xref: /freebsd/sys/dev/bge/if_bge.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70 
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74 
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/netdump/netdump.h>
104 
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 #include "miidevs.h"
113 #include <dev/mii/brgphyreg.h>
114 
115 #ifdef __sparc64__
116 #include <dev/ofw/ofw_bus.h>
117 #include <dev/ofw/openfirm.h>
118 #include <machine/ofw_machdep.h>
119 #include <machine/ver.h>
120 #endif
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 
125 #include <dev/bge/if_bgereg.h>
126 
127 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
128 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
129 
130 MODULE_DEPEND(bge, pci, 1, 1, 1);
131 MODULE_DEPEND(bge, ether, 1, 1, 1);
132 MODULE_DEPEND(bge, miibus, 1, 1, 1);
133 
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names. Note: the
139  * spec seems to indicate that the hardware still has Alteon's vendor
140  * ID burned into it, though it will always be overriden by the vendor
141  * ID in the EEPROM. Just to be safe, we cover all possibilities.
142  */
143 static const struct bge_type {
144 	uint16_t	bge_vid;
145 	uint16_t	bge_did;
146 } bge_devs[] = {
147 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
148 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
149 
150 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
151 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
152 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
153 
154 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
155 
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
239 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
240 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
241 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
242 
243 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
244 
245 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
246 
247 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
248 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
249 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
250 
251 	{ 0, 0 }
252 };
253 
254 static const struct bge_vendor {
255 	uint16_t	v_id;
256 	const char	*v_name;
257 } bge_vendors[] = {
258 	{ ALTEON_VENDORID,	"Alteon" },
259 	{ ALTIMA_VENDORID,	"Altima" },
260 	{ APPLE_VENDORID,	"Apple" },
261 	{ BCOM_VENDORID,	"Broadcom" },
262 	{ SK_VENDORID,		"SysKonnect" },
263 	{ TC_VENDORID,		"3Com" },
264 	{ FJTSU_VENDORID,	"Fujitsu" },
265 
266 	{ 0, NULL }
267 };
268 
269 static const struct bge_revision {
270 	uint32_t	br_chipid;
271 	const char	*br_name;
272 } bge_revisions[] = {
273 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
274 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
275 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
276 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
277 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
278 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
279 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
280 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
281 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
282 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
283 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
284 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
285 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
286 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
287 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
288 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
289 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
290 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
291 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
292 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
293 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
294 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
295 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
296 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
297 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
298 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
299 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
300 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
301 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
302 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
303 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
304 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
305 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
306 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
307 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
308 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
309 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
310 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
311 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
312 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
313 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
314 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
315 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
316 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
317 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
318 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
319 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
320 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
321 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
322 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
323 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
324 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
325 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
326 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
327 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
328 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
329 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
330 	/* 5754 and 5787 share the same ASIC ID */
331 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
332 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
333 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
334 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
335 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
336 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
337 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
338 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
339 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
340 
341 	{ 0, NULL }
342 };
343 
344 /*
345  * Some defaults for major revisions, so that newer steppings
346  * that we don't know about have a shot at working.
347  */
348 static const struct bge_revision bge_majorrevs[] = {
349 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
350 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
351 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
352 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
353 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
354 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
355 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
356 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
357 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
358 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
359 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
360 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
361 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
362 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
363 	/* 5754 and 5787 share the same ASIC ID */
364 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
365 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
366 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
367 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
368 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
369 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
370 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
371 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
372 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
373 
374 	{ 0, NULL }
375 };
376 
377 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
378 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
379 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
380 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
381 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
382 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
383 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
384 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
385 
386 static uint32_t bge_chipid(device_t);
387 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
388 static const struct bge_revision * bge_lookup_rev(uint32_t);
389 
390 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
391 
392 static int bge_probe(device_t);
393 static int bge_attach(device_t);
394 static int bge_detach(device_t);
395 static int bge_suspend(device_t);
396 static int bge_resume(device_t);
397 static void bge_release_resources(struct bge_softc *);
398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
399 static int bge_dma_alloc(struct bge_softc *);
400 static void bge_dma_free(struct bge_softc *);
401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
402     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
403 
404 static void bge_devinfo(struct bge_softc *);
405 static int bge_mbox_reorder(struct bge_softc *);
406 
407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
412 
413 static void bge_txeof(struct bge_softc *, uint16_t);
414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
415 static int bge_rxeof(struct bge_softc *, uint16_t, int);
416 
417 static void bge_asf_driver_up (struct bge_softc *);
418 static void bge_tick(void *);
419 static void bge_stats_clear_regs(struct bge_softc *);
420 static void bge_stats_update(struct bge_softc *);
421 static void bge_stats_update_regs(struct bge_softc *);
422 static struct mbuf *bge_check_short_dma(struct mbuf *);
423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
424     uint16_t *, uint16_t *);
425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
426 
427 static void bge_intr(void *);
428 static int bge_msi_intr(void *);
429 static void bge_intr_task(void *, int);
430 static void bge_start(if_t);
431 static void bge_start_locked(if_t);
432 static void bge_start_tx(struct bge_softc *, uint32_t);
433 static int bge_ioctl(if_t, u_long, caddr_t);
434 static void bge_init_locked(struct bge_softc *);
435 static void bge_init(void *);
436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
437 static void bge_stop(struct bge_softc *);
438 static void bge_watchdog(struct bge_softc *);
439 static int bge_shutdown(device_t);
440 static int bge_ifmedia_upd_locked(if_t);
441 static int bge_ifmedia_upd(if_t);
442 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
443 static uint64_t bge_get_counter(if_t, ift_counter);
444 
445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
447 
448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
450 
451 static void bge_setpromisc(struct bge_softc *);
452 static void bge_setmulti(struct bge_softc *);
453 static void bge_setvlan(struct bge_softc *);
454 
455 static __inline void bge_rxreuse_std(struct bge_softc *, int);
456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
457 static int bge_newbuf_std(struct bge_softc *, int);
458 static int bge_newbuf_jumbo(struct bge_softc *, int);
459 static int bge_init_rx_ring_std(struct bge_softc *);
460 static void bge_free_rx_ring_std(struct bge_softc *);
461 static int bge_init_rx_ring_jumbo(struct bge_softc *);
462 static void bge_free_rx_ring_jumbo(struct bge_softc *);
463 static void bge_free_tx_ring(struct bge_softc *);
464 static int bge_init_tx_ring(struct bge_softc *);
465 
466 static int bge_chipinit(struct bge_softc *);
467 static int bge_blockinit(struct bge_softc *);
468 static uint32_t bge_dma_swap_options(struct bge_softc *);
469 
470 static int bge_has_eaddr(struct bge_softc *);
471 static uint32_t bge_readmem_ind(struct bge_softc *, int);
472 static void bge_writemem_ind(struct bge_softc *, int, int);
473 static void bge_writembx(struct bge_softc *, int, int);
474 #ifdef notdef
475 static uint32_t bge_readreg_ind(struct bge_softc *, int);
476 #endif
477 static void bge_writemem_direct(struct bge_softc *, int, int);
478 static void bge_writereg_ind(struct bge_softc *, int, int);
479 
480 static int bge_miibus_readreg(device_t, int, int);
481 static int bge_miibus_writereg(device_t, int, int, int);
482 static void bge_miibus_statchg(device_t);
483 #ifdef DEVICE_POLLING
484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
485 #endif
486 
487 #define	BGE_RESET_SHUTDOWN	0
488 #define	BGE_RESET_START		1
489 #define	BGE_RESET_SUSPEND	2
490 static void bge_sig_post_reset(struct bge_softc *, int);
491 static void bge_sig_legacy(struct bge_softc *, int);
492 static void bge_sig_pre_reset(struct bge_softc *, int);
493 static void bge_stop_fw(struct bge_softc *);
494 static int bge_reset(struct bge_softc *);
495 static void bge_link_upd(struct bge_softc *);
496 
497 static void bge_ape_lock_init(struct bge_softc *);
498 static void bge_ape_read_fw_ver(struct bge_softc *);
499 static int bge_ape_lock(struct bge_softc *, int);
500 static void bge_ape_unlock(struct bge_softc *, int);
501 static void bge_ape_send_event(struct bge_softc *, uint32_t);
502 static void bge_ape_driver_state_change(struct bge_softc *, int);
503 
504 /*
505  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
506  * leak information to untrusted users.  It is also known to cause alignment
507  * traps on certain architectures.
508  */
509 #ifdef BGE_REGISTER_DEBUG
510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
514 #endif
515 static void bge_add_sysctls(struct bge_softc *);
516 static void bge_add_sysctl_stats_regs(struct bge_softc *,
517     struct sysctl_ctx_list *, struct sysctl_oid_list *);
518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
519     struct sysctl_oid_list *);
520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
521 
522 NETDUMP_DEFINE(bge);
523 
524 static device_method_t bge_methods[] = {
525 	/* Device interface */
526 	DEVMETHOD(device_probe,		bge_probe),
527 	DEVMETHOD(device_attach,	bge_attach),
528 	DEVMETHOD(device_detach,	bge_detach),
529 	DEVMETHOD(device_shutdown,	bge_shutdown),
530 	DEVMETHOD(device_suspend,	bge_suspend),
531 	DEVMETHOD(device_resume,	bge_resume),
532 
533 	/* MII interface */
534 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
535 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
536 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
537 
538 	DEVMETHOD_END
539 };
540 
541 static driver_t bge_driver = {
542 	"bge",
543 	bge_methods,
544 	sizeof(struct bge_softc)
545 };
546 
547 static devclass_t bge_devclass;
548 
549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
550 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
551 
552 static int bge_allow_asf = 1;
553 
554 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
555 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
556 	"Allow ASF mode if available");
557 
558 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
559 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
560 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
561 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
562 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
563 
564 static int
565 bge_has_eaddr(struct bge_softc *sc)
566 {
567 #ifdef __sparc64__
568 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
569 	device_t dev;
570 	uint32_t subvendor;
571 
572 	dev = sc->bge_dev;
573 
574 	/*
575 	 * The on-board BGEs found in sun4u machines aren't fitted with
576 	 * an EEPROM which means that we have to obtain the MAC address
577 	 * via OFW and that some tests will always fail.  We distinguish
578 	 * such BGEs by the subvendor ID, which also has to be obtained
579 	 * from OFW instead of the PCI configuration space as the latter
580 	 * indicates Broadcom as the subvendor of the netboot interface.
581 	 * For early Blade 1500 and 2500 we even have to check the OFW
582 	 * device path as the subvendor ID always defaults to Broadcom
583 	 * there.
584 	 */
585 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
586 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
587 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
588 		return (0);
589 	memset(buf, 0, sizeof(buf));
590 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
591 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
592 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
593 			return (0);
594 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
595 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
596 			return (0);
597 	}
598 #endif
599 	return (1);
600 }
601 
602 static uint32_t
603 bge_readmem_ind(struct bge_softc *sc, int off)
604 {
605 	device_t dev;
606 	uint32_t val;
607 
608 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
609 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
610 		return (0);
611 
612 	dev = sc->bge_dev;
613 
614 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
615 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
616 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
617 	return (val);
618 }
619 
620 static void
621 bge_writemem_ind(struct bge_softc *sc, int off, int val)
622 {
623 	device_t dev;
624 
625 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
626 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
627 		return;
628 
629 	dev = sc->bge_dev;
630 
631 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
632 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
633 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
634 }
635 
636 #ifdef notdef
637 static uint32_t
638 bge_readreg_ind(struct bge_softc *sc, int off)
639 {
640 	device_t dev;
641 
642 	dev = sc->bge_dev;
643 
644 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
645 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
646 }
647 #endif
648 
649 static void
650 bge_writereg_ind(struct bge_softc *sc, int off, int val)
651 {
652 	device_t dev;
653 
654 	dev = sc->bge_dev;
655 
656 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
657 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
658 }
659 
660 static void
661 bge_writemem_direct(struct bge_softc *sc, int off, int val)
662 {
663 	CSR_WRITE_4(sc, off, val);
664 }
665 
666 static void
667 bge_writembx(struct bge_softc *sc, int off, int val)
668 {
669 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
670 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
671 
672 	CSR_WRITE_4(sc, off, val);
673 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
674 		CSR_READ_4(sc, off);
675 }
676 
677 /*
678  * Clear all stale locks and select the lock for this driver instance.
679  */
680 static void
681 bge_ape_lock_init(struct bge_softc *sc)
682 {
683 	uint32_t bit, regbase;
684 	int i;
685 
686 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
687 		regbase = BGE_APE_LOCK_GRANT;
688 	else
689 		regbase = BGE_APE_PER_LOCK_GRANT;
690 
691 	/* Clear any stale locks. */
692 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
693 		switch (i) {
694 		case BGE_APE_LOCK_PHY0:
695 		case BGE_APE_LOCK_PHY1:
696 		case BGE_APE_LOCK_PHY2:
697 		case BGE_APE_LOCK_PHY3:
698 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
699 			break;
700 		default:
701 			if (sc->bge_func_addr == 0)
702 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
703 			else
704 				bit = (1 << sc->bge_func_addr);
705 		}
706 		APE_WRITE_4(sc, regbase + 4 * i, bit);
707 	}
708 
709 	/* Select the PHY lock based on the device's function number. */
710 	switch (sc->bge_func_addr) {
711 	case 0:
712 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
713 		break;
714 	case 1:
715 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
716 		break;
717 	case 2:
718 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
719 		break;
720 	case 3:
721 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
722 		break;
723 	default:
724 		device_printf(sc->bge_dev,
725 		    "PHY lock not supported on this function\n");
726 	}
727 }
728 
729 /*
730  * Check for APE firmware, set flags, and print version info.
731  */
732 static void
733 bge_ape_read_fw_ver(struct bge_softc *sc)
734 {
735 	const char *fwtype;
736 	uint32_t apedata, features;
737 
738 	/* Check for a valid APE signature in shared memory. */
739 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
740 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
741 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
742 		return;
743 	}
744 
745 	/* Check if APE firmware is running. */
746 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
747 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
748 		device_printf(sc->bge_dev, "APE signature found "
749 		    "but FW status not ready! 0x%08x\n", apedata);
750 		return;
751 	}
752 
753 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
754 
755 	/* Fetch the APE firwmare type and version. */
756 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
757 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
758 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
759 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
760 		fwtype = "NCSI";
761 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
762 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
763 		fwtype = "DASH";
764 	} else
765 		fwtype = "UNKN";
766 
767 	/* Print the APE firmware version. */
768 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
769 	    fwtype,
770 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
771 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
772 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
773 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
774 }
775 
776 static int
777 bge_ape_lock(struct bge_softc *sc, int locknum)
778 {
779 	uint32_t bit, gnt, req, status;
780 	int i, off;
781 
782 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
783 		return (0);
784 
785 	/* Lock request/grant registers have different bases. */
786 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
787 		req = BGE_APE_LOCK_REQ;
788 		gnt = BGE_APE_LOCK_GRANT;
789 	} else {
790 		req = BGE_APE_PER_LOCK_REQ;
791 		gnt = BGE_APE_PER_LOCK_GRANT;
792 	}
793 
794 	off = 4 * locknum;
795 
796 	switch (locknum) {
797 	case BGE_APE_LOCK_GPIO:
798 		/* Lock required when using GPIO. */
799 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
800 			return (0);
801 		if (sc->bge_func_addr == 0)
802 			bit = BGE_APE_LOCK_REQ_DRIVER0;
803 		else
804 			bit = (1 << sc->bge_func_addr);
805 		break;
806 	case BGE_APE_LOCK_GRC:
807 		/* Lock required to reset the device. */
808 		if (sc->bge_func_addr == 0)
809 			bit = BGE_APE_LOCK_REQ_DRIVER0;
810 		else
811 			bit = (1 << sc->bge_func_addr);
812 		break;
813 	case BGE_APE_LOCK_MEM:
814 		/* Lock required when accessing certain APE memory. */
815 		if (sc->bge_func_addr == 0)
816 			bit = BGE_APE_LOCK_REQ_DRIVER0;
817 		else
818 			bit = (1 << sc->bge_func_addr);
819 		break;
820 	case BGE_APE_LOCK_PHY0:
821 	case BGE_APE_LOCK_PHY1:
822 	case BGE_APE_LOCK_PHY2:
823 	case BGE_APE_LOCK_PHY3:
824 		/* Lock required when accessing PHYs. */
825 		bit = BGE_APE_LOCK_REQ_DRIVER0;
826 		break;
827 	default:
828 		return (EINVAL);
829 	}
830 
831 	/* Request a lock. */
832 	APE_WRITE_4(sc, req + off, bit);
833 
834 	/* Wait up to 1 second to acquire lock. */
835 	for (i = 0; i < 20000; i++) {
836 		status = APE_READ_4(sc, gnt + off);
837 		if (status == bit)
838 			break;
839 		DELAY(50);
840 	}
841 
842 	/* Handle any errors. */
843 	if (status != bit) {
844 		device_printf(sc->bge_dev, "APE lock %d request failed! "
845 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
846 		    locknum, req + off, bit & 0xFFFF, gnt + off,
847 		    status & 0xFFFF);
848 		/* Revoke the lock request. */
849 		APE_WRITE_4(sc, gnt + off, bit);
850 		return (EBUSY);
851 	}
852 
853 	return (0);
854 }
855 
856 static void
857 bge_ape_unlock(struct bge_softc *sc, int locknum)
858 {
859 	uint32_t bit, gnt;
860 	int off;
861 
862 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
863 		return;
864 
865 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
866 		gnt = BGE_APE_LOCK_GRANT;
867 	else
868 		gnt = BGE_APE_PER_LOCK_GRANT;
869 
870 	off = 4 * locknum;
871 
872 	switch (locknum) {
873 	case BGE_APE_LOCK_GPIO:
874 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
875 			return;
876 		if (sc->bge_func_addr == 0)
877 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
878 		else
879 			bit = (1 << sc->bge_func_addr);
880 		break;
881 	case BGE_APE_LOCK_GRC:
882 		if (sc->bge_func_addr == 0)
883 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
884 		else
885 			bit = (1 << sc->bge_func_addr);
886 		break;
887 	case BGE_APE_LOCK_MEM:
888 		if (sc->bge_func_addr == 0)
889 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
890 		else
891 			bit = (1 << sc->bge_func_addr);
892 		break;
893 	case BGE_APE_LOCK_PHY0:
894 	case BGE_APE_LOCK_PHY1:
895 	case BGE_APE_LOCK_PHY2:
896 	case BGE_APE_LOCK_PHY3:
897 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
898 		break;
899 	default:
900 		return;
901 	}
902 
903 	APE_WRITE_4(sc, gnt + off, bit);
904 }
905 
906 /*
907  * Send an event to the APE firmware.
908  */
909 static void
910 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
911 {
912 	uint32_t apedata;
913 	int i;
914 
915 	/* NCSI does not support APE events. */
916 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
917 		return;
918 
919 	/* Wait up to 1ms for APE to service previous event. */
920 	for (i = 10; i > 0; i--) {
921 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
922 			break;
923 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
924 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
925 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
926 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
927 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
928 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
929 			break;
930 		}
931 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
932 		DELAY(100);
933 	}
934 	if (i == 0)
935 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
936 		    event);
937 }
938 
939 static void
940 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
941 {
942 	uint32_t apedata, event;
943 
944 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
945 		return;
946 
947 	switch (kind) {
948 	case BGE_RESET_START:
949 		/* If this is the first load, clear the load counter. */
950 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
951 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
952 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
953 		else {
954 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
955 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
956 		}
957 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
958 		    BGE_APE_HOST_SEG_SIG_MAGIC);
959 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
960 		    BGE_APE_HOST_SEG_LEN_MAGIC);
961 
962 		/* Add some version info if bge(4) supports it. */
963 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
964 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
965 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
966 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
967 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
968 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
969 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
970 		    BGE_APE_HOST_DRVR_STATE_START);
971 		event = BGE_APE_EVENT_STATUS_STATE_START;
972 		break;
973 	case BGE_RESET_SHUTDOWN:
974 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
975 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
976 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
977 		break;
978 	case BGE_RESET_SUSPEND:
979 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
980 		break;
981 	default:
982 		return;
983 	}
984 
985 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
986 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
987 }
988 
989 /*
990  * Map a single buffer address.
991  */
992 
993 static void
994 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
995 {
996 	struct bge_dmamap_arg *ctx;
997 
998 	if (error)
999 		return;
1000 
1001 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
1002 
1003 	ctx = arg;
1004 	ctx->bge_busaddr = segs->ds_addr;
1005 }
1006 
1007 static uint8_t
1008 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1009 {
1010 	uint32_t access, byte = 0;
1011 	int i;
1012 
1013 	/* Lock. */
1014 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1015 	for (i = 0; i < 8000; i++) {
1016 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1017 			break;
1018 		DELAY(20);
1019 	}
1020 	if (i == 8000)
1021 		return (1);
1022 
1023 	/* Enable access. */
1024 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1025 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1026 
1027 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1028 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1029 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1030 		DELAY(10);
1031 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1032 			DELAY(10);
1033 			break;
1034 		}
1035 	}
1036 
1037 	if (i == BGE_TIMEOUT * 10) {
1038 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1039 		return (1);
1040 	}
1041 
1042 	/* Get result. */
1043 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1044 
1045 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1046 
1047 	/* Disable access. */
1048 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1049 
1050 	/* Unlock. */
1051 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1052 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1053 
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Read a sequence of bytes from NVRAM.
1059  */
1060 static int
1061 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1062 {
1063 	int err = 0, i;
1064 	uint8_t byte = 0;
1065 
1066 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1067 		return (1);
1068 
1069 	for (i = 0; i < cnt; i++) {
1070 		err = bge_nvram_getbyte(sc, off + i, &byte);
1071 		if (err)
1072 			break;
1073 		*(dest + i) = byte;
1074 	}
1075 
1076 	return (err ? 1 : 0);
1077 }
1078 
1079 /*
1080  * Read a byte of data stored in the EEPROM at address 'addr.' The
1081  * BCM570x supports both the traditional bitbang interface and an
1082  * auto access interface for reading the EEPROM. We use the auto
1083  * access method.
1084  */
1085 static uint8_t
1086 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1087 {
1088 	int i;
1089 	uint32_t byte = 0;
1090 
1091 	/*
1092 	 * Enable use of auto EEPROM access so we can avoid
1093 	 * having to use the bitbang method.
1094 	 */
1095 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1096 
1097 	/* Reset the EEPROM, load the clock period. */
1098 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1099 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1100 	DELAY(20);
1101 
1102 	/* Issue the read EEPROM command. */
1103 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1104 
1105 	/* Wait for completion */
1106 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1107 		DELAY(10);
1108 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1109 			break;
1110 	}
1111 
1112 	if (i == BGE_TIMEOUT * 10) {
1113 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1114 		return (1);
1115 	}
1116 
1117 	/* Get result. */
1118 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1119 
1120 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1121 
1122 	return (0);
1123 }
1124 
1125 /*
1126  * Read a sequence of bytes from the EEPROM.
1127  */
1128 static int
1129 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1130 {
1131 	int i, error = 0;
1132 	uint8_t byte = 0;
1133 
1134 	for (i = 0; i < cnt; i++) {
1135 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1136 		if (error)
1137 			break;
1138 		*(dest + i) = byte;
1139 	}
1140 
1141 	return (error ? 1 : 0);
1142 }
1143 
1144 static int
1145 bge_miibus_readreg(device_t dev, int phy, int reg)
1146 {
1147 	struct bge_softc *sc;
1148 	uint32_t val;
1149 	int i;
1150 
1151 	sc = device_get_softc(dev);
1152 
1153 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1154 		return (0);
1155 
1156 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1157 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1158 		CSR_WRITE_4(sc, BGE_MI_MODE,
1159 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1160 		DELAY(80);
1161 	}
1162 
1163 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1164 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1165 
1166 	/* Poll for the PHY register access to complete. */
1167 	for (i = 0; i < BGE_TIMEOUT; i++) {
1168 		DELAY(10);
1169 		val = CSR_READ_4(sc, BGE_MI_COMM);
1170 		if ((val & BGE_MICOMM_BUSY) == 0) {
1171 			DELAY(5);
1172 			val = CSR_READ_4(sc, BGE_MI_COMM);
1173 			break;
1174 		}
1175 	}
1176 
1177 	if (i == BGE_TIMEOUT) {
1178 		device_printf(sc->bge_dev,
1179 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1180 		    phy, reg, val);
1181 		val = 0;
1182 	}
1183 
1184 	/* Restore the autopoll bit if necessary. */
1185 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1186 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1187 		DELAY(80);
1188 	}
1189 
1190 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1191 
1192 	if (val & BGE_MICOMM_READFAIL)
1193 		return (0);
1194 
1195 	return (val & 0xFFFF);
1196 }
1197 
1198 static int
1199 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1200 {
1201 	struct bge_softc *sc;
1202 	int i;
1203 
1204 	sc = device_get_softc(dev);
1205 
1206 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1207 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1208 		return (0);
1209 
1210 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1211 		return (0);
1212 
1213 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1214 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1215 		CSR_WRITE_4(sc, BGE_MI_MODE,
1216 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1217 		DELAY(80);
1218 	}
1219 
1220 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1221 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1222 
1223 	for (i = 0; i < BGE_TIMEOUT; i++) {
1224 		DELAY(10);
1225 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1226 			DELAY(5);
1227 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1228 			break;
1229 		}
1230 	}
1231 
1232 	/* Restore the autopoll bit if necessary. */
1233 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1234 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1235 		DELAY(80);
1236 	}
1237 
1238 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1239 
1240 	if (i == BGE_TIMEOUT)
1241 		device_printf(sc->bge_dev,
1242 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1243 		    phy, reg, val);
1244 
1245 	return (0);
1246 }
1247 
1248 static void
1249 bge_miibus_statchg(device_t dev)
1250 {
1251 	struct bge_softc *sc;
1252 	struct mii_data *mii;
1253 	uint32_t mac_mode, rx_mode, tx_mode;
1254 
1255 	sc = device_get_softc(dev);
1256 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1257 		return;
1258 	mii = device_get_softc(sc->bge_miibus);
1259 
1260 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1261 	    (IFM_ACTIVE | IFM_AVALID)) {
1262 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1263 		case IFM_10_T:
1264 		case IFM_100_TX:
1265 			sc->bge_link = 1;
1266 			break;
1267 		case IFM_1000_T:
1268 		case IFM_1000_SX:
1269 		case IFM_2500_SX:
1270 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1271 				sc->bge_link = 1;
1272 			else
1273 				sc->bge_link = 0;
1274 			break;
1275 		default:
1276 			sc->bge_link = 0;
1277 			break;
1278 		}
1279 	} else
1280 		sc->bge_link = 0;
1281 	if (sc->bge_link == 0)
1282 		return;
1283 
1284 	/*
1285 	 * APE firmware touches these registers to keep the MAC
1286 	 * connected to the outside world.  Try to keep the
1287 	 * accesses atomic.
1288 	 */
1289 
1290 	/* Set the port mode (MII/GMII) to match the link speed. */
1291 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1292 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1293 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1294 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1295 
1296 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1297 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1298 		mac_mode |= BGE_PORTMODE_GMII;
1299 	else
1300 		mac_mode |= BGE_PORTMODE_MII;
1301 
1302 	/* Set MAC flow control behavior to match link flow control settings. */
1303 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1304 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1305 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1306 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1307 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1308 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1309 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1310 	} else
1311 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1312 
1313 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1314 	DELAY(40);
1315 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1316 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1317 }
1318 
1319 /*
1320  * Intialize a standard receive ring descriptor.
1321  */
1322 static int
1323 bge_newbuf_std(struct bge_softc *sc, int i)
1324 {
1325 	struct mbuf *m;
1326 	struct bge_rx_bd *r;
1327 	bus_dma_segment_t segs[1];
1328 	bus_dmamap_t map;
1329 	int error, nsegs;
1330 
1331 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1332 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1333 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1334 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1335 		if (m == NULL)
1336 			return (ENOBUFS);
1337 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1338 	} else {
1339 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1340 		if (m == NULL)
1341 			return (ENOBUFS);
1342 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1343 	}
1344 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1345 		m_adj(m, ETHER_ALIGN);
1346 
1347 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1348 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1349 	if (error != 0) {
1350 		m_freem(m);
1351 		return (error);
1352 	}
1353 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1354 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1355 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1356 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1357 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1358 	}
1359 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1360 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1361 	sc->bge_cdata.bge_rx_std_sparemap = map;
1362 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1363 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1364 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1365 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1366 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1367 	r->bge_flags = BGE_RXBDFLAG_END;
1368 	r->bge_len = segs[0].ds_len;
1369 	r->bge_idx = i;
1370 
1371 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1372 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1373 
1374 	return (0);
1375 }
1376 
1377 /*
1378  * Initialize a jumbo receive ring descriptor. This allocates
1379  * a jumbo buffer from the pool managed internally by the driver.
1380  */
1381 static int
1382 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1383 {
1384 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1385 	bus_dmamap_t map;
1386 	struct bge_extrx_bd *r;
1387 	struct mbuf *m;
1388 	int error, nsegs;
1389 
1390 	MGETHDR(m, M_NOWAIT, MT_DATA);
1391 	if (m == NULL)
1392 		return (ENOBUFS);
1393 
1394 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1395 		m_freem(m);
1396 		return (ENOBUFS);
1397 	}
1398 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1399 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1400 		m_adj(m, ETHER_ALIGN);
1401 
1402 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1403 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1404 	if (error != 0) {
1405 		m_freem(m);
1406 		return (error);
1407 	}
1408 
1409 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1410 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1411 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1412 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1413 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1414 	}
1415 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1416 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1417 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1418 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1419 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1420 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1421 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1422 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1423 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1424 
1425 	/*
1426 	 * Fill in the extended RX buffer descriptor.
1427 	 */
1428 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1429 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1430 	r->bge_idx = i;
1431 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1432 	switch (nsegs) {
1433 	case 4:
1434 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1435 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1436 		r->bge_len3 = segs[3].ds_len;
1437 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1438 	case 3:
1439 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1440 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1441 		r->bge_len2 = segs[2].ds_len;
1442 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1443 	case 2:
1444 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1445 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1446 		r->bge_len1 = segs[1].ds_len;
1447 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1448 	case 1:
1449 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1450 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1451 		r->bge_len0 = segs[0].ds_len;
1452 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1453 		break;
1454 	default:
1455 		panic("%s: %d segments\n", __func__, nsegs);
1456 	}
1457 
1458 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1459 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1460 
1461 	return (0);
1462 }
1463 
1464 static int
1465 bge_init_rx_ring_std(struct bge_softc *sc)
1466 {
1467 	int error, i;
1468 
1469 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1470 	sc->bge_std = 0;
1471 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1472 		if ((error = bge_newbuf_std(sc, i)) != 0)
1473 			return (error);
1474 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1475 	}
1476 
1477 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1478 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1479 
1480 	sc->bge_std = 0;
1481 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1482 
1483 	return (0);
1484 }
1485 
1486 static void
1487 bge_free_rx_ring_std(struct bge_softc *sc)
1488 {
1489 	int i;
1490 
1491 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1492 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1493 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1494 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1495 			    BUS_DMASYNC_POSTREAD);
1496 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1497 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1498 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1499 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1500 		}
1501 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1502 		    sizeof(struct bge_rx_bd));
1503 	}
1504 }
1505 
1506 static int
1507 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1508 {
1509 	struct bge_rcb *rcb;
1510 	int error, i;
1511 
1512 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1513 	sc->bge_jumbo = 0;
1514 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1515 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1516 			return (error);
1517 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1518 	}
1519 
1520 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1521 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1522 
1523 	sc->bge_jumbo = 0;
1524 
1525 	/* Enable the jumbo receive producer ring. */
1526 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1527 	rcb->bge_maxlen_flags =
1528 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1529 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1530 
1531 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1532 
1533 	return (0);
1534 }
1535 
1536 static void
1537 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1538 {
1539 	int i;
1540 
1541 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1542 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1543 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1544 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1545 			    BUS_DMASYNC_POSTREAD);
1546 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1547 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1548 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1549 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1550 		}
1551 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1552 		    sizeof(struct bge_extrx_bd));
1553 	}
1554 }
1555 
1556 static void
1557 bge_free_tx_ring(struct bge_softc *sc)
1558 {
1559 	int i;
1560 
1561 	if (sc->bge_ldata.bge_tx_ring == NULL)
1562 		return;
1563 
1564 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1565 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1566 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1567 			    sc->bge_cdata.bge_tx_dmamap[i],
1568 			    BUS_DMASYNC_POSTWRITE);
1569 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1570 			    sc->bge_cdata.bge_tx_dmamap[i]);
1571 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1572 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1573 		}
1574 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1575 		    sizeof(struct bge_tx_bd));
1576 	}
1577 }
1578 
1579 static int
1580 bge_init_tx_ring(struct bge_softc *sc)
1581 {
1582 	sc->bge_txcnt = 0;
1583 	sc->bge_tx_saved_considx = 0;
1584 
1585 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1586 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1587 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1588 
1589 	/* Initialize transmit producer index for host-memory send ring. */
1590 	sc->bge_tx_prodidx = 0;
1591 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1592 
1593 	/* 5700 b2 errata */
1594 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1595 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1596 
1597 	/* NIC-memory send ring not used; initialize to zero. */
1598 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1599 	/* 5700 b2 errata */
1600 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1601 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1602 
1603 	return (0);
1604 }
1605 
1606 static void
1607 bge_setpromisc(struct bge_softc *sc)
1608 {
1609 	if_t ifp;
1610 
1611 	BGE_LOCK_ASSERT(sc);
1612 
1613 	ifp = sc->bge_ifp;
1614 
1615 	/* Enable or disable promiscuous mode as needed. */
1616 	if (if_getflags(ifp) & IFF_PROMISC)
1617 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1618 	else
1619 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1620 }
1621 
1622 static void
1623 bge_setmulti(struct bge_softc *sc)
1624 {
1625 	if_t ifp;
1626 	int mc_count = 0;
1627 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1628 	int h, i, mcnt;
1629 	unsigned char *mta;
1630 
1631 	BGE_LOCK_ASSERT(sc);
1632 
1633 	ifp = sc->bge_ifp;
1634 
1635 	mc_count = if_multiaddr_count(ifp, -1);
1636 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1637 	    mc_count, M_DEVBUF, M_NOWAIT);
1638 
1639 	if(mta == NULL) {
1640 		device_printf(sc->bge_dev,
1641 		    "Failed to allocated temp mcast list\n");
1642 		return;
1643 	}
1644 
1645 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1646 		for (i = 0; i < 4; i++)
1647 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1648 		free(mta, M_DEVBUF);
1649 		return;
1650 	}
1651 
1652 	/* First, zot all the existing filters. */
1653 	for (i = 0; i < 4; i++)
1654 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1655 
1656 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1657 	for(i = 0; i < mcnt; i++) {
1658 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1659 		    ETHER_ADDR_LEN) & 0x7F;
1660 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1661 	}
1662 
1663 	for (i = 0; i < 4; i++)
1664 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1665 
1666 	free(mta, M_DEVBUF);
1667 }
1668 
1669 static void
1670 bge_setvlan(struct bge_softc *sc)
1671 {
1672 	if_t ifp;
1673 
1674 	BGE_LOCK_ASSERT(sc);
1675 
1676 	ifp = sc->bge_ifp;
1677 
1678 	/* Enable or disable VLAN tag stripping as needed. */
1679 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1680 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1681 	else
1682 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1683 }
1684 
1685 static void
1686 bge_sig_pre_reset(struct bge_softc *sc, int type)
1687 {
1688 
1689 	/*
1690 	 * Some chips don't like this so only do this if ASF is enabled
1691 	 */
1692 	if (sc->bge_asf_mode)
1693 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1694 
1695 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1696 		switch (type) {
1697 		case BGE_RESET_START:
1698 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1699 			    BGE_FW_DRV_STATE_START);
1700 			break;
1701 		case BGE_RESET_SHUTDOWN:
1702 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1703 			    BGE_FW_DRV_STATE_UNLOAD);
1704 			break;
1705 		case BGE_RESET_SUSPEND:
1706 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1707 			    BGE_FW_DRV_STATE_SUSPEND);
1708 			break;
1709 		}
1710 	}
1711 
1712 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1713 		bge_ape_driver_state_change(sc, type);
1714 }
1715 
1716 static void
1717 bge_sig_post_reset(struct bge_softc *sc, int type)
1718 {
1719 
1720 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1721 		switch (type) {
1722 		case BGE_RESET_START:
1723 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1724 			    BGE_FW_DRV_STATE_START_DONE);
1725 			/* START DONE */
1726 			break;
1727 		case BGE_RESET_SHUTDOWN:
1728 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1729 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1730 			break;
1731 		}
1732 	}
1733 	if (type == BGE_RESET_SHUTDOWN)
1734 		bge_ape_driver_state_change(sc, type);
1735 }
1736 
1737 static void
1738 bge_sig_legacy(struct bge_softc *sc, int type)
1739 {
1740 
1741 	if (sc->bge_asf_mode) {
1742 		switch (type) {
1743 		case BGE_RESET_START:
1744 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1745 			    BGE_FW_DRV_STATE_START);
1746 			break;
1747 		case BGE_RESET_SHUTDOWN:
1748 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1749 			    BGE_FW_DRV_STATE_UNLOAD);
1750 			break;
1751 		}
1752 	}
1753 }
1754 
1755 static void
1756 bge_stop_fw(struct bge_softc *sc)
1757 {
1758 	int i;
1759 
1760 	if (sc->bge_asf_mode) {
1761 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1762 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1763 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1764 
1765 		for (i = 0; i < 100; i++ ) {
1766 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1767 			    BGE_RX_CPU_DRV_EVENT))
1768 				break;
1769 			DELAY(10);
1770 		}
1771 	}
1772 }
1773 
1774 static uint32_t
1775 bge_dma_swap_options(struct bge_softc *sc)
1776 {
1777 	uint32_t dma_options;
1778 
1779 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1780 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1781 #if BYTE_ORDER == BIG_ENDIAN
1782 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1783 #endif
1784 	return (dma_options);
1785 }
1786 
1787 /*
1788  * Do endian, PCI and DMA initialization.
1789  */
1790 static int
1791 bge_chipinit(struct bge_softc *sc)
1792 {
1793 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1794 	uint16_t val;
1795 	int i;
1796 
1797 	/* Set endianness before we access any non-PCI registers. */
1798 	misc_ctl = BGE_INIT;
1799 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1800 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1801 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1802 
1803 	/*
1804 	 * Clear the MAC statistics block in the NIC's
1805 	 * internal memory.
1806 	 */
1807 	for (i = BGE_STATS_BLOCK;
1808 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1809 		BGE_MEMWIN_WRITE(sc, i, 0);
1810 
1811 	for (i = BGE_STATUS_BLOCK;
1812 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1813 		BGE_MEMWIN_WRITE(sc, i, 0);
1814 
1815 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1816 		/*
1817 		 *  Fix data corruption caused by non-qword write with WB.
1818 		 *  Fix master abort in PCI mode.
1819 		 *  Fix PCI latency timer.
1820 		 */
1821 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1822 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1823 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1824 	}
1825 
1826 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1827 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1828 		/*
1829 		 * For the 57766 and non Ax versions of 57765, bootcode
1830 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1831 		 * value to prevent transmit hangs.
1832 		 */
1833 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1834 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1835 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1836 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1837 		}
1838 	}
1839 
1840 	/*
1841 	 * Set up the PCI DMA control register.
1842 	 */
1843 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1844 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1845 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1846 		if (sc->bge_mps >= 256)
1847 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1848 		else
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1850 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1851 		if (BGE_IS_5714_FAMILY(sc)) {
1852 			/* 256 bytes for read and write. */
1853 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1854 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1855 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1856 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1857 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1858 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1859 			/*
1860 			 * In the BCM5703, the DMA read watermark should
1861 			 * be set to less than or equal to the maximum
1862 			 * memory read byte count of the PCI-X command
1863 			 * register.
1864 			 */
1865 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1866 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1867 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1868 			/* 1536 bytes for read, 384 bytes for write. */
1869 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1870 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1871 		} else {
1872 			/* 384 bytes for read and write. */
1873 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1874 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1875 			    0x0F;
1876 		}
1877 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1878 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1879 			uint32_t tmp;
1880 
1881 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1882 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1883 			if (tmp == 6 || tmp == 7)
1884 				dma_rw_ctl |=
1885 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1886 
1887 			/* Set PCI-X DMA write workaround. */
1888 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1889 		}
1890 	} else {
1891 		/* Conventional PCI bus: 256 bytes for read and write. */
1892 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1893 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1894 
1895 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1896 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1897 			dma_rw_ctl |= 0x0F;
1898 	}
1899 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1900 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1901 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1902 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1903 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1904 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1905 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1906 	if (BGE_IS_5717_PLUS(sc)) {
1907 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1908 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1909 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1910 		/*
1911 		 * Enable HW workaround for controllers that misinterpret
1912 		 * a status tag update and leave interrupts permanently
1913 		 * disabled.
1914 		 */
1915 		if (!BGE_IS_57765_PLUS(sc) &&
1916 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1917 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1918 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1919 	}
1920 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1921 
1922 	/*
1923 	 * Set up general mode register.
1924 	 */
1925 	mode_ctl = bge_dma_swap_options(sc);
1926 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1927 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1928 		/* Retain Host-2-BMC settings written by APE firmware. */
1929 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1930 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1931 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1932 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1933 	}
1934 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1935 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1936 
1937 	/*
1938 	 * BCM5701 B5 have a bug causing data corruption when using
1939 	 * 64-bit DMA reads, which can be terminated early and then
1940 	 * completed later as 32-bit accesses, in combination with
1941 	 * certain bridges.
1942 	 */
1943 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1944 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1945 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1946 
1947 	/*
1948 	 * Tell the firmware the driver is running
1949 	 */
1950 	if (sc->bge_asf_mode & ASF_STACKUP)
1951 		mode_ctl |= BGE_MODECTL_STACKUP;
1952 
1953 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1954 
1955 	/*
1956 	 * Disable memory write invalidate.  Apparently it is not supported
1957 	 * properly by these devices.
1958 	 */
1959 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1960 
1961 	/* Set the timer prescaler (always 66 MHz). */
1962 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1963 
1964 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1965 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1966 		DELAY(40);	/* XXX */
1967 
1968 		/* Put PHY into ready state */
1969 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1970 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1971 		DELAY(40);
1972 	}
1973 
1974 	return (0);
1975 }
1976 
1977 static int
1978 bge_blockinit(struct bge_softc *sc)
1979 {
1980 	struct bge_rcb *rcb;
1981 	bus_size_t vrcb;
1982 	bge_hostaddr taddr;
1983 	uint32_t dmactl, rdmareg, val;
1984 	int i, limit;
1985 
1986 	/*
1987 	 * Initialize the memory window pointer register so that
1988 	 * we can access the first 32K of internal NIC RAM. This will
1989 	 * allow us to set up the TX send ring RCBs and the RX return
1990 	 * ring RCBs, plus other things which live in NIC memory.
1991 	 */
1992 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1993 
1994 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1995 
1996 	if (!(BGE_IS_5705_PLUS(sc))) {
1997 		/* Configure mbuf memory pool */
1998 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1999 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
2000 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2001 		else
2002 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2003 
2004 		/* Configure DMA resource pool */
2005 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2006 		    BGE_DMA_DESCRIPTORS);
2007 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2008 	}
2009 
2010 	/* Configure mbuf pool watermarks */
2011 	if (BGE_IS_5717_PLUS(sc)) {
2012 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2013 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2014 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2015 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2016 		} else {
2017 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2018 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2019 		}
2020 	} else if (!BGE_IS_5705_PLUS(sc)) {
2021 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2022 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2024 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2026 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2027 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2028 	} else {
2029 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2030 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2031 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2032 	}
2033 
2034 	/* Configure DMA resource watermarks */
2035 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2036 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2037 
2038 	/* Enable buffer manager */
2039 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2040 	/*
2041 	 * Change the arbitration algorithm of TXMBUF read request to
2042 	 * round-robin instead of priority based for BCM5719.  When
2043 	 * TXFIFO is almost empty, RDMA will hold its request until
2044 	 * TXFIFO is not almost empty.
2045 	 */
2046 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2047 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2048 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2049 
2050 	/* Poll for buffer manager start indication */
2051 	for (i = 0; i < BGE_TIMEOUT; i++) {
2052 		DELAY(10);
2053 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2054 			break;
2055 	}
2056 
2057 	if (i == BGE_TIMEOUT) {
2058 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2059 		return (ENXIO);
2060 	}
2061 
2062 	/* Enable flow-through queues */
2063 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2064 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2065 
2066 	/* Wait until queue initialization is complete */
2067 	for (i = 0; i < BGE_TIMEOUT; i++) {
2068 		DELAY(10);
2069 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2070 			break;
2071 	}
2072 
2073 	if (i == BGE_TIMEOUT) {
2074 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2075 		return (ENXIO);
2076 	}
2077 
2078 	/*
2079 	 * Summary of rings supported by the controller:
2080 	 *
2081 	 * Standard Receive Producer Ring
2082 	 * - This ring is used to feed receive buffers for "standard"
2083 	 *   sized frames (typically 1536 bytes) to the controller.
2084 	 *
2085 	 * Jumbo Receive Producer Ring
2086 	 * - This ring is used to feed receive buffers for jumbo sized
2087 	 *   frames (i.e. anything bigger than the "standard" frames)
2088 	 *   to the controller.
2089 	 *
2090 	 * Mini Receive Producer Ring
2091 	 * - This ring is used to feed receive buffers for "mini"
2092 	 *   sized frames to the controller.
2093 	 * - This feature required external memory for the controller
2094 	 *   but was never used in a production system.  Should always
2095 	 *   be disabled.
2096 	 *
2097 	 * Receive Return Ring
2098 	 * - After the controller has placed an incoming frame into a
2099 	 *   receive buffer that buffer is moved into a receive return
2100 	 *   ring.  The driver is then responsible to passing the
2101 	 *   buffer up to the stack.  Many versions of the controller
2102 	 *   support multiple RR rings.
2103 	 *
2104 	 * Send Ring
2105 	 * - This ring is used for outgoing frames.  Many versions of
2106 	 *   the controller support multiple send rings.
2107 	 */
2108 
2109 	/* Initialize the standard receive producer ring control block. */
2110 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2111 	rcb->bge_hostaddr.bge_addr_lo =
2112 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2113 	rcb->bge_hostaddr.bge_addr_hi =
2114 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2115 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2116 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2117 	if (BGE_IS_5717_PLUS(sc)) {
2118 		/*
2119 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2120 		 * Bits 15-2 : Maximum RX frame size
2121 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2122 		 * Bit 0     : Reserved
2123 		 */
2124 		rcb->bge_maxlen_flags =
2125 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2126 	} else if (BGE_IS_5705_PLUS(sc)) {
2127 		/*
2128 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2129 		 * Bits 15-2 : Reserved (should be 0)
2130 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2131 		 * Bit 0     : Reserved
2132 		 */
2133 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2134 	} else {
2135 		/*
2136 		 * Ring size is always XXX entries
2137 		 * Bits 31-16: Maximum RX frame size
2138 		 * Bits 15-2 : Reserved (should be 0)
2139 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2140 		 * Bit 0     : Reserved
2141 		 */
2142 		rcb->bge_maxlen_flags =
2143 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2144 	}
2145 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2146 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2147 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2148 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2149 	else
2150 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2151 	/* Write the standard receive producer ring control block. */
2152 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2153 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2154 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2155 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2156 
2157 	/* Reset the standard receive producer ring producer index. */
2158 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2159 
2160 	/*
2161 	 * Initialize the jumbo RX producer ring control
2162 	 * block.  We set the 'ring disabled' bit in the
2163 	 * flags field until we're actually ready to start
2164 	 * using this ring (i.e. once we set the MTU
2165 	 * high enough to require it).
2166 	 */
2167 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2168 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2169 		/* Get the jumbo receive producer ring RCB parameters. */
2170 		rcb->bge_hostaddr.bge_addr_lo =
2171 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2172 		rcb->bge_hostaddr.bge_addr_hi =
2173 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2174 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2175 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2176 		    BUS_DMASYNC_PREREAD);
2177 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2178 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2179 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2180 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2181 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2182 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2183 		else
2184 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2185 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2186 		    rcb->bge_hostaddr.bge_addr_hi);
2187 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2188 		    rcb->bge_hostaddr.bge_addr_lo);
2189 		/* Program the jumbo receive producer ring RCB parameters. */
2190 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2191 		    rcb->bge_maxlen_flags);
2192 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2193 		/* Reset the jumbo receive producer ring producer index. */
2194 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2195 	}
2196 
2197 	/* Disable the mini receive producer ring RCB. */
2198 	if (BGE_IS_5700_FAMILY(sc)) {
2199 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2200 		rcb->bge_maxlen_flags =
2201 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2202 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2203 		    rcb->bge_maxlen_flags);
2204 		/* Reset the mini receive producer ring producer index. */
2205 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2206 	}
2207 
2208 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2209 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2210 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2211 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2212 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2213 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2214 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2215 	}
2216 	/*
2217 	 * The BD ring replenish thresholds control how often the
2218 	 * hardware fetches new BD's from the producer rings in host
2219 	 * memory.  Setting the value too low on a busy system can
2220 	 * starve the hardware and recue the throughpout.
2221 	 *
2222 	 * Set the BD ring replentish thresholds. The recommended
2223 	 * values are 1/8th the number of descriptors allocated to
2224 	 * each ring.
2225 	 * XXX The 5754 requires a lower threshold, so it might be a
2226 	 * requirement of all 575x family chips.  The Linux driver sets
2227 	 * the lower threshold for all 5705 family chips as well, but there
2228 	 * are reports that it might not need to be so strict.
2229 	 *
2230 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2231 	 * well.
2232 	 */
2233 	if (BGE_IS_5705_PLUS(sc))
2234 		val = 8;
2235 	else
2236 		val = BGE_STD_RX_RING_CNT / 8;
2237 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2238 	if (BGE_IS_JUMBO_CAPABLE(sc))
2239 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2240 		    BGE_JUMBO_RX_RING_CNT/8);
2241 	if (BGE_IS_5717_PLUS(sc)) {
2242 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2243 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2244 	}
2245 
2246 	/*
2247 	 * Disable all send rings by setting the 'ring disabled' bit
2248 	 * in the flags field of all the TX send ring control blocks,
2249 	 * located in NIC memory.
2250 	 */
2251 	if (!BGE_IS_5705_PLUS(sc))
2252 		/* 5700 to 5704 had 16 send rings. */
2253 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2254 	else if (BGE_IS_57765_PLUS(sc) ||
2255 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2256 		limit = 2;
2257 	else if (BGE_IS_5717_PLUS(sc))
2258 		limit = 4;
2259 	else
2260 		limit = 1;
2261 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2262 	for (i = 0; i < limit; i++) {
2263 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2264 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2265 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2266 		vrcb += sizeof(struct bge_rcb);
2267 	}
2268 
2269 	/* Configure send ring RCB 0 (we use only the first ring) */
2270 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2271 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2272 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2273 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2274 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2275 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2276 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2277 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2278 	else
2279 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2280 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2281 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2282 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2283 
2284 	/*
2285 	 * Disable all receive return rings by setting the
2286 	 * 'ring diabled' bit in the flags field of all the receive
2287 	 * return ring control blocks, located in NIC memory.
2288 	 */
2289 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2290 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2291 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2292 		/* Should be 17, use 16 until we get an SRAM map. */
2293 		limit = 16;
2294 	} else if (!BGE_IS_5705_PLUS(sc))
2295 		limit = BGE_RX_RINGS_MAX;
2296 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2297 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2298 	    BGE_IS_57765_PLUS(sc))
2299 		limit = 4;
2300 	else
2301 		limit = 1;
2302 	/* Disable all receive return rings. */
2303 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2304 	for (i = 0; i < limit; i++) {
2305 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2306 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2307 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2308 		    BGE_RCB_FLAG_RING_DISABLED);
2309 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2310 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2311 		    (i * (sizeof(uint64_t))), 0);
2312 		vrcb += sizeof(struct bge_rcb);
2313 	}
2314 
2315 	/*
2316 	 * Set up receive return ring 0.  Note that the NIC address
2317 	 * for RX return rings is 0x0.  The return rings live entirely
2318 	 * within the host, so the nicaddr field in the RCB isn't used.
2319 	 */
2320 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2321 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2322 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2323 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2324 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2325 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2326 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2327 
2328 	/* Set random backoff seed for TX */
2329 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2330 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2331 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2332 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2333 	    BGE_TX_BACKOFF_SEED_MASK);
2334 
2335 	/* Set inter-packet gap */
2336 	val = 0x2620;
2337 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2338 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2339 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2340 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2341 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2342 
2343 	/*
2344 	 * Specify which ring to use for packets that don't match
2345 	 * any RX rules.
2346 	 */
2347 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2348 
2349 	/*
2350 	 * Configure number of RX lists. One interrupt distribution
2351 	 * list, sixteen active lists, one bad frames class.
2352 	 */
2353 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2354 
2355 	/* Inialize RX list placement stats mask. */
2356 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2357 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2358 
2359 	/* Disable host coalescing until we get it set up */
2360 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2361 
2362 	/* Poll to make sure it's shut down. */
2363 	for (i = 0; i < BGE_TIMEOUT; i++) {
2364 		DELAY(10);
2365 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2366 			break;
2367 	}
2368 
2369 	if (i == BGE_TIMEOUT) {
2370 		device_printf(sc->bge_dev,
2371 		    "host coalescing engine failed to idle\n");
2372 		return (ENXIO);
2373 	}
2374 
2375 	/* Set up host coalescing defaults */
2376 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2377 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2380 	if (!(BGE_IS_5705_PLUS(sc))) {
2381 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2382 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2383 	}
2384 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2385 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2386 
2387 	/* Set up address of statistics block */
2388 	if (!(BGE_IS_5705_PLUS(sc))) {
2389 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2390 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2391 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2392 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2393 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2394 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2395 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2396 	}
2397 
2398 	/* Set up address of status block */
2399 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2400 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2401 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2402 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2403 
2404 	/* Set up status block size. */
2405 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2406 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2407 		val = BGE_STATBLKSZ_FULL;
2408 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2409 	} else {
2410 		val = BGE_STATBLKSZ_32BYTE;
2411 		bzero(sc->bge_ldata.bge_status_block, 32);
2412 	}
2413 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2414 	    sc->bge_cdata.bge_status_map,
2415 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2416 
2417 	/* Turn on host coalescing state machine */
2418 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2419 
2420 	/* Turn on RX BD completion state machine and enable attentions */
2421 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2422 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2423 
2424 	/* Turn on RX list placement state machine */
2425 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2426 
2427 	/* Turn on RX list selector state machine. */
2428 	if (!(BGE_IS_5705_PLUS(sc)))
2429 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2430 
2431 	/* Turn on DMA, clear stats. */
2432 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2433 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2434 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2435 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2436 
2437 	if (sc->bge_flags & BGE_FLAG_TBI)
2438 		val |= BGE_PORTMODE_TBI;
2439 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2440 		val |= BGE_PORTMODE_GMII;
2441 	else
2442 		val |= BGE_PORTMODE_MII;
2443 
2444 	/* Allow APE to send/receive frames. */
2445 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2446 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2447 
2448 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2449 	DELAY(40);
2450 
2451 	/* Set misc. local control, enable interrupts on attentions */
2452 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2453 
2454 #ifdef notdef
2455 	/* Assert GPIO pins for PHY reset */
2456 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2457 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2458 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2459 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2460 #endif
2461 
2462 	/* Turn on DMA completion state machine */
2463 	if (!(BGE_IS_5705_PLUS(sc)))
2464 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2465 
2466 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2467 
2468 	/* Enable host coalescing bug fix. */
2469 	if (BGE_IS_5755_PLUS(sc))
2470 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2471 
2472 	/* Request larger DMA burst size to get better performance. */
2473 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2474 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2475 
2476 	/* Turn on write DMA state machine */
2477 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2478 	DELAY(40);
2479 
2480 	/* Turn on read DMA state machine */
2481 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2482 
2483 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2484 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2485 
2486 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2487 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2488 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2489 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2490 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2491 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2492 	if (sc->bge_flags & BGE_FLAG_PCIE)
2493 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2494 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2495 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2496 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2497 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2498 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2499 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2500 	}
2501 
2502 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2503 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2504 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2505 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2506 		/*
2507 		 * Allow multiple outstanding read requests from
2508 		 * non-LSO read DMA engine.
2509 		 */
2510 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2511 	}
2512 
2513 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2514 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2515 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2516 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2517 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2518 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2519 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2520 		else
2521 			rdmareg = BGE_RDMA_RSRVCTRL;
2522 		dmactl = CSR_READ_4(sc, rdmareg);
2523 		/*
2524 		 * Adjust tx margin to prevent TX data corruption and
2525 		 * fix internal FIFO overflow.
2526 		 */
2527 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2528 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2529 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2530 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2531 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2532 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2533 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2534 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2535 		}
2536 		/*
2537 		 * Enable fix for read DMA FIFO overruns.
2538 		 * The fix is to limit the number of RX BDs
2539 		 * the hardware would fetch at a fime.
2540 		 */
2541 		CSR_WRITE_4(sc, rdmareg, dmactl |
2542 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2543 	}
2544 
2545 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2546 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2547 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2548 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2549 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2550 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2551 		/*
2552 		 * Allow 4KB burst length reads for non-LSO frames.
2553 		 * Enable 512B burst length reads for buffer descriptors.
2554 		 */
2555 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2556 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2557 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2558 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2559 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2560 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2561 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2562 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2563 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2564 	}
2565 
2566 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2567 	DELAY(40);
2568 
2569 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2570 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2571 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2572 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2573 				break;
2574 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2575 				break;
2576 		}
2577 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2578 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2579 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2580 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2581 			else
2582 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2583 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2584 		}
2585 	}
2586 
2587 	/* Turn on RX data completion state machine */
2588 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2589 
2590 	/* Turn on RX BD initiator state machine */
2591 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2592 
2593 	/* Turn on RX data and RX BD initiator state machine */
2594 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2595 
2596 	/* Turn on Mbuf cluster free state machine */
2597 	if (!(BGE_IS_5705_PLUS(sc)))
2598 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2599 
2600 	/* Turn on send BD completion state machine */
2601 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2602 
2603 	/* Turn on send data completion state machine */
2604 	val = BGE_SDCMODE_ENABLE;
2605 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2606 		val |= BGE_SDCMODE_CDELAY;
2607 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2608 
2609 	/* Turn on send data initiator state machine */
2610 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2611 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2612 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2613 	else
2614 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2615 
2616 	/* Turn on send BD initiator state machine */
2617 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2618 
2619 	/* Turn on send BD selector state machine */
2620 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2621 
2622 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2623 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2624 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2625 
2626 	/* ack/clear link change events */
2627 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2628 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2629 	    BGE_MACSTAT_LINK_CHANGED);
2630 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2631 
2632 	/*
2633 	 * Enable attention when the link has changed state for
2634 	 * devices that use auto polling.
2635 	 */
2636 	if (sc->bge_flags & BGE_FLAG_TBI) {
2637 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2638 	} else {
2639 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2640 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2641 			DELAY(80);
2642 		}
2643 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2644 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2645 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2646 			    BGE_EVTENB_MI_INTERRUPT);
2647 	}
2648 
2649 	/*
2650 	 * Clear any pending link state attention.
2651 	 * Otherwise some link state change events may be lost until attention
2652 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2653 	 * It's not necessary on newer BCM chips - perhaps enabling link
2654 	 * state change attentions implies clearing pending attention.
2655 	 */
2656 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2657 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2658 	    BGE_MACSTAT_LINK_CHANGED);
2659 
2660 	/* Enable link state change attentions. */
2661 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2662 
2663 	return (0);
2664 }
2665 
2666 static const struct bge_revision *
2667 bge_lookup_rev(uint32_t chipid)
2668 {
2669 	const struct bge_revision *br;
2670 
2671 	for (br = bge_revisions; br->br_name != NULL; br++) {
2672 		if (br->br_chipid == chipid)
2673 			return (br);
2674 	}
2675 
2676 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2677 		if (br->br_chipid == BGE_ASICREV(chipid))
2678 			return (br);
2679 	}
2680 
2681 	return (NULL);
2682 }
2683 
2684 static const struct bge_vendor *
2685 bge_lookup_vendor(uint16_t vid)
2686 {
2687 	const struct bge_vendor *v;
2688 
2689 	for (v = bge_vendors; v->v_name != NULL; v++)
2690 		if (v->v_id == vid)
2691 			return (v);
2692 
2693 	return (NULL);
2694 }
2695 
2696 static uint32_t
2697 bge_chipid(device_t dev)
2698 {
2699 	uint32_t id;
2700 
2701 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2702 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2703 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2704 		/*
2705 		 * Find the ASCI revision.  Different chips use different
2706 		 * registers.
2707 		 */
2708 		switch (pci_get_device(dev)) {
2709 		case BCOM_DEVICEID_BCM5717C:
2710 			/* 5717 C0 seems to belong to 5720 line. */
2711 			id = BGE_CHIPID_BCM5720_A0;
2712 			break;
2713 		case BCOM_DEVICEID_BCM5717:
2714 		case BCOM_DEVICEID_BCM5718:
2715 		case BCOM_DEVICEID_BCM5719:
2716 		case BCOM_DEVICEID_BCM5720:
2717 		case BCOM_DEVICEID_BCM5725:
2718 		case BCOM_DEVICEID_BCM5727:
2719 		case BCOM_DEVICEID_BCM5762:
2720 		case BCOM_DEVICEID_BCM57764:
2721 		case BCOM_DEVICEID_BCM57767:
2722 		case BCOM_DEVICEID_BCM57787:
2723 			id = pci_read_config(dev,
2724 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2725 			break;
2726 		case BCOM_DEVICEID_BCM57761:
2727 		case BCOM_DEVICEID_BCM57762:
2728 		case BCOM_DEVICEID_BCM57765:
2729 		case BCOM_DEVICEID_BCM57766:
2730 		case BCOM_DEVICEID_BCM57781:
2731 		case BCOM_DEVICEID_BCM57782:
2732 		case BCOM_DEVICEID_BCM57785:
2733 		case BCOM_DEVICEID_BCM57786:
2734 		case BCOM_DEVICEID_BCM57791:
2735 		case BCOM_DEVICEID_BCM57795:
2736 			id = pci_read_config(dev,
2737 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2738 			break;
2739 		default:
2740 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2741 		}
2742 	}
2743 	return (id);
2744 }
2745 
2746 /*
2747  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2748  * against our list and return its name if we find a match.
2749  *
2750  * Note that since the Broadcom controller contains VPD support, we
2751  * try to get the device name string from the controller itself instead
2752  * of the compiled-in string. It guarantees we'll always announce the
2753  * right product name. We fall back to the compiled-in string when
2754  * VPD is unavailable or corrupt.
2755  */
2756 static int
2757 bge_probe(device_t dev)
2758 {
2759 	char buf[96];
2760 	char model[64];
2761 	const struct bge_revision *br;
2762 	const char *pname;
2763 	struct bge_softc *sc;
2764 	const struct bge_type *t = bge_devs;
2765 	const struct bge_vendor *v;
2766 	uint32_t id;
2767 	uint16_t did, vid;
2768 
2769 	sc = device_get_softc(dev);
2770 	sc->bge_dev = dev;
2771 	vid = pci_get_vendor(dev);
2772 	did = pci_get_device(dev);
2773 	while(t->bge_vid != 0) {
2774 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2775 			id = bge_chipid(dev);
2776 			br = bge_lookup_rev(id);
2777 			if (bge_has_eaddr(sc) &&
2778 			    pci_get_vpd_ident(dev, &pname) == 0)
2779 				snprintf(model, sizeof(model), "%s", pname);
2780 			else {
2781 				v = bge_lookup_vendor(vid);
2782 				snprintf(model, sizeof(model), "%s %s",
2783 				    v != NULL ? v->v_name : "Unknown",
2784 				    br != NULL ? br->br_name :
2785 				    "NetXtreme/NetLink Ethernet Controller");
2786 			}
2787 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2788 			    model, br != NULL ? "" : "unknown ", id);
2789 			device_set_desc_copy(dev, buf);
2790 			return (BUS_PROBE_DEFAULT);
2791 		}
2792 		t++;
2793 	}
2794 
2795 	return (ENXIO);
2796 }
2797 
2798 static void
2799 bge_dma_free(struct bge_softc *sc)
2800 {
2801 	int i;
2802 
2803 	/* Destroy DMA maps for RX buffers. */
2804 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2805 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2806 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2807 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2808 	}
2809 	if (sc->bge_cdata.bge_rx_std_sparemap)
2810 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2811 		    sc->bge_cdata.bge_rx_std_sparemap);
2812 
2813 	/* Destroy DMA maps for jumbo RX buffers. */
2814 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2815 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2816 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2817 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2818 	}
2819 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2820 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2821 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2822 
2823 	/* Destroy DMA maps for TX buffers. */
2824 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2825 		if (sc->bge_cdata.bge_tx_dmamap[i])
2826 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2827 			    sc->bge_cdata.bge_tx_dmamap[i]);
2828 	}
2829 
2830 	if (sc->bge_cdata.bge_rx_mtag)
2831 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2832 	if (sc->bge_cdata.bge_mtag_jumbo)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2834 	if (sc->bge_cdata.bge_tx_mtag)
2835 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2836 
2837 	/* Destroy standard RX ring. */
2838 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2839 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2840 		    sc->bge_cdata.bge_rx_std_ring_map);
2841 	if (sc->bge_ldata.bge_rx_std_ring)
2842 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2843 		    sc->bge_ldata.bge_rx_std_ring,
2844 		    sc->bge_cdata.bge_rx_std_ring_map);
2845 
2846 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2847 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2848 
2849 	/* Destroy jumbo RX ring. */
2850 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2851 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2852 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2853 
2854 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2855 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2856 		    sc->bge_ldata.bge_rx_jumbo_ring,
2857 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2858 
2859 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2860 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2861 
2862 	/* Destroy RX return ring. */
2863 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2864 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2865 		    sc->bge_cdata.bge_rx_return_ring_map);
2866 
2867 	if (sc->bge_ldata.bge_rx_return_ring)
2868 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2869 		    sc->bge_ldata.bge_rx_return_ring,
2870 		    sc->bge_cdata.bge_rx_return_ring_map);
2871 
2872 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2873 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2874 
2875 	/* Destroy TX ring. */
2876 	if (sc->bge_ldata.bge_tx_ring_paddr)
2877 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2878 		    sc->bge_cdata.bge_tx_ring_map);
2879 
2880 	if (sc->bge_ldata.bge_tx_ring)
2881 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2882 		    sc->bge_ldata.bge_tx_ring,
2883 		    sc->bge_cdata.bge_tx_ring_map);
2884 
2885 	if (sc->bge_cdata.bge_tx_ring_tag)
2886 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2887 
2888 	/* Destroy status block. */
2889 	if (sc->bge_ldata.bge_status_block_paddr)
2890 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2891 		    sc->bge_cdata.bge_status_map);
2892 
2893 	if (sc->bge_ldata.bge_status_block)
2894 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2895 		    sc->bge_ldata.bge_status_block,
2896 		    sc->bge_cdata.bge_status_map);
2897 
2898 	if (sc->bge_cdata.bge_status_tag)
2899 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2900 
2901 	/* Destroy statistics block. */
2902 	if (sc->bge_ldata.bge_stats_paddr)
2903 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2904 		    sc->bge_cdata.bge_stats_map);
2905 
2906 	if (sc->bge_ldata.bge_stats)
2907 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2908 		    sc->bge_ldata.bge_stats,
2909 		    sc->bge_cdata.bge_stats_map);
2910 
2911 	if (sc->bge_cdata.bge_stats_tag)
2912 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2913 
2914 	if (sc->bge_cdata.bge_buffer_tag)
2915 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2916 
2917 	/* Destroy the parent tag. */
2918 	if (sc->bge_cdata.bge_parent_tag)
2919 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2920 }
2921 
2922 static int
2923 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2924     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2925     bus_addr_t *paddr, const char *msg)
2926 {
2927 	struct bge_dmamap_arg ctx;
2928 	int error;
2929 
2930 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2931 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2932 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2933 	if (error != 0) {
2934 		device_printf(sc->bge_dev,
2935 		    "could not create %s dma tag\n", msg);
2936 		return (ENOMEM);
2937 	}
2938 	/* Allocate DMA'able memory for ring. */
2939 	error = bus_dmamem_alloc(*tag, (void **)ring,
2940 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2941 	if (error != 0) {
2942 		device_printf(sc->bge_dev,
2943 		    "could not allocate DMA'able memory for %s\n", msg);
2944 		return (ENOMEM);
2945 	}
2946 	/* Load the address of the ring. */
2947 	ctx.bge_busaddr = 0;
2948 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2949 	    &ctx, BUS_DMA_NOWAIT);
2950 	if (error != 0) {
2951 		device_printf(sc->bge_dev,
2952 		    "could not load DMA'able memory for %s\n", msg);
2953 		return (ENOMEM);
2954 	}
2955 	*paddr = ctx.bge_busaddr;
2956 	return (0);
2957 }
2958 
2959 static int
2960 bge_dma_alloc(struct bge_softc *sc)
2961 {
2962 	bus_addr_t lowaddr;
2963 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2964 	int i, error;
2965 
2966 	lowaddr = BUS_SPACE_MAXADDR;
2967 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2968 		lowaddr = BGE_DMA_MAXADDR;
2969 	/*
2970 	 * Allocate the parent bus DMA tag appropriate for PCI.
2971 	 */
2972 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2973 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2974 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2975 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2976 	if (error != 0) {
2977 		device_printf(sc->bge_dev,
2978 		    "could not allocate parent dma tag\n");
2979 		return (ENOMEM);
2980 	}
2981 
2982 	/* Create tag for standard RX ring. */
2983 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2984 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2985 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2986 	    &sc->bge_cdata.bge_rx_std_ring_map,
2987 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2988 	if (error)
2989 		return (error);
2990 
2991 	/* Create tag for RX return ring. */
2992 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2993 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2994 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2995 	    &sc->bge_cdata.bge_rx_return_ring_map,
2996 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2997 	if (error)
2998 		return (error);
2999 
3000 	/* Create tag for TX ring. */
3001 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
3002 	    &sc->bge_cdata.bge_tx_ring_tag,
3003 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3004 	    &sc->bge_cdata.bge_tx_ring_map,
3005 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3006 	if (error)
3007 		return (error);
3008 
3009 	/*
3010 	 * Create tag for status block.
3011 	 * Because we only use single Tx/Rx/Rx return ring, use
3012 	 * minimum status block size except BCM5700 AX/BX which
3013 	 * seems to want to see full status block size regardless
3014 	 * of configured number of ring.
3015 	 */
3016 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3017 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3018 		sbsz = BGE_STATUS_BLK_SZ;
3019 	else
3020 		sbsz = 32;
3021 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3022 	    &sc->bge_cdata.bge_status_tag,
3023 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3024 	    &sc->bge_cdata.bge_status_map,
3025 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3026 	if (error)
3027 		return (error);
3028 
3029 	/* Create tag for statistics block. */
3030 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3031 	    &sc->bge_cdata.bge_stats_tag,
3032 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3033 	    &sc->bge_cdata.bge_stats_map,
3034 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3035 	if (error)
3036 		return (error);
3037 
3038 	/* Create tag for jumbo RX ring. */
3039 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3040 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3041 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3042 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3043 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3044 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3045 		if (error)
3046 			return (error);
3047 	}
3048 
3049 	/* Create parent tag for buffers. */
3050 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3051 		/*
3052 		 * XXX
3053 		 * watchdog timeout issue was observed on BCM5704 which
3054 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3055 		 * Both limiting DMA address space to 32bits and flushing
3056 		 * mailbox write seem to address the issue.
3057 		 */
3058 		if (sc->bge_pcixcap != 0)
3059 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3060 	}
3061 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3062 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3063 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3064 	    &sc->bge_cdata.bge_buffer_tag);
3065 	if (error != 0) {
3066 		device_printf(sc->bge_dev,
3067 		    "could not allocate buffer dma tag\n");
3068 		return (ENOMEM);
3069 	}
3070 	/* Create tag for Tx mbufs. */
3071 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3072 		txsegsz = BGE_TSOSEG_SZ;
3073 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3074 	} else {
3075 		txsegsz = MCLBYTES;
3076 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3077 	}
3078 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3079 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3080 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3081 	    &sc->bge_cdata.bge_tx_mtag);
3082 
3083 	if (error) {
3084 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3085 		return (ENOMEM);
3086 	}
3087 
3088 	/* Create tag for Rx mbufs. */
3089 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3090 		rxmaxsegsz = MJUM9BYTES;
3091 	else
3092 		rxmaxsegsz = MCLBYTES;
3093 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3094 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3095 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3096 
3097 	if (error) {
3098 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3099 		return (ENOMEM);
3100 	}
3101 
3102 	/* Create DMA maps for RX buffers. */
3103 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3104 	    &sc->bge_cdata.bge_rx_std_sparemap);
3105 	if (error) {
3106 		device_printf(sc->bge_dev,
3107 		    "can't create spare DMA map for RX\n");
3108 		return (ENOMEM);
3109 	}
3110 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3111 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3112 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3113 		if (error) {
3114 			device_printf(sc->bge_dev,
3115 			    "can't create DMA map for RX\n");
3116 			return (ENOMEM);
3117 		}
3118 	}
3119 
3120 	/* Create DMA maps for TX buffers. */
3121 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3122 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3123 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3124 		if (error) {
3125 			device_printf(sc->bge_dev,
3126 			    "can't create DMA map for TX\n");
3127 			return (ENOMEM);
3128 		}
3129 	}
3130 
3131 	/* Create tags for jumbo RX buffers. */
3132 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3133 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3134 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3135 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3136 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3137 		if (error) {
3138 			device_printf(sc->bge_dev,
3139 			    "could not allocate jumbo dma tag\n");
3140 			return (ENOMEM);
3141 		}
3142 		/* Create DMA maps for jumbo RX buffers. */
3143 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3144 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3145 		if (error) {
3146 			device_printf(sc->bge_dev,
3147 			    "can't create spare DMA map for jumbo RX\n");
3148 			return (ENOMEM);
3149 		}
3150 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3151 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3152 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3153 			if (error) {
3154 				device_printf(sc->bge_dev,
3155 				    "can't create DMA map for jumbo RX\n");
3156 				return (ENOMEM);
3157 			}
3158 		}
3159 	}
3160 
3161 	return (0);
3162 }
3163 
3164 /*
3165  * Return true if this device has more than one port.
3166  */
3167 static int
3168 bge_has_multiple_ports(struct bge_softc *sc)
3169 {
3170 	device_t dev = sc->bge_dev;
3171 	u_int b, d, f, fscan, s;
3172 
3173 	d = pci_get_domain(dev);
3174 	b = pci_get_bus(dev);
3175 	s = pci_get_slot(dev);
3176 	f = pci_get_function(dev);
3177 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3178 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3179 			return (1);
3180 	return (0);
3181 }
3182 
3183 /*
3184  * Return true if MSI can be used with this device.
3185  */
3186 static int
3187 bge_can_use_msi(struct bge_softc *sc)
3188 {
3189 	int can_use_msi = 0;
3190 
3191 	if (sc->bge_msi == 0)
3192 		return (0);
3193 
3194 	/* Disable MSI for polling(4). */
3195 #ifdef DEVICE_POLLING
3196 	return (0);
3197 #endif
3198 	switch (sc->bge_asicrev) {
3199 	case BGE_ASICREV_BCM5714_A0:
3200 	case BGE_ASICREV_BCM5714:
3201 		/*
3202 		 * Apparently, MSI doesn't work when these chips are
3203 		 * configured in single-port mode.
3204 		 */
3205 		if (bge_has_multiple_ports(sc))
3206 			can_use_msi = 1;
3207 		break;
3208 	case BGE_ASICREV_BCM5750:
3209 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3210 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3211 			can_use_msi = 1;
3212 		break;
3213 	default:
3214 		if (BGE_IS_575X_PLUS(sc))
3215 			can_use_msi = 1;
3216 	}
3217 	return (can_use_msi);
3218 }
3219 
3220 static int
3221 bge_mbox_reorder(struct bge_softc *sc)
3222 {
3223 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3224 	static const struct mbox_reorder {
3225 		const uint16_t vendor;
3226 		const uint16_t device;
3227 		const char *desc;
3228 	} mbox_reorder_lists[] = {
3229 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3230 	};
3231 	devclass_t pci, pcib;
3232 	device_t bus, dev;
3233 	int i;
3234 
3235 	pci = devclass_find("pci");
3236 	pcib = devclass_find("pcib");
3237 	dev = sc->bge_dev;
3238 	bus = device_get_parent(dev);
3239 	for (;;) {
3240 		dev = device_get_parent(bus);
3241 		bus = device_get_parent(dev);
3242 		if (device_get_devclass(dev) != pcib)
3243 			break;
3244 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3245 			if (pci_get_vendor(dev) ==
3246 			    mbox_reorder_lists[i].vendor &&
3247 			    pci_get_device(dev) ==
3248 			    mbox_reorder_lists[i].device) {
3249 				device_printf(sc->bge_dev,
3250 				    "enabling MBOX workaround for %s\n",
3251 				    mbox_reorder_lists[i].desc);
3252 				return (1);
3253 			}
3254 		}
3255 		if (device_get_devclass(bus) != pci)
3256 			break;
3257 	}
3258 	return (0);
3259 }
3260 
3261 static void
3262 bge_devinfo(struct bge_softc *sc)
3263 {
3264 	uint32_t cfg, clk;
3265 
3266 	device_printf(sc->bge_dev,
3267 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3268 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3269 	if (sc->bge_flags & BGE_FLAG_PCIE)
3270 		printf("PCI-E\n");
3271 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3272 		printf("PCI-X ");
3273 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3274 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3275 			clk = 133;
3276 		else {
3277 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3278 			switch (clk) {
3279 			case 0:
3280 				clk = 33;
3281 				break;
3282 			case 2:
3283 				clk = 50;
3284 				break;
3285 			case 4:
3286 				clk = 66;
3287 				break;
3288 			case 6:
3289 				clk = 100;
3290 				break;
3291 			case 7:
3292 				clk = 133;
3293 				break;
3294 			}
3295 		}
3296 		printf("%u MHz\n", clk);
3297 	} else {
3298 		if (sc->bge_pcixcap != 0)
3299 			printf("PCI on PCI-X ");
3300 		else
3301 			printf("PCI ");
3302 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3303 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3304 			clk = 66;
3305 		else
3306 			clk = 33;
3307 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3308 			printf("%u MHz; 32bit\n", clk);
3309 		else
3310 			printf("%u MHz; 64bit\n", clk);
3311 	}
3312 }
3313 
3314 static int
3315 bge_attach(device_t dev)
3316 {
3317 	if_t ifp;
3318 	struct bge_softc *sc;
3319 	uint32_t hwcfg = 0, misccfg, pcistate;
3320 	u_char eaddr[ETHER_ADDR_LEN];
3321 	int capmask, error, reg, rid, trys;
3322 
3323 	sc = device_get_softc(dev);
3324 	sc->bge_dev = dev;
3325 
3326 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3327 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3328 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3329 
3330 	pci_enable_busmaster(dev);
3331 
3332 	/*
3333 	 * Allocate control/status registers.
3334 	 */
3335 	rid = PCIR_BAR(0);
3336 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3337 	    RF_ACTIVE);
3338 
3339 	if (sc->bge_res == NULL) {
3340 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3341 		error = ENXIO;
3342 		goto fail;
3343 	}
3344 
3345 	/* Save various chip information. */
3346 	sc->bge_func_addr = pci_get_function(dev);
3347 	sc->bge_chipid = bge_chipid(dev);
3348 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3349 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3350 
3351 	/* Set default PHY address. */
3352 	sc->bge_phy_addr = 1;
3353 	 /*
3354 	  * PHY address mapping for various devices.
3355 	  *
3356 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3357 	  * ---------+-------+-------+-------+-------+
3358 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3359 	  * BCM5704  |   1   |   X   |   1   |   X   |
3360 	  * BCM5717  |   1   |   8   |   2   |   9   |
3361 	  * BCM5719  |   1   |   8   |   2   |   9   |
3362 	  * BCM5720  |   1   |   8   |   2   |   9   |
3363 	  *
3364 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3365 	  * ---------+-------+-------+-------+-------+
3366 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3367 	  * BCM5704  |   X   |   X   |   X   |   X   |
3368 	  * BCM5717  |   X   |   X   |   X   |   X   |
3369 	  * BCM5719  |   3   |   10  |   4   |   11  |
3370 	  * BCM5720  |   X   |   X   |   X   |   X   |
3371 	  *
3372 	  * Other addresses may respond but they are not
3373 	  * IEEE compliant PHYs and should be ignored.
3374 	  */
3375 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3376 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3377 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3378 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3379 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3380 			    BGE_SGDIGSTS_IS_SERDES)
3381 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3382 			else
3383 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3384 		} else {
3385 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3386 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3387 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3388 			else
3389 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3390 		}
3391 	}
3392 
3393 	if (bge_has_eaddr(sc))
3394 		sc->bge_flags |= BGE_FLAG_EADDR;
3395 
3396 	/* Save chipset family. */
3397 	switch (sc->bge_asicrev) {
3398 	case BGE_ASICREV_BCM5762:
3399 	case BGE_ASICREV_BCM57765:
3400 	case BGE_ASICREV_BCM57766:
3401 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3402 		/* FALLTHROUGH */
3403 	case BGE_ASICREV_BCM5717:
3404 	case BGE_ASICREV_BCM5719:
3405 	case BGE_ASICREV_BCM5720:
3406 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3407 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3408 		    BGE_FLAG_JUMBO_FRAME;
3409 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3410 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3411 			/*
3412 			 * Enable work around for DMA engine miscalculation
3413 			 * of TXMBUF available space.
3414 			 */
3415 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3416 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3417 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3418 				/* Jumbo frame on BCM5719 A0 does not work. */
3419 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3420 			}
3421 		}
3422 		break;
3423 	case BGE_ASICREV_BCM5755:
3424 	case BGE_ASICREV_BCM5761:
3425 	case BGE_ASICREV_BCM5784:
3426 	case BGE_ASICREV_BCM5785:
3427 	case BGE_ASICREV_BCM5787:
3428 	case BGE_ASICREV_BCM57780:
3429 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3430 		    BGE_FLAG_5705_PLUS;
3431 		break;
3432 	case BGE_ASICREV_BCM5700:
3433 	case BGE_ASICREV_BCM5701:
3434 	case BGE_ASICREV_BCM5703:
3435 	case BGE_ASICREV_BCM5704:
3436 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3437 		break;
3438 	case BGE_ASICREV_BCM5714_A0:
3439 	case BGE_ASICREV_BCM5780:
3440 	case BGE_ASICREV_BCM5714:
3441 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3442 		/* FALLTHROUGH */
3443 	case BGE_ASICREV_BCM5750:
3444 	case BGE_ASICREV_BCM5752:
3445 	case BGE_ASICREV_BCM5906:
3446 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3447 		/* FALLTHROUGH */
3448 	case BGE_ASICREV_BCM5705:
3449 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3450 		break;
3451 	}
3452 
3453 	/* Identify chips with APE processor. */
3454 	switch (sc->bge_asicrev) {
3455 	case BGE_ASICREV_BCM5717:
3456 	case BGE_ASICREV_BCM5719:
3457 	case BGE_ASICREV_BCM5720:
3458 	case BGE_ASICREV_BCM5761:
3459 	case BGE_ASICREV_BCM5762:
3460 		sc->bge_flags |= BGE_FLAG_APE;
3461 		break;
3462 	}
3463 
3464 	/* Chips with APE need BAR2 access for APE registers/memory. */
3465 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3466 		rid = PCIR_BAR(2);
3467 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3468 		    RF_ACTIVE);
3469 		if (sc->bge_res2 == NULL) {
3470 			device_printf (sc->bge_dev,
3471 			    "couldn't map BAR2 memory\n");
3472 			error = ENXIO;
3473 			goto fail;
3474 		}
3475 
3476 		/* Enable APE register/memory access by host driver. */
3477 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3478 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3479 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3480 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3481 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3482 
3483 		bge_ape_lock_init(sc);
3484 		bge_ape_read_fw_ver(sc);
3485 	}
3486 
3487 	/* Add SYSCTLs, requires the chipset family to be set. */
3488 	bge_add_sysctls(sc);
3489 
3490 	/* Identify the chips that use an CPMU. */
3491 	if (BGE_IS_5717_PLUS(sc) ||
3492 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3493 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3494 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3495 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3496 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3497 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3498 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3499 	else
3500 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3501 	/* Enable auto polling for BCM570[0-5]. */
3502 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3503 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3504 
3505 	/*
3506 	 * All Broadcom controllers have 4GB boundary DMA bug.
3507 	 * Whenever an address crosses a multiple of the 4GB boundary
3508 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3509 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3510 	 * state machine will lockup and cause the device to hang.
3511 	 */
3512 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3513 
3514 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3515 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3516 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3517 
3518 	/*
3519 	 * BCM5719 cannot handle DMA requests for DMA segments that
3520 	 * have larger than 4KB in size.  However the maximum DMA
3521 	 * segment size created in DMA tag is 4KB for TSO, so we
3522 	 * wouldn't encounter the issue here.
3523 	 */
3524 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3525 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3526 
3527 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3528 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3529 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3530 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3531 			sc->bge_flags |= BGE_FLAG_5788;
3532 	}
3533 
3534 	capmask = BMSR_DEFCAPMASK;
3535 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3536 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3537 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3538 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3539 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3540 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3541 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3542 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3543 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3544 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3545 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3546 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3547 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3548 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3549 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3550 		/* These chips are 10/100 only. */
3551 		capmask &= ~BMSR_EXTSTAT;
3552 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3553 	}
3554 
3555 	/*
3556 	 * Some controllers seem to require a special firmware to use
3557 	 * TSO. But the firmware is not available to FreeBSD and Linux
3558 	 * claims that the TSO performed by the firmware is slower than
3559 	 * hardware based TSO. Moreover the firmware based TSO has one
3560 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3561 	 * header is greater than 80 bytes. A workaround for the TSO
3562 	 * bug exist but it seems it's too expensive than not using
3563 	 * TSO at all. Some hardwares also have the TSO bug so limit
3564 	 * the TSO to the controllers that are not affected TSO issues
3565 	 * (e.g. 5755 or higher).
3566 	 */
3567 	if (BGE_IS_5717_PLUS(sc)) {
3568 		/* BCM5717 requires different TSO configuration. */
3569 		sc->bge_flags |= BGE_FLAG_TSO3;
3570 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3571 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3572 			/* TSO on BCM5719 A0 does not work. */
3573 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3574 		}
3575 	} else if (BGE_IS_5755_PLUS(sc)) {
3576 		/*
3577 		 * BCM5754 and BCM5787 shares the same ASIC id so
3578 		 * explicit device id check is required.
3579 		 * Due to unknown reason TSO does not work on BCM5755M.
3580 		 */
3581 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3582 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3583 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3584 			sc->bge_flags |= BGE_FLAG_TSO;
3585 	}
3586 
3587 	/*
3588 	 * Check if this is a PCI-X or PCI Express device.
3589 	 */
3590 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3591 		/*
3592 		 * Found a PCI Express capabilities register, this
3593 		 * must be a PCI Express device.
3594 		 */
3595 		sc->bge_flags |= BGE_FLAG_PCIE;
3596 		sc->bge_expcap = reg;
3597 		/* Extract supported maximum payload size. */
3598 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3599 		    PCIER_DEVICE_CAP, 2);
3600 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3601 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3602 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3603 			sc->bge_expmrq = 2048;
3604 		else
3605 			sc->bge_expmrq = 4096;
3606 		pci_set_max_read_req(dev, sc->bge_expmrq);
3607 	} else {
3608 		/*
3609 		 * Check if the device is in PCI-X Mode.
3610 		 * (This bit is not valid on PCI Express controllers.)
3611 		 */
3612 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3613 			sc->bge_pcixcap = reg;
3614 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3615 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3616 			sc->bge_flags |= BGE_FLAG_PCIX;
3617 	}
3618 
3619 	/*
3620 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3621 	 * not actually a MAC controller bug but an issue with the embedded
3622 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3623 	 */
3624 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3625 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3626 	/*
3627 	 * Some PCI-X bridges are known to trigger write reordering to
3628 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3629 	 * caused by out-of-order TX completions.  Enable workaround for
3630 	 * PCI-X devices that live behind these bridges.
3631 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3632 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3633 	 */
3634 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3635 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3636 	/*
3637 	 * Allocate the interrupt, using MSI if possible.  These devices
3638 	 * support 8 MSI messages, but only the first one is used in
3639 	 * normal operation.
3640 	 */
3641 	rid = 0;
3642 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3643 		sc->bge_msicap = reg;
3644 		reg = 1;
3645 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3646 			rid = 1;
3647 			sc->bge_flags |= BGE_FLAG_MSI;
3648 		}
3649 	}
3650 
3651 	/*
3652 	 * All controllers except BCM5700 supports tagged status but
3653 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3654 	 * MSI on BCM5717 does not work.
3655 	 */
3656 #ifndef DEVICE_POLLING
3657 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3658 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3659 #endif
3660 
3661 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3662 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3663 
3664 	if (sc->bge_irq == NULL) {
3665 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3666 		error = ENXIO;
3667 		goto fail;
3668 	}
3669 
3670 	bge_devinfo(sc);
3671 
3672 	sc->bge_asf_mode = 0;
3673 	/* No ASF if APE present. */
3674 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3675 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3676 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3677 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3678 			    BGE_HWCFG_ASF) {
3679 				sc->bge_asf_mode |= ASF_ENABLE;
3680 				sc->bge_asf_mode |= ASF_STACKUP;
3681 				if (BGE_IS_575X_PLUS(sc))
3682 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3683 			}
3684 		}
3685 	}
3686 
3687 	bge_stop_fw(sc);
3688 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3689 	if (bge_reset(sc)) {
3690 		device_printf(sc->bge_dev, "chip reset failed\n");
3691 		error = ENXIO;
3692 		goto fail;
3693 	}
3694 
3695 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3696 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3697 
3698 	if (bge_chipinit(sc)) {
3699 		device_printf(sc->bge_dev, "chip initialization failed\n");
3700 		error = ENXIO;
3701 		goto fail;
3702 	}
3703 
3704 	error = bge_get_eaddr(sc, eaddr);
3705 	if (error) {
3706 		device_printf(sc->bge_dev,
3707 		    "failed to read station address\n");
3708 		error = ENXIO;
3709 		goto fail;
3710 	}
3711 
3712 	/* 5705 limits RX return ring to 512 entries. */
3713 	if (BGE_IS_5717_PLUS(sc))
3714 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3715 	else if (BGE_IS_5705_PLUS(sc))
3716 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3717 	else
3718 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3719 
3720 	if (bge_dma_alloc(sc)) {
3721 		device_printf(sc->bge_dev,
3722 		    "failed to allocate DMA resources\n");
3723 		error = ENXIO;
3724 		goto fail;
3725 	}
3726 
3727 	/* Set default tuneable values. */
3728 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3729 	sc->bge_rx_coal_ticks = 150;
3730 	sc->bge_tx_coal_ticks = 150;
3731 	sc->bge_rx_max_coal_bds = 10;
3732 	sc->bge_tx_max_coal_bds = 10;
3733 
3734 	/* Initialize checksum features to use. */
3735 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3736 	if (sc->bge_forced_udpcsum != 0)
3737 		sc->bge_csum_features |= CSUM_UDP;
3738 
3739 	/* Set up ifnet structure */
3740 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3741 	if (ifp == NULL) {
3742 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3743 		error = ENXIO;
3744 		goto fail;
3745 	}
3746 	if_setsoftc(ifp, sc);
3747 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3748 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3749 	if_setioctlfn(ifp, bge_ioctl);
3750 	if_setstartfn(ifp, bge_start);
3751 	if_setinitfn(ifp, bge_init);
3752 	if_setgetcounterfn(ifp, bge_get_counter);
3753 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3754 	if_setsendqready(ifp);
3755 	if_sethwassist(ifp, sc->bge_csum_features);
3756 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3757 	    IFCAP_VLAN_MTU);
3758 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3759 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3760 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3761 	}
3762 #ifdef IFCAP_VLAN_HWCSUM
3763 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3764 #endif
3765 	if_setcapenable(ifp, if_getcapabilities(ifp));
3766 #ifdef DEVICE_POLLING
3767 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3768 #endif
3769 
3770 	/*
3771 	 * 5700 B0 chips do not support checksumming correctly due
3772 	 * to hardware bugs.
3773 	 */
3774 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3775 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3776 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3777 		if_sethwassist(ifp, 0);
3778 	}
3779 
3780 	/*
3781 	 * Figure out what sort of media we have by checking the
3782 	 * hardware config word in the first 32k of NIC internal memory,
3783 	 * or fall back to examining the EEPROM if necessary.
3784 	 * Note: on some BCM5700 cards, this value appears to be unset.
3785 	 * If that's the case, we have to rely on identifying the NIC
3786 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3787 	 * SK-9D41.
3788 	 */
3789 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3790 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3791 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3792 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3793 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3794 		    sizeof(hwcfg))) {
3795 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3796 			error = ENXIO;
3797 			goto fail;
3798 		}
3799 		hwcfg = ntohl(hwcfg);
3800 	}
3801 
3802 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3803 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3804 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3805 		if (BGE_IS_5705_PLUS(sc)) {
3806 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3807 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3808 		} else
3809 			sc->bge_flags |= BGE_FLAG_TBI;
3810 	}
3811 
3812 	/* Set various PHY bug flags. */
3813 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3814 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3815 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3816 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3817 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3818 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3819 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3820 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3821 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3822 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3823 	if ((BGE_IS_5705_PLUS(sc)) &&
3824 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3825 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3826 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3827 	    !BGE_IS_5717_PLUS(sc)) {
3828 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3829 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3830 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3831 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3832 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3833 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3834 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3835 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3836 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3837 		} else
3838 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3839 	}
3840 
3841 	/*
3842 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3843 	 * 5705 A0 and A1 chips.
3844 	 */
3845 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3846 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3847 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3848 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3849 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3850 
3851 	if (sc->bge_flags & BGE_FLAG_TBI) {
3852 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3853 		    bge_ifmedia_sts);
3854 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3855 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3856 		    0, NULL);
3857 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3858 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3859 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3860 	} else {
3861 		/*
3862 		 * Do transceiver setup and tell the firmware the
3863 		 * driver is down so we can try to get access the
3864 		 * probe if ASF is running.  Retry a couple of times
3865 		 * if we get a conflict with the ASF firmware accessing
3866 		 * the PHY.
3867 		 */
3868 		trys = 0;
3869 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3870 again:
3871 		bge_asf_driver_up(sc);
3872 
3873 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3874 		    (ifm_change_cb_t)bge_ifmedia_upd,
3875 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3876 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3877 		if (error != 0) {
3878 			if (trys++ < 4) {
3879 				device_printf(sc->bge_dev, "Try again\n");
3880 				bge_miibus_writereg(sc->bge_dev,
3881 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3882 				goto again;
3883 			}
3884 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3885 			goto fail;
3886 		}
3887 
3888 		/*
3889 		 * Now tell the firmware we are going up after probing the PHY
3890 		 */
3891 		if (sc->bge_asf_mode & ASF_STACKUP)
3892 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3893 	}
3894 
3895 	/*
3896 	 * When using the BCM5701 in PCI-X mode, data corruption has
3897 	 * been observed in the first few bytes of some received packets.
3898 	 * Aligning the packet buffer in memory eliminates the corruption.
3899 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3900 	 * which do not support unaligned accesses, we will realign the
3901 	 * payloads by copying the received packets.
3902 	 */
3903 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3904 	    sc->bge_flags & BGE_FLAG_PCIX)
3905                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3906 
3907 	/*
3908 	 * Call MI attach routine.
3909 	 */
3910 	ether_ifattach(ifp, eaddr);
3911 
3912 	/* Tell upper layer we support long frames. */
3913 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3914 
3915 	/*
3916 	 * Hookup IRQ last.
3917 	 */
3918 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3919 		/* Take advantage of single-shot MSI. */
3920 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3921 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3922 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3923 		    taskqueue_thread_enqueue, &sc->bge_tq);
3924 		if (sc->bge_tq == NULL) {
3925 			device_printf(dev, "could not create taskqueue.\n");
3926 			ether_ifdetach(ifp);
3927 			error = ENOMEM;
3928 			goto fail;
3929 		}
3930 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3931 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3932 		if (error != 0) {
3933 			device_printf(dev, "could not start threads.\n");
3934 			ether_ifdetach(ifp);
3935 			goto fail;
3936 		}
3937 		error = bus_setup_intr(dev, sc->bge_irq,
3938 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3939 		    &sc->bge_intrhand);
3940 	} else
3941 		error = bus_setup_intr(dev, sc->bge_irq,
3942 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3943 		    &sc->bge_intrhand);
3944 
3945 	if (error) {
3946 		ether_ifdetach(ifp);
3947 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3948 		goto fail;
3949 	}
3950 
3951 	/* Attach driver netdump methods. */
3952 	NETDUMP_SET(ifp, bge);
3953 
3954 fail:
3955 	if (error)
3956 		bge_detach(dev);
3957 	return (error);
3958 }
3959 
3960 static int
3961 bge_detach(device_t dev)
3962 {
3963 	struct bge_softc *sc;
3964 	if_t ifp;
3965 
3966 	sc = device_get_softc(dev);
3967 	ifp = sc->bge_ifp;
3968 
3969 #ifdef DEVICE_POLLING
3970 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3971 		ether_poll_deregister(ifp);
3972 #endif
3973 
3974 	if (device_is_attached(dev)) {
3975 		ether_ifdetach(ifp);
3976 		BGE_LOCK(sc);
3977 		bge_stop(sc);
3978 		BGE_UNLOCK(sc);
3979 		callout_drain(&sc->bge_stat_ch);
3980 	}
3981 
3982 	if (sc->bge_tq)
3983 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3984 
3985 	if (sc->bge_flags & BGE_FLAG_TBI)
3986 		ifmedia_removeall(&sc->bge_ifmedia);
3987 	else if (sc->bge_miibus != NULL) {
3988 		bus_generic_detach(dev);
3989 		device_delete_child(dev, sc->bge_miibus);
3990 	}
3991 
3992 	bge_release_resources(sc);
3993 
3994 	return (0);
3995 }
3996 
3997 static void
3998 bge_release_resources(struct bge_softc *sc)
3999 {
4000 	device_t dev;
4001 
4002 	dev = sc->bge_dev;
4003 
4004 	if (sc->bge_tq != NULL)
4005 		taskqueue_free(sc->bge_tq);
4006 
4007 	if (sc->bge_intrhand != NULL)
4008 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4009 
4010 	if (sc->bge_irq != NULL) {
4011 		bus_release_resource(dev, SYS_RES_IRQ,
4012 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4013 		pci_release_msi(dev);
4014 	}
4015 
4016 	if (sc->bge_res != NULL)
4017 		bus_release_resource(dev, SYS_RES_MEMORY,
4018 		    rman_get_rid(sc->bge_res), sc->bge_res);
4019 
4020 	if (sc->bge_res2 != NULL)
4021 		bus_release_resource(dev, SYS_RES_MEMORY,
4022 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4023 
4024 	if (sc->bge_ifp != NULL)
4025 		if_free(sc->bge_ifp);
4026 
4027 	bge_dma_free(sc);
4028 
4029 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4030 		BGE_LOCK_DESTROY(sc);
4031 }
4032 
4033 static int
4034 bge_reset(struct bge_softc *sc)
4035 {
4036 	device_t dev;
4037 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4038 	void (*write_op)(struct bge_softc *, int, int);
4039 	uint16_t devctl;
4040 	int i;
4041 
4042 	dev = sc->bge_dev;
4043 
4044 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4045 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4046 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4047 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4048 
4049 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4050 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4051 		if (sc->bge_flags & BGE_FLAG_PCIE)
4052 			write_op = bge_writemem_direct;
4053 		else
4054 			write_op = bge_writemem_ind;
4055 	} else
4056 		write_op = bge_writereg_ind;
4057 
4058 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4059 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4060 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4061 		for (i = 0; i < 8000; i++) {
4062 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4063 			    BGE_NVRAMSWARB_GNT1)
4064 				break;
4065 			DELAY(20);
4066 		}
4067 		if (i == 8000) {
4068 			if (bootverbose)
4069 				device_printf(dev, "NVRAM lock timedout!\n");
4070 		}
4071 	}
4072 	/* Take APE lock when performing reset. */
4073 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4074 
4075 	/* Save some important PCI state. */
4076 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4077 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4078 
4079 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4080 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4081 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4082 
4083 	/* Disable fastboot on controllers that support it. */
4084 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4085 	    BGE_IS_5755_PLUS(sc)) {
4086 		if (bootverbose)
4087 			device_printf(dev, "Disabling fastboot\n");
4088 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4089 	}
4090 
4091 	/*
4092 	 * Write the magic number to SRAM at offset 0xB50.
4093 	 * When firmware finishes its initialization it will
4094 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4095 	 */
4096 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4097 
4098 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4099 
4100 	/* XXX: Broadcom Linux driver. */
4101 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4102 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4103 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4104 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4105 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4106 		}
4107 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4108 			/* Prevent PCIE link training during global reset */
4109 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4110 			reset |= 1 << 29;
4111 		}
4112 	}
4113 
4114 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4115 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4116 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4117 		    val | BGE_VCPU_STATUS_DRV_RESET);
4118 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4119 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4120 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4121 	}
4122 
4123 	/*
4124 	 * Set GPHY Power Down Override to leave GPHY
4125 	 * powered up in D0 uninitialized.
4126 	 */
4127 	if (BGE_IS_5705_PLUS(sc) &&
4128 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4129 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4130 
4131 	/* Issue global reset */
4132 	write_op(sc, BGE_MISC_CFG, reset);
4133 
4134 	if (sc->bge_flags & BGE_FLAG_PCIE)
4135 		DELAY(100 * 1000);
4136 	else
4137 		DELAY(1000);
4138 
4139 	/* XXX: Broadcom Linux driver. */
4140 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4141 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4142 			DELAY(500000); /* wait for link training to complete */
4143 			val = pci_read_config(dev, 0xC4, 4);
4144 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4145 		}
4146 		devctl = pci_read_config(dev,
4147 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4148 		/* Clear enable no snoop and disable relaxed ordering. */
4149 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4150 		    PCIEM_CTL_NOSNOOP_ENABLE);
4151 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4152 		    devctl, 2);
4153 		pci_set_max_read_req(dev, sc->bge_expmrq);
4154 		/* Clear error status. */
4155 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4156 		    PCIEM_STA_CORRECTABLE_ERROR |
4157 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4158 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4159 	}
4160 
4161 	/* Reset some of the PCI state that got zapped by reset. */
4162 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4163 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4164 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4165 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4166 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4167 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4168 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4169 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4170 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4171 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4172 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4173 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4174 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4175 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4176 	/*
4177 	 * Disable PCI-X relaxed ordering to ensure status block update
4178 	 * comes first then packet buffer DMA. Otherwise driver may
4179 	 * read stale status block.
4180 	 */
4181 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4182 		devctl = pci_read_config(dev,
4183 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4184 		devctl &= ~PCIXM_COMMAND_ERO;
4185 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4186 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4187 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4188 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4189 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4190 			    PCIXM_COMMAND_MAX_READ);
4191 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4192 		}
4193 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4194 		    devctl, 2);
4195 	}
4196 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4197 	if (BGE_IS_5714_FAMILY(sc)) {
4198 		/* This chip disables MSI on reset. */
4199 		if (sc->bge_flags & BGE_FLAG_MSI) {
4200 			val = pci_read_config(dev,
4201 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4202 			pci_write_config(dev,
4203 			    sc->bge_msicap + PCIR_MSI_CTRL,
4204 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4205 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4206 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4207 			    val | BGE_MSIMODE_ENABLE);
4208 		}
4209 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4210 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4211 	} else
4212 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4213 
4214 	/* Fix up byte swapping. */
4215 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4216 
4217 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4218 	val = (val & ~mac_mode_mask) | mac_mode;
4219 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4220 	DELAY(40);
4221 
4222 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4223 
4224 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4225 		for (i = 0; i < BGE_TIMEOUT; i++) {
4226 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4227 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4228 				break;
4229 			DELAY(100);
4230 		}
4231 		if (i == BGE_TIMEOUT) {
4232 			device_printf(dev, "reset timed out\n");
4233 			return (1);
4234 		}
4235 	} else {
4236 		/*
4237 		 * Poll until we see the 1's complement of the magic number.
4238 		 * This indicates that the firmware initialization is complete.
4239 		 * We expect this to fail if no chip containing the Ethernet
4240 		 * address is fitted though.
4241 		 */
4242 		for (i = 0; i < BGE_TIMEOUT; i++) {
4243 			DELAY(10);
4244 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4245 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4246 				break;
4247 		}
4248 
4249 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4250 			device_printf(dev,
4251 			    "firmware handshake timed out, found 0x%08x\n",
4252 			    val);
4253 		/* BCM57765 A0 needs additional time before accessing. */
4254 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4255 			DELAY(10 * 1000);	/* XXX */
4256 	}
4257 
4258 	/*
4259 	 * The 5704 in TBI mode apparently needs some special
4260 	 * adjustment to insure the SERDES drive level is set
4261 	 * to 1.2V.
4262 	 */
4263 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4264 	    sc->bge_flags & BGE_FLAG_TBI) {
4265 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4266 		val = (val & ~0xFFF) | 0x880;
4267 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4268 	}
4269 
4270 	/* XXX: Broadcom Linux driver. */
4271 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4272 	    !BGE_IS_5717_PLUS(sc) &&
4273 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4274 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4275 		/* Enable Data FIFO protection. */
4276 		val = CSR_READ_4(sc, 0x7C00);
4277 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4278 	}
4279 
4280 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4281 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4282 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4283 
4284 	return (0);
4285 }
4286 
4287 static __inline void
4288 bge_rxreuse_std(struct bge_softc *sc, int i)
4289 {
4290 	struct bge_rx_bd *r;
4291 
4292 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4293 	r->bge_flags = BGE_RXBDFLAG_END;
4294 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4295 	r->bge_idx = i;
4296 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4297 }
4298 
4299 static __inline void
4300 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4301 {
4302 	struct bge_extrx_bd *r;
4303 
4304 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4305 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4306 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4307 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4308 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4309 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4310 	r->bge_idx = i;
4311 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4312 }
4313 
4314 /*
4315  * Frame reception handling. This is called if there's a frame
4316  * on the receive return list.
4317  *
4318  * Note: we have to be able to handle two possibilities here:
4319  * 1) the frame is from the jumbo receive ring
4320  * 2) the frame is from the standard receive ring
4321  */
4322 
4323 static int
4324 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4325 {
4326 	if_t ifp;
4327 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4328 	uint16_t rx_cons;
4329 
4330 	rx_cons = sc->bge_rx_saved_considx;
4331 
4332 	/* Nothing to do. */
4333 	if (rx_cons == rx_prod)
4334 		return (rx_npkts);
4335 
4336 	ifp = sc->bge_ifp;
4337 
4338 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4339 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4340 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4341 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4342 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4343 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4344 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4345 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4346 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4347 
4348 	while (rx_cons != rx_prod) {
4349 		struct bge_rx_bd	*cur_rx;
4350 		uint32_t		rxidx;
4351 		struct mbuf		*m = NULL;
4352 		uint16_t		vlan_tag = 0;
4353 		int			have_tag = 0;
4354 
4355 #ifdef DEVICE_POLLING
4356 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4357 			if (sc->rxcycles <= 0)
4358 				break;
4359 			sc->rxcycles--;
4360 		}
4361 #endif
4362 
4363 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4364 
4365 		rxidx = cur_rx->bge_idx;
4366 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4367 
4368 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4369 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4370 			have_tag = 1;
4371 			vlan_tag = cur_rx->bge_vlan_tag;
4372 		}
4373 
4374 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4375 			jumbocnt++;
4376 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4377 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4378 				bge_rxreuse_jumbo(sc, rxidx);
4379 				continue;
4380 			}
4381 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4382 				bge_rxreuse_jumbo(sc, rxidx);
4383 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4384 				continue;
4385 			}
4386 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4387 		} else {
4388 			stdcnt++;
4389 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4390 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4391 				bge_rxreuse_std(sc, rxidx);
4392 				continue;
4393 			}
4394 			if (bge_newbuf_std(sc, rxidx) != 0) {
4395 				bge_rxreuse_std(sc, rxidx);
4396 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4397 				continue;
4398 			}
4399 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4400 		}
4401 
4402 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4403 #ifndef __NO_STRICT_ALIGNMENT
4404 		/*
4405 		 * For architectures with strict alignment we must make sure
4406 		 * the payload is aligned.
4407 		 */
4408 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4409 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4410 			    cur_rx->bge_len);
4411 			m->m_data += ETHER_ALIGN;
4412 		}
4413 #endif
4414 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4415 		m->m_pkthdr.rcvif = ifp;
4416 
4417 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4418 			bge_rxcsum(sc, cur_rx, m);
4419 
4420 		/*
4421 		 * If we received a packet with a vlan tag,
4422 		 * attach that information to the packet.
4423 		 */
4424 		if (have_tag) {
4425 			m->m_pkthdr.ether_vtag = vlan_tag;
4426 			m->m_flags |= M_VLANTAG;
4427 		}
4428 
4429 		if (holdlck != 0) {
4430 			BGE_UNLOCK(sc);
4431 			if_input(ifp, m);
4432 			BGE_LOCK(sc);
4433 		} else
4434 			if_input(ifp, m);
4435 		rx_npkts++;
4436 
4437 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4438 			return (rx_npkts);
4439 	}
4440 
4441 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4442 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4443 	if (stdcnt > 0)
4444 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4445 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4446 
4447 	if (jumbocnt > 0)
4448 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4449 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4450 
4451 	sc->bge_rx_saved_considx = rx_cons;
4452 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4453 	if (stdcnt)
4454 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4455 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4456 	if (jumbocnt)
4457 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4458 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4459 #ifdef notyet
4460 	/*
4461 	 * This register wraps very quickly under heavy packet drops.
4462 	 * If you need correct statistics, you can enable this check.
4463 	 */
4464 	if (BGE_IS_5705_PLUS(sc))
4465 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4466 #endif
4467 	return (rx_npkts);
4468 }
4469 
4470 static void
4471 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4472 {
4473 
4474 	if (BGE_IS_5717_PLUS(sc)) {
4475 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4476 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4477 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4478 				if ((cur_rx->bge_error_flag &
4479 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4480 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4481 			}
4482 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4483 				m->m_pkthdr.csum_data =
4484 				    cur_rx->bge_tcp_udp_csum;
4485 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4486 				    CSUM_PSEUDO_HDR;
4487 			}
4488 		}
4489 	} else {
4490 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4491 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4492 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4493 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4494 		}
4495 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4496 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4497 			m->m_pkthdr.csum_data =
4498 			    cur_rx->bge_tcp_udp_csum;
4499 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4500 			    CSUM_PSEUDO_HDR;
4501 		}
4502 	}
4503 }
4504 
4505 static void
4506 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4507 {
4508 	struct bge_tx_bd *cur_tx;
4509 	if_t ifp;
4510 
4511 	BGE_LOCK_ASSERT(sc);
4512 
4513 	/* Nothing to do. */
4514 	if (sc->bge_tx_saved_considx == tx_cons)
4515 		return;
4516 
4517 	ifp = sc->bge_ifp;
4518 
4519 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4520 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4521 	/*
4522 	 * Go through our tx ring and free mbufs for those
4523 	 * frames that have been sent.
4524 	 */
4525 	while (sc->bge_tx_saved_considx != tx_cons) {
4526 		uint32_t		idx;
4527 
4528 		idx = sc->bge_tx_saved_considx;
4529 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4530 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4531 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4532 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4533 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4534 			    sc->bge_cdata.bge_tx_dmamap[idx],
4535 			    BUS_DMASYNC_POSTWRITE);
4536 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4537 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4538 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4539 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4540 		}
4541 		sc->bge_txcnt--;
4542 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4543 	}
4544 
4545 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4546 	if (sc->bge_txcnt == 0)
4547 		sc->bge_timer = 0;
4548 }
4549 
4550 #ifdef DEVICE_POLLING
4551 static int
4552 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4553 {
4554 	struct bge_softc *sc = if_getsoftc(ifp);
4555 	uint16_t rx_prod, tx_cons;
4556 	uint32_t statusword;
4557 	int rx_npkts = 0;
4558 
4559 	BGE_LOCK(sc);
4560 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4561 		BGE_UNLOCK(sc);
4562 		return (rx_npkts);
4563 	}
4564 
4565 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4566 	    sc->bge_cdata.bge_status_map,
4567 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4568 	/* Fetch updates from the status block. */
4569 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4570 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4571 
4572 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4573 	/* Clear the status so the next pass only sees the changes. */
4574 	sc->bge_ldata.bge_status_block->bge_status = 0;
4575 
4576 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4577 	    sc->bge_cdata.bge_status_map,
4578 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4579 
4580 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4581 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4582 		sc->bge_link_evt++;
4583 
4584 	if (cmd == POLL_AND_CHECK_STATUS)
4585 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4586 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4587 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4588 			bge_link_upd(sc);
4589 
4590 	sc->rxcycles = count;
4591 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4592 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4593 		BGE_UNLOCK(sc);
4594 		return (rx_npkts);
4595 	}
4596 	bge_txeof(sc, tx_cons);
4597 	if (!if_sendq_empty(ifp))
4598 		bge_start_locked(ifp);
4599 
4600 	BGE_UNLOCK(sc);
4601 	return (rx_npkts);
4602 }
4603 #endif /* DEVICE_POLLING */
4604 
4605 static int
4606 bge_msi_intr(void *arg)
4607 {
4608 	struct bge_softc *sc;
4609 
4610 	sc = (struct bge_softc *)arg;
4611 	/*
4612 	 * This interrupt is not shared and controller already
4613 	 * disabled further interrupt.
4614 	 */
4615 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4616 	return (FILTER_HANDLED);
4617 }
4618 
4619 static void
4620 bge_intr_task(void *arg, int pending)
4621 {
4622 	struct bge_softc *sc;
4623 	if_t ifp;
4624 	uint32_t status, status_tag;
4625 	uint16_t rx_prod, tx_cons;
4626 
4627 	sc = (struct bge_softc *)arg;
4628 	ifp = sc->bge_ifp;
4629 
4630 	BGE_LOCK(sc);
4631 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4632 		BGE_UNLOCK(sc);
4633 		return;
4634 	}
4635 
4636 	/* Get updated status block. */
4637 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4638 	    sc->bge_cdata.bge_status_map,
4639 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4640 
4641 	/* Save producer/consumer indices. */
4642 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4643 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4644 	status = sc->bge_ldata.bge_status_block->bge_status;
4645 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4646 	/* Dirty the status flag. */
4647 	sc->bge_ldata.bge_status_block->bge_status = 0;
4648 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4649 	    sc->bge_cdata.bge_status_map,
4650 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4651 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4652 		status_tag = 0;
4653 
4654 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4655 		bge_link_upd(sc);
4656 
4657 	/* Let controller work. */
4658 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4659 
4660 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4661 	    sc->bge_rx_saved_considx != rx_prod) {
4662 		/* Check RX return ring producer/consumer. */
4663 		BGE_UNLOCK(sc);
4664 		bge_rxeof(sc, rx_prod, 0);
4665 		BGE_LOCK(sc);
4666 	}
4667 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4668 		/* Check TX ring producer/consumer. */
4669 		bge_txeof(sc, tx_cons);
4670 		if (!if_sendq_empty(ifp))
4671 			bge_start_locked(ifp);
4672 	}
4673 	BGE_UNLOCK(sc);
4674 }
4675 
4676 static void
4677 bge_intr(void *xsc)
4678 {
4679 	struct bge_softc *sc;
4680 	if_t ifp;
4681 	uint32_t statusword;
4682 	uint16_t rx_prod, tx_cons;
4683 
4684 	sc = xsc;
4685 
4686 	BGE_LOCK(sc);
4687 
4688 	ifp = sc->bge_ifp;
4689 
4690 #ifdef DEVICE_POLLING
4691 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4692 		BGE_UNLOCK(sc);
4693 		return;
4694 	}
4695 #endif
4696 
4697 	/*
4698 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4699 	 * disable interrupts by writing nonzero like we used to, since with
4700 	 * our current organization this just gives complications and
4701 	 * pessimizations for re-enabling interrupts.  We used to have races
4702 	 * instead of the necessary complications.  Disabling interrupts
4703 	 * would just reduce the chance of a status update while we are
4704 	 * running (by switching to the interrupt-mode coalescence
4705 	 * parameters), but this chance is already very low so it is more
4706 	 * efficient to get another interrupt than prevent it.
4707 	 *
4708 	 * We do the ack first to ensure another interrupt if there is a
4709 	 * status update after the ack.  We don't check for the status
4710 	 * changing later because it is more efficient to get another
4711 	 * interrupt than prevent it, not quite as above (not checking is
4712 	 * a smaller optimization than not toggling the interrupt enable,
4713 	 * since checking doesn't involve PCI accesses and toggling require
4714 	 * the status check).  So toggling would probably be a pessimization
4715 	 * even with MSI.  It would only be needed for using a task queue.
4716 	 */
4717 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4718 
4719 	/*
4720 	 * Do the mandatory PCI flush as well as get the link status.
4721 	 */
4722 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4723 
4724 	/* Make sure the descriptor ring indexes are coherent. */
4725 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4726 	    sc->bge_cdata.bge_status_map,
4727 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4728 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4729 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4730 	sc->bge_ldata.bge_status_block->bge_status = 0;
4731 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4732 	    sc->bge_cdata.bge_status_map,
4733 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4734 
4735 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4736 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4737 	    statusword || sc->bge_link_evt)
4738 		bge_link_upd(sc);
4739 
4740 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4741 		/* Check RX return ring producer/consumer. */
4742 		bge_rxeof(sc, rx_prod, 1);
4743 	}
4744 
4745 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4746 		/* Check TX ring producer/consumer. */
4747 		bge_txeof(sc, tx_cons);
4748 	}
4749 
4750 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4751 	    !if_sendq_empty(ifp))
4752 		bge_start_locked(ifp);
4753 
4754 	BGE_UNLOCK(sc);
4755 }
4756 
4757 static void
4758 bge_asf_driver_up(struct bge_softc *sc)
4759 {
4760 	if (sc->bge_asf_mode & ASF_STACKUP) {
4761 		/* Send ASF heartbeat aprox. every 2s */
4762 		if (sc->bge_asf_count)
4763 			sc->bge_asf_count --;
4764 		else {
4765 			sc->bge_asf_count = 2;
4766 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4767 			    BGE_FW_CMD_DRV_ALIVE);
4768 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4769 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4770 			    BGE_FW_HB_TIMEOUT_SEC);
4771 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4772 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4773 			    BGE_RX_CPU_DRV_EVENT);
4774 		}
4775 	}
4776 }
4777 
4778 static void
4779 bge_tick(void *xsc)
4780 {
4781 	struct bge_softc *sc = xsc;
4782 	struct mii_data *mii = NULL;
4783 
4784 	BGE_LOCK_ASSERT(sc);
4785 
4786 	/* Synchronize with possible callout reset/stop. */
4787 	if (callout_pending(&sc->bge_stat_ch) ||
4788 	    !callout_active(&sc->bge_stat_ch))
4789 		return;
4790 
4791 	if (BGE_IS_5705_PLUS(sc))
4792 		bge_stats_update_regs(sc);
4793 	else
4794 		bge_stats_update(sc);
4795 
4796 	/* XXX Add APE heartbeat check here? */
4797 
4798 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4799 		mii = device_get_softc(sc->bge_miibus);
4800 		/*
4801 		 * Do not touch PHY if we have link up. This could break
4802 		 * IPMI/ASF mode or produce extra input errors
4803 		 * (extra errors was reported for bcm5701 & bcm5704).
4804 		 */
4805 		if (!sc->bge_link)
4806 			mii_tick(mii);
4807 	} else {
4808 		/*
4809 		 * Since in TBI mode auto-polling can't be used we should poll
4810 		 * link status manually. Here we register pending link event
4811 		 * and trigger interrupt.
4812 		 */
4813 #ifdef DEVICE_POLLING
4814 		/* In polling mode we poll link state in bge_poll(). */
4815 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4816 #endif
4817 		{
4818 		sc->bge_link_evt++;
4819 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4820 		    sc->bge_flags & BGE_FLAG_5788)
4821 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4822 		else
4823 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4824 		}
4825 	}
4826 
4827 	bge_asf_driver_up(sc);
4828 	bge_watchdog(sc);
4829 
4830 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4831 }
4832 
4833 static void
4834 bge_stats_update_regs(struct bge_softc *sc)
4835 {
4836 	if_t ifp;
4837 	struct bge_mac_stats *stats;
4838 	uint32_t val;
4839 
4840 	ifp = sc->bge_ifp;
4841 	stats = &sc->bge_mac_stats;
4842 
4843 	stats->ifHCOutOctets +=
4844 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4845 	stats->etherStatsCollisions +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4847 	stats->outXonSent +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4849 	stats->outXoffSent +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4851 	stats->dot3StatsInternalMacTransmitErrors +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4853 	stats->dot3StatsSingleCollisionFrames +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4855 	stats->dot3StatsMultipleCollisionFrames +=
4856 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4857 	stats->dot3StatsDeferredTransmissions +=
4858 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4859 	stats->dot3StatsExcessiveCollisions +=
4860 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4861 	stats->dot3StatsLateCollisions +=
4862 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4863 	stats->ifHCOutUcastPkts +=
4864 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4865 	stats->ifHCOutMulticastPkts +=
4866 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4867 	stats->ifHCOutBroadcastPkts +=
4868 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4869 
4870 	stats->ifHCInOctets +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4872 	stats->etherStatsFragments +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4874 	stats->ifHCInUcastPkts +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4876 	stats->ifHCInMulticastPkts +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4878 	stats->ifHCInBroadcastPkts +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4880 	stats->dot3StatsFCSErrors +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4882 	stats->dot3StatsAlignmentErrors +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4884 	stats->xonPauseFramesReceived +=
4885 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4886 	stats->xoffPauseFramesReceived +=
4887 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4888 	stats->macControlFramesReceived +=
4889 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4890 	stats->xoffStateEntered +=
4891 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4892 	stats->dot3StatsFramesTooLong +=
4893 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4894 	stats->etherStatsJabbers +=
4895 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4896 	stats->etherStatsUndersizePkts +=
4897 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4898 
4899 	stats->FramesDroppedDueToFilters +=
4900 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4901 	stats->DmaWriteQueueFull +=
4902 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4903 	stats->DmaWriteHighPriQueueFull +=
4904 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4905 	stats->NoMoreRxBDs +=
4906 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4907 	/*
4908 	 * XXX
4909 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4910 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4911 	 * includes number of unwanted multicast frames.  This comes
4912 	 * from silicon bug and known workaround to get rough(not
4913 	 * exact) counter is to enable interrupt on MBUF low water
4914 	 * attention.  This can be accomplished by setting
4915 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4916 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4917 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4918 	 * However that change would generate more interrupts and
4919 	 * there are still possibilities of losing multiple frames
4920 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4921 	 * Given that the workaround still would not get correct
4922 	 * counter I don't think it's worth to implement it.  So
4923 	 * ignore reading the counter on controllers that have the
4924 	 * silicon bug.
4925 	 */
4926 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4927 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4928 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4929 		stats->InputDiscards +=
4930 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4931 	stats->InputErrors +=
4932 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4933 	stats->RecvThresholdHit +=
4934 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4935 
4936 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4937 		/*
4938 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4939 		 * frames, it's safe to disable workaround for DMA engine's
4940 		 * miscalculation of TXMBUF space.
4941 		 */
4942 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4943 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4944 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4945 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4946 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4947 			else
4948 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4949 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4950 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4951 		}
4952 	}
4953 }
4954 
4955 static void
4956 bge_stats_clear_regs(struct bge_softc *sc)
4957 {
4958 
4959 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4960 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4961 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4962 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4963 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4964 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4965 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4966 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4967 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4968 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4969 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4970 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4971 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4972 
4973 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4974 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4975 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4976 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4977 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4978 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4979 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4980 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4981 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4982 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4983 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4984 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4985 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4986 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4987 
4988 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4989 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4990 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4991 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4992 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4993 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4994 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4995 }
4996 
4997 static void
4998 bge_stats_update(struct bge_softc *sc)
4999 {
5000 	if_t ifp;
5001 	bus_size_t stats;
5002 	uint32_t cnt;	/* current register value */
5003 
5004 	ifp = sc->bge_ifp;
5005 
5006 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5007 
5008 #define	READ_STAT(sc, stats, stat) \
5009 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5010 
5011 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5012 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5013 	sc->bge_tx_collisions = cnt;
5014 
5015 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5016 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5017 	sc->bge_rx_nobds = cnt;
5018 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5019 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5020 	sc->bge_rx_inerrs = cnt;
5021 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5022 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5023 	sc->bge_rx_discards = cnt;
5024 
5025 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5026 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5027 	sc->bge_tx_discards = cnt;
5028 
5029 #undef	READ_STAT
5030 }
5031 
5032 /*
5033  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5034  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5035  * but when such padded frames employ the bge IP/TCP checksum offload,
5036  * the hardware checksum assist gives incorrect results (possibly
5037  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5038  * If we pad such runts with zeros, the onboard checksum comes out correct.
5039  */
5040 static __inline int
5041 bge_cksum_pad(struct mbuf *m)
5042 {
5043 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5044 	struct mbuf *last;
5045 
5046 	/* If there's only the packet-header and we can pad there, use it. */
5047 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5048 	    M_TRAILINGSPACE(m) >= padlen) {
5049 		last = m;
5050 	} else {
5051 		/*
5052 		 * Walk packet chain to find last mbuf. We will either
5053 		 * pad there, or append a new mbuf and pad it.
5054 		 */
5055 		for (last = m; last->m_next != NULL; last = last->m_next);
5056 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5057 			/* Allocate new empty mbuf, pad it. Compact later. */
5058 			struct mbuf *n;
5059 
5060 			MGET(n, M_NOWAIT, MT_DATA);
5061 			if (n == NULL)
5062 				return (ENOBUFS);
5063 			n->m_len = 0;
5064 			last->m_next = n;
5065 			last = n;
5066 		}
5067 	}
5068 
5069 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5070 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5071 	last->m_len += padlen;
5072 	m->m_pkthdr.len += padlen;
5073 
5074 	return (0);
5075 }
5076 
5077 static struct mbuf *
5078 bge_check_short_dma(struct mbuf *m)
5079 {
5080 	struct mbuf *n;
5081 	int found;
5082 
5083 	/*
5084 	 * If device receive two back-to-back send BDs with less than
5085 	 * or equal to 8 total bytes then the device may hang.  The two
5086 	 * back-to-back send BDs must in the same frame for this failure
5087 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5088 	 * send BDs are there. If this is the case, allocate new mbuf
5089 	 * and copy the frame to workaround the silicon bug.
5090 	 */
5091 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5092 		if (n->m_len < 8) {
5093 			found++;
5094 			if (found > 1)
5095 				break;
5096 			continue;
5097 		}
5098 		found = 0;
5099 	}
5100 
5101 	if (found > 1) {
5102 		n = m_defrag(m, M_NOWAIT);
5103 		if (n == NULL)
5104 			m_freem(m);
5105 	} else
5106 		n = m;
5107 	return (n);
5108 }
5109 
5110 static struct mbuf *
5111 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5112     uint16_t *flags)
5113 {
5114 	struct ip *ip;
5115 	struct tcphdr *tcp;
5116 	struct mbuf *n;
5117 	uint16_t hlen;
5118 	uint32_t poff;
5119 
5120 	if (M_WRITABLE(m) == 0) {
5121 		/* Get a writable copy. */
5122 		n = m_dup(m, M_NOWAIT);
5123 		m_freem(m);
5124 		if (n == NULL)
5125 			return (NULL);
5126 		m = n;
5127 	}
5128 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5129 	if (m == NULL)
5130 		return (NULL);
5131 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5132 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5133 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5134 	if (m == NULL)
5135 		return (NULL);
5136 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5137 	m = m_pullup(m, poff + (tcp->th_off << 2));
5138 	if (m == NULL)
5139 		return (NULL);
5140 	/*
5141 	 * It seems controller doesn't modify IP length and TCP pseudo
5142 	 * checksum. These checksum computed by upper stack should be 0.
5143 	 */
5144 	*mss = m->m_pkthdr.tso_segsz;
5145 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5146 	ip->ip_sum = 0;
5147 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5148 	/* Clear pseudo checksum computed by TCP stack. */
5149 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5150 	tcp->th_sum = 0;
5151 	/*
5152 	 * Broadcom controllers uses different descriptor format for
5153 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5154 	 * license issue and lower performance of firmware based TSO
5155 	 * we only support hardware based TSO.
5156 	 */
5157 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5158 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5159 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5160 		/*
5161 		 * For BCM5717 and newer controllers, hardware based TSO
5162 		 * uses the 14 lower bits of the bge_mss field to store the
5163 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5164 		 * the IP/TCP header length.  The upper 6 bits of the header
5165 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5166 		 * frames are supported.
5167 		 */
5168 		*mss |= ((hlen & 0x3) << 14);
5169 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5170 	} else {
5171 		/*
5172 		 * For BCM5755 and newer controllers, hardware based TSO uses
5173 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5174 		 * store the IP/TCP header length. Jumbo frames are not
5175 		 * supported.
5176 		 */
5177 		*mss |= (hlen << 11);
5178 	}
5179 	return (m);
5180 }
5181 
5182 /*
5183  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5184  * pointers to descriptors.
5185  */
5186 static int
5187 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5188 {
5189 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5190 	bus_dmamap_t		map;
5191 	struct bge_tx_bd	*d;
5192 	struct mbuf		*m = *m_head;
5193 	uint32_t		idx = *txidx;
5194 	uint16_t		csum_flags, mss, vlan_tag;
5195 	int			nsegs, i, error;
5196 
5197 	csum_flags = 0;
5198 	mss = 0;
5199 	vlan_tag = 0;
5200 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5201 	    m->m_next != NULL) {
5202 		*m_head = bge_check_short_dma(m);
5203 		if (*m_head == NULL)
5204 			return (ENOBUFS);
5205 		m = *m_head;
5206 	}
5207 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5208 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5209 		if (*m_head == NULL)
5210 			return (ENOBUFS);
5211 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5212 		    BGE_TXBDFLAG_CPU_POST_DMA;
5213 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5214 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5215 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5216 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5217 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5218 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5219 			    (error = bge_cksum_pad(m)) != 0) {
5220 				m_freem(m);
5221 				*m_head = NULL;
5222 				return (error);
5223 			}
5224 		}
5225 	}
5226 
5227 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5228 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5229 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5230 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5231 		if (sc->bge_forced_collapse > 0 &&
5232 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5233 			/*
5234 			 * Forcedly collapse mbuf chains to overcome hardware
5235 			 * limitation which only support a single outstanding
5236 			 * DMA read operation.
5237 			 */
5238 			if (sc->bge_forced_collapse == 1)
5239 				m = m_defrag(m, M_NOWAIT);
5240 			else
5241 				m = m_collapse(m, M_NOWAIT,
5242 				    sc->bge_forced_collapse);
5243 			if (m == NULL)
5244 				m = *m_head;
5245 			*m_head = m;
5246 		}
5247 	}
5248 
5249 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5250 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5251 	    &nsegs, BUS_DMA_NOWAIT);
5252 	if (error == EFBIG) {
5253 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5254 		if (m == NULL) {
5255 			m_freem(*m_head);
5256 			*m_head = NULL;
5257 			return (ENOBUFS);
5258 		}
5259 		*m_head = m;
5260 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5261 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5262 		if (error) {
5263 			m_freem(m);
5264 			*m_head = NULL;
5265 			return (error);
5266 		}
5267 	} else if (error != 0)
5268 		return (error);
5269 
5270 	/* Check if we have enough free send BDs. */
5271 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5272 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5273 		return (ENOBUFS);
5274 	}
5275 
5276 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5277 
5278 	if (m->m_flags & M_VLANTAG) {
5279 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5280 		vlan_tag = m->m_pkthdr.ether_vtag;
5281 	}
5282 
5283 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5284 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5285 		/*
5286 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5287 		 * buffers cross into regions which are within MSS bytes of
5288 		 * a 4GB boundary.  If we encounter the condition, drop the
5289 		 * packet.
5290 		 */
5291 		for (i = 0; ; i++) {
5292 			d = &sc->bge_ldata.bge_tx_ring[idx];
5293 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5294 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5295 			d->bge_len = segs[i].ds_len;
5296 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5297 			    d->bge_addr.bge_addr_lo)
5298 				break;
5299 			d->bge_flags = csum_flags;
5300 			d->bge_vlan_tag = vlan_tag;
5301 			d->bge_mss = mss;
5302 			if (i == nsegs - 1)
5303 				break;
5304 			BGE_INC(idx, BGE_TX_RING_CNT);
5305 		}
5306 		if (i != nsegs - 1) {
5307 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5308 			    BUS_DMASYNC_POSTWRITE);
5309 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5310 			m_freem(*m_head);
5311 			*m_head = NULL;
5312 			return (EIO);
5313 		}
5314 	} else {
5315 		for (i = 0; ; i++) {
5316 			d = &sc->bge_ldata.bge_tx_ring[idx];
5317 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5318 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5319 			d->bge_len = segs[i].ds_len;
5320 			d->bge_flags = csum_flags;
5321 			d->bge_vlan_tag = vlan_tag;
5322 			d->bge_mss = mss;
5323 			if (i == nsegs - 1)
5324 				break;
5325 			BGE_INC(idx, BGE_TX_RING_CNT);
5326 		}
5327 	}
5328 
5329 	/* Mark the last segment as end of packet... */
5330 	d->bge_flags |= BGE_TXBDFLAG_END;
5331 
5332 	/*
5333 	 * Insure that the map for this transmission
5334 	 * is placed at the array index of the last descriptor
5335 	 * in this chain.
5336 	 */
5337 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5338 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5339 	sc->bge_cdata.bge_tx_chain[idx] = m;
5340 	sc->bge_txcnt += nsegs;
5341 
5342 	BGE_INC(idx, BGE_TX_RING_CNT);
5343 	*txidx = idx;
5344 
5345 	return (0);
5346 }
5347 
5348 /*
5349  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5350  * to the mbuf data regions directly in the transmit descriptors.
5351  */
5352 static void
5353 bge_start_locked(if_t ifp)
5354 {
5355 	struct bge_softc *sc;
5356 	struct mbuf *m_head;
5357 	uint32_t prodidx;
5358 	int count;
5359 
5360 	sc = if_getsoftc(ifp);
5361 	BGE_LOCK_ASSERT(sc);
5362 
5363 	if (!sc->bge_link ||
5364 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5365 	    IFF_DRV_RUNNING)
5366 		return;
5367 
5368 	prodidx = sc->bge_tx_prodidx;
5369 
5370 	for (count = 0; !if_sendq_empty(ifp);) {
5371 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5372 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5373 			break;
5374 		}
5375 		m_head = if_dequeue(ifp);
5376 		if (m_head == NULL)
5377 			break;
5378 
5379 		/*
5380 		 * Pack the data into the transmit ring. If we
5381 		 * don't have room, set the OACTIVE flag and wait
5382 		 * for the NIC to drain the ring.
5383 		 */
5384 		if (bge_encap(sc, &m_head, &prodidx)) {
5385 			if (m_head == NULL)
5386 				break;
5387 			if_sendq_prepend(ifp, m_head);
5388 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5389 			break;
5390 		}
5391 		++count;
5392 
5393 		/*
5394 		 * If there's a BPF listener, bounce a copy of this frame
5395 		 * to him.
5396 		 */
5397 		if_bpfmtap(ifp, m_head);
5398 	}
5399 
5400 	if (count > 0)
5401 		bge_start_tx(sc, prodidx);
5402 }
5403 
5404 static void
5405 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5406 {
5407 
5408 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5409 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5410 	/* Transmit. */
5411 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5412 	/* 5700 b2 errata */
5413 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5414 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5415 
5416 	sc->bge_tx_prodidx = prodidx;
5417 
5418 	/* Set a timeout in case the chip goes out to lunch. */
5419 	sc->bge_timer = BGE_TX_TIMEOUT;
5420 }
5421 
5422 /*
5423  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5424  * to the mbuf data regions directly in the transmit descriptors.
5425  */
5426 static void
5427 bge_start(if_t ifp)
5428 {
5429 	struct bge_softc *sc;
5430 
5431 	sc = if_getsoftc(ifp);
5432 	BGE_LOCK(sc);
5433 	bge_start_locked(ifp);
5434 	BGE_UNLOCK(sc);
5435 }
5436 
5437 static void
5438 bge_init_locked(struct bge_softc *sc)
5439 {
5440 	if_t ifp;
5441 	uint16_t *m;
5442 	uint32_t mode;
5443 
5444 	BGE_LOCK_ASSERT(sc);
5445 
5446 	ifp = sc->bge_ifp;
5447 
5448 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5449 		return;
5450 
5451 	/* Cancel pending I/O and flush buffers. */
5452 	bge_stop(sc);
5453 
5454 	bge_stop_fw(sc);
5455 	bge_sig_pre_reset(sc, BGE_RESET_START);
5456 	bge_reset(sc);
5457 	bge_sig_legacy(sc, BGE_RESET_START);
5458 	bge_sig_post_reset(sc, BGE_RESET_START);
5459 
5460 	bge_chipinit(sc);
5461 
5462 	/*
5463 	 * Init the various state machines, ring
5464 	 * control blocks and firmware.
5465 	 */
5466 	if (bge_blockinit(sc)) {
5467 		device_printf(sc->bge_dev, "initialization failure\n");
5468 		return;
5469 	}
5470 
5471 	ifp = sc->bge_ifp;
5472 
5473 	/* Specify MTU. */
5474 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5475 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5476 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5477 
5478 	/* Load our MAC address. */
5479 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5480 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5481 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5482 
5483 	/* Program promiscuous mode. */
5484 	bge_setpromisc(sc);
5485 
5486 	/* Program multicast filter. */
5487 	bge_setmulti(sc);
5488 
5489 	/* Program VLAN tag stripping. */
5490 	bge_setvlan(sc);
5491 
5492 	/* Override UDP checksum offloading. */
5493 	if (sc->bge_forced_udpcsum == 0)
5494 		sc->bge_csum_features &= ~CSUM_UDP;
5495 	else
5496 		sc->bge_csum_features |= CSUM_UDP;
5497 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5498 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5499 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5500 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5501 	}
5502 
5503 	/* Init RX ring. */
5504 	if (bge_init_rx_ring_std(sc) != 0) {
5505 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5506 		bge_stop(sc);
5507 		return;
5508 	}
5509 
5510 	/*
5511 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5512 	 * memory to insure that the chip has in fact read the first
5513 	 * entry of the ring.
5514 	 */
5515 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5516 		uint32_t		v, i;
5517 		for (i = 0; i < 10; i++) {
5518 			DELAY(20);
5519 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5520 			if (v == (MCLBYTES - ETHER_ALIGN))
5521 				break;
5522 		}
5523 		if (i == 10)
5524 			device_printf (sc->bge_dev,
5525 			    "5705 A0 chip failed to load RX ring\n");
5526 	}
5527 
5528 	/* Init jumbo RX ring. */
5529 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5530 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5531      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5532 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5533 			device_printf(sc->bge_dev,
5534 			    "no memory for jumbo Rx buffers.\n");
5535 			bge_stop(sc);
5536 			return;
5537 		}
5538 	}
5539 
5540 	/* Init our RX return ring index. */
5541 	sc->bge_rx_saved_considx = 0;
5542 
5543 	/* Init our RX/TX stat counters. */
5544 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5545 
5546 	/* Init TX ring. */
5547 	bge_init_tx_ring(sc);
5548 
5549 	/* Enable TX MAC state machine lockup fix. */
5550 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5551 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5552 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5553 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5554 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5555 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5556 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5557 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5558 	}
5559 	/* Turn on transmitter. */
5560 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5561 	DELAY(100);
5562 
5563 	/* Turn on receiver. */
5564 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5565 	if (BGE_IS_5755_PLUS(sc))
5566 		mode |= BGE_RXMODE_IPV6_ENABLE;
5567 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5568 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5569 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5570 	DELAY(10);
5571 
5572 	/*
5573 	 * Set the number of good frames to receive after RX MBUF
5574 	 * Low Watermark has been reached. After the RX MAC receives
5575 	 * this number of frames, it will drop subsequent incoming
5576 	 * frames until the MBUF High Watermark is reached.
5577 	 */
5578 	if (BGE_IS_57765_PLUS(sc))
5579 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5580 	else
5581 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5582 
5583 	/* Clear MAC statistics. */
5584 	if (BGE_IS_5705_PLUS(sc))
5585 		bge_stats_clear_regs(sc);
5586 
5587 	/* Tell firmware we're alive. */
5588 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5589 
5590 #ifdef DEVICE_POLLING
5591 	/* Disable interrupts if we are polling. */
5592 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5593 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5594 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5595 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5596 	} else
5597 #endif
5598 
5599 	/* Enable host interrupts. */
5600 	{
5601 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5602 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5603 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5604 	}
5605 
5606 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5607 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5608 
5609 	bge_ifmedia_upd_locked(ifp);
5610 
5611 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5612 }
5613 
5614 static void
5615 bge_init(void *xsc)
5616 {
5617 	struct bge_softc *sc = xsc;
5618 
5619 	BGE_LOCK(sc);
5620 	bge_init_locked(sc);
5621 	BGE_UNLOCK(sc);
5622 }
5623 
5624 /*
5625  * Set media options.
5626  */
5627 static int
5628 bge_ifmedia_upd(if_t ifp)
5629 {
5630 	struct bge_softc *sc = if_getsoftc(ifp);
5631 	int res;
5632 
5633 	BGE_LOCK(sc);
5634 	res = bge_ifmedia_upd_locked(ifp);
5635 	BGE_UNLOCK(sc);
5636 
5637 	return (res);
5638 }
5639 
5640 static int
5641 bge_ifmedia_upd_locked(if_t ifp)
5642 {
5643 	struct bge_softc *sc = if_getsoftc(ifp);
5644 	struct mii_data *mii;
5645 	struct mii_softc *miisc;
5646 	struct ifmedia *ifm;
5647 
5648 	BGE_LOCK_ASSERT(sc);
5649 
5650 	ifm = &sc->bge_ifmedia;
5651 
5652 	/* If this is a 1000baseX NIC, enable the TBI port. */
5653 	if (sc->bge_flags & BGE_FLAG_TBI) {
5654 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5655 			return (EINVAL);
5656 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5657 		case IFM_AUTO:
5658 			/*
5659 			 * The BCM5704 ASIC appears to have a special
5660 			 * mechanism for programming the autoneg
5661 			 * advertisement registers in TBI mode.
5662 			 */
5663 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5664 				uint32_t sgdig;
5665 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5666 				if (sgdig & BGE_SGDIGSTS_DONE) {
5667 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5668 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5669 					sgdig |= BGE_SGDIGCFG_AUTO |
5670 					    BGE_SGDIGCFG_PAUSE_CAP |
5671 					    BGE_SGDIGCFG_ASYM_PAUSE;
5672 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5673 					    sgdig | BGE_SGDIGCFG_SEND);
5674 					DELAY(5);
5675 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5676 				}
5677 			}
5678 			break;
5679 		case IFM_1000_SX:
5680 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5681 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5682 				    BGE_MACMODE_HALF_DUPLEX);
5683 			} else {
5684 				BGE_SETBIT(sc, BGE_MAC_MODE,
5685 				    BGE_MACMODE_HALF_DUPLEX);
5686 			}
5687 			DELAY(40);
5688 			break;
5689 		default:
5690 			return (EINVAL);
5691 		}
5692 		return (0);
5693 	}
5694 
5695 	sc->bge_link_evt++;
5696 	mii = device_get_softc(sc->bge_miibus);
5697 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5698 		PHY_RESET(miisc);
5699 	mii_mediachg(mii);
5700 
5701 	/*
5702 	 * Force an interrupt so that we will call bge_link_upd
5703 	 * if needed and clear any pending link state attention.
5704 	 * Without this we are not getting any further interrupts
5705 	 * for link state changes and thus will not UP the link and
5706 	 * not be able to send in bge_start_locked. The only
5707 	 * way to get things working was to receive a packet and
5708 	 * get an RX intr.
5709 	 * bge_tick should help for fiber cards and we might not
5710 	 * need to do this here if BGE_FLAG_TBI is set but as
5711 	 * we poll for fiber anyway it should not harm.
5712 	 */
5713 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5714 	    sc->bge_flags & BGE_FLAG_5788)
5715 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5716 	else
5717 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5718 
5719 	return (0);
5720 }
5721 
5722 /*
5723  * Report current media status.
5724  */
5725 static void
5726 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5727 {
5728 	struct bge_softc *sc = if_getsoftc(ifp);
5729 	struct mii_data *mii;
5730 
5731 	BGE_LOCK(sc);
5732 
5733 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5734 		BGE_UNLOCK(sc);
5735 		return;
5736 	}
5737 	if (sc->bge_flags & BGE_FLAG_TBI) {
5738 		ifmr->ifm_status = IFM_AVALID;
5739 		ifmr->ifm_active = IFM_ETHER;
5740 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5741 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5742 			ifmr->ifm_status |= IFM_ACTIVE;
5743 		else {
5744 			ifmr->ifm_active |= IFM_NONE;
5745 			BGE_UNLOCK(sc);
5746 			return;
5747 		}
5748 		ifmr->ifm_active |= IFM_1000_SX;
5749 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5750 			ifmr->ifm_active |= IFM_HDX;
5751 		else
5752 			ifmr->ifm_active |= IFM_FDX;
5753 		BGE_UNLOCK(sc);
5754 		return;
5755 	}
5756 
5757 	mii = device_get_softc(sc->bge_miibus);
5758 	mii_pollstat(mii);
5759 	ifmr->ifm_active = mii->mii_media_active;
5760 	ifmr->ifm_status = mii->mii_media_status;
5761 
5762 	BGE_UNLOCK(sc);
5763 }
5764 
5765 static int
5766 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5767 {
5768 	struct bge_softc *sc = if_getsoftc(ifp);
5769 	struct ifreq *ifr = (struct ifreq *) data;
5770 	struct mii_data *mii;
5771 	int flags, mask, error = 0;
5772 
5773 	switch (command) {
5774 	case SIOCSIFMTU:
5775 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5776 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5777 			if (ifr->ifr_mtu < ETHERMIN ||
5778 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5779 				error = EINVAL;
5780 				break;
5781 			}
5782 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5783 			error = EINVAL;
5784 			break;
5785 		}
5786 		BGE_LOCK(sc);
5787 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5788 			if_setmtu(ifp, ifr->ifr_mtu);
5789 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5790 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5791 				bge_init_locked(sc);
5792 			}
5793 		}
5794 		BGE_UNLOCK(sc);
5795 		break;
5796 	case SIOCSIFFLAGS:
5797 		BGE_LOCK(sc);
5798 		if (if_getflags(ifp) & IFF_UP) {
5799 			/*
5800 			 * If only the state of the PROMISC flag changed,
5801 			 * then just use the 'set promisc mode' command
5802 			 * instead of reinitializing the entire NIC. Doing
5803 			 * a full re-init means reloading the firmware and
5804 			 * waiting for it to start up, which may take a
5805 			 * second or two.  Similarly for ALLMULTI.
5806 			 */
5807 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5808 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5809 				if (flags & IFF_PROMISC)
5810 					bge_setpromisc(sc);
5811 				if (flags & IFF_ALLMULTI)
5812 					bge_setmulti(sc);
5813 			} else
5814 				bge_init_locked(sc);
5815 		} else {
5816 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5817 				bge_stop(sc);
5818 			}
5819 		}
5820 		sc->bge_if_flags = if_getflags(ifp);
5821 		BGE_UNLOCK(sc);
5822 		error = 0;
5823 		break;
5824 	case SIOCADDMULTI:
5825 	case SIOCDELMULTI:
5826 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5827 			BGE_LOCK(sc);
5828 			bge_setmulti(sc);
5829 			BGE_UNLOCK(sc);
5830 			error = 0;
5831 		}
5832 		break;
5833 	case SIOCSIFMEDIA:
5834 	case SIOCGIFMEDIA:
5835 		if (sc->bge_flags & BGE_FLAG_TBI) {
5836 			error = ifmedia_ioctl(ifp, ifr,
5837 			    &sc->bge_ifmedia, command);
5838 		} else {
5839 			mii = device_get_softc(sc->bge_miibus);
5840 			error = ifmedia_ioctl(ifp, ifr,
5841 			    &mii->mii_media, command);
5842 		}
5843 		break;
5844 	case SIOCSIFCAP:
5845 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5846 #ifdef DEVICE_POLLING
5847 		if (mask & IFCAP_POLLING) {
5848 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5849 				error = ether_poll_register(bge_poll, ifp);
5850 				if (error)
5851 					return (error);
5852 				BGE_LOCK(sc);
5853 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5854 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5855 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5856 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5857 				BGE_UNLOCK(sc);
5858 			} else {
5859 				error = ether_poll_deregister(ifp);
5860 				/* Enable interrupt even in error case */
5861 				BGE_LOCK(sc);
5862 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5863 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5864 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5865 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5866 				BGE_UNLOCK(sc);
5867 			}
5868 		}
5869 #endif
5870 		if ((mask & IFCAP_TXCSUM) != 0 &&
5871 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5872 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5873 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5874 				if_sethwassistbits(ifp,
5875 				    sc->bge_csum_features, 0);
5876 			else
5877 				if_sethwassistbits(ifp, 0,
5878 				    sc->bge_csum_features);
5879 		}
5880 
5881 		if ((mask & IFCAP_RXCSUM) != 0 &&
5882 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5883 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5884 
5885 		if ((mask & IFCAP_TSO4) != 0 &&
5886 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5887 			if_togglecapenable(ifp, IFCAP_TSO4);
5888 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5889 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5890 			else
5891 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5892 		}
5893 
5894 		if (mask & IFCAP_VLAN_MTU) {
5895 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5896 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5897 			bge_init(sc);
5898 		}
5899 
5900 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5901 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5902 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5903 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5904 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5905 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5906 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5907 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5908 			BGE_LOCK(sc);
5909 			bge_setvlan(sc);
5910 			BGE_UNLOCK(sc);
5911 		}
5912 #ifdef VLAN_CAPABILITIES
5913 		if_vlancap(ifp);
5914 #endif
5915 		break;
5916 	default:
5917 		error = ether_ioctl(ifp, command, data);
5918 		break;
5919 	}
5920 
5921 	return (error);
5922 }
5923 
5924 static void
5925 bge_watchdog(struct bge_softc *sc)
5926 {
5927 	if_t ifp;
5928 	uint32_t status;
5929 
5930 	BGE_LOCK_ASSERT(sc);
5931 
5932 	if (sc->bge_timer == 0 || --sc->bge_timer)
5933 		return;
5934 
5935 	/* If pause frames are active then don't reset the hardware. */
5936 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5937 		status = CSR_READ_4(sc, BGE_RX_STS);
5938 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5939 			/*
5940 			 * If link partner has us in XOFF state then wait for
5941 			 * the condition to clear.
5942 			 */
5943 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5944 			sc->bge_timer = BGE_TX_TIMEOUT;
5945 			return;
5946 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5947 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5948 			/*
5949 			 * If link partner has us in XOFF state then wait for
5950 			 * the condition to clear.
5951 			 */
5952 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5953 			sc->bge_timer = BGE_TX_TIMEOUT;
5954 			return;
5955 		}
5956 		/*
5957 		 * Any other condition is unexpected and the controller
5958 		 * should be reset.
5959 		 */
5960 	}
5961 
5962 	ifp = sc->bge_ifp;
5963 
5964 	if_printf(ifp, "watchdog timeout -- resetting\n");
5965 
5966 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5967 	bge_init_locked(sc);
5968 
5969 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5970 }
5971 
5972 static void
5973 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5974 {
5975 	int i;
5976 
5977 	BGE_CLRBIT(sc, reg, bit);
5978 
5979 	for (i = 0; i < BGE_TIMEOUT; i++) {
5980 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5981 			return;
5982 		DELAY(100);
5983         }
5984 }
5985 
5986 /*
5987  * Stop the adapter and free any mbufs allocated to the
5988  * RX and TX lists.
5989  */
5990 static void
5991 bge_stop(struct bge_softc *sc)
5992 {
5993 	if_t ifp;
5994 
5995 	BGE_LOCK_ASSERT(sc);
5996 
5997 	ifp = sc->bge_ifp;
5998 
5999 	callout_stop(&sc->bge_stat_ch);
6000 
6001 	/* Disable host interrupts. */
6002 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6003 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
6004 
6005 	/*
6006 	 * Tell firmware we're shutting down.
6007 	 */
6008 	bge_stop_fw(sc);
6009 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6010 
6011 	/*
6012 	 * Disable all of the receiver blocks.
6013 	 */
6014 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6015 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6016 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6017 	if (BGE_IS_5700_FAMILY(sc))
6018 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6019 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6020 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6021 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6022 
6023 	/*
6024 	 * Disable all of the transmit blocks.
6025 	 */
6026 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6027 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6028 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6029 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6030 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6031 	if (BGE_IS_5700_FAMILY(sc))
6032 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6033 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6034 
6035 	/*
6036 	 * Shut down all of the memory managers and related
6037 	 * state machines.
6038 	 */
6039 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6040 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6041 	if (BGE_IS_5700_FAMILY(sc))
6042 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6043 
6044 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6045 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6046 	if (!(BGE_IS_5705_PLUS(sc))) {
6047 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6048 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6049 	}
6050 	/* Update MAC statistics. */
6051 	if (BGE_IS_5705_PLUS(sc))
6052 		bge_stats_update_regs(sc);
6053 
6054 	bge_reset(sc);
6055 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6056 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6057 
6058 	/*
6059 	 * Keep the ASF firmware running if up.
6060 	 */
6061 	if (sc->bge_asf_mode & ASF_STACKUP)
6062 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6063 	else
6064 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6065 
6066 	/* Free the RX lists. */
6067 	bge_free_rx_ring_std(sc);
6068 
6069 	/* Free jumbo RX list. */
6070 	if (BGE_IS_JUMBO_CAPABLE(sc))
6071 		bge_free_rx_ring_jumbo(sc);
6072 
6073 	/* Free TX buffers. */
6074 	bge_free_tx_ring(sc);
6075 
6076 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6077 
6078 	/* Clear MAC's link state (PHY may still have link UP). */
6079 	if (bootverbose && sc->bge_link)
6080 		if_printf(sc->bge_ifp, "link DOWN\n");
6081 	sc->bge_link = 0;
6082 
6083 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6084 }
6085 
6086 /*
6087  * Stop all chip I/O so that the kernel's probe routines don't
6088  * get confused by errant DMAs when rebooting.
6089  */
6090 static int
6091 bge_shutdown(device_t dev)
6092 {
6093 	struct bge_softc *sc;
6094 
6095 	sc = device_get_softc(dev);
6096 	BGE_LOCK(sc);
6097 	bge_stop(sc);
6098 	BGE_UNLOCK(sc);
6099 
6100 	return (0);
6101 }
6102 
6103 static int
6104 bge_suspend(device_t dev)
6105 {
6106 	struct bge_softc *sc;
6107 
6108 	sc = device_get_softc(dev);
6109 	BGE_LOCK(sc);
6110 	bge_stop(sc);
6111 	BGE_UNLOCK(sc);
6112 
6113 	return (0);
6114 }
6115 
6116 static int
6117 bge_resume(device_t dev)
6118 {
6119 	struct bge_softc *sc;
6120 	if_t ifp;
6121 
6122 	sc = device_get_softc(dev);
6123 	BGE_LOCK(sc);
6124 	ifp = sc->bge_ifp;
6125 	if (if_getflags(ifp) & IFF_UP) {
6126 		bge_init_locked(sc);
6127 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6128 			bge_start_locked(ifp);
6129 	}
6130 	BGE_UNLOCK(sc);
6131 
6132 	return (0);
6133 }
6134 
6135 static void
6136 bge_link_upd(struct bge_softc *sc)
6137 {
6138 	struct mii_data *mii;
6139 	uint32_t link, status;
6140 
6141 	BGE_LOCK_ASSERT(sc);
6142 
6143 	/* Clear 'pending link event' flag. */
6144 	sc->bge_link_evt = 0;
6145 
6146 	/*
6147 	 * Process link state changes.
6148 	 * Grrr. The link status word in the status block does
6149 	 * not work correctly on the BCM5700 rev AX and BX chips,
6150 	 * according to all available information. Hence, we have
6151 	 * to enable MII interrupts in order to properly obtain
6152 	 * async link changes. Unfortunately, this also means that
6153 	 * we have to read the MAC status register to detect link
6154 	 * changes, thereby adding an additional register access to
6155 	 * the interrupt handler.
6156 	 *
6157 	 * XXX: perhaps link state detection procedure used for
6158 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6159 	 */
6160 
6161 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6162 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6163 		status = CSR_READ_4(sc, BGE_MAC_STS);
6164 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6165 			mii = device_get_softc(sc->bge_miibus);
6166 			mii_pollstat(mii);
6167 			if (!sc->bge_link &&
6168 			    mii->mii_media_status & IFM_ACTIVE &&
6169 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6170 				sc->bge_link++;
6171 				if (bootverbose)
6172 					if_printf(sc->bge_ifp, "link UP\n");
6173 			} else if (sc->bge_link &&
6174 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6175 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6176 				sc->bge_link = 0;
6177 				if (bootverbose)
6178 					if_printf(sc->bge_ifp, "link DOWN\n");
6179 			}
6180 
6181 			/* Clear the interrupt. */
6182 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6183 			    BGE_EVTENB_MI_INTERRUPT);
6184 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6185 			    BRGPHY_MII_ISR);
6186 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6187 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6188 		}
6189 		return;
6190 	}
6191 
6192 	if (sc->bge_flags & BGE_FLAG_TBI) {
6193 		status = CSR_READ_4(sc, BGE_MAC_STS);
6194 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6195 			if (!sc->bge_link) {
6196 				sc->bge_link++;
6197 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6198 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6199 					    BGE_MACMODE_TBI_SEND_CFGS);
6200 					DELAY(40);
6201 				}
6202 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6203 				if (bootverbose)
6204 					if_printf(sc->bge_ifp, "link UP\n");
6205 				if_link_state_change(sc->bge_ifp,
6206 				    LINK_STATE_UP);
6207 			}
6208 		} else if (sc->bge_link) {
6209 			sc->bge_link = 0;
6210 			if (bootverbose)
6211 				if_printf(sc->bge_ifp, "link DOWN\n");
6212 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6213 		}
6214 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6215 		/*
6216 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6217 		 * in status word always set. Workaround this bug by reading
6218 		 * PHY link status directly.
6219 		 */
6220 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6221 
6222 		if (link != sc->bge_link ||
6223 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6224 			mii = device_get_softc(sc->bge_miibus);
6225 			mii_pollstat(mii);
6226 			if (!sc->bge_link &&
6227 			    mii->mii_media_status & IFM_ACTIVE &&
6228 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6229 				sc->bge_link++;
6230 				if (bootverbose)
6231 					if_printf(sc->bge_ifp, "link UP\n");
6232 			} else if (sc->bge_link &&
6233 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6234 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6235 				sc->bge_link = 0;
6236 				if (bootverbose)
6237 					if_printf(sc->bge_ifp, "link DOWN\n");
6238 			}
6239 		}
6240 	} else {
6241 		/*
6242 		 * For controllers that call mii_tick, we have to poll
6243 		 * link status.
6244 		 */
6245 		mii = device_get_softc(sc->bge_miibus);
6246 		mii_pollstat(mii);
6247 		bge_miibus_statchg(sc->bge_dev);
6248 	}
6249 
6250 	/* Disable MAC attention when link is up. */
6251 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6252 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6253 	    BGE_MACSTAT_LINK_CHANGED);
6254 }
6255 
6256 static void
6257 bge_add_sysctls(struct bge_softc *sc)
6258 {
6259 	struct sysctl_ctx_list *ctx;
6260 	struct sysctl_oid_list *children;
6261 	int unit;
6262 
6263 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6264 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6265 
6266 #ifdef BGE_REGISTER_DEBUG
6267 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6268 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6269 	    "Debug Information");
6270 
6271 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6272 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6273 	    "MAC Register Read");
6274 
6275 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6276 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6277 	    "APE Register Read");
6278 
6279 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6280 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6281 	    "Memory Read");
6282 
6283 #endif
6284 
6285 	unit = device_get_unit(sc->bge_dev);
6286 	/*
6287 	 * A common design characteristic for many Broadcom client controllers
6288 	 * is that they only support a single outstanding DMA read operation
6289 	 * on the PCIe bus. This means that it will take twice as long to fetch
6290 	 * a TX frame that is split into header and payload buffers as it does
6291 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6292 	 * these controllers, coalescing buffers to reduce the number of memory
6293 	 * reads is effective way to get maximum performance(about 940Mbps).
6294 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6295 	 * performance is about 850Mbps. However forcing coalescing mbufs
6296 	 * consumes a lot of CPU cycles, so leave it off by default.
6297 	 */
6298 	sc->bge_forced_collapse = 0;
6299 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6300 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6301 	    "Number of fragmented TX buffers of a frame allowed before "
6302 	    "forced collapsing");
6303 
6304 	sc->bge_msi = 1;
6305 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6306 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6307 
6308 	/*
6309 	 * It seems all Broadcom controllers have a bug that can generate UDP
6310 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6311 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6312 	 * Even though the probability of generating such UDP datagrams is
6313 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6314 	 * into network so disable UDP checksum offloading by default.  Users
6315 	 * still override this behavior by setting a sysctl variable,
6316 	 * dev.bge.0.forced_udpcsum.
6317 	 */
6318 	sc->bge_forced_udpcsum = 0;
6319 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6320 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6321 	    "Enable UDP checksum offloading even if controller can "
6322 	    "generate UDP checksum value 0");
6323 
6324 	if (BGE_IS_5705_PLUS(sc))
6325 		bge_add_sysctl_stats_regs(sc, ctx, children);
6326 	else
6327 		bge_add_sysctl_stats(sc, ctx, children);
6328 }
6329 
6330 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6331 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6332 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6333 	    desc)
6334 
6335 static void
6336 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6337     struct sysctl_oid_list *parent)
6338 {
6339 	struct sysctl_oid *tree;
6340 	struct sysctl_oid_list *children, *schildren;
6341 
6342 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6343 	    NULL, "BGE Statistics");
6344 	schildren = children = SYSCTL_CHILDREN(tree);
6345 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6346 	    children, COSFramesDroppedDueToFilters,
6347 	    "FramesDroppedDueToFilters");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6349 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6351 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6353 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6354 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6355 	    children, ifInDiscards, "InputDiscards");
6356 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6357 	    children, ifInErrors, "InputErrors");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6359 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6361 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6362 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6363 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6364 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6365 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6366 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6367 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6368 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6369 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6370 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6371 	    children, nicInterrupts, "Interrupts");
6372 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6373 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6374 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6375 	    children, nicSendThresholdHit, "SendThresholdHit");
6376 
6377 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6378 	    NULL, "BGE RX Statistics");
6379 	children = SYSCTL_CHILDREN(tree);
6380 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6381 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6382 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6383 	    children, rxstats.etherStatsFragments, "Fragments");
6384 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6385 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6386 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6387 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6388 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6389 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6391 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6392 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6393 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6394 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6395 	    children, rxstats.xoffPauseFramesReceived,
6396 	    "xoffPauseFramesReceived");
6397 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6398 	    children, rxstats.macControlFramesReceived,
6399 	    "ControlFramesReceived");
6400 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6401 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6402 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6403 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6404 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6405 	    children, rxstats.etherStatsJabbers, "Jabbers");
6406 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6407 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6408 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6409 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6411 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6412 
6413 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6414 	    NULL, "BGE TX Statistics");
6415 	children = SYSCTL_CHILDREN(tree);
6416 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6417 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6418 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6419 	    children, txstats.etherStatsCollisions, "Collisions");
6420 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6421 	    children, txstats.outXonSent, "XonSent");
6422 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6423 	    children, txstats.outXoffSent, "XoffSent");
6424 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6425 	    children, txstats.flowControlDone, "flowControlDone");
6426 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6427 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6428 	    "InternalMacTransmitErrors");
6429 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6430 	    children, txstats.dot3StatsSingleCollisionFrames,
6431 	    "SingleCollisionFrames");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6433 	    children, txstats.dot3StatsMultipleCollisionFrames,
6434 	    "MultipleCollisionFrames");
6435 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6436 	    children, txstats.dot3StatsDeferredTransmissions,
6437 	    "DeferredTransmissions");
6438 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6439 	    children, txstats.dot3StatsExcessiveCollisions,
6440 	    "ExcessiveCollisions");
6441 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6442 	    children, txstats.dot3StatsLateCollisions,
6443 	    "LateCollisions");
6444 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6445 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6446 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6447 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6448 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6449 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6450 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6451 	    children, txstats.dot3StatsCarrierSenseErrors,
6452 	    "CarrierSenseErrors");
6453 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6454 	    children, txstats.ifOutDiscards, "Discards");
6455 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6456 	    children, txstats.ifOutErrors, "Errors");
6457 }
6458 
6459 #undef BGE_SYSCTL_STAT
6460 
6461 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6462 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6463 
6464 static void
6465 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6466     struct sysctl_oid_list *parent)
6467 {
6468 	struct sysctl_oid *tree;
6469 	struct sysctl_oid_list *child, *schild;
6470 	struct bge_mac_stats *stats;
6471 
6472 	stats = &sc->bge_mac_stats;
6473 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6474 	    NULL, "BGE Statistics");
6475 	schild = child = SYSCTL_CHILDREN(tree);
6476 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6477 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6478 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6479 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6480 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6481 	    &stats->DmaWriteHighPriQueueFull,
6482 	    "NIC DMA Write High Priority Queue Full");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6484 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6486 	    &stats->InputDiscards, "Discarded Input Frames");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6488 	    &stats->InputErrors, "Input Errors");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6490 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6491 
6492 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6493 	    NULL, "BGE RX Statistics");
6494 	child = SYSCTL_CHILDREN(tree);
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6496 	    &stats->ifHCInOctets, "Inbound Octets");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6498 	    &stats->etherStatsFragments, "Fragments");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6500 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6502 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6504 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6506 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6508 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6510 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6512 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6514 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6516 	    &stats->xoffStateEntered, "XOFF State Entered");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6518 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6520 	    &stats->etherStatsJabbers, "Jabbers");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6522 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6523 
6524 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6525 	    NULL, "BGE TX Statistics");
6526 	child = SYSCTL_CHILDREN(tree);
6527 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6528 	    &stats->ifHCOutOctets, "Outbound Octets");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6530 	    &stats->etherStatsCollisions, "TX Collisions");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6532 	    &stats->outXonSent, "XON Sent");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6534 	    &stats->outXoffSent, "XOFF Sent");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6536 	    &stats->dot3StatsInternalMacTransmitErrors,
6537 	    "Internal MAC TX Errors");
6538 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6539 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6540 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6541 	    &stats->dot3StatsMultipleCollisionFrames,
6542 	    "Multiple Collision Frames");
6543 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6544 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6545 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6546 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6547 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6548 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6549 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6550 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6551 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6552 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6553 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6554 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6555 }
6556 
6557 #undef	BGE_SYSCTL_STAT_ADD64
6558 
6559 static int
6560 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6561 {
6562 	struct bge_softc *sc;
6563 	uint32_t result;
6564 	int offset;
6565 
6566 	sc = (struct bge_softc *)arg1;
6567 	offset = arg2;
6568 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6569 	    offsetof(bge_hostaddr, bge_addr_lo));
6570 	return (sysctl_handle_int(oidp, &result, 0, req));
6571 }
6572 
6573 #ifdef BGE_REGISTER_DEBUG
6574 static int
6575 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6576 {
6577 	struct bge_softc *sc;
6578 	uint16_t *sbdata;
6579 	int error, result, sbsz;
6580 	int i, j;
6581 
6582 	result = -1;
6583 	error = sysctl_handle_int(oidp, &result, 0, req);
6584 	if (error || (req->newptr == NULL))
6585 		return (error);
6586 
6587 	if (result == 1) {
6588 		sc = (struct bge_softc *)arg1;
6589 
6590 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6591 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6592 			sbsz = BGE_STATUS_BLK_SZ;
6593 		else
6594 			sbsz = 32;
6595 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6596 		printf("Status Block:\n");
6597 		BGE_LOCK(sc);
6598 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6599 		    sc->bge_cdata.bge_status_map,
6600 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6601 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6602 			printf("%06x:", i);
6603 			for (j = 0; j < 8; j++)
6604 				printf(" %04x", sbdata[i++]);
6605 			printf("\n");
6606 		}
6607 
6608 		printf("Registers:\n");
6609 		for (i = 0x800; i < 0xA00; ) {
6610 			printf("%06x:", i);
6611 			for (j = 0; j < 8; j++) {
6612 				printf(" %08x", CSR_READ_4(sc, i));
6613 				i += 4;
6614 			}
6615 			printf("\n");
6616 		}
6617 		BGE_UNLOCK(sc);
6618 
6619 		printf("Hardware Flags:\n");
6620 		if (BGE_IS_5717_PLUS(sc))
6621 			printf(" - 5717 Plus\n");
6622 		if (BGE_IS_5755_PLUS(sc))
6623 			printf(" - 5755 Plus\n");
6624 		if (BGE_IS_575X_PLUS(sc))
6625 			printf(" - 575X Plus\n");
6626 		if (BGE_IS_5705_PLUS(sc))
6627 			printf(" - 5705 Plus\n");
6628 		if (BGE_IS_5714_FAMILY(sc))
6629 			printf(" - 5714 Family\n");
6630 		if (BGE_IS_5700_FAMILY(sc))
6631 			printf(" - 5700 Family\n");
6632 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6633 			printf(" - Supports Jumbo Frames\n");
6634 		if (sc->bge_flags & BGE_FLAG_PCIX)
6635 			printf(" - PCI-X Bus\n");
6636 		if (sc->bge_flags & BGE_FLAG_PCIE)
6637 			printf(" - PCI Express Bus\n");
6638 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6639 			printf(" - No 3 LEDs\n");
6640 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6641 			printf(" - RX Alignment Bug\n");
6642 	}
6643 
6644 	return (error);
6645 }
6646 
6647 static int
6648 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6649 {
6650 	struct bge_softc *sc;
6651 	int error;
6652 	uint16_t result;
6653 	uint32_t val;
6654 
6655 	result = -1;
6656 	error = sysctl_handle_int(oidp, &result, 0, req);
6657 	if (error || (req->newptr == NULL))
6658 		return (error);
6659 
6660 	if (result < 0x8000) {
6661 		sc = (struct bge_softc *)arg1;
6662 		val = CSR_READ_4(sc, result);
6663 		printf("reg 0x%06X = 0x%08X\n", result, val);
6664 	}
6665 
6666 	return (error);
6667 }
6668 
6669 static int
6670 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6671 {
6672 	struct bge_softc *sc;
6673 	int error;
6674 	uint16_t result;
6675 	uint32_t val;
6676 
6677 	result = -1;
6678 	error = sysctl_handle_int(oidp, &result, 0, req);
6679 	if (error || (req->newptr == NULL))
6680 		return (error);
6681 
6682 	if (result < 0x8000) {
6683 		sc = (struct bge_softc *)arg1;
6684 		val = APE_READ_4(sc, result);
6685 		printf("reg 0x%06X = 0x%08X\n", result, val);
6686 	}
6687 
6688 	return (error);
6689 }
6690 
6691 static int
6692 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6693 {
6694 	struct bge_softc *sc;
6695 	int error;
6696 	uint16_t result;
6697 	uint32_t val;
6698 
6699 	result = -1;
6700 	error = sysctl_handle_int(oidp, &result, 0, req);
6701 	if (error || (req->newptr == NULL))
6702 		return (error);
6703 
6704 	if (result < 0x8000) {
6705 		sc = (struct bge_softc *)arg1;
6706 		val = bge_readmem_ind(sc, result);
6707 		printf("mem 0x%06X = 0x%08X\n", result, val);
6708 	}
6709 
6710 	return (error);
6711 }
6712 #endif
6713 
6714 static int
6715 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6716 {
6717 
6718 	if (sc->bge_flags & BGE_FLAG_EADDR)
6719 		return (1);
6720 
6721 #ifdef __sparc64__
6722 	OF_getetheraddr(sc->bge_dev, ether_addr);
6723 	return (0);
6724 #endif
6725 	return (1);
6726 }
6727 
6728 static int
6729 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6730 {
6731 	uint32_t mac_addr;
6732 
6733 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6734 	if ((mac_addr >> 16) == 0x484b) {
6735 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6736 		ether_addr[1] = (uint8_t)mac_addr;
6737 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6738 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6739 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6740 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6741 		ether_addr[5] = (uint8_t)mac_addr;
6742 		return (0);
6743 	}
6744 	return (1);
6745 }
6746 
6747 static int
6748 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6749 {
6750 	int mac_offset = BGE_EE_MAC_OFFSET;
6751 
6752 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6753 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6754 
6755 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6756 	    ETHER_ADDR_LEN));
6757 }
6758 
6759 static int
6760 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6761 {
6762 
6763 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6764 		return (1);
6765 
6766 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6767 	   ETHER_ADDR_LEN));
6768 }
6769 
6770 static int
6771 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6772 {
6773 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6774 		/* NOTE: Order is critical */
6775 		bge_get_eaddr_fw,
6776 		bge_get_eaddr_mem,
6777 		bge_get_eaddr_nvram,
6778 		bge_get_eaddr_eeprom,
6779 		NULL
6780 	};
6781 	const bge_eaddr_fcn_t *func;
6782 
6783 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6784 		if ((*func)(sc, eaddr) == 0)
6785 			break;
6786 	}
6787 	return (*func == NULL ? ENXIO : 0);
6788 }
6789 
6790 static uint64_t
6791 bge_get_counter(if_t ifp, ift_counter cnt)
6792 {
6793 	struct bge_softc *sc;
6794 	struct bge_mac_stats *stats;
6795 
6796 	sc = if_getsoftc(ifp);
6797 	if (!BGE_IS_5705_PLUS(sc))
6798 		return (if_get_counter_default(ifp, cnt));
6799 	stats = &sc->bge_mac_stats;
6800 
6801 	switch (cnt) {
6802 	case IFCOUNTER_IERRORS:
6803 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6804 		    stats->InputErrors);
6805 	case IFCOUNTER_COLLISIONS:
6806 		return (stats->etherStatsCollisions);
6807 	default:
6808 		return (if_get_counter_default(ifp, cnt));
6809 	}
6810 }
6811 
6812 #ifdef NETDUMP
6813 static void
6814 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6815 {
6816 	struct bge_softc *sc;
6817 
6818 	sc = if_getsoftc(ifp);
6819 	BGE_LOCK(sc);
6820 	*nrxr = sc->bge_return_ring_cnt;
6821 	*ncl = NETDUMP_MAX_IN_FLIGHT;
6822 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6823 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6824 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6825 		*clsize = MJUM9BYTES;
6826 	else
6827 		*clsize = MCLBYTES;
6828 	BGE_UNLOCK(sc);
6829 }
6830 
6831 static void
6832 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
6833 {
6834 }
6835 
6836 static int
6837 bge_netdump_transmit(if_t ifp, struct mbuf *m)
6838 {
6839 	struct bge_softc *sc;
6840 	uint32_t prodidx;
6841 	int error;
6842 
6843 	sc = if_getsoftc(ifp);
6844 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6845 	    IFF_DRV_RUNNING)
6846 		return (1);
6847 
6848 	prodidx = sc->bge_tx_prodidx;
6849 	error = bge_encap(sc, &m, &prodidx);
6850 	if (error == 0)
6851 		bge_start_tx(sc, prodidx);
6852 	return (error);
6853 }
6854 
6855 static int
6856 bge_netdump_poll(if_t ifp, int count)
6857 {
6858 	struct bge_softc *sc;
6859 	uint32_t rx_prod, tx_cons;
6860 
6861 	sc = if_getsoftc(ifp);
6862 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6863 	    IFF_DRV_RUNNING)
6864 		return (1);
6865 
6866 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6867 	    sc->bge_cdata.bge_status_map,
6868 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6869 
6870 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6871 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6872 
6873 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6874 	    sc->bge_cdata.bge_status_map,
6875 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6876 
6877 	(void)bge_rxeof(sc, rx_prod, 0);
6878 	bge_txeof(sc, tx_cons);
6879 	return (0);
6880 }
6881 #endif /* NETDUMP */
6882