xref: /freebsd/sys/dev/bge/if_bge.c (revision a25896ca1270e25b657ceaa8d47d5699515f5c25)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
41  *
42  * The Broadcom BCM5700 is based on technology originally developed by
43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
47  * frames, highly configurable RX filtering, and 16 RX and TX queues
48  * (which, along with RX filter rules, can be used for QOS applications).
49  * Other features, such as TCP segmentation, may be available as part
50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
51  * firmware images can be stored in hardware and need not be compiled
52  * into the driver.
53  *
54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
56  *
57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
59  * does not support external SSRAM.
60  *
61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
62  * brand name, which is functionally similar but lacks PCI-X support.
63  *
64  * Without external SSRAM, you can only have at most 4 TX rings,
65  * and the use of the mini RX ring is disabled. This seems to imply
66  * that these features are simply not available on the BCM5701. As a
67  * result, this driver does not implement any support for the mini RX
68  * ring.
69  */
70 
71 #ifdef HAVE_KERNEL_OPTION_HEADERS
72 #include "opt_device_polling.h"
73 #endif
74 
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/module.h>
83 #include <sys/socket.h>
84 #include <sys/sysctl.h>
85 #include <sys/taskqueue.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/netdump/netdump.h>
104 
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include <dev/mii/mii.h>
111 #include <dev/mii/miivar.h>
112 #include "miidevs.h"
113 #include <dev/mii/brgphyreg.h>
114 
115 #ifdef __sparc64__
116 #include <dev/ofw/ofw_bus.h>
117 #include <dev/ofw/openfirm.h>
118 #include <machine/ofw_machdep.h>
119 #include <machine/ver.h>
120 #endif
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 
125 #include <dev/bge/if_bgereg.h>
126 
127 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
128 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
129 
130 MODULE_DEPEND(bge, pci, 1, 1, 1);
131 MODULE_DEPEND(bge, ether, 1, 1, 1);
132 MODULE_DEPEND(bge, miibus, 1, 1, 1);
133 
134 /* "device miibus" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names. Note: the
139  * spec seems to indicate that the hardware still has Alteon's vendor
140  * ID burned into it, though it will always be overriden by the vendor
141  * ID in the EEPROM. Just to be safe, we cover all possibilities.
142  */
143 static const struct bge_type {
144 	uint16_t	bge_vid;
145 	uint16_t	bge_did;
146 } bge_devs[] = {
147 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
148 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
149 
150 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
151 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
152 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
153 
154 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
155 
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717C },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57764 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57767 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
233 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
234 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57782 },
235 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
236 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57786 },
237 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57787 },
238 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
239 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
240 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
241 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
242 
243 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
244 
245 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
246 
247 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
248 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
249 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
250 
251 	{ 0, 0 }
252 };
253 
254 static const struct bge_vendor {
255 	uint16_t	v_id;
256 	const char	*v_name;
257 } bge_vendors[] = {
258 	{ ALTEON_VENDORID,	"Alteon" },
259 	{ ALTIMA_VENDORID,	"Altima" },
260 	{ APPLE_VENDORID,	"Apple" },
261 	{ BCOM_VENDORID,	"Broadcom" },
262 	{ SK_VENDORID,		"SysKonnect" },
263 	{ TC_VENDORID,		"3Com" },
264 	{ FJTSU_VENDORID,	"Fujitsu" },
265 
266 	{ 0, NULL }
267 };
268 
269 static const struct bge_revision {
270 	uint32_t	br_chipid;
271 	const char	*br_name;
272 } bge_revisions[] = {
273 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
274 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
275 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
276 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
277 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
278 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
279 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
280 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
281 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
282 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
283 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
284 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
285 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
286 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
287 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
288 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
289 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
290 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
291 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
292 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
293 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
294 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
295 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
296 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
297 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
298 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
299 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
300 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
301 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
302 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
303 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
304 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
305 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
306 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
307 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
308 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
309 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
310 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
311 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
312 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
313 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
314 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
315 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
316 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
317 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
318 	{ BGE_CHIPID_BCM5717_C0,	"BCM5717 C0" },
319 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
320 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
321 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
322 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
323 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
324 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
325 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
326 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
327 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
328 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
329 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
330 	/* 5754 and 5787 share the same ASIC ID */
331 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
332 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
333 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
334 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
335 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
336 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
337 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
338 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
339 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
340 
341 	{ 0, NULL }
342 };
343 
344 /*
345  * Some defaults for major revisions, so that newer steppings
346  * that we don't know about have a shot at working.
347  */
348 static const struct bge_revision bge_majorrevs[] = {
349 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
350 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
351 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
352 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
353 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
354 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
355 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
356 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
357 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
358 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
359 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
360 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
361 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
362 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
363 	/* 5754 and 5787 share the same ASIC ID */
364 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
365 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
366 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
367 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
368 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
369 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
370 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
371 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
372 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
373 
374 	{ 0, NULL }
375 };
376 
377 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
378 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
379 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
380 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
381 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
382 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
383 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
384 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
385 
386 static uint32_t bge_chipid(device_t);
387 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
388 static const struct bge_revision * bge_lookup_rev(uint32_t);
389 
390 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
391 
392 static int bge_probe(device_t);
393 static int bge_attach(device_t);
394 static int bge_detach(device_t);
395 static int bge_suspend(device_t);
396 static int bge_resume(device_t);
397 static void bge_release_resources(struct bge_softc *);
398 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
399 static int bge_dma_alloc(struct bge_softc *);
400 static void bge_dma_free(struct bge_softc *);
401 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
402     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
403 
404 static void bge_devinfo(struct bge_softc *);
405 static int bge_mbox_reorder(struct bge_softc *);
406 
407 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
408 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
409 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
410 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
411 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
412 
413 static void bge_txeof(struct bge_softc *, uint16_t);
414 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
415 static int bge_rxeof(struct bge_softc *, uint16_t, int);
416 
417 static void bge_asf_driver_up (struct bge_softc *);
418 static void bge_tick(void *);
419 static void bge_stats_clear_regs(struct bge_softc *);
420 static void bge_stats_update(struct bge_softc *);
421 static void bge_stats_update_regs(struct bge_softc *);
422 static struct mbuf *bge_check_short_dma(struct mbuf *);
423 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
424     uint16_t *, uint16_t *);
425 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
426 
427 static void bge_intr(void *);
428 static int bge_msi_intr(void *);
429 static void bge_intr_task(void *, int);
430 static void bge_start(if_t);
431 static void bge_start_locked(if_t);
432 static void bge_start_tx(struct bge_softc *, uint32_t);
433 static int bge_ioctl(if_t, u_long, caddr_t);
434 static void bge_init_locked(struct bge_softc *);
435 static void bge_init(void *);
436 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
437 static void bge_stop(struct bge_softc *);
438 static void bge_watchdog(struct bge_softc *);
439 static int bge_shutdown(device_t);
440 static int bge_ifmedia_upd_locked(if_t);
441 static int bge_ifmedia_upd(if_t);
442 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
443 static uint64_t bge_get_counter(if_t, ift_counter);
444 
445 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
446 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
447 
448 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
449 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
450 
451 static void bge_setpromisc(struct bge_softc *);
452 static void bge_setmulti(struct bge_softc *);
453 static void bge_setvlan(struct bge_softc *);
454 
455 static __inline void bge_rxreuse_std(struct bge_softc *, int);
456 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
457 static int bge_newbuf_std(struct bge_softc *, int);
458 static int bge_newbuf_jumbo(struct bge_softc *, int);
459 static int bge_init_rx_ring_std(struct bge_softc *);
460 static void bge_free_rx_ring_std(struct bge_softc *);
461 static int bge_init_rx_ring_jumbo(struct bge_softc *);
462 static void bge_free_rx_ring_jumbo(struct bge_softc *);
463 static void bge_free_tx_ring(struct bge_softc *);
464 static int bge_init_tx_ring(struct bge_softc *);
465 
466 static int bge_chipinit(struct bge_softc *);
467 static int bge_blockinit(struct bge_softc *);
468 static uint32_t bge_dma_swap_options(struct bge_softc *);
469 
470 static int bge_has_eaddr(struct bge_softc *);
471 static uint32_t bge_readmem_ind(struct bge_softc *, int);
472 static void bge_writemem_ind(struct bge_softc *, int, int);
473 static void bge_writembx(struct bge_softc *, int, int);
474 #ifdef notdef
475 static uint32_t bge_readreg_ind(struct bge_softc *, int);
476 #endif
477 static void bge_writemem_direct(struct bge_softc *, int, int);
478 static void bge_writereg_ind(struct bge_softc *, int, int);
479 
480 static int bge_miibus_readreg(device_t, int, int);
481 static int bge_miibus_writereg(device_t, int, int, int);
482 static void bge_miibus_statchg(device_t);
483 #ifdef DEVICE_POLLING
484 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
485 #endif
486 
487 #define	BGE_RESET_SHUTDOWN	0
488 #define	BGE_RESET_START		1
489 #define	BGE_RESET_SUSPEND	2
490 static void bge_sig_post_reset(struct bge_softc *, int);
491 static void bge_sig_legacy(struct bge_softc *, int);
492 static void bge_sig_pre_reset(struct bge_softc *, int);
493 static void bge_stop_fw(struct bge_softc *);
494 static int bge_reset(struct bge_softc *);
495 static void bge_link_upd(struct bge_softc *);
496 
497 static void bge_ape_lock_init(struct bge_softc *);
498 static void bge_ape_read_fw_ver(struct bge_softc *);
499 static int bge_ape_lock(struct bge_softc *, int);
500 static void bge_ape_unlock(struct bge_softc *, int);
501 static void bge_ape_send_event(struct bge_softc *, uint32_t);
502 static void bge_ape_driver_state_change(struct bge_softc *, int);
503 
504 /*
505  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
506  * leak information to untrusted users.  It is also known to cause alignment
507  * traps on certain architectures.
508  */
509 #ifdef BGE_REGISTER_DEBUG
510 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
511 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
512 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
513 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
514 #endif
515 static void bge_add_sysctls(struct bge_softc *);
516 static void bge_add_sysctl_stats_regs(struct bge_softc *,
517     struct sysctl_ctx_list *, struct sysctl_oid_list *);
518 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
519     struct sysctl_oid_list *);
520 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
521 
522 NETDUMP_DEFINE(bge);
523 
524 static device_method_t bge_methods[] = {
525 	/* Device interface */
526 	DEVMETHOD(device_probe,		bge_probe),
527 	DEVMETHOD(device_attach,	bge_attach),
528 	DEVMETHOD(device_detach,	bge_detach),
529 	DEVMETHOD(device_shutdown,	bge_shutdown),
530 	DEVMETHOD(device_suspend,	bge_suspend),
531 	DEVMETHOD(device_resume,	bge_resume),
532 
533 	/* MII interface */
534 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
535 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
536 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
537 
538 	DEVMETHOD_END
539 };
540 
541 static driver_t bge_driver = {
542 	"bge",
543 	bge_methods,
544 	sizeof(struct bge_softc)
545 };
546 
547 static devclass_t bge_devclass;
548 
549 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
550 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
551     nitems(bge_devs) - 1);
552 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
553 
554 static int bge_allow_asf = 1;
555 
556 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
557 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
558 	"Allow ASF mode if available");
559 
560 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
561 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
562 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
563 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
564 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
565 
566 static int
567 bge_has_eaddr(struct bge_softc *sc)
568 {
569 #ifdef __sparc64__
570 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
571 	device_t dev;
572 	uint32_t subvendor;
573 
574 	dev = sc->bge_dev;
575 
576 	/*
577 	 * The on-board BGEs found in sun4u machines aren't fitted with
578 	 * an EEPROM which means that we have to obtain the MAC address
579 	 * via OFW and that some tests will always fail.  We distinguish
580 	 * such BGEs by the subvendor ID, which also has to be obtained
581 	 * from OFW instead of the PCI configuration space as the latter
582 	 * indicates Broadcom as the subvendor of the netboot interface.
583 	 * For early Blade 1500 and 2500 we even have to check the OFW
584 	 * device path as the subvendor ID always defaults to Broadcom
585 	 * there.
586 	 */
587 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
588 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
589 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
590 		return (0);
591 	memset(buf, 0, sizeof(buf));
592 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
593 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
594 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
595 			return (0);
596 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
597 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
598 			return (0);
599 	}
600 #endif
601 	return (1);
602 }
603 
604 static uint32_t
605 bge_readmem_ind(struct bge_softc *sc, int off)
606 {
607 	device_t dev;
608 	uint32_t val;
609 
610 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
611 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
612 		return (0);
613 
614 	dev = sc->bge_dev;
615 
616 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
617 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
618 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
619 	return (val);
620 }
621 
622 static void
623 bge_writemem_ind(struct bge_softc *sc, int off, int val)
624 {
625 	device_t dev;
626 
627 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
628 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
629 		return;
630 
631 	dev = sc->bge_dev;
632 
633 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
634 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
635 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
636 }
637 
638 #ifdef notdef
639 static uint32_t
640 bge_readreg_ind(struct bge_softc *sc, int off)
641 {
642 	device_t dev;
643 
644 	dev = sc->bge_dev;
645 
646 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
647 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
648 }
649 #endif
650 
651 static void
652 bge_writereg_ind(struct bge_softc *sc, int off, int val)
653 {
654 	device_t dev;
655 
656 	dev = sc->bge_dev;
657 
658 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
659 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
660 }
661 
662 static void
663 bge_writemem_direct(struct bge_softc *sc, int off, int val)
664 {
665 	CSR_WRITE_4(sc, off, val);
666 }
667 
668 static void
669 bge_writembx(struct bge_softc *sc, int off, int val)
670 {
671 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
672 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
673 
674 	CSR_WRITE_4(sc, off, val);
675 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
676 		CSR_READ_4(sc, off);
677 }
678 
679 /*
680  * Clear all stale locks and select the lock for this driver instance.
681  */
682 static void
683 bge_ape_lock_init(struct bge_softc *sc)
684 {
685 	uint32_t bit, regbase;
686 	int i;
687 
688 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
689 		regbase = BGE_APE_LOCK_GRANT;
690 	else
691 		regbase = BGE_APE_PER_LOCK_GRANT;
692 
693 	/* Clear any stale locks. */
694 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
695 		switch (i) {
696 		case BGE_APE_LOCK_PHY0:
697 		case BGE_APE_LOCK_PHY1:
698 		case BGE_APE_LOCK_PHY2:
699 		case BGE_APE_LOCK_PHY3:
700 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
701 			break;
702 		default:
703 			if (sc->bge_func_addr == 0)
704 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
705 			else
706 				bit = (1 << sc->bge_func_addr);
707 		}
708 		APE_WRITE_4(sc, regbase + 4 * i, bit);
709 	}
710 
711 	/* Select the PHY lock based on the device's function number. */
712 	switch (sc->bge_func_addr) {
713 	case 0:
714 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
715 		break;
716 	case 1:
717 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
718 		break;
719 	case 2:
720 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
721 		break;
722 	case 3:
723 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
724 		break;
725 	default:
726 		device_printf(sc->bge_dev,
727 		    "PHY lock not supported on this function\n");
728 	}
729 }
730 
731 /*
732  * Check for APE firmware, set flags, and print version info.
733  */
734 static void
735 bge_ape_read_fw_ver(struct bge_softc *sc)
736 {
737 	const char *fwtype;
738 	uint32_t apedata, features;
739 
740 	/* Check for a valid APE signature in shared memory. */
741 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
742 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
743 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
744 		return;
745 	}
746 
747 	/* Check if APE firmware is running. */
748 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
749 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
750 		device_printf(sc->bge_dev, "APE signature found "
751 		    "but FW status not ready! 0x%08x\n", apedata);
752 		return;
753 	}
754 
755 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
756 
757 	/* Fetch the APE firwmare type and version. */
758 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
759 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
760 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
761 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
762 		fwtype = "NCSI";
763 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
764 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
765 		fwtype = "DASH";
766 	} else
767 		fwtype = "UNKN";
768 
769 	/* Print the APE firmware version. */
770 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
771 	    fwtype,
772 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
773 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
774 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
775 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
776 }
777 
778 static int
779 bge_ape_lock(struct bge_softc *sc, int locknum)
780 {
781 	uint32_t bit, gnt, req, status;
782 	int i, off;
783 
784 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
785 		return (0);
786 
787 	/* Lock request/grant registers have different bases. */
788 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
789 		req = BGE_APE_LOCK_REQ;
790 		gnt = BGE_APE_LOCK_GRANT;
791 	} else {
792 		req = BGE_APE_PER_LOCK_REQ;
793 		gnt = BGE_APE_PER_LOCK_GRANT;
794 	}
795 
796 	off = 4 * locknum;
797 
798 	switch (locknum) {
799 	case BGE_APE_LOCK_GPIO:
800 		/* Lock required when using GPIO. */
801 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
802 			return (0);
803 		if (sc->bge_func_addr == 0)
804 			bit = BGE_APE_LOCK_REQ_DRIVER0;
805 		else
806 			bit = (1 << sc->bge_func_addr);
807 		break;
808 	case BGE_APE_LOCK_GRC:
809 		/* Lock required to reset the device. */
810 		if (sc->bge_func_addr == 0)
811 			bit = BGE_APE_LOCK_REQ_DRIVER0;
812 		else
813 			bit = (1 << sc->bge_func_addr);
814 		break;
815 	case BGE_APE_LOCK_MEM:
816 		/* Lock required when accessing certain APE memory. */
817 		if (sc->bge_func_addr == 0)
818 			bit = BGE_APE_LOCK_REQ_DRIVER0;
819 		else
820 			bit = (1 << sc->bge_func_addr);
821 		break;
822 	case BGE_APE_LOCK_PHY0:
823 	case BGE_APE_LOCK_PHY1:
824 	case BGE_APE_LOCK_PHY2:
825 	case BGE_APE_LOCK_PHY3:
826 		/* Lock required when accessing PHYs. */
827 		bit = BGE_APE_LOCK_REQ_DRIVER0;
828 		break;
829 	default:
830 		return (EINVAL);
831 	}
832 
833 	/* Request a lock. */
834 	APE_WRITE_4(sc, req + off, bit);
835 
836 	/* Wait up to 1 second to acquire lock. */
837 	for (i = 0; i < 20000; i++) {
838 		status = APE_READ_4(sc, gnt + off);
839 		if (status == bit)
840 			break;
841 		DELAY(50);
842 	}
843 
844 	/* Handle any errors. */
845 	if (status != bit) {
846 		device_printf(sc->bge_dev, "APE lock %d request failed! "
847 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
848 		    locknum, req + off, bit & 0xFFFF, gnt + off,
849 		    status & 0xFFFF);
850 		/* Revoke the lock request. */
851 		APE_WRITE_4(sc, gnt + off, bit);
852 		return (EBUSY);
853 	}
854 
855 	return (0);
856 }
857 
858 static void
859 bge_ape_unlock(struct bge_softc *sc, int locknum)
860 {
861 	uint32_t bit, gnt;
862 	int off;
863 
864 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
865 		return;
866 
867 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
868 		gnt = BGE_APE_LOCK_GRANT;
869 	else
870 		gnt = BGE_APE_PER_LOCK_GRANT;
871 
872 	off = 4 * locknum;
873 
874 	switch (locknum) {
875 	case BGE_APE_LOCK_GPIO:
876 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
877 			return;
878 		if (sc->bge_func_addr == 0)
879 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
880 		else
881 			bit = (1 << sc->bge_func_addr);
882 		break;
883 	case BGE_APE_LOCK_GRC:
884 		if (sc->bge_func_addr == 0)
885 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
886 		else
887 			bit = (1 << sc->bge_func_addr);
888 		break;
889 	case BGE_APE_LOCK_MEM:
890 		if (sc->bge_func_addr == 0)
891 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
892 		else
893 			bit = (1 << sc->bge_func_addr);
894 		break;
895 	case BGE_APE_LOCK_PHY0:
896 	case BGE_APE_LOCK_PHY1:
897 	case BGE_APE_LOCK_PHY2:
898 	case BGE_APE_LOCK_PHY3:
899 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
900 		break;
901 	default:
902 		return;
903 	}
904 
905 	APE_WRITE_4(sc, gnt + off, bit);
906 }
907 
908 /*
909  * Send an event to the APE firmware.
910  */
911 static void
912 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
913 {
914 	uint32_t apedata;
915 	int i;
916 
917 	/* NCSI does not support APE events. */
918 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
919 		return;
920 
921 	/* Wait up to 1ms for APE to service previous event. */
922 	for (i = 10; i > 0; i--) {
923 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
924 			break;
925 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
926 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
927 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
928 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
929 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
930 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
931 			break;
932 		}
933 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
934 		DELAY(100);
935 	}
936 	if (i == 0)
937 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
938 		    event);
939 }
940 
941 static void
942 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
943 {
944 	uint32_t apedata, event;
945 
946 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
947 		return;
948 
949 	switch (kind) {
950 	case BGE_RESET_START:
951 		/* If this is the first load, clear the load counter. */
952 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
953 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
954 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
955 		else {
956 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
957 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
958 		}
959 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
960 		    BGE_APE_HOST_SEG_SIG_MAGIC);
961 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
962 		    BGE_APE_HOST_SEG_LEN_MAGIC);
963 
964 		/* Add some version info if bge(4) supports it. */
965 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
966 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
967 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
968 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
969 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
970 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
971 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
972 		    BGE_APE_HOST_DRVR_STATE_START);
973 		event = BGE_APE_EVENT_STATUS_STATE_START;
974 		break;
975 	case BGE_RESET_SHUTDOWN:
976 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
977 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
978 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
979 		break;
980 	case BGE_RESET_SUSPEND:
981 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
982 		break;
983 	default:
984 		return;
985 	}
986 
987 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
988 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
989 }
990 
991 /*
992  * Map a single buffer address.
993  */
994 
995 static void
996 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
997 {
998 	struct bge_dmamap_arg *ctx;
999 
1000 	if (error)
1001 		return;
1002 
1003 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
1004 
1005 	ctx = arg;
1006 	ctx->bge_busaddr = segs->ds_addr;
1007 }
1008 
1009 static uint8_t
1010 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1011 {
1012 	uint32_t access, byte = 0;
1013 	int i;
1014 
1015 	/* Lock. */
1016 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1017 	for (i = 0; i < 8000; i++) {
1018 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1019 			break;
1020 		DELAY(20);
1021 	}
1022 	if (i == 8000)
1023 		return (1);
1024 
1025 	/* Enable access. */
1026 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1027 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1028 
1029 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1030 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1031 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1032 		DELAY(10);
1033 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1034 			DELAY(10);
1035 			break;
1036 		}
1037 	}
1038 
1039 	if (i == BGE_TIMEOUT * 10) {
1040 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1041 		return (1);
1042 	}
1043 
1044 	/* Get result. */
1045 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1046 
1047 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1048 
1049 	/* Disable access. */
1050 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1051 
1052 	/* Unlock. */
1053 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1054 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Read a sequence of bytes from NVRAM.
1061  */
1062 static int
1063 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1064 {
1065 	int err = 0, i;
1066 	uint8_t byte = 0;
1067 
1068 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1069 		return (1);
1070 
1071 	for (i = 0; i < cnt; i++) {
1072 		err = bge_nvram_getbyte(sc, off + i, &byte);
1073 		if (err)
1074 			break;
1075 		*(dest + i) = byte;
1076 	}
1077 
1078 	return (err ? 1 : 0);
1079 }
1080 
1081 /*
1082  * Read a byte of data stored in the EEPROM at address 'addr.' The
1083  * BCM570x supports both the traditional bitbang interface and an
1084  * auto access interface for reading the EEPROM. We use the auto
1085  * access method.
1086  */
1087 static uint8_t
1088 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1089 {
1090 	int i;
1091 	uint32_t byte = 0;
1092 
1093 	/*
1094 	 * Enable use of auto EEPROM access so we can avoid
1095 	 * having to use the bitbang method.
1096 	 */
1097 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1098 
1099 	/* Reset the EEPROM, load the clock period. */
1100 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1101 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1102 	DELAY(20);
1103 
1104 	/* Issue the read EEPROM command. */
1105 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1106 
1107 	/* Wait for completion */
1108 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1109 		DELAY(10);
1110 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1111 			break;
1112 	}
1113 
1114 	if (i == BGE_TIMEOUT * 10) {
1115 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1116 		return (1);
1117 	}
1118 
1119 	/* Get result. */
1120 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1121 
1122 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Read a sequence of bytes from the EEPROM.
1129  */
1130 static int
1131 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1132 {
1133 	int i, error = 0;
1134 	uint8_t byte = 0;
1135 
1136 	for (i = 0; i < cnt; i++) {
1137 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1138 		if (error)
1139 			break;
1140 		*(dest + i) = byte;
1141 	}
1142 
1143 	return (error ? 1 : 0);
1144 }
1145 
1146 static int
1147 bge_miibus_readreg(device_t dev, int phy, int reg)
1148 {
1149 	struct bge_softc *sc;
1150 	uint32_t val;
1151 	int i;
1152 
1153 	sc = device_get_softc(dev);
1154 
1155 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1156 		return (0);
1157 
1158 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1159 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1160 		CSR_WRITE_4(sc, BGE_MI_MODE,
1161 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1162 		DELAY(80);
1163 	}
1164 
1165 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1166 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1167 
1168 	/* Poll for the PHY register access to complete. */
1169 	for (i = 0; i < BGE_TIMEOUT; i++) {
1170 		DELAY(10);
1171 		val = CSR_READ_4(sc, BGE_MI_COMM);
1172 		if ((val & BGE_MICOMM_BUSY) == 0) {
1173 			DELAY(5);
1174 			val = CSR_READ_4(sc, BGE_MI_COMM);
1175 			break;
1176 		}
1177 	}
1178 
1179 	if (i == BGE_TIMEOUT) {
1180 		device_printf(sc->bge_dev,
1181 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1182 		    phy, reg, val);
1183 		val = 0;
1184 	}
1185 
1186 	/* Restore the autopoll bit if necessary. */
1187 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1188 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1189 		DELAY(80);
1190 	}
1191 
1192 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1193 
1194 	if (val & BGE_MICOMM_READFAIL)
1195 		return (0);
1196 
1197 	return (val & 0xFFFF);
1198 }
1199 
1200 static int
1201 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1202 {
1203 	struct bge_softc *sc;
1204 	int i;
1205 
1206 	sc = device_get_softc(dev);
1207 
1208 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1209 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1210 		return (0);
1211 
1212 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1213 		return (0);
1214 
1215 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1216 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1217 		CSR_WRITE_4(sc, BGE_MI_MODE,
1218 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1219 		DELAY(80);
1220 	}
1221 
1222 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1223 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1224 
1225 	for (i = 0; i < BGE_TIMEOUT; i++) {
1226 		DELAY(10);
1227 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1228 			DELAY(5);
1229 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1230 			break;
1231 		}
1232 	}
1233 
1234 	/* Restore the autopoll bit if necessary. */
1235 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1236 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1237 		DELAY(80);
1238 	}
1239 
1240 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1241 
1242 	if (i == BGE_TIMEOUT)
1243 		device_printf(sc->bge_dev,
1244 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1245 		    phy, reg, val);
1246 
1247 	return (0);
1248 }
1249 
1250 static void
1251 bge_miibus_statchg(device_t dev)
1252 {
1253 	struct bge_softc *sc;
1254 	struct mii_data *mii;
1255 	uint32_t mac_mode, rx_mode, tx_mode;
1256 
1257 	sc = device_get_softc(dev);
1258 	if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1259 		return;
1260 	mii = device_get_softc(sc->bge_miibus);
1261 
1262 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1263 	    (IFM_ACTIVE | IFM_AVALID)) {
1264 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1265 		case IFM_10_T:
1266 		case IFM_100_TX:
1267 			sc->bge_link = 1;
1268 			break;
1269 		case IFM_1000_T:
1270 		case IFM_1000_SX:
1271 		case IFM_2500_SX:
1272 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1273 				sc->bge_link = 1;
1274 			else
1275 				sc->bge_link = 0;
1276 			break;
1277 		default:
1278 			sc->bge_link = 0;
1279 			break;
1280 		}
1281 	} else
1282 		sc->bge_link = 0;
1283 	if (sc->bge_link == 0)
1284 		return;
1285 
1286 	/*
1287 	 * APE firmware touches these registers to keep the MAC
1288 	 * connected to the outside world.  Try to keep the
1289 	 * accesses atomic.
1290 	 */
1291 
1292 	/* Set the port mode (MII/GMII) to match the link speed. */
1293 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1294 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1295 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1296 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1297 
1298 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1299 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1300 		mac_mode |= BGE_PORTMODE_GMII;
1301 	else
1302 		mac_mode |= BGE_PORTMODE_MII;
1303 
1304 	/* Set MAC flow control behavior to match link flow control settings. */
1305 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1306 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1307 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1308 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1309 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1310 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1311 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1312 	} else
1313 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1314 
1315 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1316 	DELAY(40);
1317 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1318 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1319 }
1320 
1321 /*
1322  * Intialize a standard receive ring descriptor.
1323  */
1324 static int
1325 bge_newbuf_std(struct bge_softc *sc, int i)
1326 {
1327 	struct mbuf *m;
1328 	struct bge_rx_bd *r;
1329 	bus_dma_segment_t segs[1];
1330 	bus_dmamap_t map;
1331 	int error, nsegs;
1332 
1333 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1334 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1335 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1336 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1337 		if (m == NULL)
1338 			return (ENOBUFS);
1339 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1340 	} else {
1341 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1342 		if (m == NULL)
1343 			return (ENOBUFS);
1344 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1345 	}
1346 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1347 		m_adj(m, ETHER_ALIGN);
1348 
1349 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1350 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1351 	if (error != 0) {
1352 		m_freem(m);
1353 		return (error);
1354 	}
1355 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1356 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1357 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1358 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1359 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1360 	}
1361 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1362 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1363 	sc->bge_cdata.bge_rx_std_sparemap = map;
1364 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1365 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1366 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1367 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1368 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1369 	r->bge_flags = BGE_RXBDFLAG_END;
1370 	r->bge_len = segs[0].ds_len;
1371 	r->bge_idx = i;
1372 
1373 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1374 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1375 
1376 	return (0);
1377 }
1378 
1379 /*
1380  * Initialize a jumbo receive ring descriptor. This allocates
1381  * a jumbo buffer from the pool managed internally by the driver.
1382  */
1383 static int
1384 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1385 {
1386 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1387 	bus_dmamap_t map;
1388 	struct bge_extrx_bd *r;
1389 	struct mbuf *m;
1390 	int error, nsegs;
1391 
1392 	MGETHDR(m, M_NOWAIT, MT_DATA);
1393 	if (m == NULL)
1394 		return (ENOBUFS);
1395 
1396 	if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1397 		m_freem(m);
1398 		return (ENOBUFS);
1399 	}
1400 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1401 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1402 		m_adj(m, ETHER_ALIGN);
1403 
1404 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1405 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1406 	if (error != 0) {
1407 		m_freem(m);
1408 		return (error);
1409 	}
1410 
1411 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1412 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1413 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1414 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1415 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1416 	}
1417 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1418 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1419 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1420 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1421 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1422 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1423 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1424 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1425 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1426 
1427 	/*
1428 	 * Fill in the extended RX buffer descriptor.
1429 	 */
1430 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1431 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1432 	r->bge_idx = i;
1433 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1434 	switch (nsegs) {
1435 	case 4:
1436 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1437 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1438 		r->bge_len3 = segs[3].ds_len;
1439 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1440 	case 3:
1441 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1442 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1443 		r->bge_len2 = segs[2].ds_len;
1444 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1445 	case 2:
1446 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1447 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1448 		r->bge_len1 = segs[1].ds_len;
1449 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1450 	case 1:
1451 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1452 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1453 		r->bge_len0 = segs[0].ds_len;
1454 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1455 		break;
1456 	default:
1457 		panic("%s: %d segments\n", __func__, nsegs);
1458 	}
1459 
1460 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1461 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 bge_init_rx_ring_std(struct bge_softc *sc)
1468 {
1469 	int error, i;
1470 
1471 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1472 	sc->bge_std = 0;
1473 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1474 		if ((error = bge_newbuf_std(sc, i)) != 0)
1475 			return (error);
1476 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1477 	}
1478 
1479 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1480 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1481 
1482 	sc->bge_std = 0;
1483 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1484 
1485 	return (0);
1486 }
1487 
1488 static void
1489 bge_free_rx_ring_std(struct bge_softc *sc)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1494 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1495 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1496 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1497 			    BUS_DMASYNC_POSTREAD);
1498 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1499 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1500 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1501 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1502 		}
1503 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1504 		    sizeof(struct bge_rx_bd));
1505 	}
1506 }
1507 
1508 static int
1509 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1510 {
1511 	struct bge_rcb *rcb;
1512 	int error, i;
1513 
1514 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1515 	sc->bge_jumbo = 0;
1516 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1517 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1518 			return (error);
1519 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1520 	}
1521 
1522 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1523 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1524 
1525 	sc->bge_jumbo = 0;
1526 
1527 	/* Enable the jumbo receive producer ring. */
1528 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1529 	rcb->bge_maxlen_flags =
1530 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1531 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 
1533 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1534 
1535 	return (0);
1536 }
1537 
1538 static void
1539 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1540 {
1541 	int i;
1542 
1543 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1544 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1545 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1546 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1547 			    BUS_DMASYNC_POSTREAD);
1548 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1549 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1550 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1551 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1552 		}
1553 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1554 		    sizeof(struct bge_extrx_bd));
1555 	}
1556 }
1557 
1558 static void
1559 bge_free_tx_ring(struct bge_softc *sc)
1560 {
1561 	int i;
1562 
1563 	if (sc->bge_ldata.bge_tx_ring == NULL)
1564 		return;
1565 
1566 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1567 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1568 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1569 			    sc->bge_cdata.bge_tx_dmamap[i],
1570 			    BUS_DMASYNC_POSTWRITE);
1571 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1572 			    sc->bge_cdata.bge_tx_dmamap[i]);
1573 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1574 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1575 		}
1576 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1577 		    sizeof(struct bge_tx_bd));
1578 	}
1579 }
1580 
1581 static int
1582 bge_init_tx_ring(struct bge_softc *sc)
1583 {
1584 	sc->bge_txcnt = 0;
1585 	sc->bge_tx_saved_considx = 0;
1586 
1587 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1588 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1589 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1590 
1591 	/* Initialize transmit producer index for host-memory send ring. */
1592 	sc->bge_tx_prodidx = 0;
1593 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1594 
1595 	/* 5700 b2 errata */
1596 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1597 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1598 
1599 	/* NIC-memory send ring not used; initialize to zero. */
1600 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1601 	/* 5700 b2 errata */
1602 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1603 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1604 
1605 	return (0);
1606 }
1607 
1608 static void
1609 bge_setpromisc(struct bge_softc *sc)
1610 {
1611 	if_t ifp;
1612 
1613 	BGE_LOCK_ASSERT(sc);
1614 
1615 	ifp = sc->bge_ifp;
1616 
1617 	/* Enable or disable promiscuous mode as needed. */
1618 	if (if_getflags(ifp) & IFF_PROMISC)
1619 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1620 	else
1621 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1622 }
1623 
1624 static void
1625 bge_setmulti(struct bge_softc *sc)
1626 {
1627 	if_t ifp;
1628 	int mc_count = 0;
1629 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1630 	int h, i, mcnt;
1631 	unsigned char *mta;
1632 
1633 	BGE_LOCK_ASSERT(sc);
1634 
1635 	ifp = sc->bge_ifp;
1636 
1637 	mc_count = if_multiaddr_count(ifp, -1);
1638 	mta = malloc(sizeof(unsigned char) *  ETHER_ADDR_LEN *
1639 	    mc_count, M_DEVBUF, M_NOWAIT);
1640 
1641 	if(mta == NULL) {
1642 		device_printf(sc->bge_dev,
1643 		    "Failed to allocated temp mcast list\n");
1644 		return;
1645 	}
1646 
1647 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1648 		for (i = 0; i < 4; i++)
1649 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1650 		free(mta, M_DEVBUF);
1651 		return;
1652 	}
1653 
1654 	/* First, zot all the existing filters. */
1655 	for (i = 0; i < 4; i++)
1656 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1657 
1658 	if_multiaddr_array(ifp, mta, &mcnt, mc_count);
1659 	for(i = 0; i < mcnt; i++) {
1660 		h = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
1661 		    ETHER_ADDR_LEN) & 0x7F;
1662 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1663 	}
1664 
1665 	for (i = 0; i < 4; i++)
1666 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1667 
1668 	free(mta, M_DEVBUF);
1669 }
1670 
1671 static void
1672 bge_setvlan(struct bge_softc *sc)
1673 {
1674 	if_t ifp;
1675 
1676 	BGE_LOCK_ASSERT(sc);
1677 
1678 	ifp = sc->bge_ifp;
1679 
1680 	/* Enable or disable VLAN tag stripping as needed. */
1681 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1682 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1683 	else
1684 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1685 }
1686 
1687 static void
1688 bge_sig_pre_reset(struct bge_softc *sc, int type)
1689 {
1690 
1691 	/*
1692 	 * Some chips don't like this so only do this if ASF is enabled
1693 	 */
1694 	if (sc->bge_asf_mode)
1695 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1696 
1697 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1698 		switch (type) {
1699 		case BGE_RESET_START:
1700 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1701 			    BGE_FW_DRV_STATE_START);
1702 			break;
1703 		case BGE_RESET_SHUTDOWN:
1704 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1705 			    BGE_FW_DRV_STATE_UNLOAD);
1706 			break;
1707 		case BGE_RESET_SUSPEND:
1708 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1709 			    BGE_FW_DRV_STATE_SUSPEND);
1710 			break;
1711 		}
1712 	}
1713 
1714 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1715 		bge_ape_driver_state_change(sc, type);
1716 }
1717 
1718 static void
1719 bge_sig_post_reset(struct bge_softc *sc, int type)
1720 {
1721 
1722 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1723 		switch (type) {
1724 		case BGE_RESET_START:
1725 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1726 			    BGE_FW_DRV_STATE_START_DONE);
1727 			/* START DONE */
1728 			break;
1729 		case BGE_RESET_SHUTDOWN:
1730 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1731 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1732 			break;
1733 		}
1734 	}
1735 	if (type == BGE_RESET_SHUTDOWN)
1736 		bge_ape_driver_state_change(sc, type);
1737 }
1738 
1739 static void
1740 bge_sig_legacy(struct bge_softc *sc, int type)
1741 {
1742 
1743 	if (sc->bge_asf_mode) {
1744 		switch (type) {
1745 		case BGE_RESET_START:
1746 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1747 			    BGE_FW_DRV_STATE_START);
1748 			break;
1749 		case BGE_RESET_SHUTDOWN:
1750 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1751 			    BGE_FW_DRV_STATE_UNLOAD);
1752 			break;
1753 		}
1754 	}
1755 }
1756 
1757 static void
1758 bge_stop_fw(struct bge_softc *sc)
1759 {
1760 	int i;
1761 
1762 	if (sc->bge_asf_mode) {
1763 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1764 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1765 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1766 
1767 		for (i = 0; i < 100; i++ ) {
1768 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1769 			    BGE_RX_CPU_DRV_EVENT))
1770 				break;
1771 			DELAY(10);
1772 		}
1773 	}
1774 }
1775 
1776 static uint32_t
1777 bge_dma_swap_options(struct bge_softc *sc)
1778 {
1779 	uint32_t dma_options;
1780 
1781 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1782 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1783 #if BYTE_ORDER == BIG_ENDIAN
1784 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1785 #endif
1786 	return (dma_options);
1787 }
1788 
1789 /*
1790  * Do endian, PCI and DMA initialization.
1791  */
1792 static int
1793 bge_chipinit(struct bge_softc *sc)
1794 {
1795 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1796 	uint16_t val;
1797 	int i;
1798 
1799 	/* Set endianness before we access any non-PCI registers. */
1800 	misc_ctl = BGE_INIT;
1801 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1802 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1803 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1804 
1805 	/*
1806 	 * Clear the MAC statistics block in the NIC's
1807 	 * internal memory.
1808 	 */
1809 	for (i = BGE_STATS_BLOCK;
1810 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1811 		BGE_MEMWIN_WRITE(sc, i, 0);
1812 
1813 	for (i = BGE_STATUS_BLOCK;
1814 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1815 		BGE_MEMWIN_WRITE(sc, i, 0);
1816 
1817 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1818 		/*
1819 		 *  Fix data corruption caused by non-qword write with WB.
1820 		 *  Fix master abort in PCI mode.
1821 		 *  Fix PCI latency timer.
1822 		 */
1823 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1824 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1825 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1826 	}
1827 
1828 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1829 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1830 		/*
1831 		 * For the 57766 and non Ax versions of 57765, bootcode
1832 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1833 		 * value to prevent transmit hangs.
1834 		 */
1835 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1836 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1837 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1838 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * Set up the PCI DMA control register.
1844 	 */
1845 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1846 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1847 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1848 		if (sc->bge_mps >= 256)
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1850 		else
1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1852 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1853 		if (BGE_IS_5714_FAMILY(sc)) {
1854 			/* 256 bytes for read and write. */
1855 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1856 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1857 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1858 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1859 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1860 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1861 			/*
1862 			 * In the BCM5703, the DMA read watermark should
1863 			 * be set to less than or equal to the maximum
1864 			 * memory read byte count of the PCI-X command
1865 			 * register.
1866 			 */
1867 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1868 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1869 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1870 			/* 1536 bytes for read, 384 bytes for write. */
1871 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1872 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1873 		} else {
1874 			/* 384 bytes for read and write. */
1875 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1876 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1877 			    0x0F;
1878 		}
1879 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1880 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1881 			uint32_t tmp;
1882 
1883 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1884 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1885 			if (tmp == 6 || tmp == 7)
1886 				dma_rw_ctl |=
1887 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1888 
1889 			/* Set PCI-X DMA write workaround. */
1890 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1891 		}
1892 	} else {
1893 		/* Conventional PCI bus: 256 bytes for read and write. */
1894 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1895 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1896 
1897 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1898 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1899 			dma_rw_ctl |= 0x0F;
1900 	}
1901 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1902 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1903 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1904 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1905 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1906 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1907 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1908 	if (BGE_IS_5717_PLUS(sc)) {
1909 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1910 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1911 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1912 		/*
1913 		 * Enable HW workaround for controllers that misinterpret
1914 		 * a status tag update and leave interrupts permanently
1915 		 * disabled.
1916 		 */
1917 		if (!BGE_IS_57765_PLUS(sc) &&
1918 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1919 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1920 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1921 	}
1922 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1923 
1924 	/*
1925 	 * Set up general mode register.
1926 	 */
1927 	mode_ctl = bge_dma_swap_options(sc);
1928 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1929 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1930 		/* Retain Host-2-BMC settings written by APE firmware. */
1931 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1932 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1933 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1934 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1935 	}
1936 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1937 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1938 
1939 	/*
1940 	 * BCM5701 B5 have a bug causing data corruption when using
1941 	 * 64-bit DMA reads, which can be terminated early and then
1942 	 * completed later as 32-bit accesses, in combination with
1943 	 * certain bridges.
1944 	 */
1945 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1946 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1947 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1948 
1949 	/*
1950 	 * Tell the firmware the driver is running
1951 	 */
1952 	if (sc->bge_asf_mode & ASF_STACKUP)
1953 		mode_ctl |= BGE_MODECTL_STACKUP;
1954 
1955 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1956 
1957 	/*
1958 	 * Disable memory write invalidate.  Apparently it is not supported
1959 	 * properly by these devices.
1960 	 */
1961 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1962 
1963 	/* Set the timer prescaler (always 66 MHz). */
1964 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1965 
1966 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1967 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1968 		DELAY(40);	/* XXX */
1969 
1970 		/* Put PHY into ready state */
1971 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1972 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1973 		DELAY(40);
1974 	}
1975 
1976 	return (0);
1977 }
1978 
1979 static int
1980 bge_blockinit(struct bge_softc *sc)
1981 {
1982 	struct bge_rcb *rcb;
1983 	bus_size_t vrcb;
1984 	bge_hostaddr taddr;
1985 	uint32_t dmactl, rdmareg, val;
1986 	int i, limit;
1987 
1988 	/*
1989 	 * Initialize the memory window pointer register so that
1990 	 * we can access the first 32K of internal NIC RAM. This will
1991 	 * allow us to set up the TX send ring RCBs and the RX return
1992 	 * ring RCBs, plus other things which live in NIC memory.
1993 	 */
1994 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1995 
1996 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1997 
1998 	if (!(BGE_IS_5705_PLUS(sc))) {
1999 		/* Configure mbuf memory pool */
2000 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2001 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
2002 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2003 		else
2004 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2005 
2006 		/* Configure DMA resource pool */
2007 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2008 		    BGE_DMA_DESCRIPTORS);
2009 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2010 	}
2011 
2012 	/* Configure mbuf pool watermarks */
2013 	if (BGE_IS_5717_PLUS(sc)) {
2014 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2015 		if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
2016 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2017 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2018 		} else {
2019 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2020 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2021 		}
2022 	} else if (!BGE_IS_5705_PLUS(sc)) {
2023 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2024 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2025 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2026 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2027 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2028 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2029 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2030 	} else {
2031 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2032 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2033 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2034 	}
2035 
2036 	/* Configure DMA resource watermarks */
2037 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2038 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2039 
2040 	/* Enable buffer manager */
2041 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2042 	/*
2043 	 * Change the arbitration algorithm of TXMBUF read request to
2044 	 * round-robin instead of priority based for BCM5719.  When
2045 	 * TXFIFO is almost empty, RDMA will hold its request until
2046 	 * TXFIFO is not almost empty.
2047 	 */
2048 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2049 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2050 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2051 
2052 	/* Poll for buffer manager start indication */
2053 	for (i = 0; i < BGE_TIMEOUT; i++) {
2054 		DELAY(10);
2055 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2056 			break;
2057 	}
2058 
2059 	if (i == BGE_TIMEOUT) {
2060 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2061 		return (ENXIO);
2062 	}
2063 
2064 	/* Enable flow-through queues */
2065 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2066 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2067 
2068 	/* Wait until queue initialization is complete */
2069 	for (i = 0; i < BGE_TIMEOUT; i++) {
2070 		DELAY(10);
2071 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2072 			break;
2073 	}
2074 
2075 	if (i == BGE_TIMEOUT) {
2076 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2077 		return (ENXIO);
2078 	}
2079 
2080 	/*
2081 	 * Summary of rings supported by the controller:
2082 	 *
2083 	 * Standard Receive Producer Ring
2084 	 * - This ring is used to feed receive buffers for "standard"
2085 	 *   sized frames (typically 1536 bytes) to the controller.
2086 	 *
2087 	 * Jumbo Receive Producer Ring
2088 	 * - This ring is used to feed receive buffers for jumbo sized
2089 	 *   frames (i.e. anything bigger than the "standard" frames)
2090 	 *   to the controller.
2091 	 *
2092 	 * Mini Receive Producer Ring
2093 	 * - This ring is used to feed receive buffers for "mini"
2094 	 *   sized frames to the controller.
2095 	 * - This feature required external memory for the controller
2096 	 *   but was never used in a production system.  Should always
2097 	 *   be disabled.
2098 	 *
2099 	 * Receive Return Ring
2100 	 * - After the controller has placed an incoming frame into a
2101 	 *   receive buffer that buffer is moved into a receive return
2102 	 *   ring.  The driver is then responsible to passing the
2103 	 *   buffer up to the stack.  Many versions of the controller
2104 	 *   support multiple RR rings.
2105 	 *
2106 	 * Send Ring
2107 	 * - This ring is used for outgoing frames.  Many versions of
2108 	 *   the controller support multiple send rings.
2109 	 */
2110 
2111 	/* Initialize the standard receive producer ring control block. */
2112 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2113 	rcb->bge_hostaddr.bge_addr_lo =
2114 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2115 	rcb->bge_hostaddr.bge_addr_hi =
2116 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2117 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2118 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2119 	if (BGE_IS_5717_PLUS(sc)) {
2120 		/*
2121 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2122 		 * Bits 15-2 : Maximum RX frame size
2123 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2124 		 * Bit 0     : Reserved
2125 		 */
2126 		rcb->bge_maxlen_flags =
2127 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2128 	} else if (BGE_IS_5705_PLUS(sc)) {
2129 		/*
2130 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2131 		 * Bits 15-2 : Reserved (should be 0)
2132 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2133 		 * Bit 0     : Reserved
2134 		 */
2135 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2136 	} else {
2137 		/*
2138 		 * Ring size is always XXX entries
2139 		 * Bits 31-16: Maximum RX frame size
2140 		 * Bits 15-2 : Reserved (should be 0)
2141 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2142 		 * Bit 0     : Reserved
2143 		 */
2144 		rcb->bge_maxlen_flags =
2145 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2146 	}
2147 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2148 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2149 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2150 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2151 	else
2152 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2153 	/* Write the standard receive producer ring control block. */
2154 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2155 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2156 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2157 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2158 
2159 	/* Reset the standard receive producer ring producer index. */
2160 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2161 
2162 	/*
2163 	 * Initialize the jumbo RX producer ring control
2164 	 * block.  We set the 'ring disabled' bit in the
2165 	 * flags field until we're actually ready to start
2166 	 * using this ring (i.e. once we set the MTU
2167 	 * high enough to require it).
2168 	 */
2169 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2170 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2171 		/* Get the jumbo receive producer ring RCB parameters. */
2172 		rcb->bge_hostaddr.bge_addr_lo =
2173 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2174 		rcb->bge_hostaddr.bge_addr_hi =
2175 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2176 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2177 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2178 		    BUS_DMASYNC_PREREAD);
2179 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2180 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2181 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2182 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2183 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2184 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2185 		else
2186 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2187 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2188 		    rcb->bge_hostaddr.bge_addr_hi);
2189 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2190 		    rcb->bge_hostaddr.bge_addr_lo);
2191 		/* Program the jumbo receive producer ring RCB parameters. */
2192 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2193 		    rcb->bge_maxlen_flags);
2194 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2195 		/* Reset the jumbo receive producer ring producer index. */
2196 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2197 	}
2198 
2199 	/* Disable the mini receive producer ring RCB. */
2200 	if (BGE_IS_5700_FAMILY(sc)) {
2201 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2202 		rcb->bge_maxlen_flags =
2203 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2204 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2205 		    rcb->bge_maxlen_flags);
2206 		/* Reset the mini receive producer ring producer index. */
2207 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2208 	}
2209 
2210 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2211 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2212 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2213 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2214 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2215 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2216 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2217 	}
2218 	/*
2219 	 * The BD ring replenish thresholds control how often the
2220 	 * hardware fetches new BD's from the producer rings in host
2221 	 * memory.  Setting the value too low on a busy system can
2222 	 * starve the hardware and recue the throughpout.
2223 	 *
2224 	 * Set the BD ring replentish thresholds. The recommended
2225 	 * values are 1/8th the number of descriptors allocated to
2226 	 * each ring.
2227 	 * XXX The 5754 requires a lower threshold, so it might be a
2228 	 * requirement of all 575x family chips.  The Linux driver sets
2229 	 * the lower threshold for all 5705 family chips as well, but there
2230 	 * are reports that it might not need to be so strict.
2231 	 *
2232 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2233 	 * well.
2234 	 */
2235 	if (BGE_IS_5705_PLUS(sc))
2236 		val = 8;
2237 	else
2238 		val = BGE_STD_RX_RING_CNT / 8;
2239 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2240 	if (BGE_IS_JUMBO_CAPABLE(sc))
2241 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2242 		    BGE_JUMBO_RX_RING_CNT/8);
2243 	if (BGE_IS_5717_PLUS(sc)) {
2244 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2245 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2246 	}
2247 
2248 	/*
2249 	 * Disable all send rings by setting the 'ring disabled' bit
2250 	 * in the flags field of all the TX send ring control blocks,
2251 	 * located in NIC memory.
2252 	 */
2253 	if (!BGE_IS_5705_PLUS(sc))
2254 		/* 5700 to 5704 had 16 send rings. */
2255 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2256 	else if (BGE_IS_57765_PLUS(sc) ||
2257 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2258 		limit = 2;
2259 	else if (BGE_IS_5717_PLUS(sc))
2260 		limit = 4;
2261 	else
2262 		limit = 1;
2263 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2264 	for (i = 0; i < limit; i++) {
2265 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2266 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2267 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2268 		vrcb += sizeof(struct bge_rcb);
2269 	}
2270 
2271 	/* Configure send ring RCB 0 (we use only the first ring) */
2272 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2273 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2274 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2275 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2276 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2277 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2278 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2279 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2280 	else
2281 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2282 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2283 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2284 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2285 
2286 	/*
2287 	 * Disable all receive return rings by setting the
2288 	 * 'ring diabled' bit in the flags field of all the receive
2289 	 * return ring control blocks, located in NIC memory.
2290 	 */
2291 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2292 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2293 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2294 		/* Should be 17, use 16 until we get an SRAM map. */
2295 		limit = 16;
2296 	} else if (!BGE_IS_5705_PLUS(sc))
2297 		limit = BGE_RX_RINGS_MAX;
2298 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2299 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2300 	    BGE_IS_57765_PLUS(sc))
2301 		limit = 4;
2302 	else
2303 		limit = 1;
2304 	/* Disable all receive return rings. */
2305 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2306 	for (i = 0; i < limit; i++) {
2307 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2308 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2309 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2310 		    BGE_RCB_FLAG_RING_DISABLED);
2311 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2312 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2313 		    (i * (sizeof(uint64_t))), 0);
2314 		vrcb += sizeof(struct bge_rcb);
2315 	}
2316 
2317 	/*
2318 	 * Set up receive return ring 0.  Note that the NIC address
2319 	 * for RX return rings is 0x0.  The return rings live entirely
2320 	 * within the host, so the nicaddr field in the RCB isn't used.
2321 	 */
2322 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2323 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2324 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2325 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2326 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2327 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2328 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2329 
2330 	/* Set random backoff seed for TX */
2331 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2332 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2333 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2334 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2335 	    BGE_TX_BACKOFF_SEED_MASK);
2336 
2337 	/* Set inter-packet gap */
2338 	val = 0x2620;
2339 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2340 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2341 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2342 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2343 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2344 
2345 	/*
2346 	 * Specify which ring to use for packets that don't match
2347 	 * any RX rules.
2348 	 */
2349 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2350 
2351 	/*
2352 	 * Configure number of RX lists. One interrupt distribution
2353 	 * list, sixteen active lists, one bad frames class.
2354 	 */
2355 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2356 
2357 	/* Inialize RX list placement stats mask. */
2358 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2359 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2360 
2361 	/* Disable host coalescing until we get it set up */
2362 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2363 
2364 	/* Poll to make sure it's shut down. */
2365 	for (i = 0; i < BGE_TIMEOUT; i++) {
2366 		DELAY(10);
2367 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2368 			break;
2369 	}
2370 
2371 	if (i == BGE_TIMEOUT) {
2372 		device_printf(sc->bge_dev,
2373 		    "host coalescing engine failed to idle\n");
2374 		return (ENXIO);
2375 	}
2376 
2377 	/* Set up host coalescing defaults */
2378 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2379 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2380 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2381 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2382 	if (!(BGE_IS_5705_PLUS(sc))) {
2383 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2384 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2385 	}
2386 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2387 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2388 
2389 	/* Set up address of statistics block */
2390 	if (!(BGE_IS_5705_PLUS(sc))) {
2391 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2392 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2393 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2394 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2395 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2396 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2397 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2398 	}
2399 
2400 	/* Set up address of status block */
2401 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2402 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2403 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2404 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2405 
2406 	/* Set up status block size. */
2407 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2408 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2409 		val = BGE_STATBLKSZ_FULL;
2410 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2411 	} else {
2412 		val = BGE_STATBLKSZ_32BYTE;
2413 		bzero(sc->bge_ldata.bge_status_block, 32);
2414 	}
2415 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2416 	    sc->bge_cdata.bge_status_map,
2417 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2418 
2419 	/* Turn on host coalescing state machine */
2420 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2421 
2422 	/* Turn on RX BD completion state machine and enable attentions */
2423 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2424 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2425 
2426 	/* Turn on RX list placement state machine */
2427 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2428 
2429 	/* Turn on RX list selector state machine. */
2430 	if (!(BGE_IS_5705_PLUS(sc)))
2431 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2432 
2433 	/* Turn on DMA, clear stats. */
2434 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2435 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2436 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2437 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2438 
2439 	if (sc->bge_flags & BGE_FLAG_TBI)
2440 		val |= BGE_PORTMODE_TBI;
2441 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2442 		val |= BGE_PORTMODE_GMII;
2443 	else
2444 		val |= BGE_PORTMODE_MII;
2445 
2446 	/* Allow APE to send/receive frames. */
2447 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2448 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2449 
2450 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2451 	DELAY(40);
2452 
2453 	/* Set misc. local control, enable interrupts on attentions */
2454 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2455 
2456 #ifdef notdef
2457 	/* Assert GPIO pins for PHY reset */
2458 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2459 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2460 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2461 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2462 #endif
2463 
2464 	/* Turn on DMA completion state machine */
2465 	if (!(BGE_IS_5705_PLUS(sc)))
2466 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2467 
2468 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2469 
2470 	/* Enable host coalescing bug fix. */
2471 	if (BGE_IS_5755_PLUS(sc))
2472 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2473 
2474 	/* Request larger DMA burst size to get better performance. */
2475 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2476 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2477 
2478 	/* Turn on write DMA state machine */
2479 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2480 	DELAY(40);
2481 
2482 	/* Turn on read DMA state machine */
2483 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2484 
2485 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2486 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2487 
2488 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2489 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2490 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2491 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2492 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2493 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2494 	if (sc->bge_flags & BGE_FLAG_PCIE)
2495 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2496 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2497 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2498 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2499 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2500 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2501 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2502 	}
2503 
2504 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2505 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2506 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2507 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2508 		/*
2509 		 * Allow multiple outstanding read requests from
2510 		 * non-LSO read DMA engine.
2511 		 */
2512 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2513 	}
2514 
2515 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2516 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2517 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2518 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2519 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2520 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2521 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2522 		else
2523 			rdmareg = BGE_RDMA_RSRVCTRL;
2524 		dmactl = CSR_READ_4(sc, rdmareg);
2525 		/*
2526 		 * Adjust tx margin to prevent TX data corruption and
2527 		 * fix internal FIFO overflow.
2528 		 */
2529 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2530 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2531 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2532 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2533 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2534 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2535 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2536 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2537 		}
2538 		/*
2539 		 * Enable fix for read DMA FIFO overruns.
2540 		 * The fix is to limit the number of RX BDs
2541 		 * the hardware would fetch at a fime.
2542 		 */
2543 		CSR_WRITE_4(sc, rdmareg, dmactl |
2544 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2545 	}
2546 
2547 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2548 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2549 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2550 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2551 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2552 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2553 		/*
2554 		 * Allow 4KB burst length reads for non-LSO frames.
2555 		 * Enable 512B burst length reads for buffer descriptors.
2556 		 */
2557 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2558 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2559 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2560 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2561 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2562 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2563 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2564 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2565 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2566 	}
2567 
2568 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2569 	DELAY(40);
2570 
2571 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2572 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2573 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2574 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2575 				break;
2576 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2577 				break;
2578 		}
2579 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2580 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2581 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2582 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2583 			else
2584 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2585 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2586 		}
2587 	}
2588 
2589 	/* Turn on RX data completion state machine */
2590 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2591 
2592 	/* Turn on RX BD initiator state machine */
2593 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2594 
2595 	/* Turn on RX data and RX BD initiator state machine */
2596 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2597 
2598 	/* Turn on Mbuf cluster free state machine */
2599 	if (!(BGE_IS_5705_PLUS(sc)))
2600 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2601 
2602 	/* Turn on send BD completion state machine */
2603 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2604 
2605 	/* Turn on send data completion state machine */
2606 	val = BGE_SDCMODE_ENABLE;
2607 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2608 		val |= BGE_SDCMODE_CDELAY;
2609 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2610 
2611 	/* Turn on send data initiator state machine */
2612 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2613 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2614 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2615 	else
2616 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2617 
2618 	/* Turn on send BD initiator state machine */
2619 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2620 
2621 	/* Turn on send BD selector state machine */
2622 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2623 
2624 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2625 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2626 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2627 
2628 	/* ack/clear link change events */
2629 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2630 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2631 	    BGE_MACSTAT_LINK_CHANGED);
2632 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2633 
2634 	/*
2635 	 * Enable attention when the link has changed state for
2636 	 * devices that use auto polling.
2637 	 */
2638 	if (sc->bge_flags & BGE_FLAG_TBI) {
2639 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2640 	} else {
2641 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2642 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2643 			DELAY(80);
2644 		}
2645 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2646 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2647 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2648 			    BGE_EVTENB_MI_INTERRUPT);
2649 	}
2650 
2651 	/*
2652 	 * Clear any pending link state attention.
2653 	 * Otherwise some link state change events may be lost until attention
2654 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2655 	 * It's not necessary on newer BCM chips - perhaps enabling link
2656 	 * state change attentions implies clearing pending attention.
2657 	 */
2658 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2659 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2660 	    BGE_MACSTAT_LINK_CHANGED);
2661 
2662 	/* Enable link state change attentions. */
2663 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2664 
2665 	return (0);
2666 }
2667 
2668 static const struct bge_revision *
2669 bge_lookup_rev(uint32_t chipid)
2670 {
2671 	const struct bge_revision *br;
2672 
2673 	for (br = bge_revisions; br->br_name != NULL; br++) {
2674 		if (br->br_chipid == chipid)
2675 			return (br);
2676 	}
2677 
2678 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2679 		if (br->br_chipid == BGE_ASICREV(chipid))
2680 			return (br);
2681 	}
2682 
2683 	return (NULL);
2684 }
2685 
2686 static const struct bge_vendor *
2687 bge_lookup_vendor(uint16_t vid)
2688 {
2689 	const struct bge_vendor *v;
2690 
2691 	for (v = bge_vendors; v->v_name != NULL; v++)
2692 		if (v->v_id == vid)
2693 			return (v);
2694 
2695 	return (NULL);
2696 }
2697 
2698 static uint32_t
2699 bge_chipid(device_t dev)
2700 {
2701 	uint32_t id;
2702 
2703 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2704 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2705 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2706 		/*
2707 		 * Find the ASCI revision.  Different chips use different
2708 		 * registers.
2709 		 */
2710 		switch (pci_get_device(dev)) {
2711 		case BCOM_DEVICEID_BCM5717C:
2712 			/* 5717 C0 seems to belong to 5720 line. */
2713 			id = BGE_CHIPID_BCM5720_A0;
2714 			break;
2715 		case BCOM_DEVICEID_BCM5717:
2716 		case BCOM_DEVICEID_BCM5718:
2717 		case BCOM_DEVICEID_BCM5719:
2718 		case BCOM_DEVICEID_BCM5720:
2719 		case BCOM_DEVICEID_BCM5725:
2720 		case BCOM_DEVICEID_BCM5727:
2721 		case BCOM_DEVICEID_BCM5762:
2722 		case BCOM_DEVICEID_BCM57764:
2723 		case BCOM_DEVICEID_BCM57767:
2724 		case BCOM_DEVICEID_BCM57787:
2725 			id = pci_read_config(dev,
2726 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2727 			break;
2728 		case BCOM_DEVICEID_BCM57761:
2729 		case BCOM_DEVICEID_BCM57762:
2730 		case BCOM_DEVICEID_BCM57765:
2731 		case BCOM_DEVICEID_BCM57766:
2732 		case BCOM_DEVICEID_BCM57781:
2733 		case BCOM_DEVICEID_BCM57782:
2734 		case BCOM_DEVICEID_BCM57785:
2735 		case BCOM_DEVICEID_BCM57786:
2736 		case BCOM_DEVICEID_BCM57791:
2737 		case BCOM_DEVICEID_BCM57795:
2738 			id = pci_read_config(dev,
2739 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2740 			break;
2741 		default:
2742 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2743 		}
2744 	}
2745 	return (id);
2746 }
2747 
2748 /*
2749  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2750  * against our list and return its name if we find a match.
2751  *
2752  * Note that since the Broadcom controller contains VPD support, we
2753  * try to get the device name string from the controller itself instead
2754  * of the compiled-in string. It guarantees we'll always announce the
2755  * right product name. We fall back to the compiled-in string when
2756  * VPD is unavailable or corrupt.
2757  */
2758 static int
2759 bge_probe(device_t dev)
2760 {
2761 	char buf[96];
2762 	char model[64];
2763 	const struct bge_revision *br;
2764 	const char *pname;
2765 	struct bge_softc *sc;
2766 	const struct bge_type *t = bge_devs;
2767 	const struct bge_vendor *v;
2768 	uint32_t id;
2769 	uint16_t did, vid;
2770 
2771 	sc = device_get_softc(dev);
2772 	sc->bge_dev = dev;
2773 	vid = pci_get_vendor(dev);
2774 	did = pci_get_device(dev);
2775 	while(t->bge_vid != 0) {
2776 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2777 			id = bge_chipid(dev);
2778 			br = bge_lookup_rev(id);
2779 			if (bge_has_eaddr(sc) &&
2780 			    pci_get_vpd_ident(dev, &pname) == 0)
2781 				snprintf(model, sizeof(model), "%s", pname);
2782 			else {
2783 				v = bge_lookup_vendor(vid);
2784 				snprintf(model, sizeof(model), "%s %s",
2785 				    v != NULL ? v->v_name : "Unknown",
2786 				    br != NULL ? br->br_name :
2787 				    "NetXtreme/NetLink Ethernet Controller");
2788 			}
2789 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2790 			    model, br != NULL ? "" : "unknown ", id);
2791 			device_set_desc_copy(dev, buf);
2792 			return (BUS_PROBE_DEFAULT);
2793 		}
2794 		t++;
2795 	}
2796 
2797 	return (ENXIO);
2798 }
2799 
2800 static void
2801 bge_dma_free(struct bge_softc *sc)
2802 {
2803 	int i;
2804 
2805 	/* Destroy DMA maps for RX buffers. */
2806 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2807 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2808 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2809 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2810 	}
2811 	if (sc->bge_cdata.bge_rx_std_sparemap)
2812 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2813 		    sc->bge_cdata.bge_rx_std_sparemap);
2814 
2815 	/* Destroy DMA maps for jumbo RX buffers. */
2816 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2817 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2818 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2819 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2820 	}
2821 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2822 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2823 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2824 
2825 	/* Destroy DMA maps for TX buffers. */
2826 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2827 		if (sc->bge_cdata.bge_tx_dmamap[i])
2828 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2829 			    sc->bge_cdata.bge_tx_dmamap[i]);
2830 	}
2831 
2832 	if (sc->bge_cdata.bge_rx_mtag)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2834 	if (sc->bge_cdata.bge_mtag_jumbo)
2835 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2836 	if (sc->bge_cdata.bge_tx_mtag)
2837 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2838 
2839 	/* Destroy standard RX ring. */
2840 	if (sc->bge_ldata.bge_rx_std_ring_paddr)
2841 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2842 		    sc->bge_cdata.bge_rx_std_ring_map);
2843 	if (sc->bge_ldata.bge_rx_std_ring)
2844 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2845 		    sc->bge_ldata.bge_rx_std_ring,
2846 		    sc->bge_cdata.bge_rx_std_ring_map);
2847 
2848 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2849 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2850 
2851 	/* Destroy jumbo RX ring. */
2852 	if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2853 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2854 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2855 
2856 	if (sc->bge_ldata.bge_rx_jumbo_ring)
2857 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2858 		    sc->bge_ldata.bge_rx_jumbo_ring,
2859 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2860 
2861 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2862 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2863 
2864 	/* Destroy RX return ring. */
2865 	if (sc->bge_ldata.bge_rx_return_ring_paddr)
2866 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2867 		    sc->bge_cdata.bge_rx_return_ring_map);
2868 
2869 	if (sc->bge_ldata.bge_rx_return_ring)
2870 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2871 		    sc->bge_ldata.bge_rx_return_ring,
2872 		    sc->bge_cdata.bge_rx_return_ring_map);
2873 
2874 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2875 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2876 
2877 	/* Destroy TX ring. */
2878 	if (sc->bge_ldata.bge_tx_ring_paddr)
2879 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2880 		    sc->bge_cdata.bge_tx_ring_map);
2881 
2882 	if (sc->bge_ldata.bge_tx_ring)
2883 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2884 		    sc->bge_ldata.bge_tx_ring,
2885 		    sc->bge_cdata.bge_tx_ring_map);
2886 
2887 	if (sc->bge_cdata.bge_tx_ring_tag)
2888 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2889 
2890 	/* Destroy status block. */
2891 	if (sc->bge_ldata.bge_status_block_paddr)
2892 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2893 		    sc->bge_cdata.bge_status_map);
2894 
2895 	if (sc->bge_ldata.bge_status_block)
2896 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2897 		    sc->bge_ldata.bge_status_block,
2898 		    sc->bge_cdata.bge_status_map);
2899 
2900 	if (sc->bge_cdata.bge_status_tag)
2901 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2902 
2903 	/* Destroy statistics block. */
2904 	if (sc->bge_ldata.bge_stats_paddr)
2905 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2906 		    sc->bge_cdata.bge_stats_map);
2907 
2908 	if (sc->bge_ldata.bge_stats)
2909 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2910 		    sc->bge_ldata.bge_stats,
2911 		    sc->bge_cdata.bge_stats_map);
2912 
2913 	if (sc->bge_cdata.bge_stats_tag)
2914 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2915 
2916 	if (sc->bge_cdata.bge_buffer_tag)
2917 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2918 
2919 	/* Destroy the parent tag. */
2920 	if (sc->bge_cdata.bge_parent_tag)
2921 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2922 }
2923 
2924 static int
2925 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2926     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2927     bus_addr_t *paddr, const char *msg)
2928 {
2929 	struct bge_dmamap_arg ctx;
2930 	int error;
2931 
2932 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2933 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2934 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2935 	if (error != 0) {
2936 		device_printf(sc->bge_dev,
2937 		    "could not create %s dma tag\n", msg);
2938 		return (ENOMEM);
2939 	}
2940 	/* Allocate DMA'able memory for ring. */
2941 	error = bus_dmamem_alloc(*tag, (void **)ring,
2942 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2943 	if (error != 0) {
2944 		device_printf(sc->bge_dev,
2945 		    "could not allocate DMA'able memory for %s\n", msg);
2946 		return (ENOMEM);
2947 	}
2948 	/* Load the address of the ring. */
2949 	ctx.bge_busaddr = 0;
2950 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2951 	    &ctx, BUS_DMA_NOWAIT);
2952 	if (error != 0) {
2953 		device_printf(sc->bge_dev,
2954 		    "could not load DMA'able memory for %s\n", msg);
2955 		return (ENOMEM);
2956 	}
2957 	*paddr = ctx.bge_busaddr;
2958 	return (0);
2959 }
2960 
2961 static int
2962 bge_dma_alloc(struct bge_softc *sc)
2963 {
2964 	bus_addr_t lowaddr;
2965 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2966 	int i, error;
2967 
2968 	lowaddr = BUS_SPACE_MAXADDR;
2969 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2970 		lowaddr = BGE_DMA_MAXADDR;
2971 	/*
2972 	 * Allocate the parent bus DMA tag appropriate for PCI.
2973 	 */
2974 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2975 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2976 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2977 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2978 	if (error != 0) {
2979 		device_printf(sc->bge_dev,
2980 		    "could not allocate parent dma tag\n");
2981 		return (ENOMEM);
2982 	}
2983 
2984 	/* Create tag for standard RX ring. */
2985 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2986 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2987 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2988 	    &sc->bge_cdata.bge_rx_std_ring_map,
2989 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2990 	if (error)
2991 		return (error);
2992 
2993 	/* Create tag for RX return ring. */
2994 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2995 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2996 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2997 	    &sc->bge_cdata.bge_rx_return_ring_map,
2998 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2999 	if (error)
3000 		return (error);
3001 
3002 	/* Create tag for TX ring. */
3003 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
3004 	    &sc->bge_cdata.bge_tx_ring_tag,
3005 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
3006 	    &sc->bge_cdata.bge_tx_ring_map,
3007 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
3008 	if (error)
3009 		return (error);
3010 
3011 	/*
3012 	 * Create tag for status block.
3013 	 * Because we only use single Tx/Rx/Rx return ring, use
3014 	 * minimum status block size except BCM5700 AX/BX which
3015 	 * seems to want to see full status block size regardless
3016 	 * of configured number of ring.
3017 	 */
3018 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3019 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
3020 		sbsz = BGE_STATUS_BLK_SZ;
3021 	else
3022 		sbsz = 32;
3023 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
3024 	    &sc->bge_cdata.bge_status_tag,
3025 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
3026 	    &sc->bge_cdata.bge_status_map,
3027 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3028 	if (error)
3029 		return (error);
3030 
3031 	/* Create tag for statistics block. */
3032 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3033 	    &sc->bge_cdata.bge_stats_tag,
3034 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3035 	    &sc->bge_cdata.bge_stats_map,
3036 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3037 	if (error)
3038 		return (error);
3039 
3040 	/* Create tag for jumbo RX ring. */
3041 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3042 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3043 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3044 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3045 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3046 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3047 		if (error)
3048 			return (error);
3049 	}
3050 
3051 	/* Create parent tag for buffers. */
3052 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3053 		/*
3054 		 * XXX
3055 		 * watchdog timeout issue was observed on BCM5704 which
3056 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3057 		 * Both limiting DMA address space to 32bits and flushing
3058 		 * mailbox write seem to address the issue.
3059 		 */
3060 		if (sc->bge_pcixcap != 0)
3061 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3062 	}
3063 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3064 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3065 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3066 	    &sc->bge_cdata.bge_buffer_tag);
3067 	if (error != 0) {
3068 		device_printf(sc->bge_dev,
3069 		    "could not allocate buffer dma tag\n");
3070 		return (ENOMEM);
3071 	}
3072 	/* Create tag for Tx mbufs. */
3073 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3074 		txsegsz = BGE_TSOSEG_SZ;
3075 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3076 	} else {
3077 		txsegsz = MCLBYTES;
3078 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3079 	}
3080 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3081 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3082 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3083 	    &sc->bge_cdata.bge_tx_mtag);
3084 
3085 	if (error) {
3086 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3087 		return (ENOMEM);
3088 	}
3089 
3090 	/* Create tag for Rx mbufs. */
3091 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3092 		rxmaxsegsz = MJUM9BYTES;
3093 	else
3094 		rxmaxsegsz = MCLBYTES;
3095 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3096 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3097 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3098 
3099 	if (error) {
3100 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3101 		return (ENOMEM);
3102 	}
3103 
3104 	/* Create DMA maps for RX buffers. */
3105 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3106 	    &sc->bge_cdata.bge_rx_std_sparemap);
3107 	if (error) {
3108 		device_printf(sc->bge_dev,
3109 		    "can't create spare DMA map for RX\n");
3110 		return (ENOMEM);
3111 	}
3112 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3113 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3114 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3115 		if (error) {
3116 			device_printf(sc->bge_dev,
3117 			    "can't create DMA map for RX\n");
3118 			return (ENOMEM);
3119 		}
3120 	}
3121 
3122 	/* Create DMA maps for TX buffers. */
3123 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3124 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3125 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3126 		if (error) {
3127 			device_printf(sc->bge_dev,
3128 			    "can't create DMA map for TX\n");
3129 			return (ENOMEM);
3130 		}
3131 	}
3132 
3133 	/* Create tags for jumbo RX buffers. */
3134 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3135 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3136 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3137 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3138 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3139 		if (error) {
3140 			device_printf(sc->bge_dev,
3141 			    "could not allocate jumbo dma tag\n");
3142 			return (ENOMEM);
3143 		}
3144 		/* Create DMA maps for jumbo RX buffers. */
3145 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3146 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3147 		if (error) {
3148 			device_printf(sc->bge_dev,
3149 			    "can't create spare DMA map for jumbo RX\n");
3150 			return (ENOMEM);
3151 		}
3152 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3153 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3154 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3155 			if (error) {
3156 				device_printf(sc->bge_dev,
3157 				    "can't create DMA map for jumbo RX\n");
3158 				return (ENOMEM);
3159 			}
3160 		}
3161 	}
3162 
3163 	return (0);
3164 }
3165 
3166 /*
3167  * Return true if this device has more than one port.
3168  */
3169 static int
3170 bge_has_multiple_ports(struct bge_softc *sc)
3171 {
3172 	device_t dev = sc->bge_dev;
3173 	u_int b, d, f, fscan, s;
3174 
3175 	d = pci_get_domain(dev);
3176 	b = pci_get_bus(dev);
3177 	s = pci_get_slot(dev);
3178 	f = pci_get_function(dev);
3179 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3180 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3181 			return (1);
3182 	return (0);
3183 }
3184 
3185 /*
3186  * Return true if MSI can be used with this device.
3187  */
3188 static int
3189 bge_can_use_msi(struct bge_softc *sc)
3190 {
3191 	int can_use_msi = 0;
3192 
3193 	if (sc->bge_msi == 0)
3194 		return (0);
3195 
3196 	/* Disable MSI for polling(4). */
3197 #ifdef DEVICE_POLLING
3198 	return (0);
3199 #endif
3200 	switch (sc->bge_asicrev) {
3201 	case BGE_ASICREV_BCM5714_A0:
3202 	case BGE_ASICREV_BCM5714:
3203 		/*
3204 		 * Apparently, MSI doesn't work when these chips are
3205 		 * configured in single-port mode.
3206 		 */
3207 		if (bge_has_multiple_ports(sc))
3208 			can_use_msi = 1;
3209 		break;
3210 	case BGE_ASICREV_BCM5750:
3211 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3212 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3213 			can_use_msi = 1;
3214 		break;
3215 	case BGE_ASICREV_BCM5784:
3216 		/*
3217 		 * Prevent infinite "watchdog timeout" errors
3218 		 * in some MacBook Pro and make it work out-of-the-box.
3219 		 */
3220 		if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
3221 			break;
3222 		/* FALLTHROUGH */
3223 	default:
3224 		if (BGE_IS_575X_PLUS(sc))
3225 			can_use_msi = 1;
3226 	}
3227 	return (can_use_msi);
3228 }
3229 
3230 static int
3231 bge_mbox_reorder(struct bge_softc *sc)
3232 {
3233 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3234 	static const struct mbox_reorder {
3235 		const uint16_t vendor;
3236 		const uint16_t device;
3237 		const char *desc;
3238 	} mbox_reorder_lists[] = {
3239 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3240 	};
3241 	devclass_t pci, pcib;
3242 	device_t bus, dev;
3243 	int i;
3244 
3245 	pci = devclass_find("pci");
3246 	pcib = devclass_find("pcib");
3247 	dev = sc->bge_dev;
3248 	bus = device_get_parent(dev);
3249 	for (;;) {
3250 		dev = device_get_parent(bus);
3251 		bus = device_get_parent(dev);
3252 		if (device_get_devclass(dev) != pcib)
3253 			break;
3254 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3255 			if (pci_get_vendor(dev) ==
3256 			    mbox_reorder_lists[i].vendor &&
3257 			    pci_get_device(dev) ==
3258 			    mbox_reorder_lists[i].device) {
3259 				device_printf(sc->bge_dev,
3260 				    "enabling MBOX workaround for %s\n",
3261 				    mbox_reorder_lists[i].desc);
3262 				return (1);
3263 			}
3264 		}
3265 		if (device_get_devclass(bus) != pci)
3266 			break;
3267 	}
3268 	return (0);
3269 }
3270 
3271 static void
3272 bge_devinfo(struct bge_softc *sc)
3273 {
3274 	uint32_t cfg, clk;
3275 
3276 	device_printf(sc->bge_dev,
3277 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3278 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3279 	if (sc->bge_flags & BGE_FLAG_PCIE)
3280 		printf("PCI-E\n");
3281 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3282 		printf("PCI-X ");
3283 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3284 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3285 			clk = 133;
3286 		else {
3287 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3288 			switch (clk) {
3289 			case 0:
3290 				clk = 33;
3291 				break;
3292 			case 2:
3293 				clk = 50;
3294 				break;
3295 			case 4:
3296 				clk = 66;
3297 				break;
3298 			case 6:
3299 				clk = 100;
3300 				break;
3301 			case 7:
3302 				clk = 133;
3303 				break;
3304 			}
3305 		}
3306 		printf("%u MHz\n", clk);
3307 	} else {
3308 		if (sc->bge_pcixcap != 0)
3309 			printf("PCI on PCI-X ");
3310 		else
3311 			printf("PCI ");
3312 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3313 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3314 			clk = 66;
3315 		else
3316 			clk = 33;
3317 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3318 			printf("%u MHz; 32bit\n", clk);
3319 		else
3320 			printf("%u MHz; 64bit\n", clk);
3321 	}
3322 }
3323 
3324 static int
3325 bge_attach(device_t dev)
3326 {
3327 	if_t ifp;
3328 	struct bge_softc *sc;
3329 	uint32_t hwcfg = 0, misccfg, pcistate;
3330 	u_char eaddr[ETHER_ADDR_LEN];
3331 	int capmask, error, reg, rid, trys;
3332 
3333 	sc = device_get_softc(dev);
3334 	sc->bge_dev = dev;
3335 
3336 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3337 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3338 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3339 
3340 	pci_enable_busmaster(dev);
3341 
3342 	/*
3343 	 * Allocate control/status registers.
3344 	 */
3345 	rid = PCIR_BAR(0);
3346 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3347 	    RF_ACTIVE);
3348 
3349 	if (sc->bge_res == NULL) {
3350 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3351 		error = ENXIO;
3352 		goto fail;
3353 	}
3354 
3355 	/* Save various chip information. */
3356 	sc->bge_func_addr = pci_get_function(dev);
3357 	sc->bge_chipid = bge_chipid(dev);
3358 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3359 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3360 
3361 	/* Set default PHY address. */
3362 	sc->bge_phy_addr = 1;
3363 	 /*
3364 	  * PHY address mapping for various devices.
3365 	  *
3366 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3367 	  * ---------+-------+-------+-------+-------+
3368 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3369 	  * BCM5704  |   1   |   X   |   1   |   X   |
3370 	  * BCM5717  |   1   |   8   |   2   |   9   |
3371 	  * BCM5719  |   1   |   8   |   2   |   9   |
3372 	  * BCM5720  |   1   |   8   |   2   |   9   |
3373 	  *
3374 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3375 	  * ---------+-------+-------+-------+-------+
3376 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3377 	  * BCM5704  |   X   |   X   |   X   |   X   |
3378 	  * BCM5717  |   X   |   X   |   X   |   X   |
3379 	  * BCM5719  |   3   |   10  |   4   |   11  |
3380 	  * BCM5720  |   X   |   X   |   X   |   X   |
3381 	  *
3382 	  * Other addresses may respond but they are not
3383 	  * IEEE compliant PHYs and should be ignored.
3384 	  */
3385 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3386 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3387 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3388 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3389 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3390 			    BGE_SGDIGSTS_IS_SERDES)
3391 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3392 			else
3393 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3394 		} else {
3395 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3396 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3397 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3398 			else
3399 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3400 		}
3401 	}
3402 
3403 	if (bge_has_eaddr(sc))
3404 		sc->bge_flags |= BGE_FLAG_EADDR;
3405 
3406 	/* Save chipset family. */
3407 	switch (sc->bge_asicrev) {
3408 	case BGE_ASICREV_BCM5762:
3409 	case BGE_ASICREV_BCM57765:
3410 	case BGE_ASICREV_BCM57766:
3411 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3412 		/* FALLTHROUGH */
3413 	case BGE_ASICREV_BCM5717:
3414 	case BGE_ASICREV_BCM5719:
3415 	case BGE_ASICREV_BCM5720:
3416 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3417 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3418 		    BGE_FLAG_JUMBO_FRAME;
3419 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3420 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3421 			/*
3422 			 * Enable work around for DMA engine miscalculation
3423 			 * of TXMBUF available space.
3424 			 */
3425 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3426 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3427 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3428 				/* Jumbo frame on BCM5719 A0 does not work. */
3429 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3430 			}
3431 		}
3432 		break;
3433 	case BGE_ASICREV_BCM5755:
3434 	case BGE_ASICREV_BCM5761:
3435 	case BGE_ASICREV_BCM5784:
3436 	case BGE_ASICREV_BCM5785:
3437 	case BGE_ASICREV_BCM5787:
3438 	case BGE_ASICREV_BCM57780:
3439 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3440 		    BGE_FLAG_5705_PLUS;
3441 		break;
3442 	case BGE_ASICREV_BCM5700:
3443 	case BGE_ASICREV_BCM5701:
3444 	case BGE_ASICREV_BCM5703:
3445 	case BGE_ASICREV_BCM5704:
3446 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3447 		break;
3448 	case BGE_ASICREV_BCM5714_A0:
3449 	case BGE_ASICREV_BCM5780:
3450 	case BGE_ASICREV_BCM5714:
3451 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3452 		/* FALLTHROUGH */
3453 	case BGE_ASICREV_BCM5750:
3454 	case BGE_ASICREV_BCM5752:
3455 	case BGE_ASICREV_BCM5906:
3456 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3457 		/* FALLTHROUGH */
3458 	case BGE_ASICREV_BCM5705:
3459 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3460 		break;
3461 	}
3462 
3463 	/* Identify chips with APE processor. */
3464 	switch (sc->bge_asicrev) {
3465 	case BGE_ASICREV_BCM5717:
3466 	case BGE_ASICREV_BCM5719:
3467 	case BGE_ASICREV_BCM5720:
3468 	case BGE_ASICREV_BCM5761:
3469 	case BGE_ASICREV_BCM5762:
3470 		sc->bge_flags |= BGE_FLAG_APE;
3471 		break;
3472 	}
3473 
3474 	/* Chips with APE need BAR2 access for APE registers/memory. */
3475 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3476 		rid = PCIR_BAR(2);
3477 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3478 		    RF_ACTIVE);
3479 		if (sc->bge_res2 == NULL) {
3480 			device_printf (sc->bge_dev,
3481 			    "couldn't map BAR2 memory\n");
3482 			error = ENXIO;
3483 			goto fail;
3484 		}
3485 
3486 		/* Enable APE register/memory access by host driver. */
3487 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3488 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3489 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3490 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3491 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3492 
3493 		bge_ape_lock_init(sc);
3494 		bge_ape_read_fw_ver(sc);
3495 	}
3496 
3497 	/* Add SYSCTLs, requires the chipset family to be set. */
3498 	bge_add_sysctls(sc);
3499 
3500 	/* Identify the chips that use an CPMU. */
3501 	if (BGE_IS_5717_PLUS(sc) ||
3502 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3503 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3504 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3505 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3506 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3507 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3508 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3509 	else
3510 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3511 	/* Enable auto polling for BCM570[0-5]. */
3512 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3513 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3514 
3515 	/*
3516 	 * All Broadcom controllers have 4GB boundary DMA bug.
3517 	 * Whenever an address crosses a multiple of the 4GB boundary
3518 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3519 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3520 	 * state machine will lockup and cause the device to hang.
3521 	 */
3522 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3523 
3524 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3525 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3526 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3527 
3528 	/*
3529 	 * BCM5719 cannot handle DMA requests for DMA segments that
3530 	 * have larger than 4KB in size.  However the maximum DMA
3531 	 * segment size created in DMA tag is 4KB for TSO, so we
3532 	 * wouldn't encounter the issue here.
3533 	 */
3534 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3535 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3536 
3537 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3538 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3539 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3540 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3541 			sc->bge_flags |= BGE_FLAG_5788;
3542 	}
3543 
3544 	capmask = BMSR_DEFCAPMASK;
3545 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3546 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3547 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3548 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3549 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3550 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3551 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3552 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3553 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3554 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3555 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3556 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3557 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3558 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3559 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3560 		/* These chips are 10/100 only. */
3561 		capmask &= ~BMSR_EXTSTAT;
3562 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3563 	}
3564 
3565 	/*
3566 	 * Some controllers seem to require a special firmware to use
3567 	 * TSO. But the firmware is not available to FreeBSD and Linux
3568 	 * claims that the TSO performed by the firmware is slower than
3569 	 * hardware based TSO. Moreover the firmware based TSO has one
3570 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3571 	 * header is greater than 80 bytes. A workaround for the TSO
3572 	 * bug exist but it seems it's too expensive than not using
3573 	 * TSO at all. Some hardwares also have the TSO bug so limit
3574 	 * the TSO to the controllers that are not affected TSO issues
3575 	 * (e.g. 5755 or higher).
3576 	 */
3577 	if (BGE_IS_5717_PLUS(sc)) {
3578 		/* BCM5717 requires different TSO configuration. */
3579 		sc->bge_flags |= BGE_FLAG_TSO3;
3580 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3581 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3582 			/* TSO on BCM5719 A0 does not work. */
3583 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3584 		}
3585 	} else if (BGE_IS_5755_PLUS(sc)) {
3586 		/*
3587 		 * BCM5754 and BCM5787 shares the same ASIC id so
3588 		 * explicit device id check is required.
3589 		 * Due to unknown reason TSO does not work on BCM5755M.
3590 		 */
3591 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3592 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3593 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3594 			sc->bge_flags |= BGE_FLAG_TSO;
3595 	}
3596 
3597 	/*
3598 	 * Check if this is a PCI-X or PCI Express device.
3599 	 */
3600 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3601 		/*
3602 		 * Found a PCI Express capabilities register, this
3603 		 * must be a PCI Express device.
3604 		 */
3605 		sc->bge_flags |= BGE_FLAG_PCIE;
3606 		sc->bge_expcap = reg;
3607 		/* Extract supported maximum payload size. */
3608 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3609 		    PCIER_DEVICE_CAP, 2);
3610 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3611 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3612 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3613 			sc->bge_expmrq = 2048;
3614 		else
3615 			sc->bge_expmrq = 4096;
3616 		pci_set_max_read_req(dev, sc->bge_expmrq);
3617 	} else {
3618 		/*
3619 		 * Check if the device is in PCI-X Mode.
3620 		 * (This bit is not valid on PCI Express controllers.)
3621 		 */
3622 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3623 			sc->bge_pcixcap = reg;
3624 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3625 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3626 			sc->bge_flags |= BGE_FLAG_PCIX;
3627 	}
3628 
3629 	/*
3630 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3631 	 * not actually a MAC controller bug but an issue with the embedded
3632 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3633 	 */
3634 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3635 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3636 	/*
3637 	 * Some PCI-X bridges are known to trigger write reordering to
3638 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3639 	 * caused by out-of-order TX completions.  Enable workaround for
3640 	 * PCI-X devices that live behind these bridges.
3641 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3642 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3643 	 */
3644 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3645 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3646 	/*
3647 	 * Allocate the interrupt, using MSI if possible.  These devices
3648 	 * support 8 MSI messages, but only the first one is used in
3649 	 * normal operation.
3650 	 */
3651 	rid = 0;
3652 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3653 		sc->bge_msicap = reg;
3654 		reg = 1;
3655 		if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3656 			rid = 1;
3657 			sc->bge_flags |= BGE_FLAG_MSI;
3658 		}
3659 	}
3660 
3661 	/*
3662 	 * All controllers except BCM5700 supports tagged status but
3663 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3664 	 * MSI on BCM5717 does not work.
3665 	 */
3666 #ifndef DEVICE_POLLING
3667 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3668 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3669 #endif
3670 
3671 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3672 	    RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3673 
3674 	if (sc->bge_irq == NULL) {
3675 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3676 		error = ENXIO;
3677 		goto fail;
3678 	}
3679 
3680 	bge_devinfo(sc);
3681 
3682 	sc->bge_asf_mode = 0;
3683 	/* No ASF if APE present. */
3684 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3685 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3686 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3687 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3688 			    BGE_HWCFG_ASF) {
3689 				sc->bge_asf_mode |= ASF_ENABLE;
3690 				sc->bge_asf_mode |= ASF_STACKUP;
3691 				if (BGE_IS_575X_PLUS(sc))
3692 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3693 			}
3694 		}
3695 	}
3696 
3697 	bge_stop_fw(sc);
3698 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3699 	if (bge_reset(sc)) {
3700 		device_printf(sc->bge_dev, "chip reset failed\n");
3701 		error = ENXIO;
3702 		goto fail;
3703 	}
3704 
3705 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3706 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3707 
3708 	if (bge_chipinit(sc)) {
3709 		device_printf(sc->bge_dev, "chip initialization failed\n");
3710 		error = ENXIO;
3711 		goto fail;
3712 	}
3713 
3714 	error = bge_get_eaddr(sc, eaddr);
3715 	if (error) {
3716 		device_printf(sc->bge_dev,
3717 		    "failed to read station address\n");
3718 		error = ENXIO;
3719 		goto fail;
3720 	}
3721 
3722 	/* 5705 limits RX return ring to 512 entries. */
3723 	if (BGE_IS_5717_PLUS(sc))
3724 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3725 	else if (BGE_IS_5705_PLUS(sc))
3726 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3727 	else
3728 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3729 
3730 	if (bge_dma_alloc(sc)) {
3731 		device_printf(sc->bge_dev,
3732 		    "failed to allocate DMA resources\n");
3733 		error = ENXIO;
3734 		goto fail;
3735 	}
3736 
3737 	/* Set default tuneable values. */
3738 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3739 	sc->bge_rx_coal_ticks = 150;
3740 	sc->bge_tx_coal_ticks = 150;
3741 	sc->bge_rx_max_coal_bds = 10;
3742 	sc->bge_tx_max_coal_bds = 10;
3743 
3744 	/* Initialize checksum features to use. */
3745 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3746 	if (sc->bge_forced_udpcsum != 0)
3747 		sc->bge_csum_features |= CSUM_UDP;
3748 
3749 	/* Set up ifnet structure */
3750 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3751 	if (ifp == NULL) {
3752 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3753 		error = ENXIO;
3754 		goto fail;
3755 	}
3756 	if_setsoftc(ifp, sc);
3757 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3758 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3759 	if_setioctlfn(ifp, bge_ioctl);
3760 	if_setstartfn(ifp, bge_start);
3761 	if_setinitfn(ifp, bge_init);
3762 	if_setgetcounterfn(ifp, bge_get_counter);
3763 	if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3764 	if_setsendqready(ifp);
3765 	if_sethwassist(ifp, sc->bge_csum_features);
3766 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3767 	    IFCAP_VLAN_MTU);
3768 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3769 		if_sethwassistbits(ifp, CSUM_TSO, 0);
3770 		if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3771 	}
3772 #ifdef IFCAP_VLAN_HWCSUM
3773 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3774 #endif
3775 	if_setcapenable(ifp, if_getcapabilities(ifp));
3776 #ifdef DEVICE_POLLING
3777 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3778 #endif
3779 
3780 	/*
3781 	 * 5700 B0 chips do not support checksumming correctly due
3782 	 * to hardware bugs.
3783 	 */
3784 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3785 		if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3786 		if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3787 		if_sethwassist(ifp, 0);
3788 	}
3789 
3790 	/*
3791 	 * Figure out what sort of media we have by checking the
3792 	 * hardware config word in the first 32k of NIC internal memory,
3793 	 * or fall back to examining the EEPROM if necessary.
3794 	 * Note: on some BCM5700 cards, this value appears to be unset.
3795 	 * If that's the case, we have to rely on identifying the NIC
3796 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3797 	 * SK-9D41.
3798 	 */
3799 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3800 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3801 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3802 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3803 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3804 		    sizeof(hwcfg))) {
3805 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3806 			error = ENXIO;
3807 			goto fail;
3808 		}
3809 		hwcfg = ntohl(hwcfg);
3810 	}
3811 
3812 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3813 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3814 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3815 		if (BGE_IS_5705_PLUS(sc)) {
3816 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3817 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3818 		} else
3819 			sc->bge_flags |= BGE_FLAG_TBI;
3820 	}
3821 
3822 	/* Set various PHY bug flags. */
3823 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3824 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3825 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3826 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3827 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3828 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3829 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3830 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3831 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3832 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3833 	if ((BGE_IS_5705_PLUS(sc)) &&
3834 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3835 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3836 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3837 	    !BGE_IS_5717_PLUS(sc)) {
3838 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3839 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3840 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3841 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3842 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3843 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3844 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3845 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3846 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3847 		} else
3848 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3849 	}
3850 
3851 	/*
3852 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3853 	 * 5705 A0 and A1 chips.
3854 	 */
3855 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3856 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3857 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3858 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3859 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3860 
3861 	if (sc->bge_flags & BGE_FLAG_TBI) {
3862 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3863 		    bge_ifmedia_sts);
3864 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3865 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3866 		    0, NULL);
3867 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3868 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3869 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3870 	} else {
3871 		/*
3872 		 * Do transceiver setup and tell the firmware the
3873 		 * driver is down so we can try to get access the
3874 		 * probe if ASF is running.  Retry a couple of times
3875 		 * if we get a conflict with the ASF firmware accessing
3876 		 * the PHY.
3877 		 */
3878 		trys = 0;
3879 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3880 again:
3881 		bge_asf_driver_up(sc);
3882 
3883 		error = mii_attach(dev, &sc->bge_miibus, ifp,
3884 		    (ifm_change_cb_t)bge_ifmedia_upd,
3885 		    (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3886 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
3887 		if (error != 0) {
3888 			if (trys++ < 4) {
3889 				device_printf(sc->bge_dev, "Try again\n");
3890 				bge_miibus_writereg(sc->bge_dev,
3891 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3892 				goto again;
3893 			}
3894 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3895 			goto fail;
3896 		}
3897 
3898 		/*
3899 		 * Now tell the firmware we are going up after probing the PHY
3900 		 */
3901 		if (sc->bge_asf_mode & ASF_STACKUP)
3902 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3903 	}
3904 
3905 	/*
3906 	 * When using the BCM5701 in PCI-X mode, data corruption has
3907 	 * been observed in the first few bytes of some received packets.
3908 	 * Aligning the packet buffer in memory eliminates the corruption.
3909 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3910 	 * which do not support unaligned accesses, we will realign the
3911 	 * payloads by copying the received packets.
3912 	 */
3913 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3914 	    sc->bge_flags & BGE_FLAG_PCIX)
3915                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3916 
3917 	/*
3918 	 * Call MI attach routine.
3919 	 */
3920 	ether_ifattach(ifp, eaddr);
3921 
3922 	/* Tell upper layer we support long frames. */
3923 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3924 
3925 	/*
3926 	 * Hookup IRQ last.
3927 	 */
3928 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3929 		/* Take advantage of single-shot MSI. */
3930 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3931 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3932 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3933 		    taskqueue_thread_enqueue, &sc->bge_tq);
3934 		if (sc->bge_tq == NULL) {
3935 			device_printf(dev, "could not create taskqueue.\n");
3936 			ether_ifdetach(ifp);
3937 			error = ENOMEM;
3938 			goto fail;
3939 		}
3940 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3941 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3942 		if (error != 0) {
3943 			device_printf(dev, "could not start threads.\n");
3944 			ether_ifdetach(ifp);
3945 			goto fail;
3946 		}
3947 		error = bus_setup_intr(dev, sc->bge_irq,
3948 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3949 		    &sc->bge_intrhand);
3950 	} else
3951 		error = bus_setup_intr(dev, sc->bge_irq,
3952 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3953 		    &sc->bge_intrhand);
3954 
3955 	if (error) {
3956 		ether_ifdetach(ifp);
3957 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3958 		goto fail;
3959 	}
3960 
3961 	/* Attach driver netdump methods. */
3962 	NETDUMP_SET(ifp, bge);
3963 
3964 fail:
3965 	if (error)
3966 		bge_detach(dev);
3967 	return (error);
3968 }
3969 
3970 static int
3971 bge_detach(device_t dev)
3972 {
3973 	struct bge_softc *sc;
3974 	if_t ifp;
3975 
3976 	sc = device_get_softc(dev);
3977 	ifp = sc->bge_ifp;
3978 
3979 #ifdef DEVICE_POLLING
3980 	if (if_getcapenable(ifp) & IFCAP_POLLING)
3981 		ether_poll_deregister(ifp);
3982 #endif
3983 
3984 	if (device_is_attached(dev)) {
3985 		ether_ifdetach(ifp);
3986 		BGE_LOCK(sc);
3987 		bge_stop(sc);
3988 		BGE_UNLOCK(sc);
3989 		callout_drain(&sc->bge_stat_ch);
3990 	}
3991 
3992 	if (sc->bge_tq)
3993 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3994 
3995 	if (sc->bge_flags & BGE_FLAG_TBI)
3996 		ifmedia_removeall(&sc->bge_ifmedia);
3997 	else if (sc->bge_miibus != NULL) {
3998 		bus_generic_detach(dev);
3999 		device_delete_child(dev, sc->bge_miibus);
4000 	}
4001 
4002 	bge_release_resources(sc);
4003 
4004 	return (0);
4005 }
4006 
4007 static void
4008 bge_release_resources(struct bge_softc *sc)
4009 {
4010 	device_t dev;
4011 
4012 	dev = sc->bge_dev;
4013 
4014 	if (sc->bge_tq != NULL)
4015 		taskqueue_free(sc->bge_tq);
4016 
4017 	if (sc->bge_intrhand != NULL)
4018 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
4019 
4020 	if (sc->bge_irq != NULL) {
4021 		bus_release_resource(dev, SYS_RES_IRQ,
4022 		    rman_get_rid(sc->bge_irq), sc->bge_irq);
4023 		pci_release_msi(dev);
4024 	}
4025 
4026 	if (sc->bge_res != NULL)
4027 		bus_release_resource(dev, SYS_RES_MEMORY,
4028 		    rman_get_rid(sc->bge_res), sc->bge_res);
4029 
4030 	if (sc->bge_res2 != NULL)
4031 		bus_release_resource(dev, SYS_RES_MEMORY,
4032 		    rman_get_rid(sc->bge_res2), sc->bge_res2);
4033 
4034 	if (sc->bge_ifp != NULL)
4035 		if_free(sc->bge_ifp);
4036 
4037 	bge_dma_free(sc);
4038 
4039 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4040 		BGE_LOCK_DESTROY(sc);
4041 }
4042 
4043 static int
4044 bge_reset(struct bge_softc *sc)
4045 {
4046 	device_t dev;
4047 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4048 	void (*write_op)(struct bge_softc *, int, int);
4049 	uint16_t devctl;
4050 	int i;
4051 
4052 	dev = sc->bge_dev;
4053 
4054 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4055 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4056 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4057 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4058 
4059 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4060 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4061 		if (sc->bge_flags & BGE_FLAG_PCIE)
4062 			write_op = bge_writemem_direct;
4063 		else
4064 			write_op = bge_writemem_ind;
4065 	} else
4066 		write_op = bge_writereg_ind;
4067 
4068 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4069 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4070 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4071 		for (i = 0; i < 8000; i++) {
4072 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4073 			    BGE_NVRAMSWARB_GNT1)
4074 				break;
4075 			DELAY(20);
4076 		}
4077 		if (i == 8000) {
4078 			if (bootverbose)
4079 				device_printf(dev, "NVRAM lock timedout!\n");
4080 		}
4081 	}
4082 	/* Take APE lock when performing reset. */
4083 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4084 
4085 	/* Save some important PCI state. */
4086 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4087 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4088 
4089 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4090 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4091 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4092 
4093 	/* Disable fastboot on controllers that support it. */
4094 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4095 	    BGE_IS_5755_PLUS(sc)) {
4096 		if (bootverbose)
4097 			device_printf(dev, "Disabling fastboot\n");
4098 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4099 	}
4100 
4101 	/*
4102 	 * Write the magic number to SRAM at offset 0xB50.
4103 	 * When firmware finishes its initialization it will
4104 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4105 	 */
4106 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4107 
4108 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4109 
4110 	/* XXX: Broadcom Linux driver. */
4111 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4112 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4113 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4114 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4115 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4116 		}
4117 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4118 			/* Prevent PCIE link training during global reset */
4119 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4120 			reset |= 1 << 29;
4121 		}
4122 	}
4123 
4124 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4125 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4126 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4127 		    val | BGE_VCPU_STATUS_DRV_RESET);
4128 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4129 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4130 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4131 	}
4132 
4133 	/*
4134 	 * Set GPHY Power Down Override to leave GPHY
4135 	 * powered up in D0 uninitialized.
4136 	 */
4137 	if (BGE_IS_5705_PLUS(sc) &&
4138 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4139 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4140 
4141 	/* Issue global reset */
4142 	write_op(sc, BGE_MISC_CFG, reset);
4143 
4144 	if (sc->bge_flags & BGE_FLAG_PCIE)
4145 		DELAY(100 * 1000);
4146 	else
4147 		DELAY(1000);
4148 
4149 	/* XXX: Broadcom Linux driver. */
4150 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4151 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4152 			DELAY(500000); /* wait for link training to complete */
4153 			val = pci_read_config(dev, 0xC4, 4);
4154 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4155 		}
4156 		devctl = pci_read_config(dev,
4157 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4158 		/* Clear enable no snoop and disable relaxed ordering. */
4159 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4160 		    PCIEM_CTL_NOSNOOP_ENABLE);
4161 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4162 		    devctl, 2);
4163 		pci_set_max_read_req(dev, sc->bge_expmrq);
4164 		/* Clear error status. */
4165 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4166 		    PCIEM_STA_CORRECTABLE_ERROR |
4167 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4168 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4169 	}
4170 
4171 	/* Reset some of the PCI state that got zapped by reset. */
4172 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4173 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4174 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4175 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4176 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4177 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4178 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4179 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4180 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4181 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4182 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4183 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4184 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4185 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4186 	/*
4187 	 * Disable PCI-X relaxed ordering to ensure status block update
4188 	 * comes first then packet buffer DMA. Otherwise driver may
4189 	 * read stale status block.
4190 	 */
4191 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4192 		devctl = pci_read_config(dev,
4193 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4194 		devctl &= ~PCIXM_COMMAND_ERO;
4195 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4196 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4197 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4198 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4199 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4200 			    PCIXM_COMMAND_MAX_READ);
4201 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4202 		}
4203 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4204 		    devctl, 2);
4205 	}
4206 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4207 	if (BGE_IS_5714_FAMILY(sc)) {
4208 		/* This chip disables MSI on reset. */
4209 		if (sc->bge_flags & BGE_FLAG_MSI) {
4210 			val = pci_read_config(dev,
4211 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4212 			pci_write_config(dev,
4213 			    sc->bge_msicap + PCIR_MSI_CTRL,
4214 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4215 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4216 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4217 			    val | BGE_MSIMODE_ENABLE);
4218 		}
4219 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4220 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4221 	} else
4222 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4223 
4224 	/* Fix up byte swapping. */
4225 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4226 
4227 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4228 	val = (val & ~mac_mode_mask) | mac_mode;
4229 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4230 	DELAY(40);
4231 
4232 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4233 
4234 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4235 		for (i = 0; i < BGE_TIMEOUT; i++) {
4236 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4237 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4238 				break;
4239 			DELAY(100);
4240 		}
4241 		if (i == BGE_TIMEOUT) {
4242 			device_printf(dev, "reset timed out\n");
4243 			return (1);
4244 		}
4245 	} else {
4246 		/*
4247 		 * Poll until we see the 1's complement of the magic number.
4248 		 * This indicates that the firmware initialization is complete.
4249 		 * We expect this to fail if no chip containing the Ethernet
4250 		 * address is fitted though.
4251 		 */
4252 		for (i = 0; i < BGE_TIMEOUT; i++) {
4253 			DELAY(10);
4254 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4255 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4256 				break;
4257 		}
4258 
4259 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4260 			device_printf(dev,
4261 			    "firmware handshake timed out, found 0x%08x\n",
4262 			    val);
4263 		/* BCM57765 A0 needs additional time before accessing. */
4264 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4265 			DELAY(10 * 1000);	/* XXX */
4266 	}
4267 
4268 	/*
4269 	 * The 5704 in TBI mode apparently needs some special
4270 	 * adjustment to insure the SERDES drive level is set
4271 	 * to 1.2V.
4272 	 */
4273 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4274 	    sc->bge_flags & BGE_FLAG_TBI) {
4275 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4276 		val = (val & ~0xFFF) | 0x880;
4277 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4278 	}
4279 
4280 	/* XXX: Broadcom Linux driver. */
4281 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4282 	    !BGE_IS_5717_PLUS(sc) &&
4283 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4284 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4285 		/* Enable Data FIFO protection. */
4286 		val = CSR_READ_4(sc, 0x7C00);
4287 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4288 	}
4289 
4290 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4291 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4292 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4293 
4294 	return (0);
4295 }
4296 
4297 static __inline void
4298 bge_rxreuse_std(struct bge_softc *sc, int i)
4299 {
4300 	struct bge_rx_bd *r;
4301 
4302 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4303 	r->bge_flags = BGE_RXBDFLAG_END;
4304 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4305 	r->bge_idx = i;
4306 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4307 }
4308 
4309 static __inline void
4310 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4311 {
4312 	struct bge_extrx_bd *r;
4313 
4314 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4315 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4316 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4317 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4318 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4319 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4320 	r->bge_idx = i;
4321 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4322 }
4323 
4324 /*
4325  * Frame reception handling. This is called if there's a frame
4326  * on the receive return list.
4327  *
4328  * Note: we have to be able to handle two possibilities here:
4329  * 1) the frame is from the jumbo receive ring
4330  * 2) the frame is from the standard receive ring
4331  */
4332 
4333 static int
4334 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4335 {
4336 	if_t ifp;
4337 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4338 	uint16_t rx_cons;
4339 
4340 	rx_cons = sc->bge_rx_saved_considx;
4341 
4342 	/* Nothing to do. */
4343 	if (rx_cons == rx_prod)
4344 		return (rx_npkts);
4345 
4346 	ifp = sc->bge_ifp;
4347 
4348 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4349 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4350 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4351 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4352 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4353 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4354 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4355 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4356 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4357 
4358 	while (rx_cons != rx_prod) {
4359 		struct bge_rx_bd	*cur_rx;
4360 		uint32_t		rxidx;
4361 		struct mbuf		*m = NULL;
4362 		uint16_t		vlan_tag = 0;
4363 		int			have_tag = 0;
4364 
4365 #ifdef DEVICE_POLLING
4366 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
4367 			if (sc->rxcycles <= 0)
4368 				break;
4369 			sc->rxcycles--;
4370 		}
4371 #endif
4372 
4373 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4374 
4375 		rxidx = cur_rx->bge_idx;
4376 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4377 
4378 		if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4379 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4380 			have_tag = 1;
4381 			vlan_tag = cur_rx->bge_vlan_tag;
4382 		}
4383 
4384 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4385 			jumbocnt++;
4386 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4387 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4388 				bge_rxreuse_jumbo(sc, rxidx);
4389 				continue;
4390 			}
4391 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4392 				bge_rxreuse_jumbo(sc, rxidx);
4393 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4394 				continue;
4395 			}
4396 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4397 		} else {
4398 			stdcnt++;
4399 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4400 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4401 				bge_rxreuse_std(sc, rxidx);
4402 				continue;
4403 			}
4404 			if (bge_newbuf_std(sc, rxidx) != 0) {
4405 				bge_rxreuse_std(sc, rxidx);
4406 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4407 				continue;
4408 			}
4409 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4410 		}
4411 
4412 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4413 #ifndef __NO_STRICT_ALIGNMENT
4414 		/*
4415 		 * For architectures with strict alignment we must make sure
4416 		 * the payload is aligned.
4417 		 */
4418 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4419 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4420 			    cur_rx->bge_len);
4421 			m->m_data += ETHER_ALIGN;
4422 		}
4423 #endif
4424 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4425 		m->m_pkthdr.rcvif = ifp;
4426 
4427 		if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4428 			bge_rxcsum(sc, cur_rx, m);
4429 
4430 		/*
4431 		 * If we received a packet with a vlan tag,
4432 		 * attach that information to the packet.
4433 		 */
4434 		if (have_tag) {
4435 			m->m_pkthdr.ether_vtag = vlan_tag;
4436 			m->m_flags |= M_VLANTAG;
4437 		}
4438 
4439 		if (holdlck != 0) {
4440 			BGE_UNLOCK(sc);
4441 			if_input(ifp, m);
4442 			BGE_LOCK(sc);
4443 		} else
4444 			if_input(ifp, m);
4445 		rx_npkts++;
4446 
4447 		if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4448 			return (rx_npkts);
4449 	}
4450 
4451 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4452 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4453 	if (stdcnt > 0)
4454 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4455 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4456 
4457 	if (jumbocnt > 0)
4458 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4459 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4460 
4461 	sc->bge_rx_saved_considx = rx_cons;
4462 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4463 	if (stdcnt)
4464 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4465 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4466 	if (jumbocnt)
4467 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4468 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4469 #ifdef notyet
4470 	/*
4471 	 * This register wraps very quickly under heavy packet drops.
4472 	 * If you need correct statistics, you can enable this check.
4473 	 */
4474 	if (BGE_IS_5705_PLUS(sc))
4475 		if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4476 #endif
4477 	return (rx_npkts);
4478 }
4479 
4480 static void
4481 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4482 {
4483 
4484 	if (BGE_IS_5717_PLUS(sc)) {
4485 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4486 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4487 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4488 				if ((cur_rx->bge_error_flag &
4489 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4490 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4491 			}
4492 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4493 				m->m_pkthdr.csum_data =
4494 				    cur_rx->bge_tcp_udp_csum;
4495 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4496 				    CSUM_PSEUDO_HDR;
4497 			}
4498 		}
4499 	} else {
4500 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4501 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4502 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4503 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4504 		}
4505 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4506 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4507 			m->m_pkthdr.csum_data =
4508 			    cur_rx->bge_tcp_udp_csum;
4509 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4510 			    CSUM_PSEUDO_HDR;
4511 		}
4512 	}
4513 }
4514 
4515 static void
4516 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4517 {
4518 	struct bge_tx_bd *cur_tx;
4519 	if_t ifp;
4520 
4521 	BGE_LOCK_ASSERT(sc);
4522 
4523 	/* Nothing to do. */
4524 	if (sc->bge_tx_saved_considx == tx_cons)
4525 		return;
4526 
4527 	ifp = sc->bge_ifp;
4528 
4529 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4530 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4531 	/*
4532 	 * Go through our tx ring and free mbufs for those
4533 	 * frames that have been sent.
4534 	 */
4535 	while (sc->bge_tx_saved_considx != tx_cons) {
4536 		uint32_t		idx;
4537 
4538 		idx = sc->bge_tx_saved_considx;
4539 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4540 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4541 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4542 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4543 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4544 			    sc->bge_cdata.bge_tx_dmamap[idx],
4545 			    BUS_DMASYNC_POSTWRITE);
4546 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4547 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4548 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4549 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4550 		}
4551 		sc->bge_txcnt--;
4552 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4553 	}
4554 
4555 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4556 	if (sc->bge_txcnt == 0)
4557 		sc->bge_timer = 0;
4558 }
4559 
4560 #ifdef DEVICE_POLLING
4561 static int
4562 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4563 {
4564 	struct bge_softc *sc = if_getsoftc(ifp);
4565 	uint16_t rx_prod, tx_cons;
4566 	uint32_t statusword;
4567 	int rx_npkts = 0;
4568 
4569 	BGE_LOCK(sc);
4570 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4571 		BGE_UNLOCK(sc);
4572 		return (rx_npkts);
4573 	}
4574 
4575 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4576 	    sc->bge_cdata.bge_status_map,
4577 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4578 	/* Fetch updates from the status block. */
4579 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4580 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4581 
4582 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4583 	/* Clear the status so the next pass only sees the changes. */
4584 	sc->bge_ldata.bge_status_block->bge_status = 0;
4585 
4586 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4587 	    sc->bge_cdata.bge_status_map,
4588 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4589 
4590 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4591 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4592 		sc->bge_link_evt++;
4593 
4594 	if (cmd == POLL_AND_CHECK_STATUS)
4595 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4596 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4597 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4598 			bge_link_upd(sc);
4599 
4600 	sc->rxcycles = count;
4601 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4602 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4603 		BGE_UNLOCK(sc);
4604 		return (rx_npkts);
4605 	}
4606 	bge_txeof(sc, tx_cons);
4607 	if (!if_sendq_empty(ifp))
4608 		bge_start_locked(ifp);
4609 
4610 	BGE_UNLOCK(sc);
4611 	return (rx_npkts);
4612 }
4613 #endif /* DEVICE_POLLING */
4614 
4615 static int
4616 bge_msi_intr(void *arg)
4617 {
4618 	struct bge_softc *sc;
4619 
4620 	sc = (struct bge_softc *)arg;
4621 	/*
4622 	 * This interrupt is not shared and controller already
4623 	 * disabled further interrupt.
4624 	 */
4625 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4626 	return (FILTER_HANDLED);
4627 }
4628 
4629 static void
4630 bge_intr_task(void *arg, int pending)
4631 {
4632 	struct bge_softc *sc;
4633 	if_t ifp;
4634 	uint32_t status, status_tag;
4635 	uint16_t rx_prod, tx_cons;
4636 
4637 	sc = (struct bge_softc *)arg;
4638 	ifp = sc->bge_ifp;
4639 
4640 	BGE_LOCK(sc);
4641 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4642 		BGE_UNLOCK(sc);
4643 		return;
4644 	}
4645 
4646 	/* Get updated status block. */
4647 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4648 	    sc->bge_cdata.bge_status_map,
4649 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4650 
4651 	/* Save producer/consumer indices. */
4652 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4653 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4654 	status = sc->bge_ldata.bge_status_block->bge_status;
4655 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4656 	/* Dirty the status flag. */
4657 	sc->bge_ldata.bge_status_block->bge_status = 0;
4658 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4659 	    sc->bge_cdata.bge_status_map,
4660 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4661 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4662 		status_tag = 0;
4663 
4664 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4665 		bge_link_upd(sc);
4666 
4667 	/* Let controller work. */
4668 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4669 
4670 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4671 	    sc->bge_rx_saved_considx != rx_prod) {
4672 		/* Check RX return ring producer/consumer. */
4673 		BGE_UNLOCK(sc);
4674 		bge_rxeof(sc, rx_prod, 0);
4675 		BGE_LOCK(sc);
4676 	}
4677 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4678 		/* Check TX ring producer/consumer. */
4679 		bge_txeof(sc, tx_cons);
4680 		if (!if_sendq_empty(ifp))
4681 			bge_start_locked(ifp);
4682 	}
4683 	BGE_UNLOCK(sc);
4684 }
4685 
4686 static void
4687 bge_intr(void *xsc)
4688 {
4689 	struct bge_softc *sc;
4690 	if_t ifp;
4691 	uint32_t statusword;
4692 	uint16_t rx_prod, tx_cons;
4693 
4694 	sc = xsc;
4695 
4696 	BGE_LOCK(sc);
4697 
4698 	ifp = sc->bge_ifp;
4699 
4700 #ifdef DEVICE_POLLING
4701 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
4702 		BGE_UNLOCK(sc);
4703 		return;
4704 	}
4705 #endif
4706 
4707 	/*
4708 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4709 	 * disable interrupts by writing nonzero like we used to, since with
4710 	 * our current organization this just gives complications and
4711 	 * pessimizations for re-enabling interrupts.  We used to have races
4712 	 * instead of the necessary complications.  Disabling interrupts
4713 	 * would just reduce the chance of a status update while we are
4714 	 * running (by switching to the interrupt-mode coalescence
4715 	 * parameters), but this chance is already very low so it is more
4716 	 * efficient to get another interrupt than prevent it.
4717 	 *
4718 	 * We do the ack first to ensure another interrupt if there is a
4719 	 * status update after the ack.  We don't check for the status
4720 	 * changing later because it is more efficient to get another
4721 	 * interrupt than prevent it, not quite as above (not checking is
4722 	 * a smaller optimization than not toggling the interrupt enable,
4723 	 * since checking doesn't involve PCI accesses and toggling require
4724 	 * the status check).  So toggling would probably be a pessimization
4725 	 * even with MSI.  It would only be needed for using a task queue.
4726 	 */
4727 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4728 
4729 	/*
4730 	 * Do the mandatory PCI flush as well as get the link status.
4731 	 */
4732 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4733 
4734 	/* Make sure the descriptor ring indexes are coherent. */
4735 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4736 	    sc->bge_cdata.bge_status_map,
4737 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4738 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4739 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4740 	sc->bge_ldata.bge_status_block->bge_status = 0;
4741 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4742 	    sc->bge_cdata.bge_status_map,
4743 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4744 
4745 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4746 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4747 	    statusword || sc->bge_link_evt)
4748 		bge_link_upd(sc);
4749 
4750 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4751 		/* Check RX return ring producer/consumer. */
4752 		bge_rxeof(sc, rx_prod, 1);
4753 	}
4754 
4755 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4756 		/* Check TX ring producer/consumer. */
4757 		bge_txeof(sc, tx_cons);
4758 	}
4759 
4760 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4761 	    !if_sendq_empty(ifp))
4762 		bge_start_locked(ifp);
4763 
4764 	BGE_UNLOCK(sc);
4765 }
4766 
4767 static void
4768 bge_asf_driver_up(struct bge_softc *sc)
4769 {
4770 	if (sc->bge_asf_mode & ASF_STACKUP) {
4771 		/* Send ASF heartbeat aprox. every 2s */
4772 		if (sc->bge_asf_count)
4773 			sc->bge_asf_count --;
4774 		else {
4775 			sc->bge_asf_count = 2;
4776 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4777 			    BGE_FW_CMD_DRV_ALIVE);
4778 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4779 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4780 			    BGE_FW_HB_TIMEOUT_SEC);
4781 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4782 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4783 			    BGE_RX_CPU_DRV_EVENT);
4784 		}
4785 	}
4786 }
4787 
4788 static void
4789 bge_tick(void *xsc)
4790 {
4791 	struct bge_softc *sc = xsc;
4792 	struct mii_data *mii = NULL;
4793 
4794 	BGE_LOCK_ASSERT(sc);
4795 
4796 	/* Synchronize with possible callout reset/stop. */
4797 	if (callout_pending(&sc->bge_stat_ch) ||
4798 	    !callout_active(&sc->bge_stat_ch))
4799 		return;
4800 
4801 	if (BGE_IS_5705_PLUS(sc))
4802 		bge_stats_update_regs(sc);
4803 	else
4804 		bge_stats_update(sc);
4805 
4806 	/* XXX Add APE heartbeat check here? */
4807 
4808 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4809 		mii = device_get_softc(sc->bge_miibus);
4810 		/*
4811 		 * Do not touch PHY if we have link up. This could break
4812 		 * IPMI/ASF mode or produce extra input errors
4813 		 * (extra errors was reported for bcm5701 & bcm5704).
4814 		 */
4815 		if (!sc->bge_link)
4816 			mii_tick(mii);
4817 	} else {
4818 		/*
4819 		 * Since in TBI mode auto-polling can't be used we should poll
4820 		 * link status manually. Here we register pending link event
4821 		 * and trigger interrupt.
4822 		 */
4823 #ifdef DEVICE_POLLING
4824 		/* In polling mode we poll link state in bge_poll(). */
4825 		if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4826 #endif
4827 		{
4828 		sc->bge_link_evt++;
4829 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4830 		    sc->bge_flags & BGE_FLAG_5788)
4831 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4832 		else
4833 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4834 		}
4835 	}
4836 
4837 	bge_asf_driver_up(sc);
4838 	bge_watchdog(sc);
4839 
4840 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4841 }
4842 
4843 static void
4844 bge_stats_update_regs(struct bge_softc *sc)
4845 {
4846 	if_t ifp;
4847 	struct bge_mac_stats *stats;
4848 	uint32_t val;
4849 
4850 	ifp = sc->bge_ifp;
4851 	stats = &sc->bge_mac_stats;
4852 
4853 	stats->ifHCOutOctets +=
4854 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4855 	stats->etherStatsCollisions +=
4856 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4857 	stats->outXonSent +=
4858 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4859 	stats->outXoffSent +=
4860 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4861 	stats->dot3StatsInternalMacTransmitErrors +=
4862 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4863 	stats->dot3StatsSingleCollisionFrames +=
4864 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4865 	stats->dot3StatsMultipleCollisionFrames +=
4866 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4867 	stats->dot3StatsDeferredTransmissions +=
4868 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4869 	stats->dot3StatsExcessiveCollisions +=
4870 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4871 	stats->dot3StatsLateCollisions +=
4872 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4873 	stats->ifHCOutUcastPkts +=
4874 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4875 	stats->ifHCOutMulticastPkts +=
4876 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4877 	stats->ifHCOutBroadcastPkts +=
4878 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4879 
4880 	stats->ifHCInOctets +=
4881 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4882 	stats->etherStatsFragments +=
4883 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4884 	stats->ifHCInUcastPkts +=
4885 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4886 	stats->ifHCInMulticastPkts +=
4887 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4888 	stats->ifHCInBroadcastPkts +=
4889 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4890 	stats->dot3StatsFCSErrors +=
4891 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4892 	stats->dot3StatsAlignmentErrors +=
4893 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4894 	stats->xonPauseFramesReceived +=
4895 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4896 	stats->xoffPauseFramesReceived +=
4897 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4898 	stats->macControlFramesReceived +=
4899 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4900 	stats->xoffStateEntered +=
4901 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4902 	stats->dot3StatsFramesTooLong +=
4903 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4904 	stats->etherStatsJabbers +=
4905 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4906 	stats->etherStatsUndersizePkts +=
4907 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4908 
4909 	stats->FramesDroppedDueToFilters +=
4910 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4911 	stats->DmaWriteQueueFull +=
4912 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4913 	stats->DmaWriteHighPriQueueFull +=
4914 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4915 	stats->NoMoreRxBDs +=
4916 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4917 	/*
4918 	 * XXX
4919 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4920 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4921 	 * includes number of unwanted multicast frames.  This comes
4922 	 * from silicon bug and known workaround to get rough(not
4923 	 * exact) counter is to enable interrupt on MBUF low water
4924 	 * attention.  This can be accomplished by setting
4925 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4926 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4927 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4928 	 * However that change would generate more interrupts and
4929 	 * there are still possibilities of losing multiple frames
4930 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4931 	 * Given that the workaround still would not get correct
4932 	 * counter I don't think it's worth to implement it.  So
4933 	 * ignore reading the counter on controllers that have the
4934 	 * silicon bug.
4935 	 */
4936 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4937 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4938 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4939 		stats->InputDiscards +=
4940 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4941 	stats->InputErrors +=
4942 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4943 	stats->RecvThresholdHit +=
4944 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4945 
4946 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4947 		/*
4948 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4949 		 * frames, it's safe to disable workaround for DMA engine's
4950 		 * miscalculation of TXMBUF space.
4951 		 */
4952 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4953 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4954 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4955 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4956 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4957 			else
4958 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4959 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4960 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4961 		}
4962 	}
4963 }
4964 
4965 static void
4966 bge_stats_clear_regs(struct bge_softc *sc)
4967 {
4968 
4969 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4970 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4971 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4972 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4973 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4974 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4975 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4976 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4977 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4978 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4979 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4980 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4981 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4982 
4983 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4984 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4985 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4986 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4987 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4988 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4989 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4990 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4991 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4992 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4993 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4994 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4995 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4996 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4997 
4998 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4999 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
5000 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
5001 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
5002 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
5003 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
5004 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
5005 }
5006 
5007 static void
5008 bge_stats_update(struct bge_softc *sc)
5009 {
5010 	if_t ifp;
5011 	bus_size_t stats;
5012 	uint32_t cnt;	/* current register value */
5013 
5014 	ifp = sc->bge_ifp;
5015 
5016 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
5017 
5018 #define	READ_STAT(sc, stats, stat) \
5019 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
5020 
5021 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
5022 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
5023 	sc->bge_tx_collisions = cnt;
5024 
5025 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
5026 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
5027 	sc->bge_rx_nobds = cnt;
5028 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
5029 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
5030 	sc->bge_rx_inerrs = cnt;
5031 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5032 	if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
5033 	sc->bge_rx_discards = cnt;
5034 
5035 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5036 	if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
5037 	sc->bge_tx_discards = cnt;
5038 
5039 #undef	READ_STAT
5040 }
5041 
5042 /*
5043  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5044  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5045  * but when such padded frames employ the bge IP/TCP checksum offload,
5046  * the hardware checksum assist gives incorrect results (possibly
5047  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5048  * If we pad such runts with zeros, the onboard checksum comes out correct.
5049  */
5050 static __inline int
5051 bge_cksum_pad(struct mbuf *m)
5052 {
5053 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5054 	struct mbuf *last;
5055 
5056 	/* If there's only the packet-header and we can pad there, use it. */
5057 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5058 	    M_TRAILINGSPACE(m) >= padlen) {
5059 		last = m;
5060 	} else {
5061 		/*
5062 		 * Walk packet chain to find last mbuf. We will either
5063 		 * pad there, or append a new mbuf and pad it.
5064 		 */
5065 		for (last = m; last->m_next != NULL; last = last->m_next);
5066 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5067 			/* Allocate new empty mbuf, pad it. Compact later. */
5068 			struct mbuf *n;
5069 
5070 			MGET(n, M_NOWAIT, MT_DATA);
5071 			if (n == NULL)
5072 				return (ENOBUFS);
5073 			n->m_len = 0;
5074 			last->m_next = n;
5075 			last = n;
5076 		}
5077 	}
5078 
5079 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5080 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5081 	last->m_len += padlen;
5082 	m->m_pkthdr.len += padlen;
5083 
5084 	return (0);
5085 }
5086 
5087 static struct mbuf *
5088 bge_check_short_dma(struct mbuf *m)
5089 {
5090 	struct mbuf *n;
5091 	int found;
5092 
5093 	/*
5094 	 * If device receive two back-to-back send BDs with less than
5095 	 * or equal to 8 total bytes then the device may hang.  The two
5096 	 * back-to-back send BDs must in the same frame for this failure
5097 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5098 	 * send BDs are there. If this is the case, allocate new mbuf
5099 	 * and copy the frame to workaround the silicon bug.
5100 	 */
5101 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5102 		if (n->m_len < 8) {
5103 			found++;
5104 			if (found > 1)
5105 				break;
5106 			continue;
5107 		}
5108 		found = 0;
5109 	}
5110 
5111 	if (found > 1) {
5112 		n = m_defrag(m, M_NOWAIT);
5113 		if (n == NULL)
5114 			m_freem(m);
5115 	} else
5116 		n = m;
5117 	return (n);
5118 }
5119 
5120 static struct mbuf *
5121 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5122     uint16_t *flags)
5123 {
5124 	struct ip *ip;
5125 	struct tcphdr *tcp;
5126 	struct mbuf *n;
5127 	uint16_t hlen;
5128 	uint32_t poff;
5129 
5130 	if (M_WRITABLE(m) == 0) {
5131 		/* Get a writable copy. */
5132 		n = m_dup(m, M_NOWAIT);
5133 		m_freem(m);
5134 		if (n == NULL)
5135 			return (NULL);
5136 		m = n;
5137 	}
5138 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5139 	if (m == NULL)
5140 		return (NULL);
5141 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5142 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5143 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5144 	if (m == NULL)
5145 		return (NULL);
5146 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5147 	m = m_pullup(m, poff + (tcp->th_off << 2));
5148 	if (m == NULL)
5149 		return (NULL);
5150 	/*
5151 	 * It seems controller doesn't modify IP length and TCP pseudo
5152 	 * checksum. These checksum computed by upper stack should be 0.
5153 	 */
5154 	*mss = m->m_pkthdr.tso_segsz;
5155 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5156 	ip->ip_sum = 0;
5157 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5158 	/* Clear pseudo checksum computed by TCP stack. */
5159 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5160 	tcp->th_sum = 0;
5161 	/*
5162 	 * Broadcom controllers uses different descriptor format for
5163 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5164 	 * license issue and lower performance of firmware based TSO
5165 	 * we only support hardware based TSO.
5166 	 */
5167 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5168 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5169 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5170 		/*
5171 		 * For BCM5717 and newer controllers, hardware based TSO
5172 		 * uses the 14 lower bits of the bge_mss field to store the
5173 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5174 		 * the IP/TCP header length.  The upper 6 bits of the header
5175 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5176 		 * frames are supported.
5177 		 */
5178 		*mss |= ((hlen & 0x3) << 14);
5179 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5180 	} else {
5181 		/*
5182 		 * For BCM5755 and newer controllers, hardware based TSO uses
5183 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5184 		 * store the IP/TCP header length. Jumbo frames are not
5185 		 * supported.
5186 		 */
5187 		*mss |= (hlen << 11);
5188 	}
5189 	return (m);
5190 }
5191 
5192 /*
5193  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5194  * pointers to descriptors.
5195  */
5196 static int
5197 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5198 {
5199 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5200 	bus_dmamap_t		map;
5201 	struct bge_tx_bd	*d;
5202 	struct mbuf		*m = *m_head;
5203 	uint32_t		idx = *txidx;
5204 	uint16_t		csum_flags, mss, vlan_tag;
5205 	int			nsegs, i, error;
5206 
5207 	csum_flags = 0;
5208 	mss = 0;
5209 	vlan_tag = 0;
5210 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5211 	    m->m_next != NULL) {
5212 		*m_head = bge_check_short_dma(m);
5213 		if (*m_head == NULL)
5214 			return (ENOBUFS);
5215 		m = *m_head;
5216 	}
5217 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5218 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5219 		if (*m_head == NULL)
5220 			return (ENOBUFS);
5221 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5222 		    BGE_TXBDFLAG_CPU_POST_DMA;
5223 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5224 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5225 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5226 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5227 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5228 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5229 			    (error = bge_cksum_pad(m)) != 0) {
5230 				m_freem(m);
5231 				*m_head = NULL;
5232 				return (error);
5233 			}
5234 		}
5235 	}
5236 
5237 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5238 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5239 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5240 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5241 		if (sc->bge_forced_collapse > 0 &&
5242 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5243 			/*
5244 			 * Forcedly collapse mbuf chains to overcome hardware
5245 			 * limitation which only support a single outstanding
5246 			 * DMA read operation.
5247 			 */
5248 			if (sc->bge_forced_collapse == 1)
5249 				m = m_defrag(m, M_NOWAIT);
5250 			else
5251 				m = m_collapse(m, M_NOWAIT,
5252 				    sc->bge_forced_collapse);
5253 			if (m == NULL)
5254 				m = *m_head;
5255 			*m_head = m;
5256 		}
5257 	}
5258 
5259 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5260 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5261 	    &nsegs, BUS_DMA_NOWAIT);
5262 	if (error == EFBIG) {
5263 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5264 		if (m == NULL) {
5265 			m_freem(*m_head);
5266 			*m_head = NULL;
5267 			return (ENOBUFS);
5268 		}
5269 		*m_head = m;
5270 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5271 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5272 		if (error) {
5273 			m_freem(m);
5274 			*m_head = NULL;
5275 			return (error);
5276 		}
5277 	} else if (error != 0)
5278 		return (error);
5279 
5280 	/* Check if we have enough free send BDs. */
5281 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5282 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5283 		return (ENOBUFS);
5284 	}
5285 
5286 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5287 
5288 	if (m->m_flags & M_VLANTAG) {
5289 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5290 		vlan_tag = m->m_pkthdr.ether_vtag;
5291 	}
5292 
5293 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5294 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5295 		/*
5296 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5297 		 * buffers cross into regions which are within MSS bytes of
5298 		 * a 4GB boundary.  If we encounter the condition, drop the
5299 		 * packet.
5300 		 */
5301 		for (i = 0; ; i++) {
5302 			d = &sc->bge_ldata.bge_tx_ring[idx];
5303 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5304 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5305 			d->bge_len = segs[i].ds_len;
5306 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5307 			    d->bge_addr.bge_addr_lo)
5308 				break;
5309 			d->bge_flags = csum_flags;
5310 			d->bge_vlan_tag = vlan_tag;
5311 			d->bge_mss = mss;
5312 			if (i == nsegs - 1)
5313 				break;
5314 			BGE_INC(idx, BGE_TX_RING_CNT);
5315 		}
5316 		if (i != nsegs - 1) {
5317 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5318 			    BUS_DMASYNC_POSTWRITE);
5319 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5320 			m_freem(*m_head);
5321 			*m_head = NULL;
5322 			return (EIO);
5323 		}
5324 	} else {
5325 		for (i = 0; ; i++) {
5326 			d = &sc->bge_ldata.bge_tx_ring[idx];
5327 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5328 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5329 			d->bge_len = segs[i].ds_len;
5330 			d->bge_flags = csum_flags;
5331 			d->bge_vlan_tag = vlan_tag;
5332 			d->bge_mss = mss;
5333 			if (i == nsegs - 1)
5334 				break;
5335 			BGE_INC(idx, BGE_TX_RING_CNT);
5336 		}
5337 	}
5338 
5339 	/* Mark the last segment as end of packet... */
5340 	d->bge_flags |= BGE_TXBDFLAG_END;
5341 
5342 	/*
5343 	 * Insure that the map for this transmission
5344 	 * is placed at the array index of the last descriptor
5345 	 * in this chain.
5346 	 */
5347 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5348 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5349 	sc->bge_cdata.bge_tx_chain[idx] = m;
5350 	sc->bge_txcnt += nsegs;
5351 
5352 	BGE_INC(idx, BGE_TX_RING_CNT);
5353 	*txidx = idx;
5354 
5355 	return (0);
5356 }
5357 
5358 /*
5359  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5360  * to the mbuf data regions directly in the transmit descriptors.
5361  */
5362 static void
5363 bge_start_locked(if_t ifp)
5364 {
5365 	struct bge_softc *sc;
5366 	struct mbuf *m_head;
5367 	uint32_t prodidx;
5368 	int count;
5369 
5370 	sc = if_getsoftc(ifp);
5371 	BGE_LOCK_ASSERT(sc);
5372 
5373 	if (!sc->bge_link ||
5374 	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5375 	    IFF_DRV_RUNNING)
5376 		return;
5377 
5378 	prodidx = sc->bge_tx_prodidx;
5379 
5380 	for (count = 0; !if_sendq_empty(ifp);) {
5381 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5382 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5383 			break;
5384 		}
5385 		m_head = if_dequeue(ifp);
5386 		if (m_head == NULL)
5387 			break;
5388 
5389 		/*
5390 		 * Pack the data into the transmit ring. If we
5391 		 * don't have room, set the OACTIVE flag and wait
5392 		 * for the NIC to drain the ring.
5393 		 */
5394 		if (bge_encap(sc, &m_head, &prodidx)) {
5395 			if (m_head == NULL)
5396 				break;
5397 			if_sendq_prepend(ifp, m_head);
5398 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5399 			break;
5400 		}
5401 		++count;
5402 
5403 		/*
5404 		 * If there's a BPF listener, bounce a copy of this frame
5405 		 * to him.
5406 		 */
5407 		if_bpfmtap(ifp, m_head);
5408 	}
5409 
5410 	if (count > 0)
5411 		bge_start_tx(sc, prodidx);
5412 }
5413 
5414 static void
5415 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5416 {
5417 
5418 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5419 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5420 	/* Transmit. */
5421 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5422 	/* 5700 b2 errata */
5423 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5424 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5425 
5426 	sc->bge_tx_prodidx = prodidx;
5427 
5428 	/* Set a timeout in case the chip goes out to lunch. */
5429 	sc->bge_timer = BGE_TX_TIMEOUT;
5430 }
5431 
5432 /*
5433  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5434  * to the mbuf data regions directly in the transmit descriptors.
5435  */
5436 static void
5437 bge_start(if_t ifp)
5438 {
5439 	struct bge_softc *sc;
5440 
5441 	sc = if_getsoftc(ifp);
5442 	BGE_LOCK(sc);
5443 	bge_start_locked(ifp);
5444 	BGE_UNLOCK(sc);
5445 }
5446 
5447 static void
5448 bge_init_locked(struct bge_softc *sc)
5449 {
5450 	if_t ifp;
5451 	uint16_t *m;
5452 	uint32_t mode;
5453 
5454 	BGE_LOCK_ASSERT(sc);
5455 
5456 	ifp = sc->bge_ifp;
5457 
5458 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5459 		return;
5460 
5461 	/* Cancel pending I/O and flush buffers. */
5462 	bge_stop(sc);
5463 
5464 	bge_stop_fw(sc);
5465 	bge_sig_pre_reset(sc, BGE_RESET_START);
5466 	bge_reset(sc);
5467 	bge_sig_legacy(sc, BGE_RESET_START);
5468 	bge_sig_post_reset(sc, BGE_RESET_START);
5469 
5470 	bge_chipinit(sc);
5471 
5472 	/*
5473 	 * Init the various state machines, ring
5474 	 * control blocks and firmware.
5475 	 */
5476 	if (bge_blockinit(sc)) {
5477 		device_printf(sc->bge_dev, "initialization failure\n");
5478 		return;
5479 	}
5480 
5481 	ifp = sc->bge_ifp;
5482 
5483 	/* Specify MTU. */
5484 	CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5485 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5486 	    (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5487 
5488 	/* Load our MAC address. */
5489 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5490 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5491 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5492 
5493 	/* Program promiscuous mode. */
5494 	bge_setpromisc(sc);
5495 
5496 	/* Program multicast filter. */
5497 	bge_setmulti(sc);
5498 
5499 	/* Program VLAN tag stripping. */
5500 	bge_setvlan(sc);
5501 
5502 	/* Override UDP checksum offloading. */
5503 	if (sc->bge_forced_udpcsum == 0)
5504 		sc->bge_csum_features &= ~CSUM_UDP;
5505 	else
5506 		sc->bge_csum_features |= CSUM_UDP;
5507 	if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5508 	    if_getcapenable(ifp) & IFCAP_TXCSUM) {
5509 		if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5510 		if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5511 	}
5512 
5513 	/* Init RX ring. */
5514 	if (bge_init_rx_ring_std(sc) != 0) {
5515 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5516 		bge_stop(sc);
5517 		return;
5518 	}
5519 
5520 	/*
5521 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5522 	 * memory to insure that the chip has in fact read the first
5523 	 * entry of the ring.
5524 	 */
5525 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5526 		uint32_t		v, i;
5527 		for (i = 0; i < 10; i++) {
5528 			DELAY(20);
5529 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5530 			if (v == (MCLBYTES - ETHER_ALIGN))
5531 				break;
5532 		}
5533 		if (i == 10)
5534 			device_printf (sc->bge_dev,
5535 			    "5705 A0 chip failed to load RX ring\n");
5536 	}
5537 
5538 	/* Init jumbo RX ring. */
5539 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5540 	    if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5541      	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5542 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5543 			device_printf(sc->bge_dev,
5544 			    "no memory for jumbo Rx buffers.\n");
5545 			bge_stop(sc);
5546 			return;
5547 		}
5548 	}
5549 
5550 	/* Init our RX return ring index. */
5551 	sc->bge_rx_saved_considx = 0;
5552 
5553 	/* Init our RX/TX stat counters. */
5554 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5555 
5556 	/* Init TX ring. */
5557 	bge_init_tx_ring(sc);
5558 
5559 	/* Enable TX MAC state machine lockup fix. */
5560 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5561 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5562 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5563 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5564 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5565 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5566 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5567 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5568 	}
5569 	/* Turn on transmitter. */
5570 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5571 	DELAY(100);
5572 
5573 	/* Turn on receiver. */
5574 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5575 	if (BGE_IS_5755_PLUS(sc))
5576 		mode |= BGE_RXMODE_IPV6_ENABLE;
5577 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5578 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5579 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5580 	DELAY(10);
5581 
5582 	/*
5583 	 * Set the number of good frames to receive after RX MBUF
5584 	 * Low Watermark has been reached. After the RX MAC receives
5585 	 * this number of frames, it will drop subsequent incoming
5586 	 * frames until the MBUF High Watermark is reached.
5587 	 */
5588 	if (BGE_IS_57765_PLUS(sc))
5589 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5590 	else
5591 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5592 
5593 	/* Clear MAC statistics. */
5594 	if (BGE_IS_5705_PLUS(sc))
5595 		bge_stats_clear_regs(sc);
5596 
5597 	/* Tell firmware we're alive. */
5598 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5599 
5600 #ifdef DEVICE_POLLING
5601 	/* Disable interrupts if we are polling. */
5602 	if (if_getcapenable(ifp) & IFCAP_POLLING) {
5603 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5604 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5605 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5606 	} else
5607 #endif
5608 
5609 	/* Enable host interrupts. */
5610 	{
5611 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5612 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5613 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5614 	}
5615 
5616 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5617 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5618 
5619 	bge_ifmedia_upd_locked(ifp);
5620 
5621 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5622 }
5623 
5624 static void
5625 bge_init(void *xsc)
5626 {
5627 	struct bge_softc *sc = xsc;
5628 
5629 	BGE_LOCK(sc);
5630 	bge_init_locked(sc);
5631 	BGE_UNLOCK(sc);
5632 }
5633 
5634 /*
5635  * Set media options.
5636  */
5637 static int
5638 bge_ifmedia_upd(if_t ifp)
5639 {
5640 	struct bge_softc *sc = if_getsoftc(ifp);
5641 	int res;
5642 
5643 	BGE_LOCK(sc);
5644 	res = bge_ifmedia_upd_locked(ifp);
5645 	BGE_UNLOCK(sc);
5646 
5647 	return (res);
5648 }
5649 
5650 static int
5651 bge_ifmedia_upd_locked(if_t ifp)
5652 {
5653 	struct bge_softc *sc = if_getsoftc(ifp);
5654 	struct mii_data *mii;
5655 	struct mii_softc *miisc;
5656 	struct ifmedia *ifm;
5657 
5658 	BGE_LOCK_ASSERT(sc);
5659 
5660 	ifm = &sc->bge_ifmedia;
5661 
5662 	/* If this is a 1000baseX NIC, enable the TBI port. */
5663 	if (sc->bge_flags & BGE_FLAG_TBI) {
5664 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5665 			return (EINVAL);
5666 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5667 		case IFM_AUTO:
5668 			/*
5669 			 * The BCM5704 ASIC appears to have a special
5670 			 * mechanism for programming the autoneg
5671 			 * advertisement registers in TBI mode.
5672 			 */
5673 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5674 				uint32_t sgdig;
5675 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5676 				if (sgdig & BGE_SGDIGSTS_DONE) {
5677 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5678 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5679 					sgdig |= BGE_SGDIGCFG_AUTO |
5680 					    BGE_SGDIGCFG_PAUSE_CAP |
5681 					    BGE_SGDIGCFG_ASYM_PAUSE;
5682 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5683 					    sgdig | BGE_SGDIGCFG_SEND);
5684 					DELAY(5);
5685 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5686 				}
5687 			}
5688 			break;
5689 		case IFM_1000_SX:
5690 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5691 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5692 				    BGE_MACMODE_HALF_DUPLEX);
5693 			} else {
5694 				BGE_SETBIT(sc, BGE_MAC_MODE,
5695 				    BGE_MACMODE_HALF_DUPLEX);
5696 			}
5697 			DELAY(40);
5698 			break;
5699 		default:
5700 			return (EINVAL);
5701 		}
5702 		return (0);
5703 	}
5704 
5705 	sc->bge_link_evt++;
5706 	mii = device_get_softc(sc->bge_miibus);
5707 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5708 		PHY_RESET(miisc);
5709 	mii_mediachg(mii);
5710 
5711 	/*
5712 	 * Force an interrupt so that we will call bge_link_upd
5713 	 * if needed and clear any pending link state attention.
5714 	 * Without this we are not getting any further interrupts
5715 	 * for link state changes and thus will not UP the link and
5716 	 * not be able to send in bge_start_locked. The only
5717 	 * way to get things working was to receive a packet and
5718 	 * get an RX intr.
5719 	 * bge_tick should help for fiber cards and we might not
5720 	 * need to do this here if BGE_FLAG_TBI is set but as
5721 	 * we poll for fiber anyway it should not harm.
5722 	 */
5723 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5724 	    sc->bge_flags & BGE_FLAG_5788)
5725 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5726 	else
5727 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5728 
5729 	return (0);
5730 }
5731 
5732 /*
5733  * Report current media status.
5734  */
5735 static void
5736 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5737 {
5738 	struct bge_softc *sc = if_getsoftc(ifp);
5739 	struct mii_data *mii;
5740 
5741 	BGE_LOCK(sc);
5742 
5743 	if ((if_getflags(ifp) & IFF_UP) == 0) {
5744 		BGE_UNLOCK(sc);
5745 		return;
5746 	}
5747 	if (sc->bge_flags & BGE_FLAG_TBI) {
5748 		ifmr->ifm_status = IFM_AVALID;
5749 		ifmr->ifm_active = IFM_ETHER;
5750 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5751 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5752 			ifmr->ifm_status |= IFM_ACTIVE;
5753 		else {
5754 			ifmr->ifm_active |= IFM_NONE;
5755 			BGE_UNLOCK(sc);
5756 			return;
5757 		}
5758 		ifmr->ifm_active |= IFM_1000_SX;
5759 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5760 			ifmr->ifm_active |= IFM_HDX;
5761 		else
5762 			ifmr->ifm_active |= IFM_FDX;
5763 		BGE_UNLOCK(sc);
5764 		return;
5765 	}
5766 
5767 	mii = device_get_softc(sc->bge_miibus);
5768 	mii_pollstat(mii);
5769 	ifmr->ifm_active = mii->mii_media_active;
5770 	ifmr->ifm_status = mii->mii_media_status;
5771 
5772 	BGE_UNLOCK(sc);
5773 }
5774 
5775 static int
5776 bge_ioctl(if_t ifp, u_long command, caddr_t data)
5777 {
5778 	struct bge_softc *sc = if_getsoftc(ifp);
5779 	struct ifreq *ifr = (struct ifreq *) data;
5780 	struct mii_data *mii;
5781 	int flags, mask, error = 0;
5782 
5783 	switch (command) {
5784 	case SIOCSIFMTU:
5785 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5786 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5787 			if (ifr->ifr_mtu < ETHERMIN ||
5788 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5789 				error = EINVAL;
5790 				break;
5791 			}
5792 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5793 			error = EINVAL;
5794 			break;
5795 		}
5796 		BGE_LOCK(sc);
5797 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
5798 			if_setmtu(ifp, ifr->ifr_mtu);
5799 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5800 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5801 				bge_init_locked(sc);
5802 			}
5803 		}
5804 		BGE_UNLOCK(sc);
5805 		break;
5806 	case SIOCSIFFLAGS:
5807 		BGE_LOCK(sc);
5808 		if (if_getflags(ifp) & IFF_UP) {
5809 			/*
5810 			 * If only the state of the PROMISC flag changed,
5811 			 * then just use the 'set promisc mode' command
5812 			 * instead of reinitializing the entire NIC. Doing
5813 			 * a full re-init means reloading the firmware and
5814 			 * waiting for it to start up, which may take a
5815 			 * second or two.  Similarly for ALLMULTI.
5816 			 */
5817 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5818 				flags = if_getflags(ifp) ^ sc->bge_if_flags;
5819 				if (flags & IFF_PROMISC)
5820 					bge_setpromisc(sc);
5821 				if (flags & IFF_ALLMULTI)
5822 					bge_setmulti(sc);
5823 			} else
5824 				bge_init_locked(sc);
5825 		} else {
5826 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5827 				bge_stop(sc);
5828 			}
5829 		}
5830 		sc->bge_if_flags = if_getflags(ifp);
5831 		BGE_UNLOCK(sc);
5832 		error = 0;
5833 		break;
5834 	case SIOCADDMULTI:
5835 	case SIOCDELMULTI:
5836 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5837 			BGE_LOCK(sc);
5838 			bge_setmulti(sc);
5839 			BGE_UNLOCK(sc);
5840 			error = 0;
5841 		}
5842 		break;
5843 	case SIOCSIFMEDIA:
5844 	case SIOCGIFMEDIA:
5845 		if (sc->bge_flags & BGE_FLAG_TBI) {
5846 			error = ifmedia_ioctl(ifp, ifr,
5847 			    &sc->bge_ifmedia, command);
5848 		} else {
5849 			mii = device_get_softc(sc->bge_miibus);
5850 			error = ifmedia_ioctl(ifp, ifr,
5851 			    &mii->mii_media, command);
5852 		}
5853 		break;
5854 	case SIOCSIFCAP:
5855 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5856 #ifdef DEVICE_POLLING
5857 		if (mask & IFCAP_POLLING) {
5858 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5859 				error = ether_poll_register(bge_poll, ifp);
5860 				if (error)
5861 					return (error);
5862 				BGE_LOCK(sc);
5863 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5864 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5865 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5866 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5867 				BGE_UNLOCK(sc);
5868 			} else {
5869 				error = ether_poll_deregister(ifp);
5870 				/* Enable interrupt even in error case */
5871 				BGE_LOCK(sc);
5872 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5873 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5874 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5875 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5876 				BGE_UNLOCK(sc);
5877 			}
5878 		}
5879 #endif
5880 		if ((mask & IFCAP_TXCSUM) != 0 &&
5881 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5882 			if_togglecapenable(ifp, IFCAP_TXCSUM);
5883 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5884 				if_sethwassistbits(ifp,
5885 				    sc->bge_csum_features, 0);
5886 			else
5887 				if_sethwassistbits(ifp, 0,
5888 				    sc->bge_csum_features);
5889 		}
5890 
5891 		if ((mask & IFCAP_RXCSUM) != 0 &&
5892 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5893 			if_togglecapenable(ifp, IFCAP_RXCSUM);
5894 
5895 		if ((mask & IFCAP_TSO4) != 0 &&
5896 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5897 			if_togglecapenable(ifp, IFCAP_TSO4);
5898 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5899 				if_sethwassistbits(ifp, CSUM_TSO, 0);
5900 			else
5901 				if_sethwassistbits(ifp, 0, CSUM_TSO);
5902 		}
5903 
5904 		if (mask & IFCAP_VLAN_MTU) {
5905 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5906 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5907 			bge_init(sc);
5908 		}
5909 
5910 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5911 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5912 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5913 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5914 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5915 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5916 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5917 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5918 			BGE_LOCK(sc);
5919 			bge_setvlan(sc);
5920 			BGE_UNLOCK(sc);
5921 		}
5922 #ifdef VLAN_CAPABILITIES
5923 		if_vlancap(ifp);
5924 #endif
5925 		break;
5926 	default:
5927 		error = ether_ioctl(ifp, command, data);
5928 		break;
5929 	}
5930 
5931 	return (error);
5932 }
5933 
5934 static void
5935 bge_watchdog(struct bge_softc *sc)
5936 {
5937 	if_t ifp;
5938 	uint32_t status;
5939 
5940 	BGE_LOCK_ASSERT(sc);
5941 
5942 	if (sc->bge_timer == 0 || --sc->bge_timer)
5943 		return;
5944 
5945 	/* If pause frames are active then don't reset the hardware. */
5946 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5947 		status = CSR_READ_4(sc, BGE_RX_STS);
5948 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5949 			/*
5950 			 * If link partner has us in XOFF state then wait for
5951 			 * the condition to clear.
5952 			 */
5953 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5954 			sc->bge_timer = BGE_TX_TIMEOUT;
5955 			return;
5956 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5957 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5958 			/*
5959 			 * If link partner has us in XOFF state then wait for
5960 			 * the condition to clear.
5961 			 */
5962 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5963 			sc->bge_timer = BGE_TX_TIMEOUT;
5964 			return;
5965 		}
5966 		/*
5967 		 * Any other condition is unexpected and the controller
5968 		 * should be reset.
5969 		 */
5970 	}
5971 
5972 	ifp = sc->bge_ifp;
5973 
5974 	if_printf(ifp, "watchdog timeout -- resetting\n");
5975 
5976 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5977 	bge_init_locked(sc);
5978 
5979 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5980 }
5981 
5982 static void
5983 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5984 {
5985 	int i;
5986 
5987 	BGE_CLRBIT(sc, reg, bit);
5988 
5989 	for (i = 0; i < BGE_TIMEOUT; i++) {
5990 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5991 			return;
5992 		DELAY(100);
5993         }
5994 }
5995 
5996 /*
5997  * Stop the adapter and free any mbufs allocated to the
5998  * RX and TX lists.
5999  */
6000 static void
6001 bge_stop(struct bge_softc *sc)
6002 {
6003 	if_t ifp;
6004 
6005 	BGE_LOCK_ASSERT(sc);
6006 
6007 	ifp = sc->bge_ifp;
6008 
6009 	callout_stop(&sc->bge_stat_ch);
6010 
6011 	/* Disable host interrupts. */
6012 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6013 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
6014 
6015 	/*
6016 	 * Tell firmware we're shutting down.
6017 	 */
6018 	bge_stop_fw(sc);
6019 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6020 
6021 	/*
6022 	 * Disable all of the receiver blocks.
6023 	 */
6024 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6025 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6026 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6027 	if (BGE_IS_5700_FAMILY(sc))
6028 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6029 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6030 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6031 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6032 
6033 	/*
6034 	 * Disable all of the transmit blocks.
6035 	 */
6036 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6037 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6038 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6039 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6040 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6041 	if (BGE_IS_5700_FAMILY(sc))
6042 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6043 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6044 
6045 	/*
6046 	 * Shut down all of the memory managers and related
6047 	 * state machines.
6048 	 */
6049 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6050 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6051 	if (BGE_IS_5700_FAMILY(sc))
6052 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6053 
6054 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6055 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6056 	if (!(BGE_IS_5705_PLUS(sc))) {
6057 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6058 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6059 	}
6060 	/* Update MAC statistics. */
6061 	if (BGE_IS_5705_PLUS(sc))
6062 		bge_stats_update_regs(sc);
6063 
6064 	bge_reset(sc);
6065 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6066 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6067 
6068 	/*
6069 	 * Keep the ASF firmware running if up.
6070 	 */
6071 	if (sc->bge_asf_mode & ASF_STACKUP)
6072 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6073 	else
6074 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6075 
6076 	/* Free the RX lists. */
6077 	bge_free_rx_ring_std(sc);
6078 
6079 	/* Free jumbo RX list. */
6080 	if (BGE_IS_JUMBO_CAPABLE(sc))
6081 		bge_free_rx_ring_jumbo(sc);
6082 
6083 	/* Free TX buffers. */
6084 	bge_free_tx_ring(sc);
6085 
6086 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6087 
6088 	/* Clear MAC's link state (PHY may still have link UP). */
6089 	if (bootverbose && sc->bge_link)
6090 		if_printf(sc->bge_ifp, "link DOWN\n");
6091 	sc->bge_link = 0;
6092 
6093 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6094 }
6095 
6096 /*
6097  * Stop all chip I/O so that the kernel's probe routines don't
6098  * get confused by errant DMAs when rebooting.
6099  */
6100 static int
6101 bge_shutdown(device_t dev)
6102 {
6103 	struct bge_softc *sc;
6104 
6105 	sc = device_get_softc(dev);
6106 	BGE_LOCK(sc);
6107 	bge_stop(sc);
6108 	BGE_UNLOCK(sc);
6109 
6110 	return (0);
6111 }
6112 
6113 static int
6114 bge_suspend(device_t dev)
6115 {
6116 	struct bge_softc *sc;
6117 
6118 	sc = device_get_softc(dev);
6119 	BGE_LOCK(sc);
6120 	bge_stop(sc);
6121 	BGE_UNLOCK(sc);
6122 
6123 	return (0);
6124 }
6125 
6126 static int
6127 bge_resume(device_t dev)
6128 {
6129 	struct bge_softc *sc;
6130 	if_t ifp;
6131 
6132 	sc = device_get_softc(dev);
6133 	BGE_LOCK(sc);
6134 	ifp = sc->bge_ifp;
6135 	if (if_getflags(ifp) & IFF_UP) {
6136 		bge_init_locked(sc);
6137 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6138 			bge_start_locked(ifp);
6139 	}
6140 	BGE_UNLOCK(sc);
6141 
6142 	return (0);
6143 }
6144 
6145 static void
6146 bge_link_upd(struct bge_softc *sc)
6147 {
6148 	struct mii_data *mii;
6149 	uint32_t link, status;
6150 
6151 	BGE_LOCK_ASSERT(sc);
6152 
6153 	/* Clear 'pending link event' flag. */
6154 	sc->bge_link_evt = 0;
6155 
6156 	/*
6157 	 * Process link state changes.
6158 	 * Grrr. The link status word in the status block does
6159 	 * not work correctly on the BCM5700 rev AX and BX chips,
6160 	 * according to all available information. Hence, we have
6161 	 * to enable MII interrupts in order to properly obtain
6162 	 * async link changes. Unfortunately, this also means that
6163 	 * we have to read the MAC status register to detect link
6164 	 * changes, thereby adding an additional register access to
6165 	 * the interrupt handler.
6166 	 *
6167 	 * XXX: perhaps link state detection procedure used for
6168 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6169 	 */
6170 
6171 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6172 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6173 		status = CSR_READ_4(sc, BGE_MAC_STS);
6174 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6175 			mii = device_get_softc(sc->bge_miibus);
6176 			mii_pollstat(mii);
6177 			if (!sc->bge_link &&
6178 			    mii->mii_media_status & IFM_ACTIVE &&
6179 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6180 				sc->bge_link++;
6181 				if (bootverbose)
6182 					if_printf(sc->bge_ifp, "link UP\n");
6183 			} else if (sc->bge_link &&
6184 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6185 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6186 				sc->bge_link = 0;
6187 				if (bootverbose)
6188 					if_printf(sc->bge_ifp, "link DOWN\n");
6189 			}
6190 
6191 			/* Clear the interrupt. */
6192 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6193 			    BGE_EVTENB_MI_INTERRUPT);
6194 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6195 			    BRGPHY_MII_ISR);
6196 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6197 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6198 		}
6199 		return;
6200 	}
6201 
6202 	if (sc->bge_flags & BGE_FLAG_TBI) {
6203 		status = CSR_READ_4(sc, BGE_MAC_STS);
6204 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6205 			if (!sc->bge_link) {
6206 				sc->bge_link++;
6207 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6208 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6209 					    BGE_MACMODE_TBI_SEND_CFGS);
6210 					DELAY(40);
6211 				}
6212 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6213 				if (bootverbose)
6214 					if_printf(sc->bge_ifp, "link UP\n");
6215 				if_link_state_change(sc->bge_ifp,
6216 				    LINK_STATE_UP);
6217 			}
6218 		} else if (sc->bge_link) {
6219 			sc->bge_link = 0;
6220 			if (bootverbose)
6221 				if_printf(sc->bge_ifp, "link DOWN\n");
6222 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6223 		}
6224 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6225 		/*
6226 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6227 		 * in status word always set. Workaround this bug by reading
6228 		 * PHY link status directly.
6229 		 */
6230 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6231 
6232 		if (link != sc->bge_link ||
6233 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6234 			mii = device_get_softc(sc->bge_miibus);
6235 			mii_pollstat(mii);
6236 			if (!sc->bge_link &&
6237 			    mii->mii_media_status & IFM_ACTIVE &&
6238 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6239 				sc->bge_link++;
6240 				if (bootverbose)
6241 					if_printf(sc->bge_ifp, "link UP\n");
6242 			} else if (sc->bge_link &&
6243 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6244 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6245 				sc->bge_link = 0;
6246 				if (bootverbose)
6247 					if_printf(sc->bge_ifp, "link DOWN\n");
6248 			}
6249 		}
6250 	} else {
6251 		/*
6252 		 * For controllers that call mii_tick, we have to poll
6253 		 * link status.
6254 		 */
6255 		mii = device_get_softc(sc->bge_miibus);
6256 		mii_pollstat(mii);
6257 		bge_miibus_statchg(sc->bge_dev);
6258 	}
6259 
6260 	/* Disable MAC attention when link is up. */
6261 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6262 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6263 	    BGE_MACSTAT_LINK_CHANGED);
6264 }
6265 
6266 static void
6267 bge_add_sysctls(struct bge_softc *sc)
6268 {
6269 	struct sysctl_ctx_list *ctx;
6270 	struct sysctl_oid_list *children;
6271 	int unit;
6272 
6273 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6274 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6275 
6276 #ifdef BGE_REGISTER_DEBUG
6277 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6278 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6279 	    "Debug Information");
6280 
6281 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6282 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6283 	    "MAC Register Read");
6284 
6285 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6286 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6287 	    "APE Register Read");
6288 
6289 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6290 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6291 	    "Memory Read");
6292 
6293 #endif
6294 
6295 	unit = device_get_unit(sc->bge_dev);
6296 	/*
6297 	 * A common design characteristic for many Broadcom client controllers
6298 	 * is that they only support a single outstanding DMA read operation
6299 	 * on the PCIe bus. This means that it will take twice as long to fetch
6300 	 * a TX frame that is split into header and payload buffers as it does
6301 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6302 	 * these controllers, coalescing buffers to reduce the number of memory
6303 	 * reads is effective way to get maximum performance(about 940Mbps).
6304 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6305 	 * performance is about 850Mbps. However forcing coalescing mbufs
6306 	 * consumes a lot of CPU cycles, so leave it off by default.
6307 	 */
6308 	sc->bge_forced_collapse = 0;
6309 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6310 	    CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6311 	    "Number of fragmented TX buffers of a frame allowed before "
6312 	    "forced collapsing");
6313 
6314 	sc->bge_msi = 1;
6315 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6316 	    CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6317 
6318 	/*
6319 	 * It seems all Broadcom controllers have a bug that can generate UDP
6320 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6321 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6322 	 * Even though the probability of generating such UDP datagrams is
6323 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6324 	 * into network so disable UDP checksum offloading by default.  Users
6325 	 * still override this behavior by setting a sysctl variable,
6326 	 * dev.bge.0.forced_udpcsum.
6327 	 */
6328 	sc->bge_forced_udpcsum = 0;
6329 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6330 	    CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6331 	    "Enable UDP checksum offloading even if controller can "
6332 	    "generate UDP checksum value 0");
6333 
6334 	if (BGE_IS_5705_PLUS(sc))
6335 		bge_add_sysctl_stats_regs(sc, ctx, children);
6336 	else
6337 		bge_add_sysctl_stats(sc, ctx, children);
6338 }
6339 
6340 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6341 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6342 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6343 	    desc)
6344 
6345 static void
6346 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6347     struct sysctl_oid_list *parent)
6348 {
6349 	struct sysctl_oid *tree;
6350 	struct sysctl_oid_list *children, *schildren;
6351 
6352 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6353 	    NULL, "BGE Statistics");
6354 	schildren = children = SYSCTL_CHILDREN(tree);
6355 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6356 	    children, COSFramesDroppedDueToFilters,
6357 	    "FramesDroppedDueToFilters");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6359 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6360 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6361 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6362 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6363 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6364 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6365 	    children, ifInDiscards, "InputDiscards");
6366 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6367 	    children, ifInErrors, "InputErrors");
6368 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6369 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6370 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6371 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6372 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6373 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6374 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6375 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6376 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6377 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6378 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6379 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6380 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6381 	    children, nicInterrupts, "Interrupts");
6382 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6383 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6384 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6385 	    children, nicSendThresholdHit, "SendThresholdHit");
6386 
6387 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6388 	    NULL, "BGE RX Statistics");
6389 	children = SYSCTL_CHILDREN(tree);
6390 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6391 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6393 	    children, rxstats.etherStatsFragments, "Fragments");
6394 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6395 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6396 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6397 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6398 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6399 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6400 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6401 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6402 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6403 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6404 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6405 	    children, rxstats.xoffPauseFramesReceived,
6406 	    "xoffPauseFramesReceived");
6407 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6408 	    children, rxstats.macControlFramesReceived,
6409 	    "ControlFramesReceived");
6410 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6411 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6412 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6413 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6414 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6415 	    children, rxstats.etherStatsJabbers, "Jabbers");
6416 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6417 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6418 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6419 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6420 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6421 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6422 
6423 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6424 	    NULL, "BGE TX Statistics");
6425 	children = SYSCTL_CHILDREN(tree);
6426 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6427 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6428 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6429 	    children, txstats.etherStatsCollisions, "Collisions");
6430 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6431 	    children, txstats.outXonSent, "XonSent");
6432 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6433 	    children, txstats.outXoffSent, "XoffSent");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6435 	    children, txstats.flowControlDone, "flowControlDone");
6436 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6437 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6438 	    "InternalMacTransmitErrors");
6439 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6440 	    children, txstats.dot3StatsSingleCollisionFrames,
6441 	    "SingleCollisionFrames");
6442 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6443 	    children, txstats.dot3StatsMultipleCollisionFrames,
6444 	    "MultipleCollisionFrames");
6445 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6446 	    children, txstats.dot3StatsDeferredTransmissions,
6447 	    "DeferredTransmissions");
6448 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6449 	    children, txstats.dot3StatsExcessiveCollisions,
6450 	    "ExcessiveCollisions");
6451 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6452 	    children, txstats.dot3StatsLateCollisions,
6453 	    "LateCollisions");
6454 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6455 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6456 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6457 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6458 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6459 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6460 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6461 	    children, txstats.dot3StatsCarrierSenseErrors,
6462 	    "CarrierSenseErrors");
6463 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6464 	    children, txstats.ifOutDiscards, "Discards");
6465 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6466 	    children, txstats.ifOutErrors, "Errors");
6467 }
6468 
6469 #undef BGE_SYSCTL_STAT
6470 
6471 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6472 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6473 
6474 static void
6475 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6476     struct sysctl_oid_list *parent)
6477 {
6478 	struct sysctl_oid *tree;
6479 	struct sysctl_oid_list *child, *schild;
6480 	struct bge_mac_stats *stats;
6481 
6482 	stats = &sc->bge_mac_stats;
6483 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6484 	    NULL, "BGE Statistics");
6485 	schild = child = SYSCTL_CHILDREN(tree);
6486 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6487 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6488 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6489 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6490 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6491 	    &stats->DmaWriteHighPriQueueFull,
6492 	    "NIC DMA Write High Priority Queue Full");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6494 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6496 	    &stats->InputDiscards, "Discarded Input Frames");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6498 	    &stats->InputErrors, "Input Errors");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6500 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6501 
6502 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6503 	    NULL, "BGE RX Statistics");
6504 	child = SYSCTL_CHILDREN(tree);
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6506 	    &stats->ifHCInOctets, "Inbound Octets");
6507 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6508 	    &stats->etherStatsFragments, "Fragments");
6509 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6510 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6512 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6514 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6516 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6518 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6520 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6521 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6522 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6523 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6524 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6525 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6526 	    &stats->xoffStateEntered, "XOFF State Entered");
6527 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6528 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6530 	    &stats->etherStatsJabbers, "Jabbers");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6532 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6533 
6534 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6535 	    NULL, "BGE TX Statistics");
6536 	child = SYSCTL_CHILDREN(tree);
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6538 	    &stats->ifHCOutOctets, "Outbound Octets");
6539 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6540 	    &stats->etherStatsCollisions, "TX Collisions");
6541 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6542 	    &stats->outXonSent, "XON Sent");
6543 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6544 	    &stats->outXoffSent, "XOFF Sent");
6545 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6546 	    &stats->dot3StatsInternalMacTransmitErrors,
6547 	    "Internal MAC TX Errors");
6548 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6549 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6550 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6551 	    &stats->dot3StatsMultipleCollisionFrames,
6552 	    "Multiple Collision Frames");
6553 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6554 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6555 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6556 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6557 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6558 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6559 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6560 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6561 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6562 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6563 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6564 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6565 }
6566 
6567 #undef	BGE_SYSCTL_STAT_ADD64
6568 
6569 static int
6570 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6571 {
6572 	struct bge_softc *sc;
6573 	uint32_t result;
6574 	int offset;
6575 
6576 	sc = (struct bge_softc *)arg1;
6577 	offset = arg2;
6578 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6579 	    offsetof(bge_hostaddr, bge_addr_lo));
6580 	return (sysctl_handle_int(oidp, &result, 0, req));
6581 }
6582 
6583 #ifdef BGE_REGISTER_DEBUG
6584 static int
6585 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6586 {
6587 	struct bge_softc *sc;
6588 	uint16_t *sbdata;
6589 	int error, result, sbsz;
6590 	int i, j;
6591 
6592 	result = -1;
6593 	error = sysctl_handle_int(oidp, &result, 0, req);
6594 	if (error || (req->newptr == NULL))
6595 		return (error);
6596 
6597 	if (result == 1) {
6598 		sc = (struct bge_softc *)arg1;
6599 
6600 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6601 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6602 			sbsz = BGE_STATUS_BLK_SZ;
6603 		else
6604 			sbsz = 32;
6605 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6606 		printf("Status Block:\n");
6607 		BGE_LOCK(sc);
6608 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6609 		    sc->bge_cdata.bge_status_map,
6610 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6611 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6612 			printf("%06x:", i);
6613 			for (j = 0; j < 8; j++)
6614 				printf(" %04x", sbdata[i++]);
6615 			printf("\n");
6616 		}
6617 
6618 		printf("Registers:\n");
6619 		for (i = 0x800; i < 0xA00; ) {
6620 			printf("%06x:", i);
6621 			for (j = 0; j < 8; j++) {
6622 				printf(" %08x", CSR_READ_4(sc, i));
6623 				i += 4;
6624 			}
6625 			printf("\n");
6626 		}
6627 		BGE_UNLOCK(sc);
6628 
6629 		printf("Hardware Flags:\n");
6630 		if (BGE_IS_5717_PLUS(sc))
6631 			printf(" - 5717 Plus\n");
6632 		if (BGE_IS_5755_PLUS(sc))
6633 			printf(" - 5755 Plus\n");
6634 		if (BGE_IS_575X_PLUS(sc))
6635 			printf(" - 575X Plus\n");
6636 		if (BGE_IS_5705_PLUS(sc))
6637 			printf(" - 5705 Plus\n");
6638 		if (BGE_IS_5714_FAMILY(sc))
6639 			printf(" - 5714 Family\n");
6640 		if (BGE_IS_5700_FAMILY(sc))
6641 			printf(" - 5700 Family\n");
6642 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6643 			printf(" - Supports Jumbo Frames\n");
6644 		if (sc->bge_flags & BGE_FLAG_PCIX)
6645 			printf(" - PCI-X Bus\n");
6646 		if (sc->bge_flags & BGE_FLAG_PCIE)
6647 			printf(" - PCI Express Bus\n");
6648 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6649 			printf(" - No 3 LEDs\n");
6650 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6651 			printf(" - RX Alignment Bug\n");
6652 	}
6653 
6654 	return (error);
6655 }
6656 
6657 static int
6658 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6659 {
6660 	struct bge_softc *sc;
6661 	int error;
6662 	uint16_t result;
6663 	uint32_t val;
6664 
6665 	result = -1;
6666 	error = sysctl_handle_int(oidp, &result, 0, req);
6667 	if (error || (req->newptr == NULL))
6668 		return (error);
6669 
6670 	if (result < 0x8000) {
6671 		sc = (struct bge_softc *)arg1;
6672 		val = CSR_READ_4(sc, result);
6673 		printf("reg 0x%06X = 0x%08X\n", result, val);
6674 	}
6675 
6676 	return (error);
6677 }
6678 
6679 static int
6680 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6681 {
6682 	struct bge_softc *sc;
6683 	int error;
6684 	uint16_t result;
6685 	uint32_t val;
6686 
6687 	result = -1;
6688 	error = sysctl_handle_int(oidp, &result, 0, req);
6689 	if (error || (req->newptr == NULL))
6690 		return (error);
6691 
6692 	if (result < 0x8000) {
6693 		sc = (struct bge_softc *)arg1;
6694 		val = APE_READ_4(sc, result);
6695 		printf("reg 0x%06X = 0x%08X\n", result, val);
6696 	}
6697 
6698 	return (error);
6699 }
6700 
6701 static int
6702 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6703 {
6704 	struct bge_softc *sc;
6705 	int error;
6706 	uint16_t result;
6707 	uint32_t val;
6708 
6709 	result = -1;
6710 	error = sysctl_handle_int(oidp, &result, 0, req);
6711 	if (error || (req->newptr == NULL))
6712 		return (error);
6713 
6714 	if (result < 0x8000) {
6715 		sc = (struct bge_softc *)arg1;
6716 		val = bge_readmem_ind(sc, result);
6717 		printf("mem 0x%06X = 0x%08X\n", result, val);
6718 	}
6719 
6720 	return (error);
6721 }
6722 #endif
6723 
6724 static int
6725 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6726 {
6727 #ifdef __sparc64__
6728 	if (sc->bge_flags & BGE_FLAG_EADDR)
6729 		return (1);
6730 
6731 	OF_getetheraddr(sc->bge_dev, ether_addr);
6732 	return (0);
6733 #else
6734 	return (1);
6735 #endif
6736 }
6737 
6738 static int
6739 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6740 {
6741 	uint32_t mac_addr;
6742 
6743 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6744 	if ((mac_addr >> 16) == 0x484b) {
6745 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6746 		ether_addr[1] = (uint8_t)mac_addr;
6747 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6748 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6749 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6750 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6751 		ether_addr[5] = (uint8_t)mac_addr;
6752 		return (0);
6753 	}
6754 	return (1);
6755 }
6756 
6757 static int
6758 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6759 {
6760 	int mac_offset = BGE_EE_MAC_OFFSET;
6761 
6762 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6763 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6764 
6765 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6766 	    ETHER_ADDR_LEN));
6767 }
6768 
6769 static int
6770 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6771 {
6772 
6773 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6774 		return (1);
6775 
6776 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6777 	   ETHER_ADDR_LEN));
6778 }
6779 
6780 static int
6781 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6782 {
6783 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6784 		/* NOTE: Order is critical */
6785 		bge_get_eaddr_fw,
6786 		bge_get_eaddr_mem,
6787 		bge_get_eaddr_nvram,
6788 		bge_get_eaddr_eeprom,
6789 		NULL
6790 	};
6791 	const bge_eaddr_fcn_t *func;
6792 
6793 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6794 		if ((*func)(sc, eaddr) == 0)
6795 			break;
6796 	}
6797 	return (*func == NULL ? ENXIO : 0);
6798 }
6799 
6800 static uint64_t
6801 bge_get_counter(if_t ifp, ift_counter cnt)
6802 {
6803 	struct bge_softc *sc;
6804 	struct bge_mac_stats *stats;
6805 
6806 	sc = if_getsoftc(ifp);
6807 	if (!BGE_IS_5705_PLUS(sc))
6808 		return (if_get_counter_default(ifp, cnt));
6809 	stats = &sc->bge_mac_stats;
6810 
6811 	switch (cnt) {
6812 	case IFCOUNTER_IERRORS:
6813 		return (stats->NoMoreRxBDs + stats->InputDiscards +
6814 		    stats->InputErrors);
6815 	case IFCOUNTER_COLLISIONS:
6816 		return (stats->etherStatsCollisions);
6817 	default:
6818 		return (if_get_counter_default(ifp, cnt));
6819 	}
6820 }
6821 
6822 #ifdef NETDUMP
6823 static void
6824 bge_netdump_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6825 {
6826 	struct bge_softc *sc;
6827 
6828 	sc = if_getsoftc(ifp);
6829 	BGE_LOCK(sc);
6830 	*nrxr = sc->bge_return_ring_cnt;
6831 	*ncl = NETDUMP_MAX_IN_FLIGHT;
6832 	if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6833 	    (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6834 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6835 		*clsize = MJUM9BYTES;
6836 	else
6837 		*clsize = MCLBYTES;
6838 	BGE_UNLOCK(sc);
6839 }
6840 
6841 static void
6842 bge_netdump_event(if_t ifp __unused, enum netdump_ev event __unused)
6843 {
6844 }
6845 
6846 static int
6847 bge_netdump_transmit(if_t ifp, struct mbuf *m)
6848 {
6849 	struct bge_softc *sc;
6850 	uint32_t prodidx;
6851 	int error;
6852 
6853 	sc = if_getsoftc(ifp);
6854 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6855 	    IFF_DRV_RUNNING)
6856 		return (1);
6857 
6858 	prodidx = sc->bge_tx_prodidx;
6859 	error = bge_encap(sc, &m, &prodidx);
6860 	if (error == 0)
6861 		bge_start_tx(sc, prodidx);
6862 	return (error);
6863 }
6864 
6865 static int
6866 bge_netdump_poll(if_t ifp, int count)
6867 {
6868 	struct bge_softc *sc;
6869 	uint32_t rx_prod, tx_cons;
6870 
6871 	sc = if_getsoftc(ifp);
6872 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6873 	    IFF_DRV_RUNNING)
6874 		return (1);
6875 
6876 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6877 	    sc->bge_cdata.bge_status_map,
6878 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6879 
6880 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6881 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6882 
6883 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6884 	    sc->bge_cdata.bge_status_map,
6885 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6886 
6887 	(void)bge_rxeof(sc, rx_prod, 0);
6888 	bge_txeof(sc, tx_cons);
6889 	return (0);
6890 }
6891 #endif /* NETDUMP */
6892