xref: /freebsd/sys/dev/bge/if_bge.c (revision adeb92a24c57f97d5cd3c3c45be239cbb23aed68)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/queue.h>
81 
82 #include <net/if.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 
88 #include <net/bpf.h>
89 
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 
93 #include <netinet/in_systm.h>
94 #include <netinet/in.h>
95 #include <netinet/ip.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <machine/clock.h>      /* for DELAY */
100 #include <machine/bus_memio.h>
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include <dev/mii/miidevs.h>
109 #include <dev/mii/brgphyreg.h>
110 
111 #include <pci/pcireg.h>
112 #include <pci/pcivar.h>
113 
114 #include <dev/bge/if_bgereg.h>
115 
116 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
117 
118 MODULE_DEPEND(bge, miibus, 1, 1, 1);
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #if !defined(lint)
124 static const char rcsid[] =
125   "$FreeBSD$";
126 #endif
127 
128 /*
129  * Various supported device vendors/types and their names. Note: the
130  * spec seems to indicate that the hardware still has Alteon's vendor
131  * ID burned into it, though it will always be overriden by the vendor
132  * ID in the EEPROM. Just to be safe, we cover all possibilities.
133  */
134 
135 static struct bge_type bge_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
141 		"Broadcom BCM5700 Gigabit Ethernet" },
142 	{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
143 		"Broadcom BCM5701 Gigabit Ethernet" },
144 	{ SK_VENDORID, SK_DEVICEID_ALTIMA,
145 		"SysKonnect Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int bge_probe		__P((device_t));
150 static int bge_attach		__P((device_t));
151 static int bge_detach		__P((device_t));
152 static void bge_release_resources
153 				__P((struct bge_softc *));
154 static void bge_txeof		__P((struct bge_softc *));
155 static void bge_rxeof		__P((struct bge_softc *));
156 
157 static void bge_tick		__P((void *));
158 static void bge_stats_update	__P((struct bge_softc *));
159 static int bge_encap		__P((struct bge_softc *, struct mbuf *,
160 					u_int32_t *));
161 
162 static void bge_intr		__P((void *));
163 static void bge_start		__P((struct ifnet *));
164 static int bge_ioctl		__P((struct ifnet *, u_long, caddr_t));
165 static void bge_init		__P((void *));
166 static void bge_stop		__P((struct bge_softc *));
167 static void bge_watchdog		__P((struct ifnet *));
168 static void bge_shutdown		__P((device_t));
169 static int bge_ifmedia_upd	__P((struct ifnet *));
170 static void bge_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
171 
172 static u_int8_t	bge_eeprom_getbyte	__P((struct bge_softc *,
173 						int, u_int8_t *));
174 static int bge_read_eeprom	__P((struct bge_softc *, caddr_t, int, int));
175 
176 static u_int32_t bge_crc	__P((caddr_t));
177 static void bge_setmulti	__P((struct bge_softc *));
178 
179 static void bge_handle_events	__P((struct bge_softc *));
180 static int bge_alloc_jumbo_mem	__P((struct bge_softc *));
181 static void bge_free_jumbo_mem	__P((struct bge_softc *));
182 static void *bge_jalloc		__P((struct bge_softc *));
183 static void bge_jfree		__P((caddr_t, void *));
184 static int bge_newbuf_std	__P((struct bge_softc *, int, struct mbuf *));
185 static int bge_newbuf_jumbo	__P((struct bge_softc *, int, struct mbuf *));
186 static int bge_init_rx_ring_std	__P((struct bge_softc *));
187 static void bge_free_rx_ring_std	__P((struct bge_softc *));
188 static int bge_init_rx_ring_jumbo	__P((struct bge_softc *));
189 static void bge_free_rx_ring_jumbo	__P((struct bge_softc *));
190 static void bge_free_tx_ring	__P((struct bge_softc *));
191 static int bge_init_tx_ring	__P((struct bge_softc *));
192 
193 static int bge_chipinit		__P((struct bge_softc *));
194 static int bge_blockinit	__P((struct bge_softc *));
195 
196 #ifdef notdef
197 static u_int8_t bge_vpd_readbyte __P((struct bge_softc *, int));
198 static void bge_vpd_read_res	__P((struct bge_softc *,
199                                         struct vpd_res *, int));
200 static void bge_vpd_read	__P((struct bge_softc *));
201 #endif
202 
203 static u_int32_t bge_readmem_ind
204 				__P((struct bge_softc *, int));
205 static void bge_writemem_ind	__P((struct bge_softc *, int, int));
206 #ifdef notdef
207 static u_int32_t bge_readreg_ind
208 				__P((struct bge_softc *, int));
209 #endif
210 static void bge_writereg_ind	__P((struct bge_softc *, int, int));
211 
212 static int bge_miibus_readreg	__P((device_t, int, int));
213 static int bge_miibus_writereg	__P((device_t, int, int, int));
214 static void bge_miibus_statchg	__P((device_t));
215 
216 static void bge_reset		__P((struct bge_softc *));
217 static void bge_phy_hack	__P((struct bge_softc *));
218 
219 static device_method_t bge_methods[] = {
220 	/* Device interface */
221 	DEVMETHOD(device_probe,		bge_probe),
222 	DEVMETHOD(device_attach,	bge_attach),
223 	DEVMETHOD(device_detach,	bge_detach),
224 	DEVMETHOD(device_shutdown,	bge_shutdown),
225 
226 	/* bus interface */
227 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
228 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
229 
230 	/* MII interface */
231 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
232 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
233 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
234 
235 	{ 0, 0 }
236 };
237 
238 static driver_t bge_driver = {
239 	"bge",
240 	bge_methods,
241 	sizeof(struct bge_softc)
242 };
243 
244 static devclass_t bge_devclass;
245 
246 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
247 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
248 
249 static u_int32_t
250 bge_readmem_ind(sc, off)
251 	struct bge_softc *sc;
252 	int off;
253 {
254 	device_t dev;
255 
256 	dev = sc->bge_dev;
257 
258 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
259 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
260 }
261 
262 static void
263 bge_writemem_ind(sc, off, val)
264 	struct bge_softc *sc;
265 	int off, val;
266 {
267 	device_t dev;
268 
269 	dev = sc->bge_dev;
270 
271 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
272 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
273 
274 	return;
275 }
276 
277 #ifdef notdef
278 static u_int32_t
279 bge_readreg_ind(sc, off)
280 	struct bge_softc *sc;
281 	int off;
282 {
283 	device_t dev;
284 
285 	dev = sc->bge_dev;
286 
287 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
288 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
289 }
290 #endif
291 
292 static void
293 bge_writereg_ind(sc, off, val)
294 	struct bge_softc *sc;
295 	int off, val;
296 {
297 	device_t dev;
298 
299 	dev = sc->bge_dev;
300 
301 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
302 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
303 
304 	return;
305 }
306 
307 #ifdef notdef
308 static u_int8_t
309 bge_vpd_readbyte(sc, addr)
310 	struct bge_softc *sc;
311 	int addr;
312 {
313 	int i;
314 	device_t dev;
315 	u_int32_t val;
316 
317 	dev = sc->bge_dev;
318 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
319 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
320 		DELAY(10);
321 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
322 			break;
323 	}
324 
325 	if (i == BGE_TIMEOUT) {
326 		printf("bge%d: VPD read timed out\n", sc->bge_unit);
327 		return(0);
328 	}
329 
330 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
331 
332 	return((val >> ((addr % 4) * 8)) & 0xFF);
333 }
334 
335 static void
336 bge_vpd_read_res(sc, res, addr)
337 	struct bge_softc *sc;
338 	struct vpd_res *res;
339 	int addr;
340 {
341 	int i;
342 	u_int8_t *ptr;
343 
344 	ptr = (u_int8_t *)res;
345 	for (i = 0; i < sizeof(struct vpd_res); i++)
346 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
347 
348 	return;
349 }
350 
351 static void
352 bge_vpd_read(sc)
353 	struct bge_softc *sc;
354 {
355 	int pos = 0, i;
356 	struct vpd_res res;
357 
358 	if (sc->bge_vpd_prodname != NULL)
359 		free(sc->bge_vpd_prodname, M_DEVBUF);
360 	if (sc->bge_vpd_readonly != NULL)
361 		free(sc->bge_vpd_readonly, M_DEVBUF);
362 	sc->bge_vpd_prodname = NULL;
363 	sc->bge_vpd_readonly = NULL;
364 
365 	bge_vpd_read_res(sc, &res, pos);
366 
367 	if (res.vr_id != VPD_RES_ID) {
368 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
369 			sc->bge_unit, VPD_RES_ID, res.vr_id);
370                 return;
371         }
372 
373 	pos += sizeof(res);
374 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
375 	for (i = 0; i < res.vr_len; i++)
376 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
377 	sc->bge_vpd_prodname[i] = '\0';
378 	pos += i;
379 
380 	bge_vpd_read_res(sc, &res, pos);
381 
382 	if (res.vr_id != VPD_RES_READ) {
383 		printf("bge%d: bad VPD resource id: expected %x got %x\n",
384 		    sc->bge_unit, VPD_RES_READ, res.vr_id);
385 		return;
386 	}
387 
388 	pos += sizeof(res);
389 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
390 	for (i = 0; i < res.vr_len + 1; i++)
391 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
392 
393 	return;
394 }
395 #endif
396 
397 /*
398  * Read a byte of data stored in the EEPROM at address 'addr.' The
399  * BCM570x supports both the traditional bitbang interface and an
400  * auto access interface for reading the EEPROM. We use the auto
401  * access method.
402  */
403 static u_int8_t
404 bge_eeprom_getbyte(sc, addr, dest)
405 	struct bge_softc *sc;
406 	int addr;
407 	u_int8_t *dest;
408 {
409 	int i;
410 	u_int32_t byte = 0;
411 
412 	/*
413 	 * Enable use of auto EEPROM access so we can avoid
414 	 * having to use the bitbang method.
415 	 */
416 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
417 
418 	/* Reset the EEPROM, load the clock period. */
419 	CSR_WRITE_4(sc, BGE_EE_ADDR,
420 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
421 	DELAY(20);
422 
423 	/* Issue the read EEPROM command. */
424 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
425 
426 	/* Wait for completion */
427 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
428 		DELAY(10);
429 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
430 			break;
431 	}
432 
433 	if (i == BGE_TIMEOUT) {
434 		printf("bge%d: eeprom read timed out\n", sc->bge_unit);
435 		return(0);
436 	}
437 
438 	/* Get result. */
439 	byte = CSR_READ_4(sc, BGE_EE_DATA);
440 
441         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
442 
443 	return(0);
444 }
445 
446 /*
447  * Read a sequence of bytes from the EEPROM.
448  */
449 static int
450 bge_read_eeprom(sc, dest, off, cnt)
451 	struct bge_softc *sc;
452 	caddr_t dest;
453 	int off;
454 	int cnt;
455 {
456 	int err = 0, i;
457 	u_int8_t byte = 0;
458 
459 	for (i = 0; i < cnt; i++) {
460 		err = bge_eeprom_getbyte(sc, off + i, &byte);
461 		if (err)
462 			break;
463 		*(dest + i) = byte;
464 	}
465 
466 	return(err ? 1 : 0);
467 }
468 
469 static int
470 bge_miibus_readreg(dev, phy, reg)
471 	device_t dev;
472 	int phy, reg;
473 {
474 	struct bge_softc *sc;
475 	struct ifnet *ifp;
476 	u_int32_t val;
477 	int i;
478 
479 	sc = device_get_softc(dev);
480 	ifp = &sc->arpcom.ac_if;
481 
482 	if (ifp->if_flags & IFF_RUNNING)
483 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
484 
485 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
486 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
487 
488 	for (i = 0; i < BGE_TIMEOUT; i++) {
489 		val = CSR_READ_4(sc, BGE_MI_COMM);
490 		if (!(val & BGE_MICOMM_BUSY))
491 			break;
492 	}
493 
494 	if (i == BGE_TIMEOUT) {
495 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
496 		return(0);
497 	}
498 
499 	val = CSR_READ_4(sc, BGE_MI_COMM);
500 
501 	if (ifp->if_flags & IFF_RUNNING)
502 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
503 
504 	if (val & BGE_MICOMM_READFAIL)
505 		return(0);
506 
507 	return(val & 0xFFFF);
508 }
509 
510 static int
511 bge_miibus_writereg(dev, phy, reg, val)
512 	device_t dev;
513 	int phy, reg, val;
514 {
515 	struct bge_softc *sc;
516 	int i;
517 
518 	sc = device_get_softc(dev);
519 
520 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
521 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
522 
523 	for (i = 0; i < BGE_TIMEOUT; i++) {
524 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
525 			break;
526 	}
527 
528 	if (i == BGE_TIMEOUT) {
529 		printf("bge%d: PHY read timed out\n", sc->bge_unit);
530 		return(0);
531 	}
532 
533 	return(0);
534 }
535 
536 static void
537 bge_miibus_statchg(dev)
538 	device_t dev;
539 {
540 	struct bge_softc *sc;
541 	struct mii_data *mii;
542 
543 	sc = device_get_softc(dev);
544 	mii = device_get_softc(sc->bge_miibus);
545 
546 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
547 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) {
548 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
549 	} else {
550 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
551 	}
552 
553 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
554 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
555 	} else {
556 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
557 	}
558 
559 	bge_phy_hack(sc);
560 
561 	return;
562 }
563 
564 /*
565  * Handle events that have triggered interrupts.
566  */
567 static void
568 bge_handle_events(sc)
569 	struct bge_softc		*sc;
570 {
571 
572 	return;
573 }
574 
575 /*
576  * Memory management for jumbo frames.
577  */
578 
579 static int
580 bge_alloc_jumbo_mem(sc)
581 	struct bge_softc		*sc;
582 {
583 	caddr_t			ptr;
584 	register int		i;
585 	struct bge_jpool_entry   *entry;
586 
587 	/* Grab a big chunk o' storage. */
588 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
589 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
590 
591 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
592 		printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
593 		return(ENOBUFS);
594 	}
595 
596 	SLIST_INIT(&sc->bge_jfree_listhead);
597 	SLIST_INIT(&sc->bge_jinuse_listhead);
598 
599 	/*
600 	 * Now divide it up into 9K pieces and save the addresses
601 	 * in an array.
602 	 */
603 	ptr = sc->bge_cdata.bge_jumbo_buf;
604 	for (i = 0; i < BGE_JSLOTS; i++) {
605 		sc->bge_cdata.bge_jslots[i] = ptr;
606 		ptr += BGE_JLEN;
607 		entry = malloc(sizeof(struct bge_jpool_entry),
608 		    M_DEVBUF, M_NOWAIT);
609 		if (entry == NULL) {
610 			contigfree(sc->bge_cdata.bge_jumbo_buf,
611 			    BGE_JMEM, M_DEVBUF);
612 			sc->bge_cdata.bge_jumbo_buf = NULL;
613 			printf("bge%d: no memory for jumbo "
614 			    "buffer queue!\n", sc->bge_unit);
615 			return(ENOBUFS);
616 		}
617 		entry->slot = i;
618 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
619 		    entry, jpool_entries);
620 	}
621 
622 	return(0);
623 }
624 
625 static void
626 bge_free_jumbo_mem(sc)
627         struct bge_softc *sc;
628 {
629         int i;
630         struct bge_jpool_entry *entry;
631 
632 	for (i = 0; i < BGE_JSLOTS; i++) {
633 		entry = SLIST_FIRST(&sc->bge_jfree_listhead);
634 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
635 		free(entry, M_DEVBUF);
636 	}
637 
638 	contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
639 
640         return;
641 }
642 
643 /*
644  * Allocate a jumbo buffer.
645  */
646 static void *
647 bge_jalloc(sc)
648 	struct bge_softc		*sc;
649 {
650 	struct bge_jpool_entry   *entry;
651 
652 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
653 
654 	if (entry == NULL) {
655 		printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
656 		return(NULL);
657 	}
658 
659 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
660 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
661 	return(sc->bge_cdata.bge_jslots[entry->slot]);
662 }
663 
664 /*
665  * Release a jumbo buffer.
666  */
667 static void
668 bge_jfree(buf, args)
669 	caddr_t buf;
670 	void *args;
671 {
672 	struct bge_jpool_entry *entry;
673 	struct bge_softc *sc;
674 	int i;
675 
676 	/* Extract the softc struct pointer. */
677 	sc = (struct bge_softc *)args;
678 
679 	if (sc == NULL)
680 		panic("bge_jfree: can't find softc pointer!");
681 
682 	/* calculate the slot this buffer belongs to */
683 
684 	i = ((vm_offset_t)buf
685 	     - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
686 
687 	if ((i < 0) || (i >= BGE_JSLOTS))
688 		panic("bge_jfree: asked to free buffer that we don't manage!");
689 
690 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
691 	if (entry == NULL)
692 		panic("bge_jfree: buffer not in use!");
693 	entry->slot = i;
694 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
695 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
696 
697 	return;
698 }
699 
700 
701 /*
702  * Intialize a standard receive ring descriptor.
703  */
704 static int
705 bge_newbuf_std(sc, i, m)
706 	struct bge_softc	*sc;
707 	int			i;
708 	struct mbuf		*m;
709 {
710 	struct mbuf		*m_new = NULL;
711 	struct bge_rx_bd	*r;
712 
713 	if (m == NULL) {
714 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
715 		if (m_new == NULL) {
716 			printf("bge%d: mbuf allocation failed "
717 			    "-- packet dropped!\n", sc->bge_unit);
718 			return(ENOBUFS);
719 		}
720 
721 		MCLGET(m_new, M_DONTWAIT);
722 		if (!(m_new->m_flags & M_EXT)) {
723 			printf("bge%d: cluster allocation failed "
724 			    "-- packet dropped!\n", sc->bge_unit);
725 			m_freem(m_new);
726 			return(ENOBUFS);
727 		}
728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 	} else {
730 		m_new = m;
731 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
732 		m_new->m_data = m_new->m_ext.ext_buf;
733 	}
734 
735 	m_adj(m_new, ETHER_ALIGN);
736 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
737 	r = &sc->bge_rdata->bge_rx_std_ring[i];
738 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
739 	r->bge_flags = BGE_RXBDFLAG_END;
740 	r->bge_len = m_new->m_len;
741 	r->bge_idx = i;
742 
743 	return(0);
744 }
745 
746 /*
747  * Initialize a jumbo receive ring descriptor. This allocates
748  * a jumbo buffer from the pool managed internally by the driver.
749  */
750 static int
751 bge_newbuf_jumbo(sc, i, m)
752 	struct bge_softc *sc;
753 	int i;
754 	struct mbuf *m;
755 {
756 	struct mbuf *m_new = NULL;
757 	struct bge_rx_bd *r;
758 
759 	if (m == NULL) {
760 		caddr_t			*buf = NULL;
761 
762 		/* Allocate the mbuf. */
763 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
764 		if (m_new == NULL) {
765 			printf("bge%d: mbuf allocation failed "
766 			    "-- packet dropped!\n", sc->bge_unit);
767 			return(ENOBUFS);
768 		}
769 
770 		/* Allocate the jumbo buffer */
771 		buf = bge_jalloc(sc);
772 		if (buf == NULL) {
773 			m_freem(m_new);
774 			printf("bge%d: jumbo allocation failed "
775 			    "-- packet dropped!\n", sc->bge_unit);
776 			return(ENOBUFS);
777 		}
778 
779 		/* Attach the buffer to the mbuf. */
780 		m_new->m_data = (void *) buf;
781 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
782 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
783 		    (struct bge_softc *)sc, 0, EXT_NET_DRV);
784 	} else {
785 		m_new = m;
786 		m_new->m_data = m_new->m_ext.ext_buf;
787 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
788 	}
789 
790 	m_adj(m_new, ETHER_ALIGN);
791 	/* Set up the descriptor. */
792 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
793 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
794 	BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
795 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
796 	r->bge_len = m_new->m_len;
797 	r->bge_idx = i;
798 
799 	return(0);
800 }
801 
802 /*
803  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
804  * that's 1MB or memory, which is a lot. For now, we fill only the first
805  * 256 ring entries and hope that our CPU is fast enough to keep up with
806  * the NIC.
807  */
808 static int
809 bge_init_rx_ring_std(sc)
810 	struct bge_softc *sc;
811 {
812 	int i;
813 
814 	for (i = 0; i < BGE_SSLOTS; i++) {
815 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
816 			return(ENOBUFS);
817 	};
818 
819 	sc->bge_std = i - 1;
820 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
821 
822 	return(0);
823 }
824 
825 static void
826 bge_free_rx_ring_std(sc)
827 	struct bge_softc *sc;
828 {
829 	int i;
830 
831 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
832 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
833 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
834 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
835 		}
836 		bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
837 		    sizeof(struct bge_rx_bd));
838 	}
839 
840 	return;
841 }
842 
843 static int
844 bge_init_rx_ring_jumbo(sc)
845 	struct bge_softc *sc;
846 {
847 	int i;
848 	struct bge_rcb *rcb;
849 	struct bge_rcb_opaque *rcbo;
850 
851 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
852 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
853 			return(ENOBUFS);
854 	};
855 
856 	sc->bge_jumbo = i - 1;
857 
858 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
859 	rcbo = (struct bge_rcb_opaque *)rcb;
860 	rcb->bge_flags = 0;
861 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
862 
863 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
864 
865 	return(0);
866 }
867 
868 static void
869 bge_free_rx_ring_jumbo(sc)
870 	struct bge_softc *sc;
871 {
872 	int i;
873 
874 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
875 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
876 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
877 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
878 		}
879 		bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
880 		    sizeof(struct bge_rx_bd));
881 	}
882 
883 	return;
884 }
885 
886 static void
887 bge_free_tx_ring(sc)
888 	struct bge_softc *sc;
889 {
890 	int i;
891 
892 	if (sc->bge_rdata->bge_tx_ring == NULL)
893 		return;
894 
895 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
896 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
897 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
898 			sc->bge_cdata.bge_tx_chain[i] = NULL;
899 		}
900 		bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
901 		    sizeof(struct bge_tx_bd));
902 	}
903 
904 	return;
905 }
906 
907 static int
908 bge_init_tx_ring(sc)
909 	struct bge_softc *sc;
910 {
911 	sc->bge_txcnt = 0;
912 	sc->bge_tx_saved_considx = 0;
913 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
914 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
915 
916 	return(0);
917 }
918 
919 #define BGE_POLY	0xEDB88320
920 
921 static u_int32_t
922 bge_crc(addr)
923 	caddr_t addr;
924 {
925 	u_int32_t idx, bit, data, crc;
926 
927 	/* Compute CRC for the address value. */
928 	crc = 0xFFFFFFFF; /* initial value */
929 
930 	for (idx = 0; idx < 6; idx++) {
931 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
932 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
933 	}
934 
935 	return(crc & 0x7F);
936 }
937 
938 static void
939 bge_setmulti(sc)
940 	struct bge_softc *sc;
941 {
942 	struct ifnet *ifp;
943 	struct ifmultiaddr *ifma;
944 	u_int32_t hashes[4] = { 0, 0, 0, 0 };
945 	int h, i;
946 
947 	ifp = &sc->arpcom.ac_if;
948 
949 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
950 		for (i = 0; i < 4; i++)
951 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
952 		return;
953 	}
954 
955 	/* First, zot all the existing filters. */
956 	for (i = 0; i < 4; i++)
957 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
958 
959 	/* Now program new ones. */
960 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961 		if (ifma->ifma_addr->sa_family != AF_LINK)
962 			continue;
963 		h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
964 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
965 	}
966 
967 	for (i = 0; i < 4; i++)
968 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
969 
970 	return;
971 }
972 
973 /*
974  * Do endian, PCI and DMA initialization. Also check the on-board ROM
975  * self-test results.
976  */
977 static int
978 bge_chipinit(sc)
979 	struct bge_softc *sc;
980 {
981 	u_int32_t		cachesize;
982 	int			i;
983 
984 	/* Set endianness before we access any non-PCI registers. */
985 #if BYTE_ORDER == BIG_ENDIAN
986 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
987 	    BGE_BIGENDIAN_INIT, 4);
988 #else
989 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
990 	    BGE_LITTLEENDIAN_INIT, 4);
991 #endif
992 
993 	/*
994 	 * Check the 'ROM failed' bit on the RX CPU to see if
995 	 * self-tests passed.
996 	 */
997 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
998 		printf("bge%d: RX CPU self-diagnostics failed!\n",
999 		    sc->bge_unit);
1000 		return(ENODEV);
1001 	}
1002 
1003 	/* Clear the MAC control register */
1004 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1005 
1006 	/*
1007 	 * Clear the MAC statistics block in the NIC's
1008 	 * internal memory.
1009 	 */
1010 	for (i = BGE_STATS_BLOCK;
1011 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1012 		BGE_MEMWIN_WRITE(sc, i, 0);
1013 
1014 	for (i = BGE_STATUS_BLOCK;
1015 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1016 		BGE_MEMWIN_WRITE(sc, i, 0);
1017 
1018 	/* Set up the PCI DMA control register. */
1019 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1020 	    BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F, 4);
1021 
1022 	/*
1023 	 * Set up general mode register.
1024 	 */
1025 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1026 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1027 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1028 	    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1029 	    BGE_MODECTL_RX_NO_PHDR_CSUM);
1030 
1031 	/* Get cache line size. */
1032 	cachesize = pci_read_config(sc->bge_dev, BGE_PCI_CACHESZ, 1);
1033 
1034 	/*
1035 	 * Avoid violating PCI spec on certain chip revs.
1036 	 */
1037 	if (pci_read_config(sc->bge_dev, BGE_PCI_CMD, 4) & PCIM_CMD_MWIEN) {
1038 		switch(cachesize) {
1039 		case 1:
1040 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1041 			    BGE_PCI_WRITE_BNDRY_16BYTES, 4);
1042 			break;
1043 		case 2:
1044 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1045 			    BGE_PCI_WRITE_BNDRY_32BYTES, 4);
1046 			break;
1047 		case 4:
1048 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1049 			    BGE_PCI_WRITE_BNDRY_64BYTES, 4);
1050 			break;
1051 		case 8:
1052 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1053 			    BGE_PCI_WRITE_BNDRY_128BYTES, 4);
1054 			break;
1055 		case 16:
1056 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1057 			    BGE_PCI_WRITE_BNDRY_256BYTES, 4);
1058 			break;
1059 		case 32:
1060 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1061 			    BGE_PCI_WRITE_BNDRY_512BYTES, 4);
1062 			break;
1063 		case 64:
1064 			PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1065 			    BGE_PCI_WRITE_BNDRY_1024BYTES, 4);
1066 			break;
1067 		default:
1068 		/* Disable PCI memory write and invalidate. */
1069 			if (bootverbose)
1070 				printf("bge%d: cache line size %d not "
1071 				    "supported; disabling PCI MWI\n",
1072 				    sc->bge_unit, cachesize);
1073 			PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1074 			    PCIM_CMD_MWIEN, 4);
1075 			break;
1076 		}
1077 	}
1078 
1079 #ifdef __brokenalpha__
1080 	/*
1081 	 * Must insure that we do not cross an 8K (bytes) boundary
1082 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1083 	 * restriction on some ALPHA platforms with early revision
1084 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1085 	 */
1086 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1087 #endif
1088 
1089 	/* Set the timer prescaler (always 66Mhz) */
1090 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1091 
1092 	return(0);
1093 }
1094 
1095 static int
1096 bge_blockinit(sc)
1097 	struct bge_softc *sc;
1098 {
1099 	struct bge_rcb *rcb;
1100 	struct bge_rcb_opaque *rcbo;
1101 	int i;
1102 
1103 	/*
1104 	 * Initialize the memory window pointer register so that
1105 	 * we can access the first 32K of internal NIC RAM. This will
1106 	 * allow us to set up the TX send ring RCBs and the RX return
1107 	 * ring RCBs, plus other things which live in NIC memory.
1108 	 */
1109 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1110 
1111 	/* Configure mbuf memory pool */
1112 	if (sc->bge_extram) {
1113 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1114 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1115 	} else {
1116 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1117 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1118 	}
1119 
1120 	/* Configure DMA resource pool */
1121 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1122 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1123 
1124 	/* Configure mbuf pool watermarks */
1125 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1126 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1127 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1128 
1129 	/* Configure DMA resource watermarks */
1130 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1131 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1132 
1133 	/* Enable buffer manager */
1134 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1135 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1136 
1137 	/* Poll for buffer manager start indication */
1138 	for (i = 0; i < BGE_TIMEOUT; i++) {
1139 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1140 			break;
1141 		DELAY(10);
1142 	}
1143 
1144 	if (i == BGE_TIMEOUT) {
1145 		printf("bge%d: buffer manager failed to start\n",
1146 		    sc->bge_unit);
1147 		return(ENXIO);
1148 	}
1149 
1150 	/* Enable flow-through queues */
1151 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1152 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1153 
1154 	/* Wait until queue initialization is complete */
1155 	for (i = 0; i < BGE_TIMEOUT; i++) {
1156 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1157 			break;
1158 		DELAY(10);
1159 	}
1160 
1161 	if (i == BGE_TIMEOUT) {
1162 		printf("bge%d: flow-through queue init failed\n",
1163 		    sc->bge_unit);
1164 		return(ENXIO);
1165 	}
1166 
1167 	/* Initialize the standard RX ring control block */
1168 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1169 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1170 	    vtophys(&sc->bge_rdata->bge_rx_std_ring);
1171 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1172 	if (sc->bge_extram)
1173 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1174 	else
1175 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1176 	rcb->bge_flags = 0;
1177 	rcbo = (struct bge_rcb_opaque *)rcb;
1178 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1179 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1180 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1181 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1182 
1183 	/*
1184 	 * Initialize the jumbo RX ring control block
1185 	 * We set the 'ring disabled' bit in the flags
1186 	 * field until we're actually ready to start
1187 	 * using this ring (i.e. once we set the MTU
1188 	 * high enough to require it).
1189 	 */
1190 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1191 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1192 	    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
1193 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1194 	if (sc->bge_extram)
1195 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1196 	else
1197 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1198 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1199 
1200 	rcbo = (struct bge_rcb_opaque *)rcb;
1201 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1202 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1203 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1204 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1205 
1206 	/* Set up dummy disabled mini ring RCB */
1207 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1208 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1209 	rcbo = (struct bge_rcb_opaque *)rcb;
1210 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1211 
1212 	/*
1213 	 * Set the BD ring replentish thresholds. The recommended
1214 	 * values are 1/8th the number of descriptors allocated to
1215 	 * each ring.
1216 	 */
1217 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1218 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1219 
1220 	/*
1221 	 * Disable all unused send rings by setting the 'ring disabled'
1222 	 * bit in the flags field of all the TX send ring control blocks.
1223 	 * These are located in NIC memory.
1224 	 */
1225 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1226 	    BGE_SEND_RING_RCB);
1227 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1228 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1229 		rcb->bge_max_len = 0;
1230 		rcb->bge_nicaddr = 0;
1231 		rcb++;
1232 	}
1233 
1234 	/* Configure TX RCB 0 (we use only the first ring) */
1235 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1236 	    BGE_SEND_RING_RCB);
1237 	rcb->bge_hostaddr.bge_addr_hi = 0;
1238 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1239 	    vtophys(&sc->bge_rdata->bge_tx_ring);
1240 	rcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1241 	rcb->bge_max_len = BGE_TX_RING_CNT;
1242 	rcb->bge_flags = 0;
1243 
1244 	/* Disable all unused RX return rings */
1245 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1246 	    BGE_RX_RETURN_RING_RCB);
1247 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1248 		rcb->bge_hostaddr.bge_addr_hi = 0;
1249 		rcb->bge_hostaddr.bge_addr_lo = 0;
1250 		rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1251 		rcb->bge_max_len = BGE_RETURN_RING_CNT;
1252 		rcb->bge_nicaddr = 0;
1253 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1254 		    (i * (sizeof(u_int64_t))), 0);
1255 		rcb++;
1256 	}
1257 
1258 	/* Initialize RX ring indexes */
1259 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1260 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1261 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1262 
1263 	/*
1264 	 * Set up RX return ring 0
1265 	 * Note that the NIC address for RX return rings is 0x00000000.
1266 	 * The return rings live entirely within the host, so the
1267 	 * nicaddr field in the RCB isn't used.
1268 	 */
1269 	rcb = (struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1270 	    BGE_RX_RETURN_RING_RCB);
1271 	rcb->bge_hostaddr.bge_addr_hi = 0;
1272 	BGE_HOSTADDR(rcb->bge_hostaddr) =
1273 	    vtophys(&sc->bge_rdata->bge_rx_return_ring);
1274 	rcb->bge_nicaddr = 0x00000000;
1275 	rcb->bge_max_len = BGE_RETURN_RING_CNT;
1276 	rcb->bge_flags = 0;
1277 
1278 	/* Set random backoff seed for TX */
1279 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1280 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1281 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1282 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1283 	    BGE_TX_BACKOFF_SEED_MASK);
1284 
1285 	/* Set inter-packet gap */
1286 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1287 
1288 	/*
1289 	 * Specify which ring to use for packets that don't match
1290 	 * any RX rules.
1291 	 */
1292 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1293 
1294 	/*
1295 	 * Configure number of RX lists. One interrupt distribution
1296 	 * list, sixteen active lists, one bad frames class.
1297 	 */
1298 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1299 
1300 	/* Inialize RX list placement stats mask. */
1301 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1302 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1303 
1304 	/* Disable host coalescing until we get it set up */
1305 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1306 
1307 	/* Poll to make sure it's shut down. */
1308 	for (i = 0; i < BGE_TIMEOUT; i++) {
1309 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1310 			break;
1311 		DELAY(10);
1312 	}
1313 
1314 	if (i == BGE_TIMEOUT) {
1315 		printf("bge%d: host coalescing engine failed to idle\n",
1316 		    sc->bge_unit);
1317 		return(ENXIO);
1318 	}
1319 
1320 	/* Set up host coalescing defaults */
1321 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1322 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1323 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1324 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1325 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1326 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1327 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1328 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1329 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1330 
1331 	/* Set up address of statistics block */
1332 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1333 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1334 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1335 	    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1336 
1337 	/* Set up address of status block */
1338 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1339 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1340 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1341 	    vtophys(&sc->bge_rdata->bge_status_block));
1342 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1343 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1344 
1345 	/* Turn on host coalescing state machine */
1346 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1347 
1348 	/* Turn on RX BD completion state machine and enable attentions */
1349 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1350 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1351 
1352 	/* Turn on RX list placement state machine */
1353 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1354 
1355 	/* Turn on RX list selector state machine. */
1356 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1357 
1358 	/* Turn on DMA, clear stats */
1359 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1360 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1361 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1362 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1363 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1364 
1365 	/* Set misc. local control, enable interrupts on attentions */
1366 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1367 
1368 #ifdef notdef
1369 	/* Assert GPIO pins for PHY reset */
1370 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1371 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1372 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1373 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1374 #endif
1375 
1376 	/* Turn on DMA completion state machine */
1377 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1378 
1379 	/* Turn on write DMA state machine */
1380 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1381 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1382 
1383 	/* Turn on read DMA state machine */
1384 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1385 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1386 
1387 	/* Turn on RX data completion state machine */
1388 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1389 
1390 	/* Turn on RX BD initiator state machine */
1391 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1392 
1393 	/* Turn on RX data and RX BD initiator state machine */
1394 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1395 
1396 	/* Turn on Mbuf cluster free state machine */
1397 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1398 
1399 	/* Turn on send BD completion state machine */
1400 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1401 
1402 	/* Turn on send data completion state machine */
1403 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1404 
1405 	/* Turn on send data initiator state machine */
1406 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1407 
1408 	/* Turn on send BD initiator state machine */
1409 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1410 
1411 	/* Turn on send BD selector state machine */
1412 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1413 
1414 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1415 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1416 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1417 
1418 	/* init LED register */
1419 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1420 
1421 	/* ack/clear link change events */
1422 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1423 	    BGE_MACSTAT_CFG_CHANGED);
1424 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1425 
1426 	/* Enable PHY auto polling (for MII/GMII only) */
1427 	if (sc->bge_tbi) {
1428 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1429 	} else
1430 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1431 
1432 	/* Enable link state change attentions. */
1433 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1434 
1435 	return(0);
1436 }
1437 
1438 /*
1439  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1440  * against our list and return its name if we find a match. Note
1441  * that since the Broadcom controller contains VPD support, we
1442  * can get the device name string from the controller itself instead
1443  * of the compiled-in string. This is a little slow, but it guarantees
1444  * we'll always announce the right product name.
1445  */
1446 static int
1447 bge_probe(dev)
1448 	device_t dev;
1449 {
1450 	struct bge_type *t;
1451 	struct bge_softc *sc;
1452 
1453 	t = bge_devs;
1454 
1455 	sc = device_get_softc(dev);
1456 	bzero(sc, sizeof(struct bge_softc));
1457 	sc->bge_unit = device_get_unit(dev);
1458 	sc->bge_dev = dev;
1459 
1460 	while(t->bge_name != NULL) {
1461 		if ((pci_get_vendor(dev) == t->bge_vid) &&
1462 		    (pci_get_device(dev) == t->bge_did)) {
1463 #ifdef notdef
1464 			bge_vpd_read(sc);
1465 			device_set_desc(dev, sc->bge_vpd_prodname);
1466 #endif
1467 			device_set_desc(dev, t->bge_name);
1468 			return(0);
1469 		}
1470 		t++;
1471 	}
1472 
1473 	return(ENXIO);
1474 }
1475 
1476 static int
1477 bge_attach(dev)
1478 	device_t dev;
1479 {
1480 	int s;
1481 	u_int32_t command;
1482 	struct ifnet *ifp;
1483 	struct bge_softc *sc;
1484 	int unit, error = 0, rid;
1485 
1486 	s = splimp();
1487 
1488 	sc = device_get_softc(dev);
1489 	unit = device_get_unit(dev);
1490 	sc->bge_dev = dev;
1491 	sc->bge_unit = unit;
1492 
1493 	/*
1494 	 * Map control/status registers.
1495 	 */
1496 	pci_enable_busmaster(dev);
1497 	pci_enable_io(dev, SYS_RES_MEMORY);
1498 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1499 
1500 	if (!(command & PCIM_CMD_MEMEN)) {
1501 		printf("bge%d: failed to enable memory mapping!\n", unit);
1502 		error = ENXIO;
1503 		goto fail;
1504 	}
1505 
1506 	rid = BGE_PCI_BAR0;
1507 	sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1508 	    0, ~0, 1, RF_ACTIVE);
1509 
1510 	if (sc->bge_res == NULL) {
1511 		printf ("bge%d: couldn't map memory\n", unit);
1512 		error = ENXIO;
1513 		goto fail;
1514 	}
1515 
1516 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1517 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1518 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1519 
1520 	/*
1521 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1522 	 * broken and returns a physical address instead of a kernel
1523 	 * virtual address. Consequently, we need to do a little
1524 	 * extra mangling of the vhandle on the alpha. This should
1525 	 * eventually be fixed! The whole idea here is to get rid
1526 	 * of platform dependencies.
1527 	 */
1528 #ifdef __alpha__
1529 	if (pci_cvt_to_bwx(sc->bge_vhandle))
1530 		sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1531 	else
1532 		sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1533 	sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1534 #endif
1535 
1536 	/* Allocate interrupt */
1537 	rid = 0;
1538 
1539 	sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1540 	    RF_SHAREABLE | RF_ACTIVE);
1541 
1542 	if (sc->bge_irq == NULL) {
1543 		printf("bge%d: couldn't map interrupt\n", unit);
1544 		error = ENXIO;
1545 		goto fail;
1546 	}
1547 
1548 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1549 	   bge_intr, sc, &sc->bge_intrhand);
1550 
1551 	if (error) {
1552 		bge_release_resources(sc);
1553 		printf("bge%d: couldn't set up irq\n", unit);
1554 		goto fail;
1555 	}
1556 
1557 	sc->bge_unit = unit;
1558 
1559 	/* Try to reset the chip. */
1560 	bge_reset(sc);
1561 
1562 	if (bge_chipinit(sc)) {
1563 		printf("bge%d: chip initialization failed\n", sc->bge_unit);
1564 		bge_release_resources(sc);
1565 		error = ENXIO;
1566 		goto fail;
1567 	}
1568 
1569 	/*
1570 	 * Get station address from the EEPROM.
1571 	 */
1572 	if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1573 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1574 		printf("bge%d: failed to read station address\n", unit);
1575 		bge_release_resources(sc);
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 	/*
1581 	 * A Broadcom chip was detected. Inform the world.
1582 	 */
1583 	printf("bge%d: Ethernet address: %6D\n", unit,
1584 	    sc->arpcom.ac_enaddr, ":");
1585 
1586 	/* Allocate the general information block and ring buffers. */
1587 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1588 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1589 
1590 	if (sc->bge_rdata == NULL) {
1591 		bge_release_resources(sc);
1592 		error = ENXIO;
1593 		printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1594 		goto fail;
1595 	}
1596 
1597 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1598 
1599 	/* Try to allocate memory for jumbo buffers. */
1600 	if (bge_alloc_jumbo_mem(sc)) {
1601 		printf("bge%d: jumbo buffer allocation "
1602 		    "failed\n", sc->bge_unit);
1603 		bge_release_resources(sc);
1604 		error = ENXIO;
1605 		goto fail;
1606 	}
1607 
1608 	/* Set default tuneable values. */
1609 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1610 	sc->bge_rx_coal_ticks = 150;
1611 	sc->bge_tx_coal_ticks = 150;
1612 	sc->bge_rx_max_coal_bds = 64;
1613 	sc->bge_tx_max_coal_bds = 128;
1614 
1615 	/* Set up ifnet structure */
1616 	ifp = &sc->arpcom.ac_if;
1617 	ifp->if_softc = sc;
1618 	ifp->if_unit = sc->bge_unit;
1619 	ifp->if_name = "bge";
1620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1621 	ifp->if_ioctl = bge_ioctl;
1622 	ifp->if_output = ether_output;
1623 	ifp->if_start = bge_start;
1624 	ifp->if_watchdog = bge_watchdog;
1625 	ifp->if_init = bge_init;
1626 	ifp->if_mtu = ETHERMTU;
1627 	ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1628 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1629 	ifp->if_capabilities = IFCAP_HWCSUM;
1630 	ifp->if_capenable = ifp->if_capabilities;
1631 
1632 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1633 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
1634 		sc->bge_tbi = 1;
1635 
1636 	if (sc->bge_tbi) {
1637 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1638 		    bge_ifmedia_upd, bge_ifmedia_sts);
1639 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1640 		ifmedia_add(&sc->bge_ifmedia,
1641 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1642 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1643 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1644 	} else {
1645 		/*
1646 		 * Do transceiver setup.
1647 		 */
1648 		if (mii_phy_probe(dev, &sc->bge_miibus,
1649 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1650 			printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1651 			bge_release_resources(sc);
1652 			bge_free_jumbo_mem(sc);
1653 			error = ENXIO;
1654 			goto fail;
1655 		}
1656 	}
1657 
1658 	/*
1659 	 * Call MI attach routine.
1660 	 */
1661 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1662 	callout_handle_init(&sc->bge_stat_ch);
1663 
1664 fail:
1665 	splx(s);
1666 
1667 	return(error);
1668 }
1669 
1670 static int
1671 bge_detach(dev)
1672 	device_t dev;
1673 {
1674 	struct bge_softc *sc;
1675 	struct ifnet *ifp;
1676 	int s;
1677 
1678 	s = splimp();
1679 
1680 	sc = device_get_softc(dev);
1681 	ifp = &sc->arpcom.ac_if;
1682 
1683 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1684 	bge_stop(sc);
1685 	bge_reset(sc);
1686 
1687 	if (sc->bge_tbi) {
1688 		ifmedia_removeall(&sc->bge_ifmedia);
1689 	} else {
1690 		bus_generic_detach(dev);
1691 		device_delete_child(dev, sc->bge_miibus);
1692 	}
1693 
1694 	bge_release_resources(sc);
1695 	bge_free_jumbo_mem(sc);
1696 
1697 	splx(s);
1698 
1699 	return(0);
1700 }
1701 
1702 static void
1703 bge_release_resources(sc)
1704 	struct bge_softc *sc;
1705 {
1706         device_t dev;
1707 
1708         dev = sc->bge_dev;
1709 
1710 	if (sc->bge_vpd_prodname != NULL)
1711 		free(sc->bge_vpd_prodname, M_DEVBUF);
1712 
1713 	if (sc->bge_vpd_readonly != NULL)
1714 		free(sc->bge_vpd_readonly, M_DEVBUF);
1715 
1716         if (sc->bge_intrhand != NULL)
1717                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1718 
1719         if (sc->bge_irq != NULL)
1720 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1721 
1722         if (sc->bge_res != NULL)
1723 		bus_release_resource(dev, SYS_RES_MEMORY,
1724 		    BGE_PCI_BAR0, sc->bge_res);
1725 
1726         if (sc->bge_rdata != NULL)
1727 		contigfree(sc->bge_rdata,
1728 		    sizeof(struct bge_ring_data), M_DEVBUF);
1729 
1730         return;
1731 }
1732 
1733 static void
1734 bge_reset(sc)
1735 	struct bge_softc *sc;
1736 {
1737 	device_t dev;
1738 	u_int32_t cachesize, command, pcistate;
1739 	int i, val = 0;
1740 
1741 	dev = sc->bge_dev;
1742 
1743 	/* Save some important PCI state. */
1744 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1745 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1746 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1747 
1748 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1749 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1750 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1751 
1752 	/* Issue global reset */
1753 	bge_writereg_ind(sc, BGE_MISC_CFG,
1754 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1755 
1756 	DELAY(1000);
1757 
1758 	/* Reset some of the PCI state that got zapped by reset */
1759 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1760 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1761 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1762 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1763 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1764 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1765 
1766 	/*
1767 	 * Prevent PXE restart: write a magic number to the
1768 	 * general communications memory at 0xB50.
1769 	 */
1770 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1771 	/*
1772 	 * Poll the value location we just wrote until
1773 	 * we see the 1's complement of the magic number.
1774 	 * This indicates that the firmware initialization
1775 	 * is complete.
1776 	 */
1777 	for (i = 0; i < BGE_TIMEOUT; i++) {
1778 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1779 		if (val == ~BGE_MAGIC_NUMBER)
1780 			break;
1781 		DELAY(10);
1782 	}
1783 
1784 	if (i == BGE_TIMEOUT) {
1785 		printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
1786 		return;
1787 	}
1788 
1789 	/*
1790 	 * XXX Wait for the value of the PCISTATE register to
1791 	 * return to its original pre-reset state. This is a
1792 	 * fairly good indicator of reset completion. If we don't
1793 	 * wait for the reset to fully complete, trying to read
1794 	 * from the device's non-PCI registers may yield garbage
1795 	 * results.
1796 	 */
1797 	for (i = 0; i < BGE_TIMEOUT; i++) {
1798 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1799 			break;
1800 		DELAY(10);
1801 	}
1802 
1803 	/* Enable memory arbiter. */
1804 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1805 
1806 	/* Fix up byte swapping */
1807 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1808 	    BGE_MODECTL_BYTESWAP_DATA);
1809 
1810 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1811 
1812 	DELAY(10000);
1813 
1814 	return;
1815 }
1816 
1817 /*
1818  * Frame reception handling. This is called if there's a frame
1819  * on the receive return list.
1820  *
1821  * Note: we have to be able to handle two possibilities here:
1822  * 1) the frame is from the jumbo recieve ring
1823  * 2) the frame is from the standard receive ring
1824  */
1825 
1826 static void
1827 bge_rxeof(sc)
1828 	struct bge_softc *sc;
1829 {
1830 	struct ifnet *ifp;
1831 	int stdcnt = 0, jumbocnt = 0;
1832 
1833 	ifp = &sc->arpcom.ac_if;
1834 
1835 	while(sc->bge_rx_saved_considx !=
1836 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1837 		struct bge_rx_bd	*cur_rx;
1838 		u_int32_t		rxidx;
1839 		struct ether_header	*eh;
1840 		struct mbuf		*m = NULL;
1841 		u_int16_t		vlan_tag = 0;
1842 		int			have_tag = 0;
1843 
1844 		cur_rx =
1845 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1846 
1847 		rxidx = cur_rx->bge_idx;
1848 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
1849 
1850 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1851 			have_tag = 1;
1852 			vlan_tag = cur_rx->bge_vlan_tag;
1853 		}
1854 
1855 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1856 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1857 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1858 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1859 			jumbocnt++;
1860 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1861 				ifp->if_ierrors++;
1862 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1863 				continue;
1864 			}
1865 			if (bge_newbuf_jumbo(sc,
1866 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1867 				ifp->if_ierrors++;
1868 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1869 				continue;
1870 			}
1871 		} else {
1872 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1873 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1874 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1875 			stdcnt++;
1876 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1877 				ifp->if_ierrors++;
1878 				bge_newbuf_std(sc, sc->bge_std, m);
1879 				continue;
1880 			}
1881 			if (bge_newbuf_std(sc, sc->bge_std,
1882 			    NULL) == ENOBUFS) {
1883 				ifp->if_ierrors++;
1884 				bge_newbuf_std(sc, sc->bge_std, m);
1885 				continue;
1886 			}
1887 		}
1888 
1889 		ifp->if_ipackets++;
1890 		eh = mtod(m, struct ether_header *);
1891 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
1892 		m->m_pkthdr.rcvif = ifp;
1893 
1894 		/* Remove header from mbuf and pass it on. */
1895 		m_adj(m, sizeof(struct ether_header));
1896 
1897 #if 0 /* currently broken for some packets, possibly related to TCP options */
1898 		if (ifp->if_hwassist) {
1899 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1900 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1901 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1902 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1903 				m->m_pkthdr.csum_data =
1904 				    cur_rx->bge_tcp_udp_csum;
1905 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1906 			}
1907 		}
1908 #endif
1909 
1910 		/*
1911 		 * If we received a packet with a vlan tag, pass it
1912 		 * to vlan_input() instead of ether_input().
1913 		 */
1914 		if (have_tag) {
1915 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1916 			have_tag = vlan_tag = 0;
1917 			continue;
1918 		}
1919 
1920 		ether_input(ifp, eh, m);
1921 	}
1922 
1923 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1924 	if (stdcnt)
1925 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1926 	if (jumbocnt)
1927 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1928 
1929 	return;
1930 }
1931 
1932 static void
1933 bge_txeof(sc)
1934 	struct bge_softc *sc;
1935 {
1936 	struct bge_tx_bd *cur_tx = NULL;
1937 	struct ifnet *ifp;
1938 
1939 	ifp = &sc->arpcom.ac_if;
1940 
1941 	/*
1942 	 * Go through our tx ring and free mbufs for those
1943 	 * frames that have been sent.
1944 	 */
1945 	while (sc->bge_tx_saved_considx !=
1946 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1947 		u_int32_t		idx = 0;
1948 
1949 		idx = sc->bge_tx_saved_considx;
1950 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1951 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1952 			ifp->if_opackets++;
1953 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1954 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1955 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
1956 		}
1957 		sc->bge_txcnt--;
1958 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1959 		ifp->if_timer = 0;
1960 	}
1961 
1962 	if (cur_tx != NULL)
1963 		ifp->if_flags &= ~IFF_OACTIVE;
1964 
1965 	return;
1966 }
1967 
1968 static void
1969 bge_intr(xsc)
1970 	void *xsc;
1971 {
1972 	struct bge_softc *sc;
1973 	struct ifnet *ifp;
1974 
1975 	sc = xsc;
1976 	ifp = &sc->arpcom.ac_if;
1977 
1978 #ifdef notdef
1979 	/* Avoid this for now -- checking this register is expensive. */
1980 	/* Make sure this is really our interrupt. */
1981 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
1982 		return;
1983 #endif
1984 	/* Ack interrupt and stop others from occuring. */
1985 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
1986 
1987 	/* Process link state changes. */
1988 	if (sc->bge_rdata->bge_status_block.bge_status &
1989 	    BGE_STATFLAG_LINKSTATE_CHANGED) {
1990 		sc->bge_link = 0;
1991 		untimeout(bge_tick, sc, sc->bge_stat_ch);
1992 		bge_tick(sc);
1993 		/* ack the event to clear/reset it */
1994 		CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1995 		    BGE_MACSTAT_CFG_CHANGED);
1996 		CSR_WRITE_4(sc, BGE_MI_STS, 0);
1997 	}
1998 
1999 	if (ifp->if_flags & IFF_RUNNING) {
2000 		/* Check RX return ring producer/consumer */
2001 		bge_rxeof(sc);
2002 
2003 		/* Check TX ring producer/consumer */
2004 		bge_txeof(sc);
2005 	}
2006 
2007 	bge_handle_events(sc);
2008 
2009 	/* Re-enable interrupts. */
2010 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2011 
2012 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2013 		bge_start(ifp);
2014 
2015 	return;
2016 }
2017 
2018 static void
2019 bge_tick(xsc)
2020 	void *xsc;
2021 {
2022 	struct bge_softc *sc;
2023 	struct mii_data *mii = NULL;
2024 	struct ifmedia *ifm = NULL;
2025 	struct ifnet *ifp;
2026 	int s;
2027 
2028 	sc = xsc;
2029 	ifp = &sc->arpcom.ac_if;
2030 
2031 	s = splimp();
2032 
2033 	bge_stats_update(sc);
2034 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2035 	if (sc->bge_link)
2036 		return;
2037 
2038 	if (sc->bge_tbi) {
2039 		ifm = &sc->bge_ifmedia;
2040 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2041 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2042 			sc->bge_link++;
2043 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2044 			printf("bge%d: gigabit link up\n", sc->bge_unit);
2045 			if (ifp->if_snd.ifq_head != NULL)
2046 				bge_start(ifp);
2047 		}
2048 		return;
2049 	}
2050 
2051 	mii = device_get_softc(sc->bge_miibus);
2052 	mii_tick(mii);
2053 
2054 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2055 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2056 		sc->bge_link++;
2057 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
2058 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2059 			printf("bge%d: gigabit link up\n",
2060 			   sc->bge_unit);
2061 		if (ifp->if_snd.ifq_head != NULL)
2062 			bge_start(ifp);
2063 	}
2064 
2065 	splx(s);
2066 
2067 	return;
2068 }
2069 
2070 static void
2071 bge_stats_update(sc)
2072 	struct bge_softc *sc;
2073 {
2074 	struct ifnet *ifp;
2075 	struct bge_stats *stats;
2076 
2077 	ifp = &sc->arpcom.ac_if;
2078 
2079 	stats = (struct bge_stats *)(sc->bge_vhandle +
2080 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2081 
2082 	ifp->if_collisions +=
2083 	   (stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
2084 	   stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
2085 	   stats->dot3StatsExcessiveCollisions.bge_addr_lo +
2086 	   stats->dot3StatsLateCollisions.bge_addr_lo) -
2087 	   ifp->if_collisions;
2088 
2089 #ifdef notdef
2090 	ifp->if_collisions +=
2091 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2092 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2093 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2094 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2095 	   ifp->if_collisions;
2096 #endif
2097 
2098 	return;
2099 }
2100 
2101 /*
2102  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2103  * pointers to descriptors.
2104  */
2105 static int
2106 bge_encap(sc, m_head, txidx)
2107 	struct bge_softc *sc;
2108 	struct mbuf *m_head;
2109 	u_int32_t *txidx;
2110 {
2111 	struct bge_tx_bd	*f = NULL;
2112 	struct mbuf		*m;
2113 	u_int32_t		frag, cur, cnt = 0;
2114 	u_int16_t		csum_flags = 0;
2115 	struct ifvlan		*ifv = NULL;
2116 
2117 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2118 	    m_head->m_pkthdr.rcvif != NULL &&
2119 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2120 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2121 
2122 	m = m_head;
2123 	cur = frag = *txidx;
2124 
2125 	if (m_head->m_pkthdr.csum_flags) {
2126 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2127 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2128 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2129 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2130 		if (m_head->m_flags & M_LASTFRAG)
2131 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2132 		else if (m_head->m_flags & M_FRAG)
2133 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2134 	}
2135 
2136 	/*
2137  	 * Start packing the mbufs in this chain into
2138 	 * the fragment pointers. Stop when we run out
2139  	 * of fragments or hit the end of the mbuf chain.
2140 	 */
2141 	for (m = m_head; m != NULL; m = m->m_next) {
2142 		if (m->m_len != 0) {
2143 			f = &sc->bge_rdata->bge_tx_ring[frag];
2144 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2145 				break;
2146 			BGE_HOSTADDR(f->bge_addr) =
2147 			   vtophys(mtod(m, vm_offset_t));
2148 			f->bge_len = m->m_len;
2149 			f->bge_flags = csum_flags;
2150 			if (ifv != NULL) {
2151 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2152 				f->bge_vlan_tag = ifv->ifv_tag;
2153 			} else {
2154 				f->bge_vlan_tag = 0;
2155 			}
2156 			/*
2157 			 * Sanity check: avoid coming within 16 descriptors
2158 			 * of the end of the ring.
2159 			 */
2160 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2161 				return(ENOBUFS);
2162 			cur = frag;
2163 			BGE_INC(frag, BGE_TX_RING_CNT);
2164 			cnt++;
2165 		}
2166 	}
2167 
2168 	if (m != NULL)
2169 		return(ENOBUFS);
2170 
2171 	if (frag == sc->bge_tx_saved_considx)
2172 		return(ENOBUFS);
2173 
2174 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2175 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2176 	sc->bge_txcnt += cnt;
2177 
2178 	*txidx = frag;
2179 
2180 	return(0);
2181 }
2182 
2183 /*
2184  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2185  * to the mbuf data regions directly in the transmit descriptors.
2186  */
2187 static void
2188 bge_start(ifp)
2189 	struct ifnet *ifp;
2190 {
2191 	struct bge_softc *sc;
2192 	struct mbuf *m_head = NULL;
2193 	u_int32_t prodidx = 0;
2194 
2195 	sc = ifp->if_softc;
2196 
2197 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2198 		return;
2199 
2200 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2201 
2202 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2203 		IF_DEQUEUE(&ifp->if_snd, m_head);
2204 		if (m_head == NULL)
2205 			break;
2206 
2207 		/*
2208 		 * XXX
2209 		 * safety overkill.  If this is a fragmented packet chain
2210 		 * with delayed TCP/UDP checksums, then only encapsulate
2211 		 * it if we have enough descriptors to handle the entire
2212 		 * chain at once.
2213 		 * (paranoia -- may not actually be needed)
2214 		 */
2215 		if (m_head->m_flags & M_FIRSTFRAG &&
2216 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2217 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2218 			    m_head->m_pkthdr.csum_data + 16) {
2219 				IF_PREPEND(&ifp->if_snd, m_head);
2220 				ifp->if_flags |= IFF_OACTIVE;
2221 				break;
2222 			}
2223 		}
2224 
2225 		/*
2226 		 * Pack the data into the transmit ring. If we
2227 		 * don't have room, set the OACTIVE flag and wait
2228 		 * for the NIC to drain the ring.
2229 		 */
2230 		if (bge_encap(sc, m_head, &prodidx)) {
2231 			IF_PREPEND(&ifp->if_snd, m_head);
2232 			ifp->if_flags |= IFF_OACTIVE;
2233 			break;
2234 		}
2235 
2236 		/*
2237 		 * If there's a BPF listener, bounce a copy of this frame
2238 		 * to him.
2239 		 */
2240 		if (ifp->if_bpf)
2241 			bpf_mtap(ifp, m_head);
2242 	}
2243 
2244 	/* Transmit */
2245 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2246 
2247 	/*
2248 	 * Set a timeout in case the chip goes out to lunch.
2249 	 */
2250 	ifp->if_timer = 5;
2251 
2252 	return;
2253 }
2254 
2255 /*
2256  * If we have a BCM5400 or BCM5401 PHY, we need to properly
2257  * program its internal DSP. Failing to do this can result in
2258  * massive packet loss at 1Gb speeds.
2259  */
2260 static void
2261 bge_phy_hack(sc)
2262 	struct bge_softc *sc;
2263 {
2264 	struct bge_bcom_hack bhack[] = {
2265 	{ BRGPHY_MII_AUXCTL, 0x4C20 },
2266 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2267 	{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2268 	{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2269 	{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2270 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2271 	{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2272 	{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2273 	{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2274 	{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2275 	{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2276 	{ 0, 0 } };
2277 	u_int16_t vid, did;
2278 	int i;
2279 
2280 	vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
2281 	did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
2282 
2283 	if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
2284 	    (MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
2285 	    MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
2286 		i = 0;
2287 		while(bhack[i].reg) {
2288 			bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
2289 			    bhack[i].val);
2290 			i++;
2291 		}
2292 	}
2293 
2294 	return;
2295 }
2296 
2297 static void
2298 bge_init(xsc)
2299 	void *xsc;
2300 {
2301 	struct bge_softc *sc = xsc;
2302 	struct ifnet *ifp;
2303 	u_int16_t *m;
2304         int s;
2305 
2306 	s = splimp();
2307 
2308 	ifp = &sc->arpcom.ac_if;
2309 
2310 	if (ifp->if_flags & IFF_RUNNING)
2311 		return;
2312 
2313 	/* Cancel pending I/O and flush buffers. */
2314 	bge_stop(sc);
2315 	bge_reset(sc);
2316 	bge_chipinit(sc);
2317 
2318 	/*
2319 	 * Init the various state machines, ring
2320 	 * control blocks and firmware.
2321 	 */
2322 	if (bge_blockinit(sc)) {
2323 		printf("bge%d: initialization failure\n", sc->bge_unit);
2324 		splx(s);
2325 		return;
2326 	}
2327 
2328 	ifp = &sc->arpcom.ac_if;
2329 
2330 	/* Specify MTU. */
2331 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2332 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2333 
2334 	/* Load our MAC address. */
2335 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2336 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2337 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2338 
2339 	/* Enable or disable promiscuous mode as needed. */
2340 	if (ifp->if_flags & IFF_PROMISC) {
2341 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2342 	} else {
2343 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2344 	}
2345 
2346 	/* Program multicast filter. */
2347 	bge_setmulti(sc);
2348 
2349 	/* Init RX ring. */
2350 	bge_init_rx_ring_std(sc);
2351 
2352 	/* Init jumbo RX ring. */
2353 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2354 		bge_init_rx_ring_jumbo(sc);
2355 
2356 	/* Init our RX return ring index */
2357 	sc->bge_rx_saved_considx = 0;
2358 
2359 	/* Init TX ring. */
2360 	bge_init_tx_ring(sc);
2361 
2362 	/* Turn on transmitter */
2363 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2364 
2365 	/* Turn on receiver */
2366 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2367 
2368 	/* Tell firmware we're alive. */
2369 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2370 
2371 	/* Enable host interrupts. */
2372 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2373 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2374 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2375 
2376 	bge_ifmedia_upd(ifp);
2377 
2378 	ifp->if_flags |= IFF_RUNNING;
2379 	ifp->if_flags &= ~IFF_OACTIVE;
2380 
2381 	splx(s);
2382 
2383 	sc->bge_stat_ch = timeout(bge_tick, sc, hz);
2384 
2385 	return;
2386 }
2387 
2388 /*
2389  * Set media options.
2390  */
2391 static int
2392 bge_ifmedia_upd(ifp)
2393 	struct ifnet *ifp;
2394 {
2395 	struct bge_softc *sc;
2396 	struct mii_data *mii;
2397 	struct ifmedia *ifm;
2398 
2399 	sc = ifp->if_softc;
2400 	ifm = &sc->bge_ifmedia;
2401 
2402 	/* If this is a 1000baseX NIC, enable the TBI port. */
2403 	if (sc->bge_tbi) {
2404 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2405 			return(EINVAL);
2406 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2407 		case IFM_AUTO:
2408 			break;
2409 		case IFM_1000_SX:
2410 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2411 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2412 				    BGE_MACMODE_HALF_DUPLEX);
2413 			} else {
2414 				BGE_SETBIT(sc, BGE_MAC_MODE,
2415 				    BGE_MACMODE_HALF_DUPLEX);
2416 			}
2417 			break;
2418 		default:
2419 			return(EINVAL);
2420 		}
2421 		return(0);
2422 	}
2423 
2424 	mii = device_get_softc(sc->bge_miibus);
2425 	sc->bge_link = 0;
2426 	if (mii->mii_instance) {
2427 		struct mii_softc *miisc;
2428 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2429 		    miisc = LIST_NEXT(miisc, mii_list))
2430 			mii_phy_reset(miisc);
2431 	}
2432 	bge_phy_hack(sc);
2433 	mii_mediachg(mii);
2434 
2435 	return(0);
2436 }
2437 
2438 /*
2439  * Report current media status.
2440  */
2441 static void
2442 bge_ifmedia_sts(ifp, ifmr)
2443 	struct ifnet *ifp;
2444 	struct ifmediareq *ifmr;
2445 {
2446 	struct bge_softc *sc;
2447 	struct mii_data *mii;
2448 
2449 	sc = ifp->if_softc;
2450 
2451 	if (sc->bge_tbi) {
2452 		ifmr->ifm_status = IFM_AVALID;
2453 		ifmr->ifm_active = IFM_ETHER;
2454 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2455 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2456 			ifmr->ifm_status |= IFM_ACTIVE;
2457 		ifmr->ifm_active |= IFM_1000_SX;
2458 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2459 			ifmr->ifm_active |= IFM_HDX;
2460 		else
2461 			ifmr->ifm_active |= IFM_FDX;
2462 		return;
2463 	}
2464 
2465 	mii = device_get_softc(sc->bge_miibus);
2466 	mii_pollstat(mii);
2467 	ifmr->ifm_active = mii->mii_media_active;
2468 	ifmr->ifm_status = mii->mii_media_status;
2469 
2470 	return;
2471 }
2472 
2473 static int
2474 bge_ioctl(ifp, command, data)
2475 	struct ifnet *ifp;
2476 	u_long command;
2477 	caddr_t data;
2478 {
2479 	struct bge_softc *sc = ifp->if_softc;
2480 	struct ifreq *ifr = (struct ifreq *) data;
2481 	int s, mask, error = 0;
2482 	struct mii_data *mii;
2483 
2484 	s = splimp();
2485 
2486 	switch(command) {
2487 	case SIOCSIFADDR:
2488 	case SIOCGIFADDR:
2489 		error = ether_ioctl(ifp, command, data);
2490 		break;
2491 	case SIOCSIFMTU:
2492 		if (ifr->ifr_mtu > BGE_JUMBO_MTU)
2493 			error = EINVAL;
2494 		else {
2495 			ifp->if_mtu = ifr->ifr_mtu;
2496 			ifp->if_flags &= ~IFF_RUNNING;
2497 			bge_init(sc);
2498 		}
2499 		break;
2500 	case SIOCSIFFLAGS:
2501 		if (ifp->if_flags & IFF_UP) {
2502 			/*
2503 			 * If only the state of the PROMISC flag changed,
2504 			 * then just use the 'set promisc mode' command
2505 			 * instead of reinitializing the entire NIC. Doing
2506 			 * a full re-init means reloading the firmware and
2507 			 * waiting for it to start up, which may take a
2508 			 * second or two.
2509 			 */
2510 			if (ifp->if_flags & IFF_RUNNING &&
2511 			    ifp->if_flags & IFF_PROMISC &&
2512 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2513 				BGE_SETBIT(sc, BGE_RX_MODE,
2514 				    BGE_RXMODE_RX_PROMISC);
2515 			} else if (ifp->if_flags & IFF_RUNNING &&
2516 			    !(ifp->if_flags & IFF_PROMISC) &&
2517 			    sc->bge_if_flags & IFF_PROMISC) {
2518 				BGE_CLRBIT(sc, BGE_RX_MODE,
2519 				    BGE_RXMODE_RX_PROMISC);
2520 			} else
2521 				bge_init(sc);
2522 		} else {
2523 			if (ifp->if_flags & IFF_RUNNING) {
2524 				bge_stop(sc);
2525 			}
2526 		}
2527 		sc->bge_if_flags = ifp->if_flags;
2528 		error = 0;
2529 		break;
2530 	case SIOCADDMULTI:
2531 	case SIOCDELMULTI:
2532 		if (ifp->if_flags & IFF_RUNNING) {
2533 			bge_setmulti(sc);
2534 			error = 0;
2535 		}
2536 		break;
2537 	case SIOCSIFMEDIA:
2538 	case SIOCGIFMEDIA:
2539 		if (sc->bge_tbi) {
2540 			error = ifmedia_ioctl(ifp, ifr,
2541 			    &sc->bge_ifmedia, command);
2542 		} else {
2543 			mii = device_get_softc(sc->bge_miibus);
2544 			error = ifmedia_ioctl(ifp, ifr,
2545 			    &mii->mii_media, command);
2546 		}
2547 		break;
2548         case SIOCSIFCAP:
2549 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2550 		if (mask & IFCAP_HWCSUM) {
2551 			if (IFCAP_HWCSUM & ifp->if_capenable)
2552 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2553 			else
2554 				ifp->if_capenable |= IFCAP_HWCSUM;
2555 		}
2556 		error = 0;
2557 		break;
2558 	default:
2559 		error = EINVAL;
2560 		break;
2561 	}
2562 
2563 	(void)splx(s);
2564 
2565 	return(error);
2566 }
2567 
2568 static void
2569 bge_watchdog(ifp)
2570 	struct ifnet *ifp;
2571 {
2572 	struct bge_softc *sc;
2573 
2574 	sc = ifp->if_softc;
2575 
2576 	printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2577 
2578 	ifp->if_flags &= ~IFF_RUNNING;
2579 	bge_init(sc);
2580 
2581 	ifp->if_oerrors++;
2582 
2583 	return;
2584 }
2585 
2586 /*
2587  * Stop the adapter and free any mbufs allocated to the
2588  * RX and TX lists.
2589  */
2590 static void
2591 bge_stop(sc)
2592 	struct bge_softc *sc;
2593 {
2594 	struct ifnet *ifp;
2595 	struct ifmedia_entry *ifm;
2596 	struct mii_data *mii = NULL;
2597 	int mtmp, itmp;
2598 
2599 	ifp = &sc->arpcom.ac_if;
2600 
2601 	if (!sc->bge_tbi)
2602 		mii = device_get_softc(sc->bge_miibus);
2603 
2604 	untimeout(bge_tick, sc, sc->bge_stat_ch);
2605 
2606 	/*
2607 	 * Disable all of the receiver blocks
2608 	 */
2609 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2610 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2611 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2612 	BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2613 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2614 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2615 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2616 
2617 	/*
2618 	 * Disable all of the transmit blocks
2619 	 */
2620 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2621 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2622 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2623 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2624 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2625 	BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2626 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2627 
2628 	/*
2629 	 * Shut down all of the memory managers and related
2630 	 * state machines.
2631 	 */
2632 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2633 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2634 	BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2635 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2636 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2637 	BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2638 	BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2639 
2640 	/* Disable host interrupts. */
2641 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2642 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2643 
2644 	/*
2645 	 * Tell firmware we're shutting down.
2646 	 */
2647 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2648 
2649 	/* Free the RX lists. */
2650 	bge_free_rx_ring_std(sc);
2651 
2652 	/* Free jumbo RX list. */
2653 	bge_free_rx_ring_jumbo(sc);
2654 
2655 	/* Free TX buffers. */
2656 	bge_free_tx_ring(sc);
2657 
2658 	/*
2659 	 * Isolate/power down the PHY, but leave the media selection
2660 	 * unchanged so that things will be put back to normal when
2661 	 * we bring the interface back up.
2662 	 */
2663 	if (!sc->bge_tbi) {
2664 		itmp = ifp->if_flags;
2665 		ifp->if_flags |= IFF_UP;
2666 		ifm = mii->mii_media.ifm_cur;
2667 		mtmp = ifm->ifm_media;
2668 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2669 		mii_mediachg(mii);
2670 		ifm->ifm_media = mtmp;
2671 		ifp->if_flags = itmp;
2672 	}
2673 
2674 	sc->bge_link = 0;
2675 
2676 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2677 
2678 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2679 
2680 	return;
2681 }
2682 
2683 /*
2684  * Stop all chip I/O so that the kernel's probe routines don't
2685  * get confused by errant DMAs when rebooting.
2686  */
2687 static void
2688 bge_shutdown(dev)
2689 	device_t dev;
2690 {
2691 	struct bge_softc *sc;
2692 
2693 	sc = device_get_softc(dev);
2694 
2695 	bge_stop(sc);
2696 	bge_reset(sc);
2697 
2698 	return;
2699 }
2700