xref: /freebsd/sys/dev/bge/if_bge.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
218 
219 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
220 
221 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
222 
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
226 
227 	{ 0, 0 }
228 };
229 
230 static const struct bge_vendor {
231 	uint16_t	v_id;
232 	const char	*v_name;
233 } bge_vendors[] = {
234 	{ ALTEON_VENDORID,	"Alteon" },
235 	{ ALTIMA_VENDORID,	"Altima" },
236 	{ APPLE_VENDORID,	"Apple" },
237 	{ BCOM_VENDORID,	"Broadcom" },
238 	{ SK_VENDORID,		"SysKonnect" },
239 	{ TC_VENDORID,		"3Com" },
240 	{ FJTSU_VENDORID,	"Fujitsu" },
241 
242 	{ 0, NULL }
243 };
244 
245 static const struct bge_revision {
246 	uint32_t	br_chipid;
247 	const char	*br_name;
248 } bge_revisions[] = {
249 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
250 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
251 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
252 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
253 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
254 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
255 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
256 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
257 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
258 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
259 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
260 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
261 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
262 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
263 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
264 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
265 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
266 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
267 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
268 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
269 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
270 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
271 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
272 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
273 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
274 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
275 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
276 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
277 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
278 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
279 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
280 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
281 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
282 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
283 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
284 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
285 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
286 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
287 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
288 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
289 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
290 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
291 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
292 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
293 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
294 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
295 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
296 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
297 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
298 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
299 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
302 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
303 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
304 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
305 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
306 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
307 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
308 
309 	{ 0, NULL }
310 };
311 
312 /*
313  * Some defaults for major revisions, so that newer steppings
314  * that we don't know about have a shot at working.
315  */
316 static const struct bge_revision bge_majorrevs[] = {
317 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
318 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
319 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
320 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
321 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
322 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
323 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
324 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
325 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
326 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
327 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
328 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
329 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
330 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
331 	/* 5754 and 5787 share the same ASIC ID */
332 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
333 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
334 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
335 
336 	{ 0, NULL }
337 };
338 
339 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
340 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
341 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
342 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
343 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
344 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
345 
346 const struct bge_revision * bge_lookup_rev(uint32_t);
347 const struct bge_vendor * bge_lookup_vendor(uint16_t);
348 
349 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
350 
351 static int bge_probe(device_t);
352 static int bge_attach(device_t);
353 static int bge_detach(device_t);
354 static int bge_suspend(device_t);
355 static int bge_resume(device_t);
356 static void bge_release_resources(struct bge_softc *);
357 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
358 static int bge_dma_alloc(device_t);
359 static void bge_dma_free(struct bge_softc *);
360 
361 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
362 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
365 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
366 
367 static void bge_txeof(struct bge_softc *, uint16_t);
368 static int bge_rxeof(struct bge_softc *, uint16_t, int);
369 
370 static void bge_asf_driver_up (struct bge_softc *);
371 static void bge_tick(void *);
372 static void bge_stats_update(struct bge_softc *);
373 static void bge_stats_update_regs(struct bge_softc *);
374 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
375     uint16_t *);
376 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
377 
378 static void bge_intr(void *);
379 static int bge_msi_intr(void *);
380 static void bge_intr_task(void *, int);
381 static void bge_start_locked(struct ifnet *);
382 static void bge_start(struct ifnet *);
383 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
384 static void bge_init_locked(struct bge_softc *);
385 static void bge_init(void *);
386 static void bge_stop(struct bge_softc *);
387 static void bge_watchdog(struct bge_softc *);
388 static int bge_shutdown(device_t);
389 static int bge_ifmedia_upd_locked(struct ifnet *);
390 static int bge_ifmedia_upd(struct ifnet *);
391 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
392 
393 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
394 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
395 
396 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
397 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
398 
399 static void bge_setpromisc(struct bge_softc *);
400 static void bge_setmulti(struct bge_softc *);
401 static void bge_setvlan(struct bge_softc *);
402 
403 static __inline void bge_rxreuse_std(struct bge_softc *, int);
404 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
405 static int bge_newbuf_std(struct bge_softc *, int);
406 static int bge_newbuf_jumbo(struct bge_softc *, int);
407 static int bge_init_rx_ring_std(struct bge_softc *);
408 static void bge_free_rx_ring_std(struct bge_softc *);
409 static int bge_init_rx_ring_jumbo(struct bge_softc *);
410 static void bge_free_rx_ring_jumbo(struct bge_softc *);
411 static void bge_free_tx_ring(struct bge_softc *);
412 static int bge_init_tx_ring(struct bge_softc *);
413 
414 static int bge_chipinit(struct bge_softc *);
415 static int bge_blockinit(struct bge_softc *);
416 
417 static int bge_has_eaddr(struct bge_softc *);
418 static uint32_t bge_readmem_ind(struct bge_softc *, int);
419 static void bge_writemem_ind(struct bge_softc *, int, int);
420 static void bge_writembx(struct bge_softc *, int, int);
421 #ifdef notdef
422 static uint32_t bge_readreg_ind(struct bge_softc *, int);
423 #endif
424 static void bge_writemem_direct(struct bge_softc *, int, int);
425 static void bge_writereg_ind(struct bge_softc *, int, int);
426 
427 static int bge_miibus_readreg(device_t, int, int);
428 static int bge_miibus_writereg(device_t, int, int, int);
429 static void bge_miibus_statchg(device_t);
430 #ifdef DEVICE_POLLING
431 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
432 #endif
433 
434 #define	BGE_RESET_START 1
435 #define	BGE_RESET_STOP  2
436 static void bge_sig_post_reset(struct bge_softc *, int);
437 static void bge_sig_legacy(struct bge_softc *, int);
438 static void bge_sig_pre_reset(struct bge_softc *, int);
439 static int bge_reset(struct bge_softc *);
440 static void bge_link_upd(struct bge_softc *);
441 
442 /*
443  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
444  * leak information to untrusted users.  It is also known to cause alignment
445  * traps on certain architectures.
446  */
447 #ifdef BGE_REGISTER_DEBUG
448 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
449 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
450 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
451 #endif
452 static void bge_add_sysctls(struct bge_softc *);
453 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
454 
455 static device_method_t bge_methods[] = {
456 	/* Device interface */
457 	DEVMETHOD(device_probe,		bge_probe),
458 	DEVMETHOD(device_attach,	bge_attach),
459 	DEVMETHOD(device_detach,	bge_detach),
460 	DEVMETHOD(device_shutdown,	bge_shutdown),
461 	DEVMETHOD(device_suspend,	bge_suspend),
462 	DEVMETHOD(device_resume,	bge_resume),
463 
464 	/* bus interface */
465 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
466 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
467 
468 	/* MII interface */
469 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
470 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
471 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
472 
473 	{ 0, 0 }
474 };
475 
476 static driver_t bge_driver = {
477 	"bge",
478 	bge_methods,
479 	sizeof(struct bge_softc)
480 };
481 
482 static devclass_t bge_devclass;
483 
484 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
485 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
486 
487 static int bge_allow_asf = 1;
488 
489 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
490 
491 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
492 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
493 	"Allow ASF mode if available");
494 
495 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
496 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
497 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
498 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
499 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
500 
501 static int
502 bge_has_eaddr(struct bge_softc *sc)
503 {
504 #ifdef __sparc64__
505 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
506 	device_t dev;
507 	uint32_t subvendor;
508 
509 	dev = sc->bge_dev;
510 
511 	/*
512 	 * The on-board BGEs found in sun4u machines aren't fitted with
513 	 * an EEPROM which means that we have to obtain the MAC address
514 	 * via OFW and that some tests will always fail.  We distinguish
515 	 * such BGEs by the subvendor ID, which also has to be obtained
516 	 * from OFW instead of the PCI configuration space as the latter
517 	 * indicates Broadcom as the subvendor of the netboot interface.
518 	 * For early Blade 1500 and 2500 we even have to check the OFW
519 	 * device path as the subvendor ID always defaults to Broadcom
520 	 * there.
521 	 */
522 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
523 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
524 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
525 		return (0);
526 	memset(buf, 0, sizeof(buf));
527 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
528 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
529 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
530 			return (0);
531 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
532 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
533 			return (0);
534 	}
535 #endif
536 	return (1);
537 }
538 
539 static uint32_t
540 bge_readmem_ind(struct bge_softc *sc, int off)
541 {
542 	device_t dev;
543 	uint32_t val;
544 
545 	dev = sc->bge_dev;
546 
547 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
548 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
549 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
550 	return (val);
551 }
552 
553 static void
554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
555 {
556 	device_t dev;
557 
558 	dev = sc->bge_dev;
559 
560 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
561 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
562 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
563 }
564 
565 #ifdef notdef
566 static uint32_t
567 bge_readreg_ind(struct bge_softc *sc, int off)
568 {
569 	device_t dev;
570 
571 	dev = sc->bge_dev;
572 
573 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
574 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
575 }
576 #endif
577 
578 static void
579 bge_writereg_ind(struct bge_softc *sc, int off, int val)
580 {
581 	device_t dev;
582 
583 	dev = sc->bge_dev;
584 
585 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
586 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
587 }
588 
589 static void
590 bge_writemem_direct(struct bge_softc *sc, int off, int val)
591 {
592 	CSR_WRITE_4(sc, off, val);
593 }
594 
595 static void
596 bge_writembx(struct bge_softc *sc, int off, int val)
597 {
598 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
599 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
600 
601 	CSR_WRITE_4(sc, off, val);
602 }
603 
604 /*
605  * Map a single buffer address.
606  */
607 
608 static void
609 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
610 {
611 	struct bge_dmamap_arg *ctx;
612 
613 	if (error)
614 		return;
615 
616 	ctx = arg;
617 
618 	if (nseg > ctx->bge_maxsegs) {
619 		ctx->bge_maxsegs = 0;
620 		return;
621 	}
622 
623 	ctx->bge_busaddr = segs->ds_addr;
624 }
625 
626 static uint8_t
627 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
628 {
629 	uint32_t access, byte = 0;
630 	int i;
631 
632 	/* Lock. */
633 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
634 	for (i = 0; i < 8000; i++) {
635 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
636 			break;
637 		DELAY(20);
638 	}
639 	if (i == 8000)
640 		return (1);
641 
642 	/* Enable access. */
643 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
644 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
645 
646 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
647 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
648 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
649 		DELAY(10);
650 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
651 			DELAY(10);
652 			break;
653 		}
654 	}
655 
656 	if (i == BGE_TIMEOUT * 10) {
657 		if_printf(sc->bge_ifp, "nvram read timed out\n");
658 		return (1);
659 	}
660 
661 	/* Get result. */
662 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
663 
664 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
665 
666 	/* Disable access. */
667 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
668 
669 	/* Unlock. */
670 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
671 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
672 
673 	return (0);
674 }
675 
676 /*
677  * Read a sequence of bytes from NVRAM.
678  */
679 static int
680 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
681 {
682 	int err = 0, i;
683 	uint8_t byte = 0;
684 
685 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
686 		return (1);
687 
688 	for (i = 0; i < cnt; i++) {
689 		err = bge_nvram_getbyte(sc, off + i, &byte);
690 		if (err)
691 			break;
692 		*(dest + i) = byte;
693 	}
694 
695 	return (err ? 1 : 0);
696 }
697 
698 /*
699  * Read a byte of data stored in the EEPROM at address 'addr.' The
700  * BCM570x supports both the traditional bitbang interface and an
701  * auto access interface for reading the EEPROM. We use the auto
702  * access method.
703  */
704 static uint8_t
705 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
706 {
707 	int i;
708 	uint32_t byte = 0;
709 
710 	/*
711 	 * Enable use of auto EEPROM access so we can avoid
712 	 * having to use the bitbang method.
713 	 */
714 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
715 
716 	/* Reset the EEPROM, load the clock period. */
717 	CSR_WRITE_4(sc, BGE_EE_ADDR,
718 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
719 	DELAY(20);
720 
721 	/* Issue the read EEPROM command. */
722 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
723 
724 	/* Wait for completion */
725 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
726 		DELAY(10);
727 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
728 			break;
729 	}
730 
731 	if (i == BGE_TIMEOUT * 10) {
732 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
733 		return (1);
734 	}
735 
736 	/* Get result. */
737 	byte = CSR_READ_4(sc, BGE_EE_DATA);
738 
739 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
740 
741 	return (0);
742 }
743 
744 /*
745  * Read a sequence of bytes from the EEPROM.
746  */
747 static int
748 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
749 {
750 	int i, error = 0;
751 	uint8_t byte = 0;
752 
753 	for (i = 0; i < cnt; i++) {
754 		error = bge_eeprom_getbyte(sc, off + i, &byte);
755 		if (error)
756 			break;
757 		*(dest + i) = byte;
758 	}
759 
760 	return (error ? 1 : 0);
761 }
762 
763 static int
764 bge_miibus_readreg(device_t dev, int phy, int reg)
765 {
766 	struct bge_softc *sc;
767 	uint32_t val, autopoll;
768 	int i;
769 
770 	sc = device_get_softc(dev);
771 
772 	/*
773 	 * Broadcom's own driver always assumes the internal
774 	 * PHY is at GMII address 1. On some chips, the PHY responds
775 	 * to accesses at all addresses, which could cause us to
776 	 * bogusly attach the PHY 32 times at probe type. Always
777 	 * restricting the lookup to address 1 is simpler than
778 	 * trying to figure out which chips revisions should be
779 	 * special-cased.
780 	 */
781 	if (phy != 1)
782 		return (0);
783 
784 	/* Reading with autopolling on may trigger PCI errors */
785 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
786 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
787 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
788 		DELAY(40);
789 	}
790 
791 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
792 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
793 
794 	for (i = 0; i < BGE_TIMEOUT; i++) {
795 		DELAY(10);
796 		val = CSR_READ_4(sc, BGE_MI_COMM);
797 		if (!(val & BGE_MICOMM_BUSY))
798 			break;
799 	}
800 
801 	if (i == BGE_TIMEOUT) {
802 		device_printf(sc->bge_dev,
803 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
804 		    phy, reg, val);
805 		val = 0;
806 		goto done;
807 	}
808 
809 	DELAY(5);
810 	val = CSR_READ_4(sc, BGE_MI_COMM);
811 
812 done:
813 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
814 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
815 		DELAY(40);
816 	}
817 
818 	if (val & BGE_MICOMM_READFAIL)
819 		return (0);
820 
821 	return (val & 0xFFFF);
822 }
823 
824 static int
825 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
826 {
827 	struct bge_softc *sc;
828 	uint32_t autopoll;
829 	int i;
830 
831 	sc = device_get_softc(dev);
832 
833 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
834 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
835 		return(0);
836 
837 	/* Reading with autopolling on may trigger PCI errors */
838 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
839 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
840 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
841 		DELAY(40);
842 	}
843 
844 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
845 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
846 
847 	for (i = 0; i < BGE_TIMEOUT; i++) {
848 		DELAY(10);
849 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
850 			DELAY(5);
851 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
852 			break;
853 		}
854 	}
855 
856 	if (i == BGE_TIMEOUT) {
857 		device_printf(sc->bge_dev,
858 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
859 		    phy, reg, val);
860 		return (0);
861 	}
862 
863 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
864 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
865 		DELAY(40);
866 	}
867 
868 	return (0);
869 }
870 
871 static void
872 bge_miibus_statchg(device_t dev)
873 {
874 	struct bge_softc *sc;
875 	struct mii_data *mii;
876 	sc = device_get_softc(dev);
877 	mii = device_get_softc(sc->bge_miibus);
878 
879 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
880 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
881 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
882 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
883 	else
884 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
885 
886 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
887 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
888 	else
889 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
890 }
891 
892 /*
893  * Intialize a standard receive ring descriptor.
894  */
895 static int
896 bge_newbuf_std(struct bge_softc *sc, int i)
897 {
898 	struct mbuf *m;
899 	struct bge_rx_bd *r;
900 	bus_dma_segment_t segs[1];
901 	bus_dmamap_t map;
902 	int error, nsegs;
903 
904 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
905 	if (m == NULL)
906 		return (ENOBUFS);
907 	m->m_len = m->m_pkthdr.len = MCLBYTES;
908 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
909 		m_adj(m, ETHER_ALIGN);
910 
911 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
912 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
913 	if (error != 0) {
914 		m_freem(m);
915 		return (error);
916 	}
917 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
918 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
919 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
920 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
921 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
922 	}
923 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
924 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
925 	sc->bge_cdata.bge_rx_std_sparemap = map;
926 	sc->bge_cdata.bge_rx_std_chain[i] = m;
927 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
928 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
929 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
930 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
931 	r->bge_flags = BGE_RXBDFLAG_END;
932 	r->bge_len = segs[0].ds_len;
933 	r->bge_idx = i;
934 
935 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
936 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
937 
938 	return (0);
939 }
940 
941 /*
942  * Initialize a jumbo receive ring descriptor. This allocates
943  * a jumbo buffer from the pool managed internally by the driver.
944  */
945 static int
946 bge_newbuf_jumbo(struct bge_softc *sc, int i)
947 {
948 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
949 	bus_dmamap_t map;
950 	struct bge_extrx_bd *r;
951 	struct mbuf *m;
952 	int error, nsegs;
953 
954 	MGETHDR(m, M_DONTWAIT, MT_DATA);
955 	if (m == NULL)
956 		return (ENOBUFS);
957 
958 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
959 	if (!(m->m_flags & M_EXT)) {
960 		m_freem(m);
961 		return (ENOBUFS);
962 	}
963 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
964 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
965 		m_adj(m, ETHER_ALIGN);
966 
967 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
968 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
969 	if (error != 0) {
970 		m_freem(m);
971 		return (error);
972 	}
973 
974 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
975 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
976 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
977 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
978 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
979 	}
980 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
981 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
982 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
983 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
984 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
985 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
986 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
987 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
988 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
989 
990 	/*
991 	 * Fill in the extended RX buffer descriptor.
992 	 */
993 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
994 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
995 	r->bge_idx = i;
996 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
997 	switch (nsegs) {
998 	case 4:
999 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1000 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1001 		r->bge_len3 = segs[3].ds_len;
1002 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1003 	case 3:
1004 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1005 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1006 		r->bge_len2 = segs[2].ds_len;
1007 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1008 	case 2:
1009 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1010 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1011 		r->bge_len1 = segs[1].ds_len;
1012 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1013 	case 1:
1014 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1015 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1016 		r->bge_len0 = segs[0].ds_len;
1017 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1018 		break;
1019 	default:
1020 		panic("%s: %d segments\n", __func__, nsegs);
1021 	}
1022 
1023 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1024 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1025 
1026 	return (0);
1027 }
1028 
1029 static int
1030 bge_init_rx_ring_std(struct bge_softc *sc)
1031 {
1032 	int error, i;
1033 
1034 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1035 	sc->bge_std = 0;
1036 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1037 		if ((error = bge_newbuf_std(sc, i)) != 0)
1038 			return (error);
1039 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1040 	};
1041 
1042 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1043 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1044 
1045 	sc->bge_std = 0;
1046 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1047 
1048 	return (0);
1049 }
1050 
1051 static void
1052 bge_free_rx_ring_std(struct bge_softc *sc)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1057 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1058 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1059 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1060 			    BUS_DMASYNC_POSTREAD);
1061 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1062 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1063 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1064 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1065 		}
1066 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1067 		    sizeof(struct bge_rx_bd));
1068 	}
1069 }
1070 
1071 static int
1072 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1073 {
1074 	struct bge_rcb *rcb;
1075 	int error, i;
1076 
1077 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1078 	sc->bge_jumbo = 0;
1079 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1080 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1081 			return (error);
1082 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1083 	};
1084 
1085 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1086 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1087 
1088 	sc->bge_jumbo = 0;
1089 
1090 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1091 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1092 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1093 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1094 
1095 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1096 
1097 	return (0);
1098 }
1099 
1100 static void
1101 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1102 {
1103 	int i;
1104 
1105 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1106 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1107 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1108 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1109 			    BUS_DMASYNC_POSTREAD);
1110 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1111 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1112 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1113 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1114 		}
1115 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1116 		    sizeof(struct bge_extrx_bd));
1117 	}
1118 }
1119 
1120 static void
1121 bge_free_tx_ring(struct bge_softc *sc)
1122 {
1123 	int i;
1124 
1125 	if (sc->bge_ldata.bge_tx_ring == NULL)
1126 		return;
1127 
1128 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1129 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1130 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1131 			    sc->bge_cdata.bge_tx_dmamap[i],
1132 			    BUS_DMASYNC_POSTWRITE);
1133 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1134 			    sc->bge_cdata.bge_tx_dmamap[i]);
1135 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1136 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1137 		}
1138 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1139 		    sizeof(struct bge_tx_bd));
1140 	}
1141 }
1142 
1143 static int
1144 bge_init_tx_ring(struct bge_softc *sc)
1145 {
1146 	sc->bge_txcnt = 0;
1147 	sc->bge_tx_saved_considx = 0;
1148 
1149 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1150 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1151 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1152 
1153 	/* Initialize transmit producer index for host-memory send ring. */
1154 	sc->bge_tx_prodidx = 0;
1155 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1156 
1157 	/* 5700 b2 errata */
1158 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1159 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1160 
1161 	/* NIC-memory send ring not used; initialize to zero. */
1162 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1163 	/* 5700 b2 errata */
1164 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1165 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1166 
1167 	return (0);
1168 }
1169 
1170 static void
1171 bge_setpromisc(struct bge_softc *sc)
1172 {
1173 	struct ifnet *ifp;
1174 
1175 	BGE_LOCK_ASSERT(sc);
1176 
1177 	ifp = sc->bge_ifp;
1178 
1179 	/* Enable or disable promiscuous mode as needed. */
1180 	if (ifp->if_flags & IFF_PROMISC)
1181 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1182 	else
1183 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1184 }
1185 
1186 static void
1187 bge_setmulti(struct bge_softc *sc)
1188 {
1189 	struct ifnet *ifp;
1190 	struct ifmultiaddr *ifma;
1191 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1192 	int h, i;
1193 
1194 	BGE_LOCK_ASSERT(sc);
1195 
1196 	ifp = sc->bge_ifp;
1197 
1198 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1199 		for (i = 0; i < 4; i++)
1200 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1201 		return;
1202 	}
1203 
1204 	/* First, zot all the existing filters. */
1205 	for (i = 0; i < 4; i++)
1206 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1207 
1208 	/* Now program new ones. */
1209 	if_maddr_rlock(ifp);
1210 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1211 		if (ifma->ifma_addr->sa_family != AF_LINK)
1212 			continue;
1213 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1214 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1215 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1216 	}
1217 	if_maddr_runlock(ifp);
1218 
1219 	for (i = 0; i < 4; i++)
1220 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1221 }
1222 
1223 static void
1224 bge_setvlan(struct bge_softc *sc)
1225 {
1226 	struct ifnet *ifp;
1227 
1228 	BGE_LOCK_ASSERT(sc);
1229 
1230 	ifp = sc->bge_ifp;
1231 
1232 	/* Enable or disable VLAN tag stripping as needed. */
1233 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1234 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1235 	else
1236 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1237 }
1238 
1239 static void
1240 bge_sig_pre_reset(sc, type)
1241 	struct bge_softc *sc;
1242 	int type;
1243 {
1244 	/*
1245 	 * Some chips don't like this so only do this if ASF is enabled
1246 	 */
1247 	if (sc->bge_asf_mode)
1248 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1249 
1250 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1251 		switch (type) {
1252 		case BGE_RESET_START:
1253 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1254 			break;
1255 		case BGE_RESET_STOP:
1256 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1257 			break;
1258 		}
1259 	}
1260 }
1261 
1262 static void
1263 bge_sig_post_reset(sc, type)
1264 	struct bge_softc *sc;
1265 	int type;
1266 {
1267 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1268 		switch (type) {
1269 		case BGE_RESET_START:
1270 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1271 			/* START DONE */
1272 			break;
1273 		case BGE_RESET_STOP:
1274 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1275 			break;
1276 		}
1277 	}
1278 }
1279 
1280 static void
1281 bge_sig_legacy(sc, type)
1282 	struct bge_softc *sc;
1283 	int type;
1284 {
1285 	if (sc->bge_asf_mode) {
1286 		switch (type) {
1287 		case BGE_RESET_START:
1288 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1289 			break;
1290 		case BGE_RESET_STOP:
1291 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1292 			break;
1293 		}
1294 	}
1295 }
1296 
1297 void bge_stop_fw(struct bge_softc *);
1298 void
1299 bge_stop_fw(sc)
1300 	struct bge_softc *sc;
1301 {
1302 	int i;
1303 
1304 	if (sc->bge_asf_mode) {
1305 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1306 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1307 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1308 
1309 		for (i = 0; i < 100; i++ ) {
1310 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1311 				break;
1312 			DELAY(10);
1313 		}
1314 	}
1315 }
1316 
1317 /*
1318  * Do endian, PCI and DMA initialization.
1319  */
1320 static int
1321 bge_chipinit(struct bge_softc *sc)
1322 {
1323 	uint32_t dma_rw_ctl;
1324 	uint16_t val;
1325 	int i;
1326 
1327 	/* Set endianness before we access any non-PCI registers. */
1328 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1329 
1330 	/* Clear the MAC control register */
1331 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1332 
1333 	/*
1334 	 * Clear the MAC statistics block in the NIC's
1335 	 * internal memory.
1336 	 */
1337 	for (i = BGE_STATS_BLOCK;
1338 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1339 		BGE_MEMWIN_WRITE(sc, i, 0);
1340 
1341 	for (i = BGE_STATUS_BLOCK;
1342 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1343 		BGE_MEMWIN_WRITE(sc, i, 0);
1344 
1345 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1346 		/*
1347 		 *  Fix data corruption caused by non-qword write with WB.
1348 		 *  Fix master abort in PCI mode.
1349 		 *  Fix PCI latency timer.
1350 		 */
1351 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1352 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1353 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1354 	}
1355 
1356 	/*
1357 	 * Set up the PCI DMA control register.
1358 	 */
1359 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1360 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1361 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1362 		/* Read watermark not used, 128 bytes for write. */
1363 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1364 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1365 		if (BGE_IS_5714_FAMILY(sc)) {
1366 			/* 256 bytes for read and write. */
1367 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1368 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1369 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1370 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1371 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1372 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1373 			/*
1374 			 * In the BCM5703, the DMA read watermark should
1375 			 * be set to less than or equal to the maximum
1376 			 * memory read byte count of the PCI-X command
1377 			 * register.
1378 			 */
1379 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1380 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1381 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1382 			/* 1536 bytes for read, 384 bytes for write. */
1383 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1384 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1385 		} else {
1386 			/* 384 bytes for read and write. */
1387 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1388 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1389 			    0x0F;
1390 		}
1391 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1392 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1393 			uint32_t tmp;
1394 
1395 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1397 			if (tmp == 6 || tmp == 7)
1398 				dma_rw_ctl |=
1399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1400 
1401 			/* Set PCI-X DMA write workaround. */
1402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1403 		}
1404 	} else {
1405 		/* Conventional PCI bus: 256 bytes for read and write. */
1406 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1407 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1408 
1409 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1410 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1411 			dma_rw_ctl |= 0x0F;
1412 	}
1413 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1414 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1415 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1416 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1417 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1418 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1419 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1420 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1421 
1422 	/*
1423 	 * Set up general mode register.
1424 	 */
1425 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1426 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1427 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1428 
1429 	/*
1430 	 * BCM5701 B5 have a bug causing data corruption when using
1431 	 * 64-bit DMA reads, which can be terminated early and then
1432 	 * completed later as 32-bit accesses, in combination with
1433 	 * certain bridges.
1434 	 */
1435 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1436 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1437 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1438 
1439 	/*
1440 	 * Tell the firmware the driver is running
1441 	 */
1442 	if (sc->bge_asf_mode & ASF_STACKUP)
1443 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1444 
1445 	/*
1446 	 * Disable memory write invalidate.  Apparently it is not supported
1447 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1448 	 * as these chips need it even when using MSI.
1449 	 */
1450 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1451 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1452 
1453 	/* Set the timer prescaler (always 66Mhz) */
1454 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1455 
1456 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1457 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1458 		DELAY(40);	/* XXX */
1459 
1460 		/* Put PHY into ready state */
1461 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1462 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1463 		DELAY(40);
1464 	}
1465 
1466 	return (0);
1467 }
1468 
1469 static int
1470 bge_blockinit(struct bge_softc *sc)
1471 {
1472 	struct bge_rcb *rcb;
1473 	bus_size_t vrcb;
1474 	bge_hostaddr taddr;
1475 	uint32_t val;
1476 	int i;
1477 
1478 	/*
1479 	 * Initialize the memory window pointer register so that
1480 	 * we can access the first 32K of internal NIC RAM. This will
1481 	 * allow us to set up the TX send ring RCBs and the RX return
1482 	 * ring RCBs, plus other things which live in NIC memory.
1483 	 */
1484 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1485 
1486 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1487 
1488 	if (!(BGE_IS_5705_PLUS(sc))) {
1489 		/* Configure mbuf memory pool */
1490 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1491 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1492 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1493 		else
1494 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1495 
1496 		/* Configure DMA resource pool */
1497 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1498 		    BGE_DMA_DESCRIPTORS);
1499 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1500 	}
1501 
1502 	/* Configure mbuf pool watermarks */
1503 	if (!BGE_IS_5705_PLUS(sc)) {
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1505 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1507 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1509 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1510 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1511 	} else {
1512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1515 	}
1516 
1517 	/* Configure DMA resource watermarks */
1518 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1519 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1520 
1521 	/* Enable buffer manager */
1522 	if (!(BGE_IS_5705_PLUS(sc))) {
1523 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1524 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1525 
1526 		/* Poll for buffer manager start indication */
1527 		for (i = 0; i < BGE_TIMEOUT; i++) {
1528 			DELAY(10);
1529 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1530 				break;
1531 		}
1532 
1533 		if (i == BGE_TIMEOUT) {
1534 			device_printf(sc->bge_dev,
1535 			    "buffer manager failed to start\n");
1536 			return (ENXIO);
1537 		}
1538 	}
1539 
1540 	/* Enable flow-through queues */
1541 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1542 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1543 
1544 	/* Wait until queue initialization is complete */
1545 	for (i = 0; i < BGE_TIMEOUT; i++) {
1546 		DELAY(10);
1547 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1548 			break;
1549 	}
1550 
1551 	if (i == BGE_TIMEOUT) {
1552 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1553 		return (ENXIO);
1554 	}
1555 
1556 	/* Initialize the standard RX ring control block */
1557 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1558 	rcb->bge_hostaddr.bge_addr_lo =
1559 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1560 	rcb->bge_hostaddr.bge_addr_hi =
1561 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1562 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1563 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1564 	if (BGE_IS_5705_PLUS(sc))
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	else
1567 		rcb->bge_maxlen_flags =
1568 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1569 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1570 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1571 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1572 
1573 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1574 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1575 
1576 	/*
1577 	 * Initialize the jumbo RX ring control block
1578 	 * We set the 'ring disabled' bit in the flags
1579 	 * field until we're actually ready to start
1580 	 * using this ring (i.e. once we set the MTU
1581 	 * high enough to require it).
1582 	 */
1583 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1584 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1585 
1586 		rcb->bge_hostaddr.bge_addr_lo =
1587 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588 		rcb->bge_hostaddr.bge_addr_hi =
1589 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1590 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1591 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1592 		    BUS_DMASYNC_PREREAD);
1593 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1594 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1595 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1597 		    rcb->bge_hostaddr.bge_addr_hi);
1598 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1599 		    rcb->bge_hostaddr.bge_addr_lo);
1600 
1601 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1602 		    rcb->bge_maxlen_flags);
1603 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1604 
1605 		/* Set up dummy disabled mini ring RCB */
1606 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1607 		rcb->bge_maxlen_flags =
1608 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1609 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 	}
1612 
1613 	/*
1614 	 * Set the BD ring replentish thresholds. The recommended
1615 	 * values are 1/8th the number of descriptors allocated to
1616 	 * each ring.
1617 	 * XXX The 5754 requires a lower threshold, so it might be a
1618 	 * requirement of all 575x family chips.  The Linux driver sets
1619 	 * the lower threshold for all 5705 family chips as well, but there
1620 	 * are reports that it might not need to be so strict.
1621 	 *
1622 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1623 	 * well.
1624 	 */
1625 	if (BGE_IS_5705_PLUS(sc))
1626 		val = 8;
1627 	else
1628 		val = BGE_STD_RX_RING_CNT / 8;
1629 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1630 	if (BGE_IS_JUMBO_CAPABLE(sc))
1631 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1632 		    BGE_JUMBO_RX_RING_CNT/8);
1633 
1634 	/*
1635 	 * Disable all unused send rings by setting the 'ring disabled'
1636 	 * bit in the flags field of all the TX send ring control blocks.
1637 	 * These are located in NIC memory.
1638 	 */
1639 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1640 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1641 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1643 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1644 		vrcb += sizeof(struct bge_rcb);
1645 	}
1646 
1647 	/* Configure TX RCB 0 (we use only the first ring) */
1648 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1649 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1650 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1651 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1652 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1653 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1654 	if (!(BGE_IS_5705_PLUS(sc)))
1655 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1657 
1658 	/* Disable all unused RX return rings */
1659 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1661 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1662 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1663 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1664 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1665 		    BGE_RCB_FLAG_RING_DISABLED));
1666 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1667 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1668 		    (i * (sizeof(uint64_t))), 0);
1669 		vrcb += sizeof(struct bge_rcb);
1670 	}
1671 
1672 	/* Initialize RX ring indexes */
1673 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1674 	if (BGE_IS_JUMBO_CAPABLE(sc))
1675 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1676 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1677 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1678 
1679 	/*
1680 	 * Set up RX return ring 0
1681 	 * Note that the NIC address for RX return rings is 0x00000000.
1682 	 * The return rings live entirely within the host, so the
1683 	 * nicaddr field in the RCB isn't used.
1684 	 */
1685 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1686 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1687 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1688 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1689 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1690 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1691 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1692 
1693 	/* Set random backoff seed for TX */
1694 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1695 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1696 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1697 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1698 	    BGE_TX_BACKOFF_SEED_MASK);
1699 
1700 	/* Set inter-packet gap */
1701 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1702 
1703 	/*
1704 	 * Specify which ring to use for packets that don't match
1705 	 * any RX rules.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1708 
1709 	/*
1710 	 * Configure number of RX lists. One interrupt distribution
1711 	 * list, sixteen active lists, one bad frames class.
1712 	 */
1713 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1714 
1715 	/* Inialize RX list placement stats mask. */
1716 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1717 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1718 
1719 	/* Disable host coalescing until we get it set up */
1720 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1721 
1722 	/* Poll to make sure it's shut down. */
1723 	for (i = 0; i < BGE_TIMEOUT; i++) {
1724 		DELAY(10);
1725 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1726 			break;
1727 	}
1728 
1729 	if (i == BGE_TIMEOUT) {
1730 		device_printf(sc->bge_dev,
1731 		    "host coalescing engine failed to idle\n");
1732 		return (ENXIO);
1733 	}
1734 
1735 	/* Set up host coalescing defaults */
1736 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1737 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1740 	if (!(BGE_IS_5705_PLUS(sc))) {
1741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1742 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1743 	}
1744 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1745 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1746 
1747 	/* Set up address of statistics block */
1748 	if (!(BGE_IS_5705_PLUS(sc))) {
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1750 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1751 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1752 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1753 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1754 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1755 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1756 	}
1757 
1758 	/* Set up address of status block */
1759 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1760 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1761 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1762 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1763 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1764 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1765 
1766 	/* Set up status block size. */
1767 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1768 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1769 		val = BGE_STATBLKSZ_FULL;
1770 	else
1771 		val = BGE_STATBLKSZ_32BYTE;
1772 
1773 	/* Turn on host coalescing state machine */
1774 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1775 
1776 	/* Turn on RX BD completion state machine and enable attentions */
1777 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1778 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1779 
1780 	/* Turn on RX list placement state machine */
1781 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1782 
1783 	/* Turn on RX list selector state machine. */
1784 	if (!(BGE_IS_5705_PLUS(sc)))
1785 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1786 
1787 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1788 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1789 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1790 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1791 
1792 	if (sc->bge_flags & BGE_FLAG_TBI)
1793 		val |= BGE_PORTMODE_TBI;
1794 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1795 		val |= BGE_PORTMODE_GMII;
1796 	else
1797 		val |= BGE_PORTMODE_MII;
1798 
1799 	/* Turn on DMA, clear stats */
1800 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1801 
1802 	/* Set misc. local control, enable interrupts on attentions */
1803 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1804 
1805 #ifdef notdef
1806 	/* Assert GPIO pins for PHY reset */
1807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1808 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1809 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1810 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1811 #endif
1812 
1813 	/* Turn on DMA completion state machine */
1814 	if (!(BGE_IS_5705_PLUS(sc)))
1815 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1816 
1817 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1818 
1819 	/* Enable host coalescing bug fix. */
1820 	if (BGE_IS_5755_PLUS(sc))
1821 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1822 
1823 	/* Turn on write DMA state machine */
1824 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1825 	DELAY(40);
1826 
1827 	/* Turn on read DMA state machine */
1828 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1830 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1831 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1832 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1833 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1834 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1835 	if (sc->bge_flags & BGE_FLAG_PCIE)
1836 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1837 	if (sc->bge_flags & BGE_FLAG_TSO)
1838 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1839 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1840 	DELAY(40);
1841 
1842 	/* Turn on RX data completion state machine */
1843 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1844 
1845 	/* Turn on RX BD initiator state machine */
1846 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1847 
1848 	/* Turn on RX data and RX BD initiator state machine */
1849 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1850 
1851 	/* Turn on Mbuf cluster free state machine */
1852 	if (!(BGE_IS_5705_PLUS(sc)))
1853 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1854 
1855 	/* Turn on send BD completion state machine */
1856 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1857 
1858 	/* Turn on send data completion state machine */
1859 	val = BGE_SDCMODE_ENABLE;
1860 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1861 		val |= BGE_SDCMODE_CDELAY;
1862 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1863 
1864 	/* Turn on send data initiator state machine */
1865 	if (sc->bge_flags & BGE_FLAG_TSO)
1866 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1867 	else
1868 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1869 
1870 	/* Turn on send BD initiator state machine */
1871 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1872 
1873 	/* Turn on send BD selector state machine */
1874 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1875 
1876 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1877 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1878 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1879 
1880 	/* ack/clear link change events */
1881 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1882 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1883 	    BGE_MACSTAT_LINK_CHANGED);
1884 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1885 
1886 	/* Enable PHY auto polling (for MII/GMII only) */
1887 	if (sc->bge_flags & BGE_FLAG_TBI) {
1888 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1889 	} else {
1890 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1891 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1892 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1893 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1894 			    BGE_EVTENB_MI_INTERRUPT);
1895 	}
1896 
1897 	/*
1898 	 * Clear any pending link state attention.
1899 	 * Otherwise some link state change events may be lost until attention
1900 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1901 	 * It's not necessary on newer BCM chips - perhaps enabling link
1902 	 * state change attentions implies clearing pending attention.
1903 	 */
1904 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1905 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1906 	    BGE_MACSTAT_LINK_CHANGED);
1907 
1908 	/* Enable link state change attentions. */
1909 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1910 
1911 	return (0);
1912 }
1913 
1914 const struct bge_revision *
1915 bge_lookup_rev(uint32_t chipid)
1916 {
1917 	const struct bge_revision *br;
1918 
1919 	for (br = bge_revisions; br->br_name != NULL; br++) {
1920 		if (br->br_chipid == chipid)
1921 			return (br);
1922 	}
1923 
1924 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1925 		if (br->br_chipid == BGE_ASICREV(chipid))
1926 			return (br);
1927 	}
1928 
1929 	return (NULL);
1930 }
1931 
1932 const struct bge_vendor *
1933 bge_lookup_vendor(uint16_t vid)
1934 {
1935 	const struct bge_vendor *v;
1936 
1937 	for (v = bge_vendors; v->v_name != NULL; v++)
1938 		if (v->v_id == vid)
1939 			return (v);
1940 
1941 	panic("%s: unknown vendor %d", __func__, vid);
1942 	return (NULL);
1943 }
1944 
1945 /*
1946  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1947  * against our list and return its name if we find a match.
1948  *
1949  * Note that since the Broadcom controller contains VPD support, we
1950  * try to get the device name string from the controller itself instead
1951  * of the compiled-in string. It guarantees we'll always announce the
1952  * right product name. We fall back to the compiled-in string when
1953  * VPD is unavailable or corrupt.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958 	const struct bge_type *t = bge_devs;
1959 	struct bge_softc *sc = device_get_softc(dev);
1960 	uint16_t vid, did;
1961 
1962 	sc->bge_dev = dev;
1963 	vid = pci_get_vendor(dev);
1964 	did = pci_get_device(dev);
1965 	while(t->bge_vid != 0) {
1966 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1967 			char model[64], buf[96];
1968 			const struct bge_revision *br;
1969 			const struct bge_vendor *v;
1970 			uint32_t id;
1971 
1972 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1973 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1974 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1975 				id = pci_read_config(dev,
1976 				    BGE_PCI_PRODID_ASICREV, 4);
1977 			br = bge_lookup_rev(id);
1978 			v = bge_lookup_vendor(vid);
1979 			{
1980 #if __FreeBSD_version > 700024
1981 				const char *pname;
1982 
1983 				if (bge_has_eaddr(sc) &&
1984 				    pci_get_vpd_ident(dev, &pname) == 0)
1985 					snprintf(model, 64, "%s", pname);
1986 				else
1987 #endif
1988 					snprintf(model, 64, "%s %s",
1989 					    v->v_name,
1990 					    br != NULL ? br->br_name :
1991 					    "NetXtreme Ethernet Controller");
1992 			}
1993 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1994 			    br != NULL ? "" : "unknown ", id);
1995 			device_set_desc_copy(dev, buf);
1996 			return (0);
1997 		}
1998 		t++;
1999 	}
2000 
2001 	return (ENXIO);
2002 }
2003 
2004 static void
2005 bge_dma_free(struct bge_softc *sc)
2006 {
2007 	int i;
2008 
2009 	/* Destroy DMA maps for RX buffers. */
2010 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2011 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2012 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2013 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2014 	}
2015 	if (sc->bge_cdata.bge_rx_std_sparemap)
2016 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2017 		    sc->bge_cdata.bge_rx_std_sparemap);
2018 
2019 	/* Destroy DMA maps for jumbo RX buffers. */
2020 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2021 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2022 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2023 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2024 	}
2025 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2026 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2027 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2028 
2029 	/* Destroy DMA maps for TX buffers. */
2030 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2031 		if (sc->bge_cdata.bge_tx_dmamap[i])
2032 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2033 			    sc->bge_cdata.bge_tx_dmamap[i]);
2034 	}
2035 
2036 	if (sc->bge_cdata.bge_rx_mtag)
2037 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2038 	if (sc->bge_cdata.bge_tx_mtag)
2039 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2040 
2041 
2042 	/* Destroy standard RX ring. */
2043 	if (sc->bge_cdata.bge_rx_std_ring_map)
2044 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2045 		    sc->bge_cdata.bge_rx_std_ring_map);
2046 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2047 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2048 		    sc->bge_ldata.bge_rx_std_ring,
2049 		    sc->bge_cdata.bge_rx_std_ring_map);
2050 
2051 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2052 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2053 
2054 	/* Destroy jumbo RX ring. */
2055 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2056 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2057 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2058 
2059 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2060 	    sc->bge_ldata.bge_rx_jumbo_ring)
2061 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2062 		    sc->bge_ldata.bge_rx_jumbo_ring,
2063 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2064 
2065 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2066 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2067 
2068 	/* Destroy RX return ring. */
2069 	if (sc->bge_cdata.bge_rx_return_ring_map)
2070 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2071 		    sc->bge_cdata.bge_rx_return_ring_map);
2072 
2073 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2074 	    sc->bge_ldata.bge_rx_return_ring)
2075 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2076 		    sc->bge_ldata.bge_rx_return_ring,
2077 		    sc->bge_cdata.bge_rx_return_ring_map);
2078 
2079 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2080 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2081 
2082 	/* Destroy TX ring. */
2083 	if (sc->bge_cdata.bge_tx_ring_map)
2084 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2085 		    sc->bge_cdata.bge_tx_ring_map);
2086 
2087 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2088 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2089 		    sc->bge_ldata.bge_tx_ring,
2090 		    sc->bge_cdata.bge_tx_ring_map);
2091 
2092 	if (sc->bge_cdata.bge_tx_ring_tag)
2093 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2094 
2095 	/* Destroy status block. */
2096 	if (sc->bge_cdata.bge_status_map)
2097 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2098 		    sc->bge_cdata.bge_status_map);
2099 
2100 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2101 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2102 		    sc->bge_ldata.bge_status_block,
2103 		    sc->bge_cdata.bge_status_map);
2104 
2105 	if (sc->bge_cdata.bge_status_tag)
2106 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2107 
2108 	/* Destroy statistics block. */
2109 	if (sc->bge_cdata.bge_stats_map)
2110 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2111 		    sc->bge_cdata.bge_stats_map);
2112 
2113 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2114 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2115 		    sc->bge_ldata.bge_stats,
2116 		    sc->bge_cdata.bge_stats_map);
2117 
2118 	if (sc->bge_cdata.bge_stats_tag)
2119 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2120 
2121 	/* Destroy the parent tag. */
2122 	if (sc->bge_cdata.bge_parent_tag)
2123 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2124 }
2125 
2126 static int
2127 bge_dma_alloc(device_t dev)
2128 {
2129 	struct bge_dmamap_arg ctx;
2130 	struct bge_softc *sc;
2131 	bus_addr_t lowaddr;
2132 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2133 	int i, error;
2134 
2135 	sc = device_get_softc(dev);
2136 
2137 	lowaddr = BUS_SPACE_MAXADDR;
2138 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2139 		lowaddr = BGE_DMA_MAXADDR;
2140 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2141 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2142 	/*
2143 	 * Allocate the parent bus DMA tag appropriate for PCI.
2144 	 */
2145 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2146 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2147 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2148 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2149 
2150 	if (error != 0) {
2151 		device_printf(sc->bge_dev,
2152 		    "could not allocate parent dma tag\n");
2153 		return (ENOMEM);
2154 	}
2155 
2156 	/*
2157 	 * Create tag for Tx mbufs.
2158 	 */
2159 	if (sc->bge_flags & BGE_FLAG_TSO) {
2160 		txsegsz = BGE_TSOSEG_SZ;
2161 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2162 	} else {
2163 		txsegsz = MCLBYTES;
2164 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2165 	}
2166 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2167 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2168 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2169 	    &sc->bge_cdata.bge_tx_mtag);
2170 
2171 	if (error) {
2172 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2173 		return (ENOMEM);
2174 	}
2175 
2176 	/*
2177 	 * Create tag for Rx mbufs.
2178 	 */
2179 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2180 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2181 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2182 
2183 	if (error) {
2184 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2185 		return (ENOMEM);
2186 	}
2187 
2188 	/* Create DMA maps for RX buffers. */
2189 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2190 	    &sc->bge_cdata.bge_rx_std_sparemap);
2191 	if (error) {
2192 		device_printf(sc->bge_dev,
2193 		    "can't create spare DMA map for RX\n");
2194 		return (ENOMEM);
2195 	}
2196 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2197 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2198 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2199 		if (error) {
2200 			device_printf(sc->bge_dev,
2201 			    "can't create DMA map for RX\n");
2202 			return (ENOMEM);
2203 		}
2204 	}
2205 
2206 	/* Create DMA maps for TX buffers. */
2207 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2208 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2209 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2210 		if (error) {
2211 			device_printf(sc->bge_dev,
2212 			    "can't create DMA map for TX\n");
2213 			return (ENOMEM);
2214 		}
2215 	}
2216 
2217 	/* Create tag for standard RX ring. */
2218 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2219 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2220 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2221 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2222 
2223 	if (error) {
2224 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2225 		return (ENOMEM);
2226 	}
2227 
2228 	/* Allocate DMA'able memory for standard RX ring. */
2229 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2230 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2231 	    &sc->bge_cdata.bge_rx_std_ring_map);
2232 	if (error)
2233 		return (ENOMEM);
2234 
2235 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2236 
2237 	/* Load the address of the standard RX ring. */
2238 	ctx.bge_maxsegs = 1;
2239 	ctx.sc = sc;
2240 
2241 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2242 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2243 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2244 
2245 	if (error)
2246 		return (ENOMEM);
2247 
2248 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2249 
2250 	/* Create tags for jumbo mbufs. */
2251 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2252 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2253 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2254 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2255 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2256 		if (error) {
2257 			device_printf(sc->bge_dev,
2258 			    "could not allocate jumbo dma tag\n");
2259 			return (ENOMEM);
2260 		}
2261 
2262 		/* Create tag for jumbo RX ring. */
2263 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2264 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2265 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2266 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2267 
2268 		if (error) {
2269 			device_printf(sc->bge_dev,
2270 			    "could not allocate jumbo ring dma tag\n");
2271 			return (ENOMEM);
2272 		}
2273 
2274 		/* Allocate DMA'able memory for jumbo RX ring. */
2275 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2276 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2277 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2278 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2279 		if (error)
2280 			return (ENOMEM);
2281 
2282 		/* Load the address of the jumbo RX ring. */
2283 		ctx.bge_maxsegs = 1;
2284 		ctx.sc = sc;
2285 
2286 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2287 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2288 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2289 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2290 
2291 		if (error)
2292 			return (ENOMEM);
2293 
2294 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2295 
2296 		/* Create DMA maps for jumbo RX buffers. */
2297 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2298 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2299 		if (error) {
2300 			device_printf(sc->bge_dev,
2301 			    "can't create spare DMA map for jumbo RX\n");
2302 			return (ENOMEM);
2303 		}
2304 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2305 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2306 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2307 			if (error) {
2308 				device_printf(sc->bge_dev,
2309 				    "can't create DMA map for jumbo RX\n");
2310 				return (ENOMEM);
2311 			}
2312 		}
2313 
2314 	}
2315 
2316 	/* Create tag for RX return ring. */
2317 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2318 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2319 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2320 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2321 
2322 	if (error) {
2323 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2324 		return (ENOMEM);
2325 	}
2326 
2327 	/* Allocate DMA'able memory for RX return ring. */
2328 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2329 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2330 	    &sc->bge_cdata.bge_rx_return_ring_map);
2331 	if (error)
2332 		return (ENOMEM);
2333 
2334 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2335 	    BGE_RX_RTN_RING_SZ(sc));
2336 
2337 	/* Load the address of the RX return ring. */
2338 	ctx.bge_maxsegs = 1;
2339 	ctx.sc = sc;
2340 
2341 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2342 	    sc->bge_cdata.bge_rx_return_ring_map,
2343 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2344 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2345 
2346 	if (error)
2347 		return (ENOMEM);
2348 
2349 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2350 
2351 	/* Create tag for TX ring. */
2352 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2353 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2354 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2355 	    &sc->bge_cdata.bge_tx_ring_tag);
2356 
2357 	if (error) {
2358 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2359 		return (ENOMEM);
2360 	}
2361 
2362 	/* Allocate DMA'able memory for TX ring. */
2363 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2364 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2365 	    &sc->bge_cdata.bge_tx_ring_map);
2366 	if (error)
2367 		return (ENOMEM);
2368 
2369 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2370 
2371 	/* Load the address of the TX ring. */
2372 	ctx.bge_maxsegs = 1;
2373 	ctx.sc = sc;
2374 
2375 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2376 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2377 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2378 
2379 	if (error)
2380 		return (ENOMEM);
2381 
2382 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2383 
2384 	/*
2385 	 * Create tag for status block.
2386 	 * Because we only use single Tx/Rx/Rx return ring, use
2387 	 * minimum status block size except BCM5700 AX/BX which
2388 	 * seems to want to see full status block size regardless
2389 	 * of configured number of ring.
2390 	 */
2391 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2392 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2393 		sbsz = BGE_STATUS_BLK_SZ;
2394 	else
2395 		sbsz = 32;
2396 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2397 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2398 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2399 
2400 	if (error) {
2401 		device_printf(sc->bge_dev,
2402 		    "could not allocate status dma tag\n");
2403 		return (ENOMEM);
2404 	}
2405 
2406 	/* Allocate DMA'able memory for status block. */
2407 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2408 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2409 	    &sc->bge_cdata.bge_status_map);
2410 	if (error)
2411 		return (ENOMEM);
2412 
2413 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2414 
2415 	/* Load the address of the status block. */
2416 	ctx.sc = sc;
2417 	ctx.bge_maxsegs = 1;
2418 
2419 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2420 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2421 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2422 
2423 	if (error)
2424 		return (ENOMEM);
2425 
2426 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2427 
2428 	/* Create tag for statistics block. */
2429 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2430 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2431 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2432 	    &sc->bge_cdata.bge_stats_tag);
2433 
2434 	if (error) {
2435 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2436 		return (ENOMEM);
2437 	}
2438 
2439 	/* Allocate DMA'able memory for statistics block. */
2440 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2441 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2442 	    &sc->bge_cdata.bge_stats_map);
2443 	if (error)
2444 		return (ENOMEM);
2445 
2446 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2447 
2448 	/* Load the address of the statstics block. */
2449 	ctx.sc = sc;
2450 	ctx.bge_maxsegs = 1;
2451 
2452 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2453 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2454 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2455 
2456 	if (error)
2457 		return (ENOMEM);
2458 
2459 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2460 
2461 	return (0);
2462 }
2463 
2464 /*
2465  * Return true if this device has more than one port.
2466  */
2467 static int
2468 bge_has_multiple_ports(struct bge_softc *sc)
2469 {
2470 	device_t dev = sc->bge_dev;
2471 	u_int b, d, f, fscan, s;
2472 
2473 	d = pci_get_domain(dev);
2474 	b = pci_get_bus(dev);
2475 	s = pci_get_slot(dev);
2476 	f = pci_get_function(dev);
2477 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2478 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2479 			return (1);
2480 	return (0);
2481 }
2482 
2483 /*
2484  * Return true if MSI can be used with this device.
2485  */
2486 static int
2487 bge_can_use_msi(struct bge_softc *sc)
2488 {
2489 	int can_use_msi = 0;
2490 
2491 	switch (sc->bge_asicrev) {
2492 	case BGE_ASICREV_BCM5714_A0:
2493 	case BGE_ASICREV_BCM5714:
2494 		/*
2495 		 * Apparently, MSI doesn't work when these chips are
2496 		 * configured in single-port mode.
2497 		 */
2498 		if (bge_has_multiple_ports(sc))
2499 			can_use_msi = 1;
2500 		break;
2501 	case BGE_ASICREV_BCM5750:
2502 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2503 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2504 			can_use_msi = 1;
2505 		break;
2506 	default:
2507 		if (BGE_IS_575X_PLUS(sc))
2508 			can_use_msi = 1;
2509 	}
2510 	return (can_use_msi);
2511 }
2512 
2513 static int
2514 bge_attach(device_t dev)
2515 {
2516 	struct ifnet *ifp;
2517 	struct bge_softc *sc;
2518 	uint32_t hwcfg = 0, misccfg;
2519 	u_char eaddr[ETHER_ADDR_LEN];
2520 	int error, msicount, reg, rid, trys;
2521 
2522 	sc = device_get_softc(dev);
2523 	sc->bge_dev = dev;
2524 
2525 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2526 
2527 	/*
2528 	 * Map control/status registers.
2529 	 */
2530 	pci_enable_busmaster(dev);
2531 
2532 	rid = BGE_PCI_BAR0;
2533 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2534 	    RF_ACTIVE);
2535 
2536 	if (sc->bge_res == NULL) {
2537 		device_printf (sc->bge_dev, "couldn't map memory\n");
2538 		error = ENXIO;
2539 		goto fail;
2540 	}
2541 
2542 	/* Save various chip information. */
2543 	sc->bge_chipid =
2544 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2545 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2546 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2547 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2548 		    4);
2549 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2550 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2551 
2552 	/*
2553 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2554 	 * 5705 A0 and A1 chips.
2555 	 */
2556 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2557 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2558 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2559 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2560 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2561 
2562 	if (bge_has_eaddr(sc))
2563 		sc->bge_flags |= BGE_FLAG_EADDR;
2564 
2565 	/* Save chipset family. */
2566 	switch (sc->bge_asicrev) {
2567 	case BGE_ASICREV_BCM5755:
2568 	case BGE_ASICREV_BCM5761:
2569 	case BGE_ASICREV_BCM5784:
2570 	case BGE_ASICREV_BCM5785:
2571 	case BGE_ASICREV_BCM5787:
2572 	case BGE_ASICREV_BCM57780:
2573 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2574 		    BGE_FLAG_5705_PLUS;
2575 		break;
2576 	case BGE_ASICREV_BCM5700:
2577 	case BGE_ASICREV_BCM5701:
2578 	case BGE_ASICREV_BCM5703:
2579 	case BGE_ASICREV_BCM5704:
2580 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2581 		break;
2582 	case BGE_ASICREV_BCM5714_A0:
2583 	case BGE_ASICREV_BCM5780:
2584 	case BGE_ASICREV_BCM5714:
2585 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2586 		/* FALLTHROUGH */
2587 	case BGE_ASICREV_BCM5750:
2588 	case BGE_ASICREV_BCM5752:
2589 	case BGE_ASICREV_BCM5906:
2590 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2591 		/* FALLTHROUGH */
2592 	case BGE_ASICREV_BCM5705:
2593 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2594 		break;
2595 	}
2596 
2597 	/* Set various bug flags. */
2598 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2599 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2600 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2601 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2602 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2603 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2604 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2605 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2606 	if (pci_get_subvendor(dev) == DELL_VENDORID)
2607 		sc->bge_flags |= BGE_FLAG_NO_3LED;
2608 	if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
2609 		sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
2610 	if (BGE_IS_5705_PLUS(sc) &&
2611 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2612 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2613 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2614 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2615 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2616 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2617 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2618 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2619 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2620 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2621 	}
2622 
2623 	/*
2624 	 * All controllers that are not 5755 or higher have 4GB
2625 	 * boundary DMA bug.
2626 	 * Whenever an address crosses a multiple of the 4GB boundary
2627 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2628 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2629 	 * state machine will lockup and cause the device to hang.
2630 	 */
2631 	if (BGE_IS_5755_PLUS(sc) == 0)
2632 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2633 
2634 	/*
2635 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2636 	 * but I do not know the DEVICEID for the 5788M.
2637 	 */
2638 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2639 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2640 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2641 		sc->bge_flags |= BGE_FLAG_5788;
2642 
2643 	/*
2644 	 * Some controllers seem to require a special firmware to use
2645 	 * TSO. But the firmware is not available to FreeBSD and Linux
2646 	 * claims that the TSO performed by the firmware is slower than
2647 	 * hardware based TSO. Moreover the firmware based TSO has one
2648 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2649 	 * header is greater than 80 bytes. The workaround for the TSO
2650 	 * bug exist but it seems it's too expensive than not using
2651 	 * TSO at all. Some hardwares also have the TSO bug so limit
2652 	 * the TSO to the controllers that are not affected TSO issues
2653 	 * (e.g. 5755 or higher).
2654 	 */
2655 	if (BGE_IS_5755_PLUS(sc)) {
2656 		/*
2657 		 * BCM5754 and BCM5787 shares the same ASIC id so
2658 		 * explicit device id check is required.
2659 		 * Due to unknown reason TSO does not work on BCM5755M.
2660 		 */
2661 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2662 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
2663 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
2664 			sc->bge_flags |= BGE_FLAG_TSO;
2665 	}
2666 
2667   	/*
2668 	 * Check if this is a PCI-X or PCI Express device.
2669   	 */
2670 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2671 		/*
2672 		 * Found a PCI Express capabilities register, this
2673 		 * must be a PCI Express device.
2674 		 */
2675 		sc->bge_flags |= BGE_FLAG_PCIE;
2676 		sc->bge_expcap = reg;
2677 		if (pci_get_max_read_req(dev) != 4096)
2678 			pci_set_max_read_req(dev, 4096);
2679 	} else {
2680 		/*
2681 		 * Check if the device is in PCI-X Mode.
2682 		 * (This bit is not valid on PCI Express controllers.)
2683 		 */
2684 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2685 			sc->bge_pcixcap = reg;
2686 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2687 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2688 			sc->bge_flags |= BGE_FLAG_PCIX;
2689 	}
2690 
2691 	/*
2692 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2693 	 * not actually a MAC controller bug but an issue with the embedded
2694 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2695 	 */
2696 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2697 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2698 	/*
2699 	 * Allocate the interrupt, using MSI if possible.  These devices
2700 	 * support 8 MSI messages, but only the first one is used in
2701 	 * normal operation.
2702 	 */
2703 	rid = 0;
2704 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2705 		sc->bge_msicap = reg;
2706 		if (bge_can_use_msi(sc)) {
2707 			msicount = pci_msi_count(dev);
2708 			if (msicount > 1)
2709 				msicount = 1;
2710 		} else
2711 			msicount = 0;
2712 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2713 			rid = 1;
2714 			sc->bge_flags |= BGE_FLAG_MSI;
2715 		}
2716 	}
2717 
2718 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2719 	    RF_SHAREABLE | RF_ACTIVE);
2720 
2721 	if (sc->bge_irq == NULL) {
2722 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2723 		error = ENXIO;
2724 		goto fail;
2725 	}
2726 
2727 	if (bootverbose)
2728 		device_printf(dev,
2729 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2730 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2731 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2732 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2733 
2734 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2735 
2736 	/* Try to reset the chip. */
2737 	if (bge_reset(sc)) {
2738 		device_printf(sc->bge_dev, "chip reset failed\n");
2739 		error = ENXIO;
2740 		goto fail;
2741 	}
2742 
2743 	sc->bge_asf_mode = 0;
2744 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2745 	    == BGE_MAGIC_NUMBER)) {
2746 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2747 		    & BGE_HWCFG_ASF) {
2748 			sc->bge_asf_mode |= ASF_ENABLE;
2749 			sc->bge_asf_mode |= ASF_STACKUP;
2750 			if (BGE_IS_575X_PLUS(sc))
2751 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2752 		}
2753 	}
2754 
2755 	/* Try to reset the chip again the nice way. */
2756 	bge_stop_fw(sc);
2757 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2758 	if (bge_reset(sc)) {
2759 		device_printf(sc->bge_dev, "chip reset failed\n");
2760 		error = ENXIO;
2761 		goto fail;
2762 	}
2763 
2764 	bge_sig_legacy(sc, BGE_RESET_STOP);
2765 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2766 
2767 	if (bge_chipinit(sc)) {
2768 		device_printf(sc->bge_dev, "chip initialization failed\n");
2769 		error = ENXIO;
2770 		goto fail;
2771 	}
2772 
2773 	error = bge_get_eaddr(sc, eaddr);
2774 	if (error) {
2775 		device_printf(sc->bge_dev,
2776 		    "failed to read station address\n");
2777 		error = ENXIO;
2778 		goto fail;
2779 	}
2780 
2781 	/* 5705 limits RX return ring to 512 entries. */
2782 	if (BGE_IS_5705_PLUS(sc))
2783 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2784 	else
2785 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2786 
2787 	if (bge_dma_alloc(dev)) {
2788 		device_printf(sc->bge_dev,
2789 		    "failed to allocate DMA resources\n");
2790 		error = ENXIO;
2791 		goto fail;
2792 	}
2793 
2794 	/* Set default tuneable values. */
2795 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2796 	sc->bge_rx_coal_ticks = 150;
2797 	sc->bge_tx_coal_ticks = 150;
2798 	sc->bge_rx_max_coal_bds = 10;
2799 	sc->bge_tx_max_coal_bds = 10;
2800 
2801 	/* Set up ifnet structure */
2802 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2803 	if (ifp == NULL) {
2804 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2805 		error = ENXIO;
2806 		goto fail;
2807 	}
2808 	ifp->if_softc = sc;
2809 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2810 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2811 	ifp->if_ioctl = bge_ioctl;
2812 	ifp->if_start = bge_start;
2813 	ifp->if_init = bge_init;
2814 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2815 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2816 	IFQ_SET_READY(&ifp->if_snd);
2817 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2818 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2819 	    IFCAP_VLAN_MTU;
2820 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2821 		ifp->if_hwassist |= CSUM_TSO;
2822 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
2823 	}
2824 #ifdef IFCAP_VLAN_HWCSUM
2825 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2826 #endif
2827 	ifp->if_capenable = ifp->if_capabilities;
2828 #ifdef DEVICE_POLLING
2829 	ifp->if_capabilities |= IFCAP_POLLING;
2830 #endif
2831 
2832 	/*
2833 	 * 5700 B0 chips do not support checksumming correctly due
2834 	 * to hardware bugs.
2835 	 */
2836 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2837 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2838 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2839 		ifp->if_hwassist = 0;
2840 	}
2841 
2842 	/*
2843 	 * Figure out what sort of media we have by checking the
2844 	 * hardware config word in the first 32k of NIC internal memory,
2845 	 * or fall back to examining the EEPROM if necessary.
2846 	 * Note: on some BCM5700 cards, this value appears to be unset.
2847 	 * If that's the case, we have to rely on identifying the NIC
2848 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2849 	 * SK-9D41.
2850 	 */
2851 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2852 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2853 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2854 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2855 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2856 		    sizeof(hwcfg))) {
2857 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2858 			error = ENXIO;
2859 			goto fail;
2860 		}
2861 		hwcfg = ntohl(hwcfg);
2862 	}
2863 
2864 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2865 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
2866 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2867 		if (BGE_IS_5714_FAMILY(sc))
2868 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2869 		else
2870 			sc->bge_flags |= BGE_FLAG_TBI;
2871 	}
2872 
2873 	if (sc->bge_flags & BGE_FLAG_TBI) {
2874 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2875 		    bge_ifmedia_sts);
2876 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2877 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2878 		    0, NULL);
2879 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2880 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2881 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2882 	} else {
2883 		/*
2884 		 * Do transceiver setup and tell the firmware the
2885 		 * driver is down so we can try to get access the
2886 		 * probe if ASF is running.  Retry a couple of times
2887 		 * if we get a conflict with the ASF firmware accessing
2888 		 * the PHY.
2889 		 */
2890 		trys = 0;
2891 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2892 again:
2893 		bge_asf_driver_up(sc);
2894 
2895 		if (mii_phy_probe(dev, &sc->bge_miibus,
2896 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2897 			if (trys++ < 4) {
2898 				device_printf(sc->bge_dev, "Try again\n");
2899 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2900 				    BMCR_RESET);
2901 				goto again;
2902 			}
2903 
2904 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2905 			error = ENXIO;
2906 			goto fail;
2907 		}
2908 
2909 		/*
2910 		 * Now tell the firmware we are going up after probing the PHY
2911 		 */
2912 		if (sc->bge_asf_mode & ASF_STACKUP)
2913 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2914 	}
2915 
2916 	/*
2917 	 * When using the BCM5701 in PCI-X mode, data corruption has
2918 	 * been observed in the first few bytes of some received packets.
2919 	 * Aligning the packet buffer in memory eliminates the corruption.
2920 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2921 	 * which do not support unaligned accesses, we will realign the
2922 	 * payloads by copying the received packets.
2923 	 */
2924 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2925 	    sc->bge_flags & BGE_FLAG_PCIX)
2926                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2927 
2928 	/*
2929 	 * Call MI attach routine.
2930 	 */
2931 	ether_ifattach(ifp, eaddr);
2932 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2933 
2934 	/* Tell upper layer we support long frames. */
2935 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2936 
2937 	/*
2938 	 * Hookup IRQ last.
2939 	 */
2940 #if __FreeBSD_version > 700030
2941 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2942 		/* Take advantage of single-shot MSI. */
2943 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2944 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2945 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2946 		    taskqueue_thread_enqueue, &sc->bge_tq);
2947 		if (sc->bge_tq == NULL) {
2948 			device_printf(dev, "could not create taskqueue.\n");
2949 			ether_ifdetach(ifp);
2950 			error = ENXIO;
2951 			goto fail;
2952 		}
2953 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2954 		    device_get_nameunit(sc->bge_dev));
2955 		error = bus_setup_intr(dev, sc->bge_irq,
2956 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2957 		    &sc->bge_intrhand);
2958 		if (error)
2959 			ether_ifdetach(ifp);
2960 	} else
2961 		error = bus_setup_intr(dev, sc->bge_irq,
2962 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2963 		    &sc->bge_intrhand);
2964 #else
2965 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2966 	   bge_intr, sc, &sc->bge_intrhand);
2967 #endif
2968 
2969 	if (error) {
2970 		bge_detach(dev);
2971 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2972 	}
2973 
2974 	bge_add_sysctls(sc);
2975 
2976 	return (0);
2977 
2978 fail:
2979 	bge_release_resources(sc);
2980 
2981 	return (error);
2982 }
2983 
2984 static int
2985 bge_detach(device_t dev)
2986 {
2987 	struct bge_softc *sc;
2988 	struct ifnet *ifp;
2989 
2990 	sc = device_get_softc(dev);
2991 	ifp = sc->bge_ifp;
2992 
2993 #ifdef DEVICE_POLLING
2994 	if (ifp->if_capenable & IFCAP_POLLING)
2995 		ether_poll_deregister(ifp);
2996 #endif
2997 
2998 	BGE_LOCK(sc);
2999 	bge_stop(sc);
3000 	bge_reset(sc);
3001 	BGE_UNLOCK(sc);
3002 
3003 	callout_drain(&sc->bge_stat_ch);
3004 
3005 	if (sc->bge_tq)
3006 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3007 	ether_ifdetach(ifp);
3008 
3009 	if (sc->bge_flags & BGE_FLAG_TBI) {
3010 		ifmedia_removeall(&sc->bge_ifmedia);
3011 	} else {
3012 		bus_generic_detach(dev);
3013 		device_delete_child(dev, sc->bge_miibus);
3014 	}
3015 
3016 	bge_release_resources(sc);
3017 
3018 	return (0);
3019 }
3020 
3021 static void
3022 bge_release_resources(struct bge_softc *sc)
3023 {
3024 	device_t dev;
3025 
3026 	dev = sc->bge_dev;
3027 
3028 	if (sc->bge_tq != NULL)
3029 		taskqueue_free(sc->bge_tq);
3030 
3031 	if (sc->bge_intrhand != NULL)
3032 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3033 
3034 	if (sc->bge_irq != NULL)
3035 		bus_release_resource(dev, SYS_RES_IRQ,
3036 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3037 
3038 	if (sc->bge_flags & BGE_FLAG_MSI)
3039 		pci_release_msi(dev);
3040 
3041 	if (sc->bge_res != NULL)
3042 		bus_release_resource(dev, SYS_RES_MEMORY,
3043 		    BGE_PCI_BAR0, sc->bge_res);
3044 
3045 	if (sc->bge_ifp != NULL)
3046 		if_free(sc->bge_ifp);
3047 
3048 	bge_dma_free(sc);
3049 
3050 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3051 		BGE_LOCK_DESTROY(sc);
3052 }
3053 
3054 static int
3055 bge_reset(struct bge_softc *sc)
3056 {
3057 	device_t dev;
3058 	uint32_t cachesize, command, pcistate, reset, val;
3059 	void (*write_op)(struct bge_softc *, int, int);
3060 	uint16_t devctl;
3061 	int i;
3062 
3063 	dev = sc->bge_dev;
3064 
3065 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3066 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3067 		if (sc->bge_flags & BGE_FLAG_PCIE)
3068 			write_op = bge_writemem_direct;
3069 		else
3070 			write_op = bge_writemem_ind;
3071 	} else
3072 		write_op = bge_writereg_ind;
3073 
3074 	/* Save some important PCI state. */
3075 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3076 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3077 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3078 
3079 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3080 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3081 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3082 
3083 	/* Disable fastboot on controllers that support it. */
3084 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3085 	    BGE_IS_5755_PLUS(sc)) {
3086 		if (bootverbose)
3087 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3088 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3089 	}
3090 
3091 	/*
3092 	 * Write the magic number to SRAM at offset 0xB50.
3093 	 * When firmware finishes its initialization it will
3094 	 * write ~BGE_MAGIC_NUMBER to the same location.
3095 	 */
3096 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3097 
3098 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3099 
3100 	/* XXX: Broadcom Linux driver. */
3101 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3102 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3103 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3104 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3105 			/* Prevent PCIE link training during global reset */
3106 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3107 			reset |= 1 << 29;
3108 		}
3109 	}
3110 
3111 	/*
3112 	 * Set GPHY Power Down Override to leave GPHY
3113 	 * powered up in D0 uninitialized.
3114 	 */
3115 	if (BGE_IS_5705_PLUS(sc))
3116 		reset |= 0x04000000;
3117 
3118 	/* Issue global reset */
3119 	write_op(sc, BGE_MISC_CFG, reset);
3120 
3121 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3122 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3123 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3124 		    val | BGE_VCPU_STATUS_DRV_RESET);
3125 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3126 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3127 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3128 	}
3129 
3130 	DELAY(1000);
3131 
3132 	/* XXX: Broadcom Linux driver. */
3133 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3134 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3135 			DELAY(500000); /* wait for link training to complete */
3136 			val = pci_read_config(dev, 0xC4, 4);
3137 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3138 		}
3139 		devctl = pci_read_config(dev,
3140 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3141 		/* Clear enable no snoop and disable relaxed ordering. */
3142 		devctl &= ~(PCIM_EXP_CTL_RELAXED_ORD_ENABLE |
3143 		    PCIM_EXP_CTL_NOSNOOP_ENABLE);
3144 		/* Set PCIE max payload size to 128. */
3145 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3146 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3147 		    devctl, 2);
3148 		/* Clear error status. */
3149 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3150 		    PCIM_EXP_STA_CORRECTABLE_ERROR |
3151 		    PCIM_EXP_STA_NON_FATAL_ERROR | PCIM_EXP_STA_FATAL_ERROR |
3152 		    PCIM_EXP_STA_UNSUPPORTED_REQ, 2);
3153 	}
3154 
3155 	/* Reset some of the PCI state that got zapped by reset. */
3156 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3157 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3158 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3159 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3160 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3161 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3162 	/*
3163 	 * Disable PCI-X relaxed ordering to ensure status block update
3164 	 * comes first then packet buffer DMA. Otherwise driver may
3165 	 * read stale status block.
3166 	 */
3167 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3168 		devctl = pci_read_config(dev,
3169 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3170 		devctl &= ~PCIXM_COMMAND_ERO;
3171 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3172 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3173 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3174 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3175 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3176 			    PCIXM_COMMAND_MAX_READ);
3177 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3178 		}
3179 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3180 		    devctl, 2);
3181 	}
3182 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3183 	if (BGE_IS_5714_FAMILY(sc)) {
3184 		/* This chip disables MSI on reset. */
3185 		if (sc->bge_flags & BGE_FLAG_MSI) {
3186 			val = pci_read_config(dev,
3187 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3188 			pci_write_config(dev,
3189 			    sc->bge_msicap + PCIR_MSI_CTRL,
3190 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3191 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3192 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3193 			    val | BGE_MSIMODE_ENABLE);
3194 		}
3195 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3196 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3197 	} else
3198 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3199 
3200 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3201 		for (i = 0; i < BGE_TIMEOUT; i++) {
3202 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3203 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3204 				break;
3205 			DELAY(100);
3206 		}
3207 		if (i == BGE_TIMEOUT) {
3208 			device_printf(sc->bge_dev, "reset timed out\n");
3209 			return (1);
3210 		}
3211 	} else {
3212 		/*
3213 		 * Poll until we see the 1's complement of the magic number.
3214 		 * This indicates that the firmware initialization is complete.
3215 		 * We expect this to fail if no chip containing the Ethernet
3216 		 * address is fitted though.
3217 		 */
3218 		for (i = 0; i < BGE_TIMEOUT; i++) {
3219 			DELAY(10);
3220 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3221 			if (val == ~BGE_MAGIC_NUMBER)
3222 				break;
3223 		}
3224 
3225 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3226 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3227 			    "found 0x%08x\n", val);
3228 	}
3229 
3230 	/*
3231 	 * XXX Wait for the value of the PCISTATE register to
3232 	 * return to its original pre-reset state. This is a
3233 	 * fairly good indicator of reset completion. If we don't
3234 	 * wait for the reset to fully complete, trying to read
3235 	 * from the device's non-PCI registers may yield garbage
3236 	 * results.
3237 	 */
3238 	for (i = 0; i < BGE_TIMEOUT; i++) {
3239 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3240 			break;
3241 		DELAY(10);
3242 	}
3243 
3244 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3245 		reset = bge_readmem_ind(sc, 0x7C00);
3246 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3247 	}
3248 
3249 	/* Fix up byte swapping. */
3250 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3251 	    BGE_MODECTL_BYTESWAP_DATA);
3252 
3253 	/* Tell the ASF firmware we are up */
3254 	if (sc->bge_asf_mode & ASF_STACKUP)
3255 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3256 
3257 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3258 
3259 	/*
3260 	 * The 5704 in TBI mode apparently needs some special
3261 	 * adjustment to insure the SERDES drive level is set
3262 	 * to 1.2V.
3263 	 */
3264 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3265 	    sc->bge_flags & BGE_FLAG_TBI) {
3266 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3267 		val = (val & ~0xFFF) | 0x880;
3268 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3269 	}
3270 
3271 	/* XXX: Broadcom Linux driver. */
3272 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3273 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3274 		val = CSR_READ_4(sc, 0x7C00);
3275 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3276 	}
3277 	DELAY(10000);
3278 
3279 	return(0);
3280 }
3281 
3282 static __inline void
3283 bge_rxreuse_std(struct bge_softc *sc, int i)
3284 {
3285 	struct bge_rx_bd *r;
3286 
3287 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3288 	r->bge_flags = BGE_RXBDFLAG_END;
3289 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3290 	r->bge_idx = i;
3291 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3292 }
3293 
3294 static __inline void
3295 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3296 {
3297 	struct bge_extrx_bd *r;
3298 
3299 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3300 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3301 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3302 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3303 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3304 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3305 	r->bge_idx = i;
3306 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3307 }
3308 
3309 /*
3310  * Frame reception handling. This is called if there's a frame
3311  * on the receive return list.
3312  *
3313  * Note: we have to be able to handle two possibilities here:
3314  * 1) the frame is from the jumbo receive ring
3315  * 2) the frame is from the standard receive ring
3316  */
3317 
3318 static int
3319 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3320 {
3321 	struct ifnet *ifp;
3322 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3323 	uint16_t rx_cons;
3324 
3325 	rx_cons = sc->bge_rx_saved_considx;
3326 
3327 	/* Nothing to do. */
3328 	if (rx_cons == rx_prod)
3329 		return (rx_npkts);
3330 
3331 	ifp = sc->bge_ifp;
3332 
3333 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3334 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3335 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3336 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3337 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3338 	    (MCLBYTES - ETHER_ALIGN))
3339 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3340 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3341 
3342 	while (rx_cons != rx_prod) {
3343 		struct bge_rx_bd	*cur_rx;
3344 		uint32_t		rxidx;
3345 		struct mbuf		*m = NULL;
3346 		uint16_t		vlan_tag = 0;
3347 		int			have_tag = 0;
3348 
3349 #ifdef DEVICE_POLLING
3350 		if (ifp->if_capenable & IFCAP_POLLING) {
3351 			if (sc->rxcycles <= 0)
3352 				break;
3353 			sc->rxcycles--;
3354 		}
3355 #endif
3356 
3357 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3358 
3359 		rxidx = cur_rx->bge_idx;
3360 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3361 
3362 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3363 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3364 			have_tag = 1;
3365 			vlan_tag = cur_rx->bge_vlan_tag;
3366 		}
3367 
3368 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3369 			jumbocnt++;
3370 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3371 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3372 				bge_rxreuse_jumbo(sc, rxidx);
3373 				continue;
3374 			}
3375 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3376 				bge_rxreuse_jumbo(sc, rxidx);
3377 				ifp->if_iqdrops++;
3378 				continue;
3379 			}
3380 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3381 		} else {
3382 			stdcnt++;
3383 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3384 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3385 				bge_rxreuse_std(sc, rxidx);
3386 				continue;
3387 			}
3388 			if (bge_newbuf_std(sc, rxidx) != 0) {
3389 				bge_rxreuse_std(sc, rxidx);
3390 				ifp->if_iqdrops++;
3391 				continue;
3392 			}
3393 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3394 		}
3395 
3396 		ifp->if_ipackets++;
3397 #ifndef __NO_STRICT_ALIGNMENT
3398 		/*
3399 		 * For architectures with strict alignment we must make sure
3400 		 * the payload is aligned.
3401 		 */
3402 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3403 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3404 			    cur_rx->bge_len);
3405 			m->m_data += ETHER_ALIGN;
3406 		}
3407 #endif
3408 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3409 		m->m_pkthdr.rcvif = ifp;
3410 
3411 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3412 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3413 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3414 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3415 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3416 			}
3417 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3418 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3419 				m->m_pkthdr.csum_data =
3420 				    cur_rx->bge_tcp_udp_csum;
3421 				m->m_pkthdr.csum_flags |=
3422 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3423 			}
3424 		}
3425 
3426 		/*
3427 		 * If we received a packet with a vlan tag,
3428 		 * attach that information to the packet.
3429 		 */
3430 		if (have_tag) {
3431 #if __FreeBSD_version > 700022
3432 			m->m_pkthdr.ether_vtag = vlan_tag;
3433 			m->m_flags |= M_VLANTAG;
3434 #else
3435 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3436 			if (m == NULL)
3437 				continue;
3438 #endif
3439 		}
3440 
3441 		if (holdlck != 0) {
3442 			BGE_UNLOCK(sc);
3443 			(*ifp->if_input)(ifp, m);
3444 			BGE_LOCK(sc);
3445 		} else
3446 			(*ifp->if_input)(ifp, m);
3447 		rx_npkts++;
3448 
3449 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3450 			return (rx_npkts);
3451 	}
3452 
3453 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3454 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3455 	if (stdcnt > 0)
3456 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3457 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3458 
3459 	if (jumbocnt > 0)
3460 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3461 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3462 
3463 	sc->bge_rx_saved_considx = rx_cons;
3464 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3465 	if (stdcnt)
3466 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3467 	if (jumbocnt)
3468 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3469 #ifdef notyet
3470 	/*
3471 	 * This register wraps very quickly under heavy packet drops.
3472 	 * If you need correct statistics, you can enable this check.
3473 	 */
3474 	if (BGE_IS_5705_PLUS(sc))
3475 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3476 #endif
3477 	return (rx_npkts);
3478 }
3479 
3480 static void
3481 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3482 {
3483 	struct bge_tx_bd *cur_tx = NULL;
3484 	struct ifnet *ifp;
3485 
3486 	BGE_LOCK_ASSERT(sc);
3487 
3488 	/* Nothing to do. */
3489 	if (sc->bge_tx_saved_considx == tx_cons)
3490 		return;
3491 
3492 	ifp = sc->bge_ifp;
3493 
3494 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3495 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3496 	/*
3497 	 * Go through our tx ring and free mbufs for those
3498 	 * frames that have been sent.
3499 	 */
3500 	while (sc->bge_tx_saved_considx != tx_cons) {
3501 		uint32_t		idx = 0;
3502 
3503 		idx = sc->bge_tx_saved_considx;
3504 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3505 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3506 			ifp->if_opackets++;
3507 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3508 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3509 			    sc->bge_cdata.bge_tx_dmamap[idx],
3510 			    BUS_DMASYNC_POSTWRITE);
3511 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3512 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3513 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3514 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3515 		}
3516 		sc->bge_txcnt--;
3517 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3518 	}
3519 
3520 	if (cur_tx != NULL)
3521 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3522 	if (sc->bge_txcnt == 0)
3523 		sc->bge_timer = 0;
3524 }
3525 
3526 #ifdef DEVICE_POLLING
3527 static int
3528 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3529 {
3530 	struct bge_softc *sc = ifp->if_softc;
3531 	uint16_t rx_prod, tx_cons;
3532 	uint32_t statusword;
3533 	int rx_npkts = 0;
3534 
3535 	BGE_LOCK(sc);
3536 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3537 		BGE_UNLOCK(sc);
3538 		return (rx_npkts);
3539 	}
3540 
3541 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3542 	    sc->bge_cdata.bge_status_map,
3543 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3544 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3545 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3546 
3547 	statusword = atomic_readandclear_32(
3548 	    &sc->bge_ldata.bge_status_block->bge_status);
3549 
3550 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3551 	    sc->bge_cdata.bge_status_map,
3552 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3553 
3554 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3555 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3556 		sc->bge_link_evt++;
3557 
3558 	if (cmd == POLL_AND_CHECK_STATUS)
3559 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3560 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3561 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3562 			bge_link_upd(sc);
3563 
3564 	sc->rxcycles = count;
3565 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3566 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3567 		BGE_UNLOCK(sc);
3568 		return (rx_npkts);
3569 	}
3570 	bge_txeof(sc, tx_cons);
3571 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3572 		bge_start_locked(ifp);
3573 
3574 	BGE_UNLOCK(sc);
3575 	return (rx_npkts);
3576 }
3577 #endif /* DEVICE_POLLING */
3578 
3579 static int
3580 bge_msi_intr(void *arg)
3581 {
3582 	struct bge_softc *sc;
3583 
3584 	sc = (struct bge_softc *)arg;
3585 	/*
3586 	 * This interrupt is not shared and controller already
3587 	 * disabled further interrupt.
3588 	 */
3589 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3590 	return (FILTER_HANDLED);
3591 }
3592 
3593 static void
3594 bge_intr_task(void *arg, int pending)
3595 {
3596 	struct bge_softc *sc;
3597 	struct ifnet *ifp;
3598 	uint32_t status;
3599 	uint16_t rx_prod, tx_cons;
3600 
3601 	sc = (struct bge_softc *)arg;
3602 	ifp = sc->bge_ifp;
3603 
3604 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3605 		return;
3606 
3607 	/* Get updated status block. */
3608 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3609 	    sc->bge_cdata.bge_status_map,
3610 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3611 
3612 	/* Save producer/consumer indexess. */
3613 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3614 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3615 	status = sc->bge_ldata.bge_status_block->bge_status;
3616 	sc->bge_ldata.bge_status_block->bge_status = 0;
3617 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3618 	    sc->bge_cdata.bge_status_map,
3619 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3620 	/* Let controller work. */
3621 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3622 
3623 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3624 		BGE_LOCK(sc);
3625 		bge_link_upd(sc);
3626 		BGE_UNLOCK(sc);
3627 	}
3628 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3629 		/* Check RX return ring producer/consumer. */
3630 		bge_rxeof(sc, rx_prod, 0);
3631 	}
3632 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3633 		BGE_LOCK(sc);
3634 		/* Check TX ring producer/consumer. */
3635 		bge_txeof(sc, tx_cons);
3636 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3637 			bge_start_locked(ifp);
3638 		BGE_UNLOCK(sc);
3639 	}
3640 }
3641 
3642 static void
3643 bge_intr(void *xsc)
3644 {
3645 	struct bge_softc *sc;
3646 	struct ifnet *ifp;
3647 	uint32_t statusword;
3648 	uint16_t rx_prod, tx_cons;
3649 
3650 	sc = xsc;
3651 
3652 	BGE_LOCK(sc);
3653 
3654 	ifp = sc->bge_ifp;
3655 
3656 #ifdef DEVICE_POLLING
3657 	if (ifp->if_capenable & IFCAP_POLLING) {
3658 		BGE_UNLOCK(sc);
3659 		return;
3660 	}
3661 #endif
3662 
3663 	/*
3664 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3665 	 * disable interrupts by writing nonzero like we used to, since with
3666 	 * our current organization this just gives complications and
3667 	 * pessimizations for re-enabling interrupts.  We used to have races
3668 	 * instead of the necessary complications.  Disabling interrupts
3669 	 * would just reduce the chance of a status update while we are
3670 	 * running (by switching to the interrupt-mode coalescence
3671 	 * parameters), but this chance is already very low so it is more
3672 	 * efficient to get another interrupt than prevent it.
3673 	 *
3674 	 * We do the ack first to ensure another interrupt if there is a
3675 	 * status update after the ack.  We don't check for the status
3676 	 * changing later because it is more efficient to get another
3677 	 * interrupt than prevent it, not quite as above (not checking is
3678 	 * a smaller optimization than not toggling the interrupt enable,
3679 	 * since checking doesn't involve PCI accesses and toggling require
3680 	 * the status check).  So toggling would probably be a pessimization
3681 	 * even with MSI.  It would only be needed for using a task queue.
3682 	 */
3683 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3684 
3685 	/*
3686 	 * Do the mandatory PCI flush as well as get the link status.
3687 	 */
3688 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3689 
3690 	/* Make sure the descriptor ring indexes are coherent. */
3691 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3692 	    sc->bge_cdata.bge_status_map,
3693 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3694 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3695 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3696 	sc->bge_ldata.bge_status_block->bge_status = 0;
3697 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3698 	    sc->bge_cdata.bge_status_map,
3699 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3700 
3701 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3702 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3703 	    statusword || sc->bge_link_evt)
3704 		bge_link_upd(sc);
3705 
3706 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3707 		/* Check RX return ring producer/consumer. */
3708 		bge_rxeof(sc, rx_prod, 1);
3709 	}
3710 
3711 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3712 		/* Check TX ring producer/consumer. */
3713 		bge_txeof(sc, tx_cons);
3714 	}
3715 
3716 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3717 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3718 		bge_start_locked(ifp);
3719 
3720 	BGE_UNLOCK(sc);
3721 }
3722 
3723 static void
3724 bge_asf_driver_up(struct bge_softc *sc)
3725 {
3726 	if (sc->bge_asf_mode & ASF_STACKUP) {
3727 		/* Send ASF heartbeat aprox. every 2s */
3728 		if (sc->bge_asf_count)
3729 			sc->bge_asf_count --;
3730 		else {
3731 			sc->bge_asf_count = 2;
3732 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3733 			    BGE_FW_DRV_ALIVE);
3734 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3735 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3736 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3737 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3738 		}
3739 	}
3740 }
3741 
3742 static void
3743 bge_tick(void *xsc)
3744 {
3745 	struct bge_softc *sc = xsc;
3746 	struct mii_data *mii = NULL;
3747 
3748 	BGE_LOCK_ASSERT(sc);
3749 
3750 	/* Synchronize with possible callout reset/stop. */
3751 	if (callout_pending(&sc->bge_stat_ch) ||
3752 	    !callout_active(&sc->bge_stat_ch))
3753 	    	return;
3754 
3755 	if (BGE_IS_5705_PLUS(sc))
3756 		bge_stats_update_regs(sc);
3757 	else
3758 		bge_stats_update(sc);
3759 
3760 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3761 		mii = device_get_softc(sc->bge_miibus);
3762 		/*
3763 		 * Do not touch PHY if we have link up. This could break
3764 		 * IPMI/ASF mode or produce extra input errors
3765 		 * (extra errors was reported for bcm5701 & bcm5704).
3766 		 */
3767 		if (!sc->bge_link)
3768 			mii_tick(mii);
3769 	} else {
3770 		/*
3771 		 * Since in TBI mode auto-polling can't be used we should poll
3772 		 * link status manually. Here we register pending link event
3773 		 * and trigger interrupt.
3774 		 */
3775 #ifdef DEVICE_POLLING
3776 		/* In polling mode we poll link state in bge_poll(). */
3777 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3778 #endif
3779 		{
3780 		sc->bge_link_evt++;
3781 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3782 		    sc->bge_flags & BGE_FLAG_5788)
3783 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3784 		else
3785 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3786 		}
3787 	}
3788 
3789 	bge_asf_driver_up(sc);
3790 	bge_watchdog(sc);
3791 
3792 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3793 }
3794 
3795 static void
3796 bge_stats_update_regs(struct bge_softc *sc)
3797 {
3798 	struct ifnet *ifp;
3799 
3800 	ifp = sc->bge_ifp;
3801 
3802 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3803 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3804 
3805 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3806 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3807 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3808 }
3809 
3810 static void
3811 bge_stats_update(struct bge_softc *sc)
3812 {
3813 	struct ifnet *ifp;
3814 	bus_size_t stats;
3815 	uint32_t cnt;	/* current register value */
3816 
3817 	ifp = sc->bge_ifp;
3818 
3819 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3820 
3821 #define	READ_STAT(sc, stats, stat) \
3822 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3823 
3824 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3825 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3826 	sc->bge_tx_collisions = cnt;
3827 
3828 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3829 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3830 	sc->bge_rx_discards = cnt;
3831 
3832 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3833 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3834 	sc->bge_tx_discards = cnt;
3835 
3836 #undef	READ_STAT
3837 }
3838 
3839 /*
3840  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3841  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3842  * but when such padded frames employ the bge IP/TCP checksum offload,
3843  * the hardware checksum assist gives incorrect results (possibly
3844  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3845  * If we pad such runts with zeros, the onboard checksum comes out correct.
3846  */
3847 static __inline int
3848 bge_cksum_pad(struct mbuf *m)
3849 {
3850 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3851 	struct mbuf *last;
3852 
3853 	/* If there's only the packet-header and we can pad there, use it. */
3854 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3855 	    M_TRAILINGSPACE(m) >= padlen) {
3856 		last = m;
3857 	} else {
3858 		/*
3859 		 * Walk packet chain to find last mbuf. We will either
3860 		 * pad there, or append a new mbuf and pad it.
3861 		 */
3862 		for (last = m; last->m_next != NULL; last = last->m_next);
3863 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3864 			/* Allocate new empty mbuf, pad it. Compact later. */
3865 			struct mbuf *n;
3866 
3867 			MGET(n, M_DONTWAIT, MT_DATA);
3868 			if (n == NULL)
3869 				return (ENOBUFS);
3870 			n->m_len = 0;
3871 			last->m_next = n;
3872 			last = n;
3873 		}
3874 	}
3875 
3876 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3877 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3878 	last->m_len += padlen;
3879 	m->m_pkthdr.len += padlen;
3880 
3881 	return (0);
3882 }
3883 
3884 static struct mbuf *
3885 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3886 {
3887 	struct ip *ip;
3888 	struct tcphdr *tcp;
3889 	struct mbuf *n;
3890 	uint16_t hlen;
3891 	uint32_t poff;
3892 
3893 	if (M_WRITABLE(m) == 0) {
3894 		/* Get a writable copy. */
3895 		n = m_dup(m, M_DONTWAIT);
3896 		m_freem(m);
3897 		if (n == NULL)
3898 			return (NULL);
3899 		m = n;
3900 	}
3901 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
3902 	if (m == NULL)
3903 		return (NULL);
3904 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
3905 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
3906 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3907 	if (m == NULL)
3908 		return (NULL);
3909 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3910 	m = m_pullup(m, poff + (tcp->th_off << 2));
3911 	if (m == NULL)
3912 		return (NULL);
3913 	/*
3914 	 * It seems controller doesn't modify IP length and TCP pseudo
3915 	 * checksum. These checksum computed by upper stack should be 0.
3916 	 */
3917 	*mss = m->m_pkthdr.tso_segsz;
3918 	ip->ip_sum = 0;
3919 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3920 	/* Clear pseudo checksum computed by TCP stack. */
3921 	tcp->th_sum = 0;
3922 	/*
3923 	 * Broadcom controllers uses different descriptor format for
3924 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3925 	 * license issue and lower performance of firmware based TSO
3926 	 * we only support hardware based TSO which is applicable for
3927 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3928 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3929 	 * header length(including IP/TCP options). The header length
3930 	 * is expressed as 32 bits unit.
3931 	 */
3932 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3933 	*mss |= (hlen << 11);
3934 	return (m);
3935 }
3936 
3937 /*
3938  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3939  * pointers to descriptors.
3940  */
3941 static int
3942 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3943 {
3944 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3945 	bus_dmamap_t		map;
3946 	struct bge_tx_bd	*d;
3947 	struct mbuf		*m = *m_head;
3948 	uint32_t		idx = *txidx;
3949 	uint16_t		csum_flags, mss, vlan_tag;
3950 	int			nsegs, i, error;
3951 
3952 	csum_flags = 0;
3953 	mss = 0;
3954 	vlan_tag = 0;
3955 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3956 		*m_head = m = bge_setup_tso(sc, m, &mss);
3957 		if (*m_head == NULL)
3958 			return (ENOBUFS);
3959 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3960 		    BGE_TXBDFLAG_CPU_POST_DMA;
3961 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3962 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3963 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3964 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3965 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3966 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3967 			    (error = bge_cksum_pad(m)) != 0) {
3968 				m_freem(m);
3969 				*m_head = NULL;
3970 				return (error);
3971 			}
3972 		}
3973 		if (m->m_flags & M_LASTFRAG)
3974 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3975 		else if (m->m_flags & M_FRAG)
3976 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3977 	}
3978 
3979 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3980 	    sc->bge_forced_collapse > 0 &&
3981 	    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
3982 		/*
3983 		 * Forcedly collapse mbuf chains to overcome hardware
3984 		 * limitation which only support a single outstanding
3985 		 * DMA read operation.
3986 		 */
3987 		if (sc->bge_forced_collapse == 1)
3988 			m = m_defrag(m, M_DONTWAIT);
3989 		else
3990 			m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse);
3991 		if (m == NULL)
3992 			m = *m_head;
3993 		*m_head = m;
3994 	}
3995 
3996 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3997 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3998 	    &nsegs, BUS_DMA_NOWAIT);
3999 	if (error == EFBIG) {
4000 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4001 		if (m == NULL) {
4002 			m_freem(*m_head);
4003 			*m_head = NULL;
4004 			return (ENOBUFS);
4005 		}
4006 		*m_head = m;
4007 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4008 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4009 		if (error) {
4010 			m_freem(m);
4011 			*m_head = NULL;
4012 			return (error);
4013 		}
4014 	} else if (error != 0)
4015 		return (error);
4016 
4017 	/* Check if we have enough free send BDs. */
4018 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4019 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4020 		return (ENOBUFS);
4021 	}
4022 
4023 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4024 
4025 #if __FreeBSD_version > 700022
4026 	if (m->m_flags & M_VLANTAG) {
4027 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4028 		vlan_tag = m->m_pkthdr.ether_vtag;
4029 	}
4030 #else
4031 	{
4032 		struct m_tag		*mtag;
4033 
4034 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
4035 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4036 			vlan_tag = VLAN_TAG_VALUE(mtag);
4037 		}
4038 	}
4039 #endif
4040 	for (i = 0; ; i++) {
4041 		d = &sc->bge_ldata.bge_tx_ring[idx];
4042 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4043 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4044 		d->bge_len = segs[i].ds_len;
4045 		d->bge_flags = csum_flags;
4046 		d->bge_vlan_tag = vlan_tag;
4047 		d->bge_mss = mss;
4048 		if (i == nsegs - 1)
4049 			break;
4050 		BGE_INC(idx, BGE_TX_RING_CNT);
4051 	}
4052 
4053 	/* Mark the last segment as end of packet... */
4054 	d->bge_flags |= BGE_TXBDFLAG_END;
4055 
4056 	/*
4057 	 * Insure that the map for this transmission
4058 	 * is placed at the array index of the last descriptor
4059 	 * in this chain.
4060 	 */
4061 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4062 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4063 	sc->bge_cdata.bge_tx_chain[idx] = m;
4064 	sc->bge_txcnt += nsegs;
4065 
4066 	BGE_INC(idx, BGE_TX_RING_CNT);
4067 	*txidx = idx;
4068 
4069 	return (0);
4070 }
4071 
4072 /*
4073  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4074  * to the mbuf data regions directly in the transmit descriptors.
4075  */
4076 static void
4077 bge_start_locked(struct ifnet *ifp)
4078 {
4079 	struct bge_softc *sc;
4080 	struct mbuf *m_head;
4081 	uint32_t prodidx;
4082 	int count;
4083 
4084 	sc = ifp->if_softc;
4085 	BGE_LOCK_ASSERT(sc);
4086 
4087 	if (!sc->bge_link ||
4088 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4089 	    IFF_DRV_RUNNING)
4090 		return;
4091 
4092 	prodidx = sc->bge_tx_prodidx;
4093 
4094 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4095 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4096 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4097 			break;
4098 		}
4099 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4100 		if (m_head == NULL)
4101 			break;
4102 
4103 		/*
4104 		 * XXX
4105 		 * The code inside the if() block is never reached since we
4106 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4107 		 * requests to checksum TCP/UDP in a fragmented packet.
4108 		 *
4109 		 * XXX
4110 		 * safety overkill.  If this is a fragmented packet chain
4111 		 * with delayed TCP/UDP checksums, then only encapsulate
4112 		 * it if we have enough descriptors to handle the entire
4113 		 * chain at once.
4114 		 * (paranoia -- may not actually be needed)
4115 		 */
4116 		if (m_head->m_flags & M_FIRSTFRAG &&
4117 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4118 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4119 			    m_head->m_pkthdr.csum_data + 16) {
4120 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4121 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4122 				break;
4123 			}
4124 		}
4125 
4126 		/*
4127 		 * Pack the data into the transmit ring. If we
4128 		 * don't have room, set the OACTIVE flag and wait
4129 		 * for the NIC to drain the ring.
4130 		 */
4131 		if (bge_encap(sc, &m_head, &prodidx)) {
4132 			if (m_head == NULL)
4133 				break;
4134 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4135 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4136 			break;
4137 		}
4138 		++count;
4139 
4140 		/*
4141 		 * If there's a BPF listener, bounce a copy of this frame
4142 		 * to him.
4143 		 */
4144 #ifdef ETHER_BPF_MTAP
4145 		ETHER_BPF_MTAP(ifp, m_head);
4146 #else
4147 		BPF_MTAP(ifp, m_head);
4148 #endif
4149 	}
4150 
4151 	if (count > 0) {
4152 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4153 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4154 		/* Transmit. */
4155 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4156 		/* 5700 b2 errata */
4157 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4158 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4159 
4160 		sc->bge_tx_prodidx = prodidx;
4161 
4162 		/*
4163 		 * Set a timeout in case the chip goes out to lunch.
4164 		 */
4165 		sc->bge_timer = 5;
4166 	}
4167 }
4168 
4169 /*
4170  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4171  * to the mbuf data regions directly in the transmit descriptors.
4172  */
4173 static void
4174 bge_start(struct ifnet *ifp)
4175 {
4176 	struct bge_softc *sc;
4177 
4178 	sc = ifp->if_softc;
4179 	BGE_LOCK(sc);
4180 	bge_start_locked(ifp);
4181 	BGE_UNLOCK(sc);
4182 }
4183 
4184 static void
4185 bge_init_locked(struct bge_softc *sc)
4186 {
4187 	struct ifnet *ifp;
4188 	uint16_t *m;
4189 
4190 	BGE_LOCK_ASSERT(sc);
4191 
4192 	ifp = sc->bge_ifp;
4193 
4194 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4195 		return;
4196 
4197 	/* Cancel pending I/O and flush buffers. */
4198 	bge_stop(sc);
4199 
4200 	bge_stop_fw(sc);
4201 	bge_sig_pre_reset(sc, BGE_RESET_START);
4202 	bge_reset(sc);
4203 	bge_sig_legacy(sc, BGE_RESET_START);
4204 	bge_sig_post_reset(sc, BGE_RESET_START);
4205 
4206 	bge_chipinit(sc);
4207 
4208 	/*
4209 	 * Init the various state machines, ring
4210 	 * control blocks and firmware.
4211 	 */
4212 	if (bge_blockinit(sc)) {
4213 		device_printf(sc->bge_dev, "initialization failure\n");
4214 		return;
4215 	}
4216 
4217 	ifp = sc->bge_ifp;
4218 
4219 	/* Specify MTU. */
4220 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4221 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4222 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4223 
4224 	/* Load our MAC address. */
4225 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4226 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4227 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4228 
4229 	/* Program promiscuous mode. */
4230 	bge_setpromisc(sc);
4231 
4232 	/* Program multicast filter. */
4233 	bge_setmulti(sc);
4234 
4235 	/* Program VLAN tag stripping. */
4236 	bge_setvlan(sc);
4237 
4238 	/* Init RX ring. */
4239 	if (bge_init_rx_ring_std(sc) != 0) {
4240 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4241 		bge_stop(sc);
4242 		return;
4243 	}
4244 
4245 	/*
4246 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4247 	 * memory to insure that the chip has in fact read the first
4248 	 * entry of the ring.
4249 	 */
4250 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4251 		uint32_t		v, i;
4252 		for (i = 0; i < 10; i++) {
4253 			DELAY(20);
4254 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4255 			if (v == (MCLBYTES - ETHER_ALIGN))
4256 				break;
4257 		}
4258 		if (i == 10)
4259 			device_printf (sc->bge_dev,
4260 			    "5705 A0 chip failed to load RX ring\n");
4261 	}
4262 
4263 	/* Init jumbo RX ring. */
4264 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4265 	    (MCLBYTES - ETHER_ALIGN)) {
4266 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4267 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4268 			bge_stop(sc);
4269 			return;
4270 		}
4271 	}
4272 
4273 	/* Init our RX return ring index. */
4274 	sc->bge_rx_saved_considx = 0;
4275 
4276 	/* Init our RX/TX stat counters. */
4277 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4278 
4279 	/* Init TX ring. */
4280 	bge_init_tx_ring(sc);
4281 
4282 	/* Turn on transmitter. */
4283 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4284 
4285 	/* Turn on receiver. */
4286 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4287 
4288 	/* Tell firmware we're alive. */
4289 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4290 
4291 #ifdef DEVICE_POLLING
4292 	/* Disable interrupts if we are polling. */
4293 	if (ifp->if_capenable & IFCAP_POLLING) {
4294 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4295 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4296 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4297 	} else
4298 #endif
4299 
4300 	/* Enable host interrupts. */
4301 	{
4302 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4303 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4304 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4305 	}
4306 
4307 	bge_ifmedia_upd_locked(ifp);
4308 
4309 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4310 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4311 
4312 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4313 }
4314 
4315 static void
4316 bge_init(void *xsc)
4317 {
4318 	struct bge_softc *sc = xsc;
4319 
4320 	BGE_LOCK(sc);
4321 	bge_init_locked(sc);
4322 	BGE_UNLOCK(sc);
4323 }
4324 
4325 /*
4326  * Set media options.
4327  */
4328 static int
4329 bge_ifmedia_upd(struct ifnet *ifp)
4330 {
4331 	struct bge_softc *sc = ifp->if_softc;
4332 	int res;
4333 
4334 	BGE_LOCK(sc);
4335 	res = bge_ifmedia_upd_locked(ifp);
4336 	BGE_UNLOCK(sc);
4337 
4338 	return (res);
4339 }
4340 
4341 static int
4342 bge_ifmedia_upd_locked(struct ifnet *ifp)
4343 {
4344 	struct bge_softc *sc = ifp->if_softc;
4345 	struct mii_data *mii;
4346 	struct mii_softc *miisc;
4347 	struct ifmedia *ifm;
4348 
4349 	BGE_LOCK_ASSERT(sc);
4350 
4351 	ifm = &sc->bge_ifmedia;
4352 
4353 	/* If this is a 1000baseX NIC, enable the TBI port. */
4354 	if (sc->bge_flags & BGE_FLAG_TBI) {
4355 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4356 			return (EINVAL);
4357 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4358 		case IFM_AUTO:
4359 			/*
4360 			 * The BCM5704 ASIC appears to have a special
4361 			 * mechanism for programming the autoneg
4362 			 * advertisement registers in TBI mode.
4363 			 */
4364 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4365 				uint32_t sgdig;
4366 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4367 				if (sgdig & BGE_SGDIGSTS_DONE) {
4368 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4369 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4370 					sgdig |= BGE_SGDIGCFG_AUTO |
4371 					    BGE_SGDIGCFG_PAUSE_CAP |
4372 					    BGE_SGDIGCFG_ASYM_PAUSE;
4373 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4374 					    sgdig | BGE_SGDIGCFG_SEND);
4375 					DELAY(5);
4376 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4377 				}
4378 			}
4379 			break;
4380 		case IFM_1000_SX:
4381 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4382 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4383 				    BGE_MACMODE_HALF_DUPLEX);
4384 			} else {
4385 				BGE_SETBIT(sc, BGE_MAC_MODE,
4386 				    BGE_MACMODE_HALF_DUPLEX);
4387 			}
4388 			break;
4389 		default:
4390 			return (EINVAL);
4391 		}
4392 		return (0);
4393 	}
4394 
4395 	sc->bge_link_evt++;
4396 	mii = device_get_softc(sc->bge_miibus);
4397 	if (mii->mii_instance)
4398 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4399 			mii_phy_reset(miisc);
4400 	mii_mediachg(mii);
4401 
4402 	/*
4403 	 * Force an interrupt so that we will call bge_link_upd
4404 	 * if needed and clear any pending link state attention.
4405 	 * Without this we are not getting any further interrupts
4406 	 * for link state changes and thus will not UP the link and
4407 	 * not be able to send in bge_start_locked. The only
4408 	 * way to get things working was to receive a packet and
4409 	 * get an RX intr.
4410 	 * bge_tick should help for fiber cards and we might not
4411 	 * need to do this here if BGE_FLAG_TBI is set but as
4412 	 * we poll for fiber anyway it should not harm.
4413 	 */
4414 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4415 	    sc->bge_flags & BGE_FLAG_5788)
4416 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4417 	else
4418 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4419 
4420 	return (0);
4421 }
4422 
4423 /*
4424  * Report current media status.
4425  */
4426 static void
4427 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4428 {
4429 	struct bge_softc *sc = ifp->if_softc;
4430 	struct mii_data *mii;
4431 
4432 	BGE_LOCK(sc);
4433 
4434 	if (sc->bge_flags & BGE_FLAG_TBI) {
4435 		ifmr->ifm_status = IFM_AVALID;
4436 		ifmr->ifm_active = IFM_ETHER;
4437 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4438 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4439 			ifmr->ifm_status |= IFM_ACTIVE;
4440 		else {
4441 			ifmr->ifm_active |= IFM_NONE;
4442 			BGE_UNLOCK(sc);
4443 			return;
4444 		}
4445 		ifmr->ifm_active |= IFM_1000_SX;
4446 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4447 			ifmr->ifm_active |= IFM_HDX;
4448 		else
4449 			ifmr->ifm_active |= IFM_FDX;
4450 		BGE_UNLOCK(sc);
4451 		return;
4452 	}
4453 
4454 	mii = device_get_softc(sc->bge_miibus);
4455 	mii_pollstat(mii);
4456 	ifmr->ifm_active = mii->mii_media_active;
4457 	ifmr->ifm_status = mii->mii_media_status;
4458 
4459 	BGE_UNLOCK(sc);
4460 }
4461 
4462 static int
4463 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4464 {
4465 	struct bge_softc *sc = ifp->if_softc;
4466 	struct ifreq *ifr = (struct ifreq *) data;
4467 	struct mii_data *mii;
4468 	int flags, mask, error = 0;
4469 
4470 	switch (command) {
4471 	case SIOCSIFMTU:
4472 		if (ifr->ifr_mtu < ETHERMIN ||
4473 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4474 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4475 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4476 		    ifr->ifr_mtu > ETHERMTU))
4477 			error = EINVAL;
4478 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4479 			ifp->if_mtu = ifr->ifr_mtu;
4480 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4481 			bge_init(sc);
4482 		}
4483 		break;
4484 	case SIOCSIFFLAGS:
4485 		BGE_LOCK(sc);
4486 		if (ifp->if_flags & IFF_UP) {
4487 			/*
4488 			 * If only the state of the PROMISC flag changed,
4489 			 * then just use the 'set promisc mode' command
4490 			 * instead of reinitializing the entire NIC. Doing
4491 			 * a full re-init means reloading the firmware and
4492 			 * waiting for it to start up, which may take a
4493 			 * second or two.  Similarly for ALLMULTI.
4494 			 */
4495 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4496 				flags = ifp->if_flags ^ sc->bge_if_flags;
4497 				if (flags & IFF_PROMISC)
4498 					bge_setpromisc(sc);
4499 				if (flags & IFF_ALLMULTI)
4500 					bge_setmulti(sc);
4501 			} else
4502 				bge_init_locked(sc);
4503 		} else {
4504 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4505 				bge_stop(sc);
4506 			}
4507 		}
4508 		sc->bge_if_flags = ifp->if_flags;
4509 		BGE_UNLOCK(sc);
4510 		error = 0;
4511 		break;
4512 	case SIOCADDMULTI:
4513 	case SIOCDELMULTI:
4514 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4515 			BGE_LOCK(sc);
4516 			bge_setmulti(sc);
4517 			BGE_UNLOCK(sc);
4518 			error = 0;
4519 		}
4520 		break;
4521 	case SIOCSIFMEDIA:
4522 	case SIOCGIFMEDIA:
4523 		if (sc->bge_flags & BGE_FLAG_TBI) {
4524 			error = ifmedia_ioctl(ifp, ifr,
4525 			    &sc->bge_ifmedia, command);
4526 		} else {
4527 			mii = device_get_softc(sc->bge_miibus);
4528 			error = ifmedia_ioctl(ifp, ifr,
4529 			    &mii->mii_media, command);
4530 		}
4531 		break;
4532 	case SIOCSIFCAP:
4533 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4534 #ifdef DEVICE_POLLING
4535 		if (mask & IFCAP_POLLING) {
4536 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4537 				error = ether_poll_register(bge_poll, ifp);
4538 				if (error)
4539 					return (error);
4540 				BGE_LOCK(sc);
4541 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4542 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4543 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4544 				ifp->if_capenable |= IFCAP_POLLING;
4545 				BGE_UNLOCK(sc);
4546 			} else {
4547 				error = ether_poll_deregister(ifp);
4548 				/* Enable interrupt even in error case */
4549 				BGE_LOCK(sc);
4550 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4551 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4552 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4553 				ifp->if_capenable &= ~IFCAP_POLLING;
4554 				BGE_UNLOCK(sc);
4555 			}
4556 		}
4557 #endif
4558 		if (mask & IFCAP_HWCSUM) {
4559 			ifp->if_capenable ^= IFCAP_HWCSUM;
4560 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4561 			    IFCAP_HWCSUM & ifp->if_capabilities)
4562 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4563 			else
4564 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4565 		}
4566 
4567 		if ((mask & IFCAP_TSO4) != 0 &&
4568 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4569 			ifp->if_capenable ^= IFCAP_TSO4;
4570 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4571 				ifp->if_hwassist |= CSUM_TSO;
4572 			else
4573 				ifp->if_hwassist &= ~CSUM_TSO;
4574 		}
4575 
4576 		if (mask & IFCAP_VLAN_MTU) {
4577 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4578 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4579 			bge_init(sc);
4580 		}
4581 
4582 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
4583 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
4584 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4585 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
4586 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
4587 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4588 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
4589 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
4590 			BGE_LOCK(sc);
4591 			bge_setvlan(sc);
4592 			BGE_UNLOCK(sc);
4593 		}
4594 #ifdef VLAN_CAPABILITIES
4595 		VLAN_CAPABILITIES(ifp);
4596 #endif
4597 		break;
4598 	default:
4599 		error = ether_ioctl(ifp, command, data);
4600 		break;
4601 	}
4602 
4603 	return (error);
4604 }
4605 
4606 static void
4607 bge_watchdog(struct bge_softc *sc)
4608 {
4609 	struct ifnet *ifp;
4610 
4611 	BGE_LOCK_ASSERT(sc);
4612 
4613 	if (sc->bge_timer == 0 || --sc->bge_timer)
4614 		return;
4615 
4616 	ifp = sc->bge_ifp;
4617 
4618 	if_printf(ifp, "watchdog timeout -- resetting\n");
4619 
4620 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4621 	bge_init_locked(sc);
4622 
4623 	ifp->if_oerrors++;
4624 }
4625 
4626 /*
4627  * Stop the adapter and free any mbufs allocated to the
4628  * RX and TX lists.
4629  */
4630 static void
4631 bge_stop(struct bge_softc *sc)
4632 {
4633 	struct ifnet *ifp;
4634 
4635 	BGE_LOCK_ASSERT(sc);
4636 
4637 	ifp = sc->bge_ifp;
4638 
4639 	callout_stop(&sc->bge_stat_ch);
4640 
4641 	/* Disable host interrupts. */
4642 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4643 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4644 
4645 	/*
4646 	 * Tell firmware we're shutting down.
4647 	 */
4648 	bge_stop_fw(sc);
4649 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4650 
4651 	/*
4652 	 * Disable all of the receiver blocks.
4653 	 */
4654 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4655 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4656 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4657 	if (!(BGE_IS_5705_PLUS(sc)))
4658 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4659 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4660 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4661 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4662 
4663 	/*
4664 	 * Disable all of the transmit blocks.
4665 	 */
4666 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4667 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4668 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4669 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4670 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4671 	if (!(BGE_IS_5705_PLUS(sc)))
4672 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4673 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4674 
4675 	/*
4676 	 * Shut down all of the memory managers and related
4677 	 * state machines.
4678 	 */
4679 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4680 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4681 	if (!(BGE_IS_5705_PLUS(sc)))
4682 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4683 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4684 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4685 	if (!(BGE_IS_5705_PLUS(sc))) {
4686 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4687 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4688 	}
4689 
4690 	bge_reset(sc);
4691 	bge_sig_legacy(sc, BGE_RESET_STOP);
4692 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4693 
4694 	/*
4695 	 * Keep the ASF firmware running if up.
4696 	 */
4697 	if (sc->bge_asf_mode & ASF_STACKUP)
4698 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4699 	else
4700 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4701 
4702 	/* Free the RX lists. */
4703 	bge_free_rx_ring_std(sc);
4704 
4705 	/* Free jumbo RX list. */
4706 	if (BGE_IS_JUMBO_CAPABLE(sc))
4707 		bge_free_rx_ring_jumbo(sc);
4708 
4709 	/* Free TX buffers. */
4710 	bge_free_tx_ring(sc);
4711 
4712 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4713 
4714 	/* Clear MAC's link state (PHY may still have link UP). */
4715 	if (bootverbose && sc->bge_link)
4716 		if_printf(sc->bge_ifp, "link DOWN\n");
4717 	sc->bge_link = 0;
4718 
4719 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4720 }
4721 
4722 /*
4723  * Stop all chip I/O so that the kernel's probe routines don't
4724  * get confused by errant DMAs when rebooting.
4725  */
4726 static int
4727 bge_shutdown(device_t dev)
4728 {
4729 	struct bge_softc *sc;
4730 
4731 	sc = device_get_softc(dev);
4732 	BGE_LOCK(sc);
4733 	bge_stop(sc);
4734 	bge_reset(sc);
4735 	BGE_UNLOCK(sc);
4736 
4737 	return (0);
4738 }
4739 
4740 static int
4741 bge_suspend(device_t dev)
4742 {
4743 	struct bge_softc *sc;
4744 
4745 	sc = device_get_softc(dev);
4746 	BGE_LOCK(sc);
4747 	bge_stop(sc);
4748 	BGE_UNLOCK(sc);
4749 
4750 	return (0);
4751 }
4752 
4753 static int
4754 bge_resume(device_t dev)
4755 {
4756 	struct bge_softc *sc;
4757 	struct ifnet *ifp;
4758 
4759 	sc = device_get_softc(dev);
4760 	BGE_LOCK(sc);
4761 	ifp = sc->bge_ifp;
4762 	if (ifp->if_flags & IFF_UP) {
4763 		bge_init_locked(sc);
4764 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4765 			bge_start_locked(ifp);
4766 	}
4767 	BGE_UNLOCK(sc);
4768 
4769 	return (0);
4770 }
4771 
4772 static void
4773 bge_link_upd(struct bge_softc *sc)
4774 {
4775 	struct mii_data *mii;
4776 	uint32_t link, status;
4777 
4778 	BGE_LOCK_ASSERT(sc);
4779 
4780 	/* Clear 'pending link event' flag. */
4781 	sc->bge_link_evt = 0;
4782 
4783 	/*
4784 	 * Process link state changes.
4785 	 * Grrr. The link status word in the status block does
4786 	 * not work correctly on the BCM5700 rev AX and BX chips,
4787 	 * according to all available information. Hence, we have
4788 	 * to enable MII interrupts in order to properly obtain
4789 	 * async link changes. Unfortunately, this also means that
4790 	 * we have to read the MAC status register to detect link
4791 	 * changes, thereby adding an additional register access to
4792 	 * the interrupt handler.
4793 	 *
4794 	 * XXX: perhaps link state detection procedure used for
4795 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4796 	 */
4797 
4798 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4799 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4800 		status = CSR_READ_4(sc, BGE_MAC_STS);
4801 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4802 			mii = device_get_softc(sc->bge_miibus);
4803 			mii_pollstat(mii);
4804 			if (!sc->bge_link &&
4805 			    mii->mii_media_status & IFM_ACTIVE &&
4806 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4807 				sc->bge_link++;
4808 				if (bootverbose)
4809 					if_printf(sc->bge_ifp, "link UP\n");
4810 			} else if (sc->bge_link &&
4811 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4812 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4813 				sc->bge_link = 0;
4814 				if (bootverbose)
4815 					if_printf(sc->bge_ifp, "link DOWN\n");
4816 			}
4817 
4818 			/* Clear the interrupt. */
4819 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4820 			    BGE_EVTENB_MI_INTERRUPT);
4821 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4822 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4823 			    BRGPHY_INTRS);
4824 		}
4825 		return;
4826 	}
4827 
4828 	if (sc->bge_flags & BGE_FLAG_TBI) {
4829 		status = CSR_READ_4(sc, BGE_MAC_STS);
4830 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4831 			if (!sc->bge_link) {
4832 				sc->bge_link++;
4833 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4834 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4835 					    BGE_MACMODE_TBI_SEND_CFGS);
4836 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4837 				if (bootverbose)
4838 					if_printf(sc->bge_ifp, "link UP\n");
4839 				if_link_state_change(sc->bge_ifp,
4840 				    LINK_STATE_UP);
4841 			}
4842 		} else if (sc->bge_link) {
4843 			sc->bge_link = 0;
4844 			if (bootverbose)
4845 				if_printf(sc->bge_ifp, "link DOWN\n");
4846 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4847 		}
4848 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4849 		/*
4850 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4851 		 * in status word always set. Workaround this bug by reading
4852 		 * PHY link status directly.
4853 		 */
4854 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4855 
4856 		if (link != sc->bge_link ||
4857 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4858 			mii = device_get_softc(sc->bge_miibus);
4859 			mii_pollstat(mii);
4860 			if (!sc->bge_link &&
4861 			    mii->mii_media_status & IFM_ACTIVE &&
4862 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4863 				sc->bge_link++;
4864 				if (bootverbose)
4865 					if_printf(sc->bge_ifp, "link UP\n");
4866 			} else if (sc->bge_link &&
4867 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4868 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4869 				sc->bge_link = 0;
4870 				if (bootverbose)
4871 					if_printf(sc->bge_ifp, "link DOWN\n");
4872 			}
4873 		}
4874 	} else {
4875 		/*
4876 		 * Discard link events for MII/GMII controllers
4877 		 * if MI auto-polling is disabled.
4878 		 */
4879 	}
4880 
4881 	/* Clear the attention. */
4882 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4883 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4884 	    BGE_MACSTAT_LINK_CHANGED);
4885 }
4886 
4887 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4888 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4889 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4890 	    desc)
4891 
4892 static void
4893 bge_add_sysctls(struct bge_softc *sc)
4894 {
4895 	struct sysctl_ctx_list *ctx;
4896 	struct sysctl_oid_list *children, *schildren;
4897 	struct sysctl_oid *tree;
4898 
4899 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4900 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4901 
4902 #ifdef BGE_REGISTER_DEBUG
4903 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4904 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4905 	    "Debug Information");
4906 
4907 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4908 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4909 	    "Register Read");
4910 
4911 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4912 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4913 	    "Memory Read");
4914 
4915 #endif
4916 
4917 	/*
4918 	 * A common design characteristic for many Broadcom client controllers
4919 	 * is that they only support a single outstanding DMA read operation
4920 	 * on the PCIe bus. This means that it will take twice as long to fetch
4921 	 * a TX frame that is split into header and payload buffers as it does
4922 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
4923 	 * these controllers, coalescing buffers to reduce the number of memory
4924 	 * reads is effective way to get maximum performance(about 940Mbps).
4925 	 * Without collapsing TX buffers the maximum TCP bulk transfer
4926 	 * performance is about 850Mbps. However forcing coalescing mbufs
4927 	 * consumes a lot of CPU cycles, so leave it off by default.
4928 	 */
4929 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
4930 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
4931 	    "Number of fragmented TX buffers of a frame allowed before "
4932 	    "forced collapsing");
4933 	resource_int_value(device_get_name(sc->bge_dev),
4934 	    device_get_unit(sc->bge_dev), "forced_collapse",
4935 	    &sc->bge_forced_collapse);
4936 
4937 	if (BGE_IS_5705_PLUS(sc))
4938 		return;
4939 
4940 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4941 	    NULL, "BGE Statistics");
4942 	schildren = children = SYSCTL_CHILDREN(tree);
4943 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4944 	    children, COSFramesDroppedDueToFilters,
4945 	    "FramesDroppedDueToFilters");
4946 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4947 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4948 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4949 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4950 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4951 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4952 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4953 	    children, ifInDiscards, "InputDiscards");
4954 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4955 	    children, ifInErrors, "InputErrors");
4956 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4957 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4958 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4959 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4960 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4961 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4962 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4963 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4964 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4965 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4966 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4967 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4968 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4969 	    children, nicInterrupts, "Interrupts");
4970 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4971 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4972 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4973 	    children, nicSendThresholdHit, "SendThresholdHit");
4974 
4975 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4976 	    NULL, "BGE RX Statistics");
4977 	children = SYSCTL_CHILDREN(tree);
4978 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4979 	    children, rxstats.ifHCInOctets, "Octets");
4980 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4981 	    children, rxstats.etherStatsFragments, "Fragments");
4982 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4983 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4984 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4985 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4986 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4987 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4988 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4989 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4990 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4991 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4992 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4993 	    children, rxstats.xoffPauseFramesReceived,
4994 	    "xoffPauseFramesReceived");
4995 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4996 	    children, rxstats.macControlFramesReceived,
4997 	    "ControlFramesReceived");
4998 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4999 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5000 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5001 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5002 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5003 	    children, rxstats.etherStatsJabbers, "Jabbers");
5004 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5005 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5006 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5007 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5008 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5009 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5010 
5011 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5012 	    NULL, "BGE TX Statistics");
5013 	children = SYSCTL_CHILDREN(tree);
5014 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5015 	    children, txstats.ifHCOutOctets, "Octets");
5016 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5017 	    children, txstats.etherStatsCollisions, "Collisions");
5018 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5019 	    children, txstats.outXonSent, "XonSent");
5020 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5021 	    children, txstats.outXoffSent, "XoffSent");
5022 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5023 	    children, txstats.flowControlDone, "flowControlDone");
5024 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5025 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5026 	    "InternalMacTransmitErrors");
5027 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5028 	    children, txstats.dot3StatsSingleCollisionFrames,
5029 	    "SingleCollisionFrames");
5030 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5031 	    children, txstats.dot3StatsMultipleCollisionFrames,
5032 	    "MultipleCollisionFrames");
5033 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5034 	    children, txstats.dot3StatsDeferredTransmissions,
5035 	    "DeferredTransmissions");
5036 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5037 	    children, txstats.dot3StatsExcessiveCollisions,
5038 	    "ExcessiveCollisions");
5039 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5040 	    children, txstats.dot3StatsLateCollisions,
5041 	    "LateCollisions");
5042 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5043 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
5044 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5045 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5046 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5047 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5048 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5049 	    children, txstats.dot3StatsCarrierSenseErrors,
5050 	    "CarrierSenseErrors");
5051 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5052 	    children, txstats.ifOutDiscards, "Discards");
5053 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5054 	    children, txstats.ifOutErrors, "Errors");
5055 }
5056 
5057 static int
5058 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5059 {
5060 	struct bge_softc *sc;
5061 	uint32_t result;
5062 	int offset;
5063 
5064 	sc = (struct bge_softc *)arg1;
5065 	offset = arg2;
5066 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5067 	    offsetof(bge_hostaddr, bge_addr_lo));
5068 	return (sysctl_handle_int(oidp, &result, 0, req));
5069 }
5070 
5071 #ifdef BGE_REGISTER_DEBUG
5072 static int
5073 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5074 {
5075 	struct bge_softc *sc;
5076 	uint16_t *sbdata;
5077 	int error;
5078 	int result;
5079 	int i, j;
5080 
5081 	result = -1;
5082 	error = sysctl_handle_int(oidp, &result, 0, req);
5083 	if (error || (req->newptr == NULL))
5084 		return (error);
5085 
5086 	if (result == 1) {
5087 		sc = (struct bge_softc *)arg1;
5088 
5089 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5090 		printf("Status Block:\n");
5091 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5092 			printf("%06x:", i);
5093 			for (j = 0; j < 8; j++) {
5094 				printf(" %04x", sbdata[i]);
5095 				i += 4;
5096 			}
5097 			printf("\n");
5098 		}
5099 
5100 		printf("Registers:\n");
5101 		for (i = 0x800; i < 0xA00; ) {
5102 			printf("%06x:", i);
5103 			for (j = 0; j < 8; j++) {
5104 				printf(" %08x", CSR_READ_4(sc, i));
5105 				i += 4;
5106 			}
5107 			printf("\n");
5108 		}
5109 
5110 		printf("Hardware Flags:\n");
5111 		if (BGE_IS_5755_PLUS(sc))
5112 			printf(" - 5755 Plus\n");
5113 		if (BGE_IS_575X_PLUS(sc))
5114 			printf(" - 575X Plus\n");
5115 		if (BGE_IS_5705_PLUS(sc))
5116 			printf(" - 5705 Plus\n");
5117 		if (BGE_IS_5714_FAMILY(sc))
5118 			printf(" - 5714 Family\n");
5119 		if (BGE_IS_5700_FAMILY(sc))
5120 			printf(" - 5700 Family\n");
5121 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5122 			printf(" - Supports Jumbo Frames\n");
5123 		if (sc->bge_flags & BGE_FLAG_PCIX)
5124 			printf(" - PCI-X Bus\n");
5125 		if (sc->bge_flags & BGE_FLAG_PCIE)
5126 			printf(" - PCI Express Bus\n");
5127 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5128 			printf(" - No 3 LEDs\n");
5129 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5130 			printf(" - RX Alignment Bug\n");
5131 	}
5132 
5133 	return (error);
5134 }
5135 
5136 static int
5137 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5138 {
5139 	struct bge_softc *sc;
5140 	int error;
5141 	uint16_t result;
5142 	uint32_t val;
5143 
5144 	result = -1;
5145 	error = sysctl_handle_int(oidp, &result, 0, req);
5146 	if (error || (req->newptr == NULL))
5147 		return (error);
5148 
5149 	if (result < 0x8000) {
5150 		sc = (struct bge_softc *)arg1;
5151 		val = CSR_READ_4(sc, result);
5152 		printf("reg 0x%06X = 0x%08X\n", result, val);
5153 	}
5154 
5155 	return (error);
5156 }
5157 
5158 static int
5159 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5160 {
5161 	struct bge_softc *sc;
5162 	int error;
5163 	uint16_t result;
5164 	uint32_t val;
5165 
5166 	result = -1;
5167 	error = sysctl_handle_int(oidp, &result, 0, req);
5168 	if (error || (req->newptr == NULL))
5169 		return (error);
5170 
5171 	if (result < 0x8000) {
5172 		sc = (struct bge_softc *)arg1;
5173 		val = bge_readmem_ind(sc, result);
5174 		printf("mem 0x%06X = 0x%08X\n", result, val);
5175 	}
5176 
5177 	return (error);
5178 }
5179 #endif
5180 
5181 static int
5182 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5183 {
5184 
5185 	if (sc->bge_flags & BGE_FLAG_EADDR)
5186 		return (1);
5187 
5188 #ifdef __sparc64__
5189 	OF_getetheraddr(sc->bge_dev, ether_addr);
5190 	return (0);
5191 #endif
5192 	return (1);
5193 }
5194 
5195 static int
5196 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5197 {
5198 	uint32_t mac_addr;
5199 
5200 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5201 	if ((mac_addr >> 16) == 0x484b) {
5202 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5203 		ether_addr[1] = (uint8_t)mac_addr;
5204 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5205 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5206 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5207 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5208 		ether_addr[5] = (uint8_t)mac_addr;
5209 		return (0);
5210 	}
5211 	return (1);
5212 }
5213 
5214 static int
5215 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5216 {
5217 	int mac_offset = BGE_EE_MAC_OFFSET;
5218 
5219 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5220 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5221 
5222 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5223 	    ETHER_ADDR_LEN));
5224 }
5225 
5226 static int
5227 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5228 {
5229 
5230 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5231 		return (1);
5232 
5233 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5234 	   ETHER_ADDR_LEN));
5235 }
5236 
5237 static int
5238 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5239 {
5240 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5241 		/* NOTE: Order is critical */
5242 		bge_get_eaddr_fw,
5243 		bge_get_eaddr_mem,
5244 		bge_get_eaddr_nvram,
5245 		bge_get_eaddr_eeprom,
5246 		NULL
5247 	};
5248 	const bge_eaddr_fcn_t *func;
5249 
5250 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5251 		if ((*func)(sc, eaddr) == 0)
5252 			break;
5253 	}
5254 	return (*func == NULL ? ENXIO : 0);
5255 }
5256