGE_ASICREV_BCM5720: 3380 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3381 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3382 BGE_FLAG_JUMBO_FRAME; 3383 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3384 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3385 /* 3386 * Enable work around for DMA engine miscalculation 3387 * of TXMBUF available space. 3388 */ 3389 sc->bge_flags |= BGE_FLAG_RDMA_BUG; 3390 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3391 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3392 /* Jumbo frame on BCM5719 A0 does not work. */ 3393 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3394 } 3395 } 3396 break; 3397 case BGE_ASICREV_BCM5755: 3398 case BGE_ASICREV_BCM5761: 3399 case BGE_ASICREV_BCM5784: 3400 case BGE_ASICREV_BCM5785: 3401 case BGE_ASICREV_BCM5787: 3402 case BGE_ASICREV_BCM57780: 3403 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3404 BGE_FLAG_5705_PLUS; 3405 break; 3406 case BGE_ASICREV_BCM5700: 3407 case BGE_ASICREV_BCM5701: 3408 case BGE_ASICREV_BCM5703: 3409 case BGE_ASICREV_BCM5704: 3410 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3411 break; 3412 case BGE_ASICREV_BCM5714_A0: 3413 case BGE_ASICREV_BCM5780: 3414 case BGE_ASICREV_BCM5714: 3415 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3416 /* FALLTHROUGH */ 3417 case BGE_ASICREV_BCM5750: 3418 case BGE_ASICREV_BCM5752: 3419 case BGE_ASICREV_BCM5906: 3420 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3421 /* FALLTHROUGH */ 3422 case BGE_ASICREV_BCM5705: 3423 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3424 break; 3425 } 3426 3427 /* Identify chips with APE processor. */ 3428 switch (sc->bge_asicrev) { 3429 case BGE_ASICREV_BCM5717: 3430 case BGE_ASICREV_BCM5719: 3431 case BGE_ASICREV_BCM5720: 3432 case BGE_ASICREV_BCM5761: 3433 case BGE_ASICREV_BCM5762: 3434 sc->bge_flags |= BGE_FLAG_APE; 3435 break; 3436 } 3437 3438 /* Chips with APE need BAR2 access for APE registers/memory. */ 3439 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3440 rid = PCIR_BAR(2); 3441 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3442 RF_ACTIVE); 3443 if (sc->bge_res2 == NULL) { 3444 device_printf (sc->bge_dev, 3445 "couldn't map BAR2 memory\n"); 3446 error = ENXIO; 3447 goto fail; 3448 } 3449 3450 /* Enable APE register/memory access by host driver. */ 3451 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3452 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3453 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3454 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3455 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3456 3457 bge_ape_lock_init(sc); 3458 bge_ape_read_fw_ver(sc); 3459 } 3460 3461 /* Add SYSCTLs, requires the chipset family to be set. */ 3462 bge_add_sysctls(sc); 3463 3464 /* Identify the chips that use an CPMU. */ 3465 if (BGE_IS_5717_PLUS(sc) || 3466 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3467 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3468 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3469 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3470 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3471 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3472 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3473 else 3474 sc->bge_mi_mode = BGE_MIMODE_BASE; 3475 /* Enable auto polling for BCM570[0-5]. */ 3476 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3477 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3478 3479 /* 3480 * All Broadcom controllers have 4GB boundary DMA bug. 3481 * Whenever an address crosses a multiple of the 4GB boundary 3482 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3483 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3484 * state machine will lockup and cause the device to hang. 3485 */ 3486 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3487 3488 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3489 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3490 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3491 3492 /* 3493 * BCM5719 cannot handle DMA requests for DMA segments that 3494 * have larger than 4KB in size. However the maximum DMA 3495 * segment size created in DMA tag is 4KB for TSO, so we 3496 * wouldn't encounter the issue here. 3497 */ 3498 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3499 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3500 3501 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3502 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3503 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3504 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3505 sc->bge_flags |= BGE_FLAG_5788; 3506 } 3507 3508 capmask = BMSR_DEFCAPMASK; 3509 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3510 (misccfg == 0x4000 || misccfg == 0x8000)) || 3511 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3512 pci_get_vendor(dev) == BCOM_VENDORID && 3513 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3514 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3515 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3516 (pci_get_vendor(dev) == BCOM_VENDORID && 3517 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3518 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3519 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3520 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3521 pci_get_device(dev) == BCOM_DEVICEID_BCM57791 || 3522 pci_get_device(dev) == BCOM_DEVICEID_BCM57795 || 3523 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3524 /* These chips are 10/100 only. */ 3525 capmask &= ~BMSR_EXTSTAT; 3526 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3527 } 3528 3529 /* 3530 * Some controllers seem to require a special firmware to use 3531 * TSO. But the firmware is not available to FreeBSD and Linux 3532 * claims that the TSO performed by the firmware is slower than 3533 * hardware based TSO. Moreover the firmware based TSO has one 3534 * known bug which can't handle TSO if Ethernet header + IP/TCP 3535 * header is greater than 80 bytes. A workaround for the TSO 3536 * bug exist but it seems it's too expensive than not using 3537 * TSO at all. Some hardware also have the TSO bug so limit 3538 * the TSO to the controllers that are not affected TSO issues 3539 * (e.g. 5755 or higher). 3540 */ 3541 if (BGE_IS_5717_PLUS(sc)) { 3542 /* BCM5717 requires different TSO configuration. */ 3543 sc->bge_flags |= BGE_FLAG_TSO3; 3544 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3545 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3546 /* TSO on BCM5719 A0 does not work. */ 3547 sc->bge_flags &= ~BGE_FLAG_TSO3; 3548 } 3549 } else if (BGE_IS_5755_PLUS(sc)) { 3550 /* 3551 * BCM5754 and BCM5787 shares the same ASIC id so 3552 * explicit device id check is required. 3553 * Due to unknown reason TSO does not work on BCM5755M. 3554 */ 3555 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3556 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3557 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3558 sc->bge_flags |= BGE_FLAG_TSO; 3559 } 3560 3561 /* 3562 * Check if this is a PCI-X or PCI Express device. 3563 */ 3564 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3565 /* 3566 * Found a PCI Express capabilities register, this 3567 * must be a PCI Express device. 3568 */ 3569 sc->bge_flags |= BGE_FLAG_PCIE; 3570 sc->bge_expcap = reg; 3571 /* Extract supported maximum payload size. */ 3572 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3573 PCIER_DEVICE_CAP, 2); 3574 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3575 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3576 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3577 sc->bge_expmrq = 2048; 3578 else 3579 sc->bge_expmrq = 4096; 3580 pci_set_max_read_req(dev, sc->bge_expmrq); 3581 } else { 3582 /* 3583 * Check if the device is in PCI-X Mode. 3584 * (This bit is not valid on PCI Express controllers.) 3585 */ 3586 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3587 sc->bge_pcixcap = reg; 3588 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3589 BGE_PCISTATE_PCI_BUSMODE) == 0) 3590 sc->bge_flags |= BGE_FLAG_PCIX; 3591 } 3592 3593 /* 3594 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3595 * not actually a MAC controller bug but an issue with the embedded 3596 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3597 */ 3598 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3599 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3600 /* 3601 * Some PCI-X bridges are known to trigger write reordering to 3602 * the mailbox registers. Typical phenomena is watchdog timeouts 3603 * caused by out-of-order TX completions. Enable workaround for 3604 * PCI-X devices that live behind these bridges. 3605 * Note, PCI-X controllers can run in PCI mode so we can't use 3606 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3607 */ 3608 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3609 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3610 /* 3611 * Allocate the interrupt, using MSI if possible. These devices 3612 * support 8 MSI messages, but only the first one is used in 3613 * normal operation. 3614 */ 3615 rid = 0; 3616 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3617 sc->bge_msicap = reg; 3618 reg = 1; 3619 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) { 3620 rid = 1; 3621 sc->bge_flags |= BGE_FLAG_MSI; 3622 } 3623 } 3624 3625 /* 3626 * All controllers except BCM5700 supports tagged status but 3627 * we use tagged status only for MSI case on BCM5717. Otherwise 3628 * MSI on BCM5717 does not work. 3629 */ 3630 #ifndef DEVICE_POLLING 3631 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3632 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3633 #endif 3634 3635 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3636 RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); 3637 3638 if (sc->bge_irq == NULL) { 3639 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3640 error = ENXIO; 3641 goto fail; 3642 } 3643 3644 bge_devinfo(sc); 3645 3646 sc->bge_asf_mode = 0; 3647 /* No ASF if APE present. */ 3648 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3649 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3650 BGE_SRAM_DATA_SIG_MAGIC)) { 3651 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3652 BGE_HWCFG_ASF) { 3653 sc->bge_asf_mode |= ASF_ENABLE; 3654 sc->bge_asf_mode |= ASF_STACKUP; 3655 if (BGE_IS_575X_PLUS(sc)) 3656 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3657 } 3658 } 3659 } 3660 3661 bge_stop_fw(sc); 3662 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3663 if (bge_reset(sc)) { 3664 device_printf(sc->bge_dev, "chip reset failed\n"); 3665 error = ENXIO; 3666 goto fail; 3667 } 3668 3669 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3670 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3671 3672 if (bge_chipinit(sc)) { 3673 device_printf(sc->bge_dev, "chip initialization failed\n"); 3674 error = ENXIO; 3675 goto fail; 3676 } 3677 3678 error = bge_get_eaddr(sc, eaddr); 3679 if (error) { 3680 device_printf(sc->bge_dev, 3681 "failed to read station address\n"); 3682 error = ENXIO; 3683 goto fail; 3684 } 3685 3686 /* 5705 limits RX return ring to 512 entries. */ 3687 if (BGE_IS_5717_PLUS(sc)) 3688 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3689 else if (BGE_IS_5705_PLUS(sc)) 3690 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3691 else 3692 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3693 3694 if (bge_dma_alloc(sc)) { 3695 device_printf(sc->bge_dev, 3696 "failed to allocate DMA resources\n"); 3697 error = ENXIO; 3698 goto fail; 3699 } 3700 3701 /* Set default tuneable values. */ 3702 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3703 sc->bge_rx_coal_ticks = 150; 3704 sc->bge_tx_coal_ticks = 150; 3705 sc->bge_rx_max_coal_bds = 10; 3706 sc->bge_tx_max_coal_bds = 10; 3707 3708 /* Initialize checksum features to use. */ 3709 sc->bge_csum_features = BGE_CSUM_FEATURES; 3710 if (sc->bge_forced_udpcsum != 0) 3711 sc->bge_csum_features |= CSUM_UDP; 3712 3713 /* Set up ifnet structure */ 3714 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3715 if_setsoftc(ifp, sc); 3716 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3717 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 3718 if_setioctlfn(ifp, bge_ioctl); 3719 if_setstartfn(ifp, bge_start); 3720 if_setinitfn(ifp, bge_init); 3721 if_setgetcounterfn(ifp, bge_get_counter); 3722 if_setsendqlen(ifp, BGE_TX_RING_CNT - 1); 3723 if_setsendqready(ifp); 3724 if_sethwassist(ifp, sc->bge_csum_features); 3725 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3726 IFCAP_VLAN_MTU); 3727 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3728 if_sethwassistbits(ifp, CSUM_TSO, 0); 3729 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0); 3730 } 3731 #ifdef IFCAP_VLAN_HWCSUM 3732 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 3733 #endif 3734 if_setcapenable(ifp, if_getcapabilities(ifp)); 3735 #ifdef DEVICE_POLLING 3736 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 3737 #endif 3738 3739 /* 3740 * 5700 B0 chips do not support checksumming correctly due 3741 * to hardware bugs. 3742 */ 3743 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3744 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM); 3745 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM); 3746 if_sethwassist(ifp, 0); 3747 } 3748 3749 /* 3750 * Figure out what sort of media we have by checking the 3751 * hardware config word in the first 32k of NIC internal memory, 3752 * or fall back to examining the EEPROM if necessary. 3753 * Note: on some BCM5700 cards, this value appears to be unset. 3754 * If that's the case, we have to rely on identifying the NIC 3755 * by its PCI subsystem ID, as we do below for the SysKonnect 3756 * SK-9D41. 3757 */ 3758 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3759 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3760 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3761 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3762 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3763 sizeof(hwcfg))) { 3764 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3765 error = ENXIO; 3766 goto fail; 3767 } 3768 hwcfg = ntohl(hwcfg); 3769 } 3770 3771 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3772 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3773 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3774 if (BGE_IS_5705_PLUS(sc)) { 3775 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3776 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3777 } else 3778 sc->bge_flags |= BGE_FLAG_TBI; 3779 } 3780 3781 /* Set various PHY bug flags. */ 3782 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3783 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3784 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3785 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3786 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3787 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3788 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3789 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3790 if (pci_get_subvendor(dev) == DELL_VENDORID) 3791 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3792 if ((BGE_IS_5705_PLUS(sc)) && 3793 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3794 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3795 sc->bge_asicrev != BGE_ASICREV_BCM57780 && 3796 !BGE_IS_5717_PLUS(sc)) { 3797 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3798 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3799 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3800 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3801 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3802 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3803 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3804 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3805 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3806 } else 3807 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3808 } 3809 3810 /* 3811 * Don't enable Ethernet@WireSpeed for the 5700 or the 3812 * 5705 A0 and A1 chips. 3813 */ 3814 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3815 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3816 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3817 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3818 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3819 3820 if (sc->bge_flags & BGE_FLAG_TBI) { 3821 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3822 bge_ifmedia_sts); 3823 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3824 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3825 0, NULL); 3826 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3827 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3828 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3829 } else { 3830 /* 3831 * Do transceiver setup and tell the firmware the 3832 * driver is down so we can try to get access the 3833 * probe if ASF is running. Retry a couple of times 3834 * if we get a conflict with the ASF firmware accessing 3835 * the PHY. 3836 */ 3837 trys = 0; 3838 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3839 again: 3840 bge_asf_driver_up(sc); 3841 3842 error = mii_attach(dev, &sc->bge_miibus, ifp, 3843 (ifm_change_cb_t)bge_ifmedia_upd, 3844 (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 3845 MII_OFFSET_ANY, MIIF_DOPAUSE); 3846 if (error != 0) { 3847 if (trys++ < 4) { 3848 device_printf(sc->bge_dev, "Try again\n"); 3849 bge_miibus_writereg(sc->bge_dev, 3850 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3851 goto again; 3852 } 3853 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3854 goto fail; 3855 } 3856 3857 /* 3858 * Now tell the firmware we are going up after probing the PHY 3859 */ 3860 if (sc->bge_asf_mode & ASF_STACKUP) 3861 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3862 } 3863 3864 /* 3865 * When using the BCM5701 in PCI-X mode, data corruption has 3866 * been observed in the first few bytes of some received packets. 3867 * Aligning the packet buffer in memory eliminates the corruption. 3868 * Unfortunately, this misaligns the packet payloads. On platforms 3869 * which do not support unaligned accesses, we will realign the 3870 * payloads by copying the received packets. 3871 */ 3872 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3873 sc->bge_flags & BGE_FLAG_PCIX) 3874 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3875 3876 /* 3877 * Call MI attach routine. 3878 */ 3879 ether_ifattach(ifp, eaddr); 3880 3881 /* Tell upper layer we support long frames. */ 3882 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 3883 3884 /* 3885 * Hookup IRQ last. 3886 */ 3887 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3888 /* Take advantage of single-shot MSI. */ 3889 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3890 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3891 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3892 taskqueue_thread_enqueue, &sc->bge_tq); 3893 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, 3894 "%s taskq", device_get_nameunit(sc->bge_dev)); 3895 if (error != 0) { 3896 device_printf(dev, "could not start threads.\n"); 3897 ether_ifdetach(ifp); 3898 goto fail; 3899 } 3900 error = bus_setup_intr(dev, sc->bge_irq, 3901 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3902 &sc->bge_intrhand); 3903 } else 3904 error = bus_setup_intr(dev, sc->bge_irq, 3905 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3906 &sc->bge_intrhand); 3907 3908 if (error) { 3909 ether_ifdetach(ifp); 3910 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3911 goto fail; 3912 } 3913 3914 /* Attach driver debugnet methods. */ 3915 DEBUGNET_SET(ifp, bge); 3916 3917 fail: 3918 if (error) 3919 bge_detach(dev); 3920 return (error); 3921 } 3922 3923 static int 3924 bge_detach(device_t dev) 3925 { 3926 struct bge_softc *sc; 3927 if_t ifp; 3928 3929 sc = device_get_softc(dev); 3930 ifp = sc->bge_ifp; 3931 3932 #ifdef DEVICE_POLLING 3933 if (if_getcapenable(ifp) & IFCAP_POLLING) 3934 ether_poll_deregister(ifp); 3935 #endif 3936 3937 if (device_is_attached(dev)) { 3938 ether_ifdetach(ifp); 3939 BGE_LOCK(sc); 3940 bge_stop(sc); 3941 BGE_UNLOCK(sc); 3942 callout_drain(&sc->bge_stat_ch); 3943 } 3944 3945 if (sc->bge_tq) 3946 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3947 3948 if (sc->bge_flags & BGE_FLAG_TBI) 3949 ifmedia_removeall(&sc->bge_ifmedia); 3950 else if (sc->bge_miibus != NULL) { 3951 bus_generic_detach(dev); 3952 device_delete_child(dev, sc->bge_miibus); 3953 } 3954 3955 bge_release_resources(sc); 3956 3957 return (0); 3958 } 3959 3960 static void 3961 bge_release_resources(struct bge_softc *sc) 3962 { 3963 device_t dev; 3964 3965 dev = sc->bge_dev; 3966 3967 if (sc->bge_tq != NULL) 3968 taskqueue_free(sc->bge_tq); 3969 3970 if (sc->bge_intrhand != NULL) 3971 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3972 3973 if (sc->bge_irq != NULL) { 3974 bus_release_resource(dev, SYS_RES_IRQ, 3975 rman_get_rid(sc->bge_irq), sc->bge_irq); 3976 pci_release_msi(dev); 3977 } 3978 3979 if (sc->bge_res != NULL) 3980 bus_release_resource(dev, SYS_RES_MEMORY, 3981 rman_get_rid(sc->bge_res), sc->bge_res); 3982 3983 if (sc->bge_res2 != NULL) 3984 bus_release_resource(dev, SYS_RES_MEMORY, 3985 rman_get_rid(sc->bge_res2), sc->bge_res2); 3986 3987 if (sc->bge_ifp != NULL) 3988 if_free(sc->bge_ifp); 3989 3990 bge_dma_free(sc); 3991 3992 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3993 BGE_LOCK_DESTROY(sc); 3994 } 3995 3996 static int 3997 bge_reset(struct bge_softc *sc) 3998 { 3999 device_t dev; 4000 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 4001 void (*write_op)(struct bge_softc *, int, int); 4002 uint16_t devctl; 4003 int i; 4004 4005 dev = sc->bge_dev; 4006 4007 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4008 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4009 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4010 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4011 4012 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4013 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 4014 if (sc->bge_flags & BGE_FLAG_PCIE) 4015 write_op = bge_writemem_direct; 4016 else 4017 write_op = bge_writemem_ind; 4018 } else 4019 write_op = bge_writereg_ind; 4020 4021 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 4022 sc->bge_asicrev != BGE_ASICREV_BCM5701) { 4023 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4024 for (i = 0; i < 8000; i++) { 4025 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4026 BGE_NVRAMSWARB_GNT1) 4027 break; 4028 DELAY(20); 4029 } 4030 if (i == 8000) { 4031 if (bootverbose) 4032 device_printf(dev, "NVRAM lock timedout!\n"); 4033 } 4034 } 4035 /* Take APE lock when performing reset. */ 4036 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4037 4038 /* Save some important PCI state. */ 4039 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 4040 command = pci_read_config(dev, BGE_PCI_CMD, 4); 4041 4042 pci_write_config(dev, BGE_PCI_MISC_CTL, 4043 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4044 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4045 4046 /* Disable fastboot on controllers that support it. */ 4047 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 4048 BGE_IS_5755_PLUS(sc)) { 4049 if (bootverbose) 4050 device_printf(dev, "Disabling fastboot\n"); 4051 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 4052 } 4053 4054 /* 4055 * Write the magic number to SRAM at offset 0xB50. 4056 * When firmware finishes its initialization it will 4057 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 4058 */ 4059 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4060 4061 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4062 4063 /* XXX: Broadcom Linux driver. */ 4064 if (sc->bge_flags & BGE_FLAG_PCIE) { 4065 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 4066 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4067 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4068 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4069 } 4070 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4071 /* Prevent PCIE link training during global reset */ 4072 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4073 reset |= 1 << 29; 4074 } 4075 } 4076 4077 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4078 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4079 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4080 val | BGE_VCPU_STATUS_DRV_RESET); 4081 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4082 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4083 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4084 } 4085 4086 /* 4087 * Set GPHY Power Down Override to leave GPHY 4088 * powered up in D0 uninitialized. 4089 */ 4090 if (BGE_IS_5705_PLUS(sc) && 4091 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4092 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4093 4094 /* Issue global reset */ 4095 write_op(sc, BGE_MISC_CFG, reset); 4096 4097 if (sc->bge_flags & BGE_FLAG_PCIE) 4098 DELAY(100 * 1000); 4099 else 4100 DELAY(1000); 4101 4102 /* XXX: Broadcom Linux driver. */ 4103 if (sc->bge_flags & BGE_FLAG_PCIE) { 4104 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4105 DELAY(500000); /* wait for link training to complete */ 4106 val = pci_read_config(dev, 0xC4, 4); 4107 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4108 } 4109 devctl = pci_read_config(dev, 4110 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4111 /* Clear enable no snoop and disable relaxed ordering. */ 4112 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4113 PCIEM_CTL_NOSNOOP_ENABLE); 4114 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4115 devctl, 2); 4116 pci_set_max_read_req(dev, sc->bge_expmrq); 4117 /* Clear error status. */ 4118 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4119 PCIEM_STA_CORRECTABLE_ERROR | 4120 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4121 PCIEM_STA_UNSUPPORTED_REQ, 2); 4122 } 4123 4124 /* Reset some of the PCI state that got zapped by reset. */ 4125 pci_write_config(dev, BGE_PCI_MISC_CTL, 4126 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4127 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4128 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4129 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4130 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4131 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4132 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4133 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4134 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4135 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4136 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4137 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4138 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4139 /* 4140 * Disable PCI-X relaxed ordering to ensure status block update 4141 * comes first then packet buffer DMA. Otherwise driver may 4142 * read stale status block. 4143 */ 4144 if (sc->bge_flags & BGE_FLAG_PCIX) { 4145 devctl = pci_read_config(dev, 4146 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4147 devctl &= ~PCIXM_COMMAND_ERO; 4148 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4149 devctl &= ~PCIXM_COMMAND_MAX_READ; 4150 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4151 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4152 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4153 PCIXM_COMMAND_MAX_READ); 4154 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4155 } 4156 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4157 devctl, 2); 4158 } 4159 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4160 if (BGE_IS_5714_FAMILY(sc)) { 4161 /* This chip disables MSI on reset. */ 4162 if (sc->bge_flags & BGE_FLAG_MSI) { 4163 val = pci_read_config(dev, 4164 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4165 pci_write_config(dev, 4166 sc->bge_msicap + PCIR_MSI_CTRL, 4167 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4168 val = CSR_READ_4(sc, BGE_MSI_MODE); 4169 CSR_WRITE_4(sc, BGE_MSI_MODE, 4170 val | BGE_MSIMODE_ENABLE); 4171 } 4172 val = CSR_READ_4(sc, BGE_MARB_MODE); 4173 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4174 } else 4175 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4176 4177 /* Fix up byte swapping. */ 4178 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4179 4180 val = CSR_READ_4(sc, BGE_MAC_MODE); 4181 val = (val & ~mac_mode_mask) | mac_mode; 4182 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4183 DELAY(40); 4184 4185 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4186 4187 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4188 for (i = 0; i < BGE_TIMEOUT; i++) { 4189 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4190 if (val & BGE_VCPU_STATUS_INIT_DONE) 4191 break; 4192 DELAY(100); 4193 } 4194 if (i == BGE_TIMEOUT) { 4195 device_printf(dev, "reset timed out\n"); 4196 return (1); 4197 } 4198 } else { 4199 /* 4200 * Poll until we see the 1's complement of the magic number. 4201 * This indicates that the firmware initialization is complete. 4202 * We expect this to fail if no chip containing the Ethernet 4203 * address is fitted though. 4204 */ 4205 for (i = 0; i < BGE_TIMEOUT; i++) { 4206 DELAY(10); 4207 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4208 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4209 break; 4210 } 4211 4212 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4213 device_printf(dev, 4214 "firmware handshake timed out, found 0x%08x\n", 4215 val); 4216 /* BCM57765 A0 needs additional time before accessing. */ 4217 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4218 DELAY(10 * 1000); /* XXX */ 4219 } 4220 4221 /* 4222 * The 5704 in TBI mode apparently needs some special 4223 * adjustment to insure the SERDES drive level is set 4224 * to 1.2V. 4225 */ 4226 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4227 sc->bge_flags & BGE_FLAG_TBI) { 4228 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4229 val = (val & ~0xFFF) | 0x880; 4230 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4231 } 4232 4233 /* XXX: Broadcom Linux driver. */ 4234 if (sc->bge_flags & BGE_FLAG_PCIE && 4235 !BGE_IS_5717_PLUS(sc) && 4236 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4237 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4238 /* Enable Data FIFO protection. */ 4239 val = CSR_READ_4(sc, 0x7C00); 4240 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4241 } 4242 4243 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4244 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4245 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4246 4247 return (0); 4248 } 4249 4250 static __inline void 4251 bge_rxreuse_std(struct bge_softc *sc, int i) 4252 { 4253 struct bge_rx_bd *r; 4254 4255 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4256 r->bge_flags = BGE_RXBDFLAG_END; 4257 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4258 r->bge_idx = i; 4259 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4260 } 4261 4262 static __inline void 4263 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4264 { 4265 struct bge_extrx_bd *r; 4266 4267 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4268 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4269 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4270 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4271 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4272 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4273 r->bge_idx = i; 4274 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4275 } 4276 4277 /* 4278 * Frame reception handling. This is called if there's a frame 4279 * on the receive return list. 4280 * 4281 * Note: we have to be able to handle two possibilities here: 4282 * 1) the frame is from the jumbo receive ring 4283 * 2) the frame is from the standard receive ring 4284 */ 4285 4286 static int 4287 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4288 { 4289 if_t ifp; 4290 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4291 uint16_t rx_cons; 4292 4293 rx_cons = sc->bge_rx_saved_considx; 4294 4295 /* Nothing to do. */ 4296 if (rx_cons == rx_prod) 4297 return (rx_npkts); 4298 4299 ifp = sc->bge_ifp; 4300 4301 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4302 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4303 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4304 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4305 if (BGE_IS_JUMBO_CAPABLE(sc) && 4306 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 4307 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) 4308 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4309 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4310 4311 while (rx_cons != rx_prod) { 4312 struct bge_rx_bd *cur_rx; 4313 uint32_t rxidx; 4314 struct mbuf *m = NULL; 4315 uint16_t vlan_tag = 0; 4316 int have_tag = 0; 4317 4318 #ifdef DEVICE_POLLING 4319 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4320 if (sc->rxcycles <= 0) 4321 break; 4322 sc->rxcycles--; 4323 } 4324 #endif 4325 4326 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4327 4328 rxidx = cur_rx->bge_idx; 4329 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4330 4331 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 4332 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4333 have_tag = 1; 4334 vlan_tag = cur_rx->bge_vlan_tag; 4335 } 4336 4337 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4338 jumbocnt++; 4339 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4340 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4341 bge_rxreuse_jumbo(sc, rxidx); 4342 continue; 4343 } 4344 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4345 bge_rxreuse_jumbo(sc, rxidx); 4346 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4347 continue; 4348 } 4349 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4350 } else { 4351 stdcnt++; 4352 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4353 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4354 bge_rxreuse_std(sc, rxidx); 4355 continue; 4356 } 4357 if (bge_newbuf_std(sc, rxidx) != 0) { 4358 bge_rxreuse_std(sc, rxidx); 4359 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4360 continue; 4361 } 4362 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4363 } 4364 4365 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 4366 #ifndef __NO_STRICT_ALIGNMENT 4367 /* 4368 * For architectures with strict alignment we must make sure 4369 * the payload is aligned. 4370 */ 4371 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4372 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4373 cur_rx->bge_len); 4374 m->m_data += ETHER_ALIGN; 4375 } 4376 #endif 4377 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4378 m->m_pkthdr.rcvif = ifp; 4379 4380 if (if_getcapenable(ifp) & IFCAP_RXCSUM) 4381 bge_rxcsum(sc, cur_rx, m); 4382 4383 /* 4384 * If we received a packet with a vlan tag, 4385 * attach that information to the packet. 4386 */ 4387 if (have_tag) { 4388 m->m_pkthdr.ether_vtag = vlan_tag; 4389 m->m_flags |= M_VLANTAG; 4390 } 4391 4392 if (holdlck != 0) { 4393 BGE_UNLOCK(sc); 4394 if_input(ifp, m); 4395 BGE_LOCK(sc); 4396 } else 4397 if_input(ifp, m); 4398 rx_npkts++; 4399 4400 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4401 return (rx_npkts); 4402 } 4403 4404 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4405 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4406 if (stdcnt > 0) 4407 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4408 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4409 4410 if (jumbocnt > 0) 4411 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4412 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4413 4414 sc->bge_rx_saved_considx = rx_cons; 4415 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4416 if (stdcnt) 4417 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4418 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4419 if (jumbocnt) 4420 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4421 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4422 #ifdef notyet 4423 /* 4424 * This register wraps very quickly under heavy packet drops. 4425 * If you need correct statistics, you can enable this check. 4426 */ 4427 if (BGE_IS_5705_PLUS(sc)) 4428 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4429 #endif 4430 return (rx_npkts); 4431 } 4432 4433 static void 4434 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4435 { 4436 4437 if (BGE_IS_5717_PLUS(sc)) { 4438 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4439 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4440 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4441 if ((cur_rx->bge_error_flag & 4442 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4443 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4444 } 4445 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4446 m->m_pkthdr.csum_data = 4447 cur_rx->bge_tcp_udp_csum; 4448 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4449 CSUM_PSEUDO_HDR; 4450 } 4451 } 4452 } else { 4453 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4454 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4455 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4456 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4457 } 4458 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4459 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4460 m->m_pkthdr.csum_data = 4461 cur_rx->bge_tcp_udp_csum; 4462 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4463 CSUM_PSEUDO_HDR; 4464 } 4465 } 4466 } 4467 4468 static void 4469 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4470 { 4471 struct bge_tx_bd *cur_tx; 4472 if_t ifp; 4473 4474 BGE_LOCK_ASSERT(sc); 4475 4476 /* Nothing to do. */ 4477 if (sc->bge_tx_saved_considx == tx_cons) 4478 return; 4479 4480 ifp = sc->bge_ifp; 4481 4482 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4483 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4484 /* 4485 * Go through our tx ring and free mbufs for those 4486 * frames that have been sent. 4487 */ 4488 while (sc->bge_tx_saved_considx != tx_cons) { 4489 uint32_t idx; 4490 4491 idx = sc->bge_tx_saved_considx; 4492 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4493 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4494 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4495 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4496 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4497 sc->bge_cdata.bge_tx_dmamap[idx], 4498 BUS_DMASYNC_POSTWRITE); 4499 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4500 sc->bge_cdata.bge_tx_dmamap[idx]); 4501 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4502 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4503 } 4504 sc->bge_txcnt--; 4505 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4506 } 4507 4508 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 4509 if (sc->bge_txcnt == 0) 4510 sc->bge_timer = 0; 4511 } 4512 4513 #ifdef DEVICE_POLLING 4514 static int 4515 bge_poll(if_t ifp, enum poll_cmd cmd, int count) 4516 { 4517 struct bge_softc *sc = if_getsoftc(ifp); 4518 uint16_t rx_prod, tx_cons; 4519 uint32_t statusword; 4520 int rx_npkts = 0; 4521 4522 BGE_LOCK(sc); 4523 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4524 BGE_UNLOCK(sc); 4525 return (rx_npkts); 4526 } 4527 4528 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4529 sc->bge_cdata.bge_status_map, 4530 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4531 /* Fetch updates from the status block. */ 4532 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4533 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4534 4535 statusword = sc->bge_ldata.bge_status_block->bge_status; 4536 /* Clear the status so the next pass only sees the changes. */ 4537 sc->bge_ldata.bge_status_block->bge_status = 0; 4538 4539 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4540 sc->bge_cdata.bge_status_map, 4541 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4542 4543 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4544 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4545 sc->bge_link_evt++; 4546 4547 if (cmd == POLL_AND_CHECK_STATUS) 4548 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4549 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4550 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4551 bge_link_upd(sc); 4552 4553 sc->rxcycles = count; 4554 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4555 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4556 BGE_UNLOCK(sc); 4557 return (rx_npkts); 4558 } 4559 bge_txeof(sc, tx_cons); 4560 if (!if_sendq_empty(ifp)) 4561 bge_start_locked(ifp); 4562 4563 BGE_UNLOCK(sc); 4564 return (rx_npkts); 4565 } 4566 #endif /* DEVICE_POLLING */ 4567 4568 static int 4569 bge_msi_intr(void *arg) 4570 { 4571 struct bge_softc *sc; 4572 4573 sc = (struct bge_softc *)arg; 4574 /* 4575 * This interrupt is not shared and controller already 4576 * disabled further interrupt. 4577 */ 4578 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4579 return (FILTER_HANDLED); 4580 } 4581 4582 static void 4583 bge_intr_task(void *arg, int pending) 4584 { 4585 struct bge_softc *sc; 4586 if_t ifp; 4587 uint32_t status, status_tag; 4588 uint16_t rx_prod, tx_cons; 4589 4590 sc = (struct bge_softc *)arg; 4591 ifp = sc->bge_ifp; 4592 4593 BGE_LOCK(sc); 4594 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4595 BGE_UNLOCK(sc); 4596 return; 4597 } 4598 4599 /* Get updated status block. */ 4600 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4601 sc->bge_cdata.bge_status_map, 4602 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4603 4604 /* Save producer/consumer indices. */ 4605 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4606 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4607 status = sc->bge_ldata.bge_status_block->bge_status; 4608 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4609 /* Dirty the status flag. */ 4610 sc->bge_ldata.bge_status_block->bge_status = 0; 4611 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4612 sc->bge_cdata.bge_status_map, 4613 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4614 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4615 status_tag = 0; 4616 4617 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4618 bge_link_upd(sc); 4619 4620 /* Let controller work. */ 4621 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4622 4623 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4624 sc->bge_rx_saved_considx != rx_prod) { 4625 /* Check RX return ring producer/consumer. */ 4626 BGE_UNLOCK(sc); 4627 bge_rxeof(sc, rx_prod, 0); 4628 BGE_LOCK(sc); 4629 } 4630 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4631 /* Check TX ring producer/consumer. */ 4632 bge_txeof(sc, tx_cons); 4633 if (!if_sendq_empty(ifp)) 4634 bge_start_locked(ifp); 4635 } 4636 BGE_UNLOCK(sc); 4637 } 4638 4639 static void 4640 bge_intr(void *xsc) 4641 { 4642 struct bge_softc *sc; 4643 if_t ifp; 4644 uint32_t statusword; 4645 uint16_t rx_prod, tx_cons; 4646 4647 sc = xsc; 4648 4649 BGE_LOCK(sc); 4650 4651 ifp = sc->bge_ifp; 4652 4653 #ifdef DEVICE_POLLING 4654 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4655 BGE_UNLOCK(sc); 4656 return; 4657 } 4658 #endif 4659 4660 /* 4661 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4662 * disable interrupts by writing nonzero like we used to, since with 4663 * our current organization this just gives complications and 4664 * pessimizations for re-enabling interrupts. We used to have races 4665 * instead of the necessary complications. Disabling interrupts 4666 * would just reduce the chance of a status update while we are 4667 * running (by switching to the interrupt-mode coalescence 4668 * parameters), but this chance is already very low so it is more 4669 * efficient to get another interrupt than prevent it. 4670 * 4671 * We do the ack first to ensure another interrupt if there is a 4672 * status update after the ack. We don't check for the status 4673 * changing later because it is more efficient to get another 4674 * interrupt than prevent it, not quite as above (not checking is 4675 * a smaller optimization than not toggling the interrupt enable, 4676 * since checking doesn't involve PCI accesses and toggling require 4677 * the status check). So toggling would probably be a pessimization 4678 * even with MSI. It would only be needed for using a task queue. 4679 */ 4680 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4681 4682 /* 4683 * Do the mandatory PCI flush as well as get the link status. 4684 */ 4685 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4686 4687 /* Make sure the descriptor ring indexes are coherent. */ 4688 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4689 sc->bge_cdata.bge_status_map, 4690 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4691 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4692 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4693 sc->bge_ldata.bge_status_block->bge_status = 0; 4694 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4695 sc->bge_cdata.bge_status_map, 4696 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4697 4698 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4699 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4700 statusword || sc->bge_link_evt) 4701 bge_link_upd(sc); 4702 4703 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4704 /* Check RX return ring producer/consumer. */ 4705 bge_rxeof(sc, rx_prod, 1); 4706 } 4707 4708 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4709 /* Check TX ring producer/consumer. */ 4710 bge_txeof(sc, tx_cons); 4711 } 4712 4713 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4714 !if_sendq_empty(ifp)) 4715 bge_start_locked(ifp); 4716 4717 BGE_UNLOCK(sc); 4718 } 4719 4720 static void 4721 bge_asf_driver_up(struct bge_softc *sc) 4722 { 4723 if (sc->bge_asf_mode & ASF_STACKUP) { 4724 /* Send ASF heartbeat aprox. every 2s */ 4725 if (sc->bge_asf_count) 4726 sc->bge_asf_count --; 4727 else { 4728 sc->bge_asf_count = 2; 4729 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4730 BGE_FW_CMD_DRV_ALIVE); 4731 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4732 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4733 BGE_FW_HB_TIMEOUT_SEC); 4734 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4735 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4736 BGE_RX_CPU_DRV_EVENT); 4737 } 4738 } 4739 } 4740 4741 static void 4742 bge_tick(void *xsc) 4743 { 4744 struct bge_softc *sc = xsc; 4745 struct mii_data *mii = NULL; 4746 4747 BGE_LOCK_ASSERT(sc); 4748 4749 /* Synchronize with possible callout reset/stop. */ 4750 if (callout_pending(&sc->bge_stat_ch) || 4751 !callout_active(&sc->bge_stat_ch)) 4752 return; 4753 4754 if (BGE_IS_5705_PLUS(sc)) 4755 bge_stats_update_regs(sc); 4756 else 4757 bge_stats_update(sc); 4758 4759 /* XXX Add APE heartbeat check here? */ 4760 4761 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4762 mii = device_get_softc(sc->bge_miibus); 4763 /* 4764 * Do not touch PHY if we have link up. This could break 4765 * IPMI/ASF mode or produce extra input errors 4766 * (extra errors was reported for bcm5701 & bcm5704). 4767 */ 4768 if (!sc->bge_link) 4769 mii_tick(mii); 4770 } else { 4771 /* 4772 * Since in TBI mode auto-polling can't be used we should poll 4773 * link status manually. Here we register pending link event 4774 * and trigger interrupt. 4775 */ 4776 #ifdef DEVICE_POLLING 4777 /* In polling mode we poll link state in bge_poll(). */ 4778 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING)) 4779 #endif 4780 { 4781 sc->bge_link_evt++; 4782 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4783 sc->bge_flags & BGE_FLAG_5788) 4784 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4785 else 4786 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4787 } 4788 } 4789 4790 bge_asf_driver_up(sc); 4791 bge_watchdog(sc); 4792 4793 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4794 } 4795 4796 static void 4797 bge_stats_update_regs(struct bge_softc *sc) 4798 { 4799 struct bge_mac_stats *stats; 4800 uint32_t val; 4801 4802 stats = &sc->bge_mac_stats; 4803 4804 stats->ifHCOutOctets += 4805 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4806 stats->etherStatsCollisions += 4807 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4808 stats->outXonSent += 4809 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4810 stats->outXoffSent += 4811 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4812 stats->dot3StatsInternalMacTransmitErrors += 4813 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4814 stats->dot3StatsSingleCollisionFrames += 4815 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4816 stats->dot3StatsMultipleCollisionFrames += 4817 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4818 stats->dot3StatsDeferredTransmissions += 4819 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4820 stats->dot3StatsExcessiveCollisions += 4821 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4822 stats->dot3StatsLateCollisions += 4823 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4824 stats->ifHCOutUcastPkts += 4825 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4826 stats->ifHCOutMulticastPkts += 4827 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4828 stats->ifHCOutBroadcastPkts += 4829 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4830 4831 stats->ifHCInOctets += 4832 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4833 stats->etherStatsFragments += 4834 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4835 stats->ifHCInUcastPkts += 4836 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4837 stats->ifHCInMulticastPkts += 4838 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4839 stats->ifHCInBroadcastPkts += 4840 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4841 stats->dot3StatsFCSErrors += 4842 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4843 stats->dot3StatsAlignmentErrors += 4844 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4845 stats->xonPauseFramesReceived += 4846 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4847 stats->xoffPauseFramesReceived += 4848 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4849 stats->macControlFramesReceived += 4850 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4851 stats->xoffStateEntered += 4852 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4853 stats->dot3StatsFramesTooLong += 4854 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4855 stats->etherStatsJabbers += 4856 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4857 stats->etherStatsUndersizePkts += 4858 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4859 4860 stats->FramesDroppedDueToFilters += 4861 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4862 stats->DmaWriteQueueFull += 4863 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4864 stats->DmaWriteHighPriQueueFull += 4865 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4866 stats->NoMoreRxBDs += 4867 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4868 /* 4869 * XXX 4870 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4871 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4872 * includes number of unwanted multicast frames. This comes 4873 * from silicon bug and known workaround to get rough(not 4874 * exact) counter is to enable interrupt on MBUF low water 4875 * attention. This can be accomplished by setting 4876 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4877 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4878 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4879 * However that change would generate more interrupts and 4880 * there are still possibilities of losing multiple frames 4881 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4882 * Given that the workaround still would not get correct 4883 * counter I don't think it's worth to implement it. So 4884 * ignore reading the counter on controllers that have the 4885 * silicon bug. 4886 */ 4887 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4888 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4889 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4890 stats->InputDiscards += 4891 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4892 stats->InputErrors += 4893 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4894 stats->RecvThresholdHit += 4895 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4896 4897 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 4898 /* 4899 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4900 * frames, it's safe to disable workaround for DMA engine's 4901 * miscalculation of TXMBUF space. 4902 */ 4903 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts + 4904 stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) { 4905 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4906 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 4907 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4908 else 4909 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4910 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4911 sc->bge_flags &= ~BGE_FLAG_RDMA_BUG; 4912 } 4913 } 4914 } 4915 4916 static void 4917 bge_stats_clear_regs(struct bge_softc *sc) 4918 { 4919 4920 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4921 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4922 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4923 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4924 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4925 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4926 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4927 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4928 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4929 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4930 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4931 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4932 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4933 4934 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4935 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4936 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4937 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4938 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4939 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4940 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4941 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4942 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4943 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4944 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4945 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4946 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4947 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4948 4949 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4950 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4951 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4952 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4953 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4954 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4955 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4956 } 4957 4958 static void 4959 bge_stats_update(struct bge_softc *sc) 4960 { 4961 if_t ifp; 4962 bus_size_t stats; 4963 uint32_t cnt; /* current register value */ 4964 4965 ifp = sc->bge_ifp; 4966 4967 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4968 4969 #define READ_STAT(sc, stats, stat) \ 4970 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4971 4972 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4973 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions); 4974 sc->bge_tx_collisions = cnt; 4975 4976 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4977 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds); 4978 sc->bge_rx_nobds = cnt; 4979 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4980 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs); 4981 sc->bge_rx_inerrs = cnt; 4982 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4983 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards); 4984 sc->bge_rx_discards = cnt; 4985 4986 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4987 if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards); 4988 sc->bge_tx_discards = cnt; 4989 4990 #undef READ_STAT 4991 } 4992 4993 /* 4994 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4995 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4996 * but when such padded frames employ the bge IP/TCP checksum offload, 4997 * the hardware checksum assist gives incorrect results (possibly 4998 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4999 * If we pad such runts with zeros, the onboard checksum comes out correct. 5000 */ 5001 static __inline int 5002 bge_cksum_pad(struct mbuf *m) 5003 { 5004 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 5005 struct mbuf *last; 5006 5007 /* If there's only the packet-header and we can pad there, use it. */ 5008 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 5009 M_TRAILINGSPACE(m) >= padlen) { 5010 last = m; 5011 } else { 5012 /* 5013 * Walk packet chain to find last mbuf. We will either 5014 * pad there, or append a new mbuf and pad it. 5015 */ 5016 for (last = m; last->m_next != NULL; last = last->m_next); 5017 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 5018 /* Allocate new empty mbuf, pad it. Compact later. */ 5019 struct mbuf *n; 5020 5021 MGET(n, M_NOWAIT, MT_DATA); 5022 if (n == NULL) 5023 return (ENOBUFS); 5024 n->m_len = 0; 5025 last->m_next = n; 5026 last = n; 5027 } 5028 } 5029 5030 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 5031 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 5032 last->m_len += padlen; 5033 m->m_pkthdr.len += padlen; 5034 5035 return (0); 5036 } 5037 5038 static struct mbuf * 5039 bge_check_short_dma(struct mbuf *m) 5040 { 5041 struct mbuf *n; 5042 int found; 5043 5044 /* 5045 * If device receive two back-to-back send BDs with less than 5046 * or equal to 8 total bytes then the device may hang. The two 5047 * back-to-back send BDs must in the same frame for this failure 5048 * to occur. Scan mbuf chains and see whether two back-to-back 5049 * send BDs are there. If this is the case, allocate new mbuf 5050 * and copy the frame to workaround the silicon bug. 5051 */ 5052 for (n = m, found = 0; n != NULL; n = n->m_next) { 5053 if (n->m_len < 8) { 5054 found++; 5055 if (found > 1) 5056 break; 5057 continue; 5058 } 5059 found = 0; 5060 } 5061 5062 if (found > 1) { 5063 n = m_defrag(m, M_NOWAIT); 5064 if (n == NULL) 5065 m_freem(m); 5066 } else 5067 n = m; 5068 return (n); 5069 } 5070 5071 static struct mbuf * 5072 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 5073 uint16_t *flags) 5074 { 5075 struct ip *ip; 5076 struct tcphdr *tcp; 5077 struct mbuf *n; 5078 uint16_t hlen; 5079 uint32_t poff; 5080 5081 if (M_WRITABLE(m) == 0) { 5082 /* Get a writable copy. */ 5083 n = m_dup(m, M_NOWAIT); 5084 m_freem(m); 5085 if (n == NULL) 5086 return (NULL); 5087 m = n; 5088 } 5089 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5090 if (m == NULL) 5091 return (NULL); 5092 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5093 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5094 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5095 if (m == NULL) 5096 return (NULL); 5097 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5098 m = m_pullup(m, poff + (tcp->th_off << 2)); 5099 if (m == NULL) 5100 return (NULL); 5101 /* 5102 * It seems controller doesn't modify IP length and TCP pseudo 5103 * checksum. These checksum computed by upper stack should be 0. 5104 */ 5105 *mss = m->m_pkthdr.tso_segsz; 5106 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5107 ip->ip_sum = 0; 5108 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5109 /* Clear pseudo checksum computed by TCP stack. */ 5110 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5111 tcp->th_sum = 0; 5112 /* 5113 * Broadcom controllers uses different descriptor format for 5114 * TSO depending on ASIC revision. Due to TSO-capable firmware 5115 * license issue and lower performance of firmware based TSO 5116 * we only support hardware based TSO. 5117 */ 5118 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5119 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5120 if (sc->bge_flags & BGE_FLAG_TSO3) { 5121 /* 5122 * For BCM5717 and newer controllers, hardware based TSO 5123 * uses the 14 lower bits of the bge_mss field to store the 5124 * MSS and the upper 2 bits to store the lowest 2 bits of 5125 * the IP/TCP header length. The upper 6 bits of the header 5126 * length are stored in the bge_flags[14:10,4] field. Jumbo 5127 * frames are supported. 5128 */ 5129 *mss |= ((hlen & 0x3) << 14); 5130 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5131 } else { 5132 /* 5133 * For BCM5755 and newer controllers, hardware based TSO uses 5134 * the lower 11 bits to store the MSS and the upper 5 bits to 5135 * store the IP/TCP header length. Jumbo frames are not 5136 * supported. 5137 */ 5138 *mss |= (hlen << 11); 5139 } 5140 return (m); 5141 } 5142 5143 /* 5144 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5145 * pointers to descriptors. 5146 */ 5147 static int 5148 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5149 { 5150 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5151 bus_dmamap_t map; 5152 struct bge_tx_bd *d; 5153 struct mbuf *m = *m_head; 5154 uint32_t idx = *txidx; 5155 uint16_t csum_flags, mss, vlan_tag; 5156 int nsegs, i, error; 5157 5158 csum_flags = 0; 5159 mss = 0; 5160 vlan_tag = 0; 5161 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5162 m->m_next != NULL) { 5163 *m_head = bge_check_short_dma(m); 5164 if (*m_head == NULL) 5165 return (ENOBUFS); 5166 m = *m_head; 5167 } 5168 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5169 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5170 if (*m_head == NULL) 5171 return (ENOBUFS); 5172 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5173 BGE_TXBDFLAG_CPU_POST_DMA; 5174 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5175 if (m->m_pkthdr.csum_flags & CSUM_IP) 5176 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5177 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5178 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5179 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5180 (error = bge_cksum_pad(m)) != 0) { 5181 m_freem(m); 5182 *m_head = NULL; 5183 return (error); 5184 } 5185 } 5186 } 5187 5188 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5189 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5190 m->m_pkthdr.len > ETHER_MAX_LEN) 5191 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5192 if (sc->bge_forced_collapse > 0 && 5193 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5194 /* 5195 * Forcedly collapse mbuf chains to overcome hardware 5196 * limitation which only support a single outstanding 5197 * DMA read operation. 5198 */ 5199 if (sc->bge_forced_collapse == 1) 5200 m = m_defrag(m, M_NOWAIT); 5201 else 5202 m = m_collapse(m, M_NOWAIT, 5203 sc->bge_forced_collapse); 5204 if (m == NULL) 5205 m = *m_head; 5206 *m_head = m; 5207 } 5208 } 5209 5210 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5211 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5212 &nsegs, BUS_DMA_NOWAIT); 5213 if (error == EFBIG) { 5214 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW); 5215 if (m == NULL) { 5216 m_freem(*m_head); 5217 *m_head = NULL; 5218 return (ENOBUFS); 5219 } 5220 *m_head = m; 5221 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5222 m, segs, &nsegs, BUS_DMA_NOWAIT); 5223 if (error) { 5224 m_freem(m); 5225 *m_head = NULL; 5226 return (error); 5227 } 5228 } else if (error != 0) 5229 return (error); 5230 5231 /* Check if we have enough free send BDs. */ 5232 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5233 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5234 return (ENOBUFS); 5235 } 5236 5237 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5238 5239 if (m->m_flags & M_VLANTAG) { 5240 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5241 vlan_tag = m->m_pkthdr.ether_vtag; 5242 } 5243 5244 if (sc->bge_asicrev == BGE_ASICREV_BCM5762 && 5245 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5246 /* 5247 * 5725 family of devices corrupts TSO packets when TSO DMA 5248 * buffers cross into regions which are within MSS bytes of 5249 * a 4GB boundary. If we encounter the condition, drop the 5250 * packet. 5251 */ 5252 for (i = 0; ; i++) { 5253 d = &sc->bge_ldata.bge_tx_ring[idx]; 5254 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5255 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5256 d->bge_len = segs[i].ds_len; 5257 if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss < 5258 d->bge_addr.bge_addr_lo) 5259 break; 5260 d->bge_flags = csum_flags; 5261 d->bge_vlan_tag = vlan_tag; 5262 d->bge_mss = mss; 5263 if (i == nsegs - 1) 5264 break; 5265 BGE_INC(idx, BGE_TX_RING_CNT); 5266 } 5267 if (i != nsegs - 1) { 5268 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, 5269 BUS_DMASYNC_POSTWRITE); 5270 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5271 m_freem(*m_head); 5272 *m_head = NULL; 5273 return (EIO); 5274 } 5275 } else { 5276 for (i = 0; ; i++) { 5277 d = &sc->bge_ldata.bge_tx_ring[idx]; 5278 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5279 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5280 d->bge_len = segs[i].ds_len; 5281 d->bge_flags = csum_flags; 5282 d->bge_vlan_tag = vlan_tag; 5283 d->bge_mss = mss; 5284 if (i == nsegs - 1) 5285 break; 5286 BGE_INC(idx, BGE_TX_RING_CNT); 5287 } 5288 } 5289 5290 /* Mark the last segment as end of packet... */ 5291 d->bge_flags |= BGE_TXBDFLAG_END; 5292 5293 /* 5294 * Insure that the map for this transmission 5295 * is placed at the array index of the last descriptor 5296 * in this chain. 5297 */ 5298 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5299 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5300 sc->bge_cdata.bge_tx_chain[idx] = m; 5301 sc->bge_txcnt += nsegs; 5302 5303 BGE_INC(idx, BGE_TX_RING_CNT); 5304 *txidx = idx; 5305 5306 return (0); 5307 } 5308 5309 /* 5310 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5311 * to the mbuf data regions directly in the transmit descriptors. 5312 */ 5313 static void 5314 bge_start_locked(if_t ifp) 5315 { 5316 struct bge_softc *sc; 5317 struct mbuf *m_head; 5318 uint32_t prodidx; 5319 int count; 5320 5321 sc = if_getsoftc(ifp); 5322 BGE_LOCK_ASSERT(sc); 5323 5324 if (!sc->bge_link || 5325 (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5326 IFF_DRV_RUNNING) 5327 return; 5328 5329 prodidx = sc->bge_tx_prodidx; 5330 5331 for (count = 0; !if_sendq_empty(ifp);) { 5332 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5333 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5334 break; 5335 } 5336 m_head = if_dequeue(ifp); 5337 if (m_head == NULL) 5338 break; 5339 5340 /* 5341 * Pack the data into the transmit ring. If we 5342 * don't have room, set the OACTIVE flag and wait 5343 * for the NIC to drain the ring. 5344 */ 5345 if (bge_encap(sc, &m_head, &prodidx)) { 5346 if (m_head == NULL) 5347 break; 5348 if_sendq_prepend(ifp, m_head); 5349 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5350 break; 5351 } 5352 ++count; 5353 5354 /* 5355 * If there's a BPF listener, bounce a copy of this frame 5356 * to him. 5357 */ 5358 bpf_mtap_if(ifp, m_head); 5359 } 5360 5361 if (count > 0) 5362 bge_start_tx(sc, prodidx); 5363 } 5364 5365 static void 5366 bge_start_tx(struct bge_softc *sc, uint32_t prodidx) 5367 { 5368 5369 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5370 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5371 /* Transmit. */ 5372 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5373 /* 5700 b2 errata */ 5374 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5375 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5376 5377 sc->bge_tx_prodidx = prodidx; 5378 5379 /* Set a timeout in case the chip goes out to lunch. */ 5380 sc->bge_timer = BGE_TX_TIMEOUT; 5381 } 5382 5383 /* 5384 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5385 * to the mbuf data regions directly in the transmit descriptors. 5386 */ 5387 static void 5388 bge_start(if_t ifp) 5389 { 5390 struct bge_softc *sc; 5391 5392 sc = if_getsoftc(ifp); 5393 BGE_LOCK(sc); 5394 bge_start_locked(ifp); 5395 BGE_UNLOCK(sc); 5396 } 5397 5398 static void 5399 bge_init_locked(struct bge_softc *sc) 5400 { 5401 if_t ifp; 5402 uint16_t *m; 5403 uint32_t mode; 5404 5405 BGE_LOCK_ASSERT(sc); 5406 5407 ifp = sc->bge_ifp; 5408 5409 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5410 return; 5411 5412 /* Cancel pending I/O and flush buffers. */ 5413 bge_stop(sc); 5414 5415 bge_stop_fw(sc); 5416 bge_sig_pre_reset(sc, BGE_RESET_START); 5417 bge_reset(sc); 5418 bge_sig_legacy(sc, BGE_RESET_START); 5419 bge_sig_post_reset(sc, BGE_RESET_START); 5420 5421 bge_chipinit(sc); 5422 5423 /* 5424 * Init the various state machines, ring 5425 * control blocks and firmware. 5426 */ 5427 if (bge_blockinit(sc)) { 5428 device_printf(sc->bge_dev, "initialization failure\n"); 5429 return; 5430 } 5431 5432 ifp = sc->bge_ifp; 5433 5434 /* Specify MTU. */ 5435 CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) + 5436 ETHER_HDR_LEN + ETHER_CRC_LEN + 5437 (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5438 5439 /* Load our MAC address. */ 5440 m = (uint16_t *)if_getlladdr(sc->bge_ifp); 5441 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5442 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5443 5444 /* Program promiscuous mode. */ 5445 bge_setpromisc(sc); 5446 5447 /* Program multicast filter. */ 5448 bge_setmulti(sc); 5449 5450 /* Program VLAN tag stripping. */ 5451 bge_setvlan(sc); 5452 5453 /* Override UDP checksum offloading. */ 5454 if (sc->bge_forced_udpcsum == 0) 5455 sc->bge_csum_features &= ~CSUM_UDP; 5456 else 5457 sc->bge_csum_features |= CSUM_UDP; 5458 if (if_getcapabilities(ifp) & IFCAP_TXCSUM && 5459 if_getcapenable(ifp) & IFCAP_TXCSUM) { 5460 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP)); 5461 if_sethwassistbits(ifp, sc->bge_csum_features, 0); 5462 } 5463 5464 /* Init RX ring. */ 5465 if (bge_init_rx_ring_std(sc) != 0) { 5466 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5467 bge_stop(sc); 5468 return; 5469 } 5470 5471 /* 5472 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5473 * memory to insure that the chip has in fact read the first 5474 * entry of the ring. 5475 */ 5476 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5477 uint32_t v, i; 5478 for (i = 0; i < 10; i++) { 5479 DELAY(20); 5480 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5481 if (v == (MCLBYTES - ETHER_ALIGN)) 5482 break; 5483 } 5484 if (i == 10) 5485 device_printf (sc->bge_dev, 5486 "5705 A0 chip failed to load RX ring\n"); 5487 } 5488 5489 /* Init jumbo RX ring. */ 5490 if (BGE_IS_JUMBO_CAPABLE(sc) && 5491 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 5492 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { 5493 if (bge_init_rx_ring_jumbo(sc) != 0) { 5494 device_printf(sc->bge_dev, 5495 "no memory for jumbo Rx buffers.\n"); 5496 bge_stop(sc); 5497 return; 5498 } 5499 } 5500 5501 /* Init our RX return ring index. */ 5502 sc->bge_rx_saved_considx = 0; 5503 5504 /* Init our RX/TX stat counters. */ 5505 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5506 5507 /* Init TX ring. */ 5508 bge_init_tx_ring(sc); 5509 5510 /* Enable TX MAC state machine lockup fix. */ 5511 mode = CSR_READ_4(sc, BGE_TX_MODE); 5512 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5513 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5514 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 5515 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 5516 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5517 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5518 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5519 } 5520 /* Turn on transmitter. */ 5521 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5522 DELAY(100); 5523 5524 /* Turn on receiver. */ 5525 mode = CSR_READ_4(sc, BGE_RX_MODE); 5526 if (BGE_IS_5755_PLUS(sc)) 5527 mode |= BGE_RXMODE_IPV6_ENABLE; 5528 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 5529 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5530 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5531 DELAY(10); 5532 5533 /* 5534 * Set the number of good frames to receive after RX MBUF 5535 * Low Watermark has been reached. After the RX MAC receives 5536 * this number of frames, it will drop subsequent incoming 5537 * frames until the MBUF High Watermark is reached. 5538 */ 5539 if (BGE_IS_57765_PLUS(sc)) 5540 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5541 else 5542 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5543 5544 /* Clear MAC statistics. */ 5545 if (BGE_IS_5705_PLUS(sc)) 5546 bge_stats_clear_regs(sc); 5547 5548 /* Tell firmware we're alive. */ 5549 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5550 5551 #ifdef DEVICE_POLLING 5552 /* Disable interrupts if we are polling. */ 5553 if (if_getcapenable(ifp) & IFCAP_POLLING) { 5554 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5555 BGE_PCIMISCCTL_MASK_PCI_INTR); 5556 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5557 } else 5558 #endif 5559 5560 /* Enable host interrupts. */ 5561 { 5562 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5563 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5564 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5565 } 5566 5567 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 5568 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 5569 5570 bge_ifmedia_upd_locked(ifp); 5571 5572 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5573 } 5574 5575 static void 5576 bge_init(void *xsc) 5577 { 5578 struct bge_softc *sc = xsc; 5579 5580 BGE_LOCK(sc); 5581 bge_init_locked(sc); 5582 BGE_UNLOCK(sc); 5583 } 5584 5585 /* 5586 * Set media options. 5587 */ 5588 static int 5589 bge_ifmedia_upd(if_t ifp) 5590 { 5591 struct bge_softc *sc = if_getsoftc(ifp); 5592 int res; 5593 5594 BGE_LOCK(sc); 5595 res = bge_ifmedia_upd_locked(ifp); 5596 BGE_UNLOCK(sc); 5597 5598 return (res); 5599 } 5600 5601 static int 5602 bge_ifmedia_upd_locked(if_t ifp) 5603 { 5604 struct bge_softc *sc = if_getsoftc(ifp); 5605 struct mii_data *mii; 5606 struct mii_softc *miisc; 5607 struct ifmedia *ifm; 5608 5609 BGE_LOCK_ASSERT(sc); 5610 5611 ifm = &sc->bge_ifmedia; 5612 5613 /* If this is a 1000baseX NIC, enable the TBI port. */ 5614 if (sc->bge_flags & BGE_FLAG_TBI) { 5615 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5616 return (EINVAL); 5617 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5618 case IFM_AUTO: 5619 /* 5620 * The BCM5704 ASIC appears to have a special 5621 * mechanism for programming the autoneg 5622 * advertisement registers in TBI mode. 5623 */ 5624 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5625 uint32_t sgdig; 5626 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5627 if (sgdig & BGE_SGDIGSTS_DONE) { 5628 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5629 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5630 sgdig |= BGE_SGDIGCFG_AUTO | 5631 BGE_SGDIGCFG_PAUSE_CAP | 5632 BGE_SGDIGCFG_ASYM_PAUSE; 5633 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5634 sgdig | BGE_SGDIGCFG_SEND); 5635 DELAY(5); 5636 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5637 } 5638 } 5639 break; 5640 case IFM_1000_SX: 5641 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5642 BGE_CLRBIT(sc, BGE_MAC_MODE, 5643 BGE_MACMODE_HALF_DUPLEX); 5644 } else { 5645 BGE_SETBIT(sc, BGE_MAC_MODE, 5646 BGE_MACMODE_HALF_DUPLEX); 5647 } 5648 DELAY(40); 5649 break; 5650 default: 5651 return (EINVAL); 5652 } 5653 return (0); 5654 } 5655 5656 sc->bge_link_evt++; 5657 mii = device_get_softc(sc->bge_miibus); 5658 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5659 PHY_RESET(miisc); 5660 mii_mediachg(mii); 5661 5662 /* 5663 * Force an interrupt so that we will call bge_link_upd 5664 * if needed and clear any pending link state attention. 5665 * Without this we are not getting any further interrupts 5666 * for link state changes and thus will not UP the link and 5667 * not be able to send in bge_start_locked. The only 5668 * way to get things working was to receive a packet and 5669 * get an RX intr. 5670 * bge_tick should help for fiber cards and we might not 5671 * need to do this here if BGE_FLAG_TBI is set but as 5672 * we poll for fiber anyway it should not harm. 5673 */ 5674 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5675 sc->bge_flags & BGE_FLAG_5788) 5676 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5677 else 5678 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5679 5680 return (0); 5681 } 5682 5683 /* 5684 * Report current media status. 5685 */ 5686 static void 5687 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 5688 { 5689 struct bge_softc *sc = if_getsoftc(ifp); 5690 struct mii_data *mii; 5691 5692 BGE_LOCK(sc); 5693 5694 if ((if_getflags(ifp) & IFF_UP) == 0) { 5695 BGE_UNLOCK(sc); 5696 return; 5697 } 5698 if (sc->bge_flags & BGE_FLAG_TBI) { 5699 ifmr->ifm_status = IFM_AVALID; 5700 ifmr->ifm_active = IFM_ETHER; 5701 if (CSR_READ_4(sc, BGE_MAC_STS) & 5702 BGE_MACSTAT_TBI_PCS_SYNCHED) 5703 ifmr->ifm_status |= IFM_ACTIVE; 5704 else { 5705 ifmr->ifm_active |= IFM_NONE; 5706 BGE_UNLOCK(sc); 5707 return; 5708 } 5709 ifmr->ifm_active |= IFM_1000_SX; 5710 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5711 ifmr->ifm_active |= IFM_HDX; 5712 else 5713 ifmr->ifm_active |= IFM_FDX; 5714 BGE_UNLOCK(sc); 5715 return; 5716 } 5717 5718 mii = device_get_softc(sc->bge_miibus); 5719 mii_pollstat(mii); 5720 ifmr->ifm_active = mii->mii_media_active; 5721 ifmr->ifm_status = mii->mii_media_status; 5722 5723 BGE_UNLOCK(sc); 5724 } 5725 5726 static int 5727 bge_ioctl(if_t ifp, u_long command, caddr_t data) 5728 { 5729 struct bge_softc *sc = if_getsoftc(ifp); 5730 struct ifreq *ifr = (struct ifreq *) data; 5731 struct mii_data *mii; 5732 int flags, mask, error = 0; 5733 5734 switch (command) { 5735 case SIOCSIFMTU: 5736 if (BGE_IS_JUMBO_CAPABLE(sc) || 5737 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5738 if (ifr->ifr_mtu < ETHERMIN || 5739 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5740 error = EINVAL; 5741 break; 5742 } 5743 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5744 error = EINVAL; 5745 break; 5746 } 5747 BGE_LOCK(sc); 5748 if (if_getmtu(ifp) != ifr->ifr_mtu) { 5749 if_setmtu(ifp, ifr->ifr_mtu); 5750 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5751 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5752 bge_init_locked(sc); 5753 } 5754 } 5755 BGE_UNLOCK(sc); 5756 break; 5757 case SIOCSIFFLAGS: 5758 BGE_LOCK(sc); 5759 if (if_getflags(ifp) & IFF_UP) { 5760 /* 5761 * If only the state of the PROMISC flag changed, 5762 * then just use the 'set promisc mode' command 5763 * instead of reinitializing the entire NIC. Doing 5764 * a full re-init means reloading the firmware and 5765 * waiting for it to start up, which may take a 5766 * second or two. Similarly for ALLMULTI. 5767 */ 5768 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5769 flags = if_getflags(ifp) ^ sc->bge_if_flags; 5770 if (flags & IFF_PROMISC) 5771 bge_setpromisc(sc); 5772 if (flags & IFF_ALLMULTI) 5773 bge_setmulti(sc); 5774 } else 5775 bge_init_locked(sc); 5776 } else { 5777 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5778 bge_stop(sc); 5779 } 5780 } 5781 sc->bge_if_flags = if_getflags(ifp); 5782 BGE_UNLOCK(sc); 5783 error = 0; 5784 break; 5785 case SIOCADDMULTI: 5786 case SIOCDELMULTI: 5787 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5788 BGE_LOCK(sc); 5789 bge_setmulti(sc); 5790 BGE_UNLOCK(sc); 5791 error = 0; 5792 } 5793 break; 5794 case SIOCSIFMEDIA: 5795 case SIOCGIFMEDIA: 5796 if (sc->bge_flags & BGE_FLAG_TBI) { 5797 error = ifmedia_ioctl(ifp, ifr, 5798 &sc->bge_ifmedia, command); 5799 } else { 5800 mii = device_get_softc(sc->bge_miibus); 5801 error = ifmedia_ioctl(ifp, ifr, 5802 &mii->mii_media, command); 5803 } 5804 break; 5805 case SIOCSIFCAP: 5806 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 5807 #ifdef DEVICE_POLLING 5808 if (mask & IFCAP_POLLING) { 5809 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5810 error = ether_poll_register(bge_poll, ifp); 5811 if (error) 5812 return (error); 5813 BGE_LOCK(sc); 5814 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5815 BGE_PCIMISCCTL_MASK_PCI_INTR); 5816 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5817 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 5818 BGE_UNLOCK(sc); 5819 } else { 5820 error = ether_poll_deregister(ifp); 5821 /* Enable interrupt even in error case */ 5822 BGE_LOCK(sc); 5823 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5824 BGE_PCIMISCCTL_MASK_PCI_INTR); 5825 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5826 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 5827 BGE_UNLOCK(sc); 5828 } 5829 } 5830 #endif 5831 if ((mask & IFCAP_TXCSUM) != 0 && 5832 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 5833 if_togglecapenable(ifp, IFCAP_TXCSUM); 5834 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 5835 if_sethwassistbits(ifp, 5836 sc->bge_csum_features, 0); 5837 else 5838 if_sethwassistbits(ifp, 0, 5839 sc->bge_csum_features); 5840 } 5841 5842 if ((mask & IFCAP_RXCSUM) != 0 && 5843 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 5844 if_togglecapenable(ifp, IFCAP_RXCSUM); 5845 5846 if ((mask & IFCAP_TSO4) != 0 && 5847 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 5848 if_togglecapenable(ifp, IFCAP_TSO4); 5849 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 5850 if_sethwassistbits(ifp, CSUM_TSO, 0); 5851 else 5852 if_sethwassistbits(ifp, 0, CSUM_TSO); 5853 } 5854 5855 if (mask & IFCAP_VLAN_MTU) { 5856 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 5857 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5858 bge_init(sc); 5859 } 5860 5861 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5862 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 5863 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 5864 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5865 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 5866 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 5867 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 5868 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 5869 BGE_LOCK(sc); 5870 bge_setvlan(sc); 5871 BGE_UNLOCK(sc); 5872 } 5873 #ifdef VLAN_CAPABILITIES 5874 if_vlancap(ifp); 5875 #endif 5876 break; 5877 default: 5878 error = ether_ioctl(ifp, command, data); 5879 break; 5880 } 5881 5882 return (error); 5883 } 5884 5885 static void 5886 bge_watchdog(struct bge_softc *sc) 5887 { 5888 if_t ifp; 5889 uint32_t status; 5890 5891 BGE_LOCK_ASSERT(sc); 5892 5893 if (sc->bge_timer == 0 || --sc->bge_timer) 5894 return; 5895 5896 /* If pause frames are active then don't reset the hardware. */ 5897 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 5898 status = CSR_READ_4(sc, BGE_RX_STS); 5899 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 5900 /* 5901 * If link partner has us in XOFF state then wait for 5902 * the condition to clear. 5903 */ 5904 CSR_WRITE_4(sc, BGE_RX_STS, status); 5905 sc->bge_timer = BGE_TX_TIMEOUT; 5906 return; 5907 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 5908 (status & BGE_RXSTAT_RCVD_XON) != 0) { 5909 /* 5910 * If link partner has us in XOFF state then wait for 5911 * the condition to clear. 5912 */ 5913 CSR_WRITE_4(sc, BGE_RX_STS, status); 5914 sc->bge_timer = BGE_TX_TIMEOUT; 5915 return; 5916 } 5917 /* 5918 * Any other condition is unexpected and the controller 5919 * should be reset. 5920 */ 5921 } 5922 5923 ifp = sc->bge_ifp; 5924 5925 if_printf(ifp, "watchdog timeout -- resetting\n"); 5926 5927 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5928 bge_init_locked(sc); 5929 5930 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 5931 } 5932 5933 static void 5934 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5935 { 5936 int i; 5937 5938 BGE_CLRBIT(sc, reg, bit); 5939 5940 for (i = 0; i < BGE_TIMEOUT; i++) { 5941 if ((CSR_READ_4(sc, reg) & bit) == 0) 5942 return; 5943 DELAY(100); 5944 } 5945 } 5946 5947 /* 5948 * Stop the adapter and free any mbufs allocated to the 5949 * RX and TX lists. 5950 */ 5951 static void 5952 bge_stop(struct bge_softc *sc) 5953 { 5954 if_t ifp; 5955 5956 BGE_LOCK_ASSERT(sc); 5957 5958 ifp = sc->bge_ifp; 5959 5960 callout_stop(&sc->bge_stat_ch); 5961 5962 /* Disable host interrupts. */ 5963 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5964 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5965 5966 /* 5967 * Tell firmware we're shutting down. 5968 */ 5969 bge_stop_fw(sc); 5970 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5971 5972 /* 5973 * Disable all of the receiver blocks. 5974 */ 5975 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5976 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5977 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5978 if (BGE_IS_5700_FAMILY(sc)) 5979 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5980 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5981 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5982 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5983 5984 /* 5985 * Disable all of the transmit blocks. 5986 */ 5987 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5988 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5989 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5990 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5991 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5992 if (BGE_IS_5700_FAMILY(sc)) 5993 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5994 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5995 5996 /* 5997 * Shut down all of the memory managers and related 5998 * state machines. 5999 */ 6000 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6001 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6002 if (BGE_IS_5700_FAMILY(sc)) 6003 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6004 6005 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6006 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6007 if (!(BGE_IS_5705_PLUS(sc))) { 6008 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6009 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6010 } 6011 /* Update MAC statistics. */ 6012 if (BGE_IS_5705_PLUS(sc)) 6013 bge_stats_update_regs(sc); 6014 6015 bge_reset(sc); 6016 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6017 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6018 6019 /* 6020 * Keep the ASF firmware running if up. 6021 */ 6022 if (sc->bge_asf_mode & ASF_STACKUP) 6023 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6024 else 6025 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6026 6027 /* Free the RX lists. */ 6028 bge_free_rx_ring_std(sc); 6029 6030 /* Free jumbo RX list. */ 6031 if (BGE_IS_JUMBO_CAPABLE(sc)) 6032 bge_free_rx_ring_jumbo(sc); 6033 6034 /* Free TX buffers. */ 6035 bge_free_tx_ring(sc); 6036 6037 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6038 6039 /* Clear MAC's link state (PHY may still have link UP). */ 6040 if (bootverbose && sc->bge_link) 6041 if_printf(sc->bge_ifp, "link DOWN\n"); 6042 sc->bge_link = 0; 6043 6044 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 6045 } 6046 6047 /* 6048 * Stop all chip I/O so that the kernel's probe routines don't 6049 * get confused by errant DMAs when rebooting. 6050 */ 6051 static int 6052 bge_shutdown(device_t dev) 6053 { 6054 struct bge_softc *sc; 6055 6056 sc = device_get_softc(dev); 6057 BGE_LOCK(sc); 6058 bge_stop(sc); 6059 BGE_UNLOCK(sc); 6060 6061 return (0); 6062 } 6063 6064 static int 6065 bge_suspend(device_t dev) 6066 { 6067 struct bge_softc *sc; 6068 6069 sc = device_get_softc(dev); 6070 BGE_LOCK(sc); 6071 bge_stop(sc); 6072 BGE_UNLOCK(sc); 6073 6074 return (0); 6075 } 6076 6077 static int 6078 bge_resume(device_t dev) 6079 { 6080 struct bge_softc *sc; 6081 if_t ifp; 6082 6083 sc = device_get_softc(dev); 6084 BGE_LOCK(sc); 6085 ifp = sc->bge_ifp; 6086 if (if_getflags(ifp) & IFF_UP) { 6087 bge_init_locked(sc); 6088 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6089 bge_start_locked(ifp); 6090 } 6091 BGE_UNLOCK(sc); 6092 6093 return (0); 6094 } 6095 6096 static void 6097 bge_link_upd(struct bge_softc *sc) 6098 { 6099 struct mii_data *mii; 6100 uint32_t link, status; 6101 6102 BGE_LOCK_ASSERT(sc); 6103 6104 /* Clear 'pending link event' flag. */ 6105 sc->bge_link_evt = 0; 6106 6107 /* 6108 * Process link state changes. 6109 * Grrr. The link status word in the status block does 6110 * not work correctly on the BCM5700 rev AX and BX chips, 6111 * according to all available information. Hence, we have 6112 * to enable MII interrupts in order to properly obtain 6113 * async link changes. Unfortunately, this also means that 6114 * we have to read the MAC status register to detect link 6115 * changes, thereby adding an additional register access to 6116 * the interrupt handler. 6117 * 6118 * XXX: perhaps link state detection procedure used for 6119 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 6120 */ 6121 6122 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6123 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 6124 status = CSR_READ_4(sc, BGE_MAC_STS); 6125 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6126 mii = device_get_softc(sc->bge_miibus); 6127 mii_pollstat(mii); 6128 if (!sc->bge_link && 6129 mii->mii_media_status & IFM_ACTIVE && 6130 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6131 sc->bge_link++; 6132 if (bootverbose) 6133 if_printf(sc->bge_ifp, "link UP\n"); 6134 } else if (sc->bge_link && 6135 (!(mii->mii_media_status & IFM_ACTIVE) || 6136 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6137 sc->bge_link = 0; 6138 if (bootverbose) 6139 if_printf(sc->bge_ifp, "link DOWN\n"); 6140 } 6141 6142 /* Clear the interrupt. */ 6143 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6144 BGE_EVTENB_MI_INTERRUPT); 6145 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6146 BRGPHY_MII_ISR); 6147 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6148 BRGPHY_MII_IMR, BRGPHY_INTRS); 6149 } 6150 return; 6151 } 6152 6153 if (sc->bge_flags & BGE_FLAG_TBI) { 6154 status = CSR_READ_4(sc, BGE_MAC_STS); 6155 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6156 if (!sc->bge_link) { 6157 sc->bge_link++; 6158 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6159 BGE_CLRBIT(sc, BGE_MAC_MODE, 6160 BGE_MACMODE_TBI_SEND_CFGS); 6161 DELAY(40); 6162 } 6163 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6164 if (bootverbose) 6165 if_printf(sc->bge_ifp, "link UP\n"); 6166 if_link_state_change(sc->bge_ifp, 6167 LINK_STATE_UP); 6168 } 6169 } else if (sc->bge_link) { 6170 sc->bge_link = 0; 6171 if (bootverbose) 6172 if_printf(sc->bge_ifp, "link DOWN\n"); 6173 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6174 } 6175 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6176 /* 6177 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6178 * in status word always set. Workaround this bug by reading 6179 * PHY link status directly. 6180 */ 6181 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6182 6183 if (link != sc->bge_link || 6184 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6185 mii = device_get_softc(sc->bge_miibus); 6186 mii_pollstat(mii); 6187 if (!sc->bge_link && 6188 mii->mii_media_status & IFM_ACTIVE && 6189 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6190 sc->bge_link++; 6191 if (bootverbose) 6192 if_printf(sc->bge_ifp, "link UP\n"); 6193 } else if (sc->bge_link && 6194 (!(mii->mii_media_status & IFM_ACTIVE) || 6195 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6196 sc->bge_link = 0; 6197 if (bootverbose) 6198 if_printf(sc->bge_ifp, "link DOWN\n"); 6199 } 6200 } 6201 } else { 6202 /* 6203 * For controllers that call mii_tick, we have to poll 6204 * link status. 6205 */ 6206 mii = device_get_softc(sc->bge_miibus); 6207 mii_pollstat(mii); 6208 bge_miibus_statchg(sc->bge_dev); 6209 } 6210 6211 /* Disable MAC attention when link is up. */ 6212 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6213 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6214 BGE_MACSTAT_LINK_CHANGED); 6215 } 6216 6217 static void 6218 bge_add_sysctls(struct bge_softc *sc) 6219 { 6220 struct sysctl_ctx_list *ctx; 6221 struct sysctl_oid_list *children; 6222 6223 ctx = device_get_sysctl_ctx(sc->bge_dev); 6224 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6225 6226 #ifdef BGE_REGISTER_DEBUG 6227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6228 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6229 bge_sysctl_debug_info, "I", "Debug Information"); 6230 6231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6232 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6233 bge_sysctl_reg_read, "I", "MAC Register Read"); 6234 6235 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6236 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6237 bge_sysctl_ape_read, "I", "APE Register Read"); 6238 6239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6240 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6241 bge_sysctl_mem_read, "I", "Memory Read"); 6242 6243 #endif 6244 6245 /* 6246 * A common design characteristic for many Broadcom client controllers 6247 * is that they only support a single outstanding DMA read operation 6248 * on the PCIe bus. This means that it will take twice as long to fetch 6249 * a TX frame that is split into header and payload buffers as it does 6250 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6251 * these controllers, coalescing buffers to reduce the number of memory 6252 * reads is effective way to get maximum performance(about 940Mbps). 6253 * Without collapsing TX buffers the maximum TCP bulk transfer 6254 * performance is about 850Mbps. However forcing coalescing mbufs 6255 * consumes a lot of CPU cycles, so leave it off by default. 6256 */ 6257 sc->bge_forced_collapse = 0; 6258 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6259 CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0, 6260 "Number of fragmented TX buffers of a frame allowed before " 6261 "forced collapsing"); 6262 6263 sc->bge_msi = 1; 6264 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6265 CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI"); 6266 6267 /* 6268 * It seems all Broadcom controllers have a bug that can generate UDP 6269 * datagrams with checksum value 0 when TX UDP checksum offloading is 6270 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6271 * Even though the probability of generating such UDP datagrams is 6272 * low, I don't want to see FreeBSD boxes to inject such datagrams 6273 * into network so disable UDP checksum offloading by default. Users 6274 * still override this behavior by setting a sysctl variable, 6275 * dev.bge.0.forced_udpcsum. 6276 */ 6277 sc->bge_forced_udpcsum = 0; 6278 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6279 CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0, 6280 "Enable UDP checksum offloading even if controller can " 6281 "generate UDP checksum value 0"); 6282 6283 if (BGE_IS_5705_PLUS(sc)) 6284 bge_add_sysctl_stats_regs(sc, ctx, children); 6285 else 6286 bge_add_sysctl_stats(sc, ctx, children); 6287 } 6288 6289 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6290 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \ 6291 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \ 6292 offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc) 6293 6294 static void 6295 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6296 struct sysctl_oid_list *parent) 6297 { 6298 struct sysctl_oid *tree; 6299 struct sysctl_oid_list *children, *schildren; 6300 6301 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6302 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6303 schildren = children = SYSCTL_CHILDREN(tree); 6304 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6305 children, COSFramesDroppedDueToFilters, 6306 "FramesDroppedDueToFilters"); 6307 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6308 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6309 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6310 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6311 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6312 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6313 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6314 children, ifInDiscards, "InputDiscards"); 6315 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6316 children, ifInErrors, "InputErrors"); 6317 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6318 children, nicRecvThresholdHit, "RecvThresholdHit"); 6319 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6320 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6321 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6322 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6323 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6324 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6325 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6326 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6327 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6328 children, nicRingStatusUpdate, "RingStatusUpdate"); 6329 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6330 children, nicInterrupts, "Interrupts"); 6331 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6332 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6333 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6334 children, nicSendThresholdHit, "SendThresholdHit"); 6335 6336 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", 6337 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6338 children = SYSCTL_CHILDREN(tree); 6339 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6340 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6341 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6342 children, rxstats.etherStatsFragments, "Fragments"); 6343 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6344 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6345 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6346 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6347 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6348 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6349 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6350 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6351 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6352 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6353 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6354 children, rxstats.xoffPauseFramesReceived, 6355 "xoffPauseFramesReceived"); 6356 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6357 children, rxstats.macControlFramesReceived, 6358 "ControlFramesReceived"); 6359 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6360 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6361 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6362 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6363 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6364 children, rxstats.etherStatsJabbers, "Jabbers"); 6365 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6366 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6367 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6368 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6369 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6370 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6371 6372 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", 6373 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6374 children = SYSCTL_CHILDREN(tree); 6375 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6376 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6377 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6378 children, txstats.etherStatsCollisions, "Collisions"); 6379 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6380 children, txstats.outXonSent, "XonSent"); 6381 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6382 children, txstats.outXoffSent, "XoffSent"); 6383 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6384 children, txstats.flowControlDone, "flowControlDone"); 6385 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6386 children, txstats.dot3StatsInternalMacTransmitErrors, 6387 "InternalMacTransmitErrors"); 6388 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6389 children, txstats.dot3StatsSingleCollisionFrames, 6390 "SingleCollisionFrames"); 6391 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6392 children, txstats.dot3StatsMultipleCollisionFrames, 6393 "MultipleCollisionFrames"); 6394 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6395 children, txstats.dot3StatsDeferredTransmissions, 6396 "DeferredTransmissions"); 6397 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6398 children, txstats.dot3StatsExcessiveCollisions, 6399 "ExcessiveCollisions"); 6400 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6401 children, txstats.dot3StatsLateCollisions, 6402 "LateCollisions"); 6403 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6404 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6405 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6406 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6407 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6408 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6409 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6410 children, txstats.dot3StatsCarrierSenseErrors, 6411 "CarrierSenseErrors"); 6412 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6413 children, txstats.ifOutDiscards, "Discards"); 6414 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6415 children, txstats.ifOutErrors, "Errors"); 6416 } 6417 6418 #undef BGE_SYSCTL_STAT 6419 6420 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6421 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6422 6423 static void 6424 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6425 struct sysctl_oid_list *parent) 6426 { 6427 struct sysctl_oid *tree; 6428 struct sysctl_oid_list *child, *schild; 6429 struct bge_mac_stats *stats; 6430 6431 stats = &sc->bge_mac_stats; 6432 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6433 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6434 schild = child = SYSCTL_CHILDREN(tree); 6435 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6436 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6437 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6438 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6439 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6440 &stats->DmaWriteHighPriQueueFull, 6441 "NIC DMA Write High Priority Queue Full"); 6442 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6443 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6444 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6445 &stats->InputDiscards, "Discarded Input Frames"); 6446 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6447 &stats->InputErrors, "Input Errors"); 6448 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6449 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6450 6451 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", 6452 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6453 child = SYSCTL_CHILDREN(tree); 6454 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6455 &stats->ifHCInOctets, "Inbound Octets"); 6456 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6457 &stats->etherStatsFragments, "Fragments"); 6458 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6459 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6460 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6461 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6462 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6463 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6464 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6465 &stats->dot3StatsFCSErrors, "FCS Errors"); 6466 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6467 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6468 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6469 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6470 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6471 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6472 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6473 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6474 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6475 &stats->xoffStateEntered, "XOFF State Entered"); 6476 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6477 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6478 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6479 &stats->etherStatsJabbers, "Jabbers"); 6480 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6481 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6482 6483 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", 6484 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6485 child = SYSCTL_CHILDREN(tree); 6486 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6487 &stats->ifHCOutOctets, "Outbound Octets"); 6488 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6489 &stats->etherStatsCollisions, "TX Collisions"); 6490 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6491 &stats->outXonSent, "XON Sent"); 6492 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6493 &stats->outXoffSent, "XOFF Sent"); 6494 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6495 &stats->dot3StatsInternalMacTransmitErrors, 6496 "Internal MAC TX Errors"); 6497 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6498 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6499 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6500 &stats->dot3StatsMultipleCollisionFrames, 6501 "Multiple Collision Frames"); 6502 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6503 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6504 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6505 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6506 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6507 &stats->dot3StatsLateCollisions, "Late Collisions"); 6508 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6509 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6510 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6511 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6512 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6513 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6514 } 6515 6516 #undef BGE_SYSCTL_STAT_ADD64 6517 6518 static int 6519 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6520 { 6521 struct bge_softc *sc; 6522 uint32_t result; 6523 int offset; 6524 6525 sc = (struct bge_softc *)arg1; 6526 offset = arg2; 6527 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6528 offsetof(bge_hostaddr, bge_addr_lo)); 6529 return (sysctl_handle_int(oidp, &result, 0, req)); 6530 } 6531 6532 #ifdef BGE_REGISTER_DEBUG 6533 static int 6534 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6535 { 6536 struct bge_softc *sc; 6537 uint16_t *sbdata; 6538 int error, result, sbsz; 6539 int i, j; 6540 6541 result = -1; 6542 error = sysctl_handle_int(oidp, &result, 0, req); 6543 if (error || (req->newptr == NULL)) 6544 return (error); 6545 6546 if (result == 1) { 6547 sc = (struct bge_softc *)arg1; 6548 6549 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6550 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6551 sbsz = BGE_STATUS_BLK_SZ; 6552 else 6553 sbsz = 32; 6554 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6555 printf("Status Block:\n"); 6556 BGE_LOCK(sc); 6557 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6558 sc->bge_cdata.bge_status_map, 6559 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6560 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6561 printf("%06x:", i); 6562 for (j = 0; j < 8; j++) 6563 printf(" %04x", sbdata[i++]); 6564 printf("\n"); 6565 } 6566 6567 printf("Registers:\n"); 6568 for (i = 0x800; i < 0xA00; ) { 6569 printf("%06x:", i); 6570 for (j = 0; j < 8; j++) { 6571 printf(" %08x", CSR_READ_4(sc, i)); 6572 i += 4; 6573 } 6574 printf("\n"); 6575 } 6576 BGE_UNLOCK(sc); 6577 6578 printf("Hardware Flags:\n"); 6579 if (BGE_IS_5717_PLUS(sc)) 6580 printf(" - 5717 Plus\n"); 6581 if (BGE_IS_5755_PLUS(sc)) 6582 printf(" - 5755 Plus\n"); 6583 if (BGE_IS_575X_PLUS(sc)) 6584 printf(" - 575X Plus\n"); 6585 if (BGE_IS_5705_PLUS(sc)) 6586 printf(" - 5705 Plus\n"); 6587 if (BGE_IS_5714_FAMILY(sc)) 6588 printf(" - 5714 Family\n"); 6589 if (BGE_IS_5700_FAMILY(sc)) 6590 printf(" - 5700 Family\n"); 6591 if (sc->bge_flags & BGE_FLAG_JUMBO) 6592 printf(" - Supports Jumbo Frames\n"); 6593 if (sc->bge_flags & BGE_FLAG_PCIX) 6594 printf(" - PCI-X Bus\n"); 6595 if (sc->bge_flags & BGE_FLAG_PCIE) 6596 printf(" - PCI Express Bus\n"); 6597 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6598 printf(" - No 3 LEDs\n"); 6599 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6600 printf(" - RX Alignment Bug\n"); 6601 } 6602 6603 return (error); 6604 } 6605 6606 static int 6607 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6608 { 6609 struct bge_softc *sc; 6610 int error; 6611 uint16_t result; 6612 uint32_t val; 6613 6614 result = -1; 6615 error = sysctl_handle_int(oidp, &result, 0, req); 6616 if (error || (req->newptr == NULL)) 6617 return (error); 6618 6619 if (result < 0x8000) { 6620 sc = (struct bge_softc *)arg1; 6621 val = CSR_READ_4(sc, result); 6622 printf("reg 0x%06X = 0x%08X\n", result, val); 6623 } 6624 6625 return (error); 6626 } 6627 6628 static int 6629 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6630 { 6631 struct bge_softc *sc; 6632 int error; 6633 uint16_t result; 6634 uint32_t val; 6635 6636 result = -1; 6637 error = sysctl_handle_int(oidp, &result, 0, req); 6638 if (error || (req->newptr == NULL)) 6639 return (error); 6640 6641 if (result < 0x8000) { 6642 sc = (struct bge_softc *)arg1; 6643 val = APE_READ_4(sc, result); 6644 printf("reg 0x%06X = 0x%08X\n", result, val); 6645 } 6646 6647 return (error); 6648 } 6649 6650 static int 6651 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6652 { 6653 struct bge_softc *sc; 6654 int error; 6655 uint16_t result; 6656 uint32_t val; 6657 6658 result = -1; 6659 error = sysctl_handle_int(oidp, &result, 0, req); 6660 if (error || (req->newptr == NULL)) 6661 return (error); 6662 6663 if (result < 0x8000) { 6664 sc = (struct bge_softc *)arg1; 6665 val = bge_readmem_ind(sc, result); 6666 printf("mem 0x%06X = 0x%08X\n", result, val); 6667 } 6668 6669 return (error); 6670 } 6671 #endif 6672 6673 static int 6674 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6675 { 6676 return (1); 6677 } 6678 6679 static int 6680 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6681 { 6682 uint32_t mac_addr; 6683 6684 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6685 if ((mac_addr >> 16) == 0x484b) { 6686 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6687 ether_addr[1] = (uint8_t)mac_addr; 6688 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6689 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6690 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6691 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6692 ether_addr[5] = (uint8_t)mac_addr; 6693 return (0); 6694 } 6695 return (1); 6696 } 6697 6698 static int 6699 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6700 { 6701 int mac_offset = BGE_EE_MAC_OFFSET; 6702 6703 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6704 mac_offset = BGE_EE_MAC_OFFSET_5906; 6705 6706 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6707 ETHER_ADDR_LEN)); 6708 } 6709 6710 static int 6711 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6712 { 6713 6714 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6715 return (1); 6716 6717 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6718 ETHER_ADDR_LEN)); 6719 } 6720 6721 static int 6722 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6723 { 6724 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6725 /* NOTE: Order is critical */ 6726 bge_get_eaddr_fw, 6727 bge_get_eaddr_mem, 6728 bge_get_eaddr_nvram, 6729 bge_get_eaddr_eeprom, 6730 NULL 6731 }; 6732 const bge_eaddr_fcn_t *func; 6733 6734 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6735 if ((*func)(sc, eaddr) == 0) 6736 break; 6737 } 6738 return (*func == NULL ? ENXIO : 0); 6739 } 6740 6741 static uint64_t 6742 bge_get_counter(if_t ifp, ift_counter cnt) 6743 { 6744 struct bge_softc *sc; 6745 struct bge_mac_stats *stats; 6746 6747 sc = if_getsoftc(ifp); 6748 if (!BGE_IS_5705_PLUS(sc)) 6749 return (if_get_counter_default(ifp, cnt)); 6750 stats = &sc->bge_mac_stats; 6751 6752 switch (cnt) { 6753 case IFCOUNTER_IERRORS: 6754 return (stats->NoMoreRxBDs + stats->InputDiscards + 6755 stats->InputErrors); 6756 case IFCOUNTER_COLLISIONS: 6757 return (stats->etherStatsCollisions); 6758 default: 6759 return (if_get_counter_default(ifp, cnt)); 6760 } 6761 } 6762 6763 #ifdef DEBUGNET 6764 static void 6765 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 6766 { 6767 struct bge_softc *sc; 6768 6769 sc = if_getsoftc(ifp); 6770 BGE_LOCK(sc); 6771 /* 6772 * There is only one logical receive ring, but it is backed 6773 * by two actual rings, for cluster- and jumbo-sized mbufs. 6774 * Debugnet expects only one size, so if jumbo is in use, 6775 * this says we have two rings of jumbo mbufs, but that's 6776 * only a little wasteful. 6777 */ 6778 *nrxr = 2; 6779 *ncl = DEBUGNET_MAX_IN_FLIGHT; 6780 if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 && 6781 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 6782 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) 6783 *clsize = MJUM9BYTES; 6784 else 6785 *clsize = MCLBYTES; 6786 BGE_UNLOCK(sc); 6787 } 6788 6789 static void 6790 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 6791 { 6792 } 6793 6794 static int 6795 bge_debugnet_transmit(if_t ifp, struct mbuf *m) 6796 { 6797 struct bge_softc *sc; 6798 uint32_t prodidx; 6799 int error; 6800 6801 sc = if_getsoftc(ifp); 6802 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6803 IFF_DRV_RUNNING) 6804 return (1); 6805 6806 prodidx = sc->bge_tx_prodidx; 6807 error = bge_encap(sc, &m, &prodidx); 6808 if (error == 0) 6809 bge_start_tx(sc, prodidx); 6810 return (error); 6811 } 6812 6813 static int 6814 bge_debugnet_poll(if_t ifp, int count) 6815 { 6816 struct bge_softc *sc; 6817 uint32_t rx_prod, tx_cons; 6818 6819 sc = if_getsoftc(ifp); 6820 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6821 IFF_DRV_RUNNING) 6822 return (1); 6823 6824 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6825 sc->bge_cdata.bge_status_map, 6826 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6827 6828 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 6829 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 6830 6831 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6832 sc->bge_cdata.bge_status_map, 6833 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6834 6835 (void)bge_rxeof(sc, rx_prod, 0); 6836 bge_txeof(sc, tx_cons); 6837 return (0); 6838 } 6839 #endif /* DEBUGNET */ 6840