1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 227 228 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 229 230 { TC_VENDORID, TC_DEVICEID_3C996 }, 231 232 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 233 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 234 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 235 236 { 0, 0 } 237 }; 238 239 static const struct bge_vendor { 240 uint16_t v_id; 241 const char *v_name; 242 } const bge_vendors[] = { 243 { ALTEON_VENDORID, "Alteon" }, 244 { ALTIMA_VENDORID, "Altima" }, 245 { APPLE_VENDORID, "Apple" }, 246 { BCOM_VENDORID, "Broadcom" }, 247 { SK_VENDORID, "SysKonnect" }, 248 { TC_VENDORID, "3Com" }, 249 { FJTSU_VENDORID, "Fujitsu" }, 250 251 { 0, NULL } 252 }; 253 254 static const struct bge_revision { 255 uint32_t br_chipid; 256 const char *br_name; 257 } const bge_revisions[] = { 258 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 259 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 260 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 261 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 262 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 263 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 264 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 265 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 266 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 267 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 268 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 269 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 270 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 271 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 272 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 273 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 274 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 275 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 276 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 277 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 278 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 279 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 280 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 281 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 282 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 283 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 284 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 285 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 286 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 287 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 288 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 289 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 290 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 291 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 292 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 293 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 294 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 295 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 296 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 297 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 298 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 299 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 300 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 301 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 302 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 303 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 304 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 305 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 306 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 307 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 308 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 309 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 310 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 311 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 312 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 313 /* 5754 and 5787 share the same ASIC ID */ 314 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 315 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 316 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 317 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 318 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 319 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 320 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 321 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 322 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 323 324 { 0, NULL } 325 }; 326 327 /* 328 * Some defaults for major revisions, so that newer steppings 329 * that we don't know about have a shot at working. 330 */ 331 static const struct bge_revision const bge_majorrevs[] = { 332 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 333 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 334 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 335 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 336 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 337 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 338 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 339 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 340 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 341 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 342 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 343 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 344 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 345 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 346 /* 5754 and 5787 share the same ASIC ID */ 347 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 348 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 349 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 350 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 351 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 352 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 353 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 354 355 { 0, NULL } 356 }; 357 358 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 359 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 360 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 361 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 362 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 363 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 364 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 365 366 const struct bge_revision * bge_lookup_rev(uint32_t); 367 const struct bge_vendor * bge_lookup_vendor(uint16_t); 368 369 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 370 371 static int bge_probe(device_t); 372 static int bge_attach(device_t); 373 static int bge_detach(device_t); 374 static int bge_suspend(device_t); 375 static int bge_resume(device_t); 376 static void bge_release_resources(struct bge_softc *); 377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 378 static int bge_dma_alloc(struct bge_softc *); 379 static void bge_dma_free(struct bge_softc *); 380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 381 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 382 383 static void bge_devinfo(struct bge_softc *); 384 static int bge_mbox_reorder(struct bge_softc *); 385 386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 391 392 static void bge_txeof(struct bge_softc *, uint16_t); 393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 394 static int bge_rxeof(struct bge_softc *, uint16_t, int); 395 396 static void bge_asf_driver_up (struct bge_softc *); 397 static void bge_tick(void *); 398 static void bge_stats_clear_regs(struct bge_softc *); 399 static void bge_stats_update(struct bge_softc *); 400 static void bge_stats_update_regs(struct bge_softc *); 401 static struct mbuf *bge_check_short_dma(struct mbuf *); 402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 403 uint16_t *, uint16_t *); 404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 405 406 static void bge_intr(void *); 407 static int bge_msi_intr(void *); 408 static void bge_intr_task(void *, int); 409 static void bge_start_locked(struct ifnet *); 410 static void bge_start(struct ifnet *); 411 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 412 static void bge_init_locked(struct bge_softc *); 413 static void bge_init(void *); 414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 415 static void bge_stop(struct bge_softc *); 416 static void bge_watchdog(struct bge_softc *); 417 static int bge_shutdown(device_t); 418 static int bge_ifmedia_upd_locked(struct ifnet *); 419 static int bge_ifmedia_upd(struct ifnet *); 420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 421 422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 424 425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 427 428 static void bge_setpromisc(struct bge_softc *); 429 static void bge_setmulti(struct bge_softc *); 430 static void bge_setvlan(struct bge_softc *); 431 432 static __inline void bge_rxreuse_std(struct bge_softc *, int); 433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 434 static int bge_newbuf_std(struct bge_softc *, int); 435 static int bge_newbuf_jumbo(struct bge_softc *, int); 436 static int bge_init_rx_ring_std(struct bge_softc *); 437 static void bge_free_rx_ring_std(struct bge_softc *); 438 static int bge_init_rx_ring_jumbo(struct bge_softc *); 439 static void bge_free_rx_ring_jumbo(struct bge_softc *); 440 static void bge_free_tx_ring(struct bge_softc *); 441 static int bge_init_tx_ring(struct bge_softc *); 442 443 static int bge_chipinit(struct bge_softc *); 444 static int bge_blockinit(struct bge_softc *); 445 static uint32_t bge_dma_swap_options(struct bge_softc *); 446 447 static int bge_has_eaddr(struct bge_softc *); 448 static uint32_t bge_readmem_ind(struct bge_softc *, int); 449 static void bge_writemem_ind(struct bge_softc *, int, int); 450 static void bge_writembx(struct bge_softc *, int, int); 451 #ifdef notdef 452 static uint32_t bge_readreg_ind(struct bge_softc *, int); 453 #endif 454 static void bge_writemem_direct(struct bge_softc *, int, int); 455 static void bge_writereg_ind(struct bge_softc *, int, int); 456 457 static int bge_miibus_readreg(device_t, int, int); 458 static int bge_miibus_writereg(device_t, int, int, int); 459 static void bge_miibus_statchg(device_t); 460 #ifdef DEVICE_POLLING 461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 462 #endif 463 464 #define BGE_RESET_START 1 465 #define BGE_RESET_STOP 2 466 static void bge_sig_post_reset(struct bge_softc *, int); 467 static void bge_sig_legacy(struct bge_softc *, int); 468 static void bge_sig_pre_reset(struct bge_softc *, int); 469 static void bge_stop_fw(struct bge_softc *); 470 static int bge_reset(struct bge_softc *); 471 static void bge_link_upd(struct bge_softc *); 472 473 /* 474 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 475 * leak information to untrusted users. It is also known to cause alignment 476 * traps on certain architectures. 477 */ 478 #ifdef BGE_REGISTER_DEBUG 479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 482 #endif 483 static void bge_add_sysctls(struct bge_softc *); 484 static void bge_add_sysctl_stats_regs(struct bge_softc *, 485 struct sysctl_ctx_list *, struct sysctl_oid_list *); 486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 487 struct sysctl_oid_list *); 488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 489 490 static device_method_t bge_methods[] = { 491 /* Device interface */ 492 DEVMETHOD(device_probe, bge_probe), 493 DEVMETHOD(device_attach, bge_attach), 494 DEVMETHOD(device_detach, bge_detach), 495 DEVMETHOD(device_shutdown, bge_shutdown), 496 DEVMETHOD(device_suspend, bge_suspend), 497 DEVMETHOD(device_resume, bge_resume), 498 499 /* MII interface */ 500 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 501 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 502 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 503 504 DEVMETHOD_END 505 }; 506 507 static driver_t bge_driver = { 508 "bge", 509 bge_methods, 510 sizeof(struct bge_softc) 511 }; 512 513 static devclass_t bge_devclass; 514 515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 517 518 static int bge_allow_asf = 1; 519 520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 521 522 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 524 "Allow ASF mode if available"); 525 526 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 527 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 528 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 529 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 530 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 531 532 static int 533 bge_has_eaddr(struct bge_softc *sc) 534 { 535 #ifdef __sparc64__ 536 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 537 device_t dev; 538 uint32_t subvendor; 539 540 dev = sc->bge_dev; 541 542 /* 543 * The on-board BGEs found in sun4u machines aren't fitted with 544 * an EEPROM which means that we have to obtain the MAC address 545 * via OFW and that some tests will always fail. We distinguish 546 * such BGEs by the subvendor ID, which also has to be obtained 547 * from OFW instead of the PCI configuration space as the latter 548 * indicates Broadcom as the subvendor of the netboot interface. 549 * For early Blade 1500 and 2500 we even have to check the OFW 550 * device path as the subvendor ID always defaults to Broadcom 551 * there. 552 */ 553 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 554 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 555 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 556 return (0); 557 memset(buf, 0, sizeof(buf)); 558 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 559 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 560 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 561 return (0); 562 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 563 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 564 return (0); 565 } 566 #endif 567 return (1); 568 } 569 570 static uint32_t 571 bge_readmem_ind(struct bge_softc *sc, int off) 572 { 573 device_t dev; 574 uint32_t val; 575 576 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 577 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 578 return (0); 579 580 dev = sc->bge_dev; 581 582 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 583 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 584 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 585 return (val); 586 } 587 588 static void 589 bge_writemem_ind(struct bge_softc *sc, int off, int val) 590 { 591 device_t dev; 592 593 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 594 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 595 return; 596 597 dev = sc->bge_dev; 598 599 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 600 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 601 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 602 } 603 604 #ifdef notdef 605 static uint32_t 606 bge_readreg_ind(struct bge_softc *sc, int off) 607 { 608 device_t dev; 609 610 dev = sc->bge_dev; 611 612 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 613 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 614 } 615 #endif 616 617 static void 618 bge_writereg_ind(struct bge_softc *sc, int off, int val) 619 { 620 device_t dev; 621 622 dev = sc->bge_dev; 623 624 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 625 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 626 } 627 628 static void 629 bge_writemem_direct(struct bge_softc *sc, int off, int val) 630 { 631 CSR_WRITE_4(sc, off, val); 632 } 633 634 static void 635 bge_writembx(struct bge_softc *sc, int off, int val) 636 { 637 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 638 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 639 640 CSR_WRITE_4(sc, off, val); 641 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 642 CSR_READ_4(sc, off); 643 } 644 645 /* 646 * Map a single buffer address. 647 */ 648 649 static void 650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 651 { 652 struct bge_dmamap_arg *ctx; 653 654 if (error) 655 return; 656 657 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 658 659 ctx = arg; 660 ctx->bge_busaddr = segs->ds_addr; 661 } 662 663 static uint8_t 664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 665 { 666 uint32_t access, byte = 0; 667 int i; 668 669 /* Lock. */ 670 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 671 for (i = 0; i < 8000; i++) { 672 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 673 break; 674 DELAY(20); 675 } 676 if (i == 8000) 677 return (1); 678 679 /* Enable access. */ 680 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 681 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 682 683 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 684 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 685 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 686 DELAY(10); 687 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 688 DELAY(10); 689 break; 690 } 691 } 692 693 if (i == BGE_TIMEOUT * 10) { 694 if_printf(sc->bge_ifp, "nvram read timed out\n"); 695 return (1); 696 } 697 698 /* Get result. */ 699 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 700 701 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 702 703 /* Disable access. */ 704 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 705 706 /* Unlock. */ 707 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 708 CSR_READ_4(sc, BGE_NVRAM_SWARB); 709 710 return (0); 711 } 712 713 /* 714 * Read a sequence of bytes from NVRAM. 715 */ 716 static int 717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 718 { 719 int err = 0, i; 720 uint8_t byte = 0; 721 722 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 723 return (1); 724 725 for (i = 0; i < cnt; i++) { 726 err = bge_nvram_getbyte(sc, off + i, &byte); 727 if (err) 728 break; 729 *(dest + i) = byte; 730 } 731 732 return (err ? 1 : 0); 733 } 734 735 /* 736 * Read a byte of data stored in the EEPROM at address 'addr.' The 737 * BCM570x supports both the traditional bitbang interface and an 738 * auto access interface for reading the EEPROM. We use the auto 739 * access method. 740 */ 741 static uint8_t 742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 743 { 744 int i; 745 uint32_t byte = 0; 746 747 /* 748 * Enable use of auto EEPROM access so we can avoid 749 * having to use the bitbang method. 750 */ 751 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 752 753 /* Reset the EEPROM, load the clock period. */ 754 CSR_WRITE_4(sc, BGE_EE_ADDR, 755 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 756 DELAY(20); 757 758 /* Issue the read EEPROM command. */ 759 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 760 761 /* Wait for completion */ 762 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 763 DELAY(10); 764 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 765 break; 766 } 767 768 if (i == BGE_TIMEOUT * 10) { 769 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 770 return (1); 771 } 772 773 /* Get result. */ 774 byte = CSR_READ_4(sc, BGE_EE_DATA); 775 776 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 777 778 return (0); 779 } 780 781 /* 782 * Read a sequence of bytes from the EEPROM. 783 */ 784 static int 785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 786 { 787 int i, error = 0; 788 uint8_t byte = 0; 789 790 for (i = 0; i < cnt; i++) { 791 error = bge_eeprom_getbyte(sc, off + i, &byte); 792 if (error) 793 break; 794 *(dest + i) = byte; 795 } 796 797 return (error ? 1 : 0); 798 } 799 800 static int 801 bge_miibus_readreg(device_t dev, int phy, int reg) 802 { 803 struct bge_softc *sc; 804 uint32_t val; 805 int i; 806 807 sc = device_get_softc(dev); 808 809 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 810 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 811 CSR_WRITE_4(sc, BGE_MI_MODE, 812 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 813 DELAY(80); 814 } 815 816 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 817 BGE_MIPHY(phy) | BGE_MIREG(reg)); 818 819 /* Poll for the PHY register access to complete. */ 820 for (i = 0; i < BGE_TIMEOUT; i++) { 821 DELAY(10); 822 val = CSR_READ_4(sc, BGE_MI_COMM); 823 if ((val & BGE_MICOMM_BUSY) == 0) { 824 DELAY(5); 825 val = CSR_READ_4(sc, BGE_MI_COMM); 826 break; 827 } 828 } 829 830 if (i == BGE_TIMEOUT) { 831 device_printf(sc->bge_dev, 832 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 833 phy, reg, val); 834 val = 0; 835 } 836 837 /* Restore the autopoll bit if necessary. */ 838 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 839 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 840 DELAY(80); 841 } 842 843 if (val & BGE_MICOMM_READFAIL) 844 return (0); 845 846 return (val & 0xFFFF); 847 } 848 849 static int 850 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 851 { 852 struct bge_softc *sc; 853 int i; 854 855 sc = device_get_softc(dev); 856 857 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 858 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 859 return (0); 860 861 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 862 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 863 CSR_WRITE_4(sc, BGE_MI_MODE, 864 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 865 DELAY(80); 866 } 867 868 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 869 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 870 871 for (i = 0; i < BGE_TIMEOUT; i++) { 872 DELAY(10); 873 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 874 DELAY(5); 875 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 876 break; 877 } 878 } 879 880 /* Restore the autopoll bit if necessary. */ 881 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 882 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 883 DELAY(80); 884 } 885 886 if (i == BGE_TIMEOUT) 887 device_printf(sc->bge_dev, 888 "PHY write timed out (phy %d, reg %d, val %d)\n", 889 phy, reg, val); 890 891 return (0); 892 } 893 894 static void 895 bge_miibus_statchg(device_t dev) 896 { 897 struct bge_softc *sc; 898 struct mii_data *mii; 899 uint32_t mac_mode, rx_mode, tx_mode; 900 901 sc = device_get_softc(dev); 902 if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 903 return; 904 mii = device_get_softc(sc->bge_miibus); 905 906 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 907 (IFM_ACTIVE | IFM_AVALID)) { 908 switch (IFM_SUBTYPE(mii->mii_media_active)) { 909 case IFM_10_T: 910 case IFM_100_TX: 911 sc->bge_link = 1; 912 break; 913 case IFM_1000_T: 914 case IFM_1000_SX: 915 case IFM_2500_SX: 916 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 917 sc->bge_link = 1; 918 else 919 sc->bge_link = 0; 920 break; 921 default: 922 sc->bge_link = 0; 923 break; 924 } 925 } else 926 sc->bge_link = 0; 927 if (sc->bge_link == 0) 928 return; 929 930 /* 931 * APE firmware touches these registers to keep the MAC 932 * connected to the outside world. Try to keep the 933 * accesses atomic. 934 */ 935 936 /* Set the port mode (MII/GMII) to match the link speed. */ 937 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 938 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 939 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 940 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 941 942 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 943 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 944 mac_mode |= BGE_PORTMODE_GMII; 945 else 946 mac_mode |= BGE_PORTMODE_MII; 947 948 /* Set MAC flow control behavior to match link flow control settings. */ 949 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 950 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 951 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 952 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 953 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 954 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 955 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 956 } else 957 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 958 959 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 960 DELAY(40); 961 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 962 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 963 } 964 965 /* 966 * Intialize a standard receive ring descriptor. 967 */ 968 static int 969 bge_newbuf_std(struct bge_softc *sc, int i) 970 { 971 struct mbuf *m; 972 struct bge_rx_bd *r; 973 bus_dma_segment_t segs[1]; 974 bus_dmamap_t map; 975 int error, nsegs; 976 977 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 978 (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 979 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 980 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 981 if (m == NULL) 982 return (ENOBUFS); 983 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 984 } else { 985 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 986 if (m == NULL) 987 return (ENOBUFS); 988 m->m_len = m->m_pkthdr.len = MCLBYTES; 989 } 990 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 991 m_adj(m, ETHER_ALIGN); 992 993 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 994 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 995 if (error != 0) { 996 m_freem(m); 997 return (error); 998 } 999 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1000 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1001 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1002 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1003 sc->bge_cdata.bge_rx_std_dmamap[i]); 1004 } 1005 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1006 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1007 sc->bge_cdata.bge_rx_std_sparemap = map; 1008 sc->bge_cdata.bge_rx_std_chain[i] = m; 1009 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1010 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1011 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1012 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1013 r->bge_flags = BGE_RXBDFLAG_END; 1014 r->bge_len = segs[0].ds_len; 1015 r->bge_idx = i; 1016 1017 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1018 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1019 1020 return (0); 1021 } 1022 1023 /* 1024 * Initialize a jumbo receive ring descriptor. This allocates 1025 * a jumbo buffer from the pool managed internally by the driver. 1026 */ 1027 static int 1028 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1029 { 1030 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1031 bus_dmamap_t map; 1032 struct bge_extrx_bd *r; 1033 struct mbuf *m; 1034 int error, nsegs; 1035 1036 MGETHDR(m, M_DONTWAIT, MT_DATA); 1037 if (m == NULL) 1038 return (ENOBUFS); 1039 1040 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1041 if (!(m->m_flags & M_EXT)) { 1042 m_freem(m); 1043 return (ENOBUFS); 1044 } 1045 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1046 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1047 m_adj(m, ETHER_ALIGN); 1048 1049 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1050 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1051 if (error != 0) { 1052 m_freem(m); 1053 return (error); 1054 } 1055 1056 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1057 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1058 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1059 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1060 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1061 } 1062 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1063 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1064 sc->bge_cdata.bge_rx_jumbo_sparemap; 1065 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1066 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1067 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1068 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1069 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1070 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1071 1072 /* 1073 * Fill in the extended RX buffer descriptor. 1074 */ 1075 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1076 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1077 r->bge_idx = i; 1078 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1079 switch (nsegs) { 1080 case 4: 1081 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1082 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1083 r->bge_len3 = segs[3].ds_len; 1084 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1085 case 3: 1086 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1087 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1088 r->bge_len2 = segs[2].ds_len; 1089 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1090 case 2: 1091 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1092 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1093 r->bge_len1 = segs[1].ds_len; 1094 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1095 case 1: 1096 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1097 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1098 r->bge_len0 = segs[0].ds_len; 1099 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1100 break; 1101 default: 1102 panic("%s: %d segments\n", __func__, nsegs); 1103 } 1104 1105 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1106 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1107 1108 return (0); 1109 } 1110 1111 static int 1112 bge_init_rx_ring_std(struct bge_softc *sc) 1113 { 1114 int error, i; 1115 1116 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1117 sc->bge_std = 0; 1118 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1119 if ((error = bge_newbuf_std(sc, i)) != 0) 1120 return (error); 1121 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1122 } 1123 1124 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1125 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1126 1127 sc->bge_std = 0; 1128 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1129 1130 return (0); 1131 } 1132 1133 static void 1134 bge_free_rx_ring_std(struct bge_softc *sc) 1135 { 1136 int i; 1137 1138 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1139 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1140 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1141 sc->bge_cdata.bge_rx_std_dmamap[i], 1142 BUS_DMASYNC_POSTREAD); 1143 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1144 sc->bge_cdata.bge_rx_std_dmamap[i]); 1145 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1146 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1147 } 1148 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1149 sizeof(struct bge_rx_bd)); 1150 } 1151 } 1152 1153 static int 1154 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1155 { 1156 struct bge_rcb *rcb; 1157 int error, i; 1158 1159 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1160 sc->bge_jumbo = 0; 1161 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1162 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1163 return (error); 1164 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1165 } 1166 1167 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1168 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1169 1170 sc->bge_jumbo = 0; 1171 1172 /* Enable the jumbo receive producer ring. */ 1173 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1174 rcb->bge_maxlen_flags = 1175 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1176 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1177 1178 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1179 1180 return (0); 1181 } 1182 1183 static void 1184 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1185 { 1186 int i; 1187 1188 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1189 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1190 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1191 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1192 BUS_DMASYNC_POSTREAD); 1193 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1194 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1195 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1196 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1197 } 1198 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1199 sizeof(struct bge_extrx_bd)); 1200 } 1201 } 1202 1203 static void 1204 bge_free_tx_ring(struct bge_softc *sc) 1205 { 1206 int i; 1207 1208 if (sc->bge_ldata.bge_tx_ring == NULL) 1209 return; 1210 1211 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1212 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1213 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1214 sc->bge_cdata.bge_tx_dmamap[i], 1215 BUS_DMASYNC_POSTWRITE); 1216 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1217 sc->bge_cdata.bge_tx_dmamap[i]); 1218 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1219 sc->bge_cdata.bge_tx_chain[i] = NULL; 1220 } 1221 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1222 sizeof(struct bge_tx_bd)); 1223 } 1224 } 1225 1226 static int 1227 bge_init_tx_ring(struct bge_softc *sc) 1228 { 1229 sc->bge_txcnt = 0; 1230 sc->bge_tx_saved_considx = 0; 1231 1232 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1233 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1234 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1235 1236 /* Initialize transmit producer index for host-memory send ring. */ 1237 sc->bge_tx_prodidx = 0; 1238 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1239 1240 /* 5700 b2 errata */ 1241 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1242 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1243 1244 /* NIC-memory send ring not used; initialize to zero. */ 1245 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1246 /* 5700 b2 errata */ 1247 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1248 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1249 1250 return (0); 1251 } 1252 1253 static void 1254 bge_setpromisc(struct bge_softc *sc) 1255 { 1256 struct ifnet *ifp; 1257 1258 BGE_LOCK_ASSERT(sc); 1259 1260 ifp = sc->bge_ifp; 1261 1262 /* Enable or disable promiscuous mode as needed. */ 1263 if (ifp->if_flags & IFF_PROMISC) 1264 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1265 else 1266 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1267 } 1268 1269 static void 1270 bge_setmulti(struct bge_softc *sc) 1271 { 1272 struct ifnet *ifp; 1273 struct ifmultiaddr *ifma; 1274 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1275 int h, i; 1276 1277 BGE_LOCK_ASSERT(sc); 1278 1279 ifp = sc->bge_ifp; 1280 1281 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1282 for (i = 0; i < 4; i++) 1283 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1284 return; 1285 } 1286 1287 /* First, zot all the existing filters. */ 1288 for (i = 0; i < 4; i++) 1289 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1290 1291 /* Now program new ones. */ 1292 if_maddr_rlock(ifp); 1293 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1294 if (ifma->ifma_addr->sa_family != AF_LINK) 1295 continue; 1296 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1297 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1298 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1299 } 1300 if_maddr_runlock(ifp); 1301 1302 for (i = 0; i < 4; i++) 1303 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1304 } 1305 1306 static void 1307 bge_setvlan(struct bge_softc *sc) 1308 { 1309 struct ifnet *ifp; 1310 1311 BGE_LOCK_ASSERT(sc); 1312 1313 ifp = sc->bge_ifp; 1314 1315 /* Enable or disable VLAN tag stripping as needed. */ 1316 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1317 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1318 else 1319 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1320 } 1321 1322 static void 1323 bge_sig_pre_reset(struct bge_softc *sc, int type) 1324 { 1325 1326 /* 1327 * Some chips don't like this so only do this if ASF is enabled 1328 */ 1329 if (sc->bge_asf_mode) 1330 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1331 1332 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1333 switch (type) { 1334 case BGE_RESET_START: 1335 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1336 BGE_FW_DRV_STATE_START); 1337 break; 1338 case BGE_RESET_STOP: 1339 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1340 BGE_FW_DRV_STATE_UNLOAD); 1341 break; 1342 } 1343 } 1344 } 1345 1346 static void 1347 bge_sig_post_reset(struct bge_softc *sc, int type) 1348 { 1349 1350 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1351 switch (type) { 1352 case BGE_RESET_START: 1353 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1354 BGE_FW_DRV_STATE_START_DONE); 1355 /* START DONE */ 1356 break; 1357 case BGE_RESET_STOP: 1358 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1359 BGE_FW_DRV_STATE_UNLOAD_DONE); 1360 break; 1361 } 1362 } 1363 } 1364 1365 static void 1366 bge_sig_legacy(struct bge_softc *sc, int type) 1367 { 1368 1369 if (sc->bge_asf_mode) { 1370 switch (type) { 1371 case BGE_RESET_START: 1372 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1373 BGE_FW_DRV_STATE_START); 1374 break; 1375 case BGE_RESET_STOP: 1376 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1377 BGE_FW_DRV_STATE_UNLOAD); 1378 break; 1379 } 1380 } 1381 } 1382 1383 static void 1384 bge_stop_fw(struct bge_softc *sc) 1385 { 1386 int i; 1387 1388 if (sc->bge_asf_mode) { 1389 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1390 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1391 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1392 1393 for (i = 0; i < 100; i++ ) { 1394 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1395 BGE_RX_CPU_DRV_EVENT)) 1396 break; 1397 DELAY(10); 1398 } 1399 } 1400 } 1401 1402 static uint32_t 1403 bge_dma_swap_options(struct bge_softc *sc) 1404 { 1405 uint32_t dma_options; 1406 1407 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1408 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1409 #if BYTE_ORDER == BIG_ENDIAN 1410 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1411 #endif 1412 if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720) 1413 dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1414 BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE | 1415 BGE_MODECTL_HTX2B_ENABLE; 1416 1417 return (dma_options); 1418 } 1419 1420 /* 1421 * Do endian, PCI and DMA initialization. 1422 */ 1423 static int 1424 bge_chipinit(struct bge_softc *sc) 1425 { 1426 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1427 uint16_t val; 1428 int i; 1429 1430 /* Set endianness before we access any non-PCI registers. */ 1431 misc_ctl = BGE_INIT; 1432 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1433 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1434 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1435 1436 /* Clear the MAC control register */ 1437 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1438 DELAY(40); 1439 1440 /* 1441 * Clear the MAC statistics block in the NIC's 1442 * internal memory. 1443 */ 1444 for (i = BGE_STATS_BLOCK; 1445 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1446 BGE_MEMWIN_WRITE(sc, i, 0); 1447 1448 for (i = BGE_STATUS_BLOCK; 1449 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1450 BGE_MEMWIN_WRITE(sc, i, 0); 1451 1452 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1453 /* 1454 * Fix data corruption caused by non-qword write with WB. 1455 * Fix master abort in PCI mode. 1456 * Fix PCI latency timer. 1457 */ 1458 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1459 val |= (1 << 10) | (1 << 12) | (1 << 13); 1460 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1461 } 1462 1463 /* 1464 * Set up the PCI DMA control register. 1465 */ 1466 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1467 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1468 if (sc->bge_flags & BGE_FLAG_PCIE) { 1469 /* Read watermark not used, 128 bytes for write. */ 1470 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1471 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1472 if (BGE_IS_5714_FAMILY(sc)) { 1473 /* 256 bytes for read and write. */ 1474 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1475 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1476 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1477 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1478 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1479 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1480 /* 1481 * In the BCM5703, the DMA read watermark should 1482 * be set to less than or equal to the maximum 1483 * memory read byte count of the PCI-X command 1484 * register. 1485 */ 1486 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1487 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1488 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1489 /* 1536 bytes for read, 384 bytes for write. */ 1490 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1491 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1492 } else { 1493 /* 384 bytes for read and write. */ 1494 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1495 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1496 0x0F; 1497 } 1498 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1499 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1500 uint32_t tmp; 1501 1502 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1503 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1504 if (tmp == 6 || tmp == 7) 1505 dma_rw_ctl |= 1506 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1507 1508 /* Set PCI-X DMA write workaround. */ 1509 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1510 } 1511 } else { 1512 /* Conventional PCI bus: 256 bytes for read and write. */ 1513 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1514 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1515 1516 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1517 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1518 dma_rw_ctl |= 0x0F; 1519 } 1520 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1521 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1522 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1523 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1524 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1525 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1526 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1527 if (BGE_IS_5717_PLUS(sc)) { 1528 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1529 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1530 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1531 /* 1532 * Enable HW workaround for controllers that misinterpret 1533 * a status tag update and leave interrupts permanently 1534 * disabled. 1535 */ 1536 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1537 sc->bge_asicrev != BGE_ASICREV_BCM57765) 1538 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1539 } 1540 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1541 1542 /* 1543 * Set up general mode register. 1544 */ 1545 mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR | 1546 BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM; 1547 1548 /* 1549 * BCM5701 B5 have a bug causing data corruption when using 1550 * 64-bit DMA reads, which can be terminated early and then 1551 * completed later as 32-bit accesses, in combination with 1552 * certain bridges. 1553 */ 1554 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1555 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1556 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1557 1558 /* 1559 * Tell the firmware the driver is running 1560 */ 1561 if (sc->bge_asf_mode & ASF_STACKUP) 1562 mode_ctl |= BGE_MODECTL_STACKUP; 1563 1564 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1565 1566 /* 1567 * Disable memory write invalidate. Apparently it is not supported 1568 * properly by these devices. Also ensure that INTx isn't disabled, 1569 * as these chips need it even when using MSI. 1570 */ 1571 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1572 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1573 1574 /* Set the timer prescaler (always 66Mhz) */ 1575 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1576 1577 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1578 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1579 DELAY(40); /* XXX */ 1580 1581 /* Put PHY into ready state */ 1582 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1583 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1584 DELAY(40); 1585 } 1586 1587 return (0); 1588 } 1589 1590 static int 1591 bge_blockinit(struct bge_softc *sc) 1592 { 1593 struct bge_rcb *rcb; 1594 bus_size_t vrcb; 1595 bge_hostaddr taddr; 1596 uint32_t dmactl, val; 1597 int i, limit; 1598 1599 /* 1600 * Initialize the memory window pointer register so that 1601 * we can access the first 32K of internal NIC RAM. This will 1602 * allow us to set up the TX send ring RCBs and the RX return 1603 * ring RCBs, plus other things which live in NIC memory. 1604 */ 1605 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1606 1607 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1608 1609 if (!(BGE_IS_5705_PLUS(sc))) { 1610 /* Configure mbuf memory pool */ 1611 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1612 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1613 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1614 else 1615 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1616 1617 /* Configure DMA resource pool */ 1618 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1619 BGE_DMA_DESCRIPTORS); 1620 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1621 } 1622 1623 /* Configure mbuf pool watermarks */ 1624 if (BGE_IS_5717_PLUS(sc)) { 1625 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1626 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1627 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1628 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1629 } else { 1630 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1631 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1632 } 1633 } else if (!BGE_IS_5705_PLUS(sc)) { 1634 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1635 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1636 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1637 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1638 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1639 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1640 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1641 } else { 1642 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1643 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1644 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1645 } 1646 1647 /* Configure DMA resource watermarks */ 1648 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1649 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1650 1651 /* Enable buffer manager */ 1652 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1653 /* 1654 * Change the arbitration algorithm of TXMBUF read request to 1655 * round-robin instead of priority based for BCM5719. When 1656 * TXFIFO is almost empty, RDMA will hold its request until 1657 * TXFIFO is not almost empty. 1658 */ 1659 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1660 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1661 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1662 1663 /* Poll for buffer manager start indication */ 1664 for (i = 0; i < BGE_TIMEOUT; i++) { 1665 DELAY(10); 1666 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1667 break; 1668 } 1669 1670 if (i == BGE_TIMEOUT) { 1671 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 1672 return (ENXIO); 1673 } 1674 1675 /* Enable flow-through queues */ 1676 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1677 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1678 1679 /* Wait until queue initialization is complete */ 1680 for (i = 0; i < BGE_TIMEOUT; i++) { 1681 DELAY(10); 1682 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1683 break; 1684 } 1685 1686 if (i == BGE_TIMEOUT) { 1687 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 1688 return (ENXIO); 1689 } 1690 1691 /* 1692 * Summary of rings supported by the controller: 1693 * 1694 * Standard Receive Producer Ring 1695 * - This ring is used to feed receive buffers for "standard" 1696 * sized frames (typically 1536 bytes) to the controller. 1697 * 1698 * Jumbo Receive Producer Ring 1699 * - This ring is used to feed receive buffers for jumbo sized 1700 * frames (i.e. anything bigger than the "standard" frames) 1701 * to the controller. 1702 * 1703 * Mini Receive Producer Ring 1704 * - This ring is used to feed receive buffers for "mini" 1705 * sized frames to the controller. 1706 * - This feature required external memory for the controller 1707 * but was never used in a production system. Should always 1708 * be disabled. 1709 * 1710 * Receive Return Ring 1711 * - After the controller has placed an incoming frame into a 1712 * receive buffer that buffer is moved into a receive return 1713 * ring. The driver is then responsible to passing the 1714 * buffer up to the stack. Many versions of the controller 1715 * support multiple RR rings. 1716 * 1717 * Send Ring 1718 * - This ring is used for outgoing frames. Many versions of 1719 * the controller support multiple send rings. 1720 */ 1721 1722 /* Initialize the standard receive producer ring control block. */ 1723 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1724 rcb->bge_hostaddr.bge_addr_lo = 1725 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1726 rcb->bge_hostaddr.bge_addr_hi = 1727 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1728 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1729 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1730 if (BGE_IS_5717_PLUS(sc)) { 1731 /* 1732 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 1733 * Bits 15-2 : Maximum RX frame size 1734 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 1735 * Bit 0 : Reserved 1736 */ 1737 rcb->bge_maxlen_flags = 1738 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 1739 } else if (BGE_IS_5705_PLUS(sc)) { 1740 /* 1741 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 1742 * Bits 15-2 : Reserved (should be 0) 1743 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1744 * Bit 0 : Reserved 1745 */ 1746 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1747 } else { 1748 /* 1749 * Ring size is always XXX entries 1750 * Bits 31-16: Maximum RX frame size 1751 * Bits 15-2 : Reserved (should be 0) 1752 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1753 * Bit 0 : Reserved 1754 */ 1755 rcb->bge_maxlen_flags = 1756 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1757 } 1758 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1759 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1760 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1761 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 1762 else 1763 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1764 /* Write the standard receive producer ring control block. */ 1765 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1766 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1767 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1768 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1769 1770 /* Reset the standard receive producer ring producer index. */ 1771 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1772 1773 /* 1774 * Initialize the jumbo RX producer ring control 1775 * block. We set the 'ring disabled' bit in the 1776 * flags field until we're actually ready to start 1777 * using this ring (i.e. once we set the MTU 1778 * high enough to require it). 1779 */ 1780 if (BGE_IS_JUMBO_CAPABLE(sc)) { 1781 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1782 /* Get the jumbo receive producer ring RCB parameters. */ 1783 rcb->bge_hostaddr.bge_addr_lo = 1784 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1785 rcb->bge_hostaddr.bge_addr_hi = 1786 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1787 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1788 sc->bge_cdata.bge_rx_jumbo_ring_map, 1789 BUS_DMASYNC_PREREAD); 1790 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1791 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 1792 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1793 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1794 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1795 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 1796 else 1797 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1798 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1799 rcb->bge_hostaddr.bge_addr_hi); 1800 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1801 rcb->bge_hostaddr.bge_addr_lo); 1802 /* Program the jumbo receive producer ring RCB parameters. */ 1803 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1804 rcb->bge_maxlen_flags); 1805 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1806 /* Reset the jumbo receive producer ring producer index. */ 1807 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1808 } 1809 1810 /* Disable the mini receive producer ring RCB. */ 1811 if (BGE_IS_5700_FAMILY(sc)) { 1812 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1813 rcb->bge_maxlen_flags = 1814 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1815 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1816 rcb->bge_maxlen_flags); 1817 /* Reset the mini receive producer ring producer index. */ 1818 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1819 } 1820 1821 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 1822 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1823 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 1824 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 1825 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 1826 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 1827 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 1828 } 1829 /* 1830 * The BD ring replenish thresholds control how often the 1831 * hardware fetches new BD's from the producer rings in host 1832 * memory. Setting the value too low on a busy system can 1833 * starve the hardware and recue the throughpout. 1834 * 1835 * Set the BD ring replentish thresholds. The recommended 1836 * values are 1/8th the number of descriptors allocated to 1837 * each ring. 1838 * XXX The 5754 requires a lower threshold, so it might be a 1839 * requirement of all 575x family chips. The Linux driver sets 1840 * the lower threshold for all 5705 family chips as well, but there 1841 * are reports that it might not need to be so strict. 1842 * 1843 * XXX Linux does some extra fiddling here for the 5906 parts as 1844 * well. 1845 */ 1846 if (BGE_IS_5705_PLUS(sc)) 1847 val = 8; 1848 else 1849 val = BGE_STD_RX_RING_CNT / 8; 1850 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 1851 if (BGE_IS_JUMBO_CAPABLE(sc)) 1852 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 1853 BGE_JUMBO_RX_RING_CNT/8); 1854 if (BGE_IS_5717_PLUS(sc)) { 1855 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 1856 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 1857 } 1858 1859 /* 1860 * Disable all send rings by setting the 'ring disabled' bit 1861 * in the flags field of all the TX send ring control blocks, 1862 * located in NIC memory. 1863 */ 1864 if (!BGE_IS_5705_PLUS(sc)) 1865 /* 5700 to 5704 had 16 send rings. */ 1866 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 1867 else 1868 limit = 1; 1869 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1870 for (i = 0; i < limit; i++) { 1871 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1872 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 1873 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1874 vrcb += sizeof(struct bge_rcb); 1875 } 1876 1877 /* Configure send ring RCB 0 (we use only the first ring) */ 1878 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1879 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 1880 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1881 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1882 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1883 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1884 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1885 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 1886 else 1887 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 1888 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 1889 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1890 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 1891 1892 /* 1893 * Disable all receive return rings by setting the 1894 * 'ring diabled' bit in the flags field of all the receive 1895 * return ring control blocks, located in NIC memory. 1896 */ 1897 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1898 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1899 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 1900 /* Should be 17, use 16 until we get an SRAM map. */ 1901 limit = 16; 1902 } else if (!BGE_IS_5705_PLUS(sc)) 1903 limit = BGE_RX_RINGS_MAX; 1904 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 1905 sc->bge_asicrev == BGE_ASICREV_BCM57765) 1906 limit = 4; 1907 else 1908 limit = 1; 1909 /* Disable all receive return rings. */ 1910 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1911 for (i = 0; i < limit; i++) { 1912 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 1913 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 1914 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1915 BGE_RCB_FLAG_RING_DISABLED); 1916 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1917 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 1918 (i * (sizeof(uint64_t))), 0); 1919 vrcb += sizeof(struct bge_rcb); 1920 } 1921 1922 /* 1923 * Set up receive return ring 0. Note that the NIC address 1924 * for RX return rings is 0x0. The return rings live entirely 1925 * within the host, so the nicaddr field in the RCB isn't used. 1926 */ 1927 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1928 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 1929 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1930 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1931 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1932 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1933 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 1934 1935 /* Set random backoff seed for TX */ 1936 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1937 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1938 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1939 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1940 BGE_TX_BACKOFF_SEED_MASK); 1941 1942 /* Set inter-packet gap */ 1943 val = 0x2620; 1944 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 1945 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 1946 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 1947 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 1948 1949 /* 1950 * Specify which ring to use for packets that don't match 1951 * any RX rules. 1952 */ 1953 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1954 1955 /* 1956 * Configure number of RX lists. One interrupt distribution 1957 * list, sixteen active lists, one bad frames class. 1958 */ 1959 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1960 1961 /* Inialize RX list placement stats mask. */ 1962 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1963 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1964 1965 /* Disable host coalescing until we get it set up */ 1966 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1967 1968 /* Poll to make sure it's shut down. */ 1969 for (i = 0; i < BGE_TIMEOUT; i++) { 1970 DELAY(10); 1971 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1972 break; 1973 } 1974 1975 if (i == BGE_TIMEOUT) { 1976 device_printf(sc->bge_dev, 1977 "host coalescing engine failed to idle\n"); 1978 return (ENXIO); 1979 } 1980 1981 /* Set up host coalescing defaults */ 1982 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1983 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1984 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1985 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1986 if (!(BGE_IS_5705_PLUS(sc))) { 1987 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1988 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1989 } 1990 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 1991 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 1992 1993 /* Set up address of statistics block */ 1994 if (!(BGE_IS_5705_PLUS(sc))) { 1995 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1996 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1997 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 1998 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 1999 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2000 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2001 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2002 } 2003 2004 /* Set up address of status block */ 2005 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2006 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2007 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2008 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2009 2010 /* Set up status block size. */ 2011 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2012 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2013 val = BGE_STATBLKSZ_FULL; 2014 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2015 } else { 2016 val = BGE_STATBLKSZ_32BYTE; 2017 bzero(sc->bge_ldata.bge_status_block, 32); 2018 } 2019 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2020 sc->bge_cdata.bge_status_map, 2021 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2022 2023 /* Turn on host coalescing state machine */ 2024 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2025 2026 /* Turn on RX BD completion state machine and enable attentions */ 2027 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2028 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2029 2030 /* Turn on RX list placement state machine */ 2031 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2032 2033 /* Turn on RX list selector state machine. */ 2034 if (!(BGE_IS_5705_PLUS(sc))) 2035 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2036 2037 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2038 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2039 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2040 BGE_MACMODE_FRMHDR_DMA_ENB; 2041 2042 if (sc->bge_flags & BGE_FLAG_TBI) 2043 val |= BGE_PORTMODE_TBI; 2044 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2045 val |= BGE_PORTMODE_GMII; 2046 else 2047 val |= BGE_PORTMODE_MII; 2048 2049 /* Turn on DMA, clear stats */ 2050 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2051 DELAY(40); 2052 2053 /* Set misc. local control, enable interrupts on attentions */ 2054 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2055 2056 #ifdef notdef 2057 /* Assert GPIO pins for PHY reset */ 2058 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2059 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2060 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2061 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2062 #endif 2063 2064 /* Turn on DMA completion state machine */ 2065 if (!(BGE_IS_5705_PLUS(sc))) 2066 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2067 2068 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2069 2070 /* Enable host coalescing bug fix. */ 2071 if (BGE_IS_5755_PLUS(sc)) 2072 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2073 2074 /* Request larger DMA burst size to get better performance. */ 2075 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2076 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2077 2078 /* Turn on write DMA state machine */ 2079 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2080 DELAY(40); 2081 2082 /* Turn on read DMA state machine */ 2083 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2084 2085 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2086 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2087 2088 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2089 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2090 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2091 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2092 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2093 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2094 if (sc->bge_flags & BGE_FLAG_PCIE) 2095 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2096 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2097 val |= BGE_RDMAMODE_TSO4_ENABLE; 2098 if (sc->bge_flags & BGE_FLAG_TSO3 || 2099 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2100 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2101 val |= BGE_RDMAMODE_TSO6_ENABLE; 2102 } 2103 2104 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2105 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2106 BGE_RDMAMODE_H2BNC_VLAN_DET; 2107 /* 2108 * Allow multiple outstanding read requests from 2109 * non-LSO read DMA engine. 2110 */ 2111 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2112 } 2113 2114 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2115 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2116 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2117 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2118 BGE_IS_5717_PLUS(sc)) { 2119 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 2120 /* 2121 * Adjust tx margin to prevent TX data corruption and 2122 * fix internal FIFO overflow. 2123 */ 2124 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2125 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2126 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2127 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2128 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2129 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2130 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2131 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2132 } 2133 /* 2134 * Enable fix for read DMA FIFO overruns. 2135 * The fix is to limit the number of RX BDs 2136 * the hardware would fetch at a fime. 2137 */ 2138 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 2139 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2140 } 2141 2142 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2143 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2144 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2145 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2146 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2147 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2148 /* 2149 * Allow 4KB burst length reads for non-LSO frames. 2150 * Enable 512B burst length reads for buffer descriptors. 2151 */ 2152 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2153 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2154 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2155 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2156 } 2157 2158 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2159 DELAY(40); 2160 2161 /* Turn on RX data completion state machine */ 2162 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2163 2164 /* Turn on RX BD initiator state machine */ 2165 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2166 2167 /* Turn on RX data and RX BD initiator state machine */ 2168 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2169 2170 /* Turn on Mbuf cluster free state machine */ 2171 if (!(BGE_IS_5705_PLUS(sc))) 2172 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2173 2174 /* Turn on send BD completion state machine */ 2175 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2176 2177 /* Turn on send data completion state machine */ 2178 val = BGE_SDCMODE_ENABLE; 2179 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2180 val |= BGE_SDCMODE_CDELAY; 2181 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2182 2183 /* Turn on send data initiator state machine */ 2184 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2185 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2186 BGE_SDIMODE_HW_LSO_PRE_DMA); 2187 else 2188 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2189 2190 /* Turn on send BD initiator state machine */ 2191 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2192 2193 /* Turn on send BD selector state machine */ 2194 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2195 2196 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2197 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2198 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2199 2200 /* ack/clear link change events */ 2201 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2202 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2203 BGE_MACSTAT_LINK_CHANGED); 2204 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2205 2206 /* 2207 * Enable attention when the link has changed state for 2208 * devices that use auto polling. 2209 */ 2210 if (sc->bge_flags & BGE_FLAG_TBI) { 2211 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2212 } else { 2213 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2214 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2215 DELAY(80); 2216 } 2217 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2218 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2219 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2220 BGE_EVTENB_MI_INTERRUPT); 2221 } 2222 2223 /* 2224 * Clear any pending link state attention. 2225 * Otherwise some link state change events may be lost until attention 2226 * is cleared by bge_intr() -> bge_link_upd() sequence. 2227 * It's not necessary on newer BCM chips - perhaps enabling link 2228 * state change attentions implies clearing pending attention. 2229 */ 2230 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2231 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2232 BGE_MACSTAT_LINK_CHANGED); 2233 2234 /* Enable link state change attentions. */ 2235 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2236 2237 return (0); 2238 } 2239 2240 const struct bge_revision * 2241 bge_lookup_rev(uint32_t chipid) 2242 { 2243 const struct bge_revision *br; 2244 2245 for (br = bge_revisions; br->br_name != NULL; br++) { 2246 if (br->br_chipid == chipid) 2247 return (br); 2248 } 2249 2250 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2251 if (br->br_chipid == BGE_ASICREV(chipid)) 2252 return (br); 2253 } 2254 2255 return (NULL); 2256 } 2257 2258 const struct bge_vendor * 2259 bge_lookup_vendor(uint16_t vid) 2260 { 2261 const struct bge_vendor *v; 2262 2263 for (v = bge_vendors; v->v_name != NULL; v++) 2264 if (v->v_id == vid) 2265 return (v); 2266 2267 panic("%s: unknown vendor %d", __func__, vid); 2268 return (NULL); 2269 } 2270 2271 /* 2272 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2273 * against our list and return its name if we find a match. 2274 * 2275 * Note that since the Broadcom controller contains VPD support, we 2276 * try to get the device name string from the controller itself instead 2277 * of the compiled-in string. It guarantees we'll always announce the 2278 * right product name. We fall back to the compiled-in string when 2279 * VPD is unavailable or corrupt. 2280 */ 2281 static int 2282 bge_probe(device_t dev) 2283 { 2284 char buf[96]; 2285 char model[64]; 2286 const struct bge_revision *br; 2287 const char *pname; 2288 struct bge_softc *sc = device_get_softc(dev); 2289 const struct bge_type *t = bge_devs; 2290 const struct bge_vendor *v; 2291 uint32_t id; 2292 uint16_t did, vid; 2293 2294 sc->bge_dev = dev; 2295 vid = pci_get_vendor(dev); 2296 did = pci_get_device(dev); 2297 while(t->bge_vid != 0) { 2298 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2299 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2300 BGE_PCIMISCCTL_ASICREV_SHIFT; 2301 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2302 /* 2303 * Find the ASCI revision. Different chips 2304 * use different registers. 2305 */ 2306 switch (pci_get_device(dev)) { 2307 case BCOM_DEVICEID_BCM5717: 2308 case BCOM_DEVICEID_BCM5718: 2309 case BCOM_DEVICEID_BCM5719: 2310 case BCOM_DEVICEID_BCM5720: 2311 id = pci_read_config(dev, 2312 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2313 break; 2314 case BCOM_DEVICEID_BCM57761: 2315 case BCOM_DEVICEID_BCM57765: 2316 case BCOM_DEVICEID_BCM57781: 2317 case BCOM_DEVICEID_BCM57785: 2318 case BCOM_DEVICEID_BCM57791: 2319 case BCOM_DEVICEID_BCM57795: 2320 id = pci_read_config(dev, 2321 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2322 break; 2323 default: 2324 id = pci_read_config(dev, 2325 BGE_PCI_PRODID_ASICREV, 4); 2326 } 2327 } 2328 br = bge_lookup_rev(id); 2329 v = bge_lookup_vendor(vid); 2330 if (bge_has_eaddr(sc) && 2331 pci_get_vpd_ident(dev, &pname) == 0) 2332 snprintf(model, 64, "%s", pname); 2333 else 2334 snprintf(model, 64, "%s %s", v->v_name, 2335 br != NULL ? br->br_name : 2336 "NetXtreme Ethernet Controller"); 2337 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2338 br != NULL ? "" : "unknown ", id); 2339 device_set_desc_copy(dev, buf); 2340 return (0); 2341 } 2342 t++; 2343 } 2344 2345 return (ENXIO); 2346 } 2347 2348 static void 2349 bge_dma_free(struct bge_softc *sc) 2350 { 2351 int i; 2352 2353 /* Destroy DMA maps for RX buffers. */ 2354 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2355 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2356 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2357 sc->bge_cdata.bge_rx_std_dmamap[i]); 2358 } 2359 if (sc->bge_cdata.bge_rx_std_sparemap) 2360 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2361 sc->bge_cdata.bge_rx_std_sparemap); 2362 2363 /* Destroy DMA maps for jumbo RX buffers. */ 2364 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2365 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2366 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2367 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2368 } 2369 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2370 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2371 sc->bge_cdata.bge_rx_jumbo_sparemap); 2372 2373 /* Destroy DMA maps for TX buffers. */ 2374 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2375 if (sc->bge_cdata.bge_tx_dmamap[i]) 2376 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2377 sc->bge_cdata.bge_tx_dmamap[i]); 2378 } 2379 2380 if (sc->bge_cdata.bge_rx_mtag) 2381 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2382 if (sc->bge_cdata.bge_mtag_jumbo) 2383 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2384 if (sc->bge_cdata.bge_tx_mtag) 2385 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2386 2387 /* Destroy standard RX ring. */ 2388 if (sc->bge_cdata.bge_rx_std_ring_map) 2389 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2390 sc->bge_cdata.bge_rx_std_ring_map); 2391 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2392 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2393 sc->bge_ldata.bge_rx_std_ring, 2394 sc->bge_cdata.bge_rx_std_ring_map); 2395 2396 if (sc->bge_cdata.bge_rx_std_ring_tag) 2397 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2398 2399 /* Destroy jumbo RX ring. */ 2400 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2401 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2402 sc->bge_cdata.bge_rx_jumbo_ring_map); 2403 2404 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2405 sc->bge_ldata.bge_rx_jumbo_ring) 2406 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2407 sc->bge_ldata.bge_rx_jumbo_ring, 2408 sc->bge_cdata.bge_rx_jumbo_ring_map); 2409 2410 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2411 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2412 2413 /* Destroy RX return ring. */ 2414 if (sc->bge_cdata.bge_rx_return_ring_map) 2415 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2416 sc->bge_cdata.bge_rx_return_ring_map); 2417 2418 if (sc->bge_cdata.bge_rx_return_ring_map && 2419 sc->bge_ldata.bge_rx_return_ring) 2420 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2421 sc->bge_ldata.bge_rx_return_ring, 2422 sc->bge_cdata.bge_rx_return_ring_map); 2423 2424 if (sc->bge_cdata.bge_rx_return_ring_tag) 2425 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2426 2427 /* Destroy TX ring. */ 2428 if (sc->bge_cdata.bge_tx_ring_map) 2429 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2430 sc->bge_cdata.bge_tx_ring_map); 2431 2432 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2433 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2434 sc->bge_ldata.bge_tx_ring, 2435 sc->bge_cdata.bge_tx_ring_map); 2436 2437 if (sc->bge_cdata.bge_tx_ring_tag) 2438 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2439 2440 /* Destroy status block. */ 2441 if (sc->bge_cdata.bge_status_map) 2442 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2443 sc->bge_cdata.bge_status_map); 2444 2445 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2446 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2447 sc->bge_ldata.bge_status_block, 2448 sc->bge_cdata.bge_status_map); 2449 2450 if (sc->bge_cdata.bge_status_tag) 2451 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2452 2453 /* Destroy statistics block. */ 2454 if (sc->bge_cdata.bge_stats_map) 2455 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2456 sc->bge_cdata.bge_stats_map); 2457 2458 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2459 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2460 sc->bge_ldata.bge_stats, 2461 sc->bge_cdata.bge_stats_map); 2462 2463 if (sc->bge_cdata.bge_stats_tag) 2464 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2465 2466 if (sc->bge_cdata.bge_buffer_tag) 2467 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2468 2469 /* Destroy the parent tag. */ 2470 if (sc->bge_cdata.bge_parent_tag) 2471 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2472 } 2473 2474 static int 2475 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2476 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2477 bus_addr_t *paddr, const char *msg) 2478 { 2479 struct bge_dmamap_arg ctx; 2480 int error; 2481 2482 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2483 alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2484 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2485 if (error != 0) { 2486 device_printf(sc->bge_dev, 2487 "could not create %s dma tag\n", msg); 2488 return (ENOMEM); 2489 } 2490 /* Allocate DMA'able memory for ring. */ 2491 error = bus_dmamem_alloc(*tag, (void **)ring, 2492 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2493 if (error != 0) { 2494 device_printf(sc->bge_dev, 2495 "could not allocate DMA'able memory for %s\n", msg); 2496 return (ENOMEM); 2497 } 2498 /* Load the address of the ring. */ 2499 ctx.bge_busaddr = 0; 2500 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2501 &ctx, BUS_DMA_NOWAIT); 2502 if (error != 0) { 2503 device_printf(sc->bge_dev, 2504 "could not load DMA'able memory for %s\n", msg); 2505 return (ENOMEM); 2506 } 2507 *paddr = ctx.bge_busaddr; 2508 return (0); 2509 } 2510 2511 static int 2512 bge_dma_alloc(struct bge_softc *sc) 2513 { 2514 bus_addr_t lowaddr; 2515 bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz; 2516 int i, error; 2517 2518 lowaddr = BUS_SPACE_MAXADDR; 2519 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2520 lowaddr = BGE_DMA_MAXADDR; 2521 /* 2522 * Allocate the parent bus DMA tag appropriate for PCI. 2523 */ 2524 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2525 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2526 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2527 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2528 if (error != 0) { 2529 device_printf(sc->bge_dev, 2530 "could not allocate parent dma tag\n"); 2531 return (ENOMEM); 2532 } 2533 2534 /* Create tag for standard RX ring. */ 2535 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2536 &sc->bge_cdata.bge_rx_std_ring_tag, 2537 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2538 &sc->bge_cdata.bge_rx_std_ring_map, 2539 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2540 if (error) 2541 return (error); 2542 2543 /* Create tag for RX return ring. */ 2544 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2545 &sc->bge_cdata.bge_rx_return_ring_tag, 2546 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2547 &sc->bge_cdata.bge_rx_return_ring_map, 2548 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2549 if (error) 2550 return (error); 2551 2552 /* Create tag for TX ring. */ 2553 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2554 &sc->bge_cdata.bge_tx_ring_tag, 2555 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2556 &sc->bge_cdata.bge_tx_ring_map, 2557 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2558 if (error) 2559 return (error); 2560 2561 /* 2562 * Create tag for status block. 2563 * Because we only use single Tx/Rx/Rx return ring, use 2564 * minimum status block size except BCM5700 AX/BX which 2565 * seems to want to see full status block size regardless 2566 * of configured number of ring. 2567 */ 2568 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2569 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2570 sbsz = BGE_STATUS_BLK_SZ; 2571 else 2572 sbsz = 32; 2573 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2574 &sc->bge_cdata.bge_status_tag, 2575 (uint8_t **)&sc->bge_ldata.bge_status_block, 2576 &sc->bge_cdata.bge_status_map, 2577 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2578 if (error) 2579 return (error); 2580 2581 /* Create tag for statistics block. */ 2582 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2583 &sc->bge_cdata.bge_stats_tag, 2584 (uint8_t **)&sc->bge_ldata.bge_stats, 2585 &sc->bge_cdata.bge_stats_map, 2586 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2587 if (error) 2588 return (error); 2589 2590 /* Create tag for jumbo RX ring. */ 2591 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2592 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2593 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2594 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2595 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2596 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2597 if (error) 2598 return (error); 2599 } 2600 2601 /* Create parent tag for buffers. */ 2602 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 2603 /* 2604 * XXX 2605 * watchdog timeout issue was observed on BCM5704 which 2606 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 2607 * Both limiting DMA address space to 32bits and flushing 2608 * mailbox write seem to address the issue. 2609 */ 2610 if (sc->bge_pcixcap != 0) 2611 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2612 } 2613 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr, 2614 BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 2615 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 2616 &sc->bge_cdata.bge_buffer_tag); 2617 if (error != 0) { 2618 device_printf(sc->bge_dev, 2619 "could not allocate buffer dma tag\n"); 2620 return (ENOMEM); 2621 } 2622 /* Create tag for Tx mbufs. */ 2623 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2624 txsegsz = BGE_TSOSEG_SZ; 2625 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2626 } else { 2627 txsegsz = MCLBYTES; 2628 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2629 } 2630 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2631 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2632 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2633 &sc->bge_cdata.bge_tx_mtag); 2634 2635 if (error) { 2636 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2637 return (ENOMEM); 2638 } 2639 2640 /* Create tag for Rx mbufs. */ 2641 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 2642 rxmaxsegsz = MJUM9BYTES; 2643 else 2644 rxmaxsegsz = MCLBYTES; 2645 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2646 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 2647 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2648 2649 if (error) { 2650 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2651 return (ENOMEM); 2652 } 2653 2654 /* Create DMA maps for RX buffers. */ 2655 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2656 &sc->bge_cdata.bge_rx_std_sparemap); 2657 if (error) { 2658 device_printf(sc->bge_dev, 2659 "can't create spare DMA map for RX\n"); 2660 return (ENOMEM); 2661 } 2662 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2663 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2664 &sc->bge_cdata.bge_rx_std_dmamap[i]); 2665 if (error) { 2666 device_printf(sc->bge_dev, 2667 "can't create DMA map for RX\n"); 2668 return (ENOMEM); 2669 } 2670 } 2671 2672 /* Create DMA maps for TX buffers. */ 2673 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2674 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 2675 &sc->bge_cdata.bge_tx_dmamap[i]); 2676 if (error) { 2677 device_printf(sc->bge_dev, 2678 "can't create DMA map for TX\n"); 2679 return (ENOMEM); 2680 } 2681 } 2682 2683 /* Create tags for jumbo RX buffers. */ 2684 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2685 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 2686 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2687 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 2688 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 2689 if (error) { 2690 device_printf(sc->bge_dev, 2691 "could not allocate jumbo dma tag\n"); 2692 return (ENOMEM); 2693 } 2694 /* Create DMA maps for jumbo RX buffers. */ 2695 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2696 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 2697 if (error) { 2698 device_printf(sc->bge_dev, 2699 "can't create spare DMA map for jumbo RX\n"); 2700 return (ENOMEM); 2701 } 2702 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2703 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2704 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2705 if (error) { 2706 device_printf(sc->bge_dev, 2707 "can't create DMA map for jumbo RX\n"); 2708 return (ENOMEM); 2709 } 2710 } 2711 } 2712 2713 return (0); 2714 } 2715 2716 /* 2717 * Return true if this device has more than one port. 2718 */ 2719 static int 2720 bge_has_multiple_ports(struct bge_softc *sc) 2721 { 2722 device_t dev = sc->bge_dev; 2723 u_int b, d, f, fscan, s; 2724 2725 d = pci_get_domain(dev); 2726 b = pci_get_bus(dev); 2727 s = pci_get_slot(dev); 2728 f = pci_get_function(dev); 2729 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 2730 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 2731 return (1); 2732 return (0); 2733 } 2734 2735 /* 2736 * Return true if MSI can be used with this device. 2737 */ 2738 static int 2739 bge_can_use_msi(struct bge_softc *sc) 2740 { 2741 int can_use_msi = 0; 2742 2743 if (sc->bge_msi == 0) 2744 return (0); 2745 2746 /* Disable MSI for polling(4). */ 2747 #ifdef DEVICE_POLLING 2748 return (0); 2749 #endif 2750 switch (sc->bge_asicrev) { 2751 case BGE_ASICREV_BCM5714_A0: 2752 case BGE_ASICREV_BCM5714: 2753 /* 2754 * Apparently, MSI doesn't work when these chips are 2755 * configured in single-port mode. 2756 */ 2757 if (bge_has_multiple_ports(sc)) 2758 can_use_msi = 1; 2759 break; 2760 case BGE_ASICREV_BCM5750: 2761 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 2762 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 2763 can_use_msi = 1; 2764 break; 2765 default: 2766 if (BGE_IS_575X_PLUS(sc)) 2767 can_use_msi = 1; 2768 } 2769 return (can_use_msi); 2770 } 2771 2772 static int 2773 bge_mbox_reorder(struct bge_softc *sc) 2774 { 2775 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 2776 static const struct mbox_reorder { 2777 const uint16_t vendor; 2778 const uint16_t device; 2779 const char *desc; 2780 } const mbox_reorder_lists[] = { 2781 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 2782 }; 2783 devclass_t pci, pcib; 2784 device_t bus, dev; 2785 int i; 2786 2787 pci = devclass_find("pci"); 2788 pcib = devclass_find("pcib"); 2789 dev = sc->bge_dev; 2790 bus = device_get_parent(dev); 2791 for (;;) { 2792 dev = device_get_parent(bus); 2793 bus = device_get_parent(dev); 2794 if (device_get_devclass(dev) != pcib) 2795 break; 2796 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 2797 if (pci_get_vendor(dev) == 2798 mbox_reorder_lists[i].vendor && 2799 pci_get_device(dev) == 2800 mbox_reorder_lists[i].device) { 2801 device_printf(sc->bge_dev, 2802 "enabling MBOX workaround for %s\n", 2803 mbox_reorder_lists[i].desc); 2804 return (1); 2805 } 2806 } 2807 if (device_get_devclass(bus) != pci) 2808 break; 2809 } 2810 return (0); 2811 } 2812 2813 static void 2814 bge_devinfo(struct bge_softc *sc) 2815 { 2816 uint32_t cfg, clk; 2817 2818 device_printf(sc->bge_dev, 2819 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 2820 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 2821 if (sc->bge_flags & BGE_FLAG_PCIE) 2822 printf("PCI-E\n"); 2823 else if (sc->bge_flags & BGE_FLAG_PCIX) { 2824 printf("PCI-X "); 2825 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 2826 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 2827 clk = 133; 2828 else { 2829 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 2830 switch (clk) { 2831 case 0: 2832 clk = 33; 2833 break; 2834 case 2: 2835 clk = 50; 2836 break; 2837 case 4: 2838 clk = 66; 2839 break; 2840 case 6: 2841 clk = 100; 2842 break; 2843 case 7: 2844 clk = 133; 2845 break; 2846 } 2847 } 2848 printf("%u MHz\n", clk); 2849 } else { 2850 if (sc->bge_pcixcap != 0) 2851 printf("PCI on PCI-X "); 2852 else 2853 printf("PCI "); 2854 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 2855 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 2856 clk = 66; 2857 else 2858 clk = 33; 2859 if (cfg & BGE_PCISTATE_32BIT_BUS) 2860 printf("%u MHz; 32bit\n", clk); 2861 else 2862 printf("%u MHz; 64bit\n", clk); 2863 } 2864 } 2865 2866 static int 2867 bge_attach(device_t dev) 2868 { 2869 struct ifnet *ifp; 2870 struct bge_softc *sc; 2871 uint32_t hwcfg = 0, misccfg; 2872 u_char eaddr[ETHER_ADDR_LEN]; 2873 int capmask, error, f, msicount, phy_addr, reg, rid, trys; 2874 2875 sc = device_get_softc(dev); 2876 sc->bge_dev = dev; 2877 2878 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2879 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 2880 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 2881 2882 /* 2883 * Map control/status registers. 2884 */ 2885 pci_enable_busmaster(dev); 2886 2887 rid = PCIR_BAR(0); 2888 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2889 RF_ACTIVE); 2890 2891 if (sc->bge_res == NULL) { 2892 device_printf (sc->bge_dev, "couldn't map memory\n"); 2893 error = ENXIO; 2894 goto fail; 2895 } 2896 2897 /* Save various chip information. */ 2898 sc->bge_chipid = 2899 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2900 BGE_PCIMISCCTL_ASICREV_SHIFT; 2901 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 2902 /* 2903 * Find the ASCI revision. Different chips use different 2904 * registers. 2905 */ 2906 switch (pci_get_device(dev)) { 2907 case BCOM_DEVICEID_BCM5717: 2908 case BCOM_DEVICEID_BCM5718: 2909 case BCOM_DEVICEID_BCM5719: 2910 case BCOM_DEVICEID_BCM5720: 2911 sc->bge_chipid = pci_read_config(dev, 2912 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2913 break; 2914 case BCOM_DEVICEID_BCM57761: 2915 case BCOM_DEVICEID_BCM57765: 2916 case BCOM_DEVICEID_BCM57781: 2917 case BCOM_DEVICEID_BCM57785: 2918 case BCOM_DEVICEID_BCM57791: 2919 case BCOM_DEVICEID_BCM57795: 2920 sc->bge_chipid = pci_read_config(dev, 2921 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2922 break; 2923 default: 2924 sc->bge_chipid = pci_read_config(dev, 2925 BGE_PCI_PRODID_ASICREV, 4); 2926 } 2927 } 2928 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2929 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2930 2931 /* Set default PHY address. */ 2932 phy_addr = 1; 2933 /* 2934 * PHY address mapping for various devices. 2935 * 2936 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2937 * ---------+-------+-------+-------+-------+ 2938 * BCM57XX | 1 | X | X | X | 2939 * BCM5704 | 1 | X | 1 | X | 2940 * BCM5717 | 1 | 8 | 2 | 9 | 2941 * BCM5719 | 1 | 8 | 2 | 9 | 2942 * BCM5720 | 1 | 8 | 2 | 9 | 2943 * 2944 * Other addresses may respond but they are not 2945 * IEEE compliant PHYs and should be ignored. 2946 */ 2947 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2948 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2949 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2950 f = pci_get_function(dev); 2951 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2952 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 2953 BGE_SGDIGSTS_IS_SERDES) 2954 phy_addr = f + 8; 2955 else 2956 phy_addr = f + 1; 2957 } else { 2958 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2959 BGE_CPMU_PHY_STRAP_IS_SERDES) 2960 phy_addr = f + 8; 2961 else 2962 phy_addr = f + 1; 2963 } 2964 } 2965 2966 /* 2967 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the 2968 * 5705 A0 and A1 chips. 2969 */ 2970 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 2971 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2972 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 2973 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || 2974 sc->bge_asicrev == BGE_ASICREV_BCM5906) 2975 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 2976 2977 if (bge_has_eaddr(sc)) 2978 sc->bge_flags |= BGE_FLAG_EADDR; 2979 2980 /* Save chipset family. */ 2981 switch (sc->bge_asicrev) { 2982 case BGE_ASICREV_BCM5717: 2983 case BGE_ASICREV_BCM5719: 2984 case BGE_ASICREV_BCM5720: 2985 case BGE_ASICREV_BCM57765: 2986 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 2987 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 2988 BGE_FLAG_JUMBO_FRAME; 2989 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2990 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2991 /* Jumbo frame on BCM5719 A0 does not work. */ 2992 sc->bge_flags &= ~BGE_FLAG_JUMBO; 2993 } 2994 break; 2995 case BGE_ASICREV_BCM5755: 2996 case BGE_ASICREV_BCM5761: 2997 case BGE_ASICREV_BCM5784: 2998 case BGE_ASICREV_BCM5785: 2999 case BGE_ASICREV_BCM5787: 3000 case BGE_ASICREV_BCM57780: 3001 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3002 BGE_FLAG_5705_PLUS; 3003 break; 3004 case BGE_ASICREV_BCM5700: 3005 case BGE_ASICREV_BCM5701: 3006 case BGE_ASICREV_BCM5703: 3007 case BGE_ASICREV_BCM5704: 3008 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3009 break; 3010 case BGE_ASICREV_BCM5714_A0: 3011 case BGE_ASICREV_BCM5780: 3012 case BGE_ASICREV_BCM5714: 3013 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3014 /* FALLTHROUGH */ 3015 case BGE_ASICREV_BCM5750: 3016 case BGE_ASICREV_BCM5752: 3017 case BGE_ASICREV_BCM5906: 3018 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3019 /* FALLTHROUGH */ 3020 case BGE_ASICREV_BCM5705: 3021 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3022 break; 3023 } 3024 3025 /* Add SYSCTLs, requires the chipset family to be set. */ 3026 bge_add_sysctls(sc); 3027 3028 /* Set various PHY bug flags. */ 3029 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3030 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3031 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3032 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3033 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3034 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3035 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3036 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3037 if (pci_get_subvendor(dev) == DELL_VENDORID) 3038 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3039 if ((BGE_IS_5705_PLUS(sc)) && 3040 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3041 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 3042 sc->bge_asicrev != BGE_ASICREV_BCM5719 && 3043 sc->bge_asicrev != BGE_ASICREV_BCM5720 && 3044 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3045 sc->bge_asicrev != BGE_ASICREV_BCM57765 && 3046 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 3047 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3048 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3049 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3050 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3051 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3052 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3053 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3054 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3055 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3056 } else 3057 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3058 } 3059 3060 /* Identify the chips that use an CPMU. */ 3061 if (BGE_IS_5717_PLUS(sc) || 3062 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3063 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3064 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3065 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3066 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3067 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3068 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3069 else 3070 sc->bge_mi_mode = BGE_MIMODE_BASE; 3071 /* Enable auto polling for BCM570[0-5]. */ 3072 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3073 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3074 3075 /* 3076 * All Broadcom controllers have 4GB boundary DMA bug. 3077 * Whenever an address crosses a multiple of the 4GB boundary 3078 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3079 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3080 * state machine will lockup and cause the device to hang. 3081 */ 3082 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3083 3084 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3085 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3086 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3087 3088 /* 3089 * BCM5719 cannot handle DMA requests for DMA segments that 3090 * have larger than 4KB in size. However the maximum DMA 3091 * segment size created in DMA tag is 4KB for TSO, so we 3092 * wouldn't encounter the issue here. 3093 */ 3094 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3095 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3096 3097 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3098 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3099 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3100 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3101 sc->bge_flags |= BGE_FLAG_5788; 3102 } 3103 3104 capmask = BMSR_DEFCAPMASK; 3105 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3106 (misccfg == 0x4000 || misccfg == 0x8000)) || 3107 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3108 pci_get_vendor(dev) == BCOM_VENDORID && 3109 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3110 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3111 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3112 (pci_get_vendor(dev) == BCOM_VENDORID && 3113 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3114 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3115 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3116 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3117 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3118 /* These chips are 10/100 only. */ 3119 capmask &= ~BMSR_EXTSTAT; 3120 } 3121 3122 /* 3123 * Some controllers seem to require a special firmware to use 3124 * TSO. But the firmware is not available to FreeBSD and Linux 3125 * claims that the TSO performed by the firmware is slower than 3126 * hardware based TSO. Moreover the firmware based TSO has one 3127 * known bug which can't handle TSO if ethernet header + IP/TCP 3128 * header is greater than 80 bytes. The workaround for the TSO 3129 * bug exist but it seems it's too expensive than not using 3130 * TSO at all. Some hardwares also have the TSO bug so limit 3131 * the TSO to the controllers that are not affected TSO issues 3132 * (e.g. 5755 or higher). 3133 */ 3134 if (BGE_IS_5717_PLUS(sc)) { 3135 /* BCM5717 requires different TSO configuration. */ 3136 sc->bge_flags |= BGE_FLAG_TSO3; 3137 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3138 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3139 /* TSO on BCM5719 A0 does not work. */ 3140 sc->bge_flags &= ~BGE_FLAG_TSO3; 3141 } 3142 } else if (BGE_IS_5755_PLUS(sc)) { 3143 /* 3144 * BCM5754 and BCM5787 shares the same ASIC id so 3145 * explicit device id check is required. 3146 * Due to unknown reason TSO does not work on BCM5755M. 3147 */ 3148 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3149 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3150 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3151 sc->bge_flags |= BGE_FLAG_TSO; 3152 } 3153 3154 /* 3155 * Check if this is a PCI-X or PCI Express device. 3156 */ 3157 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3158 /* 3159 * Found a PCI Express capabilities register, this 3160 * must be a PCI Express device. 3161 */ 3162 sc->bge_flags |= BGE_FLAG_PCIE; 3163 sc->bge_expcap = reg; 3164 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3165 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3166 pci_set_max_read_req(dev, 2048); 3167 else if (pci_get_max_read_req(dev) != 4096) 3168 pci_set_max_read_req(dev, 4096); 3169 } else { 3170 /* 3171 * Check if the device is in PCI-X Mode. 3172 * (This bit is not valid on PCI Express controllers.) 3173 */ 3174 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3175 sc->bge_pcixcap = reg; 3176 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3177 BGE_PCISTATE_PCI_BUSMODE) == 0) 3178 sc->bge_flags |= BGE_FLAG_PCIX; 3179 } 3180 3181 /* 3182 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3183 * not actually a MAC controller bug but an issue with the embedded 3184 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3185 */ 3186 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3187 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3188 /* 3189 * Some PCI-X bridges are known to trigger write reordering to 3190 * the mailbox registers. Typical phenomena is watchdog timeouts 3191 * caused by out-of-order TX completions. Enable workaround for 3192 * PCI-X devices that live behind these bridges. 3193 * Note, PCI-X controllers can run in PCI mode so we can't use 3194 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3195 */ 3196 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3197 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3198 /* 3199 * Allocate the interrupt, using MSI if possible. These devices 3200 * support 8 MSI messages, but only the first one is used in 3201 * normal operation. 3202 */ 3203 rid = 0; 3204 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3205 sc->bge_msicap = reg; 3206 if (bge_can_use_msi(sc)) { 3207 msicount = pci_msi_count(dev); 3208 if (msicount > 1) 3209 msicount = 1; 3210 } else 3211 msicount = 0; 3212 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 3213 rid = 1; 3214 sc->bge_flags |= BGE_FLAG_MSI; 3215 } 3216 } 3217 3218 /* 3219 * All controllers except BCM5700 supports tagged status but 3220 * we use tagged status only for MSI case on BCM5717. Otherwise 3221 * MSI on BCM5717 does not work. 3222 */ 3223 #ifndef DEVICE_POLLING 3224 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3225 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3226 #endif 3227 3228 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3229 RF_SHAREABLE | RF_ACTIVE); 3230 3231 if (sc->bge_irq == NULL) { 3232 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3233 error = ENXIO; 3234 goto fail; 3235 } 3236 3237 bge_devinfo(sc); 3238 3239 /* Try to reset the chip. */ 3240 if (bge_reset(sc)) { 3241 device_printf(sc->bge_dev, "chip reset failed\n"); 3242 error = ENXIO; 3243 goto fail; 3244 } 3245 3246 sc->bge_asf_mode = 0; 3247 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3248 BGE_SRAM_DATA_SIG_MAGIC)) { 3249 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) 3250 & BGE_HWCFG_ASF) { 3251 sc->bge_asf_mode |= ASF_ENABLE; 3252 sc->bge_asf_mode |= ASF_STACKUP; 3253 if (BGE_IS_575X_PLUS(sc)) 3254 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3255 } 3256 } 3257 3258 /* Try to reset the chip again the nice way. */ 3259 bge_stop_fw(sc); 3260 bge_sig_pre_reset(sc, BGE_RESET_STOP); 3261 if (bge_reset(sc)) { 3262 device_printf(sc->bge_dev, "chip reset failed\n"); 3263 error = ENXIO; 3264 goto fail; 3265 } 3266 3267 bge_sig_legacy(sc, BGE_RESET_STOP); 3268 bge_sig_post_reset(sc, BGE_RESET_STOP); 3269 3270 if (bge_chipinit(sc)) { 3271 device_printf(sc->bge_dev, "chip initialization failed\n"); 3272 error = ENXIO; 3273 goto fail; 3274 } 3275 3276 error = bge_get_eaddr(sc, eaddr); 3277 if (error) { 3278 device_printf(sc->bge_dev, 3279 "failed to read station address\n"); 3280 error = ENXIO; 3281 goto fail; 3282 } 3283 3284 /* 5705 limits RX return ring to 512 entries. */ 3285 if (BGE_IS_5717_PLUS(sc)) 3286 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3287 else if (BGE_IS_5705_PLUS(sc)) 3288 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3289 else 3290 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3291 3292 if (bge_dma_alloc(sc)) { 3293 device_printf(sc->bge_dev, 3294 "failed to allocate DMA resources\n"); 3295 error = ENXIO; 3296 goto fail; 3297 } 3298 3299 /* Set default tuneable values. */ 3300 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3301 sc->bge_rx_coal_ticks = 150; 3302 sc->bge_tx_coal_ticks = 150; 3303 sc->bge_rx_max_coal_bds = 10; 3304 sc->bge_tx_max_coal_bds = 10; 3305 3306 /* Initialize checksum features to use. */ 3307 sc->bge_csum_features = BGE_CSUM_FEATURES; 3308 if (sc->bge_forced_udpcsum != 0) 3309 sc->bge_csum_features |= CSUM_UDP; 3310 3311 /* Set up ifnet structure */ 3312 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3313 if (ifp == NULL) { 3314 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3315 error = ENXIO; 3316 goto fail; 3317 } 3318 ifp->if_softc = sc; 3319 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3320 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3321 ifp->if_ioctl = bge_ioctl; 3322 ifp->if_start = bge_start; 3323 ifp->if_init = bge_init; 3324 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3325 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3326 IFQ_SET_READY(&ifp->if_snd); 3327 ifp->if_hwassist = sc->bge_csum_features; 3328 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3329 IFCAP_VLAN_MTU; 3330 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3331 ifp->if_hwassist |= CSUM_TSO; 3332 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3333 } 3334 #ifdef IFCAP_VLAN_HWCSUM 3335 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3336 #endif 3337 ifp->if_capenable = ifp->if_capabilities; 3338 #ifdef DEVICE_POLLING 3339 ifp->if_capabilities |= IFCAP_POLLING; 3340 #endif 3341 3342 /* 3343 * 5700 B0 chips do not support checksumming correctly due 3344 * to hardware bugs. 3345 */ 3346 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3347 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3348 ifp->if_capenable &= ~IFCAP_HWCSUM; 3349 ifp->if_hwassist = 0; 3350 } 3351 3352 /* 3353 * Figure out what sort of media we have by checking the 3354 * hardware config word in the first 32k of NIC internal memory, 3355 * or fall back to examining the EEPROM if necessary. 3356 * Note: on some BCM5700 cards, this value appears to be unset. 3357 * If that's the case, we have to rely on identifying the NIC 3358 * by its PCI subsystem ID, as we do below for the SysKonnect 3359 * SK-9D41. 3360 */ 3361 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3362 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3363 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3364 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3365 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3366 sizeof(hwcfg))) { 3367 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3368 error = ENXIO; 3369 goto fail; 3370 } 3371 hwcfg = ntohl(hwcfg); 3372 } 3373 3374 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3375 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3376 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3377 if (BGE_IS_5714_FAMILY(sc)) 3378 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3379 else 3380 sc->bge_flags |= BGE_FLAG_TBI; 3381 } 3382 3383 if (sc->bge_flags & BGE_FLAG_TBI) { 3384 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3385 bge_ifmedia_sts); 3386 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3387 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3388 0, NULL); 3389 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3390 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3391 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3392 } else { 3393 /* 3394 * Do transceiver setup and tell the firmware the 3395 * driver is down so we can try to get access the 3396 * probe if ASF is running. Retry a couple of times 3397 * if we get a conflict with the ASF firmware accessing 3398 * the PHY. 3399 */ 3400 trys = 0; 3401 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3402 again: 3403 bge_asf_driver_up(sc); 3404 3405 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3406 bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY, 3407 MIIF_DOPAUSE); 3408 if (error != 0) { 3409 if (trys++ < 4) { 3410 device_printf(sc->bge_dev, "Try again\n"); 3411 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, 3412 BMCR_RESET); 3413 goto again; 3414 } 3415 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3416 goto fail; 3417 } 3418 3419 /* 3420 * Now tell the firmware we are going up after probing the PHY 3421 */ 3422 if (sc->bge_asf_mode & ASF_STACKUP) 3423 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3424 } 3425 3426 /* 3427 * When using the BCM5701 in PCI-X mode, data corruption has 3428 * been observed in the first few bytes of some received packets. 3429 * Aligning the packet buffer in memory eliminates the corruption. 3430 * Unfortunately, this misaligns the packet payloads. On platforms 3431 * which do not support unaligned accesses, we will realign the 3432 * payloads by copying the received packets. 3433 */ 3434 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3435 sc->bge_flags & BGE_FLAG_PCIX) 3436 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3437 3438 /* 3439 * Call MI attach routine. 3440 */ 3441 ether_ifattach(ifp, eaddr); 3442 3443 /* Tell upper layer we support long frames. */ 3444 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3445 3446 /* 3447 * Hookup IRQ last. 3448 */ 3449 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3450 /* Take advantage of single-shot MSI. */ 3451 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3452 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3453 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3454 taskqueue_thread_enqueue, &sc->bge_tq); 3455 if (sc->bge_tq == NULL) { 3456 device_printf(dev, "could not create taskqueue.\n"); 3457 ether_ifdetach(ifp); 3458 error = ENOMEM; 3459 goto fail; 3460 } 3461 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3462 device_get_nameunit(sc->bge_dev)); 3463 error = bus_setup_intr(dev, sc->bge_irq, 3464 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3465 &sc->bge_intrhand); 3466 } else 3467 error = bus_setup_intr(dev, sc->bge_irq, 3468 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3469 &sc->bge_intrhand); 3470 3471 if (error) { 3472 ether_ifdetach(ifp); 3473 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3474 } 3475 3476 fail: 3477 if (error) 3478 bge_detach(dev); 3479 return (error); 3480 } 3481 3482 static int 3483 bge_detach(device_t dev) 3484 { 3485 struct bge_softc *sc; 3486 struct ifnet *ifp; 3487 3488 sc = device_get_softc(dev); 3489 ifp = sc->bge_ifp; 3490 3491 #ifdef DEVICE_POLLING 3492 if (ifp->if_capenable & IFCAP_POLLING) 3493 ether_poll_deregister(ifp); 3494 #endif 3495 3496 if (device_is_attached(dev)) { 3497 ether_ifdetach(ifp); 3498 BGE_LOCK(sc); 3499 bge_stop(sc); 3500 BGE_UNLOCK(sc); 3501 callout_drain(&sc->bge_stat_ch); 3502 } 3503 3504 if (sc->bge_tq) 3505 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3506 3507 if (sc->bge_flags & BGE_FLAG_TBI) { 3508 ifmedia_removeall(&sc->bge_ifmedia); 3509 } else { 3510 bus_generic_detach(dev); 3511 device_delete_child(dev, sc->bge_miibus); 3512 } 3513 3514 bge_release_resources(sc); 3515 3516 return (0); 3517 } 3518 3519 static void 3520 bge_release_resources(struct bge_softc *sc) 3521 { 3522 device_t dev; 3523 3524 dev = sc->bge_dev; 3525 3526 if (sc->bge_tq != NULL) 3527 taskqueue_free(sc->bge_tq); 3528 3529 if (sc->bge_intrhand != NULL) 3530 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3531 3532 if (sc->bge_irq != NULL) 3533 bus_release_resource(dev, SYS_RES_IRQ, 3534 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3535 3536 if (sc->bge_flags & BGE_FLAG_MSI) 3537 pci_release_msi(dev); 3538 3539 if (sc->bge_res != NULL) 3540 bus_release_resource(dev, SYS_RES_MEMORY, 3541 PCIR_BAR(0), sc->bge_res); 3542 3543 if (sc->bge_ifp != NULL) 3544 if_free(sc->bge_ifp); 3545 3546 bge_dma_free(sc); 3547 3548 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3549 BGE_LOCK_DESTROY(sc); 3550 } 3551 3552 static int 3553 bge_reset(struct bge_softc *sc) 3554 { 3555 device_t dev; 3556 uint32_t cachesize, command, pcistate, reset, val; 3557 void (*write_op)(struct bge_softc *, int, int); 3558 uint16_t devctl; 3559 int i; 3560 3561 dev = sc->bge_dev; 3562 3563 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3564 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3565 if (sc->bge_flags & BGE_FLAG_PCIE) 3566 write_op = bge_writemem_direct; 3567 else 3568 write_op = bge_writemem_ind; 3569 } else 3570 write_op = bge_writereg_ind; 3571 3572 /* Save some important PCI state. */ 3573 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3574 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3575 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3576 3577 pci_write_config(dev, BGE_PCI_MISC_CTL, 3578 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3579 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3580 3581 /* Disable fastboot on controllers that support it. */ 3582 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3583 BGE_IS_5755_PLUS(sc)) { 3584 if (bootverbose) 3585 device_printf(dev, "Disabling fastboot\n"); 3586 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3587 } 3588 3589 /* 3590 * Write the magic number to SRAM at offset 0xB50. 3591 * When firmware finishes its initialization it will 3592 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 3593 */ 3594 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 3595 3596 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3597 3598 /* XXX: Broadcom Linux driver. */ 3599 if (sc->bge_flags & BGE_FLAG_PCIE) { 3600 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 3601 CSR_WRITE_4(sc, 0x7E2C, 0x20); 3602 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 3603 /* Prevent PCIE link training during global reset */ 3604 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 3605 reset |= 1 << 29; 3606 } 3607 } 3608 3609 /* 3610 * Set GPHY Power Down Override to leave GPHY 3611 * powered up in D0 uninitialized. 3612 */ 3613 if (BGE_IS_5705_PLUS(sc) && 3614 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 3615 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 3616 3617 /* Issue global reset */ 3618 write_op(sc, BGE_MISC_CFG, reset); 3619 3620 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3621 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3622 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 3623 val | BGE_VCPU_STATUS_DRV_RESET); 3624 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 3625 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 3626 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 3627 } 3628 3629 DELAY(1000); 3630 3631 /* XXX: Broadcom Linux driver. */ 3632 if (sc->bge_flags & BGE_FLAG_PCIE) { 3633 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 3634 DELAY(500000); /* wait for link training to complete */ 3635 val = pci_read_config(dev, 0xC4, 4); 3636 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 3637 } 3638 devctl = pci_read_config(dev, 3639 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 3640 /* Clear enable no snoop and disable relaxed ordering. */ 3641 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 3642 PCIEM_CTL_NOSNOOP_ENABLE); 3643 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 3644 devctl, 2); 3645 /* Clear error status. */ 3646 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 3647 PCIEM_STA_CORRECTABLE_ERROR | 3648 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 3649 PCIEM_STA_UNSUPPORTED_REQ, 2); 3650 } 3651 3652 /* Reset some of the PCI state that got zapped by reset. */ 3653 pci_write_config(dev, BGE_PCI_MISC_CTL, 3654 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3655 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3656 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 3657 pci_write_config(dev, BGE_PCI_CMD, command, 4); 3658 write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 3659 /* 3660 * Disable PCI-X relaxed ordering to ensure status block update 3661 * comes first then packet buffer DMA. Otherwise driver may 3662 * read stale status block. 3663 */ 3664 if (sc->bge_flags & BGE_FLAG_PCIX) { 3665 devctl = pci_read_config(dev, 3666 sc->bge_pcixcap + PCIXR_COMMAND, 2); 3667 devctl &= ~PCIXM_COMMAND_ERO; 3668 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 3669 devctl &= ~PCIXM_COMMAND_MAX_READ; 3670 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3671 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3672 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 3673 PCIXM_COMMAND_MAX_READ); 3674 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3675 } 3676 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 3677 devctl, 2); 3678 } 3679 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 3680 if (BGE_IS_5714_FAMILY(sc)) { 3681 /* This chip disables MSI on reset. */ 3682 if (sc->bge_flags & BGE_FLAG_MSI) { 3683 val = pci_read_config(dev, 3684 sc->bge_msicap + PCIR_MSI_CTRL, 2); 3685 pci_write_config(dev, 3686 sc->bge_msicap + PCIR_MSI_CTRL, 3687 val | PCIM_MSICTRL_MSI_ENABLE, 2); 3688 val = CSR_READ_4(sc, BGE_MSI_MODE); 3689 CSR_WRITE_4(sc, BGE_MSI_MODE, 3690 val | BGE_MSIMODE_ENABLE); 3691 } 3692 val = CSR_READ_4(sc, BGE_MARB_MODE); 3693 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 3694 } else 3695 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3696 3697 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3698 for (i = 0; i < BGE_TIMEOUT; i++) { 3699 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3700 if (val & BGE_VCPU_STATUS_INIT_DONE) 3701 break; 3702 DELAY(100); 3703 } 3704 if (i == BGE_TIMEOUT) { 3705 device_printf(dev, "reset timed out\n"); 3706 return (1); 3707 } 3708 } else { 3709 /* 3710 * Poll until we see the 1's complement of the magic number. 3711 * This indicates that the firmware initialization is complete. 3712 * We expect this to fail if no chip containing the Ethernet 3713 * address is fitted though. 3714 */ 3715 for (i = 0; i < BGE_TIMEOUT; i++) { 3716 DELAY(10); 3717 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 3718 if (val == ~BGE_SRAM_FW_MB_MAGIC) 3719 break; 3720 } 3721 3722 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 3723 device_printf(dev, 3724 "firmware handshake timed out, found 0x%08x\n", 3725 val); 3726 /* BCM57765 A0 needs additional time before accessing. */ 3727 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 3728 DELAY(10 * 1000); /* XXX */ 3729 } 3730 3731 /* 3732 * XXX Wait for the value of the PCISTATE register to 3733 * return to its original pre-reset state. This is a 3734 * fairly good indicator of reset completion. If we don't 3735 * wait for the reset to fully complete, trying to read 3736 * from the device's non-PCI registers may yield garbage 3737 * results. 3738 */ 3739 for (i = 0; i < BGE_TIMEOUT; i++) { 3740 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 3741 break; 3742 DELAY(10); 3743 } 3744 3745 /* Fix up byte swapping. */ 3746 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 3747 3748 /* Tell the ASF firmware we are up */ 3749 if (sc->bge_asf_mode & ASF_STACKUP) 3750 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3751 3752 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 3753 DELAY(40); 3754 3755 /* 3756 * The 5704 in TBI mode apparently needs some special 3757 * adjustment to insure the SERDES drive level is set 3758 * to 1.2V. 3759 */ 3760 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 3761 sc->bge_flags & BGE_FLAG_TBI) { 3762 val = CSR_READ_4(sc, BGE_SERDES_CFG); 3763 val = (val & ~0xFFF) | 0x880; 3764 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 3765 } 3766 3767 /* XXX: Broadcom Linux driver. */ 3768 if (sc->bge_flags & BGE_FLAG_PCIE && 3769 !BGE_IS_5717_PLUS(sc) && 3770 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 3771 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 3772 /* Enable Data FIFO protection. */ 3773 val = CSR_READ_4(sc, 0x7C00); 3774 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 3775 } 3776 DELAY(10000); 3777 3778 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 3779 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 3780 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 3781 3782 return (0); 3783 } 3784 3785 static __inline void 3786 bge_rxreuse_std(struct bge_softc *sc, int i) 3787 { 3788 struct bge_rx_bd *r; 3789 3790 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 3791 r->bge_flags = BGE_RXBDFLAG_END; 3792 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 3793 r->bge_idx = i; 3794 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3795 } 3796 3797 static __inline void 3798 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 3799 { 3800 struct bge_extrx_bd *r; 3801 3802 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 3803 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 3804 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 3805 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 3806 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 3807 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 3808 r->bge_idx = i; 3809 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3810 } 3811 3812 /* 3813 * Frame reception handling. This is called if there's a frame 3814 * on the receive return list. 3815 * 3816 * Note: we have to be able to handle two possibilities here: 3817 * 1) the frame is from the jumbo receive ring 3818 * 2) the frame is from the standard receive ring 3819 */ 3820 3821 static int 3822 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 3823 { 3824 struct ifnet *ifp; 3825 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 3826 uint16_t rx_cons; 3827 3828 rx_cons = sc->bge_rx_saved_considx; 3829 3830 /* Nothing to do. */ 3831 if (rx_cons == rx_prod) 3832 return (rx_npkts); 3833 3834 ifp = sc->bge_ifp; 3835 3836 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3837 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 3838 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3839 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 3840 if (BGE_IS_JUMBO_CAPABLE(sc) && 3841 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 3842 (MCLBYTES - ETHER_ALIGN)) 3843 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3844 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 3845 3846 while (rx_cons != rx_prod) { 3847 struct bge_rx_bd *cur_rx; 3848 uint32_t rxidx; 3849 struct mbuf *m = NULL; 3850 uint16_t vlan_tag = 0; 3851 int have_tag = 0; 3852 3853 #ifdef DEVICE_POLLING 3854 if (ifp->if_capenable & IFCAP_POLLING) { 3855 if (sc->rxcycles <= 0) 3856 break; 3857 sc->rxcycles--; 3858 } 3859 #endif 3860 3861 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 3862 3863 rxidx = cur_rx->bge_idx; 3864 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 3865 3866 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 3867 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 3868 have_tag = 1; 3869 vlan_tag = cur_rx->bge_vlan_tag; 3870 } 3871 3872 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 3873 jumbocnt++; 3874 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 3875 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3876 bge_rxreuse_jumbo(sc, rxidx); 3877 continue; 3878 } 3879 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 3880 bge_rxreuse_jumbo(sc, rxidx); 3881 ifp->if_iqdrops++; 3882 continue; 3883 } 3884 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3885 } else { 3886 stdcnt++; 3887 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 3888 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3889 bge_rxreuse_std(sc, rxidx); 3890 continue; 3891 } 3892 if (bge_newbuf_std(sc, rxidx) != 0) { 3893 bge_rxreuse_std(sc, rxidx); 3894 ifp->if_iqdrops++; 3895 continue; 3896 } 3897 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3898 } 3899 3900 ifp->if_ipackets++; 3901 #ifndef __NO_STRICT_ALIGNMENT 3902 /* 3903 * For architectures with strict alignment we must make sure 3904 * the payload is aligned. 3905 */ 3906 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 3907 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 3908 cur_rx->bge_len); 3909 m->m_data += ETHER_ALIGN; 3910 } 3911 #endif 3912 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 3913 m->m_pkthdr.rcvif = ifp; 3914 3915 if (ifp->if_capenable & IFCAP_RXCSUM) 3916 bge_rxcsum(sc, cur_rx, m); 3917 3918 /* 3919 * If we received a packet with a vlan tag, 3920 * attach that information to the packet. 3921 */ 3922 if (have_tag) { 3923 m->m_pkthdr.ether_vtag = vlan_tag; 3924 m->m_flags |= M_VLANTAG; 3925 } 3926 3927 if (holdlck != 0) { 3928 BGE_UNLOCK(sc); 3929 (*ifp->if_input)(ifp, m); 3930 BGE_LOCK(sc); 3931 } else 3932 (*ifp->if_input)(ifp, m); 3933 rx_npkts++; 3934 3935 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 3936 return (rx_npkts); 3937 } 3938 3939 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3940 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 3941 if (stdcnt > 0) 3942 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3943 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 3944 3945 if (jumbocnt > 0) 3946 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3947 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 3948 3949 sc->bge_rx_saved_considx = rx_cons; 3950 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 3951 if (stdcnt) 3952 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 3953 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 3954 if (jumbocnt) 3955 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 3956 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 3957 #ifdef notyet 3958 /* 3959 * This register wraps very quickly under heavy packet drops. 3960 * If you need correct statistics, you can enable this check. 3961 */ 3962 if (BGE_IS_5705_PLUS(sc)) 3963 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 3964 #endif 3965 return (rx_npkts); 3966 } 3967 3968 static void 3969 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 3970 { 3971 3972 if (BGE_IS_5717_PLUS(sc)) { 3973 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 3974 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3975 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3976 if ((cur_rx->bge_error_flag & 3977 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 3978 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3979 } 3980 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 3981 m->m_pkthdr.csum_data = 3982 cur_rx->bge_tcp_udp_csum; 3983 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3984 CSUM_PSEUDO_HDR; 3985 } 3986 } 3987 } else { 3988 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3989 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3990 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 3991 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3992 } 3993 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 3994 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 3995 m->m_pkthdr.csum_data = 3996 cur_rx->bge_tcp_udp_csum; 3997 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3998 CSUM_PSEUDO_HDR; 3999 } 4000 } 4001 } 4002 4003 static void 4004 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4005 { 4006 struct bge_tx_bd *cur_tx; 4007 struct ifnet *ifp; 4008 4009 BGE_LOCK_ASSERT(sc); 4010 4011 /* Nothing to do. */ 4012 if (sc->bge_tx_saved_considx == tx_cons) 4013 return; 4014 4015 ifp = sc->bge_ifp; 4016 4017 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4018 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4019 /* 4020 * Go through our tx ring and free mbufs for those 4021 * frames that have been sent. 4022 */ 4023 while (sc->bge_tx_saved_considx != tx_cons) { 4024 uint32_t idx; 4025 4026 idx = sc->bge_tx_saved_considx; 4027 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4028 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4029 ifp->if_opackets++; 4030 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4031 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4032 sc->bge_cdata.bge_tx_dmamap[idx], 4033 BUS_DMASYNC_POSTWRITE); 4034 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4035 sc->bge_cdata.bge_tx_dmamap[idx]); 4036 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4037 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4038 } 4039 sc->bge_txcnt--; 4040 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4041 } 4042 4043 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4044 if (sc->bge_txcnt == 0) 4045 sc->bge_timer = 0; 4046 } 4047 4048 #ifdef DEVICE_POLLING 4049 static int 4050 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 4051 { 4052 struct bge_softc *sc = ifp->if_softc; 4053 uint16_t rx_prod, tx_cons; 4054 uint32_t statusword; 4055 int rx_npkts = 0; 4056 4057 BGE_LOCK(sc); 4058 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4059 BGE_UNLOCK(sc); 4060 return (rx_npkts); 4061 } 4062 4063 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4064 sc->bge_cdata.bge_status_map, 4065 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4066 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4067 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4068 4069 statusword = sc->bge_ldata.bge_status_block->bge_status; 4070 sc->bge_ldata.bge_status_block->bge_status = 0; 4071 4072 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4073 sc->bge_cdata.bge_status_map, 4074 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4075 4076 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4077 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4078 sc->bge_link_evt++; 4079 4080 if (cmd == POLL_AND_CHECK_STATUS) 4081 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4082 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4083 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4084 bge_link_upd(sc); 4085 4086 sc->rxcycles = count; 4087 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4088 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4089 BGE_UNLOCK(sc); 4090 return (rx_npkts); 4091 } 4092 bge_txeof(sc, tx_cons); 4093 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4094 bge_start_locked(ifp); 4095 4096 BGE_UNLOCK(sc); 4097 return (rx_npkts); 4098 } 4099 #endif /* DEVICE_POLLING */ 4100 4101 static int 4102 bge_msi_intr(void *arg) 4103 { 4104 struct bge_softc *sc; 4105 4106 sc = (struct bge_softc *)arg; 4107 /* 4108 * This interrupt is not shared and controller already 4109 * disabled further interrupt. 4110 */ 4111 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4112 return (FILTER_HANDLED); 4113 } 4114 4115 static void 4116 bge_intr_task(void *arg, int pending) 4117 { 4118 struct bge_softc *sc; 4119 struct ifnet *ifp; 4120 uint32_t status, status_tag; 4121 uint16_t rx_prod, tx_cons; 4122 4123 sc = (struct bge_softc *)arg; 4124 ifp = sc->bge_ifp; 4125 4126 BGE_LOCK(sc); 4127 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4128 BGE_UNLOCK(sc); 4129 return; 4130 } 4131 4132 /* Get updated status block. */ 4133 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4134 sc->bge_cdata.bge_status_map, 4135 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4136 4137 /* Save producer/consumer indexess. */ 4138 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4139 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4140 status = sc->bge_ldata.bge_status_block->bge_status; 4141 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4142 sc->bge_ldata.bge_status_block->bge_status = 0; 4143 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4144 sc->bge_cdata.bge_status_map, 4145 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4146 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4147 status_tag = 0; 4148 4149 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4150 bge_link_upd(sc); 4151 4152 /* Let controller work. */ 4153 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4154 4155 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4156 sc->bge_rx_saved_considx != rx_prod) { 4157 /* Check RX return ring producer/consumer. */ 4158 BGE_UNLOCK(sc); 4159 bge_rxeof(sc, rx_prod, 0); 4160 BGE_LOCK(sc); 4161 } 4162 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4163 /* Check TX ring producer/consumer. */ 4164 bge_txeof(sc, tx_cons); 4165 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4166 bge_start_locked(ifp); 4167 } 4168 BGE_UNLOCK(sc); 4169 } 4170 4171 static void 4172 bge_intr(void *xsc) 4173 { 4174 struct bge_softc *sc; 4175 struct ifnet *ifp; 4176 uint32_t statusword; 4177 uint16_t rx_prod, tx_cons; 4178 4179 sc = xsc; 4180 4181 BGE_LOCK(sc); 4182 4183 ifp = sc->bge_ifp; 4184 4185 #ifdef DEVICE_POLLING 4186 if (ifp->if_capenable & IFCAP_POLLING) { 4187 BGE_UNLOCK(sc); 4188 return; 4189 } 4190 #endif 4191 4192 /* 4193 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4194 * disable interrupts by writing nonzero like we used to, since with 4195 * our current organization this just gives complications and 4196 * pessimizations for re-enabling interrupts. We used to have races 4197 * instead of the necessary complications. Disabling interrupts 4198 * would just reduce the chance of a status update while we are 4199 * running (by switching to the interrupt-mode coalescence 4200 * parameters), but this chance is already very low so it is more 4201 * efficient to get another interrupt than prevent it. 4202 * 4203 * We do the ack first to ensure another interrupt if there is a 4204 * status update after the ack. We don't check for the status 4205 * changing later because it is more efficient to get another 4206 * interrupt than prevent it, not quite as above (not checking is 4207 * a smaller optimization than not toggling the interrupt enable, 4208 * since checking doesn't involve PCI accesses and toggling require 4209 * the status check). So toggling would probably be a pessimization 4210 * even with MSI. It would only be needed for using a task queue. 4211 */ 4212 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4213 4214 /* 4215 * Do the mandatory PCI flush as well as get the link status. 4216 */ 4217 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4218 4219 /* Make sure the descriptor ring indexes are coherent. */ 4220 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4221 sc->bge_cdata.bge_status_map, 4222 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4223 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4224 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4225 sc->bge_ldata.bge_status_block->bge_status = 0; 4226 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4227 sc->bge_cdata.bge_status_map, 4228 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4229 4230 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4231 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4232 statusword || sc->bge_link_evt) 4233 bge_link_upd(sc); 4234 4235 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4236 /* Check RX return ring producer/consumer. */ 4237 bge_rxeof(sc, rx_prod, 1); 4238 } 4239 4240 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4241 /* Check TX ring producer/consumer. */ 4242 bge_txeof(sc, tx_cons); 4243 } 4244 4245 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4246 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4247 bge_start_locked(ifp); 4248 4249 BGE_UNLOCK(sc); 4250 } 4251 4252 static void 4253 bge_asf_driver_up(struct bge_softc *sc) 4254 { 4255 if (sc->bge_asf_mode & ASF_STACKUP) { 4256 /* Send ASF heartbeat aprox. every 2s */ 4257 if (sc->bge_asf_count) 4258 sc->bge_asf_count --; 4259 else { 4260 sc->bge_asf_count = 2; 4261 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4262 BGE_FW_CMD_DRV_ALIVE); 4263 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4264 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4265 BGE_FW_HB_TIMEOUT_SEC); 4266 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4267 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4268 BGE_RX_CPU_DRV_EVENT); 4269 } 4270 } 4271 } 4272 4273 static void 4274 bge_tick(void *xsc) 4275 { 4276 struct bge_softc *sc = xsc; 4277 struct mii_data *mii = NULL; 4278 4279 BGE_LOCK_ASSERT(sc); 4280 4281 /* Synchronize with possible callout reset/stop. */ 4282 if (callout_pending(&sc->bge_stat_ch) || 4283 !callout_active(&sc->bge_stat_ch)) 4284 return; 4285 4286 if (BGE_IS_5705_PLUS(sc)) 4287 bge_stats_update_regs(sc); 4288 else 4289 bge_stats_update(sc); 4290 4291 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4292 mii = device_get_softc(sc->bge_miibus); 4293 /* 4294 * Do not touch PHY if we have link up. This could break 4295 * IPMI/ASF mode or produce extra input errors 4296 * (extra errors was reported for bcm5701 & bcm5704). 4297 */ 4298 if (!sc->bge_link) 4299 mii_tick(mii); 4300 } else { 4301 /* 4302 * Since in TBI mode auto-polling can't be used we should poll 4303 * link status manually. Here we register pending link event 4304 * and trigger interrupt. 4305 */ 4306 #ifdef DEVICE_POLLING 4307 /* In polling mode we poll link state in bge_poll(). */ 4308 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4309 #endif 4310 { 4311 sc->bge_link_evt++; 4312 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4313 sc->bge_flags & BGE_FLAG_5788) 4314 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4315 else 4316 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4317 } 4318 } 4319 4320 bge_asf_driver_up(sc); 4321 bge_watchdog(sc); 4322 4323 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4324 } 4325 4326 static void 4327 bge_stats_update_regs(struct bge_softc *sc) 4328 { 4329 struct ifnet *ifp; 4330 struct bge_mac_stats *stats; 4331 4332 ifp = sc->bge_ifp; 4333 stats = &sc->bge_mac_stats; 4334 4335 stats->ifHCOutOctets += 4336 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4337 stats->etherStatsCollisions += 4338 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4339 stats->outXonSent += 4340 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4341 stats->outXoffSent += 4342 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4343 stats->dot3StatsInternalMacTransmitErrors += 4344 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4345 stats->dot3StatsSingleCollisionFrames += 4346 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4347 stats->dot3StatsMultipleCollisionFrames += 4348 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4349 stats->dot3StatsDeferredTransmissions += 4350 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4351 stats->dot3StatsExcessiveCollisions += 4352 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4353 stats->dot3StatsLateCollisions += 4354 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4355 stats->ifHCOutUcastPkts += 4356 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4357 stats->ifHCOutMulticastPkts += 4358 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4359 stats->ifHCOutBroadcastPkts += 4360 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4361 4362 stats->ifHCInOctets += 4363 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4364 stats->etherStatsFragments += 4365 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4366 stats->ifHCInUcastPkts += 4367 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4368 stats->ifHCInMulticastPkts += 4369 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4370 stats->ifHCInBroadcastPkts += 4371 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4372 stats->dot3StatsFCSErrors += 4373 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4374 stats->dot3StatsAlignmentErrors += 4375 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4376 stats->xonPauseFramesReceived += 4377 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4378 stats->xoffPauseFramesReceived += 4379 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4380 stats->macControlFramesReceived += 4381 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4382 stats->xoffStateEntered += 4383 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4384 stats->dot3StatsFramesTooLong += 4385 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4386 stats->etherStatsJabbers += 4387 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4388 stats->etherStatsUndersizePkts += 4389 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4390 4391 stats->FramesDroppedDueToFilters += 4392 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4393 stats->DmaWriteQueueFull += 4394 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4395 stats->DmaWriteHighPriQueueFull += 4396 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4397 stats->NoMoreRxBDs += 4398 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4399 /* 4400 * XXX 4401 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4402 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4403 * includes number of unwanted multicast frames. This comes 4404 * from silicon bug and known workaround to get rough(not 4405 * exact) counter is to enable interrupt on MBUF low water 4406 * attention. This can be accomplished by setting 4407 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4408 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4409 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4410 * However that change would generate more interrupts and 4411 * there are still possibilities of losing multiple frames 4412 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4413 * Given that the workaround still would not get correct 4414 * counter I don't think it's worth to implement it. So 4415 * ignore reading the counter on controllers that have the 4416 * silicon bug. 4417 */ 4418 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4419 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4420 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4421 stats->InputDiscards += 4422 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4423 stats->InputErrors += 4424 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4425 stats->RecvThresholdHit += 4426 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4427 4428 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4429 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4430 stats->InputErrors); 4431 } 4432 4433 static void 4434 bge_stats_clear_regs(struct bge_softc *sc) 4435 { 4436 4437 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4438 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4439 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4440 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4441 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4442 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4443 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4444 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4445 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4446 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4447 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4448 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4449 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4450 4451 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4452 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4453 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4454 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4455 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4456 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4457 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4458 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4459 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4460 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4461 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4462 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4463 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4464 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4465 4466 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4467 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4468 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4469 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4470 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4471 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4472 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4473 } 4474 4475 static void 4476 bge_stats_update(struct bge_softc *sc) 4477 { 4478 struct ifnet *ifp; 4479 bus_size_t stats; 4480 uint32_t cnt; /* current register value */ 4481 4482 ifp = sc->bge_ifp; 4483 4484 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4485 4486 #define READ_STAT(sc, stats, stat) \ 4487 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4488 4489 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4490 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4491 sc->bge_tx_collisions = cnt; 4492 4493 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4494 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds); 4495 sc->bge_rx_nobds = cnt; 4496 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4497 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs); 4498 sc->bge_rx_inerrs = cnt; 4499 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4500 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4501 sc->bge_rx_discards = cnt; 4502 4503 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4504 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4505 sc->bge_tx_discards = cnt; 4506 4507 #undef READ_STAT 4508 } 4509 4510 /* 4511 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4512 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4513 * but when such padded frames employ the bge IP/TCP checksum offload, 4514 * the hardware checksum assist gives incorrect results (possibly 4515 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4516 * If we pad such runts with zeros, the onboard checksum comes out correct. 4517 */ 4518 static __inline int 4519 bge_cksum_pad(struct mbuf *m) 4520 { 4521 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4522 struct mbuf *last; 4523 4524 /* If there's only the packet-header and we can pad there, use it. */ 4525 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4526 M_TRAILINGSPACE(m) >= padlen) { 4527 last = m; 4528 } else { 4529 /* 4530 * Walk packet chain to find last mbuf. We will either 4531 * pad there, or append a new mbuf and pad it. 4532 */ 4533 for (last = m; last->m_next != NULL; last = last->m_next); 4534 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4535 /* Allocate new empty mbuf, pad it. Compact later. */ 4536 struct mbuf *n; 4537 4538 MGET(n, M_DONTWAIT, MT_DATA); 4539 if (n == NULL) 4540 return (ENOBUFS); 4541 n->m_len = 0; 4542 last->m_next = n; 4543 last = n; 4544 } 4545 } 4546 4547 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4548 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4549 last->m_len += padlen; 4550 m->m_pkthdr.len += padlen; 4551 4552 return (0); 4553 } 4554 4555 static struct mbuf * 4556 bge_check_short_dma(struct mbuf *m) 4557 { 4558 struct mbuf *n; 4559 int found; 4560 4561 /* 4562 * If device receive two back-to-back send BDs with less than 4563 * or equal to 8 total bytes then the device may hang. The two 4564 * back-to-back send BDs must in the same frame for this failure 4565 * to occur. Scan mbuf chains and see whether two back-to-back 4566 * send BDs are there. If this is the case, allocate new mbuf 4567 * and copy the frame to workaround the silicon bug. 4568 */ 4569 for (n = m, found = 0; n != NULL; n = n->m_next) { 4570 if (n->m_len < 8) { 4571 found++; 4572 if (found > 1) 4573 break; 4574 continue; 4575 } 4576 found = 0; 4577 } 4578 4579 if (found > 1) { 4580 n = m_defrag(m, M_DONTWAIT); 4581 if (n == NULL) 4582 m_freem(m); 4583 } else 4584 n = m; 4585 return (n); 4586 } 4587 4588 static struct mbuf * 4589 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4590 uint16_t *flags) 4591 { 4592 struct ip *ip; 4593 struct tcphdr *tcp; 4594 struct mbuf *n; 4595 uint16_t hlen; 4596 uint32_t poff; 4597 4598 if (M_WRITABLE(m) == 0) { 4599 /* Get a writable copy. */ 4600 n = m_dup(m, M_DONTWAIT); 4601 m_freem(m); 4602 if (n == NULL) 4603 return (NULL); 4604 m = n; 4605 } 4606 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 4607 if (m == NULL) 4608 return (NULL); 4609 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4610 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 4611 m = m_pullup(m, poff + sizeof(struct tcphdr)); 4612 if (m == NULL) 4613 return (NULL); 4614 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4615 m = m_pullup(m, poff + (tcp->th_off << 2)); 4616 if (m == NULL) 4617 return (NULL); 4618 /* 4619 * It seems controller doesn't modify IP length and TCP pseudo 4620 * checksum. These checksum computed by upper stack should be 0. 4621 */ 4622 *mss = m->m_pkthdr.tso_segsz; 4623 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4624 ip->ip_sum = 0; 4625 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 4626 /* Clear pseudo checksum computed by TCP stack. */ 4627 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4628 tcp->th_sum = 0; 4629 /* 4630 * Broadcom controllers uses different descriptor format for 4631 * TSO depending on ASIC revision. Due to TSO-capable firmware 4632 * license issue and lower performance of firmware based TSO 4633 * we only support hardware based TSO. 4634 */ 4635 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 4636 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 4637 if (sc->bge_flags & BGE_FLAG_TSO3) { 4638 /* 4639 * For BCM5717 and newer controllers, hardware based TSO 4640 * uses the 14 lower bits of the bge_mss field to store the 4641 * MSS and the upper 2 bits to store the lowest 2 bits of 4642 * the IP/TCP header length. The upper 6 bits of the header 4643 * length are stored in the bge_flags[14:10,4] field. Jumbo 4644 * frames are supported. 4645 */ 4646 *mss |= ((hlen & 0x3) << 14); 4647 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 4648 } else { 4649 /* 4650 * For BCM5755 and newer controllers, hardware based TSO uses 4651 * the lower 11 bits to store the MSS and the upper 5 bits to 4652 * store the IP/TCP header length. Jumbo frames are not 4653 * supported. 4654 */ 4655 *mss |= (hlen << 11); 4656 } 4657 return (m); 4658 } 4659 4660 /* 4661 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4662 * pointers to descriptors. 4663 */ 4664 static int 4665 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 4666 { 4667 bus_dma_segment_t segs[BGE_NSEG_NEW]; 4668 bus_dmamap_t map; 4669 struct bge_tx_bd *d; 4670 struct mbuf *m = *m_head; 4671 uint32_t idx = *txidx; 4672 uint16_t csum_flags, mss, vlan_tag; 4673 int nsegs, i, error; 4674 4675 csum_flags = 0; 4676 mss = 0; 4677 vlan_tag = 0; 4678 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 4679 m->m_next != NULL) { 4680 *m_head = bge_check_short_dma(m); 4681 if (*m_head == NULL) 4682 return (ENOBUFS); 4683 m = *m_head; 4684 } 4685 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 4686 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 4687 if (*m_head == NULL) 4688 return (ENOBUFS); 4689 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 4690 BGE_TXBDFLAG_CPU_POST_DMA; 4691 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 4692 if (m->m_pkthdr.csum_flags & CSUM_IP) 4693 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4694 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 4695 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4696 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 4697 (error = bge_cksum_pad(m)) != 0) { 4698 m_freem(m); 4699 *m_head = NULL; 4700 return (error); 4701 } 4702 } 4703 if (m->m_flags & M_LASTFRAG) 4704 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 4705 else if (m->m_flags & M_FRAG) 4706 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 4707 } 4708 4709 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 4710 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 4711 m->m_pkthdr.len > ETHER_MAX_LEN) 4712 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 4713 if (sc->bge_forced_collapse > 0 && 4714 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 4715 /* 4716 * Forcedly collapse mbuf chains to overcome hardware 4717 * limitation which only support a single outstanding 4718 * DMA read operation. 4719 */ 4720 if (sc->bge_forced_collapse == 1) 4721 m = m_defrag(m, M_DONTWAIT); 4722 else 4723 m = m_collapse(m, M_DONTWAIT, 4724 sc->bge_forced_collapse); 4725 if (m == NULL) 4726 m = *m_head; 4727 *m_head = m; 4728 } 4729 } 4730 4731 map = sc->bge_cdata.bge_tx_dmamap[idx]; 4732 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 4733 &nsegs, BUS_DMA_NOWAIT); 4734 if (error == EFBIG) { 4735 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 4736 if (m == NULL) { 4737 m_freem(*m_head); 4738 *m_head = NULL; 4739 return (ENOBUFS); 4740 } 4741 *m_head = m; 4742 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 4743 m, segs, &nsegs, BUS_DMA_NOWAIT); 4744 if (error) { 4745 m_freem(m); 4746 *m_head = NULL; 4747 return (error); 4748 } 4749 } else if (error != 0) 4750 return (error); 4751 4752 /* Check if we have enough free send BDs. */ 4753 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 4754 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 4755 return (ENOBUFS); 4756 } 4757 4758 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 4759 4760 if (m->m_flags & M_VLANTAG) { 4761 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 4762 vlan_tag = m->m_pkthdr.ether_vtag; 4763 } 4764 for (i = 0; ; i++) { 4765 d = &sc->bge_ldata.bge_tx_ring[idx]; 4766 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 4767 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 4768 d->bge_len = segs[i].ds_len; 4769 d->bge_flags = csum_flags; 4770 d->bge_vlan_tag = vlan_tag; 4771 d->bge_mss = mss; 4772 if (i == nsegs - 1) 4773 break; 4774 BGE_INC(idx, BGE_TX_RING_CNT); 4775 } 4776 4777 /* Mark the last segment as end of packet... */ 4778 d->bge_flags |= BGE_TXBDFLAG_END; 4779 4780 /* 4781 * Insure that the map for this transmission 4782 * is placed at the array index of the last descriptor 4783 * in this chain. 4784 */ 4785 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 4786 sc->bge_cdata.bge_tx_dmamap[idx] = map; 4787 sc->bge_cdata.bge_tx_chain[idx] = m; 4788 sc->bge_txcnt += nsegs; 4789 4790 BGE_INC(idx, BGE_TX_RING_CNT); 4791 *txidx = idx; 4792 4793 return (0); 4794 } 4795 4796 /* 4797 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4798 * to the mbuf data regions directly in the transmit descriptors. 4799 */ 4800 static void 4801 bge_start_locked(struct ifnet *ifp) 4802 { 4803 struct bge_softc *sc; 4804 struct mbuf *m_head; 4805 uint32_t prodidx; 4806 int count; 4807 4808 sc = ifp->if_softc; 4809 BGE_LOCK_ASSERT(sc); 4810 4811 if (!sc->bge_link || 4812 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4813 IFF_DRV_RUNNING) 4814 return; 4815 4816 prodidx = sc->bge_tx_prodidx; 4817 4818 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 4819 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 4820 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4821 break; 4822 } 4823 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4824 if (m_head == NULL) 4825 break; 4826 4827 /* 4828 * XXX 4829 * The code inside the if() block is never reached since we 4830 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 4831 * requests to checksum TCP/UDP in a fragmented packet. 4832 * 4833 * XXX 4834 * safety overkill. If this is a fragmented packet chain 4835 * with delayed TCP/UDP checksums, then only encapsulate 4836 * it if we have enough descriptors to handle the entire 4837 * chain at once. 4838 * (paranoia -- may not actually be needed) 4839 */ 4840 if (m_head->m_flags & M_FIRSTFRAG && 4841 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 4842 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 4843 m_head->m_pkthdr.csum_data + 16) { 4844 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4845 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4846 break; 4847 } 4848 } 4849 4850 /* 4851 * Pack the data into the transmit ring. If we 4852 * don't have room, set the OACTIVE flag and wait 4853 * for the NIC to drain the ring. 4854 */ 4855 if (bge_encap(sc, &m_head, &prodidx)) { 4856 if (m_head == NULL) 4857 break; 4858 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4859 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4860 break; 4861 } 4862 ++count; 4863 4864 /* 4865 * If there's a BPF listener, bounce a copy of this frame 4866 * to him. 4867 */ 4868 #ifdef ETHER_BPF_MTAP 4869 ETHER_BPF_MTAP(ifp, m_head); 4870 #else 4871 BPF_MTAP(ifp, m_head); 4872 #endif 4873 } 4874 4875 if (count > 0) { 4876 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4877 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 4878 /* Transmit. */ 4879 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4880 /* 5700 b2 errata */ 4881 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 4882 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4883 4884 sc->bge_tx_prodidx = prodidx; 4885 4886 /* 4887 * Set a timeout in case the chip goes out to lunch. 4888 */ 4889 sc->bge_timer = 5; 4890 } 4891 } 4892 4893 /* 4894 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4895 * to the mbuf data regions directly in the transmit descriptors. 4896 */ 4897 static void 4898 bge_start(struct ifnet *ifp) 4899 { 4900 struct bge_softc *sc; 4901 4902 sc = ifp->if_softc; 4903 BGE_LOCK(sc); 4904 bge_start_locked(ifp); 4905 BGE_UNLOCK(sc); 4906 } 4907 4908 static void 4909 bge_init_locked(struct bge_softc *sc) 4910 { 4911 struct ifnet *ifp; 4912 uint16_t *m; 4913 uint32_t mode; 4914 4915 BGE_LOCK_ASSERT(sc); 4916 4917 ifp = sc->bge_ifp; 4918 4919 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4920 return; 4921 4922 /* Cancel pending I/O and flush buffers. */ 4923 bge_stop(sc); 4924 4925 bge_stop_fw(sc); 4926 bge_sig_pre_reset(sc, BGE_RESET_START); 4927 bge_reset(sc); 4928 bge_sig_legacy(sc, BGE_RESET_START); 4929 bge_sig_post_reset(sc, BGE_RESET_START); 4930 4931 bge_chipinit(sc); 4932 4933 /* 4934 * Init the various state machines, ring 4935 * control blocks and firmware. 4936 */ 4937 if (bge_blockinit(sc)) { 4938 device_printf(sc->bge_dev, "initialization failure\n"); 4939 return; 4940 } 4941 4942 ifp = sc->bge_ifp; 4943 4944 /* Specify MTU. */ 4945 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 4946 ETHER_HDR_LEN + ETHER_CRC_LEN + 4947 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 4948 4949 /* Load our MAC address. */ 4950 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 4951 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 4952 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 4953 4954 /* Program promiscuous mode. */ 4955 bge_setpromisc(sc); 4956 4957 /* Program multicast filter. */ 4958 bge_setmulti(sc); 4959 4960 /* Program VLAN tag stripping. */ 4961 bge_setvlan(sc); 4962 4963 /* Override UDP checksum offloading. */ 4964 if (sc->bge_forced_udpcsum == 0) 4965 sc->bge_csum_features &= ~CSUM_UDP; 4966 else 4967 sc->bge_csum_features |= CSUM_UDP; 4968 if (ifp->if_capabilities & IFCAP_TXCSUM && 4969 ifp->if_capenable & IFCAP_TXCSUM) { 4970 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 4971 ifp->if_hwassist |= sc->bge_csum_features; 4972 } 4973 4974 /* Init RX ring. */ 4975 if (bge_init_rx_ring_std(sc) != 0) { 4976 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 4977 bge_stop(sc); 4978 return; 4979 } 4980 4981 /* 4982 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 4983 * memory to insure that the chip has in fact read the first 4984 * entry of the ring. 4985 */ 4986 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 4987 uint32_t v, i; 4988 for (i = 0; i < 10; i++) { 4989 DELAY(20); 4990 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 4991 if (v == (MCLBYTES - ETHER_ALIGN)) 4992 break; 4993 } 4994 if (i == 10) 4995 device_printf (sc->bge_dev, 4996 "5705 A0 chip failed to load RX ring\n"); 4997 } 4998 4999 /* Init jumbo RX ring. */ 5000 if (BGE_IS_JUMBO_CAPABLE(sc) && 5001 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 5002 (MCLBYTES - ETHER_ALIGN)) { 5003 if (bge_init_rx_ring_jumbo(sc) != 0) { 5004 device_printf(sc->bge_dev, 5005 "no memory for jumbo Rx buffers.\n"); 5006 bge_stop(sc); 5007 return; 5008 } 5009 } 5010 5011 /* Init our RX return ring index. */ 5012 sc->bge_rx_saved_considx = 0; 5013 5014 /* Init our RX/TX stat counters. */ 5015 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5016 5017 /* Init TX ring. */ 5018 bge_init_tx_ring(sc); 5019 5020 /* Enable TX MAC state machine lockup fix. */ 5021 mode = CSR_READ_4(sc, BGE_TX_MODE); 5022 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5023 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5024 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 5025 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5026 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5027 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5028 } 5029 /* Turn on transmitter. */ 5030 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5031 DELAY(100); 5032 5033 /* Turn on receiver. */ 5034 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5035 DELAY(10); 5036 5037 /* 5038 * Set the number of good frames to receive after RX MBUF 5039 * Low Watermark has been reached. After the RX MAC receives 5040 * this number of frames, it will drop subsequent incoming 5041 * frames until the MBUF High Watermark is reached. 5042 */ 5043 if (sc->bge_asicrev == BGE_ASICREV_BCM57765) 5044 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5045 else 5046 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5047 5048 /* Clear MAC statistics. */ 5049 if (BGE_IS_5705_PLUS(sc)) 5050 bge_stats_clear_regs(sc); 5051 5052 /* Tell firmware we're alive. */ 5053 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5054 5055 #ifdef DEVICE_POLLING 5056 /* Disable interrupts if we are polling. */ 5057 if (ifp->if_capenable & IFCAP_POLLING) { 5058 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5059 BGE_PCIMISCCTL_MASK_PCI_INTR); 5060 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5061 } else 5062 #endif 5063 5064 /* Enable host interrupts. */ 5065 { 5066 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5067 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5068 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5069 } 5070 5071 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5072 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5073 5074 bge_ifmedia_upd_locked(ifp); 5075 5076 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5077 } 5078 5079 static void 5080 bge_init(void *xsc) 5081 { 5082 struct bge_softc *sc = xsc; 5083 5084 BGE_LOCK(sc); 5085 bge_init_locked(sc); 5086 BGE_UNLOCK(sc); 5087 } 5088 5089 /* 5090 * Set media options. 5091 */ 5092 static int 5093 bge_ifmedia_upd(struct ifnet *ifp) 5094 { 5095 struct bge_softc *sc = ifp->if_softc; 5096 int res; 5097 5098 BGE_LOCK(sc); 5099 res = bge_ifmedia_upd_locked(ifp); 5100 BGE_UNLOCK(sc); 5101 5102 return (res); 5103 } 5104 5105 static int 5106 bge_ifmedia_upd_locked(struct ifnet *ifp) 5107 { 5108 struct bge_softc *sc = ifp->if_softc; 5109 struct mii_data *mii; 5110 struct mii_softc *miisc; 5111 struct ifmedia *ifm; 5112 5113 BGE_LOCK_ASSERT(sc); 5114 5115 ifm = &sc->bge_ifmedia; 5116 5117 /* If this is a 1000baseX NIC, enable the TBI port. */ 5118 if (sc->bge_flags & BGE_FLAG_TBI) { 5119 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5120 return (EINVAL); 5121 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5122 case IFM_AUTO: 5123 /* 5124 * The BCM5704 ASIC appears to have a special 5125 * mechanism for programming the autoneg 5126 * advertisement registers in TBI mode. 5127 */ 5128 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5129 uint32_t sgdig; 5130 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5131 if (sgdig & BGE_SGDIGSTS_DONE) { 5132 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5133 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5134 sgdig |= BGE_SGDIGCFG_AUTO | 5135 BGE_SGDIGCFG_PAUSE_CAP | 5136 BGE_SGDIGCFG_ASYM_PAUSE; 5137 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5138 sgdig | BGE_SGDIGCFG_SEND); 5139 DELAY(5); 5140 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5141 } 5142 } 5143 break; 5144 case IFM_1000_SX: 5145 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5146 BGE_CLRBIT(sc, BGE_MAC_MODE, 5147 BGE_MACMODE_HALF_DUPLEX); 5148 } else { 5149 BGE_SETBIT(sc, BGE_MAC_MODE, 5150 BGE_MACMODE_HALF_DUPLEX); 5151 } 5152 DELAY(40); 5153 break; 5154 default: 5155 return (EINVAL); 5156 } 5157 return (0); 5158 } 5159 5160 sc->bge_link_evt++; 5161 mii = device_get_softc(sc->bge_miibus); 5162 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5163 PHY_RESET(miisc); 5164 mii_mediachg(mii); 5165 5166 /* 5167 * Force an interrupt so that we will call bge_link_upd 5168 * if needed and clear any pending link state attention. 5169 * Without this we are not getting any further interrupts 5170 * for link state changes and thus will not UP the link and 5171 * not be able to send in bge_start_locked. The only 5172 * way to get things working was to receive a packet and 5173 * get an RX intr. 5174 * bge_tick should help for fiber cards and we might not 5175 * need to do this here if BGE_FLAG_TBI is set but as 5176 * we poll for fiber anyway it should not harm. 5177 */ 5178 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5179 sc->bge_flags & BGE_FLAG_5788) 5180 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5181 else 5182 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5183 5184 return (0); 5185 } 5186 5187 /* 5188 * Report current media status. 5189 */ 5190 static void 5191 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5192 { 5193 struct bge_softc *sc = ifp->if_softc; 5194 struct mii_data *mii; 5195 5196 BGE_LOCK(sc); 5197 5198 if (sc->bge_flags & BGE_FLAG_TBI) { 5199 ifmr->ifm_status = IFM_AVALID; 5200 ifmr->ifm_active = IFM_ETHER; 5201 if (CSR_READ_4(sc, BGE_MAC_STS) & 5202 BGE_MACSTAT_TBI_PCS_SYNCHED) 5203 ifmr->ifm_status |= IFM_ACTIVE; 5204 else { 5205 ifmr->ifm_active |= IFM_NONE; 5206 BGE_UNLOCK(sc); 5207 return; 5208 } 5209 ifmr->ifm_active |= IFM_1000_SX; 5210 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5211 ifmr->ifm_active |= IFM_HDX; 5212 else 5213 ifmr->ifm_active |= IFM_FDX; 5214 BGE_UNLOCK(sc); 5215 return; 5216 } 5217 5218 mii = device_get_softc(sc->bge_miibus); 5219 mii_pollstat(mii); 5220 ifmr->ifm_active = mii->mii_media_active; 5221 ifmr->ifm_status = mii->mii_media_status; 5222 5223 BGE_UNLOCK(sc); 5224 } 5225 5226 static int 5227 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5228 { 5229 struct bge_softc *sc = ifp->if_softc; 5230 struct ifreq *ifr = (struct ifreq *) data; 5231 struct mii_data *mii; 5232 int flags, mask, error = 0; 5233 5234 switch (command) { 5235 case SIOCSIFMTU: 5236 if (BGE_IS_JUMBO_CAPABLE(sc) || 5237 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5238 if (ifr->ifr_mtu < ETHERMIN || 5239 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5240 error = EINVAL; 5241 break; 5242 } 5243 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5244 error = EINVAL; 5245 break; 5246 } 5247 BGE_LOCK(sc); 5248 if (ifp->if_mtu != ifr->ifr_mtu) { 5249 ifp->if_mtu = ifr->ifr_mtu; 5250 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5251 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5252 bge_init_locked(sc); 5253 } 5254 } 5255 BGE_UNLOCK(sc); 5256 break; 5257 case SIOCSIFFLAGS: 5258 BGE_LOCK(sc); 5259 if (ifp->if_flags & IFF_UP) { 5260 /* 5261 * If only the state of the PROMISC flag changed, 5262 * then just use the 'set promisc mode' command 5263 * instead of reinitializing the entire NIC. Doing 5264 * a full re-init means reloading the firmware and 5265 * waiting for it to start up, which may take a 5266 * second or two. Similarly for ALLMULTI. 5267 */ 5268 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5269 flags = ifp->if_flags ^ sc->bge_if_flags; 5270 if (flags & IFF_PROMISC) 5271 bge_setpromisc(sc); 5272 if (flags & IFF_ALLMULTI) 5273 bge_setmulti(sc); 5274 } else 5275 bge_init_locked(sc); 5276 } else { 5277 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5278 bge_stop(sc); 5279 } 5280 } 5281 sc->bge_if_flags = ifp->if_flags; 5282 BGE_UNLOCK(sc); 5283 error = 0; 5284 break; 5285 case SIOCADDMULTI: 5286 case SIOCDELMULTI: 5287 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5288 BGE_LOCK(sc); 5289 bge_setmulti(sc); 5290 BGE_UNLOCK(sc); 5291 error = 0; 5292 } 5293 break; 5294 case SIOCSIFMEDIA: 5295 case SIOCGIFMEDIA: 5296 if (sc->bge_flags & BGE_FLAG_TBI) { 5297 error = ifmedia_ioctl(ifp, ifr, 5298 &sc->bge_ifmedia, command); 5299 } else { 5300 mii = device_get_softc(sc->bge_miibus); 5301 error = ifmedia_ioctl(ifp, ifr, 5302 &mii->mii_media, command); 5303 } 5304 break; 5305 case SIOCSIFCAP: 5306 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5307 #ifdef DEVICE_POLLING 5308 if (mask & IFCAP_POLLING) { 5309 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5310 error = ether_poll_register(bge_poll, ifp); 5311 if (error) 5312 return (error); 5313 BGE_LOCK(sc); 5314 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5315 BGE_PCIMISCCTL_MASK_PCI_INTR); 5316 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5317 ifp->if_capenable |= IFCAP_POLLING; 5318 BGE_UNLOCK(sc); 5319 } else { 5320 error = ether_poll_deregister(ifp); 5321 /* Enable interrupt even in error case */ 5322 BGE_LOCK(sc); 5323 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5324 BGE_PCIMISCCTL_MASK_PCI_INTR); 5325 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5326 ifp->if_capenable &= ~IFCAP_POLLING; 5327 BGE_UNLOCK(sc); 5328 } 5329 } 5330 #endif 5331 if ((mask & IFCAP_TXCSUM) != 0 && 5332 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 5333 ifp->if_capenable ^= IFCAP_TXCSUM; 5334 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5335 ifp->if_hwassist |= sc->bge_csum_features; 5336 else 5337 ifp->if_hwassist &= ~sc->bge_csum_features; 5338 } 5339 5340 if ((mask & IFCAP_RXCSUM) != 0 && 5341 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5342 ifp->if_capenable ^= IFCAP_RXCSUM; 5343 5344 if ((mask & IFCAP_TSO4) != 0 && 5345 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5346 ifp->if_capenable ^= IFCAP_TSO4; 5347 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5348 ifp->if_hwassist |= CSUM_TSO; 5349 else 5350 ifp->if_hwassist &= ~CSUM_TSO; 5351 } 5352 5353 if (mask & IFCAP_VLAN_MTU) { 5354 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5355 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5356 bge_init(sc); 5357 } 5358 5359 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5360 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5361 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5362 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5363 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5364 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5365 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5366 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5367 BGE_LOCK(sc); 5368 bge_setvlan(sc); 5369 BGE_UNLOCK(sc); 5370 } 5371 #ifdef VLAN_CAPABILITIES 5372 VLAN_CAPABILITIES(ifp); 5373 #endif 5374 break; 5375 default: 5376 error = ether_ioctl(ifp, command, data); 5377 break; 5378 } 5379 5380 return (error); 5381 } 5382 5383 static void 5384 bge_watchdog(struct bge_softc *sc) 5385 { 5386 struct ifnet *ifp; 5387 5388 BGE_LOCK_ASSERT(sc); 5389 5390 if (sc->bge_timer == 0 || --sc->bge_timer) 5391 return; 5392 5393 ifp = sc->bge_ifp; 5394 5395 if_printf(ifp, "watchdog timeout -- resetting\n"); 5396 5397 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5398 bge_init_locked(sc); 5399 5400 ifp->if_oerrors++; 5401 } 5402 5403 static void 5404 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5405 { 5406 int i; 5407 5408 BGE_CLRBIT(sc, reg, bit); 5409 5410 for (i = 0; i < BGE_TIMEOUT; i++) { 5411 if ((CSR_READ_4(sc, reg) & bit) == 0) 5412 return; 5413 DELAY(100); 5414 } 5415 } 5416 5417 /* 5418 * Stop the adapter and free any mbufs allocated to the 5419 * RX and TX lists. 5420 */ 5421 static void 5422 bge_stop(struct bge_softc *sc) 5423 { 5424 struct ifnet *ifp; 5425 5426 BGE_LOCK_ASSERT(sc); 5427 5428 ifp = sc->bge_ifp; 5429 5430 callout_stop(&sc->bge_stat_ch); 5431 5432 /* Disable host interrupts. */ 5433 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5434 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5435 5436 /* 5437 * Tell firmware we're shutting down. 5438 */ 5439 bge_stop_fw(sc); 5440 bge_sig_pre_reset(sc, BGE_RESET_STOP); 5441 5442 /* 5443 * Disable all of the receiver blocks. 5444 */ 5445 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5446 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5447 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5448 if (BGE_IS_5700_FAMILY(sc)) 5449 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5450 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5451 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5452 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5453 5454 /* 5455 * Disable all of the transmit blocks. 5456 */ 5457 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5458 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5459 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5460 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5461 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5462 if (BGE_IS_5700_FAMILY(sc)) 5463 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5464 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5465 5466 /* 5467 * Shut down all of the memory managers and related 5468 * state machines. 5469 */ 5470 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5471 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5472 if (BGE_IS_5700_FAMILY(sc)) 5473 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5474 5475 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5476 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5477 if (!(BGE_IS_5705_PLUS(sc))) { 5478 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5479 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5480 } 5481 /* Update MAC statistics. */ 5482 if (BGE_IS_5705_PLUS(sc)) 5483 bge_stats_update_regs(sc); 5484 5485 bge_reset(sc); 5486 bge_sig_legacy(sc, BGE_RESET_STOP); 5487 bge_sig_post_reset(sc, BGE_RESET_STOP); 5488 5489 /* 5490 * Keep the ASF firmware running if up. 5491 */ 5492 if (sc->bge_asf_mode & ASF_STACKUP) 5493 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5494 else 5495 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5496 5497 /* Free the RX lists. */ 5498 bge_free_rx_ring_std(sc); 5499 5500 /* Free jumbo RX list. */ 5501 if (BGE_IS_JUMBO_CAPABLE(sc)) 5502 bge_free_rx_ring_jumbo(sc); 5503 5504 /* Free TX buffers. */ 5505 bge_free_tx_ring(sc); 5506 5507 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5508 5509 /* Clear MAC's link state (PHY may still have link UP). */ 5510 if (bootverbose && sc->bge_link) 5511 if_printf(sc->bge_ifp, "link DOWN\n"); 5512 sc->bge_link = 0; 5513 5514 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5515 } 5516 5517 /* 5518 * Stop all chip I/O so that the kernel's probe routines don't 5519 * get confused by errant DMAs when rebooting. 5520 */ 5521 static int 5522 bge_shutdown(device_t dev) 5523 { 5524 struct bge_softc *sc; 5525 5526 sc = device_get_softc(dev); 5527 BGE_LOCK(sc); 5528 bge_stop(sc); 5529 bge_reset(sc); 5530 BGE_UNLOCK(sc); 5531 5532 return (0); 5533 } 5534 5535 static int 5536 bge_suspend(device_t dev) 5537 { 5538 struct bge_softc *sc; 5539 5540 sc = device_get_softc(dev); 5541 BGE_LOCK(sc); 5542 bge_stop(sc); 5543 BGE_UNLOCK(sc); 5544 5545 return (0); 5546 } 5547 5548 static int 5549 bge_resume(device_t dev) 5550 { 5551 struct bge_softc *sc; 5552 struct ifnet *ifp; 5553 5554 sc = device_get_softc(dev); 5555 BGE_LOCK(sc); 5556 ifp = sc->bge_ifp; 5557 if (ifp->if_flags & IFF_UP) { 5558 bge_init_locked(sc); 5559 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5560 bge_start_locked(ifp); 5561 } 5562 BGE_UNLOCK(sc); 5563 5564 return (0); 5565 } 5566 5567 static void 5568 bge_link_upd(struct bge_softc *sc) 5569 { 5570 struct mii_data *mii; 5571 uint32_t link, status; 5572 5573 BGE_LOCK_ASSERT(sc); 5574 5575 /* Clear 'pending link event' flag. */ 5576 sc->bge_link_evt = 0; 5577 5578 /* 5579 * Process link state changes. 5580 * Grrr. The link status word in the status block does 5581 * not work correctly on the BCM5700 rev AX and BX chips, 5582 * according to all available information. Hence, we have 5583 * to enable MII interrupts in order to properly obtain 5584 * async link changes. Unfortunately, this also means that 5585 * we have to read the MAC status register to detect link 5586 * changes, thereby adding an additional register access to 5587 * the interrupt handler. 5588 * 5589 * XXX: perhaps link state detection procedure used for 5590 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5591 */ 5592 5593 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5594 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5595 status = CSR_READ_4(sc, BGE_MAC_STS); 5596 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5597 mii = device_get_softc(sc->bge_miibus); 5598 mii_pollstat(mii); 5599 if (!sc->bge_link && 5600 mii->mii_media_status & IFM_ACTIVE && 5601 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5602 sc->bge_link++; 5603 if (bootverbose) 5604 if_printf(sc->bge_ifp, "link UP\n"); 5605 } else if (sc->bge_link && 5606 (!(mii->mii_media_status & IFM_ACTIVE) || 5607 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5608 sc->bge_link = 0; 5609 if (bootverbose) 5610 if_printf(sc->bge_ifp, "link DOWN\n"); 5611 } 5612 5613 /* Clear the interrupt. */ 5614 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5615 BGE_EVTENB_MI_INTERRUPT); 5616 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 5617 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 5618 BRGPHY_INTRS); 5619 } 5620 return; 5621 } 5622 5623 if (sc->bge_flags & BGE_FLAG_TBI) { 5624 status = CSR_READ_4(sc, BGE_MAC_STS); 5625 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5626 if (!sc->bge_link) { 5627 sc->bge_link++; 5628 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5629 BGE_CLRBIT(sc, BGE_MAC_MODE, 5630 BGE_MACMODE_TBI_SEND_CFGS); 5631 DELAY(40); 5632 } 5633 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5634 if (bootverbose) 5635 if_printf(sc->bge_ifp, "link UP\n"); 5636 if_link_state_change(sc->bge_ifp, 5637 LINK_STATE_UP); 5638 } 5639 } else if (sc->bge_link) { 5640 sc->bge_link = 0; 5641 if (bootverbose) 5642 if_printf(sc->bge_ifp, "link DOWN\n"); 5643 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 5644 } 5645 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 5646 /* 5647 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 5648 * in status word always set. Workaround this bug by reading 5649 * PHY link status directly. 5650 */ 5651 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 5652 5653 if (link != sc->bge_link || 5654 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 5655 mii = device_get_softc(sc->bge_miibus); 5656 mii_pollstat(mii); 5657 if (!sc->bge_link && 5658 mii->mii_media_status & IFM_ACTIVE && 5659 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5660 sc->bge_link++; 5661 if (bootverbose) 5662 if_printf(sc->bge_ifp, "link UP\n"); 5663 } else if (sc->bge_link && 5664 (!(mii->mii_media_status & IFM_ACTIVE) || 5665 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5666 sc->bge_link = 0; 5667 if (bootverbose) 5668 if_printf(sc->bge_ifp, "link DOWN\n"); 5669 } 5670 } 5671 } else { 5672 /* 5673 * For controllers that call mii_tick, we have to poll 5674 * link status. 5675 */ 5676 mii = device_get_softc(sc->bge_miibus); 5677 mii_pollstat(mii); 5678 bge_miibus_statchg(sc->bge_dev); 5679 } 5680 5681 /* Clear the attention. */ 5682 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 5683 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 5684 BGE_MACSTAT_LINK_CHANGED); 5685 } 5686 5687 static void 5688 bge_add_sysctls(struct bge_softc *sc) 5689 { 5690 struct sysctl_ctx_list *ctx; 5691 struct sysctl_oid_list *children; 5692 char tn[32]; 5693 int unit; 5694 5695 ctx = device_get_sysctl_ctx(sc->bge_dev); 5696 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 5697 5698 #ifdef BGE_REGISTER_DEBUG 5699 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 5700 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 5701 "Debug Information"); 5702 5703 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 5704 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 5705 "Register Read"); 5706 5707 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 5708 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 5709 "Memory Read"); 5710 5711 #endif 5712 5713 unit = device_get_unit(sc->bge_dev); 5714 /* 5715 * A common design characteristic for many Broadcom client controllers 5716 * is that they only support a single outstanding DMA read operation 5717 * on the PCIe bus. This means that it will take twice as long to fetch 5718 * a TX frame that is split into header and payload buffers as it does 5719 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 5720 * these controllers, coalescing buffers to reduce the number of memory 5721 * reads is effective way to get maximum performance(about 940Mbps). 5722 * Without collapsing TX buffers the maximum TCP bulk transfer 5723 * performance is about 850Mbps. However forcing coalescing mbufs 5724 * consumes a lot of CPU cycles, so leave it off by default. 5725 */ 5726 sc->bge_forced_collapse = 0; 5727 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 5728 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 5729 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 5730 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 5731 "Number of fragmented TX buffers of a frame allowed before " 5732 "forced collapsing"); 5733 5734 sc->bge_msi = 1; 5735 snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit); 5736 TUNABLE_INT_FETCH(tn, &sc->bge_msi); 5737 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 5738 CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI"); 5739 5740 /* 5741 * It seems all Broadcom controllers have a bug that can generate UDP 5742 * datagrams with checksum value 0 when TX UDP checksum offloading is 5743 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 5744 * Even though the probability of generating such UDP datagrams is 5745 * low, I don't want to see FreeBSD boxes to inject such datagrams 5746 * into network so disable UDP checksum offloading by default. Users 5747 * still override this behavior by setting a sysctl variable, 5748 * dev.bge.0.forced_udpcsum. 5749 */ 5750 sc->bge_forced_udpcsum = 0; 5751 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 5752 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 5753 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 5754 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 5755 "Enable UDP checksum offloading even if controller can " 5756 "generate UDP checksum value 0"); 5757 5758 if (BGE_IS_5705_PLUS(sc)) 5759 bge_add_sysctl_stats_regs(sc, ctx, children); 5760 else 5761 bge_add_sysctl_stats(sc, ctx, children); 5762 } 5763 5764 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 5765 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 5766 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 5767 desc) 5768 5769 static void 5770 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5771 struct sysctl_oid_list *parent) 5772 { 5773 struct sysctl_oid *tree; 5774 struct sysctl_oid_list *children, *schildren; 5775 5776 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5777 NULL, "BGE Statistics"); 5778 schildren = children = SYSCTL_CHILDREN(tree); 5779 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 5780 children, COSFramesDroppedDueToFilters, 5781 "FramesDroppedDueToFilters"); 5782 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 5783 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 5784 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 5785 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 5786 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 5787 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 5788 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 5789 children, ifInDiscards, "InputDiscards"); 5790 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 5791 children, ifInErrors, "InputErrors"); 5792 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 5793 children, nicRecvThresholdHit, "RecvThresholdHit"); 5794 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 5795 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 5796 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 5797 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 5798 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 5799 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 5800 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 5801 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 5802 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 5803 children, nicRingStatusUpdate, "RingStatusUpdate"); 5804 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 5805 children, nicInterrupts, "Interrupts"); 5806 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 5807 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 5808 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 5809 children, nicSendThresholdHit, "SendThresholdHit"); 5810 5811 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 5812 NULL, "BGE RX Statistics"); 5813 children = SYSCTL_CHILDREN(tree); 5814 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 5815 children, rxstats.ifHCInOctets, "ifHCInOctets"); 5816 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 5817 children, rxstats.etherStatsFragments, "Fragments"); 5818 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 5819 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 5820 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 5821 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 5822 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 5823 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 5824 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 5825 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 5826 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 5827 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 5828 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 5829 children, rxstats.xoffPauseFramesReceived, 5830 "xoffPauseFramesReceived"); 5831 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 5832 children, rxstats.macControlFramesReceived, 5833 "ControlFramesReceived"); 5834 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 5835 children, rxstats.xoffStateEntered, "xoffStateEntered"); 5836 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 5837 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 5838 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 5839 children, rxstats.etherStatsJabbers, "Jabbers"); 5840 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 5841 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 5842 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 5843 children, rxstats.inRangeLengthError, "inRangeLengthError"); 5844 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 5845 children, rxstats.outRangeLengthError, "outRangeLengthError"); 5846 5847 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 5848 NULL, "BGE TX Statistics"); 5849 children = SYSCTL_CHILDREN(tree); 5850 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 5851 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 5852 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 5853 children, txstats.etherStatsCollisions, "Collisions"); 5854 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 5855 children, txstats.outXonSent, "XonSent"); 5856 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 5857 children, txstats.outXoffSent, "XoffSent"); 5858 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 5859 children, txstats.flowControlDone, "flowControlDone"); 5860 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 5861 children, txstats.dot3StatsInternalMacTransmitErrors, 5862 "InternalMacTransmitErrors"); 5863 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 5864 children, txstats.dot3StatsSingleCollisionFrames, 5865 "SingleCollisionFrames"); 5866 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 5867 children, txstats.dot3StatsMultipleCollisionFrames, 5868 "MultipleCollisionFrames"); 5869 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 5870 children, txstats.dot3StatsDeferredTransmissions, 5871 "DeferredTransmissions"); 5872 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 5873 children, txstats.dot3StatsExcessiveCollisions, 5874 "ExcessiveCollisions"); 5875 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 5876 children, txstats.dot3StatsLateCollisions, 5877 "LateCollisions"); 5878 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 5879 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 5880 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 5881 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 5882 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 5883 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 5884 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 5885 children, txstats.dot3StatsCarrierSenseErrors, 5886 "CarrierSenseErrors"); 5887 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 5888 children, txstats.ifOutDiscards, "Discards"); 5889 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 5890 children, txstats.ifOutErrors, "Errors"); 5891 } 5892 5893 #undef BGE_SYSCTL_STAT 5894 5895 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 5896 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 5897 5898 static void 5899 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5900 struct sysctl_oid_list *parent) 5901 { 5902 struct sysctl_oid *tree; 5903 struct sysctl_oid_list *child, *schild; 5904 struct bge_mac_stats *stats; 5905 5906 stats = &sc->bge_mac_stats; 5907 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5908 NULL, "BGE Statistics"); 5909 schild = child = SYSCTL_CHILDREN(tree); 5910 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 5911 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 5912 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 5913 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 5914 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 5915 &stats->DmaWriteHighPriQueueFull, 5916 "NIC DMA Write High Priority Queue Full"); 5917 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 5918 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 5919 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 5920 &stats->InputDiscards, "Discarded Input Frames"); 5921 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 5922 &stats->InputErrors, "Input Errors"); 5923 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 5924 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 5925 5926 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 5927 NULL, "BGE RX Statistics"); 5928 child = SYSCTL_CHILDREN(tree); 5929 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 5930 &stats->ifHCInOctets, "Inbound Octets"); 5931 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 5932 &stats->etherStatsFragments, "Fragments"); 5933 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5934 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 5935 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5936 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 5937 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5938 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 5939 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 5940 &stats->dot3StatsFCSErrors, "FCS Errors"); 5941 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 5942 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 5943 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 5944 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 5945 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 5946 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 5947 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 5948 &stats->macControlFramesReceived, "MAC Control Frames Received"); 5949 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 5950 &stats->xoffStateEntered, "XOFF State Entered"); 5951 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 5952 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 5953 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 5954 &stats->etherStatsJabbers, "Jabbers"); 5955 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 5956 &stats->etherStatsUndersizePkts, "Undersized Packets"); 5957 5958 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 5959 NULL, "BGE TX Statistics"); 5960 child = SYSCTL_CHILDREN(tree); 5961 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 5962 &stats->ifHCOutOctets, "Outbound Octets"); 5963 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 5964 &stats->etherStatsCollisions, "TX Collisions"); 5965 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 5966 &stats->outXonSent, "XON Sent"); 5967 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 5968 &stats->outXoffSent, "XOFF Sent"); 5969 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 5970 &stats->dot3StatsInternalMacTransmitErrors, 5971 "Internal MAC TX Errors"); 5972 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 5973 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 5974 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 5975 &stats->dot3StatsMultipleCollisionFrames, 5976 "Multiple Collision Frames"); 5977 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 5978 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 5979 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 5980 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 5981 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 5982 &stats->dot3StatsLateCollisions, "Late Collisions"); 5983 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5984 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 5985 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5986 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 5987 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5988 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 5989 } 5990 5991 #undef BGE_SYSCTL_STAT_ADD64 5992 5993 static int 5994 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 5995 { 5996 struct bge_softc *sc; 5997 uint32_t result; 5998 int offset; 5999 6000 sc = (struct bge_softc *)arg1; 6001 offset = arg2; 6002 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6003 offsetof(bge_hostaddr, bge_addr_lo)); 6004 return (sysctl_handle_int(oidp, &result, 0, req)); 6005 } 6006 6007 #ifdef BGE_REGISTER_DEBUG 6008 static int 6009 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6010 { 6011 struct bge_softc *sc; 6012 uint16_t *sbdata; 6013 int error, result, sbsz; 6014 int i, j; 6015 6016 result = -1; 6017 error = sysctl_handle_int(oidp, &result, 0, req); 6018 if (error || (req->newptr == NULL)) 6019 return (error); 6020 6021 if (result == 1) { 6022 sc = (struct bge_softc *)arg1; 6023 6024 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6025 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6026 sbsz = BGE_STATUS_BLK_SZ; 6027 else 6028 sbsz = 32; 6029 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6030 printf("Status Block:\n"); 6031 BGE_LOCK(sc); 6032 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6033 sc->bge_cdata.bge_status_map, 6034 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6035 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6036 printf("%06x:", i); 6037 for (j = 0; j < 8; j++) 6038 printf(" %04x", sbdata[i++]); 6039 printf("\n"); 6040 } 6041 6042 printf("Registers:\n"); 6043 for (i = 0x800; i < 0xA00; ) { 6044 printf("%06x:", i); 6045 for (j = 0; j < 8; j++) { 6046 printf(" %08x", CSR_READ_4(sc, i)); 6047 i += 4; 6048 } 6049 printf("\n"); 6050 } 6051 BGE_UNLOCK(sc); 6052 6053 printf("Hardware Flags:\n"); 6054 if (BGE_IS_5717_PLUS(sc)) 6055 printf(" - 5717 Plus\n"); 6056 if (BGE_IS_5755_PLUS(sc)) 6057 printf(" - 5755 Plus\n"); 6058 if (BGE_IS_575X_PLUS(sc)) 6059 printf(" - 575X Plus\n"); 6060 if (BGE_IS_5705_PLUS(sc)) 6061 printf(" - 5705 Plus\n"); 6062 if (BGE_IS_5714_FAMILY(sc)) 6063 printf(" - 5714 Family\n"); 6064 if (BGE_IS_5700_FAMILY(sc)) 6065 printf(" - 5700 Family\n"); 6066 if (sc->bge_flags & BGE_FLAG_JUMBO) 6067 printf(" - Supports Jumbo Frames\n"); 6068 if (sc->bge_flags & BGE_FLAG_PCIX) 6069 printf(" - PCI-X Bus\n"); 6070 if (sc->bge_flags & BGE_FLAG_PCIE) 6071 printf(" - PCI Express Bus\n"); 6072 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6073 printf(" - No 3 LEDs\n"); 6074 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6075 printf(" - RX Alignment Bug\n"); 6076 } 6077 6078 return (error); 6079 } 6080 6081 static int 6082 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6083 { 6084 struct bge_softc *sc; 6085 int error; 6086 uint16_t result; 6087 uint32_t val; 6088 6089 result = -1; 6090 error = sysctl_handle_int(oidp, &result, 0, req); 6091 if (error || (req->newptr == NULL)) 6092 return (error); 6093 6094 if (result < 0x8000) { 6095 sc = (struct bge_softc *)arg1; 6096 val = CSR_READ_4(sc, result); 6097 printf("reg 0x%06X = 0x%08X\n", result, val); 6098 } 6099 6100 return (error); 6101 } 6102 6103 static int 6104 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6105 { 6106 struct bge_softc *sc; 6107 int error; 6108 uint16_t result; 6109 uint32_t val; 6110 6111 result = -1; 6112 error = sysctl_handle_int(oidp, &result, 0, req); 6113 if (error || (req->newptr == NULL)) 6114 return (error); 6115 6116 if (result < 0x8000) { 6117 sc = (struct bge_softc *)arg1; 6118 val = bge_readmem_ind(sc, result); 6119 printf("mem 0x%06X = 0x%08X\n", result, val); 6120 } 6121 6122 return (error); 6123 } 6124 #endif 6125 6126 static int 6127 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6128 { 6129 6130 if (sc->bge_flags & BGE_FLAG_EADDR) 6131 return (1); 6132 6133 #ifdef __sparc64__ 6134 OF_getetheraddr(sc->bge_dev, ether_addr); 6135 return (0); 6136 #endif 6137 return (1); 6138 } 6139 6140 static int 6141 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6142 { 6143 uint32_t mac_addr; 6144 6145 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6146 if ((mac_addr >> 16) == 0x484b) { 6147 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6148 ether_addr[1] = (uint8_t)mac_addr; 6149 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6150 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6151 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6152 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6153 ether_addr[5] = (uint8_t)mac_addr; 6154 return (0); 6155 } 6156 return (1); 6157 } 6158 6159 static int 6160 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6161 { 6162 int mac_offset = BGE_EE_MAC_OFFSET; 6163 6164 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6165 mac_offset = BGE_EE_MAC_OFFSET_5906; 6166 6167 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6168 ETHER_ADDR_LEN)); 6169 } 6170 6171 static int 6172 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6173 { 6174 6175 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6176 return (1); 6177 6178 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6179 ETHER_ADDR_LEN)); 6180 } 6181 6182 static int 6183 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6184 { 6185 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6186 /* NOTE: Order is critical */ 6187 bge_get_eaddr_fw, 6188 bge_get_eaddr_mem, 6189 bge_get_eaddr_nvram, 6190 bge_get_eaddr_eeprom, 6191 NULL 6192 }; 6193 const bge_eaddr_fcn_t *func; 6194 6195 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6196 if ((*func)(sc, eaddr) == 0) 6197 break; 6198 } 6199 return (*func == NULL ? ENXIO : 0); 6200 } 6201