xref: /freebsd/sys/dev/bge/if_bge.c (revision a18eacbefdfa1085ca3db829e86ece78cd416493)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <net/if_types.h>
95 #include <net/if_vlan_var.h>
96 
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 
102 #include <machine/bus.h>
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include "miidevs.h"
110 #include <dev/mii/brgphyreg.h>
111 
112 #ifdef __sparc64__
113 #include <dev/ofw/ofw_bus.h>
114 #include <dev/ofw/openfirm.h>
115 #include <machine/ofw_machdep.h>
116 #include <machine/ver.h>
117 #endif
118 
119 #include <dev/pci/pcireg.h>
120 #include <dev/pci/pcivar.h>
121 
122 #include <dev/bge/if_bgereg.h>
123 
124 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
125 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
126 
127 MODULE_DEPEND(bge, pci, 1, 1, 1);
128 MODULE_DEPEND(bge, ether, 1, 1, 1);
129 MODULE_DEPEND(bge, miibus, 1, 1, 1);
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names. Note: the
136  * spec seems to indicate that the hardware still has Alteon's vendor
137  * ID burned into it, though it will always be overriden by the vendor
138  * ID in the EEPROM. Just to be safe, we cover all possibilities.
139  */
140 static const struct bge_type {
141 	uint16_t	bge_vid;
142 	uint16_t	bge_did;
143 } bge_devs[] = {
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
145 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
146 
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
149 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
150 
151 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
152 
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5725 },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5727 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5762 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57762 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57766 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
227 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
228 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
229 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
230 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
231 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
232 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
233 
234 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
235 
236 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
237 
238 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
239 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
240 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
241 
242 	{ 0, 0 }
243 };
244 
245 static const struct bge_vendor {
246 	uint16_t	v_id;
247 	const char	*v_name;
248 } bge_vendors[] = {
249 	{ ALTEON_VENDORID,	"Alteon" },
250 	{ ALTIMA_VENDORID,	"Altima" },
251 	{ APPLE_VENDORID,	"Apple" },
252 	{ BCOM_VENDORID,	"Broadcom" },
253 	{ SK_VENDORID,		"SysKonnect" },
254 	{ TC_VENDORID,		"3Com" },
255 	{ FJTSU_VENDORID,	"Fujitsu" },
256 
257 	{ 0, NULL }
258 };
259 
260 static const struct bge_revision {
261 	uint32_t	br_chipid;
262 	const char	*br_name;
263 } bge_revisions[] = {
264 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
265 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
266 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
267 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
268 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
269 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
270 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
271 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
272 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
273 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
274 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
275 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
276 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
277 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
278 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
279 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
280 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
281 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
282 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
283 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
284 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
285 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
286 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
287 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
288 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
289 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
290 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
291 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
292 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
293 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
294 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
295 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
296 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
297 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
298 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
299 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
300 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
301 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
302 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
303 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
304 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
305 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
306 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
307 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
308 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
309 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
310 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
311 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
312 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
313 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
314 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
315 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
316 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
317 	{ BGE_CHIPID_BCM5762_A0,	"BCM5762 A0" },
318 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
319 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
320 	/* 5754 and 5787 share the same ASIC ID */
321 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
322 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
323 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
324 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
325 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
326 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
327 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
328 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
329 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
330 
331 	{ 0, NULL }
332 };
333 
334 /*
335  * Some defaults for major revisions, so that newer steppings
336  * that we don't know about have a shot at working.
337  */
338 static const struct bge_revision bge_majorrevs[] = {
339 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
340 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
341 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
342 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
343 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
344 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
345 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
346 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
347 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
348 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
349 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
350 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
351 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
352 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
353 	/* 5754 and 5787 share the same ASIC ID */
354 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
355 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
356 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
357 	{ BGE_ASICREV_BCM57766,		"unknown BCM57766" },
358 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
359 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
360 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
361 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
362 	{ BGE_ASICREV_BCM5762,		"unknown BCM5762" },
363 
364 	{ 0, NULL }
365 };
366 
367 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
368 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
369 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
370 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
371 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
372 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
373 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
374 #define	BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_57765_PLUS)
375 
376 static uint32_t bge_chipid(device_t);
377 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
378 static const struct bge_revision * bge_lookup_rev(uint32_t);
379 
380 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
381 
382 static int bge_probe(device_t);
383 static int bge_attach(device_t);
384 static int bge_detach(device_t);
385 static int bge_suspend(device_t);
386 static int bge_resume(device_t);
387 static void bge_release_resources(struct bge_softc *);
388 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
389 static int bge_dma_alloc(struct bge_softc *);
390 static void bge_dma_free(struct bge_softc *);
391 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
392     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
393 
394 static void bge_devinfo(struct bge_softc *);
395 static int bge_mbox_reorder(struct bge_softc *);
396 
397 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
398 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
399 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
400 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
401 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
402 
403 static void bge_txeof(struct bge_softc *, uint16_t);
404 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
405 static int bge_rxeof(struct bge_softc *, uint16_t, int);
406 
407 static void bge_asf_driver_up (struct bge_softc *);
408 static void bge_tick(void *);
409 static void bge_stats_clear_regs(struct bge_softc *);
410 static void bge_stats_update(struct bge_softc *);
411 static void bge_stats_update_regs(struct bge_softc *);
412 static struct mbuf *bge_check_short_dma(struct mbuf *);
413 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
414     uint16_t *, uint16_t *);
415 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
416 
417 static void bge_intr(void *);
418 static int bge_msi_intr(void *);
419 static void bge_intr_task(void *, int);
420 static void bge_start_locked(struct ifnet *);
421 static void bge_start(struct ifnet *);
422 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
423 static void bge_init_locked(struct bge_softc *);
424 static void bge_init(void *);
425 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
426 static void bge_stop(struct bge_softc *);
427 static void bge_watchdog(struct bge_softc *);
428 static int bge_shutdown(device_t);
429 static int bge_ifmedia_upd_locked(struct ifnet *);
430 static int bge_ifmedia_upd(struct ifnet *);
431 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
432 
433 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
434 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
435 
436 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
437 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
438 
439 static void bge_setpromisc(struct bge_softc *);
440 static void bge_setmulti(struct bge_softc *);
441 static void bge_setvlan(struct bge_softc *);
442 
443 static __inline void bge_rxreuse_std(struct bge_softc *, int);
444 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
445 static int bge_newbuf_std(struct bge_softc *, int);
446 static int bge_newbuf_jumbo(struct bge_softc *, int);
447 static int bge_init_rx_ring_std(struct bge_softc *);
448 static void bge_free_rx_ring_std(struct bge_softc *);
449 static int bge_init_rx_ring_jumbo(struct bge_softc *);
450 static void bge_free_rx_ring_jumbo(struct bge_softc *);
451 static void bge_free_tx_ring(struct bge_softc *);
452 static int bge_init_tx_ring(struct bge_softc *);
453 
454 static int bge_chipinit(struct bge_softc *);
455 static int bge_blockinit(struct bge_softc *);
456 static uint32_t bge_dma_swap_options(struct bge_softc *);
457 
458 static int bge_has_eaddr(struct bge_softc *);
459 static uint32_t bge_readmem_ind(struct bge_softc *, int);
460 static void bge_writemem_ind(struct bge_softc *, int, int);
461 static void bge_writembx(struct bge_softc *, int, int);
462 #ifdef notdef
463 static uint32_t bge_readreg_ind(struct bge_softc *, int);
464 #endif
465 static void bge_writemem_direct(struct bge_softc *, int, int);
466 static void bge_writereg_ind(struct bge_softc *, int, int);
467 
468 static int bge_miibus_readreg(device_t, int, int);
469 static int bge_miibus_writereg(device_t, int, int, int);
470 static void bge_miibus_statchg(device_t);
471 #ifdef DEVICE_POLLING
472 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
473 #endif
474 
475 #define	BGE_RESET_SHUTDOWN	0
476 #define	BGE_RESET_START		1
477 #define	BGE_RESET_SUSPEND	2
478 static void bge_sig_post_reset(struct bge_softc *, int);
479 static void bge_sig_legacy(struct bge_softc *, int);
480 static void bge_sig_pre_reset(struct bge_softc *, int);
481 static void bge_stop_fw(struct bge_softc *);
482 static int bge_reset(struct bge_softc *);
483 static void bge_link_upd(struct bge_softc *);
484 
485 static void bge_ape_lock_init(struct bge_softc *);
486 static void bge_ape_read_fw_ver(struct bge_softc *);
487 static int bge_ape_lock(struct bge_softc *, int);
488 static void bge_ape_unlock(struct bge_softc *, int);
489 static void bge_ape_send_event(struct bge_softc *, uint32_t);
490 static void bge_ape_driver_state_change(struct bge_softc *, int);
491 
492 /*
493  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
494  * leak information to untrusted users.  It is also known to cause alignment
495  * traps on certain architectures.
496  */
497 #ifdef BGE_REGISTER_DEBUG
498 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
499 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
500 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
501 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
502 #endif
503 static void bge_add_sysctls(struct bge_softc *);
504 static void bge_add_sysctl_stats_regs(struct bge_softc *,
505     struct sysctl_ctx_list *, struct sysctl_oid_list *);
506 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
507     struct sysctl_oid_list *);
508 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
509 
510 static device_method_t bge_methods[] = {
511 	/* Device interface */
512 	DEVMETHOD(device_probe,		bge_probe),
513 	DEVMETHOD(device_attach,	bge_attach),
514 	DEVMETHOD(device_detach,	bge_detach),
515 	DEVMETHOD(device_shutdown,	bge_shutdown),
516 	DEVMETHOD(device_suspend,	bge_suspend),
517 	DEVMETHOD(device_resume,	bge_resume),
518 
519 	/* MII interface */
520 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
521 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
522 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
523 
524 	DEVMETHOD_END
525 };
526 
527 static driver_t bge_driver = {
528 	"bge",
529 	bge_methods,
530 	sizeof(struct bge_softc)
531 };
532 
533 static devclass_t bge_devclass;
534 
535 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
536 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
537 
538 static int bge_allow_asf = 1;
539 
540 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
541 
542 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
543 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
544 	"Allow ASF mode if available");
545 
546 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
547 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
548 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
549 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
550 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
551 
552 static int
553 bge_has_eaddr(struct bge_softc *sc)
554 {
555 #ifdef __sparc64__
556 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
557 	device_t dev;
558 	uint32_t subvendor;
559 
560 	dev = sc->bge_dev;
561 
562 	/*
563 	 * The on-board BGEs found in sun4u machines aren't fitted with
564 	 * an EEPROM which means that we have to obtain the MAC address
565 	 * via OFW and that some tests will always fail.  We distinguish
566 	 * such BGEs by the subvendor ID, which also has to be obtained
567 	 * from OFW instead of the PCI configuration space as the latter
568 	 * indicates Broadcom as the subvendor of the netboot interface.
569 	 * For early Blade 1500 and 2500 we even have to check the OFW
570 	 * device path as the subvendor ID always defaults to Broadcom
571 	 * there.
572 	 */
573 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
574 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
575 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
576 		return (0);
577 	memset(buf, 0, sizeof(buf));
578 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
579 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
580 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
581 			return (0);
582 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
583 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
584 			return (0);
585 	}
586 #endif
587 	return (1);
588 }
589 
590 static uint32_t
591 bge_readmem_ind(struct bge_softc *sc, int off)
592 {
593 	device_t dev;
594 	uint32_t val;
595 
596 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
597 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
598 		return (0);
599 
600 	dev = sc->bge_dev;
601 
602 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
603 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
604 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
605 	return (val);
606 }
607 
608 static void
609 bge_writemem_ind(struct bge_softc *sc, int off, int val)
610 {
611 	device_t dev;
612 
613 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
614 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
615 		return;
616 
617 	dev = sc->bge_dev;
618 
619 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
620 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
621 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
622 }
623 
624 #ifdef notdef
625 static uint32_t
626 bge_readreg_ind(struct bge_softc *sc, int off)
627 {
628 	device_t dev;
629 
630 	dev = sc->bge_dev;
631 
632 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
633 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
634 }
635 #endif
636 
637 static void
638 bge_writereg_ind(struct bge_softc *sc, int off, int val)
639 {
640 	device_t dev;
641 
642 	dev = sc->bge_dev;
643 
644 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
645 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
646 }
647 
648 static void
649 bge_writemem_direct(struct bge_softc *sc, int off, int val)
650 {
651 	CSR_WRITE_4(sc, off, val);
652 }
653 
654 static void
655 bge_writembx(struct bge_softc *sc, int off, int val)
656 {
657 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
658 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
659 
660 	CSR_WRITE_4(sc, off, val);
661 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
662 		CSR_READ_4(sc, off);
663 }
664 
665 /*
666  * Clear all stale locks and select the lock for this driver instance.
667  */
668 static void
669 bge_ape_lock_init(struct bge_softc *sc)
670 {
671 	uint32_t bit, regbase;
672 	int i;
673 
674 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
675 		regbase = BGE_APE_LOCK_GRANT;
676 	else
677 		regbase = BGE_APE_PER_LOCK_GRANT;
678 
679 	/* Clear any stale locks. */
680 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
681 		switch (i) {
682 		case BGE_APE_LOCK_PHY0:
683 		case BGE_APE_LOCK_PHY1:
684 		case BGE_APE_LOCK_PHY2:
685 		case BGE_APE_LOCK_PHY3:
686 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
687 			break;
688 		default:
689 			if (sc->bge_func_addr == 0)
690 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
691 			else
692 				bit = (1 << sc->bge_func_addr);
693 		}
694 		APE_WRITE_4(sc, regbase + 4 * i, bit);
695 	}
696 
697 	/* Select the PHY lock based on the device's function number. */
698 	switch (sc->bge_func_addr) {
699 	case 0:
700 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
701 		break;
702 	case 1:
703 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
704 		break;
705 	case 2:
706 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
707 		break;
708 	case 3:
709 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
710 		break;
711 	default:
712 		device_printf(sc->bge_dev,
713 		    "PHY lock not supported on this function\n");
714 	}
715 }
716 
717 /*
718  * Check for APE firmware, set flags, and print version info.
719  */
720 static void
721 bge_ape_read_fw_ver(struct bge_softc *sc)
722 {
723 	const char *fwtype;
724 	uint32_t apedata, features;
725 
726 	/* Check for a valid APE signature in shared memory. */
727 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
728 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
729 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
730 		return;
731 	}
732 
733 	/* Check if APE firmware is running. */
734 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
735 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
736 		device_printf(sc->bge_dev, "APE signature found "
737 		    "but FW status not ready! 0x%08x\n", apedata);
738 		return;
739 	}
740 
741 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
742 
743 	/* Fetch the APE firwmare type and version. */
744 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
745 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
746 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
747 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
748 		fwtype = "NCSI";
749 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
750 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
751 		fwtype = "DASH";
752 	} else
753 		fwtype = "UNKN";
754 
755 	/* Print the APE firmware version. */
756 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
757 	    fwtype,
758 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
759 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
760 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
761 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
762 }
763 
764 static int
765 bge_ape_lock(struct bge_softc *sc, int locknum)
766 {
767 	uint32_t bit, gnt, req, status;
768 	int i, off;
769 
770 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
771 		return (0);
772 
773 	/* Lock request/grant registers have different bases. */
774 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
775 		req = BGE_APE_LOCK_REQ;
776 		gnt = BGE_APE_LOCK_GRANT;
777 	} else {
778 		req = BGE_APE_PER_LOCK_REQ;
779 		gnt = BGE_APE_PER_LOCK_GRANT;
780 	}
781 
782 	off = 4 * locknum;
783 
784 	switch (locknum) {
785 	case BGE_APE_LOCK_GPIO:
786 		/* Lock required when using GPIO. */
787 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
788 			return (0);
789 		if (sc->bge_func_addr == 0)
790 			bit = BGE_APE_LOCK_REQ_DRIVER0;
791 		else
792 			bit = (1 << sc->bge_func_addr);
793 		break;
794 	case BGE_APE_LOCK_GRC:
795 		/* Lock required to reset the device. */
796 		if (sc->bge_func_addr == 0)
797 			bit = BGE_APE_LOCK_REQ_DRIVER0;
798 		else
799 			bit = (1 << sc->bge_func_addr);
800 		break;
801 	case BGE_APE_LOCK_MEM:
802 		/* Lock required when accessing certain APE memory. */
803 		if (sc->bge_func_addr == 0)
804 			bit = BGE_APE_LOCK_REQ_DRIVER0;
805 		else
806 			bit = (1 << sc->bge_func_addr);
807 		break;
808 	case BGE_APE_LOCK_PHY0:
809 	case BGE_APE_LOCK_PHY1:
810 	case BGE_APE_LOCK_PHY2:
811 	case BGE_APE_LOCK_PHY3:
812 		/* Lock required when accessing PHYs. */
813 		bit = BGE_APE_LOCK_REQ_DRIVER0;
814 		break;
815 	default:
816 		return (EINVAL);
817 	}
818 
819 	/* Request a lock. */
820 	APE_WRITE_4(sc, req + off, bit);
821 
822 	/* Wait up to 1 second to acquire lock. */
823 	for (i = 0; i < 20000; i++) {
824 		status = APE_READ_4(sc, gnt + off);
825 		if (status == bit)
826 			break;
827 		DELAY(50);
828 	}
829 
830 	/* Handle any errors. */
831 	if (status != bit) {
832 		device_printf(sc->bge_dev, "APE lock %d request failed! "
833 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
834 		    locknum, req + off, bit & 0xFFFF, gnt + off,
835 		    status & 0xFFFF);
836 		/* Revoke the lock request. */
837 		APE_WRITE_4(sc, gnt + off, bit);
838 		return (EBUSY);
839 	}
840 
841 	return (0);
842 }
843 
844 static void
845 bge_ape_unlock(struct bge_softc *sc, int locknum)
846 {
847 	uint32_t bit, gnt;
848 	int off;
849 
850 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
851 		return;
852 
853 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
854 		gnt = BGE_APE_LOCK_GRANT;
855 	else
856 		gnt = BGE_APE_PER_LOCK_GRANT;
857 
858 	off = 4 * locknum;
859 
860 	switch (locknum) {
861 	case BGE_APE_LOCK_GPIO:
862 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
863 			return;
864 		if (sc->bge_func_addr == 0)
865 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
866 		else
867 			bit = (1 << sc->bge_func_addr);
868 		break;
869 	case BGE_APE_LOCK_GRC:
870 		if (sc->bge_func_addr == 0)
871 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
872 		else
873 			bit = (1 << sc->bge_func_addr);
874 		break;
875 	case BGE_APE_LOCK_MEM:
876 		if (sc->bge_func_addr == 0)
877 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
878 		else
879 			bit = (1 << sc->bge_func_addr);
880 		break;
881 	case BGE_APE_LOCK_PHY0:
882 	case BGE_APE_LOCK_PHY1:
883 	case BGE_APE_LOCK_PHY2:
884 	case BGE_APE_LOCK_PHY3:
885 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
886 		break;
887 	default:
888 		return;
889 	}
890 
891 	APE_WRITE_4(sc, gnt + off, bit);
892 }
893 
894 /*
895  * Send an event to the APE firmware.
896  */
897 static void
898 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
899 {
900 	uint32_t apedata;
901 	int i;
902 
903 	/* NCSI does not support APE events. */
904 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
905 		return;
906 
907 	/* Wait up to 1ms for APE to service previous event. */
908 	for (i = 10; i > 0; i--) {
909 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
910 			break;
911 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
912 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
913 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
914 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
915 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
916 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
917 			break;
918 		}
919 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
920 		DELAY(100);
921 	}
922 	if (i == 0)
923 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
924 		    event);
925 }
926 
927 static void
928 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
929 {
930 	uint32_t apedata, event;
931 
932 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
933 		return;
934 
935 	switch (kind) {
936 	case BGE_RESET_START:
937 		/* If this is the first load, clear the load counter. */
938 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
939 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
940 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
941 		else {
942 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
943 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
944 		}
945 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
946 		    BGE_APE_HOST_SEG_SIG_MAGIC);
947 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
948 		    BGE_APE_HOST_SEG_LEN_MAGIC);
949 
950 		/* Add some version info if bge(4) supports it. */
951 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
952 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
953 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
954 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
955 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
956 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
957 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
958 		    BGE_APE_HOST_DRVR_STATE_START);
959 		event = BGE_APE_EVENT_STATUS_STATE_START;
960 		break;
961 	case BGE_RESET_SHUTDOWN:
962 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
963 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
964 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
965 		break;
966 	case BGE_RESET_SUSPEND:
967 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
968 		break;
969 	default:
970 		return;
971 	}
972 
973 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
974 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
975 }
976 
977 /*
978  * Map a single buffer address.
979  */
980 
981 static void
982 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
983 {
984 	struct bge_dmamap_arg *ctx;
985 
986 	if (error)
987 		return;
988 
989 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
990 
991 	ctx = arg;
992 	ctx->bge_busaddr = segs->ds_addr;
993 }
994 
995 static uint8_t
996 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
997 {
998 	uint32_t access, byte = 0;
999 	int i;
1000 
1001 	/* Lock. */
1002 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1003 	for (i = 0; i < 8000; i++) {
1004 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1005 			break;
1006 		DELAY(20);
1007 	}
1008 	if (i == 8000)
1009 		return (1);
1010 
1011 	/* Enable access. */
1012 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1013 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1014 
1015 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1016 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1017 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1018 		DELAY(10);
1019 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1020 			DELAY(10);
1021 			break;
1022 		}
1023 	}
1024 
1025 	if (i == BGE_TIMEOUT * 10) {
1026 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1027 		return (1);
1028 	}
1029 
1030 	/* Get result. */
1031 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1032 
1033 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1034 
1035 	/* Disable access. */
1036 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1037 
1038 	/* Unlock. */
1039 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1040 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1041 
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Read a sequence of bytes from NVRAM.
1047  */
1048 static int
1049 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1050 {
1051 	int err = 0, i;
1052 	uint8_t byte = 0;
1053 
1054 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1055 		return (1);
1056 
1057 	for (i = 0; i < cnt; i++) {
1058 		err = bge_nvram_getbyte(sc, off + i, &byte);
1059 		if (err)
1060 			break;
1061 		*(dest + i) = byte;
1062 	}
1063 
1064 	return (err ? 1 : 0);
1065 }
1066 
1067 /*
1068  * Read a byte of data stored in the EEPROM at address 'addr.' The
1069  * BCM570x supports both the traditional bitbang interface and an
1070  * auto access interface for reading the EEPROM. We use the auto
1071  * access method.
1072  */
1073 static uint8_t
1074 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1075 {
1076 	int i;
1077 	uint32_t byte = 0;
1078 
1079 	/*
1080 	 * Enable use of auto EEPROM access so we can avoid
1081 	 * having to use the bitbang method.
1082 	 */
1083 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1084 
1085 	/* Reset the EEPROM, load the clock period. */
1086 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1087 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1088 	DELAY(20);
1089 
1090 	/* Issue the read EEPROM command. */
1091 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1092 
1093 	/* Wait for completion */
1094 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1095 		DELAY(10);
1096 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1097 			break;
1098 	}
1099 
1100 	if (i == BGE_TIMEOUT * 10) {
1101 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1102 		return (1);
1103 	}
1104 
1105 	/* Get result. */
1106 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1107 
1108 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1109 
1110 	return (0);
1111 }
1112 
1113 /*
1114  * Read a sequence of bytes from the EEPROM.
1115  */
1116 static int
1117 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1118 {
1119 	int i, error = 0;
1120 	uint8_t byte = 0;
1121 
1122 	for (i = 0; i < cnt; i++) {
1123 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1124 		if (error)
1125 			break;
1126 		*(dest + i) = byte;
1127 	}
1128 
1129 	return (error ? 1 : 0);
1130 }
1131 
1132 static int
1133 bge_miibus_readreg(device_t dev, int phy, int reg)
1134 {
1135 	struct bge_softc *sc;
1136 	uint32_t val;
1137 	int i;
1138 
1139 	sc = device_get_softc(dev);
1140 
1141 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1142 		return (0);
1143 
1144 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1145 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1146 		CSR_WRITE_4(sc, BGE_MI_MODE,
1147 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1148 		DELAY(80);
1149 	}
1150 
1151 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1152 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1153 
1154 	/* Poll for the PHY register access to complete. */
1155 	for (i = 0; i < BGE_TIMEOUT; i++) {
1156 		DELAY(10);
1157 		val = CSR_READ_4(sc, BGE_MI_COMM);
1158 		if ((val & BGE_MICOMM_BUSY) == 0) {
1159 			DELAY(5);
1160 			val = CSR_READ_4(sc, BGE_MI_COMM);
1161 			break;
1162 		}
1163 	}
1164 
1165 	if (i == BGE_TIMEOUT) {
1166 		device_printf(sc->bge_dev,
1167 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1168 		    phy, reg, val);
1169 		val = 0;
1170 	}
1171 
1172 	/* Restore the autopoll bit if necessary. */
1173 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1174 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1175 		DELAY(80);
1176 	}
1177 
1178 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1179 
1180 	if (val & BGE_MICOMM_READFAIL)
1181 		return (0);
1182 
1183 	return (val & 0xFFFF);
1184 }
1185 
1186 static int
1187 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1188 {
1189 	struct bge_softc *sc;
1190 	int i;
1191 
1192 	sc = device_get_softc(dev);
1193 
1194 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1195 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1196 		return (0);
1197 
1198 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1199 		return (0);
1200 
1201 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1202 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1203 		CSR_WRITE_4(sc, BGE_MI_MODE,
1204 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1205 		DELAY(80);
1206 	}
1207 
1208 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1209 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1210 
1211 	for (i = 0; i < BGE_TIMEOUT; i++) {
1212 		DELAY(10);
1213 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1214 			DELAY(5);
1215 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1216 			break;
1217 		}
1218 	}
1219 
1220 	/* Restore the autopoll bit if necessary. */
1221 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1222 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1223 		DELAY(80);
1224 	}
1225 
1226 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1227 
1228 	if (i == BGE_TIMEOUT)
1229 		device_printf(sc->bge_dev,
1230 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1231 		    phy, reg, val);
1232 
1233 	return (0);
1234 }
1235 
1236 static void
1237 bge_miibus_statchg(device_t dev)
1238 {
1239 	struct bge_softc *sc;
1240 	struct mii_data *mii;
1241 	uint32_t mac_mode, rx_mode, tx_mode;
1242 
1243 	sc = device_get_softc(dev);
1244 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1245 		return;
1246 	mii = device_get_softc(sc->bge_miibus);
1247 
1248 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1249 	    (IFM_ACTIVE | IFM_AVALID)) {
1250 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1251 		case IFM_10_T:
1252 		case IFM_100_TX:
1253 			sc->bge_link = 1;
1254 			break;
1255 		case IFM_1000_T:
1256 		case IFM_1000_SX:
1257 		case IFM_2500_SX:
1258 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1259 				sc->bge_link = 1;
1260 			else
1261 				sc->bge_link = 0;
1262 			break;
1263 		default:
1264 			sc->bge_link = 0;
1265 			break;
1266 		}
1267 	} else
1268 		sc->bge_link = 0;
1269 	if (sc->bge_link == 0)
1270 		return;
1271 
1272 	/*
1273 	 * APE firmware touches these registers to keep the MAC
1274 	 * connected to the outside world.  Try to keep the
1275 	 * accesses atomic.
1276 	 */
1277 
1278 	/* Set the port mode (MII/GMII) to match the link speed. */
1279 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1280 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1281 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1282 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1283 
1284 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1285 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1286 		mac_mode |= BGE_PORTMODE_GMII;
1287 	else
1288 		mac_mode |= BGE_PORTMODE_MII;
1289 
1290 	/* Set MAC flow control behavior to match link flow control settings. */
1291 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1292 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1293 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1294 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1295 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1296 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1297 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1298 	} else
1299 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1300 
1301 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1302 	DELAY(40);
1303 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1304 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1305 }
1306 
1307 /*
1308  * Intialize a standard receive ring descriptor.
1309  */
1310 static int
1311 bge_newbuf_std(struct bge_softc *sc, int i)
1312 {
1313 	struct mbuf *m;
1314 	struct bge_rx_bd *r;
1315 	bus_dma_segment_t segs[1];
1316 	bus_dmamap_t map;
1317 	int error, nsegs;
1318 
1319 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1320 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1321 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1322 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1323 		if (m == NULL)
1324 			return (ENOBUFS);
1325 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1326 	} else {
1327 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1328 		if (m == NULL)
1329 			return (ENOBUFS);
1330 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1331 	}
1332 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1333 		m_adj(m, ETHER_ALIGN);
1334 
1335 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1336 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1337 	if (error != 0) {
1338 		m_freem(m);
1339 		return (error);
1340 	}
1341 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1342 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1343 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1344 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1345 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1346 	}
1347 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1348 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1349 	sc->bge_cdata.bge_rx_std_sparemap = map;
1350 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1351 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1352 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1353 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1354 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1355 	r->bge_flags = BGE_RXBDFLAG_END;
1356 	r->bge_len = segs[0].ds_len;
1357 	r->bge_idx = i;
1358 
1359 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1360 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1361 
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Initialize a jumbo receive ring descriptor. This allocates
1367  * a jumbo buffer from the pool managed internally by the driver.
1368  */
1369 static int
1370 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1371 {
1372 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1373 	bus_dmamap_t map;
1374 	struct bge_extrx_bd *r;
1375 	struct mbuf *m;
1376 	int error, nsegs;
1377 
1378 	MGETHDR(m, M_NOWAIT, MT_DATA);
1379 	if (m == NULL)
1380 		return (ENOBUFS);
1381 
1382 	m_cljget(m, M_NOWAIT, MJUM9BYTES);
1383 	if (!(m->m_flags & M_EXT)) {
1384 		m_freem(m);
1385 		return (ENOBUFS);
1386 	}
1387 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1388 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1389 		m_adj(m, ETHER_ALIGN);
1390 
1391 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1392 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1393 	if (error != 0) {
1394 		m_freem(m);
1395 		return (error);
1396 	}
1397 
1398 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1399 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1400 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1402 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1403 	}
1404 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1405 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1406 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1407 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1408 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1409 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1410 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1411 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1412 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1413 
1414 	/*
1415 	 * Fill in the extended RX buffer descriptor.
1416 	 */
1417 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1418 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1419 	r->bge_idx = i;
1420 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1421 	switch (nsegs) {
1422 	case 4:
1423 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1424 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1425 		r->bge_len3 = segs[3].ds_len;
1426 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1427 	case 3:
1428 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1429 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1430 		r->bge_len2 = segs[2].ds_len;
1431 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1432 	case 2:
1433 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1434 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1435 		r->bge_len1 = segs[1].ds_len;
1436 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1437 	case 1:
1438 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1439 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1440 		r->bge_len0 = segs[0].ds_len;
1441 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1442 		break;
1443 	default:
1444 		panic("%s: %d segments\n", __func__, nsegs);
1445 	}
1446 
1447 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1448 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1449 
1450 	return (0);
1451 }
1452 
1453 static int
1454 bge_init_rx_ring_std(struct bge_softc *sc)
1455 {
1456 	int error, i;
1457 
1458 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1459 	sc->bge_std = 0;
1460 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1461 		if ((error = bge_newbuf_std(sc, i)) != 0)
1462 			return (error);
1463 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1464 	}
1465 
1466 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1467 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1468 
1469 	sc->bge_std = 0;
1470 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1471 
1472 	return (0);
1473 }
1474 
1475 static void
1476 bge_free_rx_ring_std(struct bge_softc *sc)
1477 {
1478 	int i;
1479 
1480 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1481 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1482 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1483 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1484 			    BUS_DMASYNC_POSTREAD);
1485 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1486 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1487 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1488 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1489 		}
1490 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1491 		    sizeof(struct bge_rx_bd));
1492 	}
1493 }
1494 
1495 static int
1496 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1497 {
1498 	struct bge_rcb *rcb;
1499 	int error, i;
1500 
1501 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1502 	sc->bge_jumbo = 0;
1503 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1504 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1505 			return (error);
1506 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1507 	}
1508 
1509 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1510 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1511 
1512 	sc->bge_jumbo = 0;
1513 
1514 	/* Enable the jumbo receive producer ring. */
1515 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1516 	rcb->bge_maxlen_flags =
1517 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1518 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1519 
1520 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1521 
1522 	return (0);
1523 }
1524 
1525 static void
1526 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1527 {
1528 	int i;
1529 
1530 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1531 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1532 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1533 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1534 			    BUS_DMASYNC_POSTREAD);
1535 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1536 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1537 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1538 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1539 		}
1540 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1541 		    sizeof(struct bge_extrx_bd));
1542 	}
1543 }
1544 
1545 static void
1546 bge_free_tx_ring(struct bge_softc *sc)
1547 {
1548 	int i;
1549 
1550 	if (sc->bge_ldata.bge_tx_ring == NULL)
1551 		return;
1552 
1553 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1554 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1555 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1556 			    sc->bge_cdata.bge_tx_dmamap[i],
1557 			    BUS_DMASYNC_POSTWRITE);
1558 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1559 			    sc->bge_cdata.bge_tx_dmamap[i]);
1560 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1561 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1562 		}
1563 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1564 		    sizeof(struct bge_tx_bd));
1565 	}
1566 }
1567 
1568 static int
1569 bge_init_tx_ring(struct bge_softc *sc)
1570 {
1571 	sc->bge_txcnt = 0;
1572 	sc->bge_tx_saved_considx = 0;
1573 
1574 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1575 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1576 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1577 
1578 	/* Initialize transmit producer index for host-memory send ring. */
1579 	sc->bge_tx_prodidx = 0;
1580 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1581 
1582 	/* 5700 b2 errata */
1583 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1584 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1585 
1586 	/* NIC-memory send ring not used; initialize to zero. */
1587 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1588 	/* 5700 b2 errata */
1589 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1590 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1591 
1592 	return (0);
1593 }
1594 
1595 static void
1596 bge_setpromisc(struct bge_softc *sc)
1597 {
1598 	struct ifnet *ifp;
1599 
1600 	BGE_LOCK_ASSERT(sc);
1601 
1602 	ifp = sc->bge_ifp;
1603 
1604 	/* Enable or disable promiscuous mode as needed. */
1605 	if (ifp->if_flags & IFF_PROMISC)
1606 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1607 	else
1608 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1609 }
1610 
1611 static void
1612 bge_setmulti(struct bge_softc *sc)
1613 {
1614 	struct ifnet *ifp;
1615 	struct ifmultiaddr *ifma;
1616 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1617 	int h, i;
1618 
1619 	BGE_LOCK_ASSERT(sc);
1620 
1621 	ifp = sc->bge_ifp;
1622 
1623 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1624 		for (i = 0; i < 4; i++)
1625 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1626 		return;
1627 	}
1628 
1629 	/* First, zot all the existing filters. */
1630 	for (i = 0; i < 4; i++)
1631 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1632 
1633 	/* Now program new ones. */
1634 	if_maddr_rlock(ifp);
1635 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1636 		if (ifma->ifma_addr->sa_family != AF_LINK)
1637 			continue;
1638 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1639 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1640 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1641 	}
1642 	if_maddr_runlock(ifp);
1643 
1644 	for (i = 0; i < 4; i++)
1645 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1646 }
1647 
1648 static void
1649 bge_setvlan(struct bge_softc *sc)
1650 {
1651 	struct ifnet *ifp;
1652 
1653 	BGE_LOCK_ASSERT(sc);
1654 
1655 	ifp = sc->bge_ifp;
1656 
1657 	/* Enable or disable VLAN tag stripping as needed. */
1658 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1659 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1660 	else
1661 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1662 }
1663 
1664 static void
1665 bge_sig_pre_reset(struct bge_softc *sc, int type)
1666 {
1667 
1668 	/*
1669 	 * Some chips don't like this so only do this if ASF is enabled
1670 	 */
1671 	if (sc->bge_asf_mode)
1672 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1673 
1674 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1675 		switch (type) {
1676 		case BGE_RESET_START:
1677 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1678 			    BGE_FW_DRV_STATE_START);
1679 			break;
1680 		case BGE_RESET_SHUTDOWN:
1681 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1682 			    BGE_FW_DRV_STATE_UNLOAD);
1683 			break;
1684 		case BGE_RESET_SUSPEND:
1685 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686 			    BGE_FW_DRV_STATE_SUSPEND);
1687 			break;
1688 		}
1689 	}
1690 
1691 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1692 		bge_ape_driver_state_change(sc, type);
1693 }
1694 
1695 static void
1696 bge_sig_post_reset(struct bge_softc *sc, int type)
1697 {
1698 
1699 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1700 		switch (type) {
1701 		case BGE_RESET_START:
1702 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1703 			    BGE_FW_DRV_STATE_START_DONE);
1704 			/* START DONE */
1705 			break;
1706 		case BGE_RESET_SHUTDOWN:
1707 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1708 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1709 			break;
1710 		}
1711 	}
1712 	if (type == BGE_RESET_SHUTDOWN)
1713 		bge_ape_driver_state_change(sc, type);
1714 }
1715 
1716 static void
1717 bge_sig_legacy(struct bge_softc *sc, int type)
1718 {
1719 
1720 	if (sc->bge_asf_mode) {
1721 		switch (type) {
1722 		case BGE_RESET_START:
1723 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1724 			    BGE_FW_DRV_STATE_START);
1725 			break;
1726 		case BGE_RESET_SHUTDOWN:
1727 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1728 			    BGE_FW_DRV_STATE_UNLOAD);
1729 			break;
1730 		}
1731 	}
1732 }
1733 
1734 static void
1735 bge_stop_fw(struct bge_softc *sc)
1736 {
1737 	int i;
1738 
1739 	if (sc->bge_asf_mode) {
1740 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1741 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1742 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1743 
1744 		for (i = 0; i < 100; i++ ) {
1745 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1746 			    BGE_RX_CPU_DRV_EVENT))
1747 				break;
1748 			DELAY(10);
1749 		}
1750 	}
1751 }
1752 
1753 static uint32_t
1754 bge_dma_swap_options(struct bge_softc *sc)
1755 {
1756 	uint32_t dma_options;
1757 
1758 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1759 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1760 #if BYTE_ORDER == BIG_ENDIAN
1761 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1762 #endif
1763 	return (dma_options);
1764 }
1765 
1766 /*
1767  * Do endian, PCI and DMA initialization.
1768  */
1769 static int
1770 bge_chipinit(struct bge_softc *sc)
1771 {
1772 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1773 	uint16_t val;
1774 	int i;
1775 
1776 	/* Set endianness before we access any non-PCI registers. */
1777 	misc_ctl = BGE_INIT;
1778 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1779 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1780 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1781 
1782 	/*
1783 	 * Clear the MAC statistics block in the NIC's
1784 	 * internal memory.
1785 	 */
1786 	for (i = BGE_STATS_BLOCK;
1787 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1788 		BGE_MEMWIN_WRITE(sc, i, 0);
1789 
1790 	for (i = BGE_STATUS_BLOCK;
1791 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1792 		BGE_MEMWIN_WRITE(sc, i, 0);
1793 
1794 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1795 		/*
1796 		 *  Fix data corruption caused by non-qword write with WB.
1797 		 *  Fix master abort in PCI mode.
1798 		 *  Fix PCI latency timer.
1799 		 */
1800 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1801 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1802 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1803 	}
1804 
1805 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1806 	    sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1807 		/*
1808 		 * For the 57766 and non Ax versions of 57765, bootcode
1809 		 * needs to setup the PCIE Fast Training Sequence (FTS)
1810 		 * value to prevent transmit hangs.
1811 		 */
1812 		if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1813 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1814 			    CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1815 			    BGE_CPMU_PADRNG_CTL_RDIV2);
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * Set up the PCI DMA control register.
1821 	 */
1822 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1823 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1824 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1825 		if (sc->bge_mps >= 256)
1826 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1827 		else
1828 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1829 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1830 		if (BGE_IS_5714_FAMILY(sc)) {
1831 			/* 256 bytes for read and write. */
1832 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1833 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1834 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1835 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1836 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1837 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1838 			/*
1839 			 * In the BCM5703, the DMA read watermark should
1840 			 * be set to less than or equal to the maximum
1841 			 * memory read byte count of the PCI-X command
1842 			 * register.
1843 			 */
1844 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1845 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1846 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1847 			/* 1536 bytes for read, 384 bytes for write. */
1848 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1849 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1850 		} else {
1851 			/* 384 bytes for read and write. */
1852 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1853 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1854 			    0x0F;
1855 		}
1856 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1857 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1858 			uint32_t tmp;
1859 
1860 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1861 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1862 			if (tmp == 6 || tmp == 7)
1863 				dma_rw_ctl |=
1864 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1865 
1866 			/* Set PCI-X DMA write workaround. */
1867 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1868 		}
1869 	} else {
1870 		/* Conventional PCI bus: 256 bytes for read and write. */
1871 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1872 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1873 
1874 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1875 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1876 			dma_rw_ctl |= 0x0F;
1877 	}
1878 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1879 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1880 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1881 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1882 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1883 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1884 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1885 	if (BGE_IS_5717_PLUS(sc)) {
1886 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1887 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1888 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1889 		/*
1890 		 * Enable HW workaround for controllers that misinterpret
1891 		 * a status tag update and leave interrupts permanently
1892 		 * disabled.
1893 		 */
1894 		if (!BGE_IS_57765_PLUS(sc) &&
1895 		    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1896 		    sc->bge_asicrev != BGE_ASICREV_BCM5762)
1897 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1898 	}
1899 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1900 
1901 	/*
1902 	 * Set up general mode register.
1903 	 */
1904 	mode_ctl = bge_dma_swap_options(sc);
1905 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1906 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1907 		/* Retain Host-2-BMC settings written by APE firmware. */
1908 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1909 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1910 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1911 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1912 	}
1913 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1914 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1915 
1916 	/*
1917 	 * BCM5701 B5 have a bug causing data corruption when using
1918 	 * 64-bit DMA reads, which can be terminated early and then
1919 	 * completed later as 32-bit accesses, in combination with
1920 	 * certain bridges.
1921 	 */
1922 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1923 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1924 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1925 
1926 	/*
1927 	 * Tell the firmware the driver is running
1928 	 */
1929 	if (sc->bge_asf_mode & ASF_STACKUP)
1930 		mode_ctl |= BGE_MODECTL_STACKUP;
1931 
1932 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1933 
1934 	/*
1935 	 * Disable memory write invalidate.  Apparently it is not supported
1936 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1937 	 * as these chips need it even when using MSI.
1938 	 */
1939 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1940 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1941 
1942 	/* Set the timer prescaler (always 66 MHz). */
1943 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1944 
1945 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1946 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1947 		DELAY(40);	/* XXX */
1948 
1949 		/* Put PHY into ready state */
1950 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1951 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1952 		DELAY(40);
1953 	}
1954 
1955 	return (0);
1956 }
1957 
1958 static int
1959 bge_blockinit(struct bge_softc *sc)
1960 {
1961 	struct bge_rcb *rcb;
1962 	bus_size_t vrcb;
1963 	bge_hostaddr taddr;
1964 	uint32_t dmactl, rdmareg, val;
1965 	int i, limit;
1966 
1967 	/*
1968 	 * Initialize the memory window pointer register so that
1969 	 * we can access the first 32K of internal NIC RAM. This will
1970 	 * allow us to set up the TX send ring RCBs and the RX return
1971 	 * ring RCBs, plus other things which live in NIC memory.
1972 	 */
1973 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1974 
1975 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1976 
1977 	if (!(BGE_IS_5705_PLUS(sc))) {
1978 		/* Configure mbuf memory pool */
1979 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1980 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1981 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1982 		else
1983 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1984 
1985 		/* Configure DMA resource pool */
1986 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1987 		    BGE_DMA_DESCRIPTORS);
1988 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1989 	}
1990 
1991 	/* Configure mbuf pool watermarks */
1992 	if (BGE_IS_5717_PLUS(sc)) {
1993 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1994 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1997 		} else {
1998 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1999 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2000 		}
2001 	} else if (!BGE_IS_5705_PLUS(sc)) {
2002 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2003 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2005 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2007 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2008 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2009 	} else {
2010 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2011 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2012 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2013 	}
2014 
2015 	/* Configure DMA resource watermarks */
2016 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2017 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2018 
2019 	/* Enable buffer manager */
2020 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
2021 	/*
2022 	 * Change the arbitration algorithm of TXMBUF read request to
2023 	 * round-robin instead of priority based for BCM5719.  When
2024 	 * TXFIFO is almost empty, RDMA will hold its request until
2025 	 * TXFIFO is not almost empty.
2026 	 */
2027 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2028 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2029 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2030 
2031 	/* Poll for buffer manager start indication */
2032 	for (i = 0; i < BGE_TIMEOUT; i++) {
2033 		DELAY(10);
2034 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2035 			break;
2036 	}
2037 
2038 	if (i == BGE_TIMEOUT) {
2039 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2040 		return (ENXIO);
2041 	}
2042 
2043 	/* Enable flow-through queues */
2044 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2045 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2046 
2047 	/* Wait until queue initialization is complete */
2048 	for (i = 0; i < BGE_TIMEOUT; i++) {
2049 		DELAY(10);
2050 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2051 			break;
2052 	}
2053 
2054 	if (i == BGE_TIMEOUT) {
2055 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2056 		return (ENXIO);
2057 	}
2058 
2059 	/*
2060 	 * Summary of rings supported by the controller:
2061 	 *
2062 	 * Standard Receive Producer Ring
2063 	 * - This ring is used to feed receive buffers for "standard"
2064 	 *   sized frames (typically 1536 bytes) to the controller.
2065 	 *
2066 	 * Jumbo Receive Producer Ring
2067 	 * - This ring is used to feed receive buffers for jumbo sized
2068 	 *   frames (i.e. anything bigger than the "standard" frames)
2069 	 *   to the controller.
2070 	 *
2071 	 * Mini Receive Producer Ring
2072 	 * - This ring is used to feed receive buffers for "mini"
2073 	 *   sized frames to the controller.
2074 	 * - This feature required external memory for the controller
2075 	 *   but was never used in a production system.  Should always
2076 	 *   be disabled.
2077 	 *
2078 	 * Receive Return Ring
2079 	 * - After the controller has placed an incoming frame into a
2080 	 *   receive buffer that buffer is moved into a receive return
2081 	 *   ring.  The driver is then responsible to passing the
2082 	 *   buffer up to the stack.  Many versions of the controller
2083 	 *   support multiple RR rings.
2084 	 *
2085 	 * Send Ring
2086 	 * - This ring is used for outgoing frames.  Many versions of
2087 	 *   the controller support multiple send rings.
2088 	 */
2089 
2090 	/* Initialize the standard receive producer ring control block. */
2091 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2092 	rcb->bge_hostaddr.bge_addr_lo =
2093 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2094 	rcb->bge_hostaddr.bge_addr_hi =
2095 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2096 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2097 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2098 	if (BGE_IS_5717_PLUS(sc)) {
2099 		/*
2100 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2101 		 * Bits 15-2 : Maximum RX frame size
2102 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2103 		 * Bit 0     : Reserved
2104 		 */
2105 		rcb->bge_maxlen_flags =
2106 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2107 	} else if (BGE_IS_5705_PLUS(sc)) {
2108 		/*
2109 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2110 		 * Bits 15-2 : Reserved (should be 0)
2111 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2112 		 * Bit 0     : Reserved
2113 		 */
2114 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2115 	} else {
2116 		/*
2117 		 * Ring size is always XXX entries
2118 		 * Bits 31-16: Maximum RX frame size
2119 		 * Bits 15-2 : Reserved (should be 0)
2120 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2121 		 * Bit 0     : Reserved
2122 		 */
2123 		rcb->bge_maxlen_flags =
2124 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2125 	}
2126 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2127 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2128 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2129 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2130 	else
2131 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2132 	/* Write the standard receive producer ring control block. */
2133 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2134 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2135 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2136 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2137 
2138 	/* Reset the standard receive producer ring producer index. */
2139 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2140 
2141 	/*
2142 	 * Initialize the jumbo RX producer ring control
2143 	 * block.  We set the 'ring disabled' bit in the
2144 	 * flags field until we're actually ready to start
2145 	 * using this ring (i.e. once we set the MTU
2146 	 * high enough to require it).
2147 	 */
2148 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2149 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2150 		/* Get the jumbo receive producer ring RCB parameters. */
2151 		rcb->bge_hostaddr.bge_addr_lo =
2152 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2153 		rcb->bge_hostaddr.bge_addr_hi =
2154 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2155 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2156 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2157 		    BUS_DMASYNC_PREREAD);
2158 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2159 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2160 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2161 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2162 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2163 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2164 		else
2165 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2166 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2167 		    rcb->bge_hostaddr.bge_addr_hi);
2168 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2169 		    rcb->bge_hostaddr.bge_addr_lo);
2170 		/* Program the jumbo receive producer ring RCB parameters. */
2171 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2172 		    rcb->bge_maxlen_flags);
2173 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2174 		/* Reset the jumbo receive producer ring producer index. */
2175 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2176 	}
2177 
2178 	/* Disable the mini receive producer ring RCB. */
2179 	if (BGE_IS_5700_FAMILY(sc)) {
2180 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2181 		rcb->bge_maxlen_flags =
2182 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2183 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2184 		    rcb->bge_maxlen_flags);
2185 		/* Reset the mini receive producer ring producer index. */
2186 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2187 	}
2188 
2189 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2190 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2191 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2192 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2193 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2194 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2195 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2196 	}
2197 	/*
2198 	 * The BD ring replenish thresholds control how often the
2199 	 * hardware fetches new BD's from the producer rings in host
2200 	 * memory.  Setting the value too low on a busy system can
2201 	 * starve the hardware and recue the throughpout.
2202 	 *
2203 	 * Set the BD ring replentish thresholds. The recommended
2204 	 * values are 1/8th the number of descriptors allocated to
2205 	 * each ring.
2206 	 * XXX The 5754 requires a lower threshold, so it might be a
2207 	 * requirement of all 575x family chips.  The Linux driver sets
2208 	 * the lower threshold for all 5705 family chips as well, but there
2209 	 * are reports that it might not need to be so strict.
2210 	 *
2211 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2212 	 * well.
2213 	 */
2214 	if (BGE_IS_5705_PLUS(sc))
2215 		val = 8;
2216 	else
2217 		val = BGE_STD_RX_RING_CNT / 8;
2218 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2219 	if (BGE_IS_JUMBO_CAPABLE(sc))
2220 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2221 		    BGE_JUMBO_RX_RING_CNT/8);
2222 	if (BGE_IS_5717_PLUS(sc)) {
2223 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2224 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2225 	}
2226 
2227 	/*
2228 	 * Disable all send rings by setting the 'ring disabled' bit
2229 	 * in the flags field of all the TX send ring control blocks,
2230 	 * located in NIC memory.
2231 	 */
2232 	if (!BGE_IS_5705_PLUS(sc))
2233 		/* 5700 to 5704 had 16 send rings. */
2234 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2235 	else if (BGE_IS_57765_PLUS(sc) ||
2236 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2237 		limit = 2;
2238 	else if (BGE_IS_5717_PLUS(sc))
2239 		limit = 4;
2240 	else
2241 		limit = 1;
2242 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2243 	for (i = 0; i < limit; i++) {
2244 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2245 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2246 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2247 		vrcb += sizeof(struct bge_rcb);
2248 	}
2249 
2250 	/* Configure send ring RCB 0 (we use only the first ring) */
2251 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2252 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2253 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2254 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2255 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2256 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2257 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2258 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2259 	else
2260 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2261 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2262 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2263 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2264 
2265 	/*
2266 	 * Disable all receive return rings by setting the
2267 	 * 'ring diabled' bit in the flags field of all the receive
2268 	 * return ring control blocks, located in NIC memory.
2269 	 */
2270 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2271 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2272 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2273 		/* Should be 17, use 16 until we get an SRAM map. */
2274 		limit = 16;
2275 	} else if (!BGE_IS_5705_PLUS(sc))
2276 		limit = BGE_RX_RINGS_MAX;
2277 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2278 	    sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2279 	    BGE_IS_57765_PLUS(sc))
2280 		limit = 4;
2281 	else
2282 		limit = 1;
2283 	/* Disable all receive return rings. */
2284 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2285 	for (i = 0; i < limit; i++) {
2286 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2287 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2288 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2289 		    BGE_RCB_FLAG_RING_DISABLED);
2290 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2291 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2292 		    (i * (sizeof(uint64_t))), 0);
2293 		vrcb += sizeof(struct bge_rcb);
2294 	}
2295 
2296 	/*
2297 	 * Set up receive return ring 0.  Note that the NIC address
2298 	 * for RX return rings is 0x0.  The return rings live entirely
2299 	 * within the host, so the nicaddr field in the RCB isn't used.
2300 	 */
2301 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2302 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2303 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2304 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2305 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2306 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2307 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2308 
2309 	/* Set random backoff seed for TX */
2310 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2311 	    (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2312 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2313 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
2314 	    BGE_TX_BACKOFF_SEED_MASK);
2315 
2316 	/* Set inter-packet gap */
2317 	val = 0x2620;
2318 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2319 	    sc->bge_asicrev == BGE_ASICREV_BCM5762)
2320 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2321 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2322 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2323 
2324 	/*
2325 	 * Specify which ring to use for packets that don't match
2326 	 * any RX rules.
2327 	 */
2328 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2329 
2330 	/*
2331 	 * Configure number of RX lists. One interrupt distribution
2332 	 * list, sixteen active lists, one bad frames class.
2333 	 */
2334 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2335 
2336 	/* Inialize RX list placement stats mask. */
2337 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2338 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2339 
2340 	/* Disable host coalescing until we get it set up */
2341 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2342 
2343 	/* Poll to make sure it's shut down. */
2344 	for (i = 0; i < BGE_TIMEOUT; i++) {
2345 		DELAY(10);
2346 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2347 			break;
2348 	}
2349 
2350 	if (i == BGE_TIMEOUT) {
2351 		device_printf(sc->bge_dev,
2352 		    "host coalescing engine failed to idle\n");
2353 		return (ENXIO);
2354 	}
2355 
2356 	/* Set up host coalescing defaults */
2357 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2358 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2359 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2360 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2361 	if (!(BGE_IS_5705_PLUS(sc))) {
2362 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2363 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2364 	}
2365 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2366 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2367 
2368 	/* Set up address of statistics block */
2369 	if (!(BGE_IS_5705_PLUS(sc))) {
2370 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2371 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2372 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2373 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2374 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2375 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2376 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2377 	}
2378 
2379 	/* Set up address of status block */
2380 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2381 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2382 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2383 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2384 
2385 	/* Set up status block size. */
2386 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2387 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2388 		val = BGE_STATBLKSZ_FULL;
2389 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2390 	} else {
2391 		val = BGE_STATBLKSZ_32BYTE;
2392 		bzero(sc->bge_ldata.bge_status_block, 32);
2393 	}
2394 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2395 	    sc->bge_cdata.bge_status_map,
2396 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2397 
2398 	/* Turn on host coalescing state machine */
2399 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2400 
2401 	/* Turn on RX BD completion state machine and enable attentions */
2402 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2403 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2404 
2405 	/* Turn on RX list placement state machine */
2406 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2407 
2408 	/* Turn on RX list selector state machine. */
2409 	if (!(BGE_IS_5705_PLUS(sc)))
2410 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2411 
2412 	/* Turn on DMA, clear stats. */
2413 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2414 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2415 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2416 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2417 
2418 	if (sc->bge_flags & BGE_FLAG_TBI)
2419 		val |= BGE_PORTMODE_TBI;
2420 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2421 		val |= BGE_PORTMODE_GMII;
2422 	else
2423 		val |= BGE_PORTMODE_MII;
2424 
2425 	/* Allow APE to send/receive frames. */
2426 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2427 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2428 
2429 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2430 	DELAY(40);
2431 
2432 	/* Set misc. local control, enable interrupts on attentions */
2433 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2434 
2435 #ifdef notdef
2436 	/* Assert GPIO pins for PHY reset */
2437 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2438 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2439 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2440 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2441 #endif
2442 
2443 	/* Turn on DMA completion state machine */
2444 	if (!(BGE_IS_5705_PLUS(sc)))
2445 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2446 
2447 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2448 
2449 	/* Enable host coalescing bug fix. */
2450 	if (BGE_IS_5755_PLUS(sc))
2451 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2452 
2453 	/* Request larger DMA burst size to get better performance. */
2454 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2455 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2456 
2457 	/* Turn on write DMA state machine */
2458 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2459 	DELAY(40);
2460 
2461 	/* Turn on read DMA state machine */
2462 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2463 
2464 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2465 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2466 
2467 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2468 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2469 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2470 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2471 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2472 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2473 	if (sc->bge_flags & BGE_FLAG_PCIE)
2474 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2475 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2476 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2477 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2478 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2479 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2480 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2481 	}
2482 
2483 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2484 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2485 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2486 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2487 		/*
2488 		 * Allow multiple outstanding read requests from
2489 		 * non-LSO read DMA engine.
2490 		 */
2491 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2492 	}
2493 
2494 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2495 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2496 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2497 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2498 	    BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2499 		if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2500 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2501 		else
2502 			rdmareg = BGE_RDMA_RSRVCTRL;
2503 		dmactl = CSR_READ_4(sc, rdmareg);
2504 		/*
2505 		 * Adjust tx margin to prevent TX data corruption and
2506 		 * fix internal FIFO overflow.
2507 		 */
2508 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2509 		    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2510 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2511 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2512 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2513 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2514 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2515 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2516 		}
2517 		/*
2518 		 * Enable fix for read DMA FIFO overruns.
2519 		 * The fix is to limit the number of RX BDs
2520 		 * the hardware would fetch at a fime.
2521 		 */
2522 		CSR_WRITE_4(sc, rdmareg, dmactl |
2523 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2524 	}
2525 
2526 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2527 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2528 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2529 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2530 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2531 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2532 		/*
2533 		 * Allow 4KB burst length reads for non-LSO frames.
2534 		 * Enable 512B burst length reads for buffer descriptors.
2535 		 */
2536 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2537 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2538 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2539 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2540 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2541 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2542 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2543 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2544 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2545 	}
2546 
2547 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2548 	DELAY(40);
2549 
2550 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2551 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2552 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2553 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2554 				break;
2555 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2556 				break;
2557 		}
2558 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2559 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2560 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2561 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2562 			else
2563 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2564 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2565 		}
2566 	}
2567 
2568 	/* Turn on RX data completion state machine */
2569 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2570 
2571 	/* Turn on RX BD initiator state machine */
2572 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2573 
2574 	/* Turn on RX data and RX BD initiator state machine */
2575 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2576 
2577 	/* Turn on Mbuf cluster free state machine */
2578 	if (!(BGE_IS_5705_PLUS(sc)))
2579 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2580 
2581 	/* Turn on send BD completion state machine */
2582 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2583 
2584 	/* Turn on send data completion state machine */
2585 	val = BGE_SDCMODE_ENABLE;
2586 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2587 		val |= BGE_SDCMODE_CDELAY;
2588 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2589 
2590 	/* Turn on send data initiator state machine */
2591 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2592 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2593 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2594 	else
2595 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2596 
2597 	/* Turn on send BD initiator state machine */
2598 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2599 
2600 	/* Turn on send BD selector state machine */
2601 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2602 
2603 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2604 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2605 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2606 
2607 	/* ack/clear link change events */
2608 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2609 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2610 	    BGE_MACSTAT_LINK_CHANGED);
2611 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2612 
2613 	/*
2614 	 * Enable attention when the link has changed state for
2615 	 * devices that use auto polling.
2616 	 */
2617 	if (sc->bge_flags & BGE_FLAG_TBI) {
2618 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2619 	} else {
2620 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2621 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2622 			DELAY(80);
2623 		}
2624 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2625 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2626 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2627 			    BGE_EVTENB_MI_INTERRUPT);
2628 	}
2629 
2630 	/*
2631 	 * Clear any pending link state attention.
2632 	 * Otherwise some link state change events may be lost until attention
2633 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2634 	 * It's not necessary on newer BCM chips - perhaps enabling link
2635 	 * state change attentions implies clearing pending attention.
2636 	 */
2637 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2638 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2639 	    BGE_MACSTAT_LINK_CHANGED);
2640 
2641 	/* Enable link state change attentions. */
2642 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2643 
2644 	return (0);
2645 }
2646 
2647 static const struct bge_revision *
2648 bge_lookup_rev(uint32_t chipid)
2649 {
2650 	const struct bge_revision *br;
2651 
2652 	for (br = bge_revisions; br->br_name != NULL; br++) {
2653 		if (br->br_chipid == chipid)
2654 			return (br);
2655 	}
2656 
2657 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2658 		if (br->br_chipid == BGE_ASICREV(chipid))
2659 			return (br);
2660 	}
2661 
2662 	return (NULL);
2663 }
2664 
2665 static const struct bge_vendor *
2666 bge_lookup_vendor(uint16_t vid)
2667 {
2668 	const struct bge_vendor *v;
2669 
2670 	for (v = bge_vendors; v->v_name != NULL; v++)
2671 		if (v->v_id == vid)
2672 			return (v);
2673 
2674 	return (NULL);
2675 }
2676 
2677 static uint32_t
2678 bge_chipid(device_t dev)
2679 {
2680 	uint32_t id;
2681 
2682 	id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2683 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2684 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2685 		/*
2686 		 * Find the ASCI revision.  Different chips use different
2687 		 * registers.
2688 		 */
2689 		switch (pci_get_device(dev)) {
2690 		case BCOM_DEVICEID_BCM5717:
2691 		case BCOM_DEVICEID_BCM5718:
2692 		case BCOM_DEVICEID_BCM5719:
2693 		case BCOM_DEVICEID_BCM5720:
2694 		case BCOM_DEVICEID_BCM5725:
2695 		case BCOM_DEVICEID_BCM5727:
2696 		case BCOM_DEVICEID_BCM5762:
2697 			id = pci_read_config(dev,
2698 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2699 			break;
2700 		case BCOM_DEVICEID_BCM57761:
2701 		case BCOM_DEVICEID_BCM57762:
2702 		case BCOM_DEVICEID_BCM57765:
2703 		case BCOM_DEVICEID_BCM57766:
2704 		case BCOM_DEVICEID_BCM57781:
2705 		case BCOM_DEVICEID_BCM57785:
2706 		case BCOM_DEVICEID_BCM57791:
2707 		case BCOM_DEVICEID_BCM57795:
2708 			id = pci_read_config(dev,
2709 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2710 			break;
2711 		default:
2712 			id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2713 		}
2714 	}
2715 	return (id);
2716 }
2717 
2718 /*
2719  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2720  * against our list and return its name if we find a match.
2721  *
2722  * Note that since the Broadcom controller contains VPD support, we
2723  * try to get the device name string from the controller itself instead
2724  * of the compiled-in string. It guarantees we'll always announce the
2725  * right product name. We fall back to the compiled-in string when
2726  * VPD is unavailable or corrupt.
2727  */
2728 static int
2729 bge_probe(device_t dev)
2730 {
2731 	char buf[96];
2732 	char model[64];
2733 	const struct bge_revision *br;
2734 	const char *pname;
2735 	struct bge_softc *sc;
2736 	const struct bge_type *t = bge_devs;
2737 	const struct bge_vendor *v;
2738 	uint32_t id;
2739 	uint16_t did, vid;
2740 
2741 	sc = device_get_softc(dev);
2742 	sc->bge_dev = dev;
2743 	vid = pci_get_vendor(dev);
2744 	did = pci_get_device(dev);
2745 	while(t->bge_vid != 0) {
2746 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2747 			id = bge_chipid(dev);
2748 			br = bge_lookup_rev(id);
2749 			if (bge_has_eaddr(sc) &&
2750 			    pci_get_vpd_ident(dev, &pname) == 0)
2751 				snprintf(model, sizeof(model), "%s", pname);
2752 			else {
2753 				v = bge_lookup_vendor(vid);
2754 				snprintf(model, sizeof(model), "%s %s",
2755 				    v != NULL ? v->v_name : "Unknown",
2756 				    br != NULL ? br->br_name :
2757 				    "NetXtreme/NetLink Ethernet Controller");
2758 			}
2759 			snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
2760 			    model, br != NULL ? "" : "unknown ", id);
2761 			device_set_desc_copy(dev, buf);
2762 			return (BUS_PROBE_DEFAULT);
2763 		}
2764 		t++;
2765 	}
2766 
2767 	return (ENXIO);
2768 }
2769 
2770 static void
2771 bge_dma_free(struct bge_softc *sc)
2772 {
2773 	int i;
2774 
2775 	/* Destroy DMA maps for RX buffers. */
2776 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2777 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2778 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2779 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2780 	}
2781 	if (sc->bge_cdata.bge_rx_std_sparemap)
2782 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2783 		    sc->bge_cdata.bge_rx_std_sparemap);
2784 
2785 	/* Destroy DMA maps for jumbo RX buffers. */
2786 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2787 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2788 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2789 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2790 	}
2791 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2792 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2793 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2794 
2795 	/* Destroy DMA maps for TX buffers. */
2796 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2797 		if (sc->bge_cdata.bge_tx_dmamap[i])
2798 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2799 			    sc->bge_cdata.bge_tx_dmamap[i]);
2800 	}
2801 
2802 	if (sc->bge_cdata.bge_rx_mtag)
2803 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2804 	if (sc->bge_cdata.bge_mtag_jumbo)
2805 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2806 	if (sc->bge_cdata.bge_tx_mtag)
2807 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2808 
2809 	/* Destroy standard RX ring. */
2810 	if (sc->bge_cdata.bge_rx_std_ring_map)
2811 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2812 		    sc->bge_cdata.bge_rx_std_ring_map);
2813 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2814 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2815 		    sc->bge_ldata.bge_rx_std_ring,
2816 		    sc->bge_cdata.bge_rx_std_ring_map);
2817 
2818 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2819 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2820 
2821 	/* Destroy jumbo RX ring. */
2822 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2823 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2824 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2825 
2826 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2827 	    sc->bge_ldata.bge_rx_jumbo_ring)
2828 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2829 		    sc->bge_ldata.bge_rx_jumbo_ring,
2830 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2831 
2832 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2833 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2834 
2835 	/* Destroy RX return ring. */
2836 	if (sc->bge_cdata.bge_rx_return_ring_map)
2837 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2838 		    sc->bge_cdata.bge_rx_return_ring_map);
2839 
2840 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2841 	    sc->bge_ldata.bge_rx_return_ring)
2842 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2843 		    sc->bge_ldata.bge_rx_return_ring,
2844 		    sc->bge_cdata.bge_rx_return_ring_map);
2845 
2846 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2847 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2848 
2849 	/* Destroy TX ring. */
2850 	if (sc->bge_cdata.bge_tx_ring_map)
2851 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2852 		    sc->bge_cdata.bge_tx_ring_map);
2853 
2854 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2855 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2856 		    sc->bge_ldata.bge_tx_ring,
2857 		    sc->bge_cdata.bge_tx_ring_map);
2858 
2859 	if (sc->bge_cdata.bge_tx_ring_tag)
2860 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2861 
2862 	/* Destroy status block. */
2863 	if (sc->bge_cdata.bge_status_map)
2864 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2865 		    sc->bge_cdata.bge_status_map);
2866 
2867 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2868 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2869 		    sc->bge_ldata.bge_status_block,
2870 		    sc->bge_cdata.bge_status_map);
2871 
2872 	if (sc->bge_cdata.bge_status_tag)
2873 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2874 
2875 	/* Destroy statistics block. */
2876 	if (sc->bge_cdata.bge_stats_map)
2877 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2878 		    sc->bge_cdata.bge_stats_map);
2879 
2880 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2881 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2882 		    sc->bge_ldata.bge_stats,
2883 		    sc->bge_cdata.bge_stats_map);
2884 
2885 	if (sc->bge_cdata.bge_stats_tag)
2886 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2887 
2888 	if (sc->bge_cdata.bge_buffer_tag)
2889 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2890 
2891 	/* Destroy the parent tag. */
2892 	if (sc->bge_cdata.bge_parent_tag)
2893 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2894 }
2895 
2896 static int
2897 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2898     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2899     bus_addr_t *paddr, const char *msg)
2900 {
2901 	struct bge_dmamap_arg ctx;
2902 	int error;
2903 
2904 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2905 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2906 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2907 	if (error != 0) {
2908 		device_printf(sc->bge_dev,
2909 		    "could not create %s dma tag\n", msg);
2910 		return (ENOMEM);
2911 	}
2912 	/* Allocate DMA'able memory for ring. */
2913 	error = bus_dmamem_alloc(*tag, (void **)ring,
2914 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2915 	if (error != 0) {
2916 		device_printf(sc->bge_dev,
2917 		    "could not allocate DMA'able memory for %s\n", msg);
2918 		return (ENOMEM);
2919 	}
2920 	/* Load the address of the ring. */
2921 	ctx.bge_busaddr = 0;
2922 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2923 	    &ctx, BUS_DMA_NOWAIT);
2924 	if (error != 0) {
2925 		device_printf(sc->bge_dev,
2926 		    "could not load DMA'able memory for %s\n", msg);
2927 		return (ENOMEM);
2928 	}
2929 	*paddr = ctx.bge_busaddr;
2930 	return (0);
2931 }
2932 
2933 static int
2934 bge_dma_alloc(struct bge_softc *sc)
2935 {
2936 	bus_addr_t lowaddr;
2937 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2938 	int i, error;
2939 
2940 	lowaddr = BUS_SPACE_MAXADDR;
2941 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2942 		lowaddr = BGE_DMA_MAXADDR;
2943 	/*
2944 	 * Allocate the parent bus DMA tag appropriate for PCI.
2945 	 */
2946 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2947 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2948 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2949 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2950 	if (error != 0) {
2951 		device_printf(sc->bge_dev,
2952 		    "could not allocate parent dma tag\n");
2953 		return (ENOMEM);
2954 	}
2955 
2956 	/* Create tag for standard RX ring. */
2957 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2958 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2959 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2960 	    &sc->bge_cdata.bge_rx_std_ring_map,
2961 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2962 	if (error)
2963 		return (error);
2964 
2965 	/* Create tag for RX return ring. */
2966 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2967 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2968 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2969 	    &sc->bge_cdata.bge_rx_return_ring_map,
2970 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2971 	if (error)
2972 		return (error);
2973 
2974 	/* Create tag for TX ring. */
2975 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2976 	    &sc->bge_cdata.bge_tx_ring_tag,
2977 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2978 	    &sc->bge_cdata.bge_tx_ring_map,
2979 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2980 	if (error)
2981 		return (error);
2982 
2983 	/*
2984 	 * Create tag for status block.
2985 	 * Because we only use single Tx/Rx/Rx return ring, use
2986 	 * minimum status block size except BCM5700 AX/BX which
2987 	 * seems to want to see full status block size regardless
2988 	 * of configured number of ring.
2989 	 */
2990 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2991 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2992 		sbsz = BGE_STATUS_BLK_SZ;
2993 	else
2994 		sbsz = 32;
2995 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2996 	    &sc->bge_cdata.bge_status_tag,
2997 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2998 	    &sc->bge_cdata.bge_status_map,
2999 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
3000 	if (error)
3001 		return (error);
3002 
3003 	/* Create tag for statistics block. */
3004 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
3005 	    &sc->bge_cdata.bge_stats_tag,
3006 	    (uint8_t **)&sc->bge_ldata.bge_stats,
3007 	    &sc->bge_cdata.bge_stats_map,
3008 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
3009 	if (error)
3010 		return (error);
3011 
3012 	/* Create tag for jumbo RX ring. */
3013 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3014 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3015 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
3016 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3017 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
3018 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3019 		if (error)
3020 			return (error);
3021 	}
3022 
3023 	/* Create parent tag for buffers. */
3024 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3025 		/*
3026 		 * XXX
3027 		 * watchdog timeout issue was observed on BCM5704 which
3028 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3029 		 * Both limiting DMA address space to 32bits and flushing
3030 		 * mailbox write seem to address the issue.
3031 		 */
3032 		if (sc->bge_pcixcap != 0)
3033 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
3034 	}
3035 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
3036 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
3037 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3038 	    &sc->bge_cdata.bge_buffer_tag);
3039 	if (error != 0) {
3040 		device_printf(sc->bge_dev,
3041 		    "could not allocate buffer dma tag\n");
3042 		return (ENOMEM);
3043 	}
3044 	/* Create tag for Tx mbufs. */
3045 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3046 		txsegsz = BGE_TSOSEG_SZ;
3047 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3048 	} else {
3049 		txsegsz = MCLBYTES;
3050 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3051 	}
3052 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3053 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3054 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3055 	    &sc->bge_cdata.bge_tx_mtag);
3056 
3057 	if (error) {
3058 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3059 		return (ENOMEM);
3060 	}
3061 
3062 	/* Create tag for Rx mbufs. */
3063 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3064 		rxmaxsegsz = MJUM9BYTES;
3065 	else
3066 		rxmaxsegsz = MCLBYTES;
3067 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3068 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3069 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3070 
3071 	if (error) {
3072 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3073 		return (ENOMEM);
3074 	}
3075 
3076 	/* Create DMA maps for RX buffers. */
3077 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3078 	    &sc->bge_cdata.bge_rx_std_sparemap);
3079 	if (error) {
3080 		device_printf(sc->bge_dev,
3081 		    "can't create spare DMA map for RX\n");
3082 		return (ENOMEM);
3083 	}
3084 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3085 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3086 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3087 		if (error) {
3088 			device_printf(sc->bge_dev,
3089 			    "can't create DMA map for RX\n");
3090 			return (ENOMEM);
3091 		}
3092 	}
3093 
3094 	/* Create DMA maps for TX buffers. */
3095 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3096 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3097 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3098 		if (error) {
3099 			device_printf(sc->bge_dev,
3100 			    "can't create DMA map for TX\n");
3101 			return (ENOMEM);
3102 		}
3103 	}
3104 
3105 	/* Create tags for jumbo RX buffers. */
3106 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3107 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3108 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3109 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3110 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3111 		if (error) {
3112 			device_printf(sc->bge_dev,
3113 			    "could not allocate jumbo dma tag\n");
3114 			return (ENOMEM);
3115 		}
3116 		/* Create DMA maps for jumbo RX buffers. */
3117 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3118 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3119 		if (error) {
3120 			device_printf(sc->bge_dev,
3121 			    "can't create spare DMA map for jumbo RX\n");
3122 			return (ENOMEM);
3123 		}
3124 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3125 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3126 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3127 			if (error) {
3128 				device_printf(sc->bge_dev,
3129 				    "can't create DMA map for jumbo RX\n");
3130 				return (ENOMEM);
3131 			}
3132 		}
3133 	}
3134 
3135 	return (0);
3136 }
3137 
3138 /*
3139  * Return true if this device has more than one port.
3140  */
3141 static int
3142 bge_has_multiple_ports(struct bge_softc *sc)
3143 {
3144 	device_t dev = sc->bge_dev;
3145 	u_int b, d, f, fscan, s;
3146 
3147 	d = pci_get_domain(dev);
3148 	b = pci_get_bus(dev);
3149 	s = pci_get_slot(dev);
3150 	f = pci_get_function(dev);
3151 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3152 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3153 			return (1);
3154 	return (0);
3155 }
3156 
3157 /*
3158  * Return true if MSI can be used with this device.
3159  */
3160 static int
3161 bge_can_use_msi(struct bge_softc *sc)
3162 {
3163 	int can_use_msi = 0;
3164 
3165 	if (sc->bge_msi == 0)
3166 		return (0);
3167 
3168 	/* Disable MSI for polling(4). */
3169 #ifdef DEVICE_POLLING
3170 	return (0);
3171 #endif
3172 	switch (sc->bge_asicrev) {
3173 	case BGE_ASICREV_BCM5714_A0:
3174 	case BGE_ASICREV_BCM5714:
3175 		/*
3176 		 * Apparently, MSI doesn't work when these chips are
3177 		 * configured in single-port mode.
3178 		 */
3179 		if (bge_has_multiple_ports(sc))
3180 			can_use_msi = 1;
3181 		break;
3182 	case BGE_ASICREV_BCM5750:
3183 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3184 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3185 			can_use_msi = 1;
3186 		break;
3187 	default:
3188 		if (BGE_IS_575X_PLUS(sc))
3189 			can_use_msi = 1;
3190 	}
3191 	return (can_use_msi);
3192 }
3193 
3194 static int
3195 bge_mbox_reorder(struct bge_softc *sc)
3196 {
3197 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3198 	static const struct mbox_reorder {
3199 		const uint16_t vendor;
3200 		const uint16_t device;
3201 		const char *desc;
3202 	} mbox_reorder_lists[] = {
3203 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3204 	};
3205 	devclass_t pci, pcib;
3206 	device_t bus, dev;
3207 	int i;
3208 
3209 	pci = devclass_find("pci");
3210 	pcib = devclass_find("pcib");
3211 	dev = sc->bge_dev;
3212 	bus = device_get_parent(dev);
3213 	for (;;) {
3214 		dev = device_get_parent(bus);
3215 		bus = device_get_parent(dev);
3216 		if (device_get_devclass(dev) != pcib)
3217 			break;
3218 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3219 			if (pci_get_vendor(dev) ==
3220 			    mbox_reorder_lists[i].vendor &&
3221 			    pci_get_device(dev) ==
3222 			    mbox_reorder_lists[i].device) {
3223 				device_printf(sc->bge_dev,
3224 				    "enabling MBOX workaround for %s\n",
3225 				    mbox_reorder_lists[i].desc);
3226 				return (1);
3227 			}
3228 		}
3229 		if (device_get_devclass(bus) != pci)
3230 			break;
3231 	}
3232 	return (0);
3233 }
3234 
3235 static void
3236 bge_devinfo(struct bge_softc *sc)
3237 {
3238 	uint32_t cfg, clk;
3239 
3240 	device_printf(sc->bge_dev,
3241 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3242 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3243 	if (sc->bge_flags & BGE_FLAG_PCIE)
3244 		printf("PCI-E\n");
3245 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3246 		printf("PCI-X ");
3247 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3248 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3249 			clk = 133;
3250 		else {
3251 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3252 			switch (clk) {
3253 			case 0:
3254 				clk = 33;
3255 				break;
3256 			case 2:
3257 				clk = 50;
3258 				break;
3259 			case 4:
3260 				clk = 66;
3261 				break;
3262 			case 6:
3263 				clk = 100;
3264 				break;
3265 			case 7:
3266 				clk = 133;
3267 				break;
3268 			}
3269 		}
3270 		printf("%u MHz\n", clk);
3271 	} else {
3272 		if (sc->bge_pcixcap != 0)
3273 			printf("PCI on PCI-X ");
3274 		else
3275 			printf("PCI ");
3276 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3277 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3278 			clk = 66;
3279 		else
3280 			clk = 33;
3281 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3282 			printf("%u MHz; 32bit\n", clk);
3283 		else
3284 			printf("%u MHz; 64bit\n", clk);
3285 	}
3286 }
3287 
3288 static int
3289 bge_attach(device_t dev)
3290 {
3291 	struct ifnet *ifp;
3292 	struct bge_softc *sc;
3293 	uint32_t hwcfg = 0, misccfg, pcistate;
3294 	u_char eaddr[ETHER_ADDR_LEN];
3295 	int capmask, error, msicount, reg, rid, trys;
3296 
3297 	sc = device_get_softc(dev);
3298 	sc->bge_dev = dev;
3299 
3300 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3301 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3302 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3303 
3304 	/*
3305 	 * Map control/status registers.
3306 	 */
3307 	pci_enable_busmaster(dev);
3308 
3309 	rid = PCIR_BAR(0);
3310 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3311 	    RF_ACTIVE);
3312 
3313 	if (sc->bge_res == NULL) {
3314 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3315 		error = ENXIO;
3316 		goto fail;
3317 	}
3318 
3319 	/* Save various chip information. */
3320 	sc->bge_func_addr = pci_get_function(dev);
3321 	sc->bge_chipid = bge_chipid(dev);
3322 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3323 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3324 
3325 	/* Set default PHY address. */
3326 	sc->bge_phy_addr = 1;
3327 	 /*
3328 	  * PHY address mapping for various devices.
3329 	  *
3330 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3331 	  * ---------+-------+-------+-------+-------+
3332 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3333 	  * BCM5704  |   1   |   X   |   1   |   X   |
3334 	  * BCM5717  |   1   |   8   |   2   |   9   |
3335 	  * BCM5719  |   1   |   8   |   2   |   9   |
3336 	  * BCM5720  |   1   |   8   |   2   |   9   |
3337 	  *
3338 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3339 	  * ---------+-------+-------+-------+-------+
3340 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3341 	  * BCM5704  |   X   |   X   |   X   |   X   |
3342 	  * BCM5717  |   X   |   X   |   X   |   X   |
3343 	  * BCM5719  |   3   |   10  |   4   |   11  |
3344 	  * BCM5720  |   X   |   X   |   X   |   X   |
3345 	  *
3346 	  * Other addresses may respond but they are not
3347 	  * IEEE compliant PHYs and should be ignored.
3348 	  */
3349 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3350 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3351 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3352 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3353 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3354 			    BGE_SGDIGSTS_IS_SERDES)
3355 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3356 			else
3357 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3358 		} else {
3359 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3360 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3361 				sc->bge_phy_addr = sc->bge_func_addr + 8;
3362 			else
3363 				sc->bge_phy_addr = sc->bge_func_addr + 1;
3364 		}
3365 	}
3366 
3367 	if (bge_has_eaddr(sc))
3368 		sc->bge_flags |= BGE_FLAG_EADDR;
3369 
3370 	/* Save chipset family. */
3371 	switch (sc->bge_asicrev) {
3372 	case BGE_ASICREV_BCM5762:
3373 	case BGE_ASICREV_BCM57765:
3374 	case BGE_ASICREV_BCM57766:
3375 		sc->bge_flags |= BGE_FLAG_57765_PLUS;
3376 		/* FALLTHROUGH */
3377 	case BGE_ASICREV_BCM5717:
3378 	case BGE_ASICREV_BCM5719:
3379 	case BGE_ASICREV_BCM5720:
3380 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3381 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3382 		    BGE_FLAG_JUMBO_FRAME;
3383 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3384 		    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3385 			/*
3386 			 * Enable work around for DMA engine miscalculation
3387 			 * of TXMBUF available space.
3388 			 */
3389 			sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3390 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3391 			    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3392 				/* Jumbo frame on BCM5719 A0 does not work. */
3393 				sc->bge_flags &= ~BGE_FLAG_JUMBO;
3394 			}
3395 		}
3396 		break;
3397 	case BGE_ASICREV_BCM5755:
3398 	case BGE_ASICREV_BCM5761:
3399 	case BGE_ASICREV_BCM5784:
3400 	case BGE_ASICREV_BCM5785:
3401 	case BGE_ASICREV_BCM5787:
3402 	case BGE_ASICREV_BCM57780:
3403 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3404 		    BGE_FLAG_5705_PLUS;
3405 		break;
3406 	case BGE_ASICREV_BCM5700:
3407 	case BGE_ASICREV_BCM5701:
3408 	case BGE_ASICREV_BCM5703:
3409 	case BGE_ASICREV_BCM5704:
3410 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3411 		break;
3412 	case BGE_ASICREV_BCM5714_A0:
3413 	case BGE_ASICREV_BCM5780:
3414 	case BGE_ASICREV_BCM5714:
3415 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3416 		/* FALLTHROUGH */
3417 	case BGE_ASICREV_BCM5750:
3418 	case BGE_ASICREV_BCM5752:
3419 	case BGE_ASICREV_BCM5906:
3420 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3421 		/* FALLTHROUGH */
3422 	case BGE_ASICREV_BCM5705:
3423 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3424 		break;
3425 	}
3426 
3427 	/* Identify chips with APE processor. */
3428 	switch (sc->bge_asicrev) {
3429 	case BGE_ASICREV_BCM5717:
3430 	case BGE_ASICREV_BCM5719:
3431 	case BGE_ASICREV_BCM5720:
3432 	case BGE_ASICREV_BCM5761:
3433 	case BGE_ASICREV_BCM5762:
3434 		sc->bge_flags |= BGE_FLAG_APE;
3435 		break;
3436 	}
3437 
3438 	/* Chips with APE need BAR2 access for APE registers/memory. */
3439 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3440 		rid = PCIR_BAR(2);
3441 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3442 		    RF_ACTIVE);
3443 		if (sc->bge_res2 == NULL) {
3444 			device_printf (sc->bge_dev,
3445 			    "couldn't map BAR2 memory\n");
3446 			error = ENXIO;
3447 			goto fail;
3448 		}
3449 
3450 		/* Enable APE register/memory access by host driver. */
3451 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3452 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3453 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3454 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3455 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3456 
3457 		bge_ape_lock_init(sc);
3458 		bge_ape_read_fw_ver(sc);
3459 	}
3460 
3461 	/* Add SYSCTLs, requires the chipset family to be set. */
3462 	bge_add_sysctls(sc);
3463 
3464 	/* Identify the chips that use an CPMU. */
3465 	if (BGE_IS_5717_PLUS(sc) ||
3466 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3467 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3468 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3469 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3470 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3471 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3472 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3473 	else
3474 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3475 	/* Enable auto polling for BCM570[0-5]. */
3476 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3477 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3478 
3479 	/*
3480 	 * All Broadcom controllers have 4GB boundary DMA bug.
3481 	 * Whenever an address crosses a multiple of the 4GB boundary
3482 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3483 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3484 	 * state machine will lockup and cause the device to hang.
3485 	 */
3486 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3487 
3488 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3489 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3490 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3491 
3492 	/*
3493 	 * BCM5719 cannot handle DMA requests for DMA segments that
3494 	 * have larger than 4KB in size.  However the maximum DMA
3495 	 * segment size created in DMA tag is 4KB for TSO, so we
3496 	 * wouldn't encounter the issue here.
3497 	 */
3498 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3499 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3500 
3501 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3502 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3503 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3504 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3505 			sc->bge_flags |= BGE_FLAG_5788;
3506 	}
3507 
3508 	capmask = BMSR_DEFCAPMASK;
3509 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3510 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3511 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3512 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3513 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3514 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3515 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3516 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3517 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3518 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3519 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3520 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3521 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3522 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3523 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3524 		/* These chips are 10/100 only. */
3525 		capmask &= ~BMSR_EXTSTAT;
3526 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3527 	}
3528 
3529 	/*
3530 	 * Some controllers seem to require a special firmware to use
3531 	 * TSO. But the firmware is not available to FreeBSD and Linux
3532 	 * claims that the TSO performed by the firmware is slower than
3533 	 * hardware based TSO. Moreover the firmware based TSO has one
3534 	 * known bug which can't handle TSO if Ethernet header + IP/TCP
3535 	 * header is greater than 80 bytes. A workaround for the TSO
3536 	 * bug exist but it seems it's too expensive than not using
3537 	 * TSO at all. Some hardwares also have the TSO bug so limit
3538 	 * the TSO to the controllers that are not affected TSO issues
3539 	 * (e.g. 5755 or higher).
3540 	 */
3541 	if (BGE_IS_5717_PLUS(sc)) {
3542 		/* BCM5717 requires different TSO configuration. */
3543 		sc->bge_flags |= BGE_FLAG_TSO3;
3544 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3545 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3546 			/* TSO on BCM5719 A0 does not work. */
3547 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3548 		}
3549 	} else if (BGE_IS_5755_PLUS(sc)) {
3550 		/*
3551 		 * BCM5754 and BCM5787 shares the same ASIC id so
3552 		 * explicit device id check is required.
3553 		 * Due to unknown reason TSO does not work on BCM5755M.
3554 		 */
3555 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3556 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3557 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3558 			sc->bge_flags |= BGE_FLAG_TSO;
3559 	}
3560 
3561 	/*
3562 	 * Check if this is a PCI-X or PCI Express device.
3563 	 */
3564 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3565 		/*
3566 		 * Found a PCI Express capabilities register, this
3567 		 * must be a PCI Express device.
3568 		 */
3569 		sc->bge_flags |= BGE_FLAG_PCIE;
3570 		sc->bge_expcap = reg;
3571 		/* Extract supported maximum payload size. */
3572 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3573 		    PCIER_DEVICE_CAP, 2);
3574 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3575 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3576 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3577 			sc->bge_expmrq = 2048;
3578 		else
3579 			sc->bge_expmrq = 4096;
3580 		pci_set_max_read_req(dev, sc->bge_expmrq);
3581 	} else {
3582 		/*
3583 		 * Check if the device is in PCI-X Mode.
3584 		 * (This bit is not valid on PCI Express controllers.)
3585 		 */
3586 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3587 			sc->bge_pcixcap = reg;
3588 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3589 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3590 			sc->bge_flags |= BGE_FLAG_PCIX;
3591 	}
3592 
3593 	/*
3594 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3595 	 * not actually a MAC controller bug but an issue with the embedded
3596 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3597 	 */
3598 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3599 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3600 	/*
3601 	 * Some PCI-X bridges are known to trigger write reordering to
3602 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3603 	 * caused by out-of-order TX completions.  Enable workaround for
3604 	 * PCI-X devices that live behind these bridges.
3605 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3606 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3607 	 */
3608 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3609 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3610 	/*
3611 	 * Allocate the interrupt, using MSI if possible.  These devices
3612 	 * support 8 MSI messages, but only the first one is used in
3613 	 * normal operation.
3614 	 */
3615 	rid = 0;
3616 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3617 		sc->bge_msicap = reg;
3618 		if (bge_can_use_msi(sc)) {
3619 			msicount = pci_msi_count(dev);
3620 			if (msicount > 1)
3621 				msicount = 1;
3622 		} else
3623 			msicount = 0;
3624 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3625 			rid = 1;
3626 			sc->bge_flags |= BGE_FLAG_MSI;
3627 		}
3628 	}
3629 
3630 	/*
3631 	 * All controllers except BCM5700 supports tagged status but
3632 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3633 	 * MSI on BCM5717 does not work.
3634 	 */
3635 #ifndef DEVICE_POLLING
3636 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3637 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3638 #endif
3639 
3640 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3641 	    RF_SHAREABLE | RF_ACTIVE);
3642 
3643 	if (sc->bge_irq == NULL) {
3644 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3645 		error = ENXIO;
3646 		goto fail;
3647 	}
3648 
3649 	bge_devinfo(sc);
3650 
3651 	sc->bge_asf_mode = 0;
3652 	/* No ASF if APE present. */
3653 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3654 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3655 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3656 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3657 			    BGE_HWCFG_ASF) {
3658 				sc->bge_asf_mode |= ASF_ENABLE;
3659 				sc->bge_asf_mode |= ASF_STACKUP;
3660 				if (BGE_IS_575X_PLUS(sc))
3661 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3662 			}
3663 		}
3664 	}
3665 
3666 	bge_stop_fw(sc);
3667 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3668 	if (bge_reset(sc)) {
3669 		device_printf(sc->bge_dev, "chip reset failed\n");
3670 		error = ENXIO;
3671 		goto fail;
3672 	}
3673 
3674 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3675 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3676 
3677 	if (bge_chipinit(sc)) {
3678 		device_printf(sc->bge_dev, "chip initialization failed\n");
3679 		error = ENXIO;
3680 		goto fail;
3681 	}
3682 
3683 	error = bge_get_eaddr(sc, eaddr);
3684 	if (error) {
3685 		device_printf(sc->bge_dev,
3686 		    "failed to read station address\n");
3687 		error = ENXIO;
3688 		goto fail;
3689 	}
3690 
3691 	/* 5705 limits RX return ring to 512 entries. */
3692 	if (BGE_IS_5717_PLUS(sc))
3693 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3694 	else if (BGE_IS_5705_PLUS(sc))
3695 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3696 	else
3697 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3698 
3699 	if (bge_dma_alloc(sc)) {
3700 		device_printf(sc->bge_dev,
3701 		    "failed to allocate DMA resources\n");
3702 		error = ENXIO;
3703 		goto fail;
3704 	}
3705 
3706 	/* Set default tuneable values. */
3707 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3708 	sc->bge_rx_coal_ticks = 150;
3709 	sc->bge_tx_coal_ticks = 150;
3710 	sc->bge_rx_max_coal_bds = 10;
3711 	sc->bge_tx_max_coal_bds = 10;
3712 
3713 	/* Initialize checksum features to use. */
3714 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3715 	if (sc->bge_forced_udpcsum != 0)
3716 		sc->bge_csum_features |= CSUM_UDP;
3717 
3718 	/* Set up ifnet structure */
3719 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3720 	if (ifp == NULL) {
3721 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3722 		error = ENXIO;
3723 		goto fail;
3724 	}
3725 	ifp->if_softc = sc;
3726 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3727 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3728 	ifp->if_ioctl = bge_ioctl;
3729 	ifp->if_start = bge_start;
3730 	ifp->if_init = bge_init;
3731 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3732 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3733 	IFQ_SET_READY(&ifp->if_snd);
3734 	ifp->if_hwassist = sc->bge_csum_features;
3735 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3736 	    IFCAP_VLAN_MTU;
3737 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3738 		ifp->if_hwassist |= CSUM_TSO;
3739 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3740 	}
3741 #ifdef IFCAP_VLAN_HWCSUM
3742 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3743 #endif
3744 	ifp->if_capenable = ifp->if_capabilities;
3745 #ifdef DEVICE_POLLING
3746 	ifp->if_capabilities |= IFCAP_POLLING;
3747 #endif
3748 
3749 	/*
3750 	 * 5700 B0 chips do not support checksumming correctly due
3751 	 * to hardware bugs.
3752 	 */
3753 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3754 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3755 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3756 		ifp->if_hwassist = 0;
3757 	}
3758 
3759 	/*
3760 	 * Figure out what sort of media we have by checking the
3761 	 * hardware config word in the first 32k of NIC internal memory,
3762 	 * or fall back to examining the EEPROM if necessary.
3763 	 * Note: on some BCM5700 cards, this value appears to be unset.
3764 	 * If that's the case, we have to rely on identifying the NIC
3765 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3766 	 * SK-9D41.
3767 	 */
3768 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3769 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3770 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3771 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3772 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3773 		    sizeof(hwcfg))) {
3774 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3775 			error = ENXIO;
3776 			goto fail;
3777 		}
3778 		hwcfg = ntohl(hwcfg);
3779 	}
3780 
3781 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3782 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3783 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3784 		if (BGE_IS_5705_PLUS(sc)) {
3785 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3786 			sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3787 		} else
3788 			sc->bge_flags |= BGE_FLAG_TBI;
3789 	}
3790 
3791 	/* Set various PHY bug flags. */
3792 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3793 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3794 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3795 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3796 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3797 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3798 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3799 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3800 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3801 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3802 	if ((BGE_IS_5705_PLUS(sc)) &&
3803 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3804 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3805 	    sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3806 	    !BGE_IS_5717_PLUS(sc)) {
3807 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3808 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3809 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3810 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3811 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3812 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3813 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3814 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3815 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3816 		} else
3817 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3818 	}
3819 
3820 	/*
3821 	 * Don't enable Ethernet@WireSpeed for the 5700 or the
3822 	 * 5705 A0 and A1 chips.
3823 	 */
3824 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3825 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3826 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3827 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3828 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3829 
3830 	if (sc->bge_flags & BGE_FLAG_TBI) {
3831 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3832 		    bge_ifmedia_sts);
3833 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3834 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3835 		    0, NULL);
3836 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3837 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3838 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3839 	} else {
3840 		/*
3841 		 * Do transceiver setup and tell the firmware the
3842 		 * driver is down so we can try to get access the
3843 		 * probe if ASF is running.  Retry a couple of times
3844 		 * if we get a conflict with the ASF firmware accessing
3845 		 * the PHY.
3846 		 */
3847 		trys = 0;
3848 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3849 again:
3850 		bge_asf_driver_up(sc);
3851 
3852 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3853 		    bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
3854 		    MIIF_DOPAUSE);
3855 		if (error != 0) {
3856 			if (trys++ < 4) {
3857 				device_printf(sc->bge_dev, "Try again\n");
3858 				bge_miibus_writereg(sc->bge_dev,
3859 				    sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3860 				goto again;
3861 			}
3862 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3863 			goto fail;
3864 		}
3865 
3866 		/*
3867 		 * Now tell the firmware we are going up after probing the PHY
3868 		 */
3869 		if (sc->bge_asf_mode & ASF_STACKUP)
3870 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3871 	}
3872 
3873 	/*
3874 	 * When using the BCM5701 in PCI-X mode, data corruption has
3875 	 * been observed in the first few bytes of some received packets.
3876 	 * Aligning the packet buffer in memory eliminates the corruption.
3877 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3878 	 * which do not support unaligned accesses, we will realign the
3879 	 * payloads by copying the received packets.
3880 	 */
3881 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3882 	    sc->bge_flags & BGE_FLAG_PCIX)
3883                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3884 
3885 	/*
3886 	 * Call MI attach routine.
3887 	 */
3888 	ether_ifattach(ifp, eaddr);
3889 
3890 	/* Tell upper layer we support long frames. */
3891 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3892 
3893 	/*
3894 	 * Hookup IRQ last.
3895 	 */
3896 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3897 		/* Take advantage of single-shot MSI. */
3898 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3899 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3900 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3901 		    taskqueue_thread_enqueue, &sc->bge_tq);
3902 		if (sc->bge_tq == NULL) {
3903 			device_printf(dev, "could not create taskqueue.\n");
3904 			ether_ifdetach(ifp);
3905 			error = ENOMEM;
3906 			goto fail;
3907 		}
3908 		error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3909 		    "%s taskq", device_get_nameunit(sc->bge_dev));
3910 		if (error != 0) {
3911 			device_printf(dev, "could not start threads.\n");
3912 			ether_ifdetach(ifp);
3913 			goto fail;
3914 		}
3915 		error = bus_setup_intr(dev, sc->bge_irq,
3916 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3917 		    &sc->bge_intrhand);
3918 	} else
3919 		error = bus_setup_intr(dev, sc->bge_irq,
3920 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3921 		    &sc->bge_intrhand);
3922 
3923 	if (error) {
3924 		ether_ifdetach(ifp);
3925 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3926 	}
3927 
3928 fail:
3929 	if (error)
3930 		bge_detach(dev);
3931 	return (error);
3932 }
3933 
3934 static int
3935 bge_detach(device_t dev)
3936 {
3937 	struct bge_softc *sc;
3938 	struct ifnet *ifp;
3939 
3940 	sc = device_get_softc(dev);
3941 	ifp = sc->bge_ifp;
3942 
3943 #ifdef DEVICE_POLLING
3944 	if (ifp->if_capenable & IFCAP_POLLING)
3945 		ether_poll_deregister(ifp);
3946 #endif
3947 
3948 	if (device_is_attached(dev)) {
3949 		ether_ifdetach(ifp);
3950 		BGE_LOCK(sc);
3951 		bge_stop(sc);
3952 		BGE_UNLOCK(sc);
3953 		callout_drain(&sc->bge_stat_ch);
3954 	}
3955 
3956 	if (sc->bge_tq)
3957 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3958 
3959 	if (sc->bge_flags & BGE_FLAG_TBI)
3960 		ifmedia_removeall(&sc->bge_ifmedia);
3961 	else if (sc->bge_miibus != NULL) {
3962 		bus_generic_detach(dev);
3963 		device_delete_child(dev, sc->bge_miibus);
3964 	}
3965 
3966 	bge_release_resources(sc);
3967 
3968 	return (0);
3969 }
3970 
3971 static void
3972 bge_release_resources(struct bge_softc *sc)
3973 {
3974 	device_t dev;
3975 
3976 	dev = sc->bge_dev;
3977 
3978 	if (sc->bge_tq != NULL)
3979 		taskqueue_free(sc->bge_tq);
3980 
3981 	if (sc->bge_intrhand != NULL)
3982 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3983 
3984 	if (sc->bge_irq != NULL)
3985 		bus_release_resource(dev, SYS_RES_IRQ,
3986 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3987 
3988 	if (sc->bge_flags & BGE_FLAG_MSI)
3989 		pci_release_msi(dev);
3990 
3991 	if (sc->bge_res != NULL)
3992 		bus_release_resource(dev, SYS_RES_MEMORY,
3993 		    PCIR_BAR(0), sc->bge_res);
3994 
3995 	if (sc->bge_res2 != NULL)
3996 		bus_release_resource(dev, SYS_RES_MEMORY,
3997 		    PCIR_BAR(2), sc->bge_res2);
3998 
3999 	if (sc->bge_ifp != NULL)
4000 		if_free(sc->bge_ifp);
4001 
4002 	bge_dma_free(sc);
4003 
4004 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
4005 		BGE_LOCK_DESTROY(sc);
4006 }
4007 
4008 static int
4009 bge_reset(struct bge_softc *sc)
4010 {
4011 	device_t dev;
4012 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4013 	void (*write_op)(struct bge_softc *, int, int);
4014 	uint16_t devctl;
4015 	int i;
4016 
4017 	dev = sc->bge_dev;
4018 
4019 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4020 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4021 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4022 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4023 
4024 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4025 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4026 		if (sc->bge_flags & BGE_FLAG_PCIE)
4027 			write_op = bge_writemem_direct;
4028 		else
4029 			write_op = bge_writemem_ind;
4030 	} else
4031 		write_op = bge_writereg_ind;
4032 
4033 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4034 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4035 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4036 		for (i = 0; i < 8000; i++) {
4037 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4038 			    BGE_NVRAMSWARB_GNT1)
4039 				break;
4040 			DELAY(20);
4041 		}
4042 		if (i == 8000) {
4043 			if (bootverbose)
4044 				device_printf(dev, "NVRAM lock timedout!\n");
4045 		}
4046 	}
4047 	/* Take APE lock when performing reset. */
4048 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4049 
4050 	/* Save some important PCI state. */
4051 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4052 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
4053 
4054 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4055 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4056 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4057 
4058 	/* Disable fastboot on controllers that support it. */
4059 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4060 	    BGE_IS_5755_PLUS(sc)) {
4061 		if (bootverbose)
4062 			device_printf(dev, "Disabling fastboot\n");
4063 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4064 	}
4065 
4066 	/*
4067 	 * Write the magic number to SRAM at offset 0xB50.
4068 	 * When firmware finishes its initialization it will
4069 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4070 	 */
4071 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4072 
4073 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4074 
4075 	/* XXX: Broadcom Linux driver. */
4076 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4077 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4078 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4079 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4080 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4081 		}
4082 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4083 			/* Prevent PCIE link training during global reset */
4084 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4085 			reset |= 1 << 29;
4086 		}
4087 	}
4088 
4089 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4090 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4091 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4092 		    val | BGE_VCPU_STATUS_DRV_RESET);
4093 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4094 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4095 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4096 	}
4097 
4098 	/*
4099 	 * Set GPHY Power Down Override to leave GPHY
4100 	 * powered up in D0 uninitialized.
4101 	 */
4102 	if (BGE_IS_5705_PLUS(sc) &&
4103 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4104 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4105 
4106 	/* Issue global reset */
4107 	write_op(sc, BGE_MISC_CFG, reset);
4108 
4109 	if (sc->bge_flags & BGE_FLAG_PCIE)
4110 		DELAY(100 * 1000);
4111 	else
4112 		DELAY(1000);
4113 
4114 	/* XXX: Broadcom Linux driver. */
4115 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4116 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4117 			DELAY(500000); /* wait for link training to complete */
4118 			val = pci_read_config(dev, 0xC4, 4);
4119 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4120 		}
4121 		devctl = pci_read_config(dev,
4122 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4123 		/* Clear enable no snoop and disable relaxed ordering. */
4124 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4125 		    PCIEM_CTL_NOSNOOP_ENABLE);
4126 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4127 		    devctl, 2);
4128 		pci_set_max_read_req(dev, sc->bge_expmrq);
4129 		/* Clear error status. */
4130 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4131 		    PCIEM_STA_CORRECTABLE_ERROR |
4132 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4133 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4134 	}
4135 
4136 	/* Reset some of the PCI state that got zapped by reset. */
4137 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4138 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4139 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4140 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4141 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4142 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4143 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4144 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4145 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4146 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4147 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4148 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4149 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4150 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4151 	/*
4152 	 * Disable PCI-X relaxed ordering to ensure status block update
4153 	 * comes first then packet buffer DMA. Otherwise driver may
4154 	 * read stale status block.
4155 	 */
4156 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4157 		devctl = pci_read_config(dev,
4158 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4159 		devctl &= ~PCIXM_COMMAND_ERO;
4160 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4161 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4162 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4163 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4164 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4165 			    PCIXM_COMMAND_MAX_READ);
4166 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4167 		}
4168 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4169 		    devctl, 2);
4170 	}
4171 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4172 	if (BGE_IS_5714_FAMILY(sc)) {
4173 		/* This chip disables MSI on reset. */
4174 		if (sc->bge_flags & BGE_FLAG_MSI) {
4175 			val = pci_read_config(dev,
4176 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4177 			pci_write_config(dev,
4178 			    sc->bge_msicap + PCIR_MSI_CTRL,
4179 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4180 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4181 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4182 			    val | BGE_MSIMODE_ENABLE);
4183 		}
4184 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4185 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4186 	} else
4187 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4188 
4189 	/* Fix up byte swapping. */
4190 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4191 
4192 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4193 	val = (val & ~mac_mode_mask) | mac_mode;
4194 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4195 	DELAY(40);
4196 
4197 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4198 
4199 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4200 		for (i = 0; i < BGE_TIMEOUT; i++) {
4201 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4202 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4203 				break;
4204 			DELAY(100);
4205 		}
4206 		if (i == BGE_TIMEOUT) {
4207 			device_printf(dev, "reset timed out\n");
4208 			return (1);
4209 		}
4210 	} else {
4211 		/*
4212 		 * Poll until we see the 1's complement of the magic number.
4213 		 * This indicates that the firmware initialization is complete.
4214 		 * We expect this to fail if no chip containing the Ethernet
4215 		 * address is fitted though.
4216 		 */
4217 		for (i = 0; i < BGE_TIMEOUT; i++) {
4218 			DELAY(10);
4219 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4220 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4221 				break;
4222 		}
4223 
4224 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4225 			device_printf(dev,
4226 			    "firmware handshake timed out, found 0x%08x\n",
4227 			    val);
4228 		/* BCM57765 A0 needs additional time before accessing. */
4229 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4230 			DELAY(10 * 1000);	/* XXX */
4231 	}
4232 
4233 	/*
4234 	 * The 5704 in TBI mode apparently needs some special
4235 	 * adjustment to insure the SERDES drive level is set
4236 	 * to 1.2V.
4237 	 */
4238 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4239 	    sc->bge_flags & BGE_FLAG_TBI) {
4240 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4241 		val = (val & ~0xFFF) | 0x880;
4242 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4243 	}
4244 
4245 	/* XXX: Broadcom Linux driver. */
4246 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4247 	    !BGE_IS_5717_PLUS(sc) &&
4248 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4249 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4250 		/* Enable Data FIFO protection. */
4251 		val = CSR_READ_4(sc, 0x7C00);
4252 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4253 	}
4254 
4255 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4256 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4257 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4258 
4259 	return (0);
4260 }
4261 
4262 static __inline void
4263 bge_rxreuse_std(struct bge_softc *sc, int i)
4264 {
4265 	struct bge_rx_bd *r;
4266 
4267 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4268 	r->bge_flags = BGE_RXBDFLAG_END;
4269 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4270 	r->bge_idx = i;
4271 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4272 }
4273 
4274 static __inline void
4275 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4276 {
4277 	struct bge_extrx_bd *r;
4278 
4279 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4280 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4281 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4282 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4283 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4284 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4285 	r->bge_idx = i;
4286 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4287 }
4288 
4289 /*
4290  * Frame reception handling. This is called if there's a frame
4291  * on the receive return list.
4292  *
4293  * Note: we have to be able to handle two possibilities here:
4294  * 1) the frame is from the jumbo receive ring
4295  * 2) the frame is from the standard receive ring
4296  */
4297 
4298 static int
4299 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4300 {
4301 	struct ifnet *ifp;
4302 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4303 	uint16_t rx_cons;
4304 
4305 	rx_cons = sc->bge_rx_saved_considx;
4306 
4307 	/* Nothing to do. */
4308 	if (rx_cons == rx_prod)
4309 		return (rx_npkts);
4310 
4311 	ifp = sc->bge_ifp;
4312 
4313 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4314 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4315 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4316 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4317 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4318 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4319 	    (MCLBYTES - ETHER_ALIGN))
4320 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4321 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4322 
4323 	while (rx_cons != rx_prod) {
4324 		struct bge_rx_bd	*cur_rx;
4325 		uint32_t		rxidx;
4326 		struct mbuf		*m = NULL;
4327 		uint16_t		vlan_tag = 0;
4328 		int			have_tag = 0;
4329 
4330 #ifdef DEVICE_POLLING
4331 		if (ifp->if_capenable & IFCAP_POLLING) {
4332 			if (sc->rxcycles <= 0)
4333 				break;
4334 			sc->rxcycles--;
4335 		}
4336 #endif
4337 
4338 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4339 
4340 		rxidx = cur_rx->bge_idx;
4341 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4342 
4343 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4344 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4345 			have_tag = 1;
4346 			vlan_tag = cur_rx->bge_vlan_tag;
4347 		}
4348 
4349 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4350 			jumbocnt++;
4351 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4352 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4353 				bge_rxreuse_jumbo(sc, rxidx);
4354 				continue;
4355 			}
4356 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4357 				bge_rxreuse_jumbo(sc, rxidx);
4358 				ifp->if_iqdrops++;
4359 				continue;
4360 			}
4361 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4362 		} else {
4363 			stdcnt++;
4364 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4365 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4366 				bge_rxreuse_std(sc, rxidx);
4367 				continue;
4368 			}
4369 			if (bge_newbuf_std(sc, rxidx) != 0) {
4370 				bge_rxreuse_std(sc, rxidx);
4371 				ifp->if_iqdrops++;
4372 				continue;
4373 			}
4374 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4375 		}
4376 
4377 		ifp->if_ipackets++;
4378 #ifndef __NO_STRICT_ALIGNMENT
4379 		/*
4380 		 * For architectures with strict alignment we must make sure
4381 		 * the payload is aligned.
4382 		 */
4383 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4384 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4385 			    cur_rx->bge_len);
4386 			m->m_data += ETHER_ALIGN;
4387 		}
4388 #endif
4389 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4390 		m->m_pkthdr.rcvif = ifp;
4391 
4392 		if (ifp->if_capenable & IFCAP_RXCSUM)
4393 			bge_rxcsum(sc, cur_rx, m);
4394 
4395 		/*
4396 		 * If we received a packet with a vlan tag,
4397 		 * attach that information to the packet.
4398 		 */
4399 		if (have_tag) {
4400 			m->m_pkthdr.ether_vtag = vlan_tag;
4401 			m->m_flags |= M_VLANTAG;
4402 		}
4403 
4404 		if (holdlck != 0) {
4405 			BGE_UNLOCK(sc);
4406 			(*ifp->if_input)(ifp, m);
4407 			BGE_LOCK(sc);
4408 		} else
4409 			(*ifp->if_input)(ifp, m);
4410 		rx_npkts++;
4411 
4412 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4413 			return (rx_npkts);
4414 	}
4415 
4416 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4417 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4418 	if (stdcnt > 0)
4419 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4420 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4421 
4422 	if (jumbocnt > 0)
4423 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4424 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4425 
4426 	sc->bge_rx_saved_considx = rx_cons;
4427 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4428 	if (stdcnt)
4429 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4430 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4431 	if (jumbocnt)
4432 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4433 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4434 #ifdef notyet
4435 	/*
4436 	 * This register wraps very quickly under heavy packet drops.
4437 	 * If you need correct statistics, you can enable this check.
4438 	 */
4439 	if (BGE_IS_5705_PLUS(sc))
4440 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4441 #endif
4442 	return (rx_npkts);
4443 }
4444 
4445 static void
4446 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4447 {
4448 
4449 	if (BGE_IS_5717_PLUS(sc)) {
4450 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4451 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4452 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4453 				if ((cur_rx->bge_error_flag &
4454 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4455 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4456 			}
4457 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4458 				m->m_pkthdr.csum_data =
4459 				    cur_rx->bge_tcp_udp_csum;
4460 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4461 				    CSUM_PSEUDO_HDR;
4462 			}
4463 		}
4464 	} else {
4465 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4466 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4467 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4468 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4469 		}
4470 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4471 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4472 			m->m_pkthdr.csum_data =
4473 			    cur_rx->bge_tcp_udp_csum;
4474 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4475 			    CSUM_PSEUDO_HDR;
4476 		}
4477 	}
4478 }
4479 
4480 static void
4481 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4482 {
4483 	struct bge_tx_bd *cur_tx;
4484 	struct ifnet *ifp;
4485 
4486 	BGE_LOCK_ASSERT(sc);
4487 
4488 	/* Nothing to do. */
4489 	if (sc->bge_tx_saved_considx == tx_cons)
4490 		return;
4491 
4492 	ifp = sc->bge_ifp;
4493 
4494 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4495 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4496 	/*
4497 	 * Go through our tx ring and free mbufs for those
4498 	 * frames that have been sent.
4499 	 */
4500 	while (sc->bge_tx_saved_considx != tx_cons) {
4501 		uint32_t		idx;
4502 
4503 		idx = sc->bge_tx_saved_considx;
4504 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4505 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4506 			ifp->if_opackets++;
4507 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4508 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4509 			    sc->bge_cdata.bge_tx_dmamap[idx],
4510 			    BUS_DMASYNC_POSTWRITE);
4511 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4512 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4513 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4514 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4515 		}
4516 		sc->bge_txcnt--;
4517 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4518 	}
4519 
4520 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4521 	if (sc->bge_txcnt == 0)
4522 		sc->bge_timer = 0;
4523 }
4524 
4525 #ifdef DEVICE_POLLING
4526 static int
4527 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4528 {
4529 	struct bge_softc *sc = ifp->if_softc;
4530 	uint16_t rx_prod, tx_cons;
4531 	uint32_t statusword;
4532 	int rx_npkts = 0;
4533 
4534 	BGE_LOCK(sc);
4535 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4536 		BGE_UNLOCK(sc);
4537 		return (rx_npkts);
4538 	}
4539 
4540 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4541 	    sc->bge_cdata.bge_status_map,
4542 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4543 	/* Fetch updates from the status block. */
4544 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4545 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4546 
4547 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4548 	/* Clear the status so the next pass only sees the changes. */
4549 	sc->bge_ldata.bge_status_block->bge_status = 0;
4550 
4551 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4552 	    sc->bge_cdata.bge_status_map,
4553 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4554 
4555 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4556 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4557 		sc->bge_link_evt++;
4558 
4559 	if (cmd == POLL_AND_CHECK_STATUS)
4560 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4561 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4562 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4563 			bge_link_upd(sc);
4564 
4565 	sc->rxcycles = count;
4566 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4567 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4568 		BGE_UNLOCK(sc);
4569 		return (rx_npkts);
4570 	}
4571 	bge_txeof(sc, tx_cons);
4572 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4573 		bge_start_locked(ifp);
4574 
4575 	BGE_UNLOCK(sc);
4576 	return (rx_npkts);
4577 }
4578 #endif /* DEVICE_POLLING */
4579 
4580 static int
4581 bge_msi_intr(void *arg)
4582 {
4583 	struct bge_softc *sc;
4584 
4585 	sc = (struct bge_softc *)arg;
4586 	/*
4587 	 * This interrupt is not shared and controller already
4588 	 * disabled further interrupt.
4589 	 */
4590 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4591 	return (FILTER_HANDLED);
4592 }
4593 
4594 static void
4595 bge_intr_task(void *arg, int pending)
4596 {
4597 	struct bge_softc *sc;
4598 	struct ifnet *ifp;
4599 	uint32_t status, status_tag;
4600 	uint16_t rx_prod, tx_cons;
4601 
4602 	sc = (struct bge_softc *)arg;
4603 	ifp = sc->bge_ifp;
4604 
4605 	BGE_LOCK(sc);
4606 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4607 		BGE_UNLOCK(sc);
4608 		return;
4609 	}
4610 
4611 	/* Get updated status block. */
4612 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4613 	    sc->bge_cdata.bge_status_map,
4614 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4615 
4616 	/* Save producer/consumer indices. */
4617 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4618 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4619 	status = sc->bge_ldata.bge_status_block->bge_status;
4620 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4621 	/* Dirty the status flag. */
4622 	sc->bge_ldata.bge_status_block->bge_status = 0;
4623 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4624 	    sc->bge_cdata.bge_status_map,
4625 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4626 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4627 		status_tag = 0;
4628 
4629 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4630 		bge_link_upd(sc);
4631 
4632 	/* Let controller work. */
4633 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4634 
4635 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4636 	    sc->bge_rx_saved_considx != rx_prod) {
4637 		/* Check RX return ring producer/consumer. */
4638 		BGE_UNLOCK(sc);
4639 		bge_rxeof(sc, rx_prod, 0);
4640 		BGE_LOCK(sc);
4641 	}
4642 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4643 		/* Check TX ring producer/consumer. */
4644 		bge_txeof(sc, tx_cons);
4645 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4646 			bge_start_locked(ifp);
4647 	}
4648 	BGE_UNLOCK(sc);
4649 }
4650 
4651 static void
4652 bge_intr(void *xsc)
4653 {
4654 	struct bge_softc *sc;
4655 	struct ifnet *ifp;
4656 	uint32_t statusword;
4657 	uint16_t rx_prod, tx_cons;
4658 
4659 	sc = xsc;
4660 
4661 	BGE_LOCK(sc);
4662 
4663 	ifp = sc->bge_ifp;
4664 
4665 #ifdef DEVICE_POLLING
4666 	if (ifp->if_capenable & IFCAP_POLLING) {
4667 		BGE_UNLOCK(sc);
4668 		return;
4669 	}
4670 #endif
4671 
4672 	/*
4673 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4674 	 * disable interrupts by writing nonzero like we used to, since with
4675 	 * our current organization this just gives complications and
4676 	 * pessimizations for re-enabling interrupts.  We used to have races
4677 	 * instead of the necessary complications.  Disabling interrupts
4678 	 * would just reduce the chance of a status update while we are
4679 	 * running (by switching to the interrupt-mode coalescence
4680 	 * parameters), but this chance is already very low so it is more
4681 	 * efficient to get another interrupt than prevent it.
4682 	 *
4683 	 * We do the ack first to ensure another interrupt if there is a
4684 	 * status update after the ack.  We don't check for the status
4685 	 * changing later because it is more efficient to get another
4686 	 * interrupt than prevent it, not quite as above (not checking is
4687 	 * a smaller optimization than not toggling the interrupt enable,
4688 	 * since checking doesn't involve PCI accesses and toggling require
4689 	 * the status check).  So toggling would probably be a pessimization
4690 	 * even with MSI.  It would only be needed for using a task queue.
4691 	 */
4692 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4693 
4694 	/*
4695 	 * Do the mandatory PCI flush as well as get the link status.
4696 	 */
4697 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4698 
4699 	/* Make sure the descriptor ring indexes are coherent. */
4700 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4701 	    sc->bge_cdata.bge_status_map,
4702 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4703 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4704 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4705 	sc->bge_ldata.bge_status_block->bge_status = 0;
4706 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4707 	    sc->bge_cdata.bge_status_map,
4708 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4709 
4710 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4711 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4712 	    statusword || sc->bge_link_evt)
4713 		bge_link_upd(sc);
4714 
4715 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4716 		/* Check RX return ring producer/consumer. */
4717 		bge_rxeof(sc, rx_prod, 1);
4718 	}
4719 
4720 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4721 		/* Check TX ring producer/consumer. */
4722 		bge_txeof(sc, tx_cons);
4723 	}
4724 
4725 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4726 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4727 		bge_start_locked(ifp);
4728 
4729 	BGE_UNLOCK(sc);
4730 }
4731 
4732 static void
4733 bge_asf_driver_up(struct bge_softc *sc)
4734 {
4735 	if (sc->bge_asf_mode & ASF_STACKUP) {
4736 		/* Send ASF heartbeat aprox. every 2s */
4737 		if (sc->bge_asf_count)
4738 			sc->bge_asf_count --;
4739 		else {
4740 			sc->bge_asf_count = 2;
4741 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4742 			    BGE_FW_CMD_DRV_ALIVE);
4743 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4744 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4745 			    BGE_FW_HB_TIMEOUT_SEC);
4746 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4747 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4748 			    BGE_RX_CPU_DRV_EVENT);
4749 		}
4750 	}
4751 }
4752 
4753 static void
4754 bge_tick(void *xsc)
4755 {
4756 	struct bge_softc *sc = xsc;
4757 	struct mii_data *mii = NULL;
4758 
4759 	BGE_LOCK_ASSERT(sc);
4760 
4761 	/* Synchronize with possible callout reset/stop. */
4762 	if (callout_pending(&sc->bge_stat_ch) ||
4763 	    !callout_active(&sc->bge_stat_ch))
4764 		return;
4765 
4766 	if (BGE_IS_5705_PLUS(sc))
4767 		bge_stats_update_regs(sc);
4768 	else
4769 		bge_stats_update(sc);
4770 
4771 	/* XXX Add APE heartbeat check here? */
4772 
4773 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4774 		mii = device_get_softc(sc->bge_miibus);
4775 		/*
4776 		 * Do not touch PHY if we have link up. This could break
4777 		 * IPMI/ASF mode or produce extra input errors
4778 		 * (extra errors was reported for bcm5701 & bcm5704).
4779 		 */
4780 		if (!sc->bge_link)
4781 			mii_tick(mii);
4782 	} else {
4783 		/*
4784 		 * Since in TBI mode auto-polling can't be used we should poll
4785 		 * link status manually. Here we register pending link event
4786 		 * and trigger interrupt.
4787 		 */
4788 #ifdef DEVICE_POLLING
4789 		/* In polling mode we poll link state in bge_poll(). */
4790 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4791 #endif
4792 		{
4793 		sc->bge_link_evt++;
4794 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4795 		    sc->bge_flags & BGE_FLAG_5788)
4796 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4797 		else
4798 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4799 		}
4800 	}
4801 
4802 	bge_asf_driver_up(sc);
4803 	bge_watchdog(sc);
4804 
4805 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4806 }
4807 
4808 static void
4809 bge_stats_update_regs(struct bge_softc *sc)
4810 {
4811 	struct ifnet *ifp;
4812 	struct bge_mac_stats *stats;
4813 	uint32_t val;
4814 
4815 	ifp = sc->bge_ifp;
4816 	stats = &sc->bge_mac_stats;
4817 
4818 	stats->ifHCOutOctets +=
4819 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4820 	stats->etherStatsCollisions +=
4821 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4822 	stats->outXonSent +=
4823 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4824 	stats->outXoffSent +=
4825 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4826 	stats->dot3StatsInternalMacTransmitErrors +=
4827 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4828 	stats->dot3StatsSingleCollisionFrames +=
4829 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4830 	stats->dot3StatsMultipleCollisionFrames +=
4831 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4832 	stats->dot3StatsDeferredTransmissions +=
4833 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4834 	stats->dot3StatsExcessiveCollisions +=
4835 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4836 	stats->dot3StatsLateCollisions +=
4837 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4838 	stats->ifHCOutUcastPkts +=
4839 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4840 	stats->ifHCOutMulticastPkts +=
4841 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4842 	stats->ifHCOutBroadcastPkts +=
4843 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4844 
4845 	stats->ifHCInOctets +=
4846 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4847 	stats->etherStatsFragments +=
4848 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4849 	stats->ifHCInUcastPkts +=
4850 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4851 	stats->ifHCInMulticastPkts +=
4852 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4853 	stats->ifHCInBroadcastPkts +=
4854 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4855 	stats->dot3StatsFCSErrors +=
4856 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4857 	stats->dot3StatsAlignmentErrors +=
4858 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4859 	stats->xonPauseFramesReceived +=
4860 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4861 	stats->xoffPauseFramesReceived +=
4862 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4863 	stats->macControlFramesReceived +=
4864 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4865 	stats->xoffStateEntered +=
4866 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4867 	stats->dot3StatsFramesTooLong +=
4868 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4869 	stats->etherStatsJabbers +=
4870 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4871 	stats->etherStatsUndersizePkts +=
4872 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4873 
4874 	stats->FramesDroppedDueToFilters +=
4875 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4876 	stats->DmaWriteQueueFull +=
4877 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4878 	stats->DmaWriteHighPriQueueFull +=
4879 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4880 	stats->NoMoreRxBDs +=
4881 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4882 	/*
4883 	 * XXX
4884 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4885 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4886 	 * includes number of unwanted multicast frames.  This comes
4887 	 * from silicon bug and known workaround to get rough(not
4888 	 * exact) counter is to enable interrupt on MBUF low water
4889 	 * attention.  This can be accomplished by setting
4890 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4891 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4892 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4893 	 * However that change would generate more interrupts and
4894 	 * there are still possibilities of losing multiple frames
4895 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4896 	 * Given that the workaround still would not get correct
4897 	 * counter I don't think it's worth to implement it.  So
4898 	 * ignore reading the counter on controllers that have the
4899 	 * silicon bug.
4900 	 */
4901 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4902 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4903 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4904 		stats->InputDiscards +=
4905 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4906 	stats->InputErrors +=
4907 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4908 	stats->RecvThresholdHit +=
4909 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4910 
4911 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4912 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4913 	    stats->InputErrors);
4914 
4915 	if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4916 		/*
4917 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4918 		 * frames, it's safe to disable workaround for DMA engine's
4919 		 * miscalculation of TXMBUF space.
4920 		 */
4921 		if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4922 		    stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4923 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4924 			if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4925 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4926 			else
4927 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4928 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4929 			sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4930 		}
4931 	}
4932 }
4933 
4934 static void
4935 bge_stats_clear_regs(struct bge_softc *sc)
4936 {
4937 
4938 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4939 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4940 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4941 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4942 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4943 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4944 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4945 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4946 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4947 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4948 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4949 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4950 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4951 
4952 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4953 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4954 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4955 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4956 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4957 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4958 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4959 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4960 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4961 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4962 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4963 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4964 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4965 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4966 
4967 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4968 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4969 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4970 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4971 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4972 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4973 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4974 }
4975 
4976 static void
4977 bge_stats_update(struct bge_softc *sc)
4978 {
4979 	struct ifnet *ifp;
4980 	bus_size_t stats;
4981 	uint32_t cnt;	/* current register value */
4982 
4983 	ifp = sc->bge_ifp;
4984 
4985 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4986 
4987 #define	READ_STAT(sc, stats, stat) \
4988 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4989 
4990 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4991 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4992 	sc->bge_tx_collisions = cnt;
4993 
4994 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4995 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4996 	sc->bge_rx_nobds = cnt;
4997 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4998 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4999 	sc->bge_rx_inerrs = cnt;
5000 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
5001 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
5002 	sc->bge_rx_discards = cnt;
5003 
5004 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
5005 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
5006 	sc->bge_tx_discards = cnt;
5007 
5008 #undef	READ_STAT
5009 }
5010 
5011 /*
5012  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5013  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5014  * but when such padded frames employ the bge IP/TCP checksum offload,
5015  * the hardware checksum assist gives incorrect results (possibly
5016  * from incorporating its own padding into the UDP/TCP checksum; who knows).
5017  * If we pad such runts with zeros, the onboard checksum comes out correct.
5018  */
5019 static __inline int
5020 bge_cksum_pad(struct mbuf *m)
5021 {
5022 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5023 	struct mbuf *last;
5024 
5025 	/* If there's only the packet-header and we can pad there, use it. */
5026 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5027 	    M_TRAILINGSPACE(m) >= padlen) {
5028 		last = m;
5029 	} else {
5030 		/*
5031 		 * Walk packet chain to find last mbuf. We will either
5032 		 * pad there, or append a new mbuf and pad it.
5033 		 */
5034 		for (last = m; last->m_next != NULL; last = last->m_next);
5035 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5036 			/* Allocate new empty mbuf, pad it. Compact later. */
5037 			struct mbuf *n;
5038 
5039 			MGET(n, M_NOWAIT, MT_DATA);
5040 			if (n == NULL)
5041 				return (ENOBUFS);
5042 			n->m_len = 0;
5043 			last->m_next = n;
5044 			last = n;
5045 		}
5046 	}
5047 
5048 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5049 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5050 	last->m_len += padlen;
5051 	m->m_pkthdr.len += padlen;
5052 
5053 	return (0);
5054 }
5055 
5056 static struct mbuf *
5057 bge_check_short_dma(struct mbuf *m)
5058 {
5059 	struct mbuf *n;
5060 	int found;
5061 
5062 	/*
5063 	 * If device receive two back-to-back send BDs with less than
5064 	 * or equal to 8 total bytes then the device may hang.  The two
5065 	 * back-to-back send BDs must in the same frame for this failure
5066 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5067 	 * send BDs are there. If this is the case, allocate new mbuf
5068 	 * and copy the frame to workaround the silicon bug.
5069 	 */
5070 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5071 		if (n->m_len < 8) {
5072 			found++;
5073 			if (found > 1)
5074 				break;
5075 			continue;
5076 		}
5077 		found = 0;
5078 	}
5079 
5080 	if (found > 1) {
5081 		n = m_defrag(m, M_NOWAIT);
5082 		if (n == NULL)
5083 			m_freem(m);
5084 	} else
5085 		n = m;
5086 	return (n);
5087 }
5088 
5089 static struct mbuf *
5090 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5091     uint16_t *flags)
5092 {
5093 	struct ip *ip;
5094 	struct tcphdr *tcp;
5095 	struct mbuf *n;
5096 	uint16_t hlen;
5097 	uint32_t poff;
5098 
5099 	if (M_WRITABLE(m) == 0) {
5100 		/* Get a writable copy. */
5101 		n = m_dup(m, M_NOWAIT);
5102 		m_freem(m);
5103 		if (n == NULL)
5104 			return (NULL);
5105 		m = n;
5106 	}
5107 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5108 	if (m == NULL)
5109 		return (NULL);
5110 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5111 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5112 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5113 	if (m == NULL)
5114 		return (NULL);
5115 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5116 	m = m_pullup(m, poff + (tcp->th_off << 2));
5117 	if (m == NULL)
5118 		return (NULL);
5119 	/*
5120 	 * It seems controller doesn't modify IP length and TCP pseudo
5121 	 * checksum. These checksum computed by upper stack should be 0.
5122 	 */
5123 	*mss = m->m_pkthdr.tso_segsz;
5124 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5125 	ip->ip_sum = 0;
5126 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5127 	/* Clear pseudo checksum computed by TCP stack. */
5128 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5129 	tcp->th_sum = 0;
5130 	/*
5131 	 * Broadcom controllers uses different descriptor format for
5132 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5133 	 * license issue and lower performance of firmware based TSO
5134 	 * we only support hardware based TSO.
5135 	 */
5136 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5137 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5138 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5139 		/*
5140 		 * For BCM5717 and newer controllers, hardware based TSO
5141 		 * uses the 14 lower bits of the bge_mss field to store the
5142 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5143 		 * the IP/TCP header length.  The upper 6 bits of the header
5144 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5145 		 * frames are supported.
5146 		 */
5147 		*mss |= ((hlen & 0x3) << 14);
5148 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5149 	} else {
5150 		/*
5151 		 * For BCM5755 and newer controllers, hardware based TSO uses
5152 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5153 		 * store the IP/TCP header length. Jumbo frames are not
5154 		 * supported.
5155 		 */
5156 		*mss |= (hlen << 11);
5157 	}
5158 	return (m);
5159 }
5160 
5161 /*
5162  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5163  * pointers to descriptors.
5164  */
5165 static int
5166 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5167 {
5168 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5169 	bus_dmamap_t		map;
5170 	struct bge_tx_bd	*d;
5171 	struct mbuf		*m = *m_head;
5172 	uint32_t		idx = *txidx;
5173 	uint16_t		csum_flags, mss, vlan_tag;
5174 	int			nsegs, i, error;
5175 
5176 	csum_flags = 0;
5177 	mss = 0;
5178 	vlan_tag = 0;
5179 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5180 	    m->m_next != NULL) {
5181 		*m_head = bge_check_short_dma(m);
5182 		if (*m_head == NULL)
5183 			return (ENOBUFS);
5184 		m = *m_head;
5185 	}
5186 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5187 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5188 		if (*m_head == NULL)
5189 			return (ENOBUFS);
5190 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5191 		    BGE_TXBDFLAG_CPU_POST_DMA;
5192 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5193 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5194 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5195 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5196 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5197 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5198 			    (error = bge_cksum_pad(m)) != 0) {
5199 				m_freem(m);
5200 				*m_head = NULL;
5201 				return (error);
5202 			}
5203 		}
5204 	}
5205 
5206 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5207 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5208 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5209 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5210 		if (sc->bge_forced_collapse > 0 &&
5211 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5212 			/*
5213 			 * Forcedly collapse mbuf chains to overcome hardware
5214 			 * limitation which only support a single outstanding
5215 			 * DMA read operation.
5216 			 */
5217 			if (sc->bge_forced_collapse == 1)
5218 				m = m_defrag(m, M_NOWAIT);
5219 			else
5220 				m = m_collapse(m, M_NOWAIT,
5221 				    sc->bge_forced_collapse);
5222 			if (m == NULL)
5223 				m = *m_head;
5224 			*m_head = m;
5225 		}
5226 	}
5227 
5228 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5229 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5230 	    &nsegs, BUS_DMA_NOWAIT);
5231 	if (error == EFBIG) {
5232 		m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5233 		if (m == NULL) {
5234 			m_freem(*m_head);
5235 			*m_head = NULL;
5236 			return (ENOBUFS);
5237 		}
5238 		*m_head = m;
5239 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5240 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5241 		if (error) {
5242 			m_freem(m);
5243 			*m_head = NULL;
5244 			return (error);
5245 		}
5246 	} else if (error != 0)
5247 		return (error);
5248 
5249 	/* Check if we have enough free send BDs. */
5250 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5251 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5252 		return (ENOBUFS);
5253 	}
5254 
5255 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5256 
5257 	if (m->m_flags & M_VLANTAG) {
5258 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5259 		vlan_tag = m->m_pkthdr.ether_vtag;
5260 	}
5261 
5262 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5263 	    (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5264 		/*
5265 		 * 5725 family of devices corrupts TSO packets when TSO DMA
5266 		 * buffers cross into regions which are within MSS bytes of
5267 		 * a 4GB boundary.  If we encounter the condition, drop the
5268 		 * packet.
5269 		 */
5270 		for (i = 0; ; i++) {
5271 			d = &sc->bge_ldata.bge_tx_ring[idx];
5272 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5273 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5274 			d->bge_len = segs[i].ds_len;
5275 			if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5276 			    d->bge_addr.bge_addr_lo)
5277 				break;
5278 			d->bge_flags = csum_flags;
5279 			d->bge_vlan_tag = vlan_tag;
5280 			d->bge_mss = mss;
5281 			if (i == nsegs - 1)
5282 				break;
5283 			BGE_INC(idx, BGE_TX_RING_CNT);
5284 		}
5285 		if (i != nsegs - 1) {
5286 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5287 			    BUS_DMASYNC_POSTWRITE);
5288 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5289 			m_freem(*m_head);
5290 			*m_head = NULL;
5291 			return (EIO);
5292 		}
5293 	} else {
5294 		for (i = 0; ; i++) {
5295 			d = &sc->bge_ldata.bge_tx_ring[idx];
5296 			d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5297 			d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5298 			d->bge_len = segs[i].ds_len;
5299 			d->bge_flags = csum_flags;
5300 			d->bge_vlan_tag = vlan_tag;
5301 			d->bge_mss = mss;
5302 			if (i == nsegs - 1)
5303 				break;
5304 			BGE_INC(idx, BGE_TX_RING_CNT);
5305 		}
5306 	}
5307 
5308 	/* Mark the last segment as end of packet... */
5309 	d->bge_flags |= BGE_TXBDFLAG_END;
5310 
5311 	/*
5312 	 * Insure that the map for this transmission
5313 	 * is placed at the array index of the last descriptor
5314 	 * in this chain.
5315 	 */
5316 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5317 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5318 	sc->bge_cdata.bge_tx_chain[idx] = m;
5319 	sc->bge_txcnt += nsegs;
5320 
5321 	BGE_INC(idx, BGE_TX_RING_CNT);
5322 	*txidx = idx;
5323 
5324 	return (0);
5325 }
5326 
5327 /*
5328  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5329  * to the mbuf data regions directly in the transmit descriptors.
5330  */
5331 static void
5332 bge_start_locked(struct ifnet *ifp)
5333 {
5334 	struct bge_softc *sc;
5335 	struct mbuf *m_head;
5336 	uint32_t prodidx;
5337 	int count;
5338 
5339 	sc = ifp->if_softc;
5340 	BGE_LOCK_ASSERT(sc);
5341 
5342 	if (!sc->bge_link ||
5343 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5344 	    IFF_DRV_RUNNING)
5345 		return;
5346 
5347 	prodidx = sc->bge_tx_prodidx;
5348 
5349 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5350 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5351 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5352 			break;
5353 		}
5354 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5355 		if (m_head == NULL)
5356 			break;
5357 
5358 		/*
5359 		 * Pack the data into the transmit ring. If we
5360 		 * don't have room, set the OACTIVE flag and wait
5361 		 * for the NIC to drain the ring.
5362 		 */
5363 		if (bge_encap(sc, &m_head, &prodidx)) {
5364 			if (m_head == NULL)
5365 				break;
5366 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5367 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5368 			break;
5369 		}
5370 		++count;
5371 
5372 		/*
5373 		 * If there's a BPF listener, bounce a copy of this frame
5374 		 * to him.
5375 		 */
5376 #ifdef ETHER_BPF_MTAP
5377 		ETHER_BPF_MTAP(ifp, m_head);
5378 #else
5379 		BPF_MTAP(ifp, m_head);
5380 #endif
5381 	}
5382 
5383 	if (count > 0) {
5384 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5385 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5386 		/* Transmit. */
5387 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5388 		/* 5700 b2 errata */
5389 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5390 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5391 
5392 		sc->bge_tx_prodidx = prodidx;
5393 
5394 		/*
5395 		 * Set a timeout in case the chip goes out to lunch.
5396 		 */
5397 		sc->bge_timer = BGE_TX_TIMEOUT;
5398 	}
5399 }
5400 
5401 /*
5402  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5403  * to the mbuf data regions directly in the transmit descriptors.
5404  */
5405 static void
5406 bge_start(struct ifnet *ifp)
5407 {
5408 	struct bge_softc *sc;
5409 
5410 	sc = ifp->if_softc;
5411 	BGE_LOCK(sc);
5412 	bge_start_locked(ifp);
5413 	BGE_UNLOCK(sc);
5414 }
5415 
5416 static void
5417 bge_init_locked(struct bge_softc *sc)
5418 {
5419 	struct ifnet *ifp;
5420 	uint16_t *m;
5421 	uint32_t mode;
5422 
5423 	BGE_LOCK_ASSERT(sc);
5424 
5425 	ifp = sc->bge_ifp;
5426 
5427 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5428 		return;
5429 
5430 	/* Cancel pending I/O and flush buffers. */
5431 	bge_stop(sc);
5432 
5433 	bge_stop_fw(sc);
5434 	bge_sig_pre_reset(sc, BGE_RESET_START);
5435 	bge_reset(sc);
5436 	bge_sig_legacy(sc, BGE_RESET_START);
5437 	bge_sig_post_reset(sc, BGE_RESET_START);
5438 
5439 	bge_chipinit(sc);
5440 
5441 	/*
5442 	 * Init the various state machines, ring
5443 	 * control blocks and firmware.
5444 	 */
5445 	if (bge_blockinit(sc)) {
5446 		device_printf(sc->bge_dev, "initialization failure\n");
5447 		return;
5448 	}
5449 
5450 	ifp = sc->bge_ifp;
5451 
5452 	/* Specify MTU. */
5453 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5454 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5455 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5456 
5457 	/* Load our MAC address. */
5458 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5459 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5460 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5461 
5462 	/* Program promiscuous mode. */
5463 	bge_setpromisc(sc);
5464 
5465 	/* Program multicast filter. */
5466 	bge_setmulti(sc);
5467 
5468 	/* Program VLAN tag stripping. */
5469 	bge_setvlan(sc);
5470 
5471 	/* Override UDP checksum offloading. */
5472 	if (sc->bge_forced_udpcsum == 0)
5473 		sc->bge_csum_features &= ~CSUM_UDP;
5474 	else
5475 		sc->bge_csum_features |= CSUM_UDP;
5476 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5477 	    ifp->if_capenable & IFCAP_TXCSUM) {
5478 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5479 		ifp->if_hwassist |= sc->bge_csum_features;
5480 	}
5481 
5482 	/* Init RX ring. */
5483 	if (bge_init_rx_ring_std(sc) != 0) {
5484 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5485 		bge_stop(sc);
5486 		return;
5487 	}
5488 
5489 	/*
5490 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5491 	 * memory to insure that the chip has in fact read the first
5492 	 * entry of the ring.
5493 	 */
5494 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5495 		uint32_t		v, i;
5496 		for (i = 0; i < 10; i++) {
5497 			DELAY(20);
5498 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5499 			if (v == (MCLBYTES - ETHER_ALIGN))
5500 				break;
5501 		}
5502 		if (i == 10)
5503 			device_printf (sc->bge_dev,
5504 			    "5705 A0 chip failed to load RX ring\n");
5505 	}
5506 
5507 	/* Init jumbo RX ring. */
5508 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5509 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5510 	    (MCLBYTES - ETHER_ALIGN)) {
5511 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5512 			device_printf(sc->bge_dev,
5513 			    "no memory for jumbo Rx buffers.\n");
5514 			bge_stop(sc);
5515 			return;
5516 		}
5517 	}
5518 
5519 	/* Init our RX return ring index. */
5520 	sc->bge_rx_saved_considx = 0;
5521 
5522 	/* Init our RX/TX stat counters. */
5523 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5524 
5525 	/* Init TX ring. */
5526 	bge_init_tx_ring(sc);
5527 
5528 	/* Enable TX MAC state machine lockup fix. */
5529 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5530 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5531 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5532 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5533 	    sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5534 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5535 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5536 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5537 	}
5538 	/* Turn on transmitter. */
5539 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5540 	DELAY(100);
5541 
5542 	/* Turn on receiver. */
5543 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5544 	if (BGE_IS_5755_PLUS(sc))
5545 		mode |= BGE_RXMODE_IPV6_ENABLE;
5546 	if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5547 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5548 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5549 	DELAY(10);
5550 
5551 	/*
5552 	 * Set the number of good frames to receive after RX MBUF
5553 	 * Low Watermark has been reached. After the RX MAC receives
5554 	 * this number of frames, it will drop subsequent incoming
5555 	 * frames until the MBUF High Watermark is reached.
5556 	 */
5557 	if (BGE_IS_57765_PLUS(sc))
5558 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5559 	else
5560 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5561 
5562 	/* Clear MAC statistics. */
5563 	if (BGE_IS_5705_PLUS(sc))
5564 		bge_stats_clear_regs(sc);
5565 
5566 	/* Tell firmware we're alive. */
5567 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5568 
5569 #ifdef DEVICE_POLLING
5570 	/* Disable interrupts if we are polling. */
5571 	if (ifp->if_capenable & IFCAP_POLLING) {
5572 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5573 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5574 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5575 	} else
5576 #endif
5577 
5578 	/* Enable host interrupts. */
5579 	{
5580 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5581 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5582 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5583 	}
5584 
5585 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5586 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5587 
5588 	bge_ifmedia_upd_locked(ifp);
5589 
5590 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5591 }
5592 
5593 static void
5594 bge_init(void *xsc)
5595 {
5596 	struct bge_softc *sc = xsc;
5597 
5598 	BGE_LOCK(sc);
5599 	bge_init_locked(sc);
5600 	BGE_UNLOCK(sc);
5601 }
5602 
5603 /*
5604  * Set media options.
5605  */
5606 static int
5607 bge_ifmedia_upd(struct ifnet *ifp)
5608 {
5609 	struct bge_softc *sc = ifp->if_softc;
5610 	int res;
5611 
5612 	BGE_LOCK(sc);
5613 	res = bge_ifmedia_upd_locked(ifp);
5614 	BGE_UNLOCK(sc);
5615 
5616 	return (res);
5617 }
5618 
5619 static int
5620 bge_ifmedia_upd_locked(struct ifnet *ifp)
5621 {
5622 	struct bge_softc *sc = ifp->if_softc;
5623 	struct mii_data *mii;
5624 	struct mii_softc *miisc;
5625 	struct ifmedia *ifm;
5626 
5627 	BGE_LOCK_ASSERT(sc);
5628 
5629 	ifm = &sc->bge_ifmedia;
5630 
5631 	/* If this is a 1000baseX NIC, enable the TBI port. */
5632 	if (sc->bge_flags & BGE_FLAG_TBI) {
5633 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5634 			return (EINVAL);
5635 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5636 		case IFM_AUTO:
5637 			/*
5638 			 * The BCM5704 ASIC appears to have a special
5639 			 * mechanism for programming the autoneg
5640 			 * advertisement registers in TBI mode.
5641 			 */
5642 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5643 				uint32_t sgdig;
5644 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5645 				if (sgdig & BGE_SGDIGSTS_DONE) {
5646 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5647 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5648 					sgdig |= BGE_SGDIGCFG_AUTO |
5649 					    BGE_SGDIGCFG_PAUSE_CAP |
5650 					    BGE_SGDIGCFG_ASYM_PAUSE;
5651 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5652 					    sgdig | BGE_SGDIGCFG_SEND);
5653 					DELAY(5);
5654 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5655 				}
5656 			}
5657 			break;
5658 		case IFM_1000_SX:
5659 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5660 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5661 				    BGE_MACMODE_HALF_DUPLEX);
5662 			} else {
5663 				BGE_SETBIT(sc, BGE_MAC_MODE,
5664 				    BGE_MACMODE_HALF_DUPLEX);
5665 			}
5666 			DELAY(40);
5667 			break;
5668 		default:
5669 			return (EINVAL);
5670 		}
5671 		return (0);
5672 	}
5673 
5674 	sc->bge_link_evt++;
5675 	mii = device_get_softc(sc->bge_miibus);
5676 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5677 		PHY_RESET(miisc);
5678 	mii_mediachg(mii);
5679 
5680 	/*
5681 	 * Force an interrupt so that we will call bge_link_upd
5682 	 * if needed and clear any pending link state attention.
5683 	 * Without this we are not getting any further interrupts
5684 	 * for link state changes and thus will not UP the link and
5685 	 * not be able to send in bge_start_locked. The only
5686 	 * way to get things working was to receive a packet and
5687 	 * get an RX intr.
5688 	 * bge_tick should help for fiber cards and we might not
5689 	 * need to do this here if BGE_FLAG_TBI is set but as
5690 	 * we poll for fiber anyway it should not harm.
5691 	 */
5692 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5693 	    sc->bge_flags & BGE_FLAG_5788)
5694 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5695 	else
5696 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5697 
5698 	return (0);
5699 }
5700 
5701 /*
5702  * Report current media status.
5703  */
5704 static void
5705 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5706 {
5707 	struct bge_softc *sc = ifp->if_softc;
5708 	struct mii_data *mii;
5709 
5710 	BGE_LOCK(sc);
5711 
5712 	if ((ifp->if_flags & IFF_UP) == 0) {
5713 		BGE_UNLOCK(sc);
5714 		return;
5715 	}
5716 	if (sc->bge_flags & BGE_FLAG_TBI) {
5717 		ifmr->ifm_status = IFM_AVALID;
5718 		ifmr->ifm_active = IFM_ETHER;
5719 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5720 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5721 			ifmr->ifm_status |= IFM_ACTIVE;
5722 		else {
5723 			ifmr->ifm_active |= IFM_NONE;
5724 			BGE_UNLOCK(sc);
5725 			return;
5726 		}
5727 		ifmr->ifm_active |= IFM_1000_SX;
5728 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5729 			ifmr->ifm_active |= IFM_HDX;
5730 		else
5731 			ifmr->ifm_active |= IFM_FDX;
5732 		BGE_UNLOCK(sc);
5733 		return;
5734 	}
5735 
5736 	mii = device_get_softc(sc->bge_miibus);
5737 	mii_pollstat(mii);
5738 	ifmr->ifm_active = mii->mii_media_active;
5739 	ifmr->ifm_status = mii->mii_media_status;
5740 
5741 	BGE_UNLOCK(sc);
5742 }
5743 
5744 static int
5745 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5746 {
5747 	struct bge_softc *sc = ifp->if_softc;
5748 	struct ifreq *ifr = (struct ifreq *) data;
5749 	struct mii_data *mii;
5750 	int flags, mask, error = 0;
5751 
5752 	switch (command) {
5753 	case SIOCSIFMTU:
5754 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5755 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5756 			if (ifr->ifr_mtu < ETHERMIN ||
5757 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5758 				error = EINVAL;
5759 				break;
5760 			}
5761 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5762 			error = EINVAL;
5763 			break;
5764 		}
5765 		BGE_LOCK(sc);
5766 		if (ifp->if_mtu != ifr->ifr_mtu) {
5767 			ifp->if_mtu = ifr->ifr_mtu;
5768 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5769 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5770 				bge_init_locked(sc);
5771 			}
5772 		}
5773 		BGE_UNLOCK(sc);
5774 		break;
5775 	case SIOCSIFFLAGS:
5776 		BGE_LOCK(sc);
5777 		if (ifp->if_flags & IFF_UP) {
5778 			/*
5779 			 * If only the state of the PROMISC flag changed,
5780 			 * then just use the 'set promisc mode' command
5781 			 * instead of reinitializing the entire NIC. Doing
5782 			 * a full re-init means reloading the firmware and
5783 			 * waiting for it to start up, which may take a
5784 			 * second or two.  Similarly for ALLMULTI.
5785 			 */
5786 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5787 				flags = ifp->if_flags ^ sc->bge_if_flags;
5788 				if (flags & IFF_PROMISC)
5789 					bge_setpromisc(sc);
5790 				if (flags & IFF_ALLMULTI)
5791 					bge_setmulti(sc);
5792 			} else
5793 				bge_init_locked(sc);
5794 		} else {
5795 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5796 				bge_stop(sc);
5797 			}
5798 		}
5799 		sc->bge_if_flags = ifp->if_flags;
5800 		BGE_UNLOCK(sc);
5801 		error = 0;
5802 		break;
5803 	case SIOCADDMULTI:
5804 	case SIOCDELMULTI:
5805 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5806 			BGE_LOCK(sc);
5807 			bge_setmulti(sc);
5808 			BGE_UNLOCK(sc);
5809 			error = 0;
5810 		}
5811 		break;
5812 	case SIOCSIFMEDIA:
5813 	case SIOCGIFMEDIA:
5814 		if (sc->bge_flags & BGE_FLAG_TBI) {
5815 			error = ifmedia_ioctl(ifp, ifr,
5816 			    &sc->bge_ifmedia, command);
5817 		} else {
5818 			mii = device_get_softc(sc->bge_miibus);
5819 			error = ifmedia_ioctl(ifp, ifr,
5820 			    &mii->mii_media, command);
5821 		}
5822 		break;
5823 	case SIOCSIFCAP:
5824 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5825 #ifdef DEVICE_POLLING
5826 		if (mask & IFCAP_POLLING) {
5827 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5828 				error = ether_poll_register(bge_poll, ifp);
5829 				if (error)
5830 					return (error);
5831 				BGE_LOCK(sc);
5832 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5833 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5834 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5835 				ifp->if_capenable |= IFCAP_POLLING;
5836 				BGE_UNLOCK(sc);
5837 			} else {
5838 				error = ether_poll_deregister(ifp);
5839 				/* Enable interrupt even in error case */
5840 				BGE_LOCK(sc);
5841 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5842 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5843 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5844 				ifp->if_capenable &= ~IFCAP_POLLING;
5845 				BGE_UNLOCK(sc);
5846 			}
5847 		}
5848 #endif
5849 		if ((mask & IFCAP_TXCSUM) != 0 &&
5850 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5851 			ifp->if_capenable ^= IFCAP_TXCSUM;
5852 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5853 				ifp->if_hwassist |= sc->bge_csum_features;
5854 			else
5855 				ifp->if_hwassist &= ~sc->bge_csum_features;
5856 		}
5857 
5858 		if ((mask & IFCAP_RXCSUM) != 0 &&
5859 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5860 			ifp->if_capenable ^= IFCAP_RXCSUM;
5861 
5862 		if ((mask & IFCAP_TSO4) != 0 &&
5863 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5864 			ifp->if_capenable ^= IFCAP_TSO4;
5865 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5866 				ifp->if_hwassist |= CSUM_TSO;
5867 			else
5868 				ifp->if_hwassist &= ~CSUM_TSO;
5869 		}
5870 
5871 		if (mask & IFCAP_VLAN_MTU) {
5872 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5873 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5874 			bge_init(sc);
5875 		}
5876 
5877 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5878 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5879 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5880 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5881 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5882 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5883 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5884 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5885 			BGE_LOCK(sc);
5886 			bge_setvlan(sc);
5887 			BGE_UNLOCK(sc);
5888 		}
5889 #ifdef VLAN_CAPABILITIES
5890 		VLAN_CAPABILITIES(ifp);
5891 #endif
5892 		break;
5893 	default:
5894 		error = ether_ioctl(ifp, command, data);
5895 		break;
5896 	}
5897 
5898 	return (error);
5899 }
5900 
5901 static void
5902 bge_watchdog(struct bge_softc *sc)
5903 {
5904 	struct ifnet *ifp;
5905 	uint32_t status;
5906 
5907 	BGE_LOCK_ASSERT(sc);
5908 
5909 	if (sc->bge_timer == 0 || --sc->bge_timer)
5910 		return;
5911 
5912 	/* If pause frames are active then don't reset the hardware. */
5913 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5914 		status = CSR_READ_4(sc, BGE_RX_STS);
5915 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5916 			/*
5917 			 * If link partner has us in XOFF state then wait for
5918 			 * the condition to clear.
5919 			 */
5920 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5921 			sc->bge_timer = BGE_TX_TIMEOUT;
5922 			return;
5923 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5924 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5925 			/*
5926 			 * If link partner has us in XOFF state then wait for
5927 			 * the condition to clear.
5928 			 */
5929 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5930 			sc->bge_timer = BGE_TX_TIMEOUT;
5931 			return;
5932 		}
5933 		/*
5934 		 * Any other condition is unexpected and the controller
5935 		 * should be reset.
5936 		 */
5937 	}
5938 
5939 	ifp = sc->bge_ifp;
5940 
5941 	if_printf(ifp, "watchdog timeout -- resetting\n");
5942 
5943 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5944 	bge_init_locked(sc);
5945 
5946 	ifp->if_oerrors++;
5947 }
5948 
5949 static void
5950 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5951 {
5952 	int i;
5953 
5954 	BGE_CLRBIT(sc, reg, bit);
5955 
5956 	for (i = 0; i < BGE_TIMEOUT; i++) {
5957 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5958 			return;
5959 		DELAY(100);
5960         }
5961 }
5962 
5963 /*
5964  * Stop the adapter and free any mbufs allocated to the
5965  * RX and TX lists.
5966  */
5967 static void
5968 bge_stop(struct bge_softc *sc)
5969 {
5970 	struct ifnet *ifp;
5971 
5972 	BGE_LOCK_ASSERT(sc);
5973 
5974 	ifp = sc->bge_ifp;
5975 
5976 	callout_stop(&sc->bge_stat_ch);
5977 
5978 	/* Disable host interrupts. */
5979 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5980 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5981 
5982 	/*
5983 	 * Tell firmware we're shutting down.
5984 	 */
5985 	bge_stop_fw(sc);
5986 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5987 
5988 	/*
5989 	 * Disable all of the receiver blocks.
5990 	 */
5991 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5992 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5993 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5994 	if (BGE_IS_5700_FAMILY(sc))
5995 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5996 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5997 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5998 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5999 
6000 	/*
6001 	 * Disable all of the transmit blocks.
6002 	 */
6003 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6004 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6005 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6006 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6007 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6008 	if (BGE_IS_5700_FAMILY(sc))
6009 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6010 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6011 
6012 	/*
6013 	 * Shut down all of the memory managers and related
6014 	 * state machines.
6015 	 */
6016 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6017 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6018 	if (BGE_IS_5700_FAMILY(sc))
6019 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6020 
6021 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6022 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6023 	if (!(BGE_IS_5705_PLUS(sc))) {
6024 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6025 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6026 	}
6027 	/* Update MAC statistics. */
6028 	if (BGE_IS_5705_PLUS(sc))
6029 		bge_stats_update_regs(sc);
6030 
6031 	bge_reset(sc);
6032 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6033 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6034 
6035 	/*
6036 	 * Keep the ASF firmware running if up.
6037 	 */
6038 	if (sc->bge_asf_mode & ASF_STACKUP)
6039 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6040 	else
6041 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6042 
6043 	/* Free the RX lists. */
6044 	bge_free_rx_ring_std(sc);
6045 
6046 	/* Free jumbo RX list. */
6047 	if (BGE_IS_JUMBO_CAPABLE(sc))
6048 		bge_free_rx_ring_jumbo(sc);
6049 
6050 	/* Free TX buffers. */
6051 	bge_free_tx_ring(sc);
6052 
6053 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6054 
6055 	/* Clear MAC's link state (PHY may still have link UP). */
6056 	if (bootverbose && sc->bge_link)
6057 		if_printf(sc->bge_ifp, "link DOWN\n");
6058 	sc->bge_link = 0;
6059 
6060 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6061 }
6062 
6063 /*
6064  * Stop all chip I/O so that the kernel's probe routines don't
6065  * get confused by errant DMAs when rebooting.
6066  */
6067 static int
6068 bge_shutdown(device_t dev)
6069 {
6070 	struct bge_softc *sc;
6071 
6072 	sc = device_get_softc(dev);
6073 	BGE_LOCK(sc);
6074 	bge_stop(sc);
6075 	BGE_UNLOCK(sc);
6076 
6077 	return (0);
6078 }
6079 
6080 static int
6081 bge_suspend(device_t dev)
6082 {
6083 	struct bge_softc *sc;
6084 
6085 	sc = device_get_softc(dev);
6086 	BGE_LOCK(sc);
6087 	bge_stop(sc);
6088 	BGE_UNLOCK(sc);
6089 
6090 	return (0);
6091 }
6092 
6093 static int
6094 bge_resume(device_t dev)
6095 {
6096 	struct bge_softc *sc;
6097 	struct ifnet *ifp;
6098 
6099 	sc = device_get_softc(dev);
6100 	BGE_LOCK(sc);
6101 	ifp = sc->bge_ifp;
6102 	if (ifp->if_flags & IFF_UP) {
6103 		bge_init_locked(sc);
6104 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6105 			bge_start_locked(ifp);
6106 	}
6107 	BGE_UNLOCK(sc);
6108 
6109 	return (0);
6110 }
6111 
6112 static void
6113 bge_link_upd(struct bge_softc *sc)
6114 {
6115 	struct mii_data *mii;
6116 	uint32_t link, status;
6117 
6118 	BGE_LOCK_ASSERT(sc);
6119 
6120 	/* Clear 'pending link event' flag. */
6121 	sc->bge_link_evt = 0;
6122 
6123 	/*
6124 	 * Process link state changes.
6125 	 * Grrr. The link status word in the status block does
6126 	 * not work correctly on the BCM5700 rev AX and BX chips,
6127 	 * according to all available information. Hence, we have
6128 	 * to enable MII interrupts in order to properly obtain
6129 	 * async link changes. Unfortunately, this also means that
6130 	 * we have to read the MAC status register to detect link
6131 	 * changes, thereby adding an additional register access to
6132 	 * the interrupt handler.
6133 	 *
6134 	 * XXX: perhaps link state detection procedure used for
6135 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6136 	 */
6137 
6138 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6139 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6140 		status = CSR_READ_4(sc, BGE_MAC_STS);
6141 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6142 			mii = device_get_softc(sc->bge_miibus);
6143 			mii_pollstat(mii);
6144 			if (!sc->bge_link &&
6145 			    mii->mii_media_status & IFM_ACTIVE &&
6146 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6147 				sc->bge_link++;
6148 				if (bootverbose)
6149 					if_printf(sc->bge_ifp, "link UP\n");
6150 			} else if (sc->bge_link &&
6151 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6152 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6153 				sc->bge_link = 0;
6154 				if (bootverbose)
6155 					if_printf(sc->bge_ifp, "link DOWN\n");
6156 			}
6157 
6158 			/* Clear the interrupt. */
6159 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6160 			    BGE_EVTENB_MI_INTERRUPT);
6161 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6162 			    BRGPHY_MII_ISR);
6163 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6164 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6165 		}
6166 		return;
6167 	}
6168 
6169 	if (sc->bge_flags & BGE_FLAG_TBI) {
6170 		status = CSR_READ_4(sc, BGE_MAC_STS);
6171 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6172 			if (!sc->bge_link) {
6173 				sc->bge_link++;
6174 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6175 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6176 					    BGE_MACMODE_TBI_SEND_CFGS);
6177 					DELAY(40);
6178 				}
6179 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6180 				if (bootverbose)
6181 					if_printf(sc->bge_ifp, "link UP\n");
6182 				if_link_state_change(sc->bge_ifp,
6183 				    LINK_STATE_UP);
6184 			}
6185 		} else if (sc->bge_link) {
6186 			sc->bge_link = 0;
6187 			if (bootverbose)
6188 				if_printf(sc->bge_ifp, "link DOWN\n");
6189 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6190 		}
6191 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6192 		/*
6193 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6194 		 * in status word always set. Workaround this bug by reading
6195 		 * PHY link status directly.
6196 		 */
6197 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6198 
6199 		if (link != sc->bge_link ||
6200 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6201 			mii = device_get_softc(sc->bge_miibus);
6202 			mii_pollstat(mii);
6203 			if (!sc->bge_link &&
6204 			    mii->mii_media_status & IFM_ACTIVE &&
6205 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6206 				sc->bge_link++;
6207 				if (bootverbose)
6208 					if_printf(sc->bge_ifp, "link UP\n");
6209 			} else if (sc->bge_link &&
6210 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6211 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6212 				sc->bge_link = 0;
6213 				if (bootverbose)
6214 					if_printf(sc->bge_ifp, "link DOWN\n");
6215 			}
6216 		}
6217 	} else {
6218 		/*
6219 		 * For controllers that call mii_tick, we have to poll
6220 		 * link status.
6221 		 */
6222 		mii = device_get_softc(sc->bge_miibus);
6223 		mii_pollstat(mii);
6224 		bge_miibus_statchg(sc->bge_dev);
6225 	}
6226 
6227 	/* Disable MAC attention when link is up. */
6228 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6229 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6230 	    BGE_MACSTAT_LINK_CHANGED);
6231 }
6232 
6233 static void
6234 bge_add_sysctls(struct bge_softc *sc)
6235 {
6236 	struct sysctl_ctx_list *ctx;
6237 	struct sysctl_oid_list *children;
6238 	char tn[32];
6239 	int unit;
6240 
6241 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6242 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6243 
6244 #ifdef BGE_REGISTER_DEBUG
6245 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6246 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6247 	    "Debug Information");
6248 
6249 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6250 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6251 	    "MAC Register Read");
6252 
6253 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6254 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6255 	    "APE Register Read");
6256 
6257 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6258 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6259 	    "Memory Read");
6260 
6261 #endif
6262 
6263 	unit = device_get_unit(sc->bge_dev);
6264 	/*
6265 	 * A common design characteristic for many Broadcom client controllers
6266 	 * is that they only support a single outstanding DMA read operation
6267 	 * on the PCIe bus. This means that it will take twice as long to fetch
6268 	 * a TX frame that is split into header and payload buffers as it does
6269 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6270 	 * these controllers, coalescing buffers to reduce the number of memory
6271 	 * reads is effective way to get maximum performance(about 940Mbps).
6272 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6273 	 * performance is about 850Mbps. However forcing coalescing mbufs
6274 	 * consumes a lot of CPU cycles, so leave it off by default.
6275 	 */
6276 	sc->bge_forced_collapse = 0;
6277 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6278 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6279 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6280 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6281 	    "Number of fragmented TX buffers of a frame allowed before "
6282 	    "forced collapsing");
6283 
6284 	sc->bge_msi = 1;
6285 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6286 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6287 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6288 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6289 
6290 	/*
6291 	 * It seems all Broadcom controllers have a bug that can generate UDP
6292 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6293 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6294 	 * Even though the probability of generating such UDP datagrams is
6295 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6296 	 * into network so disable UDP checksum offloading by default.  Users
6297 	 * still override this behavior by setting a sysctl variable,
6298 	 * dev.bge.0.forced_udpcsum.
6299 	 */
6300 	sc->bge_forced_udpcsum = 0;
6301 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6302 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6303 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6304 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6305 	    "Enable UDP checksum offloading even if controller can "
6306 	    "generate UDP checksum value 0");
6307 
6308 	if (BGE_IS_5705_PLUS(sc))
6309 		bge_add_sysctl_stats_regs(sc, ctx, children);
6310 	else
6311 		bge_add_sysctl_stats(sc, ctx, children);
6312 }
6313 
6314 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6315 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6316 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6317 	    desc)
6318 
6319 static void
6320 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6321     struct sysctl_oid_list *parent)
6322 {
6323 	struct sysctl_oid *tree;
6324 	struct sysctl_oid_list *children, *schildren;
6325 
6326 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6327 	    NULL, "BGE Statistics");
6328 	schildren = children = SYSCTL_CHILDREN(tree);
6329 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6330 	    children, COSFramesDroppedDueToFilters,
6331 	    "FramesDroppedDueToFilters");
6332 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6333 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6334 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6335 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6336 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6337 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6338 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6339 	    children, ifInDiscards, "InputDiscards");
6340 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6341 	    children, ifInErrors, "InputErrors");
6342 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6343 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6344 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6345 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6346 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6347 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6348 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6349 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6350 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6351 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6352 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6353 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6354 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6355 	    children, nicInterrupts, "Interrupts");
6356 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6357 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6358 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6359 	    children, nicSendThresholdHit, "SendThresholdHit");
6360 
6361 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6362 	    NULL, "BGE RX Statistics");
6363 	children = SYSCTL_CHILDREN(tree);
6364 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6365 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6366 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6367 	    children, rxstats.etherStatsFragments, "Fragments");
6368 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6369 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6370 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6371 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6372 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6373 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6374 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6375 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6376 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6377 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6378 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6379 	    children, rxstats.xoffPauseFramesReceived,
6380 	    "xoffPauseFramesReceived");
6381 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6382 	    children, rxstats.macControlFramesReceived,
6383 	    "ControlFramesReceived");
6384 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6385 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6386 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6387 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6388 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6389 	    children, rxstats.etherStatsJabbers, "Jabbers");
6390 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6391 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6392 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6393 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6394 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6395 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6396 
6397 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6398 	    NULL, "BGE TX Statistics");
6399 	children = SYSCTL_CHILDREN(tree);
6400 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6401 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6402 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6403 	    children, txstats.etherStatsCollisions, "Collisions");
6404 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6405 	    children, txstats.outXonSent, "XonSent");
6406 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6407 	    children, txstats.outXoffSent, "XoffSent");
6408 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6409 	    children, txstats.flowControlDone, "flowControlDone");
6410 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6411 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6412 	    "InternalMacTransmitErrors");
6413 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6414 	    children, txstats.dot3StatsSingleCollisionFrames,
6415 	    "SingleCollisionFrames");
6416 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6417 	    children, txstats.dot3StatsMultipleCollisionFrames,
6418 	    "MultipleCollisionFrames");
6419 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6420 	    children, txstats.dot3StatsDeferredTransmissions,
6421 	    "DeferredTransmissions");
6422 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6423 	    children, txstats.dot3StatsExcessiveCollisions,
6424 	    "ExcessiveCollisions");
6425 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6426 	    children, txstats.dot3StatsLateCollisions,
6427 	    "LateCollisions");
6428 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6429 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6430 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6431 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6432 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6433 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6434 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6435 	    children, txstats.dot3StatsCarrierSenseErrors,
6436 	    "CarrierSenseErrors");
6437 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6438 	    children, txstats.ifOutDiscards, "Discards");
6439 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6440 	    children, txstats.ifOutErrors, "Errors");
6441 }
6442 
6443 #undef BGE_SYSCTL_STAT
6444 
6445 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6446 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6447 
6448 static void
6449 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6450     struct sysctl_oid_list *parent)
6451 {
6452 	struct sysctl_oid *tree;
6453 	struct sysctl_oid_list *child, *schild;
6454 	struct bge_mac_stats *stats;
6455 
6456 	stats = &sc->bge_mac_stats;
6457 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6458 	    NULL, "BGE Statistics");
6459 	schild = child = SYSCTL_CHILDREN(tree);
6460 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6461 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6462 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6463 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6464 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6465 	    &stats->DmaWriteHighPriQueueFull,
6466 	    "NIC DMA Write High Priority Queue Full");
6467 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6468 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6469 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6470 	    &stats->InputDiscards, "Discarded Input Frames");
6471 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6472 	    &stats->InputErrors, "Input Errors");
6473 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6474 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6475 
6476 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6477 	    NULL, "BGE RX Statistics");
6478 	child = SYSCTL_CHILDREN(tree);
6479 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6480 	    &stats->ifHCInOctets, "Inbound Octets");
6481 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6482 	    &stats->etherStatsFragments, "Fragments");
6483 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6484 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6485 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6486 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6487 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6488 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6489 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6490 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6491 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6492 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6493 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6494 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6495 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6496 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6497 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6498 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6499 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6500 	    &stats->xoffStateEntered, "XOFF State Entered");
6501 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6502 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6503 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6504 	    &stats->etherStatsJabbers, "Jabbers");
6505 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6506 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6507 
6508 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6509 	    NULL, "BGE TX Statistics");
6510 	child = SYSCTL_CHILDREN(tree);
6511 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6512 	    &stats->ifHCOutOctets, "Outbound Octets");
6513 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6514 	    &stats->etherStatsCollisions, "TX Collisions");
6515 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6516 	    &stats->outXonSent, "XON Sent");
6517 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6518 	    &stats->outXoffSent, "XOFF Sent");
6519 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6520 	    &stats->dot3StatsInternalMacTransmitErrors,
6521 	    "Internal MAC TX Errors");
6522 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6523 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6524 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6525 	    &stats->dot3StatsMultipleCollisionFrames,
6526 	    "Multiple Collision Frames");
6527 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6528 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6529 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6530 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6531 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6532 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6533 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6534 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6535 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6536 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6537 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6538 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6539 }
6540 
6541 #undef	BGE_SYSCTL_STAT_ADD64
6542 
6543 static int
6544 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6545 {
6546 	struct bge_softc *sc;
6547 	uint32_t result;
6548 	int offset;
6549 
6550 	sc = (struct bge_softc *)arg1;
6551 	offset = arg2;
6552 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6553 	    offsetof(bge_hostaddr, bge_addr_lo));
6554 	return (sysctl_handle_int(oidp, &result, 0, req));
6555 }
6556 
6557 #ifdef BGE_REGISTER_DEBUG
6558 static int
6559 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6560 {
6561 	struct bge_softc *sc;
6562 	uint16_t *sbdata;
6563 	int error, result, sbsz;
6564 	int i, j;
6565 
6566 	result = -1;
6567 	error = sysctl_handle_int(oidp, &result, 0, req);
6568 	if (error || (req->newptr == NULL))
6569 		return (error);
6570 
6571 	if (result == 1) {
6572 		sc = (struct bge_softc *)arg1;
6573 
6574 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6575 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6576 			sbsz = BGE_STATUS_BLK_SZ;
6577 		else
6578 			sbsz = 32;
6579 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6580 		printf("Status Block:\n");
6581 		BGE_LOCK(sc);
6582 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6583 		    sc->bge_cdata.bge_status_map,
6584 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6585 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6586 			printf("%06x:", i);
6587 			for (j = 0; j < 8; j++)
6588 				printf(" %04x", sbdata[i++]);
6589 			printf("\n");
6590 		}
6591 
6592 		printf("Registers:\n");
6593 		for (i = 0x800; i < 0xA00; ) {
6594 			printf("%06x:", i);
6595 			for (j = 0; j < 8; j++) {
6596 				printf(" %08x", CSR_READ_4(sc, i));
6597 				i += 4;
6598 			}
6599 			printf("\n");
6600 		}
6601 		BGE_UNLOCK(sc);
6602 
6603 		printf("Hardware Flags:\n");
6604 		if (BGE_IS_5717_PLUS(sc))
6605 			printf(" - 5717 Plus\n");
6606 		if (BGE_IS_5755_PLUS(sc))
6607 			printf(" - 5755 Plus\n");
6608 		if (BGE_IS_575X_PLUS(sc))
6609 			printf(" - 575X Plus\n");
6610 		if (BGE_IS_5705_PLUS(sc))
6611 			printf(" - 5705 Plus\n");
6612 		if (BGE_IS_5714_FAMILY(sc))
6613 			printf(" - 5714 Family\n");
6614 		if (BGE_IS_5700_FAMILY(sc))
6615 			printf(" - 5700 Family\n");
6616 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6617 			printf(" - Supports Jumbo Frames\n");
6618 		if (sc->bge_flags & BGE_FLAG_PCIX)
6619 			printf(" - PCI-X Bus\n");
6620 		if (sc->bge_flags & BGE_FLAG_PCIE)
6621 			printf(" - PCI Express Bus\n");
6622 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6623 			printf(" - No 3 LEDs\n");
6624 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6625 			printf(" - RX Alignment Bug\n");
6626 	}
6627 
6628 	return (error);
6629 }
6630 
6631 static int
6632 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6633 {
6634 	struct bge_softc *sc;
6635 	int error;
6636 	uint16_t result;
6637 	uint32_t val;
6638 
6639 	result = -1;
6640 	error = sysctl_handle_int(oidp, &result, 0, req);
6641 	if (error || (req->newptr == NULL))
6642 		return (error);
6643 
6644 	if (result < 0x8000) {
6645 		sc = (struct bge_softc *)arg1;
6646 		val = CSR_READ_4(sc, result);
6647 		printf("reg 0x%06X = 0x%08X\n", result, val);
6648 	}
6649 
6650 	return (error);
6651 }
6652 
6653 static int
6654 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6655 {
6656 	struct bge_softc *sc;
6657 	int error;
6658 	uint16_t result;
6659 	uint32_t val;
6660 
6661 	result = -1;
6662 	error = sysctl_handle_int(oidp, &result, 0, req);
6663 	if (error || (req->newptr == NULL))
6664 		return (error);
6665 
6666 	if (result < 0x8000) {
6667 		sc = (struct bge_softc *)arg1;
6668 		val = APE_READ_4(sc, result);
6669 		printf("reg 0x%06X = 0x%08X\n", result, val);
6670 	}
6671 
6672 	return (error);
6673 }
6674 
6675 static int
6676 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6677 {
6678 	struct bge_softc *sc;
6679 	int error;
6680 	uint16_t result;
6681 	uint32_t val;
6682 
6683 	result = -1;
6684 	error = sysctl_handle_int(oidp, &result, 0, req);
6685 	if (error || (req->newptr == NULL))
6686 		return (error);
6687 
6688 	if (result < 0x8000) {
6689 		sc = (struct bge_softc *)arg1;
6690 		val = bge_readmem_ind(sc, result);
6691 		printf("mem 0x%06X = 0x%08X\n", result, val);
6692 	}
6693 
6694 	return (error);
6695 }
6696 #endif
6697 
6698 static int
6699 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6700 {
6701 
6702 	if (sc->bge_flags & BGE_FLAG_EADDR)
6703 		return (1);
6704 
6705 #ifdef __sparc64__
6706 	OF_getetheraddr(sc->bge_dev, ether_addr);
6707 	return (0);
6708 #endif
6709 	return (1);
6710 }
6711 
6712 static int
6713 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6714 {
6715 	uint32_t mac_addr;
6716 
6717 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6718 	if ((mac_addr >> 16) == 0x484b) {
6719 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6720 		ether_addr[1] = (uint8_t)mac_addr;
6721 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6722 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6723 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6724 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6725 		ether_addr[5] = (uint8_t)mac_addr;
6726 		return (0);
6727 	}
6728 	return (1);
6729 }
6730 
6731 static int
6732 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6733 {
6734 	int mac_offset = BGE_EE_MAC_OFFSET;
6735 
6736 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6737 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6738 
6739 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6740 	    ETHER_ADDR_LEN));
6741 }
6742 
6743 static int
6744 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6745 {
6746 
6747 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6748 		return (1);
6749 
6750 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6751 	   ETHER_ADDR_LEN));
6752 }
6753 
6754 static int
6755 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6756 {
6757 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6758 		/* NOTE: Order is critical */
6759 		bge_get_eaddr_fw,
6760 		bge_get_eaddr_mem,
6761 		bge_get_eaddr_nvram,
6762 		bge_get_eaddr_eeprom,
6763 		NULL
6764 	};
6765 	const bge_eaddr_fcn_t *func;
6766 
6767 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6768 		if ((*func)(sc, eaddr) == 0)
6769 			break;
6770 	}
6771 	return (*func == NULL ? ENXIO : 0);
6772 }
6773