xref: /freebsd/sys/dev/bge/if_bge.c (revision b1f9167f94059fd55c630891d359bcff987bd7eb)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111 
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #include <dev/bge/if_bgereg.h>
123 
124 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126 
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141 	uint16_t	bge_vid;
142 	uint16_t	bge_did;
143 } bge_devs[] = {
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146 
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150 
151 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152 
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
238 
239 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
240 
241 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
242 
243 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
244 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
245 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
246 
247 	{ 0, 0 }
248 };
249 
250 static const struct bge_vendor {
251 	uint16_t	v_id;
252 	const char	*v_name;
253 } bge_vendors[] = {
254 	{ ALTEON_VENDORID,	"Alteon" },
255 	{ ALTIMA_VENDORID,	"Altima" },
256 	{ APPLE_VENDORID,	"Apple" },
257 	{ BCOM_VENDORID,	"Broadcom" },
258 	{ SK_VENDORID,		"SysKonnect" },
259 	{ TC_VENDORID,		"3Com" },
260 	{ FJTSU_VENDORID,	"Fujitsu" },
261 
262 	{ 0, NULL }
263 };
264 
265 static const struct bge_revision {
266 	uint32_t	br_chipid;
267 	const char	*br_name;
268 } bge_revisions[] = {
269 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
270 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
271 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
272 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
273 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
274 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
275 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
276 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
277 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
278 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
279 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
280 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
281 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
282 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
283 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
284 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
285 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
286 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
287 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
288 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
289 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
290 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
291 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
292 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
293 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
294 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
295 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
296 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
297 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
298 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
299 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
300 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
301 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
302 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
303 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
304 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
305 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
306 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
307 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
308 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
309 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
310 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
311 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
312 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
313 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
314 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
315 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
316 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
317 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
318 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
319 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
320 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
321 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
322 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
323 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
324 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
325 	/* 5754 and 5787 share the same ASIC ID */
326 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
327 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
328 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
329 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
330 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
331 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
332 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
333 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
334 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
335 
336 	{ 0, NULL }
337 };
338 
339 /*
340  * Some defaults for major revisions, so that newer steppings
341  * that we don't know about have a shot at working.
342  */
343 static const struct bge_revision bge_majorrevs[] = {
344 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
345 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
346 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
347 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
348 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
349 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
350 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
351 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
352 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
353 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
354 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
355 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
356 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
357 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
358 	/* 5754 and 5787 share the same ASIC ID */
359 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
360 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
361 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
362 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
363 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
364 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
365 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
366 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
367 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
368 
369 	{ 0, NULL }
370 };
371 
372 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
373 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
374 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
375 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
376 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
377 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
378 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
379 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
380 
381 static uint32_t bge_chipid(device_t);
382 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
383 static const struct bge_revision * bge_lookup_rev(uint32_t);
384 
385 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
386 
387 static int bge_probe(device_t);
388 static int bge_attach(device_t);
389 static int bge_detach(device_t);
390 static int bge_suspend(device_t);
391 static int bge_resume(device_t);
392 static void bge_release_resources(struct bge_softc *);
393 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
394 static int bge_dma_alloc(struct bge_softc *);
395 static void bge_dma_free(struct bge_softc *);
396 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
397     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
398 
399 static void bge_devinfo(struct bge_softc *);
400 static int bge_mbox_reorder(struct bge_softc *);
401 
402 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
403 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
404 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
405 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
407 
408 static void bge_txeof(struct bge_softc *, uint16_t);
409 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
410 static int bge_rxeof(struct bge_softc *, uint16_t, int);
411 
412 static void bge_asf_driver_up (struct bge_softc *);
413 static void bge_tick(void *);
414 static void bge_stats_clear_regs(struct bge_softc *);
415 static void bge_stats_update(struct bge_softc *);
416 static void bge_stats_update_regs(struct bge_softc *);
417 static struct mbuf *bge_check_short_dma(struct mbuf *);
418 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
419     uint16_t *, uint16_t *);
420 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
421 
422 static void bge_intr(void *);
423 static int bge_msi_intr(void *);
424 static void bge_intr_task(void *, int);
425 static void bge_start_locked(struct ifnet *);
426 static void bge_start(struct ifnet *);
427 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
428 static void bge_init_locked(struct bge_softc *);
429 static void bge_init(void *);
430 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
431 static void bge_stop(struct bge_softc *);
432 static void bge_watchdog(struct bge_softc *);
433 static int bge_shutdown(device_t);
434 static int bge_ifmedia_upd_locked(struct ifnet *);
435 static int bge_ifmedia_upd(struct ifnet *);
436 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
437 
438 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
439 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
440 
441 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
442 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
443 
444 static void bge_setpromisc(struct bge_softc *);
445 static void bge_setmulti(struct bge_softc *);
446 static void bge_setvlan(struct bge_softc *);
447 
448 static __inline void bge_rxreuse_std(struct bge_softc *, int);
449 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
450 static int bge_newbuf_std(struct bge_softc *, int);
451 static int bge_newbuf_jumbo(struct bge_softc *, int);
452 static int bge_init_rx_ring_std(struct bge_softc *);
453 static void bge_free_rx_ring_std(struct bge_softc *);
454 static int bge_init_rx_ring_jumbo(struct bge_softc *);
455 static void bge_free_rx_ring_jumbo(struct bge_softc *);
456 static void bge_free_tx_ring(struct bge_softc *);
457 static int bge_init_tx_ring(struct bge_softc *);
458 
459 static int bge_chipinit(struct bge_softc *);
460 static int bge_blockinit(struct bge_softc *);
461 static uint32_t bge_dma_swap_options(struct bge_softc *);
462 
463 static int bge_has_eaddr(struct bge_softc *);
464 static uint32_t bge_readmem_ind(struct bge_softc *, int);
465 static void bge_writemem_ind(struct bge_softc *, int, int);
466 static void bge_writembx(struct bge_softc *, int, int);
467 #ifdef notdef
468 static uint32_t bge_readreg_ind(struct bge_softc *, int);
469 #endif
470 static void bge_writemem_direct(struct bge_softc *, int, int);
471 static void bge_writereg_ind(struct bge_softc *, int, int);
472 
473 static int bge_miibus_readreg(device_t, int, int);
474 static int bge_miibus_writereg(device_t, int, int, int);
475 static void bge_miibus_statchg(device_t);
476 #ifdef DEVICE_POLLING
477 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
478 #endif
479 
480 #define	BGE_RESET_SHUTDOWN	0
481 #define	BGE_RESET_START		1
482 #define	BGE_RESET_SUSPEND	2
483 static void bge_sig_post_reset(struct bge_softc *, int);
484 static void bge_sig_legacy(struct bge_softc *, int);
485 static void bge_sig_pre_reset(struct bge_softc *, int);
486 static void bge_stop_fw(struct bge_softc *);
487 static int bge_reset(struct bge_softc *);
488 static void bge_link_upd(struct bge_softc *);
489 
490 static void bge_ape_lock_init(struct bge_softc *);
491 static void bge_ape_read_fw_ver(struct bge_softc *);
492 static int bge_ape_lock(struct bge_softc *, int);
493 static void bge_ape_unlock(struct bge_softc *, int);
494 static void bge_ape_send_event(struct bge_softc *, uint32_t);
495 static void bge_ape_driver_state_change(struct bge_softc *, int);
496 
497 /*
498  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
499  * leak information to untrusted users.  It is also known to cause alignment
500  * traps on certain architectures.
501  */
502 #ifdef BGE_REGISTER_DEBUG
503 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
504 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
505 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
506 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
507 #endif
508 static void bge_add_sysctls(struct bge_softc *);
509 static void bge_add_sysctl_stats_regs(struct bge_softc *,
510     struct sysctl_ctx_list *, struct sysctl_oid_list *);
511 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
512     struct sysctl_oid_list *);
513 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
514 
515 static device_method_t bge_methods[] = {
516 	/* Device interface */
517 	DEVMETHOD(device_probe,		bge_probe),
518 	DEVMETHOD(device_attach,	bge_attach),
519 	DEVMETHOD(device_detach,	bge_detach),
520 	DEVMETHOD(device_shutdown,	bge_shutdown),
521 	DEVMETHOD(device_suspend,	bge_suspend),
522 	DEVMETHOD(device_resume,	bge_resume),
523 
524 	/* MII interface */
525 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
526 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
527 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
528 
529 	DEVMETHOD_END
530 };
531 
532 static driver_t bge_driver = {
533 	"bge",
534 	bge_methods,
535 	sizeof(struct bge_softc)
536 };
537 
538 static devclass_t bge_devclass;
539 
540 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
541 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
542 
543 static int bge_allow_asf = 1;
544 
545 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
546 
547 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
548 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
549 	"Allow ASF mode if available");
550 
551 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
552 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
553 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
554 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
555 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
556 
557 static int
558 bge_has_eaddr(struct bge_softc *sc)
559 {
560 #ifdef __sparc64__
561 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
562 	device_t dev;
563 	uint32_t subvendor;
564 
565 	dev = sc->bge_dev;
566 
567 	/*
568 	 * The on-board BGEs found in sun4u machines aren't fitted with
569 	 * an EEPROM which means that we have to obtain the MAC address
570 	 * via OFW and that some tests will always fail.  We distinguish
571 	 * such BGEs by the subvendor ID, which also has to be obtained
572 	 * from OFW instead of the PCI configuration space as the latter
573 	 * indicates Broadcom as the subvendor of the netboot interface.
574 	 * For early Blade 1500 and 2500 we even have to check the OFW
575 	 * device path as the subvendor ID always defaults to Broadcom
576 	 * there.
577 	 */
578 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
579 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
580 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
581 		return (0);
582 	memset(buf, 0, sizeof(buf));
583 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
584 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
585 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
586 			return (0);
587 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
588 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
589 			return (0);
590 	}
591 #endif
592 	return (1);
593 }
594 
595 static uint32_t
596 bge_readmem_ind(struct bge_softc *sc, int off)
597 {
598 	device_t dev;
599 	uint32_t val;
600 
601 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
602 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
603 		return (0);
604 
605 	dev = sc->bge_dev;
606 
607 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
608 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
609 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
610 	return (val);
611 }
612 
613 static void
614 bge_writemem_ind(struct bge_softc *sc, int off, int val)
615 {
616 	device_t dev;
617 
618 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
619 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
620 		return;
621 
622 	dev = sc->bge_dev;
623 
624 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
625 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
626 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
627 }
628 
629 #ifdef notdef
630 static uint32_t
631 bge_readreg_ind(struct bge_softc *sc, int off)
632 {
633 	device_t dev;
634 
635 	dev = sc->bge_dev;
636 
637 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
638 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
639 }
640 #endif
641 
642 static void
643 bge_writereg_ind(struct bge_softc *sc, int off, int val)
644 {
645 	device_t dev;
646 
647 	dev = sc->bge_dev;
648 
649 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
650 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
651 }
652 
653 static void
654 bge_writemem_direct(struct bge_softc *sc, int off, int val)
655 {
656 	CSR_WRITE_4(sc, off, val);
657 }
658 
659 static void
660 bge_writembx(struct bge_softc *sc, int off, int val)
661 {
662 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
663 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
664 
665 	CSR_WRITE_4(sc, off, val);
666 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
667 		CSR_READ_4(sc, off);
668 }
669 
670 /*
671  * Clear all stale locks and select the lock for this driver instance.
672  */
673 static void
674 bge_ape_lock_init(struct bge_softc *sc)
675 {
676 	uint32_t bit, regbase;
677 	int i;
678 
679 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
680 		regbase = BGE_APE_LOCK_GRANT;
681 	else
682 		regbase = BGE_APE_PER_LOCK_GRANT;
683 
684 	/* Clear any stale locks. */
685 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
686 		switch (i) {
687 		case BGE_APE_LOCK_PHY0:
688 		case BGE_APE_LOCK_PHY1:
689 		case BGE_APE_LOCK_PHY2:
690 		case BGE_APE_LOCK_PHY3:
691 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
692 			break;
693 		default:
694 			if (sc->bge_func_addr == 0)
695 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
696 			else
697 				bit = (1 << sc->bge_func_addr);
698 		}
699 		APE_WRITE_4(sc, regbase + 4 * i, bit);
700 	}
701 
702 	/* Select the PHY lock based on the device's function number. */
703 	switch (sc->bge_func_addr) {
704 	case 0:
705 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
706 		break;
707 	case 1:
708 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
709 		break;
710 	case 2:
711 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
712 		break;
713 	case 3:
714 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
715 		break;
716 	default:
717 		device_printf(sc->bge_dev,
718 		    "PHY lock not supported on this function\n");
719 	}
720 }
721 
722 /*
723  * Check for APE firmware, set flags, and print version info.
724  */
725 static void
726 bge_ape_read_fw_ver(struct bge_softc *sc)
727 {
728 	const char *fwtype;
729 	uint32_t apedata, features;
730 
731 	/* Check for a valid APE signature in shared memory. */
732 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
733 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
734 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
735 		return;
736 	}
737 
738 	/* Check if APE firmware is running. */
739 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
740 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
741 		device_printf(sc->bge_dev, "APE signature found "
742 		    "but FW status not ready! 0x%08x\n", apedata);
743 		return;
744 	}
745 
746 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
747 
748 	/* Fetch the APE firwmare type and version. */
749 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
750 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
751 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
752 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
753 		fwtype = "NCSI";
754 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
755 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
756 		fwtype = "DASH";
757 	} else
758 		fwtype = "UNKN";
759 
760 	/* Print the APE firmware version. */
761 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
762 	    fwtype,
763 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
764 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
765 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
766 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
767 }
768 
769 static int
770 bge_ape_lock(struct bge_softc *sc, int locknum)
771 {
772 	uint32_t bit, gnt, req, status;
773 	int i, off;
774 
775 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
776 		return (0);
777 
778 	/* Lock request/grant registers have different bases. */
779 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
780 		req = BGE_APE_LOCK_REQ;
781 		gnt = BGE_APE_LOCK_GRANT;
782 	} else {
783 		req = BGE_APE_PER_LOCK_REQ;
784 		gnt = BGE_APE_PER_LOCK_GRANT;
785 	}
786 
787 	off = 4 * locknum;
788 
789 	switch (locknum) {
790 	case BGE_APE_LOCK_GPIO:
791 		/* Lock required when using GPIO. */
792 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
793 			return (0);
794 		if (sc->bge_func_addr == 0)
795 			bit = BGE_APE_LOCK_REQ_DRIVER0;
796 		else
797 			bit = (1 << sc->bge_func_addr);
798 		break;
799 	case BGE_APE_LOCK_GRC:
800 		/* Lock required to reset the device. */
801 		if (sc->bge_func_addr == 0)
802 			bit = BGE_APE_LOCK_REQ_DRIVER0;
803 		else
804 			bit = (1 << sc->bge_func_addr);
805 		break;
806 	case BGE_APE_LOCK_MEM:
807 		/* Lock required when accessing certain APE memory. */
808 		if (sc->bge_func_addr == 0)
809 			bit = BGE_APE_LOCK_REQ_DRIVER0;
810 		else
811 			bit = (1 << sc->bge_func_addr);
812 		break;
813 	case BGE_APE_LOCK_PHY0:
814 	case BGE_APE_LOCK_PHY1:
815 	case BGE_APE_LOCK_PHY2:
816 	case BGE_APE_LOCK_PHY3:
817 		/* Lock required when accessing PHYs. */
818 		bit = BGE_APE_LOCK_REQ_DRIVER0;
819 		break;
820 	default:
821 		return (EINVAL);
822 	}
823 
824 	/* Request a lock. */
825 	APE_WRITE_4(sc, req + off, bit);
826 
827 	/* Wait up to 1 second to acquire lock. */
828 	for (i = 0; i < 20000; i++) {
829 		status = APE_READ_4(sc, gnt + off);
830 		if (status == bit)
831 			break;
832 		DELAY(50);
833 	}
834 
835 	/* Handle any errors. */
836 	if (status != bit) {
837 		device_printf(sc->bge_dev, "APE lock %d request failed! "
838 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
839 		    locknum, req + off, bit & 0xFFFF, gnt + off,
840 		    status & 0xFFFF);
841 		/* Revoke the lock request. */
842 		APE_WRITE_4(sc, gnt + off, bit);
843 		return (EBUSY);
844 	}
845 
846 	return (0);
847 }
848 
849 static void
850 bge_ape_unlock(struct bge_softc *sc, int locknum)
851 {
852 	uint32_t bit, gnt;
853 	int off;
854 
855 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
856 		return;
857 
858 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
859 		gnt = BGE_APE_LOCK_GRANT;
860 	else
861 		gnt = BGE_APE_PER_LOCK_GRANT;
862 
863 	off = 4 * locknum;
864 
865 	switch (locknum) {
866 	case BGE_APE_LOCK_GPIO:
867 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868 			return;
869 		if (sc->bge_func_addr == 0)
870 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
871 		else
872 			bit = (1 << sc->bge_func_addr);
873 		break;
874 	case BGE_APE_LOCK_GRC:
875 		if (sc->bge_func_addr == 0)
876 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
877 		else
878 			bit = (1 << sc->bge_func_addr);
879 		break;
880 	case BGE_APE_LOCK_MEM:
881 		if (sc->bge_func_addr == 0)
882 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
883 		else
884 			bit = (1 << sc->bge_func_addr);
885 		break;
886 	case BGE_APE_LOCK_PHY0:
887 	case BGE_APE_LOCK_PHY1:
888 	case BGE_APE_LOCK_PHY2:
889 	case BGE_APE_LOCK_PHY3:
890 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
891 		break;
892 	default:
893 		return;
894 	}
895 
896 	APE_WRITE_4(sc, gnt + off, bit);
897 }
898 
899 /*
900  * Send an event to the APE firmware.
901  */
902 static void
903 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
904 {
905 	uint32_t apedata;
906 	int i;
907 
908 	/* NCSI does not support APE events. */
909 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
910 		return;
911 
912 	/* Wait up to 1ms for APE to service previous event. */
913 	for (i = 10; i > 0; i--) {
914 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
915 			break;
916 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
917 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
918 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
919 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
920 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
921 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
922 			break;
923 		}
924 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
925 		DELAY(100);
926 	}
927 	if (i == 0)
928 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
929 		    event);
930 }
931 
932 static void
933 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
934 {
935 	uint32_t apedata, event;
936 
937 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
938 		return;
939 
940 	switch (kind) {
941 	case BGE_RESET_START:
942 		/* If this is the first load, clear the load counter. */
943 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
944 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
945 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
946 		else {
947 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
948 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
949 		}
950 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
951 		    BGE_APE_HOST_SEG_SIG_MAGIC);
952 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
953 		    BGE_APE_HOST_SEG_LEN_MAGIC);
954 
955 		/* Add some version info if bge(4) supports it. */
956 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
957 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
958 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
959 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
960 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
961 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
962 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
963 		    BGE_APE_HOST_DRVR_STATE_START);
964 		event = BGE_APE_EVENT_STATUS_STATE_START;
965 		break;
966 	case BGE_RESET_SHUTDOWN:
967 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
968 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
969 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
970 		break;
971 	case BGE_RESET_SUSPEND:
972 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
973 		break;
974 	default:
975 		return;
976 	}
977 
978 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
979 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
980 }
981 
982 /*
983  * Map a single buffer address.
984  */
985 
986 static void
987 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
988 {
989 	struct bge_dmamap_arg *ctx;
990 
991 	if (error)
992 		return;
993 
994 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
995 
996 	ctx = arg;
997 	ctx->bge_busaddr = segs->ds_addr;
998 }
999 
1000 static uint8_t
1001 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1002 {
1003 	uint32_t access, byte = 0;
1004 	int i;
1005 
1006 	/* Lock. */
1007 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1008 	for (i = 0; i < 8000; i++) {
1009 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1010 			break;
1011 		DELAY(20);
1012 	}
1013 	if (i == 8000)
1014 		return (1);
1015 
1016 	/* Enable access. */
1017 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1018 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1019 
1020 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1021 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1022 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1023 		DELAY(10);
1024 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1025 			DELAY(10);
1026 			break;
1027 		}
1028 	}
1029 
1030 	if (i == BGE_TIMEOUT * 10) {
1031 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1032 		return (1);
1033 	}
1034 
1035 	/* Get result. */
1036 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1037 
1038 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1039 
1040 	/* Disable access. */
1041 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1042 
1043 	/* Unlock. */
1044 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1045 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Read a sequence of bytes from NVRAM.
1052  */
1053 static int
1054 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1055 {
1056 	int err = 0, i;
1057 	uint8_t byte = 0;
1058 
1059 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1060 		return (1);
1061 
1062 	for (i = 0; i < cnt; i++) {
1063 		err = bge_nvram_getbyte(sc, off + i, &byte);
1064 		if (err)
1065 			break;
1066 		*(dest + i) = byte;
1067 	}
1068 
1069 	return (err ? 1 : 0);
1070 }
1071 
1072 /*
1073  * Read a byte of data stored in the EEPROM at address 'addr.' The
1074  * BCM570x supports both the traditional bitbang interface and an
1075  * auto access interface for reading the EEPROM. We use the auto
1076  * access method.
1077  */
1078 static uint8_t
1079 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1080 {
1081 	int i;
1082 	uint32_t byte = 0;
1083 
1084 	/*
1085 	 * Enable use of auto EEPROM access so we can avoid
1086 	 * having to use the bitbang method.
1087 	 */
1088 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1089 
1090 	/* Reset the EEPROM, load the clock period. */
1091 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1092 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1093 	DELAY(20);
1094 
1095 	/* Issue the read EEPROM command. */
1096 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1097 
1098 	/* Wait for completion */
1099 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1100 		DELAY(10);
1101 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1102 			break;
1103 	}
1104 
1105 	if (i == BGE_TIMEOUT * 10) {
1106 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1107 		return (1);
1108 	}
1109 
1110 	/* Get result. */
1111 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1112 
1113 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1114 
1115 	return (0);
1116 }
1117 
1118 /*
1119  * Read a sequence of bytes from the EEPROM.
1120  */
1121 static int
1122 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1123 {
1124 	int i, error = 0;
1125 	uint8_t byte = 0;
1126 
1127 	for (i = 0; i < cnt; i++) {
1128 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1129 		if (error)
1130 			break;
1131 		*(dest + i) = byte;
1132 	}
1133 
1134 	return (error ? 1 : 0);
1135 }
1136 
1137 static int
1138 bge_miibus_readreg(device_t dev, int phy, int reg)
1139 {
1140 	struct bge_softc *sc;
1141 	uint32_t val;
1142 	int i;
1143 
1144 	sc = device_get_softc(dev);
1145 
1146 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1147 		return (0);
1148 
1149 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1150 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1151 		CSR_WRITE_4(sc, BGE_MI_MODE,
1152 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1153 		DELAY(80);
1154 	}
1155 
1156 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1157 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1158 
1159 	/* Poll for the PHY register access to complete. */
1160 	for (i = 0; i < BGE_TIMEOUT; i++) {
1161 		DELAY(10);
1162 		val = CSR_READ_4(sc, BGE_MI_COMM);
1163 		if ((val & BGE_MICOMM_BUSY) == 0) {
1164 			DELAY(5);
1165 			val = CSR_READ_4(sc, BGE_MI_COMM);
1166 			break;
1167 		}
1168 	}
1169 
1170 	if (i == BGE_TIMEOUT) {
1171 		device_printf(sc->bge_dev,
1172 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1173 		    phy, reg, val);
1174 		val = 0;
1175 	}
1176 
1177 	/* Restore the autopoll bit if necessary. */
1178 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1179 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1180 		DELAY(80);
1181 	}
1182 
1183 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1184 
1185 	if (val & BGE_MICOMM_READFAIL)
1186 		return (0);
1187 
1188 	return (val & 0xFFFF);
1189 }
1190 
1191 static int
1192 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1193 {
1194 	struct bge_softc *sc;
1195 	int i;
1196 
1197 	sc = device_get_softc(dev);
1198 
1199 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1200 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1201 		return (0);
1202 
1203 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1204 		return (0);
1205 
1206 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1207 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1208 		CSR_WRITE_4(sc, BGE_MI_MODE,
1209 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1210 		DELAY(80);
1211 	}
1212 
1213 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1214 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1215 
1216 	for (i = 0; i < BGE_TIMEOUT; i++) {
1217 		DELAY(10);
1218 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1219 			DELAY(5);
1220 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1221 			break;
1222 		}
1223 	}
1224 
1225 	/* Restore the autopoll bit if necessary. */
1226 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1227 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1228 		DELAY(80);
1229 	}
1230 
1231 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1232 
1233 	if (i == BGE_TIMEOUT)
1234 		device_printf(sc->bge_dev,
1235 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1236 		    phy, reg, val);
1237 
1238 	return (0);
1239 }
1240 
1241 static void
1242 bge_miibus_statchg(device_t dev)
1243 {
1244 	struct bge_softc *sc;
1245 	struct mii_data *mii;
1246 	uint32_t mac_mode, rx_mode, tx_mode;
1247 
1248 	sc = device_get_softc(dev);
1249 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1250 		return;
1251 	mii = device_get_softc(sc->bge_miibus);
1252 
1253 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1254 	    (IFM_ACTIVE | IFM_AVALID)) {
1255 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1256 		case IFM_10_T:
1257 		case IFM_100_TX:
1258 			sc->bge_link = 1;
1259 			break;
1260 		case IFM_1000_T:
1261 		case IFM_1000_SX:
1262 		case IFM_2500_SX:
1263 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1264 				sc->bge_link = 1;
1265 			else
1266 				sc->bge_link = 0;
1267 			break;
1268 		default:
1269 			sc->bge_link = 0;
1270 			break;
1271 		}
1272 	} else
1273 		sc->bge_link = 0;
1274 	if (sc->bge_link == 0)
1275 		return;
1276 
1277 	/*
1278 	 * APE firmware touches these registers to keep the MAC
1279 	 * connected to the outside world.  Try to keep the
1280 	 * accesses atomic.
1281 	 */
1282 
1283 	/* Set the port mode (MII/GMII) to match the link speed. */
1284 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1285 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1286 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1287 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1288 
1289 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1290 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1291 		mac_mode |= BGE_PORTMODE_GMII;
1292 	else
1293 		mac_mode |= BGE_PORTMODE_MII;
1294 
1295 	/* Set MAC flow control behavior to match link flow control settings. */
1296 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1297 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1298 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1299 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1300 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1301 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1302 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1303 	} else
1304 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1305 
1306 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1307 	DELAY(40);
1308 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1309 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1310 }
1311 
1312 /*
1313  * Intialize a standard receive ring descriptor.
1314  */
1315 static int
1316 bge_newbuf_std(struct bge_softc *sc, int i)
1317 {
1318 	struct mbuf *m;
1319 	struct bge_rx_bd *r;
1320 	bus_dma_segment_t segs[1];
1321 	bus_dmamap_t map;
1322 	int error, nsegs;
1323 
1324 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1325 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1326 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1327 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1328 		if (m == NULL)
1329 			return (ENOBUFS);
1330 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1331 	} else {
1332 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1333 		if (m == NULL)
1334 			return (ENOBUFS);
1335 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1336 	}
1337 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1338 		m_adj(m, ETHER_ALIGN);
1339 
1340 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1341 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1342 	if (error != 0) {
1343 		m_freem(m);
1344 		return (error);
1345 	}
1346 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1347 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1348 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1349 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1350 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1351 	}
1352 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1353 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1354 	sc->bge_cdata.bge_rx_std_sparemap = map;
1355 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1356 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1357 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1358 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1359 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1360 	r->bge_flags = BGE_RXBDFLAG_END;
1361 	r->bge_len = segs[0].ds_len;
1362 	r->bge_idx = i;
1363 
1364 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1365 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1366 
1367 	return (0);
1368 }
1369 
1370 /*
1371  * Initialize a jumbo receive ring descriptor. This allocates
1372  * a jumbo buffer from the pool managed internally by the driver.
1373  */
1374 static int
1375 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1376 {
1377 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1378 	bus_dmamap_t map;
1379 	struct bge_extrx_bd *r;
1380 	struct mbuf *m;
1381 	int error, nsegs;
1382 
1383 	MGETHDR(m, M_NOWAIT, MT_DATA);
1384 	if (m == NULL)
1385 		return (ENOBUFS);
1386 
1387 	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1388 	if (!(m->m_flags & M_EXT)) {
1389 		m_freem(m);
1390 		return (ENOBUFS);
1391 	}
1392 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1393 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1394 		m_adj(m, ETHER_ALIGN);
1395 
1396 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1397 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1398 	if (error != 0) {
1399 		m_freem(m);
1400 		return (error);
1401 	}
1402 
1403 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1404 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1405 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1406 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1407 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1408 	}
1409 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1410 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1411 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1412 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1413 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1414 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1415 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1416 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1417 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1418 
1419 	/*
1420 	 * Fill in the extended RX buffer descriptor.
1421 	 */
1422 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1423 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1424 	r->bge_idx = i;
1425 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1426 	switch (nsegs) {
1427 	case 4:
1428 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1429 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1430 		r->bge_len3 = segs[3].ds_len;
1431 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1432 	case 3:
1433 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1434 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1435 		r->bge_len2 = segs[2].ds_len;
1436 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1437 	case 2:
1438 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1439 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1440 		r->bge_len1 = segs[1].ds_len;
1441 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1442 	case 1:
1443 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1444 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1445 		r->bge_len0 = segs[0].ds_len;
1446 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1447 		break;
1448 	default:
1449 		panic("%s: %d segments\n", __func__, nsegs);
1450 	}
1451 
1452 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1453 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1454 
1455 	return (0);
1456 }
1457 
1458 static int
1459 bge_init_rx_ring_std(struct bge_softc *sc)
1460 {
1461 	int error, i;
1462 
1463 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1464 	sc->bge_std = 0;
1465 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1466 		if ((error = bge_newbuf_std(sc, i)) != 0)
1467 			return (error);
1468 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1469 	}
1470 
1471 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1472 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1473 
1474 	sc->bge_std = 0;
1475 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1476 
1477 	return (0);
1478 }
1479 
1480 static void
1481 bge_free_rx_ring_std(struct bge_softc *sc)
1482 {
1483 	int i;
1484 
1485 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1486 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1487 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1488 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1489 			    BUS_DMASYNC_POSTREAD);
1490 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1491 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1492 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1493 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1494 		}
1495 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1496 		    sizeof(struct bge_rx_bd));
1497 	}
1498 }
1499 
1500 static int
1501 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1502 {
1503 	struct bge_rcb *rcb;
1504 	int error, i;
1505 
1506 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1507 	sc->bge_jumbo = 0;
1508 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1509 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1510 			return (error);
1511 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1512 	}
1513 
1514 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1515 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1516 
1517 	sc->bge_jumbo = 0;
1518 
1519 	/* Enable the jumbo receive producer ring. */
1520 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1521 	rcb->bge_maxlen_flags =
1522 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1523 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1524 
1525 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1526 
1527 	return (0);
1528 }
1529 
1530 static void
1531 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1532 {
1533 	int i;
1534 
1535 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1536 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1537 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1538 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1539 			    BUS_DMASYNC_POSTREAD);
1540 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1541 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1542 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1543 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1544 		}
1545 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1546 		    sizeof(struct bge_extrx_bd));
1547 	}
1548 }
1549 
1550 static void
1551 bge_free_tx_ring(struct bge_softc *sc)
1552 {
1553 	int i;
1554 
1555 	if (sc->bge_ldata.bge_tx_ring == NULL)
1556 		return;
1557 
1558 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1559 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1560 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1561 			    sc->bge_cdata.bge_tx_dmamap[i],
1562 			    BUS_DMASYNC_POSTWRITE);
1563 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1564 			    sc->bge_cdata.bge_tx_dmamap[i]);
1565 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1566 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1567 		}
1568 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1569 		    sizeof(struct bge_tx_bd));
1570 	}
1571 }
1572 
1573 static int
1574 bge_init_tx_ring(struct bge_softc *sc)
1575 {
1576 	sc->bge_txcnt = 0;
1577 	sc->bge_tx_saved_considx = 0;
1578 
1579 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1580 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1581 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1582 
1583 	/* Initialize transmit producer index for host-memory send ring. */
1584 	sc->bge_tx_prodidx = 0;
1585 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1586 
1587 	/* 5700 b2 errata */
1588 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1589 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1590 
1591 	/* NIC-memory send ring not used; initialize to zero. */
1592 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1593 	/* 5700 b2 errata */
1594 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1595 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1596 
1597 	return (0);
1598 }
1599 
1600 static void
1601 bge_setpromisc(struct bge_softc *sc)
1602 {
1603 	struct ifnet *ifp;
1604 
1605 	BGE_LOCK_ASSERT(sc);
1606 
1607 	ifp = sc->bge_ifp;
1608 
1609 	/* Enable or disable promiscuous mode as needed. */
1610 	if (ifp->if_flags & IFF_PROMISC)
1611 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612 	else
1613 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1614 }
1615 
1616 static void
1617 bge_setmulti(struct bge_softc *sc)
1618 {
1619 	struct ifnet *ifp;
1620 	struct ifmultiaddr *ifma;
1621 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1622 	int h, i;
1623 
1624 	BGE_LOCK_ASSERT(sc);
1625 
1626 	ifp = sc->bge_ifp;
1627 
1628 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1629 		for (i = 0; i < 4; i++)
1630 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1631 		return;
1632 	}
1633 
1634 	/* First, zot all the existing filters. */
1635 	for (i = 0; i < 4; i++)
1636 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1637 
1638 	/* Now program new ones. */
1639 	if_maddr_rlock(ifp);
1640 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1641 		if (ifma->ifma_addr->sa_family != AF_LINK)
1642 			continue;
1643 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1644 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1645 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1646 	}
1647 	if_maddr_runlock(ifp);
1648 
1649 	for (i = 0; i < 4; i++)
1650 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1651 }
1652 
1653 static void
1654 bge_setvlan(struct bge_softc *sc)
1655 {
1656 	struct ifnet *ifp;
1657 
1658 	BGE_LOCK_ASSERT(sc);
1659 
1660 	ifp = sc->bge_ifp;
1661 
1662 	/* Enable or disable VLAN tag stripping as needed. */
1663 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1664 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1665 	else
1666 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1667 }
1668 
1669 static void
1670 bge_sig_pre_reset(struct bge_softc *sc, int type)
1671 {
1672 
1673 	/*
1674 	 * Some chips don't like this so only do this if ASF is enabled
1675 	 */
1676 	if (sc->bge_asf_mode)
1677 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1678 
1679 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1680 		switch (type) {
1681 		case BGE_RESET_START:
1682 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1683 			    BGE_FW_DRV_STATE_START);
1684 			break;
1685 		case BGE_RESET_SHUTDOWN:
1686 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1687 			    BGE_FW_DRV_STATE_UNLOAD);
1688 			break;
1689 		case BGE_RESET_SUSPEND:
1690 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1691 			    BGE_FW_DRV_STATE_SUSPEND);
1692 			break;
1693 		}
1694 	}
1695 
1696 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1697 		bge_ape_driver_state_change(sc, type);
1698 }
1699 
1700 static void
1701 bge_sig_post_reset(struct bge_softc *sc, int type)
1702 {
1703 
1704 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1705 		switch (type) {
1706 		case BGE_RESET_START:
1707 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1708 			    BGE_FW_DRV_STATE_START_DONE);
1709 			/* START DONE */
1710 			break;
1711 		case BGE_RESET_SHUTDOWN:
1712 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1713 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1714 			break;
1715 		}
1716 	}
1717 	if (type == BGE_RESET_SHUTDOWN)
1718 		bge_ape_driver_state_change(sc, type);
1719 }
1720 
1721 static void
1722 bge_sig_legacy(struct bge_softc *sc, int type)
1723 {
1724 
1725 	if (sc->bge_asf_mode) {
1726 		switch (type) {
1727 		case BGE_RESET_START:
1728 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1729 			    BGE_FW_DRV_STATE_START);
1730 			break;
1731 		case BGE_RESET_SHUTDOWN:
1732 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1733 			    BGE_FW_DRV_STATE_UNLOAD);
1734 			break;
1735 		}
1736 	}
1737 }
1738 
1739 static void
1740 bge_stop_fw(struct bge_softc *sc)
1741 {
1742 	int i;
1743 
1744 	if (sc->bge_asf_mode) {
1745 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1746 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1747 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1748 
1749 		for (i = 0; i < 100; i++ ) {
1750 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1751 			    BGE_RX_CPU_DRV_EVENT))
1752 				break;
1753 			DELAY(10);
1754 		}
1755 	}
1756 }
1757 
1758 static uint32_t
1759 bge_dma_swap_options(struct bge_softc *sc)
1760 {
1761 	uint32_t dma_options;
1762 
1763 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1764 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1765 #if BYTE_ORDER == BIG_ENDIAN
1766 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1767 #endif
1768 	return (dma_options);
1769 }
1770 
1771 /*
1772  * Do endian, PCI and DMA initialization.
1773  */
1774 static int
1775 bge_chipinit(struct bge_softc *sc)
1776 {
1777 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1778 	uint16_t val;
1779 	int i;
1780 
1781 	/* Set endianness before we access any non-PCI registers. */
1782 	misc_ctl = BGE_INIT;
1783 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1784 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1785 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1786 
1787 	/*
1788 	 * Clear the MAC statistics block in the NIC's
1789 	 * internal memory.
1790 	 */
1791 	for (i = BGE_STATS_BLOCK;
1792 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1793 		BGE_MEMWIN_WRITE(sc, i, 0);
1794 
1795 	for (i = BGE_STATUS_BLOCK;
1796 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1797 		BGE_MEMWIN_WRITE(sc, i, 0);
1798 
1799 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1800 		/*
1801 		 *  Fix data corruption caused by non-qword write with WB.
1802 		 *  Fix master abort in PCI mode.
1803 		 *  Fix PCI latency timer.
1804 		 */
1805 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1806 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1807 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1808 	}
1809 
1810 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1811 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1812 		/*
1813 		 * For the 57766 and non Ax versions of 57765, bootcode
1814 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1815 		 * value to prevent transmit hangs.
1816 		 */
1817 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1818 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1819 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1820 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * Set up the PCI DMA control register.
1826 	 */
1827 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1828 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1829 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1830 		if (sc->bge_mps >= 256)
1831 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1832 		else
1833 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1834 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1835 		if (BGE_IS_5714_FAMILY(sc)) {
1836 			/* 256 bytes for read and write. */
1837 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1838 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1839 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1840 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1841 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1842 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1843 			/*
1844 			 * In the BCM5703, the DMA read watermark should
1845 			 * be set to less than or equal to the maximum
1846 			 * memory read byte count of the PCI-X command
1847 			 * register.
1848 			 */
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1850 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1851 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1852 			/* 1536 bytes for read, 384 bytes for write. */
1853 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1854 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1855 		} else {
1856 			/* 384 bytes for read and write. */
1857 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1858 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1859 			    0x0F;
1860 		}
1861 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1862 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1863 			uint32_t tmp;
1864 
1865 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1866 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1867 			if (tmp == 6 || tmp == 7)
1868 				dma_rw_ctl |=
1869 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1870 
1871 			/* Set PCI-X DMA write workaround. */
1872 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1873 		}
1874 	} else {
1875 		/* Conventional PCI bus: 256 bytes for read and write. */
1876 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1877 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1878 
1879 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1880 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1881 			dma_rw_ctl |= 0x0F;
1882 	}
1883 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1884 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1885 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1886 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1887 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1888 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1889 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1890 	if (BGE_IS_5717_PLUS(sc)) {
1891 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1892 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1893 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1894 		/*
1895 		 * Enable HW workaround for controllers that misinterpret
1896 		 * a status tag update and leave interrupts permanently
1897 		 * disabled.
1898 		 */
1899 		if (!BGE_IS_57765_PLUS(sc) &&
1900 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1901 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1902 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1903 	}
1904 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1905 
1906 	/*
1907 	 * Set up general mode register.
1908 	 */
1909 	mode_ctl = bge_dma_swap_options(sc);
1910 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1911 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1912 		/* Retain Host-2-BMC settings written by APE firmware. */
1913 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1914 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1915 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1916 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1917 	}
1918 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1919 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1920 
1921 	/*
1922 	 * BCM5701 B5 have a bug causing data corruption when using
1923 	 * 64-bit DMA reads, which can be terminated early and then
1924 	 * completed later as 32-bit accesses, in combination with
1925 	 * certain bridges.
1926 	 */
1927 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1928 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1929 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1930 
1931 	/*
1932 	 * Tell the firmware the driver is running
1933 	 */
1934 	if (sc->bge_asf_mode & ASF_STACKUP)
1935 		mode_ctl |= BGE_MODECTL_STACKUP;
1936 
1937 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1938 
1939 	/*
1940 	 * Disable memory write invalidate.  Apparently it is not supported
1941 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1942 	 * as these chips need it even when using MSI.
1943 	 */
1944 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1945 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1946 
1947 	/* Set the timer prescaler (always 66 MHz). */
1948 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1949 
1950 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1951 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1952 		DELAY(40);	/* XXX */
1953 
1954 		/* Put PHY into ready state */
1955 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1956 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1957 		DELAY(40);
1958 	}
1959 
1960 	return (0);
1961 }
1962 
1963 static int
1964 bge_blockinit(struct bge_softc *sc)
1965 {
1966 	struct bge_rcb *rcb;
1967 	bus_size_t vrcb;
1968 	bge_hostaddr taddr;
1969 	uint32_t dmactl, rdmareg, val;
1970 	int i, limit;
1971 
1972 	/*
1973 	 * Initialize the memory window pointer register so that
1974 	 * we can access the first 32K of internal NIC RAM. This will
1975 	 * allow us to set up the TX send ring RCBs and the RX return
1976 	 * ring RCBs, plus other things which live in NIC memory.
1977 	 */
1978 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1979 
1980 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1981 
1982 	if (!(BGE_IS_5705_PLUS(sc))) {
1983 		/* Configure mbuf memory pool */
1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1985 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1986 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1987 		else
1988 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1989 
1990 		/* Configure DMA resource pool */
1991 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1992 		    BGE_DMA_DESCRIPTORS);
1993 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1994 	}
1995 
1996 	/* Configure mbuf pool watermarks */
1997 	if (BGE_IS_5717_PLUS(sc)) {
1998 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1999 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
2000 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2001 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2002 		} else {
2003 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2004 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2005 		}
2006 	} else if (!BGE_IS_5705_PLUS(sc)) {
2007 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2008 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2009 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2010 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2011 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2012 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2013 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2014 	} else {
2015 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2016 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2017 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018 	}
2019 
2020 	/* Configure DMA resource watermarks */
2021 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2022 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2023 
2024 	/* Enable buffer manager */
2025 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2026 	/*
2027 	 * Change the arbitration algorithm of TXMBUF read request to
2028 	 * round-robin instead of priority based for BCM5719.  When
2029 	 * TXFIFO is almost empty, RDMA will hold its request until
2030 	 * TXFIFO is not almost empty.
2031 	 */
2032 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2033 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2034 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2035 
2036 	/* Poll for buffer manager start indication */
2037 	for (i = 0; i < BGE_TIMEOUT; i++) {
2038 		DELAY(10);
2039 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2040 			break;
2041 	}
2042 
2043 	if (i == BGE_TIMEOUT) {
2044 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2045 		return (ENXIO);
2046 	}
2047 
2048 	/* Enable flow-through queues */
2049 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2050 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2051 
2052 	/* Wait until queue initialization is complete */
2053 	for (i = 0; i < BGE_TIMEOUT; i++) {
2054 		DELAY(10);
2055 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2056 			break;
2057 	}
2058 
2059 	if (i == BGE_TIMEOUT) {
2060 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2061 		return (ENXIO);
2062 	}
2063 
2064 	/*
2065 	 * Summary of rings supported by the controller:
2066 	 *
2067 	 * Standard Receive Producer Ring
2068 	 * - This ring is used to feed receive buffers for "standard"
2069 	 *   sized frames (typically 1536 bytes) to the controller.
2070 	 *
2071 	 * Jumbo Receive Producer Ring
2072 	 * - This ring is used to feed receive buffers for jumbo sized
2073 	 *   frames (i.e. anything bigger than the "standard" frames)
2074 	 *   to the controller.
2075 	 *
2076 	 * Mini Receive Producer Ring
2077 	 * - This ring is used to feed receive buffers for "mini"
2078 	 *   sized frames to the controller.
2079 	 * - This feature required external memory for the controller
2080 	 *   but was never used in a production system.  Should always
2081 	 *   be disabled.
2082 	 *
2083 	 * Receive Return Ring
2084 	 * - After the controller has placed an incoming frame into a
2085 	 *   receive buffer that buffer is moved into a receive return
2086 	 *   ring.  The driver is then responsible to passing the
2087 	 *   buffer up to the stack.  Many versions of the controller
2088 	 *   support multiple RR rings.
2089 	 *
2090 	 * Send Ring
2091 	 * - This ring is used for outgoing frames.  Many versions of
2092 	 *   the controller support multiple send rings.
2093 	 */
2094 
2095 	/* Initialize the standard receive producer ring control block. */
2096 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2097 	rcb->bge_hostaddr.bge_addr_lo =
2098 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2099 	rcb->bge_hostaddr.bge_addr_hi =
2100 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2101 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2102 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2103 	if (BGE_IS_5717_PLUS(sc)) {
2104 		/*
2105 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2106 		 * Bits 15-2 : Maximum RX frame size
2107 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2108 		 * Bit 0     : Reserved
2109 		 */
2110 		rcb->bge_maxlen_flags =
2111 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2112 	} else if (BGE_IS_5705_PLUS(sc)) {
2113 		/*
2114 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2115 		 * Bits 15-2 : Reserved (should be 0)
2116 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2117 		 * Bit 0     : Reserved
2118 		 */
2119 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2120 	} else {
2121 		/*
2122 		 * Ring size is always XXX entries
2123 		 * Bits 31-16: Maximum RX frame size
2124 		 * Bits 15-2 : Reserved (should be 0)
2125 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2126 		 * Bit 0     : Reserved
2127 		 */
2128 		rcb->bge_maxlen_flags =
2129 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2130 	}
2131 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2132 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2133 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2134 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2135 	else
2136 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2137 	/* Write the standard receive producer ring control block. */
2138 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2139 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2140 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2141 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2142 
2143 	/* Reset the standard receive producer ring producer index. */
2144 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2145 
2146 	/*
2147 	 * Initialize the jumbo RX producer ring control
2148 	 * block.  We set the 'ring disabled' bit in the
2149 	 * flags field until we're actually ready to start
2150 	 * using this ring (i.e. once we set the MTU
2151 	 * high enough to require it).
2152 	 */
2153 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2154 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2155 		/* Get the jumbo receive producer ring RCB parameters. */
2156 		rcb->bge_hostaddr.bge_addr_lo =
2157 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2158 		rcb->bge_hostaddr.bge_addr_hi =
2159 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2160 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2161 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2162 		    BUS_DMASYNC_PREREAD);
2163 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2164 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2165 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2166 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2167 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2168 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2169 		else
2170 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2171 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2172 		    rcb->bge_hostaddr.bge_addr_hi);
2173 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2174 		    rcb->bge_hostaddr.bge_addr_lo);
2175 		/* Program the jumbo receive producer ring RCB parameters. */
2176 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2177 		    rcb->bge_maxlen_flags);
2178 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2179 		/* Reset the jumbo receive producer ring producer index. */
2180 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2181 	}
2182 
2183 	/* Disable the mini receive producer ring RCB. */
2184 	if (BGE_IS_5700_FAMILY(sc)) {
2185 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2186 		rcb->bge_maxlen_flags =
2187 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2188 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2189 		    rcb->bge_maxlen_flags);
2190 		/* Reset the mini receive producer ring producer index. */
2191 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2192 	}
2193 
2194 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2195 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2196 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2197 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2198 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2199 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2200 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2201 	}
2202 	/*
2203 	 * The BD ring replenish thresholds control how often the
2204 	 * hardware fetches new BD's from the producer rings in host
2205 	 * memory.  Setting the value too low on a busy system can
2206 	 * starve the hardware and recue the throughpout.
2207 	 *
2208 	 * Set the BD ring replentish thresholds. The recommended
2209 	 * values are 1/8th the number of descriptors allocated to
2210 	 * each ring.
2211 	 * XXX The 5754 requires a lower threshold, so it might be a
2212 	 * requirement of all 575x family chips.  The Linux driver sets
2213 	 * the lower threshold for all 5705 family chips as well, but there
2214 	 * are reports that it might not need to be so strict.
2215 	 *
2216 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2217 	 * well.
2218 	 */
2219 	if (BGE_IS_5705_PLUS(sc))
2220 		val = 8;
2221 	else
2222 		val = BGE_STD_RX_RING_CNT / 8;
2223 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2224 	if (BGE_IS_JUMBO_CAPABLE(sc))
2225 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2226 		    BGE_JUMBO_RX_RING_CNT/8);
2227 	if (BGE_IS_5717_PLUS(sc)) {
2228 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2229 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2230 	}
2231 
2232 	/*
2233 	 * Disable all send rings by setting the 'ring disabled' bit
2234 	 * in the flags field of all the TX send ring control blocks,
2235 	 * located in NIC memory.
2236 	 */
2237 	if (!BGE_IS_5705_PLUS(sc))
2238 		/* 5700 to 5704 had 16 send rings. */
2239 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2240 	else if (BGE_IS_57765_PLUS(sc) ||
2241 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2242 		limit = 2;
2243 	else if (BGE_IS_5717_PLUS(sc))
2244 		limit = 4;
2245 	else
2246 		limit = 1;
2247 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2248 	for (i = 0; i < limit; i++) {
2249 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2250 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2251 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2252 		vrcb += sizeof(struct bge_rcb);
2253 	}
2254 
2255 	/* Configure send ring RCB 0 (we use only the first ring) */
2256 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2257 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2258 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2259 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2260 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2261 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2262 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2263 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2264 	else
2265 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2266 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2267 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2268 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2269 
2270 	/*
2271 	 * Disable all receive return rings by setting the
2272 	 * 'ring diabled' bit in the flags field of all the receive
2273 	 * return ring control blocks, located in NIC memory.
2274 	 */
2275 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2276 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2277 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2278 		/* Should be 17, use 16 until we get an SRAM map. */
2279 		limit = 16;
2280 	} else if (!BGE_IS_5705_PLUS(sc))
2281 		limit = BGE_RX_RINGS_MAX;
2282 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2283 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2284 	    BGE_IS_57765_PLUS(sc))
2285 		limit = 4;
2286 	else
2287 		limit = 1;
2288 	/* Disable all receive return rings. */
2289 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2290 	for (i = 0; i < limit; i++) {
2291 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2292 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2293 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2294 		    BGE_RCB_FLAG_RING_DISABLED);
2295 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2296 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2297 		    (i * (sizeof(uint64_t))), 0);
2298 		vrcb += sizeof(struct bge_rcb);
2299 	}
2300 
2301 	/*
2302 	 * Set up receive return ring 0.  Note that the NIC address
2303 	 * for RX return rings is 0x0.  The return rings live entirely
2304 	 * within the host, so the nicaddr field in the RCB isn't used.
2305 	 */
2306 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2307 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2308 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2309 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2310 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2311 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2312 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2313 
2314 	/* Set random backoff seed for TX */
2315 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2316 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2317 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2318 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2319 	    BGE_TX_BACKOFF_SEED_MASK);
2320 
2321 	/* Set inter-packet gap */
2322 	val = 0x2620;
2323 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2324 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2325 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2326 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2327 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2328 
2329 	/*
2330 	 * Specify which ring to use for packets that don't match
2331 	 * any RX rules.
2332 	 */
2333 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2334 
2335 	/*
2336 	 * Configure number of RX lists. One interrupt distribution
2337 	 * list, sixteen active lists, one bad frames class.
2338 	 */
2339 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2340 
2341 	/* Inialize RX list placement stats mask. */
2342 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2343 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2344 
2345 	/* Disable host coalescing until we get it set up */
2346 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2347 
2348 	/* Poll to make sure it's shut down. */
2349 	for (i = 0; i < BGE_TIMEOUT; i++) {
2350 		DELAY(10);
2351 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2352 			break;
2353 	}
2354 
2355 	if (i == BGE_TIMEOUT) {
2356 		device_printf(sc->bge_dev,
2357 		    "host coalescing engine failed to idle\n");
2358 		return (ENXIO);
2359 	}
2360 
2361 	/* Set up host coalescing defaults */
2362 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2363 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2364 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2365 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2366 	if (!(BGE_IS_5705_PLUS(sc))) {
2367 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2368 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2369 	}
2370 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2371 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2372 
2373 	/* Set up address of statistics block */
2374 	if (!(BGE_IS_5705_PLUS(sc))) {
2375 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2376 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2377 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2378 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2379 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2380 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2381 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2382 	}
2383 
2384 	/* Set up address of status block */
2385 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2386 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2387 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2388 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2389 
2390 	/* Set up status block size. */
2391 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2392 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2393 		val = BGE_STATBLKSZ_FULL;
2394 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2395 	} else {
2396 		val = BGE_STATBLKSZ_32BYTE;
2397 		bzero(sc->bge_ldata.bge_status_block, 32);
2398 	}
2399 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2400 	    sc->bge_cdata.bge_status_map,
2401 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2402 
2403 	/* Turn on host coalescing state machine */
2404 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2405 
2406 	/* Turn on RX BD completion state machine and enable attentions */
2407 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2408 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2409 
2410 	/* Turn on RX list placement state machine */
2411 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2412 
2413 	/* Turn on RX list selector state machine. */
2414 	if (!(BGE_IS_5705_PLUS(sc)))
2415 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2416 
2417 	/* Turn on DMA, clear stats. */
2418 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2419 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2420 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2421 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2422 
2423 	if (sc->bge_flags & BGE_FLAG_TBI)
2424 		val |= BGE_PORTMODE_TBI;
2425 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2426 		val |= BGE_PORTMODE_GMII;
2427 	else
2428 		val |= BGE_PORTMODE_MII;
2429 
2430 	/* Allow APE to send/receive frames. */
2431 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2432 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2433 
2434 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2435 	DELAY(40);
2436 
2437 	/* Set misc. local control, enable interrupts on attentions */
2438 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2439 
2440 #ifdef notdef
2441 	/* Assert GPIO pins for PHY reset */
2442 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2443 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2444 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2445 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2446 #endif
2447 
2448 	/* Turn on DMA completion state machine */
2449 	if (!(BGE_IS_5705_PLUS(sc)))
2450 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2451 
2452 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2453 
2454 	/* Enable host coalescing bug fix. */
2455 	if (BGE_IS_5755_PLUS(sc))
2456 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2457 
2458 	/* Request larger DMA burst size to get better performance. */
2459 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2460 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2461 
2462 	/* Turn on write DMA state machine */
2463 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2464 	DELAY(40);
2465 
2466 	/* Turn on read DMA state machine */
2467 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2468 
2469 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2470 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2471 
2472 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2473 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2474 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2475 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2476 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2477 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2478 	if (sc->bge_flags & BGE_FLAG_PCIE)
2479 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2480 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2481 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2482 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2483 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2484 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2485 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2486 	}
2487 
2488 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2489 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2490 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2491 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2492 		/*
2493 		 * Allow multiple outstanding read requests from
2494 		 * non-LSO read DMA engine.
2495 		 */
2496 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2497 	}
2498 
2499 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2500 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2501 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2502 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2503 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2504 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2505 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2506 		else
2507 			rdmareg = BGE_RDMA_RSRVCTRL;
2508 		dmactl = CSR_READ_4(sc, rdmareg);
2509 		/*
2510 		 * Adjust tx margin to prevent TX data corruption and
2511 		 * fix internal FIFO overflow.
2512 		 */
2513 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2514 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2515 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2516 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2517 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2518 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2519 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2520 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2521 		}
2522 		/*
2523 		 * Enable fix for read DMA FIFO overruns.
2524 		 * The fix is to limit the number of RX BDs
2525 		 * the hardware would fetch at a fime.
2526 		 */
2527 		CSR_WRITE_4(sc, rdmareg, dmactl |
2528 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2529 	}
2530 
2531 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2532 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2533 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2534 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2535 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2536 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2537 		/*
2538 		 * Allow 4KB burst length reads for non-LSO frames.
2539 		 * Enable 512B burst length reads for buffer descriptors.
2540 		 */
2541 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2542 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2543 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2544 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2545 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2546 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2547 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2548 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2549 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2550 	}
2551 
2552 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2553 	DELAY(40);
2554 
2555 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2556 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2557 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2558 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2559 				break;
2560 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2561 				break;
2562 		}
2563 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2564 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2565 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2566 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2567 			else
2568 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2569 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2570 		}
2571 	}
2572 
2573 	/* Turn on RX data completion state machine */
2574 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2575 
2576 	/* Turn on RX BD initiator state machine */
2577 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2578 
2579 	/* Turn on RX data and RX BD initiator state machine */
2580 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2581 
2582 	/* Turn on Mbuf cluster free state machine */
2583 	if (!(BGE_IS_5705_PLUS(sc)))
2584 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2585 
2586 	/* Turn on send BD completion state machine */
2587 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2588 
2589 	/* Turn on send data completion state machine */
2590 	val = BGE_SDCMODE_ENABLE;
2591 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2592 		val |= BGE_SDCMODE_CDELAY;
2593 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2594 
2595 	/* Turn on send data initiator state machine */
2596 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2597 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2598 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2599 	else
2600 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2601 
2602 	/* Turn on send BD initiator state machine */
2603 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2604 
2605 	/* Turn on send BD selector state machine */
2606 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2607 
2608 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2609 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2610 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2611 
2612 	/* ack/clear link change events */
2613 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2614 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2615 	    BGE_MACSTAT_LINK_CHANGED);
2616 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2617 
2618 	/*
2619 	 * Enable attention when the link has changed state for
2620 	 * devices that use auto polling.
2621 	 */
2622 	if (sc->bge_flags & BGE_FLAG_TBI) {
2623 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2624 	} else {
2625 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2626 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2627 			DELAY(80);
2628 		}
2629 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2630 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2631 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2632 			    BGE_EVTENB_MI_INTERRUPT);
2633 	}
2634 
2635 	/*
2636 	 * Clear any pending link state attention.
2637 	 * Otherwise some link state change events may be lost until attention
2638 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2639 	 * It's not necessary on newer BCM chips - perhaps enabling link
2640 	 * state change attentions implies clearing pending attention.
2641 	 */
2642 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2643 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2644 	    BGE_MACSTAT_LINK_CHANGED);
2645 
2646 	/* Enable link state change attentions. */
2647 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2648 
2649 	return (0);
2650 }
2651 
2652 static const struct bge_revision *
2653 bge_lookup_rev(uint32_t chipid)
2654 {
2655 	const struct bge_revision *br;
2656 
2657 	for (br = bge_revisions; br->br_name != NULL; br++) {
2658 		if (br->br_chipid == chipid)
2659 			return (br);
2660 	}
2661 
2662 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2663 		if (br->br_chipid == BGE_ASICREV(chipid))
2664 			return (br);
2665 	}
2666 
2667 	return (NULL);
2668 }
2669 
2670 static const struct bge_vendor *
2671 bge_lookup_vendor(uint16_t vid)
2672 {
2673 	const struct bge_vendor *v;
2674 
2675 	for (v = bge_vendors; v->v_name != NULL; v++)
2676 		if (v->v_id == vid)
2677 			return (v);
2678 
2679 	return (NULL);
2680 }
2681 
2682 static uint32_t
2683 bge_chipid(device_t dev)
2684 {
2685 	uint32_t id;
2686 
2687 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2688 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2689 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2690 		/*
2691 		 * Find the ASCI revision.  Different chips use different
2692 		 * registers.
2693 		 */
2694 		switch (pci_get_device(dev)) {
2695 		case BCOM_DEVICEID_BCM5717:
2696 		case BCOM_DEVICEID_BCM5718:
2697 		case BCOM_DEVICEID_BCM5719:
2698 		case BCOM_DEVICEID_BCM5720:
2699 		case BCOM_DEVICEID_BCM5725:
2700 		case BCOM_DEVICEID_BCM5727:
2701 		case BCOM_DEVICEID_BCM5762:
2702 		case BCOM_DEVICEID_BCM57764:
2703 		case BCOM_DEVICEID_BCM57767:
2704 		case BCOM_DEVICEID_BCM57787:
2705 			id = pci_read_config(dev,
2706 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2707 			break;
2708 		case BCOM_DEVICEID_BCM57761:
2709 		case BCOM_DEVICEID_BCM57762:
2710 		case BCOM_DEVICEID_BCM57765:
2711 		case BCOM_DEVICEID_BCM57766:
2712 		case BCOM_DEVICEID_BCM57781:
2713 		case BCOM_DEVICEID_BCM57782:
2714 		case BCOM_DEVICEID_BCM57785:
2715 		case BCOM_DEVICEID_BCM57786:
2716 		case BCOM_DEVICEID_BCM57791:
2717 		case BCOM_DEVICEID_BCM57795:
2718 			id = pci_read_config(dev,
2719 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2720 			break;
2721 		default:
2722 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2723 		}
2724 	}
2725 	return (id);
2726 }
2727 
2728 /*
2729  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2730  * against our list and return its name if we find a match.
2731  *
2732  * Note that since the Broadcom controller contains VPD support, we
2733  * try to get the device name string from the controller itself instead
2734  * of the compiled-in string. It guarantees we'll always announce the
2735  * right product name. We fall back to the compiled-in string when
2736  * VPD is unavailable or corrupt.
2737  */
2738 static int
2739 bge_probe(device_t dev)
2740 {
2741 	char buf[96];
2742 	char model[64];
2743 	const struct bge_revision *br;
2744 	const char *pname;
2745 	struct bge_softc *sc;
2746 	const struct bge_type *t = bge_devs;
2747 	const struct bge_vendor *v;
2748 	uint32_t id;
2749 	uint16_t did, vid;
2750 
2751 	sc = device_get_softc(dev);
2752 	sc->bge_dev = dev;
2753 	vid = pci_get_vendor(dev);
2754 	did = pci_get_device(dev);
2755 	while(t->bge_vid != 0) {
2756 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2757 			id = bge_chipid(dev);
2758 			br = bge_lookup_rev(id);
2759 			if (bge_has_eaddr(sc) &&
2760 			    pci_get_vpd_ident(dev, &pname) == 0)
2761 				snprintf(model, sizeof(model), "%s", pname);
2762 			else {
2763 				v = bge_lookup_vendor(vid);
2764 				snprintf(model, sizeof(model), "%s %s",
2765 				    v != NULL ? v->v_name : "Unknown",
2766 				    br != NULL ? br->br_name :
2767 				    "NetXtreme/NetLink Ethernet Controller");
2768 			}
2769 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2770 			    model, br != NULL ? "" : "unknown ", id);
2771 			device_set_desc_copy(dev, buf);
2772 			return (BUS_PROBE_DEFAULT);
2773 		}
2774 		t++;
2775 	}
2776 
2777 	return (ENXIO);
2778 }
2779 
2780 static void
2781 bge_dma_free(struct bge_softc *sc)
2782 {
2783 	int i;
2784 
2785 	/* Destroy DMA maps for RX buffers. */
2786 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2787 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2788 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2789 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2790 	}
2791 	if (sc->bge_cdata.bge_rx_std_sparemap)
2792 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2793 		    sc->bge_cdata.bge_rx_std_sparemap);
2794 
2795 	/* Destroy DMA maps for jumbo RX buffers. */
2796 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2797 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2798 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2799 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2800 	}
2801 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2802 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2803 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2804 
2805 	/* Destroy DMA maps for TX buffers. */
2806 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2807 		if (sc->bge_cdata.bge_tx_dmamap[i])
2808 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2809 			    sc->bge_cdata.bge_tx_dmamap[i]);
2810 	}
2811 
2812 	if (sc->bge_cdata.bge_rx_mtag)
2813 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2814 	if (sc->bge_cdata.bge_mtag_jumbo)
2815 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2816 	if (sc->bge_cdata.bge_tx_mtag)
2817 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2818 
2819 	/* Destroy standard RX ring. */
2820 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2821 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2822 		    sc->bge_cdata.bge_rx_std_ring_map);
2823 	if (sc->bge_ldata.bge_rx_std_ring)
2824 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2825 		    sc->bge_ldata.bge_rx_std_ring,
2826 		    sc->bge_cdata.bge_rx_std_ring_map);
2827 
2828 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2829 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2830 
2831 	/* Destroy jumbo RX ring. */
2832 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2833 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2834 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2835 
2836 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2837 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2838 		    sc->bge_ldata.bge_rx_jumbo_ring,
2839 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2840 
2841 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2842 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2843 
2844 	/* Destroy RX return ring. */
2845 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2846 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2847 		    sc->bge_cdata.bge_rx_return_ring_map);
2848 
2849 	if (sc->bge_ldata.bge_rx_return_ring)
2850 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2851 		    sc->bge_ldata.bge_rx_return_ring,
2852 		    sc->bge_cdata.bge_rx_return_ring_map);
2853 
2854 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2855 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2856 
2857 	/* Destroy TX ring. */
2858 	if (sc->bge_ldata.bge_tx_ring_paddr)
2859 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2860 		    sc->bge_cdata.bge_tx_ring_map);
2861 
2862 	if (sc->bge_ldata.bge_tx_ring)
2863 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2864 		    sc->bge_ldata.bge_tx_ring,
2865 		    sc->bge_cdata.bge_tx_ring_map);
2866 
2867 	if (sc->bge_cdata.bge_tx_ring_tag)
2868 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2869 
2870 	/* Destroy status block. */
2871 	if (sc->bge_ldata.bge_status_block_paddr)
2872 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2873 		    sc->bge_cdata.bge_status_map);
2874 
2875 	if (sc->bge_ldata.bge_status_block)
2876 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2877 		    sc->bge_ldata.bge_status_block,
2878 		    sc->bge_cdata.bge_status_map);
2879 
2880 	if (sc->bge_cdata.bge_status_tag)
2881 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2882 
2883 	/* Destroy statistics block. */
2884 	if (sc->bge_ldata.bge_stats_paddr)
2885 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2886 		    sc->bge_cdata.bge_stats_map);
2887 
2888 	if (sc->bge_ldata.bge_stats)
2889 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2890 		    sc->bge_ldata.bge_stats,
2891 		    sc->bge_cdata.bge_stats_map);
2892 
2893 	if (sc->bge_cdata.bge_stats_tag)
2894 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2895 
2896 	if (sc->bge_cdata.bge_buffer_tag)
2897 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2898 
2899 	/* Destroy the parent tag. */
2900 	if (sc->bge_cdata.bge_parent_tag)
2901 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2902 }
2903 
2904 static int
2905 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2906     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2907     bus_addr_t *paddr, const char *msg)
2908 {
2909 	struct bge_dmamap_arg ctx;
2910 	int error;
2911 
2912 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2913 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2914 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2915 	if (error != 0) {
2916 		device_printf(sc->bge_dev,
2917 		    "could not create %s dma tag\n", msg);
2918 		return (ENOMEM);
2919 	}
2920 	/* Allocate DMA'able memory for ring. */
2921 	error = bus_dmamem_alloc(*tag, (void **)ring,
2922 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2923 	if (error != 0) {
2924 		device_printf(sc->bge_dev,
2925 		    "could not allocate DMA'able memory for %s\n", msg);
2926 		return (ENOMEM);
2927 	}
2928 	/* Load the address of the ring. */
2929 	ctx.bge_busaddr = 0;
2930 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2931 	    &ctx, BUS_DMA_NOWAIT);
2932 	if (error != 0) {
2933 		device_printf(sc->bge_dev,
2934 		    "could not load DMA'able memory for %s\n", msg);
2935 		return (ENOMEM);
2936 	}
2937 	*paddr = ctx.bge_busaddr;
2938 	return (0);
2939 }
2940 
2941 static int
2942 bge_dma_alloc(struct bge_softc *sc)
2943 {
2944 	bus_addr_t lowaddr;
2945 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2946 	int i, error;
2947 
2948 	lowaddr = BUS_SPACE_MAXADDR;
2949 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2950 		lowaddr = BGE_DMA_MAXADDR;
2951 	/*
2952 	 * Allocate the parent bus DMA tag appropriate for PCI.
2953 	 */
2954 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2955 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2956 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2957 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2958 	if (error != 0) {
2959 		device_printf(sc->bge_dev,
2960 		    "could not allocate parent dma tag\n");
2961 		return (ENOMEM);
2962 	}
2963 
2964 	/* Create tag for standard RX ring. */
2965 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2966 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2967 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2968 	    &sc->bge_cdata.bge_rx_std_ring_map,
2969 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2970 	if (error)
2971 		return (error);
2972 
2973 	/* Create tag for RX return ring. */
2974 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2975 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2976 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2977 	    &sc->bge_cdata.bge_rx_return_ring_map,
2978 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2979 	if (error)
2980 		return (error);
2981 
2982 	/* Create tag for TX ring. */
2983 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2984 	    &sc->bge_cdata.bge_tx_ring_tag,
2985 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2986 	    &sc->bge_cdata.bge_tx_ring_map,
2987 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2988 	if (error)
2989 		return (error);
2990 
2991 	/*
2992 	 * Create tag for status block.
2993 	 * Because we only use single Tx/Rx/Rx return ring, use
2994 	 * minimum status block size except BCM5700 AX/BX which
2995 	 * seems to want to see full status block size regardless
2996 	 * of configured number of ring.
2997 	 */
2998 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2999 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3000 		sbsz = BGE_STATUS_BLK_SZ;
3001 	else
3002 		sbsz = 32;
3003 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3004 	    &sc->bge_cdata.bge_status_tag,
3005 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3006 	    &sc->bge_cdata.bge_status_map,
3007 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3008 	if (error)
3009 		return (error);
3010 
3011 	/* Create tag for statistics block. */
3012 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3013 	    &sc->bge_cdata.bge_stats_tag,
3014 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3015 	    &sc->bge_cdata.bge_stats_map,
3016 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3017 	if (error)
3018 		return (error);
3019 
3020 	/* Create tag for jumbo RX ring. */
3021 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3022 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3023 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3024 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3025 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3026 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3027 		if (error)
3028 			return (error);
3029 	}
3030 
3031 	/* Create parent tag for buffers. */
3032 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3033 		/*
3034 		 * XXX
3035 		 * watchdog timeout issue was observed on BCM5704 which
3036 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3037 		 * Both limiting DMA address space to 32bits and flushing
3038 		 * mailbox write seem to address the issue.
3039 		 */
3040 		if (sc->bge_pcixcap != 0)
3041 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3042 	}
3043 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3044 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3045 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3046 	    &sc->bge_cdata.bge_buffer_tag);
3047 	if (error != 0) {
3048 		device_printf(sc->bge_dev,
3049 		    "could not allocate buffer dma tag\n");
3050 		return (ENOMEM);
3051 	}
3052 	/* Create tag for Tx mbufs. */
3053 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3054 		txsegsz = BGE_TSOSEG_SZ;
3055 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3056 	} else {
3057 		txsegsz = MCLBYTES;
3058 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3059 	}
3060 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3061 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3062 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3063 	    &sc->bge_cdata.bge_tx_mtag);
3064 
3065 	if (error) {
3066 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3067 		return (ENOMEM);
3068 	}
3069 
3070 	/* Create tag for Rx mbufs. */
3071 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3072 		rxmaxsegsz = MJUM9BYTES;
3073 	else
3074 		rxmaxsegsz = MCLBYTES;
3075 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3076 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3077 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3078 
3079 	if (error) {
3080 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3081 		return (ENOMEM);
3082 	}
3083 
3084 	/* Create DMA maps for RX buffers. */
3085 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3086 	    &sc->bge_cdata.bge_rx_std_sparemap);
3087 	if (error) {
3088 		device_printf(sc->bge_dev,
3089 		    "can't create spare DMA map for RX\n");
3090 		return (ENOMEM);
3091 	}
3092 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3093 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3094 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3095 		if (error) {
3096 			device_printf(sc->bge_dev,
3097 			    "can't create DMA map for RX\n");
3098 			return (ENOMEM);
3099 		}
3100 	}
3101 
3102 	/* Create DMA maps for TX buffers. */
3103 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3104 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3105 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3106 		if (error) {
3107 			device_printf(sc->bge_dev,
3108 			    "can't create DMA map for TX\n");
3109 			return (ENOMEM);
3110 		}
3111 	}
3112 
3113 	/* Create tags for jumbo RX buffers. */
3114 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3115 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3116 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3117 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3118 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3119 		if (error) {
3120 			device_printf(sc->bge_dev,
3121 			    "could not allocate jumbo dma tag\n");
3122 			return (ENOMEM);
3123 		}
3124 		/* Create DMA maps for jumbo RX buffers. */
3125 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3126 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3127 		if (error) {
3128 			device_printf(sc->bge_dev,
3129 			    "can't create spare DMA map for jumbo RX\n");
3130 			return (ENOMEM);
3131 		}
3132 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3133 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3134 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3135 			if (error) {
3136 				device_printf(sc->bge_dev,
3137 				    "can't create DMA map for jumbo RX\n");
3138 				return (ENOMEM);
3139 			}
3140 		}
3141 	}
3142 
3143 	return (0);
3144 }
3145 
3146 /*
3147  * Return true if this device has more than one port.
3148  */
3149 static int
3150 bge_has_multiple_ports(struct bge_softc *sc)
3151 {
3152 	device_t dev = sc->bge_dev;
3153 	u_int b, d, f, fscan, s;
3154 
3155 	d = pci_get_domain(dev);
3156 	b = pci_get_bus(dev);
3157 	s = pci_get_slot(dev);
3158 	f = pci_get_function(dev);
3159 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3160 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3161 			return (1);
3162 	return (0);
3163 }
3164 
3165 /*
3166  * Return true if MSI can be used with this device.
3167  */
3168 static int
3169 bge_can_use_msi(struct bge_softc *sc)
3170 {
3171 	int can_use_msi = 0;
3172 
3173 	if (sc->bge_msi == 0)
3174 		return (0);
3175 
3176 	/* Disable MSI for polling(4). */
3177 #ifdef DEVICE_POLLING
3178 	return (0);
3179 #endif
3180 	switch (sc->bge_asicrev) {
3181 	case BGE_ASICREV_BCM5714_A0:
3182 	case BGE_ASICREV_BCM5714:
3183 		/*
3184 		 * Apparently, MSI doesn't work when these chips are
3185 		 * configured in single-port mode.
3186 		 */
3187 		if (bge_has_multiple_ports(sc))
3188 			can_use_msi = 1;
3189 		break;
3190 	case BGE_ASICREV_BCM5750:
3191 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3192 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3193 			can_use_msi = 1;
3194 		break;
3195 	default:
3196 		if (BGE_IS_575X_PLUS(sc))
3197 			can_use_msi = 1;
3198 	}
3199 	return (can_use_msi);
3200 }
3201 
3202 static int
3203 bge_mbox_reorder(struct bge_softc *sc)
3204 {
3205 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3206 	static const struct mbox_reorder {
3207 		const uint16_t vendor;
3208 		const uint16_t device;
3209 		const char *desc;
3210 	} mbox_reorder_lists[] = {
3211 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3212 	};
3213 	devclass_t pci, pcib;
3214 	device_t bus, dev;
3215 	int i;
3216 
3217 	pci = devclass_find("pci");
3218 	pcib = devclass_find("pcib");
3219 	dev = sc->bge_dev;
3220 	bus = device_get_parent(dev);
3221 	for (;;) {
3222 		dev = device_get_parent(bus);
3223 		bus = device_get_parent(dev);
3224 		if (device_get_devclass(dev) != pcib)
3225 			break;
3226 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3227 			if (pci_get_vendor(dev) ==
3228 			    mbox_reorder_lists[i].vendor &&
3229 			    pci_get_device(dev) ==
3230 			    mbox_reorder_lists[i].device) {
3231 				device_printf(sc->bge_dev,
3232 				    "enabling MBOX workaround for %s\n",
3233 				    mbox_reorder_lists[i].desc);
3234 				return (1);
3235 			}
3236 		}
3237 		if (device_get_devclass(bus) != pci)
3238 			break;
3239 	}
3240 	return (0);
3241 }
3242 
3243 static void
3244 bge_devinfo(struct bge_softc *sc)
3245 {
3246 	uint32_t cfg, clk;
3247 
3248 	device_printf(sc->bge_dev,
3249 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3250 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3251 	if (sc->bge_flags & BGE_FLAG_PCIE)
3252 		printf("PCI-E\n");
3253 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3254 		printf("PCI-X ");
3255 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3256 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3257 			clk = 133;
3258 		else {
3259 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3260 			switch (clk) {
3261 			case 0:
3262 				clk = 33;
3263 				break;
3264 			case 2:
3265 				clk = 50;
3266 				break;
3267 			case 4:
3268 				clk = 66;
3269 				break;
3270 			case 6:
3271 				clk = 100;
3272 				break;
3273 			case 7:
3274 				clk = 133;
3275 				break;
3276 			}
3277 		}
3278 		printf("%u MHz\n", clk);
3279 	} else {
3280 		if (sc->bge_pcixcap != 0)
3281 			printf("PCI on PCI-X ");
3282 		else
3283 			printf("PCI ");
3284 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3285 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3286 			clk = 66;
3287 		else
3288 			clk = 33;
3289 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3290 			printf("%u MHz; 32bit\n", clk);
3291 		else
3292 			printf("%u MHz; 64bit\n", clk);
3293 	}
3294 }
3295 
3296 static int
3297 bge_attach(device_t dev)
3298 {
3299 	struct ifnet *ifp;
3300 	struct bge_softc *sc;
3301 	uint32_t hwcfg = 0, misccfg, pcistate;
3302 	u_char eaddr[ETHER_ADDR_LEN];
3303 	int capmask, error, reg, rid, trys;
3304 
3305 	sc = device_get_softc(dev);
3306 	sc->bge_dev = dev;
3307 
3308 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3309 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3310 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3311 
3312 	pci_enable_busmaster(dev);
3313 
3314 	/*
3315 	 * Allocate control/status registers.
3316 	 */
3317 	rid = PCIR_BAR(0);
3318 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3319 	    RF_ACTIVE);
3320 
3321 	if (sc->bge_res == NULL) {
3322 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3323 		error = ENXIO;
3324 		goto fail;
3325 	}
3326 
3327 	/* Save various chip information. */
3328 	sc->bge_func_addr = pci_get_function(dev);
3329 	sc->bge_chipid = bge_chipid(dev);
3330 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3331 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3332 
3333 	/* Set default PHY address. */
3334 	sc->bge_phy_addr = 1;
3335 	 /*
3336 	  * PHY address mapping for various devices.
3337 	  *
3338 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3339 	  * ---------+-------+-------+-------+-------+
3340 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3341 	  * BCM5704  |   1   |   X   |   1   |   X   |
3342 	  * BCM5717  |   1   |   8   |   2   |   9   |
3343 	  * BCM5719  |   1   |   8   |   2   |   9   |
3344 	  * BCM5720  |   1   |   8   |   2   |   9   |
3345 	  *
3346 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3347 	  * ---------+-------+-------+-------+-------+
3348 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3349 	  * BCM5704  |   X   |   X   |   X   |   X   |
3350 	  * BCM5717  |   X   |   X   |   X   |   X   |
3351 	  * BCM5719  |   3   |   10  |   4   |   11  |
3352 	  * BCM5720  |   X   |   X   |   X   |   X   |
3353 	  *
3354 	  * Other addresses may respond but they are not
3355 	  * IEEE compliant PHYs and should be ignored.
3356 	  */
3357 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3358 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3359 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3360 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3361 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3362 			    BGE_SGDIGSTS_IS_SERDES)
3363 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3364 			else
3365 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3366 		} else {
3367 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3368 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3369 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3370 			else
3371 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3372 		}
3373 	}
3374 
3375 	if (bge_has_eaddr(sc))
3376 		sc->bge_flags |= BGE_FLAG_EADDR;
3377 
3378 	/* Save chipset family. */
3379 	switch (sc->bge_asicrev) {
3380 	case BGE_ASICREV_BCM5762:
3381 	case BGE_ASICREV_BCM57765:
3382 	case BGE_ASICREV_BCM57766:
3383 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3384 		/* FALLTHROUGH */
3385 	case BGE_ASICREV_BCM5717:
3386 	case BGE_ASICREV_BCM5719:
3387 	case BGE_ASICREV_BCM5720:
3388 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3389 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3390 		    BGE_FLAG_JUMBO_FRAME;
3391 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3392 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3393 			/*
3394 			 * Enable work around for DMA engine miscalculation
3395 			 * of TXMBUF available space.
3396 			 */
3397 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3398 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3399 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3400 				/* Jumbo frame on BCM5719 A0 does not work. */
3401 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3402 			}
3403 		}
3404 		break;
3405 	case BGE_ASICREV_BCM5755:
3406 	case BGE_ASICREV_BCM5761:
3407 	case BGE_ASICREV_BCM5784:
3408 	case BGE_ASICREV_BCM5785:
3409 	case BGE_ASICREV_BCM5787:
3410 	case BGE_ASICREV_BCM57780:
3411 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3412 		    BGE_FLAG_5705_PLUS;
3413 		break;
3414 	case BGE_ASICREV_BCM5700:
3415 	case BGE_ASICREV_BCM5701:
3416 	case BGE_ASICREV_BCM5703:
3417 	case BGE_ASICREV_BCM5704:
3418 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3419 		break;
3420 	case BGE_ASICREV_BCM5714_A0:
3421 	case BGE_ASICREV_BCM5780:
3422 	case BGE_ASICREV_BCM5714:
3423 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3424 		/* FALLTHROUGH */
3425 	case BGE_ASICREV_BCM5750:
3426 	case BGE_ASICREV_BCM5752:
3427 	case BGE_ASICREV_BCM5906:
3428 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3429 		/* FALLTHROUGH */
3430 	case BGE_ASICREV_BCM5705:
3431 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3432 		break;
3433 	}
3434 
3435 	/* Identify chips with APE processor. */
3436 	switch (sc->bge_asicrev) {
3437 	case BGE_ASICREV_BCM5717:
3438 	case BGE_ASICREV_BCM5719:
3439 	case BGE_ASICREV_BCM5720:
3440 	case BGE_ASICREV_BCM5761:
3441 	case BGE_ASICREV_BCM5762:
3442 		sc->bge_flags |= BGE_FLAG_APE;
3443 		break;
3444 	}
3445 
3446 	/* Chips with APE need BAR2 access for APE registers/memory. */
3447 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3448 		rid = PCIR_BAR(2);
3449 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3450 		    RF_ACTIVE);
3451 		if (sc->bge_res2 == NULL) {
3452 			device_printf (sc->bge_dev,
3453 			    "couldn't map BAR2 memory\n");
3454 			error = ENXIO;
3455 			goto fail;
3456 		}
3457 
3458 		/* Enable APE register/memory access by host driver. */
3459 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3460 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3461 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3462 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3463 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3464 
3465 		bge_ape_lock_init(sc);
3466 		bge_ape_read_fw_ver(sc);
3467 	}
3468 
3469 	/* Add SYSCTLs, requires the chipset family to be set. */
3470 	bge_add_sysctls(sc);
3471 
3472 	/* Identify the chips that use an CPMU. */
3473 	if (BGE_IS_5717_PLUS(sc) ||
3474 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3475 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3476 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3477 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3478 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3479 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3480 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3481 	else
3482 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3483 	/* Enable auto polling for BCM570[0-5]. */
3484 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3485 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3486 
3487 	/*
3488 	 * All Broadcom controllers have 4GB boundary DMA bug.
3489 	 * Whenever an address crosses a multiple of the 4GB boundary
3490 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3491 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3492 	 * state machine will lockup and cause the device to hang.
3493 	 */
3494 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3495 
3496 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3497 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3498 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3499 
3500 	/*
3501 	 * BCM5719 cannot handle DMA requests for DMA segments that
3502 	 * have larger than 4KB in size.  However the maximum DMA
3503 	 * segment size created in DMA tag is 4KB for TSO, so we
3504 	 * wouldn't encounter the issue here.
3505 	 */
3506 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3507 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3508 
3509 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3510 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3511 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3512 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3513 			sc->bge_flags |= BGE_FLAG_5788;
3514 	}
3515 
3516 	capmask = BMSR_DEFCAPMASK;
3517 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3518 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3519 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3520 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3521 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3522 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3523 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3524 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3525 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3526 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3527 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3528 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3529 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3530 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3531 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3532 		/* These chips are 10/100 only. */
3533 		capmask &= ~BMSR_EXTSTAT;
3534 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3535 	}
3536 
3537 	/*
3538 	 * Some controllers seem to require a special firmware to use
3539 	 * TSO. But the firmware is not available to FreeBSD and Linux
3540 	 * claims that the TSO performed by the firmware is slower than
3541 	 * hardware based TSO. Moreover the firmware based TSO has one
3542 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3543 	 * header is greater than 80 bytes. A workaround for the TSO
3544 	 * bug exist but it seems it's too expensive than not using
3545 	 * TSO at all. Some hardwares also have the TSO bug so limit
3546 	 * the TSO to the controllers that are not affected TSO issues
3547 	 * (e.g. 5755 or higher).
3548 	 */
3549 	if (BGE_IS_5717_PLUS(sc)) {
3550 		/* BCM5717 requires different TSO configuration. */
3551 		sc->bge_flags |= BGE_FLAG_TSO3;
3552 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3553 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3554 			/* TSO on BCM5719 A0 does not work. */
3555 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3556 		}
3557 	} else if (BGE_IS_5755_PLUS(sc)) {
3558 		/*
3559 		 * BCM5754 and BCM5787 shares the same ASIC id so
3560 		 * explicit device id check is required.
3561 		 * Due to unknown reason TSO does not work on BCM5755M.
3562 		 */
3563 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3564 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3565 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3566 			sc->bge_flags |= BGE_FLAG_TSO;
3567 	}
3568 
3569 	/*
3570 	 * Check if this is a PCI-X or PCI Express device.
3571 	 */
3572 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3573 		/*
3574 		 * Found a PCI Express capabilities register, this
3575 		 * must be a PCI Express device.
3576 		 */
3577 		sc->bge_flags |= BGE_FLAG_PCIE;
3578 		sc->bge_expcap = reg;
3579 		/* Extract supported maximum payload size. */
3580 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3581 		    PCIER_DEVICE_CAP, 2);
3582 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3583 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3584 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3585 			sc->bge_expmrq = 2048;
3586 		else
3587 			sc->bge_expmrq = 4096;
3588 		pci_set_max_read_req(dev, sc->bge_expmrq);
3589 	} else {
3590 		/*
3591 		 * Check if the device is in PCI-X Mode.
3592 		 * (This bit is not valid on PCI Express controllers.)
3593 		 */
3594 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3595 			sc->bge_pcixcap = reg;
3596 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3597 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3598 			sc->bge_flags |= BGE_FLAG_PCIX;
3599 	}
3600 
3601 	/*
3602 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3603 	 * not actually a MAC controller bug but an issue with the embedded
3604 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3605 	 */
3606 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3607 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3608 	/*
3609 	 * Some PCI-X bridges are known to trigger write reordering to
3610 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3611 	 * caused by out-of-order TX completions.  Enable workaround for
3612 	 * PCI-X devices that live behind these bridges.
3613 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3614 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3615 	 */
3616 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3617 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3618 	/*
3619 	 * Allocate the interrupt, using MSI if possible.  These devices
3620 	 * support 8 MSI messages, but only the first one is used in
3621 	 * normal operation.
3622 	 */
3623 	rid = 0;
3624 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3625 		sc->bge_msicap = reg;
3626 		reg = 1;
3627 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3628 			rid = 1;
3629 			sc->bge_flags |= BGE_FLAG_MSI;
3630 		}
3631 	}
3632 
3633 	/*
3634 	 * All controllers except BCM5700 supports tagged status but
3635 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3636 	 * MSI on BCM5717 does not work.
3637 	 */
3638 #ifndef DEVICE_POLLING
3639 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3640 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3641 #endif
3642 
3643 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3644 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3645 
3646 	if (sc->bge_irq == NULL) {
3647 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3648 		error = ENXIO;
3649 		goto fail;
3650 	}
3651 
3652 	bge_devinfo(sc);
3653 
3654 	sc->bge_asf_mode = 0;
3655 	/* No ASF if APE present. */
3656 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3657 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3658 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3659 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3660 			    BGE_HWCFG_ASF) {
3661 				sc->bge_asf_mode |= ASF_ENABLE;
3662 				sc->bge_asf_mode |= ASF_STACKUP;
3663 				if (BGE_IS_575X_PLUS(sc))
3664 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3665 			}
3666 		}
3667 	}
3668 
3669 	bge_stop_fw(sc);
3670 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3671 	if (bge_reset(sc)) {
3672 		device_printf(sc->bge_dev, "chip reset failed\n");
3673 		error = ENXIO;
3674 		goto fail;
3675 	}
3676 
3677 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3678 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3679 
3680 	if (bge_chipinit(sc)) {
3681 		device_printf(sc->bge_dev, "chip initialization failed\n");
3682 		error = ENXIO;
3683 		goto fail;
3684 	}
3685 
3686 	error = bge_get_eaddr(sc, eaddr);
3687 	if (error) {
3688 		device_printf(sc->bge_dev,
3689 		    "failed to read station address\n");
3690 		error = ENXIO;
3691 		goto fail;
3692 	}
3693 
3694 	/* 5705 limits RX return ring to 512 entries. */
3695 	if (BGE_IS_5717_PLUS(sc))
3696 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3697 	else if (BGE_IS_5705_PLUS(sc))
3698 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3699 	else
3700 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3701 
3702 	if (bge_dma_alloc(sc)) {
3703 		device_printf(sc->bge_dev,
3704 		    "failed to allocate DMA resources\n");
3705 		error = ENXIO;
3706 		goto fail;
3707 	}
3708 
3709 	/* Set default tuneable values. */
3710 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3711 	sc->bge_rx_coal_ticks = 150;
3712 	sc->bge_tx_coal_ticks = 150;
3713 	sc->bge_rx_max_coal_bds = 10;
3714 	sc->bge_tx_max_coal_bds = 10;
3715 
3716 	/* Initialize checksum features to use. */
3717 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3718 	if (sc->bge_forced_udpcsum != 0)
3719 		sc->bge_csum_features |= CSUM_UDP;
3720 
3721 	/* Set up ifnet structure */
3722 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3723 	if (ifp == NULL) {
3724 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3725 		error = ENXIO;
3726 		goto fail;
3727 	}
3728 	ifp->if_softc = sc;
3729 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3730 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3731 	ifp->if_ioctl = bge_ioctl;
3732 	ifp->if_start = bge_start;
3733 	ifp->if_init = bge_init;
3734 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3735 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3736 	IFQ_SET_READY(&ifp->if_snd);
3737 	ifp->if_hwassist = sc->bge_csum_features;
3738 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3739 	    IFCAP_VLAN_MTU;
3740 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3741 		ifp->if_hwassist |= CSUM_TSO;
3742 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3743 	}
3744 #ifdef IFCAP_VLAN_HWCSUM
3745 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3746 #endif
3747 	ifp->if_capenable = ifp->if_capabilities;
3748 #ifdef DEVICE_POLLING
3749 	ifp->if_capabilities |= IFCAP_POLLING;
3750 #endif
3751 
3752 	/*
3753 	 * 5700 B0 chips do not support checksumming correctly due
3754 	 * to hardware bugs.
3755 	 */
3756 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3757 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3758 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3759 		ifp->if_hwassist = 0;
3760 	}
3761 
3762 	/*
3763 	 * Figure out what sort of media we have by checking the
3764 	 * hardware config word in the first 32k of NIC internal memory,
3765 	 * or fall back to examining the EEPROM if necessary.
3766 	 * Note: on some BCM5700 cards, this value appears to be unset.
3767 	 * If that's the case, we have to rely on identifying the NIC
3768 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3769 	 * SK-9D41.
3770 	 */
3771 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3772 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3773 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3774 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3775 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3776 		    sizeof(hwcfg))) {
3777 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3778 			error = ENXIO;
3779 			goto fail;
3780 		}
3781 		hwcfg = ntohl(hwcfg);
3782 	}
3783 
3784 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3785 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3786 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3787 		if (BGE_IS_5705_PLUS(sc)) {
3788 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3789 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3790 		} else
3791 			sc->bge_flags |= BGE_FLAG_TBI;
3792 	}
3793 
3794 	/* Set various PHY bug flags. */
3795 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3796 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3797 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3798 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3799 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3800 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3801 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3802 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3803 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3804 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3805 	if ((BGE_IS_5705_PLUS(sc)) &&
3806 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3807 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3808 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3809 	    !BGE_IS_5717_PLUS(sc)) {
3810 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3811 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3812 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3813 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3814 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3815 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3816 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3817 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3818 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3819 		} else
3820 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3821 	}
3822 
3823 	/*
3824 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3825 	 * 5705 A0 and A1 chips.
3826 	 */
3827 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3828 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3829 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3830 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3831 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3832 
3833 	if (sc->bge_flags & BGE_FLAG_TBI) {
3834 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3835 		    bge_ifmedia_sts);
3836 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3837 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3838 		    0, NULL);
3839 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3840 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3841 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3842 	} else {
3843 		/*
3844 		 * Do transceiver setup and tell the firmware the
3845 		 * driver is down so we can try to get access the
3846 		 * probe if ASF is running.  Retry a couple of times
3847 		 * if we get a conflict with the ASF firmware accessing
3848 		 * the PHY.
3849 		 */
3850 		trys = 0;
3851 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3852 again:
3853 		bge_asf_driver_up(sc);
3854 
3855 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3856 		    bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3857 		    MIIF_DOPAUSE);
3858 		if (error != 0) {
3859 			if (trys++ < 4) {
3860 				device_printf(sc->bge_dev, "Try again\n");
3861 				bge_miibus_writereg(sc->bge_dev,
3862 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3863 				goto again;
3864 			}
3865 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3866 			goto fail;
3867 		}
3868 
3869 		/*
3870 		 * Now tell the firmware we are going up after probing the PHY
3871 		 */
3872 		if (sc->bge_asf_mode & ASF_STACKUP)
3873 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3874 	}
3875 
3876 	/*
3877 	 * When using the BCM5701 in PCI-X mode, data corruption has
3878 	 * been observed in the first few bytes of some received packets.
3879 	 * Aligning the packet buffer in memory eliminates the corruption.
3880 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3881 	 * which do not support unaligned accesses, we will realign the
3882 	 * payloads by copying the received packets.
3883 	 */
3884 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3885 	    sc->bge_flags & BGE_FLAG_PCIX)
3886                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3887 
3888 	/*
3889 	 * Call MI attach routine.
3890 	 */
3891 	ether_ifattach(ifp, eaddr);
3892 
3893 	/* Tell upper layer we support long frames. */
3894 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3895 
3896 	/*
3897 	 * Hookup IRQ last.
3898 	 */
3899 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3900 		/* Take advantage of single-shot MSI. */
3901 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3902 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3903 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3904 		    taskqueue_thread_enqueue, &sc->bge_tq);
3905 		if (sc->bge_tq == NULL) {
3906 			device_printf(dev, "could not create taskqueue.\n");
3907 			ether_ifdetach(ifp);
3908 			error = ENOMEM;
3909 			goto fail;
3910 		}
3911 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3912 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3913 		if (error != 0) {
3914 			device_printf(dev, "could not start threads.\n");
3915 			ether_ifdetach(ifp);
3916 			goto fail;
3917 		}
3918 		error = bus_setup_intr(dev, sc->bge_irq,
3919 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3920 		    &sc->bge_intrhand);
3921 	} else
3922 		error = bus_setup_intr(dev, sc->bge_irq,
3923 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3924 		    &sc->bge_intrhand);
3925 
3926 	if (error) {
3927 		ether_ifdetach(ifp);
3928 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3929 	}
3930 
3931 fail:
3932 	if (error)
3933 		bge_detach(dev);
3934 	return (error);
3935 }
3936 
3937 static int
3938 bge_detach(device_t dev)
3939 {
3940 	struct bge_softc *sc;
3941 	struct ifnet *ifp;
3942 
3943 	sc = device_get_softc(dev);
3944 	ifp = sc->bge_ifp;
3945 
3946 #ifdef DEVICE_POLLING
3947 	if (ifp->if_capenable & IFCAP_POLLING)
3948 		ether_poll_deregister(ifp);
3949 #endif
3950 
3951 	if (device_is_attached(dev)) {
3952 		ether_ifdetach(ifp);
3953 		BGE_LOCK(sc);
3954 		bge_stop(sc);
3955 		BGE_UNLOCK(sc);
3956 		callout_drain(&sc->bge_stat_ch);
3957 	}
3958 
3959 	if (sc->bge_tq)
3960 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3961 
3962 	if (sc->bge_flags & BGE_FLAG_TBI)
3963 		ifmedia_removeall(&sc->bge_ifmedia);
3964 	else if (sc->bge_miibus != NULL) {
3965 		bus_generic_detach(dev);
3966 		device_delete_child(dev, sc->bge_miibus);
3967 	}
3968 
3969 	bge_release_resources(sc);
3970 
3971 	return (0);
3972 }
3973 
3974 static void
3975 bge_release_resources(struct bge_softc *sc)
3976 {
3977 	device_t dev;
3978 
3979 	dev = sc->bge_dev;
3980 
3981 	if (sc->bge_tq != NULL)
3982 		taskqueue_free(sc->bge_tq);
3983 
3984 	if (sc->bge_intrhand != NULL)
3985 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3986 
3987 	if (sc->bge_irq != NULL) {
3988 		bus_release_resource(dev, SYS_RES_IRQ,
3989 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
3990 		pci_release_msi(dev);
3991 	}
3992 
3993 	if (sc->bge_res != NULL)
3994 		bus_release_resource(dev, SYS_RES_MEMORY,
3995 		    rman_get_rid(sc->bge_res), sc->bge_res);
3996 
3997 	if (sc->bge_res2 != NULL)
3998 		bus_release_resource(dev, SYS_RES_MEMORY,
3999 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4000 
4001 	if (sc->bge_ifp != NULL)
4002 		if_free(sc->bge_ifp);
4003 
4004 	bge_dma_free(sc);
4005 
4006 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4007 		BGE_LOCK_DESTROY(sc);
4008 }
4009 
4010 static int
4011 bge_reset(struct bge_softc *sc)
4012 {
4013 	device_t dev;
4014 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4015 	void (*write_op)(struct bge_softc *, int, int);
4016 	uint16_t devctl;
4017 	int i;
4018 
4019 	dev = sc->bge_dev;
4020 
4021 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4022 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4023 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4024 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4025 
4026 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4027 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4028 		if (sc->bge_flags & BGE_FLAG_PCIE)
4029 			write_op = bge_writemem_direct;
4030 		else
4031 			write_op = bge_writemem_ind;
4032 	} else
4033 		write_op = bge_writereg_ind;
4034 
4035 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4036 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4037 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4038 		for (i = 0; i < 8000; i++) {
4039 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4040 			    BGE_NVRAMSWARB_GNT1)
4041 				break;
4042 			DELAY(20);
4043 		}
4044 		if (i == 8000) {
4045 			if (bootverbose)
4046 				device_printf(dev, "NVRAM lock timedout!\n");
4047 		}
4048 	}
4049 	/* Take APE lock when performing reset. */
4050 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4051 
4052 	/* Save some important PCI state. */
4053 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4054 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4055 
4056 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4057 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4058 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4059 
4060 	/* Disable fastboot on controllers that support it. */
4061 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4062 	    BGE_IS_5755_PLUS(sc)) {
4063 		if (bootverbose)
4064 			device_printf(dev, "Disabling fastboot\n");
4065 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4066 	}
4067 
4068 	/*
4069 	 * Write the magic number to SRAM at offset 0xB50.
4070 	 * When firmware finishes its initialization it will
4071 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4072 	 */
4073 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4074 
4075 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4076 
4077 	/* XXX: Broadcom Linux driver. */
4078 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4079 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4080 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4081 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4082 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4083 		}
4084 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4085 			/* Prevent PCIE link training during global reset */
4086 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4087 			reset |= 1 << 29;
4088 		}
4089 	}
4090 
4091 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4092 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4093 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4094 		    val | BGE_VCPU_STATUS_DRV_RESET);
4095 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4096 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4097 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4098 	}
4099 
4100 	/*
4101 	 * Set GPHY Power Down Override to leave GPHY
4102 	 * powered up in D0 uninitialized.
4103 	 */
4104 	if (BGE_IS_5705_PLUS(sc) &&
4105 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4106 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4107 
4108 	/* Issue global reset */
4109 	write_op(sc, BGE_MISC_CFG, reset);
4110 
4111 	if (sc->bge_flags & BGE_FLAG_PCIE)
4112 		DELAY(100 * 1000);
4113 	else
4114 		DELAY(1000);
4115 
4116 	/* XXX: Broadcom Linux driver. */
4117 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4118 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4119 			DELAY(500000); /* wait for link training to complete */
4120 			val = pci_read_config(dev, 0xC4, 4);
4121 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4122 		}
4123 		devctl = pci_read_config(dev,
4124 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4125 		/* Clear enable no snoop and disable relaxed ordering. */
4126 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4127 		    PCIEM_CTL_NOSNOOP_ENABLE);
4128 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4129 		    devctl, 2);
4130 		pci_set_max_read_req(dev, sc->bge_expmrq);
4131 		/* Clear error status. */
4132 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4133 		    PCIEM_STA_CORRECTABLE_ERROR |
4134 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4135 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4136 	}
4137 
4138 	/* Reset some of the PCI state that got zapped by reset. */
4139 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4140 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4141 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4142 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4143 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4144 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4145 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4146 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4147 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4148 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4149 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4150 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4151 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4152 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4153 	/*
4154 	 * Disable PCI-X relaxed ordering to ensure status block update
4155 	 * comes first then packet buffer DMA. Otherwise driver may
4156 	 * read stale status block.
4157 	 */
4158 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4159 		devctl = pci_read_config(dev,
4160 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4161 		devctl &= ~PCIXM_COMMAND_ERO;
4162 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4163 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4164 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4165 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4166 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4167 			    PCIXM_COMMAND_MAX_READ);
4168 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4169 		}
4170 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4171 		    devctl, 2);
4172 	}
4173 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4174 	if (BGE_IS_5714_FAMILY(sc)) {
4175 		/* This chip disables MSI on reset. */
4176 		if (sc->bge_flags & BGE_FLAG_MSI) {
4177 			val = pci_read_config(dev,
4178 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4179 			pci_write_config(dev,
4180 			    sc->bge_msicap + PCIR_MSI_CTRL,
4181 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4182 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4183 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4184 			    val | BGE_MSIMODE_ENABLE);
4185 		}
4186 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4187 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4188 	} else
4189 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4190 
4191 	/* Fix up byte swapping. */
4192 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4193 
4194 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4195 	val = (val & ~mac_mode_mask) | mac_mode;
4196 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4197 	DELAY(40);
4198 
4199 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4200 
4201 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4202 		for (i = 0; i < BGE_TIMEOUT; i++) {
4203 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4204 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4205 				break;
4206 			DELAY(100);
4207 		}
4208 		if (i == BGE_TIMEOUT) {
4209 			device_printf(dev, "reset timed out\n");
4210 			return (1);
4211 		}
4212 	} else {
4213 		/*
4214 		 * Poll until we see the 1's complement of the magic number.
4215 		 * This indicates that the firmware initialization is complete.
4216 		 * We expect this to fail if no chip containing the Ethernet
4217 		 * address is fitted though.
4218 		 */
4219 		for (i = 0; i < BGE_TIMEOUT; i++) {
4220 			DELAY(10);
4221 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4222 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4223 				break;
4224 		}
4225 
4226 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4227 			device_printf(dev,
4228 			    "firmware handshake timed out, found 0x%08x\n",
4229 			    val);
4230 		/* BCM57765 A0 needs additional time before accessing. */
4231 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4232 			DELAY(10 * 1000);	/* XXX */
4233 	}
4234 
4235 	/*
4236 	 * The 5704 in TBI mode apparently needs some special
4237 	 * adjustment to insure the SERDES drive level is set
4238 	 * to 1.2V.
4239 	 */
4240 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4241 	    sc->bge_flags & BGE_FLAG_TBI) {
4242 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4243 		val = (val & ~0xFFF) | 0x880;
4244 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4245 	}
4246 
4247 	/* XXX: Broadcom Linux driver. */
4248 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4249 	    !BGE_IS_5717_PLUS(sc) &&
4250 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4251 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4252 		/* Enable Data FIFO protection. */
4253 		val = CSR_READ_4(sc, 0x7C00);
4254 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4255 	}
4256 
4257 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4258 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4259 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4260 
4261 	return (0);
4262 }
4263 
4264 static __inline void
4265 bge_rxreuse_std(struct bge_softc *sc, int i)
4266 {
4267 	struct bge_rx_bd *r;
4268 
4269 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4270 	r->bge_flags = BGE_RXBDFLAG_END;
4271 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4272 	r->bge_idx = i;
4273 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4274 }
4275 
4276 static __inline void
4277 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4278 {
4279 	struct bge_extrx_bd *r;
4280 
4281 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4282 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4283 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4284 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4285 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4286 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4287 	r->bge_idx = i;
4288 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4289 }
4290 
4291 /*
4292  * Frame reception handling. This is called if there's a frame
4293  * on the receive return list.
4294  *
4295  * Note: we have to be able to handle two possibilities here:
4296  * 1) the frame is from the jumbo receive ring
4297  * 2) the frame is from the standard receive ring
4298  */
4299 
4300 static int
4301 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4302 {
4303 	struct ifnet *ifp;
4304 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4305 	uint16_t rx_cons;
4306 
4307 	rx_cons = sc->bge_rx_saved_considx;
4308 
4309 	/* Nothing to do. */
4310 	if (rx_cons == rx_prod)
4311 		return (rx_npkts);
4312 
4313 	ifp = sc->bge_ifp;
4314 
4315 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4316 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4317 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4318 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4319 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4320 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4321 	    (MCLBYTES - ETHER_ALIGN))
4322 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4323 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4324 
4325 	while (rx_cons != rx_prod) {
4326 		struct bge_rx_bd	*cur_rx;
4327 		uint32_t		rxidx;
4328 		struct mbuf		*m = NULL;
4329 		uint16_t		vlan_tag = 0;
4330 		int			have_tag = 0;
4331 
4332 #ifdef DEVICE_POLLING
4333 		if (ifp->if_capenable & IFCAP_POLLING) {
4334 			if (sc->rxcycles <= 0)
4335 				break;
4336 			sc->rxcycles--;
4337 		}
4338 #endif
4339 
4340 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4341 
4342 		rxidx = cur_rx->bge_idx;
4343 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4344 
4345 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4346 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4347 			have_tag = 1;
4348 			vlan_tag = cur_rx->bge_vlan_tag;
4349 		}
4350 
4351 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4352 			jumbocnt++;
4353 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4354 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4355 				bge_rxreuse_jumbo(sc, rxidx);
4356 				continue;
4357 			}
4358 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4359 				bge_rxreuse_jumbo(sc, rxidx);
4360 				ifp->if_iqdrops++;
4361 				continue;
4362 			}
4363 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4364 		} else {
4365 			stdcnt++;
4366 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4367 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4368 				bge_rxreuse_std(sc, rxidx);
4369 				continue;
4370 			}
4371 			if (bge_newbuf_std(sc, rxidx) != 0) {
4372 				bge_rxreuse_std(sc, rxidx);
4373 				ifp->if_iqdrops++;
4374 				continue;
4375 			}
4376 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4377 		}
4378 
4379 		ifp->if_ipackets++;
4380 #ifndef __NO_STRICT_ALIGNMENT
4381 		/*
4382 		 * For architectures with strict alignment we must make sure
4383 		 * the payload is aligned.
4384 		 */
4385 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4386 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4387 			    cur_rx->bge_len);
4388 			m->m_data += ETHER_ALIGN;
4389 		}
4390 #endif
4391 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4392 		m->m_pkthdr.rcvif = ifp;
4393 
4394 		if (ifp->if_capenable & IFCAP_RXCSUM)
4395 			bge_rxcsum(sc, cur_rx, m);
4396 
4397 		/*
4398 		 * If we received a packet with a vlan tag,
4399 		 * attach that information to the packet.
4400 		 */
4401 		if (have_tag) {
4402 			m->m_pkthdr.ether_vtag = vlan_tag;
4403 			m->m_flags |= M_VLANTAG;
4404 		}
4405 
4406 		if (holdlck != 0) {
4407 			BGE_UNLOCK(sc);
4408 			(*ifp->if_input)(ifp, m);
4409 			BGE_LOCK(sc);
4410 		} else
4411 			(*ifp->if_input)(ifp, m);
4412 		rx_npkts++;
4413 
4414 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4415 			return (rx_npkts);
4416 	}
4417 
4418 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4419 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4420 	if (stdcnt > 0)
4421 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4422 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4423 
4424 	if (jumbocnt > 0)
4425 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4426 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4427 
4428 	sc->bge_rx_saved_considx = rx_cons;
4429 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4430 	if (stdcnt)
4431 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4432 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4433 	if (jumbocnt)
4434 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4435 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4436 #ifdef notyet
4437 	/*
4438 	 * This register wraps very quickly under heavy packet drops.
4439 	 * If you need correct statistics, you can enable this check.
4440 	 */
4441 	if (BGE_IS_5705_PLUS(sc))
4442 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4443 #endif
4444 	return (rx_npkts);
4445 }
4446 
4447 static void
4448 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4449 {
4450 
4451 	if (BGE_IS_5717_PLUS(sc)) {
4452 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4453 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4454 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4455 				if ((cur_rx->bge_error_flag &
4456 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4457 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4458 			}
4459 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4460 				m->m_pkthdr.csum_data =
4461 				    cur_rx->bge_tcp_udp_csum;
4462 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4463 				    CSUM_PSEUDO_HDR;
4464 			}
4465 		}
4466 	} else {
4467 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4468 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4469 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4470 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4471 		}
4472 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4473 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4474 			m->m_pkthdr.csum_data =
4475 			    cur_rx->bge_tcp_udp_csum;
4476 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4477 			    CSUM_PSEUDO_HDR;
4478 		}
4479 	}
4480 }
4481 
4482 static void
4483 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4484 {
4485 	struct bge_tx_bd *cur_tx;
4486 	struct ifnet *ifp;
4487 
4488 	BGE_LOCK_ASSERT(sc);
4489 
4490 	/* Nothing to do. */
4491 	if (sc->bge_tx_saved_considx == tx_cons)
4492 		return;
4493 
4494 	ifp = sc->bge_ifp;
4495 
4496 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4497 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4498 	/*
4499 	 * Go through our tx ring and free mbufs for those
4500 	 * frames that have been sent.
4501 	 */
4502 	while (sc->bge_tx_saved_considx != tx_cons) {
4503 		uint32_t		idx;
4504 
4505 		idx = sc->bge_tx_saved_considx;
4506 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4507 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4508 			ifp->if_opackets++;
4509 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4510 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4511 			    sc->bge_cdata.bge_tx_dmamap[idx],
4512 			    BUS_DMASYNC_POSTWRITE);
4513 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4514 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4515 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4516 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4517 		}
4518 		sc->bge_txcnt--;
4519 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4520 	}
4521 
4522 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4523 	if (sc->bge_txcnt == 0)
4524 		sc->bge_timer = 0;
4525 }
4526 
4527 #ifdef DEVICE_POLLING
4528 static int
4529 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4530 {
4531 	struct bge_softc *sc = ifp->if_softc;
4532 	uint16_t rx_prod, tx_cons;
4533 	uint32_t statusword;
4534 	int rx_npkts = 0;
4535 
4536 	BGE_LOCK(sc);
4537 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4538 		BGE_UNLOCK(sc);
4539 		return (rx_npkts);
4540 	}
4541 
4542 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4543 	    sc->bge_cdata.bge_status_map,
4544 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4545 	/* Fetch updates from the status block. */
4546 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4547 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4548 
4549 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4550 	/* Clear the status so the next pass only sees the changes. */
4551 	sc->bge_ldata.bge_status_block->bge_status = 0;
4552 
4553 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4554 	    sc->bge_cdata.bge_status_map,
4555 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4556 
4557 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4558 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4559 		sc->bge_link_evt++;
4560 
4561 	if (cmd == POLL_AND_CHECK_STATUS)
4562 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4563 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4564 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4565 			bge_link_upd(sc);
4566 
4567 	sc->rxcycles = count;
4568 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4569 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4570 		BGE_UNLOCK(sc);
4571 		return (rx_npkts);
4572 	}
4573 	bge_txeof(sc, tx_cons);
4574 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4575 		bge_start_locked(ifp);
4576 
4577 	BGE_UNLOCK(sc);
4578 	return (rx_npkts);
4579 }
4580 #endif /* DEVICE_POLLING */
4581 
4582 static int
4583 bge_msi_intr(void *arg)
4584 {
4585 	struct bge_softc *sc;
4586 
4587 	sc = (struct bge_softc *)arg;
4588 	/*
4589 	 * This interrupt is not shared and controller already
4590 	 * disabled further interrupt.
4591 	 */
4592 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4593 	return (FILTER_HANDLED);
4594 }
4595 
4596 static void
4597 bge_intr_task(void *arg, int pending)
4598 {
4599 	struct bge_softc *sc;
4600 	struct ifnet *ifp;
4601 	uint32_t status, status_tag;
4602 	uint16_t rx_prod, tx_cons;
4603 
4604 	sc = (struct bge_softc *)arg;
4605 	ifp = sc->bge_ifp;
4606 
4607 	BGE_LOCK(sc);
4608 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4609 		BGE_UNLOCK(sc);
4610 		return;
4611 	}
4612 
4613 	/* Get updated status block. */
4614 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4615 	    sc->bge_cdata.bge_status_map,
4616 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4617 
4618 	/* Save producer/consumer indices. */
4619 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4620 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4621 	status = sc->bge_ldata.bge_status_block->bge_status;
4622 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4623 	/* Dirty the status flag. */
4624 	sc->bge_ldata.bge_status_block->bge_status = 0;
4625 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4626 	    sc->bge_cdata.bge_status_map,
4627 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4628 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4629 		status_tag = 0;
4630 
4631 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4632 		bge_link_upd(sc);
4633 
4634 	/* Let controller work. */
4635 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4636 
4637 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4638 	    sc->bge_rx_saved_considx != rx_prod) {
4639 		/* Check RX return ring producer/consumer. */
4640 		BGE_UNLOCK(sc);
4641 		bge_rxeof(sc, rx_prod, 0);
4642 		BGE_LOCK(sc);
4643 	}
4644 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4645 		/* Check TX ring producer/consumer. */
4646 		bge_txeof(sc, tx_cons);
4647 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4648 			bge_start_locked(ifp);
4649 	}
4650 	BGE_UNLOCK(sc);
4651 }
4652 
4653 static void
4654 bge_intr(void *xsc)
4655 {
4656 	struct bge_softc *sc;
4657 	struct ifnet *ifp;
4658 	uint32_t statusword;
4659 	uint16_t rx_prod, tx_cons;
4660 
4661 	sc = xsc;
4662 
4663 	BGE_LOCK(sc);
4664 
4665 	ifp = sc->bge_ifp;
4666 
4667 #ifdef DEVICE_POLLING
4668 	if (ifp->if_capenable & IFCAP_POLLING) {
4669 		BGE_UNLOCK(sc);
4670 		return;
4671 	}
4672 #endif
4673 
4674 	/*
4675 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4676 	 * disable interrupts by writing nonzero like we used to, since with
4677 	 * our current organization this just gives complications and
4678 	 * pessimizations for re-enabling interrupts.  We used to have races
4679 	 * instead of the necessary complications.  Disabling interrupts
4680 	 * would just reduce the chance of a status update while we are
4681 	 * running (by switching to the interrupt-mode coalescence
4682 	 * parameters), but this chance is already very low so it is more
4683 	 * efficient to get another interrupt than prevent it.
4684 	 *
4685 	 * We do the ack first to ensure another interrupt if there is a
4686 	 * status update after the ack.  We don't check for the status
4687 	 * changing later because it is more efficient to get another
4688 	 * interrupt than prevent it, not quite as above (not checking is
4689 	 * a smaller optimization than not toggling the interrupt enable,
4690 	 * since checking doesn't involve PCI accesses and toggling require
4691 	 * the status check).  So toggling would probably be a pessimization
4692 	 * even with MSI.  It would only be needed for using a task queue.
4693 	 */
4694 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4695 
4696 	/*
4697 	 * Do the mandatory PCI flush as well as get the link status.
4698 	 */
4699 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4700 
4701 	/* Make sure the descriptor ring indexes are coherent. */
4702 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4703 	    sc->bge_cdata.bge_status_map,
4704 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4705 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4706 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4707 	sc->bge_ldata.bge_status_block->bge_status = 0;
4708 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4709 	    sc->bge_cdata.bge_status_map,
4710 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4711 
4712 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4713 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4714 	    statusword || sc->bge_link_evt)
4715 		bge_link_upd(sc);
4716 
4717 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4718 		/* Check RX return ring producer/consumer. */
4719 		bge_rxeof(sc, rx_prod, 1);
4720 	}
4721 
4722 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4723 		/* Check TX ring producer/consumer. */
4724 		bge_txeof(sc, tx_cons);
4725 	}
4726 
4727 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4728 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4729 		bge_start_locked(ifp);
4730 
4731 	BGE_UNLOCK(sc);
4732 }
4733 
4734 static void
4735 bge_asf_driver_up(struct bge_softc *sc)
4736 {
4737 	if (sc->bge_asf_mode & ASF_STACKUP) {
4738 		/* Send ASF heartbeat aprox. every 2s */
4739 		if (sc->bge_asf_count)
4740 			sc->bge_asf_count --;
4741 		else {
4742 			sc->bge_asf_count = 2;
4743 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4744 			    BGE_FW_CMD_DRV_ALIVE);
4745 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4746 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4747 			    BGE_FW_HB_TIMEOUT_SEC);
4748 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4749 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4750 			    BGE_RX_CPU_DRV_EVENT);
4751 		}
4752 	}
4753 }
4754 
4755 static void
4756 bge_tick(void *xsc)
4757 {
4758 	struct bge_softc *sc = xsc;
4759 	struct mii_data *mii = NULL;
4760 
4761 	BGE_LOCK_ASSERT(sc);
4762 
4763 	/* Synchronize with possible callout reset/stop. */
4764 	if (callout_pending(&sc->bge_stat_ch) ||
4765 	    !callout_active(&sc->bge_stat_ch))
4766 		return;
4767 
4768 	if (BGE_IS_5705_PLUS(sc))
4769 		bge_stats_update_regs(sc);
4770 	else
4771 		bge_stats_update(sc);
4772 
4773 	/* XXX Add APE heartbeat check here? */
4774 
4775 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4776 		mii = device_get_softc(sc->bge_miibus);
4777 		/*
4778 		 * Do not touch PHY if we have link up. This could break
4779 		 * IPMI/ASF mode or produce extra input errors
4780 		 * (extra errors was reported for bcm5701 & bcm5704).
4781 		 */
4782 		if (!sc->bge_link)
4783 			mii_tick(mii);
4784 	} else {
4785 		/*
4786 		 * Since in TBI mode auto-polling can't be used we should poll
4787 		 * link status manually. Here we register pending link event
4788 		 * and trigger interrupt.
4789 		 */
4790 #ifdef DEVICE_POLLING
4791 		/* In polling mode we poll link state in bge_poll(). */
4792 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4793 #endif
4794 		{
4795 		sc->bge_link_evt++;
4796 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4797 		    sc->bge_flags & BGE_FLAG_5788)
4798 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4799 		else
4800 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4801 		}
4802 	}
4803 
4804 	bge_asf_driver_up(sc);
4805 	bge_watchdog(sc);
4806 
4807 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4808 }
4809 
4810 static void
4811 bge_stats_update_regs(struct bge_softc *sc)
4812 {
4813 	struct ifnet *ifp;
4814 	struct bge_mac_stats *stats;
4815 	uint32_t val;
4816 
4817 	ifp = sc->bge_ifp;
4818 	stats = &sc->bge_mac_stats;
4819 
4820 	stats->ifHCOutOctets +=
4821 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4822 	stats->etherStatsCollisions +=
4823 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4824 	stats->outXonSent +=
4825 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4826 	stats->outXoffSent +=
4827 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4828 	stats->dot3StatsInternalMacTransmitErrors +=
4829 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4830 	stats->dot3StatsSingleCollisionFrames +=
4831 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4832 	stats->dot3StatsMultipleCollisionFrames +=
4833 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4834 	stats->dot3StatsDeferredTransmissions +=
4835 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4836 	stats->dot3StatsExcessiveCollisions +=
4837 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4838 	stats->dot3StatsLateCollisions +=
4839 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4840 	stats->ifHCOutUcastPkts +=
4841 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4842 	stats->ifHCOutMulticastPkts +=
4843 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4844 	stats->ifHCOutBroadcastPkts +=
4845 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4846 
4847 	stats->ifHCInOctets +=
4848 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4849 	stats->etherStatsFragments +=
4850 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4851 	stats->ifHCInUcastPkts +=
4852 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4853 	stats->ifHCInMulticastPkts +=
4854 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4855 	stats->ifHCInBroadcastPkts +=
4856 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4857 	stats->dot3StatsFCSErrors +=
4858 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4859 	stats->dot3StatsAlignmentErrors +=
4860 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4861 	stats->xonPauseFramesReceived +=
4862 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4863 	stats->xoffPauseFramesReceived +=
4864 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4865 	stats->macControlFramesReceived +=
4866 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4867 	stats->xoffStateEntered +=
4868 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4869 	stats->dot3StatsFramesTooLong +=
4870 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4871 	stats->etherStatsJabbers +=
4872 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4873 	stats->etherStatsUndersizePkts +=
4874 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4875 
4876 	stats->FramesDroppedDueToFilters +=
4877 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4878 	stats->DmaWriteQueueFull +=
4879 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4880 	stats->DmaWriteHighPriQueueFull +=
4881 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4882 	stats->NoMoreRxBDs +=
4883 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4884 	/*
4885 	 * XXX
4886 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4887 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4888 	 * includes number of unwanted multicast frames.  This comes
4889 	 * from silicon bug and known workaround to get rough(not
4890 	 * exact) counter is to enable interrupt on MBUF low water
4891 	 * attention.  This can be accomplished by setting
4892 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4893 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4894 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4895 	 * However that change would generate more interrupts and
4896 	 * there are still possibilities of losing multiple frames
4897 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4898 	 * Given that the workaround still would not get correct
4899 	 * counter I don't think it's worth to implement it.  So
4900 	 * ignore reading the counter on controllers that have the
4901 	 * silicon bug.
4902 	 */
4903 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4904 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4905 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4906 		stats->InputDiscards +=
4907 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4908 	stats->InputErrors +=
4909 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4910 	stats->RecvThresholdHit +=
4911 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4912 
4913 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4914 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4915 	    stats->InputErrors);
4916 
4917 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4918 		/*
4919 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4920 		 * frames, it's safe to disable workaround for DMA engine's
4921 		 * miscalculation of TXMBUF space.
4922 		 */
4923 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4924 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4925 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4926 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4927 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4928 			else
4929 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4930 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4931 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4932 		}
4933 	}
4934 }
4935 
4936 static void
4937 bge_stats_clear_regs(struct bge_softc *sc)
4938 {
4939 
4940 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4941 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4942 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4943 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4944 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4946 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4947 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4948 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4950 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4951 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4952 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4953 
4954 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4955 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4956 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4957 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4958 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4961 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4962 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4966 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4967 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4968 
4969 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4970 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4971 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4972 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4973 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4974 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4975 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4976 }
4977 
4978 static void
4979 bge_stats_update(struct bge_softc *sc)
4980 {
4981 	struct ifnet *ifp;
4982 	bus_size_t stats;
4983 	uint32_t cnt;	/* current register value */
4984 
4985 	ifp = sc->bge_ifp;
4986 
4987 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4988 
4989 #define	READ_STAT(sc, stats, stat) \
4990 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4991 
4992 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4993 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4994 	sc->bge_tx_collisions = cnt;
4995 
4996 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4997 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4998 	sc->bge_rx_nobds = cnt;
4999 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5000 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
5001 	sc->bge_rx_inerrs = cnt;
5002 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5003 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5004 	sc->bge_rx_discards = cnt;
5005 
5006 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5007 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5008 	sc->bge_tx_discards = cnt;
5009 
5010 #undef	READ_STAT
5011 }
5012 
5013 /*
5014  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5015  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5016  * but when such padded frames employ the bge IP/TCP checksum offload,
5017  * the hardware checksum assist gives incorrect results (possibly
5018  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5019  * If we pad such runts with zeros, the onboard checksum comes out correct.
5020  */
5021 static __inline int
5022 bge_cksum_pad(struct mbuf *m)
5023 {
5024 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5025 	struct mbuf *last;
5026 
5027 	/* If there's only the packet-header and we can pad there, use it. */
5028 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5029 	    M_TRAILINGSPACE(m) >= padlen) {
5030 		last = m;
5031 	} else {
5032 		/*
5033 		 * Walk packet chain to find last mbuf. We will either
5034 		 * pad there, or append a new mbuf and pad it.
5035 		 */
5036 		for (last = m; last->m_next != NULL; last = last->m_next);
5037 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5038 			/* Allocate new empty mbuf, pad it. Compact later. */
5039 			struct mbuf *n;
5040 
5041 			MGET(n, M_NOWAIT, MT_DATA);
5042 			if (n == NULL)
5043 				return (ENOBUFS);
5044 			n->m_len = 0;
5045 			last->m_next = n;
5046 			last = n;
5047 		}
5048 	}
5049 
5050 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5051 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5052 	last->m_len += padlen;
5053 	m->m_pkthdr.len += padlen;
5054 
5055 	return (0);
5056 }
5057 
5058 static struct mbuf *
5059 bge_check_short_dma(struct mbuf *m)
5060 {
5061 	struct mbuf *n;
5062 	int found;
5063 
5064 	/*
5065 	 * If device receive two back-to-back send BDs with less than
5066 	 * or equal to 8 total bytes then the device may hang.  The two
5067 	 * back-to-back send BDs must in the same frame for this failure
5068 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5069 	 * send BDs are there. If this is the case, allocate new mbuf
5070 	 * and copy the frame to workaround the silicon bug.
5071 	 */
5072 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5073 		if (n->m_len < 8) {
5074 			found++;
5075 			if (found > 1)
5076 				break;
5077 			continue;
5078 		}
5079 		found = 0;
5080 	}
5081 
5082 	if (found > 1) {
5083 		n = m_defrag(m, M_NOWAIT);
5084 		if (n == NULL)
5085 			m_freem(m);
5086 	} else
5087 		n = m;
5088 	return (n);
5089 }
5090 
5091 static struct mbuf *
5092 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5093     uint16_t *flags)
5094 {
5095 	struct ip *ip;
5096 	struct tcphdr *tcp;
5097 	struct mbuf *n;
5098 	uint16_t hlen;
5099 	uint32_t poff;
5100 
5101 	if (M_WRITABLE(m) == 0) {
5102 		/* Get a writable copy. */
5103 		n = m_dup(m, M_NOWAIT);
5104 		m_freem(m);
5105 		if (n == NULL)
5106 			return (NULL);
5107 		m = n;
5108 	}
5109 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5110 	if (m == NULL)
5111 		return (NULL);
5112 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5113 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5114 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5115 	if (m == NULL)
5116 		return (NULL);
5117 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5118 	m = m_pullup(m, poff + (tcp->th_off << 2));
5119 	if (m == NULL)
5120 		return (NULL);
5121 	/*
5122 	 * It seems controller doesn't modify IP length and TCP pseudo
5123 	 * checksum. These checksum computed by upper stack should be 0.
5124 	 */
5125 	*mss = m->m_pkthdr.tso_segsz;
5126 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5127 	ip->ip_sum = 0;
5128 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5129 	/* Clear pseudo checksum computed by TCP stack. */
5130 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5131 	tcp->th_sum = 0;
5132 	/*
5133 	 * Broadcom controllers uses different descriptor format for
5134 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5135 	 * license issue and lower performance of firmware based TSO
5136 	 * we only support hardware based TSO.
5137 	 */
5138 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5139 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5140 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5141 		/*
5142 		 * For BCM5717 and newer controllers, hardware based TSO
5143 		 * uses the 14 lower bits of the bge_mss field to store the
5144 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5145 		 * the IP/TCP header length.  The upper 6 bits of the header
5146 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5147 		 * frames are supported.
5148 		 */
5149 		*mss |= ((hlen & 0x3) << 14);
5150 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5151 	} else {
5152 		/*
5153 		 * For BCM5755 and newer controllers, hardware based TSO uses
5154 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5155 		 * store the IP/TCP header length. Jumbo frames are not
5156 		 * supported.
5157 		 */
5158 		*mss |= (hlen << 11);
5159 	}
5160 	return (m);
5161 }
5162 
5163 /*
5164  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5165  * pointers to descriptors.
5166  */
5167 static int
5168 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5169 {
5170 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5171 	bus_dmamap_t		map;
5172 	struct bge_tx_bd	*d;
5173 	struct mbuf		*m = *m_head;
5174 	uint32_t		idx = *txidx;
5175 	uint16_t		csum_flags, mss, vlan_tag;
5176 	int			nsegs, i, error;
5177 
5178 	csum_flags = 0;
5179 	mss = 0;
5180 	vlan_tag = 0;
5181 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5182 	    m->m_next != NULL) {
5183 		*m_head = bge_check_short_dma(m);
5184 		if (*m_head == NULL)
5185 			return (ENOBUFS);
5186 		m = *m_head;
5187 	}
5188 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5189 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5190 		if (*m_head == NULL)
5191 			return (ENOBUFS);
5192 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5193 		    BGE_TXBDFLAG_CPU_POST_DMA;
5194 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5195 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5196 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5197 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5198 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5199 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5200 			    (error = bge_cksum_pad(m)) != 0) {
5201 				m_freem(m);
5202 				*m_head = NULL;
5203 				return (error);
5204 			}
5205 		}
5206 	}
5207 
5208 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5209 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5210 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5211 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5212 		if (sc->bge_forced_collapse > 0 &&
5213 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5214 			/*
5215 			 * Forcedly collapse mbuf chains to overcome hardware
5216 			 * limitation which only support a single outstanding
5217 			 * DMA read operation.
5218 			 */
5219 			if (sc->bge_forced_collapse == 1)
5220 				m = m_defrag(m, M_NOWAIT);
5221 			else
5222 				m = m_collapse(m, M_NOWAIT,
5223 				    sc->bge_forced_collapse);
5224 			if (m == NULL)
5225 				m = *m_head;
5226 			*m_head = m;
5227 		}
5228 	}
5229 
5230 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5231 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5232 	    &nsegs, BUS_DMA_NOWAIT);
5233 	if (error == EFBIG) {
5234 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5235 		if (m == NULL) {
5236 			m_freem(*m_head);
5237 			*m_head = NULL;
5238 			return (ENOBUFS);
5239 		}
5240 		*m_head = m;
5241 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5242 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5243 		if (error) {
5244 			m_freem(m);
5245 			*m_head = NULL;
5246 			return (error);
5247 		}
5248 	} else if (error != 0)
5249 		return (error);
5250 
5251 	/* Check if we have enough free send BDs. */
5252 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5253 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5254 		return (ENOBUFS);
5255 	}
5256 
5257 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5258 
5259 	if (m->m_flags & M_VLANTAG) {
5260 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5261 		vlan_tag = m->m_pkthdr.ether_vtag;
5262 	}
5263 
5264 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5265 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5266 		/*
5267 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5268 		 * buffers cross into regions which are within MSS bytes of
5269 		 * a 4GB boundary.  If we encounter the condition, drop the
5270 		 * packet.
5271 		 */
5272 		for (i = 0; ; i++) {
5273 			d = &sc->bge_ldata.bge_tx_ring[idx];
5274 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5275 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5276 			d->bge_len = segs[i].ds_len;
5277 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5278 			    d->bge_addr.bge_addr_lo)
5279 				break;
5280 			d->bge_flags = csum_flags;
5281 			d->bge_vlan_tag = vlan_tag;
5282 			d->bge_mss = mss;
5283 			if (i == nsegs - 1)
5284 				break;
5285 			BGE_INC(idx, BGE_TX_RING_CNT);
5286 		}
5287 		if (i != nsegs - 1) {
5288 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5289 			    BUS_DMASYNC_POSTWRITE);
5290 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5291 			m_freem(*m_head);
5292 			*m_head = NULL;
5293 			return (EIO);
5294 		}
5295 	} else {
5296 		for (i = 0; ; i++) {
5297 			d = &sc->bge_ldata.bge_tx_ring[idx];
5298 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5299 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5300 			d->bge_len = segs[i].ds_len;
5301 			d->bge_flags = csum_flags;
5302 			d->bge_vlan_tag = vlan_tag;
5303 			d->bge_mss = mss;
5304 			if (i == nsegs - 1)
5305 				break;
5306 			BGE_INC(idx, BGE_TX_RING_CNT);
5307 		}
5308 	}
5309 
5310 	/* Mark the last segment as end of packet... */
5311 	d->bge_flags |= BGE_TXBDFLAG_END;
5312 
5313 	/*
5314 	 * Insure that the map for this transmission
5315 	 * is placed at the array index of the last descriptor
5316 	 * in this chain.
5317 	 */
5318 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5319 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5320 	sc->bge_cdata.bge_tx_chain[idx] = m;
5321 	sc->bge_txcnt += nsegs;
5322 
5323 	BGE_INC(idx, BGE_TX_RING_CNT);
5324 	*txidx = idx;
5325 
5326 	return (0);
5327 }
5328 
5329 /*
5330  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5331  * to the mbuf data regions directly in the transmit descriptors.
5332  */
5333 static void
5334 bge_start_locked(struct ifnet *ifp)
5335 {
5336 	struct bge_softc *sc;
5337 	struct mbuf *m_head;
5338 	uint32_t prodidx;
5339 	int count;
5340 
5341 	sc = ifp->if_softc;
5342 	BGE_LOCK_ASSERT(sc);
5343 
5344 	if (!sc->bge_link ||
5345 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5346 	    IFF_DRV_RUNNING)
5347 		return;
5348 
5349 	prodidx = sc->bge_tx_prodidx;
5350 
5351 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5352 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5353 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5354 			break;
5355 		}
5356 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5357 		if (m_head == NULL)
5358 			break;
5359 
5360 		/*
5361 		 * Pack the data into the transmit ring. If we
5362 		 * don't have room, set the OACTIVE flag and wait
5363 		 * for the NIC to drain the ring.
5364 		 */
5365 		if (bge_encap(sc, &m_head, &prodidx)) {
5366 			if (m_head == NULL)
5367 				break;
5368 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5369 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5370 			break;
5371 		}
5372 		++count;
5373 
5374 		/*
5375 		 * If there's a BPF listener, bounce a copy of this frame
5376 		 * to him.
5377 		 */
5378 #ifdef ETHER_BPF_MTAP
5379 		ETHER_BPF_MTAP(ifp, m_head);
5380 #else
5381 		BPF_MTAP(ifp, m_head);
5382 #endif
5383 	}
5384 
5385 	if (count > 0) {
5386 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5387 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5388 		/* Transmit. */
5389 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5390 		/* 5700 b2 errata */
5391 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5392 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5393 
5394 		sc->bge_tx_prodidx = prodidx;
5395 
5396 		/*
5397 		 * Set a timeout in case the chip goes out to lunch.
5398 		 */
5399 		sc->bge_timer = BGE_TX_TIMEOUT;
5400 	}
5401 }
5402 
5403 /*
5404  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5405  * to the mbuf data regions directly in the transmit descriptors.
5406  */
5407 static void
5408 bge_start(struct ifnet *ifp)
5409 {
5410 	struct bge_softc *sc;
5411 
5412 	sc = ifp->if_softc;
5413 	BGE_LOCK(sc);
5414 	bge_start_locked(ifp);
5415 	BGE_UNLOCK(sc);
5416 }
5417 
5418 static void
5419 bge_init_locked(struct bge_softc *sc)
5420 {
5421 	struct ifnet *ifp;
5422 	uint16_t *m;
5423 	uint32_t mode;
5424 
5425 	BGE_LOCK_ASSERT(sc);
5426 
5427 	ifp = sc->bge_ifp;
5428 
5429 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5430 		return;
5431 
5432 	/* Cancel pending I/O and flush buffers. */
5433 	bge_stop(sc);
5434 
5435 	bge_stop_fw(sc);
5436 	bge_sig_pre_reset(sc, BGE_RESET_START);
5437 	bge_reset(sc);
5438 	bge_sig_legacy(sc, BGE_RESET_START);
5439 	bge_sig_post_reset(sc, BGE_RESET_START);
5440 
5441 	bge_chipinit(sc);
5442 
5443 	/*
5444 	 * Init the various state machines, ring
5445 	 * control blocks and firmware.
5446 	 */
5447 	if (bge_blockinit(sc)) {
5448 		device_printf(sc->bge_dev, "initialization failure\n");
5449 		return;
5450 	}
5451 
5452 	ifp = sc->bge_ifp;
5453 
5454 	/* Specify MTU. */
5455 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5456 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5457 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5458 
5459 	/* Load our MAC address. */
5460 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5461 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5462 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5463 
5464 	/* Program promiscuous mode. */
5465 	bge_setpromisc(sc);
5466 
5467 	/* Program multicast filter. */
5468 	bge_setmulti(sc);
5469 
5470 	/* Program VLAN tag stripping. */
5471 	bge_setvlan(sc);
5472 
5473 	/* Override UDP checksum offloading. */
5474 	if (sc->bge_forced_udpcsum == 0)
5475 		sc->bge_csum_features &= ~CSUM_UDP;
5476 	else
5477 		sc->bge_csum_features |= CSUM_UDP;
5478 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5479 	    ifp->if_capenable & IFCAP_TXCSUM) {
5480 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5481 		ifp->if_hwassist |= sc->bge_csum_features;
5482 	}
5483 
5484 	/* Init RX ring. */
5485 	if (bge_init_rx_ring_std(sc) != 0) {
5486 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5487 		bge_stop(sc);
5488 		return;
5489 	}
5490 
5491 	/*
5492 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5493 	 * memory to insure that the chip has in fact read the first
5494 	 * entry of the ring.
5495 	 */
5496 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5497 		uint32_t		v, i;
5498 		for (i = 0; i < 10; i++) {
5499 			DELAY(20);
5500 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5501 			if (v == (MCLBYTES - ETHER_ALIGN))
5502 				break;
5503 		}
5504 		if (i == 10)
5505 			device_printf (sc->bge_dev,
5506 			    "5705 A0 chip failed to load RX ring\n");
5507 	}
5508 
5509 	/* Init jumbo RX ring. */
5510 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5511 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5512 	    (MCLBYTES - ETHER_ALIGN)) {
5513 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5514 			device_printf(sc->bge_dev,
5515 			    "no memory for jumbo Rx buffers.\n");
5516 			bge_stop(sc);
5517 			return;
5518 		}
5519 	}
5520 
5521 	/* Init our RX return ring index. */
5522 	sc->bge_rx_saved_considx = 0;
5523 
5524 	/* Init our RX/TX stat counters. */
5525 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5526 
5527 	/* Init TX ring. */
5528 	bge_init_tx_ring(sc);
5529 
5530 	/* Enable TX MAC state machine lockup fix. */
5531 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5532 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5533 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5534 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5535 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5536 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5537 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5538 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5539 	}
5540 	/* Turn on transmitter. */
5541 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5542 	DELAY(100);
5543 
5544 	/* Turn on receiver. */
5545 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5546 	if (BGE_IS_5755_PLUS(sc))
5547 		mode |= BGE_RXMODE_IPV6_ENABLE;
5548 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5549 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5550 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5551 	DELAY(10);
5552 
5553 	/*
5554 	 * Set the number of good frames to receive after RX MBUF
5555 	 * Low Watermark has been reached. After the RX MAC receives
5556 	 * this number of frames, it will drop subsequent incoming
5557 	 * frames until the MBUF High Watermark is reached.
5558 	 */
5559 	if (BGE_IS_57765_PLUS(sc))
5560 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5561 	else
5562 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5563 
5564 	/* Clear MAC statistics. */
5565 	if (BGE_IS_5705_PLUS(sc))
5566 		bge_stats_clear_regs(sc);
5567 
5568 	/* Tell firmware we're alive. */
5569 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5570 
5571 #ifdef DEVICE_POLLING
5572 	/* Disable interrupts if we are polling. */
5573 	if (ifp->if_capenable & IFCAP_POLLING) {
5574 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5575 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5576 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5577 	} else
5578 #endif
5579 
5580 	/* Enable host interrupts. */
5581 	{
5582 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5583 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5584 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5585 	}
5586 
5587 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5588 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5589 
5590 	bge_ifmedia_upd_locked(ifp);
5591 
5592 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5593 }
5594 
5595 static void
5596 bge_init(void *xsc)
5597 {
5598 	struct bge_softc *sc = xsc;
5599 
5600 	BGE_LOCK(sc);
5601 	bge_init_locked(sc);
5602 	BGE_UNLOCK(sc);
5603 }
5604 
5605 /*
5606  * Set media options.
5607  */
5608 static int
5609 bge_ifmedia_upd(struct ifnet *ifp)
5610 {
5611 	struct bge_softc *sc = ifp->if_softc;
5612 	int res;
5613 
5614 	BGE_LOCK(sc);
5615 	res = bge_ifmedia_upd_locked(ifp);
5616 	BGE_UNLOCK(sc);
5617 
5618 	return (res);
5619 }
5620 
5621 static int
5622 bge_ifmedia_upd_locked(struct ifnet *ifp)
5623 {
5624 	struct bge_softc *sc = ifp->if_softc;
5625 	struct mii_data *mii;
5626 	struct mii_softc *miisc;
5627 	struct ifmedia *ifm;
5628 
5629 	BGE_LOCK_ASSERT(sc);
5630 
5631 	ifm = &sc->bge_ifmedia;
5632 
5633 	/* If this is a 1000baseX NIC, enable the TBI port. */
5634 	if (sc->bge_flags & BGE_FLAG_TBI) {
5635 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5636 			return (EINVAL);
5637 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5638 		case IFM_AUTO:
5639 			/*
5640 			 * The BCM5704 ASIC appears to have a special
5641 			 * mechanism for programming the autoneg
5642 			 * advertisement registers in TBI mode.
5643 			 */
5644 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5645 				uint32_t sgdig;
5646 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5647 				if (sgdig & BGE_SGDIGSTS_DONE) {
5648 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5649 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5650 					sgdig |= BGE_SGDIGCFG_AUTO |
5651 					    BGE_SGDIGCFG_PAUSE_CAP |
5652 					    BGE_SGDIGCFG_ASYM_PAUSE;
5653 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5654 					    sgdig | BGE_SGDIGCFG_SEND);
5655 					DELAY(5);
5656 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5657 				}
5658 			}
5659 			break;
5660 		case IFM_1000_SX:
5661 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5662 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5663 				    BGE_MACMODE_HALF_DUPLEX);
5664 			} else {
5665 				BGE_SETBIT(sc, BGE_MAC_MODE,
5666 				    BGE_MACMODE_HALF_DUPLEX);
5667 			}
5668 			DELAY(40);
5669 			break;
5670 		default:
5671 			return (EINVAL);
5672 		}
5673 		return (0);
5674 	}
5675 
5676 	sc->bge_link_evt++;
5677 	mii = device_get_softc(sc->bge_miibus);
5678 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5679 		PHY_RESET(miisc);
5680 	mii_mediachg(mii);
5681 
5682 	/*
5683 	 * Force an interrupt so that we will call bge_link_upd
5684 	 * if needed and clear any pending link state attention.
5685 	 * Without this we are not getting any further interrupts
5686 	 * for link state changes and thus will not UP the link and
5687 	 * not be able to send in bge_start_locked. The only
5688 	 * way to get things working was to receive a packet and
5689 	 * get an RX intr.
5690 	 * bge_tick should help for fiber cards and we might not
5691 	 * need to do this here if BGE_FLAG_TBI is set but as
5692 	 * we poll for fiber anyway it should not harm.
5693 	 */
5694 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5695 	    sc->bge_flags & BGE_FLAG_5788)
5696 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5697 	else
5698 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5699 
5700 	return (0);
5701 }
5702 
5703 /*
5704  * Report current media status.
5705  */
5706 static void
5707 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5708 {
5709 	struct bge_softc *sc = ifp->if_softc;
5710 	struct mii_data *mii;
5711 
5712 	BGE_LOCK(sc);
5713 
5714 	if ((ifp->if_flags & IFF_UP) == 0) {
5715 		BGE_UNLOCK(sc);
5716 		return;
5717 	}
5718 	if (sc->bge_flags & BGE_FLAG_TBI) {
5719 		ifmr->ifm_status = IFM_AVALID;
5720 		ifmr->ifm_active = IFM_ETHER;
5721 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5722 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5723 			ifmr->ifm_status |= IFM_ACTIVE;
5724 		else {
5725 			ifmr->ifm_active |= IFM_NONE;
5726 			BGE_UNLOCK(sc);
5727 			return;
5728 		}
5729 		ifmr->ifm_active |= IFM_1000_SX;
5730 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5731 			ifmr->ifm_active |= IFM_HDX;
5732 		else
5733 			ifmr->ifm_active |= IFM_FDX;
5734 		BGE_UNLOCK(sc);
5735 		return;
5736 	}
5737 
5738 	mii = device_get_softc(sc->bge_miibus);
5739 	mii_pollstat(mii);
5740 	ifmr->ifm_active = mii->mii_media_active;
5741 	ifmr->ifm_status = mii->mii_media_status;
5742 
5743 	BGE_UNLOCK(sc);
5744 }
5745 
5746 static int
5747 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5748 {
5749 	struct bge_softc *sc = ifp->if_softc;
5750 	struct ifreq *ifr = (struct ifreq *) data;
5751 	struct mii_data *mii;
5752 	int flags, mask, error = 0;
5753 
5754 	switch (command) {
5755 	case SIOCSIFMTU:
5756 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5757 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5758 			if (ifr->ifr_mtu < ETHERMIN ||
5759 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5760 				error = EINVAL;
5761 				break;
5762 			}
5763 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5764 			error = EINVAL;
5765 			break;
5766 		}
5767 		BGE_LOCK(sc);
5768 		if (ifp->if_mtu != ifr->ifr_mtu) {
5769 			ifp->if_mtu = ifr->ifr_mtu;
5770 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5771 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5772 				bge_init_locked(sc);
5773 			}
5774 		}
5775 		BGE_UNLOCK(sc);
5776 		break;
5777 	case SIOCSIFFLAGS:
5778 		BGE_LOCK(sc);
5779 		if (ifp->if_flags & IFF_UP) {
5780 			/*
5781 			 * If only the state of the PROMISC flag changed,
5782 			 * then just use the 'set promisc mode' command
5783 			 * instead of reinitializing the entire NIC. Doing
5784 			 * a full re-init means reloading the firmware and
5785 			 * waiting for it to start up, which may take a
5786 			 * second or two.  Similarly for ALLMULTI.
5787 			 */
5788 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5789 				flags = ifp->if_flags ^ sc->bge_if_flags;
5790 				if (flags & IFF_PROMISC)
5791 					bge_setpromisc(sc);
5792 				if (flags & IFF_ALLMULTI)
5793 					bge_setmulti(sc);
5794 			} else
5795 				bge_init_locked(sc);
5796 		} else {
5797 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5798 				bge_stop(sc);
5799 			}
5800 		}
5801 		sc->bge_if_flags = ifp->if_flags;
5802 		BGE_UNLOCK(sc);
5803 		error = 0;
5804 		break;
5805 	case SIOCADDMULTI:
5806 	case SIOCDELMULTI:
5807 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5808 			BGE_LOCK(sc);
5809 			bge_setmulti(sc);
5810 			BGE_UNLOCK(sc);
5811 			error = 0;
5812 		}
5813 		break;
5814 	case SIOCSIFMEDIA:
5815 	case SIOCGIFMEDIA:
5816 		if (sc->bge_flags & BGE_FLAG_TBI) {
5817 			error = ifmedia_ioctl(ifp, ifr,
5818 			    &sc->bge_ifmedia, command);
5819 		} else {
5820 			mii = device_get_softc(sc->bge_miibus);
5821 			error = ifmedia_ioctl(ifp, ifr,
5822 			    &mii->mii_media, command);
5823 		}
5824 		break;
5825 	case SIOCSIFCAP:
5826 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5827 #ifdef DEVICE_POLLING
5828 		if (mask & IFCAP_POLLING) {
5829 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5830 				error = ether_poll_register(bge_poll, ifp);
5831 				if (error)
5832 					return (error);
5833 				BGE_LOCK(sc);
5834 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5835 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5836 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5837 				ifp->if_capenable |= IFCAP_POLLING;
5838 				BGE_UNLOCK(sc);
5839 			} else {
5840 				error = ether_poll_deregister(ifp);
5841 				/* Enable interrupt even in error case */
5842 				BGE_LOCK(sc);
5843 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5844 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5845 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5846 				ifp->if_capenable &= ~IFCAP_POLLING;
5847 				BGE_UNLOCK(sc);
5848 			}
5849 		}
5850 #endif
5851 		if ((mask & IFCAP_TXCSUM) != 0 &&
5852 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5853 			ifp->if_capenable ^= IFCAP_TXCSUM;
5854 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5855 				ifp->if_hwassist |= sc->bge_csum_features;
5856 			else
5857 				ifp->if_hwassist &= ~sc->bge_csum_features;
5858 		}
5859 
5860 		if ((mask & IFCAP_RXCSUM) != 0 &&
5861 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5862 			ifp->if_capenable ^= IFCAP_RXCSUM;
5863 
5864 		if ((mask & IFCAP_TSO4) != 0 &&
5865 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5866 			ifp->if_capenable ^= IFCAP_TSO4;
5867 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5868 				ifp->if_hwassist |= CSUM_TSO;
5869 			else
5870 				ifp->if_hwassist &= ~CSUM_TSO;
5871 		}
5872 
5873 		if (mask & IFCAP_VLAN_MTU) {
5874 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5875 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5876 			bge_init(sc);
5877 		}
5878 
5879 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5880 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5881 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5882 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5883 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5884 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5885 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5886 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5887 			BGE_LOCK(sc);
5888 			bge_setvlan(sc);
5889 			BGE_UNLOCK(sc);
5890 		}
5891 #ifdef VLAN_CAPABILITIES
5892 		VLAN_CAPABILITIES(ifp);
5893 #endif
5894 		break;
5895 	default:
5896 		error = ether_ioctl(ifp, command, data);
5897 		break;
5898 	}
5899 
5900 	return (error);
5901 }
5902 
5903 static void
5904 bge_watchdog(struct bge_softc *sc)
5905 {
5906 	struct ifnet *ifp;
5907 	uint32_t status;
5908 
5909 	BGE_LOCK_ASSERT(sc);
5910 
5911 	if (sc->bge_timer == 0 || --sc->bge_timer)
5912 		return;
5913 
5914 	/* If pause frames are active then don't reset the hardware. */
5915 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5916 		status = CSR_READ_4(sc, BGE_RX_STS);
5917 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5918 			/*
5919 			 * If link partner has us in XOFF state then wait for
5920 			 * the condition to clear.
5921 			 */
5922 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5923 			sc->bge_timer = BGE_TX_TIMEOUT;
5924 			return;
5925 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5926 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5927 			/*
5928 			 * If link partner has us in XOFF state then wait for
5929 			 * the condition to clear.
5930 			 */
5931 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5932 			sc->bge_timer = BGE_TX_TIMEOUT;
5933 			return;
5934 		}
5935 		/*
5936 		 * Any other condition is unexpected and the controller
5937 		 * should be reset.
5938 		 */
5939 	}
5940 
5941 	ifp = sc->bge_ifp;
5942 
5943 	if_printf(ifp, "watchdog timeout -- resetting\n");
5944 
5945 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5946 	bge_init_locked(sc);
5947 
5948 	ifp->if_oerrors++;
5949 }
5950 
5951 static void
5952 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5953 {
5954 	int i;
5955 
5956 	BGE_CLRBIT(sc, reg, bit);
5957 
5958 	for (i = 0; i < BGE_TIMEOUT; i++) {
5959 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5960 			return;
5961 		DELAY(100);
5962         }
5963 }
5964 
5965 /*
5966  * Stop the adapter and free any mbufs allocated to the
5967  * RX and TX lists.
5968  */
5969 static void
5970 bge_stop(struct bge_softc *sc)
5971 {
5972 	struct ifnet *ifp;
5973 
5974 	BGE_LOCK_ASSERT(sc);
5975 
5976 	ifp = sc->bge_ifp;
5977 
5978 	callout_stop(&sc->bge_stat_ch);
5979 
5980 	/* Disable host interrupts. */
5981 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5982 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5983 
5984 	/*
5985 	 * Tell firmware we're shutting down.
5986 	 */
5987 	bge_stop_fw(sc);
5988 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5989 
5990 	/*
5991 	 * Disable all of the receiver blocks.
5992 	 */
5993 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5994 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5995 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5996 	if (BGE_IS_5700_FAMILY(sc))
5997 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5998 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5999 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6000 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6001 
6002 	/*
6003 	 * Disable all of the transmit blocks.
6004 	 */
6005 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6006 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6008 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6009 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6010 	if (BGE_IS_5700_FAMILY(sc))
6011 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6012 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6013 
6014 	/*
6015 	 * Shut down all of the memory managers and related
6016 	 * state machines.
6017 	 */
6018 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6019 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6020 	if (BGE_IS_5700_FAMILY(sc))
6021 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6022 
6023 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6024 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6025 	if (!(BGE_IS_5705_PLUS(sc))) {
6026 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6027 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6028 	}
6029 	/* Update MAC statistics. */
6030 	if (BGE_IS_5705_PLUS(sc))
6031 		bge_stats_update_regs(sc);
6032 
6033 	bge_reset(sc);
6034 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6035 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6036 
6037 	/*
6038 	 * Keep the ASF firmware running if up.
6039 	 */
6040 	if (sc->bge_asf_mode & ASF_STACKUP)
6041 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6042 	else
6043 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6044 
6045 	/* Free the RX lists. */
6046 	bge_free_rx_ring_std(sc);
6047 
6048 	/* Free jumbo RX list. */
6049 	if (BGE_IS_JUMBO_CAPABLE(sc))
6050 		bge_free_rx_ring_jumbo(sc);
6051 
6052 	/* Free TX buffers. */
6053 	bge_free_tx_ring(sc);
6054 
6055 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6056 
6057 	/* Clear MAC's link state (PHY may still have link UP). */
6058 	if (bootverbose && sc->bge_link)
6059 		if_printf(sc->bge_ifp, "link DOWN\n");
6060 	sc->bge_link = 0;
6061 
6062 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6063 }
6064 
6065 /*
6066  * Stop all chip I/O so that the kernel's probe routines don't
6067  * get confused by errant DMAs when rebooting.
6068  */
6069 static int
6070 bge_shutdown(device_t dev)
6071 {
6072 	struct bge_softc *sc;
6073 
6074 	sc = device_get_softc(dev);
6075 	BGE_LOCK(sc);
6076 	bge_stop(sc);
6077 	BGE_UNLOCK(sc);
6078 
6079 	return (0);
6080 }
6081 
6082 static int
6083 bge_suspend(device_t dev)
6084 {
6085 	struct bge_softc *sc;
6086 
6087 	sc = device_get_softc(dev);
6088 	BGE_LOCK(sc);
6089 	bge_stop(sc);
6090 	BGE_UNLOCK(sc);
6091 
6092 	return (0);
6093 }
6094 
6095 static int
6096 bge_resume(device_t dev)
6097 {
6098 	struct bge_softc *sc;
6099 	struct ifnet *ifp;
6100 
6101 	sc = device_get_softc(dev);
6102 	BGE_LOCK(sc);
6103 	ifp = sc->bge_ifp;
6104 	if (ifp->if_flags & IFF_UP) {
6105 		bge_init_locked(sc);
6106 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6107 			bge_start_locked(ifp);
6108 	}
6109 	BGE_UNLOCK(sc);
6110 
6111 	return (0);
6112 }
6113 
6114 static void
6115 bge_link_upd(struct bge_softc *sc)
6116 {
6117 	struct mii_data *mii;
6118 	uint32_t link, status;
6119 
6120 	BGE_LOCK_ASSERT(sc);
6121 
6122 	/* Clear 'pending link event' flag. */
6123 	sc->bge_link_evt = 0;
6124 
6125 	/*
6126 	 * Process link state changes.
6127 	 * Grrr. The link status word in the status block does
6128 	 * not work correctly on the BCM5700 rev AX and BX chips,
6129 	 * according to all available information. Hence, we have
6130 	 * to enable MII interrupts in order to properly obtain
6131 	 * async link changes. Unfortunately, this also means that
6132 	 * we have to read the MAC status register to detect link
6133 	 * changes, thereby adding an additional register access to
6134 	 * the interrupt handler.
6135 	 *
6136 	 * XXX: perhaps link state detection procedure used for
6137 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6138 	 */
6139 
6140 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6141 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6142 		status = CSR_READ_4(sc, BGE_MAC_STS);
6143 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6144 			mii = device_get_softc(sc->bge_miibus);
6145 			mii_pollstat(mii);
6146 			if (!sc->bge_link &&
6147 			    mii->mii_media_status & IFM_ACTIVE &&
6148 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6149 				sc->bge_link++;
6150 				if (bootverbose)
6151 					if_printf(sc->bge_ifp, "link UP\n");
6152 			} else if (sc->bge_link &&
6153 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6154 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6155 				sc->bge_link = 0;
6156 				if (bootverbose)
6157 					if_printf(sc->bge_ifp, "link DOWN\n");
6158 			}
6159 
6160 			/* Clear the interrupt. */
6161 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6162 			    BGE_EVTENB_MI_INTERRUPT);
6163 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6164 			    BRGPHY_MII_ISR);
6165 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6166 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6167 		}
6168 		return;
6169 	}
6170 
6171 	if (sc->bge_flags & BGE_FLAG_TBI) {
6172 		status = CSR_READ_4(sc, BGE_MAC_STS);
6173 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6174 			if (!sc->bge_link) {
6175 				sc->bge_link++;
6176 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6177 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6178 					    BGE_MACMODE_TBI_SEND_CFGS);
6179 					DELAY(40);
6180 				}
6181 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6182 				if (bootverbose)
6183 					if_printf(sc->bge_ifp, "link UP\n");
6184 				if_link_state_change(sc->bge_ifp,
6185 				    LINK_STATE_UP);
6186 			}
6187 		} else if (sc->bge_link) {
6188 			sc->bge_link = 0;
6189 			if (bootverbose)
6190 				if_printf(sc->bge_ifp, "link DOWN\n");
6191 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6192 		}
6193 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6194 		/*
6195 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6196 		 * in status word always set. Workaround this bug by reading
6197 		 * PHY link status directly.
6198 		 */
6199 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6200 
6201 		if (link != sc->bge_link ||
6202 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6203 			mii = device_get_softc(sc->bge_miibus);
6204 			mii_pollstat(mii);
6205 			if (!sc->bge_link &&
6206 			    mii->mii_media_status & IFM_ACTIVE &&
6207 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6208 				sc->bge_link++;
6209 				if (bootverbose)
6210 					if_printf(sc->bge_ifp, "link UP\n");
6211 			} else if (sc->bge_link &&
6212 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6213 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6214 				sc->bge_link = 0;
6215 				if (bootverbose)
6216 					if_printf(sc->bge_ifp, "link DOWN\n");
6217 			}
6218 		}
6219 	} else {
6220 		/*
6221 		 * For controllers that call mii_tick, we have to poll
6222 		 * link status.
6223 		 */
6224 		mii = device_get_softc(sc->bge_miibus);
6225 		mii_pollstat(mii);
6226 		bge_miibus_statchg(sc->bge_dev);
6227 	}
6228 
6229 	/* Disable MAC attention when link is up. */
6230 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6231 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6232 	    BGE_MACSTAT_LINK_CHANGED);
6233 }
6234 
6235 static void
6236 bge_add_sysctls(struct bge_softc *sc)
6237 {
6238 	struct sysctl_ctx_list *ctx;
6239 	struct sysctl_oid_list *children;
6240 	char tn[32];
6241 	int unit;
6242 
6243 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6244 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6245 
6246 #ifdef BGE_REGISTER_DEBUG
6247 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6248 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6249 	    "Debug Information");
6250 
6251 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6252 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6253 	    "MAC Register Read");
6254 
6255 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6256 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6257 	    "APE Register Read");
6258 
6259 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6260 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6261 	    "Memory Read");
6262 
6263 #endif
6264 
6265 	unit = device_get_unit(sc->bge_dev);
6266 	/*
6267 	 * A common design characteristic for many Broadcom client controllers
6268 	 * is that they only support a single outstanding DMA read operation
6269 	 * on the PCIe bus. This means that it will take twice as long to fetch
6270 	 * a TX frame that is split into header and payload buffers as it does
6271 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6272 	 * these controllers, coalescing buffers to reduce the number of memory
6273 	 * reads is effective way to get maximum performance(about 940Mbps).
6274 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6275 	 * performance is about 850Mbps. However forcing coalescing mbufs
6276 	 * consumes a lot of CPU cycles, so leave it off by default.
6277 	 */
6278 	sc->bge_forced_collapse = 0;
6279 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6280 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6281 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6282 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6283 	    "Number of fragmented TX buffers of a frame allowed before "
6284 	    "forced collapsing");
6285 
6286 	sc->bge_msi = 1;
6287 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6288 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6289 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6290 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6291 
6292 	/*
6293 	 * It seems all Broadcom controllers have a bug that can generate UDP
6294 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6295 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6296 	 * Even though the probability of generating such UDP datagrams is
6297 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6298 	 * into network so disable UDP checksum offloading by default.  Users
6299 	 * still override this behavior by setting a sysctl variable,
6300 	 * dev.bge.0.forced_udpcsum.
6301 	 */
6302 	sc->bge_forced_udpcsum = 0;
6303 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6304 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6305 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6306 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6307 	    "Enable UDP checksum offloading even if controller can "
6308 	    "generate UDP checksum value 0");
6309 
6310 	if (BGE_IS_5705_PLUS(sc))
6311 		bge_add_sysctl_stats_regs(sc, ctx, children);
6312 	else
6313 		bge_add_sysctl_stats(sc, ctx, children);
6314 }
6315 
6316 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6317 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6318 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6319 	    desc)
6320 
6321 static void
6322 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6323     struct sysctl_oid_list *parent)
6324 {
6325 	struct sysctl_oid *tree;
6326 	struct sysctl_oid_list *children, *schildren;
6327 
6328 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6329 	    NULL, "BGE Statistics");
6330 	schildren = children = SYSCTL_CHILDREN(tree);
6331 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6332 	    children, COSFramesDroppedDueToFilters,
6333 	    "FramesDroppedDueToFilters");
6334 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6335 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6336 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6337 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6338 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6339 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6340 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6341 	    children, ifInDiscards, "InputDiscards");
6342 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6343 	    children, ifInErrors, "InputErrors");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6345 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6347 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6349 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6351 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6353 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6355 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6356 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6357 	    children, nicInterrupts, "Interrupts");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6359 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6361 	    children, nicSendThresholdHit, "SendThresholdHit");
6362 
6363 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6364 	    NULL, "BGE RX Statistics");
6365 	children = SYSCTL_CHILDREN(tree);
6366 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6367 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6368 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6369 	    children, rxstats.etherStatsFragments, "Fragments");
6370 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6371 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6372 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6373 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6374 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6375 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6376 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6377 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6378 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6379 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6380 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6381 	    children, rxstats.xoffPauseFramesReceived,
6382 	    "xoffPauseFramesReceived");
6383 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6384 	    children, rxstats.macControlFramesReceived,
6385 	    "ControlFramesReceived");
6386 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6387 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6389 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6391 	    children, rxstats.etherStatsJabbers, "Jabbers");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6393 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6394 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6395 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6396 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6397 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6398 
6399 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6400 	    NULL, "BGE TX Statistics");
6401 	children = SYSCTL_CHILDREN(tree);
6402 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6403 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6404 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6405 	    children, txstats.etherStatsCollisions, "Collisions");
6406 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6407 	    children, txstats.outXonSent, "XonSent");
6408 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6409 	    children, txstats.outXoffSent, "XoffSent");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6411 	    children, txstats.flowControlDone, "flowControlDone");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6413 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6414 	    "InternalMacTransmitErrors");
6415 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6416 	    children, txstats.dot3StatsSingleCollisionFrames,
6417 	    "SingleCollisionFrames");
6418 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6419 	    children, txstats.dot3StatsMultipleCollisionFrames,
6420 	    "MultipleCollisionFrames");
6421 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6422 	    children, txstats.dot3StatsDeferredTransmissions,
6423 	    "DeferredTransmissions");
6424 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6425 	    children, txstats.dot3StatsExcessiveCollisions,
6426 	    "ExcessiveCollisions");
6427 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6428 	    children, txstats.dot3StatsLateCollisions,
6429 	    "LateCollisions");
6430 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6431 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6433 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6435 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6436 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6437 	    children, txstats.dot3StatsCarrierSenseErrors,
6438 	    "CarrierSenseErrors");
6439 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6440 	    children, txstats.ifOutDiscards, "Discards");
6441 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6442 	    children, txstats.ifOutErrors, "Errors");
6443 }
6444 
6445 #undef BGE_SYSCTL_STAT
6446 
6447 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6448 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6449 
6450 static void
6451 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6452     struct sysctl_oid_list *parent)
6453 {
6454 	struct sysctl_oid *tree;
6455 	struct sysctl_oid_list *child, *schild;
6456 	struct bge_mac_stats *stats;
6457 
6458 	stats = &sc->bge_mac_stats;
6459 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6460 	    NULL, "BGE Statistics");
6461 	schild = child = SYSCTL_CHILDREN(tree);
6462 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6463 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6464 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6465 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6466 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6467 	    &stats->DmaWriteHighPriQueueFull,
6468 	    "NIC DMA Write High Priority Queue Full");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6470 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6472 	    &stats->InputDiscards, "Discarded Input Frames");
6473 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6474 	    &stats->InputErrors, "Input Errors");
6475 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6476 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6477 
6478 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6479 	    NULL, "BGE RX Statistics");
6480 	child = SYSCTL_CHILDREN(tree);
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6482 	    &stats->ifHCInOctets, "Inbound Octets");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6484 	    &stats->etherStatsFragments, "Fragments");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6486 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6488 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6490 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6492 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6494 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6496 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6498 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6500 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6502 	    &stats->xoffStateEntered, "XOFF State Entered");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6504 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6506 	    &stats->etherStatsJabbers, "Jabbers");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6508 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6509 
6510 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6511 	    NULL, "BGE TX Statistics");
6512 	child = SYSCTL_CHILDREN(tree);
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6514 	    &stats->ifHCOutOctets, "Outbound Octets");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6516 	    &stats->etherStatsCollisions, "TX Collisions");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6518 	    &stats->outXonSent, "XON Sent");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6520 	    &stats->outXoffSent, "XOFF Sent");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6522 	    &stats->dot3StatsInternalMacTransmitErrors,
6523 	    "Internal MAC TX Errors");
6524 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6525 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6526 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6527 	    &stats->dot3StatsMultipleCollisionFrames,
6528 	    "Multiple Collision Frames");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6530 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6532 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6534 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6536 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6538 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6539 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6540 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6541 }
6542 
6543 #undef	BGE_SYSCTL_STAT_ADD64
6544 
6545 static int
6546 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6547 {
6548 	struct bge_softc *sc;
6549 	uint32_t result;
6550 	int offset;
6551 
6552 	sc = (struct bge_softc *)arg1;
6553 	offset = arg2;
6554 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6555 	    offsetof(bge_hostaddr, bge_addr_lo));
6556 	return (sysctl_handle_int(oidp, &result, 0, req));
6557 }
6558 
6559 #ifdef BGE_REGISTER_DEBUG
6560 static int
6561 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6562 {
6563 	struct bge_softc *sc;
6564 	uint16_t *sbdata;
6565 	int error, result, sbsz;
6566 	int i, j;
6567 
6568 	result = -1;
6569 	error = sysctl_handle_int(oidp, &result, 0, req);
6570 	if (error || (req->newptr == NULL))
6571 		return (error);
6572 
6573 	if (result == 1) {
6574 		sc = (struct bge_softc *)arg1;
6575 
6576 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6577 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6578 			sbsz = BGE_STATUS_BLK_SZ;
6579 		else
6580 			sbsz = 32;
6581 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6582 		printf("Status Block:\n");
6583 		BGE_LOCK(sc);
6584 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6585 		    sc->bge_cdata.bge_status_map,
6586 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6587 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6588 			printf("%06x:", i);
6589 			for (j = 0; j < 8; j++)
6590 				printf(" %04x", sbdata[i++]);
6591 			printf("\n");
6592 		}
6593 
6594 		printf("Registers:\n");
6595 		for (i = 0x800; i < 0xA00; ) {
6596 			printf("%06x:", i);
6597 			for (j = 0; j < 8; j++) {
6598 				printf(" %08x", CSR_READ_4(sc, i));
6599 				i += 4;
6600 			}
6601 			printf("\n");
6602 		}
6603 		BGE_UNLOCK(sc);
6604 
6605 		printf("Hardware Flags:\n");
6606 		if (BGE_IS_5717_PLUS(sc))
6607 			printf(" - 5717 Plus\n");
6608 		if (BGE_IS_5755_PLUS(sc))
6609 			printf(" - 5755 Plus\n");
6610 		if (BGE_IS_575X_PLUS(sc))
6611 			printf(" - 575X Plus\n");
6612 		if (BGE_IS_5705_PLUS(sc))
6613 			printf(" - 5705 Plus\n");
6614 		if (BGE_IS_5714_FAMILY(sc))
6615 			printf(" - 5714 Family\n");
6616 		if (BGE_IS_5700_FAMILY(sc))
6617 			printf(" - 5700 Family\n");
6618 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6619 			printf(" - Supports Jumbo Frames\n");
6620 		if (sc->bge_flags & BGE_FLAG_PCIX)
6621 			printf(" - PCI-X Bus\n");
6622 		if (sc->bge_flags & BGE_FLAG_PCIE)
6623 			printf(" - PCI Express Bus\n");
6624 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6625 			printf(" - No 3 LEDs\n");
6626 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6627 			printf(" - RX Alignment Bug\n");
6628 	}
6629 
6630 	return (error);
6631 }
6632 
6633 static int
6634 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6635 {
6636 	struct bge_softc *sc;
6637 	int error;
6638 	uint16_t result;
6639 	uint32_t val;
6640 
6641 	result = -1;
6642 	error = sysctl_handle_int(oidp, &result, 0, req);
6643 	if (error || (req->newptr == NULL))
6644 		return (error);
6645 
6646 	if (result < 0x8000) {
6647 		sc = (struct bge_softc *)arg1;
6648 		val = CSR_READ_4(sc, result);
6649 		printf("reg 0x%06X = 0x%08X\n", result, val);
6650 	}
6651 
6652 	return (error);
6653 }
6654 
6655 static int
6656 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6657 {
6658 	struct bge_softc *sc;
6659 	int error;
6660 	uint16_t result;
6661 	uint32_t val;
6662 
6663 	result = -1;
6664 	error = sysctl_handle_int(oidp, &result, 0, req);
6665 	if (error || (req->newptr == NULL))
6666 		return (error);
6667 
6668 	if (result < 0x8000) {
6669 		sc = (struct bge_softc *)arg1;
6670 		val = APE_READ_4(sc, result);
6671 		printf("reg 0x%06X = 0x%08X\n", result, val);
6672 	}
6673 
6674 	return (error);
6675 }
6676 
6677 static int
6678 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6679 {
6680 	struct bge_softc *sc;
6681 	int error;
6682 	uint16_t result;
6683 	uint32_t val;
6684 
6685 	result = -1;
6686 	error = sysctl_handle_int(oidp, &result, 0, req);
6687 	if (error || (req->newptr == NULL))
6688 		return (error);
6689 
6690 	if (result < 0x8000) {
6691 		sc = (struct bge_softc *)arg1;
6692 		val = bge_readmem_ind(sc, result);
6693 		printf("mem 0x%06X = 0x%08X\n", result, val);
6694 	}
6695 
6696 	return (error);
6697 }
6698 #endif
6699 
6700 static int
6701 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6702 {
6703 
6704 	if (sc->bge_flags & BGE_FLAG_EADDR)
6705 		return (1);
6706 
6707 #ifdef __sparc64__
6708 	OF_getetheraddr(sc->bge_dev, ether_addr);
6709 	return (0);
6710 #endif
6711 	return (1);
6712 }
6713 
6714 static int
6715 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6716 {
6717 	uint32_t mac_addr;
6718 
6719 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6720 	if ((mac_addr >> 16) == 0x484b) {
6721 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6722 		ether_addr[1] = (uint8_t)mac_addr;
6723 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6724 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6725 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6726 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6727 		ether_addr[5] = (uint8_t)mac_addr;
6728 		return (0);
6729 	}
6730 	return (1);
6731 }
6732 
6733 static int
6734 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6735 {
6736 	int mac_offset = BGE_EE_MAC_OFFSET;
6737 
6738 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6739 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6740 
6741 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6742 	    ETHER_ADDR_LEN));
6743 }
6744 
6745 static int
6746 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6747 {
6748 
6749 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6750 		return (1);
6751 
6752 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6753 	   ETHER_ADDR_LEN));
6754 }
6755 
6756 static int
6757 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6758 {
6759 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6760 		/* NOTE: Order is critical */
6761 		bge_get_eaddr_fw,
6762 		bge_get_eaddr_mem,
6763 		bge_get_eaddr_nvram,
6764 		bge_get_eaddr_eeprom,
6765 		NULL
6766 	};
6767 	const bge_eaddr_fcn_t *func;
6768 
6769 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6770 		if ((*func)(sc, eaddr) == 0)
6771 			break;
6772 	}
6773 	return (*func == NULL ? ENXIO : 0);
6774 }
6775