xref: /freebsd/sys/dev/bge/if_bge.c (revision a10cee30c94cf5944826d2a495e9cdf339dfbcc8)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227 
228 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229 
230 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231 
232 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235 
236 	{ 0, 0 }
237 };
238 
239 static const struct bge_vendor {
240 	uint16_t	v_id;
241 	const char	*v_name;
242 } const bge_vendors[] = {
243 	{ ALTEON_VENDORID,	"Alteon" },
244 	{ ALTIMA_VENDORID,	"Altima" },
245 	{ APPLE_VENDORID,	"Apple" },
246 	{ BCOM_VENDORID,	"Broadcom" },
247 	{ SK_VENDORID,		"SysKonnect" },
248 	{ TC_VENDORID,		"3Com" },
249 	{ FJTSU_VENDORID,	"Fujitsu" },
250 
251 	{ 0, NULL }
252 };
253 
254 static const struct bge_revision {
255 	uint32_t	br_chipid;
256 	const char	*br_name;
257 } const bge_revisions[] = {
258 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
305 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
306 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
307 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
308 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
309 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
310 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
311 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
312 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
313 	/* 5754 and 5787 share the same ASIC ID */
314 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
315 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
316 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
317 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
318 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
319 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
320 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
321 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
322 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
323 
324 	{ 0, NULL }
325 };
326 
327 /*
328  * Some defaults for major revisions, so that newer steppings
329  * that we don't know about have a shot at working.
330  */
331 static const struct bge_revision const bge_majorrevs[] = {
332 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
333 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
334 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
335 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
336 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
337 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
338 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
339 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
340 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
341 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
342 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
343 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
344 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
345 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
346 	/* 5754 and 5787 share the same ASIC ID */
347 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
348 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
349 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
350 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
351 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
352 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
353 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
354 
355 	{ 0, NULL }
356 };
357 
358 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
359 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
360 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
361 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
362 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
363 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
364 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
365 
366 const struct bge_revision * bge_lookup_rev(uint32_t);
367 const struct bge_vendor * bge_lookup_vendor(uint16_t);
368 
369 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
370 
371 static int bge_probe(device_t);
372 static int bge_attach(device_t);
373 static int bge_detach(device_t);
374 static int bge_suspend(device_t);
375 static int bge_resume(device_t);
376 static void bge_release_resources(struct bge_softc *);
377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378 static int bge_dma_alloc(struct bge_softc *);
379 static void bge_dma_free(struct bge_softc *);
380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
381     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
382 
383 static void bge_devinfo(struct bge_softc *);
384 static int bge_mbox_reorder(struct bge_softc *);
385 
386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
391 
392 static void bge_txeof(struct bge_softc *, uint16_t);
393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
394 static int bge_rxeof(struct bge_softc *, uint16_t, int);
395 
396 static void bge_asf_driver_up (struct bge_softc *);
397 static void bge_tick(void *);
398 static void bge_stats_clear_regs(struct bge_softc *);
399 static void bge_stats_update(struct bge_softc *);
400 static void bge_stats_update_regs(struct bge_softc *);
401 static struct mbuf *bge_check_short_dma(struct mbuf *);
402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
403     uint16_t *, uint16_t *);
404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
405 
406 static void bge_intr(void *);
407 static int bge_msi_intr(void *);
408 static void bge_intr_task(void *, int);
409 static void bge_start_locked(struct ifnet *);
410 static void bge_start(struct ifnet *);
411 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
412 static void bge_init_locked(struct bge_softc *);
413 static void bge_init(void *);
414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
415 static void bge_stop(struct bge_softc *);
416 static void bge_watchdog(struct bge_softc *);
417 static int bge_shutdown(device_t);
418 static int bge_ifmedia_upd_locked(struct ifnet *);
419 static int bge_ifmedia_upd(struct ifnet *);
420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
421 
422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
424 
425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
427 
428 static void bge_setpromisc(struct bge_softc *);
429 static void bge_setmulti(struct bge_softc *);
430 static void bge_setvlan(struct bge_softc *);
431 
432 static __inline void bge_rxreuse_std(struct bge_softc *, int);
433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
434 static int bge_newbuf_std(struct bge_softc *, int);
435 static int bge_newbuf_jumbo(struct bge_softc *, int);
436 static int bge_init_rx_ring_std(struct bge_softc *);
437 static void bge_free_rx_ring_std(struct bge_softc *);
438 static int bge_init_rx_ring_jumbo(struct bge_softc *);
439 static void bge_free_rx_ring_jumbo(struct bge_softc *);
440 static void bge_free_tx_ring(struct bge_softc *);
441 static int bge_init_tx_ring(struct bge_softc *);
442 
443 static int bge_chipinit(struct bge_softc *);
444 static int bge_blockinit(struct bge_softc *);
445 static uint32_t bge_dma_swap_options(struct bge_softc *);
446 
447 static int bge_has_eaddr(struct bge_softc *);
448 static uint32_t bge_readmem_ind(struct bge_softc *, int);
449 static void bge_writemem_ind(struct bge_softc *, int, int);
450 static void bge_writembx(struct bge_softc *, int, int);
451 #ifdef notdef
452 static uint32_t bge_readreg_ind(struct bge_softc *, int);
453 #endif
454 static void bge_writemem_direct(struct bge_softc *, int, int);
455 static void bge_writereg_ind(struct bge_softc *, int, int);
456 
457 static int bge_miibus_readreg(device_t, int, int);
458 static int bge_miibus_writereg(device_t, int, int, int);
459 static void bge_miibus_statchg(device_t);
460 #ifdef DEVICE_POLLING
461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
462 #endif
463 
464 #define	BGE_RESET_START 1
465 #define	BGE_RESET_STOP  2
466 static void bge_sig_post_reset(struct bge_softc *, int);
467 static void bge_sig_legacy(struct bge_softc *, int);
468 static void bge_sig_pre_reset(struct bge_softc *, int);
469 static void bge_stop_fw(struct bge_softc *);
470 static int bge_reset(struct bge_softc *);
471 static void bge_link_upd(struct bge_softc *);
472 
473 /*
474  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
475  * leak information to untrusted users.  It is also known to cause alignment
476  * traps on certain architectures.
477  */
478 #ifdef BGE_REGISTER_DEBUG
479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
482 #endif
483 static void bge_add_sysctls(struct bge_softc *);
484 static void bge_add_sysctl_stats_regs(struct bge_softc *,
485     struct sysctl_ctx_list *, struct sysctl_oid_list *);
486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
487     struct sysctl_oid_list *);
488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
489 
490 static device_method_t bge_methods[] = {
491 	/* Device interface */
492 	DEVMETHOD(device_probe,		bge_probe),
493 	DEVMETHOD(device_attach,	bge_attach),
494 	DEVMETHOD(device_detach,	bge_detach),
495 	DEVMETHOD(device_shutdown,	bge_shutdown),
496 	DEVMETHOD(device_suspend,	bge_suspend),
497 	DEVMETHOD(device_resume,	bge_resume),
498 
499 	/* MII interface */
500 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
501 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
502 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
503 
504 	DEVMETHOD_END
505 };
506 
507 static driver_t bge_driver = {
508 	"bge",
509 	bge_methods,
510 	sizeof(struct bge_softc)
511 };
512 
513 static devclass_t bge_devclass;
514 
515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
517 
518 static int bge_allow_asf = 1;
519 
520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
521 
522 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
524 	"Allow ASF mode if available");
525 
526 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
527 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
528 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
529 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
530 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
531 
532 static int
533 bge_has_eaddr(struct bge_softc *sc)
534 {
535 #ifdef __sparc64__
536 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
537 	device_t dev;
538 	uint32_t subvendor;
539 
540 	dev = sc->bge_dev;
541 
542 	/*
543 	 * The on-board BGEs found in sun4u machines aren't fitted with
544 	 * an EEPROM which means that we have to obtain the MAC address
545 	 * via OFW and that some tests will always fail.  We distinguish
546 	 * such BGEs by the subvendor ID, which also has to be obtained
547 	 * from OFW instead of the PCI configuration space as the latter
548 	 * indicates Broadcom as the subvendor of the netboot interface.
549 	 * For early Blade 1500 and 2500 we even have to check the OFW
550 	 * device path as the subvendor ID always defaults to Broadcom
551 	 * there.
552 	 */
553 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
554 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
555 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
556 		return (0);
557 	memset(buf, 0, sizeof(buf));
558 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
559 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
560 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
561 			return (0);
562 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
563 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
564 			return (0);
565 	}
566 #endif
567 	return (1);
568 }
569 
570 static uint32_t
571 bge_readmem_ind(struct bge_softc *sc, int off)
572 {
573 	device_t dev;
574 	uint32_t val;
575 
576 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
577 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
578 		return (0);
579 
580 	dev = sc->bge_dev;
581 
582 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
583 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
584 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
585 	return (val);
586 }
587 
588 static void
589 bge_writemem_ind(struct bge_softc *sc, int off, int val)
590 {
591 	device_t dev;
592 
593 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
594 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
595 		return;
596 
597 	dev = sc->bge_dev;
598 
599 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
600 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
601 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
602 }
603 
604 #ifdef notdef
605 static uint32_t
606 bge_readreg_ind(struct bge_softc *sc, int off)
607 {
608 	device_t dev;
609 
610 	dev = sc->bge_dev;
611 
612 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
613 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
614 }
615 #endif
616 
617 static void
618 bge_writereg_ind(struct bge_softc *sc, int off, int val)
619 {
620 	device_t dev;
621 
622 	dev = sc->bge_dev;
623 
624 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
625 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
626 }
627 
628 static void
629 bge_writemem_direct(struct bge_softc *sc, int off, int val)
630 {
631 	CSR_WRITE_4(sc, off, val);
632 }
633 
634 static void
635 bge_writembx(struct bge_softc *sc, int off, int val)
636 {
637 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
638 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
639 
640 	CSR_WRITE_4(sc, off, val);
641 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
642 		CSR_READ_4(sc, off);
643 }
644 
645 /*
646  * Map a single buffer address.
647  */
648 
649 static void
650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
651 {
652 	struct bge_dmamap_arg *ctx;
653 
654 	if (error)
655 		return;
656 
657 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
658 
659 	ctx = arg;
660 	ctx->bge_busaddr = segs->ds_addr;
661 }
662 
663 static uint8_t
664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
665 {
666 	uint32_t access, byte = 0;
667 	int i;
668 
669 	/* Lock. */
670 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
671 	for (i = 0; i < 8000; i++) {
672 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
673 			break;
674 		DELAY(20);
675 	}
676 	if (i == 8000)
677 		return (1);
678 
679 	/* Enable access. */
680 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
681 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
682 
683 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
684 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
685 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
686 		DELAY(10);
687 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
688 			DELAY(10);
689 			break;
690 		}
691 	}
692 
693 	if (i == BGE_TIMEOUT * 10) {
694 		if_printf(sc->bge_ifp, "nvram read timed out\n");
695 		return (1);
696 	}
697 
698 	/* Get result. */
699 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
700 
701 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
702 
703 	/* Disable access. */
704 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
705 
706 	/* Unlock. */
707 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
708 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
709 
710 	return (0);
711 }
712 
713 /*
714  * Read a sequence of bytes from NVRAM.
715  */
716 static int
717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
718 {
719 	int err = 0, i;
720 	uint8_t byte = 0;
721 
722 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
723 		return (1);
724 
725 	for (i = 0; i < cnt; i++) {
726 		err = bge_nvram_getbyte(sc, off + i, &byte);
727 		if (err)
728 			break;
729 		*(dest + i) = byte;
730 	}
731 
732 	return (err ? 1 : 0);
733 }
734 
735 /*
736  * Read a byte of data stored in the EEPROM at address 'addr.' The
737  * BCM570x supports both the traditional bitbang interface and an
738  * auto access interface for reading the EEPROM. We use the auto
739  * access method.
740  */
741 static uint8_t
742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
743 {
744 	int i;
745 	uint32_t byte = 0;
746 
747 	/*
748 	 * Enable use of auto EEPROM access so we can avoid
749 	 * having to use the bitbang method.
750 	 */
751 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
752 
753 	/* Reset the EEPROM, load the clock period. */
754 	CSR_WRITE_4(sc, BGE_EE_ADDR,
755 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
756 	DELAY(20);
757 
758 	/* Issue the read EEPROM command. */
759 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
760 
761 	/* Wait for completion */
762 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
763 		DELAY(10);
764 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
765 			break;
766 	}
767 
768 	if (i == BGE_TIMEOUT * 10) {
769 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
770 		return (1);
771 	}
772 
773 	/* Get result. */
774 	byte = CSR_READ_4(sc, BGE_EE_DATA);
775 
776 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
777 
778 	return (0);
779 }
780 
781 /*
782  * Read a sequence of bytes from the EEPROM.
783  */
784 static int
785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
786 {
787 	int i, error = 0;
788 	uint8_t byte = 0;
789 
790 	for (i = 0; i < cnt; i++) {
791 		error = bge_eeprom_getbyte(sc, off + i, &byte);
792 		if (error)
793 			break;
794 		*(dest + i) = byte;
795 	}
796 
797 	return (error ? 1 : 0);
798 }
799 
800 static int
801 bge_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	struct bge_softc *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 
809 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
810 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
811 		CSR_WRITE_4(sc, BGE_MI_MODE,
812 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
813 		DELAY(80);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	/* Poll for the PHY register access to complete. */
820 	for (i = 0; i < BGE_TIMEOUT; i++) {
821 		DELAY(10);
822 		val = CSR_READ_4(sc, BGE_MI_COMM);
823 		if ((val & BGE_MICOMM_BUSY) == 0) {
824 			DELAY(5);
825 			val = CSR_READ_4(sc, BGE_MI_COMM);
826 			break;
827 		}
828 	}
829 
830 	if (i == BGE_TIMEOUT) {
831 		device_printf(sc->bge_dev,
832 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
833 		    phy, reg, val);
834 		val = 0;
835 	}
836 
837 	/* Restore the autopoll bit if necessary. */
838 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
839 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
840 		DELAY(80);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	int i;
854 
855 	sc = device_get_softc(dev);
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859 		return (0);
860 
861 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
862 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
863 		CSR_WRITE_4(sc, BGE_MI_MODE,
864 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
865 		DELAY(80);
866 	}
867 
868 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870 
871 	for (i = 0; i < BGE_TIMEOUT; i++) {
872 		DELAY(10);
873 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874 			DELAY(5);
875 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876 			break;
877 		}
878 	}
879 
880 	/* Restore the autopoll bit if necessary. */
881 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
882 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
883 		DELAY(80);
884 	}
885 
886 	if (i == BGE_TIMEOUT)
887 		device_printf(sc->bge_dev,
888 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
889 		    phy, reg, val);
890 
891 	return (0);
892 }
893 
894 static void
895 bge_miibus_statchg(device_t dev)
896 {
897 	struct bge_softc *sc;
898 	struct mii_data *mii;
899 	uint32_t mac_mode, rx_mode, tx_mode;
900 
901 	sc = device_get_softc(dev);
902 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
903 		return;
904 	mii = device_get_softc(sc->bge_miibus);
905 
906 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
907 	    (IFM_ACTIVE | IFM_AVALID)) {
908 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
909 		case IFM_10_T:
910 		case IFM_100_TX:
911 			sc->bge_link = 1;
912 			break;
913 		case IFM_1000_T:
914 		case IFM_1000_SX:
915 		case IFM_2500_SX:
916 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
917 				sc->bge_link = 1;
918 			else
919 				sc->bge_link = 0;
920 			break;
921 		default:
922 			sc->bge_link = 0;
923 			break;
924 		}
925 	} else
926 		sc->bge_link = 0;
927 	if (sc->bge_link == 0)
928 		return;
929 
930 	/*
931 	 * APE firmware touches these registers to keep the MAC
932 	 * connected to the outside world.  Try to keep the
933 	 * accesses atomic.
934 	 */
935 
936 	/* Set the port mode (MII/GMII) to match the link speed. */
937 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
938 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
939 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
940 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
941 
942 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
943 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
944 		mac_mode |= BGE_PORTMODE_GMII;
945 	else
946 		mac_mode |= BGE_PORTMODE_MII;
947 
948 	/* Set MAC flow control behavior to match link flow control settings. */
949 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
950 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
951 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
952 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
953 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
954 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
955 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
956 	} else
957 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
958 
959 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
960 	DELAY(40);
961 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
962 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
963 }
964 
965 /*
966  * Intialize a standard receive ring descriptor.
967  */
968 static int
969 bge_newbuf_std(struct bge_softc *sc, int i)
970 {
971 	struct mbuf *m;
972 	struct bge_rx_bd *r;
973 	bus_dma_segment_t segs[1];
974 	bus_dmamap_t map;
975 	int error, nsegs;
976 
977 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
978 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
979 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
980 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
981 		if (m == NULL)
982 			return (ENOBUFS);
983 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
984 	} else {
985 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
986 		if (m == NULL)
987 			return (ENOBUFS);
988 		m->m_len = m->m_pkthdr.len = MCLBYTES;
989 	}
990 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
991 		m_adj(m, ETHER_ALIGN);
992 
993 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
994 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
995 	if (error != 0) {
996 		m_freem(m);
997 		return (error);
998 	}
999 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1000 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1001 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1002 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1003 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1004 	}
1005 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1006 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1007 	sc->bge_cdata.bge_rx_std_sparemap = map;
1008 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1009 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1010 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1011 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1012 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1013 	r->bge_flags = BGE_RXBDFLAG_END;
1014 	r->bge_len = segs[0].ds_len;
1015 	r->bge_idx = i;
1016 
1017 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1018 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Initialize a jumbo receive ring descriptor. This allocates
1025  * a jumbo buffer from the pool managed internally by the driver.
1026  */
1027 static int
1028 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1029 {
1030 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1031 	bus_dmamap_t map;
1032 	struct bge_extrx_bd *r;
1033 	struct mbuf *m;
1034 	int error, nsegs;
1035 
1036 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1037 	if (m == NULL)
1038 		return (ENOBUFS);
1039 
1040 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1041 	if (!(m->m_flags & M_EXT)) {
1042 		m_freem(m);
1043 		return (ENOBUFS);
1044 	}
1045 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1046 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1047 		m_adj(m, ETHER_ALIGN);
1048 
1049 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1050 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1051 	if (error != 0) {
1052 		m_freem(m);
1053 		return (error);
1054 	}
1055 
1056 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1057 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1058 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1059 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1060 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1061 	}
1062 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1063 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1064 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1065 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1066 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1067 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1068 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1069 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1070 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1071 
1072 	/*
1073 	 * Fill in the extended RX buffer descriptor.
1074 	 */
1075 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1076 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1077 	r->bge_idx = i;
1078 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1079 	switch (nsegs) {
1080 	case 4:
1081 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1082 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1083 		r->bge_len3 = segs[3].ds_len;
1084 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1085 	case 3:
1086 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1087 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1088 		r->bge_len2 = segs[2].ds_len;
1089 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1090 	case 2:
1091 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1092 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1093 		r->bge_len1 = segs[1].ds_len;
1094 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1095 	case 1:
1096 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1097 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1098 		r->bge_len0 = segs[0].ds_len;
1099 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1100 		break;
1101 	default:
1102 		panic("%s: %d segments\n", __func__, nsegs);
1103 	}
1104 
1105 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1106 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1107 
1108 	return (0);
1109 }
1110 
1111 static int
1112 bge_init_rx_ring_std(struct bge_softc *sc)
1113 {
1114 	int error, i;
1115 
1116 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1117 	sc->bge_std = 0;
1118 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1119 		if ((error = bge_newbuf_std(sc, i)) != 0)
1120 			return (error);
1121 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1122 	}
1123 
1124 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1125 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1126 
1127 	sc->bge_std = 0;
1128 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1129 
1130 	return (0);
1131 }
1132 
1133 static void
1134 bge_free_rx_ring_std(struct bge_softc *sc)
1135 {
1136 	int i;
1137 
1138 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1139 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1140 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1141 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1142 			    BUS_DMASYNC_POSTREAD);
1143 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1144 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1145 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1146 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1147 		}
1148 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1149 		    sizeof(struct bge_rx_bd));
1150 	}
1151 }
1152 
1153 static int
1154 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1155 {
1156 	struct bge_rcb *rcb;
1157 	int error, i;
1158 
1159 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1160 	sc->bge_jumbo = 0;
1161 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1162 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1163 			return (error);
1164 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1165 	}
1166 
1167 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1168 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1169 
1170 	sc->bge_jumbo = 0;
1171 
1172 	/* Enable the jumbo receive producer ring. */
1173 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1174 	rcb->bge_maxlen_flags =
1175 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1176 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1177 
1178 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1179 
1180 	return (0);
1181 }
1182 
1183 static void
1184 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1185 {
1186 	int i;
1187 
1188 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1189 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1190 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1191 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1192 			    BUS_DMASYNC_POSTREAD);
1193 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1194 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1195 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1196 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1197 		}
1198 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1199 		    sizeof(struct bge_extrx_bd));
1200 	}
1201 }
1202 
1203 static void
1204 bge_free_tx_ring(struct bge_softc *sc)
1205 {
1206 	int i;
1207 
1208 	if (sc->bge_ldata.bge_tx_ring == NULL)
1209 		return;
1210 
1211 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1212 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1213 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1214 			    sc->bge_cdata.bge_tx_dmamap[i],
1215 			    BUS_DMASYNC_POSTWRITE);
1216 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1217 			    sc->bge_cdata.bge_tx_dmamap[i]);
1218 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1219 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1220 		}
1221 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1222 		    sizeof(struct bge_tx_bd));
1223 	}
1224 }
1225 
1226 static int
1227 bge_init_tx_ring(struct bge_softc *sc)
1228 {
1229 	sc->bge_txcnt = 0;
1230 	sc->bge_tx_saved_considx = 0;
1231 
1232 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1233 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1234 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1235 
1236 	/* Initialize transmit producer index for host-memory send ring. */
1237 	sc->bge_tx_prodidx = 0;
1238 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1239 
1240 	/* 5700 b2 errata */
1241 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1242 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1243 
1244 	/* NIC-memory send ring not used; initialize to zero. */
1245 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1246 	/* 5700 b2 errata */
1247 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1248 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1249 
1250 	return (0);
1251 }
1252 
1253 static void
1254 bge_setpromisc(struct bge_softc *sc)
1255 {
1256 	struct ifnet *ifp;
1257 
1258 	BGE_LOCK_ASSERT(sc);
1259 
1260 	ifp = sc->bge_ifp;
1261 
1262 	/* Enable or disable promiscuous mode as needed. */
1263 	if (ifp->if_flags & IFF_PROMISC)
1264 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1265 	else
1266 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1267 }
1268 
1269 static void
1270 bge_setmulti(struct bge_softc *sc)
1271 {
1272 	struct ifnet *ifp;
1273 	struct ifmultiaddr *ifma;
1274 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1275 	int h, i;
1276 
1277 	BGE_LOCK_ASSERT(sc);
1278 
1279 	ifp = sc->bge_ifp;
1280 
1281 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1282 		for (i = 0; i < 4; i++)
1283 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1284 		return;
1285 	}
1286 
1287 	/* First, zot all the existing filters. */
1288 	for (i = 0; i < 4; i++)
1289 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1290 
1291 	/* Now program new ones. */
1292 	if_maddr_rlock(ifp);
1293 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294 		if (ifma->ifma_addr->sa_family != AF_LINK)
1295 			continue;
1296 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1297 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1298 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1299 	}
1300 	if_maddr_runlock(ifp);
1301 
1302 	for (i = 0; i < 4; i++)
1303 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1304 }
1305 
1306 static void
1307 bge_setvlan(struct bge_softc *sc)
1308 {
1309 	struct ifnet *ifp;
1310 
1311 	BGE_LOCK_ASSERT(sc);
1312 
1313 	ifp = sc->bge_ifp;
1314 
1315 	/* Enable or disable VLAN tag stripping as needed. */
1316 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1317 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1318 	else
1319 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1320 }
1321 
1322 static void
1323 bge_sig_pre_reset(struct bge_softc *sc, int type)
1324 {
1325 
1326 	/*
1327 	 * Some chips don't like this so only do this if ASF is enabled
1328 	 */
1329 	if (sc->bge_asf_mode)
1330 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1331 
1332 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1333 		switch (type) {
1334 		case BGE_RESET_START:
1335 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1336 			    BGE_FW_DRV_STATE_START);
1337 			break;
1338 		case BGE_RESET_STOP:
1339 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1340 			    BGE_FW_DRV_STATE_UNLOAD);
1341 			break;
1342 		}
1343 	}
1344 }
1345 
1346 static void
1347 bge_sig_post_reset(struct bge_softc *sc, int type)
1348 {
1349 
1350 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1351 		switch (type) {
1352 		case BGE_RESET_START:
1353 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1354 			    BGE_FW_DRV_STATE_START_DONE);
1355 			/* START DONE */
1356 			break;
1357 		case BGE_RESET_STOP:
1358 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1359 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1360 			break;
1361 		}
1362 	}
1363 }
1364 
1365 static void
1366 bge_sig_legacy(struct bge_softc *sc, int type)
1367 {
1368 
1369 	if (sc->bge_asf_mode) {
1370 		switch (type) {
1371 		case BGE_RESET_START:
1372 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1373 			    BGE_FW_DRV_STATE_START);
1374 			break;
1375 		case BGE_RESET_STOP:
1376 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1377 			    BGE_FW_DRV_STATE_UNLOAD);
1378 			break;
1379 		}
1380 	}
1381 }
1382 
1383 static void
1384 bge_stop_fw(struct bge_softc *sc)
1385 {
1386 	int i;
1387 
1388 	if (sc->bge_asf_mode) {
1389 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1390 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1391 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1392 
1393 		for (i = 0; i < 100; i++ ) {
1394 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1395 			    BGE_RX_CPU_DRV_EVENT))
1396 				break;
1397 			DELAY(10);
1398 		}
1399 	}
1400 }
1401 
1402 static uint32_t
1403 bge_dma_swap_options(struct bge_softc *sc)
1404 {
1405 	uint32_t dma_options;
1406 
1407 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1408 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1409 #if BYTE_ORDER == BIG_ENDIAN
1410 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1411 #endif
1412 	if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720)
1413 		dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1414 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
1415 		    BGE_MODECTL_HTX2B_ENABLE;
1416 
1417 	return (dma_options);
1418 }
1419 
1420 /*
1421  * Do endian, PCI and DMA initialization.
1422  */
1423 static int
1424 bge_chipinit(struct bge_softc *sc)
1425 {
1426 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1427 	uint16_t val;
1428 	int i;
1429 
1430 	/* Set endianness before we access any non-PCI registers. */
1431 	misc_ctl = BGE_INIT;
1432 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1433 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1434 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1435 
1436 	/* Clear the MAC control register */
1437 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1438 	DELAY(40);
1439 
1440 	/*
1441 	 * Clear the MAC statistics block in the NIC's
1442 	 * internal memory.
1443 	 */
1444 	for (i = BGE_STATS_BLOCK;
1445 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1446 		BGE_MEMWIN_WRITE(sc, i, 0);
1447 
1448 	for (i = BGE_STATUS_BLOCK;
1449 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1450 		BGE_MEMWIN_WRITE(sc, i, 0);
1451 
1452 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1453 		/*
1454 		 *  Fix data corruption caused by non-qword write with WB.
1455 		 *  Fix master abort in PCI mode.
1456 		 *  Fix PCI latency timer.
1457 		 */
1458 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1459 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1460 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1461 	}
1462 
1463 	/*
1464 	 * Set up the PCI DMA control register.
1465 	 */
1466 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1467 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1468 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1469 		/* Read watermark not used, 128 bytes for write. */
1470 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1471 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1472 		if (BGE_IS_5714_FAMILY(sc)) {
1473 			/* 256 bytes for read and write. */
1474 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1475 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1476 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1477 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1478 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1479 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1480 			/*
1481 			 * In the BCM5703, the DMA read watermark should
1482 			 * be set to less than or equal to the maximum
1483 			 * memory read byte count of the PCI-X command
1484 			 * register.
1485 			 */
1486 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1487 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1488 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1489 			/* 1536 bytes for read, 384 bytes for write. */
1490 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1491 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1492 		} else {
1493 			/* 384 bytes for read and write. */
1494 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1495 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1496 			    0x0F;
1497 		}
1498 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1499 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1500 			uint32_t tmp;
1501 
1502 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1503 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1504 			if (tmp == 6 || tmp == 7)
1505 				dma_rw_ctl |=
1506 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1507 
1508 			/* Set PCI-X DMA write workaround. */
1509 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1510 		}
1511 	} else {
1512 		/* Conventional PCI bus: 256 bytes for read and write. */
1513 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1514 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1515 
1516 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1517 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1518 			dma_rw_ctl |= 0x0F;
1519 	}
1520 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1521 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1522 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1523 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1524 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1525 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1526 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1527 	if (BGE_IS_5717_PLUS(sc)) {
1528 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1529 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1530 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1531 		/*
1532 		 * Enable HW workaround for controllers that misinterpret
1533 		 * a status tag update and leave interrupts permanently
1534 		 * disabled.
1535 		 */
1536 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1537 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1538 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1539 	}
1540 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1541 
1542 	/*
1543 	 * Set up general mode register.
1544 	 */
1545 	mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1546 	    BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1547 
1548 	/*
1549 	 * BCM5701 B5 have a bug causing data corruption when using
1550 	 * 64-bit DMA reads, which can be terminated early and then
1551 	 * completed later as 32-bit accesses, in combination with
1552 	 * certain bridges.
1553 	 */
1554 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1555 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1556 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1557 
1558 	/*
1559 	 * Tell the firmware the driver is running
1560 	 */
1561 	if (sc->bge_asf_mode & ASF_STACKUP)
1562 		mode_ctl |= BGE_MODECTL_STACKUP;
1563 
1564 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1565 
1566 	/*
1567 	 * Disable memory write invalidate.  Apparently it is not supported
1568 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1569 	 * as these chips need it even when using MSI.
1570 	 */
1571 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1572 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1573 
1574 	/* Set the timer prescaler (always 66Mhz) */
1575 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1576 
1577 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1578 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1579 		DELAY(40);	/* XXX */
1580 
1581 		/* Put PHY into ready state */
1582 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1583 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1584 		DELAY(40);
1585 	}
1586 
1587 	return (0);
1588 }
1589 
1590 static int
1591 bge_blockinit(struct bge_softc *sc)
1592 {
1593 	struct bge_rcb *rcb;
1594 	bus_size_t vrcb;
1595 	bge_hostaddr taddr;
1596 	uint32_t dmactl, val;
1597 	int i, limit;
1598 
1599 	/*
1600 	 * Initialize the memory window pointer register so that
1601 	 * we can access the first 32K of internal NIC RAM. This will
1602 	 * allow us to set up the TX send ring RCBs and the RX return
1603 	 * ring RCBs, plus other things which live in NIC memory.
1604 	 */
1605 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1606 
1607 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1608 
1609 	if (!(BGE_IS_5705_PLUS(sc))) {
1610 		/* Configure mbuf memory pool */
1611 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1612 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1613 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1614 		else
1615 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1616 
1617 		/* Configure DMA resource pool */
1618 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1619 		    BGE_DMA_DESCRIPTORS);
1620 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1621 	}
1622 
1623 	/* Configure mbuf pool watermarks */
1624 	if (BGE_IS_5717_PLUS(sc)) {
1625 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1626 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1627 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1628 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1629 		} else {
1630 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1631 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1632 		}
1633 	} else if (!BGE_IS_5705_PLUS(sc)) {
1634 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1635 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1636 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1637 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1638 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1639 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1640 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1641 	} else {
1642 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1643 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1644 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1645 	}
1646 
1647 	/* Configure DMA resource watermarks */
1648 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1649 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1650 
1651 	/* Enable buffer manager */
1652 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1653 	/*
1654 	 * Change the arbitration algorithm of TXMBUF read request to
1655 	 * round-robin instead of priority based for BCM5719.  When
1656 	 * TXFIFO is almost empty, RDMA will hold its request until
1657 	 * TXFIFO is not almost empty.
1658 	 */
1659 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1660 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1661 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1662 
1663 	/* Poll for buffer manager start indication */
1664 	for (i = 0; i < BGE_TIMEOUT; i++) {
1665 		DELAY(10);
1666 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1667 			break;
1668 	}
1669 
1670 	if (i == BGE_TIMEOUT) {
1671 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
1672 		return (ENXIO);
1673 	}
1674 
1675 	/* Enable flow-through queues */
1676 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1677 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1678 
1679 	/* Wait until queue initialization is complete */
1680 	for (i = 0; i < BGE_TIMEOUT; i++) {
1681 		DELAY(10);
1682 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1683 			break;
1684 	}
1685 
1686 	if (i == BGE_TIMEOUT) {
1687 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1688 		return (ENXIO);
1689 	}
1690 
1691 	/*
1692 	 * Summary of rings supported by the controller:
1693 	 *
1694 	 * Standard Receive Producer Ring
1695 	 * - This ring is used to feed receive buffers for "standard"
1696 	 *   sized frames (typically 1536 bytes) to the controller.
1697 	 *
1698 	 * Jumbo Receive Producer Ring
1699 	 * - This ring is used to feed receive buffers for jumbo sized
1700 	 *   frames (i.e. anything bigger than the "standard" frames)
1701 	 *   to the controller.
1702 	 *
1703 	 * Mini Receive Producer Ring
1704 	 * - This ring is used to feed receive buffers for "mini"
1705 	 *   sized frames to the controller.
1706 	 * - This feature required external memory for the controller
1707 	 *   but was never used in a production system.  Should always
1708 	 *   be disabled.
1709 	 *
1710 	 * Receive Return Ring
1711 	 * - After the controller has placed an incoming frame into a
1712 	 *   receive buffer that buffer is moved into a receive return
1713 	 *   ring.  The driver is then responsible to passing the
1714 	 *   buffer up to the stack.  Many versions of the controller
1715 	 *   support multiple RR rings.
1716 	 *
1717 	 * Send Ring
1718 	 * - This ring is used for outgoing frames.  Many versions of
1719 	 *   the controller support multiple send rings.
1720 	 */
1721 
1722 	/* Initialize the standard receive producer ring control block. */
1723 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1724 	rcb->bge_hostaddr.bge_addr_lo =
1725 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1726 	rcb->bge_hostaddr.bge_addr_hi =
1727 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1728 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1729 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1730 	if (BGE_IS_5717_PLUS(sc)) {
1731 		/*
1732 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1733 		 * Bits 15-2 : Maximum RX frame size
1734 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1735 		 * Bit 0     : Reserved
1736 		 */
1737 		rcb->bge_maxlen_flags =
1738 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1739 	} else if (BGE_IS_5705_PLUS(sc)) {
1740 		/*
1741 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1742 		 * Bits 15-2 : Reserved (should be 0)
1743 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1744 		 * Bit 0     : Reserved
1745 		 */
1746 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1747 	} else {
1748 		/*
1749 		 * Ring size is always XXX entries
1750 		 * Bits 31-16: Maximum RX frame size
1751 		 * Bits 15-2 : Reserved (should be 0)
1752 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1753 		 * Bit 0     : Reserved
1754 		 */
1755 		rcb->bge_maxlen_flags =
1756 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1757 	}
1758 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1759 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1760 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1761 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1762 	else
1763 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1764 	/* Write the standard receive producer ring control block. */
1765 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1766 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1767 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1768 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1769 
1770 	/* Reset the standard receive producer ring producer index. */
1771 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1772 
1773 	/*
1774 	 * Initialize the jumbo RX producer ring control
1775 	 * block.  We set the 'ring disabled' bit in the
1776 	 * flags field until we're actually ready to start
1777 	 * using this ring (i.e. once we set the MTU
1778 	 * high enough to require it).
1779 	 */
1780 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1781 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1782 		/* Get the jumbo receive producer ring RCB parameters. */
1783 		rcb->bge_hostaddr.bge_addr_lo =
1784 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1785 		rcb->bge_hostaddr.bge_addr_hi =
1786 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1787 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1788 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1789 		    BUS_DMASYNC_PREREAD);
1790 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1791 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1792 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1793 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1794 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1795 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1796 		else
1797 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1798 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1799 		    rcb->bge_hostaddr.bge_addr_hi);
1800 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1801 		    rcb->bge_hostaddr.bge_addr_lo);
1802 		/* Program the jumbo receive producer ring RCB parameters. */
1803 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1804 		    rcb->bge_maxlen_flags);
1805 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1806 		/* Reset the jumbo receive producer ring producer index. */
1807 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1808 	}
1809 
1810 	/* Disable the mini receive producer ring RCB. */
1811 	if (BGE_IS_5700_FAMILY(sc)) {
1812 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1813 		rcb->bge_maxlen_flags =
1814 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1815 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1816 		    rcb->bge_maxlen_flags);
1817 		/* Reset the mini receive producer ring producer index. */
1818 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1819 	}
1820 
1821 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1822 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1823 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1824 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1825 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1826 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1827 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1828 	}
1829 	/*
1830 	 * The BD ring replenish thresholds control how often the
1831 	 * hardware fetches new BD's from the producer rings in host
1832 	 * memory.  Setting the value too low on a busy system can
1833 	 * starve the hardware and recue the throughpout.
1834 	 *
1835 	 * Set the BD ring replentish thresholds. The recommended
1836 	 * values are 1/8th the number of descriptors allocated to
1837 	 * each ring.
1838 	 * XXX The 5754 requires a lower threshold, so it might be a
1839 	 * requirement of all 575x family chips.  The Linux driver sets
1840 	 * the lower threshold for all 5705 family chips as well, but there
1841 	 * are reports that it might not need to be so strict.
1842 	 *
1843 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1844 	 * well.
1845 	 */
1846 	if (BGE_IS_5705_PLUS(sc))
1847 		val = 8;
1848 	else
1849 		val = BGE_STD_RX_RING_CNT / 8;
1850 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1851 	if (BGE_IS_JUMBO_CAPABLE(sc))
1852 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1853 		    BGE_JUMBO_RX_RING_CNT/8);
1854 	if (BGE_IS_5717_PLUS(sc)) {
1855 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1856 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1857 	}
1858 
1859 	/*
1860 	 * Disable all send rings by setting the 'ring disabled' bit
1861 	 * in the flags field of all the TX send ring control blocks,
1862 	 * located in NIC memory.
1863 	 */
1864 	if (!BGE_IS_5705_PLUS(sc))
1865 		/* 5700 to 5704 had 16 send rings. */
1866 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1867 	else
1868 		limit = 1;
1869 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1870 	for (i = 0; i < limit; i++) {
1871 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1872 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1873 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1874 		vrcb += sizeof(struct bge_rcb);
1875 	}
1876 
1877 	/* Configure send ring RCB 0 (we use only the first ring) */
1878 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1879 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1880 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1881 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1882 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1883 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1884 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1885 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1886 	else
1887 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1888 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1889 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1890 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1891 
1892 	/*
1893 	 * Disable all receive return rings by setting the
1894 	 * 'ring diabled' bit in the flags field of all the receive
1895 	 * return ring control blocks, located in NIC memory.
1896 	 */
1897 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1898 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1899 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1900 		/* Should be 17, use 16 until we get an SRAM map. */
1901 		limit = 16;
1902 	} else if (!BGE_IS_5705_PLUS(sc))
1903 		limit = BGE_RX_RINGS_MAX;
1904 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1905 	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
1906 		limit = 4;
1907 	else
1908 		limit = 1;
1909 	/* Disable all receive return rings. */
1910 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1911 	for (i = 0; i < limit; i++) {
1912 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1913 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1914 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1915 		    BGE_RCB_FLAG_RING_DISABLED);
1916 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1917 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1918 		    (i * (sizeof(uint64_t))), 0);
1919 		vrcb += sizeof(struct bge_rcb);
1920 	}
1921 
1922 	/*
1923 	 * Set up receive return ring 0.  Note that the NIC address
1924 	 * for RX return rings is 0x0.  The return rings live entirely
1925 	 * within the host, so the nicaddr field in the RCB isn't used.
1926 	 */
1927 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1928 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1929 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1930 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1931 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1932 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1933 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1934 
1935 	/* Set random backoff seed for TX */
1936 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1937 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1938 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1939 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1940 	    BGE_TX_BACKOFF_SEED_MASK);
1941 
1942 	/* Set inter-packet gap */
1943 	val = 0x2620;
1944 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
1945 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1946 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1947 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1948 
1949 	/*
1950 	 * Specify which ring to use for packets that don't match
1951 	 * any RX rules.
1952 	 */
1953 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1954 
1955 	/*
1956 	 * Configure number of RX lists. One interrupt distribution
1957 	 * list, sixteen active lists, one bad frames class.
1958 	 */
1959 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1960 
1961 	/* Inialize RX list placement stats mask. */
1962 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1963 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1964 
1965 	/* Disable host coalescing until we get it set up */
1966 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1967 
1968 	/* Poll to make sure it's shut down. */
1969 	for (i = 0; i < BGE_TIMEOUT; i++) {
1970 		DELAY(10);
1971 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1972 			break;
1973 	}
1974 
1975 	if (i == BGE_TIMEOUT) {
1976 		device_printf(sc->bge_dev,
1977 		    "host coalescing engine failed to idle\n");
1978 		return (ENXIO);
1979 	}
1980 
1981 	/* Set up host coalescing defaults */
1982 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1983 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1984 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1985 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1986 	if (!(BGE_IS_5705_PLUS(sc))) {
1987 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1988 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1989 	}
1990 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1991 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1992 
1993 	/* Set up address of statistics block */
1994 	if (!(BGE_IS_5705_PLUS(sc))) {
1995 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1996 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1997 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1998 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1999 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2000 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2001 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2002 	}
2003 
2004 	/* Set up address of status block */
2005 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2006 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2007 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2008 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2009 
2010 	/* Set up status block size. */
2011 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2012 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2013 		val = BGE_STATBLKSZ_FULL;
2014 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2015 	} else {
2016 		val = BGE_STATBLKSZ_32BYTE;
2017 		bzero(sc->bge_ldata.bge_status_block, 32);
2018 	}
2019 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2020 	    sc->bge_cdata.bge_status_map,
2021 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2022 
2023 	/* Turn on host coalescing state machine */
2024 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2025 
2026 	/* Turn on RX BD completion state machine and enable attentions */
2027 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2028 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2029 
2030 	/* Turn on RX list placement state machine */
2031 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2032 
2033 	/* Turn on RX list selector state machine. */
2034 	if (!(BGE_IS_5705_PLUS(sc)))
2035 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2036 
2037 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2038 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2039 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2040 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2041 
2042 	if (sc->bge_flags & BGE_FLAG_TBI)
2043 		val |= BGE_PORTMODE_TBI;
2044 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2045 		val |= BGE_PORTMODE_GMII;
2046 	else
2047 		val |= BGE_PORTMODE_MII;
2048 
2049 	/* Turn on DMA, clear stats */
2050 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2051 	DELAY(40);
2052 
2053 	/* Set misc. local control, enable interrupts on attentions */
2054 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2055 
2056 #ifdef notdef
2057 	/* Assert GPIO pins for PHY reset */
2058 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2059 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2060 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2061 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2062 #endif
2063 
2064 	/* Turn on DMA completion state machine */
2065 	if (!(BGE_IS_5705_PLUS(sc)))
2066 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2067 
2068 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2069 
2070 	/* Enable host coalescing bug fix. */
2071 	if (BGE_IS_5755_PLUS(sc))
2072 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2073 
2074 	/* Request larger DMA burst size to get better performance. */
2075 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2076 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2077 
2078 	/* Turn on write DMA state machine */
2079 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2080 	DELAY(40);
2081 
2082 	/* Turn on read DMA state machine */
2083 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2084 
2085 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2086 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2087 
2088 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2089 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2090 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2091 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2092 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2093 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2094 	if (sc->bge_flags & BGE_FLAG_PCIE)
2095 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2096 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2097 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2098 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2099 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2100 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2101 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2102 	}
2103 
2104 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2105 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2106 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2107 		/*
2108 		 * Allow multiple outstanding read requests from
2109 		 * non-LSO read DMA engine.
2110 		 */
2111 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2112 	}
2113 
2114 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2115 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2116 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2117 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2118 	    BGE_IS_5717_PLUS(sc)) {
2119 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2120 		/*
2121 		 * Adjust tx margin to prevent TX data corruption and
2122 		 * fix internal FIFO overflow.
2123 		 */
2124 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2125 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2126 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2127 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2128 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2129 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2130 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2131 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2132 		}
2133 		/*
2134 		 * Enable fix for read DMA FIFO overruns.
2135 		 * The fix is to limit the number of RX BDs
2136 		 * the hardware would fetch at a fime.
2137 		 */
2138 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2139 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2140 	}
2141 
2142 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2143 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2144 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2145 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2146 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2147 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2148 		/*
2149 		 * Allow 4KB burst length reads for non-LSO frames.
2150 		 * Enable 512B burst length reads for buffer descriptors.
2151 		 */
2152 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2153 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2154 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2155 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2156 	}
2157 
2158 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2159 	DELAY(40);
2160 
2161 	/* Turn on RX data completion state machine */
2162 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2163 
2164 	/* Turn on RX BD initiator state machine */
2165 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2166 
2167 	/* Turn on RX data and RX BD initiator state machine */
2168 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2169 
2170 	/* Turn on Mbuf cluster free state machine */
2171 	if (!(BGE_IS_5705_PLUS(sc)))
2172 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2173 
2174 	/* Turn on send BD completion state machine */
2175 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2176 
2177 	/* Turn on send data completion state machine */
2178 	val = BGE_SDCMODE_ENABLE;
2179 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2180 		val |= BGE_SDCMODE_CDELAY;
2181 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2182 
2183 	/* Turn on send data initiator state machine */
2184 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2185 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2186 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2187 	else
2188 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2189 
2190 	/* Turn on send BD initiator state machine */
2191 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2192 
2193 	/* Turn on send BD selector state machine */
2194 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2195 
2196 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2197 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2198 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2199 
2200 	/* ack/clear link change events */
2201 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2202 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2203 	    BGE_MACSTAT_LINK_CHANGED);
2204 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2205 
2206 	/*
2207 	 * Enable attention when the link has changed state for
2208 	 * devices that use auto polling.
2209 	 */
2210 	if (sc->bge_flags & BGE_FLAG_TBI) {
2211 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2212 	} else {
2213 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2214 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2215 			DELAY(80);
2216 		}
2217 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2218 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2219 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2220 			    BGE_EVTENB_MI_INTERRUPT);
2221 	}
2222 
2223 	/*
2224 	 * Clear any pending link state attention.
2225 	 * Otherwise some link state change events may be lost until attention
2226 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2227 	 * It's not necessary on newer BCM chips - perhaps enabling link
2228 	 * state change attentions implies clearing pending attention.
2229 	 */
2230 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2231 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2232 	    BGE_MACSTAT_LINK_CHANGED);
2233 
2234 	/* Enable link state change attentions. */
2235 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2236 
2237 	return (0);
2238 }
2239 
2240 const struct bge_revision *
2241 bge_lookup_rev(uint32_t chipid)
2242 {
2243 	const struct bge_revision *br;
2244 
2245 	for (br = bge_revisions; br->br_name != NULL; br++) {
2246 		if (br->br_chipid == chipid)
2247 			return (br);
2248 	}
2249 
2250 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2251 		if (br->br_chipid == BGE_ASICREV(chipid))
2252 			return (br);
2253 	}
2254 
2255 	return (NULL);
2256 }
2257 
2258 const struct bge_vendor *
2259 bge_lookup_vendor(uint16_t vid)
2260 {
2261 	const struct bge_vendor *v;
2262 
2263 	for (v = bge_vendors; v->v_name != NULL; v++)
2264 		if (v->v_id == vid)
2265 			return (v);
2266 
2267 	panic("%s: unknown vendor %d", __func__, vid);
2268 	return (NULL);
2269 }
2270 
2271 /*
2272  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2273  * against our list and return its name if we find a match.
2274  *
2275  * Note that since the Broadcom controller contains VPD support, we
2276  * try to get the device name string from the controller itself instead
2277  * of the compiled-in string. It guarantees we'll always announce the
2278  * right product name. We fall back to the compiled-in string when
2279  * VPD is unavailable or corrupt.
2280  */
2281 static int
2282 bge_probe(device_t dev)
2283 {
2284 	char buf[96];
2285 	char model[64];
2286 	const struct bge_revision *br;
2287 	const char *pname;
2288 	struct bge_softc *sc = device_get_softc(dev);
2289 	const struct bge_type *t = bge_devs;
2290 	const struct bge_vendor *v;
2291 	uint32_t id;
2292 	uint16_t did, vid;
2293 
2294 	sc->bge_dev = dev;
2295 	vid = pci_get_vendor(dev);
2296 	did = pci_get_device(dev);
2297 	while(t->bge_vid != 0) {
2298 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2299 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2300 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2301 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2302 				/*
2303 				 * Find the ASCI revision.  Different chips
2304 				 * use different registers.
2305 				 */
2306 				switch (pci_get_device(dev)) {
2307 				case BCOM_DEVICEID_BCM5717:
2308 				case BCOM_DEVICEID_BCM5718:
2309 				case BCOM_DEVICEID_BCM5719:
2310 				case BCOM_DEVICEID_BCM5720:
2311 					id = pci_read_config(dev,
2312 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2313 					break;
2314 				case BCOM_DEVICEID_BCM57761:
2315 				case BCOM_DEVICEID_BCM57765:
2316 				case BCOM_DEVICEID_BCM57781:
2317 				case BCOM_DEVICEID_BCM57785:
2318 				case BCOM_DEVICEID_BCM57791:
2319 				case BCOM_DEVICEID_BCM57795:
2320 					id = pci_read_config(dev,
2321 					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2322 					break;
2323 				default:
2324 					id = pci_read_config(dev,
2325 					    BGE_PCI_PRODID_ASICREV, 4);
2326 				}
2327 			}
2328 			br = bge_lookup_rev(id);
2329 			v = bge_lookup_vendor(vid);
2330 			if (bge_has_eaddr(sc) &&
2331 			    pci_get_vpd_ident(dev, &pname) == 0)
2332 				snprintf(model, 64, "%s", pname);
2333 			else
2334 				snprintf(model, 64, "%s %s", v->v_name,
2335 				    br != NULL ? br->br_name :
2336 				    "NetXtreme Ethernet Controller");
2337 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2338 			    br != NULL ? "" : "unknown ", id);
2339 			device_set_desc_copy(dev, buf);
2340 			return (0);
2341 		}
2342 		t++;
2343 	}
2344 
2345 	return (ENXIO);
2346 }
2347 
2348 static void
2349 bge_dma_free(struct bge_softc *sc)
2350 {
2351 	int i;
2352 
2353 	/* Destroy DMA maps for RX buffers. */
2354 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2355 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2356 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2357 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2358 	}
2359 	if (sc->bge_cdata.bge_rx_std_sparemap)
2360 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2361 		    sc->bge_cdata.bge_rx_std_sparemap);
2362 
2363 	/* Destroy DMA maps for jumbo RX buffers. */
2364 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2365 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2366 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2367 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2368 	}
2369 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2370 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2371 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2372 
2373 	/* Destroy DMA maps for TX buffers. */
2374 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2375 		if (sc->bge_cdata.bge_tx_dmamap[i])
2376 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2377 			    sc->bge_cdata.bge_tx_dmamap[i]);
2378 	}
2379 
2380 	if (sc->bge_cdata.bge_rx_mtag)
2381 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2382 	if (sc->bge_cdata.bge_mtag_jumbo)
2383 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2384 	if (sc->bge_cdata.bge_tx_mtag)
2385 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2386 
2387 	/* Destroy standard RX ring. */
2388 	if (sc->bge_cdata.bge_rx_std_ring_map)
2389 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2390 		    sc->bge_cdata.bge_rx_std_ring_map);
2391 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2392 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2393 		    sc->bge_ldata.bge_rx_std_ring,
2394 		    sc->bge_cdata.bge_rx_std_ring_map);
2395 
2396 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2397 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2398 
2399 	/* Destroy jumbo RX ring. */
2400 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2401 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2402 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2403 
2404 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2405 	    sc->bge_ldata.bge_rx_jumbo_ring)
2406 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2407 		    sc->bge_ldata.bge_rx_jumbo_ring,
2408 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2409 
2410 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2411 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2412 
2413 	/* Destroy RX return ring. */
2414 	if (sc->bge_cdata.bge_rx_return_ring_map)
2415 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2416 		    sc->bge_cdata.bge_rx_return_ring_map);
2417 
2418 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2419 	    sc->bge_ldata.bge_rx_return_ring)
2420 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2421 		    sc->bge_ldata.bge_rx_return_ring,
2422 		    sc->bge_cdata.bge_rx_return_ring_map);
2423 
2424 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2425 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2426 
2427 	/* Destroy TX ring. */
2428 	if (sc->bge_cdata.bge_tx_ring_map)
2429 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2430 		    sc->bge_cdata.bge_tx_ring_map);
2431 
2432 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2433 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2434 		    sc->bge_ldata.bge_tx_ring,
2435 		    sc->bge_cdata.bge_tx_ring_map);
2436 
2437 	if (sc->bge_cdata.bge_tx_ring_tag)
2438 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2439 
2440 	/* Destroy status block. */
2441 	if (sc->bge_cdata.bge_status_map)
2442 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2443 		    sc->bge_cdata.bge_status_map);
2444 
2445 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2446 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2447 		    sc->bge_ldata.bge_status_block,
2448 		    sc->bge_cdata.bge_status_map);
2449 
2450 	if (sc->bge_cdata.bge_status_tag)
2451 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2452 
2453 	/* Destroy statistics block. */
2454 	if (sc->bge_cdata.bge_stats_map)
2455 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2456 		    sc->bge_cdata.bge_stats_map);
2457 
2458 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2459 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2460 		    sc->bge_ldata.bge_stats,
2461 		    sc->bge_cdata.bge_stats_map);
2462 
2463 	if (sc->bge_cdata.bge_stats_tag)
2464 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2465 
2466 	if (sc->bge_cdata.bge_buffer_tag)
2467 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2468 
2469 	/* Destroy the parent tag. */
2470 	if (sc->bge_cdata.bge_parent_tag)
2471 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2472 }
2473 
2474 static int
2475 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2476     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2477     bus_addr_t *paddr, const char *msg)
2478 {
2479 	struct bge_dmamap_arg ctx;
2480 	int error;
2481 
2482 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2483 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2484 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2485 	if (error != 0) {
2486 		device_printf(sc->bge_dev,
2487 		    "could not create %s dma tag\n", msg);
2488 		return (ENOMEM);
2489 	}
2490 	/* Allocate DMA'able memory for ring. */
2491 	error = bus_dmamem_alloc(*tag, (void **)ring,
2492 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2493 	if (error != 0) {
2494 		device_printf(sc->bge_dev,
2495 		    "could not allocate DMA'able memory for %s\n", msg);
2496 		return (ENOMEM);
2497 	}
2498 	/* Load the address of the ring. */
2499 	ctx.bge_busaddr = 0;
2500 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2501 	    &ctx, BUS_DMA_NOWAIT);
2502 	if (error != 0) {
2503 		device_printf(sc->bge_dev,
2504 		    "could not load DMA'able memory for %s\n", msg);
2505 		return (ENOMEM);
2506 	}
2507 	*paddr = ctx.bge_busaddr;
2508 	return (0);
2509 }
2510 
2511 static int
2512 bge_dma_alloc(struct bge_softc *sc)
2513 {
2514 	bus_addr_t lowaddr;
2515 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2516 	int i, error;
2517 
2518 	lowaddr = BUS_SPACE_MAXADDR;
2519 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2520 		lowaddr = BGE_DMA_MAXADDR;
2521 	/*
2522 	 * Allocate the parent bus DMA tag appropriate for PCI.
2523 	 */
2524 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2525 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2526 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2527 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2528 	if (error != 0) {
2529 		device_printf(sc->bge_dev,
2530 		    "could not allocate parent dma tag\n");
2531 		return (ENOMEM);
2532 	}
2533 
2534 	/* Create tag for standard RX ring. */
2535 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2536 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2537 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2538 	    &sc->bge_cdata.bge_rx_std_ring_map,
2539 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2540 	if (error)
2541 		return (error);
2542 
2543 	/* Create tag for RX return ring. */
2544 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2545 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2546 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2547 	    &sc->bge_cdata.bge_rx_return_ring_map,
2548 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2549 	if (error)
2550 		return (error);
2551 
2552 	/* Create tag for TX ring. */
2553 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2554 	    &sc->bge_cdata.bge_tx_ring_tag,
2555 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2556 	    &sc->bge_cdata.bge_tx_ring_map,
2557 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2558 	if (error)
2559 		return (error);
2560 
2561 	/*
2562 	 * Create tag for status block.
2563 	 * Because we only use single Tx/Rx/Rx return ring, use
2564 	 * minimum status block size except BCM5700 AX/BX which
2565 	 * seems to want to see full status block size regardless
2566 	 * of configured number of ring.
2567 	 */
2568 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2569 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2570 		sbsz = BGE_STATUS_BLK_SZ;
2571 	else
2572 		sbsz = 32;
2573 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2574 	    &sc->bge_cdata.bge_status_tag,
2575 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2576 	    &sc->bge_cdata.bge_status_map,
2577 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2578 	if (error)
2579 		return (error);
2580 
2581 	/* Create tag for statistics block. */
2582 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2583 	    &sc->bge_cdata.bge_stats_tag,
2584 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2585 	    &sc->bge_cdata.bge_stats_map,
2586 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2587 	if (error)
2588 		return (error);
2589 
2590 	/* Create tag for jumbo RX ring. */
2591 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2592 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2593 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2594 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2595 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2596 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2597 		if (error)
2598 			return (error);
2599 	}
2600 
2601 	/* Create parent tag for buffers. */
2602 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2603 		/*
2604 		 * XXX
2605 		 * watchdog timeout issue was observed on BCM5704 which
2606 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2607 		 * Both limiting DMA address space to 32bits and flushing
2608 		 * mailbox write seem to address the issue.
2609 		 */
2610 		if (sc->bge_pcixcap != 0)
2611 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2612 	}
2613 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2614 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2615 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2616 	    &sc->bge_cdata.bge_buffer_tag);
2617 	if (error != 0) {
2618 		device_printf(sc->bge_dev,
2619 		    "could not allocate buffer dma tag\n");
2620 		return (ENOMEM);
2621 	}
2622 	/* Create tag for Tx mbufs. */
2623 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2624 		txsegsz = BGE_TSOSEG_SZ;
2625 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2626 	} else {
2627 		txsegsz = MCLBYTES;
2628 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2629 	}
2630 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2631 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2632 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2633 	    &sc->bge_cdata.bge_tx_mtag);
2634 
2635 	if (error) {
2636 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2637 		return (ENOMEM);
2638 	}
2639 
2640 	/* Create tag for Rx mbufs. */
2641 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2642 		rxmaxsegsz = MJUM9BYTES;
2643 	else
2644 		rxmaxsegsz = MCLBYTES;
2645 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2646 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2647 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2648 
2649 	if (error) {
2650 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2651 		return (ENOMEM);
2652 	}
2653 
2654 	/* Create DMA maps for RX buffers. */
2655 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2656 	    &sc->bge_cdata.bge_rx_std_sparemap);
2657 	if (error) {
2658 		device_printf(sc->bge_dev,
2659 		    "can't create spare DMA map for RX\n");
2660 		return (ENOMEM);
2661 	}
2662 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2663 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2664 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2665 		if (error) {
2666 			device_printf(sc->bge_dev,
2667 			    "can't create DMA map for RX\n");
2668 			return (ENOMEM);
2669 		}
2670 	}
2671 
2672 	/* Create DMA maps for TX buffers. */
2673 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2674 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2675 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2676 		if (error) {
2677 			device_printf(sc->bge_dev,
2678 			    "can't create DMA map for TX\n");
2679 			return (ENOMEM);
2680 		}
2681 	}
2682 
2683 	/* Create tags for jumbo RX buffers. */
2684 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2685 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2686 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2687 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2688 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2689 		if (error) {
2690 			device_printf(sc->bge_dev,
2691 			    "could not allocate jumbo dma tag\n");
2692 			return (ENOMEM);
2693 		}
2694 		/* Create DMA maps for jumbo RX buffers. */
2695 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2696 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2697 		if (error) {
2698 			device_printf(sc->bge_dev,
2699 			    "can't create spare DMA map for jumbo RX\n");
2700 			return (ENOMEM);
2701 		}
2702 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2703 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2704 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2705 			if (error) {
2706 				device_printf(sc->bge_dev,
2707 				    "can't create DMA map for jumbo RX\n");
2708 				return (ENOMEM);
2709 			}
2710 		}
2711 	}
2712 
2713 	return (0);
2714 }
2715 
2716 /*
2717  * Return true if this device has more than one port.
2718  */
2719 static int
2720 bge_has_multiple_ports(struct bge_softc *sc)
2721 {
2722 	device_t dev = sc->bge_dev;
2723 	u_int b, d, f, fscan, s;
2724 
2725 	d = pci_get_domain(dev);
2726 	b = pci_get_bus(dev);
2727 	s = pci_get_slot(dev);
2728 	f = pci_get_function(dev);
2729 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2730 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2731 			return (1);
2732 	return (0);
2733 }
2734 
2735 /*
2736  * Return true if MSI can be used with this device.
2737  */
2738 static int
2739 bge_can_use_msi(struct bge_softc *sc)
2740 {
2741 	int can_use_msi = 0;
2742 
2743 	if (sc->bge_msi == 0)
2744 		return (0);
2745 
2746 	/* Disable MSI for polling(4). */
2747 #ifdef DEVICE_POLLING
2748 	return (0);
2749 #endif
2750 	switch (sc->bge_asicrev) {
2751 	case BGE_ASICREV_BCM5714_A0:
2752 	case BGE_ASICREV_BCM5714:
2753 		/*
2754 		 * Apparently, MSI doesn't work when these chips are
2755 		 * configured in single-port mode.
2756 		 */
2757 		if (bge_has_multiple_ports(sc))
2758 			can_use_msi = 1;
2759 		break;
2760 	case BGE_ASICREV_BCM5750:
2761 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2762 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2763 			can_use_msi = 1;
2764 		break;
2765 	default:
2766 		if (BGE_IS_575X_PLUS(sc))
2767 			can_use_msi = 1;
2768 	}
2769 	return (can_use_msi);
2770 }
2771 
2772 static int
2773 bge_mbox_reorder(struct bge_softc *sc)
2774 {
2775 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
2776 	static const struct mbox_reorder {
2777 		const uint16_t vendor;
2778 		const uint16_t device;
2779 		const char *desc;
2780 	} const mbox_reorder_lists[] = {
2781 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
2782 	};
2783 	devclass_t pci, pcib;
2784 	device_t bus, dev;
2785 	int i;
2786 
2787 	pci = devclass_find("pci");
2788 	pcib = devclass_find("pcib");
2789 	dev = sc->bge_dev;
2790 	bus = device_get_parent(dev);
2791 	for (;;) {
2792 		dev = device_get_parent(bus);
2793 		bus = device_get_parent(dev);
2794 		if (device_get_devclass(dev) != pcib)
2795 			break;
2796 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
2797 			if (pci_get_vendor(dev) ==
2798 			    mbox_reorder_lists[i].vendor &&
2799 			    pci_get_device(dev) ==
2800 			    mbox_reorder_lists[i].device) {
2801 				device_printf(sc->bge_dev,
2802 				    "enabling MBOX workaround for %s\n",
2803 				    mbox_reorder_lists[i].desc);
2804 				return (1);
2805 			}
2806 		}
2807 		if (device_get_devclass(bus) != pci)
2808 			break;
2809 	}
2810 	return (0);
2811 }
2812 
2813 static void
2814 bge_devinfo(struct bge_softc *sc)
2815 {
2816 	uint32_t cfg, clk;
2817 
2818 	device_printf(sc->bge_dev,
2819 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
2820 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
2821 	if (sc->bge_flags & BGE_FLAG_PCIE)
2822 		printf("PCI-E\n");
2823 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
2824 		printf("PCI-X ");
2825 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2826 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
2827 			clk = 133;
2828 		else {
2829 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
2830 			switch (clk) {
2831 			case 0:
2832 				clk = 33;
2833 				break;
2834 			case 2:
2835 				clk = 50;
2836 				break;
2837 			case 4:
2838 				clk = 66;
2839 				break;
2840 			case 6:
2841 				clk = 100;
2842 				break;
2843 			case 7:
2844 				clk = 133;
2845 				break;
2846 			}
2847 		}
2848 		printf("%u MHz\n", clk);
2849 	} else {
2850 		if (sc->bge_pcixcap != 0)
2851 			printf("PCI on PCI-X ");
2852 		else
2853 			printf("PCI ");
2854 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
2855 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
2856 			clk = 66;
2857 		else
2858 			clk = 33;
2859 		if (cfg & BGE_PCISTATE_32BIT_BUS)
2860 			printf("%u MHz; 32bit\n", clk);
2861 		else
2862 			printf("%u MHz; 64bit\n", clk);
2863 	}
2864 }
2865 
2866 static int
2867 bge_attach(device_t dev)
2868 {
2869 	struct ifnet *ifp;
2870 	struct bge_softc *sc;
2871 	uint32_t hwcfg = 0, misccfg;
2872 	u_char eaddr[ETHER_ADDR_LEN];
2873 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2874 
2875 	sc = device_get_softc(dev);
2876 	sc->bge_dev = dev;
2877 
2878 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2879 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2880 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2881 
2882 	/*
2883 	 * Map control/status registers.
2884 	 */
2885 	pci_enable_busmaster(dev);
2886 
2887 	rid = PCIR_BAR(0);
2888 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2889 	    RF_ACTIVE);
2890 
2891 	if (sc->bge_res == NULL) {
2892 		device_printf (sc->bge_dev, "couldn't map memory\n");
2893 		error = ENXIO;
2894 		goto fail;
2895 	}
2896 
2897 	/* Save various chip information. */
2898 	sc->bge_chipid =
2899 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2900 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2901 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2902 		/*
2903 		 * Find the ASCI revision.  Different chips use different
2904 		 * registers.
2905 		 */
2906 		switch (pci_get_device(dev)) {
2907 		case BCOM_DEVICEID_BCM5717:
2908 		case BCOM_DEVICEID_BCM5718:
2909 		case BCOM_DEVICEID_BCM5719:
2910 		case BCOM_DEVICEID_BCM5720:
2911 			sc->bge_chipid = pci_read_config(dev,
2912 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2913 			break;
2914 		case BCOM_DEVICEID_BCM57761:
2915 		case BCOM_DEVICEID_BCM57765:
2916 		case BCOM_DEVICEID_BCM57781:
2917 		case BCOM_DEVICEID_BCM57785:
2918 		case BCOM_DEVICEID_BCM57791:
2919 		case BCOM_DEVICEID_BCM57795:
2920 			sc->bge_chipid = pci_read_config(dev,
2921 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2922 			break;
2923 		default:
2924 			sc->bge_chipid = pci_read_config(dev,
2925 			    BGE_PCI_PRODID_ASICREV, 4);
2926 		}
2927 	}
2928 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2929 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2930 
2931 	/* Set default PHY address. */
2932 	phy_addr = 1;
2933 	 /*
2934 	  * PHY address mapping for various devices.
2935 	  *
2936 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2937 	  * ---------+-------+-------+-------+-------+
2938 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2939 	  * BCM5704  |   1   |   X   |   1   |   X   |
2940 	  * BCM5717  |   1   |   8   |   2   |   9   |
2941 	  * BCM5719  |   1   |   8   |   2   |   9   |
2942 	  * BCM5720  |   1   |   8   |   2   |   9   |
2943 	  *
2944 	  * Other addresses may respond but they are not
2945 	  * IEEE compliant PHYs and should be ignored.
2946 	  */
2947 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2948 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2949 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2950 		f = pci_get_function(dev);
2951 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2952 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2953 			    BGE_SGDIGSTS_IS_SERDES)
2954 				phy_addr = f + 8;
2955 			else
2956 				phy_addr = f + 1;
2957 		} else {
2958 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2959 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2960 				phy_addr = f + 8;
2961 			else
2962 				phy_addr = f + 1;
2963 		}
2964 	}
2965 
2966 	/*
2967 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2968 	 * 5705 A0 and A1 chips.
2969 	 */
2970 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2971 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2972 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2973 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2974 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2975 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2976 
2977 	if (bge_has_eaddr(sc))
2978 		sc->bge_flags |= BGE_FLAG_EADDR;
2979 
2980 	/* Save chipset family. */
2981 	switch (sc->bge_asicrev) {
2982 	case BGE_ASICREV_BCM5717:
2983 	case BGE_ASICREV_BCM5719:
2984 	case BGE_ASICREV_BCM5720:
2985 	case BGE_ASICREV_BCM57765:
2986 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2987 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2988 		    BGE_FLAG_JUMBO_FRAME;
2989 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2990 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2991 			/* Jumbo frame on BCM5719 A0 does not work. */
2992 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
2993 		}
2994 		break;
2995 	case BGE_ASICREV_BCM5755:
2996 	case BGE_ASICREV_BCM5761:
2997 	case BGE_ASICREV_BCM5784:
2998 	case BGE_ASICREV_BCM5785:
2999 	case BGE_ASICREV_BCM5787:
3000 	case BGE_ASICREV_BCM57780:
3001 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3002 		    BGE_FLAG_5705_PLUS;
3003 		break;
3004 	case BGE_ASICREV_BCM5700:
3005 	case BGE_ASICREV_BCM5701:
3006 	case BGE_ASICREV_BCM5703:
3007 	case BGE_ASICREV_BCM5704:
3008 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3009 		break;
3010 	case BGE_ASICREV_BCM5714_A0:
3011 	case BGE_ASICREV_BCM5780:
3012 	case BGE_ASICREV_BCM5714:
3013 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3014 		/* FALLTHROUGH */
3015 	case BGE_ASICREV_BCM5750:
3016 	case BGE_ASICREV_BCM5752:
3017 	case BGE_ASICREV_BCM5906:
3018 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3019 		/* FALLTHROUGH */
3020 	case BGE_ASICREV_BCM5705:
3021 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3022 		break;
3023 	}
3024 
3025 	/* Add SYSCTLs, requires the chipset family to be set. */
3026 	bge_add_sysctls(sc);
3027 
3028 	/* Set various PHY bug flags. */
3029 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3030 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3031 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3032 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3033 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3034 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3035 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3036 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3037 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3038 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3039 	if ((BGE_IS_5705_PLUS(sc)) &&
3040 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3041 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3042 	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
3043 	    sc->bge_asicrev != BGE_ASICREV_BCM5720 &&
3044 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3045 	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
3046 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
3047 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3048 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3049 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3050 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3051 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3052 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3053 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3054 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3055 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3056 		} else
3057 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3058 	}
3059 
3060 	/* Identify the chips that use an CPMU. */
3061 	if (BGE_IS_5717_PLUS(sc) ||
3062 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3063 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3064 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3065 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3066 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3067 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3068 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3069 	else
3070 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3071 	/* Enable auto polling for BCM570[0-5]. */
3072 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3073 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3074 
3075 	/*
3076 	 * All Broadcom controllers have 4GB boundary DMA bug.
3077 	 * Whenever an address crosses a multiple of the 4GB boundary
3078 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3079 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3080 	 * state machine will lockup and cause the device to hang.
3081 	 */
3082 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3083 
3084 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3085 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3086 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3087 
3088 	/*
3089 	 * BCM5719 cannot handle DMA requests for DMA segments that
3090 	 * have larger than 4KB in size.  However the maximum DMA
3091 	 * segment size created in DMA tag is 4KB for TSO, so we
3092 	 * wouldn't encounter the issue here.
3093 	 */
3094 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3095 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3096 
3097 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3098 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3099 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3100 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3101 			sc->bge_flags |= BGE_FLAG_5788;
3102 	}
3103 
3104 	capmask = BMSR_DEFCAPMASK;
3105 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3106 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3107 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3108 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3109 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3110 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3111 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3112 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3113 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3114 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3115 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3116 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3117 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3118 		/* These chips are 10/100 only. */
3119 		capmask &= ~BMSR_EXTSTAT;
3120 	}
3121 
3122 	/*
3123 	 * Some controllers seem to require a special firmware to use
3124 	 * TSO. But the firmware is not available to FreeBSD and Linux
3125 	 * claims that the TSO performed by the firmware is slower than
3126 	 * hardware based TSO. Moreover the firmware based TSO has one
3127 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3128 	 * header is greater than 80 bytes. The workaround for the TSO
3129 	 * bug exist but it seems it's too expensive than not using
3130 	 * TSO at all. Some hardwares also have the TSO bug so limit
3131 	 * the TSO to the controllers that are not affected TSO issues
3132 	 * (e.g. 5755 or higher).
3133 	 */
3134 	if (BGE_IS_5717_PLUS(sc)) {
3135 		/* BCM5717 requires different TSO configuration. */
3136 		sc->bge_flags |= BGE_FLAG_TSO3;
3137 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3138 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3139 			/* TSO on BCM5719 A0 does not work. */
3140 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3141 		}
3142 	} else if (BGE_IS_5755_PLUS(sc)) {
3143 		/*
3144 		 * BCM5754 and BCM5787 shares the same ASIC id so
3145 		 * explicit device id check is required.
3146 		 * Due to unknown reason TSO does not work on BCM5755M.
3147 		 */
3148 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3149 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3150 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3151 			sc->bge_flags |= BGE_FLAG_TSO;
3152 	}
3153 
3154 	/*
3155 	 * Check if this is a PCI-X or PCI Express device.
3156 	 */
3157 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3158 		/*
3159 		 * Found a PCI Express capabilities register, this
3160 		 * must be a PCI Express device.
3161 		 */
3162 		sc->bge_flags |= BGE_FLAG_PCIE;
3163 		sc->bge_expcap = reg;
3164 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3165 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3166 			pci_set_max_read_req(dev, 2048);
3167 		else if (pci_get_max_read_req(dev) != 4096)
3168 			pci_set_max_read_req(dev, 4096);
3169 	} else {
3170 		/*
3171 		 * Check if the device is in PCI-X Mode.
3172 		 * (This bit is not valid on PCI Express controllers.)
3173 		 */
3174 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3175 			sc->bge_pcixcap = reg;
3176 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3177 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3178 			sc->bge_flags |= BGE_FLAG_PCIX;
3179 	}
3180 
3181 	/*
3182 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3183 	 * not actually a MAC controller bug but an issue with the embedded
3184 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3185 	 */
3186 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3187 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3188 	/*
3189 	 * Some PCI-X bridges are known to trigger write reordering to
3190 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3191 	 * caused by out-of-order TX completions.  Enable workaround for
3192 	 * PCI-X devices that live behind these bridges.
3193 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3194 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3195 	 */
3196 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3197 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3198 	/*
3199 	 * Allocate the interrupt, using MSI if possible.  These devices
3200 	 * support 8 MSI messages, but only the first one is used in
3201 	 * normal operation.
3202 	 */
3203 	rid = 0;
3204 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3205 		sc->bge_msicap = reg;
3206 		if (bge_can_use_msi(sc)) {
3207 			msicount = pci_msi_count(dev);
3208 			if (msicount > 1)
3209 				msicount = 1;
3210 		} else
3211 			msicount = 0;
3212 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3213 			rid = 1;
3214 			sc->bge_flags |= BGE_FLAG_MSI;
3215 		}
3216 	}
3217 
3218 	/*
3219 	 * All controllers except BCM5700 supports tagged status but
3220 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3221 	 * MSI on BCM5717 does not work.
3222 	 */
3223 #ifndef DEVICE_POLLING
3224 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3225 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3226 #endif
3227 
3228 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3229 	    RF_SHAREABLE | RF_ACTIVE);
3230 
3231 	if (sc->bge_irq == NULL) {
3232 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3233 		error = ENXIO;
3234 		goto fail;
3235 	}
3236 
3237 	bge_devinfo(sc);
3238 
3239 	/* Try to reset the chip. */
3240 	if (bge_reset(sc)) {
3241 		device_printf(sc->bge_dev, "chip reset failed\n");
3242 		error = ENXIO;
3243 		goto fail;
3244 	}
3245 
3246 	sc->bge_asf_mode = 0;
3247 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3248 	    BGE_SRAM_DATA_SIG_MAGIC)) {
3249 		if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG)
3250 		    & BGE_HWCFG_ASF) {
3251 			sc->bge_asf_mode |= ASF_ENABLE;
3252 			sc->bge_asf_mode |= ASF_STACKUP;
3253 			if (BGE_IS_575X_PLUS(sc))
3254 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3255 		}
3256 	}
3257 
3258 	/* Try to reset the chip again the nice way. */
3259 	bge_stop_fw(sc);
3260 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
3261 	if (bge_reset(sc)) {
3262 		device_printf(sc->bge_dev, "chip reset failed\n");
3263 		error = ENXIO;
3264 		goto fail;
3265 	}
3266 
3267 	bge_sig_legacy(sc, BGE_RESET_STOP);
3268 	bge_sig_post_reset(sc, BGE_RESET_STOP);
3269 
3270 	if (bge_chipinit(sc)) {
3271 		device_printf(sc->bge_dev, "chip initialization failed\n");
3272 		error = ENXIO;
3273 		goto fail;
3274 	}
3275 
3276 	error = bge_get_eaddr(sc, eaddr);
3277 	if (error) {
3278 		device_printf(sc->bge_dev,
3279 		    "failed to read station address\n");
3280 		error = ENXIO;
3281 		goto fail;
3282 	}
3283 
3284 	/* 5705 limits RX return ring to 512 entries. */
3285 	if (BGE_IS_5717_PLUS(sc))
3286 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3287 	else if (BGE_IS_5705_PLUS(sc))
3288 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3289 	else
3290 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3291 
3292 	if (bge_dma_alloc(sc)) {
3293 		device_printf(sc->bge_dev,
3294 		    "failed to allocate DMA resources\n");
3295 		error = ENXIO;
3296 		goto fail;
3297 	}
3298 
3299 	/* Set default tuneable values. */
3300 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3301 	sc->bge_rx_coal_ticks = 150;
3302 	sc->bge_tx_coal_ticks = 150;
3303 	sc->bge_rx_max_coal_bds = 10;
3304 	sc->bge_tx_max_coal_bds = 10;
3305 
3306 	/* Initialize checksum features to use. */
3307 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3308 	if (sc->bge_forced_udpcsum != 0)
3309 		sc->bge_csum_features |= CSUM_UDP;
3310 
3311 	/* Set up ifnet structure */
3312 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3313 	if (ifp == NULL) {
3314 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3315 		error = ENXIO;
3316 		goto fail;
3317 	}
3318 	ifp->if_softc = sc;
3319 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3320 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3321 	ifp->if_ioctl = bge_ioctl;
3322 	ifp->if_start = bge_start;
3323 	ifp->if_init = bge_init;
3324 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3325 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3326 	IFQ_SET_READY(&ifp->if_snd);
3327 	ifp->if_hwassist = sc->bge_csum_features;
3328 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3329 	    IFCAP_VLAN_MTU;
3330 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3331 		ifp->if_hwassist |= CSUM_TSO;
3332 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3333 	}
3334 #ifdef IFCAP_VLAN_HWCSUM
3335 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3336 #endif
3337 	ifp->if_capenable = ifp->if_capabilities;
3338 #ifdef DEVICE_POLLING
3339 	ifp->if_capabilities |= IFCAP_POLLING;
3340 #endif
3341 
3342 	/*
3343 	 * 5700 B0 chips do not support checksumming correctly due
3344 	 * to hardware bugs.
3345 	 */
3346 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3347 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3348 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3349 		ifp->if_hwassist = 0;
3350 	}
3351 
3352 	/*
3353 	 * Figure out what sort of media we have by checking the
3354 	 * hardware config word in the first 32k of NIC internal memory,
3355 	 * or fall back to examining the EEPROM if necessary.
3356 	 * Note: on some BCM5700 cards, this value appears to be unset.
3357 	 * If that's the case, we have to rely on identifying the NIC
3358 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3359 	 * SK-9D41.
3360 	 */
3361 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3362 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3363 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3364 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3365 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3366 		    sizeof(hwcfg))) {
3367 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3368 			error = ENXIO;
3369 			goto fail;
3370 		}
3371 		hwcfg = ntohl(hwcfg);
3372 	}
3373 
3374 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3375 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3376 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3377 		if (BGE_IS_5714_FAMILY(sc))
3378 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3379 		else
3380 			sc->bge_flags |= BGE_FLAG_TBI;
3381 	}
3382 
3383 	if (sc->bge_flags & BGE_FLAG_TBI) {
3384 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3385 		    bge_ifmedia_sts);
3386 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3387 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3388 		    0, NULL);
3389 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3390 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3391 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3392 	} else {
3393 		/*
3394 		 * Do transceiver setup and tell the firmware the
3395 		 * driver is down so we can try to get access the
3396 		 * probe if ASF is running.  Retry a couple of times
3397 		 * if we get a conflict with the ASF firmware accessing
3398 		 * the PHY.
3399 		 */
3400 		trys = 0;
3401 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3402 again:
3403 		bge_asf_driver_up(sc);
3404 
3405 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3406 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3407 		    MIIF_DOPAUSE);
3408 		if (error != 0) {
3409 			if (trys++ < 4) {
3410 				device_printf(sc->bge_dev, "Try again\n");
3411 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3412 				    BMCR_RESET);
3413 				goto again;
3414 			}
3415 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3416 			goto fail;
3417 		}
3418 
3419 		/*
3420 		 * Now tell the firmware we are going up after probing the PHY
3421 		 */
3422 		if (sc->bge_asf_mode & ASF_STACKUP)
3423 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3424 	}
3425 
3426 	/*
3427 	 * When using the BCM5701 in PCI-X mode, data corruption has
3428 	 * been observed in the first few bytes of some received packets.
3429 	 * Aligning the packet buffer in memory eliminates the corruption.
3430 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3431 	 * which do not support unaligned accesses, we will realign the
3432 	 * payloads by copying the received packets.
3433 	 */
3434 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3435 	    sc->bge_flags & BGE_FLAG_PCIX)
3436                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3437 
3438 	/*
3439 	 * Call MI attach routine.
3440 	 */
3441 	ether_ifattach(ifp, eaddr);
3442 
3443 	/* Tell upper layer we support long frames. */
3444 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3445 
3446 	/*
3447 	 * Hookup IRQ last.
3448 	 */
3449 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3450 		/* Take advantage of single-shot MSI. */
3451 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3452 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3453 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3454 		    taskqueue_thread_enqueue, &sc->bge_tq);
3455 		if (sc->bge_tq == NULL) {
3456 			device_printf(dev, "could not create taskqueue.\n");
3457 			ether_ifdetach(ifp);
3458 			error = ENOMEM;
3459 			goto fail;
3460 		}
3461 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3462 		    device_get_nameunit(sc->bge_dev));
3463 		error = bus_setup_intr(dev, sc->bge_irq,
3464 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3465 		    &sc->bge_intrhand);
3466 	} else
3467 		error = bus_setup_intr(dev, sc->bge_irq,
3468 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3469 		    &sc->bge_intrhand);
3470 
3471 	if (error) {
3472 		ether_ifdetach(ifp);
3473 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3474 	}
3475 
3476 fail:
3477 	if (error)
3478 		bge_detach(dev);
3479 	return (error);
3480 }
3481 
3482 static int
3483 bge_detach(device_t dev)
3484 {
3485 	struct bge_softc *sc;
3486 	struct ifnet *ifp;
3487 
3488 	sc = device_get_softc(dev);
3489 	ifp = sc->bge_ifp;
3490 
3491 #ifdef DEVICE_POLLING
3492 	if (ifp->if_capenable & IFCAP_POLLING)
3493 		ether_poll_deregister(ifp);
3494 #endif
3495 
3496 	if (device_is_attached(dev)) {
3497 		ether_ifdetach(ifp);
3498 		BGE_LOCK(sc);
3499 		bge_stop(sc);
3500 		BGE_UNLOCK(sc);
3501 		callout_drain(&sc->bge_stat_ch);
3502 	}
3503 
3504 	if (sc->bge_tq)
3505 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3506 
3507 	if (sc->bge_flags & BGE_FLAG_TBI) {
3508 		ifmedia_removeall(&sc->bge_ifmedia);
3509 	} else {
3510 		bus_generic_detach(dev);
3511 		device_delete_child(dev, sc->bge_miibus);
3512 	}
3513 
3514 	bge_release_resources(sc);
3515 
3516 	return (0);
3517 }
3518 
3519 static void
3520 bge_release_resources(struct bge_softc *sc)
3521 {
3522 	device_t dev;
3523 
3524 	dev = sc->bge_dev;
3525 
3526 	if (sc->bge_tq != NULL)
3527 		taskqueue_free(sc->bge_tq);
3528 
3529 	if (sc->bge_intrhand != NULL)
3530 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3531 
3532 	if (sc->bge_irq != NULL)
3533 		bus_release_resource(dev, SYS_RES_IRQ,
3534 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3535 
3536 	if (sc->bge_flags & BGE_FLAG_MSI)
3537 		pci_release_msi(dev);
3538 
3539 	if (sc->bge_res != NULL)
3540 		bus_release_resource(dev, SYS_RES_MEMORY,
3541 		    PCIR_BAR(0), sc->bge_res);
3542 
3543 	if (sc->bge_ifp != NULL)
3544 		if_free(sc->bge_ifp);
3545 
3546 	bge_dma_free(sc);
3547 
3548 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3549 		BGE_LOCK_DESTROY(sc);
3550 }
3551 
3552 static int
3553 bge_reset(struct bge_softc *sc)
3554 {
3555 	device_t dev;
3556 	uint32_t cachesize, command, pcistate, reset, val;
3557 	void (*write_op)(struct bge_softc *, int, int);
3558 	uint16_t devctl;
3559 	int i;
3560 
3561 	dev = sc->bge_dev;
3562 
3563 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3564 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3565 		if (sc->bge_flags & BGE_FLAG_PCIE)
3566 			write_op = bge_writemem_direct;
3567 		else
3568 			write_op = bge_writemem_ind;
3569 	} else
3570 		write_op = bge_writereg_ind;
3571 
3572 	/* Save some important PCI state. */
3573 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3574 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3575 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3576 
3577 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3578 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3579 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3580 
3581 	/* Disable fastboot on controllers that support it. */
3582 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3583 	    BGE_IS_5755_PLUS(sc)) {
3584 		if (bootverbose)
3585 			device_printf(dev, "Disabling fastboot\n");
3586 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3587 	}
3588 
3589 	/*
3590 	 * Write the magic number to SRAM at offset 0xB50.
3591 	 * When firmware finishes its initialization it will
3592 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3593 	 */
3594 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3595 
3596 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3597 
3598 	/* XXX: Broadcom Linux driver. */
3599 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3600 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3601 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3602 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3603 			/* Prevent PCIE link training during global reset */
3604 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3605 			reset |= 1 << 29;
3606 		}
3607 	}
3608 
3609 	/*
3610 	 * Set GPHY Power Down Override to leave GPHY
3611 	 * powered up in D0 uninitialized.
3612 	 */
3613 	if (BGE_IS_5705_PLUS(sc) &&
3614 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
3615 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3616 
3617 	/* Issue global reset */
3618 	write_op(sc, BGE_MISC_CFG, reset);
3619 
3620 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3621 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3622 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3623 		    val | BGE_VCPU_STATUS_DRV_RESET);
3624 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3625 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3626 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3627 	}
3628 
3629 	DELAY(1000);
3630 
3631 	/* XXX: Broadcom Linux driver. */
3632 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3633 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3634 			DELAY(500000); /* wait for link training to complete */
3635 			val = pci_read_config(dev, 0xC4, 4);
3636 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3637 		}
3638 		devctl = pci_read_config(dev,
3639 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
3640 		/* Clear enable no snoop and disable relaxed ordering. */
3641 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
3642 		    PCIEM_CTL_NOSNOOP_ENABLE);
3643 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
3644 		    devctl, 2);
3645 		/* Clear error status. */
3646 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
3647 		    PCIEM_STA_CORRECTABLE_ERROR |
3648 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
3649 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
3650 	}
3651 
3652 	/* Reset some of the PCI state that got zapped by reset. */
3653 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3654 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3655 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3656 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3657 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3658 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3659 	/*
3660 	 * Disable PCI-X relaxed ordering to ensure status block update
3661 	 * comes first then packet buffer DMA. Otherwise driver may
3662 	 * read stale status block.
3663 	 */
3664 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3665 		devctl = pci_read_config(dev,
3666 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3667 		devctl &= ~PCIXM_COMMAND_ERO;
3668 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3669 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3670 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3671 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3672 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3673 			    PCIXM_COMMAND_MAX_READ);
3674 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3675 		}
3676 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3677 		    devctl, 2);
3678 	}
3679 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
3680 	if (BGE_IS_5714_FAMILY(sc)) {
3681 		/* This chip disables MSI on reset. */
3682 		if (sc->bge_flags & BGE_FLAG_MSI) {
3683 			val = pci_read_config(dev,
3684 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3685 			pci_write_config(dev,
3686 			    sc->bge_msicap + PCIR_MSI_CTRL,
3687 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3688 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3689 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3690 			    val | BGE_MSIMODE_ENABLE);
3691 		}
3692 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3693 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3694 	} else
3695 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3696 
3697 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3698 		for (i = 0; i < BGE_TIMEOUT; i++) {
3699 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3700 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3701 				break;
3702 			DELAY(100);
3703 		}
3704 		if (i == BGE_TIMEOUT) {
3705 			device_printf(dev, "reset timed out\n");
3706 			return (1);
3707 		}
3708 	} else {
3709 		/*
3710 		 * Poll until we see the 1's complement of the magic number.
3711 		 * This indicates that the firmware initialization is complete.
3712 		 * We expect this to fail if no chip containing the Ethernet
3713 		 * address is fitted though.
3714 		 */
3715 		for (i = 0; i < BGE_TIMEOUT; i++) {
3716 			DELAY(10);
3717 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3718 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
3719 				break;
3720 		}
3721 
3722 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3723 			device_printf(dev,
3724 			    "firmware handshake timed out, found 0x%08x\n",
3725 			    val);
3726 		/* BCM57765 A0 needs additional time before accessing. */
3727 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3728 			DELAY(10 * 1000);	/* XXX */
3729 	}
3730 
3731 	/*
3732 	 * XXX Wait for the value of the PCISTATE register to
3733 	 * return to its original pre-reset state. This is a
3734 	 * fairly good indicator of reset completion. If we don't
3735 	 * wait for the reset to fully complete, trying to read
3736 	 * from the device's non-PCI registers may yield garbage
3737 	 * results.
3738 	 */
3739 	for (i = 0; i < BGE_TIMEOUT; i++) {
3740 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3741 			break;
3742 		DELAY(10);
3743 	}
3744 
3745 	/* Fix up byte swapping. */
3746 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
3747 
3748 	/* Tell the ASF firmware we are up */
3749 	if (sc->bge_asf_mode & ASF_STACKUP)
3750 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3751 
3752 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3753 	DELAY(40);
3754 
3755 	/*
3756 	 * The 5704 in TBI mode apparently needs some special
3757 	 * adjustment to insure the SERDES drive level is set
3758 	 * to 1.2V.
3759 	 */
3760 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3761 	    sc->bge_flags & BGE_FLAG_TBI) {
3762 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3763 		val = (val & ~0xFFF) | 0x880;
3764 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3765 	}
3766 
3767 	/* XXX: Broadcom Linux driver. */
3768 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3769 	    !BGE_IS_5717_PLUS(sc) &&
3770 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3771 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3772 		/* Enable Data FIFO protection. */
3773 		val = CSR_READ_4(sc, 0x7C00);
3774 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3775 	}
3776 	DELAY(10000);
3777 
3778 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
3779 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
3780 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
3781 
3782 	return (0);
3783 }
3784 
3785 static __inline void
3786 bge_rxreuse_std(struct bge_softc *sc, int i)
3787 {
3788 	struct bge_rx_bd *r;
3789 
3790 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3791 	r->bge_flags = BGE_RXBDFLAG_END;
3792 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3793 	r->bge_idx = i;
3794 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3795 }
3796 
3797 static __inline void
3798 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3799 {
3800 	struct bge_extrx_bd *r;
3801 
3802 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3803 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3804 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3805 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3806 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3807 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3808 	r->bge_idx = i;
3809 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3810 }
3811 
3812 /*
3813  * Frame reception handling. This is called if there's a frame
3814  * on the receive return list.
3815  *
3816  * Note: we have to be able to handle two possibilities here:
3817  * 1) the frame is from the jumbo receive ring
3818  * 2) the frame is from the standard receive ring
3819  */
3820 
3821 static int
3822 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3823 {
3824 	struct ifnet *ifp;
3825 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3826 	uint16_t rx_cons;
3827 
3828 	rx_cons = sc->bge_rx_saved_considx;
3829 
3830 	/* Nothing to do. */
3831 	if (rx_cons == rx_prod)
3832 		return (rx_npkts);
3833 
3834 	ifp = sc->bge_ifp;
3835 
3836 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3837 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3838 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3839 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3840 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3841 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3842 	    (MCLBYTES - ETHER_ALIGN))
3843 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3844 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3845 
3846 	while (rx_cons != rx_prod) {
3847 		struct bge_rx_bd	*cur_rx;
3848 		uint32_t		rxidx;
3849 		struct mbuf		*m = NULL;
3850 		uint16_t		vlan_tag = 0;
3851 		int			have_tag = 0;
3852 
3853 #ifdef DEVICE_POLLING
3854 		if (ifp->if_capenable & IFCAP_POLLING) {
3855 			if (sc->rxcycles <= 0)
3856 				break;
3857 			sc->rxcycles--;
3858 		}
3859 #endif
3860 
3861 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3862 
3863 		rxidx = cur_rx->bge_idx;
3864 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3865 
3866 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3867 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3868 			have_tag = 1;
3869 			vlan_tag = cur_rx->bge_vlan_tag;
3870 		}
3871 
3872 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3873 			jumbocnt++;
3874 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3875 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3876 				bge_rxreuse_jumbo(sc, rxidx);
3877 				continue;
3878 			}
3879 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3880 				bge_rxreuse_jumbo(sc, rxidx);
3881 				ifp->if_iqdrops++;
3882 				continue;
3883 			}
3884 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3885 		} else {
3886 			stdcnt++;
3887 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3888 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3889 				bge_rxreuse_std(sc, rxidx);
3890 				continue;
3891 			}
3892 			if (bge_newbuf_std(sc, rxidx) != 0) {
3893 				bge_rxreuse_std(sc, rxidx);
3894 				ifp->if_iqdrops++;
3895 				continue;
3896 			}
3897 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3898 		}
3899 
3900 		ifp->if_ipackets++;
3901 #ifndef __NO_STRICT_ALIGNMENT
3902 		/*
3903 		 * For architectures with strict alignment we must make sure
3904 		 * the payload is aligned.
3905 		 */
3906 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3907 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3908 			    cur_rx->bge_len);
3909 			m->m_data += ETHER_ALIGN;
3910 		}
3911 #endif
3912 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3913 		m->m_pkthdr.rcvif = ifp;
3914 
3915 		if (ifp->if_capenable & IFCAP_RXCSUM)
3916 			bge_rxcsum(sc, cur_rx, m);
3917 
3918 		/*
3919 		 * If we received a packet with a vlan tag,
3920 		 * attach that information to the packet.
3921 		 */
3922 		if (have_tag) {
3923 			m->m_pkthdr.ether_vtag = vlan_tag;
3924 			m->m_flags |= M_VLANTAG;
3925 		}
3926 
3927 		if (holdlck != 0) {
3928 			BGE_UNLOCK(sc);
3929 			(*ifp->if_input)(ifp, m);
3930 			BGE_LOCK(sc);
3931 		} else
3932 			(*ifp->if_input)(ifp, m);
3933 		rx_npkts++;
3934 
3935 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3936 			return (rx_npkts);
3937 	}
3938 
3939 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3940 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3941 	if (stdcnt > 0)
3942 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3943 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3944 
3945 	if (jumbocnt > 0)
3946 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3947 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3948 
3949 	sc->bge_rx_saved_considx = rx_cons;
3950 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3951 	if (stdcnt)
3952 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3953 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3954 	if (jumbocnt)
3955 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3956 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3957 #ifdef notyet
3958 	/*
3959 	 * This register wraps very quickly under heavy packet drops.
3960 	 * If you need correct statistics, you can enable this check.
3961 	 */
3962 	if (BGE_IS_5705_PLUS(sc))
3963 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3964 #endif
3965 	return (rx_npkts);
3966 }
3967 
3968 static void
3969 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3970 {
3971 
3972 	if (BGE_IS_5717_PLUS(sc)) {
3973 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3974 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3975 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3976 				if ((cur_rx->bge_error_flag &
3977 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3978 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3979 			}
3980 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3981 				m->m_pkthdr.csum_data =
3982 				    cur_rx->bge_tcp_udp_csum;
3983 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3984 				    CSUM_PSEUDO_HDR;
3985 			}
3986 		}
3987 	} else {
3988 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3989 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3990 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3991 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3992 		}
3993 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3994 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3995 			m->m_pkthdr.csum_data =
3996 			    cur_rx->bge_tcp_udp_csum;
3997 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3998 			    CSUM_PSEUDO_HDR;
3999 		}
4000 	}
4001 }
4002 
4003 static void
4004 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4005 {
4006 	struct bge_tx_bd *cur_tx;
4007 	struct ifnet *ifp;
4008 
4009 	BGE_LOCK_ASSERT(sc);
4010 
4011 	/* Nothing to do. */
4012 	if (sc->bge_tx_saved_considx == tx_cons)
4013 		return;
4014 
4015 	ifp = sc->bge_ifp;
4016 
4017 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4018 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4019 	/*
4020 	 * Go through our tx ring and free mbufs for those
4021 	 * frames that have been sent.
4022 	 */
4023 	while (sc->bge_tx_saved_considx != tx_cons) {
4024 		uint32_t		idx;
4025 
4026 		idx = sc->bge_tx_saved_considx;
4027 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4028 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4029 			ifp->if_opackets++;
4030 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4031 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4032 			    sc->bge_cdata.bge_tx_dmamap[idx],
4033 			    BUS_DMASYNC_POSTWRITE);
4034 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4035 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4036 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4037 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4038 		}
4039 		sc->bge_txcnt--;
4040 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4041 	}
4042 
4043 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4044 	if (sc->bge_txcnt == 0)
4045 		sc->bge_timer = 0;
4046 }
4047 
4048 #ifdef DEVICE_POLLING
4049 static int
4050 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4051 {
4052 	struct bge_softc *sc = ifp->if_softc;
4053 	uint16_t rx_prod, tx_cons;
4054 	uint32_t statusword;
4055 	int rx_npkts = 0;
4056 
4057 	BGE_LOCK(sc);
4058 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4059 		BGE_UNLOCK(sc);
4060 		return (rx_npkts);
4061 	}
4062 
4063 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4064 	    sc->bge_cdata.bge_status_map,
4065 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4066 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4067 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4068 
4069 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4070 	sc->bge_ldata.bge_status_block->bge_status = 0;
4071 
4072 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4073 	    sc->bge_cdata.bge_status_map,
4074 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4075 
4076 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4077 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4078 		sc->bge_link_evt++;
4079 
4080 	if (cmd == POLL_AND_CHECK_STATUS)
4081 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4082 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4083 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4084 			bge_link_upd(sc);
4085 
4086 	sc->rxcycles = count;
4087 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4088 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4089 		BGE_UNLOCK(sc);
4090 		return (rx_npkts);
4091 	}
4092 	bge_txeof(sc, tx_cons);
4093 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4094 		bge_start_locked(ifp);
4095 
4096 	BGE_UNLOCK(sc);
4097 	return (rx_npkts);
4098 }
4099 #endif /* DEVICE_POLLING */
4100 
4101 static int
4102 bge_msi_intr(void *arg)
4103 {
4104 	struct bge_softc *sc;
4105 
4106 	sc = (struct bge_softc *)arg;
4107 	/*
4108 	 * This interrupt is not shared and controller already
4109 	 * disabled further interrupt.
4110 	 */
4111 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4112 	return (FILTER_HANDLED);
4113 }
4114 
4115 static void
4116 bge_intr_task(void *arg, int pending)
4117 {
4118 	struct bge_softc *sc;
4119 	struct ifnet *ifp;
4120 	uint32_t status, status_tag;
4121 	uint16_t rx_prod, tx_cons;
4122 
4123 	sc = (struct bge_softc *)arg;
4124 	ifp = sc->bge_ifp;
4125 
4126 	BGE_LOCK(sc);
4127 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4128 		BGE_UNLOCK(sc);
4129 		return;
4130 	}
4131 
4132 	/* Get updated status block. */
4133 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4134 	    sc->bge_cdata.bge_status_map,
4135 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4136 
4137 	/* Save producer/consumer indexess. */
4138 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4139 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4140 	status = sc->bge_ldata.bge_status_block->bge_status;
4141 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4142 	sc->bge_ldata.bge_status_block->bge_status = 0;
4143 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4144 	    sc->bge_cdata.bge_status_map,
4145 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4146 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4147 		status_tag = 0;
4148 
4149 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4150 		bge_link_upd(sc);
4151 
4152 	/* Let controller work. */
4153 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4154 
4155 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4156 	    sc->bge_rx_saved_considx != rx_prod) {
4157 		/* Check RX return ring producer/consumer. */
4158 		BGE_UNLOCK(sc);
4159 		bge_rxeof(sc, rx_prod, 0);
4160 		BGE_LOCK(sc);
4161 	}
4162 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4163 		/* Check TX ring producer/consumer. */
4164 		bge_txeof(sc, tx_cons);
4165 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4166 			bge_start_locked(ifp);
4167 	}
4168 	BGE_UNLOCK(sc);
4169 }
4170 
4171 static void
4172 bge_intr(void *xsc)
4173 {
4174 	struct bge_softc *sc;
4175 	struct ifnet *ifp;
4176 	uint32_t statusword;
4177 	uint16_t rx_prod, tx_cons;
4178 
4179 	sc = xsc;
4180 
4181 	BGE_LOCK(sc);
4182 
4183 	ifp = sc->bge_ifp;
4184 
4185 #ifdef DEVICE_POLLING
4186 	if (ifp->if_capenable & IFCAP_POLLING) {
4187 		BGE_UNLOCK(sc);
4188 		return;
4189 	}
4190 #endif
4191 
4192 	/*
4193 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4194 	 * disable interrupts by writing nonzero like we used to, since with
4195 	 * our current organization this just gives complications and
4196 	 * pessimizations for re-enabling interrupts.  We used to have races
4197 	 * instead of the necessary complications.  Disabling interrupts
4198 	 * would just reduce the chance of a status update while we are
4199 	 * running (by switching to the interrupt-mode coalescence
4200 	 * parameters), but this chance is already very low so it is more
4201 	 * efficient to get another interrupt than prevent it.
4202 	 *
4203 	 * We do the ack first to ensure another interrupt if there is a
4204 	 * status update after the ack.  We don't check for the status
4205 	 * changing later because it is more efficient to get another
4206 	 * interrupt than prevent it, not quite as above (not checking is
4207 	 * a smaller optimization than not toggling the interrupt enable,
4208 	 * since checking doesn't involve PCI accesses and toggling require
4209 	 * the status check).  So toggling would probably be a pessimization
4210 	 * even with MSI.  It would only be needed for using a task queue.
4211 	 */
4212 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4213 
4214 	/*
4215 	 * Do the mandatory PCI flush as well as get the link status.
4216 	 */
4217 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4218 
4219 	/* Make sure the descriptor ring indexes are coherent. */
4220 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4221 	    sc->bge_cdata.bge_status_map,
4222 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4223 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4224 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4225 	sc->bge_ldata.bge_status_block->bge_status = 0;
4226 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4227 	    sc->bge_cdata.bge_status_map,
4228 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4229 
4230 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4231 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4232 	    statusword || sc->bge_link_evt)
4233 		bge_link_upd(sc);
4234 
4235 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4236 		/* Check RX return ring producer/consumer. */
4237 		bge_rxeof(sc, rx_prod, 1);
4238 	}
4239 
4240 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4241 		/* Check TX ring producer/consumer. */
4242 		bge_txeof(sc, tx_cons);
4243 	}
4244 
4245 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4246 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4247 		bge_start_locked(ifp);
4248 
4249 	BGE_UNLOCK(sc);
4250 }
4251 
4252 static void
4253 bge_asf_driver_up(struct bge_softc *sc)
4254 {
4255 	if (sc->bge_asf_mode & ASF_STACKUP) {
4256 		/* Send ASF heartbeat aprox. every 2s */
4257 		if (sc->bge_asf_count)
4258 			sc->bge_asf_count --;
4259 		else {
4260 			sc->bge_asf_count = 2;
4261 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4262 			    BGE_FW_CMD_DRV_ALIVE);
4263 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4264 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4265 			    BGE_FW_HB_TIMEOUT_SEC);
4266 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4267 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4268 			    BGE_RX_CPU_DRV_EVENT);
4269 		}
4270 	}
4271 }
4272 
4273 static void
4274 bge_tick(void *xsc)
4275 {
4276 	struct bge_softc *sc = xsc;
4277 	struct mii_data *mii = NULL;
4278 
4279 	BGE_LOCK_ASSERT(sc);
4280 
4281 	/* Synchronize with possible callout reset/stop. */
4282 	if (callout_pending(&sc->bge_stat_ch) ||
4283 	    !callout_active(&sc->bge_stat_ch))
4284 		return;
4285 
4286 	if (BGE_IS_5705_PLUS(sc))
4287 		bge_stats_update_regs(sc);
4288 	else
4289 		bge_stats_update(sc);
4290 
4291 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4292 		mii = device_get_softc(sc->bge_miibus);
4293 		/*
4294 		 * Do not touch PHY if we have link up. This could break
4295 		 * IPMI/ASF mode or produce extra input errors
4296 		 * (extra errors was reported for bcm5701 & bcm5704).
4297 		 */
4298 		if (!sc->bge_link)
4299 			mii_tick(mii);
4300 	} else {
4301 		/*
4302 		 * Since in TBI mode auto-polling can't be used we should poll
4303 		 * link status manually. Here we register pending link event
4304 		 * and trigger interrupt.
4305 		 */
4306 #ifdef DEVICE_POLLING
4307 		/* In polling mode we poll link state in bge_poll(). */
4308 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4309 #endif
4310 		{
4311 		sc->bge_link_evt++;
4312 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4313 		    sc->bge_flags & BGE_FLAG_5788)
4314 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4315 		else
4316 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4317 		}
4318 	}
4319 
4320 	bge_asf_driver_up(sc);
4321 	bge_watchdog(sc);
4322 
4323 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4324 }
4325 
4326 static void
4327 bge_stats_update_regs(struct bge_softc *sc)
4328 {
4329 	struct ifnet *ifp;
4330 	struct bge_mac_stats *stats;
4331 
4332 	ifp = sc->bge_ifp;
4333 	stats = &sc->bge_mac_stats;
4334 
4335 	stats->ifHCOutOctets +=
4336 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4337 	stats->etherStatsCollisions +=
4338 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4339 	stats->outXonSent +=
4340 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4341 	stats->outXoffSent +=
4342 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4343 	stats->dot3StatsInternalMacTransmitErrors +=
4344 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4345 	stats->dot3StatsSingleCollisionFrames +=
4346 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4347 	stats->dot3StatsMultipleCollisionFrames +=
4348 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4349 	stats->dot3StatsDeferredTransmissions +=
4350 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4351 	stats->dot3StatsExcessiveCollisions +=
4352 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4353 	stats->dot3StatsLateCollisions +=
4354 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4355 	stats->ifHCOutUcastPkts +=
4356 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4357 	stats->ifHCOutMulticastPkts +=
4358 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4359 	stats->ifHCOutBroadcastPkts +=
4360 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4361 
4362 	stats->ifHCInOctets +=
4363 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4364 	stats->etherStatsFragments +=
4365 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4366 	stats->ifHCInUcastPkts +=
4367 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4368 	stats->ifHCInMulticastPkts +=
4369 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4370 	stats->ifHCInBroadcastPkts +=
4371 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4372 	stats->dot3StatsFCSErrors +=
4373 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4374 	stats->dot3StatsAlignmentErrors +=
4375 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4376 	stats->xonPauseFramesReceived +=
4377 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4378 	stats->xoffPauseFramesReceived +=
4379 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4380 	stats->macControlFramesReceived +=
4381 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4382 	stats->xoffStateEntered +=
4383 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4384 	stats->dot3StatsFramesTooLong +=
4385 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4386 	stats->etherStatsJabbers +=
4387 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4388 	stats->etherStatsUndersizePkts +=
4389 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4390 
4391 	stats->FramesDroppedDueToFilters +=
4392 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4393 	stats->DmaWriteQueueFull +=
4394 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4395 	stats->DmaWriteHighPriQueueFull +=
4396 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4397 	stats->NoMoreRxBDs +=
4398 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4399 	/*
4400 	 * XXX
4401 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4402 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4403 	 * includes number of unwanted multicast frames.  This comes
4404 	 * from silicon bug and known workaround to get rough(not
4405 	 * exact) counter is to enable interrupt on MBUF low water
4406 	 * attention.  This can be accomplished by setting
4407 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4408 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4409 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4410 	 * However that change would generate more interrupts and
4411 	 * there are still possibilities of losing multiple frames
4412 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4413 	 * Given that the workaround still would not get correct
4414 	 * counter I don't think it's worth to implement it.  So
4415 	 * ignore reading the counter on controllers that have the
4416 	 * silicon bug.
4417 	 */
4418 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4419 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4420 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4421 		stats->InputDiscards +=
4422 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4423 	stats->InputErrors +=
4424 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4425 	stats->RecvThresholdHit +=
4426 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4427 
4428 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4429 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4430 	    stats->InputErrors);
4431 }
4432 
4433 static void
4434 bge_stats_clear_regs(struct bge_softc *sc)
4435 {
4436 
4437 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4438 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4439 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4440 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4441 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4442 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4443 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4444 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4445 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4446 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4447 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4448 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4449 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4450 
4451 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4452 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4453 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4454 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4455 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4456 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4457 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4458 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4459 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4460 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4461 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4462 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4463 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4464 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4465 
4466 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4467 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4468 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4469 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4470 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4471 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4472 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4473 }
4474 
4475 static void
4476 bge_stats_update(struct bge_softc *sc)
4477 {
4478 	struct ifnet *ifp;
4479 	bus_size_t stats;
4480 	uint32_t cnt;	/* current register value */
4481 
4482 	ifp = sc->bge_ifp;
4483 
4484 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4485 
4486 #define	READ_STAT(sc, stats, stat) \
4487 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4488 
4489 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4490 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4491 	sc->bge_tx_collisions = cnt;
4492 
4493 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4494 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4495 	sc->bge_rx_nobds = cnt;
4496 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4497 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4498 	sc->bge_rx_inerrs = cnt;
4499 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4500 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4501 	sc->bge_rx_discards = cnt;
4502 
4503 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4504 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4505 	sc->bge_tx_discards = cnt;
4506 
4507 #undef	READ_STAT
4508 }
4509 
4510 /*
4511  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4512  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4513  * but when such padded frames employ the bge IP/TCP checksum offload,
4514  * the hardware checksum assist gives incorrect results (possibly
4515  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4516  * If we pad such runts with zeros, the onboard checksum comes out correct.
4517  */
4518 static __inline int
4519 bge_cksum_pad(struct mbuf *m)
4520 {
4521 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4522 	struct mbuf *last;
4523 
4524 	/* If there's only the packet-header and we can pad there, use it. */
4525 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4526 	    M_TRAILINGSPACE(m) >= padlen) {
4527 		last = m;
4528 	} else {
4529 		/*
4530 		 * Walk packet chain to find last mbuf. We will either
4531 		 * pad there, or append a new mbuf and pad it.
4532 		 */
4533 		for (last = m; last->m_next != NULL; last = last->m_next);
4534 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4535 			/* Allocate new empty mbuf, pad it. Compact later. */
4536 			struct mbuf *n;
4537 
4538 			MGET(n, M_DONTWAIT, MT_DATA);
4539 			if (n == NULL)
4540 				return (ENOBUFS);
4541 			n->m_len = 0;
4542 			last->m_next = n;
4543 			last = n;
4544 		}
4545 	}
4546 
4547 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4548 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4549 	last->m_len += padlen;
4550 	m->m_pkthdr.len += padlen;
4551 
4552 	return (0);
4553 }
4554 
4555 static struct mbuf *
4556 bge_check_short_dma(struct mbuf *m)
4557 {
4558 	struct mbuf *n;
4559 	int found;
4560 
4561 	/*
4562 	 * If device receive two back-to-back send BDs with less than
4563 	 * or equal to 8 total bytes then the device may hang.  The two
4564 	 * back-to-back send BDs must in the same frame for this failure
4565 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4566 	 * send BDs are there. If this is the case, allocate new mbuf
4567 	 * and copy the frame to workaround the silicon bug.
4568 	 */
4569 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4570 		if (n->m_len < 8) {
4571 			found++;
4572 			if (found > 1)
4573 				break;
4574 			continue;
4575 		}
4576 		found = 0;
4577 	}
4578 
4579 	if (found > 1) {
4580 		n = m_defrag(m, M_DONTWAIT);
4581 		if (n == NULL)
4582 			m_freem(m);
4583 	} else
4584 		n = m;
4585 	return (n);
4586 }
4587 
4588 static struct mbuf *
4589 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4590     uint16_t *flags)
4591 {
4592 	struct ip *ip;
4593 	struct tcphdr *tcp;
4594 	struct mbuf *n;
4595 	uint16_t hlen;
4596 	uint32_t poff;
4597 
4598 	if (M_WRITABLE(m) == 0) {
4599 		/* Get a writable copy. */
4600 		n = m_dup(m, M_DONTWAIT);
4601 		m_freem(m);
4602 		if (n == NULL)
4603 			return (NULL);
4604 		m = n;
4605 	}
4606 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4607 	if (m == NULL)
4608 		return (NULL);
4609 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4610 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4611 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4612 	if (m == NULL)
4613 		return (NULL);
4614 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4615 	m = m_pullup(m, poff + (tcp->th_off << 2));
4616 	if (m == NULL)
4617 		return (NULL);
4618 	/*
4619 	 * It seems controller doesn't modify IP length and TCP pseudo
4620 	 * checksum. These checksum computed by upper stack should be 0.
4621 	 */
4622 	*mss = m->m_pkthdr.tso_segsz;
4623 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4624 	ip->ip_sum = 0;
4625 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4626 	/* Clear pseudo checksum computed by TCP stack. */
4627 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4628 	tcp->th_sum = 0;
4629 	/*
4630 	 * Broadcom controllers uses different descriptor format for
4631 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4632 	 * license issue and lower performance of firmware based TSO
4633 	 * we only support hardware based TSO.
4634 	 */
4635 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4636 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4637 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4638 		/*
4639 		 * For BCM5717 and newer controllers, hardware based TSO
4640 		 * uses the 14 lower bits of the bge_mss field to store the
4641 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4642 		 * the IP/TCP header length.  The upper 6 bits of the header
4643 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4644 		 * frames are supported.
4645 		 */
4646 		*mss |= ((hlen & 0x3) << 14);
4647 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4648 	} else {
4649 		/*
4650 		 * For BCM5755 and newer controllers, hardware based TSO uses
4651 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4652 		 * store the IP/TCP header length. Jumbo frames are not
4653 		 * supported.
4654 		 */
4655 		*mss |= (hlen << 11);
4656 	}
4657 	return (m);
4658 }
4659 
4660 /*
4661  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4662  * pointers to descriptors.
4663  */
4664 static int
4665 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4666 {
4667 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4668 	bus_dmamap_t		map;
4669 	struct bge_tx_bd	*d;
4670 	struct mbuf		*m = *m_head;
4671 	uint32_t		idx = *txidx;
4672 	uint16_t		csum_flags, mss, vlan_tag;
4673 	int			nsegs, i, error;
4674 
4675 	csum_flags = 0;
4676 	mss = 0;
4677 	vlan_tag = 0;
4678 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4679 	    m->m_next != NULL) {
4680 		*m_head = bge_check_short_dma(m);
4681 		if (*m_head == NULL)
4682 			return (ENOBUFS);
4683 		m = *m_head;
4684 	}
4685 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4686 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4687 		if (*m_head == NULL)
4688 			return (ENOBUFS);
4689 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4690 		    BGE_TXBDFLAG_CPU_POST_DMA;
4691 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4692 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4693 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4694 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4695 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4696 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4697 			    (error = bge_cksum_pad(m)) != 0) {
4698 				m_freem(m);
4699 				*m_head = NULL;
4700 				return (error);
4701 			}
4702 		}
4703 		if (m->m_flags & M_LASTFRAG)
4704 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4705 		else if (m->m_flags & M_FRAG)
4706 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4707 	}
4708 
4709 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4710 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4711 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4712 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4713 		if (sc->bge_forced_collapse > 0 &&
4714 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4715 			/*
4716 			 * Forcedly collapse mbuf chains to overcome hardware
4717 			 * limitation which only support a single outstanding
4718 			 * DMA read operation.
4719 			 */
4720 			if (sc->bge_forced_collapse == 1)
4721 				m = m_defrag(m, M_DONTWAIT);
4722 			else
4723 				m = m_collapse(m, M_DONTWAIT,
4724 				    sc->bge_forced_collapse);
4725 			if (m == NULL)
4726 				m = *m_head;
4727 			*m_head = m;
4728 		}
4729 	}
4730 
4731 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4732 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4733 	    &nsegs, BUS_DMA_NOWAIT);
4734 	if (error == EFBIG) {
4735 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4736 		if (m == NULL) {
4737 			m_freem(*m_head);
4738 			*m_head = NULL;
4739 			return (ENOBUFS);
4740 		}
4741 		*m_head = m;
4742 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4743 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4744 		if (error) {
4745 			m_freem(m);
4746 			*m_head = NULL;
4747 			return (error);
4748 		}
4749 	} else if (error != 0)
4750 		return (error);
4751 
4752 	/* Check if we have enough free send BDs. */
4753 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4754 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4755 		return (ENOBUFS);
4756 	}
4757 
4758 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4759 
4760 	if (m->m_flags & M_VLANTAG) {
4761 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4762 		vlan_tag = m->m_pkthdr.ether_vtag;
4763 	}
4764 	for (i = 0; ; i++) {
4765 		d = &sc->bge_ldata.bge_tx_ring[idx];
4766 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4767 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4768 		d->bge_len = segs[i].ds_len;
4769 		d->bge_flags = csum_flags;
4770 		d->bge_vlan_tag = vlan_tag;
4771 		d->bge_mss = mss;
4772 		if (i == nsegs - 1)
4773 			break;
4774 		BGE_INC(idx, BGE_TX_RING_CNT);
4775 	}
4776 
4777 	/* Mark the last segment as end of packet... */
4778 	d->bge_flags |= BGE_TXBDFLAG_END;
4779 
4780 	/*
4781 	 * Insure that the map for this transmission
4782 	 * is placed at the array index of the last descriptor
4783 	 * in this chain.
4784 	 */
4785 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4786 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4787 	sc->bge_cdata.bge_tx_chain[idx] = m;
4788 	sc->bge_txcnt += nsegs;
4789 
4790 	BGE_INC(idx, BGE_TX_RING_CNT);
4791 	*txidx = idx;
4792 
4793 	return (0);
4794 }
4795 
4796 /*
4797  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4798  * to the mbuf data regions directly in the transmit descriptors.
4799  */
4800 static void
4801 bge_start_locked(struct ifnet *ifp)
4802 {
4803 	struct bge_softc *sc;
4804 	struct mbuf *m_head;
4805 	uint32_t prodidx;
4806 	int count;
4807 
4808 	sc = ifp->if_softc;
4809 	BGE_LOCK_ASSERT(sc);
4810 
4811 	if (!sc->bge_link ||
4812 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4813 	    IFF_DRV_RUNNING)
4814 		return;
4815 
4816 	prodidx = sc->bge_tx_prodidx;
4817 
4818 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4819 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4820 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4821 			break;
4822 		}
4823 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4824 		if (m_head == NULL)
4825 			break;
4826 
4827 		/*
4828 		 * XXX
4829 		 * The code inside the if() block is never reached since we
4830 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4831 		 * requests to checksum TCP/UDP in a fragmented packet.
4832 		 *
4833 		 * XXX
4834 		 * safety overkill.  If this is a fragmented packet chain
4835 		 * with delayed TCP/UDP checksums, then only encapsulate
4836 		 * it if we have enough descriptors to handle the entire
4837 		 * chain at once.
4838 		 * (paranoia -- may not actually be needed)
4839 		 */
4840 		if (m_head->m_flags & M_FIRSTFRAG &&
4841 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4842 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4843 			    m_head->m_pkthdr.csum_data + 16) {
4844 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4845 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4846 				break;
4847 			}
4848 		}
4849 
4850 		/*
4851 		 * Pack the data into the transmit ring. If we
4852 		 * don't have room, set the OACTIVE flag and wait
4853 		 * for the NIC to drain the ring.
4854 		 */
4855 		if (bge_encap(sc, &m_head, &prodidx)) {
4856 			if (m_head == NULL)
4857 				break;
4858 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4859 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4860 			break;
4861 		}
4862 		++count;
4863 
4864 		/*
4865 		 * If there's a BPF listener, bounce a copy of this frame
4866 		 * to him.
4867 		 */
4868 #ifdef ETHER_BPF_MTAP
4869 		ETHER_BPF_MTAP(ifp, m_head);
4870 #else
4871 		BPF_MTAP(ifp, m_head);
4872 #endif
4873 	}
4874 
4875 	if (count > 0) {
4876 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4877 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4878 		/* Transmit. */
4879 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4880 		/* 5700 b2 errata */
4881 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4882 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4883 
4884 		sc->bge_tx_prodidx = prodidx;
4885 
4886 		/*
4887 		 * Set a timeout in case the chip goes out to lunch.
4888 		 */
4889 		sc->bge_timer = 5;
4890 	}
4891 }
4892 
4893 /*
4894  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4895  * to the mbuf data regions directly in the transmit descriptors.
4896  */
4897 static void
4898 bge_start(struct ifnet *ifp)
4899 {
4900 	struct bge_softc *sc;
4901 
4902 	sc = ifp->if_softc;
4903 	BGE_LOCK(sc);
4904 	bge_start_locked(ifp);
4905 	BGE_UNLOCK(sc);
4906 }
4907 
4908 static void
4909 bge_init_locked(struct bge_softc *sc)
4910 {
4911 	struct ifnet *ifp;
4912 	uint16_t *m;
4913 	uint32_t mode;
4914 
4915 	BGE_LOCK_ASSERT(sc);
4916 
4917 	ifp = sc->bge_ifp;
4918 
4919 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4920 		return;
4921 
4922 	/* Cancel pending I/O and flush buffers. */
4923 	bge_stop(sc);
4924 
4925 	bge_stop_fw(sc);
4926 	bge_sig_pre_reset(sc, BGE_RESET_START);
4927 	bge_reset(sc);
4928 	bge_sig_legacy(sc, BGE_RESET_START);
4929 	bge_sig_post_reset(sc, BGE_RESET_START);
4930 
4931 	bge_chipinit(sc);
4932 
4933 	/*
4934 	 * Init the various state machines, ring
4935 	 * control blocks and firmware.
4936 	 */
4937 	if (bge_blockinit(sc)) {
4938 		device_printf(sc->bge_dev, "initialization failure\n");
4939 		return;
4940 	}
4941 
4942 	ifp = sc->bge_ifp;
4943 
4944 	/* Specify MTU. */
4945 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4946 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4947 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4948 
4949 	/* Load our MAC address. */
4950 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4951 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4952 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4953 
4954 	/* Program promiscuous mode. */
4955 	bge_setpromisc(sc);
4956 
4957 	/* Program multicast filter. */
4958 	bge_setmulti(sc);
4959 
4960 	/* Program VLAN tag stripping. */
4961 	bge_setvlan(sc);
4962 
4963 	/* Override UDP checksum offloading. */
4964 	if (sc->bge_forced_udpcsum == 0)
4965 		sc->bge_csum_features &= ~CSUM_UDP;
4966 	else
4967 		sc->bge_csum_features |= CSUM_UDP;
4968 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4969 	    ifp->if_capenable & IFCAP_TXCSUM) {
4970 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4971 		ifp->if_hwassist |= sc->bge_csum_features;
4972 	}
4973 
4974 	/* Init RX ring. */
4975 	if (bge_init_rx_ring_std(sc) != 0) {
4976 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4977 		bge_stop(sc);
4978 		return;
4979 	}
4980 
4981 	/*
4982 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4983 	 * memory to insure that the chip has in fact read the first
4984 	 * entry of the ring.
4985 	 */
4986 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4987 		uint32_t		v, i;
4988 		for (i = 0; i < 10; i++) {
4989 			DELAY(20);
4990 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4991 			if (v == (MCLBYTES - ETHER_ALIGN))
4992 				break;
4993 		}
4994 		if (i == 10)
4995 			device_printf (sc->bge_dev,
4996 			    "5705 A0 chip failed to load RX ring\n");
4997 	}
4998 
4999 	/* Init jumbo RX ring. */
5000 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5001 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5002 	    (MCLBYTES - ETHER_ALIGN)) {
5003 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5004 			device_printf(sc->bge_dev,
5005 			    "no memory for jumbo Rx buffers.\n");
5006 			bge_stop(sc);
5007 			return;
5008 		}
5009 	}
5010 
5011 	/* Init our RX return ring index. */
5012 	sc->bge_rx_saved_considx = 0;
5013 
5014 	/* Init our RX/TX stat counters. */
5015 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5016 
5017 	/* Init TX ring. */
5018 	bge_init_tx_ring(sc);
5019 
5020 	/* Enable TX MAC state machine lockup fix. */
5021 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5022 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5023 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5024 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5025 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5026 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5027 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5028 	}
5029 	/* Turn on transmitter. */
5030 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5031 	DELAY(100);
5032 
5033 	/* Turn on receiver. */
5034 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5035 	DELAY(10);
5036 
5037 	/*
5038 	 * Set the number of good frames to receive after RX MBUF
5039 	 * Low Watermark has been reached. After the RX MAC receives
5040 	 * this number of frames, it will drop subsequent incoming
5041 	 * frames until the MBUF High Watermark is reached.
5042 	 */
5043 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5044 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5045 	else
5046 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5047 
5048 	/* Clear MAC statistics. */
5049 	if (BGE_IS_5705_PLUS(sc))
5050 		bge_stats_clear_regs(sc);
5051 
5052 	/* Tell firmware we're alive. */
5053 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5054 
5055 #ifdef DEVICE_POLLING
5056 	/* Disable interrupts if we are polling. */
5057 	if (ifp->if_capenable & IFCAP_POLLING) {
5058 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5059 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5060 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5061 	} else
5062 #endif
5063 
5064 	/* Enable host interrupts. */
5065 	{
5066 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5067 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5068 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5069 	}
5070 
5071 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5072 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5073 
5074 	bge_ifmedia_upd_locked(ifp);
5075 
5076 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5077 }
5078 
5079 static void
5080 bge_init(void *xsc)
5081 {
5082 	struct bge_softc *sc = xsc;
5083 
5084 	BGE_LOCK(sc);
5085 	bge_init_locked(sc);
5086 	BGE_UNLOCK(sc);
5087 }
5088 
5089 /*
5090  * Set media options.
5091  */
5092 static int
5093 bge_ifmedia_upd(struct ifnet *ifp)
5094 {
5095 	struct bge_softc *sc = ifp->if_softc;
5096 	int res;
5097 
5098 	BGE_LOCK(sc);
5099 	res = bge_ifmedia_upd_locked(ifp);
5100 	BGE_UNLOCK(sc);
5101 
5102 	return (res);
5103 }
5104 
5105 static int
5106 bge_ifmedia_upd_locked(struct ifnet *ifp)
5107 {
5108 	struct bge_softc *sc = ifp->if_softc;
5109 	struct mii_data *mii;
5110 	struct mii_softc *miisc;
5111 	struct ifmedia *ifm;
5112 
5113 	BGE_LOCK_ASSERT(sc);
5114 
5115 	ifm = &sc->bge_ifmedia;
5116 
5117 	/* If this is a 1000baseX NIC, enable the TBI port. */
5118 	if (sc->bge_flags & BGE_FLAG_TBI) {
5119 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5120 			return (EINVAL);
5121 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5122 		case IFM_AUTO:
5123 			/*
5124 			 * The BCM5704 ASIC appears to have a special
5125 			 * mechanism for programming the autoneg
5126 			 * advertisement registers in TBI mode.
5127 			 */
5128 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5129 				uint32_t sgdig;
5130 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5131 				if (sgdig & BGE_SGDIGSTS_DONE) {
5132 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5133 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5134 					sgdig |= BGE_SGDIGCFG_AUTO |
5135 					    BGE_SGDIGCFG_PAUSE_CAP |
5136 					    BGE_SGDIGCFG_ASYM_PAUSE;
5137 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5138 					    sgdig | BGE_SGDIGCFG_SEND);
5139 					DELAY(5);
5140 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5141 				}
5142 			}
5143 			break;
5144 		case IFM_1000_SX:
5145 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5146 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5147 				    BGE_MACMODE_HALF_DUPLEX);
5148 			} else {
5149 				BGE_SETBIT(sc, BGE_MAC_MODE,
5150 				    BGE_MACMODE_HALF_DUPLEX);
5151 			}
5152 			DELAY(40);
5153 			break;
5154 		default:
5155 			return (EINVAL);
5156 		}
5157 		return (0);
5158 	}
5159 
5160 	sc->bge_link_evt++;
5161 	mii = device_get_softc(sc->bge_miibus);
5162 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5163 		PHY_RESET(miisc);
5164 	mii_mediachg(mii);
5165 
5166 	/*
5167 	 * Force an interrupt so that we will call bge_link_upd
5168 	 * if needed and clear any pending link state attention.
5169 	 * Without this we are not getting any further interrupts
5170 	 * for link state changes and thus will not UP the link and
5171 	 * not be able to send in bge_start_locked. The only
5172 	 * way to get things working was to receive a packet and
5173 	 * get an RX intr.
5174 	 * bge_tick should help for fiber cards and we might not
5175 	 * need to do this here if BGE_FLAG_TBI is set but as
5176 	 * we poll for fiber anyway it should not harm.
5177 	 */
5178 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5179 	    sc->bge_flags & BGE_FLAG_5788)
5180 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5181 	else
5182 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5183 
5184 	return (0);
5185 }
5186 
5187 /*
5188  * Report current media status.
5189  */
5190 static void
5191 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5192 {
5193 	struct bge_softc *sc = ifp->if_softc;
5194 	struct mii_data *mii;
5195 
5196 	BGE_LOCK(sc);
5197 
5198 	if (sc->bge_flags & BGE_FLAG_TBI) {
5199 		ifmr->ifm_status = IFM_AVALID;
5200 		ifmr->ifm_active = IFM_ETHER;
5201 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5202 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5203 			ifmr->ifm_status |= IFM_ACTIVE;
5204 		else {
5205 			ifmr->ifm_active |= IFM_NONE;
5206 			BGE_UNLOCK(sc);
5207 			return;
5208 		}
5209 		ifmr->ifm_active |= IFM_1000_SX;
5210 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5211 			ifmr->ifm_active |= IFM_HDX;
5212 		else
5213 			ifmr->ifm_active |= IFM_FDX;
5214 		BGE_UNLOCK(sc);
5215 		return;
5216 	}
5217 
5218 	mii = device_get_softc(sc->bge_miibus);
5219 	mii_pollstat(mii);
5220 	ifmr->ifm_active = mii->mii_media_active;
5221 	ifmr->ifm_status = mii->mii_media_status;
5222 
5223 	BGE_UNLOCK(sc);
5224 }
5225 
5226 static int
5227 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5228 {
5229 	struct bge_softc *sc = ifp->if_softc;
5230 	struct ifreq *ifr = (struct ifreq *) data;
5231 	struct mii_data *mii;
5232 	int flags, mask, error = 0;
5233 
5234 	switch (command) {
5235 	case SIOCSIFMTU:
5236 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5237 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5238 			if (ifr->ifr_mtu < ETHERMIN ||
5239 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5240 				error = EINVAL;
5241 				break;
5242 			}
5243 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5244 			error = EINVAL;
5245 			break;
5246 		}
5247 		BGE_LOCK(sc);
5248 		if (ifp->if_mtu != ifr->ifr_mtu) {
5249 			ifp->if_mtu = ifr->ifr_mtu;
5250 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5251 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5252 				bge_init_locked(sc);
5253 			}
5254 		}
5255 		BGE_UNLOCK(sc);
5256 		break;
5257 	case SIOCSIFFLAGS:
5258 		BGE_LOCK(sc);
5259 		if (ifp->if_flags & IFF_UP) {
5260 			/*
5261 			 * If only the state of the PROMISC flag changed,
5262 			 * then just use the 'set promisc mode' command
5263 			 * instead of reinitializing the entire NIC. Doing
5264 			 * a full re-init means reloading the firmware and
5265 			 * waiting for it to start up, which may take a
5266 			 * second or two.  Similarly for ALLMULTI.
5267 			 */
5268 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5269 				flags = ifp->if_flags ^ sc->bge_if_flags;
5270 				if (flags & IFF_PROMISC)
5271 					bge_setpromisc(sc);
5272 				if (flags & IFF_ALLMULTI)
5273 					bge_setmulti(sc);
5274 			} else
5275 				bge_init_locked(sc);
5276 		} else {
5277 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5278 				bge_stop(sc);
5279 			}
5280 		}
5281 		sc->bge_if_flags = ifp->if_flags;
5282 		BGE_UNLOCK(sc);
5283 		error = 0;
5284 		break;
5285 	case SIOCADDMULTI:
5286 	case SIOCDELMULTI:
5287 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5288 			BGE_LOCK(sc);
5289 			bge_setmulti(sc);
5290 			BGE_UNLOCK(sc);
5291 			error = 0;
5292 		}
5293 		break;
5294 	case SIOCSIFMEDIA:
5295 	case SIOCGIFMEDIA:
5296 		if (sc->bge_flags & BGE_FLAG_TBI) {
5297 			error = ifmedia_ioctl(ifp, ifr,
5298 			    &sc->bge_ifmedia, command);
5299 		} else {
5300 			mii = device_get_softc(sc->bge_miibus);
5301 			error = ifmedia_ioctl(ifp, ifr,
5302 			    &mii->mii_media, command);
5303 		}
5304 		break;
5305 	case SIOCSIFCAP:
5306 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5307 #ifdef DEVICE_POLLING
5308 		if (mask & IFCAP_POLLING) {
5309 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5310 				error = ether_poll_register(bge_poll, ifp);
5311 				if (error)
5312 					return (error);
5313 				BGE_LOCK(sc);
5314 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5315 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5316 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5317 				ifp->if_capenable |= IFCAP_POLLING;
5318 				BGE_UNLOCK(sc);
5319 			} else {
5320 				error = ether_poll_deregister(ifp);
5321 				/* Enable interrupt even in error case */
5322 				BGE_LOCK(sc);
5323 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5324 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5325 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5326 				ifp->if_capenable &= ~IFCAP_POLLING;
5327 				BGE_UNLOCK(sc);
5328 			}
5329 		}
5330 #endif
5331 		if ((mask & IFCAP_TXCSUM) != 0 &&
5332 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5333 			ifp->if_capenable ^= IFCAP_TXCSUM;
5334 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5335 				ifp->if_hwassist |= sc->bge_csum_features;
5336 			else
5337 				ifp->if_hwassist &= ~sc->bge_csum_features;
5338 		}
5339 
5340 		if ((mask & IFCAP_RXCSUM) != 0 &&
5341 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5342 			ifp->if_capenable ^= IFCAP_RXCSUM;
5343 
5344 		if ((mask & IFCAP_TSO4) != 0 &&
5345 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5346 			ifp->if_capenable ^= IFCAP_TSO4;
5347 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5348 				ifp->if_hwassist |= CSUM_TSO;
5349 			else
5350 				ifp->if_hwassist &= ~CSUM_TSO;
5351 		}
5352 
5353 		if (mask & IFCAP_VLAN_MTU) {
5354 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5355 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5356 			bge_init(sc);
5357 		}
5358 
5359 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5360 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5361 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5362 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5363 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5364 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5365 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5366 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5367 			BGE_LOCK(sc);
5368 			bge_setvlan(sc);
5369 			BGE_UNLOCK(sc);
5370 		}
5371 #ifdef VLAN_CAPABILITIES
5372 		VLAN_CAPABILITIES(ifp);
5373 #endif
5374 		break;
5375 	default:
5376 		error = ether_ioctl(ifp, command, data);
5377 		break;
5378 	}
5379 
5380 	return (error);
5381 }
5382 
5383 static void
5384 bge_watchdog(struct bge_softc *sc)
5385 {
5386 	struct ifnet *ifp;
5387 
5388 	BGE_LOCK_ASSERT(sc);
5389 
5390 	if (sc->bge_timer == 0 || --sc->bge_timer)
5391 		return;
5392 
5393 	ifp = sc->bge_ifp;
5394 
5395 	if_printf(ifp, "watchdog timeout -- resetting\n");
5396 
5397 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5398 	bge_init_locked(sc);
5399 
5400 	ifp->if_oerrors++;
5401 }
5402 
5403 static void
5404 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5405 {
5406 	int i;
5407 
5408 	BGE_CLRBIT(sc, reg, bit);
5409 
5410 	for (i = 0; i < BGE_TIMEOUT; i++) {
5411 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5412 			return;
5413 		DELAY(100);
5414         }
5415 }
5416 
5417 /*
5418  * Stop the adapter and free any mbufs allocated to the
5419  * RX and TX lists.
5420  */
5421 static void
5422 bge_stop(struct bge_softc *sc)
5423 {
5424 	struct ifnet *ifp;
5425 
5426 	BGE_LOCK_ASSERT(sc);
5427 
5428 	ifp = sc->bge_ifp;
5429 
5430 	callout_stop(&sc->bge_stat_ch);
5431 
5432 	/* Disable host interrupts. */
5433 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5434 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5435 
5436 	/*
5437 	 * Tell firmware we're shutting down.
5438 	 */
5439 	bge_stop_fw(sc);
5440 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5441 
5442 	/*
5443 	 * Disable all of the receiver blocks.
5444 	 */
5445 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5446 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5447 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5448 	if (BGE_IS_5700_FAMILY(sc))
5449 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5450 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5451 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5452 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5453 
5454 	/*
5455 	 * Disable all of the transmit blocks.
5456 	 */
5457 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5458 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5459 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5460 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5461 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5462 	if (BGE_IS_5700_FAMILY(sc))
5463 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5464 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5465 
5466 	/*
5467 	 * Shut down all of the memory managers and related
5468 	 * state machines.
5469 	 */
5470 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5471 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5472 	if (BGE_IS_5700_FAMILY(sc))
5473 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5474 
5475 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5476 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5477 	if (!(BGE_IS_5705_PLUS(sc))) {
5478 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5479 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5480 	}
5481 	/* Update MAC statistics. */
5482 	if (BGE_IS_5705_PLUS(sc))
5483 		bge_stats_update_regs(sc);
5484 
5485 	bge_reset(sc);
5486 	bge_sig_legacy(sc, BGE_RESET_STOP);
5487 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5488 
5489 	/*
5490 	 * Keep the ASF firmware running if up.
5491 	 */
5492 	if (sc->bge_asf_mode & ASF_STACKUP)
5493 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5494 	else
5495 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5496 
5497 	/* Free the RX lists. */
5498 	bge_free_rx_ring_std(sc);
5499 
5500 	/* Free jumbo RX list. */
5501 	if (BGE_IS_JUMBO_CAPABLE(sc))
5502 		bge_free_rx_ring_jumbo(sc);
5503 
5504 	/* Free TX buffers. */
5505 	bge_free_tx_ring(sc);
5506 
5507 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5508 
5509 	/* Clear MAC's link state (PHY may still have link UP). */
5510 	if (bootverbose && sc->bge_link)
5511 		if_printf(sc->bge_ifp, "link DOWN\n");
5512 	sc->bge_link = 0;
5513 
5514 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5515 }
5516 
5517 /*
5518  * Stop all chip I/O so that the kernel's probe routines don't
5519  * get confused by errant DMAs when rebooting.
5520  */
5521 static int
5522 bge_shutdown(device_t dev)
5523 {
5524 	struct bge_softc *sc;
5525 
5526 	sc = device_get_softc(dev);
5527 	BGE_LOCK(sc);
5528 	bge_stop(sc);
5529 	bge_reset(sc);
5530 	BGE_UNLOCK(sc);
5531 
5532 	return (0);
5533 }
5534 
5535 static int
5536 bge_suspend(device_t dev)
5537 {
5538 	struct bge_softc *sc;
5539 
5540 	sc = device_get_softc(dev);
5541 	BGE_LOCK(sc);
5542 	bge_stop(sc);
5543 	BGE_UNLOCK(sc);
5544 
5545 	return (0);
5546 }
5547 
5548 static int
5549 bge_resume(device_t dev)
5550 {
5551 	struct bge_softc *sc;
5552 	struct ifnet *ifp;
5553 
5554 	sc = device_get_softc(dev);
5555 	BGE_LOCK(sc);
5556 	ifp = sc->bge_ifp;
5557 	if (ifp->if_flags & IFF_UP) {
5558 		bge_init_locked(sc);
5559 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5560 			bge_start_locked(ifp);
5561 	}
5562 	BGE_UNLOCK(sc);
5563 
5564 	return (0);
5565 }
5566 
5567 static void
5568 bge_link_upd(struct bge_softc *sc)
5569 {
5570 	struct mii_data *mii;
5571 	uint32_t link, status;
5572 
5573 	BGE_LOCK_ASSERT(sc);
5574 
5575 	/* Clear 'pending link event' flag. */
5576 	sc->bge_link_evt = 0;
5577 
5578 	/*
5579 	 * Process link state changes.
5580 	 * Grrr. The link status word in the status block does
5581 	 * not work correctly on the BCM5700 rev AX and BX chips,
5582 	 * according to all available information. Hence, we have
5583 	 * to enable MII interrupts in order to properly obtain
5584 	 * async link changes. Unfortunately, this also means that
5585 	 * we have to read the MAC status register to detect link
5586 	 * changes, thereby adding an additional register access to
5587 	 * the interrupt handler.
5588 	 *
5589 	 * XXX: perhaps link state detection procedure used for
5590 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5591 	 */
5592 
5593 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5594 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5595 		status = CSR_READ_4(sc, BGE_MAC_STS);
5596 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5597 			mii = device_get_softc(sc->bge_miibus);
5598 			mii_pollstat(mii);
5599 			if (!sc->bge_link &&
5600 			    mii->mii_media_status & IFM_ACTIVE &&
5601 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5602 				sc->bge_link++;
5603 				if (bootverbose)
5604 					if_printf(sc->bge_ifp, "link UP\n");
5605 			} else if (sc->bge_link &&
5606 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5607 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5608 				sc->bge_link = 0;
5609 				if (bootverbose)
5610 					if_printf(sc->bge_ifp, "link DOWN\n");
5611 			}
5612 
5613 			/* Clear the interrupt. */
5614 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5615 			    BGE_EVTENB_MI_INTERRUPT);
5616 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5617 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5618 			    BRGPHY_INTRS);
5619 		}
5620 		return;
5621 	}
5622 
5623 	if (sc->bge_flags & BGE_FLAG_TBI) {
5624 		status = CSR_READ_4(sc, BGE_MAC_STS);
5625 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5626 			if (!sc->bge_link) {
5627 				sc->bge_link++;
5628 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5629 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5630 					    BGE_MACMODE_TBI_SEND_CFGS);
5631 					DELAY(40);
5632 				}
5633 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5634 				if (bootverbose)
5635 					if_printf(sc->bge_ifp, "link UP\n");
5636 				if_link_state_change(sc->bge_ifp,
5637 				    LINK_STATE_UP);
5638 			}
5639 		} else if (sc->bge_link) {
5640 			sc->bge_link = 0;
5641 			if (bootverbose)
5642 				if_printf(sc->bge_ifp, "link DOWN\n");
5643 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5644 		}
5645 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5646 		/*
5647 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5648 		 * in status word always set. Workaround this bug by reading
5649 		 * PHY link status directly.
5650 		 */
5651 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5652 
5653 		if (link != sc->bge_link ||
5654 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5655 			mii = device_get_softc(sc->bge_miibus);
5656 			mii_pollstat(mii);
5657 			if (!sc->bge_link &&
5658 			    mii->mii_media_status & IFM_ACTIVE &&
5659 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5660 				sc->bge_link++;
5661 				if (bootverbose)
5662 					if_printf(sc->bge_ifp, "link UP\n");
5663 			} else if (sc->bge_link &&
5664 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5665 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5666 				sc->bge_link = 0;
5667 				if (bootverbose)
5668 					if_printf(sc->bge_ifp, "link DOWN\n");
5669 			}
5670 		}
5671 	} else {
5672 		/*
5673 		 * For controllers that call mii_tick, we have to poll
5674 		 * link status.
5675 		 */
5676 		mii = device_get_softc(sc->bge_miibus);
5677 		mii_pollstat(mii);
5678 		bge_miibus_statchg(sc->bge_dev);
5679 	}
5680 
5681 	/* Clear the attention. */
5682 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5683 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5684 	    BGE_MACSTAT_LINK_CHANGED);
5685 }
5686 
5687 static void
5688 bge_add_sysctls(struct bge_softc *sc)
5689 {
5690 	struct sysctl_ctx_list *ctx;
5691 	struct sysctl_oid_list *children;
5692 	char tn[32];
5693 	int unit;
5694 
5695 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5696 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5697 
5698 #ifdef BGE_REGISTER_DEBUG
5699 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5700 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5701 	    "Debug Information");
5702 
5703 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5704 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5705 	    "Register Read");
5706 
5707 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5708 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5709 	    "Memory Read");
5710 
5711 #endif
5712 
5713 	unit = device_get_unit(sc->bge_dev);
5714 	/*
5715 	 * A common design characteristic for many Broadcom client controllers
5716 	 * is that they only support a single outstanding DMA read operation
5717 	 * on the PCIe bus. This means that it will take twice as long to fetch
5718 	 * a TX frame that is split into header and payload buffers as it does
5719 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5720 	 * these controllers, coalescing buffers to reduce the number of memory
5721 	 * reads is effective way to get maximum performance(about 940Mbps).
5722 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5723 	 * performance is about 850Mbps. However forcing coalescing mbufs
5724 	 * consumes a lot of CPU cycles, so leave it off by default.
5725 	 */
5726 	sc->bge_forced_collapse = 0;
5727 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5728 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5729 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5730 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5731 	    "Number of fragmented TX buffers of a frame allowed before "
5732 	    "forced collapsing");
5733 
5734 	sc->bge_msi = 1;
5735 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
5736 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
5737 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
5738 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
5739 
5740 	/*
5741 	 * It seems all Broadcom controllers have a bug that can generate UDP
5742 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5743 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5744 	 * Even though the probability of generating such UDP datagrams is
5745 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5746 	 * into network so disable UDP checksum offloading by default.  Users
5747 	 * still override this behavior by setting a sysctl variable,
5748 	 * dev.bge.0.forced_udpcsum.
5749 	 */
5750 	sc->bge_forced_udpcsum = 0;
5751 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5752 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5753 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5754 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5755 	    "Enable UDP checksum offloading even if controller can "
5756 	    "generate UDP checksum value 0");
5757 
5758 	if (BGE_IS_5705_PLUS(sc))
5759 		bge_add_sysctl_stats_regs(sc, ctx, children);
5760 	else
5761 		bge_add_sysctl_stats(sc, ctx, children);
5762 }
5763 
5764 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5765 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5766 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5767 	    desc)
5768 
5769 static void
5770 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5771     struct sysctl_oid_list *parent)
5772 {
5773 	struct sysctl_oid *tree;
5774 	struct sysctl_oid_list *children, *schildren;
5775 
5776 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5777 	    NULL, "BGE Statistics");
5778 	schildren = children = SYSCTL_CHILDREN(tree);
5779 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5780 	    children, COSFramesDroppedDueToFilters,
5781 	    "FramesDroppedDueToFilters");
5782 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5783 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5784 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5785 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5786 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5787 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5788 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5789 	    children, ifInDiscards, "InputDiscards");
5790 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5791 	    children, ifInErrors, "InputErrors");
5792 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5793 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5794 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5795 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5796 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5797 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5798 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5799 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5800 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5801 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5802 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5803 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5804 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5805 	    children, nicInterrupts, "Interrupts");
5806 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5807 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5808 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5809 	    children, nicSendThresholdHit, "SendThresholdHit");
5810 
5811 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5812 	    NULL, "BGE RX Statistics");
5813 	children = SYSCTL_CHILDREN(tree);
5814 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5815 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5816 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5817 	    children, rxstats.etherStatsFragments, "Fragments");
5818 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5819 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5820 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5821 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5822 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5823 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5824 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5825 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5826 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5827 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5828 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5829 	    children, rxstats.xoffPauseFramesReceived,
5830 	    "xoffPauseFramesReceived");
5831 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5832 	    children, rxstats.macControlFramesReceived,
5833 	    "ControlFramesReceived");
5834 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5835 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5836 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5837 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5838 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5839 	    children, rxstats.etherStatsJabbers, "Jabbers");
5840 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5841 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5842 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5843 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5844 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5845 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5846 
5847 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5848 	    NULL, "BGE TX Statistics");
5849 	children = SYSCTL_CHILDREN(tree);
5850 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5851 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5852 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5853 	    children, txstats.etherStatsCollisions, "Collisions");
5854 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5855 	    children, txstats.outXonSent, "XonSent");
5856 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5857 	    children, txstats.outXoffSent, "XoffSent");
5858 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5859 	    children, txstats.flowControlDone, "flowControlDone");
5860 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5861 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5862 	    "InternalMacTransmitErrors");
5863 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5864 	    children, txstats.dot3StatsSingleCollisionFrames,
5865 	    "SingleCollisionFrames");
5866 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5867 	    children, txstats.dot3StatsMultipleCollisionFrames,
5868 	    "MultipleCollisionFrames");
5869 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5870 	    children, txstats.dot3StatsDeferredTransmissions,
5871 	    "DeferredTransmissions");
5872 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5873 	    children, txstats.dot3StatsExcessiveCollisions,
5874 	    "ExcessiveCollisions");
5875 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5876 	    children, txstats.dot3StatsLateCollisions,
5877 	    "LateCollisions");
5878 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5879 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5880 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5881 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5882 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5883 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5884 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5885 	    children, txstats.dot3StatsCarrierSenseErrors,
5886 	    "CarrierSenseErrors");
5887 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5888 	    children, txstats.ifOutDiscards, "Discards");
5889 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5890 	    children, txstats.ifOutErrors, "Errors");
5891 }
5892 
5893 #undef BGE_SYSCTL_STAT
5894 
5895 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5896 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5897 
5898 static void
5899 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5900     struct sysctl_oid_list *parent)
5901 {
5902 	struct sysctl_oid *tree;
5903 	struct sysctl_oid_list *child, *schild;
5904 	struct bge_mac_stats *stats;
5905 
5906 	stats = &sc->bge_mac_stats;
5907 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5908 	    NULL, "BGE Statistics");
5909 	schild = child = SYSCTL_CHILDREN(tree);
5910 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5911 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5912 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5913 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5914 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5915 	    &stats->DmaWriteHighPriQueueFull,
5916 	    "NIC DMA Write High Priority Queue Full");
5917 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5918 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5919 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5920 	    &stats->InputDiscards, "Discarded Input Frames");
5921 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5922 	    &stats->InputErrors, "Input Errors");
5923 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5924 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5925 
5926 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5927 	    NULL, "BGE RX Statistics");
5928 	child = SYSCTL_CHILDREN(tree);
5929 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5930 	    &stats->ifHCInOctets, "Inbound Octets");
5931 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5932 	    &stats->etherStatsFragments, "Fragments");
5933 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5934 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5935 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5936 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5937 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5938 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5939 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5940 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5941 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5942 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5943 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5944 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5945 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5946 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5947 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5948 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5949 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5950 	    &stats->xoffStateEntered, "XOFF State Entered");
5951 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5952 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5953 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5954 	    &stats->etherStatsJabbers, "Jabbers");
5955 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5956 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5957 
5958 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5959 	    NULL, "BGE TX Statistics");
5960 	child = SYSCTL_CHILDREN(tree);
5961 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5962 	    &stats->ifHCOutOctets, "Outbound Octets");
5963 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5964 	    &stats->etherStatsCollisions, "TX Collisions");
5965 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5966 	    &stats->outXonSent, "XON Sent");
5967 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5968 	    &stats->outXoffSent, "XOFF Sent");
5969 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5970 	    &stats->dot3StatsInternalMacTransmitErrors,
5971 	    "Internal MAC TX Errors");
5972 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5973 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5974 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5975 	    &stats->dot3StatsMultipleCollisionFrames,
5976 	    "Multiple Collision Frames");
5977 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5978 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5979 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5980 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5981 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5982 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5983 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5984 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5985 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5986 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
5987 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5988 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
5989 }
5990 
5991 #undef	BGE_SYSCTL_STAT_ADD64
5992 
5993 static int
5994 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5995 {
5996 	struct bge_softc *sc;
5997 	uint32_t result;
5998 	int offset;
5999 
6000 	sc = (struct bge_softc *)arg1;
6001 	offset = arg2;
6002 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6003 	    offsetof(bge_hostaddr, bge_addr_lo));
6004 	return (sysctl_handle_int(oidp, &result, 0, req));
6005 }
6006 
6007 #ifdef BGE_REGISTER_DEBUG
6008 static int
6009 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6010 {
6011 	struct bge_softc *sc;
6012 	uint16_t *sbdata;
6013 	int error, result, sbsz;
6014 	int i, j;
6015 
6016 	result = -1;
6017 	error = sysctl_handle_int(oidp, &result, 0, req);
6018 	if (error || (req->newptr == NULL))
6019 		return (error);
6020 
6021 	if (result == 1) {
6022 		sc = (struct bge_softc *)arg1;
6023 
6024 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6025 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6026 			sbsz = BGE_STATUS_BLK_SZ;
6027 		else
6028 			sbsz = 32;
6029 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6030 		printf("Status Block:\n");
6031 		BGE_LOCK(sc);
6032 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6033 		    sc->bge_cdata.bge_status_map,
6034 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6035 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6036 			printf("%06x:", i);
6037 			for (j = 0; j < 8; j++)
6038 				printf(" %04x", sbdata[i++]);
6039 			printf("\n");
6040 		}
6041 
6042 		printf("Registers:\n");
6043 		for (i = 0x800; i < 0xA00; ) {
6044 			printf("%06x:", i);
6045 			for (j = 0; j < 8; j++) {
6046 				printf(" %08x", CSR_READ_4(sc, i));
6047 				i += 4;
6048 			}
6049 			printf("\n");
6050 		}
6051 		BGE_UNLOCK(sc);
6052 
6053 		printf("Hardware Flags:\n");
6054 		if (BGE_IS_5717_PLUS(sc))
6055 			printf(" - 5717 Plus\n");
6056 		if (BGE_IS_5755_PLUS(sc))
6057 			printf(" - 5755 Plus\n");
6058 		if (BGE_IS_575X_PLUS(sc))
6059 			printf(" - 575X Plus\n");
6060 		if (BGE_IS_5705_PLUS(sc))
6061 			printf(" - 5705 Plus\n");
6062 		if (BGE_IS_5714_FAMILY(sc))
6063 			printf(" - 5714 Family\n");
6064 		if (BGE_IS_5700_FAMILY(sc))
6065 			printf(" - 5700 Family\n");
6066 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6067 			printf(" - Supports Jumbo Frames\n");
6068 		if (sc->bge_flags & BGE_FLAG_PCIX)
6069 			printf(" - PCI-X Bus\n");
6070 		if (sc->bge_flags & BGE_FLAG_PCIE)
6071 			printf(" - PCI Express Bus\n");
6072 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6073 			printf(" - No 3 LEDs\n");
6074 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6075 			printf(" - RX Alignment Bug\n");
6076 	}
6077 
6078 	return (error);
6079 }
6080 
6081 static int
6082 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6083 {
6084 	struct bge_softc *sc;
6085 	int error;
6086 	uint16_t result;
6087 	uint32_t val;
6088 
6089 	result = -1;
6090 	error = sysctl_handle_int(oidp, &result, 0, req);
6091 	if (error || (req->newptr == NULL))
6092 		return (error);
6093 
6094 	if (result < 0x8000) {
6095 		sc = (struct bge_softc *)arg1;
6096 		val = CSR_READ_4(sc, result);
6097 		printf("reg 0x%06X = 0x%08X\n", result, val);
6098 	}
6099 
6100 	return (error);
6101 }
6102 
6103 static int
6104 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6105 {
6106 	struct bge_softc *sc;
6107 	int error;
6108 	uint16_t result;
6109 	uint32_t val;
6110 
6111 	result = -1;
6112 	error = sysctl_handle_int(oidp, &result, 0, req);
6113 	if (error || (req->newptr == NULL))
6114 		return (error);
6115 
6116 	if (result < 0x8000) {
6117 		sc = (struct bge_softc *)arg1;
6118 		val = bge_readmem_ind(sc, result);
6119 		printf("mem 0x%06X = 0x%08X\n", result, val);
6120 	}
6121 
6122 	return (error);
6123 }
6124 #endif
6125 
6126 static int
6127 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6128 {
6129 
6130 	if (sc->bge_flags & BGE_FLAG_EADDR)
6131 		return (1);
6132 
6133 #ifdef __sparc64__
6134 	OF_getetheraddr(sc->bge_dev, ether_addr);
6135 	return (0);
6136 #endif
6137 	return (1);
6138 }
6139 
6140 static int
6141 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6142 {
6143 	uint32_t mac_addr;
6144 
6145 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6146 	if ((mac_addr >> 16) == 0x484b) {
6147 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6148 		ether_addr[1] = (uint8_t)mac_addr;
6149 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6150 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6151 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6152 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6153 		ether_addr[5] = (uint8_t)mac_addr;
6154 		return (0);
6155 	}
6156 	return (1);
6157 }
6158 
6159 static int
6160 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6161 {
6162 	int mac_offset = BGE_EE_MAC_OFFSET;
6163 
6164 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6165 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6166 
6167 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6168 	    ETHER_ADDR_LEN));
6169 }
6170 
6171 static int
6172 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6173 {
6174 
6175 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6176 		return (1);
6177 
6178 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6179 	   ETHER_ADDR_LEN));
6180 }
6181 
6182 static int
6183 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6184 {
6185 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6186 		/* NOTE: Order is critical */
6187 		bge_get_eaddr_fw,
6188 		bge_get_eaddr_mem,
6189 		bge_get_eaddr_nvram,
6190 		bge_get_eaddr_eeprom,
6191 		NULL
6192 	};
6193 	const bge_eaddr_fcn_t *func;
6194 
6195 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6196 		if ((*func)(sc, eaddr) == 0)
6197 			break;
6198 	}
6199 	return (*func == NULL ? ENXIO : 0);
6200 }
6201