xref: /freebsd/sys/dev/bge/if_bge.c (revision d51f8d20247c373ab2c2db8aed596b8ac44e7a34)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
220 
221 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
222 
223 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
224 
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
226 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
227 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
228 
229 	{ 0, 0 }
230 };
231 
232 static const struct bge_vendor {
233 	uint16_t	v_id;
234 	const char	*v_name;
235 } const bge_vendors[] = {
236 	{ ALTEON_VENDORID,	"Alteon" },
237 	{ ALTIMA_VENDORID,	"Altima" },
238 	{ APPLE_VENDORID,	"Apple" },
239 	{ BCOM_VENDORID,	"Broadcom" },
240 	{ SK_VENDORID,		"SysKonnect" },
241 	{ TC_VENDORID,		"3Com" },
242 	{ FJTSU_VENDORID,	"Fujitsu" },
243 
244 	{ 0, NULL }
245 };
246 
247 static const struct bge_revision {
248 	uint32_t	br_chipid;
249 	const char	*br_name;
250 } const bge_revisions[] = {
251 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
252 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
253 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
254 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
255 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
256 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
257 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
258 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
259 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
260 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
261 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
262 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
263 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
264 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
265 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
266 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
267 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
268 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
269 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
270 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
271 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
272 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
273 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
274 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
275 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
276 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
277 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
278 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
279 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
280 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
281 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
282 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
283 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
284 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
285 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
286 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
287 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
288 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
289 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
290 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
291 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
292 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
293 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
294 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
295 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
296 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
297 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
298 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
299 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
300 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
301 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
302 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
303 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
304 	/* 5754 and 5787 share the same ASIC ID */
305 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
306 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
307 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
308 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
309 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
310 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
311 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
312 
313 	{ 0, NULL }
314 };
315 
316 /*
317  * Some defaults for major revisions, so that newer steppings
318  * that we don't know about have a shot at working.
319  */
320 static const struct bge_revision const bge_majorrevs[] = {
321 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
322 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
323 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
324 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
325 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
326 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
327 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
328 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
329 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
330 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
331 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
332 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
333 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
334 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
335 	/* 5754 and 5787 share the same ASIC ID */
336 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
337 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
338 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
339 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
340 
341 	{ 0, NULL }
342 };
343 
344 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
345 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
346 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
347 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
348 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
349 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
350 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
351 
352 const struct bge_revision * bge_lookup_rev(uint32_t);
353 const struct bge_vendor * bge_lookup_vendor(uint16_t);
354 
355 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
356 
357 static int bge_probe(device_t);
358 static int bge_attach(device_t);
359 static int bge_detach(device_t);
360 static int bge_suspend(device_t);
361 static int bge_resume(device_t);
362 static void bge_release_resources(struct bge_softc *);
363 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
364 static int bge_dma_alloc(struct bge_softc *);
365 static void bge_dma_free(struct bge_softc *);
366 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
367     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
368 
369 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
370 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
371 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
372 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
373 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
374 
375 static void bge_txeof(struct bge_softc *, uint16_t);
376 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
377 static int bge_rxeof(struct bge_softc *, uint16_t, int);
378 
379 static void bge_asf_driver_up (struct bge_softc *);
380 static void bge_tick(void *);
381 static void bge_stats_clear_regs(struct bge_softc *);
382 static void bge_stats_update(struct bge_softc *);
383 static void bge_stats_update_regs(struct bge_softc *);
384 static struct mbuf *bge_check_short_dma(struct mbuf *);
385 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
386     uint16_t *, uint16_t *);
387 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
388 
389 static void bge_intr(void *);
390 static int bge_msi_intr(void *);
391 static void bge_intr_task(void *, int);
392 static void bge_start_locked(struct ifnet *);
393 static void bge_start(struct ifnet *);
394 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
395 static void bge_init_locked(struct bge_softc *);
396 static void bge_init(void *);
397 static void bge_stop(struct bge_softc *);
398 static void bge_watchdog(struct bge_softc *);
399 static int bge_shutdown(device_t);
400 static int bge_ifmedia_upd_locked(struct ifnet *);
401 static int bge_ifmedia_upd(struct ifnet *);
402 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
403 
404 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
405 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
406 
407 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
408 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
409 
410 static void bge_setpromisc(struct bge_softc *);
411 static void bge_setmulti(struct bge_softc *);
412 static void bge_setvlan(struct bge_softc *);
413 
414 static __inline void bge_rxreuse_std(struct bge_softc *, int);
415 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
416 static int bge_newbuf_std(struct bge_softc *, int);
417 static int bge_newbuf_jumbo(struct bge_softc *, int);
418 static int bge_init_rx_ring_std(struct bge_softc *);
419 static void bge_free_rx_ring_std(struct bge_softc *);
420 static int bge_init_rx_ring_jumbo(struct bge_softc *);
421 static void bge_free_rx_ring_jumbo(struct bge_softc *);
422 static void bge_free_tx_ring(struct bge_softc *);
423 static int bge_init_tx_ring(struct bge_softc *);
424 
425 static int bge_chipinit(struct bge_softc *);
426 static int bge_blockinit(struct bge_softc *);
427 
428 static int bge_has_eaddr(struct bge_softc *);
429 static uint32_t bge_readmem_ind(struct bge_softc *, int);
430 static void bge_writemem_ind(struct bge_softc *, int, int);
431 static void bge_writembx(struct bge_softc *, int, int);
432 #ifdef notdef
433 static uint32_t bge_readreg_ind(struct bge_softc *, int);
434 #endif
435 static void bge_writemem_direct(struct bge_softc *, int, int);
436 static void bge_writereg_ind(struct bge_softc *, int, int);
437 
438 static int bge_miibus_readreg(device_t, int, int);
439 static int bge_miibus_writereg(device_t, int, int, int);
440 static void bge_miibus_statchg(device_t);
441 #ifdef DEVICE_POLLING
442 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
443 #endif
444 
445 #define	BGE_RESET_START 1
446 #define	BGE_RESET_STOP  2
447 static void bge_sig_post_reset(struct bge_softc *, int);
448 static void bge_sig_legacy(struct bge_softc *, int);
449 static void bge_sig_pre_reset(struct bge_softc *, int);
450 static void bge_stop_fw(struct bge_softc *);
451 static int bge_reset(struct bge_softc *);
452 static void bge_link_upd(struct bge_softc *);
453 
454 /*
455  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
456  * leak information to untrusted users.  It is also known to cause alignment
457  * traps on certain architectures.
458  */
459 #ifdef BGE_REGISTER_DEBUG
460 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
461 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
462 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
463 #endif
464 static void bge_add_sysctls(struct bge_softc *);
465 static void bge_add_sysctl_stats_regs(struct bge_softc *,
466     struct sysctl_ctx_list *, struct sysctl_oid_list *);
467 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
468     struct sysctl_oid_list *);
469 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
470 
471 static device_method_t bge_methods[] = {
472 	/* Device interface */
473 	DEVMETHOD(device_probe,		bge_probe),
474 	DEVMETHOD(device_attach,	bge_attach),
475 	DEVMETHOD(device_detach,	bge_detach),
476 	DEVMETHOD(device_shutdown,	bge_shutdown),
477 	DEVMETHOD(device_suspend,	bge_suspend),
478 	DEVMETHOD(device_resume,	bge_resume),
479 
480 	/* bus interface */
481 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
482 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
483 
484 	/* MII interface */
485 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
486 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
487 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
488 
489 	{ 0, 0 }
490 };
491 
492 static driver_t bge_driver = {
493 	"bge",
494 	bge_methods,
495 	sizeof(struct bge_softc)
496 };
497 
498 static devclass_t bge_devclass;
499 
500 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
501 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
502 
503 static int bge_allow_asf = 1;
504 
505 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
506 
507 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
508 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
509 	"Allow ASF mode if available");
510 
511 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
512 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
513 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
514 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
515 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
516 
517 static int
518 bge_has_eaddr(struct bge_softc *sc)
519 {
520 #ifdef __sparc64__
521 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
522 	device_t dev;
523 	uint32_t subvendor;
524 
525 	dev = sc->bge_dev;
526 
527 	/*
528 	 * The on-board BGEs found in sun4u machines aren't fitted with
529 	 * an EEPROM which means that we have to obtain the MAC address
530 	 * via OFW and that some tests will always fail.  We distinguish
531 	 * such BGEs by the subvendor ID, which also has to be obtained
532 	 * from OFW instead of the PCI configuration space as the latter
533 	 * indicates Broadcom as the subvendor of the netboot interface.
534 	 * For early Blade 1500 and 2500 we even have to check the OFW
535 	 * device path as the subvendor ID always defaults to Broadcom
536 	 * there.
537 	 */
538 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
539 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
540 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
541 		return (0);
542 	memset(buf, 0, sizeof(buf));
543 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
544 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
545 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
546 			return (0);
547 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
548 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
549 			return (0);
550 	}
551 #endif
552 	return (1);
553 }
554 
555 static uint32_t
556 bge_readmem_ind(struct bge_softc *sc, int off)
557 {
558 	device_t dev;
559 	uint32_t val;
560 
561 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
562 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
563 		return (0);
564 
565 	dev = sc->bge_dev;
566 
567 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
568 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
569 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
570 	return (val);
571 }
572 
573 static void
574 bge_writemem_ind(struct bge_softc *sc, int off, int val)
575 {
576 	device_t dev;
577 
578 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
579 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
580 		return;
581 
582 	dev = sc->bge_dev;
583 
584 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
585 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
586 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
587 }
588 
589 #ifdef notdef
590 static uint32_t
591 bge_readreg_ind(struct bge_softc *sc, int off)
592 {
593 	device_t dev;
594 
595 	dev = sc->bge_dev;
596 
597 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
598 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
599 }
600 #endif
601 
602 static void
603 bge_writereg_ind(struct bge_softc *sc, int off, int val)
604 {
605 	device_t dev;
606 
607 	dev = sc->bge_dev;
608 
609 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
610 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
611 }
612 
613 static void
614 bge_writemem_direct(struct bge_softc *sc, int off, int val)
615 {
616 	CSR_WRITE_4(sc, off, val);
617 }
618 
619 static void
620 bge_writembx(struct bge_softc *sc, int off, int val)
621 {
622 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624 
625 	CSR_WRITE_4(sc, off, val);
626 }
627 
628 /*
629  * Map a single buffer address.
630  */
631 
632 static void
633 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
634 {
635 	struct bge_dmamap_arg *ctx;
636 
637 	if (error)
638 		return;
639 
640 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
641 
642 	ctx = arg;
643 	ctx->bge_busaddr = segs->ds_addr;
644 }
645 
646 static uint8_t
647 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
648 {
649 	uint32_t access, byte = 0;
650 	int i;
651 
652 	/* Lock. */
653 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
654 	for (i = 0; i < 8000; i++) {
655 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
656 			break;
657 		DELAY(20);
658 	}
659 	if (i == 8000)
660 		return (1);
661 
662 	/* Enable access. */
663 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
664 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
665 
666 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
667 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
668 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
669 		DELAY(10);
670 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
671 			DELAY(10);
672 			break;
673 		}
674 	}
675 
676 	if (i == BGE_TIMEOUT * 10) {
677 		if_printf(sc->bge_ifp, "nvram read timed out\n");
678 		return (1);
679 	}
680 
681 	/* Get result. */
682 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
683 
684 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
685 
686 	/* Disable access. */
687 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
688 
689 	/* Unlock. */
690 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
691 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
692 
693 	return (0);
694 }
695 
696 /*
697  * Read a sequence of bytes from NVRAM.
698  */
699 static int
700 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
701 {
702 	int err = 0, i;
703 	uint8_t byte = 0;
704 
705 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
706 		return (1);
707 
708 	for (i = 0; i < cnt; i++) {
709 		err = bge_nvram_getbyte(sc, off + i, &byte);
710 		if (err)
711 			break;
712 		*(dest + i) = byte;
713 	}
714 
715 	return (err ? 1 : 0);
716 }
717 
718 /*
719  * Read a byte of data stored in the EEPROM at address 'addr.' The
720  * BCM570x supports both the traditional bitbang interface and an
721  * auto access interface for reading the EEPROM. We use the auto
722  * access method.
723  */
724 static uint8_t
725 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
726 {
727 	int i;
728 	uint32_t byte = 0;
729 
730 	/*
731 	 * Enable use of auto EEPROM access so we can avoid
732 	 * having to use the bitbang method.
733 	 */
734 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
735 
736 	/* Reset the EEPROM, load the clock period. */
737 	CSR_WRITE_4(sc, BGE_EE_ADDR,
738 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
739 	DELAY(20);
740 
741 	/* Issue the read EEPROM command. */
742 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
743 
744 	/* Wait for completion */
745 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
746 		DELAY(10);
747 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
748 			break;
749 	}
750 
751 	if (i == BGE_TIMEOUT * 10) {
752 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
753 		return (1);
754 	}
755 
756 	/* Get result. */
757 	byte = CSR_READ_4(sc, BGE_EE_DATA);
758 
759 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
760 
761 	return (0);
762 }
763 
764 /*
765  * Read a sequence of bytes from the EEPROM.
766  */
767 static int
768 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
769 {
770 	int i, error = 0;
771 	uint8_t byte = 0;
772 
773 	for (i = 0; i < cnt; i++) {
774 		error = bge_eeprom_getbyte(sc, off + i, &byte);
775 		if (error)
776 			break;
777 		*(dest + i) = byte;
778 	}
779 
780 	return (error ? 1 : 0);
781 }
782 
783 static int
784 bge_miibus_readreg(device_t dev, int phy, int reg)
785 {
786 	struct bge_softc *sc;
787 	uint32_t val;
788 	int i;
789 
790 	sc = device_get_softc(dev);
791 
792 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
793 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
794 		CSR_WRITE_4(sc, BGE_MI_MODE,
795 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
796 		DELAY(80);
797 	}
798 
799 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
800 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
801 
802 	/* Poll for the PHY register access to complete. */
803 	for (i = 0; i < BGE_TIMEOUT; i++) {
804 		DELAY(10);
805 		val = CSR_READ_4(sc, BGE_MI_COMM);
806 		if ((val & BGE_MICOMM_BUSY) == 0) {
807 			DELAY(5);
808 			val = CSR_READ_4(sc, BGE_MI_COMM);
809 			break;
810 		}
811 	}
812 
813 	if (i == BGE_TIMEOUT) {
814 		device_printf(sc->bge_dev,
815 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
816 		    phy, reg, val);
817 		val = 0;
818 	}
819 
820 	/* Restore the autopoll bit if necessary. */
821 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
822 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
823 		DELAY(80);
824 	}
825 
826 	if (val & BGE_MICOMM_READFAIL)
827 		return (0);
828 
829 	return (val & 0xFFFF);
830 }
831 
832 static int
833 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
834 {
835 	struct bge_softc *sc;
836 	int i;
837 
838 	sc = device_get_softc(dev);
839 
840 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
841 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
842 		return (0);
843 
844 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
845 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
846 		CSR_WRITE_4(sc, BGE_MI_MODE,
847 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
848 		DELAY(80);
849 	}
850 
851 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
852 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
853 
854 	for (i = 0; i < BGE_TIMEOUT; i++) {
855 		DELAY(10);
856 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
857 			DELAY(5);
858 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
859 			break;
860 		}
861 	}
862 
863 	/* Restore the autopoll bit if necessary. */
864 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
865 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
866 		DELAY(80);
867 	}
868 
869 	if (i == BGE_TIMEOUT)
870 		device_printf(sc->bge_dev,
871 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
872 		    phy, reg, val);
873 
874 	return (0);
875 }
876 
877 static void
878 bge_miibus_statchg(device_t dev)
879 {
880 	struct bge_softc *sc;
881 	struct mii_data *mii;
882 	sc = device_get_softc(dev);
883 	mii = device_get_softc(sc->bge_miibus);
884 
885 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
886 	    (IFM_ACTIVE | IFM_AVALID)) {
887 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
888 		case IFM_10_T:
889 		case IFM_100_TX:
890 			sc->bge_link = 1;
891 			break;
892 		case IFM_1000_T:
893 		case IFM_1000_SX:
894 		case IFM_2500_SX:
895 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
896 				sc->bge_link = 1;
897 			else
898 				sc->bge_link = 0;
899 			break;
900 		default:
901 			sc->bge_link = 0;
902 			break;
903 		}
904 	} else
905 		sc->bge_link = 0;
906 	if (sc->bge_link == 0)
907 		return;
908 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
909 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
910 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
911 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
912 	else
913 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
914 
915 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
916 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
917 		if ((IFM_OPTIONS(mii->mii_media_active) &
918 		    IFM_ETH_TXPAUSE) != 0)
919 			BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
920 		else
921 			BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
922 		if ((IFM_OPTIONS(mii->mii_media_active) &
923 		    IFM_ETH_RXPAUSE) != 0)
924 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
925 		else
926 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
927 	} else {
928 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
929 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
930 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
931 	}
932 }
933 
934 /*
935  * Intialize a standard receive ring descriptor.
936  */
937 static int
938 bge_newbuf_std(struct bge_softc *sc, int i)
939 {
940 	struct mbuf *m;
941 	struct bge_rx_bd *r;
942 	bus_dma_segment_t segs[1];
943 	bus_dmamap_t map;
944 	int error, nsegs;
945 
946 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
947 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
948 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
949 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
950 		if (m == NULL)
951 			return (ENOBUFS);
952 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
953 	} else {
954 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
955 		if (m == NULL)
956 			return (ENOBUFS);
957 		m->m_len = m->m_pkthdr.len = MCLBYTES;
958 	}
959 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
960 		m_adj(m, ETHER_ALIGN);
961 
962 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
963 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
964 	if (error != 0) {
965 		m_freem(m);
966 		return (error);
967 	}
968 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
969 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
970 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
971 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
972 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
973 	}
974 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
975 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
976 	sc->bge_cdata.bge_rx_std_sparemap = map;
977 	sc->bge_cdata.bge_rx_std_chain[i] = m;
978 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
979 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
980 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
981 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
982 	r->bge_flags = BGE_RXBDFLAG_END;
983 	r->bge_len = segs[0].ds_len;
984 	r->bge_idx = i;
985 
986 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
987 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
988 
989 	return (0);
990 }
991 
992 /*
993  * Initialize a jumbo receive ring descriptor. This allocates
994  * a jumbo buffer from the pool managed internally by the driver.
995  */
996 static int
997 bge_newbuf_jumbo(struct bge_softc *sc, int i)
998 {
999 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1000 	bus_dmamap_t map;
1001 	struct bge_extrx_bd *r;
1002 	struct mbuf *m;
1003 	int error, nsegs;
1004 
1005 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1006 	if (m == NULL)
1007 		return (ENOBUFS);
1008 
1009 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1010 	if (!(m->m_flags & M_EXT)) {
1011 		m_freem(m);
1012 		return (ENOBUFS);
1013 	}
1014 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1015 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1016 		m_adj(m, ETHER_ALIGN);
1017 
1018 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1019 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1020 	if (error != 0) {
1021 		m_freem(m);
1022 		return (error);
1023 	}
1024 
1025 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
1026 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1027 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1028 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1029 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1030 	}
1031 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1032 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1033 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1034 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1035 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1036 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1037 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1038 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1039 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1040 
1041 	/*
1042 	 * Fill in the extended RX buffer descriptor.
1043 	 */
1044 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1045 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1046 	r->bge_idx = i;
1047 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1048 	switch (nsegs) {
1049 	case 4:
1050 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1051 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1052 		r->bge_len3 = segs[3].ds_len;
1053 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1054 	case 3:
1055 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1056 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1057 		r->bge_len2 = segs[2].ds_len;
1058 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1059 	case 2:
1060 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1061 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1062 		r->bge_len1 = segs[1].ds_len;
1063 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1064 	case 1:
1065 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1066 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1067 		r->bge_len0 = segs[0].ds_len;
1068 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1069 		break;
1070 	default:
1071 		panic("%s: %d segments\n", __func__, nsegs);
1072 	}
1073 
1074 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1075 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1076 
1077 	return (0);
1078 }
1079 
1080 static int
1081 bge_init_rx_ring_std(struct bge_softc *sc)
1082 {
1083 	int error, i;
1084 
1085 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1086 	sc->bge_std = 0;
1087 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1088 		if ((error = bge_newbuf_std(sc, i)) != 0)
1089 			return (error);
1090 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1091 	}
1092 
1093 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1094 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1095 
1096 	sc->bge_std = 0;
1097 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1098 
1099 	return (0);
1100 }
1101 
1102 static void
1103 bge_free_rx_ring_std(struct bge_softc *sc)
1104 {
1105 	int i;
1106 
1107 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1108 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1109 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1110 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1111 			    BUS_DMASYNC_POSTREAD);
1112 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1113 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1114 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1115 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1116 		}
1117 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1118 		    sizeof(struct bge_rx_bd));
1119 	}
1120 }
1121 
1122 static int
1123 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1124 {
1125 	struct bge_rcb *rcb;
1126 	int error, i;
1127 
1128 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1129 	sc->bge_jumbo = 0;
1130 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1131 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1132 			return (error);
1133 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1134 	}
1135 
1136 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1137 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1138 
1139 	sc->bge_jumbo = 0;
1140 
1141 	/* Enable the jumbo receive producer ring. */
1142 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1143 	rcb->bge_maxlen_flags =
1144 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1145 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1146 
1147 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1148 
1149 	return (0);
1150 }
1151 
1152 static void
1153 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1154 {
1155 	int i;
1156 
1157 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1158 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1159 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1160 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1161 			    BUS_DMASYNC_POSTREAD);
1162 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1163 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1164 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1165 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1166 		}
1167 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1168 		    sizeof(struct bge_extrx_bd));
1169 	}
1170 }
1171 
1172 static void
1173 bge_free_tx_ring(struct bge_softc *sc)
1174 {
1175 	int i;
1176 
1177 	if (sc->bge_ldata.bge_tx_ring == NULL)
1178 		return;
1179 
1180 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1181 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1182 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1183 			    sc->bge_cdata.bge_tx_dmamap[i],
1184 			    BUS_DMASYNC_POSTWRITE);
1185 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1186 			    sc->bge_cdata.bge_tx_dmamap[i]);
1187 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1188 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1189 		}
1190 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1191 		    sizeof(struct bge_tx_bd));
1192 	}
1193 }
1194 
1195 static int
1196 bge_init_tx_ring(struct bge_softc *sc)
1197 {
1198 	sc->bge_txcnt = 0;
1199 	sc->bge_tx_saved_considx = 0;
1200 
1201 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1202 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1203 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1204 
1205 	/* Initialize transmit producer index for host-memory send ring. */
1206 	sc->bge_tx_prodidx = 0;
1207 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1208 
1209 	/* 5700 b2 errata */
1210 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1211 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1212 
1213 	/* NIC-memory send ring not used; initialize to zero. */
1214 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1215 	/* 5700 b2 errata */
1216 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1217 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1218 
1219 	return (0);
1220 }
1221 
1222 static void
1223 bge_setpromisc(struct bge_softc *sc)
1224 {
1225 	struct ifnet *ifp;
1226 
1227 	BGE_LOCK_ASSERT(sc);
1228 
1229 	ifp = sc->bge_ifp;
1230 
1231 	/* Enable or disable promiscuous mode as needed. */
1232 	if (ifp->if_flags & IFF_PROMISC)
1233 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1234 	else
1235 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1236 }
1237 
1238 static void
1239 bge_setmulti(struct bge_softc *sc)
1240 {
1241 	struct ifnet *ifp;
1242 	struct ifmultiaddr *ifma;
1243 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1244 	int h, i;
1245 
1246 	BGE_LOCK_ASSERT(sc);
1247 
1248 	ifp = sc->bge_ifp;
1249 
1250 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1251 		for (i = 0; i < 4; i++)
1252 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1253 		return;
1254 	}
1255 
1256 	/* First, zot all the existing filters. */
1257 	for (i = 0; i < 4; i++)
1258 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1259 
1260 	/* Now program new ones. */
1261 	if_maddr_rlock(ifp);
1262 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1263 		if (ifma->ifma_addr->sa_family != AF_LINK)
1264 			continue;
1265 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1266 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1267 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1268 	}
1269 	if_maddr_runlock(ifp);
1270 
1271 	for (i = 0; i < 4; i++)
1272 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1273 }
1274 
1275 static void
1276 bge_setvlan(struct bge_softc *sc)
1277 {
1278 	struct ifnet *ifp;
1279 
1280 	BGE_LOCK_ASSERT(sc);
1281 
1282 	ifp = sc->bge_ifp;
1283 
1284 	/* Enable or disable VLAN tag stripping as needed. */
1285 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1286 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1287 	else
1288 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1289 }
1290 
1291 static void
1292 bge_sig_pre_reset(struct bge_softc *sc, int type)
1293 {
1294 
1295 	/*
1296 	 * Some chips don't like this so only do this if ASF is enabled
1297 	 */
1298 	if (sc->bge_asf_mode)
1299 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1300 
1301 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1302 		switch (type) {
1303 		case BGE_RESET_START:
1304 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1305 			break;
1306 		case BGE_RESET_STOP:
1307 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1308 			break;
1309 		}
1310 	}
1311 }
1312 
1313 static void
1314 bge_sig_post_reset(struct bge_softc *sc, int type)
1315 {
1316 
1317 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1318 		switch (type) {
1319 		case BGE_RESET_START:
1320 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1321 			/* START DONE */
1322 			break;
1323 		case BGE_RESET_STOP:
1324 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1325 			break;
1326 		}
1327 	}
1328 }
1329 
1330 static void
1331 bge_sig_legacy(struct bge_softc *sc, int type)
1332 {
1333 
1334 	if (sc->bge_asf_mode) {
1335 		switch (type) {
1336 		case BGE_RESET_START:
1337 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1338 			break;
1339 		case BGE_RESET_STOP:
1340 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1341 			break;
1342 		}
1343 	}
1344 }
1345 
1346 static void
1347 bge_stop_fw(struct bge_softc *sc)
1348 {
1349 	int i;
1350 
1351 	if (sc->bge_asf_mode) {
1352 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1353 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1354 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1355 
1356 		for (i = 0; i < 100; i++ ) {
1357 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1358 				break;
1359 			DELAY(10);
1360 		}
1361 	}
1362 }
1363 
1364 /*
1365  * Do endian, PCI and DMA initialization.
1366  */
1367 static int
1368 bge_chipinit(struct bge_softc *sc)
1369 {
1370 	uint32_t dma_rw_ctl, misc_ctl;
1371 	uint16_t val;
1372 	int i;
1373 
1374 	/* Set endianness before we access any non-PCI registers. */
1375 	misc_ctl = BGE_INIT;
1376 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1377 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1378 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1379 
1380 	/* Clear the MAC control register */
1381 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1382 
1383 	/*
1384 	 * Clear the MAC statistics block in the NIC's
1385 	 * internal memory.
1386 	 */
1387 	for (i = BGE_STATS_BLOCK;
1388 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1389 		BGE_MEMWIN_WRITE(sc, i, 0);
1390 
1391 	for (i = BGE_STATUS_BLOCK;
1392 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1393 		BGE_MEMWIN_WRITE(sc, i, 0);
1394 
1395 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1396 		/*
1397 		 *  Fix data corruption caused by non-qword write with WB.
1398 		 *  Fix master abort in PCI mode.
1399 		 *  Fix PCI latency timer.
1400 		 */
1401 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1402 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1403 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1404 	}
1405 
1406 	/*
1407 	 * Set up the PCI DMA control register.
1408 	 */
1409 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1410 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1411 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1412 		/* Read watermark not used, 128 bytes for write. */
1413 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1414 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1415 		if (BGE_IS_5714_FAMILY(sc)) {
1416 			/* 256 bytes for read and write. */
1417 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1418 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1419 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1420 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1421 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1422 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1423 			/*
1424 			 * In the BCM5703, the DMA read watermark should
1425 			 * be set to less than or equal to the maximum
1426 			 * memory read byte count of the PCI-X command
1427 			 * register.
1428 			 */
1429 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1430 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1431 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1432 			/* 1536 bytes for read, 384 bytes for write. */
1433 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1434 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1435 		} else {
1436 			/* 384 bytes for read and write. */
1437 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1438 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1439 			    0x0F;
1440 		}
1441 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1442 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1443 			uint32_t tmp;
1444 
1445 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1446 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1447 			if (tmp == 6 || tmp == 7)
1448 				dma_rw_ctl |=
1449 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1450 
1451 			/* Set PCI-X DMA write workaround. */
1452 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1453 		}
1454 	} else {
1455 		/* Conventional PCI bus: 256 bytes for read and write. */
1456 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1457 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1458 
1459 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1460 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1461 			dma_rw_ctl |= 0x0F;
1462 	}
1463 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1464 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1465 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1466 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1467 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1468 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1469 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1470 	if (BGE_IS_5717_PLUS(sc))
1471 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1472 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1473 
1474 	/*
1475 	 * Set up general mode register.
1476 	 */
1477 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1478 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1479 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1480 
1481 	/*
1482 	 * BCM5701 B5 have a bug causing data corruption when using
1483 	 * 64-bit DMA reads, which can be terminated early and then
1484 	 * completed later as 32-bit accesses, in combination with
1485 	 * certain bridges.
1486 	 */
1487 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1488 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1489 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1490 
1491 	/*
1492 	 * Tell the firmware the driver is running
1493 	 */
1494 	if (sc->bge_asf_mode & ASF_STACKUP)
1495 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1496 
1497 	/*
1498 	 * Disable memory write invalidate.  Apparently it is not supported
1499 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1500 	 * as these chips need it even when using MSI.
1501 	 */
1502 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1503 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1504 
1505 	/* Set the timer prescaler (always 66Mhz) */
1506 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1507 
1508 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1509 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1510 		DELAY(40);	/* XXX */
1511 
1512 		/* Put PHY into ready state */
1513 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1514 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1515 		DELAY(40);
1516 	}
1517 
1518 	return (0);
1519 }
1520 
1521 static int
1522 bge_blockinit(struct bge_softc *sc)
1523 {
1524 	struct bge_rcb *rcb;
1525 	bus_size_t vrcb;
1526 	bge_hostaddr taddr;
1527 	uint32_t val;
1528 	int i, limit;
1529 
1530 	/*
1531 	 * Initialize the memory window pointer register so that
1532 	 * we can access the first 32K of internal NIC RAM. This will
1533 	 * allow us to set up the TX send ring RCBs and the RX return
1534 	 * ring RCBs, plus other things which live in NIC memory.
1535 	 */
1536 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1537 
1538 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1539 
1540 	if (!(BGE_IS_5705_PLUS(sc))) {
1541 		/* Configure mbuf memory pool */
1542 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1543 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1544 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1545 		else
1546 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1547 
1548 		/* Configure DMA resource pool */
1549 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1550 		    BGE_DMA_DESCRIPTORS);
1551 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1552 	}
1553 
1554 	/* Configure mbuf pool watermarks */
1555 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
1556 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1557 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1558 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1559 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1560 		} else {
1561 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1562 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1563 		}
1564 	} else if (!BGE_IS_5705_PLUS(sc)) {
1565 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1566 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1567 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1568 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1569 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1570 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1571 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1572 	} else {
1573 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1574 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1575 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1576 	}
1577 
1578 	/* Configure DMA resource watermarks */
1579 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1580 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1581 
1582 	/* Enable buffer manager */
1583 	if (!(BGE_IS_5705_PLUS(sc))) {
1584 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1585 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1586 
1587 		/* Poll for buffer manager start indication */
1588 		for (i = 0; i < BGE_TIMEOUT; i++) {
1589 			DELAY(10);
1590 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1591 				break;
1592 		}
1593 
1594 		if (i == BGE_TIMEOUT) {
1595 			device_printf(sc->bge_dev,
1596 			    "buffer manager failed to start\n");
1597 			return (ENXIO);
1598 		}
1599 	}
1600 
1601 	/* Enable flow-through queues */
1602 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1603 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1604 
1605 	/* Wait until queue initialization is complete */
1606 	for (i = 0; i < BGE_TIMEOUT; i++) {
1607 		DELAY(10);
1608 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1609 			break;
1610 	}
1611 
1612 	if (i == BGE_TIMEOUT) {
1613 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1614 		return (ENXIO);
1615 	}
1616 
1617 	/*
1618 	 * Summary of rings supported by the controller:
1619 	 *
1620 	 * Standard Receive Producer Ring
1621 	 * - This ring is used to feed receive buffers for "standard"
1622 	 *   sized frames (typically 1536 bytes) to the controller.
1623 	 *
1624 	 * Jumbo Receive Producer Ring
1625 	 * - This ring is used to feed receive buffers for jumbo sized
1626 	 *   frames (i.e. anything bigger than the "standard" frames)
1627 	 *   to the controller.
1628 	 *
1629 	 * Mini Receive Producer Ring
1630 	 * - This ring is used to feed receive buffers for "mini"
1631 	 *   sized frames to the controller.
1632 	 * - This feature required external memory for the controller
1633 	 *   but was never used in a production system.  Should always
1634 	 *   be disabled.
1635 	 *
1636 	 * Receive Return Ring
1637 	 * - After the controller has placed an incoming frame into a
1638 	 *   receive buffer that buffer is moved into a receive return
1639 	 *   ring.  The driver is then responsible to passing the
1640 	 *   buffer up to the stack.  Many versions of the controller
1641 	 *   support multiple RR rings.
1642 	 *
1643 	 * Send Ring
1644 	 * - This ring is used for outgoing frames.  Many versions of
1645 	 *   the controller support multiple send rings.
1646 	 */
1647 
1648 	/* Initialize the standard receive producer ring control block. */
1649 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1650 	rcb->bge_hostaddr.bge_addr_lo =
1651 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1652 	rcb->bge_hostaddr.bge_addr_hi =
1653 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1654 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1655 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1656 	if (BGE_IS_5717_PLUS(sc)) {
1657 		/*
1658 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1659 		 * Bits 15-2 : Maximum RX frame size
1660 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1661 		 * Bit 0     : Reserved
1662 		 */
1663 		rcb->bge_maxlen_flags =
1664 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1665 	} else if (BGE_IS_5705_PLUS(sc)) {
1666 		/*
1667 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1668 		 * Bits 15-2 : Reserved (should be 0)
1669 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1670 		 * Bit 0     : Reserved
1671 		 */
1672 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1673 	} else {
1674 		/*
1675 		 * Ring size is always XXX entries
1676 		 * Bits 31-16: Maximum RX frame size
1677 		 * Bits 15-2 : Reserved (should be 0)
1678 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1679 		 * Bit 0     : Reserved
1680 		 */
1681 		rcb->bge_maxlen_flags =
1682 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1683 	}
1684 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1685 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1686 	else
1687 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1688 	/* Write the standard receive producer ring control block. */
1689 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1690 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1691 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1692 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1693 
1694 	/* Reset the standard receive producer ring producer index. */
1695 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1696 
1697 	/*
1698 	 * Initialize the jumbo RX producer ring control
1699 	 * block.  We set the 'ring disabled' bit in the
1700 	 * flags field until we're actually ready to start
1701 	 * using this ring (i.e. once we set the MTU
1702 	 * high enough to require it).
1703 	 */
1704 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1705 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1706 		/* Get the jumbo receive producer ring RCB parameters. */
1707 		rcb->bge_hostaddr.bge_addr_lo =
1708 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1709 		rcb->bge_hostaddr.bge_addr_hi =
1710 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1711 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1712 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1713 		    BUS_DMASYNC_PREREAD);
1714 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1715 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1716 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1717 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1718 		else
1719 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1720 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1721 		    rcb->bge_hostaddr.bge_addr_hi);
1722 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1723 		    rcb->bge_hostaddr.bge_addr_lo);
1724 		/* Program the jumbo receive producer ring RCB parameters. */
1725 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1726 		    rcb->bge_maxlen_flags);
1727 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1728 		/* Reset the jumbo receive producer ring producer index. */
1729 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1730 	}
1731 
1732 	/* Disable the mini receive producer ring RCB. */
1733 	if (BGE_IS_5700_FAMILY(sc)) {
1734 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1735 		rcb->bge_maxlen_flags =
1736 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1737 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1738 		    rcb->bge_maxlen_flags);
1739 		/* Reset the mini receive producer ring producer index. */
1740 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1741 	}
1742 
1743 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1744 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1745 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1746 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1747 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1748 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1749 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1750 	}
1751 	/*
1752 	 * The BD ring replenish thresholds control how often the
1753 	 * hardware fetches new BD's from the producer rings in host
1754 	 * memory.  Setting the value too low on a busy system can
1755 	 * starve the hardware and recue the throughpout.
1756 	 *
1757 	 * Set the BD ring replentish thresholds. The recommended
1758 	 * values are 1/8th the number of descriptors allocated to
1759 	 * each ring.
1760 	 * XXX The 5754 requires a lower threshold, so it might be a
1761 	 * requirement of all 575x family chips.  The Linux driver sets
1762 	 * the lower threshold for all 5705 family chips as well, but there
1763 	 * are reports that it might not need to be so strict.
1764 	 *
1765 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1766 	 * well.
1767 	 */
1768 	if (BGE_IS_5705_PLUS(sc))
1769 		val = 8;
1770 	else
1771 		val = BGE_STD_RX_RING_CNT / 8;
1772 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1773 	if (BGE_IS_JUMBO_CAPABLE(sc))
1774 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1775 		    BGE_JUMBO_RX_RING_CNT/8);
1776 	if (BGE_IS_5717_PLUS(sc)) {
1777 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1778 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1779 	}
1780 
1781 	/*
1782 	 * Disable all send rings by setting the 'ring disabled' bit
1783 	 * in the flags field of all the TX send ring control blocks,
1784 	 * located in NIC memory.
1785 	 */
1786 	if (!BGE_IS_5705_PLUS(sc))
1787 		/* 5700 to 5704 had 16 send rings. */
1788 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1789 	else
1790 		limit = 1;
1791 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1792 	for (i = 0; i < limit; i++) {
1793 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1794 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1795 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1796 		vrcb += sizeof(struct bge_rcb);
1797 	}
1798 
1799 	/* Configure send ring RCB 0 (we use only the first ring) */
1800 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1801 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1802 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1803 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1804 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1805 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1806 	else
1807 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1808 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1809 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1810 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1811 
1812 	/*
1813 	 * Disable all receive return rings by setting the
1814 	 * 'ring diabled' bit in the flags field of all the receive
1815 	 * return ring control blocks, located in NIC memory.
1816 	 */
1817 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
1818 		/* Should be 17, use 16 until we get an SRAM map. */
1819 		limit = 16;
1820 	} else if (!BGE_IS_5705_PLUS(sc))
1821 		limit = BGE_RX_RINGS_MAX;
1822 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1823 		limit = 4;
1824 	else
1825 		limit = 1;
1826 	/* Disable all receive return rings. */
1827 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1828 	for (i = 0; i < limit; i++) {
1829 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1830 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1831 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1832 		    BGE_RCB_FLAG_RING_DISABLED);
1833 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1834 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1835 		    (i * (sizeof(uint64_t))), 0);
1836 		vrcb += sizeof(struct bge_rcb);
1837 	}
1838 
1839 	/*
1840 	 * Set up receive return ring 0.  Note that the NIC address
1841 	 * for RX return rings is 0x0.  The return rings live entirely
1842 	 * within the host, so the nicaddr field in the RCB isn't used.
1843 	 */
1844 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1845 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1846 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1847 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1848 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1849 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1850 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1851 
1852 	/* Set random backoff seed for TX */
1853 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1854 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1855 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1856 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1857 	    BGE_TX_BACKOFF_SEED_MASK);
1858 
1859 	/* Set inter-packet gap */
1860 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1861 
1862 	/*
1863 	 * Specify which ring to use for packets that don't match
1864 	 * any RX rules.
1865 	 */
1866 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1867 
1868 	/*
1869 	 * Configure number of RX lists. One interrupt distribution
1870 	 * list, sixteen active lists, one bad frames class.
1871 	 */
1872 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1873 
1874 	/* Inialize RX list placement stats mask. */
1875 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1876 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1877 
1878 	/* Disable host coalescing until we get it set up */
1879 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1880 
1881 	/* Poll to make sure it's shut down. */
1882 	for (i = 0; i < BGE_TIMEOUT; i++) {
1883 		DELAY(10);
1884 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1885 			break;
1886 	}
1887 
1888 	if (i == BGE_TIMEOUT) {
1889 		device_printf(sc->bge_dev,
1890 		    "host coalescing engine failed to idle\n");
1891 		return (ENXIO);
1892 	}
1893 
1894 	/* Set up host coalescing defaults */
1895 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1896 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1897 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1898 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1899 	if (!(BGE_IS_5705_PLUS(sc))) {
1900 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1901 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1902 	}
1903 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1904 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1905 
1906 	/* Set up address of statistics block */
1907 	if (!(BGE_IS_5705_PLUS(sc))) {
1908 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1909 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1910 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1911 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1912 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1913 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1914 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1915 	}
1916 
1917 	/* Set up address of status block */
1918 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1919 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1920 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1921 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1922 
1923 	/* Set up status block size. */
1924 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1925 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1926 		val = BGE_STATBLKSZ_FULL;
1927 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1928 	} else {
1929 		val = BGE_STATBLKSZ_32BYTE;
1930 		bzero(sc->bge_ldata.bge_status_block, 32);
1931 	}
1932 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
1933 	    sc->bge_cdata.bge_status_map,
1934 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1935 
1936 	/* Turn on host coalescing state machine */
1937 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1938 
1939 	/* Turn on RX BD completion state machine and enable attentions */
1940 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1941 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1942 
1943 	/* Turn on RX list placement state machine */
1944 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1945 
1946 	/* Turn on RX list selector state machine. */
1947 	if (!(BGE_IS_5705_PLUS(sc)))
1948 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1949 
1950 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1951 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1952 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1953 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1954 
1955 	if (sc->bge_flags & BGE_FLAG_TBI)
1956 		val |= BGE_PORTMODE_TBI;
1957 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1958 		val |= BGE_PORTMODE_GMII;
1959 	else
1960 		val |= BGE_PORTMODE_MII;
1961 
1962 	/* Turn on DMA, clear stats */
1963 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1964 
1965 	/* Set misc. local control, enable interrupts on attentions */
1966 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1967 
1968 #ifdef notdef
1969 	/* Assert GPIO pins for PHY reset */
1970 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1971 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1972 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1973 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1974 #endif
1975 
1976 	/* Turn on DMA completion state machine */
1977 	if (!(BGE_IS_5705_PLUS(sc)))
1978 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1979 
1980 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1981 
1982 	/* Enable host coalescing bug fix. */
1983 	if (BGE_IS_5755_PLUS(sc))
1984 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1985 
1986 	/* Request larger DMA burst size to get better performance. */
1987 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
1988 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1989 
1990 	/* Turn on write DMA state machine */
1991 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1992 	DELAY(40);
1993 
1994 	/* Turn on read DMA state machine */
1995 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1996 
1997 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
1998 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1999 
2000 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2001 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2002 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2003 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2004 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2005 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2006 	if (sc->bge_flags & BGE_FLAG_PCIE)
2007 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2008 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2009 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2010 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2011 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2012 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2013 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2014 	}
2015 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2016 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2017 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2018 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2019 	    BGE_IS_5717_PLUS(sc)) {
2020 		/*
2021 		 * Enable fix for read DMA FIFO overruns.
2022 		 * The fix is to limit the number of RX BDs
2023 		 * the hardware would fetch at a fime.
2024 		 */
2025 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
2026 		    CSR_READ_4(sc, BGE_RDMA_RSRVCTRL) |
2027 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2028 	}
2029 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2030 	DELAY(40);
2031 
2032 	/* Turn on RX data completion state machine */
2033 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2034 
2035 	/* Turn on RX BD initiator state machine */
2036 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2037 
2038 	/* Turn on RX data and RX BD initiator state machine */
2039 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2040 
2041 	/* Turn on Mbuf cluster free state machine */
2042 	if (!(BGE_IS_5705_PLUS(sc)))
2043 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2044 
2045 	/* Turn on send BD completion state machine */
2046 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2047 
2048 	/* Turn on send data completion state machine */
2049 	val = BGE_SDCMODE_ENABLE;
2050 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2051 		val |= BGE_SDCMODE_CDELAY;
2052 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2053 
2054 	/* Turn on send data initiator state machine */
2055 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2056 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2057 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2058 	else
2059 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2060 
2061 	/* Turn on send BD initiator state machine */
2062 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2063 
2064 	/* Turn on send BD selector state machine */
2065 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2066 
2067 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2068 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2069 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2070 
2071 	/* ack/clear link change events */
2072 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2073 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2074 	    BGE_MACSTAT_LINK_CHANGED);
2075 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2076 
2077 	/*
2078 	 * Enable attention when the link has changed state for
2079 	 * devices that use auto polling.
2080 	 */
2081 	if (sc->bge_flags & BGE_FLAG_TBI) {
2082 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2083 	} else {
2084 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2085 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2086 			DELAY(80);
2087 		}
2088 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2089 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2090 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2091 			    BGE_EVTENB_MI_INTERRUPT);
2092 	}
2093 
2094 	/*
2095 	 * Clear any pending link state attention.
2096 	 * Otherwise some link state change events may be lost until attention
2097 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2098 	 * It's not necessary on newer BCM chips - perhaps enabling link
2099 	 * state change attentions implies clearing pending attention.
2100 	 */
2101 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2102 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2103 	    BGE_MACSTAT_LINK_CHANGED);
2104 
2105 	/* Enable link state change attentions. */
2106 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2107 
2108 	return (0);
2109 }
2110 
2111 const struct bge_revision *
2112 bge_lookup_rev(uint32_t chipid)
2113 {
2114 	const struct bge_revision *br;
2115 
2116 	for (br = bge_revisions; br->br_name != NULL; br++) {
2117 		if (br->br_chipid == chipid)
2118 			return (br);
2119 	}
2120 
2121 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2122 		if (br->br_chipid == BGE_ASICREV(chipid))
2123 			return (br);
2124 	}
2125 
2126 	return (NULL);
2127 }
2128 
2129 const struct bge_vendor *
2130 bge_lookup_vendor(uint16_t vid)
2131 {
2132 	const struct bge_vendor *v;
2133 
2134 	for (v = bge_vendors; v->v_name != NULL; v++)
2135 		if (v->v_id == vid)
2136 			return (v);
2137 
2138 	panic("%s: unknown vendor %d", __func__, vid);
2139 	return (NULL);
2140 }
2141 
2142 /*
2143  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2144  * against our list and return its name if we find a match.
2145  *
2146  * Note that since the Broadcom controller contains VPD support, we
2147  * try to get the device name string from the controller itself instead
2148  * of the compiled-in string. It guarantees we'll always announce the
2149  * right product name. We fall back to the compiled-in string when
2150  * VPD is unavailable or corrupt.
2151  */
2152 static int
2153 bge_probe(device_t dev)
2154 {
2155 	char buf[96];
2156 	char model[64];
2157 	const struct bge_revision *br;
2158 	const char *pname;
2159 	struct bge_softc *sc = device_get_softc(dev);
2160 	const struct bge_type *t = bge_devs;
2161 	const struct bge_vendor *v;
2162 	uint32_t id;
2163 	uint16_t did, vid;
2164 
2165 	sc->bge_dev = dev;
2166 	vid = pci_get_vendor(dev);
2167 	did = pci_get_device(dev);
2168 	while(t->bge_vid != 0) {
2169 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2170 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2171 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2172 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2173 				/*
2174 				 * Find the ASCI revision.  Different chips
2175 				 * use different registers.
2176 				 */
2177 				switch (pci_get_device(dev)) {
2178 				case BCOM_DEVICEID_BCM5717:
2179 				case BCOM_DEVICEID_BCM5718:
2180 					id = pci_read_config(dev,
2181 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2182 					break;
2183 				default:
2184 					id = pci_read_config(dev,
2185 					    BGE_PCI_PRODID_ASICREV, 4);
2186 				}
2187 			}
2188 			br = bge_lookup_rev(id);
2189 			v = bge_lookup_vendor(vid);
2190 			if (bge_has_eaddr(sc) &&
2191 			    pci_get_vpd_ident(dev, &pname) == 0)
2192 				snprintf(model, 64, "%s", pname);
2193 			else
2194 				snprintf(model, 64, "%s %s", v->v_name,
2195 				    br != NULL ? br->br_name :
2196 				    "NetXtreme Ethernet Controller");
2197 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2198 			    br != NULL ? "" : "unknown ", id);
2199 			device_set_desc_copy(dev, buf);
2200 			return (0);
2201 		}
2202 		t++;
2203 	}
2204 
2205 	return (ENXIO);
2206 }
2207 
2208 static void
2209 bge_dma_free(struct bge_softc *sc)
2210 {
2211 	int i;
2212 
2213 	/* Destroy DMA maps for RX buffers. */
2214 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2215 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2216 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2217 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2218 	}
2219 	if (sc->bge_cdata.bge_rx_std_sparemap)
2220 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2221 		    sc->bge_cdata.bge_rx_std_sparemap);
2222 
2223 	/* Destroy DMA maps for jumbo RX buffers. */
2224 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2225 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2226 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2227 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2228 	}
2229 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2230 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2231 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2232 
2233 	/* Destroy DMA maps for TX buffers. */
2234 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2235 		if (sc->bge_cdata.bge_tx_dmamap[i])
2236 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2237 			    sc->bge_cdata.bge_tx_dmamap[i]);
2238 	}
2239 
2240 	if (sc->bge_cdata.bge_rx_mtag)
2241 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2242 	if (sc->bge_cdata.bge_tx_mtag)
2243 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2244 
2245 
2246 	/* Destroy standard RX ring. */
2247 	if (sc->bge_cdata.bge_rx_std_ring_map)
2248 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2249 		    sc->bge_cdata.bge_rx_std_ring_map);
2250 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2251 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2252 		    sc->bge_ldata.bge_rx_std_ring,
2253 		    sc->bge_cdata.bge_rx_std_ring_map);
2254 
2255 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2256 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2257 
2258 	/* Destroy jumbo RX ring. */
2259 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2260 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2261 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2262 
2263 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2264 	    sc->bge_ldata.bge_rx_jumbo_ring)
2265 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2266 		    sc->bge_ldata.bge_rx_jumbo_ring,
2267 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2268 
2269 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2270 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2271 
2272 	/* Destroy RX return ring. */
2273 	if (sc->bge_cdata.bge_rx_return_ring_map)
2274 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2275 		    sc->bge_cdata.bge_rx_return_ring_map);
2276 
2277 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2278 	    sc->bge_ldata.bge_rx_return_ring)
2279 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2280 		    sc->bge_ldata.bge_rx_return_ring,
2281 		    sc->bge_cdata.bge_rx_return_ring_map);
2282 
2283 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2284 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2285 
2286 	/* Destroy TX ring. */
2287 	if (sc->bge_cdata.bge_tx_ring_map)
2288 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2289 		    sc->bge_cdata.bge_tx_ring_map);
2290 
2291 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2292 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2293 		    sc->bge_ldata.bge_tx_ring,
2294 		    sc->bge_cdata.bge_tx_ring_map);
2295 
2296 	if (sc->bge_cdata.bge_tx_ring_tag)
2297 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2298 
2299 	/* Destroy status block. */
2300 	if (sc->bge_cdata.bge_status_map)
2301 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2302 		    sc->bge_cdata.bge_status_map);
2303 
2304 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2305 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2306 		    sc->bge_ldata.bge_status_block,
2307 		    sc->bge_cdata.bge_status_map);
2308 
2309 	if (sc->bge_cdata.bge_status_tag)
2310 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2311 
2312 	/* Destroy statistics block. */
2313 	if (sc->bge_cdata.bge_stats_map)
2314 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2315 		    sc->bge_cdata.bge_stats_map);
2316 
2317 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2318 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2319 		    sc->bge_ldata.bge_stats,
2320 		    sc->bge_cdata.bge_stats_map);
2321 
2322 	if (sc->bge_cdata.bge_stats_tag)
2323 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2324 
2325 	if (sc->bge_cdata.bge_buffer_tag)
2326 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2327 
2328 	/* Destroy the parent tag. */
2329 	if (sc->bge_cdata.bge_parent_tag)
2330 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2331 }
2332 
2333 static int
2334 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2335     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2336     bus_addr_t *paddr, const char *msg)
2337 {
2338 	struct bge_dmamap_arg ctx;
2339 	bus_addr_t lowaddr;
2340 	bus_size_t ring_end;
2341 	int error;
2342 
2343 	lowaddr = BUS_SPACE_MAXADDR;
2344 again:
2345 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2346 	    alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2347 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2348 	if (error != 0) {
2349 		device_printf(sc->bge_dev,
2350 		    "could not create %s dma tag\n", msg);
2351 		return (ENOMEM);
2352 	}
2353 	/* Allocate DMA'able memory for ring. */
2354 	error = bus_dmamem_alloc(*tag, (void **)ring,
2355 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2356 	if (error != 0) {
2357 		device_printf(sc->bge_dev,
2358 		    "could not allocate DMA'able memory for %s\n", msg);
2359 		return (ENOMEM);
2360 	}
2361 	/* Load the address of the ring. */
2362 	ctx.bge_busaddr = 0;
2363 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2364 	    &ctx, BUS_DMA_NOWAIT);
2365 	if (error != 0) {
2366 		device_printf(sc->bge_dev,
2367 		    "could not load DMA'able memory for %s\n", msg);
2368 		return (ENOMEM);
2369 	}
2370 	*paddr = ctx.bge_busaddr;
2371 	ring_end = *paddr + maxsize;
2372 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2373 	    BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2374 		/*
2375 		 * 4GB boundary crossed.  Limit maximum allowable DMA
2376 		 * address space to 32bit and try again.
2377 		 */
2378 		bus_dmamap_unload(*tag, *map);
2379 		bus_dmamem_free(*tag, *ring, *map);
2380 		bus_dma_tag_destroy(*tag);
2381 		if (bootverbose)
2382 			device_printf(sc->bge_dev, "4GB boundary crossed, "
2383 			    "limit DMA address space to 32bit for %s\n", msg);
2384 		*ring = NULL;
2385 		*tag = NULL;
2386 		*map = NULL;
2387 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2388 		goto again;
2389 	}
2390 	return (0);
2391 }
2392 
2393 static int
2394 bge_dma_alloc(struct bge_softc *sc)
2395 {
2396 	bus_addr_t lowaddr;
2397 	bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2398 	int i, error;
2399 
2400 	lowaddr = BUS_SPACE_MAXADDR;
2401 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2402 		lowaddr = BGE_DMA_MAXADDR;
2403 	/*
2404 	 * Allocate the parent bus DMA tag appropriate for PCI.
2405 	 */
2406 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2407 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2408 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2409 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2410 	if (error != 0) {
2411 		device_printf(sc->bge_dev,
2412 		    "could not allocate parent dma tag\n");
2413 		return (ENOMEM);
2414 	}
2415 
2416 	/* Create tag for standard RX ring. */
2417 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2418 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2419 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2420 	    &sc->bge_cdata.bge_rx_std_ring_map,
2421 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2422 	if (error)
2423 		return (error);
2424 
2425 	/* Create tag for RX return ring. */
2426 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2427 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2428 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2429 	    &sc->bge_cdata.bge_rx_return_ring_map,
2430 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2431 	if (error)
2432 		return (error);
2433 
2434 	/* Create tag for TX ring. */
2435 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2436 	    &sc->bge_cdata.bge_tx_ring_tag,
2437 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2438 	    &sc->bge_cdata.bge_tx_ring_map,
2439 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2440 	if (error)
2441 		return (error);
2442 
2443 	/*
2444 	 * Create tag for status block.
2445 	 * Because we only use single Tx/Rx/Rx return ring, use
2446 	 * minimum status block size except BCM5700 AX/BX which
2447 	 * seems to want to see full status block size regardless
2448 	 * of configured number of ring.
2449 	 */
2450 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2451 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2452 		sbsz = BGE_STATUS_BLK_SZ;
2453 	else
2454 		sbsz = 32;
2455 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2456 	    &sc->bge_cdata.bge_status_tag,
2457 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2458 	    &sc->bge_cdata.bge_status_map,
2459 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2460 	if (error)
2461 		return (error);
2462 
2463 	/* Create tag for statistics block. */
2464 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2465 	    &sc->bge_cdata.bge_stats_tag,
2466 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2467 	    &sc->bge_cdata.bge_stats_map,
2468 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2469 	if (error)
2470 		return (error);
2471 
2472 	/* Create tag for jumbo RX ring. */
2473 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2474 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2475 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2476 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2477 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2478 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2479 		if (error)
2480 			return (error);
2481 	}
2482 
2483 	/* Create parent tag for buffers. */
2484 	boundary = 0;
2485 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2486 		boundary = BGE_DMA_BNDRY;
2487 		/*
2488 		 * XXX
2489 		 * watchdog timeout issue was observed on BCM5704 which
2490 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2491 		 * Limiting DMA address space to 32bits seems to address
2492 		 * it.
2493 		 */
2494 		if (sc->bge_flags & BGE_FLAG_PCIX)
2495 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2496 	}
2497 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2498 	    1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
2499 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2500 	    0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
2501 	if (error != 0) {
2502 		device_printf(sc->bge_dev,
2503 		    "could not allocate buffer dma tag\n");
2504 		return (ENOMEM);
2505 	}
2506 	/* Create tag for Tx mbufs. */
2507 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2508 		txsegsz = BGE_TSOSEG_SZ;
2509 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2510 	} else {
2511 		txsegsz = MCLBYTES;
2512 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2513 	}
2514 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2515 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2516 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2517 	    &sc->bge_cdata.bge_tx_mtag);
2518 
2519 	if (error) {
2520 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2521 		return (ENOMEM);
2522 	}
2523 
2524 	/* Create tag for Rx mbufs. */
2525 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2526 		rxmaxsegsz = MJUM9BYTES;
2527 	else
2528 		rxmaxsegsz = MCLBYTES;
2529 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2530 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2531 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2532 
2533 	if (error) {
2534 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2535 		return (ENOMEM);
2536 	}
2537 
2538 	/* Create DMA maps for RX buffers. */
2539 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2540 	    &sc->bge_cdata.bge_rx_std_sparemap);
2541 	if (error) {
2542 		device_printf(sc->bge_dev,
2543 		    "can't create spare DMA map for RX\n");
2544 		return (ENOMEM);
2545 	}
2546 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2547 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2548 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2549 		if (error) {
2550 			device_printf(sc->bge_dev,
2551 			    "can't create DMA map for RX\n");
2552 			return (ENOMEM);
2553 		}
2554 	}
2555 
2556 	/* Create DMA maps for TX buffers. */
2557 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2558 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2559 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2560 		if (error) {
2561 			device_printf(sc->bge_dev,
2562 			    "can't create DMA map for TX\n");
2563 			return (ENOMEM);
2564 		}
2565 	}
2566 
2567 	/* Create tags for jumbo RX buffers. */
2568 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2569 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2570 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2571 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2572 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2573 		if (error) {
2574 			device_printf(sc->bge_dev,
2575 			    "could not allocate jumbo dma tag\n");
2576 			return (ENOMEM);
2577 		}
2578 		/* Create DMA maps for jumbo RX buffers. */
2579 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2580 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2581 		if (error) {
2582 			device_printf(sc->bge_dev,
2583 			    "can't create spare DMA map for jumbo RX\n");
2584 			return (ENOMEM);
2585 		}
2586 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2587 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2588 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2589 			if (error) {
2590 				device_printf(sc->bge_dev,
2591 				    "can't create DMA map for jumbo RX\n");
2592 				return (ENOMEM);
2593 			}
2594 		}
2595 	}
2596 
2597 	return (0);
2598 }
2599 
2600 /*
2601  * Return true if this device has more than one port.
2602  */
2603 static int
2604 bge_has_multiple_ports(struct bge_softc *sc)
2605 {
2606 	device_t dev = sc->bge_dev;
2607 	u_int b, d, f, fscan, s;
2608 
2609 	d = pci_get_domain(dev);
2610 	b = pci_get_bus(dev);
2611 	s = pci_get_slot(dev);
2612 	f = pci_get_function(dev);
2613 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2614 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2615 			return (1);
2616 	return (0);
2617 }
2618 
2619 /*
2620  * Return true if MSI can be used with this device.
2621  */
2622 static int
2623 bge_can_use_msi(struct bge_softc *sc)
2624 {
2625 	int can_use_msi = 0;
2626 
2627 	/* Disable MSI for polling(4). */
2628 #ifdef DEVICE_POLLING
2629 	return (0);
2630 #endif
2631 	switch (sc->bge_asicrev) {
2632 	case BGE_ASICREV_BCM5714_A0:
2633 	case BGE_ASICREV_BCM5714:
2634 		/*
2635 		 * Apparently, MSI doesn't work when these chips are
2636 		 * configured in single-port mode.
2637 		 */
2638 		if (bge_has_multiple_ports(sc))
2639 			can_use_msi = 1;
2640 		break;
2641 	case BGE_ASICREV_BCM5750:
2642 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2643 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2644 			can_use_msi = 1;
2645 		break;
2646 	default:
2647 		if (BGE_IS_575X_PLUS(sc))
2648 			can_use_msi = 1;
2649 	}
2650 	return (can_use_msi);
2651 }
2652 
2653 static int
2654 bge_attach(device_t dev)
2655 {
2656 	struct ifnet *ifp;
2657 	struct bge_softc *sc;
2658 	uint32_t hwcfg = 0, misccfg;
2659 	u_char eaddr[ETHER_ADDR_LEN];
2660 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2661 
2662 	sc = device_get_softc(dev);
2663 	sc->bge_dev = dev;
2664 
2665 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2666 
2667 	/*
2668 	 * Map control/status registers.
2669 	 */
2670 	pci_enable_busmaster(dev);
2671 
2672 	rid = PCIR_BAR(0);
2673 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2674 	    RF_ACTIVE);
2675 
2676 	if (sc->bge_res == NULL) {
2677 		device_printf (sc->bge_dev, "couldn't map memory\n");
2678 		error = ENXIO;
2679 		goto fail;
2680 	}
2681 
2682 	/* Save various chip information. */
2683 	sc->bge_chipid =
2684 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2685 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2686 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2687 		/*
2688 		 * Find the ASCI revision.  Different chips use different
2689 		 * registers.
2690 		 */
2691 		switch (pci_get_device(dev)) {
2692 		case BCOM_DEVICEID_BCM5717:
2693 		case BCOM_DEVICEID_BCM5718:
2694 			sc->bge_chipid = pci_read_config(dev,
2695 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2696 			break;
2697 		default:
2698 			sc->bge_chipid = pci_read_config(dev,
2699 			    BGE_PCI_PRODID_ASICREV, 4);
2700 		}
2701 	}
2702 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2703 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2704 
2705 	/* Set default PHY address. */
2706 	phy_addr = 1;
2707 	 /*
2708 	  * PHY address mapping for various devices.
2709 	  *
2710 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2711 	  * ---------+-------+-------+-------+-------+
2712 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2713 	  * BCM5704  |   1   |   X   |   1   |   X   |
2714 	  * BCM5717  |   1   |   8   |   2   |   9   |
2715 	  *
2716 	  * Other addresses may respond but they are not
2717 	  * IEEE compliant PHYs and should be ignored.
2718 	  */
2719 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717) {
2720 		f = pci_get_function(dev);
2721 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2722 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2723 			    BGE_SGDIGSTS_IS_SERDES)
2724 				phy_addr = f + 8;
2725 			else
2726 				phy_addr = f + 1;
2727 		} else if (sc->bge_chipid == BGE_CHIPID_BCM5717_B0) {
2728 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2729 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2730 				phy_addr = f + 8;
2731 			else
2732 				phy_addr = f + 1;
2733 		}
2734 	}
2735 
2736 	/*
2737 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2738 	 * 5705 A0 and A1 chips.
2739 	 */
2740 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2741 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2742 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2743 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1 &&
2744 	    !BGE_IS_5717_PLUS(sc))
2745 		sc->bge_phy_flags |= BGE_PHY_WIRESPEED;
2746 
2747 	if (bge_has_eaddr(sc))
2748 		sc->bge_flags |= BGE_FLAG_EADDR;
2749 
2750 	/* Save chipset family. */
2751 	switch (sc->bge_asicrev) {
2752 	case BGE_ASICREV_BCM5717:
2753 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2754 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2755 		    BGE_FLAG_SHORT_DMA_BUG | BGE_FLAG_JUMBO_FRAME;
2756 		break;
2757 	case BGE_ASICREV_BCM5755:
2758 	case BGE_ASICREV_BCM5761:
2759 	case BGE_ASICREV_BCM5784:
2760 	case BGE_ASICREV_BCM5785:
2761 	case BGE_ASICREV_BCM5787:
2762 	case BGE_ASICREV_BCM57780:
2763 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2764 		    BGE_FLAG_5705_PLUS;
2765 		break;
2766 	case BGE_ASICREV_BCM5700:
2767 	case BGE_ASICREV_BCM5701:
2768 	case BGE_ASICREV_BCM5703:
2769 	case BGE_ASICREV_BCM5704:
2770 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2771 		break;
2772 	case BGE_ASICREV_BCM5714_A0:
2773 	case BGE_ASICREV_BCM5780:
2774 	case BGE_ASICREV_BCM5714:
2775 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
2776 		/* FALLTHROUGH */
2777 	case BGE_ASICREV_BCM5750:
2778 	case BGE_ASICREV_BCM5752:
2779 	case BGE_ASICREV_BCM5906:
2780 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2781 		if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2782 			sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
2783 		/* FALLTHROUGH */
2784 	case BGE_ASICREV_BCM5705:
2785 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2786 		break;
2787 	}
2788 
2789 	/* Set various PHY bug flags. */
2790 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2791 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2792 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2793 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2794 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2795 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2796 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2797 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2798 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2799 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2800 	if ((BGE_IS_5705_PLUS(sc)) &&
2801 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2802 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
2803 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2804 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2805 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2806 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2807 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2808 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2809 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2810 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2811 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2812 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2813 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2814 		} else
2815 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2816 	}
2817 
2818 	/* Identify the chips that use an CPMU. */
2819 	if (BGE_IS_5717_PLUS(sc) ||
2820 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2821 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2822 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2823 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2824 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
2825 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
2826 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2827 	else
2828 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2829 	/* Enable auto polling for BCM570[0-5]. */
2830 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
2831 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2832 
2833 	/*
2834 	 * All controllers that are not 5755 or higher have 4GB
2835 	 * boundary DMA bug.
2836 	 * Whenever an address crosses a multiple of the 4GB boundary
2837 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2838 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2839 	 * state machine will lockup and cause the device to hang.
2840 	 */
2841 	if (BGE_IS_5755_PLUS(sc) == 0)
2842 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2843 
2844 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2845 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2846 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2847 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2848 			sc->bge_flags |= BGE_FLAG_5788;
2849 	}
2850 
2851 	capmask = BMSR_DEFCAPMASK;
2852 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2853 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
2854 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2855 	    pci_get_vendor(dev) == BCOM_VENDORID &&
2856 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
2857 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
2858 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
2859 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
2860 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
2861 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
2862 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
2863 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
2864 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2865 		/* These chips are 10/100 only. */
2866 		capmask &= ~BMSR_EXTSTAT;
2867 	}
2868 
2869 	/*
2870 	 * Some controllers seem to require a special firmware to use
2871 	 * TSO. But the firmware is not available to FreeBSD and Linux
2872 	 * claims that the TSO performed by the firmware is slower than
2873 	 * hardware based TSO. Moreover the firmware based TSO has one
2874 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2875 	 * header is greater than 80 bytes. The workaround for the TSO
2876 	 * bug exist but it seems it's too expensive than not using
2877 	 * TSO at all. Some hardwares also have the TSO bug so limit
2878 	 * the TSO to the controllers that are not affected TSO issues
2879 	 * (e.g. 5755 or higher).
2880 	 */
2881 	if (BGE_IS_5717_PLUS(sc)) {
2882 		/* BCM5717 requires different TSO configuration. */
2883 		sc->bge_flags |= BGE_FLAG_TSO3;
2884 	} else if (BGE_IS_5755_PLUS(sc)) {
2885 		/*
2886 		 * BCM5754 and BCM5787 shares the same ASIC id so
2887 		 * explicit device id check is required.
2888 		 * Due to unknown reason TSO does not work on BCM5755M.
2889 		 */
2890 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2891 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2892 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2893 			sc->bge_flags |= BGE_FLAG_TSO;
2894 	}
2895 
2896   	/*
2897 	 * Check if this is a PCI-X or PCI Express device.
2898   	 */
2899 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
2900 		/*
2901 		 * Found a PCI Express capabilities register, this
2902 		 * must be a PCI Express device.
2903 		 */
2904 		sc->bge_flags |= BGE_FLAG_PCIE;
2905 		sc->bge_expcap = reg;
2906 		if (pci_get_max_read_req(dev) != 4096)
2907 			pci_set_max_read_req(dev, 4096);
2908 	} else {
2909 		/*
2910 		 * Check if the device is in PCI-X Mode.
2911 		 * (This bit is not valid on PCI Express controllers.)
2912 		 */
2913 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
2914 			sc->bge_pcixcap = reg;
2915 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2916 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2917 			sc->bge_flags |= BGE_FLAG_PCIX;
2918 	}
2919 
2920 	/*
2921 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2922 	 * not actually a MAC controller bug but an issue with the embedded
2923 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2924 	 */
2925 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2926 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2927 	/*
2928 	 * Allocate the interrupt, using MSI if possible.  These devices
2929 	 * support 8 MSI messages, but only the first one is used in
2930 	 * normal operation.
2931 	 */
2932 	rid = 0;
2933 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2934 		sc->bge_msicap = reg;
2935 		if (bge_can_use_msi(sc)) {
2936 			msicount = pci_msi_count(dev);
2937 			if (msicount > 1)
2938 				msicount = 1;
2939 		} else
2940 			msicount = 0;
2941 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2942 			rid = 1;
2943 			sc->bge_flags |= BGE_FLAG_MSI;
2944 		}
2945 	}
2946 
2947 	/*
2948 	 * All controllers except BCM5700 supports tagged status but
2949 	 * we use tagged status only for MSI case on BCM5717. Otherwise
2950 	 * MSI on BCM5717 does not work.
2951 	 */
2952 #ifndef DEVICE_POLLING
2953 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
2954 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
2955 #endif
2956 
2957 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2958 	    RF_SHAREABLE | RF_ACTIVE);
2959 
2960 	if (sc->bge_irq == NULL) {
2961 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2962 		error = ENXIO;
2963 		goto fail;
2964 	}
2965 
2966 	device_printf(dev,
2967 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2968 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2969 	    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2970 	    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2971 
2972 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2973 
2974 	/* Try to reset the chip. */
2975 	if (bge_reset(sc)) {
2976 		device_printf(sc->bge_dev, "chip reset failed\n");
2977 		error = ENXIO;
2978 		goto fail;
2979 	}
2980 
2981 	sc->bge_asf_mode = 0;
2982 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2983 	    == BGE_MAGIC_NUMBER)) {
2984 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2985 		    & BGE_HWCFG_ASF) {
2986 			sc->bge_asf_mode |= ASF_ENABLE;
2987 			sc->bge_asf_mode |= ASF_STACKUP;
2988 			if (BGE_IS_575X_PLUS(sc))
2989 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2990 		}
2991 	}
2992 
2993 	/* Try to reset the chip again the nice way. */
2994 	bge_stop_fw(sc);
2995 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2996 	if (bge_reset(sc)) {
2997 		device_printf(sc->bge_dev, "chip reset failed\n");
2998 		error = ENXIO;
2999 		goto fail;
3000 	}
3001 
3002 	bge_sig_legacy(sc, BGE_RESET_STOP);
3003 	bge_sig_post_reset(sc, BGE_RESET_STOP);
3004 
3005 	if (bge_chipinit(sc)) {
3006 		device_printf(sc->bge_dev, "chip initialization failed\n");
3007 		error = ENXIO;
3008 		goto fail;
3009 	}
3010 
3011 	error = bge_get_eaddr(sc, eaddr);
3012 	if (error) {
3013 		device_printf(sc->bge_dev,
3014 		    "failed to read station address\n");
3015 		error = ENXIO;
3016 		goto fail;
3017 	}
3018 
3019 	/* 5705 limits RX return ring to 512 entries. */
3020 	if (BGE_IS_5717_PLUS(sc))
3021 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3022 	else if (BGE_IS_5705_PLUS(sc))
3023 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3024 	else
3025 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3026 
3027 	if (bge_dma_alloc(sc)) {
3028 		device_printf(sc->bge_dev,
3029 		    "failed to allocate DMA resources\n");
3030 		error = ENXIO;
3031 		goto fail;
3032 	}
3033 
3034 	bge_add_sysctls(sc);
3035 
3036 	/* Set default tuneable values. */
3037 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3038 	sc->bge_rx_coal_ticks = 150;
3039 	sc->bge_tx_coal_ticks = 150;
3040 	sc->bge_rx_max_coal_bds = 10;
3041 	sc->bge_tx_max_coal_bds = 10;
3042 
3043 	/* Initialize checksum features to use. */
3044 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3045 	if (sc->bge_forced_udpcsum != 0)
3046 		sc->bge_csum_features |= CSUM_UDP;
3047 
3048 	/* Set up ifnet structure */
3049 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3050 	if (ifp == NULL) {
3051 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3052 		error = ENXIO;
3053 		goto fail;
3054 	}
3055 	ifp->if_softc = sc;
3056 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3057 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3058 	ifp->if_ioctl = bge_ioctl;
3059 	ifp->if_start = bge_start;
3060 	ifp->if_init = bge_init;
3061 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3062 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3063 	IFQ_SET_READY(&ifp->if_snd);
3064 	ifp->if_hwassist = sc->bge_csum_features;
3065 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3066 	    IFCAP_VLAN_MTU;
3067 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3068 		ifp->if_hwassist |= CSUM_TSO;
3069 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3070 	}
3071 #ifdef IFCAP_VLAN_HWCSUM
3072 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3073 #endif
3074 	ifp->if_capenable = ifp->if_capabilities;
3075 #ifdef DEVICE_POLLING
3076 	ifp->if_capabilities |= IFCAP_POLLING;
3077 #endif
3078 
3079 	/*
3080 	 * 5700 B0 chips do not support checksumming correctly due
3081 	 * to hardware bugs.
3082 	 */
3083 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3084 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3085 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3086 		ifp->if_hwassist = 0;
3087 	}
3088 
3089 	/*
3090 	 * Figure out what sort of media we have by checking the
3091 	 * hardware config word in the first 32k of NIC internal memory,
3092 	 * or fall back to examining the EEPROM if necessary.
3093 	 * Note: on some BCM5700 cards, this value appears to be unset.
3094 	 * If that's the case, we have to rely on identifying the NIC
3095 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3096 	 * SK-9D41.
3097 	 */
3098 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
3099 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
3100 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3101 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3102 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3103 		    sizeof(hwcfg))) {
3104 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3105 			error = ENXIO;
3106 			goto fail;
3107 		}
3108 		hwcfg = ntohl(hwcfg);
3109 	}
3110 
3111 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3112 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3113 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3114 		if (BGE_IS_5714_FAMILY(sc))
3115 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3116 		else
3117 			sc->bge_flags |= BGE_FLAG_TBI;
3118 	}
3119 
3120 	if (sc->bge_flags & BGE_FLAG_TBI) {
3121 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3122 		    bge_ifmedia_sts);
3123 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3124 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3125 		    0, NULL);
3126 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3127 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3128 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3129 	} else {
3130 		/*
3131 		 * Do transceiver setup and tell the firmware the
3132 		 * driver is down so we can try to get access the
3133 		 * probe if ASF is running.  Retry a couple of times
3134 		 * if we get a conflict with the ASF firmware accessing
3135 		 * the PHY.
3136 		 */
3137 		trys = 0;
3138 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3139 again:
3140 		bge_asf_driver_up(sc);
3141 
3142 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3143 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3144 		    MIIF_DOPAUSE);
3145 		if (error != 0) {
3146 			if (trys++ < 4) {
3147 				device_printf(sc->bge_dev, "Try again\n");
3148 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3149 				    BMCR_RESET);
3150 				goto again;
3151 			}
3152 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3153 			goto fail;
3154 		}
3155 
3156 		/*
3157 		 * Now tell the firmware we are going up after probing the PHY
3158 		 */
3159 		if (sc->bge_asf_mode & ASF_STACKUP)
3160 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3161 	}
3162 
3163 	/*
3164 	 * When using the BCM5701 in PCI-X mode, data corruption has
3165 	 * been observed in the first few bytes of some received packets.
3166 	 * Aligning the packet buffer in memory eliminates the corruption.
3167 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3168 	 * which do not support unaligned accesses, we will realign the
3169 	 * payloads by copying the received packets.
3170 	 */
3171 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3172 	    sc->bge_flags & BGE_FLAG_PCIX)
3173                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3174 
3175 	/*
3176 	 * Call MI attach routine.
3177 	 */
3178 	ether_ifattach(ifp, eaddr);
3179 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3180 
3181 	/* Tell upper layer we support long frames. */
3182 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3183 
3184 	/*
3185 	 * Hookup IRQ last.
3186 	 */
3187 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3188 		/* Take advantage of single-shot MSI. */
3189 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3190 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3191 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3192 		    taskqueue_thread_enqueue, &sc->bge_tq);
3193 		if (sc->bge_tq == NULL) {
3194 			device_printf(dev, "could not create taskqueue.\n");
3195 			ether_ifdetach(ifp);
3196 			error = ENXIO;
3197 			goto fail;
3198 		}
3199 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3200 		    device_get_nameunit(sc->bge_dev));
3201 		error = bus_setup_intr(dev, sc->bge_irq,
3202 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3203 		    &sc->bge_intrhand);
3204 		if (error)
3205 			ether_ifdetach(ifp);
3206 	} else
3207 		error = bus_setup_intr(dev, sc->bge_irq,
3208 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3209 		    &sc->bge_intrhand);
3210 
3211 	if (error) {
3212 		bge_detach(dev);
3213 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3214 	}
3215 
3216 	return (0);
3217 
3218 fail:
3219 	bge_release_resources(sc);
3220 
3221 	return (error);
3222 }
3223 
3224 static int
3225 bge_detach(device_t dev)
3226 {
3227 	struct bge_softc *sc;
3228 	struct ifnet *ifp;
3229 
3230 	sc = device_get_softc(dev);
3231 	ifp = sc->bge_ifp;
3232 
3233 #ifdef DEVICE_POLLING
3234 	if (ifp->if_capenable & IFCAP_POLLING)
3235 		ether_poll_deregister(ifp);
3236 #endif
3237 
3238 	BGE_LOCK(sc);
3239 	bge_stop(sc);
3240 	bge_reset(sc);
3241 	BGE_UNLOCK(sc);
3242 
3243 	callout_drain(&sc->bge_stat_ch);
3244 
3245 	if (sc->bge_tq)
3246 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3247 	ether_ifdetach(ifp);
3248 
3249 	if (sc->bge_flags & BGE_FLAG_TBI) {
3250 		ifmedia_removeall(&sc->bge_ifmedia);
3251 	} else {
3252 		bus_generic_detach(dev);
3253 		device_delete_child(dev, sc->bge_miibus);
3254 	}
3255 
3256 	bge_release_resources(sc);
3257 
3258 	return (0);
3259 }
3260 
3261 static void
3262 bge_release_resources(struct bge_softc *sc)
3263 {
3264 	device_t dev;
3265 
3266 	dev = sc->bge_dev;
3267 
3268 	if (sc->bge_tq != NULL)
3269 		taskqueue_free(sc->bge_tq);
3270 
3271 	if (sc->bge_intrhand != NULL)
3272 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3273 
3274 	if (sc->bge_irq != NULL)
3275 		bus_release_resource(dev, SYS_RES_IRQ,
3276 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3277 
3278 	if (sc->bge_flags & BGE_FLAG_MSI)
3279 		pci_release_msi(dev);
3280 
3281 	if (sc->bge_res != NULL)
3282 		bus_release_resource(dev, SYS_RES_MEMORY,
3283 		    PCIR_BAR(0), sc->bge_res);
3284 
3285 	if (sc->bge_ifp != NULL)
3286 		if_free(sc->bge_ifp);
3287 
3288 	bge_dma_free(sc);
3289 
3290 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3291 		BGE_LOCK_DESTROY(sc);
3292 }
3293 
3294 static int
3295 bge_reset(struct bge_softc *sc)
3296 {
3297 	device_t dev;
3298 	uint32_t cachesize, command, pcistate, reset, val;
3299 	void (*write_op)(struct bge_softc *, int, int);
3300 	uint16_t devctl;
3301 	int i;
3302 
3303 	dev = sc->bge_dev;
3304 
3305 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3306 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3307 		if (sc->bge_flags & BGE_FLAG_PCIE)
3308 			write_op = bge_writemem_direct;
3309 		else
3310 			write_op = bge_writemem_ind;
3311 	} else
3312 		write_op = bge_writereg_ind;
3313 
3314 	/* Save some important PCI state. */
3315 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3316 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3317 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3318 
3319 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3320 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3321 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3322 
3323 	/* Disable fastboot on controllers that support it. */
3324 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3325 	    BGE_IS_5755_PLUS(sc)) {
3326 		if (bootverbose)
3327 			device_printf(dev, "Disabling fastboot\n");
3328 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3329 	}
3330 
3331 	/*
3332 	 * Write the magic number to SRAM at offset 0xB50.
3333 	 * When firmware finishes its initialization it will
3334 	 * write ~BGE_MAGIC_NUMBER to the same location.
3335 	 */
3336 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3337 
3338 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3339 
3340 	/* XXX: Broadcom Linux driver. */
3341 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3342 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3343 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3344 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3345 			/* Prevent PCIE link training during global reset */
3346 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3347 			reset |= 1 << 29;
3348 		}
3349 	}
3350 
3351 	/*
3352 	 * Set GPHY Power Down Override to leave GPHY
3353 	 * powered up in D0 uninitialized.
3354 	 */
3355 	if (BGE_IS_5705_PLUS(sc))
3356 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3357 
3358 	/* Issue global reset */
3359 	write_op(sc, BGE_MISC_CFG, reset);
3360 
3361 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3362 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3363 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3364 		    val | BGE_VCPU_STATUS_DRV_RESET);
3365 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3366 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3367 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3368 	}
3369 
3370 	DELAY(1000);
3371 
3372 	/* XXX: Broadcom Linux driver. */
3373 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3374 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3375 			DELAY(500000); /* wait for link training to complete */
3376 			val = pci_read_config(dev, 0xC4, 4);
3377 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3378 		}
3379 		devctl = pci_read_config(dev,
3380 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3381 		/* Clear enable no snoop and disable relaxed ordering. */
3382 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3383 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3384 		/* Set PCIE max payload size to 128. */
3385 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3386 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3387 		    devctl, 2);
3388 		/* Clear error status. */
3389 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3390 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3391 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3392 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3393 	}
3394 
3395 	/* Reset some of the PCI state that got zapped by reset. */
3396 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3397 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3398 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3399 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3400 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3401 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3402 	/*
3403 	 * Disable PCI-X relaxed ordering to ensure status block update
3404 	 * comes first then packet buffer DMA. Otherwise driver may
3405 	 * read stale status block.
3406 	 */
3407 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3408 		devctl = pci_read_config(dev,
3409 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3410 		devctl &= ~PCIXM_COMMAND_ERO;
3411 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3412 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3413 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3414 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3415 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3416 			    PCIXM_COMMAND_MAX_READ);
3417 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3418 		}
3419 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3420 		    devctl, 2);
3421 	}
3422 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3423 	if (BGE_IS_5714_FAMILY(sc)) {
3424 		/* This chip disables MSI on reset. */
3425 		if (sc->bge_flags & BGE_FLAG_MSI) {
3426 			val = pci_read_config(dev,
3427 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3428 			pci_write_config(dev,
3429 			    sc->bge_msicap + PCIR_MSI_CTRL,
3430 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3431 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3432 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3433 			    val | BGE_MSIMODE_ENABLE);
3434 		}
3435 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3436 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3437 	} else
3438 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3439 
3440 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3441 		for (i = 0; i < BGE_TIMEOUT; i++) {
3442 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3443 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3444 				break;
3445 			DELAY(100);
3446 		}
3447 		if (i == BGE_TIMEOUT) {
3448 			device_printf(dev, "reset timed out\n");
3449 			return (1);
3450 		}
3451 	} else {
3452 		/*
3453 		 * Poll until we see the 1's complement of the magic number.
3454 		 * This indicates that the firmware initialization is complete.
3455 		 * We expect this to fail if no chip containing the Ethernet
3456 		 * address is fitted though.
3457 		 */
3458 		for (i = 0; i < BGE_TIMEOUT; i++) {
3459 			DELAY(10);
3460 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3461 			if (val == ~BGE_MAGIC_NUMBER)
3462 				break;
3463 		}
3464 
3465 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3466 			device_printf(dev,
3467 			    "firmware handshake timed out, found 0x%08x\n",
3468 			    val);
3469 	}
3470 
3471 	/*
3472 	 * XXX Wait for the value of the PCISTATE register to
3473 	 * return to its original pre-reset state. This is a
3474 	 * fairly good indicator of reset completion. If we don't
3475 	 * wait for the reset to fully complete, trying to read
3476 	 * from the device's non-PCI registers may yield garbage
3477 	 * results.
3478 	 */
3479 	for (i = 0; i < BGE_TIMEOUT; i++) {
3480 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3481 			break;
3482 		DELAY(10);
3483 	}
3484 
3485 	/* Fix up byte swapping. */
3486 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3487 	    BGE_MODECTL_BYTESWAP_DATA);
3488 
3489 	/* Tell the ASF firmware we are up */
3490 	if (sc->bge_asf_mode & ASF_STACKUP)
3491 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3492 
3493 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3494 
3495 	/*
3496 	 * The 5704 in TBI mode apparently needs some special
3497 	 * adjustment to insure the SERDES drive level is set
3498 	 * to 1.2V.
3499 	 */
3500 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3501 	    sc->bge_flags & BGE_FLAG_TBI) {
3502 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3503 		val = (val & ~0xFFF) | 0x880;
3504 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3505 	}
3506 
3507 	/* XXX: Broadcom Linux driver. */
3508 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3509 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3510 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3511 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3512 		/* Enable Data FIFO protection. */
3513 		val = CSR_READ_4(sc, 0x7C00);
3514 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3515 	}
3516 	DELAY(10000);
3517 
3518 	return (0);
3519 }
3520 
3521 static __inline void
3522 bge_rxreuse_std(struct bge_softc *sc, int i)
3523 {
3524 	struct bge_rx_bd *r;
3525 
3526 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3527 	r->bge_flags = BGE_RXBDFLAG_END;
3528 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3529 	r->bge_idx = i;
3530 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3531 }
3532 
3533 static __inline void
3534 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3535 {
3536 	struct bge_extrx_bd *r;
3537 
3538 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3539 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3540 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3541 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3542 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3543 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3544 	r->bge_idx = i;
3545 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3546 }
3547 
3548 /*
3549  * Frame reception handling. This is called if there's a frame
3550  * on the receive return list.
3551  *
3552  * Note: we have to be able to handle two possibilities here:
3553  * 1) the frame is from the jumbo receive ring
3554  * 2) the frame is from the standard receive ring
3555  */
3556 
3557 static int
3558 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3559 {
3560 	struct ifnet *ifp;
3561 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3562 	uint16_t rx_cons;
3563 
3564 	rx_cons = sc->bge_rx_saved_considx;
3565 
3566 	/* Nothing to do. */
3567 	if (rx_cons == rx_prod)
3568 		return (rx_npkts);
3569 
3570 	ifp = sc->bge_ifp;
3571 
3572 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3573 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3574 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3575 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3576 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3577 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3578 	    (MCLBYTES - ETHER_ALIGN))
3579 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3580 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3581 
3582 	while (rx_cons != rx_prod) {
3583 		struct bge_rx_bd	*cur_rx;
3584 		uint32_t		rxidx;
3585 		struct mbuf		*m = NULL;
3586 		uint16_t		vlan_tag = 0;
3587 		int			have_tag = 0;
3588 
3589 #ifdef DEVICE_POLLING
3590 		if (ifp->if_capenable & IFCAP_POLLING) {
3591 			if (sc->rxcycles <= 0)
3592 				break;
3593 			sc->rxcycles--;
3594 		}
3595 #endif
3596 
3597 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3598 
3599 		rxidx = cur_rx->bge_idx;
3600 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3601 
3602 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3603 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3604 			have_tag = 1;
3605 			vlan_tag = cur_rx->bge_vlan_tag;
3606 		}
3607 
3608 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3609 			jumbocnt++;
3610 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3611 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3612 				bge_rxreuse_jumbo(sc, rxidx);
3613 				continue;
3614 			}
3615 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3616 				bge_rxreuse_jumbo(sc, rxidx);
3617 				ifp->if_iqdrops++;
3618 				continue;
3619 			}
3620 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3621 		} else {
3622 			stdcnt++;
3623 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3624 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3625 				bge_rxreuse_std(sc, rxidx);
3626 				continue;
3627 			}
3628 			if (bge_newbuf_std(sc, rxidx) != 0) {
3629 				bge_rxreuse_std(sc, rxidx);
3630 				ifp->if_iqdrops++;
3631 				continue;
3632 			}
3633 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3634 		}
3635 
3636 		ifp->if_ipackets++;
3637 #ifndef __NO_STRICT_ALIGNMENT
3638 		/*
3639 		 * For architectures with strict alignment we must make sure
3640 		 * the payload is aligned.
3641 		 */
3642 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3643 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3644 			    cur_rx->bge_len);
3645 			m->m_data += ETHER_ALIGN;
3646 		}
3647 #endif
3648 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3649 		m->m_pkthdr.rcvif = ifp;
3650 
3651 		if (ifp->if_capenable & IFCAP_RXCSUM)
3652 			bge_rxcsum(sc, cur_rx, m);
3653 
3654 		/*
3655 		 * If we received a packet with a vlan tag,
3656 		 * attach that information to the packet.
3657 		 */
3658 		if (have_tag) {
3659 			m->m_pkthdr.ether_vtag = vlan_tag;
3660 			m->m_flags |= M_VLANTAG;
3661 		}
3662 
3663 		if (holdlck != 0) {
3664 			BGE_UNLOCK(sc);
3665 			(*ifp->if_input)(ifp, m);
3666 			BGE_LOCK(sc);
3667 		} else
3668 			(*ifp->if_input)(ifp, m);
3669 		rx_npkts++;
3670 
3671 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3672 			return (rx_npkts);
3673 	}
3674 
3675 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3676 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3677 	if (stdcnt > 0)
3678 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3679 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3680 
3681 	if (jumbocnt > 0)
3682 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3683 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3684 
3685 	sc->bge_rx_saved_considx = rx_cons;
3686 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3687 	if (stdcnt)
3688 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3689 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3690 	if (jumbocnt)
3691 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3692 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3693 #ifdef notyet
3694 	/*
3695 	 * This register wraps very quickly under heavy packet drops.
3696 	 * If you need correct statistics, you can enable this check.
3697 	 */
3698 	if (BGE_IS_5705_PLUS(sc))
3699 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3700 #endif
3701 	return (rx_npkts);
3702 }
3703 
3704 static void
3705 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3706 {
3707 
3708 	if (BGE_IS_5717_PLUS(sc)) {
3709 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3710 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3711 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3712 				if ((cur_rx->bge_error_flag &
3713 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3714 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3715 			}
3716 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3717 				m->m_pkthdr.csum_data =
3718 				    cur_rx->bge_tcp_udp_csum;
3719 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3720 				    CSUM_PSEUDO_HDR;
3721 			}
3722 		}
3723 	} else {
3724 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3725 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3726 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3727 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3728 		}
3729 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3730 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3731 			m->m_pkthdr.csum_data =
3732 			    cur_rx->bge_tcp_udp_csum;
3733 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3734 			    CSUM_PSEUDO_HDR;
3735 		}
3736 	}
3737 }
3738 
3739 static void
3740 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3741 {
3742 	struct bge_tx_bd *cur_tx;
3743 	struct ifnet *ifp;
3744 
3745 	BGE_LOCK_ASSERT(sc);
3746 
3747 	/* Nothing to do. */
3748 	if (sc->bge_tx_saved_considx == tx_cons)
3749 		return;
3750 
3751 	ifp = sc->bge_ifp;
3752 
3753 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3754 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3755 	/*
3756 	 * Go through our tx ring and free mbufs for those
3757 	 * frames that have been sent.
3758 	 */
3759 	while (sc->bge_tx_saved_considx != tx_cons) {
3760 		uint32_t		idx;
3761 
3762 		idx = sc->bge_tx_saved_considx;
3763 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3764 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3765 			ifp->if_opackets++;
3766 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3767 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3768 			    sc->bge_cdata.bge_tx_dmamap[idx],
3769 			    BUS_DMASYNC_POSTWRITE);
3770 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3771 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3772 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3773 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3774 		}
3775 		sc->bge_txcnt--;
3776 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3777 	}
3778 
3779 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3780 	if (sc->bge_txcnt == 0)
3781 		sc->bge_timer = 0;
3782 }
3783 
3784 #ifdef DEVICE_POLLING
3785 static int
3786 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3787 {
3788 	struct bge_softc *sc = ifp->if_softc;
3789 	uint16_t rx_prod, tx_cons;
3790 	uint32_t statusword;
3791 	int rx_npkts = 0;
3792 
3793 	BGE_LOCK(sc);
3794 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3795 		BGE_UNLOCK(sc);
3796 		return (rx_npkts);
3797 	}
3798 
3799 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3800 	    sc->bge_cdata.bge_status_map,
3801 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3802 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3803 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3804 
3805 	statusword = sc->bge_ldata.bge_status_block->bge_status;
3806 	sc->bge_ldata.bge_status_block->bge_status = 0;
3807 
3808 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3809 	    sc->bge_cdata.bge_status_map,
3810 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3811 
3812 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3813 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3814 		sc->bge_link_evt++;
3815 
3816 	if (cmd == POLL_AND_CHECK_STATUS)
3817 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3818 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3819 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3820 			bge_link_upd(sc);
3821 
3822 	sc->rxcycles = count;
3823 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3824 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3825 		BGE_UNLOCK(sc);
3826 		return (rx_npkts);
3827 	}
3828 	bge_txeof(sc, tx_cons);
3829 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3830 		bge_start_locked(ifp);
3831 
3832 	BGE_UNLOCK(sc);
3833 	return (rx_npkts);
3834 }
3835 #endif /* DEVICE_POLLING */
3836 
3837 static int
3838 bge_msi_intr(void *arg)
3839 {
3840 	struct bge_softc *sc;
3841 
3842 	sc = (struct bge_softc *)arg;
3843 	/*
3844 	 * This interrupt is not shared and controller already
3845 	 * disabled further interrupt.
3846 	 */
3847 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3848 	return (FILTER_HANDLED);
3849 }
3850 
3851 static void
3852 bge_intr_task(void *arg, int pending)
3853 {
3854 	struct bge_softc *sc;
3855 	struct ifnet *ifp;
3856 	uint32_t status, status_tag;
3857 	uint16_t rx_prod, tx_cons;
3858 
3859 	sc = (struct bge_softc *)arg;
3860 	ifp = sc->bge_ifp;
3861 
3862 	BGE_LOCK(sc);
3863 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3864 		BGE_UNLOCK(sc);
3865 		return;
3866 	}
3867 
3868 	/* Get updated status block. */
3869 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3870 	    sc->bge_cdata.bge_status_map,
3871 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3872 
3873 	/* Save producer/consumer indexess. */
3874 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3875 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3876 	status = sc->bge_ldata.bge_status_block->bge_status;
3877 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
3878 	sc->bge_ldata.bge_status_block->bge_status = 0;
3879 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3880 	    sc->bge_cdata.bge_status_map,
3881 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3882 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
3883 		status_tag = 0;
3884 
3885 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
3886 		bge_link_upd(sc);
3887 
3888 	/* Let controller work. */
3889 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
3890 
3891 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3892 	    sc->bge_rx_saved_considx != rx_prod) {
3893 		/* Check RX return ring producer/consumer. */
3894 		BGE_UNLOCK(sc);
3895 		bge_rxeof(sc, rx_prod, 0);
3896 		BGE_LOCK(sc);
3897 	}
3898 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3899 		/* Check TX ring producer/consumer. */
3900 		bge_txeof(sc, tx_cons);
3901 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3902 			bge_start_locked(ifp);
3903 	}
3904 	BGE_UNLOCK(sc);
3905 }
3906 
3907 static void
3908 bge_intr(void *xsc)
3909 {
3910 	struct bge_softc *sc;
3911 	struct ifnet *ifp;
3912 	uint32_t statusword;
3913 	uint16_t rx_prod, tx_cons;
3914 
3915 	sc = xsc;
3916 
3917 	BGE_LOCK(sc);
3918 
3919 	ifp = sc->bge_ifp;
3920 
3921 #ifdef DEVICE_POLLING
3922 	if (ifp->if_capenable & IFCAP_POLLING) {
3923 		BGE_UNLOCK(sc);
3924 		return;
3925 	}
3926 #endif
3927 
3928 	/*
3929 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3930 	 * disable interrupts by writing nonzero like we used to, since with
3931 	 * our current organization this just gives complications and
3932 	 * pessimizations for re-enabling interrupts.  We used to have races
3933 	 * instead of the necessary complications.  Disabling interrupts
3934 	 * would just reduce the chance of a status update while we are
3935 	 * running (by switching to the interrupt-mode coalescence
3936 	 * parameters), but this chance is already very low so it is more
3937 	 * efficient to get another interrupt than prevent it.
3938 	 *
3939 	 * We do the ack first to ensure another interrupt if there is a
3940 	 * status update after the ack.  We don't check for the status
3941 	 * changing later because it is more efficient to get another
3942 	 * interrupt than prevent it, not quite as above (not checking is
3943 	 * a smaller optimization than not toggling the interrupt enable,
3944 	 * since checking doesn't involve PCI accesses and toggling require
3945 	 * the status check).  So toggling would probably be a pessimization
3946 	 * even with MSI.  It would only be needed for using a task queue.
3947 	 */
3948 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3949 
3950 	/*
3951 	 * Do the mandatory PCI flush as well as get the link status.
3952 	 */
3953 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3954 
3955 	/* Make sure the descriptor ring indexes are coherent. */
3956 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3957 	    sc->bge_cdata.bge_status_map,
3958 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3959 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3960 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3961 	sc->bge_ldata.bge_status_block->bge_status = 0;
3962 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3963 	    sc->bge_cdata.bge_status_map,
3964 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3965 
3966 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3967 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3968 	    statusword || sc->bge_link_evt)
3969 		bge_link_upd(sc);
3970 
3971 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3972 		/* Check RX return ring producer/consumer. */
3973 		bge_rxeof(sc, rx_prod, 1);
3974 	}
3975 
3976 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3977 		/* Check TX ring producer/consumer. */
3978 		bge_txeof(sc, tx_cons);
3979 	}
3980 
3981 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3982 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3983 		bge_start_locked(ifp);
3984 
3985 	BGE_UNLOCK(sc);
3986 }
3987 
3988 static void
3989 bge_asf_driver_up(struct bge_softc *sc)
3990 {
3991 	if (sc->bge_asf_mode & ASF_STACKUP) {
3992 		/* Send ASF heartbeat aprox. every 2s */
3993 		if (sc->bge_asf_count)
3994 			sc->bge_asf_count --;
3995 		else {
3996 			sc->bge_asf_count = 2;
3997 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3998 			    BGE_FW_DRV_ALIVE);
3999 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
4000 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
4001 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
4002 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
4003 		}
4004 	}
4005 }
4006 
4007 static void
4008 bge_tick(void *xsc)
4009 {
4010 	struct bge_softc *sc = xsc;
4011 	struct mii_data *mii = NULL;
4012 
4013 	BGE_LOCK_ASSERT(sc);
4014 
4015 	/* Synchronize with possible callout reset/stop. */
4016 	if (callout_pending(&sc->bge_stat_ch) ||
4017 	    !callout_active(&sc->bge_stat_ch))
4018 	    	return;
4019 
4020 	if (BGE_IS_5705_PLUS(sc))
4021 		bge_stats_update_regs(sc);
4022 	else
4023 		bge_stats_update(sc);
4024 
4025 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4026 		mii = device_get_softc(sc->bge_miibus);
4027 		/*
4028 		 * Do not touch PHY if we have link up. This could break
4029 		 * IPMI/ASF mode or produce extra input errors
4030 		 * (extra errors was reported for bcm5701 & bcm5704).
4031 		 */
4032 		if (!sc->bge_link)
4033 			mii_tick(mii);
4034 	} else {
4035 		/*
4036 		 * Since in TBI mode auto-polling can't be used we should poll
4037 		 * link status manually. Here we register pending link event
4038 		 * and trigger interrupt.
4039 		 */
4040 #ifdef DEVICE_POLLING
4041 		/* In polling mode we poll link state in bge_poll(). */
4042 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4043 #endif
4044 		{
4045 		sc->bge_link_evt++;
4046 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4047 		    sc->bge_flags & BGE_FLAG_5788)
4048 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4049 		else
4050 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4051 		}
4052 	}
4053 
4054 	bge_asf_driver_up(sc);
4055 	bge_watchdog(sc);
4056 
4057 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4058 }
4059 
4060 static void
4061 bge_stats_update_regs(struct bge_softc *sc)
4062 {
4063 	struct ifnet *ifp;
4064 	struct bge_mac_stats *stats;
4065 
4066 	ifp = sc->bge_ifp;
4067 	stats = &sc->bge_mac_stats;
4068 
4069 	stats->ifHCOutOctets +=
4070 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4071 	stats->etherStatsCollisions +=
4072 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4073 	stats->outXonSent +=
4074 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4075 	stats->outXoffSent +=
4076 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4077 	stats->dot3StatsInternalMacTransmitErrors +=
4078 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4079 	stats->dot3StatsSingleCollisionFrames +=
4080 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4081 	stats->dot3StatsMultipleCollisionFrames +=
4082 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4083 	stats->dot3StatsDeferredTransmissions +=
4084 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4085 	stats->dot3StatsExcessiveCollisions +=
4086 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4087 	stats->dot3StatsLateCollisions +=
4088 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4089 	stats->ifHCOutUcastPkts +=
4090 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4091 	stats->ifHCOutMulticastPkts +=
4092 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4093 	stats->ifHCOutBroadcastPkts +=
4094 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4095 
4096 	stats->ifHCInOctets +=
4097 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4098 	stats->etherStatsFragments +=
4099 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4100 	stats->ifHCInUcastPkts +=
4101 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4102 	stats->ifHCInMulticastPkts +=
4103 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4104 	stats->ifHCInBroadcastPkts +=
4105 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4106 	stats->dot3StatsFCSErrors +=
4107 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4108 	stats->dot3StatsAlignmentErrors +=
4109 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4110 	stats->xonPauseFramesReceived +=
4111 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4112 	stats->xoffPauseFramesReceived +=
4113 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4114 	stats->macControlFramesReceived +=
4115 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4116 	stats->xoffStateEntered +=
4117 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4118 	stats->dot3StatsFramesTooLong +=
4119 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4120 	stats->etherStatsJabbers +=
4121 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4122 	stats->etherStatsUndersizePkts +=
4123 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4124 
4125 	stats->FramesDroppedDueToFilters +=
4126 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4127 	stats->DmaWriteQueueFull +=
4128 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4129 	stats->DmaWriteHighPriQueueFull +=
4130 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4131 	stats->NoMoreRxBDs +=
4132 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4133 	stats->InputDiscards +=
4134 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4135 	stats->InputErrors +=
4136 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4137 	stats->RecvThresholdHit +=
4138 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4139 
4140 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4141 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4142 	    stats->InputErrors);
4143 }
4144 
4145 static void
4146 bge_stats_clear_regs(struct bge_softc *sc)
4147 {
4148 
4149 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4150 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4151 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4152 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4153 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4154 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4155 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4156 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4157 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4158 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4159 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4160 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4161 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4162 
4163 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4164 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4165 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4166 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4167 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4168 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4169 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4170 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4171 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4172 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4173 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4174 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4175 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4176 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4177 
4178 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4179 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4180 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4181 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4182 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4183 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4184 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4185 }
4186 
4187 static void
4188 bge_stats_update(struct bge_softc *sc)
4189 {
4190 	struct ifnet *ifp;
4191 	bus_size_t stats;
4192 	uint32_t cnt;	/* current register value */
4193 
4194 	ifp = sc->bge_ifp;
4195 
4196 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4197 
4198 #define	READ_STAT(sc, stats, stat) \
4199 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4200 
4201 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4202 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4203 	sc->bge_tx_collisions = cnt;
4204 
4205 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4206 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4207 	sc->bge_rx_discards = cnt;
4208 
4209 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4210 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4211 	sc->bge_tx_discards = cnt;
4212 
4213 #undef	READ_STAT
4214 }
4215 
4216 /*
4217  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4218  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4219  * but when such padded frames employ the bge IP/TCP checksum offload,
4220  * the hardware checksum assist gives incorrect results (possibly
4221  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4222  * If we pad such runts with zeros, the onboard checksum comes out correct.
4223  */
4224 static __inline int
4225 bge_cksum_pad(struct mbuf *m)
4226 {
4227 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4228 	struct mbuf *last;
4229 
4230 	/* If there's only the packet-header and we can pad there, use it. */
4231 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4232 	    M_TRAILINGSPACE(m) >= padlen) {
4233 		last = m;
4234 	} else {
4235 		/*
4236 		 * Walk packet chain to find last mbuf. We will either
4237 		 * pad there, or append a new mbuf and pad it.
4238 		 */
4239 		for (last = m; last->m_next != NULL; last = last->m_next);
4240 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4241 			/* Allocate new empty mbuf, pad it. Compact later. */
4242 			struct mbuf *n;
4243 
4244 			MGET(n, M_DONTWAIT, MT_DATA);
4245 			if (n == NULL)
4246 				return (ENOBUFS);
4247 			n->m_len = 0;
4248 			last->m_next = n;
4249 			last = n;
4250 		}
4251 	}
4252 
4253 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4254 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4255 	last->m_len += padlen;
4256 	m->m_pkthdr.len += padlen;
4257 
4258 	return (0);
4259 }
4260 
4261 static struct mbuf *
4262 bge_check_short_dma(struct mbuf *m)
4263 {
4264 	struct mbuf *n;
4265 	int found;
4266 
4267 	/*
4268 	 * If device receive two back-to-back send BDs with less than
4269 	 * or equal to 8 total bytes then the device may hang.  The two
4270 	 * back-to-back send BDs must in the same frame for this failure
4271 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4272 	 * send BDs are there. If this is the case, allocate new mbuf
4273 	 * and copy the frame to workaround the silicon bug.
4274 	 */
4275 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4276 		if (n->m_len < 8) {
4277 			found++;
4278 			if (found > 1)
4279 				break;
4280 			continue;
4281 		}
4282 		found = 0;
4283 	}
4284 
4285 	if (found > 1) {
4286 		n = m_defrag(m, M_DONTWAIT);
4287 		if (n == NULL)
4288 			m_freem(m);
4289 	} else
4290 		n = m;
4291 	return (n);
4292 }
4293 
4294 static struct mbuf *
4295 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4296     uint16_t *flags)
4297 {
4298 	struct ip *ip;
4299 	struct tcphdr *tcp;
4300 	struct mbuf *n;
4301 	uint16_t hlen;
4302 	uint32_t poff;
4303 
4304 	if (M_WRITABLE(m) == 0) {
4305 		/* Get a writable copy. */
4306 		n = m_dup(m, M_DONTWAIT);
4307 		m_freem(m);
4308 		if (n == NULL)
4309 			return (NULL);
4310 		m = n;
4311 	}
4312 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4313 	if (m == NULL)
4314 		return (NULL);
4315 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4316 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4317 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4318 	if (m == NULL)
4319 		return (NULL);
4320 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4321 	m = m_pullup(m, poff + (tcp->th_off << 2));
4322 	if (m == NULL)
4323 		return (NULL);
4324 	/*
4325 	 * It seems controller doesn't modify IP length and TCP pseudo
4326 	 * checksum. These checksum computed by upper stack should be 0.
4327 	 */
4328 	*mss = m->m_pkthdr.tso_segsz;
4329 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4330 	ip->ip_sum = 0;
4331 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4332 	/* Clear pseudo checksum computed by TCP stack. */
4333 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4334 	tcp->th_sum = 0;
4335 	/*
4336 	 * Broadcom controllers uses different descriptor format for
4337 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4338 	 * license issue and lower performance of firmware based TSO
4339 	 * we only support hardware based TSO.
4340 	 */
4341 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4342 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4343 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4344 		/*
4345 		 * For BCM5717 and newer controllers, hardware based TSO
4346 		 * uses the 14 lower bits of the bge_mss field to store the
4347 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4348 		 * the IP/TCP header length.  The upper 6 bits of the header
4349 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4350 		 * frames are supported.
4351 		 */
4352 		*mss |= ((hlen & 0x3) << 14);
4353 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4354 	} else {
4355 		/*
4356 		 * For BCM5755 and newer controllers, hardware based TSO uses
4357 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4358 		 * store the IP/TCP header length. Jumbo frames are not
4359 		 * supported.
4360 		 */
4361 		*mss |= (hlen << 11);
4362 	}
4363 	return (m);
4364 }
4365 
4366 /*
4367  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4368  * pointers to descriptors.
4369  */
4370 static int
4371 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4372 {
4373 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4374 	bus_dmamap_t		map;
4375 	struct bge_tx_bd	*d;
4376 	struct mbuf		*m = *m_head;
4377 	uint32_t		idx = *txidx;
4378 	uint16_t		csum_flags, mss, vlan_tag;
4379 	int			nsegs, i, error;
4380 
4381 	csum_flags = 0;
4382 	mss = 0;
4383 	vlan_tag = 0;
4384 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4385 	    m->m_next != NULL) {
4386 		*m_head = bge_check_short_dma(m);
4387 		if (*m_head == NULL)
4388 			return (ENOBUFS);
4389 		m = *m_head;
4390 	}
4391 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4392 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4393 		if (*m_head == NULL)
4394 			return (ENOBUFS);
4395 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4396 		    BGE_TXBDFLAG_CPU_POST_DMA;
4397 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4398 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4399 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4400 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4401 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4402 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4403 			    (error = bge_cksum_pad(m)) != 0) {
4404 				m_freem(m);
4405 				*m_head = NULL;
4406 				return (error);
4407 			}
4408 		}
4409 		if (m->m_flags & M_LASTFRAG)
4410 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4411 		else if (m->m_flags & M_FRAG)
4412 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4413 	}
4414 
4415 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4416 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4417 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4418 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4419 		if (sc->bge_forced_collapse > 0 &&
4420 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4421 			/*
4422 			 * Forcedly collapse mbuf chains to overcome hardware
4423 			 * limitation which only support a single outstanding
4424 			 * DMA read operation.
4425 			 */
4426 			if (sc->bge_forced_collapse == 1)
4427 				m = m_defrag(m, M_DONTWAIT);
4428 			else
4429 				m = m_collapse(m, M_DONTWAIT,
4430 				    sc->bge_forced_collapse);
4431 			if (m == NULL)
4432 				m = *m_head;
4433 			*m_head = m;
4434 		}
4435 	}
4436 
4437 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4438 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4439 	    &nsegs, BUS_DMA_NOWAIT);
4440 	if (error == EFBIG) {
4441 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4442 		if (m == NULL) {
4443 			m_freem(*m_head);
4444 			*m_head = NULL;
4445 			return (ENOBUFS);
4446 		}
4447 		*m_head = m;
4448 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4449 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4450 		if (error) {
4451 			m_freem(m);
4452 			*m_head = NULL;
4453 			return (error);
4454 		}
4455 	} else if (error != 0)
4456 		return (error);
4457 
4458 	/* Check if we have enough free send BDs. */
4459 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4460 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4461 		return (ENOBUFS);
4462 	}
4463 
4464 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4465 
4466 	if (m->m_flags & M_VLANTAG) {
4467 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4468 		vlan_tag = m->m_pkthdr.ether_vtag;
4469 	}
4470 	for (i = 0; ; i++) {
4471 		d = &sc->bge_ldata.bge_tx_ring[idx];
4472 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4473 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4474 		d->bge_len = segs[i].ds_len;
4475 		d->bge_flags = csum_flags;
4476 		d->bge_vlan_tag = vlan_tag;
4477 		d->bge_mss = mss;
4478 		if (i == nsegs - 1)
4479 			break;
4480 		BGE_INC(idx, BGE_TX_RING_CNT);
4481 	}
4482 
4483 	/* Mark the last segment as end of packet... */
4484 	d->bge_flags |= BGE_TXBDFLAG_END;
4485 
4486 	/*
4487 	 * Insure that the map for this transmission
4488 	 * is placed at the array index of the last descriptor
4489 	 * in this chain.
4490 	 */
4491 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4492 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4493 	sc->bge_cdata.bge_tx_chain[idx] = m;
4494 	sc->bge_txcnt += nsegs;
4495 
4496 	BGE_INC(idx, BGE_TX_RING_CNT);
4497 	*txidx = idx;
4498 
4499 	return (0);
4500 }
4501 
4502 /*
4503  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4504  * to the mbuf data regions directly in the transmit descriptors.
4505  */
4506 static void
4507 bge_start_locked(struct ifnet *ifp)
4508 {
4509 	struct bge_softc *sc;
4510 	struct mbuf *m_head;
4511 	uint32_t prodidx;
4512 	int count;
4513 
4514 	sc = ifp->if_softc;
4515 	BGE_LOCK_ASSERT(sc);
4516 
4517 	if (!sc->bge_link ||
4518 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4519 	    IFF_DRV_RUNNING)
4520 		return;
4521 
4522 	prodidx = sc->bge_tx_prodidx;
4523 
4524 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4525 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4526 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4527 			break;
4528 		}
4529 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4530 		if (m_head == NULL)
4531 			break;
4532 
4533 		/*
4534 		 * XXX
4535 		 * The code inside the if() block is never reached since we
4536 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4537 		 * requests to checksum TCP/UDP in a fragmented packet.
4538 		 *
4539 		 * XXX
4540 		 * safety overkill.  If this is a fragmented packet chain
4541 		 * with delayed TCP/UDP checksums, then only encapsulate
4542 		 * it if we have enough descriptors to handle the entire
4543 		 * chain at once.
4544 		 * (paranoia -- may not actually be needed)
4545 		 */
4546 		if (m_head->m_flags & M_FIRSTFRAG &&
4547 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4548 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4549 			    m_head->m_pkthdr.csum_data + 16) {
4550 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4551 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4552 				break;
4553 			}
4554 		}
4555 
4556 		/*
4557 		 * Pack the data into the transmit ring. If we
4558 		 * don't have room, set the OACTIVE flag and wait
4559 		 * for the NIC to drain the ring.
4560 		 */
4561 		if (bge_encap(sc, &m_head, &prodidx)) {
4562 			if (m_head == NULL)
4563 				break;
4564 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4565 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4566 			break;
4567 		}
4568 		++count;
4569 
4570 		/*
4571 		 * If there's a BPF listener, bounce a copy of this frame
4572 		 * to him.
4573 		 */
4574 #ifdef ETHER_BPF_MTAP
4575 		ETHER_BPF_MTAP(ifp, m_head);
4576 #else
4577 		BPF_MTAP(ifp, m_head);
4578 #endif
4579 	}
4580 
4581 	if (count > 0) {
4582 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4583 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4584 		/* Transmit. */
4585 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4586 		/* 5700 b2 errata */
4587 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4588 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4589 
4590 		sc->bge_tx_prodidx = prodidx;
4591 
4592 		/*
4593 		 * Set a timeout in case the chip goes out to lunch.
4594 		 */
4595 		sc->bge_timer = 5;
4596 	}
4597 }
4598 
4599 /*
4600  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4601  * to the mbuf data regions directly in the transmit descriptors.
4602  */
4603 static void
4604 bge_start(struct ifnet *ifp)
4605 {
4606 	struct bge_softc *sc;
4607 
4608 	sc = ifp->if_softc;
4609 	BGE_LOCK(sc);
4610 	bge_start_locked(ifp);
4611 	BGE_UNLOCK(sc);
4612 }
4613 
4614 static void
4615 bge_init_locked(struct bge_softc *sc)
4616 {
4617 	struct ifnet *ifp;
4618 	uint16_t *m;
4619 	uint32_t mode;
4620 
4621 	BGE_LOCK_ASSERT(sc);
4622 
4623 	ifp = sc->bge_ifp;
4624 
4625 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4626 		return;
4627 
4628 	/* Cancel pending I/O and flush buffers. */
4629 	bge_stop(sc);
4630 
4631 	bge_stop_fw(sc);
4632 	bge_sig_pre_reset(sc, BGE_RESET_START);
4633 	bge_reset(sc);
4634 	bge_sig_legacy(sc, BGE_RESET_START);
4635 	bge_sig_post_reset(sc, BGE_RESET_START);
4636 
4637 	bge_chipinit(sc);
4638 
4639 	/*
4640 	 * Init the various state machines, ring
4641 	 * control blocks and firmware.
4642 	 */
4643 	if (bge_blockinit(sc)) {
4644 		device_printf(sc->bge_dev, "initialization failure\n");
4645 		return;
4646 	}
4647 
4648 	ifp = sc->bge_ifp;
4649 
4650 	/* Specify MTU. */
4651 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4652 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4653 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4654 
4655 	/* Load our MAC address. */
4656 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4657 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4658 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4659 
4660 	/* Program promiscuous mode. */
4661 	bge_setpromisc(sc);
4662 
4663 	/* Program multicast filter. */
4664 	bge_setmulti(sc);
4665 
4666 	/* Program VLAN tag stripping. */
4667 	bge_setvlan(sc);
4668 
4669 	/* Override UDP checksum offloading. */
4670 	if (sc->bge_forced_udpcsum == 0)
4671 		sc->bge_csum_features &= ~CSUM_UDP;
4672 	else
4673 		sc->bge_csum_features |= CSUM_UDP;
4674 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4675 	    ifp->if_capenable & IFCAP_TXCSUM) {
4676 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4677 		ifp->if_hwassist |= sc->bge_csum_features;
4678 	}
4679 
4680 	/* Init RX ring. */
4681 	if (bge_init_rx_ring_std(sc) != 0) {
4682 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4683 		bge_stop(sc);
4684 		return;
4685 	}
4686 
4687 	/*
4688 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4689 	 * memory to insure that the chip has in fact read the first
4690 	 * entry of the ring.
4691 	 */
4692 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4693 		uint32_t		v, i;
4694 		for (i = 0; i < 10; i++) {
4695 			DELAY(20);
4696 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4697 			if (v == (MCLBYTES - ETHER_ALIGN))
4698 				break;
4699 		}
4700 		if (i == 10)
4701 			device_printf (sc->bge_dev,
4702 			    "5705 A0 chip failed to load RX ring\n");
4703 	}
4704 
4705 	/* Init jumbo RX ring. */
4706 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4707 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4708 	    (MCLBYTES - ETHER_ALIGN)) {
4709 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4710 			device_printf(sc->bge_dev,
4711 			    "no memory for jumbo Rx buffers.\n");
4712 			bge_stop(sc);
4713 			return;
4714 		}
4715 	}
4716 
4717 	/* Init our RX return ring index. */
4718 	sc->bge_rx_saved_considx = 0;
4719 
4720 	/* Init our RX/TX stat counters. */
4721 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4722 
4723 	/* Init TX ring. */
4724 	bge_init_tx_ring(sc);
4725 
4726 	/* Enable TX MAC state machine lockup fix. */
4727 	mode = CSR_READ_4(sc, BGE_TX_MODE);
4728 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
4729 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
4730 	/* Turn on transmitter. */
4731 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
4732 
4733 	/* Turn on receiver. */
4734 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4735 
4736 	/*
4737 	 * Set the number of good frames to receive after RX MBUF
4738 	 * Low Watermark has been reached. After the RX MAC receives
4739 	 * this number of frames, it will drop subsequent incoming
4740 	 * frames until the MBUF High Watermark is reached.
4741 	 */
4742 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4743 
4744 	/* Clear MAC statistics. */
4745 	if (BGE_IS_5705_PLUS(sc))
4746 		bge_stats_clear_regs(sc);
4747 
4748 	/* Tell firmware we're alive. */
4749 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4750 
4751 #ifdef DEVICE_POLLING
4752 	/* Disable interrupts if we are polling. */
4753 	if (ifp->if_capenable & IFCAP_POLLING) {
4754 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4755 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4756 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4757 	} else
4758 #endif
4759 
4760 	/* Enable host interrupts. */
4761 	{
4762 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4763 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4764 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4765 	}
4766 
4767 	bge_ifmedia_upd_locked(ifp);
4768 
4769 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4770 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4771 
4772 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4773 }
4774 
4775 static void
4776 bge_init(void *xsc)
4777 {
4778 	struct bge_softc *sc = xsc;
4779 
4780 	BGE_LOCK(sc);
4781 	bge_init_locked(sc);
4782 	BGE_UNLOCK(sc);
4783 }
4784 
4785 /*
4786  * Set media options.
4787  */
4788 static int
4789 bge_ifmedia_upd(struct ifnet *ifp)
4790 {
4791 	struct bge_softc *sc = ifp->if_softc;
4792 	int res;
4793 
4794 	BGE_LOCK(sc);
4795 	res = bge_ifmedia_upd_locked(ifp);
4796 	BGE_UNLOCK(sc);
4797 
4798 	return (res);
4799 }
4800 
4801 static int
4802 bge_ifmedia_upd_locked(struct ifnet *ifp)
4803 {
4804 	struct bge_softc *sc = ifp->if_softc;
4805 	struct mii_data *mii;
4806 	struct mii_softc *miisc;
4807 	struct ifmedia *ifm;
4808 
4809 	BGE_LOCK_ASSERT(sc);
4810 
4811 	ifm = &sc->bge_ifmedia;
4812 
4813 	/* If this is a 1000baseX NIC, enable the TBI port. */
4814 	if (sc->bge_flags & BGE_FLAG_TBI) {
4815 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4816 			return (EINVAL);
4817 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4818 		case IFM_AUTO:
4819 			/*
4820 			 * The BCM5704 ASIC appears to have a special
4821 			 * mechanism for programming the autoneg
4822 			 * advertisement registers in TBI mode.
4823 			 */
4824 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4825 				uint32_t sgdig;
4826 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4827 				if (sgdig & BGE_SGDIGSTS_DONE) {
4828 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4829 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4830 					sgdig |= BGE_SGDIGCFG_AUTO |
4831 					    BGE_SGDIGCFG_PAUSE_CAP |
4832 					    BGE_SGDIGCFG_ASYM_PAUSE;
4833 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4834 					    sgdig | BGE_SGDIGCFG_SEND);
4835 					DELAY(5);
4836 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4837 				}
4838 			}
4839 			break;
4840 		case IFM_1000_SX:
4841 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4842 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4843 				    BGE_MACMODE_HALF_DUPLEX);
4844 			} else {
4845 				BGE_SETBIT(sc, BGE_MAC_MODE,
4846 				    BGE_MACMODE_HALF_DUPLEX);
4847 			}
4848 			break;
4849 		default:
4850 			return (EINVAL);
4851 		}
4852 		return (0);
4853 	}
4854 
4855 	sc->bge_link_evt++;
4856 	mii = device_get_softc(sc->bge_miibus);
4857 	if (mii->mii_instance)
4858 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4859 			mii_phy_reset(miisc);
4860 	mii_mediachg(mii);
4861 
4862 	/*
4863 	 * Force an interrupt so that we will call bge_link_upd
4864 	 * if needed and clear any pending link state attention.
4865 	 * Without this we are not getting any further interrupts
4866 	 * for link state changes and thus will not UP the link and
4867 	 * not be able to send in bge_start_locked. The only
4868 	 * way to get things working was to receive a packet and
4869 	 * get an RX intr.
4870 	 * bge_tick should help for fiber cards and we might not
4871 	 * need to do this here if BGE_FLAG_TBI is set but as
4872 	 * we poll for fiber anyway it should not harm.
4873 	 */
4874 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4875 	    sc->bge_flags & BGE_FLAG_5788)
4876 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4877 	else
4878 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4879 
4880 	return (0);
4881 }
4882 
4883 /*
4884  * Report current media status.
4885  */
4886 static void
4887 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4888 {
4889 	struct bge_softc *sc = ifp->if_softc;
4890 	struct mii_data *mii;
4891 
4892 	BGE_LOCK(sc);
4893 
4894 	if (sc->bge_flags & BGE_FLAG_TBI) {
4895 		ifmr->ifm_status = IFM_AVALID;
4896 		ifmr->ifm_active = IFM_ETHER;
4897 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4898 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4899 			ifmr->ifm_status |= IFM_ACTIVE;
4900 		else {
4901 			ifmr->ifm_active |= IFM_NONE;
4902 			BGE_UNLOCK(sc);
4903 			return;
4904 		}
4905 		ifmr->ifm_active |= IFM_1000_SX;
4906 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4907 			ifmr->ifm_active |= IFM_HDX;
4908 		else
4909 			ifmr->ifm_active |= IFM_FDX;
4910 		BGE_UNLOCK(sc);
4911 		return;
4912 	}
4913 
4914 	mii = device_get_softc(sc->bge_miibus);
4915 	mii_pollstat(mii);
4916 	ifmr->ifm_active = mii->mii_media_active;
4917 	ifmr->ifm_status = mii->mii_media_status;
4918 
4919 	BGE_UNLOCK(sc);
4920 }
4921 
4922 static int
4923 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4924 {
4925 	struct bge_softc *sc = ifp->if_softc;
4926 	struct ifreq *ifr = (struct ifreq *) data;
4927 	struct mii_data *mii;
4928 	int flags, mask, error = 0;
4929 
4930 	switch (command) {
4931 	case SIOCSIFMTU:
4932 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
4933 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
4934 			if (ifr->ifr_mtu < ETHERMIN ||
4935 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
4936 				error = EINVAL;
4937 				break;
4938 			}
4939 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
4940 			error = EINVAL;
4941 			break;
4942 		}
4943 		BGE_LOCK(sc);
4944 		if (ifp->if_mtu != ifr->ifr_mtu) {
4945 			ifp->if_mtu = ifr->ifr_mtu;
4946 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4947 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4948 				bge_init_locked(sc);
4949 			}
4950 		}
4951 		BGE_UNLOCK(sc);
4952 		break;
4953 	case SIOCSIFFLAGS:
4954 		BGE_LOCK(sc);
4955 		if (ifp->if_flags & IFF_UP) {
4956 			/*
4957 			 * If only the state of the PROMISC flag changed,
4958 			 * then just use the 'set promisc mode' command
4959 			 * instead of reinitializing the entire NIC. Doing
4960 			 * a full re-init means reloading the firmware and
4961 			 * waiting for it to start up, which may take a
4962 			 * second or two.  Similarly for ALLMULTI.
4963 			 */
4964 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4965 				flags = ifp->if_flags ^ sc->bge_if_flags;
4966 				if (flags & IFF_PROMISC)
4967 					bge_setpromisc(sc);
4968 				if (flags & IFF_ALLMULTI)
4969 					bge_setmulti(sc);
4970 			} else
4971 				bge_init_locked(sc);
4972 		} else {
4973 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4974 				bge_stop(sc);
4975 			}
4976 		}
4977 		sc->bge_if_flags = ifp->if_flags;
4978 		BGE_UNLOCK(sc);
4979 		error = 0;
4980 		break;
4981 	case SIOCADDMULTI:
4982 	case SIOCDELMULTI:
4983 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4984 			BGE_LOCK(sc);
4985 			bge_setmulti(sc);
4986 			BGE_UNLOCK(sc);
4987 			error = 0;
4988 		}
4989 		break;
4990 	case SIOCSIFMEDIA:
4991 	case SIOCGIFMEDIA:
4992 		if (sc->bge_flags & BGE_FLAG_TBI) {
4993 			error = ifmedia_ioctl(ifp, ifr,
4994 			    &sc->bge_ifmedia, command);
4995 		} else {
4996 			mii = device_get_softc(sc->bge_miibus);
4997 			error = ifmedia_ioctl(ifp, ifr,
4998 			    &mii->mii_media, command);
4999 		}
5000 		break;
5001 	case SIOCSIFCAP:
5002 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5003 #ifdef DEVICE_POLLING
5004 		if (mask & IFCAP_POLLING) {
5005 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5006 				error = ether_poll_register(bge_poll, ifp);
5007 				if (error)
5008 					return (error);
5009 				BGE_LOCK(sc);
5010 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5011 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5012 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5013 				ifp->if_capenable |= IFCAP_POLLING;
5014 				BGE_UNLOCK(sc);
5015 			} else {
5016 				error = ether_poll_deregister(ifp);
5017 				/* Enable interrupt even in error case */
5018 				BGE_LOCK(sc);
5019 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5020 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5021 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5022 				ifp->if_capenable &= ~IFCAP_POLLING;
5023 				BGE_UNLOCK(sc);
5024 			}
5025 		}
5026 #endif
5027 		if ((mask & IFCAP_TXCSUM) != 0 &&
5028 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5029 			ifp->if_capenable ^= IFCAP_TXCSUM;
5030 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5031 				ifp->if_hwassist |= sc->bge_csum_features;
5032 			else
5033 				ifp->if_hwassist &= ~sc->bge_csum_features;
5034 		}
5035 
5036 		if ((mask & IFCAP_RXCSUM) != 0 &&
5037 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5038 			ifp->if_capenable ^= IFCAP_RXCSUM;
5039 
5040 		if ((mask & IFCAP_TSO4) != 0 &&
5041 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5042 			ifp->if_capenable ^= IFCAP_TSO4;
5043 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5044 				ifp->if_hwassist |= CSUM_TSO;
5045 			else
5046 				ifp->if_hwassist &= ~CSUM_TSO;
5047 		}
5048 
5049 		if (mask & IFCAP_VLAN_MTU) {
5050 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5051 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5052 			bge_init(sc);
5053 		}
5054 
5055 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5056 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5057 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5058 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5059 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5060 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5061 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5062 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5063 			BGE_LOCK(sc);
5064 			bge_setvlan(sc);
5065 			BGE_UNLOCK(sc);
5066 		}
5067 #ifdef VLAN_CAPABILITIES
5068 		VLAN_CAPABILITIES(ifp);
5069 #endif
5070 		break;
5071 	default:
5072 		error = ether_ioctl(ifp, command, data);
5073 		break;
5074 	}
5075 
5076 	return (error);
5077 }
5078 
5079 static void
5080 bge_watchdog(struct bge_softc *sc)
5081 {
5082 	struct ifnet *ifp;
5083 
5084 	BGE_LOCK_ASSERT(sc);
5085 
5086 	if (sc->bge_timer == 0 || --sc->bge_timer)
5087 		return;
5088 
5089 	ifp = sc->bge_ifp;
5090 
5091 	if_printf(ifp, "watchdog timeout -- resetting\n");
5092 
5093 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5094 	bge_init_locked(sc);
5095 
5096 	ifp->if_oerrors++;
5097 }
5098 
5099 /*
5100  * Stop the adapter and free any mbufs allocated to the
5101  * RX and TX lists.
5102  */
5103 static void
5104 bge_stop(struct bge_softc *sc)
5105 {
5106 	struct ifnet *ifp;
5107 
5108 	BGE_LOCK_ASSERT(sc);
5109 
5110 	ifp = sc->bge_ifp;
5111 
5112 	callout_stop(&sc->bge_stat_ch);
5113 
5114 	/* Disable host interrupts. */
5115 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5116 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5117 
5118 	/*
5119 	 * Tell firmware we're shutting down.
5120 	 */
5121 	bge_stop_fw(sc);
5122 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5123 
5124 	/*
5125 	 * Disable all of the receiver blocks.
5126 	 */
5127 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5128 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5129 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5130 	if (!(BGE_IS_5705_PLUS(sc)))
5131 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5132 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5133 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5134 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5135 
5136 	/*
5137 	 * Disable all of the transmit blocks.
5138 	 */
5139 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5140 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5141 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5142 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5143 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5144 	if (!(BGE_IS_5705_PLUS(sc)))
5145 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5146 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5147 
5148 	/*
5149 	 * Shut down all of the memory managers and related
5150 	 * state machines.
5151 	 */
5152 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5153 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5154 	if (!(BGE_IS_5705_PLUS(sc)))
5155 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5156 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5157 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5158 	if (!(BGE_IS_5705_PLUS(sc))) {
5159 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5160 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5161 	}
5162 	/* Update MAC statistics. */
5163 	if (BGE_IS_5705_PLUS(sc))
5164 		bge_stats_update_regs(sc);
5165 
5166 	bge_reset(sc);
5167 	bge_sig_legacy(sc, BGE_RESET_STOP);
5168 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5169 
5170 	/*
5171 	 * Keep the ASF firmware running if up.
5172 	 */
5173 	if (sc->bge_asf_mode & ASF_STACKUP)
5174 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5175 	else
5176 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5177 
5178 	/* Free the RX lists. */
5179 	bge_free_rx_ring_std(sc);
5180 
5181 	/* Free jumbo RX list. */
5182 	if (BGE_IS_JUMBO_CAPABLE(sc))
5183 		bge_free_rx_ring_jumbo(sc);
5184 
5185 	/* Free TX buffers. */
5186 	bge_free_tx_ring(sc);
5187 
5188 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5189 
5190 	/* Clear MAC's link state (PHY may still have link UP). */
5191 	if (bootverbose && sc->bge_link)
5192 		if_printf(sc->bge_ifp, "link DOWN\n");
5193 	sc->bge_link = 0;
5194 
5195 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5196 }
5197 
5198 /*
5199  * Stop all chip I/O so that the kernel's probe routines don't
5200  * get confused by errant DMAs when rebooting.
5201  */
5202 static int
5203 bge_shutdown(device_t dev)
5204 {
5205 	struct bge_softc *sc;
5206 
5207 	sc = device_get_softc(dev);
5208 	BGE_LOCK(sc);
5209 	bge_stop(sc);
5210 	bge_reset(sc);
5211 	BGE_UNLOCK(sc);
5212 
5213 	return (0);
5214 }
5215 
5216 static int
5217 bge_suspend(device_t dev)
5218 {
5219 	struct bge_softc *sc;
5220 
5221 	sc = device_get_softc(dev);
5222 	BGE_LOCK(sc);
5223 	bge_stop(sc);
5224 	BGE_UNLOCK(sc);
5225 
5226 	return (0);
5227 }
5228 
5229 static int
5230 bge_resume(device_t dev)
5231 {
5232 	struct bge_softc *sc;
5233 	struct ifnet *ifp;
5234 
5235 	sc = device_get_softc(dev);
5236 	BGE_LOCK(sc);
5237 	ifp = sc->bge_ifp;
5238 	if (ifp->if_flags & IFF_UP) {
5239 		bge_init_locked(sc);
5240 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5241 			bge_start_locked(ifp);
5242 	}
5243 	BGE_UNLOCK(sc);
5244 
5245 	return (0);
5246 }
5247 
5248 static void
5249 bge_link_upd(struct bge_softc *sc)
5250 {
5251 	struct mii_data *mii;
5252 	uint32_t link, status;
5253 
5254 	BGE_LOCK_ASSERT(sc);
5255 
5256 	/* Clear 'pending link event' flag. */
5257 	sc->bge_link_evt = 0;
5258 
5259 	/*
5260 	 * Process link state changes.
5261 	 * Grrr. The link status word in the status block does
5262 	 * not work correctly on the BCM5700 rev AX and BX chips,
5263 	 * according to all available information. Hence, we have
5264 	 * to enable MII interrupts in order to properly obtain
5265 	 * async link changes. Unfortunately, this also means that
5266 	 * we have to read the MAC status register to detect link
5267 	 * changes, thereby adding an additional register access to
5268 	 * the interrupt handler.
5269 	 *
5270 	 * XXX: perhaps link state detection procedure used for
5271 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5272 	 */
5273 
5274 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5275 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5276 		status = CSR_READ_4(sc, BGE_MAC_STS);
5277 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5278 			mii = device_get_softc(sc->bge_miibus);
5279 			mii_pollstat(mii);
5280 			if (!sc->bge_link &&
5281 			    mii->mii_media_status & IFM_ACTIVE &&
5282 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5283 				sc->bge_link++;
5284 				if (bootverbose)
5285 					if_printf(sc->bge_ifp, "link UP\n");
5286 			} else if (sc->bge_link &&
5287 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5288 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5289 				sc->bge_link = 0;
5290 				if (bootverbose)
5291 					if_printf(sc->bge_ifp, "link DOWN\n");
5292 			}
5293 
5294 			/* Clear the interrupt. */
5295 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5296 			    BGE_EVTENB_MI_INTERRUPT);
5297 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5298 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5299 			    BRGPHY_INTRS);
5300 		}
5301 		return;
5302 	}
5303 
5304 	if (sc->bge_flags & BGE_FLAG_TBI) {
5305 		status = CSR_READ_4(sc, BGE_MAC_STS);
5306 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5307 			if (!sc->bge_link) {
5308 				sc->bge_link++;
5309 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
5310 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5311 					    BGE_MACMODE_TBI_SEND_CFGS);
5312 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5313 				if (bootverbose)
5314 					if_printf(sc->bge_ifp, "link UP\n");
5315 				if_link_state_change(sc->bge_ifp,
5316 				    LINK_STATE_UP);
5317 			}
5318 		} else if (sc->bge_link) {
5319 			sc->bge_link = 0;
5320 			if (bootverbose)
5321 				if_printf(sc->bge_ifp, "link DOWN\n");
5322 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5323 		}
5324 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5325 		/*
5326 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5327 		 * in status word always set. Workaround this bug by reading
5328 		 * PHY link status directly.
5329 		 */
5330 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5331 
5332 		if (link != sc->bge_link ||
5333 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5334 			mii = device_get_softc(sc->bge_miibus);
5335 			mii_pollstat(mii);
5336 			if (!sc->bge_link &&
5337 			    mii->mii_media_status & IFM_ACTIVE &&
5338 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5339 				sc->bge_link++;
5340 				if (bootverbose)
5341 					if_printf(sc->bge_ifp, "link UP\n");
5342 			} else if (sc->bge_link &&
5343 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5344 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5345 				sc->bge_link = 0;
5346 				if (bootverbose)
5347 					if_printf(sc->bge_ifp, "link DOWN\n");
5348 			}
5349 		}
5350 	} else {
5351 		/*
5352 		 * For controllers that call mii_tick, we have to poll
5353 		 * link status.
5354 		 */
5355 		mii = device_get_softc(sc->bge_miibus);
5356 		mii_pollstat(mii);
5357 		bge_miibus_statchg(sc->bge_dev);
5358 	}
5359 
5360 	/* Clear the attention. */
5361 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5362 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5363 	    BGE_MACSTAT_LINK_CHANGED);
5364 }
5365 
5366 static void
5367 bge_add_sysctls(struct bge_softc *sc)
5368 {
5369 	struct sysctl_ctx_list *ctx;
5370 	struct sysctl_oid_list *children;
5371 	char tn[32];
5372 	int unit;
5373 
5374 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5375 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5376 
5377 #ifdef BGE_REGISTER_DEBUG
5378 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5379 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5380 	    "Debug Information");
5381 
5382 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5383 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5384 	    "Register Read");
5385 
5386 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5387 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5388 	    "Memory Read");
5389 
5390 #endif
5391 
5392 	unit = device_get_unit(sc->bge_dev);
5393 	/*
5394 	 * A common design characteristic for many Broadcom client controllers
5395 	 * is that they only support a single outstanding DMA read operation
5396 	 * on the PCIe bus. This means that it will take twice as long to fetch
5397 	 * a TX frame that is split into header and payload buffers as it does
5398 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5399 	 * these controllers, coalescing buffers to reduce the number of memory
5400 	 * reads is effective way to get maximum performance(about 940Mbps).
5401 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5402 	 * performance is about 850Mbps. However forcing coalescing mbufs
5403 	 * consumes a lot of CPU cycles, so leave it off by default.
5404 	 */
5405 	sc->bge_forced_collapse = 0;
5406 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5407 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5408 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5409 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5410 	    "Number of fragmented TX buffers of a frame allowed before "
5411 	    "forced collapsing");
5412 
5413 	/*
5414 	 * It seems all Broadcom controllers have a bug that can generate UDP
5415 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5416 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5417 	 * Even though the probability of generating such UDP datagrams is
5418 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5419 	 * into network so disable UDP checksum offloading by default.  Users
5420 	 * still override this behavior by setting a sysctl variable,
5421 	 * dev.bge.0.forced_udpcsum.
5422 	 */
5423 	sc->bge_forced_udpcsum = 0;
5424 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5425 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5426 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5427 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5428 	    "Enable UDP checksum offloading even if controller can "
5429 	    "generate UDP checksum value 0");
5430 
5431 	if (BGE_IS_5705_PLUS(sc))
5432 		bge_add_sysctl_stats_regs(sc, ctx, children);
5433 	else
5434 		bge_add_sysctl_stats(sc, ctx, children);
5435 }
5436 
5437 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5438 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5439 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5440 	    desc)
5441 
5442 static void
5443 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5444     struct sysctl_oid_list *parent)
5445 {
5446 	struct sysctl_oid *tree;
5447 	struct sysctl_oid_list *children, *schildren;
5448 
5449 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5450 	    NULL, "BGE Statistics");
5451 	schildren = children = SYSCTL_CHILDREN(tree);
5452 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5453 	    children, COSFramesDroppedDueToFilters,
5454 	    "FramesDroppedDueToFilters");
5455 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5456 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5457 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5458 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5459 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5460 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5461 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5462 	    children, ifInDiscards, "InputDiscards");
5463 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5464 	    children, ifInErrors, "InputErrors");
5465 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5466 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5467 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5468 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5469 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5470 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5471 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5472 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5473 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5474 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5475 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5476 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5477 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5478 	    children, nicInterrupts, "Interrupts");
5479 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5480 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5481 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5482 	    children, nicSendThresholdHit, "SendThresholdHit");
5483 
5484 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5485 	    NULL, "BGE RX Statistics");
5486 	children = SYSCTL_CHILDREN(tree);
5487 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5488 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5489 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5490 	    children, rxstats.etherStatsFragments, "Fragments");
5491 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5492 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5493 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5494 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5495 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5496 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5497 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5498 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5499 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5500 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5501 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5502 	    children, rxstats.xoffPauseFramesReceived,
5503 	    "xoffPauseFramesReceived");
5504 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5505 	    children, rxstats.macControlFramesReceived,
5506 	    "ControlFramesReceived");
5507 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5508 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5509 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5510 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5511 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5512 	    children, rxstats.etherStatsJabbers, "Jabbers");
5513 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5514 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5515 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5516 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5517 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5518 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5519 
5520 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5521 	    NULL, "BGE TX Statistics");
5522 	children = SYSCTL_CHILDREN(tree);
5523 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5524 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5525 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5526 	    children, txstats.etherStatsCollisions, "Collisions");
5527 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5528 	    children, txstats.outXonSent, "XonSent");
5529 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5530 	    children, txstats.outXoffSent, "XoffSent");
5531 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5532 	    children, txstats.flowControlDone, "flowControlDone");
5533 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5534 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5535 	    "InternalMacTransmitErrors");
5536 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5537 	    children, txstats.dot3StatsSingleCollisionFrames,
5538 	    "SingleCollisionFrames");
5539 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5540 	    children, txstats.dot3StatsMultipleCollisionFrames,
5541 	    "MultipleCollisionFrames");
5542 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5543 	    children, txstats.dot3StatsDeferredTransmissions,
5544 	    "DeferredTransmissions");
5545 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5546 	    children, txstats.dot3StatsExcessiveCollisions,
5547 	    "ExcessiveCollisions");
5548 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5549 	    children, txstats.dot3StatsLateCollisions,
5550 	    "LateCollisions");
5551 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5552 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5553 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5554 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5555 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5556 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5557 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5558 	    children, txstats.dot3StatsCarrierSenseErrors,
5559 	    "CarrierSenseErrors");
5560 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5561 	    children, txstats.ifOutDiscards, "Discards");
5562 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5563 	    children, txstats.ifOutErrors, "Errors");
5564 }
5565 
5566 #undef BGE_SYSCTL_STAT
5567 
5568 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5569 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5570 
5571 static void
5572 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5573     struct sysctl_oid_list *parent)
5574 {
5575 	struct sysctl_oid *tree;
5576 	struct sysctl_oid_list *child, *schild;
5577 	struct bge_mac_stats *stats;
5578 
5579 	stats = &sc->bge_mac_stats;
5580 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5581 	    NULL, "BGE Statistics");
5582 	schild = child = SYSCTL_CHILDREN(tree);
5583 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5584 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5585 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5586 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5587 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5588 	    &stats->DmaWriteHighPriQueueFull,
5589 	    "NIC DMA Write High Priority Queue Full");
5590 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5591 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5592 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5593 	    &stats->InputDiscards, "Discarded Input Frames");
5594 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5595 	    &stats->InputErrors, "Input Errors");
5596 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5597 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5598 
5599 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5600 	    NULL, "BGE RX Statistics");
5601 	child = SYSCTL_CHILDREN(tree);
5602 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5603 	    &stats->ifHCInOctets, "Inbound Octets");
5604 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5605 	    &stats->etherStatsFragments, "Fragments");
5606 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5607 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5608 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5609 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5610 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5611 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5612 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5613 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5614 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5615 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5616 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5617 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5618 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5619 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5620 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5621 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5622 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5623 	    &stats->xoffStateEntered, "XOFF State Entered");
5624 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5625 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5626 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5627 	    &stats->etherStatsJabbers, "Jabbers");
5628 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5629 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5630 
5631 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5632 	    NULL, "BGE TX Statistics");
5633 	child = SYSCTL_CHILDREN(tree);
5634 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5635 	    &stats->ifHCOutOctets, "Outbound Octets");
5636 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5637 	    &stats->etherStatsCollisions, "TX Collisions");
5638 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5639 	    &stats->outXonSent, "XON Sent");
5640 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5641 	    &stats->outXoffSent, "XOFF Sent");
5642 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5643 	    &stats->dot3StatsInternalMacTransmitErrors,
5644 	    "Internal MAC TX Errors");
5645 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5646 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5647 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5648 	    &stats->dot3StatsMultipleCollisionFrames,
5649 	    "Multiple Collision Frames");
5650 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5651 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5652 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5653 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5654 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5655 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5656 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5657 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5658 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5659 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5660 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5661 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5662 }
5663 
5664 #undef	BGE_SYSCTL_STAT_ADD64
5665 
5666 static int
5667 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5668 {
5669 	struct bge_softc *sc;
5670 	uint32_t result;
5671 	int offset;
5672 
5673 	sc = (struct bge_softc *)arg1;
5674 	offset = arg2;
5675 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5676 	    offsetof(bge_hostaddr, bge_addr_lo));
5677 	return (sysctl_handle_int(oidp, &result, 0, req));
5678 }
5679 
5680 #ifdef BGE_REGISTER_DEBUG
5681 static int
5682 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5683 {
5684 	struct bge_softc *sc;
5685 	uint16_t *sbdata;
5686 	int error;
5687 	int result;
5688 	int i, j;
5689 
5690 	result = -1;
5691 	error = sysctl_handle_int(oidp, &result, 0, req);
5692 	if (error || (req->newptr == NULL))
5693 		return (error);
5694 
5695 	if (result == 1) {
5696 		sc = (struct bge_softc *)arg1;
5697 
5698 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5699 		printf("Status Block:\n");
5700 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5701 			printf("%06x:", i);
5702 			for (j = 0; j < 8; j++) {
5703 				printf(" %04x", sbdata[i]);
5704 				i += 4;
5705 			}
5706 			printf("\n");
5707 		}
5708 
5709 		printf("Registers:\n");
5710 		for (i = 0x800; i < 0xA00; ) {
5711 			printf("%06x:", i);
5712 			for (j = 0; j < 8; j++) {
5713 				printf(" %08x", CSR_READ_4(sc, i));
5714 				i += 4;
5715 			}
5716 			printf("\n");
5717 		}
5718 
5719 		printf("Hardware Flags:\n");
5720 		if (BGE_IS_5755_PLUS(sc))
5721 			printf(" - 5755 Plus\n");
5722 		if (BGE_IS_575X_PLUS(sc))
5723 			printf(" - 575X Plus\n");
5724 		if (BGE_IS_5705_PLUS(sc))
5725 			printf(" - 5705 Plus\n");
5726 		if (BGE_IS_5714_FAMILY(sc))
5727 			printf(" - 5714 Family\n");
5728 		if (BGE_IS_5700_FAMILY(sc))
5729 			printf(" - 5700 Family\n");
5730 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5731 			printf(" - Supports Jumbo Frames\n");
5732 		if (sc->bge_flags & BGE_FLAG_PCIX)
5733 			printf(" - PCI-X Bus\n");
5734 		if (sc->bge_flags & BGE_FLAG_PCIE)
5735 			printf(" - PCI Express Bus\n");
5736 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
5737 			printf(" - No 3 LEDs\n");
5738 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5739 			printf(" - RX Alignment Bug\n");
5740 	}
5741 
5742 	return (error);
5743 }
5744 
5745 static int
5746 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5747 {
5748 	struct bge_softc *sc;
5749 	int error;
5750 	uint16_t result;
5751 	uint32_t val;
5752 
5753 	result = -1;
5754 	error = sysctl_handle_int(oidp, &result, 0, req);
5755 	if (error || (req->newptr == NULL))
5756 		return (error);
5757 
5758 	if (result < 0x8000) {
5759 		sc = (struct bge_softc *)arg1;
5760 		val = CSR_READ_4(sc, result);
5761 		printf("reg 0x%06X = 0x%08X\n", result, val);
5762 	}
5763 
5764 	return (error);
5765 }
5766 
5767 static int
5768 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5769 {
5770 	struct bge_softc *sc;
5771 	int error;
5772 	uint16_t result;
5773 	uint32_t val;
5774 
5775 	result = -1;
5776 	error = sysctl_handle_int(oidp, &result, 0, req);
5777 	if (error || (req->newptr == NULL))
5778 		return (error);
5779 
5780 	if (result < 0x8000) {
5781 		sc = (struct bge_softc *)arg1;
5782 		val = bge_readmem_ind(sc, result);
5783 		printf("mem 0x%06X = 0x%08X\n", result, val);
5784 	}
5785 
5786 	return (error);
5787 }
5788 #endif
5789 
5790 static int
5791 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5792 {
5793 
5794 	if (sc->bge_flags & BGE_FLAG_EADDR)
5795 		return (1);
5796 
5797 #ifdef __sparc64__
5798 	OF_getetheraddr(sc->bge_dev, ether_addr);
5799 	return (0);
5800 #endif
5801 	return (1);
5802 }
5803 
5804 static int
5805 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5806 {
5807 	uint32_t mac_addr;
5808 
5809 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5810 	if ((mac_addr >> 16) == 0x484b) {
5811 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5812 		ether_addr[1] = (uint8_t)mac_addr;
5813 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5814 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5815 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5816 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5817 		ether_addr[5] = (uint8_t)mac_addr;
5818 		return (0);
5819 	}
5820 	return (1);
5821 }
5822 
5823 static int
5824 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5825 {
5826 	int mac_offset = BGE_EE_MAC_OFFSET;
5827 
5828 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5829 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5830 
5831 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5832 	    ETHER_ADDR_LEN));
5833 }
5834 
5835 static int
5836 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5837 {
5838 
5839 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5840 		return (1);
5841 
5842 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5843 	   ETHER_ADDR_LEN));
5844 }
5845 
5846 static int
5847 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5848 {
5849 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5850 		/* NOTE: Order is critical */
5851 		bge_get_eaddr_fw,
5852 		bge_get_eaddr_mem,
5853 		bge_get_eaddr_nvram,
5854 		bge_get_eaddr_eeprom,
5855 		NULL
5856 	};
5857 	const bge_eaddr_fcn_t *func;
5858 
5859 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5860 		if ((*func)(sc, eaddr) == 0)
5861 			break;
5862 	}
5863 	return (*func == NULL ? ENXIO : 0);
5864 }
5865