xref: /freebsd/sys/dev/bge/if_bge.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include <dev/mii/miidevs.h>
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 
135 static struct bge_type bge_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
145 		"SysKonnect Gigabit Ethernet" },
146 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
147 		"Altima AC1000 Gigabit Ethernet" },
148 	{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
149 		"Altima AC9100 Gigabit Ethernet" },
150 	{ 0, 0, NULL }
151 };
152 
153 static int bge_probe		(device_t);
154 static int bge_attach		(device_t);
155 static int bge_detach		(device_t);
156 static void bge_release_resources
157 				(struct bge_softc *);
158 static void bge_txeof		(struct bge_softc *);
159 static void bge_rxeof		(struct bge_softc *);
160 
161 static void bge_tick		(void *);
162 static void bge_stats_update	(struct bge_softc *);
163 static int bge_encap		(struct bge_softc *, struct mbuf *,
164 					u_int32_t *);
165 
166 static void bge_intr		(void *);
167 static void bge_start		(struct ifnet *);
168 static int bge_ioctl		(struct ifnet *, u_long, caddr_t);
169 static void bge_init		(void *);
170 static void bge_stop		(struct bge_softc *);
171 static void bge_watchdog		(struct ifnet *);
172 static void bge_shutdown		(device_t);
173 static int bge_ifmedia_upd	(struct ifnet *);
174 static void bge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
175 
176 static u_int8_t	bge_eeprom_getbyte	(struct bge_softc *, int, u_int8_t *);
177 static int bge_read_eeprom	(struct bge_softc *, caddr_t, int, int);
178 
179 static u_int32_t bge_crc	(caddr_t);
180 static void bge_setmulti	(struct bge_softc *);
181 
182 static void bge_handle_events	(struct bge_softc *);
183 static int bge_alloc_jumbo_mem	(struct bge_softc *);
184 static void bge_free_jumbo_mem	(struct bge_softc *);
185 static void *bge_jalloc		(struct bge_softc *);
186 static void bge_jfree		(void *, void *);
187 static int bge_newbuf_std	(struct bge_softc *, int, struct mbuf *);
188 static int bge_newbuf_jumbo	(struct bge_softc *, int, struct mbuf *);
189 static int bge_init_rx_ring_std	(struct bge_softc *);
190 static void bge_free_rx_ring_std	(struct bge_softc *);
191 static int bge_init_rx_ring_jumbo	(struct bge_softc *);
192 static void bge_free_rx_ring_jumbo	(struct bge_softc *);
193 static void bge_free_tx_ring	(struct bge_softc *);
194 static int bge_init_tx_ring	(struct bge_softc *);
195 
196 static int bge_chipinit		(struct bge_softc *);
197 static int bge_blockinit	(struct bge_softc *);
198 
199 #ifdef notdef
200 static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
201 static void bge_vpd_read_res	(struct bge_softc *, struct vpd_res *, int);
202 static void bge_vpd_read	(struct bge_softc *);
203 #endif
204 
205 static u_int32_t bge_readmem_ind
206 				(struct bge_softc *, int);
207 static void bge_writemem_ind	(struct bge_softc *, int, int);
208 #ifdef notdef
209 static u_int32_t bge_readreg_ind
210 				(struct bge_softc *, int);
211 #endif
212 static void bge_writereg_ind	(struct bge_softc *, int, int);
213 
214 static int bge_miibus_readreg	(device_t, int, int);
215 static int bge_miibus_writereg	(device_t, int, int, int);
216 static void bge_miibus_statchg	(device_t);
217 
218 static void bge_reset		(struct bge_softc *);
219 static void bge_phy_hack	(struct bge_softc *);
220 
221 static device_method_t bge_methods[] = {
222 	/* Device interface */
223 	DEVMETHOD(device_probe,		bge_probe),
224 	DEVMETHOD(device_attach,	bge_attach),
225 	DEVMETHOD(device_detach,	bge_detach),
226 	DEVMETHOD(device_shutdown,	bge_shutdown),
227 
228 	/* bus interface */
229 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
230 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
231 
232 	/* MII interface */
233 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
234 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
235 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
236 
237 	{ 0, 0 }
238 };
239 
240 static driver_t bge_driver = {
241 	"bge",
242 	bge_methods,
243 	sizeof(struct bge_softc)
244 };
245 
246 static devclass_t bge_devclass;
247 
248 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
249 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
250 
251 static u_int32_t
252 bge_readmem_ind(sc, off)
253 	struct bge_softc *sc;
254 	int off;
255 {
256 	device_t dev;
257 
258 	dev = sc->bge_dev;
259 
260 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
261 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
262 }
263 
264 static void
265 bge_writemem_ind(sc, off, val)
266 	struct bge_softc *sc;
267 	int off, val;
268 {
269 	device_t dev;
270 
271 	dev = sc->bge_dev;
272 
273 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
274 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
275 
276 	return;
277 }
278 
279 #ifdef notdef
280 static u_int32_t
281 bge_readreg_ind(sc, off)
282 	struct bge_softc *sc;
283 	int off;
284 {
285 	device_t dev;
286 
287 	dev = sc->bge_dev;
288 
289 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
290 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
291 }
292 #endif
293 
294 static void
295 bge_writereg_ind(sc, off, val)
296 	struct bge_softc *sc;
297 	int off, val;
298 {
299 	device_t dev;
300 
301 	dev = sc->bge_dev;
302 
303 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
304 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
305 
306 	return;
307 }
308 
309 #ifdef notdef
310 static u_int8_t
311 bge_vpd_readbyte(sc, addr)
312 	struct bge_softc *sc;
313 	int addr;
314 {
315 	int i;
316 	device_t dev;
317 	u_int32_t val;
318 
319 	dev = sc->bge_dev;
320 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
321 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
322 		DELAY(10);
323 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
324 			break;
325 	}
326 
327 	if (i == BGE_TIMEOUT) {
328 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
329 		return(0);
330 	}
331 
332 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
333 
334 	return((val >> ((addr % 4) * 8)) & 0xFF);
335 }
336 
337 static void
338 bge_vpd_read_res(sc, res, addr)
339 	struct bge_softc *sc;
340 	struct vpd_res *res;
341 	int addr;
342 {
343 	int i;
344 	u_int8_t *ptr;
345 
346 	ptr = (u_int8_t *)res;
347 	for (i = 0; i < sizeof(struct vpd_res); i++)
348 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
349 
350 	return;
351 }
352 
353 static void
354 bge_vpd_read(sc)
355 	struct bge_softc *sc;
356 {
357 	int pos = 0, i;
358 	struct vpd_res res;
359 
360 	if (sc->bge_vpd_prodname != NULL)
361 		free(sc->bge_vpd_prodname, M_DEVBUF);
362 	if (sc->bge_vpd_readonly != NULL)
363 		free(sc->bge_vpd_readonly, M_DEVBUF);
364 	sc->bge_vpd_prodname = NULL;
365 	sc->bge_vpd_readonly = NULL;
366 
367 	bge_vpd_read_res(sc, &res, pos);
368 
369 	if (res.vr_id != VPD_RES_ID) {
370 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
371 			sc->bge_unit, VPD_RES_ID, res.vr_id);
372                 return;
373         }
374 
375 	pos += sizeof(res);
376 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 	for (i = 0; i < res.vr_len; i++)
378 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
379 	sc->bge_vpd_prodname[i] = '\0';
380 	pos += i;
381 
382 	bge_vpd_read_res(sc, &res, pos);
383 
384 	if (res.vr_id != VPD_RES_READ) {
385 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
386 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
387 		return;
388 	}
389 
390 	pos += sizeof(res);
391 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
392 	for (i = 0; i < res.vr_len + 1; i++)
393 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
394 
395 	return;
396 }
397 #endif
398 
399 /*
400  * Read a byte of data stored in the EEPROM at address 'addr.' The
401  * BCM570x supports both the traditional bitbang interface and an
402  * auto access interface for reading the EEPROM. We use the auto
403  * access method.
404  */
405 static u_int8_t
406 bge_eeprom_getbyte(sc, addr, dest)
407 	struct bge_softc *sc;
408 	int addr;
409 	u_int8_t *dest;
410 {
411 	int i;
412 	u_int32_t byte = 0;
413 
414 	/*
415 	 * Enable use of auto EEPROM access so we can avoid
416 	 * having to use the bitbang method.
417 	 */
418 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
419 
420 	/* Reset the EEPROM, load the clock period. */
421 	CSR_WRITE_4(sc, BGE_EE_ADDR,
422 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
423 	DELAY(20);
424 
425 	/* Issue the read EEPROM command. */
426 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
427 
428 	/* Wait for completion */
429 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
430 		DELAY(10);
431 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
432 			break;
433 	}
434 
435 	if (i == BGE_TIMEOUT) {
436 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
437 		return(0);
438 	}
439 
440 	/* Get result. */
441 	byte = CSR_READ_4(sc, BGE_EE_DATA);
442 
443         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
444 
445 	return(0);
446 }
447 
448 /*
449  * Read a sequence of bytes from the EEPROM.
450  */
451 static int
452 bge_read_eeprom(sc, dest, off, cnt)
453 	struct bge_softc *sc;
454 	caddr_t dest;
455 	int off;
456 	int cnt;
457 {
458 	int err = 0, i;
459 	u_int8_t byte = 0;
460 
461 	for (i = 0; i < cnt; i++) {
462 		err = bge_eeprom_getbyte(sc, off + i, &byte);
463 		if (err)
464 			break;
465 		*(dest + i) = byte;
466 	}
467 
468 	return(err ? 1 : 0);
469 }
470 
471 static int
472 bge_miibus_readreg(dev, phy, reg)
473 	device_t dev;
474 	int phy, reg;
475 {
476 	struct bge_softc *sc;
477 	struct ifnet *ifp;
478 	u_int32_t val;
479 	int i;
480 
481 	sc = device_get_softc(dev);
482 	ifp = &sc->arpcom.ac_if;
483 
484 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
485 		return(0);
486 
487 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
488 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
489 
490 	for (i = 0; i < BGE_TIMEOUT; i++) {
491 		val = CSR_READ_4(sc, BGE_MI_COMM);
492 		if (!(val & BGE_MICOMM_BUSY))
493 			break;
494 	}
495 
496 	if (i == BGE_TIMEOUT) {
497 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
498 		return(0);
499 	}
500 
501 	val = CSR_READ_4(sc, BGE_MI_COMM);
502 
503 	if (val & BGE_MICOMM_READFAIL)
504 		return(0);
505 
506 	return(val & 0xFFFF);
507 }
508 
509 static int
510 bge_miibus_writereg(dev, phy, reg, val)
511 	device_t dev;
512 	int phy, reg, val;
513 {
514 	struct bge_softc *sc;
515 	int i;
516 
517 	sc = device_get_softc(dev);
518 
519 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
520 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
521 
522 	for (i = 0; i < BGE_TIMEOUT; i++) {
523 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
524 			break;
525 	}
526 
527 	if (i == BGE_TIMEOUT) {
528 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
529 		return(0);
530 	}
531 
532 	return(0);
533 }
534 
535 static void
536 bge_miibus_statchg(dev)
537 	device_t dev;
538 {
539 	struct bge_softc *sc;
540 	struct mii_data *mii;
541 
542 	sc = device_get_softc(dev);
543 	mii = device_get_softc(sc->bge_miibus);
544 
545 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
546 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
547 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
548 	} else {
549 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
550 	}
551 
552 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
553 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
554 	} else {
555 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
556 	}
557 
558 	bge_phy_hack(sc);
559 
560 	return;
561 }
562 
563 /*
564  * Handle events that have triggered interrupts.
565  */
566 static void
567 bge_handle_events(sc)
568 	struct bge_softc		*sc;
569 {
570 
571 	return;
572 }
573 
574 /*
575  * Memory management for jumbo frames.
576  */
577 
578 static int
579 bge_alloc_jumbo_mem(sc)
580 	struct bge_softc		*sc;
581 {
582 	caddr_t			ptr;
583 	register int		i;
584 	struct bge_jpool_entry   *entry;
585 
586 	/* Grab a big chunk o' storage. */
587 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
588 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
589 
590 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
591 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
592 		return(ENOBUFS);
593 	}
594 
595 	SLIST_INIT(&sc->bge_jfree_listhead);
596 	SLIST_INIT(&sc->bge_jinuse_listhead);
597 
598 	/*
599 	 * Now divide it up into 9K pieces and save the addresses
600 	 * in an array.
601 	 */
602 	ptr = sc->bge_cdata.bge_jumbo_buf;
603 	for (i = 0; i < BGE_JSLOTS; i++) {
604 		sc->bge_cdata.bge_jslots[i] = ptr;
605 		ptr += BGE_JLEN;
606 		entry = malloc(sizeof(struct bge_jpool_entry),
607 		    M_DEVBUF, M_NOWAIT);
608 		if (entry == NULL) {
609 			contigfree(sc->bge_cdata.bge_jumbo_buf,
610 			    BGE_JMEM, M_DEVBUF);
611 			sc->bge_cdata.bge_jumbo_buf = NULL;
612 			printf("bge%d: no memory for jumbo "
613 			    "buffer queue!\n", sc->bge_unit);
614 			return(ENOBUFS);
615 		}
616 		entry->slot = i;
617 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
618 		    entry, jpool_entries);
619 	}
620 
621 	return(0);
622 }
623 
624 static void
625 bge_free_jumbo_mem(sc)
626         struct bge_softc *sc;
627 {
628         int i;
629         struct bge_jpool_entry *entry;
630 
631 	for (i = 0; i < BGE_JSLOTS; i++) {
632 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
633 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
634 		free(entry, M_DEVBUF);
635 	}
636 
637 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
638 
639         return;
640 }
641 
642 /*
643  * Allocate a jumbo buffer.
644  */
645 static void *
646 bge_jalloc(sc)
647 	struct bge_softc		*sc;
648 {
649 	struct bge_jpool_entry   *entry;
650 
651 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
652 
653 	if (entry == NULL) {
654 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
655 		return(NULL);
656 	}
657 
658 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
659 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
660 	return(sc->bge_cdata.bge_jslots[entry->slot]);
661 }
662 
663 /*
664  * Release a jumbo buffer.
665  */
666 static void
667 bge_jfree(buf, args)
668 	void *buf;
669 	void *args;
670 {
671 	struct bge_jpool_entry *entry;
672 	struct bge_softc *sc;
673 	int i;
674 
675 	/* Extract the softc struct pointer. */
676 	sc = (struct bge_softc *)args;
677 
678 	if (sc == NULL)
679 		panic("bge_jfree: can't find softc pointer!");
680 
681 	/* calculate the slot this buffer belongs to */
682 
683 	i = ((vm_offset_t)buf
684 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
685 
686 	if ((i < 0) || (i >= BGE_JSLOTS))
687 		panic("bge_jfree: asked to free buffer that we don't manage!");
688 
689 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
690 	if (entry == NULL)
691 		panic("bge_jfree: buffer not in use!");
692 	entry->slot = i;
693 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
694 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
695 
696 	return;
697 }
698 
699 
700 /*
701  * Intialize a standard receive ring descriptor.
702  */
703 static int
704 bge_newbuf_std(sc, i, m)
705 	struct bge_softc	*sc;
706 	int			i;
707 	struct mbuf		*m;
708 {
709 	struct mbuf		*m_new = NULL;
710 	struct bge_rx_bd	*r;
711 
712 	if (m == NULL) {
713 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
714 		if (m_new == NULL) {
715 			return(ENOBUFS);
716 		}
717 
718 		MCLGET(m_new, M_DONTWAIT);
719 		if (!(m_new->m_flags & M_EXT)) {
720 			m_freem(m_new);
721 			return(ENOBUFS);
722 		}
723 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
724 	} else {
725 		m_new = m;
726 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
727 		m_new->m_data = m_new->m_ext.ext_buf;
728 	}
729 
730 	if (!sc->bge_rx_alignment_bug)
731 		m_adj(m_new, ETHER_ALIGN);
732 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
733 	r = &sc->bge_rdata->bge_rx_std_ring[i];
734 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
735 	r->bge_flags = BGE_RXBDFLAG_END;
736 	r->bge_len = m_new->m_len;
737 	r->bge_idx = i;
738 
739 	return(0);
740 }
741 
742 /*
743  * Initialize a jumbo receive ring descriptor. This allocates
744  * a jumbo buffer from the pool managed internally by the driver.
745  */
746 static int
747 bge_newbuf_jumbo(sc, i, m)
748 	struct bge_softc *sc;
749 	int i;
750 	struct mbuf *m;
751 {
752 	struct mbuf *m_new = NULL;
753 	struct bge_rx_bd *r;
754 
755 	if (m == NULL) {
756 		caddr_t			*buf = NULL;
757 
758 		/* Allocate the mbuf. */
759 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
760 		if (m_new == NULL) {
761 			return(ENOBUFS);
762 		}
763 
764 		/* Allocate the jumbo buffer */
765 		buf = bge_jalloc(sc);
766 		if (buf == NULL) {
767 			m_freem(m_new);
768 			printf("bge%d: jumbo allocation failed "
769 			    "-- packet dropped!\n", sc->bge_unit);
770 			return(ENOBUFS);
771 		}
772 
773 		/* Attach the buffer to the mbuf. */
774 		m_new->m_data = (void *) buf;
775 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
776 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
777 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
778 	} else {
779 		m_new = m;
780 		m_new->m_data = m_new->m_ext.ext_buf;
781 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
782 	}
783 
784 	if (!sc->bge_rx_alignment_bug)
785 		m_adj(m_new, ETHER_ALIGN);
786 	/* Set up the descriptor. */
787 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
788 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
789 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
790 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
791 	r->bge_len = m_new->m_len;
792 	r->bge_idx = i;
793 
794 	return(0);
795 }
796 
797 /*
798  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
799  * that's 1MB or memory, which is a lot. For now, we fill only the first
800  * 256 ring entries and hope that our CPU is fast enough to keep up with
801  * the NIC.
802  */
803 static int
804 bge_init_rx_ring_std(sc)
805 	struct bge_softc *sc;
806 {
807 	int i;
808 
809 	for (i = 0; i < BGE_SSLOTS; i++) {
810 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
811 			return(ENOBUFS);
812 	};
813 
814 	sc->bge_std = i - 1;
815 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
816 
817 	return(0);
818 }
819 
820 static void
821 bge_free_rx_ring_std(sc)
822 	struct bge_softc *sc;
823 {
824 	int i;
825 
826 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
827 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
828 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
829 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
830 		}
831 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
832 		    sizeof(struct bge_rx_bd));
833 	}
834 
835 	return;
836 }
837 
838 static int
839 bge_init_rx_ring_jumbo(sc)
840 	struct bge_softc *sc;
841 {
842 	int i;
843 	struct bge_rcb *rcb;
844 	struct bge_rcb_opaque *rcbo;
845 
846 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
847 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
848 			return(ENOBUFS);
849 	};
850 
851 	sc->bge_jumbo = i - 1;
852 
853 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
854 	rcbo = (struct bge_rcb_opaque *)rcb;
855 	rcb->bge_flags = 0;
856 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
857 
858 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
859 
860 	return(0);
861 }
862 
863 static void
864 bge_free_rx_ring_jumbo(sc)
865 	struct bge_softc *sc;
866 {
867 	int i;
868 
869 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
870 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
871 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
872 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
873 		}
874 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
875 		    sizeof(struct bge_rx_bd));
876 	}
877 
878 	return;
879 }
880 
881 static void
882 bge_free_tx_ring(sc)
883 	struct bge_softc *sc;
884 {
885 	int i;
886 
887 	if (sc->bge_rdata->bge_tx_ring == NULL)
888 		return;
889 
890 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
891 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
892 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
893 			sc->bge_cdata.bge_tx_chain[i] = NULL;
894 		}
895 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
896 		    sizeof(struct bge_tx_bd));
897 	}
898 
899 	return;
900 }
901 
902 static int
903 bge_init_tx_ring(sc)
904 	struct bge_softc *sc;
905 {
906 	sc->bge_txcnt = 0;
907 	sc->bge_tx_saved_considx = 0;
908 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
909 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
910 
911 	return(0);
912 }
913 
914 #define BGE_POLY	0xEDB88320
915 
916 static u_int32_t
917 bge_crc(addr)
918 	caddr_t addr;
919 {
920 	u_int32_t idx, bit, data, crc;
921 
922 	/* Compute CRC for the address value. */
923 	crc = 0xFFFFFFFF; /* initial value */
924 
925 	for (idx = 0; idx < 6; idx++) {
926 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
927 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
928 	}
929 
930 	return(crc & 0x7F);
931 }
932 
933 static void
934 bge_setmulti(sc)
935 	struct bge_softc *sc;
936 {
937 	struct ifnet *ifp;
938 	struct ifmultiaddr *ifma;
939 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
940 	int h, i;
941 
942 	ifp = &sc->arpcom.ac_if;
943 
944 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
945 		for (i = 0; i < 4; i++)
946 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
947 		return;
948 	}
949 
950 	/* First, zot all the existing filters. */
951 	for (i = 0; i < 4; i++)
952 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
953 
954 	/* Now program new ones. */
955 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
956 		if (ifma->ifma_addr->sa_family != AF_LINK)
957 			continue;
958 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
959 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
960 	}
961 
962 	for (i = 0; i < 4; i++)
963 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
964 
965 	return;
966 }
967 
968 /*
969  * Do endian, PCI and DMA initialization. Also check the on-board ROM
970  * self-test results.
971  */
972 static int
973 bge_chipinit(sc)
974 	struct bge_softc *sc;
975 {
976 	u_int32_t		cachesize;
977 	int			i;
978 
979 	/* Set endianness before we access any non-PCI registers. */
980 #if BYTE_ORDER == BIG_ENDIAN
981 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
982 	    BGE_BIGENDIAN_INIT, 4);
983 #else
984 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
985 	    BGE_LITTLEENDIAN_INIT, 4);
986 #endif
987 
988 	/*
989 	 * Check the 'ROM failed' bit on the RX CPU to see if
990 	 * self-tests passed.
991 	 */
992 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
993 		printf("bge%d: RX CPU self-diagnostics failed!\n",
994 		    sc->bge_unit);
995 		return(ENODEV);
996 	}
997 
998 	/* Clear the MAC control register */
999 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1000 
1001 	/*
1002 	 * Clear the MAC statistics block in the NIC's
1003 	 * internal memory.
1004 	 */
1005 	for (i = BGE_STATS_BLOCK;
1006 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1007 		BGE_MEMWIN_WRITE(sc, i, 0);
1008 
1009 	for (i = BGE_STATUS_BLOCK;
1010 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1011 		BGE_MEMWIN_WRITE(sc, i, 0);
1012 
1013 	/* Set up the PCI DMA control register. */
1014 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1015 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4);
1016 
1017 	/*
1018 	 * Set up general mode register.
1019 	 */
1020 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1021 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1022 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1023 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1024 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1025 
1026 	/* Get cache line size. */
1027 	cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1);
1028 
1029 	/*
1030 	 * Avoid violating PCI spec on certain chip revs.
1031 	 */
1032 	if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) {
1033 		switch(cachesize) {
1034 		case 1:
1035 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1036 			    BGE_PCI_WRITE_BNDRY_16BYTES, 4);
1037 			break;
1038 		case 2:
1039 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1040 			    BGE_PCI_WRITE_BNDRY_32BYTES, 4);
1041 			break;
1042 		case 4:
1043 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1044 			    BGE_PCI_WRITE_BNDRY_64BYTES, 4);
1045 			break;
1046 		case 8:
1047 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1048 			    BGE_PCI_WRITE_BNDRY_128BYTES, 4);
1049 			break;
1050 		case 16:
1051 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1052 			    BGE_PCI_WRITE_BNDRY_256BYTES, 4);
1053 			break;
1054 		case 32:
1055 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1056 			    BGE_PCI_WRITE_BNDRY_512BYTES, 4);
1057 			break;
1058 		case 64:
1059 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1060 			    BGE_PCI_WRITE_BNDRY_1024BYTES, 4);
1061 			break;
1062 		default:
1063 		/* Disable PCI memory write and invalidate. */
1064 			if (bootverbose)
1065 				printf("bge%d: cache line size %d not "
1066 				    "supported; disabling PCI MWI\n",
1067 				    sc->bge_unit, cachesize);
1068 			PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1069 			    PCIM_CMD_MWIEN, 4);
1070 			break;
1071 		}
1072 	}
1073 
1074 #ifdef __brokenalpha__
1075 	/*
1076 	 * Must insure that we do not cross an 8K (bytes) boundary
1077 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1078 	 * restriction on some ALPHA platforms with early revision
1079 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1080 	 */
1081 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1082 #endif
1083 
1084 	/* Set the timer prescaler (always 66Mhz) */
1085 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1086 
1087 	return(0);
1088 }
1089 
1090 static int
1091 bge_blockinit(sc)
1092 	struct bge_softc *sc;
1093 {
1094 	struct bge_rcb *rcb;
1095 	struct bge_rcb_opaque *rcbo;
1096 	int i;
1097 
1098 	/*
1099 	 * Initialize the memory window pointer register so that
1100 	 * we can access the first 32K of internal NIC RAM. This will
1101 	 * allow us to set up the TX send ring RCBs and the RX return
1102 	 * ring RCBs, plus other things which live in NIC memory.
1103 	 */
1104 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1105 
1106 	/* Configure mbuf memory pool */
1107 	if (sc->bge_extram) {
1108 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1109 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1110 	} else {
1111 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1112 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1113 	}
1114 
1115 	/* Configure DMA resource pool */
1116 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1117 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1118 
1119 	/* Configure mbuf pool watermarks */
1120 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1121 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1122 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1123 
1124 	/* Configure DMA resource watermarks */
1125 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1126 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1127 
1128 	/* Enable buffer manager */
1129 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1130 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1131 
1132 	/* Poll for buffer manager start indication */
1133 	for (i = 0; i < BGE_TIMEOUT; i++) {
1134 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1135 			break;
1136 		DELAY(10);
1137 	}
1138 
1139 	if (i == BGE_TIMEOUT) {
1140 		printf("bge%d: buffer manager failed to start\n",
1141 		    sc->bge_unit);
1142 		return(ENXIO);
1143 	}
1144 
1145 	/* Enable flow-through queues */
1146 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1147 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1148 
1149 	/* Wait until queue initialization is complete */
1150 	for (i = 0; i < BGE_TIMEOUT; i++) {
1151 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1152 			break;
1153 		DELAY(10);
1154 	}
1155 
1156 	if (i == BGE_TIMEOUT) {
1157 		printf("bge%d: flow-through queue init failed\n",
1158 		    sc->bge_unit);
1159 		return(ENXIO);
1160 	}
1161 
1162 	/* Initialize the standard RX ring control block */
1163 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1164 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1165 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1166 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1167 	if (sc->bge_extram)
1168 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1169 	else
1170 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1171 	rcb->bge_flags = 0;
1172 	rcbo = (struct bge_rcb_opaque *)rcb;
1173 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1174 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1175 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1176 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1177 
1178 	/*
1179 	 * Initialize the jumbo RX ring control block
1180 	 * We set the 'ring disabled' bit in the flags
1181 	 * field until we're actually ready to start
1182 	 * using this ring (i.e. once we set the MTU
1183 	 * high enough to require it).
1184 	 */
1185 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1186 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1187 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1188 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1189 	if (sc->bge_extram)
1190 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1191 	else
1192 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1193 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1194 
1195 	rcbo = (struct bge_rcb_opaque *)rcb;
1196 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1197 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1198 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1199 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1200 
1201 	/* Set up dummy disabled mini ring RCB */
1202 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1203 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1204 	rcbo = (struct bge_rcb_opaque *)rcb;
1205 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1206 
1207 	/*
1208 	 * Set the BD ring replentish thresholds. The recommended
1209 	 * values are 1/8th the number of descriptors allocated to
1210 	 * each ring.
1211 	 */
1212 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1213 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1214 
1215 	/*
1216 	 * Disable all unused send rings by setting the 'ring disabled'
1217 	 * bit in the flags field of all the TX send ring control blocks.
1218 	 * These are located in NIC memory.
1219 	 */
1220 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1221 	    BGE_SEND_RING_RCB);
1222 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1223 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1224 		rcb->bge_max_len = 0;
1225 		rcb->bge_nicaddr = 0;
1226 		rcb++;
1227 	}
1228 
1229 	/* Configure TX RCB 0 (we use only the first ring) */
1230 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1231 	    BGE_SEND_RING_RCB);
1232 	rcb->bge_hostaddr.bge_addr_hi = 0;
1233 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1234 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1235 	rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1236 	rcb->bge_max_len = BGE_TX_RING_CNT;
1237 	rcb->bge_flags = 0;
1238 
1239 	/* Disable all unused RX return rings */
1240 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1241 	    BGE_RX_RETURN_RING_RCB);
1242 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1243 		rcb->bge_hostaddr.bge_addr_hi = 0;
1244 		rcb->bge_hostaddr.bge_addr_lo = 0;
1245 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1246 		rcb->bge_max_len = BGE_RETURN_RING_CNT;
1247 		rcb->bge_nicaddr = 0;
1248 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1249 		    (i * (sizeof(u_int64_t))), 0);
1250 		rcb++;
1251 	}
1252 
1253 	/* Initialize RX ring indexes */
1254 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1255 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1256 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1257 
1258 	/*
1259 	 * Set up RX return ring 0
1260 	 * Note that the NIC address for RX return rings is 0x00000000.
1261 	 * The return rings live entirely within the host, so the
1262 	 * nicaddr field in the RCB isn't used.
1263 	 */
1264 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1265 	    BGE_RX_RETURN_RING_RCB);
1266 	rcb->bge_hostaddr.bge_addr_hi = 0;
1267 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1268 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1269 	rcb->bge_nicaddr = 0x00000000;
1270 	rcb->bge_max_len = BGE_RETURN_RING_CNT;
1271 	rcb->bge_flags = 0;
1272 
1273 	/* Set random backoff seed for TX */
1274 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1275 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1276 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1277 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1278 	    BGE_TX_BACKOFF_SEED_MASK);
1279 
1280 	/* Set inter-packet gap */
1281 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1282 
1283 	/*
1284 	 * Specify which ring to use for packets that don't match
1285 	 * any RX rules.
1286 	 */
1287 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1288 
1289 	/*
1290 	 * Configure number of RX lists. One interrupt distribution
1291 	 * list, sixteen active lists, one bad frames class.
1292 	 */
1293 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1294 
1295 	/* Inialize RX list placement stats mask. */
1296 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1297 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1298 
1299 	/* Disable host coalescing until we get it set up */
1300 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1301 
1302 	/* Poll to make sure it's shut down. */
1303 	for (i = 0; i < BGE_TIMEOUT; i++) {
1304 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1305 			break;
1306 		DELAY(10);
1307 	}
1308 
1309 	if (i == BGE_TIMEOUT) {
1310 		printf("bge%d: host coalescing engine failed to idle\n",
1311 		    sc->bge_unit);
1312 		return(ENXIO);
1313 	}
1314 
1315 	/* Set up host coalescing defaults */
1316 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1317 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1318 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1319 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1320 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1321 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1322 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1323 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1324 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1325 
1326 	/* Set up address of statistics block */
1327 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1328 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1329 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1330 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1331 
1332 	/* Set up address of status block */
1333 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1334 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1335 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1336 	    vtophys(&sc->bge_rdata->bge_status_block));
1337 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1338 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1339 
1340 	/* Turn on host coalescing state machine */
1341 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1342 
1343 	/* Turn on RX BD completion state machine and enable attentions */
1344 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1345 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1346 
1347 	/* Turn on RX list placement state machine */
1348 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1349 
1350 	/* Turn on RX list selector state machine. */
1351 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1352 
1353 	/* Turn on DMA, clear stats */
1354 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1355 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1356 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1357 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1358 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1359 
1360 	/* Set misc. local control, enable interrupts on attentions */
1361 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1362 
1363 #ifdef notdef
1364 	/* Assert GPIO pins for PHY reset */
1365 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1366 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1367 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1368 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1369 #endif
1370 
1371 	/* Turn on DMA completion state machine */
1372 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1373 
1374 	/* Turn on write DMA state machine */
1375 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1376 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1377 
1378 	/* Turn on read DMA state machine */
1379 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1380 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1381 
1382 	/* Turn on RX data completion state machine */
1383 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1384 
1385 	/* Turn on RX BD initiator state machine */
1386 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1387 
1388 	/* Turn on RX data and RX BD initiator state machine */
1389 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1390 
1391 	/* Turn on Mbuf cluster free state machine */
1392 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1393 
1394 	/* Turn on send BD completion state machine */
1395 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1396 
1397 	/* Turn on send data completion state machine */
1398 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1399 
1400 	/* Turn on send data initiator state machine */
1401 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1402 
1403 	/* Turn on send BD initiator state machine */
1404 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1405 
1406 	/* Turn on send BD selector state machine */
1407 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1408 
1409 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1410 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1411 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1412 
1413 	/* init LED register */
1414 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1415 
1416 	/* ack/clear link change events */
1417 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1418 	    BGE_MACSTAT_CFG_CHANGED);
1419 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1420 
1421 	/* Enable PHY auto polling (for MII/GMII only) */
1422 	if (sc->bge_tbi) {
1423 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1424  	} else {
1425 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1426 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1427 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1428 			    BGE_EVTENB_MI_INTERRUPT);
1429 	}
1430 
1431 	/* Enable link state change attentions. */
1432 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1433 
1434 	return(0);
1435 }
1436 
1437 /*
1438  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1439  * against our list and return its name if we find a match. Note
1440  * that since the Broadcom controller contains VPD support, we
1441  * can get the device name string from the controller itself instead
1442  * of the compiled-in string. This is a little slow, but it guarantees
1443  * we'll always announce the right product name.
1444  */
1445 static int
1446 bge_probe(dev)
1447 	device_t dev;
1448 {
1449 	struct bge_type *t;
1450 	struct bge_softc *sc;
1451 
1452 	t = bge_devs;
1453 
1454 	sc = device_get_softc(dev);
1455 	bzero(sc, sizeof(struct bge_softc));
1456 	sc->bge_unit = device_get_unit(dev);
1457 	sc->bge_dev = dev;
1458 
1459 	while(t->bge_name != NULL) {
1460 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1461 		    (pci_get_device(dev) == t->bge_did)) {
1462 #ifdef notdef
1463 			bge_vpd_read(sc);
1464 			device_set_desc(dev, sc->bge_vpd_prodname);
1465 #endif
1466 			device_set_desc(dev, t->bge_name);
1467 			return(0);
1468 		}
1469 		t++;
1470 	}
1471 
1472 	return(ENXIO);
1473 }
1474 
1475 static int
1476 bge_attach(dev)
1477 	device_t dev;
1478 {
1479 	int s;
1480 	u_int32_t command;
1481 	struct ifnet *ifp;
1482 	struct bge_softc *sc;
1483 	u_int32_t hwcfg = 0;
1484 	int unit, error = 0, rid;
1485 
1486 	s = splimp();
1487 
1488 	sc = device_get_softc(dev);
1489 	unit = device_get_unit(dev);
1490 	sc->bge_dev = dev;
1491 	sc->bge_unit = unit;
1492 
1493 	/*
1494 	 * Map control/status registers.
1495 	 */
1496 	pci_enable_busmaster(dev);
1497 	pci_enable_io(dev, SYS_RES_MEMORY);
1498 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1499 
1500 	if (!(command & PCIM_CMD_MEMEN)) {
1501 		printf("bge%d: failed to enable memory mapping!\n", unit);
1502 		error = ENXIO;
1503 		goto fail;
1504 	}
1505 
1506 	rid = BGE_PCI_BAR0;
1507 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1508 	    0, ~0, 1, RF_ACTIVE);
1509 
1510 	if (sc->bge_res == NULL) {
1511 		printf ("bge%d: couldn't map memory\n", unit);
1512 		error = ENXIO;
1513 		goto fail;
1514 	}
1515 
1516 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1517 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1518 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1519 
1520 	/*
1521 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1522 	 * broken and returns a physical address instead of a kernel
1523 	 * virtual address. Consequently, we need to do a little
1524 	 * extra mangling of the vhandle on the alpha. This should
1525 	 * eventually be fixed! The whole idea here is to get rid
1526 	 * of platform dependencies.
1527 	 */
1528 #ifdef __alpha__
1529 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1530 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1531 	else
1532 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1533 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1534 #endif
1535 
1536 	/* Allocate interrupt */
1537 	rid = 0;
1538 
1539 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1540 	    RF_SHAREABLE | RF_ACTIVE);
1541 
1542 	if (sc->bge_irq == NULL) {
1543 		printf("bge%d: couldn't map interrupt\n", unit);
1544 		error = ENXIO;
1545 		goto fail;
1546 	}
1547 
1548 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1549 	   bge_intr, sc, &sc->bge_intrhand);
1550 
1551 	if (error) {
1552 		bge_release_resources(sc);
1553 		printf("bge%d: couldn't set up irq\n", unit);
1554 		goto fail;
1555 	}
1556 
1557 	sc->bge_unit = unit;
1558 
1559 	/* Try to reset the chip. */
1560 	bge_reset(sc);
1561 
1562 	if (bge_chipinit(sc)) {
1563 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1564 		bge_release_resources(sc);
1565 		error = ENXIO;
1566 		goto fail;
1567 	}
1568 
1569 	/*
1570 	 * Get station address from the EEPROM.
1571 	 */
1572 	if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1573 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1574 		printf("bge%d: failed to read station address\n", unit);
1575 		bge_release_resources(sc);
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 	/*
1581 	 * A Broadcom chip was detected. Inform the world.
1582 	 */
1583 	printf("bge%d: Ethernet address: %6D\n", unit,
1584 	    sc->arpcom.ac_enaddr, ":");
1585 
1586 	/* Allocate the general information block and ring buffers. */
1587 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1588 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1589 
1590 	if (sc->bge_rdata == NULL) {
1591 		bge_release_resources(sc);
1592 		error = ENXIO;
1593 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1594 		goto fail;
1595 	}
1596 
1597 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1598 
1599 	/* Try to allocate memory for jumbo buffers. */
1600 	if (bge_alloc_jumbo_mem(sc)) {
1601 		printf("bge%d: jumbo buffer allocation "
1602 		    "failed\n", sc->bge_unit);
1603 		bge_release_resources(sc);
1604 		error = ENXIO;
1605 		goto fail;
1606 	}
1607 
1608 	/* Set default tuneable values. */
1609 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1610 	sc->bge_rx_coal_ticks = 150;
1611 	sc->bge_tx_coal_ticks = 150;
1612 	sc->bge_rx_max_coal_bds = 64;
1613 	sc->bge_tx_max_coal_bds = 128;
1614 
1615 	/* Set up ifnet structure */
1616 	ifp = &sc->arpcom.ac_if;
1617 	ifp->if_softc = sc;
1618 	ifp->if_unit = sc->bge_unit;
1619 	ifp->if_name = "bge";
1620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1621 	ifp->if_ioctl = bge_ioctl;
1622 	ifp->if_output = ether_output;
1623 	ifp->if_start = bge_start;
1624 	ifp->if_watchdog = bge_watchdog;
1625 	ifp->if_init = bge_init;
1626 	ifp->if_mtu = ETHERMTU;
1627 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1628 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1629 	ifp->if_capabilities = IFCAP_HWCSUM;
1630 	ifp->if_capenable = ifp->if_capabilities;
1631 
1632 	/* Save ASIC rev. */
1633 
1634 	sc->bge_asicrev =
1635 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1636 	    BGE_PCIMISCCTL_ASICREV;
1637 
1638 	/* Pretend all 5700s are the same */
1639 	if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700)
1640 		sc->bge_asicrev = BGE_ASICREV_BCM5700;
1641 
1642 	/*
1643 	 * Figure out what sort of media we have by checking the
1644 	 * hardware config word in the EEPROM. Note: on some BCM5700
1645 	 * cards, this value appears to be unset. If that's the
1646 	 * case, we have to rely on identifying the NIC by its PCI
1647 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1648 	 */
1649 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
1650 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1651 	if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1652 		sc->bge_tbi = 1;
1653 
1654 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1655 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1656 		sc->bge_tbi = 1;
1657 
1658 	if (sc->bge_tbi) {
1659 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1660 		    bge_ifmedia_upd, bge_ifmedia_sts);
1661 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1662 		ifmedia_add(&sc->bge_ifmedia,
1663 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1664 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1665 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1666 	} else {
1667 		/*
1668 		 * Do transceiver setup.
1669 		 */
1670 		if (mii_phy_probe(dev, &sc->bge_miibus,
1671 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1672 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1673 			bge_release_resources(sc);
1674 			bge_free_jumbo_mem(sc);
1675 			error = ENXIO;
1676 			goto fail;
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * When using the BCM5701 in PCI-X mode, data corruption has
1682 	 * been observed in the first few bytes of some received packets.
1683 	 * Aligning the packet buffer in memory eliminates the corruption.
1684 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1685 	 * which do not support unaligned accesses, we will realign the
1686 	 * payloads by copying the received packets.
1687 	 */
1688 	switch (sc->bge_asicrev) {
1689 	case BGE_ASICREV_BCM5701_A0:
1690 	case BGE_ASICREV_BCM5701_B0:
1691 	case BGE_ASICREV_BCM5701_B2:
1692 	case BGE_ASICREV_BCM5701_B5:
1693 		/* If in PCI-X mode, work around the alignment bug. */
1694 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1695 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1696 		    BGE_PCISTATE_PCI_BUSSPEED)
1697 			sc->bge_rx_alignment_bug = 1;
1698 		break;
1699 	}
1700 
1701 	/*
1702 	 * Call MI attach routine.
1703 	 */
1704 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1705 	callout_handle_init(&sc->bge_stat_ch);
1706 
1707 fail:
1708 	splx(s);
1709 
1710 	return(error);
1711 }
1712 
1713 static int
1714 bge_detach(dev)
1715 	device_t dev;
1716 {
1717 	struct bge_softc *sc;
1718 	struct ifnet *ifp;
1719 	int s;
1720 
1721 	s = splimp();
1722 
1723 	sc = device_get_softc(dev);
1724 	ifp = &sc->arpcom.ac_if;
1725 
1726 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1727 	bge_stop(sc);
1728 	bge_reset(sc);
1729 
1730 	if (sc->bge_tbi) {
1731 		ifmedia_removeall(&sc->bge_ifmedia);
1732 	} else {
1733 		bus_generic_detach(dev);
1734 		device_delete_child(dev, sc->bge_miibus);
1735 	}
1736 
1737 	bge_release_resources(sc);
1738 	bge_free_jumbo_mem(sc);
1739 
1740 	splx(s);
1741 
1742 	return(0);
1743 }
1744 
1745 static void
1746 bge_release_resources(sc)
1747 	struct bge_softc *sc;
1748 {
1749         device_t dev;
1750 
1751         dev = sc->bge_dev;
1752 
1753 	if (sc->bge_vpd_prodname != NULL)
1754 		free(sc->bge_vpd_prodname, M_DEVBUF);
1755 
1756 	if (sc->bge_vpd_readonly != NULL)
1757 		free(sc->bge_vpd_readonly, M_DEVBUF);
1758 
1759         if (sc->bge_intrhand != NULL)
1760                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1761 
1762         if (sc->bge_irq != NULL)
1763 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1764 
1765         if (sc->bge_res != NULL)
1766 		bus_release_resource(dev, SYS_RES_MEMORY,
1767 		    BGE_PCI_BAR0, sc->bge_res);
1768 
1769         if (sc->bge_rdata != NULL)
1770 		contigfree(sc->bge_rdata,
1771 		    sizeof(struct bge_ring_data), M_DEVBUF);
1772 
1773         return;
1774 }
1775 
1776 static void
1777 bge_reset(sc)
1778 	struct bge_softc *sc;
1779 {
1780 	device_t dev;
1781 	u_int32_t cachesize, command, pcistate;
1782 	int i, val = 0;
1783 
1784 	dev = sc->bge_dev;
1785 
1786 	/* Save some important PCI state. */
1787 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1788 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1789 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1790 
1791 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1792 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1793 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1794 
1795 	/* Issue global reset */
1796 	bge_writereg_ind(sc, BGE_MISC_CFG,
1797 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1798 
1799 	DELAY(1000);
1800 
1801 	/* Reset some of the PCI state that got zapped by reset */
1802 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1803 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1804 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1805 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1806 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1807 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1808 
1809 	/*
1810 	 * Prevent PXE restart: write a magic number to the
1811 	 * general communications memory at 0xB50.
1812 	 */
1813 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1814 	/*
1815 	 * Poll the value location we just wrote until
1816 	 * we see the 1's complement of the magic number.
1817 	 * This indicates that the firmware initialization
1818 	 * is complete.
1819 	 */
1820 	for (i = 0; i < BGE_TIMEOUT; i++) {
1821 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1822 		if (val == ~BGE_MAGIC_NUMBER)
1823 			break;
1824 		DELAY(10);
1825 	}
1826 
1827 	if (i == BGE_TIMEOUT) {
1828 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * XXX Wait for the value of the PCISTATE register to
1834 	 * return to its original pre-reset state. This is a
1835 	 * fairly good indicator of reset completion. If we don't
1836 	 * wait for the reset to fully complete, trying to read
1837 	 * from the device's non-PCI registers may yield garbage
1838 	 * results.
1839 	 */
1840 	for (i = 0; i < BGE_TIMEOUT; i++) {
1841 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1842 			break;
1843 		DELAY(10);
1844 	}
1845 
1846 	/* Enable memory arbiter. */
1847 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1848 
1849 	/* Fix up byte swapping */
1850 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1851 	    BGE_MODECTL_BYTESWAP_DATA);
1852 
1853 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1854 
1855 	DELAY(10000);
1856 
1857 	return;
1858 }
1859 
1860 /*
1861  * Frame reception handling. This is called if there's a frame
1862  * on the receive return list.
1863  *
1864  * Note: we have to be able to handle two possibilities here:
1865  * 1) the frame is from the jumbo recieve ring
1866  * 2) the frame is from the standard receive ring
1867  */
1868 
1869 static void
1870 bge_rxeof(sc)
1871 	struct bge_softc *sc;
1872 {
1873 	struct ifnet *ifp;
1874 	int stdcnt = 0, jumbocnt = 0;
1875 
1876 	ifp = &sc->arpcom.ac_if;
1877 
1878 	while(sc->bge_rx_saved_considx !=
1879 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1880 		struct bge_rx_bd	*cur_rx;
1881 		u_int32_t		rxidx;
1882 		struct ether_header	*eh;
1883 		struct mbuf		*m = NULL;
1884 		u_int16_t		vlan_tag = 0;
1885 		int			have_tag = 0;
1886 
1887 		cur_rx =
1888 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1889 
1890 		rxidx = cur_rx->bge_idx;
1891 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1892 
1893 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1894 			have_tag = 1;
1895 			vlan_tag = cur_rx->bge_vlan_tag;
1896 		}
1897 
1898 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1899 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1900 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1901 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1902 			jumbocnt++;
1903 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1904 				ifp->if_ierrors++;
1905 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1906 				continue;
1907 			}
1908 			if (bge_newbuf_jumbo(sc,
1909 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1910 				ifp->if_ierrors++;
1911 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1912 				continue;
1913 			}
1914 		} else {
1915 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1916 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1917 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1918 			stdcnt++;
1919 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1920 				ifp->if_ierrors++;
1921 				bge_newbuf_std(sc, sc->bge_std, m);
1922 				continue;
1923 			}
1924 			if (bge_newbuf_std(sc, sc->bge_std,
1925 			    NULL) == ENOBUFS) {
1926 				ifp->if_ierrors++;
1927 				bge_newbuf_std(sc, sc->bge_std, m);
1928 				continue;
1929 			}
1930 		}
1931 
1932 		ifp->if_ipackets++;
1933 #ifndef __i386__
1934 		/*
1935 		 * The i386 allows unaligned accesses, but for other
1936 		 * platforms we must make sure the payload is aligned.
1937 		 */
1938 		if (sc->bge_rx_alignment_bug) {
1939 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1940 			    cur_rx->bge_len);
1941 			m->m_data += ETHER_ALIGN;
1942 		}
1943 #endif
1944 		eh = mtod(m, struct ether_header *);
1945 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1946 		m->m_pkthdr.rcvif = ifp;
1947 
1948 		/* Remove header from mbuf and pass it on. */
1949 		m_adj(m, sizeof(struct ether_header));
1950 
1951 #if 0 /* currently broken for some packets, possibly related to TCP options */
1952 		if (ifp->if_hwassist) {
1953 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1954 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1955 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1956 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1957 				m->m_pkthdr.csum_data =
1958 				    cur_rx->bge_tcp_udp_csum;
1959 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1960 			}
1961 		}
1962 #endif
1963 
1964 		/*
1965 		 * If we received a packet with a vlan tag, pass it
1966 		 * to vlan_input() instead of ether_input().
1967 		 */
1968 		if (have_tag) {
1969 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1970 			have_tag = vlan_tag = 0;
1971 			continue;
1972 		}
1973 
1974 		ether_input(ifp, eh, m);
1975 	}
1976 
1977 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1978 	if (stdcnt)
1979 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1980 	if (jumbocnt)
1981 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1982 
1983 	return;
1984 }
1985 
1986 static void
1987 bge_txeof(sc)
1988 	struct bge_softc *sc;
1989 {
1990 	struct bge_tx_bd *cur_tx = NULL;
1991 	struct ifnet *ifp;
1992 
1993 	ifp = &sc->arpcom.ac_if;
1994 
1995 	/*
1996 	 * Go through our tx ring and free mbufs for those
1997 	 * frames that have been sent.
1998 	 */
1999 	while (sc->bge_tx_saved_considx !=
2000 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2001 		u_int32_t		idx = 0;
2002 
2003 		idx = sc->bge_tx_saved_considx;
2004 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2005 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2006 			ifp->if_opackets++;
2007 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2008 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2009 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2010 		}
2011 		sc->bge_txcnt--;
2012 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2013 		ifp->if_timer = 0;
2014 	}
2015 
2016 	if (cur_tx != NULL)
2017 		ifp->if_flags &= ~IFF_OACTIVE;
2018 
2019 	return;
2020 }
2021 
2022 static void
2023 bge_intr(xsc)
2024 	void *xsc;
2025 {
2026 	struct bge_softc *sc;
2027 	struct ifnet *ifp;
2028 
2029 	sc = xsc;
2030 	ifp = &sc->arpcom.ac_if;
2031 
2032 #ifdef notdef
2033 	/* Avoid this for now -- checking this register is expensive. */
2034 	/* Make sure this is really our interrupt. */
2035 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2036 		return;
2037 #endif
2038 	/* Ack interrupt and stop others from occuring. */
2039 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2040 
2041 	/*
2042 	 * Process link state changes.
2043 	 * Grrr. The link status word in the status block does
2044 	 * not work correctly on the BCM5700 rev AX and BX chips,
2045 	 * according to all avaibable information. Hence, we have
2046 	 * to enable MII interrupts in order to properly obtain
2047 	 * async link changes. Unfortunately, this also means that
2048 	 * we have to read the MAC status register to detect link
2049 	 * changes, thereby adding an additional register access to
2050 	 * the interrupt handler.
2051 	 */
2052 
2053 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2054 		u_int32_t		status;
2055 
2056 		status = CSR_READ_4(sc, BGE_MAC_STS);
2057 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2058 			sc->bge_link = 0;
2059 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2060 			bge_tick(sc);
2061 			/* Clear the interrupt */
2062 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2063 			    BGE_EVTENB_MI_INTERRUPT);
2064 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2065 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2066 			    BRGPHY_INTRS);
2067 		}
2068 	} else {
2069 		if (sc->bge_rdata->bge_status_block.bge_status &
2070 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2071 			sc->bge_link = 0;
2072 			untimeout(bge_tick, sc, sc->bge_stat_ch);
2073 			bge_tick(sc);
2074 			/* Clear the interrupt */
2075 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2076 			    BGE_MACSTAT_CFG_CHANGED);
2077 		}
2078 	}
2079 
2080 	if (ifp->if_flags & IFF_RUNNING) {
2081 		/* Check RX return ring producer/consumer */
2082 		bge_rxeof(sc);
2083 
2084 		/* Check TX ring producer/consumer */
2085 		bge_txeof(sc);
2086 	}
2087 
2088 	bge_handle_events(sc);
2089 
2090 	/* Re-enable interrupts. */
2091 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2092 
2093 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2094 		bge_start(ifp);
2095 
2096 	return;
2097 }
2098 
2099 static void
2100 bge_tick(xsc)
2101 	void *xsc;
2102 {
2103 	struct bge_softc *sc;
2104 	struct mii_data *mii = NULL;
2105 	struct ifmedia *ifm = NULL;
2106 	struct ifnet *ifp;
2107 	int s;
2108 
2109 	sc = xsc;
2110 	ifp = &sc->arpcom.ac_if;
2111 
2112 	s = splimp();
2113 
2114 	bge_stats_update(sc);
2115 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2116 	if (sc->bge_link) {
2117 		splx(s);
2118 		return;
2119 	}
2120 
2121 	if (sc->bge_tbi) {
2122 		ifm = &sc->bge_ifmedia;
2123 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2124 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2125 			sc->bge_link++;
2126 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2127 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2128 			if (ifp->if_snd.ifq_head != NULL)
2129 				bge_start(ifp);
2130 		}
2131 		splx(s);
2132 		return;
2133 	}
2134 
2135 	mii = device_get_softc(sc->bge_miibus);
2136 	mii_tick(mii);
2137 
2138 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2139 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2140 		sc->bge_link++;
2141 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2142 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2143 			printf("bge%d: gigabit link up\n",
2144 			   sc->bge_unit);
2145 		if (ifp->if_snd.ifq_head != NULL)
2146 			bge_start(ifp);
2147 	}
2148 
2149 	splx(s);
2150 
2151 	return;
2152 }
2153 
2154 static void
2155 bge_stats_update(sc)
2156 	struct bge_softc *sc;
2157 {
2158 	struct ifnet *ifp;
2159 	struct bge_stats *stats;
2160 
2161 	ifp = &sc->arpcom.ac_if;
2162 
2163 	stats = (struct bge_stats *)(sc->bge_vhandle +
2164 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2165 
2166 	ifp->if_collisions +=
2167 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2168 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2169 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2170 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2171 	   ifp->if_collisions;
2172 
2173 #ifdef notdef
2174 	ifp->if_collisions +=
2175 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2176 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2177 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2178 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2179 	   ifp->if_collisions;
2180 #endif
2181 
2182 	return;
2183 }
2184 
2185 /*
2186  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2187  * pointers to descriptors.
2188  */
2189 static int
2190 bge_encap(sc, m_head, txidx)
2191 	struct bge_softc *sc;
2192 	struct mbuf *m_head;
2193 	u_int32_t *txidx;
2194 {
2195 	struct bge_tx_bd	*f = NULL;
2196 	struct mbuf		*m;
2197 	u_int32_t		frag, cur, cnt = 0;
2198 	u_int16_t		csum_flags = 0;
2199 	struct ifvlan		*ifv = NULL;
2200 
2201 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2202 	    m_head->m_pkthdr.rcvif != NULL &&
2203 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2204 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2205 
2206 	m = m_head;
2207 	cur = frag = *txidx;
2208 
2209 	if (m_head->m_pkthdr.csum_flags) {
2210 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2211 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2212 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2213 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2214 		if (m_head->m_flags & M_LASTFRAG)
2215 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2216 		else if (m_head->m_flags & M_FRAG)
2217 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2218 	}
2219 
2220 	/*
2221  	 * Start packing the mbufs in this chain into
2222 	 * the fragment pointers. Stop when we run out
2223  	 * of fragments or hit the end of the mbuf chain.
2224 	 */
2225 	for (m = m_head; m != NULL; m = m->m_next) {
2226 		if (m->m_len != 0) {
2227 			f = &sc->bge_rdata->bge_tx_ring[frag];
2228 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2229 				break;
2230 			BGE_HOSTADDR(f->bge_addr) =
2231 			   vtophys(mtod(m, vm_offset_t));
2232 			f->bge_len = m->m_len;
2233 			f->bge_flags = csum_flags;
2234 			if (ifv != NULL) {
2235 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2236 				f->bge_vlan_tag = ifv->ifv_tag;
2237 			} else {
2238 				f->bge_vlan_tag = 0;
2239 			}
2240 			/*
2241 			 * Sanity check: avoid coming within 16 descriptors
2242 			 * of the end of the ring.
2243 			 */
2244 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2245 				return(ENOBUFS);
2246 			cur = frag;
2247 			BGE_INC(frag, BGE_TX_RING_CNT);
2248 			cnt++;
2249 		}
2250 	}
2251 
2252 	if (m != NULL)
2253 		return(ENOBUFS);
2254 
2255 	if (frag == sc->bge_tx_saved_considx)
2256 		return(ENOBUFS);
2257 
2258 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2259 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2260 	sc->bge_txcnt += cnt;
2261 
2262 	*txidx = frag;
2263 
2264 	return(0);
2265 }
2266 
2267 /*
2268  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2269  * to the mbuf data regions directly in the transmit descriptors.
2270  */
2271 static void
2272 bge_start(ifp)
2273 	struct ifnet *ifp;
2274 {
2275 	struct bge_softc *sc;
2276 	struct mbuf *m_head = NULL;
2277 	u_int32_t prodidx = 0;
2278 
2279 	sc = ifp->if_softc;
2280 
2281 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2282 		return;
2283 
2284 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2285 
2286 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2287 		IF_DEQUEUE(&ifp->if_snd, m_head);
2288 		if (m_head == NULL)
2289 			break;
2290 
2291 		/*
2292 		 * XXX
2293 		 * safety overkill.  If this is a fragmented packet chain
2294 		 * with delayed TCP/UDP checksums, then only encapsulate
2295 		 * it if we have enough descriptors to handle the entire
2296 		 * chain at once.
2297 		 * (paranoia -- may not actually be needed)
2298 		 */
2299 		if (m_head->m_flags & M_FIRSTFRAG &&
2300 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2301 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2302 			    m_head->m_pkthdr.csum_data + 16) {
2303 				IF_PREPEND(&ifp->if_snd, m_head);
2304 				ifp->if_flags |= IFF_OACTIVE;
2305 				break;
2306 			}
2307 		}
2308 
2309 		/*
2310 		 * Pack the data into the transmit ring. If we
2311 		 * don't have room, set the OACTIVE flag and wait
2312 		 * for the NIC to drain the ring.
2313 		 */
2314 		if (bge_encap(sc, m_head, &prodidx)) {
2315 			IF_PREPEND(&ifp->if_snd, m_head);
2316 			ifp->if_flags |= IFF_OACTIVE;
2317 			break;
2318 		}
2319 
2320 		/*
2321 		 * If there's a BPF listener, bounce a copy of this frame
2322 		 * to him.
2323 		 */
2324 		if (ifp->if_bpf)
2325 			bpf_mtap(ifp, m_head);
2326 	}
2327 
2328 	/* Transmit */
2329 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2330 
2331 	/*
2332 	 * Set a timeout in case the chip goes out to lunch.
2333 	 */
2334 	ifp->if_timer = 5;
2335 
2336 	return;
2337 }
2338 
2339 /*
2340  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2341  * program its internal DSP. Failing to do this can result in
2342  * massive packet loss at 1Gb speeds.
2343  */
2344 static void
2345 bge_phy_hack(sc)
2346 	struct bge_softc *sc;
2347 {
2348 	struct bge_bcom_hack bhack[] = {
2349 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2350 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2351 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2352 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2353 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2354 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2355 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2356 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2357 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2358 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2359 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2360 	{ 0, 0 } };
2361 	u_int16_t vid, did;
2362 	int i;
2363 
2364 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2365 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2366 
2367 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2368 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2369 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2370 		i = 0;
2371 		while(bhack[i].reg) {
2372 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2373 			    bhack[i].val);
2374 			i++;
2375 		}
2376 	}
2377 
2378 	return;
2379 }
2380 
2381 static void
2382 bge_init(xsc)
2383 	void *xsc;
2384 {
2385 	struct bge_softc *sc = xsc;
2386 	struct ifnet *ifp;
2387 	u_int16_t *m;
2388         int s;
2389 
2390 	s = splimp();
2391 
2392 	ifp = &sc->arpcom.ac_if;
2393 
2394 	if (ifp->if_flags & IFF_RUNNING) {
2395 		splx(s);
2396 		return;
2397 	}
2398 
2399 	/* Cancel pending I/O and flush buffers. */
2400 	bge_stop(sc);
2401 	bge_reset(sc);
2402 	bge_chipinit(sc);
2403 
2404 	/*
2405 	 * Init the various state machines, ring
2406 	 * control blocks and firmware.
2407 	 */
2408 	if (bge_blockinit(sc)) {
2409 		printf("bge%d: initialization failure\n", sc->bge_unit);
2410 		splx(s);
2411 		return;
2412 	}
2413 
2414 	ifp = &sc->arpcom.ac_if;
2415 
2416 	/* Specify MTU. */
2417 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2418 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2419 
2420 	/* Load our MAC address. */
2421 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2422 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2423 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2424 
2425 	/* Enable or disable promiscuous mode as needed. */
2426 	if (ifp->if_flags & IFF_PROMISC) {
2427 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2428 	} else {
2429 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2430 	}
2431 
2432 	/* Program multicast filter. */
2433 	bge_setmulti(sc);
2434 
2435 	/* Init RX ring. */
2436 	bge_init_rx_ring_std(sc);
2437 
2438 	/* Init jumbo RX ring. */
2439 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2440 		bge_init_rx_ring_jumbo(sc);
2441 
2442 	/* Init our RX return ring index */
2443 	sc->bge_rx_saved_considx = 0;
2444 
2445 	/* Init TX ring. */
2446 	bge_init_tx_ring(sc);
2447 
2448 	/* Turn on transmitter */
2449 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2450 
2451 	/* Turn on receiver */
2452 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2453 
2454 	/* Tell firmware we're alive. */
2455 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2456 
2457 	/* Enable host interrupts. */
2458 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2459 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2460 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2461 
2462 	bge_ifmedia_upd(ifp);
2463 
2464 	ifp->if_flags |= IFF_RUNNING;
2465 	ifp->if_flags &= ~IFF_OACTIVE;
2466 
2467 	splx(s);
2468 
2469 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2470 
2471 	return;
2472 }
2473 
2474 /*
2475  * Set media options.
2476  */
2477 static int
2478 bge_ifmedia_upd(ifp)
2479 	struct ifnet *ifp;
2480 {
2481 	struct bge_softc *sc;
2482 	struct mii_data *mii;
2483 	struct ifmedia *ifm;
2484 
2485 	sc = ifp->if_softc;
2486 	ifm = &sc->bge_ifmedia;
2487 
2488 	/* If this is a 1000baseX NIC, enable the TBI port. */
2489 	if (sc->bge_tbi) {
2490 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2491 			return(EINVAL);
2492 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2493 		case IFM_AUTO:
2494 			break;
2495 		case IFM_1000_SX:
2496 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2497 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2498 				    BGE_MACMODE_HALF_DUPLEX);
2499 			} else {
2500 				BGE_SETBIT(sc, BGE_MAC_MODE,
2501 				    BGE_MACMODE_HALF_DUPLEX);
2502 			}
2503 			break;
2504 		default:
2505 			return(EINVAL);
2506 		}
2507 		return(0);
2508 	}
2509 
2510 	mii = device_get_softc(sc->bge_miibus);
2511 	sc->bge_link = 0;
2512 	if (mii->mii_instance) {
2513 		struct mii_softc *miisc;
2514 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2515 		    miisc = LIST_NEXT(miisc, mii_list))
2516 			mii_phy_reset(miisc);
2517 	}
2518 	bge_phy_hack(sc);
2519 	mii_mediachg(mii);
2520 
2521 	return(0);
2522 }
2523 
2524 /*
2525  * Report current media status.
2526  */
2527 static void
2528 bge_ifmedia_sts(ifp, ifmr)
2529 	struct ifnet *ifp;
2530 	struct ifmediareq *ifmr;
2531 {
2532 	struct bge_softc *sc;
2533 	struct mii_data *mii;
2534 
2535 	sc = ifp->if_softc;
2536 
2537 	if (sc->bge_tbi) {
2538 		ifmr->ifm_status = IFM_AVALID;
2539 		ifmr->ifm_active = IFM_ETHER;
2540 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2541 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2542 			ifmr->ifm_status |= IFM_ACTIVE;
2543 		ifmr->ifm_active |= IFM_1000_SX;
2544 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2545 			ifmr->ifm_active |= IFM_HDX;
2546 		else
2547 			ifmr->ifm_active |= IFM_FDX;
2548 		return;
2549 	}
2550 
2551 	mii = device_get_softc(sc->bge_miibus);
2552 	mii_pollstat(mii);
2553 	ifmr->ifm_active = mii->mii_media_active;
2554 	ifmr->ifm_status = mii->mii_media_status;
2555 
2556 	return;
2557 }
2558 
2559 static int
2560 bge_ioctl(ifp, command, data)
2561 	struct ifnet *ifp;
2562 	u_long command;
2563 	caddr_t data;
2564 {
2565 	struct bge_softc *sc = ifp->if_softc;
2566 	struct ifreq *ifr = (struct ifreq *) data;
2567 	int s, mask, error = 0;
2568 	struct mii_data *mii;
2569 
2570 	s = splimp();
2571 
2572 	switch(command) {
2573 	case SIOCSIFADDR:
2574 	case SIOCGIFADDR:
2575 		error = ether_ioctl(ifp, command, data);
2576 		break;
2577 	case SIOCSIFMTU:
2578 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2579 			error = EINVAL;
2580 		else {
2581 			ifp->if_mtu = ifr->ifr_mtu;
2582 			ifp->if_flags &= ~IFF_RUNNING;
2583 			bge_init(sc);
2584 		}
2585 		break;
2586 	case SIOCSIFFLAGS:
2587 		if (ifp->if_flags & IFF_UP) {
2588 			/*
2589 			 * If only the state of the PROMISC flag changed,
2590 			 * then just use the 'set promisc mode' command
2591 			 * instead of reinitializing the entire NIC. Doing
2592 			 * a full re-init means reloading the firmware and
2593 			 * waiting for it to start up, which may take a
2594 			 * second or two.
2595 			 */
2596 			if (ifp->if_flags & IFF_RUNNING &&
2597 			    ifp->if_flags & IFF_PROMISC &&
2598 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2599 				BGE_SETBIT(sc, BGE_RX_MODE,
2600 				    BGE_RXMODE_RX_PROMISC);
2601 			} else if (ifp->if_flags & IFF_RUNNING &&
2602 			    !(ifp->if_flags & IFF_PROMISC) &&
2603 			    sc->bge_if_flags & IFF_PROMISC) {
2604 				BGE_CLRBIT(sc, BGE_RX_MODE,
2605 				    BGE_RXMODE_RX_PROMISC);
2606 			} else
2607 				bge_init(sc);
2608 		} else {
2609 			if (ifp->if_flags & IFF_RUNNING) {
2610 				bge_stop(sc);
2611 			}
2612 		}
2613 		sc->bge_if_flags = ifp->if_flags;
2614 		error = 0;
2615 		break;
2616 	case SIOCADDMULTI:
2617 	case SIOCDELMULTI:
2618 		if (ifp->if_flags & IFF_RUNNING) {
2619 			bge_setmulti(sc);
2620 			error = 0;
2621 		}
2622 		break;
2623 	case SIOCSIFMEDIA:
2624 	case SIOCGIFMEDIA:
2625 		if (sc->bge_tbi) {
2626 			error = ifmedia_ioctl(ifp, ifr,
2627 			    &sc->bge_ifmedia, command);
2628 		} else {
2629 			mii = device_get_softc(sc->bge_miibus);
2630 			error = ifmedia_ioctl(ifp, ifr,
2631 			    &mii->mii_media, command);
2632 		}
2633 		break;
2634         case SIOCSIFCAP:
2635 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2636 		if (mask & IFCAP_HWCSUM) {
2637 			if (IFCAP_HWCSUM & ifp->if_capenable)
2638 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2639 			else
2640 				ifp->if_capenable |= IFCAP_HWCSUM;
2641 		}
2642 		error = 0;
2643 		break;
2644 	default:
2645 		error = EINVAL;
2646 		break;
2647 	}
2648 
2649 	(void)splx(s);
2650 
2651 	return(error);
2652 }
2653 
2654 static void
2655 bge_watchdog(ifp)
2656 	struct ifnet *ifp;
2657 {
2658 	struct bge_softc *sc;
2659 
2660 	sc = ifp->if_softc;
2661 
2662 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2663 
2664 	ifp->if_flags &= ~IFF_RUNNING;
2665 	bge_init(sc);
2666 
2667 	ifp->if_oerrors++;
2668 
2669 	return;
2670 }
2671 
2672 /*
2673  * Stop the adapter and free any mbufs allocated to the
2674  * RX and TX lists.
2675  */
2676 static void
2677 bge_stop(sc)
2678 	struct bge_softc *sc;
2679 {
2680 	struct ifnet *ifp;
2681 	struct ifmedia_entry *ifm;
2682 	struct mii_data *mii = NULL;
2683 	int mtmp, itmp;
2684 
2685 	ifp = &sc->arpcom.ac_if;
2686 
2687 	if (!sc->bge_tbi)
2688 		mii = device_get_softc(sc->bge_miibus);
2689 
2690 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2691 
2692 	/*
2693 	 * Disable all of the receiver blocks
2694 	 */
2695 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2696 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2697 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2698 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2699 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2700 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2701 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2702 
2703 	/*
2704 	 * Disable all of the transmit blocks
2705 	 */
2706 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2707 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2708 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2709 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2710 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2711 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2712 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2713 
2714 	/*
2715 	 * Shut down all of the memory managers and related
2716 	 * state machines.
2717 	 */
2718 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2719 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2720 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2721 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2722 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2723 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2724 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2725 
2726 	/* Disable host interrupts. */
2727 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2728 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2729 
2730 	/*
2731 	 * Tell firmware we're shutting down.
2732 	 */
2733 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2734 
2735 	/* Free the RX lists. */
2736 	bge_free_rx_ring_std(sc);
2737 
2738 	/* Free jumbo RX list. */
2739 	bge_free_rx_ring_jumbo(sc);
2740 
2741 	/* Free TX buffers. */
2742 	bge_free_tx_ring(sc);
2743 
2744 	/*
2745 	 * Isolate/power down the PHY, but leave the media selection
2746 	 * unchanged so that things will be put back to normal when
2747 	 * we bring the interface back up.
2748 	 */
2749 	if (!sc->bge_tbi) {
2750 		itmp = ifp->if_flags;
2751 		ifp->if_flags |= IFF_UP;
2752 		ifm = mii->mii_media.ifm_cur;
2753 		mtmp = ifm->ifm_media;
2754 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2755 		mii_mediachg(mii);
2756 		ifm->ifm_media = mtmp;
2757 		ifp->if_flags = itmp;
2758 	}
2759 
2760 	sc->bge_link = 0;
2761 
2762 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2763 
2764 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2765 
2766 	return;
2767 }
2768 
2769 /*
2770  * Stop all chip I/O so that the kernel's probe routines don't
2771  * get confused by errant DMAs when rebooting.
2772  */
2773 static void
2774 bge_shutdown(dev)
2775 	device_t dev;
2776 {
2777 	struct bge_softc *sc;
2778 
2779 	sc = device_get_softc(dev);
2780 
2781 	bge_stop(sc);
2782 	bge_reset(sc);
2783 
2784 	return;
2785 }
2786