1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 /* 38 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/debugnet.h> 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/if_arp.h> 89 #include <net/ethernet.h> 90 #include <net/if_dl.h> 91 #include <net/if_media.h> 92 93 #include <net/bpf.h> 94 95 #include <net/if_types.h> 96 #include <net/if_vlan_var.h> 97 98 #include <netinet/in_systm.h> 99 #include <netinet/in.h> 100 #include <netinet/ip.h> 101 #include <netinet/tcp.h> 102 103 #include <machine/bus.h> 104 #include <machine/resource.h> 105 #include <sys/bus.h> 106 #include <sys/rman.h> 107 108 #include <dev/mii/mii.h> 109 #include <dev/mii/miivar.h> 110 #include "miidevs.h" 111 #include <dev/mii/brgphyreg.h> 112 113 #include <dev/pci/pcireg.h> 114 #include <dev/pci/pcivar.h> 115 116 #include <dev/bge/if_bgereg.h> 117 118 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 119 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 120 121 MODULE_DEPEND(bge, pci, 1, 1, 1); 122 MODULE_DEPEND(bge, ether, 1, 1, 1); 123 MODULE_DEPEND(bge, miibus, 1, 1, 1); 124 125 /* "device miibus" required. See GENERIC if you get errors here. */ 126 #include "miibus_if.h" 127 128 /* 129 * Various supported device vendors/types and their names. Note: the 130 * spec seems to indicate that the hardware still has Alteon's vendor 131 * ID burned into it, though it will always be overridden by the vendor 132 * ID in the EEPROM. Just to be safe, we cover all possibilities. 133 */ 134 static const struct bge_type { 135 uint16_t bge_vid; 136 uint16_t bge_did; 137 } bge_devs[] = { 138 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 139 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 140 141 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 142 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 143 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 144 145 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 146 147 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 148 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5725 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5727 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5762 }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57762 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57764 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57766 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57767 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57782 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 227 { BCOM_VENDORID, BCOM_DEVICEID_BCM57786 }, 228 { BCOM_VENDORID, BCOM_DEVICEID_BCM57787 }, 229 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 230 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 231 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 232 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 233 234 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 235 236 { TC_VENDORID, TC_DEVICEID_3C996 }, 237 238 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 239 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 240 { 0, 0 } 241 }; 242 243 static const struct bge_vendor { 244 uint16_t v_id; 245 const char *v_name; 246 } bge_vendors[] = { 247 { ALTEON_VENDORID, "Alteon" }, 248 { ALTIMA_VENDORID, "Altima" }, 249 { APPLE_VENDORID, "Apple" }, 250 { BCOM_VENDORID, "Broadcom" }, 251 { SK_VENDORID, "SysKonnect" }, 252 { TC_VENDORID, "3Com" }, 253 { FJTSU_VENDORID, "Fujitsu" }, 254 { 0, NULL } 255 }; 256 257 static const struct bge_revision { 258 uint32_t br_chipid; 259 const char *br_name; 260 } bge_revisions[] = { 261 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 262 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 263 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 264 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 265 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 266 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 267 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 268 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 269 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 270 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 271 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 272 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 273 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 274 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 275 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 276 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 277 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 278 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 279 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 280 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 281 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 282 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 283 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 284 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 285 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 286 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 287 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 288 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 289 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 290 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 291 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 292 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 293 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 294 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 295 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 296 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 297 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 298 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 299 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 300 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 301 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 302 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 303 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 304 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 305 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 306 { BGE_CHIPID_BCM5717_C0, "BCM5717 C0" }, 307 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 308 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 309 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 310 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 311 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 312 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 313 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 314 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 315 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 316 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 317 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 318 /* 5754 and 5787 share the same ASIC ID */ 319 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 320 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 321 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 322 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 323 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 324 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 325 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 326 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 327 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 328 { 0, NULL } 329 }; 330 331 /* 332 * Some defaults for major revisions, so that newer steppings 333 * that we don't know about have a shot at working. 334 */ 335 static const struct bge_revision bge_majorrevs[] = { 336 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 337 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 338 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 339 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 340 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 341 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 342 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 343 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 344 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 345 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 346 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 347 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 348 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 349 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 350 /* 5754 and 5787 share the same ASIC ID */ 351 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 352 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 353 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 354 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 355 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 356 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 357 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 358 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 359 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 360 { 0, NULL } 361 }; 362 363 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 364 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 365 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 366 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 367 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 368 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 369 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 370 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS) 371 372 static uint32_t bge_chipid(device_t); 373 static const struct bge_vendor * bge_lookup_vendor(uint16_t); 374 static const struct bge_revision * bge_lookup_rev(uint32_t); 375 376 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 377 378 static int bge_probe(device_t); 379 static int bge_attach(device_t); 380 static int bge_detach(device_t); 381 static int bge_suspend(device_t); 382 static int bge_resume(device_t); 383 static void bge_release_resources(struct bge_softc *); 384 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 385 static int bge_dma_alloc(struct bge_softc *); 386 static void bge_dma_free(struct bge_softc *); 387 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 388 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 389 390 static void bge_devinfo(struct bge_softc *); 391 static int bge_mbox_reorder(struct bge_softc *); 392 393 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 394 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 395 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 396 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 397 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 398 399 static void bge_txeof(struct bge_softc *, uint16_t); 400 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 401 static int bge_rxeof(struct bge_softc *, uint16_t, int); 402 403 static void bge_asf_driver_up (struct bge_softc *); 404 static void bge_tick(void *); 405 static void bge_stats_clear_regs(struct bge_softc *); 406 static void bge_stats_update(struct bge_softc *); 407 static void bge_stats_update_regs(struct bge_softc *); 408 static struct mbuf *bge_check_short_dma(struct mbuf *); 409 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 410 uint16_t *, uint16_t *); 411 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 412 413 static void bge_intr(void *); 414 static int bge_msi_intr(void *); 415 static void bge_intr_task(void *, int); 416 static void bge_start(if_t); 417 static void bge_start_locked(if_t); 418 static void bge_start_tx(struct bge_softc *, uint32_t); 419 static int bge_ioctl(if_t, u_long, caddr_t); 420 static void bge_init_locked(struct bge_softc *); 421 static void bge_init(void *); 422 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 423 static void bge_stop(struct bge_softc *); 424 static void bge_watchdog(struct bge_softc *); 425 static int bge_shutdown(device_t); 426 static int bge_ifmedia_upd_locked(if_t); 427 static int bge_ifmedia_upd(if_t); 428 static void bge_ifmedia_sts(if_t, struct ifmediareq *); 429 static uint64_t bge_get_counter(if_t, ift_counter); 430 431 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 432 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 433 434 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 435 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 436 437 static void bge_setpromisc(struct bge_softc *); 438 static void bge_setmulti(struct bge_softc *); 439 static void bge_setvlan(struct bge_softc *); 440 441 static __inline void bge_rxreuse_std(struct bge_softc *, int); 442 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 443 static int bge_newbuf_std(struct bge_softc *, int); 444 static int bge_newbuf_jumbo(struct bge_softc *, int); 445 static int bge_init_rx_ring_std(struct bge_softc *); 446 static void bge_free_rx_ring_std(struct bge_softc *); 447 static int bge_init_rx_ring_jumbo(struct bge_softc *); 448 static void bge_free_rx_ring_jumbo(struct bge_softc *); 449 static void bge_free_tx_ring(struct bge_softc *); 450 static int bge_init_tx_ring(struct bge_softc *); 451 452 static int bge_chipinit(struct bge_softc *); 453 static int bge_blockinit(struct bge_softc *); 454 static uint32_t bge_dma_swap_options(struct bge_softc *); 455 456 static int bge_has_eaddr(struct bge_softc *); 457 static uint32_t bge_readmem_ind(struct bge_softc *, int); 458 static void bge_writemem_ind(struct bge_softc *, int, int); 459 static void bge_writembx(struct bge_softc *, int, int); 460 #ifdef notdef 461 static uint32_t bge_readreg_ind(struct bge_softc *, int); 462 #endif 463 static void bge_writemem_direct(struct bge_softc *, int, int); 464 static void bge_writereg_ind(struct bge_softc *, int, int); 465 466 static int bge_miibus_readreg(device_t, int, int); 467 static int bge_miibus_writereg(device_t, int, int, int); 468 static void bge_miibus_statchg(device_t); 469 #ifdef DEVICE_POLLING 470 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count); 471 #endif 472 473 #define BGE_RESET_SHUTDOWN 0 474 #define BGE_RESET_START 1 475 #define BGE_RESET_SUSPEND 2 476 static void bge_sig_post_reset(struct bge_softc *, int); 477 static void bge_sig_legacy(struct bge_softc *, int); 478 static void bge_sig_pre_reset(struct bge_softc *, int); 479 static void bge_stop_fw(struct bge_softc *); 480 static int bge_reset(struct bge_softc *); 481 static void bge_link_upd(struct bge_softc *); 482 483 static void bge_ape_lock_init(struct bge_softc *); 484 static void bge_ape_read_fw_ver(struct bge_softc *); 485 static int bge_ape_lock(struct bge_softc *, int); 486 static void bge_ape_unlock(struct bge_softc *, int); 487 static void bge_ape_send_event(struct bge_softc *, uint32_t); 488 static void bge_ape_driver_state_change(struct bge_softc *, int); 489 490 /* 491 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 492 * leak information to untrusted users. It is also known to cause alignment 493 * traps on certain architectures. 494 */ 495 #ifdef BGE_REGISTER_DEBUG 496 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 497 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 498 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 499 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 500 #endif 501 static void bge_add_sysctls(struct bge_softc *); 502 static void bge_add_sysctl_stats_regs(struct bge_softc *, 503 struct sysctl_ctx_list *, struct sysctl_oid_list *); 504 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 505 struct sysctl_oid_list *); 506 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 507 508 DEBUGNET_DEFINE(bge); 509 510 static device_method_t bge_methods[] = { 511 /* Device interface */ 512 DEVMETHOD(device_probe, bge_probe), 513 DEVMETHOD(device_attach, bge_attach), 514 DEVMETHOD(device_detach, bge_detach), 515 DEVMETHOD(device_shutdown, bge_shutdown), 516 DEVMETHOD(device_suspend, bge_suspend), 517 DEVMETHOD(device_resume, bge_resume), 518 519 /* MII interface */ 520 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 521 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 522 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 523 524 DEVMETHOD_END 525 }; 526 527 static driver_t bge_driver = { 528 "bge", 529 bge_methods, 530 sizeof(struct bge_softc) 531 }; 532 533 DRIVER_MODULE(bge, pci, bge_driver, 0, 0); 534 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs, 535 nitems(bge_devs) - 1); 536 DRIVER_MODULE(miibus, bge, miibus_driver, 0, 0); 537 538 static int bge_allow_asf = 1; 539 540 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 541 "BGE driver parameters"); 542 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0, 543 "Allow ASF mode if available"); 544 545 static int 546 bge_has_eaddr(struct bge_softc *sc) 547 { 548 return (1); 549 } 550 551 static uint32_t 552 bge_readmem_ind(struct bge_softc *sc, int off) 553 { 554 device_t dev; 555 uint32_t val; 556 557 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 558 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 559 return (0); 560 561 dev = sc->bge_dev; 562 563 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 564 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 565 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 566 return (val); 567 } 568 569 static void 570 bge_writemem_ind(struct bge_softc *sc, int off, int val) 571 { 572 device_t dev; 573 574 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 575 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 576 return; 577 578 dev = sc->bge_dev; 579 580 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 581 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 582 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 583 } 584 585 #ifdef notdef 586 static uint32_t 587 bge_readreg_ind(struct bge_softc *sc, int off) 588 { 589 device_t dev; 590 591 dev = sc->bge_dev; 592 593 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 594 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 595 } 596 #endif 597 598 static void 599 bge_writereg_ind(struct bge_softc *sc, int off, int val) 600 { 601 device_t dev; 602 603 dev = sc->bge_dev; 604 605 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 606 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 607 } 608 609 static void 610 bge_writemem_direct(struct bge_softc *sc, int off, int val) 611 { 612 CSR_WRITE_4(sc, off, val); 613 } 614 615 static void 616 bge_writembx(struct bge_softc *sc, int off, int val) 617 { 618 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 619 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 620 621 CSR_WRITE_4(sc, off, val); 622 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 623 CSR_READ_4(sc, off); 624 } 625 626 /* 627 * Clear all stale locks and select the lock for this driver instance. 628 */ 629 static void 630 bge_ape_lock_init(struct bge_softc *sc) 631 { 632 uint32_t bit, regbase; 633 int i; 634 635 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 636 regbase = BGE_APE_LOCK_GRANT; 637 else 638 regbase = BGE_APE_PER_LOCK_GRANT; 639 640 /* Clear any stale locks. */ 641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 642 switch (i) { 643 case BGE_APE_LOCK_PHY0: 644 case BGE_APE_LOCK_PHY1: 645 case BGE_APE_LOCK_PHY2: 646 case BGE_APE_LOCK_PHY3: 647 bit = BGE_APE_LOCK_GRANT_DRIVER0; 648 break; 649 default: 650 if (sc->bge_func_addr == 0) 651 bit = BGE_APE_LOCK_GRANT_DRIVER0; 652 else 653 bit = (1 << sc->bge_func_addr); 654 } 655 APE_WRITE_4(sc, regbase + 4 * i, bit); 656 } 657 658 /* Select the PHY lock based on the device's function number. */ 659 switch (sc->bge_func_addr) { 660 case 0: 661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 662 break; 663 case 1: 664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 665 break; 666 case 2: 667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 668 break; 669 case 3: 670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 671 break; 672 default: 673 device_printf(sc->bge_dev, 674 "PHY lock not supported on this function\n"); 675 } 676 } 677 678 /* 679 * Check for APE firmware, set flags, and print version info. 680 */ 681 static void 682 bge_ape_read_fw_ver(struct bge_softc *sc) 683 { 684 const char *fwtype; 685 uint32_t apedata, features; 686 687 /* Check for a valid APE signature in shared memory. */ 688 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 689 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 690 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 691 return; 692 } 693 694 /* Check if APE firmware is running. */ 695 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 696 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 697 device_printf(sc->bge_dev, "APE signature found " 698 "but FW status not ready! 0x%08x\n", apedata); 699 return; 700 } 701 702 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 703 704 /* Fetch the APE firmware type and version. */ 705 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 706 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 707 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 708 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 709 fwtype = "NCSI"; 710 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 711 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 712 fwtype = "DASH"; 713 } else 714 fwtype = "UNKN"; 715 716 /* Print the APE firmware version. */ 717 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 718 fwtype, 719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 722 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 723 } 724 725 static int 726 bge_ape_lock(struct bge_softc *sc, int locknum) 727 { 728 uint32_t bit, gnt, req, status; 729 int i, off; 730 731 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 732 return (0); 733 734 /* Lock request/grant registers have different bases. */ 735 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 736 req = BGE_APE_LOCK_REQ; 737 gnt = BGE_APE_LOCK_GRANT; 738 } else { 739 req = BGE_APE_PER_LOCK_REQ; 740 gnt = BGE_APE_PER_LOCK_GRANT; 741 } 742 743 off = 4 * locknum; 744 745 switch (locknum) { 746 case BGE_APE_LOCK_GPIO: 747 /* Lock required when using GPIO. */ 748 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 749 return (0); 750 if (sc->bge_func_addr == 0) 751 bit = BGE_APE_LOCK_REQ_DRIVER0; 752 else 753 bit = (1 << sc->bge_func_addr); 754 break; 755 case BGE_APE_LOCK_GRC: 756 /* Lock required to reset the device. */ 757 if (sc->bge_func_addr == 0) 758 bit = BGE_APE_LOCK_REQ_DRIVER0; 759 else 760 bit = (1 << sc->bge_func_addr); 761 break; 762 case BGE_APE_LOCK_MEM: 763 /* Lock required when accessing certain APE memory. */ 764 if (sc->bge_func_addr == 0) 765 bit = BGE_APE_LOCK_REQ_DRIVER0; 766 else 767 bit = (1 << sc->bge_func_addr); 768 break; 769 case BGE_APE_LOCK_PHY0: 770 case BGE_APE_LOCK_PHY1: 771 case BGE_APE_LOCK_PHY2: 772 case BGE_APE_LOCK_PHY3: 773 /* Lock required when accessing PHYs. */ 774 bit = BGE_APE_LOCK_REQ_DRIVER0; 775 break; 776 default: 777 return (EINVAL); 778 } 779 780 /* Request a lock. */ 781 APE_WRITE_4(sc, req + off, bit); 782 783 /* Wait up to 1 second to acquire lock. */ 784 for (i = 0; i < 20000; i++) { 785 status = APE_READ_4(sc, gnt + off); 786 if (status == bit) 787 break; 788 DELAY(50); 789 } 790 791 /* Handle any errors. */ 792 if (status != bit) { 793 device_printf(sc->bge_dev, "APE lock %d request failed! " 794 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 795 locknum, req + off, bit & 0xFFFF, gnt + off, 796 status & 0xFFFF); 797 /* Revoke the lock request. */ 798 APE_WRITE_4(sc, gnt + off, bit); 799 return (EBUSY); 800 } 801 802 return (0); 803 } 804 805 static void 806 bge_ape_unlock(struct bge_softc *sc, int locknum) 807 { 808 uint32_t bit, gnt; 809 int off; 810 811 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 812 return; 813 814 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 815 gnt = BGE_APE_LOCK_GRANT; 816 else 817 gnt = BGE_APE_PER_LOCK_GRANT; 818 819 off = 4 * locknum; 820 821 switch (locknum) { 822 case BGE_APE_LOCK_GPIO: 823 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 824 return; 825 if (sc->bge_func_addr == 0) 826 bit = BGE_APE_LOCK_GRANT_DRIVER0; 827 else 828 bit = (1 << sc->bge_func_addr); 829 break; 830 case BGE_APE_LOCK_GRC: 831 if (sc->bge_func_addr == 0) 832 bit = BGE_APE_LOCK_GRANT_DRIVER0; 833 else 834 bit = (1 << sc->bge_func_addr); 835 break; 836 case BGE_APE_LOCK_MEM: 837 if (sc->bge_func_addr == 0) 838 bit = BGE_APE_LOCK_GRANT_DRIVER0; 839 else 840 bit = (1 << sc->bge_func_addr); 841 break; 842 case BGE_APE_LOCK_PHY0: 843 case BGE_APE_LOCK_PHY1: 844 case BGE_APE_LOCK_PHY2: 845 case BGE_APE_LOCK_PHY3: 846 bit = BGE_APE_LOCK_GRANT_DRIVER0; 847 break; 848 default: 849 return; 850 } 851 852 APE_WRITE_4(sc, gnt + off, bit); 853 } 854 855 /* 856 * Send an event to the APE firmware. 857 */ 858 static void 859 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 860 { 861 uint32_t apedata; 862 int i; 863 864 /* NCSI does not support APE events. */ 865 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 866 return; 867 868 /* Wait up to 1ms for APE to service previous event. */ 869 for (i = 10; i > 0; i--) { 870 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 871 break; 872 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 873 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 874 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 875 BGE_APE_EVENT_STATUS_EVENT_PENDING); 876 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 877 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 878 break; 879 } 880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 881 DELAY(100); 882 } 883 if (i == 0) 884 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 885 event); 886 } 887 888 static void 889 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 890 { 891 uint32_t apedata, event; 892 893 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 894 return; 895 896 switch (kind) { 897 case BGE_RESET_START: 898 /* If this is the first load, clear the load counter. */ 899 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 900 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 901 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 902 else { 903 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 904 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 905 } 906 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 907 BGE_APE_HOST_SEG_SIG_MAGIC); 908 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 909 BGE_APE_HOST_SEG_LEN_MAGIC); 910 911 /* Add some version info if bge(4) supports it. */ 912 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 913 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 914 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 915 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 916 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 917 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 918 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 919 BGE_APE_HOST_DRVR_STATE_START); 920 event = BGE_APE_EVENT_STATUS_STATE_START; 921 break; 922 case BGE_RESET_SHUTDOWN: 923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 924 BGE_APE_HOST_DRVR_STATE_UNLOAD); 925 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 926 break; 927 case BGE_RESET_SUSPEND: 928 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 929 break; 930 default: 931 return; 932 } 933 934 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 935 BGE_APE_EVENT_STATUS_STATE_CHNGE); 936 } 937 938 /* 939 * Map a single buffer address. 940 */ 941 942 static void 943 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 944 { 945 struct bge_dmamap_arg *ctx; 946 947 if (error) 948 return; 949 950 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 951 952 ctx = arg; 953 ctx->bge_busaddr = segs->ds_addr; 954 } 955 956 static uint8_t 957 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 958 { 959 uint32_t access, byte = 0; 960 int i; 961 962 /* Lock. */ 963 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 964 for (i = 0; i < 8000; i++) { 965 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 966 break; 967 DELAY(20); 968 } 969 if (i == 8000) 970 return (1); 971 972 /* Enable access. */ 973 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 974 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 975 976 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 977 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 978 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 979 DELAY(10); 980 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 981 DELAY(10); 982 break; 983 } 984 } 985 986 if (i == BGE_TIMEOUT * 10) { 987 if_printf(sc->bge_ifp, "nvram read timed out\n"); 988 return (1); 989 } 990 991 /* Get result. */ 992 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 993 994 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 995 996 /* Disable access. */ 997 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 998 999 /* Unlock. */ 1000 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1001 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1002 1003 return (0); 1004 } 1005 1006 /* 1007 * Read a sequence of bytes from NVRAM. 1008 */ 1009 static int 1010 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1011 { 1012 int err = 0, i; 1013 uint8_t byte = 0; 1014 1015 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1016 return (1); 1017 1018 for (i = 0; i < cnt; i++) { 1019 err = bge_nvram_getbyte(sc, off + i, &byte); 1020 if (err) 1021 break; 1022 *(dest + i) = byte; 1023 } 1024 1025 return (err ? 1 : 0); 1026 } 1027 1028 /* 1029 * Read a byte of data stored in the EEPROM at address 'addr.' The 1030 * BCM570x supports both the traditional bitbang interface and an 1031 * auto access interface for reading the EEPROM. We use the auto 1032 * access method. 1033 */ 1034 static uint8_t 1035 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1036 { 1037 int i; 1038 uint32_t byte = 0; 1039 1040 /* 1041 * Enable use of auto EEPROM access so we can avoid 1042 * having to use the bitbang method. 1043 */ 1044 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1045 1046 /* Reset the EEPROM, load the clock period. */ 1047 CSR_WRITE_4(sc, BGE_EE_ADDR, 1048 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1049 DELAY(20); 1050 1051 /* Issue the read EEPROM command. */ 1052 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1053 1054 /* Wait for completion */ 1055 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1056 DELAY(10); 1057 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1058 break; 1059 } 1060 1061 if (i == BGE_TIMEOUT * 10) { 1062 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1063 return (1); 1064 } 1065 1066 /* Get result. */ 1067 byte = CSR_READ_4(sc, BGE_EE_DATA); 1068 1069 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1070 1071 return (0); 1072 } 1073 1074 /* 1075 * Read a sequence of bytes from the EEPROM. 1076 */ 1077 static int 1078 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1079 { 1080 int i, error = 0; 1081 uint8_t byte = 0; 1082 1083 for (i = 0; i < cnt; i++) { 1084 error = bge_eeprom_getbyte(sc, off + i, &byte); 1085 if (error) 1086 break; 1087 *(dest + i) = byte; 1088 } 1089 1090 return (error ? 1 : 0); 1091 } 1092 1093 static int 1094 bge_miibus_readreg(device_t dev, int phy, int reg) 1095 { 1096 struct bge_softc *sc; 1097 uint32_t val; 1098 int i; 1099 1100 sc = device_get_softc(dev); 1101 1102 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1103 return (0); 1104 1105 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1106 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1107 CSR_WRITE_4(sc, BGE_MI_MODE, 1108 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1109 DELAY(80); 1110 } 1111 1112 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1113 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1114 1115 /* Poll for the PHY register access to complete. */ 1116 for (i = 0; i < BGE_TIMEOUT; i++) { 1117 DELAY(10); 1118 val = CSR_READ_4(sc, BGE_MI_COMM); 1119 if ((val & BGE_MICOMM_BUSY) == 0) { 1120 DELAY(5); 1121 val = CSR_READ_4(sc, BGE_MI_COMM); 1122 break; 1123 } 1124 } 1125 1126 if (i == BGE_TIMEOUT) { 1127 device_printf(sc->bge_dev, 1128 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1129 phy, reg, val); 1130 val = 0; 1131 } 1132 1133 /* Restore the autopoll bit if necessary. */ 1134 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1135 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1136 DELAY(80); 1137 } 1138 1139 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1140 1141 if (val & BGE_MICOMM_READFAIL) 1142 return (0); 1143 1144 return (val & 0xFFFF); 1145 } 1146 1147 static int 1148 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1149 { 1150 struct bge_softc *sc; 1151 int i; 1152 1153 sc = device_get_softc(dev); 1154 1155 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1156 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1157 return (0); 1158 1159 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1160 return (0); 1161 1162 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1163 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1164 CSR_WRITE_4(sc, BGE_MI_MODE, 1165 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1166 DELAY(80); 1167 } 1168 1169 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1170 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1171 1172 for (i = 0; i < BGE_TIMEOUT; i++) { 1173 DELAY(10); 1174 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1175 DELAY(5); 1176 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1177 break; 1178 } 1179 } 1180 1181 /* Restore the autopoll bit if necessary. */ 1182 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1183 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1184 DELAY(80); 1185 } 1186 1187 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1188 1189 if (i == BGE_TIMEOUT) 1190 device_printf(sc->bge_dev, 1191 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1192 phy, reg, val); 1193 1194 return (0); 1195 } 1196 1197 static void 1198 bge_miibus_statchg(device_t dev) 1199 { 1200 struct bge_softc *sc; 1201 struct mii_data *mii; 1202 uint32_t mac_mode, rx_mode, tx_mode; 1203 1204 sc = device_get_softc(dev); 1205 if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0) 1206 return; 1207 mii = device_get_softc(sc->bge_miibus); 1208 1209 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1210 (IFM_ACTIVE | IFM_AVALID)) { 1211 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1212 case IFM_10_T: 1213 case IFM_100_TX: 1214 sc->bge_link = 1; 1215 break; 1216 case IFM_1000_T: 1217 case IFM_1000_SX: 1218 case IFM_2500_SX: 1219 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1220 sc->bge_link = 1; 1221 else 1222 sc->bge_link = 0; 1223 break; 1224 default: 1225 sc->bge_link = 0; 1226 break; 1227 } 1228 } else 1229 sc->bge_link = 0; 1230 if (sc->bge_link == 0) 1231 return; 1232 1233 /* 1234 * APE firmware touches these registers to keep the MAC 1235 * connected to the outside world. Try to keep the 1236 * accesses atomic. 1237 */ 1238 1239 /* Set the port mode (MII/GMII) to match the link speed. */ 1240 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1241 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1242 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1243 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1244 1245 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1246 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1247 mac_mode |= BGE_PORTMODE_GMII; 1248 else 1249 mac_mode |= BGE_PORTMODE_MII; 1250 1251 /* Set MAC flow control behavior to match link flow control settings. */ 1252 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1253 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1254 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1255 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1256 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1257 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1258 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1259 } else 1260 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1261 1262 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1263 DELAY(40); 1264 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1265 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1266 } 1267 1268 /* 1269 * Intialize a standard receive ring descriptor. 1270 */ 1271 static int 1272 bge_newbuf_std(struct bge_softc *sc, int i) 1273 { 1274 struct mbuf *m; 1275 struct bge_rx_bd *r; 1276 bus_dma_segment_t segs[1]; 1277 bus_dmamap_t map; 1278 int error, nsegs; 1279 1280 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1281 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 1282 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1283 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1284 if (m == NULL) 1285 return (ENOBUFS); 1286 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1287 } else { 1288 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1289 if (m == NULL) 1290 return (ENOBUFS); 1291 m->m_len = m->m_pkthdr.len = MCLBYTES; 1292 } 1293 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1294 m_adj(m, ETHER_ALIGN); 1295 1296 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1297 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1298 if (error != 0) { 1299 m_freem(m); 1300 return (error); 1301 } 1302 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1303 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1304 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1305 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1306 sc->bge_cdata.bge_rx_std_dmamap[i]); 1307 } 1308 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1309 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1310 sc->bge_cdata.bge_rx_std_sparemap = map; 1311 sc->bge_cdata.bge_rx_std_chain[i] = m; 1312 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1313 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1314 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1315 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1316 r->bge_flags = BGE_RXBDFLAG_END; 1317 r->bge_len = segs[0].ds_len; 1318 r->bge_idx = i; 1319 1320 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1321 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1322 1323 return (0); 1324 } 1325 1326 /* 1327 * Initialize a jumbo receive ring descriptor. This allocates 1328 * a jumbo buffer from the pool managed internally by the driver. 1329 */ 1330 static int 1331 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1332 { 1333 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1334 bus_dmamap_t map; 1335 struct bge_extrx_bd *r; 1336 struct mbuf *m; 1337 int error, nsegs; 1338 1339 MGETHDR(m, M_NOWAIT, MT_DATA); 1340 if (m == NULL) 1341 return (ENOBUFS); 1342 1343 if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) { 1344 m_freem(m); 1345 return (ENOBUFS); 1346 } 1347 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1348 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1349 m_adj(m, ETHER_ALIGN); 1350 1351 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1352 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1353 if (error != 0) { 1354 m_freem(m); 1355 return (error); 1356 } 1357 1358 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1359 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1360 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1361 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1362 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1363 } 1364 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1365 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1366 sc->bge_cdata.bge_rx_jumbo_sparemap; 1367 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1368 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1369 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1370 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1371 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1372 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1373 1374 /* 1375 * Fill in the extended RX buffer descriptor. 1376 */ 1377 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1378 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1379 r->bge_idx = i; 1380 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1381 switch (nsegs) { 1382 case 4: 1383 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1384 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1385 r->bge_len3 = segs[3].ds_len; 1386 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1387 case 3: 1388 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1389 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1390 r->bge_len2 = segs[2].ds_len; 1391 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1392 case 2: 1393 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1394 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1395 r->bge_len1 = segs[1].ds_len; 1396 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1397 case 1: 1398 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1399 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1400 r->bge_len0 = segs[0].ds_len; 1401 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1402 break; 1403 default: 1404 panic("%s: %d segments\n", __func__, nsegs); 1405 } 1406 1407 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1408 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 bge_init_rx_ring_std(struct bge_softc *sc) 1415 { 1416 int error, i; 1417 1418 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1419 sc->bge_std = 0; 1420 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1421 if ((error = bge_newbuf_std(sc, i)) != 0) 1422 return (error); 1423 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1424 } 1425 1426 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1427 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1428 1429 sc->bge_std = 0; 1430 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1431 1432 return (0); 1433 } 1434 1435 static void 1436 bge_free_rx_ring_std(struct bge_softc *sc) 1437 { 1438 int i; 1439 1440 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1441 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1442 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1443 sc->bge_cdata.bge_rx_std_dmamap[i], 1444 BUS_DMASYNC_POSTREAD); 1445 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1446 sc->bge_cdata.bge_rx_std_dmamap[i]); 1447 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1448 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1449 } 1450 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1451 sizeof(struct bge_rx_bd)); 1452 } 1453 } 1454 1455 static int 1456 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1457 { 1458 struct bge_rcb *rcb; 1459 int error, i; 1460 1461 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1462 sc->bge_jumbo = 0; 1463 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1464 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1465 return (error); 1466 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1467 } 1468 1469 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1470 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1471 1472 sc->bge_jumbo = 0; 1473 1474 /* Enable the jumbo receive producer ring. */ 1475 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1476 rcb->bge_maxlen_flags = 1477 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1478 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1479 1480 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1481 1482 return (0); 1483 } 1484 1485 static void 1486 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1487 { 1488 int i; 1489 1490 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1491 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1492 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1493 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1494 BUS_DMASYNC_POSTREAD); 1495 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1496 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1497 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1498 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1499 } 1500 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1501 sizeof(struct bge_extrx_bd)); 1502 } 1503 } 1504 1505 static void 1506 bge_free_tx_ring(struct bge_softc *sc) 1507 { 1508 int i; 1509 1510 if (sc->bge_ldata.bge_tx_ring == NULL) 1511 return; 1512 1513 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1514 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1515 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1516 sc->bge_cdata.bge_tx_dmamap[i], 1517 BUS_DMASYNC_POSTWRITE); 1518 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1519 sc->bge_cdata.bge_tx_dmamap[i]); 1520 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1521 sc->bge_cdata.bge_tx_chain[i] = NULL; 1522 } 1523 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1524 sizeof(struct bge_tx_bd)); 1525 } 1526 } 1527 1528 static int 1529 bge_init_tx_ring(struct bge_softc *sc) 1530 { 1531 sc->bge_txcnt = 0; 1532 sc->bge_tx_saved_considx = 0; 1533 1534 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1535 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1536 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1537 1538 /* Initialize transmit producer index for host-memory send ring. */ 1539 sc->bge_tx_prodidx = 0; 1540 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1541 1542 /* 5700 b2 errata */ 1543 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1544 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1545 1546 /* NIC-memory send ring not used; initialize to zero. */ 1547 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1548 /* 5700 b2 errata */ 1549 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1550 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1551 1552 return (0); 1553 } 1554 1555 static void 1556 bge_setpromisc(struct bge_softc *sc) 1557 { 1558 if_t ifp; 1559 1560 BGE_LOCK_ASSERT(sc); 1561 1562 ifp = sc->bge_ifp; 1563 1564 /* Enable or disable promiscuous mode as needed. */ 1565 if (if_getflags(ifp) & IFF_PROMISC) 1566 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1567 else 1568 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1569 } 1570 1571 static u_int 1572 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1573 { 1574 uint32_t *hashes = arg; 1575 int h; 1576 1577 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F; 1578 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1579 1580 return (1); 1581 } 1582 1583 static void 1584 bge_setmulti(struct bge_softc *sc) 1585 { 1586 if_t ifp; 1587 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1588 int i; 1589 1590 BGE_LOCK_ASSERT(sc); 1591 1592 ifp = sc->bge_ifp; 1593 1594 if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { 1595 for (i = 0; i < 4; i++) 1596 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1597 return; 1598 } 1599 1600 /* First, zot all the existing filters. */ 1601 for (i = 0; i < 4; i++) 1602 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1603 1604 if_foreach_llmaddr(ifp, bge_hash_maddr, hashes); 1605 1606 for (i = 0; i < 4; i++) 1607 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1608 } 1609 1610 static void 1611 bge_setvlan(struct bge_softc *sc) 1612 { 1613 if_t ifp; 1614 1615 BGE_LOCK_ASSERT(sc); 1616 1617 ifp = sc->bge_ifp; 1618 1619 /* Enable or disable VLAN tag stripping as needed. */ 1620 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 1621 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1622 else 1623 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1624 } 1625 1626 static void 1627 bge_sig_pre_reset(struct bge_softc *sc, int type) 1628 { 1629 1630 /* 1631 * Some chips don't like this so only do this if ASF is enabled 1632 */ 1633 if (sc->bge_asf_mode) 1634 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1635 1636 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1637 switch (type) { 1638 case BGE_RESET_START: 1639 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1640 BGE_FW_DRV_STATE_START); 1641 break; 1642 case BGE_RESET_SHUTDOWN: 1643 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1644 BGE_FW_DRV_STATE_UNLOAD); 1645 break; 1646 case BGE_RESET_SUSPEND: 1647 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1648 BGE_FW_DRV_STATE_SUSPEND); 1649 break; 1650 } 1651 } 1652 1653 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1654 bge_ape_driver_state_change(sc, type); 1655 } 1656 1657 static void 1658 bge_sig_post_reset(struct bge_softc *sc, int type) 1659 { 1660 1661 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1662 switch (type) { 1663 case BGE_RESET_START: 1664 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1665 BGE_FW_DRV_STATE_START_DONE); 1666 /* START DONE */ 1667 break; 1668 case BGE_RESET_SHUTDOWN: 1669 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1670 BGE_FW_DRV_STATE_UNLOAD_DONE); 1671 break; 1672 } 1673 } 1674 if (type == BGE_RESET_SHUTDOWN) 1675 bge_ape_driver_state_change(sc, type); 1676 } 1677 1678 static void 1679 bge_sig_legacy(struct bge_softc *sc, int type) 1680 { 1681 1682 if (sc->bge_asf_mode) { 1683 switch (type) { 1684 case BGE_RESET_START: 1685 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1686 BGE_FW_DRV_STATE_START); 1687 break; 1688 case BGE_RESET_SHUTDOWN: 1689 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1690 BGE_FW_DRV_STATE_UNLOAD); 1691 break; 1692 } 1693 } 1694 } 1695 1696 static void 1697 bge_stop_fw(struct bge_softc *sc) 1698 { 1699 int i; 1700 1701 if (sc->bge_asf_mode) { 1702 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1703 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1704 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1705 1706 for (i = 0; i < 100; i++ ) { 1707 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1708 BGE_RX_CPU_DRV_EVENT)) 1709 break; 1710 DELAY(10); 1711 } 1712 } 1713 } 1714 1715 static uint32_t 1716 bge_dma_swap_options(struct bge_softc *sc) 1717 { 1718 uint32_t dma_options; 1719 1720 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1721 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1722 #if BYTE_ORDER == BIG_ENDIAN 1723 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1724 #endif 1725 return (dma_options); 1726 } 1727 1728 /* 1729 * Do endian, PCI and DMA initialization. 1730 */ 1731 static int 1732 bge_chipinit(struct bge_softc *sc) 1733 { 1734 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1735 uint16_t val; 1736 int i; 1737 1738 /* Set endianness before we access any non-PCI registers. */ 1739 misc_ctl = BGE_INIT; 1740 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1741 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1742 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1743 1744 /* 1745 * Clear the MAC statistics block in the NIC's 1746 * internal memory. 1747 */ 1748 for (i = BGE_STATS_BLOCK; 1749 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1750 BGE_MEMWIN_WRITE(sc, i, 0); 1751 1752 for (i = BGE_STATUS_BLOCK; 1753 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1754 BGE_MEMWIN_WRITE(sc, i, 0); 1755 1756 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1757 /* 1758 * Fix data corruption caused by non-qword write with WB. 1759 * Fix master abort in PCI mode. 1760 * Fix PCI latency timer. 1761 */ 1762 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1763 val |= (1 << 10) | (1 << 12) | (1 << 13); 1764 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1765 } 1766 1767 if (sc->bge_asicrev == BGE_ASICREV_BCM57765 || 1768 sc->bge_asicrev == BGE_ASICREV_BCM57766) { 1769 /* 1770 * For the 57766 and non Ax versions of 57765, bootcode 1771 * needs to setup the PCIE Fast Training Sequence (FTS) 1772 * value to prevent transmit hangs. 1773 */ 1774 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) { 1775 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 1776 CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | 1777 BGE_CPMU_PADRNG_CTL_RDIV2); 1778 } 1779 } 1780 1781 /* 1782 * Set up the PCI DMA control register. 1783 */ 1784 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1785 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1786 if (sc->bge_flags & BGE_FLAG_PCIE) { 1787 if (sc->bge_mps >= 256) 1788 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1789 else 1790 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1791 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1792 if (BGE_IS_5714_FAMILY(sc)) { 1793 /* 256 bytes for read and write. */ 1794 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1795 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1796 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1797 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1798 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1799 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1800 /* 1801 * In the BCM5703, the DMA read watermark should 1802 * be set to less than or equal to the maximum 1803 * memory read byte count of the PCI-X command 1804 * register. 1805 */ 1806 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1807 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1808 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1809 /* 1536 bytes for read, 384 bytes for write. */ 1810 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1811 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1812 } else { 1813 /* 384 bytes for read and write. */ 1814 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1815 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1816 0x0F; 1817 } 1818 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1819 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1820 uint32_t tmp; 1821 1822 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1823 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1824 if (tmp == 6 || tmp == 7) 1825 dma_rw_ctl |= 1826 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1827 1828 /* Set PCI-X DMA write workaround. */ 1829 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1830 } 1831 } else { 1832 /* Conventional PCI bus: 256 bytes for read and write. */ 1833 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1834 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1835 1836 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1837 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1838 dma_rw_ctl |= 0x0F; 1839 } 1840 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1841 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1842 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1843 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1844 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1845 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1846 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1847 if (BGE_IS_5717_PLUS(sc)) { 1848 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1849 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1850 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1851 /* 1852 * Enable HW workaround for controllers that misinterpret 1853 * a status tag update and leave interrupts permanently 1854 * disabled. 1855 */ 1856 if (!BGE_IS_57765_PLUS(sc) && 1857 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1858 sc->bge_asicrev != BGE_ASICREV_BCM5762) 1859 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1860 } 1861 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1862 1863 /* 1864 * Set up general mode register. 1865 */ 1866 mode_ctl = bge_dma_swap_options(sc); 1867 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 1868 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 1869 /* Retain Host-2-BMC settings written by APE firmware. */ 1870 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1871 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1872 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1873 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1874 } 1875 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1876 BGE_MODECTL_TX_NO_PHDR_CSUM; 1877 1878 /* 1879 * BCM5701 B5 have a bug causing data corruption when using 1880 * 64-bit DMA reads, which can be terminated early and then 1881 * completed later as 32-bit accesses, in combination with 1882 * certain bridges. 1883 */ 1884 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1885 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1886 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1887 1888 /* 1889 * Tell the firmware the driver is running 1890 */ 1891 if (sc->bge_asf_mode & ASF_STACKUP) 1892 mode_ctl |= BGE_MODECTL_STACKUP; 1893 1894 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1895 1896 /* 1897 * Disable memory write invalidate. Apparently it is not supported 1898 * properly by these devices. 1899 */ 1900 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1901 1902 /* Set the timer prescaler (always 66 MHz). */ 1903 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1904 1905 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1906 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1907 DELAY(40); /* XXX */ 1908 1909 /* Put PHY into ready state */ 1910 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1911 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1912 DELAY(40); 1913 } 1914 1915 return (0); 1916 } 1917 1918 static int 1919 bge_blockinit(struct bge_softc *sc) 1920 { 1921 struct bge_rcb *rcb; 1922 bus_size_t vrcb; 1923 caddr_t lladdr; 1924 bge_hostaddr taddr; 1925 uint32_t dmactl, rdmareg, val; 1926 int i, limit; 1927 1928 /* 1929 * Initialize the memory window pointer register so that 1930 * we can access the first 32K of internal NIC RAM. This will 1931 * allow us to set up the TX send ring RCBs and the RX return 1932 * ring RCBs, plus other things which live in NIC memory. 1933 */ 1934 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1935 1936 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1937 1938 if (!(BGE_IS_5705_PLUS(sc))) { 1939 /* Configure mbuf memory pool */ 1940 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1941 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1942 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1943 else 1944 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1945 1946 /* Configure DMA resource pool */ 1947 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1948 BGE_DMA_DESCRIPTORS); 1949 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1950 } 1951 1952 /* Configure mbuf pool watermarks */ 1953 if (BGE_IS_5717_PLUS(sc)) { 1954 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1955 if (if_getmtu(sc->bge_ifp) > ETHERMTU) { 1956 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1957 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1958 } else { 1959 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1960 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1961 } 1962 } else if (!BGE_IS_5705_PLUS(sc)) { 1963 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1964 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1965 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1966 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1969 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1970 } else { 1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1973 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1974 } 1975 1976 /* Configure DMA resource watermarks */ 1977 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1978 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1979 1980 /* Enable buffer manager */ 1981 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1982 /* 1983 * Change the arbitration algorithm of TXMBUF read request to 1984 * round-robin instead of priority based for BCM5719. When 1985 * TXFIFO is almost empty, RDMA will hold its request until 1986 * TXFIFO is not almost empty. 1987 */ 1988 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1989 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1990 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1991 1992 /* Poll for buffer manager start indication */ 1993 for (i = 0; i < BGE_TIMEOUT; i++) { 1994 DELAY(10); 1995 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1996 break; 1997 } 1998 1999 if (i == BGE_TIMEOUT) { 2000 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2001 return (ENXIO); 2002 } 2003 2004 /* Enable flow-through queues */ 2005 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2006 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2007 2008 /* Wait until queue initialization is complete */ 2009 for (i = 0; i < BGE_TIMEOUT; i++) { 2010 DELAY(10); 2011 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2012 break; 2013 } 2014 2015 if (i == BGE_TIMEOUT) { 2016 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2017 return (ENXIO); 2018 } 2019 2020 /* 2021 * Summary of rings supported by the controller: 2022 * 2023 * Standard Receive Producer Ring 2024 * - This ring is used to feed receive buffers for "standard" 2025 * sized frames (typically 1536 bytes) to the controller. 2026 * 2027 * Jumbo Receive Producer Ring 2028 * - This ring is used to feed receive buffers for jumbo sized 2029 * frames (i.e. anything bigger than the "standard" frames) 2030 * to the controller. 2031 * 2032 * Mini Receive Producer Ring 2033 * - This ring is used to feed receive buffers for "mini" 2034 * sized frames to the controller. 2035 * - This feature required external memory for the controller 2036 * but was never used in a production system. Should always 2037 * be disabled. 2038 * 2039 * Receive Return Ring 2040 * - After the controller has placed an incoming frame into a 2041 * receive buffer that buffer is moved into a receive return 2042 * ring. The driver is then responsible to passing the 2043 * buffer up to the stack. Many versions of the controller 2044 * support multiple RR rings. 2045 * 2046 * Send Ring 2047 * - This ring is used for outgoing frames. Many versions of 2048 * the controller support multiple send rings. 2049 */ 2050 2051 /* Initialize the standard receive producer ring control block. */ 2052 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2053 rcb->bge_hostaddr.bge_addr_lo = 2054 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2055 rcb->bge_hostaddr.bge_addr_hi = 2056 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2057 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2058 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2059 if (BGE_IS_5717_PLUS(sc)) { 2060 /* 2061 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2062 * Bits 15-2 : Maximum RX frame size 2063 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2064 * Bit 0 : Reserved 2065 */ 2066 rcb->bge_maxlen_flags = 2067 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2068 } else if (BGE_IS_5705_PLUS(sc)) { 2069 /* 2070 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2071 * Bits 15-2 : Reserved (should be 0) 2072 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2073 * Bit 0 : Reserved 2074 */ 2075 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2076 } else { 2077 /* 2078 * Ring size is always XXX entries 2079 * Bits 31-16: Maximum RX frame size 2080 * Bits 15-2 : Reserved (should be 0) 2081 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2082 * Bit 0 : Reserved 2083 */ 2084 rcb->bge_maxlen_flags = 2085 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2086 } 2087 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2088 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2089 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2090 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2091 else 2092 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2093 /* Write the standard receive producer ring control block. */ 2094 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2095 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2096 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2097 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2098 2099 /* Reset the standard receive producer ring producer index. */ 2100 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2101 2102 /* 2103 * Initialize the jumbo RX producer ring control 2104 * block. We set the 'ring disabled' bit in the 2105 * flags field until we're actually ready to start 2106 * using this ring (i.e. once we set the MTU 2107 * high enough to require it). 2108 */ 2109 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2110 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2111 /* Get the jumbo receive producer ring RCB parameters. */ 2112 rcb->bge_hostaddr.bge_addr_lo = 2113 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2114 rcb->bge_hostaddr.bge_addr_hi = 2115 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2116 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2117 sc->bge_cdata.bge_rx_jumbo_ring_map, 2118 BUS_DMASYNC_PREREAD); 2119 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2120 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2121 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2122 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2123 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2124 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2125 else 2126 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2127 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2128 rcb->bge_hostaddr.bge_addr_hi); 2129 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2130 rcb->bge_hostaddr.bge_addr_lo); 2131 /* Program the jumbo receive producer ring RCB parameters. */ 2132 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2133 rcb->bge_maxlen_flags); 2134 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2135 /* Reset the jumbo receive producer ring producer index. */ 2136 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2137 } 2138 2139 /* Disable the mini receive producer ring RCB. */ 2140 if (BGE_IS_5700_FAMILY(sc)) { 2141 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2142 rcb->bge_maxlen_flags = 2143 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2144 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2145 rcb->bge_maxlen_flags); 2146 /* Reset the mini receive producer ring producer index. */ 2147 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2148 } 2149 2150 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2151 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2152 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2153 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2154 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2155 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2156 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2157 } 2158 /* 2159 * The BD ring replenish thresholds control how often the 2160 * hardware fetches new BD's from the producer rings in host 2161 * memory. Setting the value too low on a busy system can 2162 * starve the hardware and reduce the throughput. 2163 * 2164 * Set the BD ring replentish thresholds. The recommended 2165 * values are 1/8th the number of descriptors allocated to 2166 * each ring. 2167 * XXX The 5754 requires a lower threshold, so it might be a 2168 * requirement of all 575x family chips. The Linux driver sets 2169 * the lower threshold for all 5705 family chips as well, but there 2170 * are reports that it might not need to be so strict. 2171 * 2172 * XXX Linux does some extra fiddling here for the 5906 parts as 2173 * well. 2174 */ 2175 if (BGE_IS_5705_PLUS(sc)) 2176 val = 8; 2177 else 2178 val = BGE_STD_RX_RING_CNT / 8; 2179 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2180 if (BGE_IS_JUMBO_CAPABLE(sc)) 2181 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2182 BGE_JUMBO_RX_RING_CNT/8); 2183 if (BGE_IS_5717_PLUS(sc)) { 2184 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2185 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2186 } 2187 2188 /* 2189 * Disable all send rings by setting the 'ring disabled' bit 2190 * in the flags field of all the TX send ring control blocks, 2191 * located in NIC memory. 2192 */ 2193 if (!BGE_IS_5705_PLUS(sc)) 2194 /* 5700 to 5704 had 16 send rings. */ 2195 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2196 else if (BGE_IS_57765_PLUS(sc) || 2197 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2198 limit = 2; 2199 else if (BGE_IS_5717_PLUS(sc)) 2200 limit = 4; 2201 else 2202 limit = 1; 2203 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2204 for (i = 0; i < limit; i++) { 2205 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2206 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2207 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2208 vrcb += sizeof(struct bge_rcb); 2209 } 2210 2211 /* Configure send ring RCB 0 (we use only the first ring) */ 2212 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2213 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2214 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2215 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2216 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2217 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2218 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2219 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2220 else 2221 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2222 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2223 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2224 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2225 2226 /* 2227 * Disable all receive return rings by setting the 2228 * 'ring diabled' bit in the flags field of all the receive 2229 * return ring control blocks, located in NIC memory. 2230 */ 2231 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2232 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2233 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2234 /* Should be 17, use 16 until we get an SRAM map. */ 2235 limit = 16; 2236 } else if (!BGE_IS_5705_PLUS(sc)) 2237 limit = BGE_RX_RINGS_MAX; 2238 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2239 sc->bge_asicrev == BGE_ASICREV_BCM5762 || 2240 BGE_IS_57765_PLUS(sc)) 2241 limit = 4; 2242 else 2243 limit = 1; 2244 /* Disable all receive return rings. */ 2245 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2246 for (i = 0; i < limit; i++) { 2247 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2248 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2249 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2250 BGE_RCB_FLAG_RING_DISABLED); 2251 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2252 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2253 (i * (sizeof(uint64_t))), 0); 2254 vrcb += sizeof(struct bge_rcb); 2255 } 2256 2257 /* 2258 * Set up receive return ring 0. Note that the NIC address 2259 * for RX return rings is 0x0. The return rings live entirely 2260 * within the host, so the nicaddr field in the RCB isn't used. 2261 */ 2262 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2263 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2264 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2265 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2266 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2267 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2268 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2269 2270 lladdr = if_getlladdr(sc->bge_ifp); 2271 /* Set random backoff seed for TX */ 2272 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2273 (lladdr[0] + lladdr[1] + 2274 lladdr[2] + lladdr[3] + 2275 lladdr[4] + lladdr[5]) & 2276 BGE_TX_BACKOFF_SEED_MASK); 2277 2278 /* Set inter-packet gap */ 2279 val = 0x2620; 2280 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2281 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2282 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2283 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2284 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2285 2286 /* 2287 * Specify which ring to use for packets that don't match 2288 * any RX rules. 2289 */ 2290 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2291 2292 /* 2293 * Configure number of RX lists. One interrupt distribution 2294 * list, sixteen active lists, one bad frames class. 2295 */ 2296 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2297 2298 /* Initialize RX list placement stats mask. */ 2299 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2300 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2301 2302 /* Disable host coalescing until we get it set up */ 2303 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2304 2305 /* Poll to make sure it's shut down. */ 2306 for (i = 0; i < BGE_TIMEOUT; i++) { 2307 DELAY(10); 2308 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2309 break; 2310 } 2311 2312 if (i == BGE_TIMEOUT) { 2313 device_printf(sc->bge_dev, 2314 "host coalescing engine failed to idle\n"); 2315 return (ENXIO); 2316 } 2317 2318 /* Set up host coalescing defaults */ 2319 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2320 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2321 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2322 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2323 if (!(BGE_IS_5705_PLUS(sc))) { 2324 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2325 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2326 } 2327 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2328 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2329 2330 /* Set up address of statistics block */ 2331 if (!(BGE_IS_5705_PLUS(sc))) { 2332 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2333 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2334 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2335 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2336 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2337 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2338 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2339 } 2340 2341 /* Set up address of status block */ 2342 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2343 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2344 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2345 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2346 2347 /* Set up status block size. */ 2348 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2349 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2350 val = BGE_STATBLKSZ_FULL; 2351 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2352 } else { 2353 val = BGE_STATBLKSZ_32BYTE; 2354 bzero(sc->bge_ldata.bge_status_block, 32); 2355 } 2356 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2357 sc->bge_cdata.bge_status_map, 2358 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2359 2360 /* Turn on host coalescing state machine */ 2361 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2362 2363 /* Turn on RX BD completion state machine and enable attentions */ 2364 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2365 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2366 2367 /* Turn on RX list placement state machine */ 2368 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2369 2370 /* Turn on RX list selector state machine. */ 2371 if (!(BGE_IS_5705_PLUS(sc))) 2372 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2373 2374 /* Turn on DMA, clear stats. */ 2375 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2376 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2377 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2378 BGE_MACMODE_FRMHDR_DMA_ENB; 2379 2380 if (sc->bge_flags & BGE_FLAG_TBI) 2381 val |= BGE_PORTMODE_TBI; 2382 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2383 val |= BGE_PORTMODE_GMII; 2384 else 2385 val |= BGE_PORTMODE_MII; 2386 2387 /* Allow APE to send/receive frames. */ 2388 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2389 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2390 2391 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2392 DELAY(40); 2393 2394 /* Set misc. local control, enable interrupts on attentions */ 2395 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2396 2397 #ifdef notdef 2398 /* Assert GPIO pins for PHY reset */ 2399 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2400 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2401 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2402 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2403 #endif 2404 2405 /* Turn on DMA completion state machine */ 2406 if (!(BGE_IS_5705_PLUS(sc))) 2407 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2408 2409 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2410 2411 /* Enable host coalescing bug fix. */ 2412 if (BGE_IS_5755_PLUS(sc)) 2413 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2414 2415 /* Request larger DMA burst size to get better performance. */ 2416 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2417 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2418 2419 /* Turn on write DMA state machine */ 2420 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2421 DELAY(40); 2422 2423 /* Turn on read DMA state machine */ 2424 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2425 2426 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2427 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2428 2429 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2430 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2431 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2432 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2433 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2434 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2435 if (sc->bge_flags & BGE_FLAG_PCIE) 2436 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2437 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2438 val |= BGE_RDMAMODE_TSO4_ENABLE; 2439 if (sc->bge_flags & BGE_FLAG_TSO3 || 2440 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2441 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2442 val |= BGE_RDMAMODE_TSO6_ENABLE; 2443 } 2444 2445 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2446 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2447 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2448 BGE_RDMAMODE_H2BNC_VLAN_DET; 2449 /* 2450 * Allow multiple outstanding read requests from 2451 * non-LSO read DMA engine. 2452 */ 2453 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2454 } 2455 2456 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2457 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2458 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2459 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2460 BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { 2461 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 2462 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2463 else 2464 rdmareg = BGE_RDMA_RSRVCTRL; 2465 dmactl = CSR_READ_4(sc, rdmareg); 2466 /* 2467 * Adjust tx margin to prevent TX data corruption and 2468 * fix internal FIFO overflow. 2469 */ 2470 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2471 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2472 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2473 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2474 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2475 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2476 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2477 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2478 } 2479 /* 2480 * Enable fix for read DMA FIFO overruns. 2481 * The fix is to limit the number of RX BDs 2482 * the hardware would fetch at a fime. 2483 */ 2484 CSR_WRITE_4(sc, rdmareg, dmactl | 2485 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2486 } 2487 2488 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2489 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2490 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2491 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2492 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2493 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2494 /* 2495 * Allow 4KB burst length reads for non-LSO frames. 2496 * Enable 512B burst length reads for buffer descriptors. 2497 */ 2498 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2499 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2500 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2501 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2502 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2503 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2504 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2505 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2506 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2507 } 2508 2509 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2510 DELAY(40); 2511 2512 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 2513 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2514 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2515 if ((val & 0xFFFF) > BGE_FRAMELEN) 2516 break; 2517 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2518 break; 2519 } 2520 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2521 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2522 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2523 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2524 else 2525 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2526 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2527 } 2528 } 2529 2530 /* Turn on RX data completion state machine */ 2531 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2532 2533 /* Turn on RX BD initiator state machine */ 2534 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2535 2536 /* Turn on RX data and RX BD initiator state machine */ 2537 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2538 2539 /* Turn on Mbuf cluster free state machine */ 2540 if (!(BGE_IS_5705_PLUS(sc))) 2541 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2542 2543 /* Turn on send BD completion state machine */ 2544 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2545 2546 /* Turn on send data completion state machine */ 2547 val = BGE_SDCMODE_ENABLE; 2548 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2549 val |= BGE_SDCMODE_CDELAY; 2550 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2551 2552 /* Turn on send data initiator state machine */ 2553 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2554 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2555 BGE_SDIMODE_HW_LSO_PRE_DMA); 2556 else 2557 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2558 2559 /* Turn on send BD initiator state machine */ 2560 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2561 2562 /* Turn on send BD selector state machine */ 2563 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2564 2565 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2566 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2567 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2568 2569 /* ack/clear link change events */ 2570 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2571 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2572 BGE_MACSTAT_LINK_CHANGED); 2573 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2574 2575 /* 2576 * Enable attention when the link has changed state for 2577 * devices that use auto polling. 2578 */ 2579 if (sc->bge_flags & BGE_FLAG_TBI) { 2580 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2581 } else { 2582 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2583 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2584 DELAY(80); 2585 } 2586 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2587 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2588 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2589 BGE_EVTENB_MI_INTERRUPT); 2590 } 2591 2592 /* 2593 * Clear any pending link state attention. 2594 * Otherwise some link state change events may be lost until attention 2595 * is cleared by bge_intr() -> bge_link_upd() sequence. 2596 * It's not necessary on newer BCM chips - perhaps enabling link 2597 * state change attentions implies clearing pending attention. 2598 */ 2599 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2600 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2601 BGE_MACSTAT_LINK_CHANGED); 2602 2603 /* Enable link state change attentions. */ 2604 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2605 2606 return (0); 2607 } 2608 2609 static const struct bge_revision * 2610 bge_lookup_rev(uint32_t chipid) 2611 { 2612 const struct bge_revision *br; 2613 2614 for (br = bge_revisions; br->br_name != NULL; br++) { 2615 if (br->br_chipid == chipid) 2616 return (br); 2617 } 2618 2619 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2620 if (br->br_chipid == BGE_ASICREV(chipid)) 2621 return (br); 2622 } 2623 2624 return (NULL); 2625 } 2626 2627 static const struct bge_vendor * 2628 bge_lookup_vendor(uint16_t vid) 2629 { 2630 const struct bge_vendor *v; 2631 2632 for (v = bge_vendors; v->v_name != NULL; v++) 2633 if (v->v_id == vid) 2634 return (v); 2635 2636 return (NULL); 2637 } 2638 2639 static uint32_t 2640 bge_chipid(device_t dev) 2641 { 2642 uint32_t id; 2643 2644 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2645 BGE_PCIMISCCTL_ASICREV_SHIFT; 2646 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2647 /* 2648 * Find the ASCI revision. Different chips use different 2649 * registers. 2650 */ 2651 switch (pci_get_device(dev)) { 2652 case BCOM_DEVICEID_BCM5717C: 2653 /* 5717 C0 seems to belong to 5720 line. */ 2654 id = BGE_CHIPID_BCM5720_A0; 2655 break; 2656 case BCOM_DEVICEID_BCM5717: 2657 case BCOM_DEVICEID_BCM5718: 2658 case BCOM_DEVICEID_BCM5719: 2659 case BCOM_DEVICEID_BCM5720: 2660 case BCOM_DEVICEID_BCM5725: 2661 case BCOM_DEVICEID_BCM5727: 2662 case BCOM_DEVICEID_BCM5762: 2663 case BCOM_DEVICEID_BCM57764: 2664 case BCOM_DEVICEID_BCM57767: 2665 case BCOM_DEVICEID_BCM57787: 2666 id = pci_read_config(dev, 2667 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2668 break; 2669 case BCOM_DEVICEID_BCM57761: 2670 case BCOM_DEVICEID_BCM57762: 2671 case BCOM_DEVICEID_BCM57765: 2672 case BCOM_DEVICEID_BCM57766: 2673 case BCOM_DEVICEID_BCM57781: 2674 case BCOM_DEVICEID_BCM57782: 2675 case BCOM_DEVICEID_BCM57785: 2676 case BCOM_DEVICEID_BCM57786: 2677 case BCOM_DEVICEID_BCM57791: 2678 case BCOM_DEVICEID_BCM57795: 2679 id = pci_read_config(dev, 2680 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2681 break; 2682 default: 2683 id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); 2684 } 2685 } 2686 return (id); 2687 } 2688 2689 /* 2690 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2691 * against our list and return its name if we find a match. 2692 * 2693 * Note that since the Broadcom controller contains VPD support, we 2694 * try to get the device name string from the controller itself instead 2695 * of the compiled-in string. It guarantees we'll always announce the 2696 * right product name. We fall back to the compiled-in string when 2697 * VPD is unavailable or corrupt. 2698 */ 2699 static int 2700 bge_probe(device_t dev) 2701 { 2702 char model[64]; 2703 const struct bge_revision *br; 2704 const char *pname; 2705 struct bge_softc *sc; 2706 const struct bge_type *t = bge_devs; 2707 const struct bge_vendor *v; 2708 uint32_t id; 2709 uint16_t did, vid; 2710 2711 sc = device_get_softc(dev); 2712 sc->bge_dev = dev; 2713 vid = pci_get_vendor(dev); 2714 did = pci_get_device(dev); 2715 while(t->bge_vid != 0) { 2716 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2717 id = bge_chipid(dev); 2718 br = bge_lookup_rev(id); 2719 if (bge_has_eaddr(sc) && 2720 pci_get_vpd_ident(dev, &pname) == 0) 2721 snprintf(model, sizeof(model), "%s", pname); 2722 else { 2723 v = bge_lookup_vendor(vid); 2724 snprintf(model, sizeof(model), "%s %s", 2725 v != NULL ? v->v_name : "Unknown", 2726 br != NULL ? br->br_name : 2727 "NetXtreme/NetLink Ethernet Controller"); 2728 } 2729 device_set_descf(dev, "%s, %sASIC rev. %#08x", 2730 model, br != NULL ? "" : "unknown ", id); 2731 return (BUS_PROBE_DEFAULT); 2732 } 2733 t++; 2734 } 2735 2736 return (ENXIO); 2737 } 2738 2739 static void 2740 bge_dma_free(struct bge_softc *sc) 2741 { 2742 int i; 2743 2744 /* Destroy DMA maps for RX buffers. */ 2745 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2746 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2747 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2748 sc->bge_cdata.bge_rx_std_dmamap[i]); 2749 } 2750 if (sc->bge_cdata.bge_rx_std_sparemap) 2751 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2752 sc->bge_cdata.bge_rx_std_sparemap); 2753 2754 /* Destroy DMA maps for jumbo RX buffers. */ 2755 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2756 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2757 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2758 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2759 } 2760 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2761 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2762 sc->bge_cdata.bge_rx_jumbo_sparemap); 2763 2764 /* Destroy DMA maps for TX buffers. */ 2765 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2766 if (sc->bge_cdata.bge_tx_dmamap[i]) 2767 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2768 sc->bge_cdata.bge_tx_dmamap[i]); 2769 } 2770 2771 if (sc->bge_cdata.bge_rx_mtag) 2772 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2773 if (sc->bge_cdata.bge_mtag_jumbo) 2774 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2775 if (sc->bge_cdata.bge_tx_mtag) 2776 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2777 2778 /* Destroy standard RX ring. */ 2779 if (sc->bge_ldata.bge_rx_std_ring_paddr) 2780 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2781 sc->bge_cdata.bge_rx_std_ring_map); 2782 if (sc->bge_ldata.bge_rx_std_ring) 2783 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2784 sc->bge_ldata.bge_rx_std_ring, 2785 sc->bge_cdata.bge_rx_std_ring_map); 2786 2787 if (sc->bge_cdata.bge_rx_std_ring_tag) 2788 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2789 2790 /* Destroy jumbo RX ring. */ 2791 if (sc->bge_ldata.bge_rx_jumbo_ring_paddr) 2792 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2793 sc->bge_cdata.bge_rx_jumbo_ring_map); 2794 2795 if (sc->bge_ldata.bge_rx_jumbo_ring) 2796 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2797 sc->bge_ldata.bge_rx_jumbo_ring, 2798 sc->bge_cdata.bge_rx_jumbo_ring_map); 2799 2800 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2801 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2802 2803 /* Destroy RX return ring. */ 2804 if (sc->bge_ldata.bge_rx_return_ring_paddr) 2805 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2806 sc->bge_cdata.bge_rx_return_ring_map); 2807 2808 if (sc->bge_ldata.bge_rx_return_ring) 2809 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2810 sc->bge_ldata.bge_rx_return_ring, 2811 sc->bge_cdata.bge_rx_return_ring_map); 2812 2813 if (sc->bge_cdata.bge_rx_return_ring_tag) 2814 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2815 2816 /* Destroy TX ring. */ 2817 if (sc->bge_ldata.bge_tx_ring_paddr) 2818 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2819 sc->bge_cdata.bge_tx_ring_map); 2820 2821 if (sc->bge_ldata.bge_tx_ring) 2822 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2823 sc->bge_ldata.bge_tx_ring, 2824 sc->bge_cdata.bge_tx_ring_map); 2825 2826 if (sc->bge_cdata.bge_tx_ring_tag) 2827 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2828 2829 /* Destroy status block. */ 2830 if (sc->bge_ldata.bge_status_block_paddr) 2831 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2832 sc->bge_cdata.bge_status_map); 2833 2834 if (sc->bge_ldata.bge_status_block) 2835 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2836 sc->bge_ldata.bge_status_block, 2837 sc->bge_cdata.bge_status_map); 2838 2839 if (sc->bge_cdata.bge_status_tag) 2840 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2841 2842 /* Destroy statistics block. */ 2843 if (sc->bge_ldata.bge_stats_paddr) 2844 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2845 sc->bge_cdata.bge_stats_map); 2846 2847 if (sc->bge_ldata.bge_stats) 2848 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2849 sc->bge_ldata.bge_stats, 2850 sc->bge_cdata.bge_stats_map); 2851 2852 if (sc->bge_cdata.bge_stats_tag) 2853 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2854 2855 if (sc->bge_cdata.bge_buffer_tag) 2856 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2857 2858 /* Destroy the parent tag. */ 2859 if (sc->bge_cdata.bge_parent_tag) 2860 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2861 } 2862 2863 static int 2864 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2865 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2866 bus_addr_t *paddr, const char *msg) 2867 { 2868 struct bge_dmamap_arg ctx; 2869 bus_addr_t lowaddr; 2870 bus_size_t ring_end; 2871 int error; 2872 2873 lowaddr = BUS_SPACE_MAXADDR; 2874 again: 2875 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2876 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2877 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2878 if (error != 0) { 2879 device_printf(sc->bge_dev, 2880 "could not create %s dma tag\n", msg); 2881 return (ENOMEM); 2882 } 2883 /* Allocate DMA'able memory for ring. */ 2884 error = bus_dmamem_alloc(*tag, (void **)ring, 2885 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2886 if (error != 0) { 2887 device_printf(sc->bge_dev, 2888 "could not allocate DMA'able memory for %s\n", msg); 2889 return (ENOMEM); 2890 } 2891 /* Load the address of the ring. */ 2892 ctx.bge_busaddr = 0; 2893 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2894 &ctx, BUS_DMA_NOWAIT); 2895 if (error != 0) { 2896 device_printf(sc->bge_dev, 2897 "could not load DMA'able memory for %s\n", msg); 2898 return (ENOMEM); 2899 } 2900 *paddr = ctx.bge_busaddr; 2901 ring_end = *paddr + maxsize; 2902 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2903 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2904 /* 2905 * 4GB boundary crossed. Limit maximum allowable DMA 2906 * address space to 32bit and try again. 2907 */ 2908 bus_dmamap_unload(*tag, *map); 2909 bus_dmamem_free(*tag, *ring, *map); 2910 bus_dma_tag_destroy(*tag); 2911 if (bootverbose) 2912 device_printf(sc->bge_dev, "4GB boundary crossed, " 2913 "limit DMA address space to 32bit for %s\n", msg); 2914 *ring = NULL; 2915 *tag = NULL; 2916 *map = NULL; 2917 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2918 goto again; 2919 } 2920 return (0); 2921 } 2922 2923 static int 2924 bge_dma_alloc(struct bge_softc *sc) 2925 { 2926 bus_addr_t lowaddr; 2927 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2928 int i, error; 2929 2930 lowaddr = BUS_SPACE_MAXADDR; 2931 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2932 lowaddr = BGE_DMA_MAXADDR; 2933 /* 2934 * Allocate the parent bus DMA tag appropriate for PCI. 2935 */ 2936 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2937 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2938 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2939 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2940 if (error != 0) { 2941 device_printf(sc->bge_dev, 2942 "could not allocate parent dma tag\n"); 2943 return (ENOMEM); 2944 } 2945 2946 /* Create tag for standard RX ring. */ 2947 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2948 &sc->bge_cdata.bge_rx_std_ring_tag, 2949 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2950 &sc->bge_cdata.bge_rx_std_ring_map, 2951 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2952 if (error) 2953 return (error); 2954 2955 /* Create tag for RX return ring. */ 2956 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2957 &sc->bge_cdata.bge_rx_return_ring_tag, 2958 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2959 &sc->bge_cdata.bge_rx_return_ring_map, 2960 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2961 if (error) 2962 return (error); 2963 2964 /* Create tag for TX ring. */ 2965 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2966 &sc->bge_cdata.bge_tx_ring_tag, 2967 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2968 &sc->bge_cdata.bge_tx_ring_map, 2969 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2970 if (error) 2971 return (error); 2972 2973 /* 2974 * Create tag for status block. 2975 * Because we only use single Tx/Rx/Rx return ring, use 2976 * minimum status block size except BCM5700 AX/BX which 2977 * seems to want to see full status block size regardless 2978 * of configured number of ring. 2979 */ 2980 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2981 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2982 sbsz = BGE_STATUS_BLK_SZ; 2983 else 2984 sbsz = 32; 2985 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2986 &sc->bge_cdata.bge_status_tag, 2987 (uint8_t **)&sc->bge_ldata.bge_status_block, 2988 &sc->bge_cdata.bge_status_map, 2989 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2990 if (error) 2991 return (error); 2992 2993 /* Create tag for statistics block. */ 2994 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2995 &sc->bge_cdata.bge_stats_tag, 2996 (uint8_t **)&sc->bge_ldata.bge_stats, 2997 &sc->bge_cdata.bge_stats_map, 2998 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2999 if (error) 3000 return (error); 3001 3002 /* Create tag for jumbo RX ring. */ 3003 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3004 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 3005 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 3006 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 3007 &sc->bge_cdata.bge_rx_jumbo_ring_map, 3008 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 3009 if (error) 3010 return (error); 3011 } 3012 3013 /* Create parent tag for buffers. */ 3014 boundary = 0; 3015 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 3016 boundary = BGE_DMA_BNDRY; 3017 /* 3018 * XXX 3019 * watchdog timeout issue was observed on BCM5704 which 3020 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 3021 * Both limiting DMA address space to 32bits and flushing 3022 * mailbox write seem to address the issue. 3023 */ 3024 if (sc->bge_pcixcap != 0) 3025 lowaddr = BUS_SPACE_MAXADDR_32BIT; 3026 } 3027 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 3028 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 3029 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 3030 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 3031 if (error != 0) { 3032 device_printf(sc->bge_dev, 3033 "could not allocate buffer dma tag\n"); 3034 return (ENOMEM); 3035 } 3036 /* Create tag for Tx mbufs. */ 3037 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 3038 txsegsz = BGE_TSOSEG_SZ; 3039 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 3040 } else { 3041 txsegsz = MCLBYTES; 3042 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 3043 } 3044 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 3045 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 3046 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 3047 &sc->bge_cdata.bge_tx_mtag); 3048 3049 if (error) { 3050 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 3051 return (ENOMEM); 3052 } 3053 3054 /* Create tag for Rx mbufs. */ 3055 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 3056 rxmaxsegsz = MJUM9BYTES; 3057 else 3058 rxmaxsegsz = MCLBYTES; 3059 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 3060 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 3061 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 3062 3063 if (error) { 3064 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 3065 return (ENOMEM); 3066 } 3067 3068 /* Create DMA maps for RX buffers. */ 3069 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3070 &sc->bge_cdata.bge_rx_std_sparemap); 3071 if (error) { 3072 device_printf(sc->bge_dev, 3073 "can't create spare DMA map for RX\n"); 3074 return (ENOMEM); 3075 } 3076 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3077 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3078 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3079 if (error) { 3080 device_printf(sc->bge_dev, 3081 "can't create DMA map for RX\n"); 3082 return (ENOMEM); 3083 } 3084 } 3085 3086 /* Create DMA maps for TX buffers. */ 3087 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3088 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3089 &sc->bge_cdata.bge_tx_dmamap[i]); 3090 if (error) { 3091 device_printf(sc->bge_dev, 3092 "can't create DMA map for TX\n"); 3093 return (ENOMEM); 3094 } 3095 } 3096 3097 /* Create tags for jumbo RX buffers. */ 3098 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3099 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3100 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3101 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3102 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3103 if (error) { 3104 device_printf(sc->bge_dev, 3105 "could not allocate jumbo dma tag\n"); 3106 return (ENOMEM); 3107 } 3108 /* Create DMA maps for jumbo RX buffers. */ 3109 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3110 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3111 if (error) { 3112 device_printf(sc->bge_dev, 3113 "can't create spare DMA map for jumbo RX\n"); 3114 return (ENOMEM); 3115 } 3116 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3117 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3118 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3119 if (error) { 3120 device_printf(sc->bge_dev, 3121 "can't create DMA map for jumbo RX\n"); 3122 return (ENOMEM); 3123 } 3124 } 3125 } 3126 3127 return (0); 3128 } 3129 3130 /* 3131 * Return true if this device has more than one port. 3132 */ 3133 static int 3134 bge_has_multiple_ports(struct bge_softc *sc) 3135 { 3136 device_t dev = sc->bge_dev; 3137 u_int b, d, f, fscan, s; 3138 3139 d = pci_get_domain(dev); 3140 b = pci_get_bus(dev); 3141 s = pci_get_slot(dev); 3142 f = pci_get_function(dev); 3143 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3144 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3145 return (1); 3146 return (0); 3147 } 3148 3149 /* 3150 * Return true if MSI can be used with this device. 3151 */ 3152 static int 3153 bge_can_use_msi(struct bge_softc *sc) 3154 { 3155 int can_use_msi = 0; 3156 3157 if (sc->bge_msi == 0) 3158 return (0); 3159 3160 /* Disable MSI for polling(4). */ 3161 #ifdef DEVICE_POLLING 3162 return (0); 3163 #endif 3164 switch (sc->bge_asicrev) { 3165 case BGE_ASICREV_BCM5714_A0: 3166 case BGE_ASICREV_BCM5714: 3167 /* 3168 * Apparently, MSI doesn't work when these chips are 3169 * configured in single-port mode. 3170 */ 3171 if (bge_has_multiple_ports(sc)) 3172 can_use_msi = 1; 3173 break; 3174 case BGE_ASICREV_BCM5750: 3175 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3176 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3177 can_use_msi = 1; 3178 break; 3179 case BGE_ASICREV_BCM5784: 3180 /* 3181 * Prevent infinite "watchdog timeout" errors 3182 * in some MacBook Pro and make it work out-of-the-box. 3183 */ 3184 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX) 3185 break; 3186 /* FALLTHROUGH */ 3187 default: 3188 if (BGE_IS_575X_PLUS(sc)) 3189 can_use_msi = 1; 3190 } 3191 return (can_use_msi); 3192 } 3193 3194 static int 3195 bge_mbox_reorder(struct bge_softc *sc) 3196 { 3197 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3198 static const struct mbox_reorder { 3199 const uint16_t vendor; 3200 const uint16_t device; 3201 const char *desc; 3202 } mbox_reorder_lists[] = { 3203 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3204 }; 3205 devclass_t pci, pcib; 3206 device_t bus, dev; 3207 int i; 3208 3209 pci = devclass_find("pci"); 3210 pcib = devclass_find("pcib"); 3211 dev = sc->bge_dev; 3212 bus = device_get_parent(dev); 3213 for (;;) { 3214 dev = device_get_parent(bus); 3215 bus = device_get_parent(dev); 3216 if (device_get_devclass(dev) != pcib) 3217 break; 3218 if (device_get_devclass(bus) != pci) 3219 break; 3220 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3221 if (pci_get_vendor(dev) == 3222 mbox_reorder_lists[i].vendor && 3223 pci_get_device(dev) == 3224 mbox_reorder_lists[i].device) { 3225 device_printf(sc->bge_dev, 3226 "enabling MBOX workaround for %s\n", 3227 mbox_reorder_lists[i].desc); 3228 return (1); 3229 } 3230 } 3231 } 3232 return (0); 3233 } 3234 3235 static void 3236 bge_devinfo(struct bge_softc *sc) 3237 { 3238 uint32_t cfg, clk; 3239 3240 device_printf(sc->bge_dev, 3241 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3242 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3243 if (sc->bge_flags & BGE_FLAG_PCIE) 3244 printf("PCI-E\n"); 3245 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3246 printf("PCI-X "); 3247 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3248 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3249 clk = 133; 3250 else { 3251 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3252 switch (clk) { 3253 case 0: 3254 clk = 33; 3255 break; 3256 case 2: 3257 clk = 50; 3258 break; 3259 case 4: 3260 clk = 66; 3261 break; 3262 case 6: 3263 clk = 100; 3264 break; 3265 case 7: 3266 clk = 133; 3267 break; 3268 } 3269 } 3270 printf("%u MHz\n", clk); 3271 } else { 3272 if (sc->bge_pcixcap != 0) 3273 printf("PCI on PCI-X "); 3274 else 3275 printf("PCI "); 3276 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3277 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3278 clk = 66; 3279 else 3280 clk = 33; 3281 if (cfg & BGE_PCISTATE_32BIT_BUS) 3282 printf("%u MHz; 32bit\n", clk); 3283 else 3284 printf("%u MHz; 64bit\n", clk); 3285 } 3286 } 3287 3288 static int 3289 bge_attach(device_t dev) 3290 { 3291 if_t ifp; 3292 struct bge_softc *sc; 3293 uint32_t hwcfg = 0, misccfg, pcistate; 3294 u_char eaddr[ETHER_ADDR_LEN]; 3295 int capmask, error, reg, rid, trys; 3296 3297 sc = device_get_softc(dev); 3298 sc->bge_dev = dev; 3299 3300 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3301 NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3302 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3303 3304 pci_enable_busmaster(dev); 3305 3306 /* 3307 * Allocate control/status registers. 3308 */ 3309 rid = PCIR_BAR(0); 3310 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3311 RF_ACTIVE); 3312 3313 if (sc->bge_res == NULL) { 3314 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3315 error = ENXIO; 3316 goto fail; 3317 } 3318 3319 /* Save various chip information. */ 3320 sc->bge_func_addr = pci_get_function(dev); 3321 sc->bge_chipid = bge_chipid(dev); 3322 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3323 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3324 3325 /* Set default PHY address. */ 3326 sc->bge_phy_addr = 1; 3327 /* 3328 * PHY address mapping for various devices. 3329 * 3330 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3331 * ---------+-------+-------+-------+-------+ 3332 * BCM57XX | 1 | X | X | X | 3333 * BCM5704 | 1 | X | 1 | X | 3334 * BCM5717 | 1 | 8 | 2 | 9 | 3335 * BCM5719 | 1 | 8 | 2 | 9 | 3336 * BCM5720 | 1 | 8 | 2 | 9 | 3337 * 3338 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3339 * ---------+-------+-------+-------+-------+ 3340 * BCM57XX | X | X | X | X | 3341 * BCM5704 | X | X | X | X | 3342 * BCM5717 | X | X | X | X | 3343 * BCM5719 | 3 | 10 | 4 | 11 | 3344 * BCM5720 | X | X | X | X | 3345 * 3346 * Other addresses may respond but they are not 3347 * IEEE compliant PHYs and should be ignored. 3348 */ 3349 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3350 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3351 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3352 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3353 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3354 BGE_SGDIGSTS_IS_SERDES) 3355 sc->bge_phy_addr = sc->bge_func_addr + 8; 3356 else 3357 sc->bge_phy_addr = sc->bge_func_addr + 1; 3358 } else { 3359 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3360 BGE_CPMU_PHY_STRAP_IS_SERDES) 3361 sc->bge_phy_addr = sc->bge_func_addr + 8; 3362 else 3363 sc->bge_phy_addr = sc->bge_func_addr + 1; 3364 } 3365 } 3366 3367 if (bge_has_eaddr(sc)) 3368 sc->bge_flags |= BGE_FLAG_EADDR; 3369 3370 /* Save chipset family. */ 3371 switch (sc->bge_asicrev) { 3372 case BGE_ASICREV_BCM5762: 3373 case BGE_ASICREV_BCM57765: 3374 case BGE_ASICREV_BCM57766: 3375 sc->bge_flags |= BGE_FLAG_57765_PLUS; 3376 /* FALLTHROUGH */ 3377 case BGE_ASICREV_BCM5717: 3378 case BGE_ASICREV_BCM5719: 3379 case BGE_ASICREV_BCM5720: 3380 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3381 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3382 BGE_FLAG_JUMBO_FRAME; 3383 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3384 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3385 /* 3386 * Enable work around for DMA engine miscalculation 3387 * of TXMBUF available space. 3388 */ 3389 sc->bge_flags |= BGE_FLAG_RDMA_BUG; 3390 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3391 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3392 /* Jumbo frame on BCM5719 A0 does not work. */ 3393 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3394 } 3395 } 3396 break; 3397 case BGE_ASICREV_BCM5755: 3398 case BGE_ASICREV_BCM5761: 3399 case BGE_ASICREV_BCM5784: 3400 case BGE_ASICREV_BCM5785: 3401 case BGE_ASICREV_BCM5787: 3402 case BGE_ASICREV_BCM57780: 3403 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3404 BGE_FLAG_5705_PLUS; 3405 break; 3406 case BGE_ASICREV_BCM5700: 3407 case BGE_ASICREV_BCM5701: 3408 case BGE_ASICREV_BCM5703: 3409 case BGE_ASICREV_BCM5704: 3410 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3411 break; 3412 case BGE_ASICREV_BCM5714_A0: 3413 case BGE_ASICREV_BCM5780: 3414 case BGE_ASICREV_BCM5714: 3415 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3416 /* FALLTHROUGH */ 3417 case BGE_ASICREV_BCM5750: 3418 case BGE_ASICREV_BCM5752: 3419 case BGE_ASICREV_BCM5906: 3420 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3421 /* FALLTHROUGH */ 3422 case BGE_ASICREV_BCM5705: 3423 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3424 break; 3425 } 3426 3427 /* Identify chips with APE processor. */ 3428 switch (sc->bge_asicrev) { 3429 case BGE_ASICREV_BCM5717: 3430 case BGE_ASICREV_BCM5719: 3431 case BGE_ASICREV_BCM5720: 3432 case BGE_ASICREV_BCM5761: 3433 case BGE_ASICREV_BCM5762: 3434 sc->bge_flags |= BGE_FLAG_APE; 3435 break; 3436 } 3437 3438 /* Chips with APE need BAR2 access for APE registers/memory. */ 3439 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3440 rid = PCIR_BAR(2); 3441 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3442 RF_ACTIVE); 3443 if (sc->bge_res2 == NULL) { 3444 device_printf (sc->bge_dev, 3445 "couldn't map BAR2 memory\n"); 3446 error = ENXIO; 3447 goto fail; 3448 } 3449 3450 /* Enable APE register/memory access by host driver. */ 3451 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3452 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3453 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3454 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3455 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3456 3457 bge_ape_lock_init(sc); 3458 bge_ape_read_fw_ver(sc); 3459 } 3460 3461 /* Add SYSCTLs, requires the chipset family to be set. */ 3462 bge_add_sysctls(sc); 3463 3464 /* Identify the chips that use an CPMU. */ 3465 if (BGE_IS_5717_PLUS(sc) || 3466 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3467 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3468 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3469 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3470 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3471 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3472 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3473 else 3474 sc->bge_mi_mode = BGE_MIMODE_BASE; 3475 /* Enable auto polling for BCM570[0-5]. */ 3476 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3477 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3478 3479 /* 3480 * All Broadcom controllers have 4GB boundary DMA bug. 3481 * Whenever an address crosses a multiple of the 4GB boundary 3482 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3483 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3484 * state machine will lockup and cause the device to hang. 3485 */ 3486 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3487 3488 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3489 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3490 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3491 3492 /* 3493 * BCM5719 cannot handle DMA requests for DMA segments that 3494 * have larger than 4KB in size. However the maximum DMA 3495 * segment size created in DMA tag is 4KB for TSO, so we 3496 * wouldn't encounter the issue here. 3497 */ 3498 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3499 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3500 3501 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3502 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3503 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3504 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3505 sc->bge_flags |= BGE_FLAG_5788; 3506 } 3507 3508 capmask = BMSR_DEFCAPMASK; 3509 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3510 (misccfg == 0x4000 || misccfg == 0x8000)) || 3511 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3512 pci_get_vendor(dev) == BCOM_VENDORID && 3513 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3514 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3515 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3516 (pci_get_vendor(dev) == BCOM_VENDORID && 3517 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3518 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3519 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3520 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3521 pci_get_device(dev) == BCOM_DEVICEID_BCM57791 || 3522 pci_get_device(dev) == BCOM_DEVICEID_BCM57795 || 3523 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3524 /* These chips are 10/100 only. */ 3525 capmask &= ~BMSR_EXTSTAT; 3526 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3527 } 3528 3529 /* 3530 * Some controllers seem to require a special firmware to use 3531 * TSO. But the firmware is not available to FreeBSD and Linux 3532 * claims that the TSO performed by the firmware is slower than 3533 * hardware based TSO. Moreover the firmware based TSO has one 3534 * known bug which can't handle TSO if Ethernet header + IP/TCP 3535 * header is greater than 80 bytes. A workaround for the TSO 3536 * bug exist but it seems it's too expensive than not using 3537 * TSO at all. Some hardware also have the TSO bug so limit 3538 * the TSO to the controllers that are not affected TSO issues 3539 * (e.g. 5755 or higher). 3540 */ 3541 if (BGE_IS_5717_PLUS(sc)) { 3542 /* BCM5717 requires different TSO configuration. */ 3543 sc->bge_flags |= BGE_FLAG_TSO3; 3544 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3545 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3546 /* TSO on BCM5719 A0 does not work. */ 3547 sc->bge_flags &= ~BGE_FLAG_TSO3; 3548 } 3549 } else if (BGE_IS_5755_PLUS(sc)) { 3550 /* 3551 * BCM5754 and BCM5787 shares the same ASIC id so 3552 * explicit device id check is required. 3553 * Due to unknown reason TSO does not work on BCM5755M. 3554 */ 3555 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3556 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3557 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3558 sc->bge_flags |= BGE_FLAG_TSO; 3559 } 3560 3561 /* 3562 * Check if this is a PCI-X or PCI Express device. 3563 */ 3564 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3565 /* 3566 * Found a PCI Express capabilities register, this 3567 * must be a PCI Express device. 3568 */ 3569 sc->bge_flags |= BGE_FLAG_PCIE; 3570 sc->bge_expcap = reg; 3571 /* Extract supported maximum payload size. */ 3572 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3573 PCIER_DEVICE_CAP, 2); 3574 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3575 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3576 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3577 sc->bge_expmrq = 2048; 3578 else 3579 sc->bge_expmrq = 4096; 3580 pci_set_max_read_req(dev, sc->bge_expmrq); 3581 } else { 3582 /* 3583 * Check if the device is in PCI-X Mode. 3584 * (This bit is not valid on PCI Express controllers.) 3585 */ 3586 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3587 sc->bge_pcixcap = reg; 3588 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3589 BGE_PCISTATE_PCI_BUSMODE) == 0) 3590 sc->bge_flags |= BGE_FLAG_PCIX; 3591 } 3592 3593 /* 3594 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3595 * not actually a MAC controller bug but an issue with the embedded 3596 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3597 */ 3598 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3599 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3600 /* 3601 * Some PCI-X bridges are known to trigger write reordering to 3602 * the mailbox registers. Typical phenomena is watchdog timeouts 3603 * caused by out-of-order TX completions. Enable workaround for 3604 * PCI-X devices that live behind these bridges. 3605 * Note, PCI-X controllers can run in PCI mode so we can't use 3606 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3607 */ 3608 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3609 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3610 /* 3611 * Allocate the interrupt, using MSI if possible. These devices 3612 * support 8 MSI messages, but only the first one is used in 3613 * normal operation. 3614 */ 3615 rid = 0; 3616 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3617 sc->bge_msicap = reg; 3618 reg = 1; 3619 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) { 3620 rid = 1; 3621 sc->bge_flags |= BGE_FLAG_MSI; 3622 } 3623 } 3624 3625 /* 3626 * All controllers except BCM5700 supports tagged status but 3627 * we use tagged status only for MSI case on BCM5717. Otherwise 3628 * MSI on BCM5717 does not work. 3629 */ 3630 #ifndef DEVICE_POLLING 3631 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3632 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3633 #endif 3634 3635 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3636 RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); 3637 3638 if (sc->bge_irq == NULL) { 3639 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3640 error = ENXIO; 3641 goto fail; 3642 } 3643 3644 bge_devinfo(sc); 3645 3646 sc->bge_asf_mode = 0; 3647 /* No ASF if APE present. */ 3648 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3649 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3650 BGE_SRAM_DATA_SIG_MAGIC)) { 3651 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3652 BGE_HWCFG_ASF) { 3653 sc->bge_asf_mode |= ASF_ENABLE; 3654 sc->bge_asf_mode |= ASF_STACKUP; 3655 if (BGE_IS_575X_PLUS(sc)) 3656 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3657 } 3658 } 3659 } 3660 3661 bge_stop_fw(sc); 3662 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3663 if (bge_reset(sc)) { 3664 device_printf(sc->bge_dev, "chip reset failed\n"); 3665 error = ENXIO; 3666 goto fail; 3667 } 3668 3669 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3670 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3671 3672 if (bge_chipinit(sc)) { 3673 device_printf(sc->bge_dev, "chip initialization failed\n"); 3674 error = ENXIO; 3675 goto fail; 3676 } 3677 3678 error = bge_get_eaddr(sc, eaddr); 3679 if (error) { 3680 device_printf(sc->bge_dev, 3681 "failed to read station address\n"); 3682 error = ENXIO; 3683 goto fail; 3684 } 3685 3686 /* 5705 limits RX return ring to 512 entries. */ 3687 if (BGE_IS_5717_PLUS(sc)) 3688 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3689 else if (BGE_IS_5705_PLUS(sc)) 3690 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3691 else 3692 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3693 3694 if (bge_dma_alloc(sc)) { 3695 device_printf(sc->bge_dev, 3696 "failed to allocate DMA resources\n"); 3697 error = ENXIO; 3698 goto fail; 3699 } 3700 3701 /* Set default tuneable values. */ 3702 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3703 sc->bge_rx_coal_ticks = 150; 3704 sc->bge_tx_coal_ticks = 150; 3705 sc->bge_rx_max_coal_bds = 10; 3706 sc->bge_tx_max_coal_bds = 10; 3707 3708 /* Initialize checksum features to use. */ 3709 sc->bge_csum_features = BGE_CSUM_FEATURES; 3710 if (sc->bge_forced_udpcsum != 0) 3711 sc->bge_csum_features |= CSUM_UDP; 3712 3713 /* Set up ifnet structure */ 3714 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3715 if (ifp == NULL) { 3716 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3717 error = ENXIO; 3718 goto fail; 3719 } 3720 if_setsoftc(ifp, sc); 3721 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3722 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 3723 if_setioctlfn(ifp, bge_ioctl); 3724 if_setstartfn(ifp, bge_start); 3725 if_setinitfn(ifp, bge_init); 3726 if_setgetcounterfn(ifp, bge_get_counter); 3727 if_setsendqlen(ifp, BGE_TX_RING_CNT - 1); 3728 if_setsendqready(ifp); 3729 if_sethwassist(ifp, sc->bge_csum_features); 3730 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3731 IFCAP_VLAN_MTU); 3732 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3733 if_sethwassistbits(ifp, CSUM_TSO, 0); 3734 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0); 3735 } 3736 #ifdef IFCAP_VLAN_HWCSUM 3737 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 3738 #endif 3739 if_setcapenable(ifp, if_getcapabilities(ifp)); 3740 #ifdef DEVICE_POLLING 3741 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 3742 #endif 3743 3744 /* 3745 * 5700 B0 chips do not support checksumming correctly due 3746 * to hardware bugs. 3747 */ 3748 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3749 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM); 3750 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM); 3751 if_sethwassist(ifp, 0); 3752 } 3753 3754 /* 3755 * Figure out what sort of media we have by checking the 3756 * hardware config word in the first 32k of NIC internal memory, 3757 * or fall back to examining the EEPROM if necessary. 3758 * Note: on some BCM5700 cards, this value appears to be unset. 3759 * If that's the case, we have to rely on identifying the NIC 3760 * by its PCI subsystem ID, as we do below for the SysKonnect 3761 * SK-9D41. 3762 */ 3763 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3764 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3765 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3766 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3767 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3768 sizeof(hwcfg))) { 3769 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3770 error = ENXIO; 3771 goto fail; 3772 } 3773 hwcfg = ntohl(hwcfg); 3774 } 3775 3776 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3777 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3778 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3779 if (BGE_IS_5705_PLUS(sc)) { 3780 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3781 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3782 } else 3783 sc->bge_flags |= BGE_FLAG_TBI; 3784 } 3785 3786 /* Set various PHY bug flags. */ 3787 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3788 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3789 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3790 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3791 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3792 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3793 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3794 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3795 if (pci_get_subvendor(dev) == DELL_VENDORID) 3796 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3797 if ((BGE_IS_5705_PLUS(sc)) && 3798 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3799 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3800 sc->bge_asicrev != BGE_ASICREV_BCM57780 && 3801 !BGE_IS_5717_PLUS(sc)) { 3802 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3803 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3804 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3805 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3806 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3807 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3808 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3809 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3810 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3811 } else 3812 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3813 } 3814 3815 /* 3816 * Don't enable Ethernet@WireSpeed for the 5700 or the 3817 * 5705 A0 and A1 chips. 3818 */ 3819 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3820 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3821 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3822 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3823 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3824 3825 if (sc->bge_flags & BGE_FLAG_TBI) { 3826 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3827 bge_ifmedia_sts); 3828 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3829 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3830 0, NULL); 3831 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3832 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3833 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3834 } else { 3835 /* 3836 * Do transceiver setup and tell the firmware the 3837 * driver is down so we can try to get access the 3838 * probe if ASF is running. Retry a couple of times 3839 * if we get a conflict with the ASF firmware accessing 3840 * the PHY. 3841 */ 3842 trys = 0; 3843 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3844 again: 3845 bge_asf_driver_up(sc); 3846 3847 error = mii_attach(dev, &sc->bge_miibus, ifp, 3848 (ifm_change_cb_t)bge_ifmedia_upd, 3849 (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 3850 MII_OFFSET_ANY, MIIF_DOPAUSE); 3851 if (error != 0) { 3852 if (trys++ < 4) { 3853 device_printf(sc->bge_dev, "Try again\n"); 3854 bge_miibus_writereg(sc->bge_dev, 3855 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3856 goto again; 3857 } 3858 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3859 goto fail; 3860 } 3861 3862 /* 3863 * Now tell the firmware we are going up after probing the PHY 3864 */ 3865 if (sc->bge_asf_mode & ASF_STACKUP) 3866 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3867 } 3868 3869 /* 3870 * When using the BCM5701 in PCI-X mode, data corruption has 3871 * been observed in the first few bytes of some received packets. 3872 * Aligning the packet buffer in memory eliminates the corruption. 3873 * Unfortunately, this misaligns the packet payloads. On platforms 3874 * which do not support unaligned accesses, we will realign the 3875 * payloads by copying the received packets. 3876 */ 3877 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3878 sc->bge_flags & BGE_FLAG_PCIX) 3879 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3880 3881 /* 3882 * Call MI attach routine. 3883 */ 3884 ether_ifattach(ifp, eaddr); 3885 3886 /* Tell upper layer we support long frames. */ 3887 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 3888 3889 /* 3890 * Hookup IRQ last. 3891 */ 3892 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3893 /* Take advantage of single-shot MSI. */ 3894 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3895 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3896 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3897 taskqueue_thread_enqueue, &sc->bge_tq); 3898 if (sc->bge_tq == NULL) { 3899 device_printf(dev, "could not create taskqueue.\n"); 3900 ether_ifdetach(ifp); 3901 error = ENOMEM; 3902 goto fail; 3903 } 3904 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, 3905 "%s taskq", device_get_nameunit(sc->bge_dev)); 3906 if (error != 0) { 3907 device_printf(dev, "could not start threads.\n"); 3908 ether_ifdetach(ifp); 3909 goto fail; 3910 } 3911 error = bus_setup_intr(dev, sc->bge_irq, 3912 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3913 &sc->bge_intrhand); 3914 } else 3915 error = bus_setup_intr(dev, sc->bge_irq, 3916 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3917 &sc->bge_intrhand); 3918 3919 if (error) { 3920 ether_ifdetach(ifp); 3921 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3922 goto fail; 3923 } 3924 3925 /* Attach driver debugnet methods. */ 3926 DEBUGNET_SET(ifp, bge); 3927 3928 fail: 3929 if (error) 3930 bge_detach(dev); 3931 return (error); 3932 } 3933 3934 static int 3935 bge_detach(device_t dev) 3936 { 3937 struct bge_softc *sc; 3938 if_t ifp; 3939 3940 sc = device_get_softc(dev); 3941 ifp = sc->bge_ifp; 3942 3943 #ifdef DEVICE_POLLING 3944 if (if_getcapenable(ifp) & IFCAP_POLLING) 3945 ether_poll_deregister(ifp); 3946 #endif 3947 3948 if (device_is_attached(dev)) { 3949 ether_ifdetach(ifp); 3950 BGE_LOCK(sc); 3951 bge_stop(sc); 3952 BGE_UNLOCK(sc); 3953 callout_drain(&sc->bge_stat_ch); 3954 } 3955 3956 if (sc->bge_tq) 3957 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3958 3959 if (sc->bge_flags & BGE_FLAG_TBI) 3960 ifmedia_removeall(&sc->bge_ifmedia); 3961 else if (sc->bge_miibus != NULL) { 3962 bus_generic_detach(dev); 3963 device_delete_child(dev, sc->bge_miibus); 3964 } 3965 3966 bge_release_resources(sc); 3967 3968 return (0); 3969 } 3970 3971 static void 3972 bge_release_resources(struct bge_softc *sc) 3973 { 3974 device_t dev; 3975 3976 dev = sc->bge_dev; 3977 3978 if (sc->bge_tq != NULL) 3979 taskqueue_free(sc->bge_tq); 3980 3981 if (sc->bge_intrhand != NULL) 3982 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3983 3984 if (sc->bge_irq != NULL) { 3985 bus_release_resource(dev, SYS_RES_IRQ, 3986 rman_get_rid(sc->bge_irq), sc->bge_irq); 3987 pci_release_msi(dev); 3988 } 3989 3990 if (sc->bge_res != NULL) 3991 bus_release_resource(dev, SYS_RES_MEMORY, 3992 rman_get_rid(sc->bge_res), sc->bge_res); 3993 3994 if (sc->bge_res2 != NULL) 3995 bus_release_resource(dev, SYS_RES_MEMORY, 3996 rman_get_rid(sc->bge_res2), sc->bge_res2); 3997 3998 if (sc->bge_ifp != NULL) 3999 if_free(sc->bge_ifp); 4000 4001 bge_dma_free(sc); 4002 4003 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 4004 BGE_LOCK_DESTROY(sc); 4005 } 4006 4007 static int 4008 bge_reset(struct bge_softc *sc) 4009 { 4010 device_t dev; 4011 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 4012 void (*write_op)(struct bge_softc *, int, int); 4013 uint16_t devctl; 4014 int i; 4015 4016 dev = sc->bge_dev; 4017 4018 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4019 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4020 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4021 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4022 4023 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4024 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 4025 if (sc->bge_flags & BGE_FLAG_PCIE) 4026 write_op = bge_writemem_direct; 4027 else 4028 write_op = bge_writemem_ind; 4029 } else 4030 write_op = bge_writereg_ind; 4031 4032 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 4033 sc->bge_asicrev != BGE_ASICREV_BCM5701) { 4034 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4035 for (i = 0; i < 8000; i++) { 4036 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4037 BGE_NVRAMSWARB_GNT1) 4038 break; 4039 DELAY(20); 4040 } 4041 if (i == 8000) { 4042 if (bootverbose) 4043 device_printf(dev, "NVRAM lock timedout!\n"); 4044 } 4045 } 4046 /* Take APE lock when performing reset. */ 4047 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4048 4049 /* Save some important PCI state. */ 4050 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 4051 command = pci_read_config(dev, BGE_PCI_CMD, 4); 4052 4053 pci_write_config(dev, BGE_PCI_MISC_CTL, 4054 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4055 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4056 4057 /* Disable fastboot on controllers that support it. */ 4058 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 4059 BGE_IS_5755_PLUS(sc)) { 4060 if (bootverbose) 4061 device_printf(dev, "Disabling fastboot\n"); 4062 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 4063 } 4064 4065 /* 4066 * Write the magic number to SRAM at offset 0xB50. 4067 * When firmware finishes its initialization it will 4068 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 4069 */ 4070 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4071 4072 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4073 4074 /* XXX: Broadcom Linux driver. */ 4075 if (sc->bge_flags & BGE_FLAG_PCIE) { 4076 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 4077 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4078 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4079 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4080 } 4081 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4082 /* Prevent PCIE link training during global reset */ 4083 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4084 reset |= 1 << 29; 4085 } 4086 } 4087 4088 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4089 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4090 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4091 val | BGE_VCPU_STATUS_DRV_RESET); 4092 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4093 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4094 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4095 } 4096 4097 /* 4098 * Set GPHY Power Down Override to leave GPHY 4099 * powered up in D0 uninitialized. 4100 */ 4101 if (BGE_IS_5705_PLUS(sc) && 4102 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4103 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4104 4105 /* Issue global reset */ 4106 write_op(sc, BGE_MISC_CFG, reset); 4107 4108 if (sc->bge_flags & BGE_FLAG_PCIE) 4109 DELAY(100 * 1000); 4110 else 4111 DELAY(1000); 4112 4113 /* XXX: Broadcom Linux driver. */ 4114 if (sc->bge_flags & BGE_FLAG_PCIE) { 4115 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4116 DELAY(500000); /* wait for link training to complete */ 4117 val = pci_read_config(dev, 0xC4, 4); 4118 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4119 } 4120 devctl = pci_read_config(dev, 4121 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4122 /* Clear enable no snoop and disable relaxed ordering. */ 4123 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4124 PCIEM_CTL_NOSNOOP_ENABLE); 4125 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4126 devctl, 2); 4127 pci_set_max_read_req(dev, sc->bge_expmrq); 4128 /* Clear error status. */ 4129 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4130 PCIEM_STA_CORRECTABLE_ERROR | 4131 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4132 PCIEM_STA_UNSUPPORTED_REQ, 2); 4133 } 4134 4135 /* Reset some of the PCI state that got zapped by reset. */ 4136 pci_write_config(dev, BGE_PCI_MISC_CTL, 4137 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4138 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4139 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4140 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4141 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4142 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4143 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4144 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4145 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4146 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4147 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4148 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4149 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4150 /* 4151 * Disable PCI-X relaxed ordering to ensure status block update 4152 * comes first then packet buffer DMA. Otherwise driver may 4153 * read stale status block. 4154 */ 4155 if (sc->bge_flags & BGE_FLAG_PCIX) { 4156 devctl = pci_read_config(dev, 4157 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4158 devctl &= ~PCIXM_COMMAND_ERO; 4159 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4160 devctl &= ~PCIXM_COMMAND_MAX_READ; 4161 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4162 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4163 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4164 PCIXM_COMMAND_MAX_READ); 4165 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4166 } 4167 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4168 devctl, 2); 4169 } 4170 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4171 if (BGE_IS_5714_FAMILY(sc)) { 4172 /* This chip disables MSI on reset. */ 4173 if (sc->bge_flags & BGE_FLAG_MSI) { 4174 val = pci_read_config(dev, 4175 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4176 pci_write_config(dev, 4177 sc->bge_msicap + PCIR_MSI_CTRL, 4178 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4179 val = CSR_READ_4(sc, BGE_MSI_MODE); 4180 CSR_WRITE_4(sc, BGE_MSI_MODE, 4181 val | BGE_MSIMODE_ENABLE); 4182 } 4183 val = CSR_READ_4(sc, BGE_MARB_MODE); 4184 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4185 } else 4186 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4187 4188 /* Fix up byte swapping. */ 4189 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4190 4191 val = CSR_READ_4(sc, BGE_MAC_MODE); 4192 val = (val & ~mac_mode_mask) | mac_mode; 4193 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4194 DELAY(40); 4195 4196 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4197 4198 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4199 for (i = 0; i < BGE_TIMEOUT; i++) { 4200 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4201 if (val & BGE_VCPU_STATUS_INIT_DONE) 4202 break; 4203 DELAY(100); 4204 } 4205 if (i == BGE_TIMEOUT) { 4206 device_printf(dev, "reset timed out\n"); 4207 return (1); 4208 } 4209 } else { 4210 /* 4211 * Poll until we see the 1's complement of the magic number. 4212 * This indicates that the firmware initialization is complete. 4213 * We expect this to fail if no chip containing the Ethernet 4214 * address is fitted though. 4215 */ 4216 for (i = 0; i < BGE_TIMEOUT; i++) { 4217 DELAY(10); 4218 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4219 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4220 break; 4221 } 4222 4223 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4224 device_printf(dev, 4225 "firmware handshake timed out, found 0x%08x\n", 4226 val); 4227 /* BCM57765 A0 needs additional time before accessing. */ 4228 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4229 DELAY(10 * 1000); /* XXX */ 4230 } 4231 4232 /* 4233 * The 5704 in TBI mode apparently needs some special 4234 * adjustment to insure the SERDES drive level is set 4235 * to 1.2V. 4236 */ 4237 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4238 sc->bge_flags & BGE_FLAG_TBI) { 4239 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4240 val = (val & ~0xFFF) | 0x880; 4241 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4242 } 4243 4244 /* XXX: Broadcom Linux driver. */ 4245 if (sc->bge_flags & BGE_FLAG_PCIE && 4246 !BGE_IS_5717_PLUS(sc) && 4247 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4248 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4249 /* Enable Data FIFO protection. */ 4250 val = CSR_READ_4(sc, 0x7C00); 4251 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4252 } 4253 4254 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4255 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4256 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4257 4258 return (0); 4259 } 4260 4261 static __inline void 4262 bge_rxreuse_std(struct bge_softc *sc, int i) 4263 { 4264 struct bge_rx_bd *r; 4265 4266 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4267 r->bge_flags = BGE_RXBDFLAG_END; 4268 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4269 r->bge_idx = i; 4270 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4271 } 4272 4273 static __inline void 4274 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4275 { 4276 struct bge_extrx_bd *r; 4277 4278 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4279 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4280 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4281 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4282 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4283 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4284 r->bge_idx = i; 4285 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4286 } 4287 4288 /* 4289 * Frame reception handling. This is called if there's a frame 4290 * on the receive return list. 4291 * 4292 * Note: we have to be able to handle two possibilities here: 4293 * 1) the frame is from the jumbo receive ring 4294 * 2) the frame is from the standard receive ring 4295 */ 4296 4297 static int 4298 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4299 { 4300 if_t ifp; 4301 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4302 uint16_t rx_cons; 4303 4304 rx_cons = sc->bge_rx_saved_considx; 4305 4306 /* Nothing to do. */ 4307 if (rx_cons == rx_prod) 4308 return (rx_npkts); 4309 4310 ifp = sc->bge_ifp; 4311 4312 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4313 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4314 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4315 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4316 if (BGE_IS_JUMBO_CAPABLE(sc) && 4317 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 4318 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) 4319 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4320 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4321 4322 while (rx_cons != rx_prod) { 4323 struct bge_rx_bd *cur_rx; 4324 uint32_t rxidx; 4325 struct mbuf *m = NULL; 4326 uint16_t vlan_tag = 0; 4327 int have_tag = 0; 4328 4329 #ifdef DEVICE_POLLING 4330 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4331 if (sc->rxcycles <= 0) 4332 break; 4333 sc->rxcycles--; 4334 } 4335 #endif 4336 4337 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4338 4339 rxidx = cur_rx->bge_idx; 4340 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4341 4342 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 4343 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4344 have_tag = 1; 4345 vlan_tag = cur_rx->bge_vlan_tag; 4346 } 4347 4348 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4349 jumbocnt++; 4350 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4351 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4352 bge_rxreuse_jumbo(sc, rxidx); 4353 continue; 4354 } 4355 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4356 bge_rxreuse_jumbo(sc, rxidx); 4357 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4358 continue; 4359 } 4360 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4361 } else { 4362 stdcnt++; 4363 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4364 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4365 bge_rxreuse_std(sc, rxidx); 4366 continue; 4367 } 4368 if (bge_newbuf_std(sc, rxidx) != 0) { 4369 bge_rxreuse_std(sc, rxidx); 4370 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4371 continue; 4372 } 4373 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4374 } 4375 4376 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 4377 #ifndef __NO_STRICT_ALIGNMENT 4378 /* 4379 * For architectures with strict alignment we must make sure 4380 * the payload is aligned. 4381 */ 4382 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4383 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4384 cur_rx->bge_len); 4385 m->m_data += ETHER_ALIGN; 4386 } 4387 #endif 4388 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4389 m->m_pkthdr.rcvif = ifp; 4390 4391 if (if_getcapenable(ifp) & IFCAP_RXCSUM) 4392 bge_rxcsum(sc, cur_rx, m); 4393 4394 /* 4395 * If we received a packet with a vlan tag, 4396 * attach that information to the packet. 4397 */ 4398 if (have_tag) { 4399 m->m_pkthdr.ether_vtag = vlan_tag; 4400 m->m_flags |= M_VLANTAG; 4401 } 4402 4403 if (holdlck != 0) { 4404 BGE_UNLOCK(sc); 4405 if_input(ifp, m); 4406 BGE_LOCK(sc); 4407 } else 4408 if_input(ifp, m); 4409 rx_npkts++; 4410 4411 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4412 return (rx_npkts); 4413 } 4414 4415 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4416 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4417 if (stdcnt > 0) 4418 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4419 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4420 4421 if (jumbocnt > 0) 4422 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4423 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4424 4425 sc->bge_rx_saved_considx = rx_cons; 4426 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4427 if (stdcnt) 4428 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4429 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4430 if (jumbocnt) 4431 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4432 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4433 #ifdef notyet 4434 /* 4435 * This register wraps very quickly under heavy packet drops. 4436 * If you need correct statistics, you can enable this check. 4437 */ 4438 if (BGE_IS_5705_PLUS(sc)) 4439 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4440 #endif 4441 return (rx_npkts); 4442 } 4443 4444 static void 4445 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4446 { 4447 4448 if (BGE_IS_5717_PLUS(sc)) { 4449 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4450 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4451 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4452 if ((cur_rx->bge_error_flag & 4453 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4454 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4455 } 4456 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4457 m->m_pkthdr.csum_data = 4458 cur_rx->bge_tcp_udp_csum; 4459 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4460 CSUM_PSEUDO_HDR; 4461 } 4462 } 4463 } else { 4464 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4465 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4466 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4467 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4468 } 4469 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4470 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4471 m->m_pkthdr.csum_data = 4472 cur_rx->bge_tcp_udp_csum; 4473 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4474 CSUM_PSEUDO_HDR; 4475 } 4476 } 4477 } 4478 4479 static void 4480 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4481 { 4482 struct bge_tx_bd *cur_tx; 4483 if_t ifp; 4484 4485 BGE_LOCK_ASSERT(sc); 4486 4487 /* Nothing to do. */ 4488 if (sc->bge_tx_saved_considx == tx_cons) 4489 return; 4490 4491 ifp = sc->bge_ifp; 4492 4493 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4494 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4495 /* 4496 * Go through our tx ring and free mbufs for those 4497 * frames that have been sent. 4498 */ 4499 while (sc->bge_tx_saved_considx != tx_cons) { 4500 uint32_t idx; 4501 4502 idx = sc->bge_tx_saved_considx; 4503 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4504 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4505 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4506 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4507 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4508 sc->bge_cdata.bge_tx_dmamap[idx], 4509 BUS_DMASYNC_POSTWRITE); 4510 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4511 sc->bge_cdata.bge_tx_dmamap[idx]); 4512 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4513 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4514 } 4515 sc->bge_txcnt--; 4516 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4517 } 4518 4519 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 4520 if (sc->bge_txcnt == 0) 4521 sc->bge_timer = 0; 4522 } 4523 4524 #ifdef DEVICE_POLLING 4525 static int 4526 bge_poll(if_t ifp, enum poll_cmd cmd, int count) 4527 { 4528 struct bge_softc *sc = if_getsoftc(ifp); 4529 uint16_t rx_prod, tx_cons; 4530 uint32_t statusword; 4531 int rx_npkts = 0; 4532 4533 BGE_LOCK(sc); 4534 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4535 BGE_UNLOCK(sc); 4536 return (rx_npkts); 4537 } 4538 4539 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4540 sc->bge_cdata.bge_status_map, 4541 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4542 /* Fetch updates from the status block. */ 4543 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4544 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4545 4546 statusword = sc->bge_ldata.bge_status_block->bge_status; 4547 /* Clear the status so the next pass only sees the changes. */ 4548 sc->bge_ldata.bge_status_block->bge_status = 0; 4549 4550 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4551 sc->bge_cdata.bge_status_map, 4552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4553 4554 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4555 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4556 sc->bge_link_evt++; 4557 4558 if (cmd == POLL_AND_CHECK_STATUS) 4559 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4560 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4561 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4562 bge_link_upd(sc); 4563 4564 sc->rxcycles = count; 4565 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4566 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4567 BGE_UNLOCK(sc); 4568 return (rx_npkts); 4569 } 4570 bge_txeof(sc, tx_cons); 4571 if (!if_sendq_empty(ifp)) 4572 bge_start_locked(ifp); 4573 4574 BGE_UNLOCK(sc); 4575 return (rx_npkts); 4576 } 4577 #endif /* DEVICE_POLLING */ 4578 4579 static int 4580 bge_msi_intr(void *arg) 4581 { 4582 struct bge_softc *sc; 4583 4584 sc = (struct bge_softc *)arg; 4585 /* 4586 * This interrupt is not shared and controller already 4587 * disabled further interrupt. 4588 */ 4589 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4590 return (FILTER_HANDLED); 4591 } 4592 4593 static void 4594 bge_intr_task(void *arg, int pending) 4595 { 4596 struct bge_softc *sc; 4597 if_t ifp; 4598 uint32_t status, status_tag; 4599 uint16_t rx_prod, tx_cons; 4600 4601 sc = (struct bge_softc *)arg; 4602 ifp = sc->bge_ifp; 4603 4604 BGE_LOCK(sc); 4605 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4606 BGE_UNLOCK(sc); 4607 return; 4608 } 4609 4610 /* Get updated status block. */ 4611 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4612 sc->bge_cdata.bge_status_map, 4613 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4614 4615 /* Save producer/consumer indices. */ 4616 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4617 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4618 status = sc->bge_ldata.bge_status_block->bge_status; 4619 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4620 /* Dirty the status flag. */ 4621 sc->bge_ldata.bge_status_block->bge_status = 0; 4622 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4623 sc->bge_cdata.bge_status_map, 4624 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4625 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4626 status_tag = 0; 4627 4628 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4629 bge_link_upd(sc); 4630 4631 /* Let controller work. */ 4632 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4633 4634 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4635 sc->bge_rx_saved_considx != rx_prod) { 4636 /* Check RX return ring producer/consumer. */ 4637 BGE_UNLOCK(sc); 4638 bge_rxeof(sc, rx_prod, 0); 4639 BGE_LOCK(sc); 4640 } 4641 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4642 /* Check TX ring producer/consumer. */ 4643 bge_txeof(sc, tx_cons); 4644 if (!if_sendq_empty(ifp)) 4645 bge_start_locked(ifp); 4646 } 4647 BGE_UNLOCK(sc); 4648 } 4649 4650 static void 4651 bge_intr(void *xsc) 4652 { 4653 struct bge_softc *sc; 4654 if_t ifp; 4655 uint32_t statusword; 4656 uint16_t rx_prod, tx_cons; 4657 4658 sc = xsc; 4659 4660 BGE_LOCK(sc); 4661 4662 ifp = sc->bge_ifp; 4663 4664 #ifdef DEVICE_POLLING 4665 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4666 BGE_UNLOCK(sc); 4667 return; 4668 } 4669 #endif 4670 4671 /* 4672 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4673 * disable interrupts by writing nonzero like we used to, since with 4674 * our current organization this just gives complications and 4675 * pessimizations for re-enabling interrupts. We used to have races 4676 * instead of the necessary complications. Disabling interrupts 4677 * would just reduce the chance of a status update while we are 4678 * running (by switching to the interrupt-mode coalescence 4679 * parameters), but this chance is already very low so it is more 4680 * efficient to get another interrupt than prevent it. 4681 * 4682 * We do the ack first to ensure another interrupt if there is a 4683 * status update after the ack. We don't check for the status 4684 * changing later because it is more efficient to get another 4685 * interrupt than prevent it, not quite as above (not checking is 4686 * a smaller optimization than not toggling the interrupt enable, 4687 * since checking doesn't involve PCI accesses and toggling require 4688 * the status check). So toggling would probably be a pessimization 4689 * even with MSI. It would only be needed for using a task queue. 4690 */ 4691 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4692 4693 /* 4694 * Do the mandatory PCI flush as well as get the link status. 4695 */ 4696 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4697 4698 /* Make sure the descriptor ring indexes are coherent. */ 4699 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4700 sc->bge_cdata.bge_status_map, 4701 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4702 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4703 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4704 sc->bge_ldata.bge_status_block->bge_status = 0; 4705 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4706 sc->bge_cdata.bge_status_map, 4707 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4708 4709 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4710 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4711 statusword || sc->bge_link_evt) 4712 bge_link_upd(sc); 4713 4714 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4715 /* Check RX return ring producer/consumer. */ 4716 bge_rxeof(sc, rx_prod, 1); 4717 } 4718 4719 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4720 /* Check TX ring producer/consumer. */ 4721 bge_txeof(sc, tx_cons); 4722 } 4723 4724 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4725 !if_sendq_empty(ifp)) 4726 bge_start_locked(ifp); 4727 4728 BGE_UNLOCK(sc); 4729 } 4730 4731 static void 4732 bge_asf_driver_up(struct bge_softc *sc) 4733 { 4734 if (sc->bge_asf_mode & ASF_STACKUP) { 4735 /* Send ASF heartbeat aprox. every 2s */ 4736 if (sc->bge_asf_count) 4737 sc->bge_asf_count --; 4738 else { 4739 sc->bge_asf_count = 2; 4740 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4741 BGE_FW_CMD_DRV_ALIVE); 4742 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4743 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4744 BGE_FW_HB_TIMEOUT_SEC); 4745 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4746 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4747 BGE_RX_CPU_DRV_EVENT); 4748 } 4749 } 4750 } 4751 4752 static void 4753 bge_tick(void *xsc) 4754 { 4755 struct bge_softc *sc = xsc; 4756 struct mii_data *mii = NULL; 4757 4758 BGE_LOCK_ASSERT(sc); 4759 4760 /* Synchronize with possible callout reset/stop. */ 4761 if (callout_pending(&sc->bge_stat_ch) || 4762 !callout_active(&sc->bge_stat_ch)) 4763 return; 4764 4765 if (BGE_IS_5705_PLUS(sc)) 4766 bge_stats_update_regs(sc); 4767 else 4768 bge_stats_update(sc); 4769 4770 /* XXX Add APE heartbeat check here? */ 4771 4772 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4773 mii = device_get_softc(sc->bge_miibus); 4774 /* 4775 * Do not touch PHY if we have link up. This could break 4776 * IPMI/ASF mode or produce extra input errors 4777 * (extra errors was reported for bcm5701 & bcm5704). 4778 */ 4779 if (!sc->bge_link) 4780 mii_tick(mii); 4781 } else { 4782 /* 4783 * Since in TBI mode auto-polling can't be used we should poll 4784 * link status manually. Here we register pending link event 4785 * and trigger interrupt. 4786 */ 4787 #ifdef DEVICE_POLLING 4788 /* In polling mode we poll link state in bge_poll(). */ 4789 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING)) 4790 #endif 4791 { 4792 sc->bge_link_evt++; 4793 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4794 sc->bge_flags & BGE_FLAG_5788) 4795 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4796 else 4797 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4798 } 4799 } 4800 4801 bge_asf_driver_up(sc); 4802 bge_watchdog(sc); 4803 4804 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4805 } 4806 4807 static void 4808 bge_stats_update_regs(struct bge_softc *sc) 4809 { 4810 struct bge_mac_stats *stats; 4811 uint32_t val; 4812 4813 stats = &sc->bge_mac_stats; 4814 4815 stats->ifHCOutOctets += 4816 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4817 stats->etherStatsCollisions += 4818 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4819 stats->outXonSent += 4820 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4821 stats->outXoffSent += 4822 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4823 stats->dot3StatsInternalMacTransmitErrors += 4824 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4825 stats->dot3StatsSingleCollisionFrames += 4826 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4827 stats->dot3StatsMultipleCollisionFrames += 4828 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4829 stats->dot3StatsDeferredTransmissions += 4830 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4831 stats->dot3StatsExcessiveCollisions += 4832 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4833 stats->dot3StatsLateCollisions += 4834 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4835 stats->ifHCOutUcastPkts += 4836 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4837 stats->ifHCOutMulticastPkts += 4838 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4839 stats->ifHCOutBroadcastPkts += 4840 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4841 4842 stats->ifHCInOctets += 4843 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4844 stats->etherStatsFragments += 4845 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4846 stats->ifHCInUcastPkts += 4847 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4848 stats->ifHCInMulticastPkts += 4849 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4850 stats->ifHCInBroadcastPkts += 4851 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4852 stats->dot3StatsFCSErrors += 4853 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4854 stats->dot3StatsAlignmentErrors += 4855 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4856 stats->xonPauseFramesReceived += 4857 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4858 stats->xoffPauseFramesReceived += 4859 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4860 stats->macControlFramesReceived += 4861 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4862 stats->xoffStateEntered += 4863 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4864 stats->dot3StatsFramesTooLong += 4865 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4866 stats->etherStatsJabbers += 4867 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4868 stats->etherStatsUndersizePkts += 4869 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4870 4871 stats->FramesDroppedDueToFilters += 4872 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4873 stats->DmaWriteQueueFull += 4874 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4875 stats->DmaWriteHighPriQueueFull += 4876 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4877 stats->NoMoreRxBDs += 4878 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4879 /* 4880 * XXX 4881 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4882 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4883 * includes number of unwanted multicast frames. This comes 4884 * from silicon bug and known workaround to get rough(not 4885 * exact) counter is to enable interrupt on MBUF low water 4886 * attention. This can be accomplished by setting 4887 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4888 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4889 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4890 * However that change would generate more interrupts and 4891 * there are still possibilities of losing multiple frames 4892 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4893 * Given that the workaround still would not get correct 4894 * counter I don't think it's worth to implement it. So 4895 * ignore reading the counter on controllers that have the 4896 * silicon bug. 4897 */ 4898 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4899 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4900 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4901 stats->InputDiscards += 4902 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4903 stats->InputErrors += 4904 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4905 stats->RecvThresholdHit += 4906 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4907 4908 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 4909 /* 4910 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4911 * frames, it's safe to disable workaround for DMA engine's 4912 * miscalculation of TXMBUF space. 4913 */ 4914 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts + 4915 stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) { 4916 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4917 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 4918 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4919 else 4920 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4921 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4922 sc->bge_flags &= ~BGE_FLAG_RDMA_BUG; 4923 } 4924 } 4925 } 4926 4927 static void 4928 bge_stats_clear_regs(struct bge_softc *sc) 4929 { 4930 4931 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4932 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4933 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4934 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4935 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4936 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4937 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4938 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4939 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4940 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4941 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4942 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4943 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4944 4945 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4946 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4947 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4948 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4949 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4950 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4951 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4952 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4953 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4954 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4955 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4956 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4957 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4958 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4959 4960 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4961 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4962 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4963 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4964 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4965 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4966 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4967 } 4968 4969 static void 4970 bge_stats_update(struct bge_softc *sc) 4971 { 4972 if_t ifp; 4973 bus_size_t stats; 4974 uint32_t cnt; /* current register value */ 4975 4976 ifp = sc->bge_ifp; 4977 4978 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4979 4980 #define READ_STAT(sc, stats, stat) \ 4981 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4982 4983 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4984 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions); 4985 sc->bge_tx_collisions = cnt; 4986 4987 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4988 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds); 4989 sc->bge_rx_nobds = cnt; 4990 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4991 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs); 4992 sc->bge_rx_inerrs = cnt; 4993 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4994 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards); 4995 sc->bge_rx_discards = cnt; 4996 4997 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4998 if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards); 4999 sc->bge_tx_discards = cnt; 5000 5001 #undef READ_STAT 5002 } 5003 5004 /* 5005 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 5006 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 5007 * but when such padded frames employ the bge IP/TCP checksum offload, 5008 * the hardware checksum assist gives incorrect results (possibly 5009 * from incorporating its own padding into the UDP/TCP checksum; who knows). 5010 * If we pad such runts with zeros, the onboard checksum comes out correct. 5011 */ 5012 static __inline int 5013 bge_cksum_pad(struct mbuf *m) 5014 { 5015 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 5016 struct mbuf *last; 5017 5018 /* If there's only the packet-header and we can pad there, use it. */ 5019 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 5020 M_TRAILINGSPACE(m) >= padlen) { 5021 last = m; 5022 } else { 5023 /* 5024 * Walk packet chain to find last mbuf. We will either 5025 * pad there, or append a new mbuf and pad it. 5026 */ 5027 for (last = m; last->m_next != NULL; last = last->m_next); 5028 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 5029 /* Allocate new empty mbuf, pad it. Compact later. */ 5030 struct mbuf *n; 5031 5032 MGET(n, M_NOWAIT, MT_DATA); 5033 if (n == NULL) 5034 return (ENOBUFS); 5035 n->m_len = 0; 5036 last->m_next = n; 5037 last = n; 5038 } 5039 } 5040 5041 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 5042 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 5043 last->m_len += padlen; 5044 m->m_pkthdr.len += padlen; 5045 5046 return (0); 5047 } 5048 5049 static struct mbuf * 5050 bge_check_short_dma(struct mbuf *m) 5051 { 5052 struct mbuf *n; 5053 int found; 5054 5055 /* 5056 * If device receive two back-to-back send BDs with less than 5057 * or equal to 8 total bytes then the device may hang. The two 5058 * back-to-back send BDs must in the same frame for this failure 5059 * to occur. Scan mbuf chains and see whether two back-to-back 5060 * send BDs are there. If this is the case, allocate new mbuf 5061 * and copy the frame to workaround the silicon bug. 5062 */ 5063 for (n = m, found = 0; n != NULL; n = n->m_next) { 5064 if (n->m_len < 8) { 5065 found++; 5066 if (found > 1) 5067 break; 5068 continue; 5069 } 5070 found = 0; 5071 } 5072 5073 if (found > 1) { 5074 n = m_defrag(m, M_NOWAIT); 5075 if (n == NULL) 5076 m_freem(m); 5077 } else 5078 n = m; 5079 return (n); 5080 } 5081 5082 static struct mbuf * 5083 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 5084 uint16_t *flags) 5085 { 5086 struct ip *ip; 5087 struct tcphdr *tcp; 5088 struct mbuf *n; 5089 uint16_t hlen; 5090 uint32_t poff; 5091 5092 if (M_WRITABLE(m) == 0) { 5093 /* Get a writable copy. */ 5094 n = m_dup(m, M_NOWAIT); 5095 m_freem(m); 5096 if (n == NULL) 5097 return (NULL); 5098 m = n; 5099 } 5100 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5101 if (m == NULL) 5102 return (NULL); 5103 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5104 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5105 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5106 if (m == NULL) 5107 return (NULL); 5108 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5109 m = m_pullup(m, poff + (tcp->th_off << 2)); 5110 if (m == NULL) 5111 return (NULL); 5112 /* 5113 * It seems controller doesn't modify IP length and TCP pseudo 5114 * checksum. These checksum computed by upper stack should be 0. 5115 */ 5116 *mss = m->m_pkthdr.tso_segsz; 5117 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5118 ip->ip_sum = 0; 5119 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5120 /* Clear pseudo checksum computed by TCP stack. */ 5121 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5122 tcp->th_sum = 0; 5123 /* 5124 * Broadcom controllers uses different descriptor format for 5125 * TSO depending on ASIC revision. Due to TSO-capable firmware 5126 * license issue and lower performance of firmware based TSO 5127 * we only support hardware based TSO. 5128 */ 5129 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5130 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5131 if (sc->bge_flags & BGE_FLAG_TSO3) { 5132 /* 5133 * For BCM5717 and newer controllers, hardware based TSO 5134 * uses the 14 lower bits of the bge_mss field to store the 5135 * MSS and the upper 2 bits to store the lowest 2 bits of 5136 * the IP/TCP header length. The upper 6 bits of the header 5137 * length are stored in the bge_flags[14:10,4] field. Jumbo 5138 * frames are supported. 5139 */ 5140 *mss |= ((hlen & 0x3) << 14); 5141 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5142 } else { 5143 /* 5144 * For BCM5755 and newer controllers, hardware based TSO uses 5145 * the lower 11 bits to store the MSS and the upper 5 bits to 5146 * store the IP/TCP header length. Jumbo frames are not 5147 * supported. 5148 */ 5149 *mss |= (hlen << 11); 5150 } 5151 return (m); 5152 } 5153 5154 /* 5155 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5156 * pointers to descriptors. 5157 */ 5158 static int 5159 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5160 { 5161 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5162 bus_dmamap_t map; 5163 struct bge_tx_bd *d; 5164 struct mbuf *m = *m_head; 5165 uint32_t idx = *txidx; 5166 uint16_t csum_flags, mss, vlan_tag; 5167 int nsegs, i, error; 5168 5169 csum_flags = 0; 5170 mss = 0; 5171 vlan_tag = 0; 5172 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5173 m->m_next != NULL) { 5174 *m_head = bge_check_short_dma(m); 5175 if (*m_head == NULL) 5176 return (ENOBUFS); 5177 m = *m_head; 5178 } 5179 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5180 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5181 if (*m_head == NULL) 5182 return (ENOBUFS); 5183 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5184 BGE_TXBDFLAG_CPU_POST_DMA; 5185 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5186 if (m->m_pkthdr.csum_flags & CSUM_IP) 5187 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5188 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5189 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5190 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5191 (error = bge_cksum_pad(m)) != 0) { 5192 m_freem(m); 5193 *m_head = NULL; 5194 return (error); 5195 } 5196 } 5197 } 5198 5199 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5200 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5201 m->m_pkthdr.len > ETHER_MAX_LEN) 5202 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5203 if (sc->bge_forced_collapse > 0 && 5204 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5205 /* 5206 * Forcedly collapse mbuf chains to overcome hardware 5207 * limitation which only support a single outstanding 5208 * DMA read operation. 5209 */ 5210 if (sc->bge_forced_collapse == 1) 5211 m = m_defrag(m, M_NOWAIT); 5212 else 5213 m = m_collapse(m, M_NOWAIT, 5214 sc->bge_forced_collapse); 5215 if (m == NULL) 5216 m = *m_head; 5217 *m_head = m; 5218 } 5219 } 5220 5221 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5222 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5223 &nsegs, BUS_DMA_NOWAIT); 5224 if (error == EFBIG) { 5225 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW); 5226 if (m == NULL) { 5227 m_freem(*m_head); 5228 *m_head = NULL; 5229 return (ENOBUFS); 5230 } 5231 *m_head = m; 5232 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5233 m, segs, &nsegs, BUS_DMA_NOWAIT); 5234 if (error) { 5235 m_freem(m); 5236 *m_head = NULL; 5237 return (error); 5238 } 5239 } else if (error != 0) 5240 return (error); 5241 5242 /* Check if we have enough free send BDs. */ 5243 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5244 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5245 return (ENOBUFS); 5246 } 5247 5248 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5249 5250 if (m->m_flags & M_VLANTAG) { 5251 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5252 vlan_tag = m->m_pkthdr.ether_vtag; 5253 } 5254 5255 if (sc->bge_asicrev == BGE_ASICREV_BCM5762 && 5256 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5257 /* 5258 * 5725 family of devices corrupts TSO packets when TSO DMA 5259 * buffers cross into regions which are within MSS bytes of 5260 * a 4GB boundary. If we encounter the condition, drop the 5261 * packet. 5262 */ 5263 for (i = 0; ; i++) { 5264 d = &sc->bge_ldata.bge_tx_ring[idx]; 5265 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5266 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5267 d->bge_len = segs[i].ds_len; 5268 if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss < 5269 d->bge_addr.bge_addr_lo) 5270 break; 5271 d->bge_flags = csum_flags; 5272 d->bge_vlan_tag = vlan_tag; 5273 d->bge_mss = mss; 5274 if (i == nsegs - 1) 5275 break; 5276 BGE_INC(idx, BGE_TX_RING_CNT); 5277 } 5278 if (i != nsegs - 1) { 5279 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, 5280 BUS_DMASYNC_POSTWRITE); 5281 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5282 m_freem(*m_head); 5283 *m_head = NULL; 5284 return (EIO); 5285 } 5286 } else { 5287 for (i = 0; ; i++) { 5288 d = &sc->bge_ldata.bge_tx_ring[idx]; 5289 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5290 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5291 d->bge_len = segs[i].ds_len; 5292 d->bge_flags = csum_flags; 5293 d->bge_vlan_tag = vlan_tag; 5294 d->bge_mss = mss; 5295 if (i == nsegs - 1) 5296 break; 5297 BGE_INC(idx, BGE_TX_RING_CNT); 5298 } 5299 } 5300 5301 /* Mark the last segment as end of packet... */ 5302 d->bge_flags |= BGE_TXBDFLAG_END; 5303 5304 /* 5305 * Insure that the map for this transmission 5306 * is placed at the array index of the last descriptor 5307 * in this chain. 5308 */ 5309 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5310 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5311 sc->bge_cdata.bge_tx_chain[idx] = m; 5312 sc->bge_txcnt += nsegs; 5313 5314 BGE_INC(idx, BGE_TX_RING_CNT); 5315 *txidx = idx; 5316 5317 return (0); 5318 } 5319 5320 /* 5321 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5322 * to the mbuf data regions directly in the transmit descriptors. 5323 */ 5324 static void 5325 bge_start_locked(if_t ifp) 5326 { 5327 struct bge_softc *sc; 5328 struct mbuf *m_head; 5329 uint32_t prodidx; 5330 int count; 5331 5332 sc = if_getsoftc(ifp); 5333 BGE_LOCK_ASSERT(sc); 5334 5335 if (!sc->bge_link || 5336 (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5337 IFF_DRV_RUNNING) 5338 return; 5339 5340 prodidx = sc->bge_tx_prodidx; 5341 5342 for (count = 0; !if_sendq_empty(ifp);) { 5343 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5344 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5345 break; 5346 } 5347 m_head = if_dequeue(ifp); 5348 if (m_head == NULL) 5349 break; 5350 5351 /* 5352 * Pack the data into the transmit ring. If we 5353 * don't have room, set the OACTIVE flag and wait 5354 * for the NIC to drain the ring. 5355 */ 5356 if (bge_encap(sc, &m_head, &prodidx)) { 5357 if (m_head == NULL) 5358 break; 5359 if_sendq_prepend(ifp, m_head); 5360 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5361 break; 5362 } 5363 ++count; 5364 5365 /* 5366 * If there's a BPF listener, bounce a copy of this frame 5367 * to him. 5368 */ 5369 bpf_mtap_if(ifp, m_head); 5370 } 5371 5372 if (count > 0) 5373 bge_start_tx(sc, prodidx); 5374 } 5375 5376 static void 5377 bge_start_tx(struct bge_softc *sc, uint32_t prodidx) 5378 { 5379 5380 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5381 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5382 /* Transmit. */ 5383 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5384 /* 5700 b2 errata */ 5385 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5386 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5387 5388 sc->bge_tx_prodidx = prodidx; 5389 5390 /* Set a timeout in case the chip goes out to lunch. */ 5391 sc->bge_timer = BGE_TX_TIMEOUT; 5392 } 5393 5394 /* 5395 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5396 * to the mbuf data regions directly in the transmit descriptors. 5397 */ 5398 static void 5399 bge_start(if_t ifp) 5400 { 5401 struct bge_softc *sc; 5402 5403 sc = if_getsoftc(ifp); 5404 BGE_LOCK(sc); 5405 bge_start_locked(ifp); 5406 BGE_UNLOCK(sc); 5407 } 5408 5409 static void 5410 bge_init_locked(struct bge_softc *sc) 5411 { 5412 if_t ifp; 5413 uint16_t *m; 5414 uint32_t mode; 5415 5416 BGE_LOCK_ASSERT(sc); 5417 5418 ifp = sc->bge_ifp; 5419 5420 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5421 return; 5422 5423 /* Cancel pending I/O and flush buffers. */ 5424 bge_stop(sc); 5425 5426 bge_stop_fw(sc); 5427 bge_sig_pre_reset(sc, BGE_RESET_START); 5428 bge_reset(sc); 5429 bge_sig_legacy(sc, BGE_RESET_START); 5430 bge_sig_post_reset(sc, BGE_RESET_START); 5431 5432 bge_chipinit(sc); 5433 5434 /* 5435 * Init the various state machines, ring 5436 * control blocks and firmware. 5437 */ 5438 if (bge_blockinit(sc)) { 5439 device_printf(sc->bge_dev, "initialization failure\n"); 5440 return; 5441 } 5442 5443 ifp = sc->bge_ifp; 5444 5445 /* Specify MTU. */ 5446 CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) + 5447 ETHER_HDR_LEN + ETHER_CRC_LEN + 5448 (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5449 5450 /* Load our MAC address. */ 5451 m = (uint16_t *)if_getlladdr(sc->bge_ifp); 5452 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5453 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5454 5455 /* Program promiscuous mode. */ 5456 bge_setpromisc(sc); 5457 5458 /* Program multicast filter. */ 5459 bge_setmulti(sc); 5460 5461 /* Program VLAN tag stripping. */ 5462 bge_setvlan(sc); 5463 5464 /* Override UDP checksum offloading. */ 5465 if (sc->bge_forced_udpcsum == 0) 5466 sc->bge_csum_features &= ~CSUM_UDP; 5467 else 5468 sc->bge_csum_features |= CSUM_UDP; 5469 if (if_getcapabilities(ifp) & IFCAP_TXCSUM && 5470 if_getcapenable(ifp) & IFCAP_TXCSUM) { 5471 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP)); 5472 if_sethwassistbits(ifp, sc->bge_csum_features, 0); 5473 } 5474 5475 /* Init RX ring. */ 5476 if (bge_init_rx_ring_std(sc) != 0) { 5477 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5478 bge_stop(sc); 5479 return; 5480 } 5481 5482 /* 5483 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5484 * memory to insure that the chip has in fact read the first 5485 * entry of the ring. 5486 */ 5487 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5488 uint32_t v, i; 5489 for (i = 0; i < 10; i++) { 5490 DELAY(20); 5491 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5492 if (v == (MCLBYTES - ETHER_ALIGN)) 5493 break; 5494 } 5495 if (i == 10) 5496 device_printf (sc->bge_dev, 5497 "5705 A0 chip failed to load RX ring\n"); 5498 } 5499 5500 /* Init jumbo RX ring. */ 5501 if (BGE_IS_JUMBO_CAPABLE(sc) && 5502 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 5503 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { 5504 if (bge_init_rx_ring_jumbo(sc) != 0) { 5505 device_printf(sc->bge_dev, 5506 "no memory for jumbo Rx buffers.\n"); 5507 bge_stop(sc); 5508 return; 5509 } 5510 } 5511 5512 /* Init our RX return ring index. */ 5513 sc->bge_rx_saved_considx = 0; 5514 5515 /* Init our RX/TX stat counters. */ 5516 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5517 5518 /* Init TX ring. */ 5519 bge_init_tx_ring(sc); 5520 5521 /* Enable TX MAC state machine lockup fix. */ 5522 mode = CSR_READ_4(sc, BGE_TX_MODE); 5523 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5524 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5525 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 5526 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 5527 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5528 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5529 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5530 } 5531 /* Turn on transmitter. */ 5532 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5533 DELAY(100); 5534 5535 /* Turn on receiver. */ 5536 mode = CSR_READ_4(sc, BGE_RX_MODE); 5537 if (BGE_IS_5755_PLUS(sc)) 5538 mode |= BGE_RXMODE_IPV6_ENABLE; 5539 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 5540 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5541 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5542 DELAY(10); 5543 5544 /* 5545 * Set the number of good frames to receive after RX MBUF 5546 * Low Watermark has been reached. After the RX MAC receives 5547 * this number of frames, it will drop subsequent incoming 5548 * frames until the MBUF High Watermark is reached. 5549 */ 5550 if (BGE_IS_57765_PLUS(sc)) 5551 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5552 else 5553 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5554 5555 /* Clear MAC statistics. */ 5556 if (BGE_IS_5705_PLUS(sc)) 5557 bge_stats_clear_regs(sc); 5558 5559 /* Tell firmware we're alive. */ 5560 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5561 5562 #ifdef DEVICE_POLLING 5563 /* Disable interrupts if we are polling. */ 5564 if (if_getcapenable(ifp) & IFCAP_POLLING) { 5565 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5566 BGE_PCIMISCCTL_MASK_PCI_INTR); 5567 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5568 } else 5569 #endif 5570 5571 /* Enable host interrupts. */ 5572 { 5573 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5574 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5575 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5576 } 5577 5578 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 5579 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 5580 5581 bge_ifmedia_upd_locked(ifp); 5582 5583 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5584 } 5585 5586 static void 5587 bge_init(void *xsc) 5588 { 5589 struct bge_softc *sc = xsc; 5590 5591 BGE_LOCK(sc); 5592 bge_init_locked(sc); 5593 BGE_UNLOCK(sc); 5594 } 5595 5596 /* 5597 * Set media options. 5598 */ 5599 static int 5600 bge_ifmedia_upd(if_t ifp) 5601 { 5602 struct bge_softc *sc = if_getsoftc(ifp); 5603 int res; 5604 5605 BGE_LOCK(sc); 5606 res = bge_ifmedia_upd_locked(ifp); 5607 BGE_UNLOCK(sc); 5608 5609 return (res); 5610 } 5611 5612 static int 5613 bge_ifmedia_upd_locked(if_t ifp) 5614 { 5615 struct bge_softc *sc = if_getsoftc(ifp); 5616 struct mii_data *mii; 5617 struct mii_softc *miisc; 5618 struct ifmedia *ifm; 5619 5620 BGE_LOCK_ASSERT(sc); 5621 5622 ifm = &sc->bge_ifmedia; 5623 5624 /* If this is a 1000baseX NIC, enable the TBI port. */ 5625 if (sc->bge_flags & BGE_FLAG_TBI) { 5626 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5627 return (EINVAL); 5628 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5629 case IFM_AUTO: 5630 /* 5631 * The BCM5704 ASIC appears to have a special 5632 * mechanism for programming the autoneg 5633 * advertisement registers in TBI mode. 5634 */ 5635 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5636 uint32_t sgdig; 5637 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5638 if (sgdig & BGE_SGDIGSTS_DONE) { 5639 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5640 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5641 sgdig |= BGE_SGDIGCFG_AUTO | 5642 BGE_SGDIGCFG_PAUSE_CAP | 5643 BGE_SGDIGCFG_ASYM_PAUSE; 5644 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5645 sgdig | BGE_SGDIGCFG_SEND); 5646 DELAY(5); 5647 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5648 } 5649 } 5650 break; 5651 case IFM_1000_SX: 5652 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5653 BGE_CLRBIT(sc, BGE_MAC_MODE, 5654 BGE_MACMODE_HALF_DUPLEX); 5655 } else { 5656 BGE_SETBIT(sc, BGE_MAC_MODE, 5657 BGE_MACMODE_HALF_DUPLEX); 5658 } 5659 DELAY(40); 5660 break; 5661 default: 5662 return (EINVAL); 5663 } 5664 return (0); 5665 } 5666 5667 sc->bge_link_evt++; 5668 mii = device_get_softc(sc->bge_miibus); 5669 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5670 PHY_RESET(miisc); 5671 mii_mediachg(mii); 5672 5673 /* 5674 * Force an interrupt so that we will call bge_link_upd 5675 * if needed and clear any pending link state attention. 5676 * Without this we are not getting any further interrupts 5677 * for link state changes and thus will not UP the link and 5678 * not be able to send in bge_start_locked. The only 5679 * way to get things working was to receive a packet and 5680 * get an RX intr. 5681 * bge_tick should help for fiber cards and we might not 5682 * need to do this here if BGE_FLAG_TBI is set but as 5683 * we poll for fiber anyway it should not harm. 5684 */ 5685 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5686 sc->bge_flags & BGE_FLAG_5788) 5687 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5688 else 5689 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5690 5691 return (0); 5692 } 5693 5694 /* 5695 * Report current media status. 5696 */ 5697 static void 5698 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 5699 { 5700 struct bge_softc *sc = if_getsoftc(ifp); 5701 struct mii_data *mii; 5702 5703 BGE_LOCK(sc); 5704 5705 if ((if_getflags(ifp) & IFF_UP) == 0) { 5706 BGE_UNLOCK(sc); 5707 return; 5708 } 5709 if (sc->bge_flags & BGE_FLAG_TBI) { 5710 ifmr->ifm_status = IFM_AVALID; 5711 ifmr->ifm_active = IFM_ETHER; 5712 if (CSR_READ_4(sc, BGE_MAC_STS) & 5713 BGE_MACSTAT_TBI_PCS_SYNCHED) 5714 ifmr->ifm_status |= IFM_ACTIVE; 5715 else { 5716 ifmr->ifm_active |= IFM_NONE; 5717 BGE_UNLOCK(sc); 5718 return; 5719 } 5720 ifmr->ifm_active |= IFM_1000_SX; 5721 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5722 ifmr->ifm_active |= IFM_HDX; 5723 else 5724 ifmr->ifm_active |= IFM_FDX; 5725 BGE_UNLOCK(sc); 5726 return; 5727 } 5728 5729 mii = device_get_softc(sc->bge_miibus); 5730 mii_pollstat(mii); 5731 ifmr->ifm_active = mii->mii_media_active; 5732 ifmr->ifm_status = mii->mii_media_status; 5733 5734 BGE_UNLOCK(sc); 5735 } 5736 5737 static int 5738 bge_ioctl(if_t ifp, u_long command, caddr_t data) 5739 { 5740 struct bge_softc *sc = if_getsoftc(ifp); 5741 struct ifreq *ifr = (struct ifreq *) data; 5742 struct mii_data *mii; 5743 int flags, mask, error = 0; 5744 5745 switch (command) { 5746 case SIOCSIFMTU: 5747 if (BGE_IS_JUMBO_CAPABLE(sc) || 5748 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5749 if (ifr->ifr_mtu < ETHERMIN || 5750 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5751 error = EINVAL; 5752 break; 5753 } 5754 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5755 error = EINVAL; 5756 break; 5757 } 5758 BGE_LOCK(sc); 5759 if (if_getmtu(ifp) != ifr->ifr_mtu) { 5760 if_setmtu(ifp, ifr->ifr_mtu); 5761 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5762 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5763 bge_init_locked(sc); 5764 } 5765 } 5766 BGE_UNLOCK(sc); 5767 break; 5768 case SIOCSIFFLAGS: 5769 BGE_LOCK(sc); 5770 if (if_getflags(ifp) & IFF_UP) { 5771 /* 5772 * If only the state of the PROMISC flag changed, 5773 * then just use the 'set promisc mode' command 5774 * instead of reinitializing the entire NIC. Doing 5775 * a full re-init means reloading the firmware and 5776 * waiting for it to start up, which may take a 5777 * second or two. Similarly for ALLMULTI. 5778 */ 5779 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5780 flags = if_getflags(ifp) ^ sc->bge_if_flags; 5781 if (flags & IFF_PROMISC) 5782 bge_setpromisc(sc); 5783 if (flags & IFF_ALLMULTI) 5784 bge_setmulti(sc); 5785 } else 5786 bge_init_locked(sc); 5787 } else { 5788 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5789 bge_stop(sc); 5790 } 5791 } 5792 sc->bge_if_flags = if_getflags(ifp); 5793 BGE_UNLOCK(sc); 5794 error = 0; 5795 break; 5796 case SIOCADDMULTI: 5797 case SIOCDELMULTI: 5798 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5799 BGE_LOCK(sc); 5800 bge_setmulti(sc); 5801 BGE_UNLOCK(sc); 5802 error = 0; 5803 } 5804 break; 5805 case SIOCSIFMEDIA: 5806 case SIOCGIFMEDIA: 5807 if (sc->bge_flags & BGE_FLAG_TBI) { 5808 error = ifmedia_ioctl(ifp, ifr, 5809 &sc->bge_ifmedia, command); 5810 } else { 5811 mii = device_get_softc(sc->bge_miibus); 5812 error = ifmedia_ioctl(ifp, ifr, 5813 &mii->mii_media, command); 5814 } 5815 break; 5816 case SIOCSIFCAP: 5817 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 5818 #ifdef DEVICE_POLLING 5819 if (mask & IFCAP_POLLING) { 5820 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5821 error = ether_poll_register(bge_poll, ifp); 5822 if (error) 5823 return (error); 5824 BGE_LOCK(sc); 5825 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5826 BGE_PCIMISCCTL_MASK_PCI_INTR); 5827 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5828 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 5829 BGE_UNLOCK(sc); 5830 } else { 5831 error = ether_poll_deregister(ifp); 5832 /* Enable interrupt even in error case */ 5833 BGE_LOCK(sc); 5834 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5835 BGE_PCIMISCCTL_MASK_PCI_INTR); 5836 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5837 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 5838 BGE_UNLOCK(sc); 5839 } 5840 } 5841 #endif 5842 if ((mask & IFCAP_TXCSUM) != 0 && 5843 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 5844 if_togglecapenable(ifp, IFCAP_TXCSUM); 5845 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 5846 if_sethwassistbits(ifp, 5847 sc->bge_csum_features, 0); 5848 else 5849 if_sethwassistbits(ifp, 0, 5850 sc->bge_csum_features); 5851 } 5852 5853 if ((mask & IFCAP_RXCSUM) != 0 && 5854 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 5855 if_togglecapenable(ifp, IFCAP_RXCSUM); 5856 5857 if ((mask & IFCAP_TSO4) != 0 && 5858 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 5859 if_togglecapenable(ifp, IFCAP_TSO4); 5860 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 5861 if_sethwassistbits(ifp, CSUM_TSO, 0); 5862 else 5863 if_sethwassistbits(ifp, 0, CSUM_TSO); 5864 } 5865 5866 if (mask & IFCAP_VLAN_MTU) { 5867 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 5868 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5869 bge_init(sc); 5870 } 5871 5872 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5873 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 5874 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 5875 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5876 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 5877 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 5878 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 5879 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 5880 BGE_LOCK(sc); 5881 bge_setvlan(sc); 5882 BGE_UNLOCK(sc); 5883 } 5884 #ifdef VLAN_CAPABILITIES 5885 if_vlancap(ifp); 5886 #endif 5887 break; 5888 default: 5889 error = ether_ioctl(ifp, command, data); 5890 break; 5891 } 5892 5893 return (error); 5894 } 5895 5896 static void 5897 bge_watchdog(struct bge_softc *sc) 5898 { 5899 if_t ifp; 5900 uint32_t status; 5901 5902 BGE_LOCK_ASSERT(sc); 5903 5904 if (sc->bge_timer == 0 || --sc->bge_timer) 5905 return; 5906 5907 /* If pause frames are active then don't reset the hardware. */ 5908 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 5909 status = CSR_READ_4(sc, BGE_RX_STS); 5910 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 5911 /* 5912 * If link partner has us in XOFF state then wait for 5913 * the condition to clear. 5914 */ 5915 CSR_WRITE_4(sc, BGE_RX_STS, status); 5916 sc->bge_timer = BGE_TX_TIMEOUT; 5917 return; 5918 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 5919 (status & BGE_RXSTAT_RCVD_XON) != 0) { 5920 /* 5921 * If link partner has us in XOFF state then wait for 5922 * the condition to clear. 5923 */ 5924 CSR_WRITE_4(sc, BGE_RX_STS, status); 5925 sc->bge_timer = BGE_TX_TIMEOUT; 5926 return; 5927 } 5928 /* 5929 * Any other condition is unexpected and the controller 5930 * should be reset. 5931 */ 5932 } 5933 5934 ifp = sc->bge_ifp; 5935 5936 if_printf(ifp, "watchdog timeout -- resetting\n"); 5937 5938 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5939 bge_init_locked(sc); 5940 5941 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 5942 } 5943 5944 static void 5945 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5946 { 5947 int i; 5948 5949 BGE_CLRBIT(sc, reg, bit); 5950 5951 for (i = 0; i < BGE_TIMEOUT; i++) { 5952 if ((CSR_READ_4(sc, reg) & bit) == 0) 5953 return; 5954 DELAY(100); 5955 } 5956 } 5957 5958 /* 5959 * Stop the adapter and free any mbufs allocated to the 5960 * RX and TX lists. 5961 */ 5962 static void 5963 bge_stop(struct bge_softc *sc) 5964 { 5965 if_t ifp; 5966 5967 BGE_LOCK_ASSERT(sc); 5968 5969 ifp = sc->bge_ifp; 5970 5971 callout_stop(&sc->bge_stat_ch); 5972 5973 /* Disable host interrupts. */ 5974 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5975 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5976 5977 /* 5978 * Tell firmware we're shutting down. 5979 */ 5980 bge_stop_fw(sc); 5981 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5982 5983 /* 5984 * Disable all of the receiver blocks. 5985 */ 5986 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5987 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5988 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5989 if (BGE_IS_5700_FAMILY(sc)) 5990 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5991 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5992 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5993 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5994 5995 /* 5996 * Disable all of the transmit blocks. 5997 */ 5998 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5999 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 6000 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 6001 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 6002 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 6003 if (BGE_IS_5700_FAMILY(sc)) 6004 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 6005 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 6006 6007 /* 6008 * Shut down all of the memory managers and related 6009 * state machines. 6010 */ 6011 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6012 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6013 if (BGE_IS_5700_FAMILY(sc)) 6014 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6015 6016 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6017 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6018 if (!(BGE_IS_5705_PLUS(sc))) { 6019 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6020 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6021 } 6022 /* Update MAC statistics. */ 6023 if (BGE_IS_5705_PLUS(sc)) 6024 bge_stats_update_regs(sc); 6025 6026 bge_reset(sc); 6027 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6028 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6029 6030 /* 6031 * Keep the ASF firmware running if up. 6032 */ 6033 if (sc->bge_asf_mode & ASF_STACKUP) 6034 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6035 else 6036 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6037 6038 /* Free the RX lists. */ 6039 bge_free_rx_ring_std(sc); 6040 6041 /* Free jumbo RX list. */ 6042 if (BGE_IS_JUMBO_CAPABLE(sc)) 6043 bge_free_rx_ring_jumbo(sc); 6044 6045 /* Free TX buffers. */ 6046 bge_free_tx_ring(sc); 6047 6048 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6049 6050 /* Clear MAC's link state (PHY may still have link UP). */ 6051 if (bootverbose && sc->bge_link) 6052 if_printf(sc->bge_ifp, "link DOWN\n"); 6053 sc->bge_link = 0; 6054 6055 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 6056 } 6057 6058 /* 6059 * Stop all chip I/O so that the kernel's probe routines don't 6060 * get confused by errant DMAs when rebooting. 6061 */ 6062 static int 6063 bge_shutdown(device_t dev) 6064 { 6065 struct bge_softc *sc; 6066 6067 sc = device_get_softc(dev); 6068 BGE_LOCK(sc); 6069 bge_stop(sc); 6070 BGE_UNLOCK(sc); 6071 6072 return (0); 6073 } 6074 6075 static int 6076 bge_suspend(device_t dev) 6077 { 6078 struct bge_softc *sc; 6079 6080 sc = device_get_softc(dev); 6081 BGE_LOCK(sc); 6082 bge_stop(sc); 6083 BGE_UNLOCK(sc); 6084 6085 return (0); 6086 } 6087 6088 static int 6089 bge_resume(device_t dev) 6090 { 6091 struct bge_softc *sc; 6092 if_t ifp; 6093 6094 sc = device_get_softc(dev); 6095 BGE_LOCK(sc); 6096 ifp = sc->bge_ifp; 6097 if (if_getflags(ifp) & IFF_UP) { 6098 bge_init_locked(sc); 6099 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6100 bge_start_locked(ifp); 6101 } 6102 BGE_UNLOCK(sc); 6103 6104 return (0); 6105 } 6106 6107 static void 6108 bge_link_upd(struct bge_softc *sc) 6109 { 6110 struct mii_data *mii; 6111 uint32_t link, status; 6112 6113 BGE_LOCK_ASSERT(sc); 6114 6115 /* Clear 'pending link event' flag. */ 6116 sc->bge_link_evt = 0; 6117 6118 /* 6119 * Process link state changes. 6120 * Grrr. The link status word in the status block does 6121 * not work correctly on the BCM5700 rev AX and BX chips, 6122 * according to all available information. Hence, we have 6123 * to enable MII interrupts in order to properly obtain 6124 * async link changes. Unfortunately, this also means that 6125 * we have to read the MAC status register to detect link 6126 * changes, thereby adding an additional register access to 6127 * the interrupt handler. 6128 * 6129 * XXX: perhaps link state detection procedure used for 6130 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 6131 */ 6132 6133 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6134 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 6135 status = CSR_READ_4(sc, BGE_MAC_STS); 6136 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6137 mii = device_get_softc(sc->bge_miibus); 6138 mii_pollstat(mii); 6139 if (!sc->bge_link && 6140 mii->mii_media_status & IFM_ACTIVE && 6141 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6142 sc->bge_link++; 6143 if (bootverbose) 6144 if_printf(sc->bge_ifp, "link UP\n"); 6145 } else if (sc->bge_link && 6146 (!(mii->mii_media_status & IFM_ACTIVE) || 6147 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6148 sc->bge_link = 0; 6149 if (bootverbose) 6150 if_printf(sc->bge_ifp, "link DOWN\n"); 6151 } 6152 6153 /* Clear the interrupt. */ 6154 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6155 BGE_EVTENB_MI_INTERRUPT); 6156 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6157 BRGPHY_MII_ISR); 6158 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6159 BRGPHY_MII_IMR, BRGPHY_INTRS); 6160 } 6161 return; 6162 } 6163 6164 if (sc->bge_flags & BGE_FLAG_TBI) { 6165 status = CSR_READ_4(sc, BGE_MAC_STS); 6166 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6167 if (!sc->bge_link) { 6168 sc->bge_link++; 6169 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6170 BGE_CLRBIT(sc, BGE_MAC_MODE, 6171 BGE_MACMODE_TBI_SEND_CFGS); 6172 DELAY(40); 6173 } 6174 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6175 if (bootverbose) 6176 if_printf(sc->bge_ifp, "link UP\n"); 6177 if_link_state_change(sc->bge_ifp, 6178 LINK_STATE_UP); 6179 } 6180 } else if (sc->bge_link) { 6181 sc->bge_link = 0; 6182 if (bootverbose) 6183 if_printf(sc->bge_ifp, "link DOWN\n"); 6184 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6185 } 6186 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6187 /* 6188 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6189 * in status word always set. Workaround this bug by reading 6190 * PHY link status directly. 6191 */ 6192 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6193 6194 if (link != sc->bge_link || 6195 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6196 mii = device_get_softc(sc->bge_miibus); 6197 mii_pollstat(mii); 6198 if (!sc->bge_link && 6199 mii->mii_media_status & IFM_ACTIVE && 6200 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6201 sc->bge_link++; 6202 if (bootverbose) 6203 if_printf(sc->bge_ifp, "link UP\n"); 6204 } else if (sc->bge_link && 6205 (!(mii->mii_media_status & IFM_ACTIVE) || 6206 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6207 sc->bge_link = 0; 6208 if (bootverbose) 6209 if_printf(sc->bge_ifp, "link DOWN\n"); 6210 } 6211 } 6212 } else { 6213 /* 6214 * For controllers that call mii_tick, we have to poll 6215 * link status. 6216 */ 6217 mii = device_get_softc(sc->bge_miibus); 6218 mii_pollstat(mii); 6219 bge_miibus_statchg(sc->bge_dev); 6220 } 6221 6222 /* Disable MAC attention when link is up. */ 6223 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6224 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6225 BGE_MACSTAT_LINK_CHANGED); 6226 } 6227 6228 static void 6229 bge_add_sysctls(struct bge_softc *sc) 6230 { 6231 struct sysctl_ctx_list *ctx; 6232 struct sysctl_oid_list *children; 6233 6234 ctx = device_get_sysctl_ctx(sc->bge_dev); 6235 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6236 6237 #ifdef BGE_REGISTER_DEBUG 6238 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6239 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6240 bge_sysctl_debug_info, "I", "Debug Information"); 6241 6242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6243 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6244 bge_sysctl_reg_read, "I", "MAC Register Read"); 6245 6246 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6247 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6248 bge_sysctl_ape_read, "I", "APE Register Read"); 6249 6250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6251 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6252 bge_sysctl_mem_read, "I", "Memory Read"); 6253 6254 #endif 6255 6256 /* 6257 * A common design characteristic for many Broadcom client controllers 6258 * is that they only support a single outstanding DMA read operation 6259 * on the PCIe bus. This means that it will take twice as long to fetch 6260 * a TX frame that is split into header and payload buffers as it does 6261 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6262 * these controllers, coalescing buffers to reduce the number of memory 6263 * reads is effective way to get maximum performance(about 940Mbps). 6264 * Without collapsing TX buffers the maximum TCP bulk transfer 6265 * performance is about 850Mbps. However forcing coalescing mbufs 6266 * consumes a lot of CPU cycles, so leave it off by default. 6267 */ 6268 sc->bge_forced_collapse = 0; 6269 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6270 CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0, 6271 "Number of fragmented TX buffers of a frame allowed before " 6272 "forced collapsing"); 6273 6274 sc->bge_msi = 1; 6275 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6276 CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI"); 6277 6278 /* 6279 * It seems all Broadcom controllers have a bug that can generate UDP 6280 * datagrams with checksum value 0 when TX UDP checksum offloading is 6281 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6282 * Even though the probability of generating such UDP datagrams is 6283 * low, I don't want to see FreeBSD boxes to inject such datagrams 6284 * into network so disable UDP checksum offloading by default. Users 6285 * still override this behavior by setting a sysctl variable, 6286 * dev.bge.0.forced_udpcsum. 6287 */ 6288 sc->bge_forced_udpcsum = 0; 6289 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6290 CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0, 6291 "Enable UDP checksum offloading even if controller can " 6292 "generate UDP checksum value 0"); 6293 6294 if (BGE_IS_5705_PLUS(sc)) 6295 bge_add_sysctl_stats_regs(sc, ctx, children); 6296 else 6297 bge_add_sysctl_stats(sc, ctx, children); 6298 } 6299 6300 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6301 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \ 6302 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \ 6303 offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc) 6304 6305 static void 6306 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6307 struct sysctl_oid_list *parent) 6308 { 6309 struct sysctl_oid *tree; 6310 struct sysctl_oid_list *children, *schildren; 6311 6312 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6313 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6314 schildren = children = SYSCTL_CHILDREN(tree); 6315 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6316 children, COSFramesDroppedDueToFilters, 6317 "FramesDroppedDueToFilters"); 6318 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6319 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6320 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6321 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6322 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6323 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6324 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6325 children, ifInDiscards, "InputDiscards"); 6326 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6327 children, ifInErrors, "InputErrors"); 6328 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6329 children, nicRecvThresholdHit, "RecvThresholdHit"); 6330 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6331 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6332 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6333 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6334 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6335 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6336 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6337 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6338 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6339 children, nicRingStatusUpdate, "RingStatusUpdate"); 6340 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6341 children, nicInterrupts, "Interrupts"); 6342 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6343 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6344 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6345 children, nicSendThresholdHit, "SendThresholdHit"); 6346 6347 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", 6348 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6349 children = SYSCTL_CHILDREN(tree); 6350 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6351 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6352 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6353 children, rxstats.etherStatsFragments, "Fragments"); 6354 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6355 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6356 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6357 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6358 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6359 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6360 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6361 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6362 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6363 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6364 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6365 children, rxstats.xoffPauseFramesReceived, 6366 "xoffPauseFramesReceived"); 6367 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6368 children, rxstats.macControlFramesReceived, 6369 "ControlFramesReceived"); 6370 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6371 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6372 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6373 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6374 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6375 children, rxstats.etherStatsJabbers, "Jabbers"); 6376 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6377 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6378 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6379 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6380 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6381 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6382 6383 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", 6384 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6385 children = SYSCTL_CHILDREN(tree); 6386 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6387 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6388 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6389 children, txstats.etherStatsCollisions, "Collisions"); 6390 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6391 children, txstats.outXonSent, "XonSent"); 6392 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6393 children, txstats.outXoffSent, "XoffSent"); 6394 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6395 children, txstats.flowControlDone, "flowControlDone"); 6396 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6397 children, txstats.dot3StatsInternalMacTransmitErrors, 6398 "InternalMacTransmitErrors"); 6399 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6400 children, txstats.dot3StatsSingleCollisionFrames, 6401 "SingleCollisionFrames"); 6402 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6403 children, txstats.dot3StatsMultipleCollisionFrames, 6404 "MultipleCollisionFrames"); 6405 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6406 children, txstats.dot3StatsDeferredTransmissions, 6407 "DeferredTransmissions"); 6408 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6409 children, txstats.dot3StatsExcessiveCollisions, 6410 "ExcessiveCollisions"); 6411 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6412 children, txstats.dot3StatsLateCollisions, 6413 "LateCollisions"); 6414 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6415 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6416 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6417 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6418 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6419 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6420 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6421 children, txstats.dot3StatsCarrierSenseErrors, 6422 "CarrierSenseErrors"); 6423 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6424 children, txstats.ifOutDiscards, "Discards"); 6425 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6426 children, txstats.ifOutErrors, "Errors"); 6427 } 6428 6429 #undef BGE_SYSCTL_STAT 6430 6431 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6432 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6433 6434 static void 6435 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6436 struct sysctl_oid_list *parent) 6437 { 6438 struct sysctl_oid *tree; 6439 struct sysctl_oid_list *child, *schild; 6440 struct bge_mac_stats *stats; 6441 6442 stats = &sc->bge_mac_stats; 6443 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6444 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6445 schild = child = SYSCTL_CHILDREN(tree); 6446 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6447 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6448 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6449 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6450 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6451 &stats->DmaWriteHighPriQueueFull, 6452 "NIC DMA Write High Priority Queue Full"); 6453 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6454 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6455 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6456 &stats->InputDiscards, "Discarded Input Frames"); 6457 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6458 &stats->InputErrors, "Input Errors"); 6459 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6460 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6461 6462 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", 6463 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6464 child = SYSCTL_CHILDREN(tree); 6465 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6466 &stats->ifHCInOctets, "Inbound Octets"); 6467 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6468 &stats->etherStatsFragments, "Fragments"); 6469 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6470 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6471 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6472 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6473 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6474 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6475 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6476 &stats->dot3StatsFCSErrors, "FCS Errors"); 6477 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6478 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6479 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6480 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6481 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6482 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6483 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6484 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6485 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6486 &stats->xoffStateEntered, "XOFF State Entered"); 6487 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6488 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6489 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6490 &stats->etherStatsJabbers, "Jabbers"); 6491 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6492 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6493 6494 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", 6495 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6496 child = SYSCTL_CHILDREN(tree); 6497 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6498 &stats->ifHCOutOctets, "Outbound Octets"); 6499 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6500 &stats->etherStatsCollisions, "TX Collisions"); 6501 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6502 &stats->outXonSent, "XON Sent"); 6503 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6504 &stats->outXoffSent, "XOFF Sent"); 6505 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6506 &stats->dot3StatsInternalMacTransmitErrors, 6507 "Internal MAC TX Errors"); 6508 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6509 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6510 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6511 &stats->dot3StatsMultipleCollisionFrames, 6512 "Multiple Collision Frames"); 6513 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6514 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6515 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6516 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6517 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6518 &stats->dot3StatsLateCollisions, "Late Collisions"); 6519 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6520 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6521 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6522 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6523 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6524 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6525 } 6526 6527 #undef BGE_SYSCTL_STAT_ADD64 6528 6529 static int 6530 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6531 { 6532 struct bge_softc *sc; 6533 uint32_t result; 6534 int offset; 6535 6536 sc = (struct bge_softc *)arg1; 6537 offset = arg2; 6538 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6539 offsetof(bge_hostaddr, bge_addr_lo)); 6540 return (sysctl_handle_int(oidp, &result, 0, req)); 6541 } 6542 6543 #ifdef BGE_REGISTER_DEBUG 6544 static int 6545 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6546 { 6547 struct bge_softc *sc; 6548 uint16_t *sbdata; 6549 int error, result, sbsz; 6550 int i, j; 6551 6552 result = -1; 6553 error = sysctl_handle_int(oidp, &result, 0, req); 6554 if (error || (req->newptr == NULL)) 6555 return (error); 6556 6557 if (result == 1) { 6558 sc = (struct bge_softc *)arg1; 6559 6560 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6561 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6562 sbsz = BGE_STATUS_BLK_SZ; 6563 else 6564 sbsz = 32; 6565 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6566 printf("Status Block:\n"); 6567 BGE_LOCK(sc); 6568 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6569 sc->bge_cdata.bge_status_map, 6570 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6571 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6572 printf("%06x:", i); 6573 for (j = 0; j < 8; j++) 6574 printf(" %04x", sbdata[i++]); 6575 printf("\n"); 6576 } 6577 6578 printf("Registers:\n"); 6579 for (i = 0x800; i < 0xA00; ) { 6580 printf("%06x:", i); 6581 for (j = 0; j < 8; j++) { 6582 printf(" %08x", CSR_READ_4(sc, i)); 6583 i += 4; 6584 } 6585 printf("\n"); 6586 } 6587 BGE_UNLOCK(sc); 6588 6589 printf("Hardware Flags:\n"); 6590 if (BGE_IS_5717_PLUS(sc)) 6591 printf(" - 5717 Plus\n"); 6592 if (BGE_IS_5755_PLUS(sc)) 6593 printf(" - 5755 Plus\n"); 6594 if (BGE_IS_575X_PLUS(sc)) 6595 printf(" - 575X Plus\n"); 6596 if (BGE_IS_5705_PLUS(sc)) 6597 printf(" - 5705 Plus\n"); 6598 if (BGE_IS_5714_FAMILY(sc)) 6599 printf(" - 5714 Family\n"); 6600 if (BGE_IS_5700_FAMILY(sc)) 6601 printf(" - 5700 Family\n"); 6602 if (sc->bge_flags & BGE_FLAG_JUMBO) 6603 printf(" - Supports Jumbo Frames\n"); 6604 if (sc->bge_flags & BGE_FLAG_PCIX) 6605 printf(" - PCI-X Bus\n"); 6606 if (sc->bge_flags & BGE_FLAG_PCIE) 6607 printf(" - PCI Express Bus\n"); 6608 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6609 printf(" - No 3 LEDs\n"); 6610 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6611 printf(" - RX Alignment Bug\n"); 6612 } 6613 6614 return (error); 6615 } 6616 6617 static int 6618 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6619 { 6620 struct bge_softc *sc; 6621 int error; 6622 uint16_t result; 6623 uint32_t val; 6624 6625 result = -1; 6626 error = sysctl_handle_int(oidp, &result, 0, req); 6627 if (error || (req->newptr == NULL)) 6628 return (error); 6629 6630 if (result < 0x8000) { 6631 sc = (struct bge_softc *)arg1; 6632 val = CSR_READ_4(sc, result); 6633 printf("reg 0x%06X = 0x%08X\n", result, val); 6634 } 6635 6636 return (error); 6637 } 6638 6639 static int 6640 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6641 { 6642 struct bge_softc *sc; 6643 int error; 6644 uint16_t result; 6645 uint32_t val; 6646 6647 result = -1; 6648 error = sysctl_handle_int(oidp, &result, 0, req); 6649 if (error || (req->newptr == NULL)) 6650 return (error); 6651 6652 if (result < 0x8000) { 6653 sc = (struct bge_softc *)arg1; 6654 val = APE_READ_4(sc, result); 6655 printf("reg 0x%06X = 0x%08X\n", result, val); 6656 } 6657 6658 return (error); 6659 } 6660 6661 static int 6662 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6663 { 6664 struct bge_softc *sc; 6665 int error; 6666 uint16_t result; 6667 uint32_t val; 6668 6669 result = -1; 6670 error = sysctl_handle_int(oidp, &result, 0, req); 6671 if (error || (req->newptr == NULL)) 6672 return (error); 6673 6674 if (result < 0x8000) { 6675 sc = (struct bge_softc *)arg1; 6676 val = bge_readmem_ind(sc, result); 6677 printf("mem 0x%06X = 0x%08X\n", result, val); 6678 } 6679 6680 return (error); 6681 } 6682 #endif 6683 6684 static int 6685 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6686 { 6687 return (1); 6688 } 6689 6690 static int 6691 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6692 { 6693 uint32_t mac_addr; 6694 6695 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6696 if ((mac_addr >> 16) == 0x484b) { 6697 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6698 ether_addr[1] = (uint8_t)mac_addr; 6699 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6700 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6701 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6702 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6703 ether_addr[5] = (uint8_t)mac_addr; 6704 return (0); 6705 } 6706 return (1); 6707 } 6708 6709 static int 6710 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6711 { 6712 int mac_offset = BGE_EE_MAC_OFFSET; 6713 6714 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6715 mac_offset = BGE_EE_MAC_OFFSET_5906; 6716 6717 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6718 ETHER_ADDR_LEN)); 6719 } 6720 6721 static int 6722 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6723 { 6724 6725 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6726 return (1); 6727 6728 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6729 ETHER_ADDR_LEN)); 6730 } 6731 6732 static int 6733 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6734 { 6735 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6736 /* NOTE: Order is critical */ 6737 bge_get_eaddr_fw, 6738 bge_get_eaddr_mem, 6739 bge_get_eaddr_nvram, 6740 bge_get_eaddr_eeprom, 6741 NULL 6742 }; 6743 const bge_eaddr_fcn_t *func; 6744 6745 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6746 if ((*func)(sc, eaddr) == 0) 6747 break; 6748 } 6749 return (*func == NULL ? ENXIO : 0); 6750 } 6751 6752 static uint64_t 6753 bge_get_counter(if_t ifp, ift_counter cnt) 6754 { 6755 struct bge_softc *sc; 6756 struct bge_mac_stats *stats; 6757 6758 sc = if_getsoftc(ifp); 6759 if (!BGE_IS_5705_PLUS(sc)) 6760 return (if_get_counter_default(ifp, cnt)); 6761 stats = &sc->bge_mac_stats; 6762 6763 switch (cnt) { 6764 case IFCOUNTER_IERRORS: 6765 return (stats->NoMoreRxBDs + stats->InputDiscards + 6766 stats->InputErrors); 6767 case IFCOUNTER_COLLISIONS: 6768 return (stats->etherStatsCollisions); 6769 default: 6770 return (if_get_counter_default(ifp, cnt)); 6771 } 6772 } 6773 6774 #ifdef DEBUGNET 6775 static void 6776 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 6777 { 6778 struct bge_softc *sc; 6779 6780 sc = if_getsoftc(ifp); 6781 BGE_LOCK(sc); 6782 /* 6783 * There is only one logical receive ring, but it is backed 6784 * by two actual rings, for cluster- and jumbo-sized mbufs. 6785 * Debugnet expects only one size, so if jumbo is in use, 6786 * this says we have two rings of jumbo mbufs, but that's 6787 * only a little wasteful. 6788 */ 6789 *nrxr = 2; 6790 *ncl = DEBUGNET_MAX_IN_FLIGHT; 6791 if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 && 6792 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 6793 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) 6794 *clsize = MJUM9BYTES; 6795 else 6796 *clsize = MCLBYTES; 6797 BGE_UNLOCK(sc); 6798 } 6799 6800 static void 6801 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 6802 { 6803 } 6804 6805 static int 6806 bge_debugnet_transmit(if_t ifp, struct mbuf *m) 6807 { 6808 struct bge_softc *sc; 6809 uint32_t prodidx; 6810 int error; 6811 6812 sc = if_getsoftc(ifp); 6813 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6814 IFF_DRV_RUNNING) 6815 return (1); 6816 6817 prodidx = sc->bge_tx_prodidx; 6818 error = bge_encap(sc, &m, &prodidx); 6819 if (error == 0) 6820 bge_start_tx(sc, prodidx); 6821 return (error); 6822 } 6823 6824 static int 6825 bge_debugnet_poll(if_t ifp, int count) 6826 { 6827 struct bge_softc *sc; 6828 uint32_t rx_prod, tx_cons; 6829 6830 sc = if_getsoftc(ifp); 6831 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6832 IFF_DRV_RUNNING) 6833 return (1); 6834 6835 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6836 sc->bge_cdata.bge_status_map, 6837 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6838 6839 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 6840 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 6841 6842 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6843 sc->bge_cdata.bge_status_map, 6844 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6845 6846 (void)bge_rxeof(sc, rx_prod, 0); 6847 bge_txeof(sc, tx_cons); 6848 return (0); 6849 } 6850 #endif /* DEBUGNET */ 6851