xref: /freebsd/sys/dev/bge/if_bge.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
218 
219 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
220 
221 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
222 
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
226 
227 	{ 0, 0 }
228 };
229 
230 static const struct bge_vendor {
231 	uint16_t	v_id;
232 	const char	*v_name;
233 } bge_vendors[] = {
234 	{ ALTEON_VENDORID,	"Alteon" },
235 	{ ALTIMA_VENDORID,	"Altima" },
236 	{ APPLE_VENDORID,	"Apple" },
237 	{ BCOM_VENDORID,	"Broadcom" },
238 	{ SK_VENDORID,		"SysKonnect" },
239 	{ TC_VENDORID,		"3Com" },
240 	{ FJTSU_VENDORID,	"Fujitsu" },
241 
242 	{ 0, NULL }
243 };
244 
245 static const struct bge_revision {
246 	uint32_t	br_chipid;
247 	const char	*br_name;
248 } bge_revisions[] = {
249 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
250 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
251 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
252 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
253 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
254 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
255 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
256 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
257 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
258 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
259 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
260 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
261 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
262 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
263 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
264 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
265 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
266 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
267 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
268 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
269 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
270 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
271 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
272 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
273 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
274 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
275 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
276 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
277 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
278 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
279 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
280 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
281 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
282 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
283 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
284 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
285 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
286 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
287 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
288 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
289 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
290 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
291 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
292 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
293 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
294 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
295 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
296 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
297 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
298 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
299 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
302 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
303 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
304 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
305 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
306 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
307 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
308 
309 	{ 0, NULL }
310 };
311 
312 /*
313  * Some defaults for major revisions, so that newer steppings
314  * that we don't know about have a shot at working.
315  */
316 static const struct bge_revision bge_majorrevs[] = {
317 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
318 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
319 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
320 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
321 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
322 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
323 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
324 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
325 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
326 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
327 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
328 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
329 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
330 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
331 	/* 5754 and 5787 share the same ASIC ID */
332 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
333 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
334 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
335 
336 	{ 0, NULL }
337 };
338 
339 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
340 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
341 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
342 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
343 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
344 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
345 
346 const struct bge_revision * bge_lookup_rev(uint32_t);
347 const struct bge_vendor * bge_lookup_vendor(uint16_t);
348 
349 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
350 
351 static int bge_probe(device_t);
352 static int bge_attach(device_t);
353 static int bge_detach(device_t);
354 static int bge_suspend(device_t);
355 static int bge_resume(device_t);
356 static void bge_release_resources(struct bge_softc *);
357 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
358 static int bge_dma_alloc(device_t);
359 static void bge_dma_free(struct bge_softc *);
360 
361 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
362 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
365 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
366 
367 static void bge_txeof(struct bge_softc *, uint16_t);
368 static int bge_rxeof(struct bge_softc *, uint16_t, int);
369 
370 static void bge_asf_driver_up (struct bge_softc *);
371 static void bge_tick(void *);
372 static void bge_stats_update(struct bge_softc *);
373 static void bge_stats_update_regs(struct bge_softc *);
374 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
375     uint16_t *);
376 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
377 
378 static void bge_intr(void *);
379 static int bge_msi_intr(void *);
380 static void bge_intr_task(void *, int);
381 static void bge_start_locked(struct ifnet *);
382 static void bge_start(struct ifnet *);
383 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
384 static void bge_init_locked(struct bge_softc *);
385 static void bge_init(void *);
386 static void bge_stop(struct bge_softc *);
387 static void bge_watchdog(struct bge_softc *);
388 static int bge_shutdown(device_t);
389 static int bge_ifmedia_upd_locked(struct ifnet *);
390 static int bge_ifmedia_upd(struct ifnet *);
391 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
392 
393 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
394 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
395 
396 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
397 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
398 
399 static void bge_setpromisc(struct bge_softc *);
400 static void bge_setmulti(struct bge_softc *);
401 static void bge_setvlan(struct bge_softc *);
402 
403 static int bge_newbuf_std(struct bge_softc *, int);
404 static int bge_newbuf_jumbo(struct bge_softc *, int);
405 static int bge_init_rx_ring_std(struct bge_softc *);
406 static void bge_free_rx_ring_std(struct bge_softc *);
407 static int bge_init_rx_ring_jumbo(struct bge_softc *);
408 static void bge_free_rx_ring_jumbo(struct bge_softc *);
409 static void bge_free_tx_ring(struct bge_softc *);
410 static int bge_init_tx_ring(struct bge_softc *);
411 
412 static int bge_chipinit(struct bge_softc *);
413 static int bge_blockinit(struct bge_softc *);
414 
415 static int bge_has_eaddr(struct bge_softc *);
416 static uint32_t bge_readmem_ind(struct bge_softc *, int);
417 static void bge_writemem_ind(struct bge_softc *, int, int);
418 static void bge_writembx(struct bge_softc *, int, int);
419 #ifdef notdef
420 static uint32_t bge_readreg_ind(struct bge_softc *, int);
421 #endif
422 static void bge_writemem_direct(struct bge_softc *, int, int);
423 static void bge_writereg_ind(struct bge_softc *, int, int);
424 
425 static int bge_miibus_readreg(device_t, int, int);
426 static int bge_miibus_writereg(device_t, int, int, int);
427 static void bge_miibus_statchg(device_t);
428 #ifdef DEVICE_POLLING
429 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
430 #endif
431 
432 #define	BGE_RESET_START 1
433 #define	BGE_RESET_STOP  2
434 static void bge_sig_post_reset(struct bge_softc *, int);
435 static void bge_sig_legacy(struct bge_softc *, int);
436 static void bge_sig_pre_reset(struct bge_softc *, int);
437 static int bge_reset(struct bge_softc *);
438 static void bge_link_upd(struct bge_softc *);
439 
440 /*
441  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
442  * leak information to untrusted users.  It is also known to cause alignment
443  * traps on certain architectures.
444  */
445 #ifdef BGE_REGISTER_DEBUG
446 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
447 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
448 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
449 #endif
450 static void bge_add_sysctls(struct bge_softc *);
451 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
452 
453 static device_method_t bge_methods[] = {
454 	/* Device interface */
455 	DEVMETHOD(device_probe,		bge_probe),
456 	DEVMETHOD(device_attach,	bge_attach),
457 	DEVMETHOD(device_detach,	bge_detach),
458 	DEVMETHOD(device_shutdown,	bge_shutdown),
459 	DEVMETHOD(device_suspend,	bge_suspend),
460 	DEVMETHOD(device_resume,	bge_resume),
461 
462 	/* bus interface */
463 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
464 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
465 
466 	/* MII interface */
467 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
468 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
469 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
470 
471 	{ 0, 0 }
472 };
473 
474 static driver_t bge_driver = {
475 	"bge",
476 	bge_methods,
477 	sizeof(struct bge_softc)
478 };
479 
480 static devclass_t bge_devclass;
481 
482 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
483 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
484 
485 static int bge_allow_asf = 1;
486 
487 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
488 
489 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
490 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
491 	"Allow ASF mode if available");
492 
493 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
494 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
495 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
496 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
497 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
498 
499 static int
500 bge_has_eaddr(struct bge_softc *sc)
501 {
502 #ifdef __sparc64__
503 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
504 	device_t dev;
505 	uint32_t subvendor;
506 
507 	dev = sc->bge_dev;
508 
509 	/*
510 	 * The on-board BGEs found in sun4u machines aren't fitted with
511 	 * an EEPROM which means that we have to obtain the MAC address
512 	 * via OFW and that some tests will always fail.  We distinguish
513 	 * such BGEs by the subvendor ID, which also has to be obtained
514 	 * from OFW instead of the PCI configuration space as the latter
515 	 * indicates Broadcom as the subvendor of the netboot interface.
516 	 * For early Blade 1500 and 2500 we even have to check the OFW
517 	 * device path as the subvendor ID always defaults to Broadcom
518 	 * there.
519 	 */
520 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
521 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
522 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
523 		return (0);
524 	memset(buf, 0, sizeof(buf));
525 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
526 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
527 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
528 			return (0);
529 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
530 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
531 			return (0);
532 	}
533 #endif
534 	return (1);
535 }
536 
537 static uint32_t
538 bge_readmem_ind(struct bge_softc *sc, int off)
539 {
540 	device_t dev;
541 	uint32_t val;
542 
543 	dev = sc->bge_dev;
544 
545 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
546 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
547 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
548 	return (val);
549 }
550 
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554 	device_t dev;
555 
556 	dev = sc->bge_dev;
557 
558 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
559 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
560 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
561 }
562 
563 #ifdef notdef
564 static uint32_t
565 bge_readreg_ind(struct bge_softc *sc, int off)
566 {
567 	device_t dev;
568 
569 	dev = sc->bge_dev;
570 
571 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
572 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
573 }
574 #endif
575 
576 static void
577 bge_writereg_ind(struct bge_softc *sc, int off, int val)
578 {
579 	device_t dev;
580 
581 	dev = sc->bge_dev;
582 
583 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
584 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
585 }
586 
587 static void
588 bge_writemem_direct(struct bge_softc *sc, int off, int val)
589 {
590 	CSR_WRITE_4(sc, off, val);
591 }
592 
593 static void
594 bge_writembx(struct bge_softc *sc, int off, int val)
595 {
596 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
597 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
598 
599 	CSR_WRITE_4(sc, off, val);
600 }
601 
602 /*
603  * Map a single buffer address.
604  */
605 
606 static void
607 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
608 {
609 	struct bge_dmamap_arg *ctx;
610 
611 	if (error)
612 		return;
613 
614 	ctx = arg;
615 
616 	if (nseg > ctx->bge_maxsegs) {
617 		ctx->bge_maxsegs = 0;
618 		return;
619 	}
620 
621 	ctx->bge_busaddr = segs->ds_addr;
622 }
623 
624 static uint8_t
625 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
626 {
627 	uint32_t access, byte = 0;
628 	int i;
629 
630 	/* Lock. */
631 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
632 	for (i = 0; i < 8000; i++) {
633 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
634 			break;
635 		DELAY(20);
636 	}
637 	if (i == 8000)
638 		return (1);
639 
640 	/* Enable access. */
641 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
642 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
643 
644 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
645 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
646 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
647 		DELAY(10);
648 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
649 			DELAY(10);
650 			break;
651 		}
652 	}
653 
654 	if (i == BGE_TIMEOUT * 10) {
655 		if_printf(sc->bge_ifp, "nvram read timed out\n");
656 		return (1);
657 	}
658 
659 	/* Get result. */
660 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
661 
662 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
663 
664 	/* Disable access. */
665 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
666 
667 	/* Unlock. */
668 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
669 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
670 
671 	return (0);
672 }
673 
674 /*
675  * Read a sequence of bytes from NVRAM.
676  */
677 static int
678 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
679 {
680 	int err = 0, i;
681 	uint8_t byte = 0;
682 
683 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
684 		return (1);
685 
686 	for (i = 0; i < cnt; i++) {
687 		err = bge_nvram_getbyte(sc, off + i, &byte);
688 		if (err)
689 			break;
690 		*(dest + i) = byte;
691 	}
692 
693 	return (err ? 1 : 0);
694 }
695 
696 /*
697  * Read a byte of data stored in the EEPROM at address 'addr.' The
698  * BCM570x supports both the traditional bitbang interface and an
699  * auto access interface for reading the EEPROM. We use the auto
700  * access method.
701  */
702 static uint8_t
703 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
704 {
705 	int i;
706 	uint32_t byte = 0;
707 
708 	/*
709 	 * Enable use of auto EEPROM access so we can avoid
710 	 * having to use the bitbang method.
711 	 */
712 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
713 
714 	/* Reset the EEPROM, load the clock period. */
715 	CSR_WRITE_4(sc, BGE_EE_ADDR,
716 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
717 	DELAY(20);
718 
719 	/* Issue the read EEPROM command. */
720 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
721 
722 	/* Wait for completion */
723 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
724 		DELAY(10);
725 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
726 			break;
727 	}
728 
729 	if (i == BGE_TIMEOUT * 10) {
730 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
731 		return (1);
732 	}
733 
734 	/* Get result. */
735 	byte = CSR_READ_4(sc, BGE_EE_DATA);
736 
737 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
738 
739 	return (0);
740 }
741 
742 /*
743  * Read a sequence of bytes from the EEPROM.
744  */
745 static int
746 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
747 {
748 	int i, error = 0;
749 	uint8_t byte = 0;
750 
751 	for (i = 0; i < cnt; i++) {
752 		error = bge_eeprom_getbyte(sc, off + i, &byte);
753 		if (error)
754 			break;
755 		*(dest + i) = byte;
756 	}
757 
758 	return (error ? 1 : 0);
759 }
760 
761 static int
762 bge_miibus_readreg(device_t dev, int phy, int reg)
763 {
764 	struct bge_softc *sc;
765 	uint32_t val, autopoll;
766 	int i;
767 
768 	sc = device_get_softc(dev);
769 
770 	/*
771 	 * Broadcom's own driver always assumes the internal
772 	 * PHY is at GMII address 1. On some chips, the PHY responds
773 	 * to accesses at all addresses, which could cause us to
774 	 * bogusly attach the PHY 32 times at probe type. Always
775 	 * restricting the lookup to address 1 is simpler than
776 	 * trying to figure out which chips revisions should be
777 	 * special-cased.
778 	 */
779 	if (phy != 1)
780 		return (0);
781 
782 	/* Reading with autopolling on may trigger PCI errors */
783 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
784 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
785 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
786 		DELAY(40);
787 	}
788 
789 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
790 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
791 
792 	for (i = 0; i < BGE_TIMEOUT; i++) {
793 		DELAY(10);
794 		val = CSR_READ_4(sc, BGE_MI_COMM);
795 		if (!(val & BGE_MICOMM_BUSY))
796 			break;
797 	}
798 
799 	if (i == BGE_TIMEOUT) {
800 		device_printf(sc->bge_dev,
801 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
802 		    phy, reg, val);
803 		val = 0;
804 		goto done;
805 	}
806 
807 	DELAY(5);
808 	val = CSR_READ_4(sc, BGE_MI_COMM);
809 
810 done:
811 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
812 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
813 		DELAY(40);
814 	}
815 
816 	if (val & BGE_MICOMM_READFAIL)
817 		return (0);
818 
819 	return (val & 0xFFFF);
820 }
821 
822 static int
823 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
824 {
825 	struct bge_softc *sc;
826 	uint32_t autopoll;
827 	int i;
828 
829 	sc = device_get_softc(dev);
830 
831 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
832 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
833 		return(0);
834 
835 	/* Reading with autopolling on may trigger PCI errors */
836 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
837 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
838 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
839 		DELAY(40);
840 	}
841 
842 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
843 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
844 
845 	for (i = 0; i < BGE_TIMEOUT; i++) {
846 		DELAY(10);
847 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
848 			DELAY(5);
849 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
850 			break;
851 		}
852 	}
853 
854 	if (i == BGE_TIMEOUT) {
855 		device_printf(sc->bge_dev,
856 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
857 		    phy, reg, val);
858 		return (0);
859 	}
860 
861 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
862 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
863 		DELAY(40);
864 	}
865 
866 	return (0);
867 }
868 
869 static void
870 bge_miibus_statchg(device_t dev)
871 {
872 	struct bge_softc *sc;
873 	struct mii_data *mii;
874 	sc = device_get_softc(dev);
875 	mii = device_get_softc(sc->bge_miibus);
876 
877 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
878 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
879 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
880 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
881 	else
882 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
883 
884 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
885 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
886 	else
887 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
888 }
889 
890 /*
891  * Intialize a standard receive ring descriptor.
892  */
893 static int
894 bge_newbuf_std(struct bge_softc *sc, int i)
895 {
896 	struct mbuf *m;
897 	struct bge_rx_bd *r;
898 	bus_dma_segment_t segs[1];
899 	bus_dmamap_t map;
900 	int error, nsegs;
901 
902 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
903 	if (m == NULL)
904 		return (ENOBUFS);
905 	m->m_len = m->m_pkthdr.len = MCLBYTES;
906 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
907 		m_adj(m, ETHER_ALIGN);
908 
909 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
910 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
911 	if (error != 0) {
912 		m_freem(m);
913 		return (error);
914 	}
915 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
916 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
917 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
918 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
919 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
920 	}
921 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
922 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
923 	sc->bge_cdata.bge_rx_std_sparemap = map;
924 	sc->bge_cdata.bge_rx_std_chain[i] = m;
925 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
926 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
927 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
928 	r->bge_flags = BGE_RXBDFLAG_END;
929 	r->bge_len = segs[0].ds_len;
930 	r->bge_idx = i;
931 
932 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
933 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
934 
935 	return (0);
936 }
937 
938 /*
939  * Initialize a jumbo receive ring descriptor. This allocates
940  * a jumbo buffer from the pool managed internally by the driver.
941  */
942 static int
943 bge_newbuf_jumbo(struct bge_softc *sc, int i)
944 {
945 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
946 	bus_dmamap_t map;
947 	struct bge_extrx_bd *r;
948 	struct mbuf *m;
949 	int error, nsegs;
950 
951 	MGETHDR(m, M_DONTWAIT, MT_DATA);
952 	if (m == NULL)
953 		return (ENOBUFS);
954 
955 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
956 	if (!(m->m_flags & M_EXT)) {
957 		m_freem(m);
958 		return (ENOBUFS);
959 	}
960 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
961 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
962 		m_adj(m, ETHER_ALIGN);
963 
964 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
965 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
966 	if (error != 0) {
967 		m_freem(m);
968 		return (error);
969 	}
970 
971 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
972 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
973 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
974 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
975 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
976 	}
977 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
978 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
979 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
980 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
981 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
982 	/*
983 	 * Fill in the extended RX buffer descriptor.
984 	 */
985 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
986 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
987 	r->bge_idx = i;
988 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
989 	switch (nsegs) {
990 	case 4:
991 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
992 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
993 		r->bge_len3 = segs[3].ds_len;
994 	case 3:
995 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
996 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
997 		r->bge_len2 = segs[2].ds_len;
998 	case 2:
999 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1000 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1001 		r->bge_len1 = segs[1].ds_len;
1002 	case 1:
1003 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1004 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1005 		r->bge_len0 = segs[0].ds_len;
1006 		break;
1007 	default:
1008 		panic("%s: %d segments\n", __func__, nsegs);
1009 	}
1010 
1011 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1012 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1013 
1014 	return (0);
1015 }
1016 
1017 /*
1018  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1019  * that's 1MB or memory, which is a lot. For now, we fill only the first
1020  * 256 ring entries and hope that our CPU is fast enough to keep up with
1021  * the NIC.
1022  */
1023 static int
1024 bge_init_rx_ring_std(struct bge_softc *sc)
1025 {
1026 	int error, i;
1027 
1028 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1029 	sc->bge_std = 0;
1030 	for (i = 0; i < BGE_SSLOTS; i++) {
1031 		if ((error = bge_newbuf_std(sc, i)) != 0)
1032 			return (error);
1033 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1034 	};
1035 
1036 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1037 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1038 
1039 	sc->bge_std = i - 1;
1040 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1041 
1042 	return (0);
1043 }
1044 
1045 static void
1046 bge_free_rx_ring_std(struct bge_softc *sc)
1047 {
1048 	int i;
1049 
1050 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1051 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1052 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1053 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1054 			    BUS_DMASYNC_POSTREAD);
1055 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1056 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1057 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1058 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1059 		}
1060 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1061 		    sizeof(struct bge_rx_bd));
1062 	}
1063 }
1064 
1065 static int
1066 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1067 {
1068 	struct bge_rcb *rcb;
1069 	int error, i;
1070 
1071 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1072 	sc->bge_jumbo = 0;
1073 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1074 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1075 			return (error);
1076 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1077 	};
1078 
1079 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1080 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1081 
1082 	sc->bge_jumbo = i - 1;
1083 
1084 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1085 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1086 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1087 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1088 
1089 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1090 
1091 	return (0);
1092 }
1093 
1094 static void
1095 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1096 {
1097 	int i;
1098 
1099 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1100 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1101 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1102 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1103 			    BUS_DMASYNC_POSTREAD);
1104 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1105 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1106 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1107 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1108 		}
1109 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1110 		    sizeof(struct bge_extrx_bd));
1111 	}
1112 }
1113 
1114 static void
1115 bge_free_tx_ring(struct bge_softc *sc)
1116 {
1117 	int i;
1118 
1119 	if (sc->bge_ldata.bge_tx_ring == NULL)
1120 		return;
1121 
1122 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1123 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1124 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1125 			    sc->bge_cdata.bge_tx_dmamap[i],
1126 			    BUS_DMASYNC_POSTWRITE);
1127 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1128 			    sc->bge_cdata.bge_tx_dmamap[i]);
1129 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1130 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1131 		}
1132 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1133 		    sizeof(struct bge_tx_bd));
1134 	}
1135 }
1136 
1137 static int
1138 bge_init_tx_ring(struct bge_softc *sc)
1139 {
1140 	sc->bge_txcnt = 0;
1141 	sc->bge_tx_saved_considx = 0;
1142 
1143 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1144 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1145 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1146 
1147 	/* Initialize transmit producer index for host-memory send ring. */
1148 	sc->bge_tx_prodidx = 0;
1149 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1150 
1151 	/* 5700 b2 errata */
1152 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1153 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1154 
1155 	/* NIC-memory send ring not used; initialize to zero. */
1156 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1157 	/* 5700 b2 errata */
1158 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1159 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1160 
1161 	return (0);
1162 }
1163 
1164 static void
1165 bge_setpromisc(struct bge_softc *sc)
1166 {
1167 	struct ifnet *ifp;
1168 
1169 	BGE_LOCK_ASSERT(sc);
1170 
1171 	ifp = sc->bge_ifp;
1172 
1173 	/* Enable or disable promiscuous mode as needed. */
1174 	if (ifp->if_flags & IFF_PROMISC)
1175 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1176 	else
1177 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1178 }
1179 
1180 static void
1181 bge_setmulti(struct bge_softc *sc)
1182 {
1183 	struct ifnet *ifp;
1184 	struct ifmultiaddr *ifma;
1185 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1186 	int h, i;
1187 
1188 	BGE_LOCK_ASSERT(sc);
1189 
1190 	ifp = sc->bge_ifp;
1191 
1192 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1193 		for (i = 0; i < 4; i++)
1194 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1195 		return;
1196 	}
1197 
1198 	/* First, zot all the existing filters. */
1199 	for (i = 0; i < 4; i++)
1200 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1201 
1202 	/* Now program new ones. */
1203 	if_maddr_rlock(ifp);
1204 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1205 		if (ifma->ifma_addr->sa_family != AF_LINK)
1206 			continue;
1207 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1208 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1209 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1210 	}
1211 	if_maddr_runlock(ifp);
1212 
1213 	for (i = 0; i < 4; i++)
1214 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1215 }
1216 
1217 static void
1218 bge_setvlan(struct bge_softc *sc)
1219 {
1220 	struct ifnet *ifp;
1221 
1222 	BGE_LOCK_ASSERT(sc);
1223 
1224 	ifp = sc->bge_ifp;
1225 
1226 	/* Enable or disable VLAN tag stripping as needed. */
1227 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1228 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1229 	else
1230 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1231 }
1232 
1233 static void
1234 bge_sig_pre_reset(sc, type)
1235 	struct bge_softc *sc;
1236 	int type;
1237 {
1238 	/*
1239 	 * Some chips don't like this so only do this if ASF is enabled
1240 	 */
1241 	if (sc->bge_asf_mode)
1242 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1243 
1244 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1245 		switch (type) {
1246 		case BGE_RESET_START:
1247 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1248 			break;
1249 		case BGE_RESET_STOP:
1250 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1251 			break;
1252 		}
1253 	}
1254 }
1255 
1256 static void
1257 bge_sig_post_reset(sc, type)
1258 	struct bge_softc *sc;
1259 	int type;
1260 {
1261 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1262 		switch (type) {
1263 		case BGE_RESET_START:
1264 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1265 			/* START DONE */
1266 			break;
1267 		case BGE_RESET_STOP:
1268 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1269 			break;
1270 		}
1271 	}
1272 }
1273 
1274 static void
1275 bge_sig_legacy(sc, type)
1276 	struct bge_softc *sc;
1277 	int type;
1278 {
1279 	if (sc->bge_asf_mode) {
1280 		switch (type) {
1281 		case BGE_RESET_START:
1282 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1283 			break;
1284 		case BGE_RESET_STOP:
1285 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1286 			break;
1287 		}
1288 	}
1289 }
1290 
1291 void bge_stop_fw(struct bge_softc *);
1292 void
1293 bge_stop_fw(sc)
1294 	struct bge_softc *sc;
1295 {
1296 	int i;
1297 
1298 	if (sc->bge_asf_mode) {
1299 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1300 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1301 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1302 
1303 		for (i = 0; i < 100; i++ ) {
1304 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1305 				break;
1306 			DELAY(10);
1307 		}
1308 	}
1309 }
1310 
1311 /*
1312  * Do endian, PCI and DMA initialization.
1313  */
1314 static int
1315 bge_chipinit(struct bge_softc *sc)
1316 {
1317 	uint32_t dma_rw_ctl;
1318 	uint16_t val;
1319 	int i;
1320 
1321 	/* Set endianness before we access any non-PCI registers. */
1322 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1323 
1324 	/* Clear the MAC control register */
1325 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1326 
1327 	/*
1328 	 * Clear the MAC statistics block in the NIC's
1329 	 * internal memory.
1330 	 */
1331 	for (i = BGE_STATS_BLOCK;
1332 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1333 		BGE_MEMWIN_WRITE(sc, i, 0);
1334 
1335 	for (i = BGE_STATUS_BLOCK;
1336 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1337 		BGE_MEMWIN_WRITE(sc, i, 0);
1338 
1339 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1340 		/*
1341 		 *  Fix data corruption caused by non-qword write with WB.
1342 		 *  Fix master abort in PCI mode.
1343 		 *  Fix PCI latency timer.
1344 		 */
1345 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1346 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1347 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1348 	}
1349 
1350 	/*
1351 	 * Set up the PCI DMA control register.
1352 	 */
1353 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1354 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1355 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1356 		/* Read watermark not used, 128 bytes for write. */
1357 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1358 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1359 		if (BGE_IS_5714_FAMILY(sc)) {
1360 			/* 256 bytes for read and write. */
1361 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1362 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1363 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1364 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1365 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1366 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1367 			/*
1368 			 * In the BCM5703, the DMA read watermark should
1369 			 * be set to less than or equal to the maximum
1370 			 * memory read byte count of the PCI-X command
1371 			 * register.
1372 			 */
1373 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1374 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1375 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1376 			/* 1536 bytes for read, 384 bytes for write. */
1377 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1378 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1379 		} else {
1380 			/* 384 bytes for read and write. */
1381 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1382 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1383 			    0x0F;
1384 		}
1385 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1386 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1387 			uint32_t tmp;
1388 
1389 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1390 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1391 			if (tmp == 6 || tmp == 7)
1392 				dma_rw_ctl |=
1393 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1394 
1395 			/* Set PCI-X DMA write workaround. */
1396 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1397 		}
1398 	} else {
1399 		/* Conventional PCI bus: 256 bytes for read and write. */
1400 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1401 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1402 
1403 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1404 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1405 			dma_rw_ctl |= 0x0F;
1406 	}
1407 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1408 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1409 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1410 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1411 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1412 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1413 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1414 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1415 
1416 	/*
1417 	 * Set up general mode register.
1418 	 */
1419 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1420 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1421 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1422 
1423 	/*
1424 	 * BCM5701 B5 have a bug causing data corruption when using
1425 	 * 64-bit DMA reads, which can be terminated early and then
1426 	 * completed later as 32-bit accesses, in combination with
1427 	 * certain bridges.
1428 	 */
1429 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1430 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1431 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1432 
1433 	/*
1434 	 * Tell the firmware the driver is running
1435 	 */
1436 	if (sc->bge_asf_mode & ASF_STACKUP)
1437 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1438 
1439 	/*
1440 	 * Disable memory write invalidate.  Apparently it is not supported
1441 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1442 	 * as these chips need it even when using MSI.
1443 	 */
1444 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1445 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1446 
1447 	/* Set the timer prescaler (always 66Mhz) */
1448 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1449 
1450 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1451 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1452 		DELAY(40);	/* XXX */
1453 
1454 		/* Put PHY into ready state */
1455 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1456 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1457 		DELAY(40);
1458 	}
1459 
1460 	return (0);
1461 }
1462 
1463 static int
1464 bge_blockinit(struct bge_softc *sc)
1465 {
1466 	struct bge_rcb *rcb;
1467 	bus_size_t vrcb;
1468 	bge_hostaddr taddr;
1469 	uint32_t val;
1470 	int i;
1471 
1472 	/*
1473 	 * Initialize the memory window pointer register so that
1474 	 * we can access the first 32K of internal NIC RAM. This will
1475 	 * allow us to set up the TX send ring RCBs and the RX return
1476 	 * ring RCBs, plus other things which live in NIC memory.
1477 	 */
1478 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1479 
1480 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1481 
1482 	if (!(BGE_IS_5705_PLUS(sc))) {
1483 		/* Configure mbuf memory pool */
1484 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1485 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1486 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1487 		else
1488 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1489 
1490 		/* Configure DMA resource pool */
1491 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1492 		    BGE_DMA_DESCRIPTORS);
1493 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1494 	}
1495 
1496 	/* Configure mbuf pool watermarks */
1497 	if (!BGE_IS_5705_PLUS(sc)) {
1498 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1499 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1500 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1501 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1502 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1503 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1505 	} else {
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1507 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1509 	}
1510 
1511 	/* Configure DMA resource watermarks */
1512 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1513 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1514 
1515 	/* Enable buffer manager */
1516 	if (!(BGE_IS_5705_PLUS(sc))) {
1517 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1518 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1519 
1520 		/* Poll for buffer manager start indication */
1521 		for (i = 0; i < BGE_TIMEOUT; i++) {
1522 			DELAY(10);
1523 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1524 				break;
1525 		}
1526 
1527 		if (i == BGE_TIMEOUT) {
1528 			device_printf(sc->bge_dev,
1529 			    "buffer manager failed to start\n");
1530 			return (ENXIO);
1531 		}
1532 	}
1533 
1534 	/* Enable flow-through queues */
1535 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1536 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1537 
1538 	/* Wait until queue initialization is complete */
1539 	for (i = 0; i < BGE_TIMEOUT; i++) {
1540 		DELAY(10);
1541 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1542 			break;
1543 	}
1544 
1545 	if (i == BGE_TIMEOUT) {
1546 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1547 		return (ENXIO);
1548 	}
1549 
1550 	/* Initialize the standard RX ring control block */
1551 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1552 	rcb->bge_hostaddr.bge_addr_lo =
1553 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1554 	rcb->bge_hostaddr.bge_addr_hi =
1555 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1556 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1557 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1558 	if (BGE_IS_5705_PLUS(sc))
1559 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1560 	else
1561 		rcb->bge_maxlen_flags =
1562 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1563 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1564 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1565 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1566 
1567 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1568 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1569 
1570 	/*
1571 	 * Initialize the jumbo RX ring control block
1572 	 * We set the 'ring disabled' bit in the flags
1573 	 * field until we're actually ready to start
1574 	 * using this ring (i.e. once we set the MTU
1575 	 * high enough to require it).
1576 	 */
1577 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1578 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1579 
1580 		rcb->bge_hostaddr.bge_addr_lo =
1581 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1582 		rcb->bge_hostaddr.bge_addr_hi =
1583 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1584 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1585 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1586 		    BUS_DMASYNC_PREREAD);
1587 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1588 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1589 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1590 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1591 		    rcb->bge_hostaddr.bge_addr_hi);
1592 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1593 		    rcb->bge_hostaddr.bge_addr_lo);
1594 
1595 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1596 		    rcb->bge_maxlen_flags);
1597 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1598 
1599 		/* Set up dummy disabled mini ring RCB */
1600 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1601 		rcb->bge_maxlen_flags =
1602 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1603 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1604 		    rcb->bge_maxlen_flags);
1605 	}
1606 
1607 	/*
1608 	 * Set the BD ring replentish thresholds. The recommended
1609 	 * values are 1/8th the number of descriptors allocated to
1610 	 * each ring.
1611 	 * XXX The 5754 requires a lower threshold, so it might be a
1612 	 * requirement of all 575x family chips.  The Linux driver sets
1613 	 * the lower threshold for all 5705 family chips as well, but there
1614 	 * are reports that it might not need to be so strict.
1615 	 *
1616 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1617 	 * well.
1618 	 */
1619 	if (BGE_IS_5705_PLUS(sc))
1620 		val = 8;
1621 	else
1622 		val = BGE_STD_RX_RING_CNT / 8;
1623 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1624 	if (BGE_IS_JUMBO_CAPABLE(sc))
1625 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1626 		    BGE_JUMBO_RX_RING_CNT/8);
1627 
1628 	/*
1629 	 * Disable all unused send rings by setting the 'ring disabled'
1630 	 * bit in the flags field of all the TX send ring control blocks.
1631 	 * These are located in NIC memory.
1632 	 */
1633 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1634 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1635 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1636 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1637 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1638 		vrcb += sizeof(struct bge_rcb);
1639 	}
1640 
1641 	/* Configure TX RCB 0 (we use only the first ring) */
1642 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1643 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1644 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1645 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1646 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1647 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1648 	if (!(BGE_IS_5705_PLUS(sc)))
1649 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1650 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1651 
1652 	/* Disable all unused RX return rings */
1653 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1654 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1655 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1656 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1657 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1658 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1659 		    BGE_RCB_FLAG_RING_DISABLED));
1660 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1661 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1662 		    (i * (sizeof(uint64_t))), 0);
1663 		vrcb += sizeof(struct bge_rcb);
1664 	}
1665 
1666 	/* Initialize RX ring indexes */
1667 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1668 	if (BGE_IS_JUMBO_CAPABLE(sc))
1669 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1670 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1671 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1672 
1673 	/*
1674 	 * Set up RX return ring 0
1675 	 * Note that the NIC address for RX return rings is 0x00000000.
1676 	 * The return rings live entirely within the host, so the
1677 	 * nicaddr field in the RCB isn't used.
1678 	 */
1679 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1680 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1681 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1682 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1683 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1684 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1685 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1686 
1687 	/* Set random backoff seed for TX */
1688 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1689 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1690 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1691 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1692 	    BGE_TX_BACKOFF_SEED_MASK);
1693 
1694 	/* Set inter-packet gap */
1695 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1696 
1697 	/*
1698 	 * Specify which ring to use for packets that don't match
1699 	 * any RX rules.
1700 	 */
1701 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1702 
1703 	/*
1704 	 * Configure number of RX lists. One interrupt distribution
1705 	 * list, sixteen active lists, one bad frames class.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1708 
1709 	/* Inialize RX list placement stats mask. */
1710 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1711 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1712 
1713 	/* Disable host coalescing until we get it set up */
1714 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1715 
1716 	/* Poll to make sure it's shut down. */
1717 	for (i = 0; i < BGE_TIMEOUT; i++) {
1718 		DELAY(10);
1719 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1720 			break;
1721 	}
1722 
1723 	if (i == BGE_TIMEOUT) {
1724 		device_printf(sc->bge_dev,
1725 		    "host coalescing engine failed to idle\n");
1726 		return (ENXIO);
1727 	}
1728 
1729 	/* Set up host coalescing defaults */
1730 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1731 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1732 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1733 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1734 	if (!(BGE_IS_5705_PLUS(sc))) {
1735 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1736 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1737 	}
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1740 
1741 	/* Set up address of statistics block */
1742 	if (!(BGE_IS_5705_PLUS(sc))) {
1743 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1744 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1745 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1746 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1747 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1748 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1750 	}
1751 
1752 	/* Set up address of status block */
1753 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1754 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1755 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1756 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1757 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1758 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1759 
1760 	/* Set up status block size. */
1761 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1762 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1763 		val = BGE_STATBLKSZ_FULL;
1764 	else
1765 		val = BGE_STATBLKSZ_32BYTE;
1766 
1767 	/* Turn on host coalescing state machine */
1768 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1769 
1770 	/* Turn on RX BD completion state machine and enable attentions */
1771 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1772 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1773 
1774 	/* Turn on RX list placement state machine */
1775 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1776 
1777 	/* Turn on RX list selector state machine. */
1778 	if (!(BGE_IS_5705_PLUS(sc)))
1779 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1780 
1781 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1782 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1783 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1784 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1785 
1786 	if (sc->bge_flags & BGE_FLAG_TBI)
1787 		val |= BGE_PORTMODE_TBI;
1788 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1789 		val |= BGE_PORTMODE_GMII;
1790 	else
1791 		val |= BGE_PORTMODE_MII;
1792 
1793 	/* Turn on DMA, clear stats */
1794 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1795 
1796 	/* Set misc. local control, enable interrupts on attentions */
1797 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1798 
1799 #ifdef notdef
1800 	/* Assert GPIO pins for PHY reset */
1801 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1802 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1803 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1804 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1805 #endif
1806 
1807 	/* Turn on DMA completion state machine */
1808 	if (!(BGE_IS_5705_PLUS(sc)))
1809 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1810 
1811 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1812 
1813 	/* Enable host coalescing bug fix. */
1814 	if (BGE_IS_5755_PLUS(sc))
1815 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1816 
1817 	/* Turn on write DMA state machine */
1818 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1819 	DELAY(40);
1820 
1821 	/* Turn on read DMA state machine */
1822 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1823 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1824 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1825 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1826 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1827 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1828 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1829 	if (sc->bge_flags & BGE_FLAG_PCIE)
1830 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1831 	if (sc->bge_flags & BGE_FLAG_TSO)
1832 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1833 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1834 	DELAY(40);
1835 
1836 	/* Turn on RX data completion state machine */
1837 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1838 
1839 	/* Turn on RX BD initiator state machine */
1840 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1841 
1842 	/* Turn on RX data and RX BD initiator state machine */
1843 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1844 
1845 	/* Turn on Mbuf cluster free state machine */
1846 	if (!(BGE_IS_5705_PLUS(sc)))
1847 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1848 
1849 	/* Turn on send BD completion state machine */
1850 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1851 
1852 	/* Turn on send data completion state machine */
1853 	val = BGE_SDCMODE_ENABLE;
1854 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1855 		val |= BGE_SDCMODE_CDELAY;
1856 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1857 
1858 	/* Turn on send data initiator state machine */
1859 	if (sc->bge_flags & BGE_FLAG_TSO)
1860 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1861 	else
1862 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1863 
1864 	/* Turn on send BD initiator state machine */
1865 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1866 
1867 	/* Turn on send BD selector state machine */
1868 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1869 
1870 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1871 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1872 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1873 
1874 	/* ack/clear link change events */
1875 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1876 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1877 	    BGE_MACSTAT_LINK_CHANGED);
1878 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1879 
1880 	/* Enable PHY auto polling (for MII/GMII only) */
1881 	if (sc->bge_flags & BGE_FLAG_TBI) {
1882 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1883 	} else {
1884 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1885 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1886 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1887 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1888 			    BGE_EVTENB_MI_INTERRUPT);
1889 	}
1890 
1891 	/*
1892 	 * Clear any pending link state attention.
1893 	 * Otherwise some link state change events may be lost until attention
1894 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1895 	 * It's not necessary on newer BCM chips - perhaps enabling link
1896 	 * state change attentions implies clearing pending attention.
1897 	 */
1898 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1899 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1900 	    BGE_MACSTAT_LINK_CHANGED);
1901 
1902 	/* Enable link state change attentions. */
1903 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1904 
1905 	return (0);
1906 }
1907 
1908 const struct bge_revision *
1909 bge_lookup_rev(uint32_t chipid)
1910 {
1911 	const struct bge_revision *br;
1912 
1913 	for (br = bge_revisions; br->br_name != NULL; br++) {
1914 		if (br->br_chipid == chipid)
1915 			return (br);
1916 	}
1917 
1918 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1919 		if (br->br_chipid == BGE_ASICREV(chipid))
1920 			return (br);
1921 	}
1922 
1923 	return (NULL);
1924 }
1925 
1926 const struct bge_vendor *
1927 bge_lookup_vendor(uint16_t vid)
1928 {
1929 	const struct bge_vendor *v;
1930 
1931 	for (v = bge_vendors; v->v_name != NULL; v++)
1932 		if (v->v_id == vid)
1933 			return (v);
1934 
1935 	panic("%s: unknown vendor %d", __func__, vid);
1936 	return (NULL);
1937 }
1938 
1939 /*
1940  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1941  * against our list and return its name if we find a match.
1942  *
1943  * Note that since the Broadcom controller contains VPD support, we
1944  * try to get the device name string from the controller itself instead
1945  * of the compiled-in string. It guarantees we'll always announce the
1946  * right product name. We fall back to the compiled-in string when
1947  * VPD is unavailable or corrupt.
1948  */
1949 static int
1950 bge_probe(device_t dev)
1951 {
1952 	const struct bge_type *t = bge_devs;
1953 	struct bge_softc *sc = device_get_softc(dev);
1954 	uint16_t vid, did;
1955 
1956 	sc->bge_dev = dev;
1957 	vid = pci_get_vendor(dev);
1958 	did = pci_get_device(dev);
1959 	while(t->bge_vid != 0) {
1960 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1961 			char model[64], buf[96];
1962 			const struct bge_revision *br;
1963 			const struct bge_vendor *v;
1964 			uint32_t id;
1965 
1966 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1967 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1968 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1969 				id = pci_read_config(dev,
1970 				    BGE_PCI_PRODID_ASICREV, 4);
1971 			br = bge_lookup_rev(id);
1972 			v = bge_lookup_vendor(vid);
1973 			{
1974 #if __FreeBSD_version > 700024
1975 				const char *pname;
1976 
1977 				if (bge_has_eaddr(sc) &&
1978 				    pci_get_vpd_ident(dev, &pname) == 0)
1979 					snprintf(model, 64, "%s", pname);
1980 				else
1981 #endif
1982 					snprintf(model, 64, "%s %s",
1983 					    v->v_name,
1984 					    br != NULL ? br->br_name :
1985 					    "NetXtreme Ethernet Controller");
1986 			}
1987 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1988 			    br != NULL ? "" : "unknown ", id);
1989 			device_set_desc_copy(dev, buf);
1990 			return (0);
1991 		}
1992 		t++;
1993 	}
1994 
1995 	return (ENXIO);
1996 }
1997 
1998 static void
1999 bge_dma_free(struct bge_softc *sc)
2000 {
2001 	int i;
2002 
2003 	/* Destroy DMA maps for RX buffers. */
2004 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2005 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2006 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2007 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2008 	}
2009 	if (sc->bge_cdata.bge_rx_std_sparemap)
2010 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2011 		    sc->bge_cdata.bge_rx_std_sparemap);
2012 
2013 	/* Destroy DMA maps for jumbo RX buffers. */
2014 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2015 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2016 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2017 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2018 	}
2019 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2020 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2021 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2022 
2023 	/* Destroy DMA maps for TX buffers. */
2024 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2025 		if (sc->bge_cdata.bge_tx_dmamap[i])
2026 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2027 			    sc->bge_cdata.bge_tx_dmamap[i]);
2028 	}
2029 
2030 	if (sc->bge_cdata.bge_rx_mtag)
2031 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2032 	if (sc->bge_cdata.bge_tx_mtag)
2033 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2034 
2035 
2036 	/* Destroy standard RX ring. */
2037 	if (sc->bge_cdata.bge_rx_std_ring_map)
2038 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2039 		    sc->bge_cdata.bge_rx_std_ring_map);
2040 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2041 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2042 		    sc->bge_ldata.bge_rx_std_ring,
2043 		    sc->bge_cdata.bge_rx_std_ring_map);
2044 
2045 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2046 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2047 
2048 	/* Destroy jumbo RX ring. */
2049 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2050 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2051 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2052 
2053 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2054 	    sc->bge_ldata.bge_rx_jumbo_ring)
2055 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2056 		    sc->bge_ldata.bge_rx_jumbo_ring,
2057 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2058 
2059 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2060 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2061 
2062 	/* Destroy RX return ring. */
2063 	if (sc->bge_cdata.bge_rx_return_ring_map)
2064 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2065 		    sc->bge_cdata.bge_rx_return_ring_map);
2066 
2067 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2068 	    sc->bge_ldata.bge_rx_return_ring)
2069 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2070 		    sc->bge_ldata.bge_rx_return_ring,
2071 		    sc->bge_cdata.bge_rx_return_ring_map);
2072 
2073 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2074 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2075 
2076 	/* Destroy TX ring. */
2077 	if (sc->bge_cdata.bge_tx_ring_map)
2078 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2079 		    sc->bge_cdata.bge_tx_ring_map);
2080 
2081 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2082 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2083 		    sc->bge_ldata.bge_tx_ring,
2084 		    sc->bge_cdata.bge_tx_ring_map);
2085 
2086 	if (sc->bge_cdata.bge_tx_ring_tag)
2087 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2088 
2089 	/* Destroy status block. */
2090 	if (sc->bge_cdata.bge_status_map)
2091 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2092 		    sc->bge_cdata.bge_status_map);
2093 
2094 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2095 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2096 		    sc->bge_ldata.bge_status_block,
2097 		    sc->bge_cdata.bge_status_map);
2098 
2099 	if (sc->bge_cdata.bge_status_tag)
2100 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2101 
2102 	/* Destroy statistics block. */
2103 	if (sc->bge_cdata.bge_stats_map)
2104 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2105 		    sc->bge_cdata.bge_stats_map);
2106 
2107 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2108 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2109 		    sc->bge_ldata.bge_stats,
2110 		    sc->bge_cdata.bge_stats_map);
2111 
2112 	if (sc->bge_cdata.bge_stats_tag)
2113 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2114 
2115 	/* Destroy the parent tag. */
2116 	if (sc->bge_cdata.bge_parent_tag)
2117 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2118 }
2119 
2120 static int
2121 bge_dma_alloc(device_t dev)
2122 {
2123 	struct bge_dmamap_arg ctx;
2124 	struct bge_softc *sc;
2125 	bus_addr_t lowaddr;
2126 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2127 	int i, error;
2128 
2129 	sc = device_get_softc(dev);
2130 
2131 	lowaddr = BUS_SPACE_MAXADDR;
2132 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2133 		lowaddr = BGE_DMA_MAXADDR;
2134 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2135 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2136 	/*
2137 	 * Allocate the parent bus DMA tag appropriate for PCI.
2138 	 */
2139 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2140 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2141 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2142 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2143 
2144 	if (error != 0) {
2145 		device_printf(sc->bge_dev,
2146 		    "could not allocate parent dma tag\n");
2147 		return (ENOMEM);
2148 	}
2149 
2150 	/*
2151 	 * Create tag for Tx mbufs.
2152 	 */
2153 	if (sc->bge_flags & BGE_FLAG_TSO) {
2154 		txsegsz = BGE_TSOSEG_SZ;
2155 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2156 	} else {
2157 		txsegsz = MCLBYTES;
2158 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2159 	}
2160 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2161 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2162 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2163 	    &sc->bge_cdata.bge_tx_mtag);
2164 
2165 	if (error) {
2166 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2167 		return (ENOMEM);
2168 	}
2169 
2170 	/*
2171 	 * Create tag for Rx mbufs.
2172 	 */
2173 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2174 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2175 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2176 
2177 	if (error) {
2178 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2179 		return (ENOMEM);
2180 	}
2181 
2182 	/* Create DMA maps for RX buffers. */
2183 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2184 	    &sc->bge_cdata.bge_rx_std_sparemap);
2185 	if (error) {
2186 		device_printf(sc->bge_dev,
2187 		    "can't create spare DMA map for RX\n");
2188 		return (ENOMEM);
2189 	}
2190 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2191 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2192 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2193 		if (error) {
2194 			device_printf(sc->bge_dev,
2195 			    "can't create DMA map for RX\n");
2196 			return (ENOMEM);
2197 		}
2198 	}
2199 
2200 	/* Create DMA maps for TX buffers. */
2201 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2202 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2203 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2204 		if (error) {
2205 			device_printf(sc->bge_dev,
2206 			    "can't create DMA map for TX\n");
2207 			return (ENOMEM);
2208 		}
2209 	}
2210 
2211 	/* Create tag for standard RX ring. */
2212 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2213 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2214 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2215 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2216 
2217 	if (error) {
2218 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2219 		return (ENOMEM);
2220 	}
2221 
2222 	/* Allocate DMA'able memory for standard RX ring. */
2223 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2224 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2225 	    &sc->bge_cdata.bge_rx_std_ring_map);
2226 	if (error)
2227 		return (ENOMEM);
2228 
2229 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2230 
2231 	/* Load the address of the standard RX ring. */
2232 	ctx.bge_maxsegs = 1;
2233 	ctx.sc = sc;
2234 
2235 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2236 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2237 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2238 
2239 	if (error)
2240 		return (ENOMEM);
2241 
2242 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2243 
2244 	/* Create tags for jumbo mbufs. */
2245 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2246 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2247 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2248 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2249 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2250 		if (error) {
2251 			device_printf(sc->bge_dev,
2252 			    "could not allocate jumbo dma tag\n");
2253 			return (ENOMEM);
2254 		}
2255 
2256 		/* Create tag for jumbo RX ring. */
2257 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2258 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2259 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2260 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2261 
2262 		if (error) {
2263 			device_printf(sc->bge_dev,
2264 			    "could not allocate jumbo ring dma tag\n");
2265 			return (ENOMEM);
2266 		}
2267 
2268 		/* Allocate DMA'able memory for jumbo RX ring. */
2269 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2270 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2271 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2272 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2273 		if (error)
2274 			return (ENOMEM);
2275 
2276 		/* Load the address of the jumbo RX ring. */
2277 		ctx.bge_maxsegs = 1;
2278 		ctx.sc = sc;
2279 
2280 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2281 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2282 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2283 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2284 
2285 		if (error)
2286 			return (ENOMEM);
2287 
2288 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2289 
2290 		/* Create DMA maps for jumbo RX buffers. */
2291 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2292 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2293 		if (error) {
2294 			device_printf(sc->bge_dev,
2295 			    "can't create spare DMA map for jumbo RX\n");
2296 			return (ENOMEM);
2297 		}
2298 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2299 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2300 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2301 			if (error) {
2302 				device_printf(sc->bge_dev,
2303 				    "can't create DMA map for jumbo RX\n");
2304 				return (ENOMEM);
2305 			}
2306 		}
2307 
2308 	}
2309 
2310 	/* Create tag for RX return ring. */
2311 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2312 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2313 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2314 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2315 
2316 	if (error) {
2317 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2318 		return (ENOMEM);
2319 	}
2320 
2321 	/* Allocate DMA'able memory for RX return ring. */
2322 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2323 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2324 	    &sc->bge_cdata.bge_rx_return_ring_map);
2325 	if (error)
2326 		return (ENOMEM);
2327 
2328 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2329 	    BGE_RX_RTN_RING_SZ(sc));
2330 
2331 	/* Load the address of the RX return ring. */
2332 	ctx.bge_maxsegs = 1;
2333 	ctx.sc = sc;
2334 
2335 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2336 	    sc->bge_cdata.bge_rx_return_ring_map,
2337 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2338 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2339 
2340 	if (error)
2341 		return (ENOMEM);
2342 
2343 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2344 
2345 	/* Create tag for TX ring. */
2346 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2347 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2348 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2349 	    &sc->bge_cdata.bge_tx_ring_tag);
2350 
2351 	if (error) {
2352 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2353 		return (ENOMEM);
2354 	}
2355 
2356 	/* Allocate DMA'able memory for TX ring. */
2357 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2358 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2359 	    &sc->bge_cdata.bge_tx_ring_map);
2360 	if (error)
2361 		return (ENOMEM);
2362 
2363 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2364 
2365 	/* Load the address of the TX ring. */
2366 	ctx.bge_maxsegs = 1;
2367 	ctx.sc = sc;
2368 
2369 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2370 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2371 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2372 
2373 	if (error)
2374 		return (ENOMEM);
2375 
2376 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2377 
2378 	/*
2379 	 * Create tag for status block.
2380 	 * Because we only use single Tx/Rx/Rx return ring, use
2381 	 * minimum status block size except BCM5700 AX/BX which
2382 	 * seems to want to see full status block size regardless
2383 	 * of configured number of ring.
2384 	 */
2385 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2386 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2387 		sbsz = BGE_STATUS_BLK_SZ;
2388 	else
2389 		sbsz = 32;
2390 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2391 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2392 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2393 
2394 	if (error) {
2395 		device_printf(sc->bge_dev,
2396 		    "could not allocate status dma tag\n");
2397 		return (ENOMEM);
2398 	}
2399 
2400 	/* Allocate DMA'able memory for status block. */
2401 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2402 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2403 	    &sc->bge_cdata.bge_status_map);
2404 	if (error)
2405 		return (ENOMEM);
2406 
2407 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2408 
2409 	/* Load the address of the status block. */
2410 	ctx.sc = sc;
2411 	ctx.bge_maxsegs = 1;
2412 
2413 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2414 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2415 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2416 
2417 	if (error)
2418 		return (ENOMEM);
2419 
2420 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2421 
2422 	/* Create tag for statistics block. */
2423 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2424 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2425 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2426 	    &sc->bge_cdata.bge_stats_tag);
2427 
2428 	if (error) {
2429 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2430 		return (ENOMEM);
2431 	}
2432 
2433 	/* Allocate DMA'able memory for statistics block. */
2434 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2435 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2436 	    &sc->bge_cdata.bge_stats_map);
2437 	if (error)
2438 		return (ENOMEM);
2439 
2440 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2441 
2442 	/* Load the address of the statstics block. */
2443 	ctx.sc = sc;
2444 	ctx.bge_maxsegs = 1;
2445 
2446 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2447 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2448 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2449 
2450 	if (error)
2451 		return (ENOMEM);
2452 
2453 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2454 
2455 	return (0);
2456 }
2457 
2458 /*
2459  * Return true if this device has more than one port.
2460  */
2461 static int
2462 bge_has_multiple_ports(struct bge_softc *sc)
2463 {
2464 	device_t dev = sc->bge_dev;
2465 	u_int b, d, f, fscan, s;
2466 
2467 	d = pci_get_domain(dev);
2468 	b = pci_get_bus(dev);
2469 	s = pci_get_slot(dev);
2470 	f = pci_get_function(dev);
2471 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2472 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2473 			return (1);
2474 	return (0);
2475 }
2476 
2477 /*
2478  * Return true if MSI can be used with this device.
2479  */
2480 static int
2481 bge_can_use_msi(struct bge_softc *sc)
2482 {
2483 	int can_use_msi = 0;
2484 
2485 	switch (sc->bge_asicrev) {
2486 	case BGE_ASICREV_BCM5714_A0:
2487 	case BGE_ASICREV_BCM5714:
2488 		/*
2489 		 * Apparently, MSI doesn't work when these chips are
2490 		 * configured in single-port mode.
2491 		 */
2492 		if (bge_has_multiple_ports(sc))
2493 			can_use_msi = 1;
2494 		break;
2495 	case BGE_ASICREV_BCM5750:
2496 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2497 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2498 			can_use_msi = 1;
2499 		break;
2500 	default:
2501 		if (BGE_IS_575X_PLUS(sc))
2502 			can_use_msi = 1;
2503 	}
2504 	return (can_use_msi);
2505 }
2506 
2507 static int
2508 bge_attach(device_t dev)
2509 {
2510 	struct ifnet *ifp;
2511 	struct bge_softc *sc;
2512 	uint32_t hwcfg = 0, misccfg;
2513 	u_char eaddr[ETHER_ADDR_LEN];
2514 	int error, msicount, reg, rid, trys;
2515 
2516 	sc = device_get_softc(dev);
2517 	sc->bge_dev = dev;
2518 
2519 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2520 
2521 	/*
2522 	 * Map control/status registers.
2523 	 */
2524 	pci_enable_busmaster(dev);
2525 
2526 	rid = BGE_PCI_BAR0;
2527 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2528 	    RF_ACTIVE);
2529 
2530 	if (sc->bge_res == NULL) {
2531 		device_printf (sc->bge_dev, "couldn't map memory\n");
2532 		error = ENXIO;
2533 		goto fail;
2534 	}
2535 
2536 	/* Save various chip information. */
2537 	sc->bge_chipid =
2538 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2539 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2540 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2541 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2542 		    4);
2543 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2544 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2545 
2546 	/*
2547 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2548 	 * 5705 A0 and A1 chips.
2549 	 */
2550 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2551 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2552 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2553 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2554 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2555 
2556 	if (bge_has_eaddr(sc))
2557 		sc->bge_flags |= BGE_FLAG_EADDR;
2558 
2559 	/* Save chipset family. */
2560 	switch (sc->bge_asicrev) {
2561 	case BGE_ASICREV_BCM5755:
2562 	case BGE_ASICREV_BCM5761:
2563 	case BGE_ASICREV_BCM5784:
2564 	case BGE_ASICREV_BCM5785:
2565 	case BGE_ASICREV_BCM5787:
2566 	case BGE_ASICREV_BCM57780:
2567 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2568 		    BGE_FLAG_5705_PLUS;
2569 		break;
2570 	case BGE_ASICREV_BCM5700:
2571 	case BGE_ASICREV_BCM5701:
2572 	case BGE_ASICREV_BCM5703:
2573 	case BGE_ASICREV_BCM5704:
2574 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2575 		break;
2576 	case BGE_ASICREV_BCM5714_A0:
2577 	case BGE_ASICREV_BCM5780:
2578 	case BGE_ASICREV_BCM5714:
2579 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2580 		/* FALLTHROUGH */
2581 	case BGE_ASICREV_BCM5750:
2582 	case BGE_ASICREV_BCM5752:
2583 	case BGE_ASICREV_BCM5906:
2584 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2585 		/* FALLTHROUGH */
2586 	case BGE_ASICREV_BCM5705:
2587 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2588 		break;
2589 	}
2590 
2591 	/* Set various bug flags. */
2592 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2593 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2594 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2595 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2596 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2597 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2598 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2599 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2600 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2601 		sc->bge_flags |= BGE_FLAG_NO_3LED;
2602 	if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2603 		sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
2604 	if (BGE_IS_5705_PLUS(sc) &&
2605 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2606 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2607 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2608 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2609 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2610 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2611 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2612 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2613 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2614 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2615 	}
2616 
2617 	/*
2618 	 * All controllers that are not 5755 or higher have 4GB
2619 	 * boundary DMA bug.
2620 	 * Whenever an address crosses a multiple of the 4GB boundary
2621 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2622 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2623 	 * state machine will lockup and cause the device to hang.
2624 	 */
2625 	if (BGE_IS_5755_PLUS(sc) == 0)
2626 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2627 
2628 	/*
2629 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2630 	 * but I do not know the DEVICEID for the 5788M.
2631 	 */
2632 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2633 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2634 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2635 		sc->bge_flags |= BGE_FLAG_5788;
2636 
2637 	/*
2638 	 * Some controllers seem to require a special firmware to use
2639 	 * TSO. But the firmware is not available to FreeBSD and Linux
2640 	 * claims that the TSO performed by the firmware is slower than
2641 	 * hardware based TSO. Moreover the firmware based TSO has one
2642 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2643 	 * header is greater than 80 bytes. The workaround for the TSO
2644 	 * bug exist but it seems it's too expensive than not using
2645 	 * TSO at all. Some hardwares also have the TSO bug so limit
2646 	 * the TSO to the controllers that are not affected TSO issues
2647 	 * (e.g. 5755 or higher).
2648 	 */
2649 	if (BGE_IS_5755_PLUS(sc)) {
2650 		/*
2651 		 * BCM5754 and BCM5787 shares the same ASIC id so
2652 		 * explicit device id check is required.
2653 		 * Due to unknown reason TSO does not work on BCM5755M.
2654 		 */
2655 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2656 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2657 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2658 			sc->bge_flags |= BGE_FLAG_TSO;
2659 	}
2660 
2661   	/*
2662 	 * Check if this is a PCI-X or PCI Express device.
2663   	 */
2664 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2665 		/*
2666 		 * Found a PCI Express capabilities register, this
2667 		 * must be a PCI Express device.
2668 		 */
2669 		sc->bge_flags |= BGE_FLAG_PCIE;
2670 		sc->bge_expcap = reg;
2671 		if (pci_get_max_read_req(dev) != 4096)
2672 			pci_set_max_read_req(dev, 4096);
2673 	} else {
2674 		/*
2675 		 * Check if the device is in PCI-X Mode.
2676 		 * (This bit is not valid on PCI Express controllers.)
2677 		 */
2678 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2679 			sc->bge_pcixcap = reg;
2680 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2681 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2682 			sc->bge_flags |= BGE_FLAG_PCIX;
2683 	}
2684 
2685 	/*
2686 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2687 	 * not actually a MAC controller bug but an issue with the embedded
2688 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2689 	 */
2690 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2691 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2692 	/*
2693 	 * Allocate the interrupt, using MSI if possible.  These devices
2694 	 * support 8 MSI messages, but only the first one is used in
2695 	 * normal operation.
2696 	 */
2697 	rid = 0;
2698 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2699 		sc->bge_msicap = reg;
2700 		if (bge_can_use_msi(sc)) {
2701 			msicount = pci_msi_count(dev);
2702 			if (msicount > 1)
2703 				msicount = 1;
2704 		} else
2705 			msicount = 0;
2706 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2707 			rid = 1;
2708 			sc->bge_flags |= BGE_FLAG_MSI;
2709 		}
2710 	}
2711 
2712 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2713 	    RF_SHAREABLE | RF_ACTIVE);
2714 
2715 	if (sc->bge_irq == NULL) {
2716 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2717 		error = ENXIO;
2718 		goto fail;
2719 	}
2720 
2721 	if (bootverbose)
2722 		device_printf(dev,
2723 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2724 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2725 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2726 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2727 
2728 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2729 
2730 	/* Try to reset the chip. */
2731 	if (bge_reset(sc)) {
2732 		device_printf(sc->bge_dev, "chip reset failed\n");
2733 		error = ENXIO;
2734 		goto fail;
2735 	}
2736 
2737 	sc->bge_asf_mode = 0;
2738 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2739 	    == BGE_MAGIC_NUMBER)) {
2740 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2741 		    & BGE_HWCFG_ASF) {
2742 			sc->bge_asf_mode |= ASF_ENABLE;
2743 			sc->bge_asf_mode |= ASF_STACKUP;
2744 			if (BGE_IS_575X_PLUS(sc))
2745 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2746 		}
2747 	}
2748 
2749 	/* Try to reset the chip again the nice way. */
2750 	bge_stop_fw(sc);
2751 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2752 	if (bge_reset(sc)) {
2753 		device_printf(sc->bge_dev, "chip reset failed\n");
2754 		error = ENXIO;
2755 		goto fail;
2756 	}
2757 
2758 	bge_sig_legacy(sc, BGE_RESET_STOP);
2759 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2760 
2761 	if (bge_chipinit(sc)) {
2762 		device_printf(sc->bge_dev, "chip initialization failed\n");
2763 		error = ENXIO;
2764 		goto fail;
2765 	}
2766 
2767 	error = bge_get_eaddr(sc, eaddr);
2768 	if (error) {
2769 		device_printf(sc->bge_dev,
2770 		    "failed to read station address\n");
2771 		error = ENXIO;
2772 		goto fail;
2773 	}
2774 
2775 	/* 5705 limits RX return ring to 512 entries. */
2776 	if (BGE_IS_5705_PLUS(sc))
2777 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2778 	else
2779 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2780 
2781 	if (bge_dma_alloc(dev)) {
2782 		device_printf(sc->bge_dev,
2783 		    "failed to allocate DMA resources\n");
2784 		error = ENXIO;
2785 		goto fail;
2786 	}
2787 
2788 	/* Set default tuneable values. */
2789 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2790 	sc->bge_rx_coal_ticks = 150;
2791 	sc->bge_tx_coal_ticks = 150;
2792 	sc->bge_rx_max_coal_bds = 10;
2793 	sc->bge_tx_max_coal_bds = 10;
2794 
2795 	/* Set up ifnet structure */
2796 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2797 	if (ifp == NULL) {
2798 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2799 		error = ENXIO;
2800 		goto fail;
2801 	}
2802 	ifp->if_softc = sc;
2803 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2804 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2805 	ifp->if_ioctl = bge_ioctl;
2806 	ifp->if_start = bge_start;
2807 	ifp->if_init = bge_init;
2808 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2809 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2810 	IFQ_SET_READY(&ifp->if_snd);
2811 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2812 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2813 	    IFCAP_VLAN_MTU;
2814 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2815 		ifp->if_hwassist |= CSUM_TSO;
2816 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
2817 	}
2818 #ifdef IFCAP_VLAN_HWCSUM
2819 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2820 #endif
2821 	ifp->if_capenable = ifp->if_capabilities;
2822 #ifdef DEVICE_POLLING
2823 	ifp->if_capabilities |= IFCAP_POLLING;
2824 #endif
2825 
2826 	/*
2827 	 * 5700 B0 chips do not support checksumming correctly due
2828 	 * to hardware bugs.
2829 	 */
2830 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2831 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2832 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2833 		ifp->if_hwassist = 0;
2834 	}
2835 
2836 	/*
2837 	 * Figure out what sort of media we have by checking the
2838 	 * hardware config word in the first 32k of NIC internal memory,
2839 	 * or fall back to examining the EEPROM if necessary.
2840 	 * Note: on some BCM5700 cards, this value appears to be unset.
2841 	 * If that's the case, we have to rely on identifying the NIC
2842 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2843 	 * SK-9D41.
2844 	 */
2845 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2846 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2847 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2848 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2849 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2850 		    sizeof(hwcfg))) {
2851 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2852 			error = ENXIO;
2853 			goto fail;
2854 		}
2855 		hwcfg = ntohl(hwcfg);
2856 	}
2857 
2858 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2859 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
2860 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2861 		if (BGE_IS_5714_FAMILY(sc))
2862 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2863 		else
2864 			sc->bge_flags |= BGE_FLAG_TBI;
2865 	}
2866 
2867 	if (sc->bge_flags & BGE_FLAG_TBI) {
2868 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2869 		    bge_ifmedia_sts);
2870 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2871 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2872 		    0, NULL);
2873 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2874 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2875 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2876 	} else {
2877 		/*
2878 		 * Do transceiver setup and tell the firmware the
2879 		 * driver is down so we can try to get access the
2880 		 * probe if ASF is running.  Retry a couple of times
2881 		 * if we get a conflict with the ASF firmware accessing
2882 		 * the PHY.
2883 		 */
2884 		trys = 0;
2885 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2886 again:
2887 		bge_asf_driver_up(sc);
2888 
2889 		if (mii_phy_probe(dev, &sc->bge_miibus,
2890 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2891 			if (trys++ < 4) {
2892 				device_printf(sc->bge_dev, "Try again\n");
2893 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2894 				    BMCR_RESET);
2895 				goto again;
2896 			}
2897 
2898 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2899 			error = ENXIO;
2900 			goto fail;
2901 		}
2902 
2903 		/*
2904 		 * Now tell the firmware we are going up after probing the PHY
2905 		 */
2906 		if (sc->bge_asf_mode & ASF_STACKUP)
2907 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2908 	}
2909 
2910 	/*
2911 	 * When using the BCM5701 in PCI-X mode, data corruption has
2912 	 * been observed in the first few bytes of some received packets.
2913 	 * Aligning the packet buffer in memory eliminates the corruption.
2914 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2915 	 * which do not support unaligned accesses, we will realign the
2916 	 * payloads by copying the received packets.
2917 	 */
2918 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2919 	    sc->bge_flags & BGE_FLAG_PCIX)
2920                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2921 
2922 	/*
2923 	 * Call MI attach routine.
2924 	 */
2925 	ether_ifattach(ifp, eaddr);
2926 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2927 
2928 	/* Tell upper layer we support long frames. */
2929 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2930 
2931 	/*
2932 	 * Hookup IRQ last.
2933 	 */
2934 #if __FreeBSD_version > 700030
2935 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2936 		/* Take advantage of single-shot MSI. */
2937 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2938 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2939 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2940 		    taskqueue_thread_enqueue, &sc->bge_tq);
2941 		if (sc->bge_tq == NULL) {
2942 			device_printf(dev, "could not create taskqueue.\n");
2943 			ether_ifdetach(ifp);
2944 			error = ENXIO;
2945 			goto fail;
2946 		}
2947 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2948 		    device_get_nameunit(sc->bge_dev));
2949 		error = bus_setup_intr(dev, sc->bge_irq,
2950 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2951 		    &sc->bge_intrhand);
2952 		if (error)
2953 			ether_ifdetach(ifp);
2954 	} else
2955 		error = bus_setup_intr(dev, sc->bge_irq,
2956 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2957 		    &sc->bge_intrhand);
2958 #else
2959 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2960 	   bge_intr, sc, &sc->bge_intrhand);
2961 #endif
2962 
2963 	if (error) {
2964 		bge_detach(dev);
2965 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2966 	}
2967 
2968 	bge_add_sysctls(sc);
2969 
2970 	return (0);
2971 
2972 fail:
2973 	bge_release_resources(sc);
2974 
2975 	return (error);
2976 }
2977 
2978 static int
2979 bge_detach(device_t dev)
2980 {
2981 	struct bge_softc *sc;
2982 	struct ifnet *ifp;
2983 
2984 	sc = device_get_softc(dev);
2985 	ifp = sc->bge_ifp;
2986 
2987 #ifdef DEVICE_POLLING
2988 	if (ifp->if_capenable & IFCAP_POLLING)
2989 		ether_poll_deregister(ifp);
2990 #endif
2991 
2992 	BGE_LOCK(sc);
2993 	bge_stop(sc);
2994 	bge_reset(sc);
2995 	BGE_UNLOCK(sc);
2996 
2997 	callout_drain(&sc->bge_stat_ch);
2998 
2999 	if (sc->bge_tq)
3000 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3001 	ether_ifdetach(ifp);
3002 
3003 	if (sc->bge_flags & BGE_FLAG_TBI) {
3004 		ifmedia_removeall(&sc->bge_ifmedia);
3005 	} else {
3006 		bus_generic_detach(dev);
3007 		device_delete_child(dev, sc->bge_miibus);
3008 	}
3009 
3010 	bge_release_resources(sc);
3011 
3012 	return (0);
3013 }
3014 
3015 static void
3016 bge_release_resources(struct bge_softc *sc)
3017 {
3018 	device_t dev;
3019 
3020 	dev = sc->bge_dev;
3021 
3022 	if (sc->bge_tq != NULL)
3023 		taskqueue_free(sc->bge_tq);
3024 
3025 	if (sc->bge_intrhand != NULL)
3026 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3027 
3028 	if (sc->bge_irq != NULL)
3029 		bus_release_resource(dev, SYS_RES_IRQ,
3030 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3031 
3032 	if (sc->bge_flags & BGE_FLAG_MSI)
3033 		pci_release_msi(dev);
3034 
3035 	if (sc->bge_res != NULL)
3036 		bus_release_resource(dev, SYS_RES_MEMORY,
3037 		    BGE_PCI_BAR0, sc->bge_res);
3038 
3039 	if (sc->bge_ifp != NULL)
3040 		if_free(sc->bge_ifp);
3041 
3042 	bge_dma_free(sc);
3043 
3044 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3045 		BGE_LOCK_DESTROY(sc);
3046 }
3047 
3048 static int
3049 bge_reset(struct bge_softc *sc)
3050 {
3051 	device_t dev;
3052 	uint32_t cachesize, command, pcistate, reset, val;
3053 	void (*write_op)(struct bge_softc *, int, int);
3054 	uint16_t devctl;
3055 	int i;
3056 
3057 	dev = sc->bge_dev;
3058 
3059 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3060 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3061 		if (sc->bge_flags & BGE_FLAG_PCIE)
3062 			write_op = bge_writemem_direct;
3063 		else
3064 			write_op = bge_writemem_ind;
3065 	} else
3066 		write_op = bge_writereg_ind;
3067 
3068 	/* Save some important PCI state. */
3069 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3070 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3071 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3072 
3073 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3074 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3075 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3076 
3077 	/* Disable fastboot on controllers that support it. */
3078 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3079 	    BGE_IS_5755_PLUS(sc)) {
3080 		if (bootverbose)
3081 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3082 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3083 	}
3084 
3085 	/*
3086 	 * Write the magic number to SRAM at offset 0xB50.
3087 	 * When firmware finishes its initialization it will
3088 	 * write ~BGE_MAGIC_NUMBER to the same location.
3089 	 */
3090 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3091 
3092 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3093 
3094 	/* XXX: Broadcom Linux driver. */
3095 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3096 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3097 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3098 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3099 			/* Prevent PCIE link training during global reset */
3100 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3101 			reset |= 1 << 29;
3102 		}
3103 	}
3104 
3105 	/*
3106 	 * Set GPHY Power Down Override to leave GPHY
3107 	 * powered up in D0 uninitialized.
3108 	 */
3109 	if (BGE_IS_5705_PLUS(sc))
3110 		reset |= 0x04000000;
3111 
3112 	/* Issue global reset */
3113 	write_op(sc, BGE_MISC_CFG, reset);
3114 
3115 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3116 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3117 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3118 		    val | BGE_VCPU_STATUS_DRV_RESET);
3119 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3120 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3121 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3122 	}
3123 
3124 	DELAY(1000);
3125 
3126 	/* XXX: Broadcom Linux driver. */
3127 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3128 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3129 			DELAY(500000); /* wait for link training to complete */
3130 			val = pci_read_config(dev, 0xC4, 4);
3131 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3132 		}
3133 		devctl = pci_read_config(dev,
3134 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3135 		/* Clear enable no snoop and disable relaxed ordering. */
3136 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3137 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3138 		/* Set PCIE max payload size to 128. */
3139 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3140 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3141 		    devctl, 2);
3142 		/* Clear error status. */
3143 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3144 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3145 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3146 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3147 	}
3148 
3149 	/* Reset some of the PCI state that got zapped by reset. */
3150 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3151 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3152 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3153 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3154 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3155 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3156 	/*
3157 	 * Disable PCI-X relaxed ordering to ensure status block update
3158 	 * comes first then packet buffer DMA. Otherwise driver may
3159 	 * read stale status block.
3160 	 */
3161 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3162 		devctl = pci_read_config(dev,
3163 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3164 		devctl &= ~PCIXM_COMMAND_ERO;
3165 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3166 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3167 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3168 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3169 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3170 			    PCIXM_COMMAND_MAX_READ);
3171 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3172 		}
3173 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3174 		    devctl, 2);
3175 	}
3176 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3177 	if (BGE_IS_5714_FAMILY(sc)) {
3178 		/* This chip disables MSI on reset. */
3179 		if (sc->bge_flags & BGE_FLAG_MSI) {
3180 			val = pci_read_config(dev,
3181 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3182 			pci_write_config(dev,
3183 			    sc->bge_msicap + PCIR_MSI_CTRL,
3184 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3185 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3186 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3187 			    val | BGE_MSIMODE_ENABLE);
3188 		}
3189 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3190 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3191 	} else
3192 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3193 
3194 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3195 		for (i = 0; i < BGE_TIMEOUT; i++) {
3196 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3197 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3198 				break;
3199 			DELAY(100);
3200 		}
3201 		if (i == BGE_TIMEOUT) {
3202 			device_printf(sc->bge_dev, "reset timed out\n");
3203 			return (1);
3204 		}
3205 	} else {
3206 		/*
3207 		 * Poll until we see the 1's complement of the magic number.
3208 		 * This indicates that the firmware initialization is complete.
3209 		 * We expect this to fail if no chip containing the Ethernet
3210 		 * address is fitted though.
3211 		 */
3212 		for (i = 0; i < BGE_TIMEOUT; i++) {
3213 			DELAY(10);
3214 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3215 			if (val == ~BGE_MAGIC_NUMBER)
3216 				break;
3217 		}
3218 
3219 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3220 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3221 			    "found 0x%08x\n", val);
3222 	}
3223 
3224 	/*
3225 	 * XXX Wait for the value of the PCISTATE register to
3226 	 * return to its original pre-reset state. This is a
3227 	 * fairly good indicator of reset completion. If we don't
3228 	 * wait for the reset to fully complete, trying to read
3229 	 * from the device's non-PCI registers may yield garbage
3230 	 * results.
3231 	 */
3232 	for (i = 0; i < BGE_TIMEOUT; i++) {
3233 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3234 			break;
3235 		DELAY(10);
3236 	}
3237 
3238 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3239 		reset = bge_readmem_ind(sc, 0x7C00);
3240 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3241 	}
3242 
3243 	/* Fix up byte swapping. */
3244 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3245 	    BGE_MODECTL_BYTESWAP_DATA);
3246 
3247 	/* Tell the ASF firmware we are up */
3248 	if (sc->bge_asf_mode & ASF_STACKUP)
3249 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3250 
3251 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3252 
3253 	/*
3254 	 * The 5704 in TBI mode apparently needs some special
3255 	 * adjustment to insure the SERDES drive level is set
3256 	 * to 1.2V.
3257 	 */
3258 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3259 	    sc->bge_flags & BGE_FLAG_TBI) {
3260 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3261 		val = (val & ~0xFFF) | 0x880;
3262 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3263 	}
3264 
3265 	/* XXX: Broadcom Linux driver. */
3266 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3267 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3268 		val = CSR_READ_4(sc, 0x7C00);
3269 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3270 	}
3271 	DELAY(10000);
3272 
3273 	return(0);
3274 }
3275 
3276 /*
3277  * Frame reception handling. This is called if there's a frame
3278  * on the receive return list.
3279  *
3280  * Note: we have to be able to handle two possibilities here:
3281  * 1) the frame is from the jumbo receive ring
3282  * 2) the frame is from the standard receive ring
3283  */
3284 
3285 static int
3286 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3287 {
3288 	struct ifnet *ifp;
3289 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3290 	uint16_t rx_cons;
3291 
3292 	rx_cons = sc->bge_rx_saved_considx;
3293 
3294 	/* Nothing to do. */
3295 	if (rx_cons == rx_prod)
3296 		return (rx_npkts);
3297 
3298 	ifp = sc->bge_ifp;
3299 
3300 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3301 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3302 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3303 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3304 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3305 	    (MCLBYTES - ETHER_ALIGN))
3306 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3307 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3308 
3309 	while (rx_cons != rx_prod) {
3310 		struct bge_rx_bd	*cur_rx;
3311 		uint32_t		rxidx;
3312 		struct mbuf		*m = NULL;
3313 		uint16_t		vlan_tag = 0;
3314 		int			have_tag = 0;
3315 
3316 #ifdef DEVICE_POLLING
3317 		if (ifp->if_capenable & IFCAP_POLLING) {
3318 			if (sc->rxcycles <= 0)
3319 				break;
3320 			sc->rxcycles--;
3321 		}
3322 #endif
3323 
3324 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3325 
3326 		rxidx = cur_rx->bge_idx;
3327 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3328 
3329 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3330 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3331 			have_tag = 1;
3332 			vlan_tag = cur_rx->bge_vlan_tag;
3333 		}
3334 
3335 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3336 			jumbocnt++;
3337 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3338 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3339 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3340 				continue;
3341 			}
3342 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3343 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3344 				ifp->if_iqdrops++;
3345 				continue;
3346 			}
3347 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3348 		} else {
3349 			stdcnt++;
3350 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3351 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3352 				continue;
3353 			}
3354 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3355 			if (bge_newbuf_std(sc, rxidx) != 0) {
3356 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3357 				ifp->if_iqdrops++;
3358 				continue;
3359 			}
3360 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3361 		}
3362 
3363 		ifp->if_ipackets++;
3364 #ifndef __NO_STRICT_ALIGNMENT
3365 		/*
3366 		 * For architectures with strict alignment we must make sure
3367 		 * the payload is aligned.
3368 		 */
3369 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3370 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3371 			    cur_rx->bge_len);
3372 			m->m_data += ETHER_ALIGN;
3373 		}
3374 #endif
3375 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3376 		m->m_pkthdr.rcvif = ifp;
3377 
3378 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3379 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3380 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3381 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3382 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3383 			}
3384 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3385 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3386 				m->m_pkthdr.csum_data =
3387 				    cur_rx->bge_tcp_udp_csum;
3388 				m->m_pkthdr.csum_flags |=
3389 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3390 			}
3391 		}
3392 
3393 		/*
3394 		 * If we received a packet with a vlan tag,
3395 		 * attach that information to the packet.
3396 		 */
3397 		if (have_tag) {
3398 #if __FreeBSD_version > 700022
3399 			m->m_pkthdr.ether_vtag = vlan_tag;
3400 			m->m_flags |= M_VLANTAG;
3401 #else
3402 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3403 			if (m == NULL)
3404 				continue;
3405 #endif
3406 		}
3407 
3408 		if (holdlck != 0) {
3409 			BGE_UNLOCK(sc);
3410 			(*ifp->if_input)(ifp, m);
3411 			BGE_LOCK(sc);
3412 		} else
3413 			(*ifp->if_input)(ifp, m);
3414 		rx_npkts++;
3415 
3416 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3417 			return (rx_npkts);
3418 	}
3419 
3420 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3421 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3422 	if (stdcnt > 0)
3423 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3424 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3425 
3426 	if (jumbocnt > 0)
3427 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3428 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3429 
3430 	sc->bge_rx_saved_considx = rx_cons;
3431 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3432 	if (stdcnt)
3433 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3434 	if (jumbocnt)
3435 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3436 #ifdef notyet
3437 	/*
3438 	 * This register wraps very quickly under heavy packet drops.
3439 	 * If you need correct statistics, you can enable this check.
3440 	 */
3441 	if (BGE_IS_5705_PLUS(sc))
3442 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3443 #endif
3444 	return (rx_npkts);
3445 }
3446 
3447 static void
3448 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3449 {
3450 	struct bge_tx_bd *cur_tx = NULL;
3451 	struct ifnet *ifp;
3452 
3453 	BGE_LOCK_ASSERT(sc);
3454 
3455 	/* Nothing to do. */
3456 	if (sc->bge_tx_saved_considx == tx_cons)
3457 		return;
3458 
3459 	ifp = sc->bge_ifp;
3460 
3461 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3462 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3463 	/*
3464 	 * Go through our tx ring and free mbufs for those
3465 	 * frames that have been sent.
3466 	 */
3467 	while (sc->bge_tx_saved_considx != tx_cons) {
3468 		uint32_t		idx = 0;
3469 
3470 		idx = sc->bge_tx_saved_considx;
3471 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3472 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3473 			ifp->if_opackets++;
3474 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3475 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3476 			    sc->bge_cdata.bge_tx_dmamap[idx],
3477 			    BUS_DMASYNC_POSTWRITE);
3478 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3479 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3480 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3481 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3482 		}
3483 		sc->bge_txcnt--;
3484 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3485 	}
3486 
3487 	if (cur_tx != NULL)
3488 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3489 	if (sc->bge_txcnt == 0)
3490 		sc->bge_timer = 0;
3491 }
3492 
3493 #ifdef DEVICE_POLLING
3494 static int
3495 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3496 {
3497 	struct bge_softc *sc = ifp->if_softc;
3498 	uint16_t rx_prod, tx_cons;
3499 	uint32_t statusword;
3500 	int rx_npkts = 0;
3501 
3502 	BGE_LOCK(sc);
3503 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3504 		BGE_UNLOCK(sc);
3505 		return (rx_npkts);
3506 	}
3507 
3508 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3509 	    sc->bge_cdata.bge_status_map,
3510 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3511 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3512 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3513 
3514 	statusword = atomic_readandclear_32(
3515 	    &sc->bge_ldata.bge_status_block->bge_status);
3516 
3517 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3518 	    sc->bge_cdata.bge_status_map,
3519 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3520 
3521 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3522 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3523 		sc->bge_link_evt++;
3524 
3525 	if (cmd == POLL_AND_CHECK_STATUS)
3526 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3527 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3528 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3529 			bge_link_upd(sc);
3530 
3531 	sc->rxcycles = count;
3532 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3533 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3534 		BGE_UNLOCK(sc);
3535 		return (rx_npkts);
3536 	}
3537 	bge_txeof(sc, tx_cons);
3538 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3539 		bge_start_locked(ifp);
3540 
3541 	BGE_UNLOCK(sc);
3542 	return (rx_npkts);
3543 }
3544 #endif /* DEVICE_POLLING */
3545 
3546 static int
3547 bge_msi_intr(void *arg)
3548 {
3549 	struct bge_softc *sc;
3550 
3551 	sc = (struct bge_softc *)arg;
3552 	/*
3553 	 * This interrupt is not shared and controller already
3554 	 * disabled further interrupt.
3555 	 */
3556 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3557 	return (FILTER_HANDLED);
3558 }
3559 
3560 static void
3561 bge_intr_task(void *arg, int pending)
3562 {
3563 	struct bge_softc *sc;
3564 	struct ifnet *ifp;
3565 	uint32_t status;
3566 	uint16_t rx_prod, tx_cons;
3567 
3568 	sc = (struct bge_softc *)arg;
3569 	ifp = sc->bge_ifp;
3570 
3571 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3572 		return;
3573 
3574 	/* Get updated status block. */
3575 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3576 	    sc->bge_cdata.bge_status_map,
3577 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3578 
3579 	/* Save producer/consumer indexess. */
3580 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3581 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3582 	status = sc->bge_ldata.bge_status_block->bge_status;
3583 	sc->bge_ldata.bge_status_block->bge_status = 0;
3584 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3585 	    sc->bge_cdata.bge_status_map,
3586 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3587 	/* Let controller work. */
3588 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3589 
3590 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3591 		BGE_LOCK(sc);
3592 		bge_link_upd(sc);
3593 		BGE_UNLOCK(sc);
3594 	}
3595 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3596 		/* Check RX return ring producer/consumer. */
3597 		bge_rxeof(sc, rx_prod, 0);
3598 	}
3599 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3600 		BGE_LOCK(sc);
3601 		/* Check TX ring producer/consumer. */
3602 		bge_txeof(sc, tx_cons);
3603 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3604 			bge_start_locked(ifp);
3605 		BGE_UNLOCK(sc);
3606 	}
3607 }
3608 
3609 static void
3610 bge_intr(void *xsc)
3611 {
3612 	struct bge_softc *sc;
3613 	struct ifnet *ifp;
3614 	uint32_t statusword;
3615 	uint16_t rx_prod, tx_cons;
3616 
3617 	sc = xsc;
3618 
3619 	BGE_LOCK(sc);
3620 
3621 	ifp = sc->bge_ifp;
3622 
3623 #ifdef DEVICE_POLLING
3624 	if (ifp->if_capenable & IFCAP_POLLING) {
3625 		BGE_UNLOCK(sc);
3626 		return;
3627 	}
3628 #endif
3629 
3630 	/*
3631 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3632 	 * disable interrupts by writing nonzero like we used to, since with
3633 	 * our current organization this just gives complications and
3634 	 * pessimizations for re-enabling interrupts.  We used to have races
3635 	 * instead of the necessary complications.  Disabling interrupts
3636 	 * would just reduce the chance of a status update while we are
3637 	 * running (by switching to the interrupt-mode coalescence
3638 	 * parameters), but this chance is already very low so it is more
3639 	 * efficient to get another interrupt than prevent it.
3640 	 *
3641 	 * We do the ack first to ensure another interrupt if there is a
3642 	 * status update after the ack.  We don't check for the status
3643 	 * changing later because it is more efficient to get another
3644 	 * interrupt than prevent it, not quite as above (not checking is
3645 	 * a smaller optimization than not toggling the interrupt enable,
3646 	 * since checking doesn't involve PCI accesses and toggling require
3647 	 * the status check).  So toggling would probably be a pessimization
3648 	 * even with MSI.  It would only be needed for using a task queue.
3649 	 */
3650 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3651 
3652 	/*
3653 	 * Do the mandatory PCI flush as well as get the link status.
3654 	 */
3655 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3656 
3657 	/* Make sure the descriptor ring indexes are coherent. */
3658 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3659 	    sc->bge_cdata.bge_status_map,
3660 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3661 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3662 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3663 	sc->bge_ldata.bge_status_block->bge_status = 0;
3664 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3665 	    sc->bge_cdata.bge_status_map,
3666 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3667 
3668 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3669 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3670 	    statusword || sc->bge_link_evt)
3671 		bge_link_upd(sc);
3672 
3673 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3674 		/* Check RX return ring producer/consumer. */
3675 		bge_rxeof(sc, rx_prod, 1);
3676 	}
3677 
3678 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3679 		/* Check TX ring producer/consumer. */
3680 		bge_txeof(sc, tx_cons);
3681 	}
3682 
3683 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3684 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3685 		bge_start_locked(ifp);
3686 
3687 	BGE_UNLOCK(sc);
3688 }
3689 
3690 static void
3691 bge_asf_driver_up(struct bge_softc *sc)
3692 {
3693 	if (sc->bge_asf_mode & ASF_STACKUP) {
3694 		/* Send ASF heartbeat aprox. every 2s */
3695 		if (sc->bge_asf_count)
3696 			sc->bge_asf_count --;
3697 		else {
3698 			sc->bge_asf_count = 2;
3699 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3700 			    BGE_FW_DRV_ALIVE);
3701 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3702 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3703 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3704 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3705 		}
3706 	}
3707 }
3708 
3709 static void
3710 bge_tick(void *xsc)
3711 {
3712 	struct bge_softc *sc = xsc;
3713 	struct mii_data *mii = NULL;
3714 
3715 	BGE_LOCK_ASSERT(sc);
3716 
3717 	/* Synchronize with possible callout reset/stop. */
3718 	if (callout_pending(&sc->bge_stat_ch) ||
3719 	    !callout_active(&sc->bge_stat_ch))
3720 	    	return;
3721 
3722 	if (BGE_IS_5705_PLUS(sc))
3723 		bge_stats_update_regs(sc);
3724 	else
3725 		bge_stats_update(sc);
3726 
3727 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3728 		mii = device_get_softc(sc->bge_miibus);
3729 		/*
3730 		 * Do not touch PHY if we have link up. This could break
3731 		 * IPMI/ASF mode or produce extra input errors
3732 		 * (extra errors was reported for bcm5701 & bcm5704).
3733 		 */
3734 		if (!sc->bge_link)
3735 			mii_tick(mii);
3736 	} else {
3737 		/*
3738 		 * Since in TBI mode auto-polling can't be used we should poll
3739 		 * link status manually. Here we register pending link event
3740 		 * and trigger interrupt.
3741 		 */
3742 #ifdef DEVICE_POLLING
3743 		/* In polling mode we poll link state in bge_poll(). */
3744 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3745 #endif
3746 		{
3747 		sc->bge_link_evt++;
3748 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3749 		    sc->bge_flags & BGE_FLAG_5788)
3750 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3751 		else
3752 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3753 		}
3754 	}
3755 
3756 	bge_asf_driver_up(sc);
3757 	bge_watchdog(sc);
3758 
3759 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3760 }
3761 
3762 static void
3763 bge_stats_update_regs(struct bge_softc *sc)
3764 {
3765 	struct ifnet *ifp;
3766 
3767 	ifp = sc->bge_ifp;
3768 
3769 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3770 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3771 
3772 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3773 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3774 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3775 }
3776 
3777 static void
3778 bge_stats_update(struct bge_softc *sc)
3779 {
3780 	struct ifnet *ifp;
3781 	bus_size_t stats;
3782 	uint32_t cnt;	/* current register value */
3783 
3784 	ifp = sc->bge_ifp;
3785 
3786 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3787 
3788 #define	READ_STAT(sc, stats, stat) \
3789 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3790 
3791 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3792 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3793 	sc->bge_tx_collisions = cnt;
3794 
3795 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3796 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3797 	sc->bge_rx_discards = cnt;
3798 
3799 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3800 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3801 	sc->bge_tx_discards = cnt;
3802 
3803 #undef	READ_STAT
3804 }
3805 
3806 /*
3807  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3808  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3809  * but when such padded frames employ the bge IP/TCP checksum offload,
3810  * the hardware checksum assist gives incorrect results (possibly
3811  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3812  * If we pad such runts with zeros, the onboard checksum comes out correct.
3813  */
3814 static __inline int
3815 bge_cksum_pad(struct mbuf *m)
3816 {
3817 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3818 	struct mbuf *last;
3819 
3820 	/* If there's only the packet-header and we can pad there, use it. */
3821 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3822 	    M_TRAILINGSPACE(m) >= padlen) {
3823 		last = m;
3824 	} else {
3825 		/*
3826 		 * Walk packet chain to find last mbuf. We will either
3827 		 * pad there, or append a new mbuf and pad it.
3828 		 */
3829 		for (last = m; last->m_next != NULL; last = last->m_next);
3830 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3831 			/* Allocate new empty mbuf, pad it. Compact later. */
3832 			struct mbuf *n;
3833 
3834 			MGET(n, M_DONTWAIT, MT_DATA);
3835 			if (n == NULL)
3836 				return (ENOBUFS);
3837 			n->m_len = 0;
3838 			last->m_next = n;
3839 			last = n;
3840 		}
3841 	}
3842 
3843 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3844 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3845 	last->m_len += padlen;
3846 	m->m_pkthdr.len += padlen;
3847 
3848 	return (0);
3849 }
3850 
3851 static struct mbuf *
3852 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3853 {
3854 	struct ip *ip;
3855 	struct tcphdr *tcp;
3856 	struct mbuf *n;
3857 	uint16_t hlen;
3858 	uint32_t poff;
3859 
3860 	if (M_WRITABLE(m) == 0) {
3861 		/* Get a writable copy. */
3862 		n = m_dup(m, M_DONTWAIT);
3863 		m_freem(m);
3864 		if (n == NULL)
3865 			return (NULL);
3866 		m = n;
3867 	}
3868 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
3869 	if (m == NULL)
3870 		return (NULL);
3871 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
3872 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
3873 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3874 	if (m == NULL)
3875 		return (NULL);
3876 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3877 	m = m_pullup(m, poff + (tcp->th_off << 2));
3878 	if (m == NULL)
3879 		return (NULL);
3880 	/*
3881 	 * It seems controller doesn't modify IP length and TCP pseudo
3882 	 * checksum. These checksum computed by upper stack should be 0.
3883 	 */
3884 	*mss = m->m_pkthdr.tso_segsz;
3885 	ip->ip_sum = 0;
3886 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3887 	/* Clear pseudo checksum computed by TCP stack. */
3888 	tcp->th_sum = 0;
3889 	/*
3890 	 * Broadcom controllers uses different descriptor format for
3891 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3892 	 * license issue and lower performance of firmware based TSO
3893 	 * we only support hardware based TSO which is applicable for
3894 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3895 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3896 	 * header length(including IP/TCP options). The header length
3897 	 * is expressed as 32 bits unit.
3898 	 */
3899 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3900 	*mss |= (hlen << 11);
3901 	return (m);
3902 }
3903 
3904 /*
3905  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3906  * pointers to descriptors.
3907  */
3908 static int
3909 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3910 {
3911 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3912 	bus_dmamap_t		map;
3913 	struct bge_tx_bd	*d;
3914 	struct mbuf		*m = *m_head;
3915 	uint32_t		idx = *txidx;
3916 	uint16_t		csum_flags, mss, vlan_tag;
3917 	int			nsegs, i, error;
3918 
3919 	csum_flags = 0;
3920 	mss = 0;
3921 	vlan_tag = 0;
3922 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3923 		*m_head = m = bge_setup_tso(sc, m, &mss);
3924 		if (*m_head == NULL)
3925 			return (ENOBUFS);
3926 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3927 		    BGE_TXBDFLAG_CPU_POST_DMA;
3928 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3929 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3930 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3931 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3932 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3933 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3934 			    (error = bge_cksum_pad(m)) != 0) {
3935 				m_freem(m);
3936 				*m_head = NULL;
3937 				return (error);
3938 			}
3939 		}
3940 		if (m->m_flags & M_LASTFRAG)
3941 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3942 		else if (m->m_flags & M_FRAG)
3943 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3944 	}
3945 
3946 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3947 	    sc->bge_forced_collapse > 0 &&
3948 	    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
3949 		/*
3950 		 * Forcedly collapse mbuf chains to overcome hardware
3951 		 * limitation which only support a single outstanding
3952 		 * DMA read operation.
3953 		 */
3954 		if (sc->bge_forced_collapse == 1)
3955 			m = m_defrag(m, M_DONTWAIT);
3956 		else
3957 			m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse);
3958 		if (m == NULL)
3959 			m = *m_head;
3960 		*m_head = m;
3961 	}
3962 
3963 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3964 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3965 	    &nsegs, BUS_DMA_NOWAIT);
3966 	if (error == EFBIG) {
3967 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3968 		if (m == NULL) {
3969 			m_freem(*m_head);
3970 			*m_head = NULL;
3971 			return (ENOBUFS);
3972 		}
3973 		*m_head = m;
3974 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3975 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3976 		if (error) {
3977 			m_freem(m);
3978 			*m_head = NULL;
3979 			return (error);
3980 		}
3981 	} else if (error != 0)
3982 		return (error);
3983 
3984 	/* Check if we have enough free send BDs. */
3985 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3986 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3987 		return (ENOBUFS);
3988 	}
3989 
3990 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3991 
3992 #if __FreeBSD_version > 700022
3993 	if (m->m_flags & M_VLANTAG) {
3994 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3995 		vlan_tag = m->m_pkthdr.ether_vtag;
3996 	}
3997 #else
3998 	{
3999 		struct m_tag		*mtag;
4000 
4001 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
4002 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4003 			vlan_tag = VLAN_TAG_VALUE(mtag);
4004 		}
4005 	}
4006 #endif
4007 	for (i = 0; ; i++) {
4008 		d = &sc->bge_ldata.bge_tx_ring[idx];
4009 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4010 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4011 		d->bge_len = segs[i].ds_len;
4012 		d->bge_flags = csum_flags;
4013 		d->bge_vlan_tag = vlan_tag;
4014 		d->bge_mss = mss;
4015 		if (i == nsegs - 1)
4016 			break;
4017 		BGE_INC(idx, BGE_TX_RING_CNT);
4018 	}
4019 
4020 	/* Mark the last segment as end of packet... */
4021 	d->bge_flags |= BGE_TXBDFLAG_END;
4022 
4023 	/*
4024 	 * Insure that the map for this transmission
4025 	 * is placed at the array index of the last descriptor
4026 	 * in this chain.
4027 	 */
4028 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4029 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4030 	sc->bge_cdata.bge_tx_chain[idx] = m;
4031 	sc->bge_txcnt += nsegs;
4032 
4033 	BGE_INC(idx, BGE_TX_RING_CNT);
4034 	*txidx = idx;
4035 
4036 	return (0);
4037 }
4038 
4039 /*
4040  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4041  * to the mbuf data regions directly in the transmit descriptors.
4042  */
4043 static void
4044 bge_start_locked(struct ifnet *ifp)
4045 {
4046 	struct bge_softc *sc;
4047 	struct mbuf *m_head;
4048 	uint32_t prodidx;
4049 	int count;
4050 
4051 	sc = ifp->if_softc;
4052 	BGE_LOCK_ASSERT(sc);
4053 
4054 	if (!sc->bge_link ||
4055 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4056 	    IFF_DRV_RUNNING)
4057 		return;
4058 
4059 	prodidx = sc->bge_tx_prodidx;
4060 
4061 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4062 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4063 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4064 			break;
4065 		}
4066 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4067 		if (m_head == NULL)
4068 			break;
4069 
4070 		/*
4071 		 * XXX
4072 		 * The code inside the if() block is never reached since we
4073 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4074 		 * requests to checksum TCP/UDP in a fragmented packet.
4075 		 *
4076 		 * XXX
4077 		 * safety overkill.  If this is a fragmented packet chain
4078 		 * with delayed TCP/UDP checksums, then only encapsulate
4079 		 * it if we have enough descriptors to handle the entire
4080 		 * chain at once.
4081 		 * (paranoia -- may not actually be needed)
4082 		 */
4083 		if (m_head->m_flags & M_FIRSTFRAG &&
4084 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4085 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4086 			    m_head->m_pkthdr.csum_data + 16) {
4087 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4088 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4089 				break;
4090 			}
4091 		}
4092 
4093 		/*
4094 		 * Pack the data into the transmit ring. If we
4095 		 * don't have room, set the OACTIVE flag and wait
4096 		 * for the NIC to drain the ring.
4097 		 */
4098 		if (bge_encap(sc, &m_head, &prodidx)) {
4099 			if (m_head == NULL)
4100 				break;
4101 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4102 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4103 			break;
4104 		}
4105 		++count;
4106 
4107 		/*
4108 		 * If there's a BPF listener, bounce a copy of this frame
4109 		 * to him.
4110 		 */
4111 #ifdef ETHER_BPF_MTAP
4112 		ETHER_BPF_MTAP(ifp, m_head);
4113 #else
4114 		BPF_MTAP(ifp, m_head);
4115 #endif
4116 	}
4117 
4118 	if (count > 0) {
4119 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4120 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4121 		/* Transmit. */
4122 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4123 		/* 5700 b2 errata */
4124 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4125 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4126 
4127 		sc->bge_tx_prodidx = prodidx;
4128 
4129 		/*
4130 		 * Set a timeout in case the chip goes out to lunch.
4131 		 */
4132 		sc->bge_timer = 5;
4133 	}
4134 }
4135 
4136 /*
4137  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4138  * to the mbuf data regions directly in the transmit descriptors.
4139  */
4140 static void
4141 bge_start(struct ifnet *ifp)
4142 {
4143 	struct bge_softc *sc;
4144 
4145 	sc = ifp->if_softc;
4146 	BGE_LOCK(sc);
4147 	bge_start_locked(ifp);
4148 	BGE_UNLOCK(sc);
4149 }
4150 
4151 static void
4152 bge_init_locked(struct bge_softc *sc)
4153 {
4154 	struct ifnet *ifp;
4155 	uint16_t *m;
4156 
4157 	BGE_LOCK_ASSERT(sc);
4158 
4159 	ifp = sc->bge_ifp;
4160 
4161 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4162 		return;
4163 
4164 	/* Cancel pending I/O and flush buffers. */
4165 	bge_stop(sc);
4166 
4167 	bge_stop_fw(sc);
4168 	bge_sig_pre_reset(sc, BGE_RESET_START);
4169 	bge_reset(sc);
4170 	bge_sig_legacy(sc, BGE_RESET_START);
4171 	bge_sig_post_reset(sc, BGE_RESET_START);
4172 
4173 	bge_chipinit(sc);
4174 
4175 	/*
4176 	 * Init the various state machines, ring
4177 	 * control blocks and firmware.
4178 	 */
4179 	if (bge_blockinit(sc)) {
4180 		device_printf(sc->bge_dev, "initialization failure\n");
4181 		return;
4182 	}
4183 
4184 	ifp = sc->bge_ifp;
4185 
4186 	/* Specify MTU. */
4187 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4188 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4189 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4190 
4191 	/* Load our MAC address. */
4192 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4193 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4194 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4195 
4196 	/* Program promiscuous mode. */
4197 	bge_setpromisc(sc);
4198 
4199 	/* Program multicast filter. */
4200 	bge_setmulti(sc);
4201 
4202 	/* Program VLAN tag stripping. */
4203 	bge_setvlan(sc);
4204 
4205 	/* Init RX ring. */
4206 	if (bge_init_rx_ring_std(sc) != 0) {
4207 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4208 		bge_stop(sc);
4209 		return;
4210 	}
4211 
4212 	/*
4213 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4214 	 * memory to insure that the chip has in fact read the first
4215 	 * entry of the ring.
4216 	 */
4217 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4218 		uint32_t		v, i;
4219 		for (i = 0; i < 10; i++) {
4220 			DELAY(20);
4221 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4222 			if (v == (MCLBYTES - ETHER_ALIGN))
4223 				break;
4224 		}
4225 		if (i == 10)
4226 			device_printf (sc->bge_dev,
4227 			    "5705 A0 chip failed to load RX ring\n");
4228 	}
4229 
4230 	/* Init jumbo RX ring. */
4231 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4232 	    (MCLBYTES - ETHER_ALIGN)) {
4233 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4234 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4235 			bge_stop(sc);
4236 			return;
4237 		}
4238 	}
4239 
4240 	/* Init our RX return ring index. */
4241 	sc->bge_rx_saved_considx = 0;
4242 
4243 	/* Init our RX/TX stat counters. */
4244 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4245 
4246 	/* Init TX ring. */
4247 	bge_init_tx_ring(sc);
4248 
4249 	/* Turn on transmitter. */
4250 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4251 
4252 	/* Turn on receiver. */
4253 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4254 
4255 	/* Tell firmware we're alive. */
4256 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4257 
4258 #ifdef DEVICE_POLLING
4259 	/* Disable interrupts if we are polling. */
4260 	if (ifp->if_capenable & IFCAP_POLLING) {
4261 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4262 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4263 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4264 	} else
4265 #endif
4266 
4267 	/* Enable host interrupts. */
4268 	{
4269 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4270 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4271 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4272 	}
4273 
4274 	bge_ifmedia_upd_locked(ifp);
4275 
4276 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4277 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4278 
4279 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4280 }
4281 
4282 static void
4283 bge_init(void *xsc)
4284 {
4285 	struct bge_softc *sc = xsc;
4286 
4287 	BGE_LOCK(sc);
4288 	bge_init_locked(sc);
4289 	BGE_UNLOCK(sc);
4290 }
4291 
4292 /*
4293  * Set media options.
4294  */
4295 static int
4296 bge_ifmedia_upd(struct ifnet *ifp)
4297 {
4298 	struct bge_softc *sc = ifp->if_softc;
4299 	int res;
4300 
4301 	BGE_LOCK(sc);
4302 	res = bge_ifmedia_upd_locked(ifp);
4303 	BGE_UNLOCK(sc);
4304 
4305 	return (res);
4306 }
4307 
4308 static int
4309 bge_ifmedia_upd_locked(struct ifnet *ifp)
4310 {
4311 	struct bge_softc *sc = ifp->if_softc;
4312 	struct mii_data *mii;
4313 	struct mii_softc *miisc;
4314 	struct ifmedia *ifm;
4315 
4316 	BGE_LOCK_ASSERT(sc);
4317 
4318 	ifm = &sc->bge_ifmedia;
4319 
4320 	/* If this is a 1000baseX NIC, enable the TBI port. */
4321 	if (sc->bge_flags & BGE_FLAG_TBI) {
4322 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4323 			return (EINVAL);
4324 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4325 		case IFM_AUTO:
4326 			/*
4327 			 * The BCM5704 ASIC appears to have a special
4328 			 * mechanism for programming the autoneg
4329 			 * advertisement registers in TBI mode.
4330 			 */
4331 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4332 				uint32_t sgdig;
4333 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4334 				if (sgdig & BGE_SGDIGSTS_DONE) {
4335 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4336 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4337 					sgdig |= BGE_SGDIGCFG_AUTO |
4338 					    BGE_SGDIGCFG_PAUSE_CAP |
4339 					    BGE_SGDIGCFG_ASYM_PAUSE;
4340 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4341 					    sgdig | BGE_SGDIGCFG_SEND);
4342 					DELAY(5);
4343 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4344 				}
4345 			}
4346 			break;
4347 		case IFM_1000_SX:
4348 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4349 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4350 				    BGE_MACMODE_HALF_DUPLEX);
4351 			} else {
4352 				BGE_SETBIT(sc, BGE_MAC_MODE,
4353 				    BGE_MACMODE_HALF_DUPLEX);
4354 			}
4355 			break;
4356 		default:
4357 			return (EINVAL);
4358 		}
4359 		return (0);
4360 	}
4361 
4362 	sc->bge_link_evt++;
4363 	mii = device_get_softc(sc->bge_miibus);
4364 	if (mii->mii_instance)
4365 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4366 			mii_phy_reset(miisc);
4367 	mii_mediachg(mii);
4368 
4369 	/*
4370 	 * Force an interrupt so that we will call bge_link_upd
4371 	 * if needed and clear any pending link state attention.
4372 	 * Without this we are not getting any further interrupts
4373 	 * for link state changes and thus will not UP the link and
4374 	 * not be able to send in bge_start_locked. The only
4375 	 * way to get things working was to receive a packet and
4376 	 * get an RX intr.
4377 	 * bge_tick should help for fiber cards and we might not
4378 	 * need to do this here if BGE_FLAG_TBI is set but as
4379 	 * we poll for fiber anyway it should not harm.
4380 	 */
4381 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4382 	    sc->bge_flags & BGE_FLAG_5788)
4383 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4384 	else
4385 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4386 
4387 	return (0);
4388 }
4389 
4390 /*
4391  * Report current media status.
4392  */
4393 static void
4394 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4395 {
4396 	struct bge_softc *sc = ifp->if_softc;
4397 	struct mii_data *mii;
4398 
4399 	BGE_LOCK(sc);
4400 
4401 	if (sc->bge_flags & BGE_FLAG_TBI) {
4402 		ifmr->ifm_status = IFM_AVALID;
4403 		ifmr->ifm_active = IFM_ETHER;
4404 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4405 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4406 			ifmr->ifm_status |= IFM_ACTIVE;
4407 		else {
4408 			ifmr->ifm_active |= IFM_NONE;
4409 			BGE_UNLOCK(sc);
4410 			return;
4411 		}
4412 		ifmr->ifm_active |= IFM_1000_SX;
4413 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4414 			ifmr->ifm_active |= IFM_HDX;
4415 		else
4416 			ifmr->ifm_active |= IFM_FDX;
4417 		BGE_UNLOCK(sc);
4418 		return;
4419 	}
4420 
4421 	mii = device_get_softc(sc->bge_miibus);
4422 	mii_pollstat(mii);
4423 	ifmr->ifm_active = mii->mii_media_active;
4424 	ifmr->ifm_status = mii->mii_media_status;
4425 
4426 	BGE_UNLOCK(sc);
4427 }
4428 
4429 static int
4430 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4431 {
4432 	struct bge_softc *sc = ifp->if_softc;
4433 	struct ifreq *ifr = (struct ifreq *) data;
4434 	struct mii_data *mii;
4435 	int flags, mask, error = 0;
4436 
4437 	switch (command) {
4438 	case SIOCSIFMTU:
4439 		if (ifr->ifr_mtu < ETHERMIN ||
4440 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4441 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4442 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4443 		    ifr->ifr_mtu > ETHERMTU))
4444 			error = EINVAL;
4445 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4446 			ifp->if_mtu = ifr->ifr_mtu;
4447 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4448 			bge_init(sc);
4449 		}
4450 		break;
4451 	case SIOCSIFFLAGS:
4452 		BGE_LOCK(sc);
4453 		if (ifp->if_flags & IFF_UP) {
4454 			/*
4455 			 * If only the state of the PROMISC flag changed,
4456 			 * then just use the 'set promisc mode' command
4457 			 * instead of reinitializing the entire NIC. Doing
4458 			 * a full re-init means reloading the firmware and
4459 			 * waiting for it to start up, which may take a
4460 			 * second or two.  Similarly for ALLMULTI.
4461 			 */
4462 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4463 				flags = ifp->if_flags ^ sc->bge_if_flags;
4464 				if (flags & IFF_PROMISC)
4465 					bge_setpromisc(sc);
4466 				if (flags & IFF_ALLMULTI)
4467 					bge_setmulti(sc);
4468 			} else
4469 				bge_init_locked(sc);
4470 		} else {
4471 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4472 				bge_stop(sc);
4473 			}
4474 		}
4475 		sc->bge_if_flags = ifp->if_flags;
4476 		BGE_UNLOCK(sc);
4477 		error = 0;
4478 		break;
4479 	case SIOCADDMULTI:
4480 	case SIOCDELMULTI:
4481 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4482 			BGE_LOCK(sc);
4483 			bge_setmulti(sc);
4484 			BGE_UNLOCK(sc);
4485 			error = 0;
4486 		}
4487 		break;
4488 	case SIOCSIFMEDIA:
4489 	case SIOCGIFMEDIA:
4490 		if (sc->bge_flags & BGE_FLAG_TBI) {
4491 			error = ifmedia_ioctl(ifp, ifr,
4492 			    &sc->bge_ifmedia, command);
4493 		} else {
4494 			mii = device_get_softc(sc->bge_miibus);
4495 			error = ifmedia_ioctl(ifp, ifr,
4496 			    &mii->mii_media, command);
4497 		}
4498 		break;
4499 	case SIOCSIFCAP:
4500 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4501 #ifdef DEVICE_POLLING
4502 		if (mask & IFCAP_POLLING) {
4503 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4504 				error = ether_poll_register(bge_poll, ifp);
4505 				if (error)
4506 					return (error);
4507 				BGE_LOCK(sc);
4508 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4509 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4510 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4511 				ifp->if_capenable |= IFCAP_POLLING;
4512 				BGE_UNLOCK(sc);
4513 			} else {
4514 				error = ether_poll_deregister(ifp);
4515 				/* Enable interrupt even in error case */
4516 				BGE_LOCK(sc);
4517 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4518 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4519 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4520 				ifp->if_capenable &= ~IFCAP_POLLING;
4521 				BGE_UNLOCK(sc);
4522 			}
4523 		}
4524 #endif
4525 		if (mask & IFCAP_HWCSUM) {
4526 			ifp->if_capenable ^= IFCAP_HWCSUM;
4527 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4528 			    IFCAP_HWCSUM & ifp->if_capabilities)
4529 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4530 			else
4531 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4532 		}
4533 
4534 		if ((mask & IFCAP_TSO4) != 0 &&
4535 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4536 			ifp->if_capenable ^= IFCAP_TSO4;
4537 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4538 				ifp->if_hwassist |= CSUM_TSO;
4539 			else
4540 				ifp->if_hwassist &= ~CSUM_TSO;
4541 		}
4542 
4543 		if (mask & IFCAP_VLAN_MTU) {
4544 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4545 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4546 			bge_init(sc);
4547 		}
4548 
4549 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
4550 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
4551 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4552 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
4553 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
4554 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4555 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
4556 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
4557 			BGE_LOCK(sc);
4558 			bge_setvlan(sc);
4559 			BGE_UNLOCK(sc);
4560 		}
4561 #ifdef VLAN_CAPABILITIES
4562 		VLAN_CAPABILITIES(ifp);
4563 #endif
4564 		break;
4565 	default:
4566 		error = ether_ioctl(ifp, command, data);
4567 		break;
4568 	}
4569 
4570 	return (error);
4571 }
4572 
4573 static void
4574 bge_watchdog(struct bge_softc *sc)
4575 {
4576 	struct ifnet *ifp;
4577 
4578 	BGE_LOCK_ASSERT(sc);
4579 
4580 	if (sc->bge_timer == 0 || --sc->bge_timer)
4581 		return;
4582 
4583 	ifp = sc->bge_ifp;
4584 
4585 	if_printf(ifp, "watchdog timeout -- resetting\n");
4586 
4587 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4588 	bge_init_locked(sc);
4589 
4590 	ifp->if_oerrors++;
4591 }
4592 
4593 /*
4594  * Stop the adapter and free any mbufs allocated to the
4595  * RX and TX lists.
4596  */
4597 static void
4598 bge_stop(struct bge_softc *sc)
4599 {
4600 	struct ifnet *ifp;
4601 
4602 	BGE_LOCK_ASSERT(sc);
4603 
4604 	ifp = sc->bge_ifp;
4605 
4606 	callout_stop(&sc->bge_stat_ch);
4607 
4608 	/* Disable host interrupts. */
4609 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4610 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4611 
4612 	/*
4613 	 * Tell firmware we're shutting down.
4614 	 */
4615 	bge_stop_fw(sc);
4616 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4617 
4618 	/*
4619 	 * Disable all of the receiver blocks.
4620 	 */
4621 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4622 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4623 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4624 	if (!(BGE_IS_5705_PLUS(sc)))
4625 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4626 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4627 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4628 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4629 
4630 	/*
4631 	 * Disable all of the transmit blocks.
4632 	 */
4633 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4634 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4635 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4636 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4637 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4638 	if (!(BGE_IS_5705_PLUS(sc)))
4639 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4640 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4641 
4642 	/*
4643 	 * Shut down all of the memory managers and related
4644 	 * state machines.
4645 	 */
4646 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4647 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4648 	if (!(BGE_IS_5705_PLUS(sc)))
4649 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4650 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4651 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4652 	if (!(BGE_IS_5705_PLUS(sc))) {
4653 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4654 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4655 	}
4656 
4657 	bge_reset(sc);
4658 	bge_sig_legacy(sc, BGE_RESET_STOP);
4659 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4660 
4661 	/*
4662 	 * Keep the ASF firmware running if up.
4663 	 */
4664 	if (sc->bge_asf_mode & ASF_STACKUP)
4665 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4666 	else
4667 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4668 
4669 	/* Free the RX lists. */
4670 	bge_free_rx_ring_std(sc);
4671 
4672 	/* Free jumbo RX list. */
4673 	if (BGE_IS_JUMBO_CAPABLE(sc))
4674 		bge_free_rx_ring_jumbo(sc);
4675 
4676 	/* Free TX buffers. */
4677 	bge_free_tx_ring(sc);
4678 
4679 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4680 
4681 	/* Clear MAC's link state (PHY may still have link UP). */
4682 	if (bootverbose && sc->bge_link)
4683 		if_printf(sc->bge_ifp, "link DOWN\n");
4684 	sc->bge_link = 0;
4685 
4686 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4687 }
4688 
4689 /*
4690  * Stop all chip I/O so that the kernel's probe routines don't
4691  * get confused by errant DMAs when rebooting.
4692  */
4693 static int
4694 bge_shutdown(device_t dev)
4695 {
4696 	struct bge_softc *sc;
4697 
4698 	sc = device_get_softc(dev);
4699 	BGE_LOCK(sc);
4700 	bge_stop(sc);
4701 	bge_reset(sc);
4702 	BGE_UNLOCK(sc);
4703 
4704 	return (0);
4705 }
4706 
4707 static int
4708 bge_suspend(device_t dev)
4709 {
4710 	struct bge_softc *sc;
4711 
4712 	sc = device_get_softc(dev);
4713 	BGE_LOCK(sc);
4714 	bge_stop(sc);
4715 	BGE_UNLOCK(sc);
4716 
4717 	return (0);
4718 }
4719 
4720 static int
4721 bge_resume(device_t dev)
4722 {
4723 	struct bge_softc *sc;
4724 	struct ifnet *ifp;
4725 
4726 	sc = device_get_softc(dev);
4727 	BGE_LOCK(sc);
4728 	ifp = sc->bge_ifp;
4729 	if (ifp->if_flags & IFF_UP) {
4730 		bge_init_locked(sc);
4731 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4732 			bge_start_locked(ifp);
4733 	}
4734 	BGE_UNLOCK(sc);
4735 
4736 	return (0);
4737 }
4738 
4739 static void
4740 bge_link_upd(struct bge_softc *sc)
4741 {
4742 	struct mii_data *mii;
4743 	uint32_t link, status;
4744 
4745 	BGE_LOCK_ASSERT(sc);
4746 
4747 	/* Clear 'pending link event' flag. */
4748 	sc->bge_link_evt = 0;
4749 
4750 	/*
4751 	 * Process link state changes.
4752 	 * Grrr. The link status word in the status block does
4753 	 * not work correctly on the BCM5700 rev AX and BX chips,
4754 	 * according to all available information. Hence, we have
4755 	 * to enable MII interrupts in order to properly obtain
4756 	 * async link changes. Unfortunately, this also means that
4757 	 * we have to read the MAC status register to detect link
4758 	 * changes, thereby adding an additional register access to
4759 	 * the interrupt handler.
4760 	 *
4761 	 * XXX: perhaps link state detection procedure used for
4762 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4763 	 */
4764 
4765 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4766 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4767 		status = CSR_READ_4(sc, BGE_MAC_STS);
4768 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4769 			mii = device_get_softc(sc->bge_miibus);
4770 			mii_pollstat(mii);
4771 			if (!sc->bge_link &&
4772 			    mii->mii_media_status & IFM_ACTIVE &&
4773 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4774 				sc->bge_link++;
4775 				if (bootverbose)
4776 					if_printf(sc->bge_ifp, "link UP\n");
4777 			} else if (sc->bge_link &&
4778 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4779 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4780 				sc->bge_link = 0;
4781 				if (bootverbose)
4782 					if_printf(sc->bge_ifp, "link DOWN\n");
4783 			}
4784 
4785 			/* Clear the interrupt. */
4786 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4787 			    BGE_EVTENB_MI_INTERRUPT);
4788 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4789 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4790 			    BRGPHY_INTRS);
4791 		}
4792 		return;
4793 	}
4794 
4795 	if (sc->bge_flags & BGE_FLAG_TBI) {
4796 		status = CSR_READ_4(sc, BGE_MAC_STS);
4797 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4798 			if (!sc->bge_link) {
4799 				sc->bge_link++;
4800 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4801 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4802 					    BGE_MACMODE_TBI_SEND_CFGS);
4803 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4804 				if (bootverbose)
4805 					if_printf(sc->bge_ifp, "link UP\n");
4806 				if_link_state_change(sc->bge_ifp,
4807 				    LINK_STATE_UP);
4808 			}
4809 		} else if (sc->bge_link) {
4810 			sc->bge_link = 0;
4811 			if (bootverbose)
4812 				if_printf(sc->bge_ifp, "link DOWN\n");
4813 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4814 		}
4815 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4816 		/*
4817 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4818 		 * in status word always set. Workaround this bug by reading
4819 		 * PHY link status directly.
4820 		 */
4821 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4822 
4823 		if (link != sc->bge_link ||
4824 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4825 			mii = device_get_softc(sc->bge_miibus);
4826 			mii_pollstat(mii);
4827 			if (!sc->bge_link &&
4828 			    mii->mii_media_status & IFM_ACTIVE &&
4829 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4830 				sc->bge_link++;
4831 				if (bootverbose)
4832 					if_printf(sc->bge_ifp, "link UP\n");
4833 			} else if (sc->bge_link &&
4834 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4835 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4836 				sc->bge_link = 0;
4837 				if (bootverbose)
4838 					if_printf(sc->bge_ifp, "link DOWN\n");
4839 			}
4840 		}
4841 	} else {
4842 		/*
4843 		 * Discard link events for MII/GMII controllers
4844 		 * if MI auto-polling is disabled.
4845 		 */
4846 	}
4847 
4848 	/* Clear the attention. */
4849 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4850 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4851 	    BGE_MACSTAT_LINK_CHANGED);
4852 }
4853 
4854 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4855 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4856 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4857 	    desc)
4858 
4859 static void
4860 bge_add_sysctls(struct bge_softc *sc)
4861 {
4862 	struct sysctl_ctx_list *ctx;
4863 	struct sysctl_oid_list *children, *schildren;
4864 	struct sysctl_oid *tree;
4865 
4866 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4867 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4868 
4869 #ifdef BGE_REGISTER_DEBUG
4870 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4871 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4872 	    "Debug Information");
4873 
4874 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4875 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4876 	    "Register Read");
4877 
4878 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4879 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4880 	    "Memory Read");
4881 
4882 #endif
4883 
4884 	/*
4885 	 * A common design characteristic for many Broadcom client controllers
4886 	 * is that they only support a single outstanding DMA read operation
4887 	 * on the PCIe bus. This means that it will take twice as long to fetch
4888 	 * a TX frame that is split into header and payload buffers as it does
4889 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
4890 	 * these controllers, coalescing buffers to reduce the number of memory
4891 	 * reads is effective way to get maximum performance(about 940Mbps).
4892 	 * Without collapsing TX buffers the maximum TCP bulk transfer
4893 	 * performance is about 850Mbps. However forcing coalescing mbufs
4894 	 * consumes a lot of CPU cycles, so leave it off by default.
4895 	 */
4896 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
4897 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
4898 	    "Number of fragmented TX buffers of a frame allowed before "
4899 	    "forced collapsing");
4900 	resource_int_value(device_get_name(sc->bge_dev),
4901 	    device_get_unit(sc->bge_dev), "forced_collapse",
4902 	    &sc->bge_forced_collapse);
4903 
4904 	if (BGE_IS_5705_PLUS(sc))
4905 		return;
4906 
4907 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4908 	    NULL, "BGE Statistics");
4909 	schildren = children = SYSCTL_CHILDREN(tree);
4910 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4911 	    children, COSFramesDroppedDueToFilters,
4912 	    "FramesDroppedDueToFilters");
4913 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4914 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4915 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4916 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4917 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4918 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4919 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4920 	    children, ifInDiscards, "InputDiscards");
4921 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4922 	    children, ifInErrors, "InputErrors");
4923 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4924 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4925 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4926 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4927 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4928 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4929 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4930 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4931 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4932 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4933 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4934 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4935 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4936 	    children, nicInterrupts, "Interrupts");
4937 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4938 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4939 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4940 	    children, nicSendThresholdHit, "SendThresholdHit");
4941 
4942 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4943 	    NULL, "BGE RX Statistics");
4944 	children = SYSCTL_CHILDREN(tree);
4945 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4946 	    children, rxstats.ifHCInOctets, "Octets");
4947 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4948 	    children, rxstats.etherStatsFragments, "Fragments");
4949 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4950 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4951 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4952 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4953 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4954 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4955 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4956 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4957 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4958 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4959 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4960 	    children, rxstats.xoffPauseFramesReceived,
4961 	    "xoffPauseFramesReceived");
4962 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4963 	    children, rxstats.macControlFramesReceived,
4964 	    "ControlFramesReceived");
4965 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4966 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4967 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4968 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4969 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4970 	    children, rxstats.etherStatsJabbers, "Jabbers");
4971 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4972 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4973 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4974 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4975 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4976 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4977 
4978 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4979 	    NULL, "BGE TX Statistics");
4980 	children = SYSCTL_CHILDREN(tree);
4981 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4982 	    children, txstats.ifHCOutOctets, "Octets");
4983 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4984 	    children, txstats.etherStatsCollisions, "Collisions");
4985 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4986 	    children, txstats.outXonSent, "XonSent");
4987 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4988 	    children, txstats.outXoffSent, "XoffSent");
4989 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4990 	    children, txstats.flowControlDone, "flowControlDone");
4991 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4992 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4993 	    "InternalMacTransmitErrors");
4994 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4995 	    children, txstats.dot3StatsSingleCollisionFrames,
4996 	    "SingleCollisionFrames");
4997 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4998 	    children, txstats.dot3StatsMultipleCollisionFrames,
4999 	    "MultipleCollisionFrames");
5000 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5001 	    children, txstats.dot3StatsDeferredTransmissions,
5002 	    "DeferredTransmissions");
5003 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5004 	    children, txstats.dot3StatsExcessiveCollisions,
5005 	    "ExcessiveCollisions");
5006 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5007 	    children, txstats.dot3StatsLateCollisions,
5008 	    "LateCollisions");
5009 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5010 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
5011 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5012 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5013 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5014 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5015 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5016 	    children, txstats.dot3StatsCarrierSenseErrors,
5017 	    "CarrierSenseErrors");
5018 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5019 	    children, txstats.ifOutDiscards, "Discards");
5020 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5021 	    children, txstats.ifOutErrors, "Errors");
5022 }
5023 
5024 static int
5025 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5026 {
5027 	struct bge_softc *sc;
5028 	uint32_t result;
5029 	int offset;
5030 
5031 	sc = (struct bge_softc *)arg1;
5032 	offset = arg2;
5033 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5034 	    offsetof(bge_hostaddr, bge_addr_lo));
5035 	return (sysctl_handle_int(oidp, &result, 0, req));
5036 }
5037 
5038 #ifdef BGE_REGISTER_DEBUG
5039 static int
5040 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5041 {
5042 	struct bge_softc *sc;
5043 	uint16_t *sbdata;
5044 	int error;
5045 	int result;
5046 	int i, j;
5047 
5048 	result = -1;
5049 	error = sysctl_handle_int(oidp, &result, 0, req);
5050 	if (error || (req->newptr == NULL))
5051 		return (error);
5052 
5053 	if (result == 1) {
5054 		sc = (struct bge_softc *)arg1;
5055 
5056 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5057 		printf("Status Block:\n");
5058 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5059 			printf("%06x:", i);
5060 			for (j = 0; j < 8; j++) {
5061 				printf(" %04x", sbdata[i]);
5062 				i += 4;
5063 			}
5064 			printf("\n");
5065 		}
5066 
5067 		printf("Registers:\n");
5068 		for (i = 0x800; i < 0xA00; ) {
5069 			printf("%06x:", i);
5070 			for (j = 0; j < 8; j++) {
5071 				printf(" %08x", CSR_READ_4(sc, i));
5072 				i += 4;
5073 			}
5074 			printf("\n");
5075 		}
5076 
5077 		printf("Hardware Flags:\n");
5078 		if (BGE_IS_5755_PLUS(sc))
5079 			printf(" - 5755 Plus\n");
5080 		if (BGE_IS_575X_PLUS(sc))
5081 			printf(" - 575X Plus\n");
5082 		if (BGE_IS_5705_PLUS(sc))
5083 			printf(" - 5705 Plus\n");
5084 		if (BGE_IS_5714_FAMILY(sc))
5085 			printf(" - 5714 Family\n");
5086 		if (BGE_IS_5700_FAMILY(sc))
5087 			printf(" - 5700 Family\n");
5088 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5089 			printf(" - Supports Jumbo Frames\n");
5090 		if (sc->bge_flags & BGE_FLAG_PCIX)
5091 			printf(" - PCI-X Bus\n");
5092 		if (sc->bge_flags & BGE_FLAG_PCIE)
5093 			printf(" - PCI Express Bus\n");
5094 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5095 			printf(" - No 3 LEDs\n");
5096 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5097 			printf(" - RX Alignment Bug\n");
5098 	}
5099 
5100 	return (error);
5101 }
5102 
5103 static int
5104 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5105 {
5106 	struct bge_softc *sc;
5107 	int error;
5108 	uint16_t result;
5109 	uint32_t val;
5110 
5111 	result = -1;
5112 	error = sysctl_handle_int(oidp, &result, 0, req);
5113 	if (error || (req->newptr == NULL))
5114 		return (error);
5115 
5116 	if (result < 0x8000) {
5117 		sc = (struct bge_softc *)arg1;
5118 		val = CSR_READ_4(sc, result);
5119 		printf("reg 0x%06X = 0x%08X\n", result, val);
5120 	}
5121 
5122 	return (error);
5123 }
5124 
5125 static int
5126 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5127 {
5128 	struct bge_softc *sc;
5129 	int error;
5130 	uint16_t result;
5131 	uint32_t val;
5132 
5133 	result = -1;
5134 	error = sysctl_handle_int(oidp, &result, 0, req);
5135 	if (error || (req->newptr == NULL))
5136 		return (error);
5137 
5138 	if (result < 0x8000) {
5139 		sc = (struct bge_softc *)arg1;
5140 		val = bge_readmem_ind(sc, result);
5141 		printf("mem 0x%06X = 0x%08X\n", result, val);
5142 	}
5143 
5144 	return (error);
5145 }
5146 #endif
5147 
5148 static int
5149 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5150 {
5151 
5152 	if (sc->bge_flags & BGE_FLAG_EADDR)
5153 		return (1);
5154 
5155 #ifdef __sparc64__
5156 	OF_getetheraddr(sc->bge_dev, ether_addr);
5157 	return (0);
5158 #endif
5159 	return (1);
5160 }
5161 
5162 static int
5163 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5164 {
5165 	uint32_t mac_addr;
5166 
5167 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5168 	if ((mac_addr >> 16) == 0x484b) {
5169 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5170 		ether_addr[1] = (uint8_t)mac_addr;
5171 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5172 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5173 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5174 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5175 		ether_addr[5] = (uint8_t)mac_addr;
5176 		return (0);
5177 	}
5178 	return (1);
5179 }
5180 
5181 static int
5182 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5183 {
5184 	int mac_offset = BGE_EE_MAC_OFFSET;
5185 
5186 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5187 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5188 
5189 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5190 	    ETHER_ADDR_LEN));
5191 }
5192 
5193 static int
5194 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5195 {
5196 
5197 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5198 		return (1);
5199 
5200 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5201 	   ETHER_ADDR_LEN));
5202 }
5203 
5204 static int
5205 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5206 {
5207 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5208 		/* NOTE: Order is critical */
5209 		bge_get_eaddr_fw,
5210 		bge_get_eaddr_mem,
5211 		bge_get_eaddr_nvram,
5212 		bge_get_eaddr_eeprom,
5213 		NULL
5214 	};
5215 	const bge_eaddr_fcn_t *func;
5216 
5217 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5218 		if ((*func)(sc, eaddr) == 0)
5219 			break;
5220 	}
5221 	return (*func == NULL ? ENXIO : 0);
5222 }
5223