1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 220 221 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 222 223 { TC_VENDORID, TC_DEVICEID_3C996 }, 224 225 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 226 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 227 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 228 229 { 0, 0 } 230 }; 231 232 static const struct bge_vendor { 233 uint16_t v_id; 234 const char *v_name; 235 } const bge_vendors[] = { 236 { ALTEON_VENDORID, "Alteon" }, 237 { ALTIMA_VENDORID, "Altima" }, 238 { APPLE_VENDORID, "Apple" }, 239 { BCOM_VENDORID, "Broadcom" }, 240 { SK_VENDORID, "SysKonnect" }, 241 { TC_VENDORID, "3Com" }, 242 { FJTSU_VENDORID, "Fujitsu" }, 243 244 { 0, NULL } 245 }; 246 247 static const struct bge_revision { 248 uint32_t br_chipid; 249 const char *br_name; 250 } const bge_revisions[] = { 251 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 252 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 253 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 254 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 255 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 256 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 257 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 258 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 259 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 260 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 261 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 262 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 263 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 264 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 265 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 266 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 267 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 268 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 269 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 270 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 271 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 272 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 273 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 274 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 275 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 276 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 277 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 278 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 279 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 280 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 281 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 282 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 283 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 284 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 285 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 286 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 287 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 288 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 289 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 290 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 291 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 292 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 293 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 294 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 295 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 296 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 297 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 298 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 299 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 300 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 301 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 302 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 303 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 304 /* 5754 and 5787 share the same ASIC ID */ 305 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 306 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 307 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 308 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 309 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 310 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 311 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 312 313 { 0, NULL } 314 }; 315 316 /* 317 * Some defaults for major revisions, so that newer steppings 318 * that we don't know about have a shot at working. 319 */ 320 static const struct bge_revision const bge_majorrevs[] = { 321 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 322 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 323 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 324 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 325 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 326 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 327 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 328 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 329 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 330 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 331 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 332 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 333 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 334 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 335 /* 5754 and 5787 share the same ASIC ID */ 336 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 337 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 338 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 339 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 340 341 { 0, NULL } 342 }; 343 344 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 345 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 346 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 347 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 348 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 349 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 350 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 351 352 const struct bge_revision * bge_lookup_rev(uint32_t); 353 const struct bge_vendor * bge_lookup_vendor(uint16_t); 354 355 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 356 357 static int bge_probe(device_t); 358 static int bge_attach(device_t); 359 static int bge_detach(device_t); 360 static int bge_suspend(device_t); 361 static int bge_resume(device_t); 362 static void bge_release_resources(struct bge_softc *); 363 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 364 static int bge_dma_alloc(struct bge_softc *); 365 static void bge_dma_free(struct bge_softc *); 366 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 367 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 368 369 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 370 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 371 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 372 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 373 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 374 375 static void bge_txeof(struct bge_softc *, uint16_t); 376 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 377 static int bge_rxeof(struct bge_softc *, uint16_t, int); 378 379 static void bge_asf_driver_up (struct bge_softc *); 380 static void bge_tick(void *); 381 static void bge_stats_clear_regs(struct bge_softc *); 382 static void bge_stats_update(struct bge_softc *); 383 static void bge_stats_update_regs(struct bge_softc *); 384 static struct mbuf *bge_check_short_dma(struct mbuf *); 385 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 386 uint16_t *, uint16_t *); 387 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 388 389 static void bge_intr(void *); 390 static int bge_msi_intr(void *); 391 static void bge_intr_task(void *, int); 392 static void bge_start_locked(struct ifnet *); 393 static void bge_start(struct ifnet *); 394 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 395 static void bge_init_locked(struct bge_softc *); 396 static void bge_init(void *); 397 static void bge_stop(struct bge_softc *); 398 static void bge_watchdog(struct bge_softc *); 399 static int bge_shutdown(device_t); 400 static int bge_ifmedia_upd_locked(struct ifnet *); 401 static int bge_ifmedia_upd(struct ifnet *); 402 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 403 404 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 405 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 406 407 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 408 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 409 410 static void bge_setpromisc(struct bge_softc *); 411 static void bge_setmulti(struct bge_softc *); 412 static void bge_setvlan(struct bge_softc *); 413 414 static __inline void bge_rxreuse_std(struct bge_softc *, int); 415 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 416 static int bge_newbuf_std(struct bge_softc *, int); 417 static int bge_newbuf_jumbo(struct bge_softc *, int); 418 static int bge_init_rx_ring_std(struct bge_softc *); 419 static void bge_free_rx_ring_std(struct bge_softc *); 420 static int bge_init_rx_ring_jumbo(struct bge_softc *); 421 static void bge_free_rx_ring_jumbo(struct bge_softc *); 422 static void bge_free_tx_ring(struct bge_softc *); 423 static int bge_init_tx_ring(struct bge_softc *); 424 425 static int bge_chipinit(struct bge_softc *); 426 static int bge_blockinit(struct bge_softc *); 427 428 static int bge_has_eaddr(struct bge_softc *); 429 static uint32_t bge_readmem_ind(struct bge_softc *, int); 430 static void bge_writemem_ind(struct bge_softc *, int, int); 431 static void bge_writembx(struct bge_softc *, int, int); 432 #ifdef notdef 433 static uint32_t bge_readreg_ind(struct bge_softc *, int); 434 #endif 435 static void bge_writemem_direct(struct bge_softc *, int, int); 436 static void bge_writereg_ind(struct bge_softc *, int, int); 437 438 static int bge_miibus_readreg(device_t, int, int); 439 static int bge_miibus_writereg(device_t, int, int, int); 440 static void bge_miibus_statchg(device_t); 441 #ifdef DEVICE_POLLING 442 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 443 #endif 444 445 #define BGE_RESET_START 1 446 #define BGE_RESET_STOP 2 447 static void bge_sig_post_reset(struct bge_softc *, int); 448 static void bge_sig_legacy(struct bge_softc *, int); 449 static void bge_sig_pre_reset(struct bge_softc *, int); 450 static void bge_stop_fw(struct bge_softc *); 451 static int bge_reset(struct bge_softc *); 452 static void bge_link_upd(struct bge_softc *); 453 454 /* 455 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 456 * leak information to untrusted users. It is also known to cause alignment 457 * traps on certain architectures. 458 */ 459 #ifdef BGE_REGISTER_DEBUG 460 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 461 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 462 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 463 #endif 464 static void bge_add_sysctls(struct bge_softc *); 465 static void bge_add_sysctl_stats_regs(struct bge_softc *, 466 struct sysctl_ctx_list *, struct sysctl_oid_list *); 467 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 468 struct sysctl_oid_list *); 469 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 470 471 static device_method_t bge_methods[] = { 472 /* Device interface */ 473 DEVMETHOD(device_probe, bge_probe), 474 DEVMETHOD(device_attach, bge_attach), 475 DEVMETHOD(device_detach, bge_detach), 476 DEVMETHOD(device_shutdown, bge_shutdown), 477 DEVMETHOD(device_suspend, bge_suspend), 478 DEVMETHOD(device_resume, bge_resume), 479 480 /* bus interface */ 481 DEVMETHOD(bus_print_child, bus_generic_print_child), 482 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 483 484 /* MII interface */ 485 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 486 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 487 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 488 489 { 0, 0 } 490 }; 491 492 static driver_t bge_driver = { 493 "bge", 494 bge_methods, 495 sizeof(struct bge_softc) 496 }; 497 498 static devclass_t bge_devclass; 499 500 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 501 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 502 503 static int bge_allow_asf = 1; 504 505 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 506 507 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 508 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 509 "Allow ASF mode if available"); 510 511 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 512 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 513 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 514 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 515 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 516 517 static int 518 bge_has_eaddr(struct bge_softc *sc) 519 { 520 #ifdef __sparc64__ 521 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 522 device_t dev; 523 uint32_t subvendor; 524 525 dev = sc->bge_dev; 526 527 /* 528 * The on-board BGEs found in sun4u machines aren't fitted with 529 * an EEPROM which means that we have to obtain the MAC address 530 * via OFW and that some tests will always fail. We distinguish 531 * such BGEs by the subvendor ID, which also has to be obtained 532 * from OFW instead of the PCI configuration space as the latter 533 * indicates Broadcom as the subvendor of the netboot interface. 534 * For early Blade 1500 and 2500 we even have to check the OFW 535 * device path as the subvendor ID always defaults to Broadcom 536 * there. 537 */ 538 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 539 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 540 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 541 return (0); 542 memset(buf, 0, sizeof(buf)); 543 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 544 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 545 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 546 return (0); 547 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 548 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 549 return (0); 550 } 551 #endif 552 return (1); 553 } 554 555 static uint32_t 556 bge_readmem_ind(struct bge_softc *sc, int off) 557 { 558 device_t dev; 559 uint32_t val; 560 561 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 562 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 563 return (0); 564 565 dev = sc->bge_dev; 566 567 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 568 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 569 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 570 return (val); 571 } 572 573 static void 574 bge_writemem_ind(struct bge_softc *sc, int off, int val) 575 { 576 device_t dev; 577 578 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 579 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 580 return; 581 582 dev = sc->bge_dev; 583 584 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 585 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 586 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 587 } 588 589 #ifdef notdef 590 static uint32_t 591 bge_readreg_ind(struct bge_softc *sc, int off) 592 { 593 device_t dev; 594 595 dev = sc->bge_dev; 596 597 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 598 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 599 } 600 #endif 601 602 static void 603 bge_writereg_ind(struct bge_softc *sc, int off, int val) 604 { 605 device_t dev; 606 607 dev = sc->bge_dev; 608 609 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 610 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 611 } 612 613 static void 614 bge_writemem_direct(struct bge_softc *sc, int off, int val) 615 { 616 CSR_WRITE_4(sc, off, val); 617 } 618 619 static void 620 bge_writembx(struct bge_softc *sc, int off, int val) 621 { 622 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 624 625 CSR_WRITE_4(sc, off, val); 626 } 627 628 /* 629 * Map a single buffer address. 630 */ 631 632 static void 633 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 634 { 635 struct bge_dmamap_arg *ctx; 636 637 if (error) 638 return; 639 640 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 641 642 ctx = arg; 643 ctx->bge_busaddr = segs->ds_addr; 644 } 645 646 static uint8_t 647 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 648 { 649 uint32_t access, byte = 0; 650 int i; 651 652 /* Lock. */ 653 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 654 for (i = 0; i < 8000; i++) { 655 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 656 break; 657 DELAY(20); 658 } 659 if (i == 8000) 660 return (1); 661 662 /* Enable access. */ 663 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 664 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 665 666 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 667 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 668 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 669 DELAY(10); 670 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 671 DELAY(10); 672 break; 673 } 674 } 675 676 if (i == BGE_TIMEOUT * 10) { 677 if_printf(sc->bge_ifp, "nvram read timed out\n"); 678 return (1); 679 } 680 681 /* Get result. */ 682 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 683 684 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 685 686 /* Disable access. */ 687 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 688 689 /* Unlock. */ 690 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 691 CSR_READ_4(sc, BGE_NVRAM_SWARB); 692 693 return (0); 694 } 695 696 /* 697 * Read a sequence of bytes from NVRAM. 698 */ 699 static int 700 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 701 { 702 int err = 0, i; 703 uint8_t byte = 0; 704 705 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 706 return (1); 707 708 for (i = 0; i < cnt; i++) { 709 err = bge_nvram_getbyte(sc, off + i, &byte); 710 if (err) 711 break; 712 *(dest + i) = byte; 713 } 714 715 return (err ? 1 : 0); 716 } 717 718 /* 719 * Read a byte of data stored in the EEPROM at address 'addr.' The 720 * BCM570x supports both the traditional bitbang interface and an 721 * auto access interface for reading the EEPROM. We use the auto 722 * access method. 723 */ 724 static uint8_t 725 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 726 { 727 int i; 728 uint32_t byte = 0; 729 730 /* 731 * Enable use of auto EEPROM access so we can avoid 732 * having to use the bitbang method. 733 */ 734 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 735 736 /* Reset the EEPROM, load the clock period. */ 737 CSR_WRITE_4(sc, BGE_EE_ADDR, 738 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 739 DELAY(20); 740 741 /* Issue the read EEPROM command. */ 742 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 743 744 /* Wait for completion */ 745 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 746 DELAY(10); 747 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 748 break; 749 } 750 751 if (i == BGE_TIMEOUT * 10) { 752 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 753 return (1); 754 } 755 756 /* Get result. */ 757 byte = CSR_READ_4(sc, BGE_EE_DATA); 758 759 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 760 761 return (0); 762 } 763 764 /* 765 * Read a sequence of bytes from the EEPROM. 766 */ 767 static int 768 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 769 { 770 int i, error = 0; 771 uint8_t byte = 0; 772 773 for (i = 0; i < cnt; i++) { 774 error = bge_eeprom_getbyte(sc, off + i, &byte); 775 if (error) 776 break; 777 *(dest + i) = byte; 778 } 779 780 return (error ? 1 : 0); 781 } 782 783 static int 784 bge_miibus_readreg(device_t dev, int phy, int reg) 785 { 786 struct bge_softc *sc; 787 uint32_t val; 788 int i; 789 790 sc = device_get_softc(dev); 791 792 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 793 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 794 CSR_WRITE_4(sc, BGE_MI_MODE, 795 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 796 DELAY(80); 797 } 798 799 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 800 BGE_MIPHY(phy) | BGE_MIREG(reg)); 801 802 /* Poll for the PHY register access to complete. */ 803 for (i = 0; i < BGE_TIMEOUT; i++) { 804 DELAY(10); 805 val = CSR_READ_4(sc, BGE_MI_COMM); 806 if ((val & BGE_MICOMM_BUSY) == 0) { 807 DELAY(5); 808 val = CSR_READ_4(sc, BGE_MI_COMM); 809 break; 810 } 811 } 812 813 if (i == BGE_TIMEOUT) { 814 device_printf(sc->bge_dev, 815 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 816 phy, reg, val); 817 val = 0; 818 } 819 820 /* Restore the autopoll bit if necessary. */ 821 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 822 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 823 DELAY(80); 824 } 825 826 if (val & BGE_MICOMM_READFAIL) 827 return (0); 828 829 return (val & 0xFFFF); 830 } 831 832 static int 833 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 834 { 835 struct bge_softc *sc; 836 int i; 837 838 sc = device_get_softc(dev); 839 840 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 841 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 842 return (0); 843 844 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 845 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 846 CSR_WRITE_4(sc, BGE_MI_MODE, 847 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 848 DELAY(80); 849 } 850 851 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 852 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 853 854 for (i = 0; i < BGE_TIMEOUT; i++) { 855 DELAY(10); 856 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 857 DELAY(5); 858 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 859 break; 860 } 861 } 862 863 /* Restore the autopoll bit if necessary. */ 864 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 865 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 866 DELAY(80); 867 } 868 869 if (i == BGE_TIMEOUT) 870 device_printf(sc->bge_dev, 871 "PHY write timed out (phy %d, reg %d, val %d)\n", 872 phy, reg, val); 873 874 return (0); 875 } 876 877 static void 878 bge_miibus_statchg(device_t dev) 879 { 880 struct bge_softc *sc; 881 struct mii_data *mii; 882 sc = device_get_softc(dev); 883 mii = device_get_softc(sc->bge_miibus); 884 885 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 886 (IFM_ACTIVE | IFM_AVALID)) { 887 switch (IFM_SUBTYPE(mii->mii_media_active)) { 888 case IFM_10_T: 889 case IFM_100_TX: 890 sc->bge_link = 1; 891 break; 892 case IFM_1000_T: 893 case IFM_1000_SX: 894 case IFM_2500_SX: 895 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 896 sc->bge_link = 1; 897 else 898 sc->bge_link = 0; 899 break; 900 default: 901 sc->bge_link = 0; 902 break; 903 } 904 } else 905 sc->bge_link = 0; 906 if (sc->bge_link == 0) 907 return; 908 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); 909 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 910 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 911 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); 912 else 913 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); 914 915 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 916 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 917 if ((IFM_OPTIONS(mii->mii_media_active) & 918 IFM_ETH_TXPAUSE) != 0) 919 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 920 else 921 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 922 if ((IFM_OPTIONS(mii->mii_media_active) & 923 IFM_ETH_RXPAUSE) != 0) 924 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 925 else 926 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 927 } else { 928 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); 929 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); 930 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); 931 } 932 } 933 934 /* 935 * Intialize a standard receive ring descriptor. 936 */ 937 static int 938 bge_newbuf_std(struct bge_softc *sc, int i) 939 { 940 struct mbuf *m; 941 struct bge_rx_bd *r; 942 bus_dma_segment_t segs[1]; 943 bus_dmamap_t map; 944 int error, nsegs; 945 946 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 947 (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 948 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 949 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 950 if (m == NULL) 951 return (ENOBUFS); 952 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 953 } else { 954 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 955 if (m == NULL) 956 return (ENOBUFS); 957 m->m_len = m->m_pkthdr.len = MCLBYTES; 958 } 959 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 960 m_adj(m, ETHER_ALIGN); 961 962 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 963 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 964 if (error != 0) { 965 m_freem(m); 966 return (error); 967 } 968 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 969 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 970 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 971 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 972 sc->bge_cdata.bge_rx_std_dmamap[i]); 973 } 974 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 975 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 976 sc->bge_cdata.bge_rx_std_sparemap = map; 977 sc->bge_cdata.bge_rx_std_chain[i] = m; 978 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 979 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 980 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 981 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 982 r->bge_flags = BGE_RXBDFLAG_END; 983 r->bge_len = segs[0].ds_len; 984 r->bge_idx = i; 985 986 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 987 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 988 989 return (0); 990 } 991 992 /* 993 * Initialize a jumbo receive ring descriptor. This allocates 994 * a jumbo buffer from the pool managed internally by the driver. 995 */ 996 static int 997 bge_newbuf_jumbo(struct bge_softc *sc, int i) 998 { 999 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1000 bus_dmamap_t map; 1001 struct bge_extrx_bd *r; 1002 struct mbuf *m; 1003 int error, nsegs; 1004 1005 MGETHDR(m, M_DONTWAIT, MT_DATA); 1006 if (m == NULL) 1007 return (ENOBUFS); 1008 1009 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1010 if (!(m->m_flags & M_EXT)) { 1011 m_freem(m); 1012 return (ENOBUFS); 1013 } 1014 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1015 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1016 m_adj(m, ETHER_ALIGN); 1017 1018 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1019 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1020 if (error != 0) { 1021 m_freem(m); 1022 return (error); 1023 } 1024 1025 if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) { 1026 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1027 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1028 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1029 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1030 } 1031 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1032 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1033 sc->bge_cdata.bge_rx_jumbo_sparemap; 1034 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1035 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1036 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1037 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1038 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1039 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1040 1041 /* 1042 * Fill in the extended RX buffer descriptor. 1043 */ 1044 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1045 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1046 r->bge_idx = i; 1047 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1048 switch (nsegs) { 1049 case 4: 1050 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1051 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1052 r->bge_len3 = segs[3].ds_len; 1053 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1054 case 3: 1055 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1056 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1057 r->bge_len2 = segs[2].ds_len; 1058 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1059 case 2: 1060 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1061 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1062 r->bge_len1 = segs[1].ds_len; 1063 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1064 case 1: 1065 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1066 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1067 r->bge_len0 = segs[0].ds_len; 1068 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1069 break; 1070 default: 1071 panic("%s: %d segments\n", __func__, nsegs); 1072 } 1073 1074 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1075 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1076 1077 return (0); 1078 } 1079 1080 static int 1081 bge_init_rx_ring_std(struct bge_softc *sc) 1082 { 1083 int error, i; 1084 1085 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1086 sc->bge_std = 0; 1087 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1088 if ((error = bge_newbuf_std(sc, i)) != 0) 1089 return (error); 1090 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1091 } 1092 1093 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1094 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1095 1096 sc->bge_std = 0; 1097 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1098 1099 return (0); 1100 } 1101 1102 static void 1103 bge_free_rx_ring_std(struct bge_softc *sc) 1104 { 1105 int i; 1106 1107 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1108 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1109 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1110 sc->bge_cdata.bge_rx_std_dmamap[i], 1111 BUS_DMASYNC_POSTREAD); 1112 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1113 sc->bge_cdata.bge_rx_std_dmamap[i]); 1114 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1115 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1116 } 1117 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1118 sizeof(struct bge_rx_bd)); 1119 } 1120 } 1121 1122 static int 1123 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1124 { 1125 struct bge_rcb *rcb; 1126 int error, i; 1127 1128 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1129 sc->bge_jumbo = 0; 1130 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1131 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1132 return (error); 1133 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1134 } 1135 1136 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1137 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1138 1139 sc->bge_jumbo = 0; 1140 1141 /* Enable the jumbo receive producer ring. */ 1142 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1143 rcb->bge_maxlen_flags = 1144 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1145 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1146 1147 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1148 1149 return (0); 1150 } 1151 1152 static void 1153 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1154 { 1155 int i; 1156 1157 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1158 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1159 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1160 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1161 BUS_DMASYNC_POSTREAD); 1162 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1163 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1164 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1165 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1166 } 1167 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1168 sizeof(struct bge_extrx_bd)); 1169 } 1170 } 1171 1172 static void 1173 bge_free_tx_ring(struct bge_softc *sc) 1174 { 1175 int i; 1176 1177 if (sc->bge_ldata.bge_tx_ring == NULL) 1178 return; 1179 1180 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1181 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1182 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1183 sc->bge_cdata.bge_tx_dmamap[i], 1184 BUS_DMASYNC_POSTWRITE); 1185 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1186 sc->bge_cdata.bge_tx_dmamap[i]); 1187 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1188 sc->bge_cdata.bge_tx_chain[i] = NULL; 1189 } 1190 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1191 sizeof(struct bge_tx_bd)); 1192 } 1193 } 1194 1195 static int 1196 bge_init_tx_ring(struct bge_softc *sc) 1197 { 1198 sc->bge_txcnt = 0; 1199 sc->bge_tx_saved_considx = 0; 1200 1201 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1202 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1203 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1204 1205 /* Initialize transmit producer index for host-memory send ring. */ 1206 sc->bge_tx_prodidx = 0; 1207 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1208 1209 /* 5700 b2 errata */ 1210 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1211 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1212 1213 /* NIC-memory send ring not used; initialize to zero. */ 1214 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1215 /* 5700 b2 errata */ 1216 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1217 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1218 1219 return (0); 1220 } 1221 1222 static void 1223 bge_setpromisc(struct bge_softc *sc) 1224 { 1225 struct ifnet *ifp; 1226 1227 BGE_LOCK_ASSERT(sc); 1228 1229 ifp = sc->bge_ifp; 1230 1231 /* Enable or disable promiscuous mode as needed. */ 1232 if (ifp->if_flags & IFF_PROMISC) 1233 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1234 else 1235 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1236 } 1237 1238 static void 1239 bge_setmulti(struct bge_softc *sc) 1240 { 1241 struct ifnet *ifp; 1242 struct ifmultiaddr *ifma; 1243 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1244 int h, i; 1245 1246 BGE_LOCK_ASSERT(sc); 1247 1248 ifp = sc->bge_ifp; 1249 1250 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1251 for (i = 0; i < 4; i++) 1252 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1253 return; 1254 } 1255 1256 /* First, zot all the existing filters. */ 1257 for (i = 0; i < 4; i++) 1258 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1259 1260 /* Now program new ones. */ 1261 if_maddr_rlock(ifp); 1262 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1263 if (ifma->ifma_addr->sa_family != AF_LINK) 1264 continue; 1265 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1266 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1267 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1268 } 1269 if_maddr_runlock(ifp); 1270 1271 for (i = 0; i < 4; i++) 1272 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1273 } 1274 1275 static void 1276 bge_setvlan(struct bge_softc *sc) 1277 { 1278 struct ifnet *ifp; 1279 1280 BGE_LOCK_ASSERT(sc); 1281 1282 ifp = sc->bge_ifp; 1283 1284 /* Enable or disable VLAN tag stripping as needed. */ 1285 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1286 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1287 else 1288 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1289 } 1290 1291 static void 1292 bge_sig_pre_reset(struct bge_softc *sc, int type) 1293 { 1294 1295 /* 1296 * Some chips don't like this so only do this if ASF is enabled 1297 */ 1298 if (sc->bge_asf_mode) 1299 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 1300 1301 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1302 switch (type) { 1303 case BGE_RESET_START: 1304 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1305 break; 1306 case BGE_RESET_STOP: 1307 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1308 break; 1309 } 1310 } 1311 } 1312 1313 static void 1314 bge_sig_post_reset(struct bge_softc *sc, int type) 1315 { 1316 1317 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1318 switch (type) { 1319 case BGE_RESET_START: 1320 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 1321 /* START DONE */ 1322 break; 1323 case BGE_RESET_STOP: 1324 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 1325 break; 1326 } 1327 } 1328 } 1329 1330 static void 1331 bge_sig_legacy(struct bge_softc *sc, int type) 1332 { 1333 1334 if (sc->bge_asf_mode) { 1335 switch (type) { 1336 case BGE_RESET_START: 1337 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */ 1338 break; 1339 case BGE_RESET_STOP: 1340 bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */ 1341 break; 1342 } 1343 } 1344 } 1345 1346 static void 1347 bge_stop_fw(struct bge_softc *sc) 1348 { 1349 int i; 1350 1351 if (sc->bge_asf_mode) { 1352 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE); 1353 CSR_WRITE_4(sc, BGE_CPU_EVENT, 1354 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 1355 1356 for (i = 0; i < 100; i++ ) { 1357 if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14))) 1358 break; 1359 DELAY(10); 1360 } 1361 } 1362 } 1363 1364 /* 1365 * Do endian, PCI and DMA initialization. 1366 */ 1367 static int 1368 bge_chipinit(struct bge_softc *sc) 1369 { 1370 uint32_t dma_rw_ctl, misc_ctl; 1371 uint16_t val; 1372 int i; 1373 1374 /* Set endianness before we access any non-PCI registers. */ 1375 misc_ctl = BGE_INIT; 1376 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1377 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1378 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1379 1380 /* Clear the MAC control register */ 1381 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1382 1383 /* 1384 * Clear the MAC statistics block in the NIC's 1385 * internal memory. 1386 */ 1387 for (i = BGE_STATS_BLOCK; 1388 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1389 BGE_MEMWIN_WRITE(sc, i, 0); 1390 1391 for (i = BGE_STATUS_BLOCK; 1392 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1393 BGE_MEMWIN_WRITE(sc, i, 0); 1394 1395 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1396 /* 1397 * Fix data corruption caused by non-qword write with WB. 1398 * Fix master abort in PCI mode. 1399 * Fix PCI latency timer. 1400 */ 1401 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1402 val |= (1 << 10) | (1 << 12) | (1 << 13); 1403 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1404 } 1405 1406 /* 1407 * Set up the PCI DMA control register. 1408 */ 1409 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1410 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1411 if (sc->bge_flags & BGE_FLAG_PCIE) { 1412 /* Read watermark not used, 128 bytes for write. */ 1413 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1414 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1415 if (BGE_IS_5714_FAMILY(sc)) { 1416 /* 256 bytes for read and write. */ 1417 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1418 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1419 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1420 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1421 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1422 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1423 /* 1424 * In the BCM5703, the DMA read watermark should 1425 * be set to less than or equal to the maximum 1426 * memory read byte count of the PCI-X command 1427 * register. 1428 */ 1429 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1430 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1431 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1432 /* 1536 bytes for read, 384 bytes for write. */ 1433 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1434 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1435 } else { 1436 /* 384 bytes for read and write. */ 1437 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1438 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1439 0x0F; 1440 } 1441 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1442 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1443 uint32_t tmp; 1444 1445 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1446 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1447 if (tmp == 6 || tmp == 7) 1448 dma_rw_ctl |= 1449 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1450 1451 /* Set PCI-X DMA write workaround. */ 1452 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1453 } 1454 } else { 1455 /* Conventional PCI bus: 256 bytes for read and write. */ 1456 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1457 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1458 1459 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1460 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1461 dma_rw_ctl |= 0x0F; 1462 } 1463 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1464 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1465 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1466 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1467 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1468 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1469 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1470 if (BGE_IS_5717_PLUS(sc)) 1471 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1472 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1473 1474 /* 1475 * Set up general mode register. 1476 */ 1477 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 1478 BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1479 BGE_MODECTL_TX_NO_PHDR_CSUM); 1480 1481 /* 1482 * BCM5701 B5 have a bug causing data corruption when using 1483 * 64-bit DMA reads, which can be terminated early and then 1484 * completed later as 32-bit accesses, in combination with 1485 * certain bridges. 1486 */ 1487 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1488 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1489 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32); 1490 1491 /* 1492 * Tell the firmware the driver is running 1493 */ 1494 if (sc->bge_asf_mode & ASF_STACKUP) 1495 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 1496 1497 /* 1498 * Disable memory write invalidate. Apparently it is not supported 1499 * properly by these devices. Also ensure that INTx isn't disabled, 1500 * as these chips need it even when using MSI. 1501 */ 1502 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1503 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1504 1505 /* Set the timer prescaler (always 66Mhz) */ 1506 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1507 1508 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1509 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1510 DELAY(40); /* XXX */ 1511 1512 /* Put PHY into ready state */ 1513 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1514 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1515 DELAY(40); 1516 } 1517 1518 return (0); 1519 } 1520 1521 static int 1522 bge_blockinit(struct bge_softc *sc) 1523 { 1524 struct bge_rcb *rcb; 1525 bus_size_t vrcb; 1526 bge_hostaddr taddr; 1527 uint32_t val; 1528 int i, limit; 1529 1530 /* 1531 * Initialize the memory window pointer register so that 1532 * we can access the first 32K of internal NIC RAM. This will 1533 * allow us to set up the TX send ring RCBs and the RX return 1534 * ring RCBs, plus other things which live in NIC memory. 1535 */ 1536 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1537 1538 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1539 1540 if (!(BGE_IS_5705_PLUS(sc))) { 1541 /* Configure mbuf memory pool */ 1542 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1543 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1544 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1545 else 1546 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1547 1548 /* Configure DMA resource pool */ 1549 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1550 BGE_DMA_DESCRIPTORS); 1551 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1552 } 1553 1554 /* Configure mbuf pool watermarks */ 1555 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 1556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1557 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1560 } else { 1561 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1563 } 1564 } else if (!BGE_IS_5705_PLUS(sc)) { 1565 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1566 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1567 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1568 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1569 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1570 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1571 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1572 } else { 1573 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1574 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1575 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1576 } 1577 1578 /* Configure DMA resource watermarks */ 1579 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1580 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1581 1582 /* Enable buffer manager */ 1583 if (!(BGE_IS_5705_PLUS(sc))) { 1584 CSR_WRITE_4(sc, BGE_BMAN_MODE, 1585 BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN); 1586 1587 /* Poll for buffer manager start indication */ 1588 for (i = 0; i < BGE_TIMEOUT; i++) { 1589 DELAY(10); 1590 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1591 break; 1592 } 1593 1594 if (i == BGE_TIMEOUT) { 1595 device_printf(sc->bge_dev, 1596 "buffer manager failed to start\n"); 1597 return (ENXIO); 1598 } 1599 } 1600 1601 /* Enable flow-through queues */ 1602 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1603 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1604 1605 /* Wait until queue initialization is complete */ 1606 for (i = 0; i < BGE_TIMEOUT; i++) { 1607 DELAY(10); 1608 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1609 break; 1610 } 1611 1612 if (i == BGE_TIMEOUT) { 1613 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 1614 return (ENXIO); 1615 } 1616 1617 /* 1618 * Summary of rings supported by the controller: 1619 * 1620 * Standard Receive Producer Ring 1621 * - This ring is used to feed receive buffers for "standard" 1622 * sized frames (typically 1536 bytes) to the controller. 1623 * 1624 * Jumbo Receive Producer Ring 1625 * - This ring is used to feed receive buffers for jumbo sized 1626 * frames (i.e. anything bigger than the "standard" frames) 1627 * to the controller. 1628 * 1629 * Mini Receive Producer Ring 1630 * - This ring is used to feed receive buffers for "mini" 1631 * sized frames to the controller. 1632 * - This feature required external memory for the controller 1633 * but was never used in a production system. Should always 1634 * be disabled. 1635 * 1636 * Receive Return Ring 1637 * - After the controller has placed an incoming frame into a 1638 * receive buffer that buffer is moved into a receive return 1639 * ring. The driver is then responsible to passing the 1640 * buffer up to the stack. Many versions of the controller 1641 * support multiple RR rings. 1642 * 1643 * Send Ring 1644 * - This ring is used for outgoing frames. Many versions of 1645 * the controller support multiple send rings. 1646 */ 1647 1648 /* Initialize the standard receive producer ring control block. */ 1649 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1650 rcb->bge_hostaddr.bge_addr_lo = 1651 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1652 rcb->bge_hostaddr.bge_addr_hi = 1653 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1654 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1655 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1656 if (BGE_IS_5717_PLUS(sc)) { 1657 /* 1658 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 1659 * Bits 15-2 : Maximum RX frame size 1660 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 1661 * Bit 0 : Reserved 1662 */ 1663 rcb->bge_maxlen_flags = 1664 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 1665 } else if (BGE_IS_5705_PLUS(sc)) { 1666 /* 1667 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 1668 * Bits 15-2 : Reserved (should be 0) 1669 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1670 * Bit 0 : Reserved 1671 */ 1672 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1673 } else { 1674 /* 1675 * Ring size is always XXX entries 1676 * Bits 31-16: Maximum RX frame size 1677 * Bits 15-2 : Reserved (should be 0) 1678 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1679 * Bit 0 : Reserved 1680 */ 1681 rcb->bge_maxlen_flags = 1682 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1683 } 1684 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1685 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 1686 else 1687 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1688 /* Write the standard receive producer ring control block. */ 1689 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1690 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1691 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1692 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1693 1694 /* Reset the standard receive producer ring producer index. */ 1695 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1696 1697 /* 1698 * Initialize the jumbo RX producer ring control 1699 * block. We set the 'ring disabled' bit in the 1700 * flags field until we're actually ready to start 1701 * using this ring (i.e. once we set the MTU 1702 * high enough to require it). 1703 */ 1704 if (BGE_IS_JUMBO_CAPABLE(sc)) { 1705 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1706 /* Get the jumbo receive producer ring RCB parameters. */ 1707 rcb->bge_hostaddr.bge_addr_lo = 1708 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1709 rcb->bge_hostaddr.bge_addr_hi = 1710 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1711 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1712 sc->bge_cdata.bge_rx_jumbo_ring_map, 1713 BUS_DMASYNC_PREREAD); 1714 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1715 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 1716 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1717 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 1718 else 1719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1720 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1721 rcb->bge_hostaddr.bge_addr_hi); 1722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1723 rcb->bge_hostaddr.bge_addr_lo); 1724 /* Program the jumbo receive producer ring RCB parameters. */ 1725 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1726 rcb->bge_maxlen_flags); 1727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1728 /* Reset the jumbo receive producer ring producer index. */ 1729 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1730 } 1731 1732 /* Disable the mini receive producer ring RCB. */ 1733 if (BGE_IS_5700_FAMILY(sc)) { 1734 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1735 rcb->bge_maxlen_flags = 1736 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1737 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1738 rcb->bge_maxlen_flags); 1739 /* Reset the mini receive producer ring producer index. */ 1740 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1741 } 1742 1743 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 1744 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1745 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 1746 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 1747 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 1748 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 1749 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 1750 } 1751 /* 1752 * The BD ring replenish thresholds control how often the 1753 * hardware fetches new BD's from the producer rings in host 1754 * memory. Setting the value too low on a busy system can 1755 * starve the hardware and recue the throughpout. 1756 * 1757 * Set the BD ring replentish thresholds. The recommended 1758 * values are 1/8th the number of descriptors allocated to 1759 * each ring. 1760 * XXX The 5754 requires a lower threshold, so it might be a 1761 * requirement of all 575x family chips. The Linux driver sets 1762 * the lower threshold for all 5705 family chips as well, but there 1763 * are reports that it might not need to be so strict. 1764 * 1765 * XXX Linux does some extra fiddling here for the 5906 parts as 1766 * well. 1767 */ 1768 if (BGE_IS_5705_PLUS(sc)) 1769 val = 8; 1770 else 1771 val = BGE_STD_RX_RING_CNT / 8; 1772 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 1773 if (BGE_IS_JUMBO_CAPABLE(sc)) 1774 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 1775 BGE_JUMBO_RX_RING_CNT/8); 1776 if (BGE_IS_5717_PLUS(sc)) { 1777 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 1778 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 1779 } 1780 1781 /* 1782 * Disable all send rings by setting the 'ring disabled' bit 1783 * in the flags field of all the TX send ring control blocks, 1784 * located in NIC memory. 1785 */ 1786 if (!BGE_IS_5705_PLUS(sc)) 1787 /* 5700 to 5704 had 16 send rings. */ 1788 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 1789 else 1790 limit = 1; 1791 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1792 for (i = 0; i < limit; i++) { 1793 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1794 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 1795 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1796 vrcb += sizeof(struct bge_rcb); 1797 } 1798 1799 /* Configure send ring RCB 0 (we use only the first ring) */ 1800 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1801 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 1802 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1803 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1804 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1805 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 1806 else 1807 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 1808 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 1809 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1810 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 1811 1812 /* 1813 * Disable all receive return rings by setting the 1814 * 'ring diabled' bit in the flags field of all the receive 1815 * return ring control blocks, located in NIC memory. 1816 */ 1817 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 1818 /* Should be 17, use 16 until we get an SRAM map. */ 1819 limit = 16; 1820 } else if (!BGE_IS_5705_PLUS(sc)) 1821 limit = BGE_RX_RINGS_MAX; 1822 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755) 1823 limit = 4; 1824 else 1825 limit = 1; 1826 /* Disable all receive return rings. */ 1827 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1828 for (i = 0; i < limit; i++) { 1829 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 1830 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 1831 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1832 BGE_RCB_FLAG_RING_DISABLED); 1833 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1834 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 1835 (i * (sizeof(uint64_t))), 0); 1836 vrcb += sizeof(struct bge_rcb); 1837 } 1838 1839 /* 1840 * Set up receive return ring 0. Note that the NIC address 1841 * for RX return rings is 0x0. The return rings live entirely 1842 * within the host, so the nicaddr field in the RCB isn't used. 1843 */ 1844 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1845 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 1846 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1847 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1848 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1849 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1850 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 1851 1852 /* Set random backoff seed for TX */ 1853 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1854 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1855 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1856 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1857 BGE_TX_BACKOFF_SEED_MASK); 1858 1859 /* Set inter-packet gap */ 1860 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); 1861 1862 /* 1863 * Specify which ring to use for packets that don't match 1864 * any RX rules. 1865 */ 1866 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1867 1868 /* 1869 * Configure number of RX lists. One interrupt distribution 1870 * list, sixteen active lists, one bad frames class. 1871 */ 1872 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1873 1874 /* Inialize RX list placement stats mask. */ 1875 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1876 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1877 1878 /* Disable host coalescing until we get it set up */ 1879 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1880 1881 /* Poll to make sure it's shut down. */ 1882 for (i = 0; i < BGE_TIMEOUT; i++) { 1883 DELAY(10); 1884 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1885 break; 1886 } 1887 1888 if (i == BGE_TIMEOUT) { 1889 device_printf(sc->bge_dev, 1890 "host coalescing engine failed to idle\n"); 1891 return (ENXIO); 1892 } 1893 1894 /* Set up host coalescing defaults */ 1895 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1896 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1897 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1898 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1899 if (!(BGE_IS_5705_PLUS(sc))) { 1900 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1901 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1902 } 1903 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 1904 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 1905 1906 /* Set up address of statistics block */ 1907 if (!(BGE_IS_5705_PLUS(sc))) { 1908 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1909 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1910 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1911 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1912 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 1913 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 1914 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 1915 } 1916 1917 /* Set up address of status block */ 1918 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 1919 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 1920 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 1921 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 1922 1923 /* Set up status block size. */ 1924 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 1925 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 1926 val = BGE_STATBLKSZ_FULL; 1927 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 1928 } else { 1929 val = BGE_STATBLKSZ_32BYTE; 1930 bzero(sc->bge_ldata.bge_status_block, 32); 1931 } 1932 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 1933 sc->bge_cdata.bge_status_map, 1934 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1935 1936 /* Turn on host coalescing state machine */ 1937 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 1938 1939 /* Turn on RX BD completion state machine and enable attentions */ 1940 CSR_WRITE_4(sc, BGE_RBDC_MODE, 1941 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 1942 1943 /* Turn on RX list placement state machine */ 1944 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 1945 1946 /* Turn on RX list selector state machine. */ 1947 if (!(BGE_IS_5705_PLUS(sc))) 1948 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 1949 1950 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 1951 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 1952 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 1953 BGE_MACMODE_FRMHDR_DMA_ENB; 1954 1955 if (sc->bge_flags & BGE_FLAG_TBI) 1956 val |= BGE_PORTMODE_TBI; 1957 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 1958 val |= BGE_PORTMODE_GMII; 1959 else 1960 val |= BGE_PORTMODE_MII; 1961 1962 /* Turn on DMA, clear stats */ 1963 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 1964 1965 /* Set misc. local control, enable interrupts on attentions */ 1966 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 1967 1968 #ifdef notdef 1969 /* Assert GPIO pins for PHY reset */ 1970 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 1971 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 1972 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 1973 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 1974 #endif 1975 1976 /* Turn on DMA completion state machine */ 1977 if (!(BGE_IS_5705_PLUS(sc))) 1978 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 1979 1980 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 1981 1982 /* Enable host coalescing bug fix. */ 1983 if (BGE_IS_5755_PLUS(sc)) 1984 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 1985 1986 /* Request larger DMA burst size to get better performance. */ 1987 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 1988 val |= BGE_WDMAMODE_BURST_ALL_DATA; 1989 1990 /* Turn on write DMA state machine */ 1991 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 1992 DELAY(40); 1993 1994 /* Turn on read DMA state machine */ 1995 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 1996 1997 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 1998 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 1999 2000 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2001 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2002 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2003 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2004 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2005 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2006 if (sc->bge_flags & BGE_FLAG_PCIE) 2007 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2008 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2009 val |= BGE_RDMAMODE_TSO4_ENABLE; 2010 if (sc->bge_flags & BGE_FLAG_TSO3 || 2011 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2012 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2013 val |= BGE_RDMAMODE_TSO6_ENABLE; 2014 } 2015 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2016 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2017 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2018 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2019 BGE_IS_5717_PLUS(sc)) { 2020 /* 2021 * Enable fix for read DMA FIFO overruns. 2022 * The fix is to limit the number of RX BDs 2023 * the hardware would fetch at a fime. 2024 */ 2025 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, 2026 CSR_READ_4(sc, BGE_RDMA_RSRVCTRL) | 2027 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2028 } 2029 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2030 DELAY(40); 2031 2032 /* Turn on RX data completion state machine */ 2033 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2034 2035 /* Turn on RX BD initiator state machine */ 2036 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2037 2038 /* Turn on RX data and RX BD initiator state machine */ 2039 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2040 2041 /* Turn on Mbuf cluster free state machine */ 2042 if (!(BGE_IS_5705_PLUS(sc))) 2043 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2044 2045 /* Turn on send BD completion state machine */ 2046 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2047 2048 /* Turn on send data completion state machine */ 2049 val = BGE_SDCMODE_ENABLE; 2050 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2051 val |= BGE_SDCMODE_CDELAY; 2052 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2053 2054 /* Turn on send data initiator state machine */ 2055 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2056 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2057 BGE_SDIMODE_HW_LSO_PRE_DMA); 2058 else 2059 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2060 2061 /* Turn on send BD initiator state machine */ 2062 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2063 2064 /* Turn on send BD selector state machine */ 2065 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2066 2067 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2068 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2069 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2070 2071 /* ack/clear link change events */ 2072 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2073 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2074 BGE_MACSTAT_LINK_CHANGED); 2075 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2076 2077 /* 2078 * Enable attention when the link has changed state for 2079 * devices that use auto polling. 2080 */ 2081 if (sc->bge_flags & BGE_FLAG_TBI) { 2082 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2083 } else { 2084 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2085 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2086 DELAY(80); 2087 } 2088 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2089 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2090 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2091 BGE_EVTENB_MI_INTERRUPT); 2092 } 2093 2094 /* 2095 * Clear any pending link state attention. 2096 * Otherwise some link state change events may be lost until attention 2097 * is cleared by bge_intr() -> bge_link_upd() sequence. 2098 * It's not necessary on newer BCM chips - perhaps enabling link 2099 * state change attentions implies clearing pending attention. 2100 */ 2101 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2102 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2103 BGE_MACSTAT_LINK_CHANGED); 2104 2105 /* Enable link state change attentions. */ 2106 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2107 2108 return (0); 2109 } 2110 2111 const struct bge_revision * 2112 bge_lookup_rev(uint32_t chipid) 2113 { 2114 const struct bge_revision *br; 2115 2116 for (br = bge_revisions; br->br_name != NULL; br++) { 2117 if (br->br_chipid == chipid) 2118 return (br); 2119 } 2120 2121 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2122 if (br->br_chipid == BGE_ASICREV(chipid)) 2123 return (br); 2124 } 2125 2126 return (NULL); 2127 } 2128 2129 const struct bge_vendor * 2130 bge_lookup_vendor(uint16_t vid) 2131 { 2132 const struct bge_vendor *v; 2133 2134 for (v = bge_vendors; v->v_name != NULL; v++) 2135 if (v->v_id == vid) 2136 return (v); 2137 2138 panic("%s: unknown vendor %d", __func__, vid); 2139 return (NULL); 2140 } 2141 2142 /* 2143 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2144 * against our list and return its name if we find a match. 2145 * 2146 * Note that since the Broadcom controller contains VPD support, we 2147 * try to get the device name string from the controller itself instead 2148 * of the compiled-in string. It guarantees we'll always announce the 2149 * right product name. We fall back to the compiled-in string when 2150 * VPD is unavailable or corrupt. 2151 */ 2152 static int 2153 bge_probe(device_t dev) 2154 { 2155 char buf[96]; 2156 char model[64]; 2157 const struct bge_revision *br; 2158 const char *pname; 2159 struct bge_softc *sc = device_get_softc(dev); 2160 const struct bge_type *t = bge_devs; 2161 const struct bge_vendor *v; 2162 uint32_t id; 2163 uint16_t did, vid; 2164 2165 sc->bge_dev = dev; 2166 vid = pci_get_vendor(dev); 2167 did = pci_get_device(dev); 2168 while(t->bge_vid != 0) { 2169 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2170 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2171 BGE_PCIMISCCTL_ASICREV_SHIFT; 2172 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2173 /* 2174 * Find the ASCI revision. Different chips 2175 * use different registers. 2176 */ 2177 switch (pci_get_device(dev)) { 2178 case BCOM_DEVICEID_BCM5717: 2179 case BCOM_DEVICEID_BCM5718: 2180 id = pci_read_config(dev, 2181 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2182 break; 2183 default: 2184 id = pci_read_config(dev, 2185 BGE_PCI_PRODID_ASICREV, 4); 2186 } 2187 } 2188 br = bge_lookup_rev(id); 2189 v = bge_lookup_vendor(vid); 2190 if (bge_has_eaddr(sc) && 2191 pci_get_vpd_ident(dev, &pname) == 0) 2192 snprintf(model, 64, "%s", pname); 2193 else 2194 snprintf(model, 64, "%s %s", v->v_name, 2195 br != NULL ? br->br_name : 2196 "NetXtreme Ethernet Controller"); 2197 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2198 br != NULL ? "" : "unknown ", id); 2199 device_set_desc_copy(dev, buf); 2200 return (0); 2201 } 2202 t++; 2203 } 2204 2205 return (ENXIO); 2206 } 2207 2208 static void 2209 bge_dma_free(struct bge_softc *sc) 2210 { 2211 int i; 2212 2213 /* Destroy DMA maps for RX buffers. */ 2214 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2215 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2216 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2217 sc->bge_cdata.bge_rx_std_dmamap[i]); 2218 } 2219 if (sc->bge_cdata.bge_rx_std_sparemap) 2220 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2221 sc->bge_cdata.bge_rx_std_sparemap); 2222 2223 /* Destroy DMA maps for jumbo RX buffers. */ 2224 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2225 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2226 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2227 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2228 } 2229 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2230 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2231 sc->bge_cdata.bge_rx_jumbo_sparemap); 2232 2233 /* Destroy DMA maps for TX buffers. */ 2234 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2235 if (sc->bge_cdata.bge_tx_dmamap[i]) 2236 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2237 sc->bge_cdata.bge_tx_dmamap[i]); 2238 } 2239 2240 if (sc->bge_cdata.bge_rx_mtag) 2241 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2242 if (sc->bge_cdata.bge_tx_mtag) 2243 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2244 2245 2246 /* Destroy standard RX ring. */ 2247 if (sc->bge_cdata.bge_rx_std_ring_map) 2248 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2249 sc->bge_cdata.bge_rx_std_ring_map); 2250 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2251 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2252 sc->bge_ldata.bge_rx_std_ring, 2253 sc->bge_cdata.bge_rx_std_ring_map); 2254 2255 if (sc->bge_cdata.bge_rx_std_ring_tag) 2256 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2257 2258 /* Destroy jumbo RX ring. */ 2259 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2260 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2261 sc->bge_cdata.bge_rx_jumbo_ring_map); 2262 2263 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2264 sc->bge_ldata.bge_rx_jumbo_ring) 2265 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2266 sc->bge_ldata.bge_rx_jumbo_ring, 2267 sc->bge_cdata.bge_rx_jumbo_ring_map); 2268 2269 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2270 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2271 2272 /* Destroy RX return ring. */ 2273 if (sc->bge_cdata.bge_rx_return_ring_map) 2274 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2275 sc->bge_cdata.bge_rx_return_ring_map); 2276 2277 if (sc->bge_cdata.bge_rx_return_ring_map && 2278 sc->bge_ldata.bge_rx_return_ring) 2279 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2280 sc->bge_ldata.bge_rx_return_ring, 2281 sc->bge_cdata.bge_rx_return_ring_map); 2282 2283 if (sc->bge_cdata.bge_rx_return_ring_tag) 2284 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2285 2286 /* Destroy TX ring. */ 2287 if (sc->bge_cdata.bge_tx_ring_map) 2288 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2289 sc->bge_cdata.bge_tx_ring_map); 2290 2291 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2292 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2293 sc->bge_ldata.bge_tx_ring, 2294 sc->bge_cdata.bge_tx_ring_map); 2295 2296 if (sc->bge_cdata.bge_tx_ring_tag) 2297 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2298 2299 /* Destroy status block. */ 2300 if (sc->bge_cdata.bge_status_map) 2301 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2302 sc->bge_cdata.bge_status_map); 2303 2304 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2305 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2306 sc->bge_ldata.bge_status_block, 2307 sc->bge_cdata.bge_status_map); 2308 2309 if (sc->bge_cdata.bge_status_tag) 2310 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2311 2312 /* Destroy statistics block. */ 2313 if (sc->bge_cdata.bge_stats_map) 2314 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2315 sc->bge_cdata.bge_stats_map); 2316 2317 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2318 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2319 sc->bge_ldata.bge_stats, 2320 sc->bge_cdata.bge_stats_map); 2321 2322 if (sc->bge_cdata.bge_stats_tag) 2323 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2324 2325 if (sc->bge_cdata.bge_buffer_tag) 2326 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2327 2328 /* Destroy the parent tag. */ 2329 if (sc->bge_cdata.bge_parent_tag) 2330 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2331 } 2332 2333 static int 2334 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2335 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2336 bus_addr_t *paddr, const char *msg) 2337 { 2338 struct bge_dmamap_arg ctx; 2339 bus_addr_t lowaddr; 2340 bus_size_t ring_end; 2341 int error; 2342 2343 lowaddr = BUS_SPACE_MAXADDR; 2344 again: 2345 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2346 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2347 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2348 if (error != 0) { 2349 device_printf(sc->bge_dev, 2350 "could not create %s dma tag\n", msg); 2351 return (ENOMEM); 2352 } 2353 /* Allocate DMA'able memory for ring. */ 2354 error = bus_dmamem_alloc(*tag, (void **)ring, 2355 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2356 if (error != 0) { 2357 device_printf(sc->bge_dev, 2358 "could not allocate DMA'able memory for %s\n", msg); 2359 return (ENOMEM); 2360 } 2361 /* Load the address of the ring. */ 2362 ctx.bge_busaddr = 0; 2363 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2364 &ctx, BUS_DMA_NOWAIT); 2365 if (error != 0) { 2366 device_printf(sc->bge_dev, 2367 "could not load DMA'able memory for %s\n", msg); 2368 return (ENOMEM); 2369 } 2370 *paddr = ctx.bge_busaddr; 2371 ring_end = *paddr + maxsize; 2372 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2373 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2374 /* 2375 * 4GB boundary crossed. Limit maximum allowable DMA 2376 * address space to 32bit and try again. 2377 */ 2378 bus_dmamap_unload(*tag, *map); 2379 bus_dmamem_free(*tag, *ring, *map); 2380 bus_dma_tag_destroy(*tag); 2381 if (bootverbose) 2382 device_printf(sc->bge_dev, "4GB boundary crossed, " 2383 "limit DMA address space to 32bit for %s\n", msg); 2384 *ring = NULL; 2385 *tag = NULL; 2386 *map = NULL; 2387 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2388 goto again; 2389 } 2390 return (0); 2391 } 2392 2393 static int 2394 bge_dma_alloc(struct bge_softc *sc) 2395 { 2396 bus_addr_t lowaddr; 2397 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2398 int i, error; 2399 2400 lowaddr = BUS_SPACE_MAXADDR; 2401 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2402 lowaddr = BGE_DMA_MAXADDR; 2403 /* 2404 * Allocate the parent bus DMA tag appropriate for PCI. 2405 */ 2406 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2407 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2408 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2409 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2410 if (error != 0) { 2411 device_printf(sc->bge_dev, 2412 "could not allocate parent dma tag\n"); 2413 return (ENOMEM); 2414 } 2415 2416 /* Create tag for standard RX ring. */ 2417 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2418 &sc->bge_cdata.bge_rx_std_ring_tag, 2419 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2420 &sc->bge_cdata.bge_rx_std_ring_map, 2421 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2422 if (error) 2423 return (error); 2424 2425 /* Create tag for RX return ring. */ 2426 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2427 &sc->bge_cdata.bge_rx_return_ring_tag, 2428 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2429 &sc->bge_cdata.bge_rx_return_ring_map, 2430 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2431 if (error) 2432 return (error); 2433 2434 /* Create tag for TX ring. */ 2435 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2436 &sc->bge_cdata.bge_tx_ring_tag, 2437 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2438 &sc->bge_cdata.bge_tx_ring_map, 2439 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2440 if (error) 2441 return (error); 2442 2443 /* 2444 * Create tag for status block. 2445 * Because we only use single Tx/Rx/Rx return ring, use 2446 * minimum status block size except BCM5700 AX/BX which 2447 * seems to want to see full status block size regardless 2448 * of configured number of ring. 2449 */ 2450 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2451 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2452 sbsz = BGE_STATUS_BLK_SZ; 2453 else 2454 sbsz = 32; 2455 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2456 &sc->bge_cdata.bge_status_tag, 2457 (uint8_t **)&sc->bge_ldata.bge_status_block, 2458 &sc->bge_cdata.bge_status_map, 2459 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2460 if (error) 2461 return (error); 2462 2463 /* Create tag for statistics block. */ 2464 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2465 &sc->bge_cdata.bge_stats_tag, 2466 (uint8_t **)&sc->bge_ldata.bge_stats, 2467 &sc->bge_cdata.bge_stats_map, 2468 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2469 if (error) 2470 return (error); 2471 2472 /* Create tag for jumbo RX ring. */ 2473 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2474 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2475 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2476 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2477 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2478 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2479 if (error) 2480 return (error); 2481 } 2482 2483 /* Create parent tag for buffers. */ 2484 boundary = 0; 2485 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 2486 boundary = BGE_DMA_BNDRY; 2487 /* 2488 * XXX 2489 * watchdog timeout issue was observed on BCM5704 which 2490 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 2491 * Limiting DMA address space to 32bits seems to address 2492 * it. 2493 */ 2494 if (sc->bge_flags & BGE_FLAG_PCIX) 2495 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2496 } 2497 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2498 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 2499 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2500 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 2501 if (error != 0) { 2502 device_printf(sc->bge_dev, 2503 "could not allocate buffer dma tag\n"); 2504 return (ENOMEM); 2505 } 2506 /* Create tag for Tx mbufs. */ 2507 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2508 txsegsz = BGE_TSOSEG_SZ; 2509 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2510 } else { 2511 txsegsz = MCLBYTES; 2512 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2513 } 2514 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2515 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2516 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2517 &sc->bge_cdata.bge_tx_mtag); 2518 2519 if (error) { 2520 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2521 return (ENOMEM); 2522 } 2523 2524 /* Create tag for Rx mbufs. */ 2525 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 2526 rxmaxsegsz = MJUM9BYTES; 2527 else 2528 rxmaxsegsz = MCLBYTES; 2529 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2530 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 2531 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2532 2533 if (error) { 2534 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2535 return (ENOMEM); 2536 } 2537 2538 /* Create DMA maps for RX buffers. */ 2539 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2540 &sc->bge_cdata.bge_rx_std_sparemap); 2541 if (error) { 2542 device_printf(sc->bge_dev, 2543 "can't create spare DMA map for RX\n"); 2544 return (ENOMEM); 2545 } 2546 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2547 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2548 &sc->bge_cdata.bge_rx_std_dmamap[i]); 2549 if (error) { 2550 device_printf(sc->bge_dev, 2551 "can't create DMA map for RX\n"); 2552 return (ENOMEM); 2553 } 2554 } 2555 2556 /* Create DMA maps for TX buffers. */ 2557 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2558 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 2559 &sc->bge_cdata.bge_tx_dmamap[i]); 2560 if (error) { 2561 device_printf(sc->bge_dev, 2562 "can't create DMA map for TX\n"); 2563 return (ENOMEM); 2564 } 2565 } 2566 2567 /* Create tags for jumbo RX buffers. */ 2568 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2569 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 2570 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2571 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 2572 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 2573 if (error) { 2574 device_printf(sc->bge_dev, 2575 "could not allocate jumbo dma tag\n"); 2576 return (ENOMEM); 2577 } 2578 /* Create DMA maps for jumbo RX buffers. */ 2579 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2580 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 2581 if (error) { 2582 device_printf(sc->bge_dev, 2583 "can't create spare DMA map for jumbo RX\n"); 2584 return (ENOMEM); 2585 } 2586 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2587 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2588 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2589 if (error) { 2590 device_printf(sc->bge_dev, 2591 "can't create DMA map for jumbo RX\n"); 2592 return (ENOMEM); 2593 } 2594 } 2595 } 2596 2597 return (0); 2598 } 2599 2600 /* 2601 * Return true if this device has more than one port. 2602 */ 2603 static int 2604 bge_has_multiple_ports(struct bge_softc *sc) 2605 { 2606 device_t dev = sc->bge_dev; 2607 u_int b, d, f, fscan, s; 2608 2609 d = pci_get_domain(dev); 2610 b = pci_get_bus(dev); 2611 s = pci_get_slot(dev); 2612 f = pci_get_function(dev); 2613 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 2614 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 2615 return (1); 2616 return (0); 2617 } 2618 2619 /* 2620 * Return true if MSI can be used with this device. 2621 */ 2622 static int 2623 bge_can_use_msi(struct bge_softc *sc) 2624 { 2625 int can_use_msi = 0; 2626 2627 /* Disable MSI for polling(4). */ 2628 #ifdef DEVICE_POLLING 2629 return (0); 2630 #endif 2631 switch (sc->bge_asicrev) { 2632 case BGE_ASICREV_BCM5714_A0: 2633 case BGE_ASICREV_BCM5714: 2634 /* 2635 * Apparently, MSI doesn't work when these chips are 2636 * configured in single-port mode. 2637 */ 2638 if (bge_has_multiple_ports(sc)) 2639 can_use_msi = 1; 2640 break; 2641 case BGE_ASICREV_BCM5750: 2642 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 2643 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 2644 can_use_msi = 1; 2645 break; 2646 default: 2647 if (BGE_IS_575X_PLUS(sc)) 2648 can_use_msi = 1; 2649 } 2650 return (can_use_msi); 2651 } 2652 2653 static int 2654 bge_attach(device_t dev) 2655 { 2656 struct ifnet *ifp; 2657 struct bge_softc *sc; 2658 uint32_t hwcfg = 0, misccfg; 2659 u_char eaddr[ETHER_ADDR_LEN]; 2660 int capmask, error, f, msicount, phy_addr, reg, rid, trys; 2661 2662 sc = device_get_softc(dev); 2663 sc->bge_dev = dev; 2664 2665 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 2666 2667 /* 2668 * Map control/status registers. 2669 */ 2670 pci_enable_busmaster(dev); 2671 2672 rid = PCIR_BAR(0); 2673 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2674 RF_ACTIVE); 2675 2676 if (sc->bge_res == NULL) { 2677 device_printf (sc->bge_dev, "couldn't map memory\n"); 2678 error = ENXIO; 2679 goto fail; 2680 } 2681 2682 /* Save various chip information. */ 2683 sc->bge_chipid = 2684 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2685 BGE_PCIMISCCTL_ASICREV_SHIFT; 2686 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 2687 /* 2688 * Find the ASCI revision. Different chips use different 2689 * registers. 2690 */ 2691 switch (pci_get_device(dev)) { 2692 case BCOM_DEVICEID_BCM5717: 2693 case BCOM_DEVICEID_BCM5718: 2694 sc->bge_chipid = pci_read_config(dev, 2695 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2696 break; 2697 default: 2698 sc->bge_chipid = pci_read_config(dev, 2699 BGE_PCI_PRODID_ASICREV, 4); 2700 } 2701 } 2702 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2703 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2704 2705 /* Set default PHY address. */ 2706 phy_addr = 1; 2707 /* 2708 * PHY address mapping for various devices. 2709 * 2710 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2711 * ---------+-------+-------+-------+-------+ 2712 * BCM57XX | 1 | X | X | X | 2713 * BCM5704 | 1 | X | 1 | X | 2714 * BCM5717 | 1 | 8 | 2 | 9 | 2715 * 2716 * Other addresses may respond but they are not 2717 * IEEE compliant PHYs and should be ignored. 2718 */ 2719 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) { 2720 f = pci_get_function(dev); 2721 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2722 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 2723 BGE_SGDIGSTS_IS_SERDES) 2724 phy_addr = f + 8; 2725 else 2726 phy_addr = f + 1; 2727 } else if (sc->bge_chipid == BGE_CHIPID_BCM5717_B0) { 2728 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2729 BGE_CPMU_PHY_STRAP_IS_SERDES) 2730 phy_addr = f + 8; 2731 else 2732 phy_addr = f + 1; 2733 } 2734 } 2735 2736 /* 2737 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the 2738 * 5705 A0 and A1 chips. 2739 */ 2740 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 2741 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 2742 sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 2743 sc->bge_chipid != BGE_CHIPID_BCM5705_A1 && 2744 !BGE_IS_5717_PLUS(sc)) 2745 sc->bge_phy_flags |= BGE_PHY_WIRESPEED; 2746 2747 if (bge_has_eaddr(sc)) 2748 sc->bge_flags |= BGE_FLAG_EADDR; 2749 2750 /* Save chipset family. */ 2751 switch (sc->bge_asicrev) { 2752 case BGE_ASICREV_BCM5717: 2753 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 2754 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 2755 BGE_FLAG_SHORT_DMA_BUG | BGE_FLAG_JUMBO_FRAME; 2756 break; 2757 case BGE_ASICREV_BCM5755: 2758 case BGE_ASICREV_BCM5761: 2759 case BGE_ASICREV_BCM5784: 2760 case BGE_ASICREV_BCM5785: 2761 case BGE_ASICREV_BCM5787: 2762 case BGE_ASICREV_BCM57780: 2763 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 2764 BGE_FLAG_5705_PLUS; 2765 break; 2766 case BGE_ASICREV_BCM5700: 2767 case BGE_ASICREV_BCM5701: 2768 case BGE_ASICREV_BCM5703: 2769 case BGE_ASICREV_BCM5704: 2770 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 2771 break; 2772 case BGE_ASICREV_BCM5714_A0: 2773 case BGE_ASICREV_BCM5780: 2774 case BGE_ASICREV_BCM5714: 2775 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 2776 /* FALLTHROUGH */ 2777 case BGE_ASICREV_BCM5750: 2778 case BGE_ASICREV_BCM5752: 2779 case BGE_ASICREV_BCM5906: 2780 sc->bge_flags |= BGE_FLAG_575X_PLUS; 2781 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 2782 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 2783 /* FALLTHROUGH */ 2784 case BGE_ASICREV_BCM5705: 2785 sc->bge_flags |= BGE_FLAG_5705_PLUS; 2786 break; 2787 } 2788 2789 /* Set various PHY bug flags. */ 2790 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 2791 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 2792 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 2793 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 2794 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 2795 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 2796 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 2797 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 2798 if (pci_get_subvendor(dev) == DELL_VENDORID) 2799 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 2800 if ((BGE_IS_5705_PLUS(sc)) && 2801 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 2802 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 2803 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 2804 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 2805 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2806 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2807 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2808 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 2809 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 2810 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 2811 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 2812 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 2813 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 2814 } else 2815 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 2816 } 2817 2818 /* Identify the chips that use an CPMU. */ 2819 if (BGE_IS_5717_PLUS(sc) || 2820 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2821 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2822 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2823 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2824 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 2825 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 2826 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 2827 else 2828 sc->bge_mi_mode = BGE_MIMODE_BASE; 2829 /* Enable auto polling for BCM570[0-5]. */ 2830 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 2831 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 2832 2833 /* 2834 * All controllers that are not 5755 or higher have 4GB 2835 * boundary DMA bug. 2836 * Whenever an address crosses a multiple of the 4GB boundary 2837 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 2838 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 2839 * state machine will lockup and cause the device to hang. 2840 */ 2841 if (BGE_IS_5755_PLUS(sc) == 0) 2842 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 2843 2844 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID; 2845 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 2846 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 2847 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 2848 sc->bge_flags |= BGE_FLAG_5788; 2849 } 2850 2851 capmask = BMSR_DEFCAPMASK; 2852 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 2853 (misccfg == 0x4000 || misccfg == 0x8000)) || 2854 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2855 pci_get_vendor(dev) == BCOM_VENDORID && 2856 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 2857 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 2858 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 2859 (pci_get_vendor(dev) == BCOM_VENDORID && 2860 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 2861 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 2862 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 2863 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 2864 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2865 /* These chips are 10/100 only. */ 2866 capmask &= ~BMSR_EXTSTAT; 2867 } 2868 2869 /* 2870 * Some controllers seem to require a special firmware to use 2871 * TSO. But the firmware is not available to FreeBSD and Linux 2872 * claims that the TSO performed by the firmware is slower than 2873 * hardware based TSO. Moreover the firmware based TSO has one 2874 * known bug which can't handle TSO if ethernet header + IP/TCP 2875 * header is greater than 80 bytes. The workaround for the TSO 2876 * bug exist but it seems it's too expensive than not using 2877 * TSO at all. Some hardwares also have the TSO bug so limit 2878 * the TSO to the controllers that are not affected TSO issues 2879 * (e.g. 5755 or higher). 2880 */ 2881 if (BGE_IS_5717_PLUS(sc)) { 2882 /* BCM5717 requires different TSO configuration. */ 2883 sc->bge_flags |= BGE_FLAG_TSO3; 2884 } else if (BGE_IS_5755_PLUS(sc)) { 2885 /* 2886 * BCM5754 and BCM5787 shares the same ASIC id so 2887 * explicit device id check is required. 2888 * Due to unknown reason TSO does not work on BCM5755M. 2889 */ 2890 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 2891 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 2892 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 2893 sc->bge_flags |= BGE_FLAG_TSO; 2894 } 2895 2896 /* 2897 * Check if this is a PCI-X or PCI Express device. 2898 */ 2899 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 2900 /* 2901 * Found a PCI Express capabilities register, this 2902 * must be a PCI Express device. 2903 */ 2904 sc->bge_flags |= BGE_FLAG_PCIE; 2905 sc->bge_expcap = reg; 2906 if (pci_get_max_read_req(dev) != 4096) 2907 pci_set_max_read_req(dev, 4096); 2908 } else { 2909 /* 2910 * Check if the device is in PCI-X Mode. 2911 * (This bit is not valid on PCI Express controllers.) 2912 */ 2913 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 2914 sc->bge_pcixcap = reg; 2915 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 2916 BGE_PCISTATE_PCI_BUSMODE) == 0) 2917 sc->bge_flags |= BGE_FLAG_PCIX; 2918 } 2919 2920 /* 2921 * The 40bit DMA bug applies to the 5714/5715 controllers and is 2922 * not actually a MAC controller bug but an issue with the embedded 2923 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 2924 */ 2925 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 2926 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 2927 /* 2928 * Allocate the interrupt, using MSI if possible. These devices 2929 * support 8 MSI messages, but only the first one is used in 2930 * normal operation. 2931 */ 2932 rid = 0; 2933 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 2934 sc->bge_msicap = reg; 2935 if (bge_can_use_msi(sc)) { 2936 msicount = pci_msi_count(dev); 2937 if (msicount > 1) 2938 msicount = 1; 2939 } else 2940 msicount = 0; 2941 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 2942 rid = 1; 2943 sc->bge_flags |= BGE_FLAG_MSI; 2944 } 2945 } 2946 2947 /* 2948 * All controllers except BCM5700 supports tagged status but 2949 * we use tagged status only for MSI case on BCM5717. Otherwise 2950 * MSI on BCM5717 does not work. 2951 */ 2952 #ifndef DEVICE_POLLING 2953 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 2954 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 2955 #endif 2956 2957 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 2958 RF_SHAREABLE | RF_ACTIVE); 2959 2960 if (sc->bge_irq == NULL) { 2961 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 2962 error = ENXIO; 2963 goto fail; 2964 } 2965 2966 device_printf(dev, 2967 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n", 2968 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev, 2969 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" : 2970 ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI")); 2971 2972 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2973 2974 /* Try to reset the chip. */ 2975 if (bge_reset(sc)) { 2976 device_printf(sc->bge_dev, "chip reset failed\n"); 2977 error = ENXIO; 2978 goto fail; 2979 } 2980 2981 sc->bge_asf_mode = 0; 2982 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) 2983 == BGE_MAGIC_NUMBER)) { 2984 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG) 2985 & BGE_HWCFG_ASF) { 2986 sc->bge_asf_mode |= ASF_ENABLE; 2987 sc->bge_asf_mode |= ASF_STACKUP; 2988 if (BGE_IS_575X_PLUS(sc)) 2989 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 2990 } 2991 } 2992 2993 /* Try to reset the chip again the nice way. */ 2994 bge_stop_fw(sc); 2995 bge_sig_pre_reset(sc, BGE_RESET_STOP); 2996 if (bge_reset(sc)) { 2997 device_printf(sc->bge_dev, "chip reset failed\n"); 2998 error = ENXIO; 2999 goto fail; 3000 } 3001 3002 bge_sig_legacy(sc, BGE_RESET_STOP); 3003 bge_sig_post_reset(sc, BGE_RESET_STOP); 3004 3005 if (bge_chipinit(sc)) { 3006 device_printf(sc->bge_dev, "chip initialization failed\n"); 3007 error = ENXIO; 3008 goto fail; 3009 } 3010 3011 error = bge_get_eaddr(sc, eaddr); 3012 if (error) { 3013 device_printf(sc->bge_dev, 3014 "failed to read station address\n"); 3015 error = ENXIO; 3016 goto fail; 3017 } 3018 3019 /* 5705 limits RX return ring to 512 entries. */ 3020 if (BGE_IS_5717_PLUS(sc)) 3021 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3022 else if (BGE_IS_5705_PLUS(sc)) 3023 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3024 else 3025 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3026 3027 if (bge_dma_alloc(sc)) { 3028 device_printf(sc->bge_dev, 3029 "failed to allocate DMA resources\n"); 3030 error = ENXIO; 3031 goto fail; 3032 } 3033 3034 bge_add_sysctls(sc); 3035 3036 /* Set default tuneable values. */ 3037 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3038 sc->bge_rx_coal_ticks = 150; 3039 sc->bge_tx_coal_ticks = 150; 3040 sc->bge_rx_max_coal_bds = 10; 3041 sc->bge_tx_max_coal_bds = 10; 3042 3043 /* Initialize checksum features to use. */ 3044 sc->bge_csum_features = BGE_CSUM_FEATURES; 3045 if (sc->bge_forced_udpcsum != 0) 3046 sc->bge_csum_features |= CSUM_UDP; 3047 3048 /* Set up ifnet structure */ 3049 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3050 if (ifp == NULL) { 3051 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3052 error = ENXIO; 3053 goto fail; 3054 } 3055 ifp->if_softc = sc; 3056 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3057 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3058 ifp->if_ioctl = bge_ioctl; 3059 ifp->if_start = bge_start; 3060 ifp->if_init = bge_init; 3061 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3062 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3063 IFQ_SET_READY(&ifp->if_snd); 3064 ifp->if_hwassist = sc->bge_csum_features; 3065 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3066 IFCAP_VLAN_MTU; 3067 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3068 ifp->if_hwassist |= CSUM_TSO; 3069 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3070 } 3071 #ifdef IFCAP_VLAN_HWCSUM 3072 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3073 #endif 3074 ifp->if_capenable = ifp->if_capabilities; 3075 #ifdef DEVICE_POLLING 3076 ifp->if_capabilities |= IFCAP_POLLING; 3077 #endif 3078 3079 /* 3080 * 5700 B0 chips do not support checksumming correctly due 3081 * to hardware bugs. 3082 */ 3083 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3084 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3085 ifp->if_capenable &= ~IFCAP_HWCSUM; 3086 ifp->if_hwassist = 0; 3087 } 3088 3089 /* 3090 * Figure out what sort of media we have by checking the 3091 * hardware config word in the first 32k of NIC internal memory, 3092 * or fall back to examining the EEPROM if necessary. 3093 * Note: on some BCM5700 cards, this value appears to be unset. 3094 * If that's the case, we have to rely on identifying the NIC 3095 * by its PCI subsystem ID, as we do below for the SysKonnect 3096 * SK-9D41. 3097 */ 3098 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) 3099 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); 3100 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3101 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3102 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3103 sizeof(hwcfg))) { 3104 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3105 error = ENXIO; 3106 goto fail; 3107 } 3108 hwcfg = ntohl(hwcfg); 3109 } 3110 3111 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3112 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3113 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3114 if (BGE_IS_5714_FAMILY(sc)) 3115 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3116 else 3117 sc->bge_flags |= BGE_FLAG_TBI; 3118 } 3119 3120 if (sc->bge_flags & BGE_FLAG_TBI) { 3121 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3122 bge_ifmedia_sts); 3123 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3124 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3125 0, NULL); 3126 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3127 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3128 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3129 } else { 3130 /* 3131 * Do transceiver setup and tell the firmware the 3132 * driver is down so we can try to get access the 3133 * probe if ASF is running. Retry a couple of times 3134 * if we get a conflict with the ASF firmware accessing 3135 * the PHY. 3136 */ 3137 trys = 0; 3138 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3139 again: 3140 bge_asf_driver_up(sc); 3141 3142 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3143 bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY, 3144 MIIF_DOPAUSE); 3145 if (error != 0) { 3146 if (trys++ < 4) { 3147 device_printf(sc->bge_dev, "Try again\n"); 3148 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, 3149 BMCR_RESET); 3150 goto again; 3151 } 3152 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3153 goto fail; 3154 } 3155 3156 /* 3157 * Now tell the firmware we are going up after probing the PHY 3158 */ 3159 if (sc->bge_asf_mode & ASF_STACKUP) 3160 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3161 } 3162 3163 /* 3164 * When using the BCM5701 in PCI-X mode, data corruption has 3165 * been observed in the first few bytes of some received packets. 3166 * Aligning the packet buffer in memory eliminates the corruption. 3167 * Unfortunately, this misaligns the packet payloads. On platforms 3168 * which do not support unaligned accesses, we will realign the 3169 * payloads by copying the received packets. 3170 */ 3171 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3172 sc->bge_flags & BGE_FLAG_PCIX) 3173 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3174 3175 /* 3176 * Call MI attach routine. 3177 */ 3178 ether_ifattach(ifp, eaddr); 3179 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3180 3181 /* Tell upper layer we support long frames. */ 3182 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3183 3184 /* 3185 * Hookup IRQ last. 3186 */ 3187 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3188 /* Take advantage of single-shot MSI. */ 3189 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3190 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3191 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3192 taskqueue_thread_enqueue, &sc->bge_tq); 3193 if (sc->bge_tq == NULL) { 3194 device_printf(dev, "could not create taskqueue.\n"); 3195 ether_ifdetach(ifp); 3196 error = ENXIO; 3197 goto fail; 3198 } 3199 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3200 device_get_nameunit(sc->bge_dev)); 3201 error = bus_setup_intr(dev, sc->bge_irq, 3202 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3203 &sc->bge_intrhand); 3204 if (error) 3205 ether_ifdetach(ifp); 3206 } else 3207 error = bus_setup_intr(dev, sc->bge_irq, 3208 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3209 &sc->bge_intrhand); 3210 3211 if (error) { 3212 bge_detach(dev); 3213 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3214 } 3215 3216 return (0); 3217 3218 fail: 3219 bge_release_resources(sc); 3220 3221 return (error); 3222 } 3223 3224 static int 3225 bge_detach(device_t dev) 3226 { 3227 struct bge_softc *sc; 3228 struct ifnet *ifp; 3229 3230 sc = device_get_softc(dev); 3231 ifp = sc->bge_ifp; 3232 3233 #ifdef DEVICE_POLLING 3234 if (ifp->if_capenable & IFCAP_POLLING) 3235 ether_poll_deregister(ifp); 3236 #endif 3237 3238 BGE_LOCK(sc); 3239 bge_stop(sc); 3240 bge_reset(sc); 3241 BGE_UNLOCK(sc); 3242 3243 callout_drain(&sc->bge_stat_ch); 3244 3245 if (sc->bge_tq) 3246 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3247 ether_ifdetach(ifp); 3248 3249 if (sc->bge_flags & BGE_FLAG_TBI) { 3250 ifmedia_removeall(&sc->bge_ifmedia); 3251 } else { 3252 bus_generic_detach(dev); 3253 device_delete_child(dev, sc->bge_miibus); 3254 } 3255 3256 bge_release_resources(sc); 3257 3258 return (0); 3259 } 3260 3261 static void 3262 bge_release_resources(struct bge_softc *sc) 3263 { 3264 device_t dev; 3265 3266 dev = sc->bge_dev; 3267 3268 if (sc->bge_tq != NULL) 3269 taskqueue_free(sc->bge_tq); 3270 3271 if (sc->bge_intrhand != NULL) 3272 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3273 3274 if (sc->bge_irq != NULL) 3275 bus_release_resource(dev, SYS_RES_IRQ, 3276 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3277 3278 if (sc->bge_flags & BGE_FLAG_MSI) 3279 pci_release_msi(dev); 3280 3281 if (sc->bge_res != NULL) 3282 bus_release_resource(dev, SYS_RES_MEMORY, 3283 PCIR_BAR(0), sc->bge_res); 3284 3285 if (sc->bge_ifp != NULL) 3286 if_free(sc->bge_ifp); 3287 3288 bge_dma_free(sc); 3289 3290 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3291 BGE_LOCK_DESTROY(sc); 3292 } 3293 3294 static int 3295 bge_reset(struct bge_softc *sc) 3296 { 3297 device_t dev; 3298 uint32_t cachesize, command, pcistate, reset, val; 3299 void (*write_op)(struct bge_softc *, int, int); 3300 uint16_t devctl; 3301 int i; 3302 3303 dev = sc->bge_dev; 3304 3305 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3306 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3307 if (sc->bge_flags & BGE_FLAG_PCIE) 3308 write_op = bge_writemem_direct; 3309 else 3310 write_op = bge_writemem_ind; 3311 } else 3312 write_op = bge_writereg_ind; 3313 3314 /* Save some important PCI state. */ 3315 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3316 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3317 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3318 3319 pci_write_config(dev, BGE_PCI_MISC_CTL, 3320 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3321 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3322 3323 /* Disable fastboot on controllers that support it. */ 3324 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3325 BGE_IS_5755_PLUS(sc)) { 3326 if (bootverbose) 3327 device_printf(dev, "Disabling fastboot\n"); 3328 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3329 } 3330 3331 /* 3332 * Write the magic number to SRAM at offset 0xB50. 3333 * When firmware finishes its initialization it will 3334 * write ~BGE_MAGIC_NUMBER to the same location. 3335 */ 3336 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); 3337 3338 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3339 3340 /* XXX: Broadcom Linux driver. */ 3341 if (sc->bge_flags & BGE_FLAG_PCIE) { 3342 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 3343 CSR_WRITE_4(sc, 0x7E2C, 0x20); 3344 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 3345 /* Prevent PCIE link training during global reset */ 3346 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 3347 reset |= 1 << 29; 3348 } 3349 } 3350 3351 /* 3352 * Set GPHY Power Down Override to leave GPHY 3353 * powered up in D0 uninitialized. 3354 */ 3355 if (BGE_IS_5705_PLUS(sc)) 3356 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 3357 3358 /* Issue global reset */ 3359 write_op(sc, BGE_MISC_CFG, reset); 3360 3361 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3362 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3363 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 3364 val | BGE_VCPU_STATUS_DRV_RESET); 3365 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 3366 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 3367 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 3368 } 3369 3370 DELAY(1000); 3371 3372 /* XXX: Broadcom Linux driver. */ 3373 if (sc->bge_flags & BGE_FLAG_PCIE) { 3374 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 3375 DELAY(500000); /* wait for link training to complete */ 3376 val = pci_read_config(dev, 0xC4, 4); 3377 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 3378 } 3379 devctl = pci_read_config(dev, 3380 sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2); 3381 /* Clear enable no snoop and disable relaxed ordering. */ 3382 devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE | 3383 PCIM_EXP_CTL_NOSNOOP_ENABLE); 3384 /* Set PCIE max payload size to 128. */ 3385 devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD; 3386 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 3387 devctl, 2); 3388 /* Clear error status. */ 3389 pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA, 3390 PCIM_EXP_STA_CORRECTABLE_ERROR | 3391 PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR | 3392 PCIM_EXP_STA_UNSUPPORTED_REQ, 2); 3393 } 3394 3395 /* Reset some of the PCI state that got zapped by reset. */ 3396 pci_write_config(dev, BGE_PCI_MISC_CTL, 3397 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3398 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3399 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 3400 pci_write_config(dev, BGE_PCI_CMD, command, 4); 3401 write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 3402 /* 3403 * Disable PCI-X relaxed ordering to ensure status block update 3404 * comes first then packet buffer DMA. Otherwise driver may 3405 * read stale status block. 3406 */ 3407 if (sc->bge_flags & BGE_FLAG_PCIX) { 3408 devctl = pci_read_config(dev, 3409 sc->bge_pcixcap + PCIXR_COMMAND, 2); 3410 devctl &= ~PCIXM_COMMAND_ERO; 3411 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 3412 devctl &= ~PCIXM_COMMAND_MAX_READ; 3413 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3414 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3415 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 3416 PCIXM_COMMAND_MAX_READ); 3417 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3418 } 3419 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 3420 devctl, 2); 3421 } 3422 /* Re-enable MSI, if neccesary, and enable the memory arbiter. */ 3423 if (BGE_IS_5714_FAMILY(sc)) { 3424 /* This chip disables MSI on reset. */ 3425 if (sc->bge_flags & BGE_FLAG_MSI) { 3426 val = pci_read_config(dev, 3427 sc->bge_msicap + PCIR_MSI_CTRL, 2); 3428 pci_write_config(dev, 3429 sc->bge_msicap + PCIR_MSI_CTRL, 3430 val | PCIM_MSICTRL_MSI_ENABLE, 2); 3431 val = CSR_READ_4(sc, BGE_MSI_MODE); 3432 CSR_WRITE_4(sc, BGE_MSI_MODE, 3433 val | BGE_MSIMODE_ENABLE); 3434 } 3435 val = CSR_READ_4(sc, BGE_MARB_MODE); 3436 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 3437 } else 3438 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3439 3440 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3441 for (i = 0; i < BGE_TIMEOUT; i++) { 3442 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3443 if (val & BGE_VCPU_STATUS_INIT_DONE) 3444 break; 3445 DELAY(100); 3446 } 3447 if (i == BGE_TIMEOUT) { 3448 device_printf(dev, "reset timed out\n"); 3449 return (1); 3450 } 3451 } else { 3452 /* 3453 * Poll until we see the 1's complement of the magic number. 3454 * This indicates that the firmware initialization is complete. 3455 * We expect this to fail if no chip containing the Ethernet 3456 * address is fitted though. 3457 */ 3458 for (i = 0; i < BGE_TIMEOUT; i++) { 3459 DELAY(10); 3460 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); 3461 if (val == ~BGE_MAGIC_NUMBER) 3462 break; 3463 } 3464 3465 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 3466 device_printf(dev, 3467 "firmware handshake timed out, found 0x%08x\n", 3468 val); 3469 } 3470 3471 /* 3472 * XXX Wait for the value of the PCISTATE register to 3473 * return to its original pre-reset state. This is a 3474 * fairly good indicator of reset completion. If we don't 3475 * wait for the reset to fully complete, trying to read 3476 * from the device's non-PCI registers may yield garbage 3477 * results. 3478 */ 3479 for (i = 0; i < BGE_TIMEOUT; i++) { 3480 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 3481 break; 3482 DELAY(10); 3483 } 3484 3485 /* Fix up byte swapping. */ 3486 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | 3487 BGE_MODECTL_BYTESWAP_DATA); 3488 3489 /* Tell the ASF firmware we are up */ 3490 if (sc->bge_asf_mode & ASF_STACKUP) 3491 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3492 3493 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 3494 3495 /* 3496 * The 5704 in TBI mode apparently needs some special 3497 * adjustment to insure the SERDES drive level is set 3498 * to 1.2V. 3499 */ 3500 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 3501 sc->bge_flags & BGE_FLAG_TBI) { 3502 val = CSR_READ_4(sc, BGE_SERDES_CFG); 3503 val = (val & ~0xFFF) | 0x880; 3504 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 3505 } 3506 3507 /* XXX: Broadcom Linux driver. */ 3508 if (sc->bge_flags & BGE_FLAG_PCIE && 3509 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 3510 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 3511 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 3512 /* Enable Data FIFO protection. */ 3513 val = CSR_READ_4(sc, 0x7C00); 3514 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 3515 } 3516 DELAY(10000); 3517 3518 return (0); 3519 } 3520 3521 static __inline void 3522 bge_rxreuse_std(struct bge_softc *sc, int i) 3523 { 3524 struct bge_rx_bd *r; 3525 3526 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 3527 r->bge_flags = BGE_RXBDFLAG_END; 3528 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 3529 r->bge_idx = i; 3530 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3531 } 3532 3533 static __inline void 3534 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 3535 { 3536 struct bge_extrx_bd *r; 3537 3538 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 3539 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 3540 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 3541 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 3542 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 3543 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 3544 r->bge_idx = i; 3545 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3546 } 3547 3548 /* 3549 * Frame reception handling. This is called if there's a frame 3550 * on the receive return list. 3551 * 3552 * Note: we have to be able to handle two possibilities here: 3553 * 1) the frame is from the jumbo receive ring 3554 * 2) the frame is from the standard receive ring 3555 */ 3556 3557 static int 3558 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 3559 { 3560 struct ifnet *ifp; 3561 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 3562 uint16_t rx_cons; 3563 3564 rx_cons = sc->bge_rx_saved_considx; 3565 3566 /* Nothing to do. */ 3567 if (rx_cons == rx_prod) 3568 return (rx_npkts); 3569 3570 ifp = sc->bge_ifp; 3571 3572 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3573 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 3574 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3575 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 3576 if (BGE_IS_JUMBO_CAPABLE(sc) && 3577 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 3578 (MCLBYTES - ETHER_ALIGN)) 3579 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3580 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 3581 3582 while (rx_cons != rx_prod) { 3583 struct bge_rx_bd *cur_rx; 3584 uint32_t rxidx; 3585 struct mbuf *m = NULL; 3586 uint16_t vlan_tag = 0; 3587 int have_tag = 0; 3588 3589 #ifdef DEVICE_POLLING 3590 if (ifp->if_capenable & IFCAP_POLLING) { 3591 if (sc->rxcycles <= 0) 3592 break; 3593 sc->rxcycles--; 3594 } 3595 #endif 3596 3597 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 3598 3599 rxidx = cur_rx->bge_idx; 3600 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 3601 3602 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 3603 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 3604 have_tag = 1; 3605 vlan_tag = cur_rx->bge_vlan_tag; 3606 } 3607 3608 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 3609 jumbocnt++; 3610 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 3611 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3612 bge_rxreuse_jumbo(sc, rxidx); 3613 continue; 3614 } 3615 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 3616 bge_rxreuse_jumbo(sc, rxidx); 3617 ifp->if_iqdrops++; 3618 continue; 3619 } 3620 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3621 } else { 3622 stdcnt++; 3623 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 3624 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3625 bge_rxreuse_std(sc, rxidx); 3626 continue; 3627 } 3628 if (bge_newbuf_std(sc, rxidx) != 0) { 3629 bge_rxreuse_std(sc, rxidx); 3630 ifp->if_iqdrops++; 3631 continue; 3632 } 3633 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3634 } 3635 3636 ifp->if_ipackets++; 3637 #ifndef __NO_STRICT_ALIGNMENT 3638 /* 3639 * For architectures with strict alignment we must make sure 3640 * the payload is aligned. 3641 */ 3642 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 3643 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 3644 cur_rx->bge_len); 3645 m->m_data += ETHER_ALIGN; 3646 } 3647 #endif 3648 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 3649 m->m_pkthdr.rcvif = ifp; 3650 3651 if (ifp->if_capenable & IFCAP_RXCSUM) 3652 bge_rxcsum(sc, cur_rx, m); 3653 3654 /* 3655 * If we received a packet with a vlan tag, 3656 * attach that information to the packet. 3657 */ 3658 if (have_tag) { 3659 m->m_pkthdr.ether_vtag = vlan_tag; 3660 m->m_flags |= M_VLANTAG; 3661 } 3662 3663 if (holdlck != 0) { 3664 BGE_UNLOCK(sc); 3665 (*ifp->if_input)(ifp, m); 3666 BGE_LOCK(sc); 3667 } else 3668 (*ifp->if_input)(ifp, m); 3669 rx_npkts++; 3670 3671 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 3672 return (rx_npkts); 3673 } 3674 3675 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3676 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 3677 if (stdcnt > 0) 3678 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3679 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 3680 3681 if (jumbocnt > 0) 3682 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3683 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 3684 3685 sc->bge_rx_saved_considx = rx_cons; 3686 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 3687 if (stdcnt) 3688 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 3689 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 3690 if (jumbocnt) 3691 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 3692 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 3693 #ifdef notyet 3694 /* 3695 * This register wraps very quickly under heavy packet drops. 3696 * If you need correct statistics, you can enable this check. 3697 */ 3698 if (BGE_IS_5705_PLUS(sc)) 3699 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 3700 #endif 3701 return (rx_npkts); 3702 } 3703 3704 static void 3705 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 3706 { 3707 3708 if (BGE_IS_5717_PLUS(sc)) { 3709 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 3710 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3711 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3712 if ((cur_rx->bge_error_flag & 3713 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 3714 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3715 } 3716 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 3717 m->m_pkthdr.csum_data = 3718 cur_rx->bge_tcp_udp_csum; 3719 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3720 CSUM_PSEUDO_HDR; 3721 } 3722 } 3723 } else { 3724 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3725 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3726 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 3727 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3728 } 3729 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 3730 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 3731 m->m_pkthdr.csum_data = 3732 cur_rx->bge_tcp_udp_csum; 3733 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3734 CSUM_PSEUDO_HDR; 3735 } 3736 } 3737 } 3738 3739 static void 3740 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 3741 { 3742 struct bge_tx_bd *cur_tx; 3743 struct ifnet *ifp; 3744 3745 BGE_LOCK_ASSERT(sc); 3746 3747 /* Nothing to do. */ 3748 if (sc->bge_tx_saved_considx == tx_cons) 3749 return; 3750 3751 ifp = sc->bge_ifp; 3752 3753 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 3754 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 3755 /* 3756 * Go through our tx ring and free mbufs for those 3757 * frames that have been sent. 3758 */ 3759 while (sc->bge_tx_saved_considx != tx_cons) { 3760 uint32_t idx; 3761 3762 idx = sc->bge_tx_saved_considx; 3763 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 3764 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 3765 ifp->if_opackets++; 3766 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 3767 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 3768 sc->bge_cdata.bge_tx_dmamap[idx], 3769 BUS_DMASYNC_POSTWRITE); 3770 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 3771 sc->bge_cdata.bge_tx_dmamap[idx]); 3772 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 3773 sc->bge_cdata.bge_tx_chain[idx] = NULL; 3774 } 3775 sc->bge_txcnt--; 3776 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 3777 } 3778 3779 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3780 if (sc->bge_txcnt == 0) 3781 sc->bge_timer = 0; 3782 } 3783 3784 #ifdef DEVICE_POLLING 3785 static int 3786 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 3787 { 3788 struct bge_softc *sc = ifp->if_softc; 3789 uint16_t rx_prod, tx_cons; 3790 uint32_t statusword; 3791 int rx_npkts = 0; 3792 3793 BGE_LOCK(sc); 3794 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3795 BGE_UNLOCK(sc); 3796 return (rx_npkts); 3797 } 3798 3799 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3800 sc->bge_cdata.bge_status_map, 3801 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3802 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3803 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3804 3805 statusword = sc->bge_ldata.bge_status_block->bge_status; 3806 sc->bge_ldata.bge_status_block->bge_status = 0; 3807 3808 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3809 sc->bge_cdata.bge_status_map, 3810 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3811 3812 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 3813 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 3814 sc->bge_link_evt++; 3815 3816 if (cmd == POLL_AND_CHECK_STATUS) 3817 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3818 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 3819 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 3820 bge_link_upd(sc); 3821 3822 sc->rxcycles = count; 3823 rx_npkts = bge_rxeof(sc, rx_prod, 1); 3824 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3825 BGE_UNLOCK(sc); 3826 return (rx_npkts); 3827 } 3828 bge_txeof(sc, tx_cons); 3829 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3830 bge_start_locked(ifp); 3831 3832 BGE_UNLOCK(sc); 3833 return (rx_npkts); 3834 } 3835 #endif /* DEVICE_POLLING */ 3836 3837 static int 3838 bge_msi_intr(void *arg) 3839 { 3840 struct bge_softc *sc; 3841 3842 sc = (struct bge_softc *)arg; 3843 /* 3844 * This interrupt is not shared and controller already 3845 * disabled further interrupt. 3846 */ 3847 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 3848 return (FILTER_HANDLED); 3849 } 3850 3851 static void 3852 bge_intr_task(void *arg, int pending) 3853 { 3854 struct bge_softc *sc; 3855 struct ifnet *ifp; 3856 uint32_t status, status_tag; 3857 uint16_t rx_prod, tx_cons; 3858 3859 sc = (struct bge_softc *)arg; 3860 ifp = sc->bge_ifp; 3861 3862 BGE_LOCK(sc); 3863 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3864 BGE_UNLOCK(sc); 3865 return; 3866 } 3867 3868 /* Get updated status block. */ 3869 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3870 sc->bge_cdata.bge_status_map, 3871 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3872 3873 /* Save producer/consumer indexess. */ 3874 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3875 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3876 status = sc->bge_ldata.bge_status_block->bge_status; 3877 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 3878 sc->bge_ldata.bge_status_block->bge_status = 0; 3879 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3880 sc->bge_cdata.bge_status_map, 3881 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3882 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 3883 status_tag = 0; 3884 3885 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 3886 bge_link_upd(sc); 3887 3888 /* Let controller work. */ 3889 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 3890 3891 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3892 sc->bge_rx_saved_considx != rx_prod) { 3893 /* Check RX return ring producer/consumer. */ 3894 BGE_UNLOCK(sc); 3895 bge_rxeof(sc, rx_prod, 0); 3896 BGE_LOCK(sc); 3897 } 3898 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3899 /* Check TX ring producer/consumer. */ 3900 bge_txeof(sc, tx_cons); 3901 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3902 bge_start_locked(ifp); 3903 } 3904 BGE_UNLOCK(sc); 3905 } 3906 3907 static void 3908 bge_intr(void *xsc) 3909 { 3910 struct bge_softc *sc; 3911 struct ifnet *ifp; 3912 uint32_t statusword; 3913 uint16_t rx_prod, tx_cons; 3914 3915 sc = xsc; 3916 3917 BGE_LOCK(sc); 3918 3919 ifp = sc->bge_ifp; 3920 3921 #ifdef DEVICE_POLLING 3922 if (ifp->if_capenable & IFCAP_POLLING) { 3923 BGE_UNLOCK(sc); 3924 return; 3925 } 3926 #endif 3927 3928 /* 3929 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 3930 * disable interrupts by writing nonzero like we used to, since with 3931 * our current organization this just gives complications and 3932 * pessimizations for re-enabling interrupts. We used to have races 3933 * instead of the necessary complications. Disabling interrupts 3934 * would just reduce the chance of a status update while we are 3935 * running (by switching to the interrupt-mode coalescence 3936 * parameters), but this chance is already very low so it is more 3937 * efficient to get another interrupt than prevent it. 3938 * 3939 * We do the ack first to ensure another interrupt if there is a 3940 * status update after the ack. We don't check for the status 3941 * changing later because it is more efficient to get another 3942 * interrupt than prevent it, not quite as above (not checking is 3943 * a smaller optimization than not toggling the interrupt enable, 3944 * since checking doesn't involve PCI accesses and toggling require 3945 * the status check). So toggling would probably be a pessimization 3946 * even with MSI. It would only be needed for using a task queue. 3947 */ 3948 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 3949 3950 /* 3951 * Do the mandatory PCI flush as well as get the link status. 3952 */ 3953 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 3954 3955 /* Make sure the descriptor ring indexes are coherent. */ 3956 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3957 sc->bge_cdata.bge_status_map, 3958 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 3959 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 3960 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 3961 sc->bge_ldata.bge_status_block->bge_status = 0; 3962 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 3963 sc->bge_cdata.bge_status_map, 3964 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3965 3966 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 3967 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 3968 statusword || sc->bge_link_evt) 3969 bge_link_upd(sc); 3970 3971 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3972 /* Check RX return ring producer/consumer. */ 3973 bge_rxeof(sc, rx_prod, 1); 3974 } 3975 3976 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 3977 /* Check TX ring producer/consumer. */ 3978 bge_txeof(sc, tx_cons); 3979 } 3980 3981 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3982 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3983 bge_start_locked(ifp); 3984 3985 BGE_UNLOCK(sc); 3986 } 3987 3988 static void 3989 bge_asf_driver_up(struct bge_softc *sc) 3990 { 3991 if (sc->bge_asf_mode & ASF_STACKUP) { 3992 /* Send ASF heartbeat aprox. every 2s */ 3993 if (sc->bge_asf_count) 3994 sc->bge_asf_count --; 3995 else { 3996 sc->bge_asf_count = 2; 3997 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, 3998 BGE_FW_DRV_ALIVE); 3999 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4); 4000 bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3); 4001 CSR_WRITE_4(sc, BGE_CPU_EVENT, 4002 CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14)); 4003 } 4004 } 4005 } 4006 4007 static void 4008 bge_tick(void *xsc) 4009 { 4010 struct bge_softc *sc = xsc; 4011 struct mii_data *mii = NULL; 4012 4013 BGE_LOCK_ASSERT(sc); 4014 4015 /* Synchronize with possible callout reset/stop. */ 4016 if (callout_pending(&sc->bge_stat_ch) || 4017 !callout_active(&sc->bge_stat_ch)) 4018 return; 4019 4020 if (BGE_IS_5705_PLUS(sc)) 4021 bge_stats_update_regs(sc); 4022 else 4023 bge_stats_update(sc); 4024 4025 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4026 mii = device_get_softc(sc->bge_miibus); 4027 /* 4028 * Do not touch PHY if we have link up. This could break 4029 * IPMI/ASF mode or produce extra input errors 4030 * (extra errors was reported for bcm5701 & bcm5704). 4031 */ 4032 if (!sc->bge_link) 4033 mii_tick(mii); 4034 } else { 4035 /* 4036 * Since in TBI mode auto-polling can't be used we should poll 4037 * link status manually. Here we register pending link event 4038 * and trigger interrupt. 4039 */ 4040 #ifdef DEVICE_POLLING 4041 /* In polling mode we poll link state in bge_poll(). */ 4042 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4043 #endif 4044 { 4045 sc->bge_link_evt++; 4046 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4047 sc->bge_flags & BGE_FLAG_5788) 4048 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4049 else 4050 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4051 } 4052 } 4053 4054 bge_asf_driver_up(sc); 4055 bge_watchdog(sc); 4056 4057 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4058 } 4059 4060 static void 4061 bge_stats_update_regs(struct bge_softc *sc) 4062 { 4063 struct ifnet *ifp; 4064 struct bge_mac_stats *stats; 4065 4066 ifp = sc->bge_ifp; 4067 stats = &sc->bge_mac_stats; 4068 4069 stats->ifHCOutOctets += 4070 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4071 stats->etherStatsCollisions += 4072 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4073 stats->outXonSent += 4074 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4075 stats->outXoffSent += 4076 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4077 stats->dot3StatsInternalMacTransmitErrors += 4078 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4079 stats->dot3StatsSingleCollisionFrames += 4080 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4081 stats->dot3StatsMultipleCollisionFrames += 4082 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4083 stats->dot3StatsDeferredTransmissions += 4084 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4085 stats->dot3StatsExcessiveCollisions += 4086 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4087 stats->dot3StatsLateCollisions += 4088 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4089 stats->ifHCOutUcastPkts += 4090 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4091 stats->ifHCOutMulticastPkts += 4092 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4093 stats->ifHCOutBroadcastPkts += 4094 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4095 4096 stats->ifHCInOctets += 4097 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4098 stats->etherStatsFragments += 4099 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4100 stats->ifHCInUcastPkts += 4101 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4102 stats->ifHCInMulticastPkts += 4103 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4104 stats->ifHCInBroadcastPkts += 4105 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4106 stats->dot3StatsFCSErrors += 4107 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4108 stats->dot3StatsAlignmentErrors += 4109 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4110 stats->xonPauseFramesReceived += 4111 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4112 stats->xoffPauseFramesReceived += 4113 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4114 stats->macControlFramesReceived += 4115 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4116 stats->xoffStateEntered += 4117 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4118 stats->dot3StatsFramesTooLong += 4119 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4120 stats->etherStatsJabbers += 4121 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4122 stats->etherStatsUndersizePkts += 4123 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4124 4125 stats->FramesDroppedDueToFilters += 4126 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4127 stats->DmaWriteQueueFull += 4128 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4129 stats->DmaWriteHighPriQueueFull += 4130 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4131 stats->NoMoreRxBDs += 4132 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4133 stats->InputDiscards += 4134 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4135 stats->InputErrors += 4136 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4137 stats->RecvThresholdHit += 4138 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4139 4140 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4141 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4142 stats->InputErrors); 4143 } 4144 4145 static void 4146 bge_stats_clear_regs(struct bge_softc *sc) 4147 { 4148 4149 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4150 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4151 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4152 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4153 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4154 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4155 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4156 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4157 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4158 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4159 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4160 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4161 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4162 4163 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4164 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4165 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4166 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4167 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4168 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4169 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4170 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4171 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4172 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4173 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4174 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4175 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4176 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4177 4178 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4179 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4180 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4181 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4182 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4183 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4184 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4185 } 4186 4187 static void 4188 bge_stats_update(struct bge_softc *sc) 4189 { 4190 struct ifnet *ifp; 4191 bus_size_t stats; 4192 uint32_t cnt; /* current register value */ 4193 4194 ifp = sc->bge_ifp; 4195 4196 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4197 4198 #define READ_STAT(sc, stats, stat) \ 4199 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4200 4201 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4202 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4203 sc->bge_tx_collisions = cnt; 4204 4205 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4206 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4207 sc->bge_rx_discards = cnt; 4208 4209 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4210 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4211 sc->bge_tx_discards = cnt; 4212 4213 #undef READ_STAT 4214 } 4215 4216 /* 4217 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4218 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4219 * but when such padded frames employ the bge IP/TCP checksum offload, 4220 * the hardware checksum assist gives incorrect results (possibly 4221 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4222 * If we pad such runts with zeros, the onboard checksum comes out correct. 4223 */ 4224 static __inline int 4225 bge_cksum_pad(struct mbuf *m) 4226 { 4227 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4228 struct mbuf *last; 4229 4230 /* If there's only the packet-header and we can pad there, use it. */ 4231 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4232 M_TRAILINGSPACE(m) >= padlen) { 4233 last = m; 4234 } else { 4235 /* 4236 * Walk packet chain to find last mbuf. We will either 4237 * pad there, or append a new mbuf and pad it. 4238 */ 4239 for (last = m; last->m_next != NULL; last = last->m_next); 4240 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4241 /* Allocate new empty mbuf, pad it. Compact later. */ 4242 struct mbuf *n; 4243 4244 MGET(n, M_DONTWAIT, MT_DATA); 4245 if (n == NULL) 4246 return (ENOBUFS); 4247 n->m_len = 0; 4248 last->m_next = n; 4249 last = n; 4250 } 4251 } 4252 4253 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4254 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4255 last->m_len += padlen; 4256 m->m_pkthdr.len += padlen; 4257 4258 return (0); 4259 } 4260 4261 static struct mbuf * 4262 bge_check_short_dma(struct mbuf *m) 4263 { 4264 struct mbuf *n; 4265 int found; 4266 4267 /* 4268 * If device receive two back-to-back send BDs with less than 4269 * or equal to 8 total bytes then the device may hang. The two 4270 * back-to-back send BDs must in the same frame for this failure 4271 * to occur. Scan mbuf chains and see whether two back-to-back 4272 * send BDs are there. If this is the case, allocate new mbuf 4273 * and copy the frame to workaround the silicon bug. 4274 */ 4275 for (n = m, found = 0; n != NULL; n = n->m_next) { 4276 if (n->m_len < 8) { 4277 found++; 4278 if (found > 1) 4279 break; 4280 continue; 4281 } 4282 found = 0; 4283 } 4284 4285 if (found > 1) { 4286 n = m_defrag(m, M_DONTWAIT); 4287 if (n == NULL) 4288 m_freem(m); 4289 } else 4290 n = m; 4291 return (n); 4292 } 4293 4294 static struct mbuf * 4295 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4296 uint16_t *flags) 4297 { 4298 struct ip *ip; 4299 struct tcphdr *tcp; 4300 struct mbuf *n; 4301 uint16_t hlen; 4302 uint32_t poff; 4303 4304 if (M_WRITABLE(m) == 0) { 4305 /* Get a writable copy. */ 4306 n = m_dup(m, M_DONTWAIT); 4307 m_freem(m); 4308 if (n == NULL) 4309 return (NULL); 4310 m = n; 4311 } 4312 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 4313 if (m == NULL) 4314 return (NULL); 4315 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4316 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 4317 m = m_pullup(m, poff + sizeof(struct tcphdr)); 4318 if (m == NULL) 4319 return (NULL); 4320 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4321 m = m_pullup(m, poff + (tcp->th_off << 2)); 4322 if (m == NULL) 4323 return (NULL); 4324 /* 4325 * It seems controller doesn't modify IP length and TCP pseudo 4326 * checksum. These checksum computed by upper stack should be 0. 4327 */ 4328 *mss = m->m_pkthdr.tso_segsz; 4329 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4330 ip->ip_sum = 0; 4331 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 4332 /* Clear pseudo checksum computed by TCP stack. */ 4333 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4334 tcp->th_sum = 0; 4335 /* 4336 * Broadcom controllers uses different descriptor format for 4337 * TSO depending on ASIC revision. Due to TSO-capable firmware 4338 * license issue and lower performance of firmware based TSO 4339 * we only support hardware based TSO. 4340 */ 4341 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 4342 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 4343 if (sc->bge_flags & BGE_FLAG_TSO3) { 4344 /* 4345 * For BCM5717 and newer controllers, hardware based TSO 4346 * uses the 14 lower bits of the bge_mss field to store the 4347 * MSS and the upper 2 bits to store the lowest 2 bits of 4348 * the IP/TCP header length. The upper 6 bits of the header 4349 * length are stored in the bge_flags[14:10,4] field. Jumbo 4350 * frames are supported. 4351 */ 4352 *mss |= ((hlen & 0x3) << 14); 4353 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 4354 } else { 4355 /* 4356 * For BCM5755 and newer controllers, hardware based TSO uses 4357 * the lower 11 bits to store the MSS and the upper 5 bits to 4358 * store the IP/TCP header length. Jumbo frames are not 4359 * supported. 4360 */ 4361 *mss |= (hlen << 11); 4362 } 4363 return (m); 4364 } 4365 4366 /* 4367 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4368 * pointers to descriptors. 4369 */ 4370 static int 4371 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 4372 { 4373 bus_dma_segment_t segs[BGE_NSEG_NEW]; 4374 bus_dmamap_t map; 4375 struct bge_tx_bd *d; 4376 struct mbuf *m = *m_head; 4377 uint32_t idx = *txidx; 4378 uint16_t csum_flags, mss, vlan_tag; 4379 int nsegs, i, error; 4380 4381 csum_flags = 0; 4382 mss = 0; 4383 vlan_tag = 0; 4384 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 4385 m->m_next != NULL) { 4386 *m_head = bge_check_short_dma(m); 4387 if (*m_head == NULL) 4388 return (ENOBUFS); 4389 m = *m_head; 4390 } 4391 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 4392 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 4393 if (*m_head == NULL) 4394 return (ENOBUFS); 4395 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 4396 BGE_TXBDFLAG_CPU_POST_DMA; 4397 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 4398 if (m->m_pkthdr.csum_flags & CSUM_IP) 4399 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4400 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 4401 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4402 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 4403 (error = bge_cksum_pad(m)) != 0) { 4404 m_freem(m); 4405 *m_head = NULL; 4406 return (error); 4407 } 4408 } 4409 if (m->m_flags & M_LASTFRAG) 4410 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 4411 else if (m->m_flags & M_FRAG) 4412 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 4413 } 4414 4415 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 4416 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 4417 m->m_pkthdr.len > ETHER_MAX_LEN) 4418 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 4419 if (sc->bge_forced_collapse > 0 && 4420 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 4421 /* 4422 * Forcedly collapse mbuf chains to overcome hardware 4423 * limitation which only support a single outstanding 4424 * DMA read operation. 4425 */ 4426 if (sc->bge_forced_collapse == 1) 4427 m = m_defrag(m, M_DONTWAIT); 4428 else 4429 m = m_collapse(m, M_DONTWAIT, 4430 sc->bge_forced_collapse); 4431 if (m == NULL) 4432 m = *m_head; 4433 *m_head = m; 4434 } 4435 } 4436 4437 map = sc->bge_cdata.bge_tx_dmamap[idx]; 4438 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 4439 &nsegs, BUS_DMA_NOWAIT); 4440 if (error == EFBIG) { 4441 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 4442 if (m == NULL) { 4443 m_freem(*m_head); 4444 *m_head = NULL; 4445 return (ENOBUFS); 4446 } 4447 *m_head = m; 4448 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 4449 m, segs, &nsegs, BUS_DMA_NOWAIT); 4450 if (error) { 4451 m_freem(m); 4452 *m_head = NULL; 4453 return (error); 4454 } 4455 } else if (error != 0) 4456 return (error); 4457 4458 /* Check if we have enough free send BDs. */ 4459 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 4460 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 4461 return (ENOBUFS); 4462 } 4463 4464 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 4465 4466 if (m->m_flags & M_VLANTAG) { 4467 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 4468 vlan_tag = m->m_pkthdr.ether_vtag; 4469 } 4470 for (i = 0; ; i++) { 4471 d = &sc->bge_ldata.bge_tx_ring[idx]; 4472 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 4473 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 4474 d->bge_len = segs[i].ds_len; 4475 d->bge_flags = csum_flags; 4476 d->bge_vlan_tag = vlan_tag; 4477 d->bge_mss = mss; 4478 if (i == nsegs - 1) 4479 break; 4480 BGE_INC(idx, BGE_TX_RING_CNT); 4481 } 4482 4483 /* Mark the last segment as end of packet... */ 4484 d->bge_flags |= BGE_TXBDFLAG_END; 4485 4486 /* 4487 * Insure that the map for this transmission 4488 * is placed at the array index of the last descriptor 4489 * in this chain. 4490 */ 4491 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 4492 sc->bge_cdata.bge_tx_dmamap[idx] = map; 4493 sc->bge_cdata.bge_tx_chain[idx] = m; 4494 sc->bge_txcnt += nsegs; 4495 4496 BGE_INC(idx, BGE_TX_RING_CNT); 4497 *txidx = idx; 4498 4499 return (0); 4500 } 4501 4502 /* 4503 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4504 * to the mbuf data regions directly in the transmit descriptors. 4505 */ 4506 static void 4507 bge_start_locked(struct ifnet *ifp) 4508 { 4509 struct bge_softc *sc; 4510 struct mbuf *m_head; 4511 uint32_t prodidx; 4512 int count; 4513 4514 sc = ifp->if_softc; 4515 BGE_LOCK_ASSERT(sc); 4516 4517 if (!sc->bge_link || 4518 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4519 IFF_DRV_RUNNING) 4520 return; 4521 4522 prodidx = sc->bge_tx_prodidx; 4523 4524 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 4525 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 4526 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4527 break; 4528 } 4529 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4530 if (m_head == NULL) 4531 break; 4532 4533 /* 4534 * XXX 4535 * The code inside the if() block is never reached since we 4536 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 4537 * requests to checksum TCP/UDP in a fragmented packet. 4538 * 4539 * XXX 4540 * safety overkill. If this is a fragmented packet chain 4541 * with delayed TCP/UDP checksums, then only encapsulate 4542 * it if we have enough descriptors to handle the entire 4543 * chain at once. 4544 * (paranoia -- may not actually be needed) 4545 */ 4546 if (m_head->m_flags & M_FIRSTFRAG && 4547 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 4548 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 4549 m_head->m_pkthdr.csum_data + 16) { 4550 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4551 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4552 break; 4553 } 4554 } 4555 4556 /* 4557 * Pack the data into the transmit ring. If we 4558 * don't have room, set the OACTIVE flag and wait 4559 * for the NIC to drain the ring. 4560 */ 4561 if (bge_encap(sc, &m_head, &prodidx)) { 4562 if (m_head == NULL) 4563 break; 4564 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4565 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4566 break; 4567 } 4568 ++count; 4569 4570 /* 4571 * If there's a BPF listener, bounce a copy of this frame 4572 * to him. 4573 */ 4574 #ifdef ETHER_BPF_MTAP 4575 ETHER_BPF_MTAP(ifp, m_head); 4576 #else 4577 BPF_MTAP(ifp, m_head); 4578 #endif 4579 } 4580 4581 if (count > 0) { 4582 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4583 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 4584 /* Transmit. */ 4585 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4586 /* 5700 b2 errata */ 4587 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 4588 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4589 4590 sc->bge_tx_prodidx = prodidx; 4591 4592 /* 4593 * Set a timeout in case the chip goes out to lunch. 4594 */ 4595 sc->bge_timer = 5; 4596 } 4597 } 4598 4599 /* 4600 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4601 * to the mbuf data regions directly in the transmit descriptors. 4602 */ 4603 static void 4604 bge_start(struct ifnet *ifp) 4605 { 4606 struct bge_softc *sc; 4607 4608 sc = ifp->if_softc; 4609 BGE_LOCK(sc); 4610 bge_start_locked(ifp); 4611 BGE_UNLOCK(sc); 4612 } 4613 4614 static void 4615 bge_init_locked(struct bge_softc *sc) 4616 { 4617 struct ifnet *ifp; 4618 uint16_t *m; 4619 uint32_t mode; 4620 4621 BGE_LOCK_ASSERT(sc); 4622 4623 ifp = sc->bge_ifp; 4624 4625 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4626 return; 4627 4628 /* Cancel pending I/O and flush buffers. */ 4629 bge_stop(sc); 4630 4631 bge_stop_fw(sc); 4632 bge_sig_pre_reset(sc, BGE_RESET_START); 4633 bge_reset(sc); 4634 bge_sig_legacy(sc, BGE_RESET_START); 4635 bge_sig_post_reset(sc, BGE_RESET_START); 4636 4637 bge_chipinit(sc); 4638 4639 /* 4640 * Init the various state machines, ring 4641 * control blocks and firmware. 4642 */ 4643 if (bge_blockinit(sc)) { 4644 device_printf(sc->bge_dev, "initialization failure\n"); 4645 return; 4646 } 4647 4648 ifp = sc->bge_ifp; 4649 4650 /* Specify MTU. */ 4651 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 4652 ETHER_HDR_LEN + ETHER_CRC_LEN + 4653 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 4654 4655 /* Load our MAC address. */ 4656 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 4657 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 4658 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 4659 4660 /* Program promiscuous mode. */ 4661 bge_setpromisc(sc); 4662 4663 /* Program multicast filter. */ 4664 bge_setmulti(sc); 4665 4666 /* Program VLAN tag stripping. */ 4667 bge_setvlan(sc); 4668 4669 /* Override UDP checksum offloading. */ 4670 if (sc->bge_forced_udpcsum == 0) 4671 sc->bge_csum_features &= ~CSUM_UDP; 4672 else 4673 sc->bge_csum_features |= CSUM_UDP; 4674 if (ifp->if_capabilities & IFCAP_TXCSUM && 4675 ifp->if_capenable & IFCAP_TXCSUM) { 4676 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 4677 ifp->if_hwassist |= sc->bge_csum_features; 4678 } 4679 4680 /* Init RX ring. */ 4681 if (bge_init_rx_ring_std(sc) != 0) { 4682 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 4683 bge_stop(sc); 4684 return; 4685 } 4686 4687 /* 4688 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 4689 * memory to insure that the chip has in fact read the first 4690 * entry of the ring. 4691 */ 4692 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 4693 uint32_t v, i; 4694 for (i = 0; i < 10; i++) { 4695 DELAY(20); 4696 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 4697 if (v == (MCLBYTES - ETHER_ALIGN)) 4698 break; 4699 } 4700 if (i == 10) 4701 device_printf (sc->bge_dev, 4702 "5705 A0 chip failed to load RX ring\n"); 4703 } 4704 4705 /* Init jumbo RX ring. */ 4706 if (BGE_IS_JUMBO_CAPABLE(sc) && 4707 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 4708 (MCLBYTES - ETHER_ALIGN)) { 4709 if (bge_init_rx_ring_jumbo(sc) != 0) { 4710 device_printf(sc->bge_dev, 4711 "no memory for jumbo Rx buffers.\n"); 4712 bge_stop(sc); 4713 return; 4714 } 4715 } 4716 4717 /* Init our RX return ring index. */ 4718 sc->bge_rx_saved_considx = 0; 4719 4720 /* Init our RX/TX stat counters. */ 4721 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 4722 4723 /* Init TX ring. */ 4724 bge_init_tx_ring(sc); 4725 4726 /* Enable TX MAC state machine lockup fix. */ 4727 mode = CSR_READ_4(sc, BGE_TX_MODE); 4728 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 4729 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 4730 /* Turn on transmitter. */ 4731 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 4732 4733 /* Turn on receiver. */ 4734 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 4735 4736 /* 4737 * Set the number of good frames to receive after RX MBUF 4738 * Low Watermark has been reached. After the RX MAC receives 4739 * this number of frames, it will drop subsequent incoming 4740 * frames until the MBUF High Watermark is reached. 4741 */ 4742 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 4743 4744 /* Clear MAC statistics. */ 4745 if (BGE_IS_5705_PLUS(sc)) 4746 bge_stats_clear_regs(sc); 4747 4748 /* Tell firmware we're alive. */ 4749 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4750 4751 #ifdef DEVICE_POLLING 4752 /* Disable interrupts if we are polling. */ 4753 if (ifp->if_capenable & IFCAP_POLLING) { 4754 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 4755 BGE_PCIMISCCTL_MASK_PCI_INTR); 4756 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 4757 } else 4758 #endif 4759 4760 /* Enable host interrupts. */ 4761 { 4762 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 4763 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 4764 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4765 } 4766 4767 bge_ifmedia_upd_locked(ifp); 4768 4769 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4770 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4771 4772 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4773 } 4774 4775 static void 4776 bge_init(void *xsc) 4777 { 4778 struct bge_softc *sc = xsc; 4779 4780 BGE_LOCK(sc); 4781 bge_init_locked(sc); 4782 BGE_UNLOCK(sc); 4783 } 4784 4785 /* 4786 * Set media options. 4787 */ 4788 static int 4789 bge_ifmedia_upd(struct ifnet *ifp) 4790 { 4791 struct bge_softc *sc = ifp->if_softc; 4792 int res; 4793 4794 BGE_LOCK(sc); 4795 res = bge_ifmedia_upd_locked(ifp); 4796 BGE_UNLOCK(sc); 4797 4798 return (res); 4799 } 4800 4801 static int 4802 bge_ifmedia_upd_locked(struct ifnet *ifp) 4803 { 4804 struct bge_softc *sc = ifp->if_softc; 4805 struct mii_data *mii; 4806 struct mii_softc *miisc; 4807 struct ifmedia *ifm; 4808 4809 BGE_LOCK_ASSERT(sc); 4810 4811 ifm = &sc->bge_ifmedia; 4812 4813 /* If this is a 1000baseX NIC, enable the TBI port. */ 4814 if (sc->bge_flags & BGE_FLAG_TBI) { 4815 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 4816 return (EINVAL); 4817 switch(IFM_SUBTYPE(ifm->ifm_media)) { 4818 case IFM_AUTO: 4819 /* 4820 * The BCM5704 ASIC appears to have a special 4821 * mechanism for programming the autoneg 4822 * advertisement registers in TBI mode. 4823 */ 4824 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4825 uint32_t sgdig; 4826 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 4827 if (sgdig & BGE_SGDIGSTS_DONE) { 4828 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 4829 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 4830 sgdig |= BGE_SGDIGCFG_AUTO | 4831 BGE_SGDIGCFG_PAUSE_CAP | 4832 BGE_SGDIGCFG_ASYM_PAUSE; 4833 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 4834 sgdig | BGE_SGDIGCFG_SEND); 4835 DELAY(5); 4836 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 4837 } 4838 } 4839 break; 4840 case IFM_1000_SX: 4841 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 4842 BGE_CLRBIT(sc, BGE_MAC_MODE, 4843 BGE_MACMODE_HALF_DUPLEX); 4844 } else { 4845 BGE_SETBIT(sc, BGE_MAC_MODE, 4846 BGE_MACMODE_HALF_DUPLEX); 4847 } 4848 break; 4849 default: 4850 return (EINVAL); 4851 } 4852 return (0); 4853 } 4854 4855 sc->bge_link_evt++; 4856 mii = device_get_softc(sc->bge_miibus); 4857 if (mii->mii_instance) 4858 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4859 mii_phy_reset(miisc); 4860 mii_mediachg(mii); 4861 4862 /* 4863 * Force an interrupt so that we will call bge_link_upd 4864 * if needed and clear any pending link state attention. 4865 * Without this we are not getting any further interrupts 4866 * for link state changes and thus will not UP the link and 4867 * not be able to send in bge_start_locked. The only 4868 * way to get things working was to receive a packet and 4869 * get an RX intr. 4870 * bge_tick should help for fiber cards and we might not 4871 * need to do this here if BGE_FLAG_TBI is set but as 4872 * we poll for fiber anyway it should not harm. 4873 */ 4874 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4875 sc->bge_flags & BGE_FLAG_5788) 4876 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4877 else 4878 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4879 4880 return (0); 4881 } 4882 4883 /* 4884 * Report current media status. 4885 */ 4886 static void 4887 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4888 { 4889 struct bge_softc *sc = ifp->if_softc; 4890 struct mii_data *mii; 4891 4892 BGE_LOCK(sc); 4893 4894 if (sc->bge_flags & BGE_FLAG_TBI) { 4895 ifmr->ifm_status = IFM_AVALID; 4896 ifmr->ifm_active = IFM_ETHER; 4897 if (CSR_READ_4(sc, BGE_MAC_STS) & 4898 BGE_MACSTAT_TBI_PCS_SYNCHED) 4899 ifmr->ifm_status |= IFM_ACTIVE; 4900 else { 4901 ifmr->ifm_active |= IFM_NONE; 4902 BGE_UNLOCK(sc); 4903 return; 4904 } 4905 ifmr->ifm_active |= IFM_1000_SX; 4906 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 4907 ifmr->ifm_active |= IFM_HDX; 4908 else 4909 ifmr->ifm_active |= IFM_FDX; 4910 BGE_UNLOCK(sc); 4911 return; 4912 } 4913 4914 mii = device_get_softc(sc->bge_miibus); 4915 mii_pollstat(mii); 4916 ifmr->ifm_active = mii->mii_media_active; 4917 ifmr->ifm_status = mii->mii_media_status; 4918 4919 BGE_UNLOCK(sc); 4920 } 4921 4922 static int 4923 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 4924 { 4925 struct bge_softc *sc = ifp->if_softc; 4926 struct ifreq *ifr = (struct ifreq *) data; 4927 struct mii_data *mii; 4928 int flags, mask, error = 0; 4929 4930 switch (command) { 4931 case SIOCSIFMTU: 4932 if (BGE_IS_JUMBO_CAPABLE(sc) || 4933 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 4934 if (ifr->ifr_mtu < ETHERMIN || 4935 ifr->ifr_mtu > BGE_JUMBO_MTU) { 4936 error = EINVAL; 4937 break; 4938 } 4939 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 4940 error = EINVAL; 4941 break; 4942 } 4943 BGE_LOCK(sc); 4944 if (ifp->if_mtu != ifr->ifr_mtu) { 4945 ifp->if_mtu = ifr->ifr_mtu; 4946 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4947 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 4948 bge_init_locked(sc); 4949 } 4950 } 4951 BGE_UNLOCK(sc); 4952 break; 4953 case SIOCSIFFLAGS: 4954 BGE_LOCK(sc); 4955 if (ifp->if_flags & IFF_UP) { 4956 /* 4957 * If only the state of the PROMISC flag changed, 4958 * then just use the 'set promisc mode' command 4959 * instead of reinitializing the entire NIC. Doing 4960 * a full re-init means reloading the firmware and 4961 * waiting for it to start up, which may take a 4962 * second or two. Similarly for ALLMULTI. 4963 */ 4964 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4965 flags = ifp->if_flags ^ sc->bge_if_flags; 4966 if (flags & IFF_PROMISC) 4967 bge_setpromisc(sc); 4968 if (flags & IFF_ALLMULTI) 4969 bge_setmulti(sc); 4970 } else 4971 bge_init_locked(sc); 4972 } else { 4973 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4974 bge_stop(sc); 4975 } 4976 } 4977 sc->bge_if_flags = ifp->if_flags; 4978 BGE_UNLOCK(sc); 4979 error = 0; 4980 break; 4981 case SIOCADDMULTI: 4982 case SIOCDELMULTI: 4983 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4984 BGE_LOCK(sc); 4985 bge_setmulti(sc); 4986 BGE_UNLOCK(sc); 4987 error = 0; 4988 } 4989 break; 4990 case SIOCSIFMEDIA: 4991 case SIOCGIFMEDIA: 4992 if (sc->bge_flags & BGE_FLAG_TBI) { 4993 error = ifmedia_ioctl(ifp, ifr, 4994 &sc->bge_ifmedia, command); 4995 } else { 4996 mii = device_get_softc(sc->bge_miibus); 4997 error = ifmedia_ioctl(ifp, ifr, 4998 &mii->mii_media, command); 4999 } 5000 break; 5001 case SIOCSIFCAP: 5002 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5003 #ifdef DEVICE_POLLING 5004 if (mask & IFCAP_POLLING) { 5005 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5006 error = ether_poll_register(bge_poll, ifp); 5007 if (error) 5008 return (error); 5009 BGE_LOCK(sc); 5010 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5011 BGE_PCIMISCCTL_MASK_PCI_INTR); 5012 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5013 ifp->if_capenable |= IFCAP_POLLING; 5014 BGE_UNLOCK(sc); 5015 } else { 5016 error = ether_poll_deregister(ifp); 5017 /* Enable interrupt even in error case */ 5018 BGE_LOCK(sc); 5019 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5020 BGE_PCIMISCCTL_MASK_PCI_INTR); 5021 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5022 ifp->if_capenable &= ~IFCAP_POLLING; 5023 BGE_UNLOCK(sc); 5024 } 5025 } 5026 #endif 5027 if ((mask & IFCAP_TXCSUM) != 0 && 5028 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 5029 ifp->if_capenable ^= IFCAP_TXCSUM; 5030 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5031 ifp->if_hwassist |= sc->bge_csum_features; 5032 else 5033 ifp->if_hwassist &= ~sc->bge_csum_features; 5034 } 5035 5036 if ((mask & IFCAP_RXCSUM) != 0 && 5037 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5038 ifp->if_capenable ^= IFCAP_RXCSUM; 5039 5040 if ((mask & IFCAP_TSO4) != 0 && 5041 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5042 ifp->if_capenable ^= IFCAP_TSO4; 5043 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5044 ifp->if_hwassist |= CSUM_TSO; 5045 else 5046 ifp->if_hwassist &= ~CSUM_TSO; 5047 } 5048 5049 if (mask & IFCAP_VLAN_MTU) { 5050 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5051 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5052 bge_init(sc); 5053 } 5054 5055 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5056 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5057 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5058 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5059 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5060 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5061 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5062 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5063 BGE_LOCK(sc); 5064 bge_setvlan(sc); 5065 BGE_UNLOCK(sc); 5066 } 5067 #ifdef VLAN_CAPABILITIES 5068 VLAN_CAPABILITIES(ifp); 5069 #endif 5070 break; 5071 default: 5072 error = ether_ioctl(ifp, command, data); 5073 break; 5074 } 5075 5076 return (error); 5077 } 5078 5079 static void 5080 bge_watchdog(struct bge_softc *sc) 5081 { 5082 struct ifnet *ifp; 5083 5084 BGE_LOCK_ASSERT(sc); 5085 5086 if (sc->bge_timer == 0 || --sc->bge_timer) 5087 return; 5088 5089 ifp = sc->bge_ifp; 5090 5091 if_printf(ifp, "watchdog timeout -- resetting\n"); 5092 5093 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5094 bge_init_locked(sc); 5095 5096 ifp->if_oerrors++; 5097 } 5098 5099 /* 5100 * Stop the adapter and free any mbufs allocated to the 5101 * RX and TX lists. 5102 */ 5103 static void 5104 bge_stop(struct bge_softc *sc) 5105 { 5106 struct ifnet *ifp; 5107 5108 BGE_LOCK_ASSERT(sc); 5109 5110 ifp = sc->bge_ifp; 5111 5112 callout_stop(&sc->bge_stat_ch); 5113 5114 /* Disable host interrupts. */ 5115 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5116 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5117 5118 /* 5119 * Tell firmware we're shutting down. 5120 */ 5121 bge_stop_fw(sc); 5122 bge_sig_pre_reset(sc, BGE_RESET_STOP); 5123 5124 /* 5125 * Disable all of the receiver blocks. 5126 */ 5127 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5128 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5129 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5130 if (!(BGE_IS_5705_PLUS(sc))) 5131 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5132 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5133 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5134 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5135 5136 /* 5137 * Disable all of the transmit blocks. 5138 */ 5139 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5140 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5141 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5142 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5143 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5144 if (!(BGE_IS_5705_PLUS(sc))) 5145 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5146 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5147 5148 /* 5149 * Shut down all of the memory managers and related 5150 * state machines. 5151 */ 5152 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5153 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5154 if (!(BGE_IS_5705_PLUS(sc))) 5155 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5156 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5157 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5158 if (!(BGE_IS_5705_PLUS(sc))) { 5159 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5160 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5161 } 5162 /* Update MAC statistics. */ 5163 if (BGE_IS_5705_PLUS(sc)) 5164 bge_stats_update_regs(sc); 5165 5166 bge_reset(sc); 5167 bge_sig_legacy(sc, BGE_RESET_STOP); 5168 bge_sig_post_reset(sc, BGE_RESET_STOP); 5169 5170 /* 5171 * Keep the ASF firmware running if up. 5172 */ 5173 if (sc->bge_asf_mode & ASF_STACKUP) 5174 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5175 else 5176 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5177 5178 /* Free the RX lists. */ 5179 bge_free_rx_ring_std(sc); 5180 5181 /* Free jumbo RX list. */ 5182 if (BGE_IS_JUMBO_CAPABLE(sc)) 5183 bge_free_rx_ring_jumbo(sc); 5184 5185 /* Free TX buffers. */ 5186 bge_free_tx_ring(sc); 5187 5188 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5189 5190 /* Clear MAC's link state (PHY may still have link UP). */ 5191 if (bootverbose && sc->bge_link) 5192 if_printf(sc->bge_ifp, "link DOWN\n"); 5193 sc->bge_link = 0; 5194 5195 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5196 } 5197 5198 /* 5199 * Stop all chip I/O so that the kernel's probe routines don't 5200 * get confused by errant DMAs when rebooting. 5201 */ 5202 static int 5203 bge_shutdown(device_t dev) 5204 { 5205 struct bge_softc *sc; 5206 5207 sc = device_get_softc(dev); 5208 BGE_LOCK(sc); 5209 bge_stop(sc); 5210 bge_reset(sc); 5211 BGE_UNLOCK(sc); 5212 5213 return (0); 5214 } 5215 5216 static int 5217 bge_suspend(device_t dev) 5218 { 5219 struct bge_softc *sc; 5220 5221 sc = device_get_softc(dev); 5222 BGE_LOCK(sc); 5223 bge_stop(sc); 5224 BGE_UNLOCK(sc); 5225 5226 return (0); 5227 } 5228 5229 static int 5230 bge_resume(device_t dev) 5231 { 5232 struct bge_softc *sc; 5233 struct ifnet *ifp; 5234 5235 sc = device_get_softc(dev); 5236 BGE_LOCK(sc); 5237 ifp = sc->bge_ifp; 5238 if (ifp->if_flags & IFF_UP) { 5239 bge_init_locked(sc); 5240 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5241 bge_start_locked(ifp); 5242 } 5243 BGE_UNLOCK(sc); 5244 5245 return (0); 5246 } 5247 5248 static void 5249 bge_link_upd(struct bge_softc *sc) 5250 { 5251 struct mii_data *mii; 5252 uint32_t link, status; 5253 5254 BGE_LOCK_ASSERT(sc); 5255 5256 /* Clear 'pending link event' flag. */ 5257 sc->bge_link_evt = 0; 5258 5259 /* 5260 * Process link state changes. 5261 * Grrr. The link status word in the status block does 5262 * not work correctly on the BCM5700 rev AX and BX chips, 5263 * according to all available information. Hence, we have 5264 * to enable MII interrupts in order to properly obtain 5265 * async link changes. Unfortunately, this also means that 5266 * we have to read the MAC status register to detect link 5267 * changes, thereby adding an additional register access to 5268 * the interrupt handler. 5269 * 5270 * XXX: perhaps link state detection procedure used for 5271 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5272 */ 5273 5274 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5275 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5276 status = CSR_READ_4(sc, BGE_MAC_STS); 5277 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5278 mii = device_get_softc(sc->bge_miibus); 5279 mii_pollstat(mii); 5280 if (!sc->bge_link && 5281 mii->mii_media_status & IFM_ACTIVE && 5282 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5283 sc->bge_link++; 5284 if (bootverbose) 5285 if_printf(sc->bge_ifp, "link UP\n"); 5286 } else if (sc->bge_link && 5287 (!(mii->mii_media_status & IFM_ACTIVE) || 5288 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5289 sc->bge_link = 0; 5290 if (bootverbose) 5291 if_printf(sc->bge_ifp, "link DOWN\n"); 5292 } 5293 5294 /* Clear the interrupt. */ 5295 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5296 BGE_EVTENB_MI_INTERRUPT); 5297 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 5298 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 5299 BRGPHY_INTRS); 5300 } 5301 return; 5302 } 5303 5304 if (sc->bge_flags & BGE_FLAG_TBI) { 5305 status = CSR_READ_4(sc, BGE_MAC_STS); 5306 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5307 if (!sc->bge_link) { 5308 sc->bge_link++; 5309 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 5310 BGE_CLRBIT(sc, BGE_MAC_MODE, 5311 BGE_MACMODE_TBI_SEND_CFGS); 5312 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5313 if (bootverbose) 5314 if_printf(sc->bge_ifp, "link UP\n"); 5315 if_link_state_change(sc->bge_ifp, 5316 LINK_STATE_UP); 5317 } 5318 } else if (sc->bge_link) { 5319 sc->bge_link = 0; 5320 if (bootverbose) 5321 if_printf(sc->bge_ifp, "link DOWN\n"); 5322 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 5323 } 5324 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 5325 /* 5326 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 5327 * in status word always set. Workaround this bug by reading 5328 * PHY link status directly. 5329 */ 5330 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 5331 5332 if (link != sc->bge_link || 5333 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 5334 mii = device_get_softc(sc->bge_miibus); 5335 mii_pollstat(mii); 5336 if (!sc->bge_link && 5337 mii->mii_media_status & IFM_ACTIVE && 5338 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5339 sc->bge_link++; 5340 if (bootverbose) 5341 if_printf(sc->bge_ifp, "link UP\n"); 5342 } else if (sc->bge_link && 5343 (!(mii->mii_media_status & IFM_ACTIVE) || 5344 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5345 sc->bge_link = 0; 5346 if (bootverbose) 5347 if_printf(sc->bge_ifp, "link DOWN\n"); 5348 } 5349 } 5350 } else { 5351 /* 5352 * For controllers that call mii_tick, we have to poll 5353 * link status. 5354 */ 5355 mii = device_get_softc(sc->bge_miibus); 5356 mii_pollstat(mii); 5357 bge_miibus_statchg(sc->bge_dev); 5358 } 5359 5360 /* Clear the attention. */ 5361 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 5362 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 5363 BGE_MACSTAT_LINK_CHANGED); 5364 } 5365 5366 static void 5367 bge_add_sysctls(struct bge_softc *sc) 5368 { 5369 struct sysctl_ctx_list *ctx; 5370 struct sysctl_oid_list *children; 5371 char tn[32]; 5372 int unit; 5373 5374 ctx = device_get_sysctl_ctx(sc->bge_dev); 5375 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 5376 5377 #ifdef BGE_REGISTER_DEBUG 5378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 5379 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 5380 "Debug Information"); 5381 5382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 5383 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 5384 "Register Read"); 5385 5386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 5387 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 5388 "Memory Read"); 5389 5390 #endif 5391 5392 unit = device_get_unit(sc->bge_dev); 5393 /* 5394 * A common design characteristic for many Broadcom client controllers 5395 * is that they only support a single outstanding DMA read operation 5396 * on the PCIe bus. This means that it will take twice as long to fetch 5397 * a TX frame that is split into header and payload buffers as it does 5398 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 5399 * these controllers, coalescing buffers to reduce the number of memory 5400 * reads is effective way to get maximum performance(about 940Mbps). 5401 * Without collapsing TX buffers the maximum TCP bulk transfer 5402 * performance is about 850Mbps. However forcing coalescing mbufs 5403 * consumes a lot of CPU cycles, so leave it off by default. 5404 */ 5405 sc->bge_forced_collapse = 0; 5406 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 5407 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 5408 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 5409 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 5410 "Number of fragmented TX buffers of a frame allowed before " 5411 "forced collapsing"); 5412 5413 /* 5414 * It seems all Broadcom controllers have a bug that can generate UDP 5415 * datagrams with checksum value 0 when TX UDP checksum offloading is 5416 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 5417 * Even though the probability of generating such UDP datagrams is 5418 * low, I don't want to see FreeBSD boxes to inject such datagrams 5419 * into network so disable UDP checksum offloading by default. Users 5420 * still override this behavior by setting a sysctl variable, 5421 * dev.bge.0.forced_udpcsum. 5422 */ 5423 sc->bge_forced_udpcsum = 0; 5424 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 5425 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 5426 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 5427 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 5428 "Enable UDP checksum offloading even if controller can " 5429 "generate UDP checksum value 0"); 5430 5431 if (BGE_IS_5705_PLUS(sc)) 5432 bge_add_sysctl_stats_regs(sc, ctx, children); 5433 else 5434 bge_add_sysctl_stats(sc, ctx, children); 5435 } 5436 5437 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 5438 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 5439 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 5440 desc) 5441 5442 static void 5443 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5444 struct sysctl_oid_list *parent) 5445 { 5446 struct sysctl_oid *tree; 5447 struct sysctl_oid_list *children, *schildren; 5448 5449 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5450 NULL, "BGE Statistics"); 5451 schildren = children = SYSCTL_CHILDREN(tree); 5452 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 5453 children, COSFramesDroppedDueToFilters, 5454 "FramesDroppedDueToFilters"); 5455 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 5456 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 5457 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 5458 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 5459 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 5460 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 5461 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 5462 children, ifInDiscards, "InputDiscards"); 5463 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 5464 children, ifInErrors, "InputErrors"); 5465 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 5466 children, nicRecvThresholdHit, "RecvThresholdHit"); 5467 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 5468 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 5469 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 5470 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 5471 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 5472 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 5473 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 5474 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 5475 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 5476 children, nicRingStatusUpdate, "RingStatusUpdate"); 5477 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 5478 children, nicInterrupts, "Interrupts"); 5479 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 5480 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 5481 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 5482 children, nicSendThresholdHit, "SendThresholdHit"); 5483 5484 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 5485 NULL, "BGE RX Statistics"); 5486 children = SYSCTL_CHILDREN(tree); 5487 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 5488 children, rxstats.ifHCInOctets, "ifHCInOctets"); 5489 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 5490 children, rxstats.etherStatsFragments, "Fragments"); 5491 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 5492 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 5493 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 5494 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 5495 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 5496 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 5497 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 5498 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 5499 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 5500 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 5501 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 5502 children, rxstats.xoffPauseFramesReceived, 5503 "xoffPauseFramesReceived"); 5504 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 5505 children, rxstats.macControlFramesReceived, 5506 "ControlFramesReceived"); 5507 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 5508 children, rxstats.xoffStateEntered, "xoffStateEntered"); 5509 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 5510 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 5511 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 5512 children, rxstats.etherStatsJabbers, "Jabbers"); 5513 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 5514 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 5515 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 5516 children, rxstats.inRangeLengthError, "inRangeLengthError"); 5517 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 5518 children, rxstats.outRangeLengthError, "outRangeLengthError"); 5519 5520 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 5521 NULL, "BGE TX Statistics"); 5522 children = SYSCTL_CHILDREN(tree); 5523 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 5524 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 5525 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 5526 children, txstats.etherStatsCollisions, "Collisions"); 5527 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 5528 children, txstats.outXonSent, "XonSent"); 5529 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 5530 children, txstats.outXoffSent, "XoffSent"); 5531 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 5532 children, txstats.flowControlDone, "flowControlDone"); 5533 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 5534 children, txstats.dot3StatsInternalMacTransmitErrors, 5535 "InternalMacTransmitErrors"); 5536 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 5537 children, txstats.dot3StatsSingleCollisionFrames, 5538 "SingleCollisionFrames"); 5539 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 5540 children, txstats.dot3StatsMultipleCollisionFrames, 5541 "MultipleCollisionFrames"); 5542 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 5543 children, txstats.dot3StatsDeferredTransmissions, 5544 "DeferredTransmissions"); 5545 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 5546 children, txstats.dot3StatsExcessiveCollisions, 5547 "ExcessiveCollisions"); 5548 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 5549 children, txstats.dot3StatsLateCollisions, 5550 "LateCollisions"); 5551 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 5552 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 5553 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 5554 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 5555 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 5556 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 5557 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 5558 children, txstats.dot3StatsCarrierSenseErrors, 5559 "CarrierSenseErrors"); 5560 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 5561 children, txstats.ifOutDiscards, "Discards"); 5562 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 5563 children, txstats.ifOutErrors, "Errors"); 5564 } 5565 5566 #undef BGE_SYSCTL_STAT 5567 5568 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 5569 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 5570 5571 static void 5572 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5573 struct sysctl_oid_list *parent) 5574 { 5575 struct sysctl_oid *tree; 5576 struct sysctl_oid_list *child, *schild; 5577 struct bge_mac_stats *stats; 5578 5579 stats = &sc->bge_mac_stats; 5580 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5581 NULL, "BGE Statistics"); 5582 schild = child = SYSCTL_CHILDREN(tree); 5583 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 5584 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 5585 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 5586 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 5587 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 5588 &stats->DmaWriteHighPriQueueFull, 5589 "NIC DMA Write High Priority Queue Full"); 5590 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 5591 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 5592 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 5593 &stats->InputDiscards, "Discarded Input Frames"); 5594 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 5595 &stats->InputErrors, "Input Errors"); 5596 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 5597 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 5598 5599 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 5600 NULL, "BGE RX Statistics"); 5601 child = SYSCTL_CHILDREN(tree); 5602 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 5603 &stats->ifHCInOctets, "Inbound Octets"); 5604 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 5605 &stats->etherStatsFragments, "Fragments"); 5606 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5607 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 5608 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5609 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 5610 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5611 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 5612 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 5613 &stats->dot3StatsFCSErrors, "FCS Errors"); 5614 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 5615 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 5616 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 5617 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 5618 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 5619 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 5620 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 5621 &stats->macControlFramesReceived, "MAC Control Frames Received"); 5622 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 5623 &stats->xoffStateEntered, "XOFF State Entered"); 5624 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 5625 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 5626 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 5627 &stats->etherStatsJabbers, "Jabbers"); 5628 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 5629 &stats->etherStatsUndersizePkts, "Undersized Packets"); 5630 5631 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 5632 NULL, "BGE TX Statistics"); 5633 child = SYSCTL_CHILDREN(tree); 5634 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 5635 &stats->ifHCOutOctets, "Outbound Octets"); 5636 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 5637 &stats->etherStatsCollisions, "TX Collisions"); 5638 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 5639 &stats->outXonSent, "XON Sent"); 5640 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 5641 &stats->outXoffSent, "XOFF Sent"); 5642 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 5643 &stats->dot3StatsInternalMacTransmitErrors, 5644 "Internal MAC TX Errors"); 5645 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 5646 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 5647 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 5648 &stats->dot3StatsMultipleCollisionFrames, 5649 "Multiple Collision Frames"); 5650 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 5651 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 5652 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 5653 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 5654 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 5655 &stats->dot3StatsLateCollisions, "Late Collisions"); 5656 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5657 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 5658 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5659 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 5660 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5661 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 5662 } 5663 5664 #undef BGE_SYSCTL_STAT_ADD64 5665 5666 static int 5667 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 5668 { 5669 struct bge_softc *sc; 5670 uint32_t result; 5671 int offset; 5672 5673 sc = (struct bge_softc *)arg1; 5674 offset = arg2; 5675 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 5676 offsetof(bge_hostaddr, bge_addr_lo)); 5677 return (sysctl_handle_int(oidp, &result, 0, req)); 5678 } 5679 5680 #ifdef BGE_REGISTER_DEBUG 5681 static int 5682 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 5683 { 5684 struct bge_softc *sc; 5685 uint16_t *sbdata; 5686 int error; 5687 int result; 5688 int i, j; 5689 5690 result = -1; 5691 error = sysctl_handle_int(oidp, &result, 0, req); 5692 if (error || (req->newptr == NULL)) 5693 return (error); 5694 5695 if (result == 1) { 5696 sc = (struct bge_softc *)arg1; 5697 5698 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 5699 printf("Status Block:\n"); 5700 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) { 5701 printf("%06x:", i); 5702 for (j = 0; j < 8; j++) { 5703 printf(" %04x", sbdata[i]); 5704 i += 4; 5705 } 5706 printf("\n"); 5707 } 5708 5709 printf("Registers:\n"); 5710 for (i = 0x800; i < 0xA00; ) { 5711 printf("%06x:", i); 5712 for (j = 0; j < 8; j++) { 5713 printf(" %08x", CSR_READ_4(sc, i)); 5714 i += 4; 5715 } 5716 printf("\n"); 5717 } 5718 5719 printf("Hardware Flags:\n"); 5720 if (BGE_IS_5755_PLUS(sc)) 5721 printf(" - 5755 Plus\n"); 5722 if (BGE_IS_575X_PLUS(sc)) 5723 printf(" - 575X Plus\n"); 5724 if (BGE_IS_5705_PLUS(sc)) 5725 printf(" - 5705 Plus\n"); 5726 if (BGE_IS_5714_FAMILY(sc)) 5727 printf(" - 5714 Family\n"); 5728 if (BGE_IS_5700_FAMILY(sc)) 5729 printf(" - 5700 Family\n"); 5730 if (sc->bge_flags & BGE_FLAG_JUMBO) 5731 printf(" - Supports Jumbo Frames\n"); 5732 if (sc->bge_flags & BGE_FLAG_PCIX) 5733 printf(" - PCI-X Bus\n"); 5734 if (sc->bge_flags & BGE_FLAG_PCIE) 5735 printf(" - PCI Express Bus\n"); 5736 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 5737 printf(" - No 3 LEDs\n"); 5738 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 5739 printf(" - RX Alignment Bug\n"); 5740 } 5741 5742 return (error); 5743 } 5744 5745 static int 5746 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 5747 { 5748 struct bge_softc *sc; 5749 int error; 5750 uint16_t result; 5751 uint32_t val; 5752 5753 result = -1; 5754 error = sysctl_handle_int(oidp, &result, 0, req); 5755 if (error || (req->newptr == NULL)) 5756 return (error); 5757 5758 if (result < 0x8000) { 5759 sc = (struct bge_softc *)arg1; 5760 val = CSR_READ_4(sc, result); 5761 printf("reg 0x%06X = 0x%08X\n", result, val); 5762 } 5763 5764 return (error); 5765 } 5766 5767 static int 5768 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 5769 { 5770 struct bge_softc *sc; 5771 int error; 5772 uint16_t result; 5773 uint32_t val; 5774 5775 result = -1; 5776 error = sysctl_handle_int(oidp, &result, 0, req); 5777 if (error || (req->newptr == NULL)) 5778 return (error); 5779 5780 if (result < 0x8000) { 5781 sc = (struct bge_softc *)arg1; 5782 val = bge_readmem_ind(sc, result); 5783 printf("mem 0x%06X = 0x%08X\n", result, val); 5784 } 5785 5786 return (error); 5787 } 5788 #endif 5789 5790 static int 5791 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 5792 { 5793 5794 if (sc->bge_flags & BGE_FLAG_EADDR) 5795 return (1); 5796 5797 #ifdef __sparc64__ 5798 OF_getetheraddr(sc->bge_dev, ether_addr); 5799 return (0); 5800 #endif 5801 return (1); 5802 } 5803 5804 static int 5805 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 5806 { 5807 uint32_t mac_addr; 5808 5809 mac_addr = bge_readmem_ind(sc, 0x0c14); 5810 if ((mac_addr >> 16) == 0x484b) { 5811 ether_addr[0] = (uint8_t)(mac_addr >> 8); 5812 ether_addr[1] = (uint8_t)mac_addr; 5813 mac_addr = bge_readmem_ind(sc, 0x0c18); 5814 ether_addr[2] = (uint8_t)(mac_addr >> 24); 5815 ether_addr[3] = (uint8_t)(mac_addr >> 16); 5816 ether_addr[4] = (uint8_t)(mac_addr >> 8); 5817 ether_addr[5] = (uint8_t)mac_addr; 5818 return (0); 5819 } 5820 return (1); 5821 } 5822 5823 static int 5824 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 5825 { 5826 int mac_offset = BGE_EE_MAC_OFFSET; 5827 5828 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5829 mac_offset = BGE_EE_MAC_OFFSET_5906; 5830 5831 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 5832 ETHER_ADDR_LEN)); 5833 } 5834 5835 static int 5836 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 5837 { 5838 5839 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 5840 return (1); 5841 5842 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 5843 ETHER_ADDR_LEN)); 5844 } 5845 5846 static int 5847 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 5848 { 5849 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 5850 /* NOTE: Order is critical */ 5851 bge_get_eaddr_fw, 5852 bge_get_eaddr_mem, 5853 bge_get_eaddr_nvram, 5854 bge_get_eaddr_eeprom, 5855 NULL 5856 }; 5857 const bge_eaddr_fcn_t *func; 5858 5859 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 5860 if ((*func)(sc, eaddr) == 0) 5861 break; 5862 } 5863 return (*func == NULL ? ENXIO : 0); 5864 } 5865