xref: /freebsd/sys/dev/bge/if_bge.c (revision ab00ac327a66a53edaac95b536b209db3ae2cd9f)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111 
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #include <dev/bge/if_bgereg.h>
123 
124 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126 
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141 	uint16_t	bge_vid;
142 	uint16_t	bge_did;
143 } bge_devs[] = {
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146 
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150 
151 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152 
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
239 
240 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
241 
242 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
243 
244 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
245 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
246 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
247 
248 	{ 0, 0 }
249 };
250 
251 static const struct bge_vendor {
252 	uint16_t	v_id;
253 	const char	*v_name;
254 } bge_vendors[] = {
255 	{ ALTEON_VENDORID,	"Alteon" },
256 	{ ALTIMA_VENDORID,	"Altima" },
257 	{ APPLE_VENDORID,	"Apple" },
258 	{ BCOM_VENDORID,	"Broadcom" },
259 	{ SK_VENDORID,		"SysKonnect" },
260 	{ TC_VENDORID,		"3Com" },
261 	{ FJTSU_VENDORID,	"Fujitsu" },
262 
263 	{ 0, NULL }
264 };
265 
266 static const struct bge_revision {
267 	uint32_t	br_chipid;
268 	const char	*br_name;
269 } bge_revisions[] = {
270 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
271 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
272 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
273 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
274 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
275 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
276 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
277 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
278 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
279 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
280 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
281 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
282 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
283 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
284 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
285 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
286 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
287 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
288 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
289 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
290 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
291 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
292 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
293 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
294 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
295 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
296 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
297 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
298 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
299 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
300 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
301 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
302 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
303 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
304 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
305 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
306 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
307 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
308 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
309 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
310 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
311 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
312 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
313 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
314 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
315 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
316 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
317 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
318 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
319 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
320 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
321 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
322 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
323 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
324 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
325 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
326 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
327 	/* 5754 and 5787 share the same ASIC ID */
328 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
329 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
330 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
331 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
332 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
333 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
334 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
335 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
336 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
337 
338 	{ 0, NULL }
339 };
340 
341 /*
342  * Some defaults for major revisions, so that newer steppings
343  * that we don't know about have a shot at working.
344  */
345 static const struct bge_revision bge_majorrevs[] = {
346 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
347 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
348 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
349 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
350 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
351 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
352 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
353 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
354 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
355 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
356 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
357 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
358 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
359 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
360 	/* 5754 and 5787 share the same ASIC ID */
361 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
362 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
363 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
364 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
365 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
366 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
367 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
368 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
369 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
370 
371 	{ 0, NULL }
372 };
373 
374 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
375 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
376 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
377 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
378 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
379 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
380 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
381 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
382 
383 static uint32_t bge_chipid(device_t);
384 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
385 static const struct bge_revision * bge_lookup_rev(uint32_t);
386 
387 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
388 
389 static int bge_probe(device_t);
390 static int bge_attach(device_t);
391 static int bge_detach(device_t);
392 static int bge_suspend(device_t);
393 static int bge_resume(device_t);
394 static void bge_release_resources(struct bge_softc *);
395 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
396 static int bge_dma_alloc(struct bge_softc *);
397 static void bge_dma_free(struct bge_softc *);
398 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
399     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
400 
401 static void bge_devinfo(struct bge_softc *);
402 static int bge_mbox_reorder(struct bge_softc *);
403 
404 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
405 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
406 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
407 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
408 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
409 
410 static void bge_txeof(struct bge_softc *, uint16_t);
411 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
412 static int bge_rxeof(struct bge_softc *, uint16_t, int);
413 
414 static void bge_asf_driver_up (struct bge_softc *);
415 static void bge_tick(void *);
416 static void bge_stats_clear_regs(struct bge_softc *);
417 static void bge_stats_update(struct bge_softc *);
418 static void bge_stats_update_regs(struct bge_softc *);
419 static struct mbuf *bge_check_short_dma(struct mbuf *);
420 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
421     uint16_t *, uint16_t *);
422 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
423 
424 static void bge_intr(void *);
425 static int bge_msi_intr(void *);
426 static void bge_intr_task(void *, int);
427 static void bge_start_locked(if_t);
428 static void bge_start(if_t);
429 static int bge_ioctl(if_t, u_long, caddr_t);
430 static void bge_init_locked(struct bge_softc *);
431 static void bge_init(void *);
432 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
433 static void bge_stop(struct bge_softc *);
434 static void bge_watchdog(struct bge_softc *);
435 static int bge_shutdown(device_t);
436 static int bge_ifmedia_upd_locked(if_t);
437 static int bge_ifmedia_upd(if_t);
438 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
439 static uint64_t bge_get_counter(if_t, ift_counter);
440 
441 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
442 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
443 
444 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
445 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
446 
447 static void bge_setpromisc(struct bge_softc *);
448 static void bge_setmulti(struct bge_softc *);
449 static void bge_setvlan(struct bge_softc *);
450 
451 static __inline void bge_rxreuse_std(struct bge_softc *, int);
452 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
453 static int bge_newbuf_std(struct bge_softc *, int);
454 static int bge_newbuf_jumbo(struct bge_softc *, int);
455 static int bge_init_rx_ring_std(struct bge_softc *);
456 static void bge_free_rx_ring_std(struct bge_softc *);
457 static int bge_init_rx_ring_jumbo(struct bge_softc *);
458 static void bge_free_rx_ring_jumbo(struct bge_softc *);
459 static void bge_free_tx_ring(struct bge_softc *);
460 static int bge_init_tx_ring(struct bge_softc *);
461 
462 static int bge_chipinit(struct bge_softc *);
463 static int bge_blockinit(struct bge_softc *);
464 static uint32_t bge_dma_swap_options(struct bge_softc *);
465 
466 static int bge_has_eaddr(struct bge_softc *);
467 static uint32_t bge_readmem_ind(struct bge_softc *, int);
468 static void bge_writemem_ind(struct bge_softc *, int, int);
469 static void bge_writembx(struct bge_softc *, int, int);
470 #ifdef notdef
471 static uint32_t bge_readreg_ind(struct bge_softc *, int);
472 #endif
473 static void bge_writemem_direct(struct bge_softc *, int, int);
474 static void bge_writereg_ind(struct bge_softc *, int, int);
475 
476 static int bge_miibus_readreg(device_t, int, int);
477 static int bge_miibus_writereg(device_t, int, int, int);
478 static void bge_miibus_statchg(device_t);
479 #ifdef DEVICE_POLLING
480 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
481 #endif
482 
483 #define	BGE_RESET_SHUTDOWN	0
484 #define	BGE_RESET_START		1
485 #define	BGE_RESET_SUSPEND	2
486 static void bge_sig_post_reset(struct bge_softc *, int);
487 static void bge_sig_legacy(struct bge_softc *, int);
488 static void bge_sig_pre_reset(struct bge_softc *, int);
489 static void bge_stop_fw(struct bge_softc *);
490 static int bge_reset(struct bge_softc *);
491 static void bge_link_upd(struct bge_softc *);
492 
493 static void bge_ape_lock_init(struct bge_softc *);
494 static void bge_ape_read_fw_ver(struct bge_softc *);
495 static int bge_ape_lock(struct bge_softc *, int);
496 static void bge_ape_unlock(struct bge_softc *, int);
497 static void bge_ape_send_event(struct bge_softc *, uint32_t);
498 static void bge_ape_driver_state_change(struct bge_softc *, int);
499 
500 /*
501  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
502  * leak information to untrusted users.  It is also known to cause alignment
503  * traps on certain architectures.
504  */
505 #ifdef BGE_REGISTER_DEBUG
506 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
507 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
508 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
509 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
510 #endif
511 static void bge_add_sysctls(struct bge_softc *);
512 static void bge_add_sysctl_stats_regs(struct bge_softc *,
513     struct sysctl_ctx_list *, struct sysctl_oid_list *);
514 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
515     struct sysctl_oid_list *);
516 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
517 
518 static device_method_t bge_methods[] = {
519 	/* Device interface */
520 	DEVMETHOD(device_probe,		bge_probe),
521 	DEVMETHOD(device_attach,	bge_attach),
522 	DEVMETHOD(device_detach,	bge_detach),
523 	DEVMETHOD(device_shutdown,	bge_shutdown),
524 	DEVMETHOD(device_suspend,	bge_suspend),
525 	DEVMETHOD(device_resume,	bge_resume),
526 
527 	/* MII interface */
528 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
529 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
530 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
531 
532 	DEVMETHOD_END
533 };
534 
535 static driver_t bge_driver = {
536 	"bge",
537 	bge_methods,
538 	sizeof(struct bge_softc)
539 };
540 
541 static devclass_t bge_devclass;
542 
543 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
544 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
545 
546 static int bge_allow_asf = 1;
547 
548 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
549 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
550 	"Allow ASF mode if available");
551 
552 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
553 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
554 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
555 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
556 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
557 
558 static int
559 bge_has_eaddr(struct bge_softc *sc)
560 {
561 #ifdef __sparc64__
562 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
563 	device_t dev;
564 	uint32_t subvendor;
565 
566 	dev = sc->bge_dev;
567 
568 	/*
569 	 * The on-board BGEs found in sun4u machines aren't fitted with
570 	 * an EEPROM which means that we have to obtain the MAC address
571 	 * via OFW and that some tests will always fail.  We distinguish
572 	 * such BGEs by the subvendor ID, which also has to be obtained
573 	 * from OFW instead of the PCI configuration space as the latter
574 	 * indicates Broadcom as the subvendor of the netboot interface.
575 	 * For early Blade 1500 and 2500 we even have to check the OFW
576 	 * device path as the subvendor ID always defaults to Broadcom
577 	 * there.
578 	 */
579 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
580 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
581 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
582 		return (0);
583 	memset(buf, 0, sizeof(buf));
584 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
585 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
586 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
587 			return (0);
588 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
589 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
590 			return (0);
591 	}
592 #endif
593 	return (1);
594 }
595 
596 static uint32_t
597 bge_readmem_ind(struct bge_softc *sc, int off)
598 {
599 	device_t dev;
600 	uint32_t val;
601 
602 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
603 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
604 		return (0);
605 
606 	dev = sc->bge_dev;
607 
608 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
609 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
610 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
611 	return (val);
612 }
613 
614 static void
615 bge_writemem_ind(struct bge_softc *sc, int off, int val)
616 {
617 	device_t dev;
618 
619 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
620 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
621 		return;
622 
623 	dev = sc->bge_dev;
624 
625 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
626 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
627 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
628 }
629 
630 #ifdef notdef
631 static uint32_t
632 bge_readreg_ind(struct bge_softc *sc, int off)
633 {
634 	device_t dev;
635 
636 	dev = sc->bge_dev;
637 
638 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
639 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
640 }
641 #endif
642 
643 static void
644 bge_writereg_ind(struct bge_softc *sc, int off, int val)
645 {
646 	device_t dev;
647 
648 	dev = sc->bge_dev;
649 
650 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
651 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
652 }
653 
654 static void
655 bge_writemem_direct(struct bge_softc *sc, int off, int val)
656 {
657 	CSR_WRITE_4(sc, off, val);
658 }
659 
660 static void
661 bge_writembx(struct bge_softc *sc, int off, int val)
662 {
663 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
664 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
665 
666 	CSR_WRITE_4(sc, off, val);
667 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
668 		CSR_READ_4(sc, off);
669 }
670 
671 /*
672  * Clear all stale locks and select the lock for this driver instance.
673  */
674 static void
675 bge_ape_lock_init(struct bge_softc *sc)
676 {
677 	uint32_t bit, regbase;
678 	int i;
679 
680 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
681 		regbase = BGE_APE_LOCK_GRANT;
682 	else
683 		regbase = BGE_APE_PER_LOCK_GRANT;
684 
685 	/* Clear any stale locks. */
686 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
687 		switch (i) {
688 		case BGE_APE_LOCK_PHY0:
689 		case BGE_APE_LOCK_PHY1:
690 		case BGE_APE_LOCK_PHY2:
691 		case BGE_APE_LOCK_PHY3:
692 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
693 			break;
694 		default:
695 			if (sc->bge_func_addr == 0)
696 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
697 			else
698 				bit = (1 << sc->bge_func_addr);
699 		}
700 		APE_WRITE_4(sc, regbase + 4 * i, bit);
701 	}
702 
703 	/* Select the PHY lock based on the device's function number. */
704 	switch (sc->bge_func_addr) {
705 	case 0:
706 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
707 		break;
708 	case 1:
709 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
710 		break;
711 	case 2:
712 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
713 		break;
714 	case 3:
715 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
716 		break;
717 	default:
718 		device_printf(sc->bge_dev,
719 		    "PHY lock not supported on this function\n");
720 	}
721 }
722 
723 /*
724  * Check for APE firmware, set flags, and print version info.
725  */
726 static void
727 bge_ape_read_fw_ver(struct bge_softc *sc)
728 {
729 	const char *fwtype;
730 	uint32_t apedata, features;
731 
732 	/* Check for a valid APE signature in shared memory. */
733 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
734 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
735 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
736 		return;
737 	}
738 
739 	/* Check if APE firmware is running. */
740 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
741 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
742 		device_printf(sc->bge_dev, "APE signature found "
743 		    "but FW status not ready! 0x%08x\n", apedata);
744 		return;
745 	}
746 
747 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
748 
749 	/* Fetch the APE firwmare type and version. */
750 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
751 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
752 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
753 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
754 		fwtype = "NCSI";
755 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
756 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
757 		fwtype = "DASH";
758 	} else
759 		fwtype = "UNKN";
760 
761 	/* Print the APE firmware version. */
762 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
763 	    fwtype,
764 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
765 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
766 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
767 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
768 }
769 
770 static int
771 bge_ape_lock(struct bge_softc *sc, int locknum)
772 {
773 	uint32_t bit, gnt, req, status;
774 	int i, off;
775 
776 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
777 		return (0);
778 
779 	/* Lock request/grant registers have different bases. */
780 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
781 		req = BGE_APE_LOCK_REQ;
782 		gnt = BGE_APE_LOCK_GRANT;
783 	} else {
784 		req = BGE_APE_PER_LOCK_REQ;
785 		gnt = BGE_APE_PER_LOCK_GRANT;
786 	}
787 
788 	off = 4 * locknum;
789 
790 	switch (locknum) {
791 	case BGE_APE_LOCK_GPIO:
792 		/* Lock required when using GPIO. */
793 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
794 			return (0);
795 		if (sc->bge_func_addr == 0)
796 			bit = BGE_APE_LOCK_REQ_DRIVER0;
797 		else
798 			bit = (1 << sc->bge_func_addr);
799 		break;
800 	case BGE_APE_LOCK_GRC:
801 		/* Lock required to reset the device. */
802 		if (sc->bge_func_addr == 0)
803 			bit = BGE_APE_LOCK_REQ_DRIVER0;
804 		else
805 			bit = (1 << sc->bge_func_addr);
806 		break;
807 	case BGE_APE_LOCK_MEM:
808 		/* Lock required when accessing certain APE memory. */
809 		if (sc->bge_func_addr == 0)
810 			bit = BGE_APE_LOCK_REQ_DRIVER0;
811 		else
812 			bit = (1 << sc->bge_func_addr);
813 		break;
814 	case BGE_APE_LOCK_PHY0:
815 	case BGE_APE_LOCK_PHY1:
816 	case BGE_APE_LOCK_PHY2:
817 	case BGE_APE_LOCK_PHY3:
818 		/* Lock required when accessing PHYs. */
819 		bit = BGE_APE_LOCK_REQ_DRIVER0;
820 		break;
821 	default:
822 		return (EINVAL);
823 	}
824 
825 	/* Request a lock. */
826 	APE_WRITE_4(sc, req + off, bit);
827 
828 	/* Wait up to 1 second to acquire lock. */
829 	for (i = 0; i < 20000; i++) {
830 		status = APE_READ_4(sc, gnt + off);
831 		if (status == bit)
832 			break;
833 		DELAY(50);
834 	}
835 
836 	/* Handle any errors. */
837 	if (status != bit) {
838 		device_printf(sc->bge_dev, "APE lock %d request failed! "
839 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
840 		    locknum, req + off, bit & 0xFFFF, gnt + off,
841 		    status & 0xFFFF);
842 		/* Revoke the lock request. */
843 		APE_WRITE_4(sc, gnt + off, bit);
844 		return (EBUSY);
845 	}
846 
847 	return (0);
848 }
849 
850 static void
851 bge_ape_unlock(struct bge_softc *sc, int locknum)
852 {
853 	uint32_t bit, gnt;
854 	int off;
855 
856 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
857 		return;
858 
859 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
860 		gnt = BGE_APE_LOCK_GRANT;
861 	else
862 		gnt = BGE_APE_PER_LOCK_GRANT;
863 
864 	off = 4 * locknum;
865 
866 	switch (locknum) {
867 	case BGE_APE_LOCK_GPIO:
868 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
869 			return;
870 		if (sc->bge_func_addr == 0)
871 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
872 		else
873 			bit = (1 << sc->bge_func_addr);
874 		break;
875 	case BGE_APE_LOCK_GRC:
876 		if (sc->bge_func_addr == 0)
877 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
878 		else
879 			bit = (1 << sc->bge_func_addr);
880 		break;
881 	case BGE_APE_LOCK_MEM:
882 		if (sc->bge_func_addr == 0)
883 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
884 		else
885 			bit = (1 << sc->bge_func_addr);
886 		break;
887 	case BGE_APE_LOCK_PHY0:
888 	case BGE_APE_LOCK_PHY1:
889 	case BGE_APE_LOCK_PHY2:
890 	case BGE_APE_LOCK_PHY3:
891 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
892 		break;
893 	default:
894 		return;
895 	}
896 
897 	APE_WRITE_4(sc, gnt + off, bit);
898 }
899 
900 /*
901  * Send an event to the APE firmware.
902  */
903 static void
904 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
905 {
906 	uint32_t apedata;
907 	int i;
908 
909 	/* NCSI does not support APE events. */
910 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
911 		return;
912 
913 	/* Wait up to 1ms for APE to service previous event. */
914 	for (i = 10; i > 0; i--) {
915 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
916 			break;
917 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
918 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
919 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
920 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
921 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
922 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
923 			break;
924 		}
925 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
926 		DELAY(100);
927 	}
928 	if (i == 0)
929 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
930 		    event);
931 }
932 
933 static void
934 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
935 {
936 	uint32_t apedata, event;
937 
938 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
939 		return;
940 
941 	switch (kind) {
942 	case BGE_RESET_START:
943 		/* If this is the first load, clear the load counter. */
944 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
945 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
946 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
947 		else {
948 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
949 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
950 		}
951 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
952 		    BGE_APE_HOST_SEG_SIG_MAGIC);
953 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
954 		    BGE_APE_HOST_SEG_LEN_MAGIC);
955 
956 		/* Add some version info if bge(4) supports it. */
957 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
958 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
959 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
960 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
961 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
962 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
963 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
964 		    BGE_APE_HOST_DRVR_STATE_START);
965 		event = BGE_APE_EVENT_STATUS_STATE_START;
966 		break;
967 	case BGE_RESET_SHUTDOWN:
968 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
969 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
970 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
971 		break;
972 	case BGE_RESET_SUSPEND:
973 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
974 		break;
975 	default:
976 		return;
977 	}
978 
979 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
980 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
981 }
982 
983 /*
984  * Map a single buffer address.
985  */
986 
987 static void
988 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
989 {
990 	struct bge_dmamap_arg *ctx;
991 
992 	if (error)
993 		return;
994 
995 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
996 
997 	ctx = arg;
998 	ctx->bge_busaddr = segs->ds_addr;
999 }
1000 
1001 static uint8_t
1002 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1003 {
1004 	uint32_t access, byte = 0;
1005 	int i;
1006 
1007 	/* Lock. */
1008 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1009 	for (i = 0; i < 8000; i++) {
1010 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1011 			break;
1012 		DELAY(20);
1013 	}
1014 	if (i == 8000)
1015 		return (1);
1016 
1017 	/* Enable access. */
1018 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1019 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1020 
1021 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1022 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1023 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1024 		DELAY(10);
1025 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1026 			DELAY(10);
1027 			break;
1028 		}
1029 	}
1030 
1031 	if (i == BGE_TIMEOUT * 10) {
1032 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1033 		return (1);
1034 	}
1035 
1036 	/* Get result. */
1037 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1038 
1039 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1040 
1041 	/* Disable access. */
1042 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1043 
1044 	/* Unlock. */
1045 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1046 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Read a sequence of bytes from NVRAM.
1053  */
1054 static int
1055 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1056 {
1057 	int err = 0, i;
1058 	uint8_t byte = 0;
1059 
1060 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1061 		return (1);
1062 
1063 	for (i = 0; i < cnt; i++) {
1064 		err = bge_nvram_getbyte(sc, off + i, &byte);
1065 		if (err)
1066 			break;
1067 		*(dest + i) = byte;
1068 	}
1069 
1070 	return (err ? 1 : 0);
1071 }
1072 
1073 /*
1074  * Read a byte of data stored in the EEPROM at address 'addr.' The
1075  * BCM570x supports both the traditional bitbang interface and an
1076  * auto access interface for reading the EEPROM. We use the auto
1077  * access method.
1078  */
1079 static uint8_t
1080 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1081 {
1082 	int i;
1083 	uint32_t byte = 0;
1084 
1085 	/*
1086 	 * Enable use of auto EEPROM access so we can avoid
1087 	 * having to use the bitbang method.
1088 	 */
1089 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1090 
1091 	/* Reset the EEPROM, load the clock period. */
1092 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1093 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1094 	DELAY(20);
1095 
1096 	/* Issue the read EEPROM command. */
1097 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1098 
1099 	/* Wait for completion */
1100 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1101 		DELAY(10);
1102 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1103 			break;
1104 	}
1105 
1106 	if (i == BGE_TIMEOUT * 10) {
1107 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1108 		return (1);
1109 	}
1110 
1111 	/* Get result. */
1112 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1113 
1114 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Read a sequence of bytes from the EEPROM.
1121  */
1122 static int
1123 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1124 {
1125 	int i, error = 0;
1126 	uint8_t byte = 0;
1127 
1128 	for (i = 0; i < cnt; i++) {
1129 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1130 		if (error)
1131 			break;
1132 		*(dest + i) = byte;
1133 	}
1134 
1135 	return (error ? 1 : 0);
1136 }
1137 
1138 static int
1139 bge_miibus_readreg(device_t dev, int phy, int reg)
1140 {
1141 	struct bge_softc *sc;
1142 	uint32_t val;
1143 	int i;
1144 
1145 	sc = device_get_softc(dev);
1146 
1147 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148 		return (0);
1149 
1150 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1151 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1152 		CSR_WRITE_4(sc, BGE_MI_MODE,
1153 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1154 		DELAY(80);
1155 	}
1156 
1157 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1158 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1159 
1160 	/* Poll for the PHY register access to complete. */
1161 	for (i = 0; i < BGE_TIMEOUT; i++) {
1162 		DELAY(10);
1163 		val = CSR_READ_4(sc, BGE_MI_COMM);
1164 		if ((val & BGE_MICOMM_BUSY) == 0) {
1165 			DELAY(5);
1166 			val = CSR_READ_4(sc, BGE_MI_COMM);
1167 			break;
1168 		}
1169 	}
1170 
1171 	if (i == BGE_TIMEOUT) {
1172 		device_printf(sc->bge_dev,
1173 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1174 		    phy, reg, val);
1175 		val = 0;
1176 	}
1177 
1178 	/* Restore the autopoll bit if necessary. */
1179 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1180 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1181 		DELAY(80);
1182 	}
1183 
1184 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1185 
1186 	if (val & BGE_MICOMM_READFAIL)
1187 		return (0);
1188 
1189 	return (val & 0xFFFF);
1190 }
1191 
1192 static int
1193 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1194 {
1195 	struct bge_softc *sc;
1196 	int i;
1197 
1198 	sc = device_get_softc(dev);
1199 
1200 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1201 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1202 		return (0);
1203 
1204 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1205 		return (0);
1206 
1207 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1208 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1209 		CSR_WRITE_4(sc, BGE_MI_MODE,
1210 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1211 		DELAY(80);
1212 	}
1213 
1214 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1215 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1216 
1217 	for (i = 0; i < BGE_TIMEOUT; i++) {
1218 		DELAY(10);
1219 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1220 			DELAY(5);
1221 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1222 			break;
1223 		}
1224 	}
1225 
1226 	/* Restore the autopoll bit if necessary. */
1227 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1228 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1229 		DELAY(80);
1230 	}
1231 
1232 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1233 
1234 	if (i == BGE_TIMEOUT)
1235 		device_printf(sc->bge_dev,
1236 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1237 		    phy, reg, val);
1238 
1239 	return (0);
1240 }
1241 
1242 static void
1243 bge_miibus_statchg(device_t dev)
1244 {
1245 	struct bge_softc *sc;
1246 	struct mii_data *mii;
1247 	uint32_t mac_mode, rx_mode, tx_mode;
1248 
1249 	sc = device_get_softc(dev);
1250 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1251 		return;
1252 	mii = device_get_softc(sc->bge_miibus);
1253 
1254 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1255 	    (IFM_ACTIVE | IFM_AVALID)) {
1256 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1257 		case IFM_10_T:
1258 		case IFM_100_TX:
1259 			sc->bge_link = 1;
1260 			break;
1261 		case IFM_1000_T:
1262 		case IFM_1000_SX:
1263 		case IFM_2500_SX:
1264 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1265 				sc->bge_link = 1;
1266 			else
1267 				sc->bge_link = 0;
1268 			break;
1269 		default:
1270 			sc->bge_link = 0;
1271 			break;
1272 		}
1273 	} else
1274 		sc->bge_link = 0;
1275 	if (sc->bge_link == 0)
1276 		return;
1277 
1278 	/*
1279 	 * APE firmware touches these registers to keep the MAC
1280 	 * connected to the outside world.  Try to keep the
1281 	 * accesses atomic.
1282 	 */
1283 
1284 	/* Set the port mode (MII/GMII) to match the link speed. */
1285 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1286 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1287 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1288 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1289 
1290 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1291 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1292 		mac_mode |= BGE_PORTMODE_GMII;
1293 	else
1294 		mac_mode |= BGE_PORTMODE_MII;
1295 
1296 	/* Set MAC flow control behavior to match link flow control settings. */
1297 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1298 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1299 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1300 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1301 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1302 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1303 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1304 	} else
1305 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1306 
1307 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1308 	DELAY(40);
1309 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1310 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1311 }
1312 
1313 /*
1314  * Intialize a standard receive ring descriptor.
1315  */
1316 static int
1317 bge_newbuf_std(struct bge_softc *sc, int i)
1318 {
1319 	struct mbuf *m;
1320 	struct bge_rx_bd *r;
1321 	bus_dma_segment_t segs[1];
1322 	bus_dmamap_t map;
1323 	int error, nsegs;
1324 
1325 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1326 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1327 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1328 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1329 		if (m == NULL)
1330 			return (ENOBUFS);
1331 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1332 	} else {
1333 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1334 		if (m == NULL)
1335 			return (ENOBUFS);
1336 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1337 	}
1338 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1339 		m_adj(m, ETHER_ALIGN);
1340 
1341 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1342 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1343 	if (error != 0) {
1344 		m_freem(m);
1345 		return (error);
1346 	}
1347 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1348 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1349 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1350 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1351 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1352 	}
1353 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1354 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1355 	sc->bge_cdata.bge_rx_std_sparemap = map;
1356 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1357 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1358 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1359 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1360 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1361 	r->bge_flags = BGE_RXBDFLAG_END;
1362 	r->bge_len = segs[0].ds_len;
1363 	r->bge_idx = i;
1364 
1365 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1366 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1367 
1368 	return (0);
1369 }
1370 
1371 /*
1372  * Initialize a jumbo receive ring descriptor. This allocates
1373  * a jumbo buffer from the pool managed internally by the driver.
1374  */
1375 static int
1376 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1377 {
1378 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1379 	bus_dmamap_t map;
1380 	struct bge_extrx_bd *r;
1381 	struct mbuf *m;
1382 	int error, nsegs;
1383 
1384 	MGETHDR(m, M_NOWAIT, MT_DATA);
1385 	if (m == NULL)
1386 		return (ENOBUFS);
1387 
1388 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1389 		m_freem(m);
1390 		return (ENOBUFS);
1391 	}
1392 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1393 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1394 		m_adj(m, ETHER_ALIGN);
1395 
1396 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1397 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1398 	if (error != 0) {
1399 		m_freem(m);
1400 		return (error);
1401 	}
1402 
1403 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1404 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1405 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1406 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1407 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1408 	}
1409 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1410 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1411 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1412 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1413 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1414 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1415 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1416 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1417 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1418 
1419 	/*
1420 	 * Fill in the extended RX buffer descriptor.
1421 	 */
1422 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1423 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1424 	r->bge_idx = i;
1425 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1426 	switch (nsegs) {
1427 	case 4:
1428 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1429 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1430 		r->bge_len3 = segs[3].ds_len;
1431 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1432 	case 3:
1433 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1434 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1435 		r->bge_len2 = segs[2].ds_len;
1436 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1437 	case 2:
1438 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1439 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1440 		r->bge_len1 = segs[1].ds_len;
1441 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1442 	case 1:
1443 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1444 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1445 		r->bge_len0 = segs[0].ds_len;
1446 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1447 		break;
1448 	default:
1449 		panic("%s: %d segments\n", __func__, nsegs);
1450 	}
1451 
1452 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1453 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1454 
1455 	return (0);
1456 }
1457 
1458 static int
1459 bge_init_rx_ring_std(struct bge_softc *sc)
1460 {
1461 	int error, i;
1462 
1463 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1464 	sc->bge_std = 0;
1465 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1466 		if ((error = bge_newbuf_std(sc, i)) != 0)
1467 			return (error);
1468 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1469 	}
1470 
1471 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1472 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1473 
1474 	sc->bge_std = 0;
1475 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1476 
1477 	return (0);
1478 }
1479 
1480 static void
1481 bge_free_rx_ring_std(struct bge_softc *sc)
1482 {
1483 	int i;
1484 
1485 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1486 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1487 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1488 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1489 			    BUS_DMASYNC_POSTREAD);
1490 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1491 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1492 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1493 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1494 		}
1495 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1496 		    sizeof(struct bge_rx_bd));
1497 	}
1498 }
1499 
1500 static int
1501 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1502 {
1503 	struct bge_rcb *rcb;
1504 	int error, i;
1505 
1506 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1507 	sc->bge_jumbo = 0;
1508 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1509 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1510 			return (error);
1511 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1512 	}
1513 
1514 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1515 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1516 
1517 	sc->bge_jumbo = 0;
1518 
1519 	/* Enable the jumbo receive producer ring. */
1520 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1521 	rcb->bge_maxlen_flags =
1522 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1523 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1524 
1525 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1526 
1527 	return (0);
1528 }
1529 
1530 static void
1531 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1532 {
1533 	int i;
1534 
1535 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1536 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1537 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1538 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1539 			    BUS_DMASYNC_POSTREAD);
1540 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1541 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1542 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1543 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1544 		}
1545 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1546 		    sizeof(struct bge_extrx_bd));
1547 	}
1548 }
1549 
1550 static void
1551 bge_free_tx_ring(struct bge_softc *sc)
1552 {
1553 	int i;
1554 
1555 	if (sc->bge_ldata.bge_tx_ring == NULL)
1556 		return;
1557 
1558 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1559 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1560 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1561 			    sc->bge_cdata.bge_tx_dmamap[i],
1562 			    BUS_DMASYNC_POSTWRITE);
1563 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1564 			    sc->bge_cdata.bge_tx_dmamap[i]);
1565 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1566 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1567 		}
1568 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1569 		    sizeof(struct bge_tx_bd));
1570 	}
1571 }
1572 
1573 static int
1574 bge_init_tx_ring(struct bge_softc *sc)
1575 {
1576 	sc->bge_txcnt = 0;
1577 	sc->bge_tx_saved_considx = 0;
1578 
1579 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1580 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1581 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1582 
1583 	/* Initialize transmit producer index for host-memory send ring. */
1584 	sc->bge_tx_prodidx = 0;
1585 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1586 
1587 	/* 5700 b2 errata */
1588 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1589 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1590 
1591 	/* NIC-memory send ring not used; initialize to zero. */
1592 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1593 	/* 5700 b2 errata */
1594 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1595 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1596 
1597 	return (0);
1598 }
1599 
1600 static void
1601 bge_setpromisc(struct bge_softc *sc)
1602 {
1603 	if_t ifp;
1604 
1605 	BGE_LOCK_ASSERT(sc);
1606 
1607 	ifp = sc->bge_ifp;
1608 
1609 	/* Enable or disable promiscuous mode as needed. */
1610 	if (if_getflags(ifp) & IFF_PROMISC)
1611 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1612 	else
1613 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1614 }
1615 
1616 static void
1617 bge_setmulti(struct bge_softc *sc)
1618 {
1619 	if_t ifp;
1620 	int mc_count = 0;
1621 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1622 	int h, i, mcnt;
1623 	unsigned char *mta;
1624 
1625 	BGE_LOCK_ASSERT(sc);
1626 
1627 	ifp = sc->bge_ifp;
1628 
1629 	mc_count = if_multiaddr_count(ifp, -1);
1630 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1631 	    mc_count, M_DEVBUF, M_NOWAIT);
1632 
1633 	if(mta == NULL) {
1634 		device_printf(sc->bge_dev,
1635 		    "Failed to allocated temp mcast list\n");
1636 		return;
1637 	}
1638 
1639 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1640 		for (i = 0; i < 4; i++)
1641 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1642 		free(mta, M_DEVBUF);
1643 		return;
1644 	}
1645 
1646 	/* First, zot all the existing filters. */
1647 	for (i = 0; i < 4; i++)
1648 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1649 
1650 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1651 	for(i = 0; i < mcnt; i++) {
1652 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1653 		    ETHER_ADDR_LEN) & 0x7F;
1654 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1655 	}
1656 
1657 	for (i = 0; i < 4; i++)
1658 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1659 
1660 	free(mta, M_DEVBUF);
1661 }
1662 
1663 static void
1664 bge_setvlan(struct bge_softc *sc)
1665 {
1666 	if_t ifp;
1667 
1668 	BGE_LOCK_ASSERT(sc);
1669 
1670 	ifp = sc->bge_ifp;
1671 
1672 	/* Enable or disable VLAN tag stripping as needed. */
1673 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1674 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1675 	else
1676 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1677 }
1678 
1679 static void
1680 bge_sig_pre_reset(struct bge_softc *sc, int type)
1681 {
1682 
1683 	/*
1684 	 * Some chips don't like this so only do this if ASF is enabled
1685 	 */
1686 	if (sc->bge_asf_mode)
1687 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1688 
1689 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1690 		switch (type) {
1691 		case BGE_RESET_START:
1692 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1693 			    BGE_FW_DRV_STATE_START);
1694 			break;
1695 		case BGE_RESET_SHUTDOWN:
1696 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1697 			    BGE_FW_DRV_STATE_UNLOAD);
1698 			break;
1699 		case BGE_RESET_SUSPEND:
1700 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701 			    BGE_FW_DRV_STATE_SUSPEND);
1702 			break;
1703 		}
1704 	}
1705 
1706 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1707 		bge_ape_driver_state_change(sc, type);
1708 }
1709 
1710 static void
1711 bge_sig_post_reset(struct bge_softc *sc, int type)
1712 {
1713 
1714 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1715 		switch (type) {
1716 		case BGE_RESET_START:
1717 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1718 			    BGE_FW_DRV_STATE_START_DONE);
1719 			/* START DONE */
1720 			break;
1721 		case BGE_RESET_SHUTDOWN:
1722 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1723 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1724 			break;
1725 		}
1726 	}
1727 	if (type == BGE_RESET_SHUTDOWN)
1728 		bge_ape_driver_state_change(sc, type);
1729 }
1730 
1731 static void
1732 bge_sig_legacy(struct bge_softc *sc, int type)
1733 {
1734 
1735 	if (sc->bge_asf_mode) {
1736 		switch (type) {
1737 		case BGE_RESET_START:
1738 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1739 			    BGE_FW_DRV_STATE_START);
1740 			break;
1741 		case BGE_RESET_SHUTDOWN:
1742 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1743 			    BGE_FW_DRV_STATE_UNLOAD);
1744 			break;
1745 		}
1746 	}
1747 }
1748 
1749 static void
1750 bge_stop_fw(struct bge_softc *sc)
1751 {
1752 	int i;
1753 
1754 	if (sc->bge_asf_mode) {
1755 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1756 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1757 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1758 
1759 		for (i = 0; i < 100; i++ ) {
1760 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1761 			    BGE_RX_CPU_DRV_EVENT))
1762 				break;
1763 			DELAY(10);
1764 		}
1765 	}
1766 }
1767 
1768 static uint32_t
1769 bge_dma_swap_options(struct bge_softc *sc)
1770 {
1771 	uint32_t dma_options;
1772 
1773 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1774 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1775 #if BYTE_ORDER == BIG_ENDIAN
1776 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1777 #endif
1778 	return (dma_options);
1779 }
1780 
1781 /*
1782  * Do endian, PCI and DMA initialization.
1783  */
1784 static int
1785 bge_chipinit(struct bge_softc *sc)
1786 {
1787 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1788 	uint16_t val;
1789 	int i;
1790 
1791 	/* Set endianness before we access any non-PCI registers. */
1792 	misc_ctl = BGE_INIT;
1793 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1794 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1795 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1796 
1797 	/*
1798 	 * Clear the MAC statistics block in the NIC's
1799 	 * internal memory.
1800 	 */
1801 	for (i = BGE_STATS_BLOCK;
1802 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1803 		BGE_MEMWIN_WRITE(sc, i, 0);
1804 
1805 	for (i = BGE_STATUS_BLOCK;
1806 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1807 		BGE_MEMWIN_WRITE(sc, i, 0);
1808 
1809 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1810 		/*
1811 		 *  Fix data corruption caused by non-qword write with WB.
1812 		 *  Fix master abort in PCI mode.
1813 		 *  Fix PCI latency timer.
1814 		 */
1815 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1816 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1817 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1818 	}
1819 
1820 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1821 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1822 		/*
1823 		 * For the 57766 and non Ax versions of 57765, bootcode
1824 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1825 		 * value to prevent transmit hangs.
1826 		 */
1827 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1828 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1829 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1830 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * Set up the PCI DMA control register.
1836 	 */
1837 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1838 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1839 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1840 		if (sc->bge_mps >= 256)
1841 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1842 		else
1843 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1844 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1845 		if (BGE_IS_5714_FAMILY(sc)) {
1846 			/* 256 bytes for read and write. */
1847 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1848 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1849 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1850 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1851 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1852 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1853 			/*
1854 			 * In the BCM5703, the DMA read watermark should
1855 			 * be set to less than or equal to the maximum
1856 			 * memory read byte count of the PCI-X command
1857 			 * register.
1858 			 */
1859 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1860 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1861 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1862 			/* 1536 bytes for read, 384 bytes for write. */
1863 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1864 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1865 		} else {
1866 			/* 384 bytes for read and write. */
1867 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1868 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1869 			    0x0F;
1870 		}
1871 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1872 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1873 			uint32_t tmp;
1874 
1875 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1876 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1877 			if (tmp == 6 || tmp == 7)
1878 				dma_rw_ctl |=
1879 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1880 
1881 			/* Set PCI-X DMA write workaround. */
1882 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1883 		}
1884 	} else {
1885 		/* Conventional PCI bus: 256 bytes for read and write. */
1886 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1887 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1888 
1889 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1890 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1891 			dma_rw_ctl |= 0x0F;
1892 	}
1893 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1894 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1895 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1896 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1897 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1898 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1899 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1900 	if (BGE_IS_5717_PLUS(sc)) {
1901 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1902 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1903 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1904 		/*
1905 		 * Enable HW workaround for controllers that misinterpret
1906 		 * a status tag update and leave interrupts permanently
1907 		 * disabled.
1908 		 */
1909 		if (!BGE_IS_57765_PLUS(sc) &&
1910 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1911 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1912 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1913 	}
1914 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1915 
1916 	/*
1917 	 * Set up general mode register.
1918 	 */
1919 	mode_ctl = bge_dma_swap_options(sc);
1920 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1921 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1922 		/* Retain Host-2-BMC settings written by APE firmware. */
1923 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1924 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1925 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1926 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1927 	}
1928 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1929 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1930 
1931 	/*
1932 	 * BCM5701 B5 have a bug causing data corruption when using
1933 	 * 64-bit DMA reads, which can be terminated early and then
1934 	 * completed later as 32-bit accesses, in combination with
1935 	 * certain bridges.
1936 	 */
1937 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1938 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1939 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1940 
1941 	/*
1942 	 * Tell the firmware the driver is running
1943 	 */
1944 	if (sc->bge_asf_mode & ASF_STACKUP)
1945 		mode_ctl |= BGE_MODECTL_STACKUP;
1946 
1947 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1948 
1949 	/*
1950 	 * Disable memory write invalidate.  Apparently it is not supported
1951 	 * properly by these devices.
1952 	 */
1953 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1954 
1955 	/* Set the timer prescaler (always 66 MHz). */
1956 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1957 
1958 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1959 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1960 		DELAY(40);	/* XXX */
1961 
1962 		/* Put PHY into ready state */
1963 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1964 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1965 		DELAY(40);
1966 	}
1967 
1968 	return (0);
1969 }
1970 
1971 static int
1972 bge_blockinit(struct bge_softc *sc)
1973 {
1974 	struct bge_rcb *rcb;
1975 	bus_size_t vrcb;
1976 	bge_hostaddr taddr;
1977 	uint32_t dmactl, rdmareg, val;
1978 	int i, limit;
1979 
1980 	/*
1981 	 * Initialize the memory window pointer register so that
1982 	 * we can access the first 32K of internal NIC RAM. This will
1983 	 * allow us to set up the TX send ring RCBs and the RX return
1984 	 * ring RCBs, plus other things which live in NIC memory.
1985 	 */
1986 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1987 
1988 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1989 
1990 	if (!(BGE_IS_5705_PLUS(sc))) {
1991 		/* Configure mbuf memory pool */
1992 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1993 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1994 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1995 		else
1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1997 
1998 		/* Configure DMA resource pool */
1999 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2000 		    BGE_DMA_DESCRIPTORS);
2001 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2002 	}
2003 
2004 	/* Configure mbuf pool watermarks */
2005 	if (BGE_IS_5717_PLUS(sc)) {
2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2007 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2008 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2009 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2010 		} else {
2011 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2012 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2013 		}
2014 	} else if (!BGE_IS_5705_PLUS(sc)) {
2015 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2016 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2017 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2018 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2019 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2020 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2021 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2022 	} else {
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026 	}
2027 
2028 	/* Configure DMA resource watermarks */
2029 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2030 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2031 
2032 	/* Enable buffer manager */
2033 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2034 	/*
2035 	 * Change the arbitration algorithm of TXMBUF read request to
2036 	 * round-robin instead of priority based for BCM5719.  When
2037 	 * TXFIFO is almost empty, RDMA will hold its request until
2038 	 * TXFIFO is not almost empty.
2039 	 */
2040 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2041 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2042 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2043 
2044 	/* Poll for buffer manager start indication */
2045 	for (i = 0; i < BGE_TIMEOUT; i++) {
2046 		DELAY(10);
2047 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2048 			break;
2049 	}
2050 
2051 	if (i == BGE_TIMEOUT) {
2052 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2053 		return (ENXIO);
2054 	}
2055 
2056 	/* Enable flow-through queues */
2057 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2058 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2059 
2060 	/* Wait until queue initialization is complete */
2061 	for (i = 0; i < BGE_TIMEOUT; i++) {
2062 		DELAY(10);
2063 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2064 			break;
2065 	}
2066 
2067 	if (i == BGE_TIMEOUT) {
2068 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2069 		return (ENXIO);
2070 	}
2071 
2072 	/*
2073 	 * Summary of rings supported by the controller:
2074 	 *
2075 	 * Standard Receive Producer Ring
2076 	 * - This ring is used to feed receive buffers for "standard"
2077 	 *   sized frames (typically 1536 bytes) to the controller.
2078 	 *
2079 	 * Jumbo Receive Producer Ring
2080 	 * - This ring is used to feed receive buffers for jumbo sized
2081 	 *   frames (i.e. anything bigger than the "standard" frames)
2082 	 *   to the controller.
2083 	 *
2084 	 * Mini Receive Producer Ring
2085 	 * - This ring is used to feed receive buffers for "mini"
2086 	 *   sized frames to the controller.
2087 	 * - This feature required external memory for the controller
2088 	 *   but was never used in a production system.  Should always
2089 	 *   be disabled.
2090 	 *
2091 	 * Receive Return Ring
2092 	 * - After the controller has placed an incoming frame into a
2093 	 *   receive buffer that buffer is moved into a receive return
2094 	 *   ring.  The driver is then responsible to passing the
2095 	 *   buffer up to the stack.  Many versions of the controller
2096 	 *   support multiple RR rings.
2097 	 *
2098 	 * Send Ring
2099 	 * - This ring is used for outgoing frames.  Many versions of
2100 	 *   the controller support multiple send rings.
2101 	 */
2102 
2103 	/* Initialize the standard receive producer ring control block. */
2104 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2105 	rcb->bge_hostaddr.bge_addr_lo =
2106 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2107 	rcb->bge_hostaddr.bge_addr_hi =
2108 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2109 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2110 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2111 	if (BGE_IS_5717_PLUS(sc)) {
2112 		/*
2113 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2114 		 * Bits 15-2 : Maximum RX frame size
2115 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2116 		 * Bit 0     : Reserved
2117 		 */
2118 		rcb->bge_maxlen_flags =
2119 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2120 	} else if (BGE_IS_5705_PLUS(sc)) {
2121 		/*
2122 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2123 		 * Bits 15-2 : Reserved (should be 0)
2124 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2125 		 * Bit 0     : Reserved
2126 		 */
2127 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2128 	} else {
2129 		/*
2130 		 * Ring size is always XXX entries
2131 		 * Bits 31-16: Maximum RX frame size
2132 		 * Bits 15-2 : Reserved (should be 0)
2133 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2134 		 * Bit 0     : Reserved
2135 		 */
2136 		rcb->bge_maxlen_flags =
2137 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2138 	}
2139 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2140 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2141 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2142 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2143 	else
2144 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2145 	/* Write the standard receive producer ring control block. */
2146 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2147 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2148 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2149 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2150 
2151 	/* Reset the standard receive producer ring producer index. */
2152 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2153 
2154 	/*
2155 	 * Initialize the jumbo RX producer ring control
2156 	 * block.  We set the 'ring disabled' bit in the
2157 	 * flags field until we're actually ready to start
2158 	 * using this ring (i.e. once we set the MTU
2159 	 * high enough to require it).
2160 	 */
2161 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2162 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2163 		/* Get the jumbo receive producer ring RCB parameters. */
2164 		rcb->bge_hostaddr.bge_addr_lo =
2165 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2166 		rcb->bge_hostaddr.bge_addr_hi =
2167 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2168 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2169 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2170 		    BUS_DMASYNC_PREREAD);
2171 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2172 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2173 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2174 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2175 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2176 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2177 		else
2178 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2179 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2180 		    rcb->bge_hostaddr.bge_addr_hi);
2181 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2182 		    rcb->bge_hostaddr.bge_addr_lo);
2183 		/* Program the jumbo receive producer ring RCB parameters. */
2184 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2185 		    rcb->bge_maxlen_flags);
2186 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2187 		/* Reset the jumbo receive producer ring producer index. */
2188 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2189 	}
2190 
2191 	/* Disable the mini receive producer ring RCB. */
2192 	if (BGE_IS_5700_FAMILY(sc)) {
2193 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2194 		rcb->bge_maxlen_flags =
2195 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2196 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2197 		    rcb->bge_maxlen_flags);
2198 		/* Reset the mini receive producer ring producer index. */
2199 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2200 	}
2201 
2202 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2203 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2204 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2205 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2206 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2207 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2208 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2209 	}
2210 	/*
2211 	 * The BD ring replenish thresholds control how often the
2212 	 * hardware fetches new BD's from the producer rings in host
2213 	 * memory.  Setting the value too low on a busy system can
2214 	 * starve the hardware and recue the throughpout.
2215 	 *
2216 	 * Set the BD ring replentish thresholds. The recommended
2217 	 * values are 1/8th the number of descriptors allocated to
2218 	 * each ring.
2219 	 * XXX The 5754 requires a lower threshold, so it might be a
2220 	 * requirement of all 575x family chips.  The Linux driver sets
2221 	 * the lower threshold for all 5705 family chips as well, but there
2222 	 * are reports that it might not need to be so strict.
2223 	 *
2224 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2225 	 * well.
2226 	 */
2227 	if (BGE_IS_5705_PLUS(sc))
2228 		val = 8;
2229 	else
2230 		val = BGE_STD_RX_RING_CNT / 8;
2231 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2232 	if (BGE_IS_JUMBO_CAPABLE(sc))
2233 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2234 		    BGE_JUMBO_RX_RING_CNT/8);
2235 	if (BGE_IS_5717_PLUS(sc)) {
2236 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2237 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2238 	}
2239 
2240 	/*
2241 	 * Disable all send rings by setting the 'ring disabled' bit
2242 	 * in the flags field of all the TX send ring control blocks,
2243 	 * located in NIC memory.
2244 	 */
2245 	if (!BGE_IS_5705_PLUS(sc))
2246 		/* 5700 to 5704 had 16 send rings. */
2247 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2248 	else if (BGE_IS_57765_PLUS(sc) ||
2249 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2250 		limit = 2;
2251 	else if (BGE_IS_5717_PLUS(sc))
2252 		limit = 4;
2253 	else
2254 		limit = 1;
2255 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2256 	for (i = 0; i < limit; i++) {
2257 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2258 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2259 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2260 		vrcb += sizeof(struct bge_rcb);
2261 	}
2262 
2263 	/* Configure send ring RCB 0 (we use only the first ring) */
2264 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2265 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2266 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2267 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2268 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2269 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2270 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2271 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2272 	else
2273 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2274 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2275 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2276 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2277 
2278 	/*
2279 	 * Disable all receive return rings by setting the
2280 	 * 'ring diabled' bit in the flags field of all the receive
2281 	 * return ring control blocks, located in NIC memory.
2282 	 */
2283 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2284 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2285 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2286 		/* Should be 17, use 16 until we get an SRAM map. */
2287 		limit = 16;
2288 	} else if (!BGE_IS_5705_PLUS(sc))
2289 		limit = BGE_RX_RINGS_MAX;
2290 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2291 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2292 	    BGE_IS_57765_PLUS(sc))
2293 		limit = 4;
2294 	else
2295 		limit = 1;
2296 	/* Disable all receive return rings. */
2297 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2298 	for (i = 0; i < limit; i++) {
2299 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2300 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2301 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2302 		    BGE_RCB_FLAG_RING_DISABLED);
2303 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2304 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2305 		    (i * (sizeof(uint64_t))), 0);
2306 		vrcb += sizeof(struct bge_rcb);
2307 	}
2308 
2309 	/*
2310 	 * Set up receive return ring 0.  Note that the NIC address
2311 	 * for RX return rings is 0x0.  The return rings live entirely
2312 	 * within the host, so the nicaddr field in the RCB isn't used.
2313 	 */
2314 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2315 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2316 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2317 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2318 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2319 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2320 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2321 
2322 	/* Set random backoff seed for TX */
2323 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2324 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2325 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2326 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2327 	    BGE_TX_BACKOFF_SEED_MASK);
2328 
2329 	/* Set inter-packet gap */
2330 	val = 0x2620;
2331 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2332 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2333 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2334 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2335 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2336 
2337 	/*
2338 	 * Specify which ring to use for packets that don't match
2339 	 * any RX rules.
2340 	 */
2341 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2342 
2343 	/*
2344 	 * Configure number of RX lists. One interrupt distribution
2345 	 * list, sixteen active lists, one bad frames class.
2346 	 */
2347 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2348 
2349 	/* Inialize RX list placement stats mask. */
2350 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2351 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2352 
2353 	/* Disable host coalescing until we get it set up */
2354 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2355 
2356 	/* Poll to make sure it's shut down. */
2357 	for (i = 0; i < BGE_TIMEOUT; i++) {
2358 		DELAY(10);
2359 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2360 			break;
2361 	}
2362 
2363 	if (i == BGE_TIMEOUT) {
2364 		device_printf(sc->bge_dev,
2365 		    "host coalescing engine failed to idle\n");
2366 		return (ENXIO);
2367 	}
2368 
2369 	/* Set up host coalescing defaults */
2370 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2371 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2372 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2373 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2374 	if (!(BGE_IS_5705_PLUS(sc))) {
2375 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2376 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2377 	}
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2380 
2381 	/* Set up address of statistics block */
2382 	if (!(BGE_IS_5705_PLUS(sc))) {
2383 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2384 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2385 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2386 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2387 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2388 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2389 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2390 	}
2391 
2392 	/* Set up address of status block */
2393 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2394 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2395 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2396 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2397 
2398 	/* Set up status block size. */
2399 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2400 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2401 		val = BGE_STATBLKSZ_FULL;
2402 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2403 	} else {
2404 		val = BGE_STATBLKSZ_32BYTE;
2405 		bzero(sc->bge_ldata.bge_status_block, 32);
2406 	}
2407 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2408 	    sc->bge_cdata.bge_status_map,
2409 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2410 
2411 	/* Turn on host coalescing state machine */
2412 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2413 
2414 	/* Turn on RX BD completion state machine and enable attentions */
2415 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2416 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2417 
2418 	/* Turn on RX list placement state machine */
2419 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2420 
2421 	/* Turn on RX list selector state machine. */
2422 	if (!(BGE_IS_5705_PLUS(sc)))
2423 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2424 
2425 	/* Turn on DMA, clear stats. */
2426 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2427 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2428 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2429 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2430 
2431 	if (sc->bge_flags & BGE_FLAG_TBI)
2432 		val |= BGE_PORTMODE_TBI;
2433 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2434 		val |= BGE_PORTMODE_GMII;
2435 	else
2436 		val |= BGE_PORTMODE_MII;
2437 
2438 	/* Allow APE to send/receive frames. */
2439 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2440 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2441 
2442 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2443 	DELAY(40);
2444 
2445 	/* Set misc. local control, enable interrupts on attentions */
2446 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2447 
2448 #ifdef notdef
2449 	/* Assert GPIO pins for PHY reset */
2450 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2451 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2452 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2453 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2454 #endif
2455 
2456 	/* Turn on DMA completion state machine */
2457 	if (!(BGE_IS_5705_PLUS(sc)))
2458 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2459 
2460 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2461 
2462 	/* Enable host coalescing bug fix. */
2463 	if (BGE_IS_5755_PLUS(sc))
2464 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2465 
2466 	/* Request larger DMA burst size to get better performance. */
2467 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2468 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2469 
2470 	/* Turn on write DMA state machine */
2471 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2472 	DELAY(40);
2473 
2474 	/* Turn on read DMA state machine */
2475 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2476 
2477 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2478 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2479 
2480 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2481 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2482 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2483 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2484 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2485 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2486 	if (sc->bge_flags & BGE_FLAG_PCIE)
2487 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2488 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2489 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2490 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2491 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2492 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2493 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2494 	}
2495 
2496 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2497 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2498 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2499 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2500 		/*
2501 		 * Allow multiple outstanding read requests from
2502 		 * non-LSO read DMA engine.
2503 		 */
2504 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2505 	}
2506 
2507 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2508 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2509 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2510 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2511 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2512 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2513 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2514 		else
2515 			rdmareg = BGE_RDMA_RSRVCTRL;
2516 		dmactl = CSR_READ_4(sc, rdmareg);
2517 		/*
2518 		 * Adjust tx margin to prevent TX data corruption and
2519 		 * fix internal FIFO overflow.
2520 		 */
2521 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2522 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2523 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2524 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2525 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2526 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2527 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2528 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2529 		}
2530 		/*
2531 		 * Enable fix for read DMA FIFO overruns.
2532 		 * The fix is to limit the number of RX BDs
2533 		 * the hardware would fetch at a fime.
2534 		 */
2535 		CSR_WRITE_4(sc, rdmareg, dmactl |
2536 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2537 	}
2538 
2539 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2540 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2541 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2542 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2543 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2544 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2545 		/*
2546 		 * Allow 4KB burst length reads for non-LSO frames.
2547 		 * Enable 512B burst length reads for buffer descriptors.
2548 		 */
2549 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2550 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2551 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2552 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2553 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2554 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2555 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2556 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2557 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2558 	}
2559 
2560 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2561 	DELAY(40);
2562 
2563 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2564 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2565 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2566 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2567 				break;
2568 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2569 				break;
2570 		}
2571 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2572 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2573 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2574 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2575 			else
2576 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2577 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2578 		}
2579 	}
2580 
2581 	/* Turn on RX data completion state machine */
2582 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2583 
2584 	/* Turn on RX BD initiator state machine */
2585 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2586 
2587 	/* Turn on RX data and RX BD initiator state machine */
2588 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2589 
2590 	/* Turn on Mbuf cluster free state machine */
2591 	if (!(BGE_IS_5705_PLUS(sc)))
2592 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2593 
2594 	/* Turn on send BD completion state machine */
2595 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2596 
2597 	/* Turn on send data completion state machine */
2598 	val = BGE_SDCMODE_ENABLE;
2599 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2600 		val |= BGE_SDCMODE_CDELAY;
2601 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2602 
2603 	/* Turn on send data initiator state machine */
2604 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2605 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2606 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2607 	else
2608 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2609 
2610 	/* Turn on send BD initiator state machine */
2611 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2612 
2613 	/* Turn on send BD selector state machine */
2614 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2615 
2616 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2617 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2618 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2619 
2620 	/* ack/clear link change events */
2621 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2622 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2623 	    BGE_MACSTAT_LINK_CHANGED);
2624 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2625 
2626 	/*
2627 	 * Enable attention when the link has changed state for
2628 	 * devices that use auto polling.
2629 	 */
2630 	if (sc->bge_flags & BGE_FLAG_TBI) {
2631 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2632 	} else {
2633 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2634 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2635 			DELAY(80);
2636 		}
2637 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2638 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2639 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2640 			    BGE_EVTENB_MI_INTERRUPT);
2641 	}
2642 
2643 	/*
2644 	 * Clear any pending link state attention.
2645 	 * Otherwise some link state change events may be lost until attention
2646 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2647 	 * It's not necessary on newer BCM chips - perhaps enabling link
2648 	 * state change attentions implies clearing pending attention.
2649 	 */
2650 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2651 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2652 	    BGE_MACSTAT_LINK_CHANGED);
2653 
2654 	/* Enable link state change attentions. */
2655 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2656 
2657 	return (0);
2658 }
2659 
2660 static const struct bge_revision *
2661 bge_lookup_rev(uint32_t chipid)
2662 {
2663 	const struct bge_revision *br;
2664 
2665 	for (br = bge_revisions; br->br_name != NULL; br++) {
2666 		if (br->br_chipid == chipid)
2667 			return (br);
2668 	}
2669 
2670 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2671 		if (br->br_chipid == BGE_ASICREV(chipid))
2672 			return (br);
2673 	}
2674 
2675 	return (NULL);
2676 }
2677 
2678 static const struct bge_vendor *
2679 bge_lookup_vendor(uint16_t vid)
2680 {
2681 	const struct bge_vendor *v;
2682 
2683 	for (v = bge_vendors; v->v_name != NULL; v++)
2684 		if (v->v_id == vid)
2685 			return (v);
2686 
2687 	return (NULL);
2688 }
2689 
2690 static uint32_t
2691 bge_chipid(device_t dev)
2692 {
2693 	uint32_t id;
2694 
2695 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2696 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2697 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2698 		/*
2699 		 * Find the ASCI revision.  Different chips use different
2700 		 * registers.
2701 		 */
2702 		switch (pci_get_device(dev)) {
2703 		case BCOM_DEVICEID_BCM5717C:
2704 			/* 5717 C0 seems to belong to 5720 line. */
2705 			id = BGE_CHIPID_BCM5720_A0;
2706 			break;
2707 		case BCOM_DEVICEID_BCM5717:
2708 		case BCOM_DEVICEID_BCM5718:
2709 		case BCOM_DEVICEID_BCM5719:
2710 		case BCOM_DEVICEID_BCM5720:
2711 		case BCOM_DEVICEID_BCM5725:
2712 		case BCOM_DEVICEID_BCM5727:
2713 		case BCOM_DEVICEID_BCM5762:
2714 		case BCOM_DEVICEID_BCM57764:
2715 		case BCOM_DEVICEID_BCM57767:
2716 		case BCOM_DEVICEID_BCM57787:
2717 			id = pci_read_config(dev,
2718 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2719 			break;
2720 		case BCOM_DEVICEID_BCM57761:
2721 		case BCOM_DEVICEID_BCM57762:
2722 		case BCOM_DEVICEID_BCM57765:
2723 		case BCOM_DEVICEID_BCM57766:
2724 		case BCOM_DEVICEID_BCM57781:
2725 		case BCOM_DEVICEID_BCM57782:
2726 		case BCOM_DEVICEID_BCM57785:
2727 		case BCOM_DEVICEID_BCM57786:
2728 		case BCOM_DEVICEID_BCM57791:
2729 		case BCOM_DEVICEID_BCM57795:
2730 			id = pci_read_config(dev,
2731 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2732 			break;
2733 		default:
2734 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2735 		}
2736 	}
2737 	return (id);
2738 }
2739 
2740 /*
2741  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2742  * against our list and return its name if we find a match.
2743  *
2744  * Note that since the Broadcom controller contains VPD support, we
2745  * try to get the device name string from the controller itself instead
2746  * of the compiled-in string. It guarantees we'll always announce the
2747  * right product name. We fall back to the compiled-in string when
2748  * VPD is unavailable or corrupt.
2749  */
2750 static int
2751 bge_probe(device_t dev)
2752 {
2753 	char buf[96];
2754 	char model[64];
2755 	const struct bge_revision *br;
2756 	const char *pname;
2757 	struct bge_softc *sc;
2758 	const struct bge_type *t = bge_devs;
2759 	const struct bge_vendor *v;
2760 	uint32_t id;
2761 	uint16_t did, vid;
2762 
2763 	sc = device_get_softc(dev);
2764 	sc->bge_dev = dev;
2765 	vid = pci_get_vendor(dev);
2766 	did = pci_get_device(dev);
2767 	while(t->bge_vid != 0) {
2768 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2769 			id = bge_chipid(dev);
2770 			br = bge_lookup_rev(id);
2771 			if (bge_has_eaddr(sc) &&
2772 			    pci_get_vpd_ident(dev, &pname) == 0)
2773 				snprintf(model, sizeof(model), "%s", pname);
2774 			else {
2775 				v = bge_lookup_vendor(vid);
2776 				snprintf(model, sizeof(model), "%s %s",
2777 				    v != NULL ? v->v_name : "Unknown",
2778 				    br != NULL ? br->br_name :
2779 				    "NetXtreme/NetLink Ethernet Controller");
2780 			}
2781 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2782 			    model, br != NULL ? "" : "unknown ", id);
2783 			device_set_desc_copy(dev, buf);
2784 			return (BUS_PROBE_DEFAULT);
2785 		}
2786 		t++;
2787 	}
2788 
2789 	return (ENXIO);
2790 }
2791 
2792 static void
2793 bge_dma_free(struct bge_softc *sc)
2794 {
2795 	int i;
2796 
2797 	/* Destroy DMA maps for RX buffers. */
2798 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2799 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2800 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2801 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2802 	}
2803 	if (sc->bge_cdata.bge_rx_std_sparemap)
2804 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2805 		    sc->bge_cdata.bge_rx_std_sparemap);
2806 
2807 	/* Destroy DMA maps for jumbo RX buffers. */
2808 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2809 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2810 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2811 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2812 	}
2813 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2814 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2815 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2816 
2817 	/* Destroy DMA maps for TX buffers. */
2818 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2819 		if (sc->bge_cdata.bge_tx_dmamap[i])
2820 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2821 			    sc->bge_cdata.bge_tx_dmamap[i]);
2822 	}
2823 
2824 	if (sc->bge_cdata.bge_rx_mtag)
2825 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2826 	if (sc->bge_cdata.bge_mtag_jumbo)
2827 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2828 	if (sc->bge_cdata.bge_tx_mtag)
2829 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2830 
2831 	/* Destroy standard RX ring. */
2832 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2833 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2834 		    sc->bge_cdata.bge_rx_std_ring_map);
2835 	if (sc->bge_ldata.bge_rx_std_ring)
2836 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2837 		    sc->bge_ldata.bge_rx_std_ring,
2838 		    sc->bge_cdata.bge_rx_std_ring_map);
2839 
2840 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2841 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2842 
2843 	/* Destroy jumbo RX ring. */
2844 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2845 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2846 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2847 
2848 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2849 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2850 		    sc->bge_ldata.bge_rx_jumbo_ring,
2851 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2852 
2853 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2854 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2855 
2856 	/* Destroy RX return ring. */
2857 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2858 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2859 		    sc->bge_cdata.bge_rx_return_ring_map);
2860 
2861 	if (sc->bge_ldata.bge_rx_return_ring)
2862 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2863 		    sc->bge_ldata.bge_rx_return_ring,
2864 		    sc->bge_cdata.bge_rx_return_ring_map);
2865 
2866 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2867 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2868 
2869 	/* Destroy TX ring. */
2870 	if (sc->bge_ldata.bge_tx_ring_paddr)
2871 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2872 		    sc->bge_cdata.bge_tx_ring_map);
2873 
2874 	if (sc->bge_ldata.bge_tx_ring)
2875 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2876 		    sc->bge_ldata.bge_tx_ring,
2877 		    sc->bge_cdata.bge_tx_ring_map);
2878 
2879 	if (sc->bge_cdata.bge_tx_ring_tag)
2880 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2881 
2882 	/* Destroy status block. */
2883 	if (sc->bge_ldata.bge_status_block_paddr)
2884 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2885 		    sc->bge_cdata.bge_status_map);
2886 
2887 	if (sc->bge_ldata.bge_status_block)
2888 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2889 		    sc->bge_ldata.bge_status_block,
2890 		    sc->bge_cdata.bge_status_map);
2891 
2892 	if (sc->bge_cdata.bge_status_tag)
2893 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2894 
2895 	/* Destroy statistics block. */
2896 	if (sc->bge_ldata.bge_stats_paddr)
2897 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2898 		    sc->bge_cdata.bge_stats_map);
2899 
2900 	if (sc->bge_ldata.bge_stats)
2901 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2902 		    sc->bge_ldata.bge_stats,
2903 		    sc->bge_cdata.bge_stats_map);
2904 
2905 	if (sc->bge_cdata.bge_stats_tag)
2906 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2907 
2908 	if (sc->bge_cdata.bge_buffer_tag)
2909 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2910 
2911 	/* Destroy the parent tag. */
2912 	if (sc->bge_cdata.bge_parent_tag)
2913 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2914 }
2915 
2916 static int
2917 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2918     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2919     bus_addr_t *paddr, const char *msg)
2920 {
2921 	struct bge_dmamap_arg ctx;
2922 	int error;
2923 
2924 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2925 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2926 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2927 	if (error != 0) {
2928 		device_printf(sc->bge_dev,
2929 		    "could not create %s dma tag\n", msg);
2930 		return (ENOMEM);
2931 	}
2932 	/* Allocate DMA'able memory for ring. */
2933 	error = bus_dmamem_alloc(*tag, (void **)ring,
2934 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2935 	if (error != 0) {
2936 		device_printf(sc->bge_dev,
2937 		    "could not allocate DMA'able memory for %s\n", msg);
2938 		return (ENOMEM);
2939 	}
2940 	/* Load the address of the ring. */
2941 	ctx.bge_busaddr = 0;
2942 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2943 	    &ctx, BUS_DMA_NOWAIT);
2944 	if (error != 0) {
2945 		device_printf(sc->bge_dev,
2946 		    "could not load DMA'able memory for %s\n", msg);
2947 		return (ENOMEM);
2948 	}
2949 	*paddr = ctx.bge_busaddr;
2950 	return (0);
2951 }
2952 
2953 static int
2954 bge_dma_alloc(struct bge_softc *sc)
2955 {
2956 	bus_addr_t lowaddr;
2957 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2958 	int i, error;
2959 
2960 	lowaddr = BUS_SPACE_MAXADDR;
2961 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2962 		lowaddr = BGE_DMA_MAXADDR;
2963 	/*
2964 	 * Allocate the parent bus DMA tag appropriate for PCI.
2965 	 */
2966 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2967 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2968 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2969 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2970 	if (error != 0) {
2971 		device_printf(sc->bge_dev,
2972 		    "could not allocate parent dma tag\n");
2973 		return (ENOMEM);
2974 	}
2975 
2976 	/* Create tag for standard RX ring. */
2977 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2978 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2979 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2980 	    &sc->bge_cdata.bge_rx_std_ring_map,
2981 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2982 	if (error)
2983 		return (error);
2984 
2985 	/* Create tag for RX return ring. */
2986 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2987 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2988 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2989 	    &sc->bge_cdata.bge_rx_return_ring_map,
2990 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2991 	if (error)
2992 		return (error);
2993 
2994 	/* Create tag for TX ring. */
2995 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2996 	    &sc->bge_cdata.bge_tx_ring_tag,
2997 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2998 	    &sc->bge_cdata.bge_tx_ring_map,
2999 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3000 	if (error)
3001 		return (error);
3002 
3003 	/*
3004 	 * Create tag for status block.
3005 	 * Because we only use single Tx/Rx/Rx return ring, use
3006 	 * minimum status block size except BCM5700 AX/BX which
3007 	 * seems to want to see full status block size regardless
3008 	 * of configured number of ring.
3009 	 */
3010 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3011 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3012 		sbsz = BGE_STATUS_BLK_SZ;
3013 	else
3014 		sbsz = 32;
3015 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3016 	    &sc->bge_cdata.bge_status_tag,
3017 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3018 	    &sc->bge_cdata.bge_status_map,
3019 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3020 	if (error)
3021 		return (error);
3022 
3023 	/* Create tag for statistics block. */
3024 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3025 	    &sc->bge_cdata.bge_stats_tag,
3026 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3027 	    &sc->bge_cdata.bge_stats_map,
3028 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3029 	if (error)
3030 		return (error);
3031 
3032 	/* Create tag for jumbo RX ring. */
3033 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3034 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3035 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3036 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3037 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3038 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3039 		if (error)
3040 			return (error);
3041 	}
3042 
3043 	/* Create parent tag for buffers. */
3044 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3045 		/*
3046 		 * XXX
3047 		 * watchdog timeout issue was observed on BCM5704 which
3048 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3049 		 * Both limiting DMA address space to 32bits and flushing
3050 		 * mailbox write seem to address the issue.
3051 		 */
3052 		if (sc->bge_pcixcap != 0)
3053 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3054 	}
3055 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3056 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3057 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3058 	    &sc->bge_cdata.bge_buffer_tag);
3059 	if (error != 0) {
3060 		device_printf(sc->bge_dev,
3061 		    "could not allocate buffer dma tag\n");
3062 		return (ENOMEM);
3063 	}
3064 	/* Create tag for Tx mbufs. */
3065 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3066 		txsegsz = BGE_TSOSEG_SZ;
3067 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3068 	} else {
3069 		txsegsz = MCLBYTES;
3070 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3071 	}
3072 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3073 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3074 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3075 	    &sc->bge_cdata.bge_tx_mtag);
3076 
3077 	if (error) {
3078 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3079 		return (ENOMEM);
3080 	}
3081 
3082 	/* Create tag for Rx mbufs. */
3083 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3084 		rxmaxsegsz = MJUM9BYTES;
3085 	else
3086 		rxmaxsegsz = MCLBYTES;
3087 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3088 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3089 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3090 
3091 	if (error) {
3092 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3093 		return (ENOMEM);
3094 	}
3095 
3096 	/* Create DMA maps for RX buffers. */
3097 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3098 	    &sc->bge_cdata.bge_rx_std_sparemap);
3099 	if (error) {
3100 		device_printf(sc->bge_dev,
3101 		    "can't create spare DMA map for RX\n");
3102 		return (ENOMEM);
3103 	}
3104 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3105 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3106 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3107 		if (error) {
3108 			device_printf(sc->bge_dev,
3109 			    "can't create DMA map for RX\n");
3110 			return (ENOMEM);
3111 		}
3112 	}
3113 
3114 	/* Create DMA maps for TX buffers. */
3115 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3116 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3117 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3118 		if (error) {
3119 			device_printf(sc->bge_dev,
3120 			    "can't create DMA map for TX\n");
3121 			return (ENOMEM);
3122 		}
3123 	}
3124 
3125 	/* Create tags for jumbo RX buffers. */
3126 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3127 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3128 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3129 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3130 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3131 		if (error) {
3132 			device_printf(sc->bge_dev,
3133 			    "could not allocate jumbo dma tag\n");
3134 			return (ENOMEM);
3135 		}
3136 		/* Create DMA maps for jumbo RX buffers. */
3137 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3138 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3139 		if (error) {
3140 			device_printf(sc->bge_dev,
3141 			    "can't create spare DMA map for jumbo RX\n");
3142 			return (ENOMEM);
3143 		}
3144 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3145 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3146 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3147 			if (error) {
3148 				device_printf(sc->bge_dev,
3149 				    "can't create DMA map for jumbo RX\n");
3150 				return (ENOMEM);
3151 			}
3152 		}
3153 	}
3154 
3155 	return (0);
3156 }
3157 
3158 /*
3159  * Return true if this device has more than one port.
3160  */
3161 static int
3162 bge_has_multiple_ports(struct bge_softc *sc)
3163 {
3164 	device_t dev = sc->bge_dev;
3165 	u_int b, d, f, fscan, s;
3166 
3167 	d = pci_get_domain(dev);
3168 	b = pci_get_bus(dev);
3169 	s = pci_get_slot(dev);
3170 	f = pci_get_function(dev);
3171 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3172 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3173 			return (1);
3174 	return (0);
3175 }
3176 
3177 /*
3178  * Return true if MSI can be used with this device.
3179  */
3180 static int
3181 bge_can_use_msi(struct bge_softc *sc)
3182 {
3183 	int can_use_msi = 0;
3184 
3185 	if (sc->bge_msi == 0)
3186 		return (0);
3187 
3188 	/* Disable MSI for polling(4). */
3189 #ifdef DEVICE_POLLING
3190 	return (0);
3191 #endif
3192 	switch (sc->bge_asicrev) {
3193 	case BGE_ASICREV_BCM5714_A0:
3194 	case BGE_ASICREV_BCM5714:
3195 		/*
3196 		 * Apparently, MSI doesn't work when these chips are
3197 		 * configured in single-port mode.
3198 		 */
3199 		if (bge_has_multiple_ports(sc))
3200 			can_use_msi = 1;
3201 		break;
3202 	case BGE_ASICREV_BCM5750:
3203 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3204 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3205 			can_use_msi = 1;
3206 		break;
3207 	default:
3208 		if (BGE_IS_575X_PLUS(sc))
3209 			can_use_msi = 1;
3210 	}
3211 	return (can_use_msi);
3212 }
3213 
3214 static int
3215 bge_mbox_reorder(struct bge_softc *sc)
3216 {
3217 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3218 	static const struct mbox_reorder {
3219 		const uint16_t vendor;
3220 		const uint16_t device;
3221 		const char *desc;
3222 	} mbox_reorder_lists[] = {
3223 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3224 	};
3225 	devclass_t pci, pcib;
3226 	device_t bus, dev;
3227 	int i;
3228 
3229 	pci = devclass_find("pci");
3230 	pcib = devclass_find("pcib");
3231 	dev = sc->bge_dev;
3232 	bus = device_get_parent(dev);
3233 	for (;;) {
3234 		dev = device_get_parent(bus);
3235 		bus = device_get_parent(dev);
3236 		if (device_get_devclass(dev) != pcib)
3237 			break;
3238 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3239 			if (pci_get_vendor(dev) ==
3240 			    mbox_reorder_lists[i].vendor &&
3241 			    pci_get_device(dev) ==
3242 			    mbox_reorder_lists[i].device) {
3243 				device_printf(sc->bge_dev,
3244 				    "enabling MBOX workaround for %s\n",
3245 				    mbox_reorder_lists[i].desc);
3246 				return (1);
3247 			}
3248 		}
3249 		if (device_get_devclass(bus) != pci)
3250 			break;
3251 	}
3252 	return (0);
3253 }
3254 
3255 static void
3256 bge_devinfo(struct bge_softc *sc)
3257 {
3258 	uint32_t cfg, clk;
3259 
3260 	device_printf(sc->bge_dev,
3261 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3262 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3263 	if (sc->bge_flags & BGE_FLAG_PCIE)
3264 		printf("PCI-E\n");
3265 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3266 		printf("PCI-X ");
3267 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3268 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3269 			clk = 133;
3270 		else {
3271 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3272 			switch (clk) {
3273 			case 0:
3274 				clk = 33;
3275 				break;
3276 			case 2:
3277 				clk = 50;
3278 				break;
3279 			case 4:
3280 				clk = 66;
3281 				break;
3282 			case 6:
3283 				clk = 100;
3284 				break;
3285 			case 7:
3286 				clk = 133;
3287 				break;
3288 			}
3289 		}
3290 		printf("%u MHz\n", clk);
3291 	} else {
3292 		if (sc->bge_pcixcap != 0)
3293 			printf("PCI on PCI-X ");
3294 		else
3295 			printf("PCI ");
3296 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3297 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3298 			clk = 66;
3299 		else
3300 			clk = 33;
3301 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3302 			printf("%u MHz; 32bit\n", clk);
3303 		else
3304 			printf("%u MHz; 64bit\n", clk);
3305 	}
3306 }
3307 
3308 static int
3309 bge_attach(device_t dev)
3310 {
3311 	if_t ifp;
3312 	struct bge_softc *sc;
3313 	uint32_t hwcfg = 0, misccfg, pcistate;
3314 	u_char eaddr[ETHER_ADDR_LEN];
3315 	int capmask, error, reg, rid, trys;
3316 
3317 	sc = device_get_softc(dev);
3318 	sc->bge_dev = dev;
3319 
3320 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3321 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3322 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3323 
3324 	pci_enable_busmaster(dev);
3325 
3326 	/*
3327 	 * Allocate control/status registers.
3328 	 */
3329 	rid = PCIR_BAR(0);
3330 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3331 	    RF_ACTIVE);
3332 
3333 	if (sc->bge_res == NULL) {
3334 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3335 		error = ENXIO;
3336 		goto fail;
3337 	}
3338 
3339 	/* Save various chip information. */
3340 	sc->bge_func_addr = pci_get_function(dev);
3341 	sc->bge_chipid = bge_chipid(dev);
3342 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3343 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3344 
3345 	/* Set default PHY address. */
3346 	sc->bge_phy_addr = 1;
3347 	 /*
3348 	  * PHY address mapping for various devices.
3349 	  *
3350 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3351 	  * ---------+-------+-------+-------+-------+
3352 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3353 	  * BCM5704  |   1   |   X   |   1   |   X   |
3354 	  * BCM5717  |   1   |   8   |   2   |   9   |
3355 	  * BCM5719  |   1   |   8   |   2   |   9   |
3356 	  * BCM5720  |   1   |   8   |   2   |   9   |
3357 	  *
3358 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3359 	  * ---------+-------+-------+-------+-------+
3360 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3361 	  * BCM5704  |   X   |   X   |   X   |   X   |
3362 	  * BCM5717  |   X   |   X   |   X   |   X   |
3363 	  * BCM5719  |   3   |   10  |   4   |   11  |
3364 	  * BCM5720  |   X   |   X   |   X   |   X   |
3365 	  *
3366 	  * Other addresses may respond but they are not
3367 	  * IEEE compliant PHYs and should be ignored.
3368 	  */
3369 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3370 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3371 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3372 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3373 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3374 			    BGE_SGDIGSTS_IS_SERDES)
3375 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3376 			else
3377 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3378 		} else {
3379 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3380 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3381 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3382 			else
3383 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3384 		}
3385 	}
3386 
3387 	if (bge_has_eaddr(sc))
3388 		sc->bge_flags |= BGE_FLAG_EADDR;
3389 
3390 	/* Save chipset family. */
3391 	switch (sc->bge_asicrev) {
3392 	case BGE_ASICREV_BCM5762:
3393 	case BGE_ASICREV_BCM57765:
3394 	case BGE_ASICREV_BCM57766:
3395 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3396 		/* FALLTHROUGH */
3397 	case BGE_ASICREV_BCM5717:
3398 	case BGE_ASICREV_BCM5719:
3399 	case BGE_ASICREV_BCM5720:
3400 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3401 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3402 		    BGE_FLAG_JUMBO_FRAME;
3403 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3404 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3405 			/*
3406 			 * Enable work around for DMA engine miscalculation
3407 			 * of TXMBUF available space.
3408 			 */
3409 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3410 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3411 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3412 				/* Jumbo frame on BCM5719 A0 does not work. */
3413 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3414 			}
3415 		}
3416 		break;
3417 	case BGE_ASICREV_BCM5755:
3418 	case BGE_ASICREV_BCM5761:
3419 	case BGE_ASICREV_BCM5784:
3420 	case BGE_ASICREV_BCM5785:
3421 	case BGE_ASICREV_BCM5787:
3422 	case BGE_ASICREV_BCM57780:
3423 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3424 		    BGE_FLAG_5705_PLUS;
3425 		break;
3426 	case BGE_ASICREV_BCM5700:
3427 	case BGE_ASICREV_BCM5701:
3428 	case BGE_ASICREV_BCM5703:
3429 	case BGE_ASICREV_BCM5704:
3430 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3431 		break;
3432 	case BGE_ASICREV_BCM5714_A0:
3433 	case BGE_ASICREV_BCM5780:
3434 	case BGE_ASICREV_BCM5714:
3435 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3436 		/* FALLTHROUGH */
3437 	case BGE_ASICREV_BCM5750:
3438 	case BGE_ASICREV_BCM5752:
3439 	case BGE_ASICREV_BCM5906:
3440 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3441 		/* FALLTHROUGH */
3442 	case BGE_ASICREV_BCM5705:
3443 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3444 		break;
3445 	}
3446 
3447 	/* Identify chips with APE processor. */
3448 	switch (sc->bge_asicrev) {
3449 	case BGE_ASICREV_BCM5717:
3450 	case BGE_ASICREV_BCM5719:
3451 	case BGE_ASICREV_BCM5720:
3452 	case BGE_ASICREV_BCM5761:
3453 	case BGE_ASICREV_BCM5762:
3454 		sc->bge_flags |= BGE_FLAG_APE;
3455 		break;
3456 	}
3457 
3458 	/* Chips with APE need BAR2 access for APE registers/memory. */
3459 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3460 		rid = PCIR_BAR(2);
3461 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3462 		    RF_ACTIVE);
3463 		if (sc->bge_res2 == NULL) {
3464 			device_printf (sc->bge_dev,
3465 			    "couldn't map BAR2 memory\n");
3466 			error = ENXIO;
3467 			goto fail;
3468 		}
3469 
3470 		/* Enable APE register/memory access by host driver. */
3471 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3472 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3473 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3474 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3475 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3476 
3477 		bge_ape_lock_init(sc);
3478 		bge_ape_read_fw_ver(sc);
3479 	}
3480 
3481 	/* Add SYSCTLs, requires the chipset family to be set. */
3482 	bge_add_sysctls(sc);
3483 
3484 	/* Identify the chips that use an CPMU. */
3485 	if (BGE_IS_5717_PLUS(sc) ||
3486 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3487 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3488 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3489 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3490 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3491 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3492 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3493 	else
3494 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3495 	/* Enable auto polling for BCM570[0-5]. */
3496 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3497 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3498 
3499 	/*
3500 	 * All Broadcom controllers have 4GB boundary DMA bug.
3501 	 * Whenever an address crosses a multiple of the 4GB boundary
3502 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3503 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3504 	 * state machine will lockup and cause the device to hang.
3505 	 */
3506 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3507 
3508 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3509 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3510 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3511 
3512 	/*
3513 	 * BCM5719 cannot handle DMA requests for DMA segments that
3514 	 * have larger than 4KB in size.  However the maximum DMA
3515 	 * segment size created in DMA tag is 4KB for TSO, so we
3516 	 * wouldn't encounter the issue here.
3517 	 */
3518 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3519 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3520 
3521 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3522 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3523 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3524 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3525 			sc->bge_flags |= BGE_FLAG_5788;
3526 	}
3527 
3528 	capmask = BMSR_DEFCAPMASK;
3529 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3530 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3531 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3532 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3533 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3534 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3535 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3536 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3537 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3538 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3539 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3540 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3541 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3542 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3543 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3544 		/* These chips are 10/100 only. */
3545 		capmask &= ~BMSR_EXTSTAT;
3546 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3547 	}
3548 
3549 	/*
3550 	 * Some controllers seem to require a special firmware to use
3551 	 * TSO. But the firmware is not available to FreeBSD and Linux
3552 	 * claims that the TSO performed by the firmware is slower than
3553 	 * hardware based TSO. Moreover the firmware based TSO has one
3554 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3555 	 * header is greater than 80 bytes. A workaround for the TSO
3556 	 * bug exist but it seems it's too expensive than not using
3557 	 * TSO at all. Some hardwares also have the TSO bug so limit
3558 	 * the TSO to the controllers that are not affected TSO issues
3559 	 * (e.g. 5755 or higher).
3560 	 */
3561 	if (BGE_IS_5717_PLUS(sc)) {
3562 		/* BCM5717 requires different TSO configuration. */
3563 		sc->bge_flags |= BGE_FLAG_TSO3;
3564 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3565 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3566 			/* TSO on BCM5719 A0 does not work. */
3567 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3568 		}
3569 	} else if (BGE_IS_5755_PLUS(sc)) {
3570 		/*
3571 		 * BCM5754 and BCM5787 shares the same ASIC id so
3572 		 * explicit device id check is required.
3573 		 * Due to unknown reason TSO does not work on BCM5755M.
3574 		 */
3575 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3576 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3577 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3578 			sc->bge_flags |= BGE_FLAG_TSO;
3579 	}
3580 
3581 	/*
3582 	 * Check if this is a PCI-X or PCI Express device.
3583 	 */
3584 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3585 		/*
3586 		 * Found a PCI Express capabilities register, this
3587 		 * must be a PCI Express device.
3588 		 */
3589 		sc->bge_flags |= BGE_FLAG_PCIE;
3590 		sc->bge_expcap = reg;
3591 		/* Extract supported maximum payload size. */
3592 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3593 		    PCIER_DEVICE_CAP, 2);
3594 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3595 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3596 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3597 			sc->bge_expmrq = 2048;
3598 		else
3599 			sc->bge_expmrq = 4096;
3600 		pci_set_max_read_req(dev, sc->bge_expmrq);
3601 	} else {
3602 		/*
3603 		 * Check if the device is in PCI-X Mode.
3604 		 * (This bit is not valid on PCI Express controllers.)
3605 		 */
3606 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3607 			sc->bge_pcixcap = reg;
3608 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3609 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3610 			sc->bge_flags |= BGE_FLAG_PCIX;
3611 	}
3612 
3613 	/*
3614 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3615 	 * not actually a MAC controller bug but an issue with the embedded
3616 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3617 	 */
3618 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3619 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3620 	/*
3621 	 * Some PCI-X bridges are known to trigger write reordering to
3622 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3623 	 * caused by out-of-order TX completions.  Enable workaround for
3624 	 * PCI-X devices that live behind these bridges.
3625 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3626 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3627 	 */
3628 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3629 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3630 	/*
3631 	 * Allocate the interrupt, using MSI if possible.  These devices
3632 	 * support 8 MSI messages, but only the first one is used in
3633 	 * normal operation.
3634 	 */
3635 	rid = 0;
3636 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3637 		sc->bge_msicap = reg;
3638 		reg = 1;
3639 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3640 			rid = 1;
3641 			sc->bge_flags |= BGE_FLAG_MSI;
3642 		}
3643 	}
3644 
3645 	/*
3646 	 * All controllers except BCM5700 supports tagged status but
3647 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3648 	 * MSI on BCM5717 does not work.
3649 	 */
3650 #ifndef DEVICE_POLLING
3651 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3652 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3653 #endif
3654 
3655 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3656 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3657 
3658 	if (sc->bge_irq == NULL) {
3659 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3660 		error = ENXIO;
3661 		goto fail;
3662 	}
3663 
3664 	bge_devinfo(sc);
3665 
3666 	sc->bge_asf_mode = 0;
3667 	/* No ASF if APE present. */
3668 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3669 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3670 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3671 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3672 			    BGE_HWCFG_ASF) {
3673 				sc->bge_asf_mode |= ASF_ENABLE;
3674 				sc->bge_asf_mode |= ASF_STACKUP;
3675 				if (BGE_IS_575X_PLUS(sc))
3676 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3677 			}
3678 		}
3679 	}
3680 
3681 	bge_stop_fw(sc);
3682 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3683 	if (bge_reset(sc)) {
3684 		device_printf(sc->bge_dev, "chip reset failed\n");
3685 		error = ENXIO;
3686 		goto fail;
3687 	}
3688 
3689 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3690 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3691 
3692 	if (bge_chipinit(sc)) {
3693 		device_printf(sc->bge_dev, "chip initialization failed\n");
3694 		error = ENXIO;
3695 		goto fail;
3696 	}
3697 
3698 	error = bge_get_eaddr(sc, eaddr);
3699 	if (error) {
3700 		device_printf(sc->bge_dev,
3701 		    "failed to read station address\n");
3702 		error = ENXIO;
3703 		goto fail;
3704 	}
3705 
3706 	/* 5705 limits RX return ring to 512 entries. */
3707 	if (BGE_IS_5717_PLUS(sc))
3708 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3709 	else if (BGE_IS_5705_PLUS(sc))
3710 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3711 	else
3712 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3713 
3714 	if (bge_dma_alloc(sc)) {
3715 		device_printf(sc->bge_dev,
3716 		    "failed to allocate DMA resources\n");
3717 		error = ENXIO;
3718 		goto fail;
3719 	}
3720 
3721 	/* Set default tuneable values. */
3722 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3723 	sc->bge_rx_coal_ticks = 150;
3724 	sc->bge_tx_coal_ticks = 150;
3725 	sc->bge_rx_max_coal_bds = 10;
3726 	sc->bge_tx_max_coal_bds = 10;
3727 
3728 	/* Initialize checksum features to use. */
3729 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3730 	if (sc->bge_forced_udpcsum != 0)
3731 		sc->bge_csum_features |= CSUM_UDP;
3732 
3733 	/* Set up ifnet structure */
3734 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3735 	if (ifp == NULL) {
3736 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3737 		error = ENXIO;
3738 		goto fail;
3739 	}
3740 	if_setsoftc(ifp, sc);
3741 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3742 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3743 	if_setioctlfn(ifp, bge_ioctl);
3744 	if_setstartfn(ifp, bge_start);
3745 	if_setinitfn(ifp, bge_init);
3746 	if_setgetcounterfn(ifp, bge_get_counter);
3747 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3748 	if_setsendqready(ifp);
3749 	if_sethwassist(ifp, sc->bge_csum_features);
3750 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3751 	    IFCAP_VLAN_MTU);
3752 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3753 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3754 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3755 	}
3756 #ifdef IFCAP_VLAN_HWCSUM
3757 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3758 #endif
3759 	if_setcapenable(ifp, if_getcapabilities(ifp));
3760 #ifdef DEVICE_POLLING
3761 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3762 #endif
3763 
3764 	/*
3765 	 * 5700 B0 chips do not support checksumming correctly due
3766 	 * to hardware bugs.
3767 	 */
3768 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3769 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3770 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3771 		if_sethwassist(ifp, 0);
3772 	}
3773 
3774 	/*
3775 	 * Figure out what sort of media we have by checking the
3776 	 * hardware config word in the first 32k of NIC internal memory,
3777 	 * or fall back to examining the EEPROM if necessary.
3778 	 * Note: on some BCM5700 cards, this value appears to be unset.
3779 	 * If that's the case, we have to rely on identifying the NIC
3780 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3781 	 * SK-9D41.
3782 	 */
3783 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3784 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3785 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3786 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3787 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3788 		    sizeof(hwcfg))) {
3789 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3790 			error = ENXIO;
3791 			goto fail;
3792 		}
3793 		hwcfg = ntohl(hwcfg);
3794 	}
3795 
3796 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3797 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3798 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3799 		if (BGE_IS_5705_PLUS(sc)) {
3800 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3801 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3802 		} else
3803 			sc->bge_flags |= BGE_FLAG_TBI;
3804 	}
3805 
3806 	/* Set various PHY bug flags. */
3807 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3808 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3809 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3810 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3811 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3812 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3813 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3814 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3815 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3816 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3817 	if ((BGE_IS_5705_PLUS(sc)) &&
3818 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3819 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3820 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3821 	    !BGE_IS_5717_PLUS(sc)) {
3822 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3823 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3824 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3825 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3826 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3827 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3828 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3829 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3830 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3831 		} else
3832 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3833 	}
3834 
3835 	/*
3836 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3837 	 * 5705 A0 and A1 chips.
3838 	 */
3839 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3840 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3841 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3842 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3843 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3844 
3845 	if (sc->bge_flags & BGE_FLAG_TBI) {
3846 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3847 		    bge_ifmedia_sts);
3848 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3849 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3850 		    0, NULL);
3851 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3852 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3853 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3854 	} else {
3855 		/*
3856 		 * Do transceiver setup and tell the firmware the
3857 		 * driver is down so we can try to get access the
3858 		 * probe if ASF is running.  Retry a couple of times
3859 		 * if we get a conflict with the ASF firmware accessing
3860 		 * the PHY.
3861 		 */
3862 		trys = 0;
3863 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3864 again:
3865 		bge_asf_driver_up(sc);
3866 
3867 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3868 		    (ifm_change_cb_t)bge_ifmedia_upd,
3869 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3870 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3871 		if (error != 0) {
3872 			if (trys++ < 4) {
3873 				device_printf(sc->bge_dev, "Try again\n");
3874 				bge_miibus_writereg(sc->bge_dev,
3875 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3876 				goto again;
3877 			}
3878 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3879 			goto fail;
3880 		}
3881 
3882 		/*
3883 		 * Now tell the firmware we are going up after probing the PHY
3884 		 */
3885 		if (sc->bge_asf_mode & ASF_STACKUP)
3886 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3887 	}
3888 
3889 	/*
3890 	 * When using the BCM5701 in PCI-X mode, data corruption has
3891 	 * been observed in the first few bytes of some received packets.
3892 	 * Aligning the packet buffer in memory eliminates the corruption.
3893 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3894 	 * which do not support unaligned accesses, we will realign the
3895 	 * payloads by copying the received packets.
3896 	 */
3897 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3898 	    sc->bge_flags & BGE_FLAG_PCIX)
3899                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3900 
3901 	/*
3902 	 * Call MI attach routine.
3903 	 */
3904 	ether_ifattach(ifp, eaddr);
3905 
3906 	/* Tell upper layer we support long frames. */
3907 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3908 
3909 	/*
3910 	 * Hookup IRQ last.
3911 	 */
3912 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3913 		/* Take advantage of single-shot MSI. */
3914 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3915 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3916 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3917 		    taskqueue_thread_enqueue, &sc->bge_tq);
3918 		if (sc->bge_tq == NULL) {
3919 			device_printf(dev, "could not create taskqueue.\n");
3920 			ether_ifdetach(ifp);
3921 			error = ENOMEM;
3922 			goto fail;
3923 		}
3924 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3925 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3926 		if (error != 0) {
3927 			device_printf(dev, "could not start threads.\n");
3928 			ether_ifdetach(ifp);
3929 			goto fail;
3930 		}
3931 		error = bus_setup_intr(dev, sc->bge_irq,
3932 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3933 		    &sc->bge_intrhand);
3934 	} else
3935 		error = bus_setup_intr(dev, sc->bge_irq,
3936 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3937 		    &sc->bge_intrhand);
3938 
3939 	if (error) {
3940 		ether_ifdetach(ifp);
3941 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3942 	}
3943 
3944 fail:
3945 	if (error)
3946 		bge_detach(dev);
3947 	return (error);
3948 }
3949 
3950 static int
3951 bge_detach(device_t dev)
3952 {
3953 	struct bge_softc *sc;
3954 	if_t ifp;
3955 
3956 	sc = device_get_softc(dev);
3957 	ifp = sc->bge_ifp;
3958 
3959 #ifdef DEVICE_POLLING
3960 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3961 		ether_poll_deregister(ifp);
3962 #endif
3963 
3964 	if (device_is_attached(dev)) {
3965 		ether_ifdetach(ifp);
3966 		BGE_LOCK(sc);
3967 		bge_stop(sc);
3968 		BGE_UNLOCK(sc);
3969 		callout_drain(&sc->bge_stat_ch);
3970 	}
3971 
3972 	if (sc->bge_tq)
3973 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3974 
3975 	if (sc->bge_flags & BGE_FLAG_TBI)
3976 		ifmedia_removeall(&sc->bge_ifmedia);
3977 	else if (sc->bge_miibus != NULL) {
3978 		bus_generic_detach(dev);
3979 		device_delete_child(dev, sc->bge_miibus);
3980 	}
3981 
3982 	bge_release_resources(sc);
3983 
3984 	return (0);
3985 }
3986 
3987 static void
3988 bge_release_resources(struct bge_softc *sc)
3989 {
3990 	device_t dev;
3991 
3992 	dev = sc->bge_dev;
3993 
3994 	if (sc->bge_tq != NULL)
3995 		taskqueue_free(sc->bge_tq);
3996 
3997 	if (sc->bge_intrhand != NULL)
3998 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3999 
4000 	if (sc->bge_irq != NULL) {
4001 		bus_release_resource(dev, SYS_RES_IRQ,
4002 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4003 		pci_release_msi(dev);
4004 	}
4005 
4006 	if (sc->bge_res != NULL)
4007 		bus_release_resource(dev, SYS_RES_MEMORY,
4008 		    rman_get_rid(sc->bge_res), sc->bge_res);
4009 
4010 	if (sc->bge_res2 != NULL)
4011 		bus_release_resource(dev, SYS_RES_MEMORY,
4012 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4013 
4014 	if (sc->bge_ifp != NULL)
4015 		if_free(sc->bge_ifp);
4016 
4017 	bge_dma_free(sc);
4018 
4019 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4020 		BGE_LOCK_DESTROY(sc);
4021 }
4022 
4023 static int
4024 bge_reset(struct bge_softc *sc)
4025 {
4026 	device_t dev;
4027 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4028 	void (*write_op)(struct bge_softc *, int, int);
4029 	uint16_t devctl;
4030 	int i;
4031 
4032 	dev = sc->bge_dev;
4033 
4034 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4035 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4036 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4037 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4038 
4039 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4040 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4041 		if (sc->bge_flags & BGE_FLAG_PCIE)
4042 			write_op = bge_writemem_direct;
4043 		else
4044 			write_op = bge_writemem_ind;
4045 	} else
4046 		write_op = bge_writereg_ind;
4047 
4048 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4049 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4050 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4051 		for (i = 0; i < 8000; i++) {
4052 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4053 			    BGE_NVRAMSWARB_GNT1)
4054 				break;
4055 			DELAY(20);
4056 		}
4057 		if (i == 8000) {
4058 			if (bootverbose)
4059 				device_printf(dev, "NVRAM lock timedout!\n");
4060 		}
4061 	}
4062 	/* Take APE lock when performing reset. */
4063 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4064 
4065 	/* Save some important PCI state. */
4066 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4067 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4068 
4069 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4070 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4071 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4072 
4073 	/* Disable fastboot on controllers that support it. */
4074 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4075 	    BGE_IS_5755_PLUS(sc)) {
4076 		if (bootverbose)
4077 			device_printf(dev, "Disabling fastboot\n");
4078 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4079 	}
4080 
4081 	/*
4082 	 * Write the magic number to SRAM at offset 0xB50.
4083 	 * When firmware finishes its initialization it will
4084 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4085 	 */
4086 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4087 
4088 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4089 
4090 	/* XXX: Broadcom Linux driver. */
4091 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4092 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4093 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4094 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4095 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4096 		}
4097 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4098 			/* Prevent PCIE link training during global reset */
4099 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4100 			reset |= 1 << 29;
4101 		}
4102 	}
4103 
4104 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4105 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4106 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4107 		    val | BGE_VCPU_STATUS_DRV_RESET);
4108 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4109 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4110 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4111 	}
4112 
4113 	/*
4114 	 * Set GPHY Power Down Override to leave GPHY
4115 	 * powered up in D0 uninitialized.
4116 	 */
4117 	if (BGE_IS_5705_PLUS(sc) &&
4118 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4119 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4120 
4121 	/* Issue global reset */
4122 	write_op(sc, BGE_MISC_CFG, reset);
4123 
4124 	if (sc->bge_flags & BGE_FLAG_PCIE)
4125 		DELAY(100 * 1000);
4126 	else
4127 		DELAY(1000);
4128 
4129 	/* XXX: Broadcom Linux driver. */
4130 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4131 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4132 			DELAY(500000); /* wait for link training to complete */
4133 			val = pci_read_config(dev, 0xC4, 4);
4134 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4135 		}
4136 		devctl = pci_read_config(dev,
4137 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4138 		/* Clear enable no snoop and disable relaxed ordering. */
4139 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4140 		    PCIEM_CTL_NOSNOOP_ENABLE);
4141 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4142 		    devctl, 2);
4143 		pci_set_max_read_req(dev, sc->bge_expmrq);
4144 		/* Clear error status. */
4145 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4146 		    PCIEM_STA_CORRECTABLE_ERROR |
4147 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4148 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4149 	}
4150 
4151 	/* Reset some of the PCI state that got zapped by reset. */
4152 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4153 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4154 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4155 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4156 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4157 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4158 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4159 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4160 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4161 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4162 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4163 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4164 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4165 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4166 	/*
4167 	 * Disable PCI-X relaxed ordering to ensure status block update
4168 	 * comes first then packet buffer DMA. Otherwise driver may
4169 	 * read stale status block.
4170 	 */
4171 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4172 		devctl = pci_read_config(dev,
4173 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4174 		devctl &= ~PCIXM_COMMAND_ERO;
4175 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4176 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4177 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4178 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4179 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4180 			    PCIXM_COMMAND_MAX_READ);
4181 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4182 		}
4183 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4184 		    devctl, 2);
4185 	}
4186 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4187 	if (BGE_IS_5714_FAMILY(sc)) {
4188 		/* This chip disables MSI on reset. */
4189 		if (sc->bge_flags & BGE_FLAG_MSI) {
4190 			val = pci_read_config(dev,
4191 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4192 			pci_write_config(dev,
4193 			    sc->bge_msicap + PCIR_MSI_CTRL,
4194 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4195 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4196 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4197 			    val | BGE_MSIMODE_ENABLE);
4198 		}
4199 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4200 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4201 	} else
4202 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4203 
4204 	/* Fix up byte swapping. */
4205 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4206 
4207 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4208 	val = (val & ~mac_mode_mask) | mac_mode;
4209 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4210 	DELAY(40);
4211 
4212 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4213 
4214 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4215 		for (i = 0; i < BGE_TIMEOUT; i++) {
4216 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4217 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4218 				break;
4219 			DELAY(100);
4220 		}
4221 		if (i == BGE_TIMEOUT) {
4222 			device_printf(dev, "reset timed out\n");
4223 			return (1);
4224 		}
4225 	} else {
4226 		/*
4227 		 * Poll until we see the 1's complement of the magic number.
4228 		 * This indicates that the firmware initialization is complete.
4229 		 * We expect this to fail if no chip containing the Ethernet
4230 		 * address is fitted though.
4231 		 */
4232 		for (i = 0; i < BGE_TIMEOUT; i++) {
4233 			DELAY(10);
4234 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4235 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4236 				break;
4237 		}
4238 
4239 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4240 			device_printf(dev,
4241 			    "firmware handshake timed out, found 0x%08x\n",
4242 			    val);
4243 		/* BCM57765 A0 needs additional time before accessing. */
4244 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4245 			DELAY(10 * 1000);	/* XXX */
4246 	}
4247 
4248 	/*
4249 	 * The 5704 in TBI mode apparently needs some special
4250 	 * adjustment to insure the SERDES drive level is set
4251 	 * to 1.2V.
4252 	 */
4253 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4254 	    sc->bge_flags & BGE_FLAG_TBI) {
4255 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4256 		val = (val & ~0xFFF) | 0x880;
4257 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4258 	}
4259 
4260 	/* XXX: Broadcom Linux driver. */
4261 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4262 	    !BGE_IS_5717_PLUS(sc) &&
4263 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4264 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4265 		/* Enable Data FIFO protection. */
4266 		val = CSR_READ_4(sc, 0x7C00);
4267 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4268 	}
4269 
4270 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4271 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4272 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4273 
4274 	return (0);
4275 }
4276 
4277 static __inline void
4278 bge_rxreuse_std(struct bge_softc *sc, int i)
4279 {
4280 	struct bge_rx_bd *r;
4281 
4282 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4283 	r->bge_flags = BGE_RXBDFLAG_END;
4284 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4285 	r->bge_idx = i;
4286 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4287 }
4288 
4289 static __inline void
4290 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4291 {
4292 	struct bge_extrx_bd *r;
4293 
4294 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4295 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4296 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4297 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4298 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4299 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4300 	r->bge_idx = i;
4301 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4302 }
4303 
4304 /*
4305  * Frame reception handling. This is called if there's a frame
4306  * on the receive return list.
4307  *
4308  * Note: we have to be able to handle two possibilities here:
4309  * 1) the frame is from the jumbo receive ring
4310  * 2) the frame is from the standard receive ring
4311  */
4312 
4313 static int
4314 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4315 {
4316 	if_t ifp;
4317 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4318 	uint16_t rx_cons;
4319 
4320 	rx_cons = sc->bge_rx_saved_considx;
4321 
4322 	/* Nothing to do. */
4323 	if (rx_cons == rx_prod)
4324 		return (rx_npkts);
4325 
4326 	ifp = sc->bge_ifp;
4327 
4328 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4329 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4330 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4331 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4332 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4333 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4334 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4335 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4336 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4337 
4338 	while (rx_cons != rx_prod) {
4339 		struct bge_rx_bd	*cur_rx;
4340 		uint32_t		rxidx;
4341 		struct mbuf		*m = NULL;
4342 		uint16_t		vlan_tag = 0;
4343 		int			have_tag = 0;
4344 
4345 #ifdef DEVICE_POLLING
4346 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4347 			if (sc->rxcycles <= 0)
4348 				break;
4349 			sc->rxcycles--;
4350 		}
4351 #endif
4352 
4353 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4354 
4355 		rxidx = cur_rx->bge_idx;
4356 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4357 
4358 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4359 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4360 			have_tag = 1;
4361 			vlan_tag = cur_rx->bge_vlan_tag;
4362 		}
4363 
4364 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4365 			jumbocnt++;
4366 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4367 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4368 				bge_rxreuse_jumbo(sc, rxidx);
4369 				continue;
4370 			}
4371 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4372 				bge_rxreuse_jumbo(sc, rxidx);
4373 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4374 				continue;
4375 			}
4376 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4377 		} else {
4378 			stdcnt++;
4379 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4380 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4381 				bge_rxreuse_std(sc, rxidx);
4382 				continue;
4383 			}
4384 			if (bge_newbuf_std(sc, rxidx) != 0) {
4385 				bge_rxreuse_std(sc, rxidx);
4386 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4387 				continue;
4388 			}
4389 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4390 		}
4391 
4392 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4393 #ifndef __NO_STRICT_ALIGNMENT
4394 		/*
4395 		 * For architectures with strict alignment we must make sure
4396 		 * the payload is aligned.
4397 		 */
4398 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4399 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4400 			    cur_rx->bge_len);
4401 			m->m_data += ETHER_ALIGN;
4402 		}
4403 #endif
4404 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4405 		m->m_pkthdr.rcvif = ifp;
4406 
4407 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4408 			bge_rxcsum(sc, cur_rx, m);
4409 
4410 		/*
4411 		 * If we received a packet with a vlan tag,
4412 		 * attach that information to the packet.
4413 		 */
4414 		if (have_tag) {
4415 			m->m_pkthdr.ether_vtag = vlan_tag;
4416 			m->m_flags |= M_VLANTAG;
4417 		}
4418 
4419 		if (holdlck != 0) {
4420 			BGE_UNLOCK(sc);
4421 			if_input(ifp, m);
4422 			BGE_LOCK(sc);
4423 		} else
4424 			if_input(ifp, m);
4425 		rx_npkts++;
4426 
4427 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4428 			return (rx_npkts);
4429 	}
4430 
4431 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4432 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4433 	if (stdcnt > 0)
4434 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4435 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4436 
4437 	if (jumbocnt > 0)
4438 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4439 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4440 
4441 	sc->bge_rx_saved_considx = rx_cons;
4442 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4443 	if (stdcnt)
4444 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4445 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4446 	if (jumbocnt)
4447 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4448 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4449 #ifdef notyet
4450 	/*
4451 	 * This register wraps very quickly under heavy packet drops.
4452 	 * If you need correct statistics, you can enable this check.
4453 	 */
4454 	if (BGE_IS_5705_PLUS(sc))
4455 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4456 #endif
4457 	return (rx_npkts);
4458 }
4459 
4460 static void
4461 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4462 {
4463 
4464 	if (BGE_IS_5717_PLUS(sc)) {
4465 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4466 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4467 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4468 				if ((cur_rx->bge_error_flag &
4469 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4470 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4471 			}
4472 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4473 				m->m_pkthdr.csum_data =
4474 				    cur_rx->bge_tcp_udp_csum;
4475 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4476 				    CSUM_PSEUDO_HDR;
4477 			}
4478 		}
4479 	} else {
4480 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4481 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4482 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4483 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4484 		}
4485 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4486 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4487 			m->m_pkthdr.csum_data =
4488 			    cur_rx->bge_tcp_udp_csum;
4489 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4490 			    CSUM_PSEUDO_HDR;
4491 		}
4492 	}
4493 }
4494 
4495 static void
4496 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4497 {
4498 	struct bge_tx_bd *cur_tx;
4499 	if_t ifp;
4500 
4501 	BGE_LOCK_ASSERT(sc);
4502 
4503 	/* Nothing to do. */
4504 	if (sc->bge_tx_saved_considx == tx_cons)
4505 		return;
4506 
4507 	ifp = sc->bge_ifp;
4508 
4509 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4510 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4511 	/*
4512 	 * Go through our tx ring and free mbufs for those
4513 	 * frames that have been sent.
4514 	 */
4515 	while (sc->bge_tx_saved_considx != tx_cons) {
4516 		uint32_t		idx;
4517 
4518 		idx = sc->bge_tx_saved_considx;
4519 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4520 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4521 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4522 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4523 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4524 			    sc->bge_cdata.bge_tx_dmamap[idx],
4525 			    BUS_DMASYNC_POSTWRITE);
4526 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4527 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4528 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4529 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4530 		}
4531 		sc->bge_txcnt--;
4532 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4533 	}
4534 
4535 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4536 	if (sc->bge_txcnt == 0)
4537 		sc->bge_timer = 0;
4538 }
4539 
4540 #ifdef DEVICE_POLLING
4541 static int
4542 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4543 {
4544 	struct bge_softc *sc = if_getsoftc(ifp);
4545 	uint16_t rx_prod, tx_cons;
4546 	uint32_t statusword;
4547 	int rx_npkts = 0;
4548 
4549 	BGE_LOCK(sc);
4550 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4551 		BGE_UNLOCK(sc);
4552 		return (rx_npkts);
4553 	}
4554 
4555 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4556 	    sc->bge_cdata.bge_status_map,
4557 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4558 	/* Fetch updates from the status block. */
4559 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4560 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4561 
4562 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4563 	/* Clear the status so the next pass only sees the changes. */
4564 	sc->bge_ldata.bge_status_block->bge_status = 0;
4565 
4566 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4567 	    sc->bge_cdata.bge_status_map,
4568 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4569 
4570 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4571 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4572 		sc->bge_link_evt++;
4573 
4574 	if (cmd == POLL_AND_CHECK_STATUS)
4575 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4576 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4577 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4578 			bge_link_upd(sc);
4579 
4580 	sc->rxcycles = count;
4581 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4582 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4583 		BGE_UNLOCK(sc);
4584 		return (rx_npkts);
4585 	}
4586 	bge_txeof(sc, tx_cons);
4587 	if (!if_sendq_empty(ifp))
4588 		bge_start_locked(ifp);
4589 
4590 	BGE_UNLOCK(sc);
4591 	return (rx_npkts);
4592 }
4593 #endif /* DEVICE_POLLING */
4594 
4595 static int
4596 bge_msi_intr(void *arg)
4597 {
4598 	struct bge_softc *sc;
4599 
4600 	sc = (struct bge_softc *)arg;
4601 	/*
4602 	 * This interrupt is not shared and controller already
4603 	 * disabled further interrupt.
4604 	 */
4605 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4606 	return (FILTER_HANDLED);
4607 }
4608 
4609 static void
4610 bge_intr_task(void *arg, int pending)
4611 {
4612 	struct bge_softc *sc;
4613 	if_t ifp;
4614 	uint32_t status, status_tag;
4615 	uint16_t rx_prod, tx_cons;
4616 
4617 	sc = (struct bge_softc *)arg;
4618 	ifp = sc->bge_ifp;
4619 
4620 	BGE_LOCK(sc);
4621 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4622 		BGE_UNLOCK(sc);
4623 		return;
4624 	}
4625 
4626 	/* Get updated status block. */
4627 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4628 	    sc->bge_cdata.bge_status_map,
4629 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4630 
4631 	/* Save producer/consumer indices. */
4632 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4633 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4634 	status = sc->bge_ldata.bge_status_block->bge_status;
4635 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4636 	/* Dirty the status flag. */
4637 	sc->bge_ldata.bge_status_block->bge_status = 0;
4638 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4639 	    sc->bge_cdata.bge_status_map,
4640 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4641 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4642 		status_tag = 0;
4643 
4644 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4645 		bge_link_upd(sc);
4646 
4647 	/* Let controller work. */
4648 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4649 
4650 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4651 	    sc->bge_rx_saved_considx != rx_prod) {
4652 		/* Check RX return ring producer/consumer. */
4653 		BGE_UNLOCK(sc);
4654 		bge_rxeof(sc, rx_prod, 0);
4655 		BGE_LOCK(sc);
4656 	}
4657 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4658 		/* Check TX ring producer/consumer. */
4659 		bge_txeof(sc, tx_cons);
4660 		if (!if_sendq_empty(ifp))
4661 			bge_start_locked(ifp);
4662 	}
4663 	BGE_UNLOCK(sc);
4664 }
4665 
4666 static void
4667 bge_intr(void *xsc)
4668 {
4669 	struct bge_softc *sc;
4670 	if_t ifp;
4671 	uint32_t statusword;
4672 	uint16_t rx_prod, tx_cons;
4673 
4674 	sc = xsc;
4675 
4676 	BGE_LOCK(sc);
4677 
4678 	ifp = sc->bge_ifp;
4679 
4680 #ifdef DEVICE_POLLING
4681 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4682 		BGE_UNLOCK(sc);
4683 		return;
4684 	}
4685 #endif
4686 
4687 	/*
4688 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4689 	 * disable interrupts by writing nonzero like we used to, since with
4690 	 * our current organization this just gives complications and
4691 	 * pessimizations for re-enabling interrupts.  We used to have races
4692 	 * instead of the necessary complications.  Disabling interrupts
4693 	 * would just reduce the chance of a status update while we are
4694 	 * running (by switching to the interrupt-mode coalescence
4695 	 * parameters), but this chance is already very low so it is more
4696 	 * efficient to get another interrupt than prevent it.
4697 	 *
4698 	 * We do the ack first to ensure another interrupt if there is a
4699 	 * status update after the ack.  We don't check for the status
4700 	 * changing later because it is more efficient to get another
4701 	 * interrupt than prevent it, not quite as above (not checking is
4702 	 * a smaller optimization than not toggling the interrupt enable,
4703 	 * since checking doesn't involve PCI accesses and toggling require
4704 	 * the status check).  So toggling would probably be a pessimization
4705 	 * even with MSI.  It would only be needed for using a task queue.
4706 	 */
4707 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4708 
4709 	/*
4710 	 * Do the mandatory PCI flush as well as get the link status.
4711 	 */
4712 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4713 
4714 	/* Make sure the descriptor ring indexes are coherent. */
4715 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4716 	    sc->bge_cdata.bge_status_map,
4717 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4718 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4719 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4720 	sc->bge_ldata.bge_status_block->bge_status = 0;
4721 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4722 	    sc->bge_cdata.bge_status_map,
4723 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4724 
4725 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4726 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4727 	    statusword || sc->bge_link_evt)
4728 		bge_link_upd(sc);
4729 
4730 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4731 		/* Check RX return ring producer/consumer. */
4732 		bge_rxeof(sc, rx_prod, 1);
4733 	}
4734 
4735 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4736 		/* Check TX ring producer/consumer. */
4737 		bge_txeof(sc, tx_cons);
4738 	}
4739 
4740 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4741 	    !if_sendq_empty(ifp))
4742 		bge_start_locked(ifp);
4743 
4744 	BGE_UNLOCK(sc);
4745 }
4746 
4747 static void
4748 bge_asf_driver_up(struct bge_softc *sc)
4749 {
4750 	if (sc->bge_asf_mode & ASF_STACKUP) {
4751 		/* Send ASF heartbeat aprox. every 2s */
4752 		if (sc->bge_asf_count)
4753 			sc->bge_asf_count --;
4754 		else {
4755 			sc->bge_asf_count = 2;
4756 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4757 			    BGE_FW_CMD_DRV_ALIVE);
4758 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4759 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4760 			    BGE_FW_HB_TIMEOUT_SEC);
4761 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4762 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4763 			    BGE_RX_CPU_DRV_EVENT);
4764 		}
4765 	}
4766 }
4767 
4768 static void
4769 bge_tick(void *xsc)
4770 {
4771 	struct bge_softc *sc = xsc;
4772 	struct mii_data *mii = NULL;
4773 
4774 	BGE_LOCK_ASSERT(sc);
4775 
4776 	/* Synchronize with possible callout reset/stop. */
4777 	if (callout_pending(&sc->bge_stat_ch) ||
4778 	    !callout_active(&sc->bge_stat_ch))
4779 		return;
4780 
4781 	if (BGE_IS_5705_PLUS(sc))
4782 		bge_stats_update_regs(sc);
4783 	else
4784 		bge_stats_update(sc);
4785 
4786 	/* XXX Add APE heartbeat check here? */
4787 
4788 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4789 		mii = device_get_softc(sc->bge_miibus);
4790 		/*
4791 		 * Do not touch PHY if we have link up. This could break
4792 		 * IPMI/ASF mode or produce extra input errors
4793 		 * (extra errors was reported for bcm5701 & bcm5704).
4794 		 */
4795 		if (!sc->bge_link)
4796 			mii_tick(mii);
4797 	} else {
4798 		/*
4799 		 * Since in TBI mode auto-polling can't be used we should poll
4800 		 * link status manually. Here we register pending link event
4801 		 * and trigger interrupt.
4802 		 */
4803 #ifdef DEVICE_POLLING
4804 		/* In polling mode we poll link state in bge_poll(). */
4805 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4806 #endif
4807 		{
4808 		sc->bge_link_evt++;
4809 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4810 		    sc->bge_flags & BGE_FLAG_5788)
4811 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4812 		else
4813 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4814 		}
4815 	}
4816 
4817 	bge_asf_driver_up(sc);
4818 	bge_watchdog(sc);
4819 
4820 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4821 }
4822 
4823 static void
4824 bge_stats_update_regs(struct bge_softc *sc)
4825 {
4826 	if_t ifp;
4827 	struct bge_mac_stats *stats;
4828 	uint32_t val;
4829 
4830 	ifp = sc->bge_ifp;
4831 	stats = &sc->bge_mac_stats;
4832 
4833 	stats->ifHCOutOctets +=
4834 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4835 	stats->etherStatsCollisions +=
4836 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4837 	stats->outXonSent +=
4838 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4839 	stats->outXoffSent +=
4840 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4841 	stats->dot3StatsInternalMacTransmitErrors +=
4842 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4843 	stats->dot3StatsSingleCollisionFrames +=
4844 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4845 	stats->dot3StatsMultipleCollisionFrames +=
4846 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4847 	stats->dot3StatsDeferredTransmissions +=
4848 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4849 	stats->dot3StatsExcessiveCollisions +=
4850 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4851 	stats->dot3StatsLateCollisions +=
4852 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4853 	stats->ifHCOutUcastPkts +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4855 	stats->ifHCOutMulticastPkts +=
4856 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4857 	stats->ifHCOutBroadcastPkts +=
4858 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4859 
4860 	stats->ifHCInOctets +=
4861 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4862 	stats->etherStatsFragments +=
4863 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4864 	stats->ifHCInUcastPkts +=
4865 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4866 	stats->ifHCInMulticastPkts +=
4867 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4868 	stats->ifHCInBroadcastPkts +=
4869 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4870 	stats->dot3StatsFCSErrors +=
4871 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4872 	stats->dot3StatsAlignmentErrors +=
4873 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4874 	stats->xonPauseFramesReceived +=
4875 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4876 	stats->xoffPauseFramesReceived +=
4877 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4878 	stats->macControlFramesReceived +=
4879 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4880 	stats->xoffStateEntered +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4882 	stats->dot3StatsFramesTooLong +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4884 	stats->etherStatsJabbers +=
4885 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4886 	stats->etherStatsUndersizePkts +=
4887 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4888 
4889 	stats->FramesDroppedDueToFilters +=
4890 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4891 	stats->DmaWriteQueueFull +=
4892 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4893 	stats->DmaWriteHighPriQueueFull +=
4894 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4895 	stats->NoMoreRxBDs +=
4896 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4897 	/*
4898 	 * XXX
4899 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4900 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4901 	 * includes number of unwanted multicast frames.  This comes
4902 	 * from silicon bug and known workaround to get rough(not
4903 	 * exact) counter is to enable interrupt on MBUF low water
4904 	 * attention.  This can be accomplished by setting
4905 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4906 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4907 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4908 	 * However that change would generate more interrupts and
4909 	 * there are still possibilities of losing multiple frames
4910 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4911 	 * Given that the workaround still would not get correct
4912 	 * counter I don't think it's worth to implement it.  So
4913 	 * ignore reading the counter on controllers that have the
4914 	 * silicon bug.
4915 	 */
4916 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4917 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4918 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4919 		stats->InputDiscards +=
4920 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4921 	stats->InputErrors +=
4922 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4923 	stats->RecvThresholdHit +=
4924 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4925 
4926 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4927 		/*
4928 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4929 		 * frames, it's safe to disable workaround for DMA engine's
4930 		 * miscalculation of TXMBUF space.
4931 		 */
4932 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4933 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4934 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4935 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4936 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4937 			else
4938 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4939 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4940 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4941 		}
4942 	}
4943 }
4944 
4945 static void
4946 bge_stats_clear_regs(struct bge_softc *sc)
4947 {
4948 
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4950 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4951 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4952 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4953 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4954 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4955 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4956 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4957 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4958 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4959 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4960 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4961 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4962 
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4966 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4967 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4968 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4969 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4970 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4971 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4972 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4973 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4974 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4975 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4976 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4977 
4978 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4979 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4980 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4981 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4982 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4983 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4984 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4985 }
4986 
4987 static void
4988 bge_stats_update(struct bge_softc *sc)
4989 {
4990 	if_t ifp;
4991 	bus_size_t stats;
4992 	uint32_t cnt;	/* current register value */
4993 
4994 	ifp = sc->bge_ifp;
4995 
4996 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4997 
4998 #define	READ_STAT(sc, stats, stat) \
4999 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5000 
5001 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5002 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5003 	sc->bge_tx_collisions = cnt;
5004 
5005 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5006 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5007 	sc->bge_rx_nobds = cnt;
5008 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5009 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5010 	sc->bge_rx_inerrs = cnt;
5011 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5012 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5013 	sc->bge_rx_discards = cnt;
5014 
5015 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5016 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5017 	sc->bge_tx_discards = cnt;
5018 
5019 #undef	READ_STAT
5020 }
5021 
5022 /*
5023  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5024  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5025  * but when such padded frames employ the bge IP/TCP checksum offload,
5026  * the hardware checksum assist gives incorrect results (possibly
5027  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5028  * If we pad such runts with zeros, the onboard checksum comes out correct.
5029  */
5030 static __inline int
5031 bge_cksum_pad(struct mbuf *m)
5032 {
5033 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5034 	struct mbuf *last;
5035 
5036 	/* If there's only the packet-header and we can pad there, use it. */
5037 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5038 	    M_TRAILINGSPACE(m) >= padlen) {
5039 		last = m;
5040 	} else {
5041 		/*
5042 		 * Walk packet chain to find last mbuf. We will either
5043 		 * pad there, or append a new mbuf and pad it.
5044 		 */
5045 		for (last = m; last->m_next != NULL; last = last->m_next);
5046 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5047 			/* Allocate new empty mbuf, pad it. Compact later. */
5048 			struct mbuf *n;
5049 
5050 			MGET(n, M_NOWAIT, MT_DATA);
5051 			if (n == NULL)
5052 				return (ENOBUFS);
5053 			n->m_len = 0;
5054 			last->m_next = n;
5055 			last = n;
5056 		}
5057 	}
5058 
5059 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5060 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5061 	last->m_len += padlen;
5062 	m->m_pkthdr.len += padlen;
5063 
5064 	return (0);
5065 }
5066 
5067 static struct mbuf *
5068 bge_check_short_dma(struct mbuf *m)
5069 {
5070 	struct mbuf *n;
5071 	int found;
5072 
5073 	/*
5074 	 * If device receive two back-to-back send BDs with less than
5075 	 * or equal to 8 total bytes then the device may hang.  The two
5076 	 * back-to-back send BDs must in the same frame for this failure
5077 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5078 	 * send BDs are there. If this is the case, allocate new mbuf
5079 	 * and copy the frame to workaround the silicon bug.
5080 	 */
5081 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5082 		if (n->m_len < 8) {
5083 			found++;
5084 			if (found > 1)
5085 				break;
5086 			continue;
5087 		}
5088 		found = 0;
5089 	}
5090 
5091 	if (found > 1) {
5092 		n = m_defrag(m, M_NOWAIT);
5093 		if (n == NULL)
5094 			m_freem(m);
5095 	} else
5096 		n = m;
5097 	return (n);
5098 }
5099 
5100 static struct mbuf *
5101 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5102     uint16_t *flags)
5103 {
5104 	struct ip *ip;
5105 	struct tcphdr *tcp;
5106 	struct mbuf *n;
5107 	uint16_t hlen;
5108 	uint32_t poff;
5109 
5110 	if (M_WRITABLE(m) == 0) {
5111 		/* Get a writable copy. */
5112 		n = m_dup(m, M_NOWAIT);
5113 		m_freem(m);
5114 		if (n == NULL)
5115 			return (NULL);
5116 		m = n;
5117 	}
5118 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5119 	if (m == NULL)
5120 		return (NULL);
5121 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5122 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5123 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5124 	if (m == NULL)
5125 		return (NULL);
5126 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5127 	m = m_pullup(m, poff + (tcp->th_off << 2));
5128 	if (m == NULL)
5129 		return (NULL);
5130 	/*
5131 	 * It seems controller doesn't modify IP length and TCP pseudo
5132 	 * checksum. These checksum computed by upper stack should be 0.
5133 	 */
5134 	*mss = m->m_pkthdr.tso_segsz;
5135 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5136 	ip->ip_sum = 0;
5137 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5138 	/* Clear pseudo checksum computed by TCP stack. */
5139 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5140 	tcp->th_sum = 0;
5141 	/*
5142 	 * Broadcom controllers uses different descriptor format for
5143 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5144 	 * license issue and lower performance of firmware based TSO
5145 	 * we only support hardware based TSO.
5146 	 */
5147 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5148 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5149 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5150 		/*
5151 		 * For BCM5717 and newer controllers, hardware based TSO
5152 		 * uses the 14 lower bits of the bge_mss field to store the
5153 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5154 		 * the IP/TCP header length.  The upper 6 bits of the header
5155 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5156 		 * frames are supported.
5157 		 */
5158 		*mss |= ((hlen & 0x3) << 14);
5159 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5160 	} else {
5161 		/*
5162 		 * For BCM5755 and newer controllers, hardware based TSO uses
5163 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5164 		 * store the IP/TCP header length. Jumbo frames are not
5165 		 * supported.
5166 		 */
5167 		*mss |= (hlen << 11);
5168 	}
5169 	return (m);
5170 }
5171 
5172 /*
5173  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5174  * pointers to descriptors.
5175  */
5176 static int
5177 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5178 {
5179 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5180 	bus_dmamap_t		map;
5181 	struct bge_tx_bd	*d;
5182 	struct mbuf		*m = *m_head;
5183 	uint32_t		idx = *txidx;
5184 	uint16_t		csum_flags, mss, vlan_tag;
5185 	int			nsegs, i, error;
5186 
5187 	csum_flags = 0;
5188 	mss = 0;
5189 	vlan_tag = 0;
5190 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5191 	    m->m_next != NULL) {
5192 		*m_head = bge_check_short_dma(m);
5193 		if (*m_head == NULL)
5194 			return (ENOBUFS);
5195 		m = *m_head;
5196 	}
5197 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5198 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5199 		if (*m_head == NULL)
5200 			return (ENOBUFS);
5201 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5202 		    BGE_TXBDFLAG_CPU_POST_DMA;
5203 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5204 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5205 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5206 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5207 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5208 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5209 			    (error = bge_cksum_pad(m)) != 0) {
5210 				m_freem(m);
5211 				*m_head = NULL;
5212 				return (error);
5213 			}
5214 		}
5215 	}
5216 
5217 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5218 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5219 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5220 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5221 		if (sc->bge_forced_collapse > 0 &&
5222 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5223 			/*
5224 			 * Forcedly collapse mbuf chains to overcome hardware
5225 			 * limitation which only support a single outstanding
5226 			 * DMA read operation.
5227 			 */
5228 			if (sc->bge_forced_collapse == 1)
5229 				m = m_defrag(m, M_NOWAIT);
5230 			else
5231 				m = m_collapse(m, M_NOWAIT,
5232 				    sc->bge_forced_collapse);
5233 			if (m == NULL)
5234 				m = *m_head;
5235 			*m_head = m;
5236 		}
5237 	}
5238 
5239 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5240 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5241 	    &nsegs, BUS_DMA_NOWAIT);
5242 	if (error == EFBIG) {
5243 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5244 		if (m == NULL) {
5245 			m_freem(*m_head);
5246 			*m_head = NULL;
5247 			return (ENOBUFS);
5248 		}
5249 		*m_head = m;
5250 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5251 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5252 		if (error) {
5253 			m_freem(m);
5254 			*m_head = NULL;
5255 			return (error);
5256 		}
5257 	} else if (error != 0)
5258 		return (error);
5259 
5260 	/* Check if we have enough free send BDs. */
5261 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5262 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5263 		return (ENOBUFS);
5264 	}
5265 
5266 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5267 
5268 	if (m->m_flags & M_VLANTAG) {
5269 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5270 		vlan_tag = m->m_pkthdr.ether_vtag;
5271 	}
5272 
5273 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5274 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5275 		/*
5276 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5277 		 * buffers cross into regions which are within MSS bytes of
5278 		 * a 4GB boundary.  If we encounter the condition, drop the
5279 		 * packet.
5280 		 */
5281 		for (i = 0; ; i++) {
5282 			d = &sc->bge_ldata.bge_tx_ring[idx];
5283 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5284 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5285 			d->bge_len = segs[i].ds_len;
5286 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5287 			    d->bge_addr.bge_addr_lo)
5288 				break;
5289 			d->bge_flags = csum_flags;
5290 			d->bge_vlan_tag = vlan_tag;
5291 			d->bge_mss = mss;
5292 			if (i == nsegs - 1)
5293 				break;
5294 			BGE_INC(idx, BGE_TX_RING_CNT);
5295 		}
5296 		if (i != nsegs - 1) {
5297 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5298 			    BUS_DMASYNC_POSTWRITE);
5299 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5300 			m_freem(*m_head);
5301 			*m_head = NULL;
5302 			return (EIO);
5303 		}
5304 	} else {
5305 		for (i = 0; ; i++) {
5306 			d = &sc->bge_ldata.bge_tx_ring[idx];
5307 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5308 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5309 			d->bge_len = segs[i].ds_len;
5310 			d->bge_flags = csum_flags;
5311 			d->bge_vlan_tag = vlan_tag;
5312 			d->bge_mss = mss;
5313 			if (i == nsegs - 1)
5314 				break;
5315 			BGE_INC(idx, BGE_TX_RING_CNT);
5316 		}
5317 	}
5318 
5319 	/* Mark the last segment as end of packet... */
5320 	d->bge_flags |= BGE_TXBDFLAG_END;
5321 
5322 	/*
5323 	 * Insure that the map for this transmission
5324 	 * is placed at the array index of the last descriptor
5325 	 * in this chain.
5326 	 */
5327 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5328 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5329 	sc->bge_cdata.bge_tx_chain[idx] = m;
5330 	sc->bge_txcnt += nsegs;
5331 
5332 	BGE_INC(idx, BGE_TX_RING_CNT);
5333 	*txidx = idx;
5334 
5335 	return (0);
5336 }
5337 
5338 /*
5339  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5340  * to the mbuf data regions directly in the transmit descriptors.
5341  */
5342 static void
5343 bge_start_locked(if_t ifp)
5344 {
5345 	struct bge_softc *sc;
5346 	struct mbuf *m_head;
5347 	uint32_t prodidx;
5348 	int count;
5349 
5350 	sc = if_getsoftc(ifp);
5351 	BGE_LOCK_ASSERT(sc);
5352 
5353 	if (!sc->bge_link ||
5354 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5355 	    IFF_DRV_RUNNING)
5356 		return;
5357 
5358 	prodidx = sc->bge_tx_prodidx;
5359 
5360 	for (count = 0; !if_sendq_empty(ifp);) {
5361 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5362 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5363 			break;
5364 		}
5365 		m_head = if_dequeue(ifp);
5366 		if (m_head == NULL)
5367 			break;
5368 
5369 		/*
5370 		 * Pack the data into the transmit ring. If we
5371 		 * don't have room, set the OACTIVE flag and wait
5372 		 * for the NIC to drain the ring.
5373 		 */
5374 		if (bge_encap(sc, &m_head, &prodidx)) {
5375 			if (m_head == NULL)
5376 				break;
5377 			if_sendq_prepend(ifp, m_head);
5378 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5379 			break;
5380 		}
5381 		++count;
5382 
5383 		/*
5384 		 * If there's a BPF listener, bounce a copy of this frame
5385 		 * to him.
5386 		 */
5387 		if_bpfmtap(ifp, m_head);
5388 	}
5389 
5390 	if (count > 0) {
5391 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5392 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5393 		/* Transmit. */
5394 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5395 		/* 5700 b2 errata */
5396 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5397 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5398 
5399 		sc->bge_tx_prodidx = prodidx;
5400 
5401 		/*
5402 		 * Set a timeout in case the chip goes out to lunch.
5403 		 */
5404 		sc->bge_timer = BGE_TX_TIMEOUT;
5405 	}
5406 }
5407 
5408 /*
5409  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5410  * to the mbuf data regions directly in the transmit descriptors.
5411  */
5412 static void
5413 bge_start(if_t ifp)
5414 {
5415 	struct bge_softc *sc;
5416 
5417 	sc = if_getsoftc(ifp);
5418 	BGE_LOCK(sc);
5419 	bge_start_locked(ifp);
5420 	BGE_UNLOCK(sc);
5421 }
5422 
5423 static void
5424 bge_init_locked(struct bge_softc *sc)
5425 {
5426 	if_t ifp;
5427 	uint16_t *m;
5428 	uint32_t mode;
5429 
5430 	BGE_LOCK_ASSERT(sc);
5431 
5432 	ifp = sc->bge_ifp;
5433 
5434 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5435 		return;
5436 
5437 	/* Cancel pending I/O and flush buffers. */
5438 	bge_stop(sc);
5439 
5440 	bge_stop_fw(sc);
5441 	bge_sig_pre_reset(sc, BGE_RESET_START);
5442 	bge_reset(sc);
5443 	bge_sig_legacy(sc, BGE_RESET_START);
5444 	bge_sig_post_reset(sc, BGE_RESET_START);
5445 
5446 	bge_chipinit(sc);
5447 
5448 	/*
5449 	 * Init the various state machines, ring
5450 	 * control blocks and firmware.
5451 	 */
5452 	if (bge_blockinit(sc)) {
5453 		device_printf(sc->bge_dev, "initialization failure\n");
5454 		return;
5455 	}
5456 
5457 	ifp = sc->bge_ifp;
5458 
5459 	/* Specify MTU. */
5460 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5461 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5462 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5463 
5464 	/* Load our MAC address. */
5465 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5466 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5467 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5468 
5469 	/* Program promiscuous mode. */
5470 	bge_setpromisc(sc);
5471 
5472 	/* Program multicast filter. */
5473 	bge_setmulti(sc);
5474 
5475 	/* Program VLAN tag stripping. */
5476 	bge_setvlan(sc);
5477 
5478 	/* Override UDP checksum offloading. */
5479 	if (sc->bge_forced_udpcsum == 0)
5480 		sc->bge_csum_features &= ~CSUM_UDP;
5481 	else
5482 		sc->bge_csum_features |= CSUM_UDP;
5483 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5484 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5485 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5486 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5487 	}
5488 
5489 	/* Init RX ring. */
5490 	if (bge_init_rx_ring_std(sc) != 0) {
5491 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5492 		bge_stop(sc);
5493 		return;
5494 	}
5495 
5496 	/*
5497 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5498 	 * memory to insure that the chip has in fact read the first
5499 	 * entry of the ring.
5500 	 */
5501 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5502 		uint32_t		v, i;
5503 		for (i = 0; i < 10; i++) {
5504 			DELAY(20);
5505 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5506 			if (v == (MCLBYTES - ETHER_ALIGN))
5507 				break;
5508 		}
5509 		if (i == 10)
5510 			device_printf (sc->bge_dev,
5511 			    "5705 A0 chip failed to load RX ring\n");
5512 	}
5513 
5514 	/* Init jumbo RX ring. */
5515 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5516 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5517      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5518 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5519 			device_printf(sc->bge_dev,
5520 			    "no memory for jumbo Rx buffers.\n");
5521 			bge_stop(sc);
5522 			return;
5523 		}
5524 	}
5525 
5526 	/* Init our RX return ring index. */
5527 	sc->bge_rx_saved_considx = 0;
5528 
5529 	/* Init our RX/TX stat counters. */
5530 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5531 
5532 	/* Init TX ring. */
5533 	bge_init_tx_ring(sc);
5534 
5535 	/* Enable TX MAC state machine lockup fix. */
5536 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5537 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5538 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5539 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5540 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5541 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5542 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5543 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5544 	}
5545 	/* Turn on transmitter. */
5546 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5547 	DELAY(100);
5548 
5549 	/* Turn on receiver. */
5550 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5551 	if (BGE_IS_5755_PLUS(sc))
5552 		mode |= BGE_RXMODE_IPV6_ENABLE;
5553 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5554 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5555 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5556 	DELAY(10);
5557 
5558 	/*
5559 	 * Set the number of good frames to receive after RX MBUF
5560 	 * Low Watermark has been reached. After the RX MAC receives
5561 	 * this number of frames, it will drop subsequent incoming
5562 	 * frames until the MBUF High Watermark is reached.
5563 	 */
5564 	if (BGE_IS_57765_PLUS(sc))
5565 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5566 	else
5567 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5568 
5569 	/* Clear MAC statistics. */
5570 	if (BGE_IS_5705_PLUS(sc))
5571 		bge_stats_clear_regs(sc);
5572 
5573 	/* Tell firmware we're alive. */
5574 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5575 
5576 #ifdef DEVICE_POLLING
5577 	/* Disable interrupts if we are polling. */
5578 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5579 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5580 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5581 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5582 	} else
5583 #endif
5584 
5585 	/* Enable host interrupts. */
5586 	{
5587 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5588 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5589 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5590 	}
5591 
5592 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5593 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5594 
5595 	bge_ifmedia_upd_locked(ifp);
5596 
5597 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5598 }
5599 
5600 static void
5601 bge_init(void *xsc)
5602 {
5603 	struct bge_softc *sc = xsc;
5604 
5605 	BGE_LOCK(sc);
5606 	bge_init_locked(sc);
5607 	BGE_UNLOCK(sc);
5608 }
5609 
5610 /*
5611  * Set media options.
5612  */
5613 static int
5614 bge_ifmedia_upd(if_t ifp)
5615 {
5616 	struct bge_softc *sc = if_getsoftc(ifp);
5617 	int res;
5618 
5619 	BGE_LOCK(sc);
5620 	res = bge_ifmedia_upd_locked(ifp);
5621 	BGE_UNLOCK(sc);
5622 
5623 	return (res);
5624 }
5625 
5626 static int
5627 bge_ifmedia_upd_locked(if_t ifp)
5628 {
5629 	struct bge_softc *sc = if_getsoftc(ifp);
5630 	struct mii_data *mii;
5631 	struct mii_softc *miisc;
5632 	struct ifmedia *ifm;
5633 
5634 	BGE_LOCK_ASSERT(sc);
5635 
5636 	ifm = &sc->bge_ifmedia;
5637 
5638 	/* If this is a 1000baseX NIC, enable the TBI port. */
5639 	if (sc->bge_flags & BGE_FLAG_TBI) {
5640 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5641 			return (EINVAL);
5642 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5643 		case IFM_AUTO:
5644 			/*
5645 			 * The BCM5704 ASIC appears to have a special
5646 			 * mechanism for programming the autoneg
5647 			 * advertisement registers in TBI mode.
5648 			 */
5649 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5650 				uint32_t sgdig;
5651 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5652 				if (sgdig & BGE_SGDIGSTS_DONE) {
5653 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5654 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5655 					sgdig |= BGE_SGDIGCFG_AUTO |
5656 					    BGE_SGDIGCFG_PAUSE_CAP |
5657 					    BGE_SGDIGCFG_ASYM_PAUSE;
5658 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5659 					    sgdig | BGE_SGDIGCFG_SEND);
5660 					DELAY(5);
5661 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5662 				}
5663 			}
5664 			break;
5665 		case IFM_1000_SX:
5666 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5667 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5668 				    BGE_MACMODE_HALF_DUPLEX);
5669 			} else {
5670 				BGE_SETBIT(sc, BGE_MAC_MODE,
5671 				    BGE_MACMODE_HALF_DUPLEX);
5672 			}
5673 			DELAY(40);
5674 			break;
5675 		default:
5676 			return (EINVAL);
5677 		}
5678 		return (0);
5679 	}
5680 
5681 	sc->bge_link_evt++;
5682 	mii = device_get_softc(sc->bge_miibus);
5683 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5684 		PHY_RESET(miisc);
5685 	mii_mediachg(mii);
5686 
5687 	/*
5688 	 * Force an interrupt so that we will call bge_link_upd
5689 	 * if needed and clear any pending link state attention.
5690 	 * Without this we are not getting any further interrupts
5691 	 * for link state changes and thus will not UP the link and
5692 	 * not be able to send in bge_start_locked. The only
5693 	 * way to get things working was to receive a packet and
5694 	 * get an RX intr.
5695 	 * bge_tick should help for fiber cards and we might not
5696 	 * need to do this here if BGE_FLAG_TBI is set but as
5697 	 * we poll for fiber anyway it should not harm.
5698 	 */
5699 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5700 	    sc->bge_flags & BGE_FLAG_5788)
5701 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5702 	else
5703 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5704 
5705 	return (0);
5706 }
5707 
5708 /*
5709  * Report current media status.
5710  */
5711 static void
5712 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5713 {
5714 	struct bge_softc *sc = if_getsoftc(ifp);
5715 	struct mii_data *mii;
5716 
5717 	BGE_LOCK(sc);
5718 
5719 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5720 		BGE_UNLOCK(sc);
5721 		return;
5722 	}
5723 	if (sc->bge_flags & BGE_FLAG_TBI) {
5724 		ifmr->ifm_status = IFM_AVALID;
5725 		ifmr->ifm_active = IFM_ETHER;
5726 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5727 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5728 			ifmr->ifm_status |= IFM_ACTIVE;
5729 		else {
5730 			ifmr->ifm_active |= IFM_NONE;
5731 			BGE_UNLOCK(sc);
5732 			return;
5733 		}
5734 		ifmr->ifm_active |= IFM_1000_SX;
5735 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5736 			ifmr->ifm_active |= IFM_HDX;
5737 		else
5738 			ifmr->ifm_active |= IFM_FDX;
5739 		BGE_UNLOCK(sc);
5740 		return;
5741 	}
5742 
5743 	mii = device_get_softc(sc->bge_miibus);
5744 	mii_pollstat(mii);
5745 	ifmr->ifm_active = mii->mii_media_active;
5746 	ifmr->ifm_status = mii->mii_media_status;
5747 
5748 	BGE_UNLOCK(sc);
5749 }
5750 
5751 static int
5752 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5753 {
5754 	struct bge_softc *sc = if_getsoftc(ifp);
5755 	struct ifreq *ifr = (struct ifreq *) data;
5756 	struct mii_data *mii;
5757 	int flags, mask, error = 0;
5758 
5759 	switch (command) {
5760 	case SIOCSIFMTU:
5761 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5762 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5763 			if (ifr->ifr_mtu < ETHERMIN ||
5764 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5765 				error = EINVAL;
5766 				break;
5767 			}
5768 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5769 			error = EINVAL;
5770 			break;
5771 		}
5772 		BGE_LOCK(sc);
5773 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5774 			if_setmtu(ifp, ifr->ifr_mtu);
5775 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5776 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5777 				bge_init_locked(sc);
5778 			}
5779 		}
5780 		BGE_UNLOCK(sc);
5781 		break;
5782 	case SIOCSIFFLAGS:
5783 		BGE_LOCK(sc);
5784 		if (if_getflags(ifp) & IFF_UP) {
5785 			/*
5786 			 * If only the state of the PROMISC flag changed,
5787 			 * then just use the 'set promisc mode' command
5788 			 * instead of reinitializing the entire NIC. Doing
5789 			 * a full re-init means reloading the firmware and
5790 			 * waiting for it to start up, which may take a
5791 			 * second or two.  Similarly for ALLMULTI.
5792 			 */
5793 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5794 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5795 				if (flags & IFF_PROMISC)
5796 					bge_setpromisc(sc);
5797 				if (flags & IFF_ALLMULTI)
5798 					bge_setmulti(sc);
5799 			} else
5800 				bge_init_locked(sc);
5801 		} else {
5802 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5803 				bge_stop(sc);
5804 			}
5805 		}
5806 		sc->bge_if_flags = if_getflags(ifp);
5807 		BGE_UNLOCK(sc);
5808 		error = 0;
5809 		break;
5810 	case SIOCADDMULTI:
5811 	case SIOCDELMULTI:
5812 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5813 			BGE_LOCK(sc);
5814 			bge_setmulti(sc);
5815 			BGE_UNLOCK(sc);
5816 			error = 0;
5817 		}
5818 		break;
5819 	case SIOCSIFMEDIA:
5820 	case SIOCGIFMEDIA:
5821 		if (sc->bge_flags & BGE_FLAG_TBI) {
5822 			error = ifmedia_ioctl(ifp, ifr,
5823 			    &sc->bge_ifmedia, command);
5824 		} else {
5825 			mii = device_get_softc(sc->bge_miibus);
5826 			error = ifmedia_ioctl(ifp, ifr,
5827 			    &mii->mii_media, command);
5828 		}
5829 		break;
5830 	case SIOCSIFCAP:
5831 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5832 #ifdef DEVICE_POLLING
5833 		if (mask & IFCAP_POLLING) {
5834 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5835 				error = ether_poll_register(bge_poll, ifp);
5836 				if (error)
5837 					return (error);
5838 				BGE_LOCK(sc);
5839 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5840 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5841 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5842 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5843 				BGE_UNLOCK(sc);
5844 			} else {
5845 				error = ether_poll_deregister(ifp);
5846 				/* Enable interrupt even in error case */
5847 				BGE_LOCK(sc);
5848 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5849 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5850 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5851 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5852 				BGE_UNLOCK(sc);
5853 			}
5854 		}
5855 #endif
5856 		if ((mask & IFCAP_TXCSUM) != 0 &&
5857 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5858 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5859 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5860 				if_sethwassistbits(ifp,
5861 				    sc->bge_csum_features, 0);
5862 			else
5863 				if_sethwassistbits(ifp, 0,
5864 				    sc->bge_csum_features);
5865 		}
5866 
5867 		if ((mask & IFCAP_RXCSUM) != 0 &&
5868 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5869 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5870 
5871 		if ((mask & IFCAP_TSO4) != 0 &&
5872 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5873 			if_togglecapenable(ifp, IFCAP_TSO4);
5874 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5875 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5876 			else
5877 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5878 		}
5879 
5880 		if (mask & IFCAP_VLAN_MTU) {
5881 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5882 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5883 			bge_init(sc);
5884 		}
5885 
5886 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5887 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5888 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5889 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5890 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5891 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5892 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5893 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5894 			BGE_LOCK(sc);
5895 			bge_setvlan(sc);
5896 			BGE_UNLOCK(sc);
5897 		}
5898 #ifdef VLAN_CAPABILITIES
5899 		if_vlancap(ifp);
5900 #endif
5901 		break;
5902 	default:
5903 		error = ether_ioctl(ifp, command, data);
5904 		break;
5905 	}
5906 
5907 	return (error);
5908 }
5909 
5910 static void
5911 bge_watchdog(struct bge_softc *sc)
5912 {
5913 	if_t ifp;
5914 	uint32_t status;
5915 
5916 	BGE_LOCK_ASSERT(sc);
5917 
5918 	if (sc->bge_timer == 0 || --sc->bge_timer)
5919 		return;
5920 
5921 	/* If pause frames are active then don't reset the hardware. */
5922 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5923 		status = CSR_READ_4(sc, BGE_RX_STS);
5924 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5925 			/*
5926 			 * If link partner has us in XOFF state then wait for
5927 			 * the condition to clear.
5928 			 */
5929 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5930 			sc->bge_timer = BGE_TX_TIMEOUT;
5931 			return;
5932 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5933 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5934 			/*
5935 			 * If link partner has us in XOFF state then wait for
5936 			 * the condition to clear.
5937 			 */
5938 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5939 			sc->bge_timer = BGE_TX_TIMEOUT;
5940 			return;
5941 		}
5942 		/*
5943 		 * Any other condition is unexpected and the controller
5944 		 * should be reset.
5945 		 */
5946 	}
5947 
5948 	ifp = sc->bge_ifp;
5949 
5950 	if_printf(ifp, "watchdog timeout -- resetting\n");
5951 
5952 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5953 	bge_init_locked(sc);
5954 
5955 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5956 }
5957 
5958 static void
5959 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5960 {
5961 	int i;
5962 
5963 	BGE_CLRBIT(sc, reg, bit);
5964 
5965 	for (i = 0; i < BGE_TIMEOUT; i++) {
5966 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5967 			return;
5968 		DELAY(100);
5969         }
5970 }
5971 
5972 /*
5973  * Stop the adapter and free any mbufs allocated to the
5974  * RX and TX lists.
5975  */
5976 static void
5977 bge_stop(struct bge_softc *sc)
5978 {
5979 	if_t ifp;
5980 
5981 	BGE_LOCK_ASSERT(sc);
5982 
5983 	ifp = sc->bge_ifp;
5984 
5985 	callout_stop(&sc->bge_stat_ch);
5986 
5987 	/* Disable host interrupts. */
5988 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5989 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5990 
5991 	/*
5992 	 * Tell firmware we're shutting down.
5993 	 */
5994 	bge_stop_fw(sc);
5995 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5996 
5997 	/*
5998 	 * Disable all of the receiver blocks.
5999 	 */
6000 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6001 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6002 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6003 	if (BGE_IS_5700_FAMILY(sc))
6004 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6005 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6006 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6008 
6009 	/*
6010 	 * Disable all of the transmit blocks.
6011 	 */
6012 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6013 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6014 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6015 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6016 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6017 	if (BGE_IS_5700_FAMILY(sc))
6018 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6019 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6020 
6021 	/*
6022 	 * Shut down all of the memory managers and related
6023 	 * state machines.
6024 	 */
6025 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6026 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6027 	if (BGE_IS_5700_FAMILY(sc))
6028 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6029 
6030 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6031 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6032 	if (!(BGE_IS_5705_PLUS(sc))) {
6033 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6034 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6035 	}
6036 	/* Update MAC statistics. */
6037 	if (BGE_IS_5705_PLUS(sc))
6038 		bge_stats_update_regs(sc);
6039 
6040 	bge_reset(sc);
6041 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6042 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6043 
6044 	/*
6045 	 * Keep the ASF firmware running if up.
6046 	 */
6047 	if (sc->bge_asf_mode & ASF_STACKUP)
6048 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6049 	else
6050 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6051 
6052 	/* Free the RX lists. */
6053 	bge_free_rx_ring_std(sc);
6054 
6055 	/* Free jumbo RX list. */
6056 	if (BGE_IS_JUMBO_CAPABLE(sc))
6057 		bge_free_rx_ring_jumbo(sc);
6058 
6059 	/* Free TX buffers. */
6060 	bge_free_tx_ring(sc);
6061 
6062 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6063 
6064 	/* Clear MAC's link state (PHY may still have link UP). */
6065 	if (bootverbose && sc->bge_link)
6066 		if_printf(sc->bge_ifp, "link DOWN\n");
6067 	sc->bge_link = 0;
6068 
6069 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6070 }
6071 
6072 /*
6073  * Stop all chip I/O so that the kernel's probe routines don't
6074  * get confused by errant DMAs when rebooting.
6075  */
6076 static int
6077 bge_shutdown(device_t dev)
6078 {
6079 	struct bge_softc *sc;
6080 
6081 	sc = device_get_softc(dev);
6082 	BGE_LOCK(sc);
6083 	bge_stop(sc);
6084 	BGE_UNLOCK(sc);
6085 
6086 	return (0);
6087 }
6088 
6089 static int
6090 bge_suspend(device_t dev)
6091 {
6092 	struct bge_softc *sc;
6093 
6094 	sc = device_get_softc(dev);
6095 	BGE_LOCK(sc);
6096 	bge_stop(sc);
6097 	BGE_UNLOCK(sc);
6098 
6099 	return (0);
6100 }
6101 
6102 static int
6103 bge_resume(device_t dev)
6104 {
6105 	struct bge_softc *sc;
6106 	if_t ifp;
6107 
6108 	sc = device_get_softc(dev);
6109 	BGE_LOCK(sc);
6110 	ifp = sc->bge_ifp;
6111 	if (if_getflags(ifp) & IFF_UP) {
6112 		bge_init_locked(sc);
6113 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6114 			bge_start_locked(ifp);
6115 	}
6116 	BGE_UNLOCK(sc);
6117 
6118 	return (0);
6119 }
6120 
6121 static void
6122 bge_link_upd(struct bge_softc *sc)
6123 {
6124 	struct mii_data *mii;
6125 	uint32_t link, status;
6126 
6127 	BGE_LOCK_ASSERT(sc);
6128 
6129 	/* Clear 'pending link event' flag. */
6130 	sc->bge_link_evt = 0;
6131 
6132 	/*
6133 	 * Process link state changes.
6134 	 * Grrr. The link status word in the status block does
6135 	 * not work correctly on the BCM5700 rev AX and BX chips,
6136 	 * according to all available information. Hence, we have
6137 	 * to enable MII interrupts in order to properly obtain
6138 	 * async link changes. Unfortunately, this also means that
6139 	 * we have to read the MAC status register to detect link
6140 	 * changes, thereby adding an additional register access to
6141 	 * the interrupt handler.
6142 	 *
6143 	 * XXX: perhaps link state detection procedure used for
6144 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6145 	 */
6146 
6147 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6148 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6149 		status = CSR_READ_4(sc, BGE_MAC_STS);
6150 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6151 			mii = device_get_softc(sc->bge_miibus);
6152 			mii_pollstat(mii);
6153 			if (!sc->bge_link &&
6154 			    mii->mii_media_status & IFM_ACTIVE &&
6155 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6156 				sc->bge_link++;
6157 				if (bootverbose)
6158 					if_printf(sc->bge_ifp, "link UP\n");
6159 			} else if (sc->bge_link &&
6160 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6161 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6162 				sc->bge_link = 0;
6163 				if (bootverbose)
6164 					if_printf(sc->bge_ifp, "link DOWN\n");
6165 			}
6166 
6167 			/* Clear the interrupt. */
6168 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6169 			    BGE_EVTENB_MI_INTERRUPT);
6170 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6171 			    BRGPHY_MII_ISR);
6172 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6173 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6174 		}
6175 		return;
6176 	}
6177 
6178 	if (sc->bge_flags & BGE_FLAG_TBI) {
6179 		status = CSR_READ_4(sc, BGE_MAC_STS);
6180 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6181 			if (!sc->bge_link) {
6182 				sc->bge_link++;
6183 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6184 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6185 					    BGE_MACMODE_TBI_SEND_CFGS);
6186 					DELAY(40);
6187 				}
6188 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6189 				if (bootverbose)
6190 					if_printf(sc->bge_ifp, "link UP\n");
6191 				if_link_state_change(sc->bge_ifp,
6192 				    LINK_STATE_UP);
6193 			}
6194 		} else if (sc->bge_link) {
6195 			sc->bge_link = 0;
6196 			if (bootverbose)
6197 				if_printf(sc->bge_ifp, "link DOWN\n");
6198 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6199 		}
6200 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6201 		/*
6202 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6203 		 * in status word always set. Workaround this bug by reading
6204 		 * PHY link status directly.
6205 		 */
6206 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6207 
6208 		if (link != sc->bge_link ||
6209 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6210 			mii = device_get_softc(sc->bge_miibus);
6211 			mii_pollstat(mii);
6212 			if (!sc->bge_link &&
6213 			    mii->mii_media_status & IFM_ACTIVE &&
6214 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6215 				sc->bge_link++;
6216 				if (bootverbose)
6217 					if_printf(sc->bge_ifp, "link UP\n");
6218 			} else if (sc->bge_link &&
6219 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6220 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6221 				sc->bge_link = 0;
6222 				if (bootverbose)
6223 					if_printf(sc->bge_ifp, "link DOWN\n");
6224 			}
6225 		}
6226 	} else {
6227 		/*
6228 		 * For controllers that call mii_tick, we have to poll
6229 		 * link status.
6230 		 */
6231 		mii = device_get_softc(sc->bge_miibus);
6232 		mii_pollstat(mii);
6233 		bge_miibus_statchg(sc->bge_dev);
6234 	}
6235 
6236 	/* Disable MAC attention when link is up. */
6237 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6238 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6239 	    BGE_MACSTAT_LINK_CHANGED);
6240 }
6241 
6242 static void
6243 bge_add_sysctls(struct bge_softc *sc)
6244 {
6245 	struct sysctl_ctx_list *ctx;
6246 	struct sysctl_oid_list *children;
6247 	int unit;
6248 
6249 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6250 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6251 
6252 #ifdef BGE_REGISTER_DEBUG
6253 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6254 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6255 	    "Debug Information");
6256 
6257 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6258 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6259 	    "MAC Register Read");
6260 
6261 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6262 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6263 	    "APE Register Read");
6264 
6265 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6266 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6267 	    "Memory Read");
6268 
6269 #endif
6270 
6271 	unit = device_get_unit(sc->bge_dev);
6272 	/*
6273 	 * A common design characteristic for many Broadcom client controllers
6274 	 * is that they only support a single outstanding DMA read operation
6275 	 * on the PCIe bus. This means that it will take twice as long to fetch
6276 	 * a TX frame that is split into header and payload buffers as it does
6277 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6278 	 * these controllers, coalescing buffers to reduce the number of memory
6279 	 * reads is effective way to get maximum performance(about 940Mbps).
6280 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6281 	 * performance is about 850Mbps. However forcing coalescing mbufs
6282 	 * consumes a lot of CPU cycles, so leave it off by default.
6283 	 */
6284 	sc->bge_forced_collapse = 0;
6285 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6286 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6287 	    "Number of fragmented TX buffers of a frame allowed before "
6288 	    "forced collapsing");
6289 
6290 	sc->bge_msi = 1;
6291 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6292 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6293 
6294 	/*
6295 	 * It seems all Broadcom controllers have a bug that can generate UDP
6296 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6297 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6298 	 * Even though the probability of generating such UDP datagrams is
6299 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6300 	 * into network so disable UDP checksum offloading by default.  Users
6301 	 * still override this behavior by setting a sysctl variable,
6302 	 * dev.bge.0.forced_udpcsum.
6303 	 */
6304 	sc->bge_forced_udpcsum = 0;
6305 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6306 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6307 	    "Enable UDP checksum offloading even if controller can "
6308 	    "generate UDP checksum value 0");
6309 
6310 	if (BGE_IS_5705_PLUS(sc))
6311 		bge_add_sysctl_stats_regs(sc, ctx, children);
6312 	else
6313 		bge_add_sysctl_stats(sc, ctx, children);
6314 }
6315 
6316 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6317 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6318 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6319 	    desc)
6320 
6321 static void
6322 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6323     struct sysctl_oid_list *parent)
6324 {
6325 	struct sysctl_oid *tree;
6326 	struct sysctl_oid_list *children, *schildren;
6327 
6328 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6329 	    NULL, "BGE Statistics");
6330 	schildren = children = SYSCTL_CHILDREN(tree);
6331 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6332 	    children, COSFramesDroppedDueToFilters,
6333 	    "FramesDroppedDueToFilters");
6334 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6335 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6336 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6337 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6338 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6339 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6340 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6341 	    children, ifInDiscards, "InputDiscards");
6342 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6343 	    children, ifInErrors, "InputErrors");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6345 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6347 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6349 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6351 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6353 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6355 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6356 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6357 	    children, nicInterrupts, "Interrupts");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6359 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6361 	    children, nicSendThresholdHit, "SendThresholdHit");
6362 
6363 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6364 	    NULL, "BGE RX Statistics");
6365 	children = SYSCTL_CHILDREN(tree);
6366 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6367 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6368 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6369 	    children, rxstats.etherStatsFragments, "Fragments");
6370 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6371 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6372 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6373 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6374 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6375 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6376 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6377 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6378 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6379 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6380 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6381 	    children, rxstats.xoffPauseFramesReceived,
6382 	    "xoffPauseFramesReceived");
6383 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6384 	    children, rxstats.macControlFramesReceived,
6385 	    "ControlFramesReceived");
6386 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6387 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6389 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6391 	    children, rxstats.etherStatsJabbers, "Jabbers");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6393 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6394 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6395 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6396 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6397 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6398 
6399 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6400 	    NULL, "BGE TX Statistics");
6401 	children = SYSCTL_CHILDREN(tree);
6402 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6403 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6404 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6405 	    children, txstats.etherStatsCollisions, "Collisions");
6406 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6407 	    children, txstats.outXonSent, "XonSent");
6408 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6409 	    children, txstats.outXoffSent, "XoffSent");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6411 	    children, txstats.flowControlDone, "flowControlDone");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6413 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6414 	    "InternalMacTransmitErrors");
6415 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6416 	    children, txstats.dot3StatsSingleCollisionFrames,
6417 	    "SingleCollisionFrames");
6418 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6419 	    children, txstats.dot3StatsMultipleCollisionFrames,
6420 	    "MultipleCollisionFrames");
6421 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6422 	    children, txstats.dot3StatsDeferredTransmissions,
6423 	    "DeferredTransmissions");
6424 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6425 	    children, txstats.dot3StatsExcessiveCollisions,
6426 	    "ExcessiveCollisions");
6427 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6428 	    children, txstats.dot3StatsLateCollisions,
6429 	    "LateCollisions");
6430 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6431 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6433 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6435 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6436 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6437 	    children, txstats.dot3StatsCarrierSenseErrors,
6438 	    "CarrierSenseErrors");
6439 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6440 	    children, txstats.ifOutDiscards, "Discards");
6441 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6442 	    children, txstats.ifOutErrors, "Errors");
6443 }
6444 
6445 #undef BGE_SYSCTL_STAT
6446 
6447 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6448 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6449 
6450 static void
6451 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6452     struct sysctl_oid_list *parent)
6453 {
6454 	struct sysctl_oid *tree;
6455 	struct sysctl_oid_list *child, *schild;
6456 	struct bge_mac_stats *stats;
6457 
6458 	stats = &sc->bge_mac_stats;
6459 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6460 	    NULL, "BGE Statistics");
6461 	schild = child = SYSCTL_CHILDREN(tree);
6462 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6463 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6464 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6465 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6466 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6467 	    &stats->DmaWriteHighPriQueueFull,
6468 	    "NIC DMA Write High Priority Queue Full");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6470 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6472 	    &stats->InputDiscards, "Discarded Input Frames");
6473 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6474 	    &stats->InputErrors, "Input Errors");
6475 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6476 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6477 
6478 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6479 	    NULL, "BGE RX Statistics");
6480 	child = SYSCTL_CHILDREN(tree);
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6482 	    &stats->ifHCInOctets, "Inbound Octets");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6484 	    &stats->etherStatsFragments, "Fragments");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6486 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6488 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6490 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6492 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6494 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6496 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6498 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6500 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6502 	    &stats->xoffStateEntered, "XOFF State Entered");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6504 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6506 	    &stats->etherStatsJabbers, "Jabbers");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6508 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6509 
6510 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6511 	    NULL, "BGE TX Statistics");
6512 	child = SYSCTL_CHILDREN(tree);
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6514 	    &stats->ifHCOutOctets, "Outbound Octets");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6516 	    &stats->etherStatsCollisions, "TX Collisions");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6518 	    &stats->outXonSent, "XON Sent");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6520 	    &stats->outXoffSent, "XOFF Sent");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6522 	    &stats->dot3StatsInternalMacTransmitErrors,
6523 	    "Internal MAC TX Errors");
6524 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6525 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6526 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6527 	    &stats->dot3StatsMultipleCollisionFrames,
6528 	    "Multiple Collision Frames");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6530 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6532 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6534 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6536 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6538 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6539 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6540 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6541 }
6542 
6543 #undef	BGE_SYSCTL_STAT_ADD64
6544 
6545 static int
6546 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6547 {
6548 	struct bge_softc *sc;
6549 	uint32_t result;
6550 	int offset;
6551 
6552 	sc = (struct bge_softc *)arg1;
6553 	offset = arg2;
6554 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6555 	    offsetof(bge_hostaddr, bge_addr_lo));
6556 	return (sysctl_handle_int(oidp, &result, 0, req));
6557 }
6558 
6559 #ifdef BGE_REGISTER_DEBUG
6560 static int
6561 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6562 {
6563 	struct bge_softc *sc;
6564 	uint16_t *sbdata;
6565 	int error, result, sbsz;
6566 	int i, j;
6567 
6568 	result = -1;
6569 	error = sysctl_handle_int(oidp, &result, 0, req);
6570 	if (error || (req->newptr == NULL))
6571 		return (error);
6572 
6573 	if (result == 1) {
6574 		sc = (struct bge_softc *)arg1;
6575 
6576 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6577 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6578 			sbsz = BGE_STATUS_BLK_SZ;
6579 		else
6580 			sbsz = 32;
6581 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6582 		printf("Status Block:\n");
6583 		BGE_LOCK(sc);
6584 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6585 		    sc->bge_cdata.bge_status_map,
6586 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6587 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6588 			printf("%06x:", i);
6589 			for (j = 0; j < 8; j++)
6590 				printf(" %04x", sbdata[i++]);
6591 			printf("\n");
6592 		}
6593 
6594 		printf("Registers:\n");
6595 		for (i = 0x800; i < 0xA00; ) {
6596 			printf("%06x:", i);
6597 			for (j = 0; j < 8; j++) {
6598 				printf(" %08x", CSR_READ_4(sc, i));
6599 				i += 4;
6600 			}
6601 			printf("\n");
6602 		}
6603 		BGE_UNLOCK(sc);
6604 
6605 		printf("Hardware Flags:\n");
6606 		if (BGE_IS_5717_PLUS(sc))
6607 			printf(" - 5717 Plus\n");
6608 		if (BGE_IS_5755_PLUS(sc))
6609 			printf(" - 5755 Plus\n");
6610 		if (BGE_IS_575X_PLUS(sc))
6611 			printf(" - 575X Plus\n");
6612 		if (BGE_IS_5705_PLUS(sc))
6613 			printf(" - 5705 Plus\n");
6614 		if (BGE_IS_5714_FAMILY(sc))
6615 			printf(" - 5714 Family\n");
6616 		if (BGE_IS_5700_FAMILY(sc))
6617 			printf(" - 5700 Family\n");
6618 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6619 			printf(" - Supports Jumbo Frames\n");
6620 		if (sc->bge_flags & BGE_FLAG_PCIX)
6621 			printf(" - PCI-X Bus\n");
6622 		if (sc->bge_flags & BGE_FLAG_PCIE)
6623 			printf(" - PCI Express Bus\n");
6624 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6625 			printf(" - No 3 LEDs\n");
6626 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6627 			printf(" - RX Alignment Bug\n");
6628 	}
6629 
6630 	return (error);
6631 }
6632 
6633 static int
6634 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6635 {
6636 	struct bge_softc *sc;
6637 	int error;
6638 	uint16_t result;
6639 	uint32_t val;
6640 
6641 	result = -1;
6642 	error = sysctl_handle_int(oidp, &result, 0, req);
6643 	if (error || (req->newptr == NULL))
6644 		return (error);
6645 
6646 	if (result < 0x8000) {
6647 		sc = (struct bge_softc *)arg1;
6648 		val = CSR_READ_4(sc, result);
6649 		printf("reg 0x%06X = 0x%08X\n", result, val);
6650 	}
6651 
6652 	return (error);
6653 }
6654 
6655 static int
6656 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6657 {
6658 	struct bge_softc *sc;
6659 	int error;
6660 	uint16_t result;
6661 	uint32_t val;
6662 
6663 	result = -1;
6664 	error = sysctl_handle_int(oidp, &result, 0, req);
6665 	if (error || (req->newptr == NULL))
6666 		return (error);
6667 
6668 	if (result < 0x8000) {
6669 		sc = (struct bge_softc *)arg1;
6670 		val = APE_READ_4(sc, result);
6671 		printf("reg 0x%06X = 0x%08X\n", result, val);
6672 	}
6673 
6674 	return (error);
6675 }
6676 
6677 static int
6678 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6679 {
6680 	struct bge_softc *sc;
6681 	int error;
6682 	uint16_t result;
6683 	uint32_t val;
6684 
6685 	result = -1;
6686 	error = sysctl_handle_int(oidp, &result, 0, req);
6687 	if (error || (req->newptr == NULL))
6688 		return (error);
6689 
6690 	if (result < 0x8000) {
6691 		sc = (struct bge_softc *)arg1;
6692 		val = bge_readmem_ind(sc, result);
6693 		printf("mem 0x%06X = 0x%08X\n", result, val);
6694 	}
6695 
6696 	return (error);
6697 }
6698 #endif
6699 
6700 static int
6701 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6702 {
6703 
6704 	if (sc->bge_flags & BGE_FLAG_EADDR)
6705 		return (1);
6706 
6707 #ifdef __sparc64__
6708 	OF_getetheraddr(sc->bge_dev, ether_addr);
6709 	return (0);
6710 #endif
6711 	return (1);
6712 }
6713 
6714 static int
6715 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6716 {
6717 	uint32_t mac_addr;
6718 
6719 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6720 	if ((mac_addr >> 16) == 0x484b) {
6721 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6722 		ether_addr[1] = (uint8_t)mac_addr;
6723 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6724 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6725 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6726 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6727 		ether_addr[5] = (uint8_t)mac_addr;
6728 		return (0);
6729 	}
6730 	return (1);
6731 }
6732 
6733 static int
6734 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6735 {
6736 	int mac_offset = BGE_EE_MAC_OFFSET;
6737 
6738 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6739 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6740 
6741 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6742 	    ETHER_ADDR_LEN));
6743 }
6744 
6745 static int
6746 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6747 {
6748 
6749 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6750 		return (1);
6751 
6752 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6753 	   ETHER_ADDR_LEN));
6754 }
6755 
6756 static int
6757 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6758 {
6759 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6760 		/* NOTE: Order is critical */
6761 		bge_get_eaddr_fw,
6762 		bge_get_eaddr_mem,
6763 		bge_get_eaddr_nvram,
6764 		bge_get_eaddr_eeprom,
6765 		NULL
6766 	};
6767 	const bge_eaddr_fcn_t *func;
6768 
6769 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6770 		if ((*func)(sc, eaddr) == 0)
6771 			break;
6772 	}
6773 	return (*func == NULL ? ENXIO : 0);
6774 }
6775 
6776 static uint64_t
6777 bge_get_counter(if_t ifp, ift_counter cnt)
6778 {
6779 	struct bge_softc *sc;
6780 	struct bge_mac_stats *stats;
6781 
6782 	sc = if_getsoftc(ifp);
6783 	if (!BGE_IS_5705_PLUS(sc))
6784 		return (if_get_counter_default(ifp, cnt));
6785 	stats = &sc->bge_mac_stats;
6786 
6787 	switch (cnt) {
6788 	case IFCOUNTER_IERRORS:
6789 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6790 		    stats->InputErrors);
6791 	case IFCOUNTER_COLLISIONS:
6792 		return (stats->etherStatsCollisions);
6793 	default:
6794 		return (if_get_counter_default(ifp, cnt));
6795 	}
6796 }
6797