xref: /freebsd/sys/dev/bge/if_bge.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227 
228 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229 
230 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231 
232 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235 
236 	{ 0, 0 }
237 };
238 
239 static const struct bge_vendor {
240 	uint16_t	v_id;
241 	const char	*v_name;
242 } const bge_vendors[] = {
243 	{ ALTEON_VENDORID,	"Alteon" },
244 	{ ALTIMA_VENDORID,	"Altima" },
245 	{ APPLE_VENDORID,	"Apple" },
246 	{ BCOM_VENDORID,	"Broadcom" },
247 	{ SK_VENDORID,		"SysKonnect" },
248 	{ TC_VENDORID,		"3Com" },
249 	{ FJTSU_VENDORID,	"Fujitsu" },
250 
251 	{ 0, NULL }
252 };
253 
254 static const struct bge_revision {
255 	uint32_t	br_chipid;
256 	const char	*br_name;
257 } const bge_revisions[] = {
258 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
305 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
306 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
307 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
308 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
309 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
310 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
311 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
312 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
313 	/* 5754 and 5787 share the same ASIC ID */
314 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
315 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
316 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
317 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
318 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
319 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
320 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
321 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
322 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
323 
324 	{ 0, NULL }
325 };
326 
327 /*
328  * Some defaults for major revisions, so that newer steppings
329  * that we don't know about have a shot at working.
330  */
331 static const struct bge_revision const bge_majorrevs[] = {
332 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
333 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
334 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
335 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
336 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
337 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
338 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
339 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
340 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
341 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
342 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
343 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
344 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
345 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
346 	/* 5754 and 5787 share the same ASIC ID */
347 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
348 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
349 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
350 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
351 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
352 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
353 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
354 
355 	{ 0, NULL }
356 };
357 
358 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
359 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
360 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
361 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
362 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
363 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
364 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
365 
366 const struct bge_revision * bge_lookup_rev(uint32_t);
367 const struct bge_vendor * bge_lookup_vendor(uint16_t);
368 
369 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
370 
371 static int bge_probe(device_t);
372 static int bge_attach(device_t);
373 static int bge_detach(device_t);
374 static int bge_suspend(device_t);
375 static int bge_resume(device_t);
376 static void bge_release_resources(struct bge_softc *);
377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378 static int bge_dma_alloc(struct bge_softc *);
379 static void bge_dma_free(struct bge_softc *);
380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
381     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
382 
383 static void bge_devinfo(struct bge_softc *);
384 static int bge_mbox_reorder(struct bge_softc *);
385 
386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
391 
392 static void bge_txeof(struct bge_softc *, uint16_t);
393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
394 static int bge_rxeof(struct bge_softc *, uint16_t, int);
395 
396 static void bge_asf_driver_up (struct bge_softc *);
397 static void bge_tick(void *);
398 static void bge_stats_clear_regs(struct bge_softc *);
399 static void bge_stats_update(struct bge_softc *);
400 static void bge_stats_update_regs(struct bge_softc *);
401 static struct mbuf *bge_check_short_dma(struct mbuf *);
402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
403     uint16_t *, uint16_t *);
404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
405 
406 static void bge_intr(void *);
407 static int bge_msi_intr(void *);
408 static void bge_intr_task(void *, int);
409 static void bge_start_locked(struct ifnet *);
410 static void bge_start(struct ifnet *);
411 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
412 static void bge_init_locked(struct bge_softc *);
413 static void bge_init(void *);
414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
415 static void bge_stop(struct bge_softc *);
416 static void bge_watchdog(struct bge_softc *);
417 static int bge_shutdown(device_t);
418 static int bge_ifmedia_upd_locked(struct ifnet *);
419 static int bge_ifmedia_upd(struct ifnet *);
420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
421 
422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
424 
425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
427 
428 static void bge_setpromisc(struct bge_softc *);
429 static void bge_setmulti(struct bge_softc *);
430 static void bge_setvlan(struct bge_softc *);
431 
432 static __inline void bge_rxreuse_std(struct bge_softc *, int);
433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
434 static int bge_newbuf_std(struct bge_softc *, int);
435 static int bge_newbuf_jumbo(struct bge_softc *, int);
436 static int bge_init_rx_ring_std(struct bge_softc *);
437 static void bge_free_rx_ring_std(struct bge_softc *);
438 static int bge_init_rx_ring_jumbo(struct bge_softc *);
439 static void bge_free_rx_ring_jumbo(struct bge_softc *);
440 static void bge_free_tx_ring(struct bge_softc *);
441 static int bge_init_tx_ring(struct bge_softc *);
442 
443 static int bge_chipinit(struct bge_softc *);
444 static int bge_blockinit(struct bge_softc *);
445 static uint32_t bge_dma_swap_options(struct bge_softc *);
446 
447 static int bge_has_eaddr(struct bge_softc *);
448 static uint32_t bge_readmem_ind(struct bge_softc *, int);
449 static void bge_writemem_ind(struct bge_softc *, int, int);
450 static void bge_writembx(struct bge_softc *, int, int);
451 #ifdef notdef
452 static uint32_t bge_readreg_ind(struct bge_softc *, int);
453 #endif
454 static void bge_writemem_direct(struct bge_softc *, int, int);
455 static void bge_writereg_ind(struct bge_softc *, int, int);
456 
457 static int bge_miibus_readreg(device_t, int, int);
458 static int bge_miibus_writereg(device_t, int, int, int);
459 static void bge_miibus_statchg(device_t);
460 #ifdef DEVICE_POLLING
461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
462 #endif
463 
464 #define	BGE_RESET_SHUTDOWN	0
465 #define	BGE_RESET_START		1
466 #define	BGE_RESET_SUSPEND	2
467 static void bge_sig_post_reset(struct bge_softc *, int);
468 static void bge_sig_legacy(struct bge_softc *, int);
469 static void bge_sig_pre_reset(struct bge_softc *, int);
470 static void bge_stop_fw(struct bge_softc *);
471 static int bge_reset(struct bge_softc *);
472 static void bge_link_upd(struct bge_softc *);
473 
474 static void bge_ape_lock_init(struct bge_softc *);
475 static void bge_ape_read_fw_ver(struct bge_softc *);
476 static int bge_ape_lock(struct bge_softc *, int);
477 static void bge_ape_unlock(struct bge_softc *, int);
478 static void bge_ape_send_event(struct bge_softc *, uint32_t);
479 static void bge_ape_driver_state_change(struct bge_softc *, int);
480 
481 /*
482  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
483  * leak information to untrusted users.  It is also known to cause alignment
484  * traps on certain architectures.
485  */
486 #ifdef BGE_REGISTER_DEBUG
487 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
488 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
489 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
490 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
491 #endif
492 static void bge_add_sysctls(struct bge_softc *);
493 static void bge_add_sysctl_stats_regs(struct bge_softc *,
494     struct sysctl_ctx_list *, struct sysctl_oid_list *);
495 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
496     struct sysctl_oid_list *);
497 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
498 
499 static device_method_t bge_methods[] = {
500 	/* Device interface */
501 	DEVMETHOD(device_probe,		bge_probe),
502 	DEVMETHOD(device_attach,	bge_attach),
503 	DEVMETHOD(device_detach,	bge_detach),
504 	DEVMETHOD(device_shutdown,	bge_shutdown),
505 	DEVMETHOD(device_suspend,	bge_suspend),
506 	DEVMETHOD(device_resume,	bge_resume),
507 
508 	/* MII interface */
509 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
510 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
511 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
512 
513 	DEVMETHOD_END
514 };
515 
516 static driver_t bge_driver = {
517 	"bge",
518 	bge_methods,
519 	sizeof(struct bge_softc)
520 };
521 
522 static devclass_t bge_devclass;
523 
524 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
525 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
526 
527 static int bge_allow_asf = 1;
528 
529 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
530 
531 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
532 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
533 	"Allow ASF mode if available");
534 
535 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
536 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
537 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
538 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
539 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
540 
541 static int
542 bge_has_eaddr(struct bge_softc *sc)
543 {
544 #ifdef __sparc64__
545 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
546 	device_t dev;
547 	uint32_t subvendor;
548 
549 	dev = sc->bge_dev;
550 
551 	/*
552 	 * The on-board BGEs found in sun4u machines aren't fitted with
553 	 * an EEPROM which means that we have to obtain the MAC address
554 	 * via OFW and that some tests will always fail.  We distinguish
555 	 * such BGEs by the subvendor ID, which also has to be obtained
556 	 * from OFW instead of the PCI configuration space as the latter
557 	 * indicates Broadcom as the subvendor of the netboot interface.
558 	 * For early Blade 1500 and 2500 we even have to check the OFW
559 	 * device path as the subvendor ID always defaults to Broadcom
560 	 * there.
561 	 */
562 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
563 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
564 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
565 		return (0);
566 	memset(buf, 0, sizeof(buf));
567 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
568 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
569 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
570 			return (0);
571 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
572 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
573 			return (0);
574 	}
575 #endif
576 	return (1);
577 }
578 
579 static uint32_t
580 bge_readmem_ind(struct bge_softc *sc, int off)
581 {
582 	device_t dev;
583 	uint32_t val;
584 
585 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
586 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
587 		return (0);
588 
589 	dev = sc->bge_dev;
590 
591 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
592 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
593 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
594 	return (val);
595 }
596 
597 static void
598 bge_writemem_ind(struct bge_softc *sc, int off, int val)
599 {
600 	device_t dev;
601 
602 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
603 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
604 		return;
605 
606 	dev = sc->bge_dev;
607 
608 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
609 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
610 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
611 }
612 
613 #ifdef notdef
614 static uint32_t
615 bge_readreg_ind(struct bge_softc *sc, int off)
616 {
617 	device_t dev;
618 
619 	dev = sc->bge_dev;
620 
621 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
622 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
623 }
624 #endif
625 
626 static void
627 bge_writereg_ind(struct bge_softc *sc, int off, int val)
628 {
629 	device_t dev;
630 
631 	dev = sc->bge_dev;
632 
633 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
634 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
635 }
636 
637 static void
638 bge_writemem_direct(struct bge_softc *sc, int off, int val)
639 {
640 	CSR_WRITE_4(sc, off, val);
641 }
642 
643 static void
644 bge_writembx(struct bge_softc *sc, int off, int val)
645 {
646 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
647 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
648 
649 	CSR_WRITE_4(sc, off, val);
650 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
651 		CSR_READ_4(sc, off);
652 }
653 
654 /*
655  * Clear all stale locks and select the lock for this driver instance.
656  */
657 static void
658 bge_ape_lock_init(struct bge_softc *sc)
659 {
660 	uint32_t bit, regbase;
661 	int i;
662 
663 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
664 		regbase = BGE_APE_LOCK_GRANT;
665 	else
666 		regbase = BGE_APE_PER_LOCK_GRANT;
667 
668 	/* Clear any stale locks. */
669 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
670 		switch (i) {
671 		case BGE_APE_LOCK_PHY0:
672 		case BGE_APE_LOCK_PHY1:
673 		case BGE_APE_LOCK_PHY2:
674 		case BGE_APE_LOCK_PHY3:
675 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
676 			break;
677 		default:
678 			if (sc->bge_func_addr != 0)
679 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
680 			else
681 				bit = (1 << sc->bge_func_addr);
682 		}
683 		APE_WRITE_4(sc, regbase + 4 * i, bit);
684 	}
685 
686 	/* Select the PHY lock based on the device's function number. */
687 	switch (sc->bge_func_addr) {
688 	case 0:
689 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
690 		break;
691 	case 1:
692 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
693 		break;
694 	case 2:
695 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
696 		break;
697 	case 3:
698 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
699 		break;
700 	default:
701 		device_printf(sc->bge_dev,
702 		    "PHY lock not supported on this function\n");
703 	}
704 }
705 
706 /*
707  * Check for APE firmware, set flags, and print version info.
708  */
709 static void
710 bge_ape_read_fw_ver(struct bge_softc *sc)
711 {
712 	const char *fwtype;
713 	uint32_t apedata, features;
714 
715 	/* Check for a valid APE signature in shared memory. */
716 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
717 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
718 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
719 		return;
720 	}
721 
722 	/* Check if APE firmware is running. */
723 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
724 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
725 		device_printf(sc->bge_dev, "APE signature found "
726 		    "but FW status not ready! 0x%08x\n", apedata);
727 		return;
728 	}
729 
730 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
731 
732 	/* Fetch the APE firwmare type and version. */
733 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
734 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
735 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
736 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
737 		fwtype = "NCSI";
738 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
739 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
740 		fwtype = "DASH";
741 	} else
742 		fwtype = "UNKN";
743 
744 	/* Print the APE firmware version. */
745 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
746 	    fwtype,
747 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
748 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
749 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
750 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
751 }
752 
753 static int
754 bge_ape_lock(struct bge_softc *sc, int locknum)
755 {
756 	uint32_t bit, gnt, req, status;
757 	int i, off;
758 
759 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
760 		return (0);
761 
762 	/* Lock request/grant registers have different bases. */
763 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
764 		req = BGE_APE_LOCK_REQ;
765 		gnt = BGE_APE_LOCK_GRANT;
766 	} else {
767 		req = BGE_APE_PER_LOCK_REQ;
768 		gnt = BGE_APE_PER_LOCK_GRANT;
769 	}
770 
771 	off = 4 * locknum;
772 
773 	switch (locknum) {
774 	case BGE_APE_LOCK_GPIO:
775 		/* Lock required when using GPIO. */
776 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
777 			return (0);
778 		if (sc->bge_func_addr == 0)
779 			bit = BGE_APE_LOCK_REQ_DRIVER0;
780 		else
781 			bit = (1 << sc->bge_func_addr);
782 		break;
783 	case BGE_APE_LOCK_GRC:
784 		/* Lock required to reset the device. */
785 		if (sc->bge_func_addr == 0)
786 			bit = BGE_APE_LOCK_REQ_DRIVER0;
787 		else
788 			bit = (1 << sc->bge_func_addr);
789 		break;
790 	case BGE_APE_LOCK_MEM:
791 		/* Lock required when accessing certain APE memory. */
792 		if (sc->bge_func_addr == 0)
793 			bit = BGE_APE_LOCK_REQ_DRIVER0;
794 		else
795 			bit = (1 << sc->bge_func_addr);
796 		break;
797 	case BGE_APE_LOCK_PHY0:
798 	case BGE_APE_LOCK_PHY1:
799 	case BGE_APE_LOCK_PHY2:
800 	case BGE_APE_LOCK_PHY3:
801 		/* Lock required when accessing PHYs. */
802 		bit = BGE_APE_LOCK_REQ_DRIVER0;
803 		break;
804 	default:
805 		return (EINVAL);
806 	}
807 
808 	/* Request a lock. */
809 	APE_WRITE_4(sc, req + off, bit);
810 
811 	/* Wait up to 1 second to acquire lock. */
812 	for (i = 0; i < 20000; i++) {
813 		status = APE_READ_4(sc, gnt + off);
814 		if (status == bit)
815 			break;
816 		DELAY(50);
817 	}
818 
819 	/* Handle any errors. */
820 	if (status != bit) {
821 		device_printf(sc->bge_dev, "APE lock %d request failed! "
822 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
823 		    locknum, req + off, bit & 0xFFFF, gnt + off,
824 		    status & 0xFFFF);
825 		/* Revoke the lock request. */
826 		APE_WRITE_4(sc, gnt + off, bit);
827 		return (EBUSY);
828 	}
829 
830 	return (0);
831 }
832 
833 static void
834 bge_ape_unlock(struct bge_softc *sc, int locknum)
835 {
836 	uint32_t bit, gnt;
837 	int off;
838 
839 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
840 		return;
841 
842 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
843 		gnt = BGE_APE_LOCK_GRANT;
844 	else
845 		gnt = BGE_APE_PER_LOCK_GRANT;
846 
847 	off = 4 * locknum;
848 
849 	switch (locknum) {
850 	case BGE_APE_LOCK_GPIO:
851 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
852 			return;
853 		if (sc->bge_func_addr == 0)
854 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
855 		else
856 			bit = (1 << sc->bge_func_addr);
857 		break;
858 	case BGE_APE_LOCK_GRC:
859 		if (sc->bge_func_addr == 0)
860 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
861 		else
862 			bit = (1 << sc->bge_func_addr);
863 		break;
864 	case BGE_APE_LOCK_MEM:
865 		if (sc->bge_func_addr == 0)
866 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
867 		else
868 			bit = (1 << sc->bge_func_addr);
869 		break;
870 	case BGE_APE_LOCK_PHY0:
871 	case BGE_APE_LOCK_PHY1:
872 	case BGE_APE_LOCK_PHY2:
873 	case BGE_APE_LOCK_PHY3:
874 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
875 		break;
876 	default:
877 		return;
878 	}
879 
880 	APE_WRITE_4(sc, gnt + off, bit);
881 }
882 
883 /*
884  * Send an event to the APE firmware.
885  */
886 static void
887 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
888 {
889 	uint32_t apedata;
890 	int i;
891 
892 	/* NCSI does not support APE events. */
893 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
894 		return;
895 
896 	/* Wait up to 1ms for APE to service previous event. */
897 	for (i = 10; i > 0; i--) {
898 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
899 			break;
900 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
901 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
902 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
903 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
904 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
905 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
906 			break;
907 		}
908 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
909 		DELAY(100);
910 	}
911 	if (i == 0)
912 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
913 		    event);
914 }
915 
916 static void
917 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
918 {
919 	uint32_t apedata, event;
920 
921 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
922 		return;
923 
924 	switch (kind) {
925 	case BGE_RESET_START:
926 		/* If this is the first load, clear the load counter. */
927 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
928 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
929 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
930 		else {
931 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
932 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
933 		}
934 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
935 		    BGE_APE_HOST_SEG_SIG_MAGIC);
936 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
937 		    BGE_APE_HOST_SEG_LEN_MAGIC);
938 
939 		/* Add some version info if bge(4) supports it. */
940 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
941 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
942 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
943 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
944 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
945 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
946 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
947 		    BGE_APE_HOST_DRVR_STATE_START);
948 		event = BGE_APE_EVENT_STATUS_STATE_START;
949 		break;
950 	case BGE_RESET_SHUTDOWN:
951 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
952 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
953 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
954 		break;
955 	case BGE_RESET_SUSPEND:
956 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
957 		break;
958 	default:
959 		return;
960 	}
961 
962 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
963 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
964 }
965 
966 /*
967  * Map a single buffer address.
968  */
969 
970 static void
971 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
972 {
973 	struct bge_dmamap_arg *ctx;
974 
975 	if (error)
976 		return;
977 
978 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
979 
980 	ctx = arg;
981 	ctx->bge_busaddr = segs->ds_addr;
982 }
983 
984 static uint8_t
985 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
986 {
987 	uint32_t access, byte = 0;
988 	int i;
989 
990 	/* Lock. */
991 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
992 	for (i = 0; i < 8000; i++) {
993 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
994 			break;
995 		DELAY(20);
996 	}
997 	if (i == 8000)
998 		return (1);
999 
1000 	/* Enable access. */
1001 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1002 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1003 
1004 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1005 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1006 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1007 		DELAY(10);
1008 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1009 			DELAY(10);
1010 			break;
1011 		}
1012 	}
1013 
1014 	if (i == BGE_TIMEOUT * 10) {
1015 		if_printf(sc->bge_ifp, "nvram read timed out\n");
1016 		return (1);
1017 	}
1018 
1019 	/* Get result. */
1020 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1021 
1022 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1023 
1024 	/* Disable access. */
1025 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1026 
1027 	/* Unlock. */
1028 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1029 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Read a sequence of bytes from NVRAM.
1036  */
1037 static int
1038 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1039 {
1040 	int err = 0, i;
1041 	uint8_t byte = 0;
1042 
1043 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1044 		return (1);
1045 
1046 	for (i = 0; i < cnt; i++) {
1047 		err = bge_nvram_getbyte(sc, off + i, &byte);
1048 		if (err)
1049 			break;
1050 		*(dest + i) = byte;
1051 	}
1052 
1053 	return (err ? 1 : 0);
1054 }
1055 
1056 /*
1057  * Read a byte of data stored in the EEPROM at address 'addr.' The
1058  * BCM570x supports both the traditional bitbang interface and an
1059  * auto access interface for reading the EEPROM. We use the auto
1060  * access method.
1061  */
1062 static uint8_t
1063 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1064 {
1065 	int i;
1066 	uint32_t byte = 0;
1067 
1068 	/*
1069 	 * Enable use of auto EEPROM access so we can avoid
1070 	 * having to use the bitbang method.
1071 	 */
1072 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1073 
1074 	/* Reset the EEPROM, load the clock period. */
1075 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1076 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1077 	DELAY(20);
1078 
1079 	/* Issue the read EEPROM command. */
1080 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1081 
1082 	/* Wait for completion */
1083 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1084 		DELAY(10);
1085 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1086 			break;
1087 	}
1088 
1089 	if (i == BGE_TIMEOUT * 10) {
1090 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
1091 		return (1);
1092 	}
1093 
1094 	/* Get result. */
1095 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1096 
1097 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1098 
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Read a sequence of bytes from the EEPROM.
1104  */
1105 static int
1106 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1107 {
1108 	int i, error = 0;
1109 	uint8_t byte = 0;
1110 
1111 	for (i = 0; i < cnt; i++) {
1112 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1113 		if (error)
1114 			break;
1115 		*(dest + i) = byte;
1116 	}
1117 
1118 	return (error ? 1 : 0);
1119 }
1120 
1121 static int
1122 bge_miibus_readreg(device_t dev, int phy, int reg)
1123 {
1124 	struct bge_softc *sc;
1125 	uint32_t val;
1126 	int i;
1127 
1128 	sc = device_get_softc(dev);
1129 
1130 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1131 		return (0);
1132 
1133 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1134 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1135 		CSR_WRITE_4(sc, BGE_MI_MODE,
1136 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1137 		DELAY(80);
1138 	}
1139 
1140 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1141 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1142 
1143 	/* Poll for the PHY register access to complete. */
1144 	for (i = 0; i < BGE_TIMEOUT; i++) {
1145 		DELAY(10);
1146 		val = CSR_READ_4(sc, BGE_MI_COMM);
1147 		if ((val & BGE_MICOMM_BUSY) == 0) {
1148 			DELAY(5);
1149 			val = CSR_READ_4(sc, BGE_MI_COMM);
1150 			break;
1151 		}
1152 	}
1153 
1154 	if (i == BGE_TIMEOUT) {
1155 		device_printf(sc->bge_dev,
1156 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1157 		    phy, reg, val);
1158 		val = 0;
1159 	}
1160 
1161 	/* Restore the autopoll bit if necessary. */
1162 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1163 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1164 		DELAY(80);
1165 	}
1166 
1167 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1168 
1169 	if (val & BGE_MICOMM_READFAIL)
1170 		return (0);
1171 
1172 	return (val & 0xFFFF);
1173 }
1174 
1175 static int
1176 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1177 {
1178 	struct bge_softc *sc;
1179 	int i;
1180 
1181 	sc = device_get_softc(dev);
1182 
1183 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1184 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1185 		return (0);
1186 
1187 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1188 		return (0);
1189 
1190 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1191 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1192 		CSR_WRITE_4(sc, BGE_MI_MODE,
1193 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1194 		DELAY(80);
1195 	}
1196 
1197 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1198 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1199 
1200 	for (i = 0; i < BGE_TIMEOUT; i++) {
1201 		DELAY(10);
1202 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1203 			DELAY(5);
1204 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1205 			break;
1206 		}
1207 	}
1208 
1209 	/* Restore the autopoll bit if necessary. */
1210 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1211 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1212 		DELAY(80);
1213 	}
1214 
1215 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1216 
1217 	if (i == BGE_TIMEOUT)
1218 		device_printf(sc->bge_dev,
1219 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1220 		    phy, reg, val);
1221 
1222 	return (0);
1223 }
1224 
1225 static void
1226 bge_miibus_statchg(device_t dev)
1227 {
1228 	struct bge_softc *sc;
1229 	struct mii_data *mii;
1230 	uint32_t mac_mode, rx_mode, tx_mode;
1231 
1232 	sc = device_get_softc(dev);
1233 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1234 		return;
1235 	mii = device_get_softc(sc->bge_miibus);
1236 
1237 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1238 	    (IFM_ACTIVE | IFM_AVALID)) {
1239 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1240 		case IFM_10_T:
1241 		case IFM_100_TX:
1242 			sc->bge_link = 1;
1243 			break;
1244 		case IFM_1000_T:
1245 		case IFM_1000_SX:
1246 		case IFM_2500_SX:
1247 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1248 				sc->bge_link = 1;
1249 			else
1250 				sc->bge_link = 0;
1251 			break;
1252 		default:
1253 			sc->bge_link = 0;
1254 			break;
1255 		}
1256 	} else
1257 		sc->bge_link = 0;
1258 	if (sc->bge_link == 0)
1259 		return;
1260 
1261 	/*
1262 	 * APE firmware touches these registers to keep the MAC
1263 	 * connected to the outside world.  Try to keep the
1264 	 * accesses atomic.
1265 	 */
1266 
1267 	/* Set the port mode (MII/GMII) to match the link speed. */
1268 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1269 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1270 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1271 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1272 
1273 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1274 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1275 		mac_mode |= BGE_PORTMODE_GMII;
1276 	else
1277 		mac_mode |= BGE_PORTMODE_MII;
1278 
1279 	/* Set MAC flow control behavior to match link flow control settings. */
1280 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1281 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1282 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
1283 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1284 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1285 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1286 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1287 	} else
1288 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1289 
1290 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1291 	DELAY(40);
1292 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1293 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1294 }
1295 
1296 /*
1297  * Intialize a standard receive ring descriptor.
1298  */
1299 static int
1300 bge_newbuf_std(struct bge_softc *sc, int i)
1301 {
1302 	struct mbuf *m;
1303 	struct bge_rx_bd *r;
1304 	bus_dma_segment_t segs[1];
1305 	bus_dmamap_t map;
1306 	int error, nsegs;
1307 
1308 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1309 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
1310 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1311 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1312 		if (m == NULL)
1313 			return (ENOBUFS);
1314 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1315 	} else {
1316 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1317 		if (m == NULL)
1318 			return (ENOBUFS);
1319 		m->m_len = m->m_pkthdr.len = MCLBYTES;
1320 	}
1321 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1322 		m_adj(m, ETHER_ALIGN);
1323 
1324 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1325 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1326 	if (error != 0) {
1327 		m_freem(m);
1328 		return (error);
1329 	}
1330 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1331 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1332 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1333 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1334 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1335 	}
1336 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1337 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1338 	sc->bge_cdata.bge_rx_std_sparemap = map;
1339 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1340 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1341 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1342 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1343 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1344 	r->bge_flags = BGE_RXBDFLAG_END;
1345 	r->bge_len = segs[0].ds_len;
1346 	r->bge_idx = i;
1347 
1348 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1349 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1350 
1351 	return (0);
1352 }
1353 
1354 /*
1355  * Initialize a jumbo receive ring descriptor. This allocates
1356  * a jumbo buffer from the pool managed internally by the driver.
1357  */
1358 static int
1359 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1360 {
1361 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1362 	bus_dmamap_t map;
1363 	struct bge_extrx_bd *r;
1364 	struct mbuf *m;
1365 	int error, nsegs;
1366 
1367 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1368 	if (m == NULL)
1369 		return (ENOBUFS);
1370 
1371 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1372 	if (!(m->m_flags & M_EXT)) {
1373 		m_freem(m);
1374 		return (ENOBUFS);
1375 	}
1376 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1377 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1378 		m_adj(m, ETHER_ALIGN);
1379 
1380 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1381 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1382 	if (error != 0) {
1383 		m_freem(m);
1384 		return (error);
1385 	}
1386 
1387 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1388 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1389 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1390 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1391 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1392 	}
1393 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1394 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1395 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1396 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1397 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1398 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1399 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1400 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1401 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1402 
1403 	/*
1404 	 * Fill in the extended RX buffer descriptor.
1405 	 */
1406 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1407 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1408 	r->bge_idx = i;
1409 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1410 	switch (nsegs) {
1411 	case 4:
1412 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1413 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1414 		r->bge_len3 = segs[3].ds_len;
1415 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1416 	case 3:
1417 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1418 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1419 		r->bge_len2 = segs[2].ds_len;
1420 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1421 	case 2:
1422 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1423 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1424 		r->bge_len1 = segs[1].ds_len;
1425 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1426 	case 1:
1427 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1428 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1429 		r->bge_len0 = segs[0].ds_len;
1430 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1431 		break;
1432 	default:
1433 		panic("%s: %d segments\n", __func__, nsegs);
1434 	}
1435 
1436 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1437 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1438 
1439 	return (0);
1440 }
1441 
1442 static int
1443 bge_init_rx_ring_std(struct bge_softc *sc)
1444 {
1445 	int error, i;
1446 
1447 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1448 	sc->bge_std = 0;
1449 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1450 		if ((error = bge_newbuf_std(sc, i)) != 0)
1451 			return (error);
1452 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1453 	}
1454 
1455 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1456 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1457 
1458 	sc->bge_std = 0;
1459 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1460 
1461 	return (0);
1462 }
1463 
1464 static void
1465 bge_free_rx_ring_std(struct bge_softc *sc)
1466 {
1467 	int i;
1468 
1469 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1470 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1471 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1472 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1473 			    BUS_DMASYNC_POSTREAD);
1474 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1475 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1476 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1477 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1478 		}
1479 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1480 		    sizeof(struct bge_rx_bd));
1481 	}
1482 }
1483 
1484 static int
1485 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1486 {
1487 	struct bge_rcb *rcb;
1488 	int error, i;
1489 
1490 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1491 	sc->bge_jumbo = 0;
1492 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1493 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1494 			return (error);
1495 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1496 	}
1497 
1498 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1499 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1500 
1501 	sc->bge_jumbo = 0;
1502 
1503 	/* Enable the jumbo receive producer ring. */
1504 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1505 	rcb->bge_maxlen_flags =
1506 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1507 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1508 
1509 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1510 
1511 	return (0);
1512 }
1513 
1514 static void
1515 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1516 {
1517 	int i;
1518 
1519 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1520 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1521 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1522 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1523 			    BUS_DMASYNC_POSTREAD);
1524 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1525 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1526 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1527 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1528 		}
1529 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1530 		    sizeof(struct bge_extrx_bd));
1531 	}
1532 }
1533 
1534 static void
1535 bge_free_tx_ring(struct bge_softc *sc)
1536 {
1537 	int i;
1538 
1539 	if (sc->bge_ldata.bge_tx_ring == NULL)
1540 		return;
1541 
1542 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1543 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1544 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1545 			    sc->bge_cdata.bge_tx_dmamap[i],
1546 			    BUS_DMASYNC_POSTWRITE);
1547 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1548 			    sc->bge_cdata.bge_tx_dmamap[i]);
1549 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1550 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1551 		}
1552 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1553 		    sizeof(struct bge_tx_bd));
1554 	}
1555 }
1556 
1557 static int
1558 bge_init_tx_ring(struct bge_softc *sc)
1559 {
1560 	sc->bge_txcnt = 0;
1561 	sc->bge_tx_saved_considx = 0;
1562 
1563 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1564 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1565 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1566 
1567 	/* Initialize transmit producer index for host-memory send ring. */
1568 	sc->bge_tx_prodidx = 0;
1569 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1570 
1571 	/* 5700 b2 errata */
1572 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1573 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1574 
1575 	/* NIC-memory send ring not used; initialize to zero. */
1576 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1577 	/* 5700 b2 errata */
1578 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1579 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1580 
1581 	return (0);
1582 }
1583 
1584 static void
1585 bge_setpromisc(struct bge_softc *sc)
1586 {
1587 	struct ifnet *ifp;
1588 
1589 	BGE_LOCK_ASSERT(sc);
1590 
1591 	ifp = sc->bge_ifp;
1592 
1593 	/* Enable or disable promiscuous mode as needed. */
1594 	if (ifp->if_flags & IFF_PROMISC)
1595 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1596 	else
1597 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1598 }
1599 
1600 static void
1601 bge_setmulti(struct bge_softc *sc)
1602 {
1603 	struct ifnet *ifp;
1604 	struct ifmultiaddr *ifma;
1605 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1606 	int h, i;
1607 
1608 	BGE_LOCK_ASSERT(sc);
1609 
1610 	ifp = sc->bge_ifp;
1611 
1612 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1613 		for (i = 0; i < 4; i++)
1614 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1615 		return;
1616 	}
1617 
1618 	/* First, zot all the existing filters. */
1619 	for (i = 0; i < 4; i++)
1620 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1621 
1622 	/* Now program new ones. */
1623 	if_maddr_rlock(ifp);
1624 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1625 		if (ifma->ifma_addr->sa_family != AF_LINK)
1626 			continue;
1627 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1628 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1629 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1630 	}
1631 	if_maddr_runlock(ifp);
1632 
1633 	for (i = 0; i < 4; i++)
1634 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1635 }
1636 
1637 static void
1638 bge_setvlan(struct bge_softc *sc)
1639 {
1640 	struct ifnet *ifp;
1641 
1642 	BGE_LOCK_ASSERT(sc);
1643 
1644 	ifp = sc->bge_ifp;
1645 
1646 	/* Enable or disable VLAN tag stripping as needed. */
1647 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1648 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1649 	else
1650 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1651 }
1652 
1653 static void
1654 bge_sig_pre_reset(struct bge_softc *sc, int type)
1655 {
1656 
1657 	/*
1658 	 * Some chips don't like this so only do this if ASF is enabled
1659 	 */
1660 	if (sc->bge_asf_mode)
1661 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1662 
1663 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1664 		switch (type) {
1665 		case BGE_RESET_START:
1666 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1667 			    BGE_FW_DRV_STATE_START);
1668 			break;
1669 		case BGE_RESET_SHUTDOWN:
1670 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1671 			    BGE_FW_DRV_STATE_UNLOAD);
1672 			break;
1673 		case BGE_RESET_SUSPEND:
1674 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1675 			    BGE_FW_DRV_STATE_SUSPEND);
1676 			break;
1677 		}
1678 	}
1679 
1680 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1681 		bge_ape_driver_state_change(sc, type);
1682 }
1683 
1684 static void
1685 bge_sig_post_reset(struct bge_softc *sc, int type)
1686 {
1687 
1688 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1689 		switch (type) {
1690 		case BGE_RESET_START:
1691 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1692 			    BGE_FW_DRV_STATE_START_DONE);
1693 			/* START DONE */
1694 			break;
1695 		case BGE_RESET_SHUTDOWN:
1696 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1697 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1698 			break;
1699 		}
1700 	}
1701 	if (type == BGE_RESET_SHUTDOWN)
1702 		bge_ape_driver_state_change(sc, type);
1703 }
1704 
1705 static void
1706 bge_sig_legacy(struct bge_softc *sc, int type)
1707 {
1708 
1709 	if (sc->bge_asf_mode) {
1710 		switch (type) {
1711 		case BGE_RESET_START:
1712 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1713 			    BGE_FW_DRV_STATE_START);
1714 			break;
1715 		case BGE_RESET_SHUTDOWN:
1716 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1717 			    BGE_FW_DRV_STATE_UNLOAD);
1718 			break;
1719 		}
1720 	}
1721 }
1722 
1723 static void
1724 bge_stop_fw(struct bge_softc *sc)
1725 {
1726 	int i;
1727 
1728 	if (sc->bge_asf_mode) {
1729 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1730 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1731 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1732 
1733 		for (i = 0; i < 100; i++ ) {
1734 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1735 			    BGE_RX_CPU_DRV_EVENT))
1736 				break;
1737 			DELAY(10);
1738 		}
1739 	}
1740 }
1741 
1742 static uint32_t
1743 bge_dma_swap_options(struct bge_softc *sc)
1744 {
1745 	uint32_t dma_options;
1746 
1747 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1748 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1749 #if BYTE_ORDER == BIG_ENDIAN
1750 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1751 #endif
1752 	return (dma_options);
1753 }
1754 
1755 /*
1756  * Do endian, PCI and DMA initialization.
1757  */
1758 static int
1759 bge_chipinit(struct bge_softc *sc)
1760 {
1761 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1762 	uint16_t val;
1763 	int i;
1764 
1765 	/* Set endianness before we access any non-PCI registers. */
1766 	misc_ctl = BGE_INIT;
1767 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1768 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1769 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1770 
1771 	/*
1772 	 * Clear the MAC statistics block in the NIC's
1773 	 * internal memory.
1774 	 */
1775 	for (i = BGE_STATS_BLOCK;
1776 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1777 		BGE_MEMWIN_WRITE(sc, i, 0);
1778 
1779 	for (i = BGE_STATUS_BLOCK;
1780 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1781 		BGE_MEMWIN_WRITE(sc, i, 0);
1782 
1783 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1784 		/*
1785 		 *  Fix data corruption caused by non-qword write with WB.
1786 		 *  Fix master abort in PCI mode.
1787 		 *  Fix PCI latency timer.
1788 		 */
1789 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1790 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1791 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1792 	}
1793 
1794 	/*
1795 	 * Set up the PCI DMA control register.
1796 	 */
1797 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1798 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1799 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1800 		if (sc->bge_mps >= 256)
1801 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1802 		else
1803 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1804 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1805 		if (BGE_IS_5714_FAMILY(sc)) {
1806 			/* 256 bytes for read and write. */
1807 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1808 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1809 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1810 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1811 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1812 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1813 			/*
1814 			 * In the BCM5703, the DMA read watermark should
1815 			 * be set to less than or equal to the maximum
1816 			 * memory read byte count of the PCI-X command
1817 			 * register.
1818 			 */
1819 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1820 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1821 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1822 			/* 1536 bytes for read, 384 bytes for write. */
1823 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1824 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1825 		} else {
1826 			/* 384 bytes for read and write. */
1827 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1828 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1829 			    0x0F;
1830 		}
1831 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1832 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1833 			uint32_t tmp;
1834 
1835 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1836 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1837 			if (tmp == 6 || tmp == 7)
1838 				dma_rw_ctl |=
1839 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1840 
1841 			/* Set PCI-X DMA write workaround. */
1842 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1843 		}
1844 	} else {
1845 		/* Conventional PCI bus: 256 bytes for read and write. */
1846 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1847 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1848 
1849 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1850 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1851 			dma_rw_ctl |= 0x0F;
1852 	}
1853 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1854 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1855 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1856 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1858 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1859 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1860 	if (BGE_IS_5717_PLUS(sc)) {
1861 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1862 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1863 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1864 		/*
1865 		 * Enable HW workaround for controllers that misinterpret
1866 		 * a status tag update and leave interrupts permanently
1867 		 * disabled.
1868 		 */
1869 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1870 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1871 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1872 	}
1873 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1874 
1875 	/*
1876 	 * Set up general mode register.
1877 	 */
1878 	mode_ctl = bge_dma_swap_options(sc);
1879 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1880 		/* Retain Host-2-BMC settings written by APE firmware. */
1881 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1882 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1883 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1884 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1885 	}
1886 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1887 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1888 
1889 	/*
1890 	 * BCM5701 B5 have a bug causing data corruption when using
1891 	 * 64-bit DMA reads, which can be terminated early and then
1892 	 * completed later as 32-bit accesses, in combination with
1893 	 * certain bridges.
1894 	 */
1895 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1896 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1897 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1898 
1899 	/*
1900 	 * Tell the firmware the driver is running
1901 	 */
1902 	if (sc->bge_asf_mode & ASF_STACKUP)
1903 		mode_ctl |= BGE_MODECTL_STACKUP;
1904 
1905 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1906 
1907 	/*
1908 	 * Disable memory write invalidate.  Apparently it is not supported
1909 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1910 	 * as these chips need it even when using MSI.
1911 	 */
1912 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1913 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1914 
1915 	/* Set the timer prescaler (always 66Mhz) */
1916 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1917 
1918 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1919 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1920 		DELAY(40);	/* XXX */
1921 
1922 		/* Put PHY into ready state */
1923 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1924 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1925 		DELAY(40);
1926 	}
1927 
1928 	return (0);
1929 }
1930 
1931 static int
1932 bge_blockinit(struct bge_softc *sc)
1933 {
1934 	struct bge_rcb *rcb;
1935 	bus_size_t vrcb;
1936 	bge_hostaddr taddr;
1937 	uint32_t dmactl, val;
1938 	int i, limit;
1939 
1940 	/*
1941 	 * Initialize the memory window pointer register so that
1942 	 * we can access the first 32K of internal NIC RAM. This will
1943 	 * allow us to set up the TX send ring RCBs and the RX return
1944 	 * ring RCBs, plus other things which live in NIC memory.
1945 	 */
1946 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1947 
1948 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1949 
1950 	if (!(BGE_IS_5705_PLUS(sc))) {
1951 		/* Configure mbuf memory pool */
1952 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1953 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1954 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1955 		else
1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1957 
1958 		/* Configure DMA resource pool */
1959 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1960 		    BGE_DMA_DESCRIPTORS);
1961 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1962 	}
1963 
1964 	/* Configure mbuf pool watermarks */
1965 	if (BGE_IS_5717_PLUS(sc)) {
1966 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1967 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1968 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1969 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1970 		} else {
1971 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1972 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1973 		}
1974 	} else if (!BGE_IS_5705_PLUS(sc)) {
1975 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1976 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1977 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1978 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1979 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1981 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1982 	} else {
1983 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1986 	}
1987 
1988 	/* Configure DMA resource watermarks */
1989 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1990 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1991 
1992 	/* Enable buffer manager */
1993 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1994 	/*
1995 	 * Change the arbitration algorithm of TXMBUF read request to
1996 	 * round-robin instead of priority based for BCM5719.  When
1997 	 * TXFIFO is almost empty, RDMA will hold its request until
1998 	 * TXFIFO is not almost empty.
1999 	 */
2000 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2001 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2002 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2003 
2004 	/* Poll for buffer manager start indication */
2005 	for (i = 0; i < BGE_TIMEOUT; i++) {
2006 		DELAY(10);
2007 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2008 			break;
2009 	}
2010 
2011 	if (i == BGE_TIMEOUT) {
2012 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
2013 		return (ENXIO);
2014 	}
2015 
2016 	/* Enable flow-through queues */
2017 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2019 
2020 	/* Wait until queue initialization is complete */
2021 	for (i = 0; i < BGE_TIMEOUT; i++) {
2022 		DELAY(10);
2023 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2024 			break;
2025 	}
2026 
2027 	if (i == BGE_TIMEOUT) {
2028 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
2029 		return (ENXIO);
2030 	}
2031 
2032 	/*
2033 	 * Summary of rings supported by the controller:
2034 	 *
2035 	 * Standard Receive Producer Ring
2036 	 * - This ring is used to feed receive buffers for "standard"
2037 	 *   sized frames (typically 1536 bytes) to the controller.
2038 	 *
2039 	 * Jumbo Receive Producer Ring
2040 	 * - This ring is used to feed receive buffers for jumbo sized
2041 	 *   frames (i.e. anything bigger than the "standard" frames)
2042 	 *   to the controller.
2043 	 *
2044 	 * Mini Receive Producer Ring
2045 	 * - This ring is used to feed receive buffers for "mini"
2046 	 *   sized frames to the controller.
2047 	 * - This feature required external memory for the controller
2048 	 *   but was never used in a production system.  Should always
2049 	 *   be disabled.
2050 	 *
2051 	 * Receive Return Ring
2052 	 * - After the controller has placed an incoming frame into a
2053 	 *   receive buffer that buffer is moved into a receive return
2054 	 *   ring.  The driver is then responsible to passing the
2055 	 *   buffer up to the stack.  Many versions of the controller
2056 	 *   support multiple RR rings.
2057 	 *
2058 	 * Send Ring
2059 	 * - This ring is used for outgoing frames.  Many versions of
2060 	 *   the controller support multiple send rings.
2061 	 */
2062 
2063 	/* Initialize the standard receive producer ring control block. */
2064 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2065 	rcb->bge_hostaddr.bge_addr_lo =
2066 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2067 	rcb->bge_hostaddr.bge_addr_hi =
2068 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2069 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2070 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2071 	if (BGE_IS_5717_PLUS(sc)) {
2072 		/*
2073 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2074 		 * Bits 15-2 : Maximum RX frame size
2075 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2076 		 * Bit 0     : Reserved
2077 		 */
2078 		rcb->bge_maxlen_flags =
2079 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2080 	} else if (BGE_IS_5705_PLUS(sc)) {
2081 		/*
2082 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2083 		 * Bits 15-2 : Reserved (should be 0)
2084 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2085 		 * Bit 0     : Reserved
2086 		 */
2087 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2088 	} else {
2089 		/*
2090 		 * Ring size is always XXX entries
2091 		 * Bits 31-16: Maximum RX frame size
2092 		 * Bits 15-2 : Reserved (should be 0)
2093 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2094 		 * Bit 0     : Reserved
2095 		 */
2096 		rcb->bge_maxlen_flags =
2097 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2098 	}
2099 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2100 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2101 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2102 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2103 	else
2104 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2105 	/* Write the standard receive producer ring control block. */
2106 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2107 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2108 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2109 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2110 
2111 	/* Reset the standard receive producer ring producer index. */
2112 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2113 
2114 	/*
2115 	 * Initialize the jumbo RX producer ring control
2116 	 * block.  We set the 'ring disabled' bit in the
2117 	 * flags field until we're actually ready to start
2118 	 * using this ring (i.e. once we set the MTU
2119 	 * high enough to require it).
2120 	 */
2121 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2122 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2123 		/* Get the jumbo receive producer ring RCB parameters. */
2124 		rcb->bge_hostaddr.bge_addr_lo =
2125 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2126 		rcb->bge_hostaddr.bge_addr_hi =
2127 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2128 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2129 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2130 		    BUS_DMASYNC_PREREAD);
2131 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2132 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2133 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2134 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2135 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2136 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2137 		else
2138 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2139 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2140 		    rcb->bge_hostaddr.bge_addr_hi);
2141 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2142 		    rcb->bge_hostaddr.bge_addr_lo);
2143 		/* Program the jumbo receive producer ring RCB parameters. */
2144 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2145 		    rcb->bge_maxlen_flags);
2146 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2147 		/* Reset the jumbo receive producer ring producer index. */
2148 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2149 	}
2150 
2151 	/* Disable the mini receive producer ring RCB. */
2152 	if (BGE_IS_5700_FAMILY(sc)) {
2153 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2154 		rcb->bge_maxlen_flags =
2155 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2156 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2157 		    rcb->bge_maxlen_flags);
2158 		/* Reset the mini receive producer ring producer index. */
2159 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2160 	}
2161 
2162 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2163 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2164 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2165 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2166 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2167 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2168 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2169 	}
2170 	/*
2171 	 * The BD ring replenish thresholds control how often the
2172 	 * hardware fetches new BD's from the producer rings in host
2173 	 * memory.  Setting the value too low on a busy system can
2174 	 * starve the hardware and recue the throughpout.
2175 	 *
2176 	 * Set the BD ring replentish thresholds. The recommended
2177 	 * values are 1/8th the number of descriptors allocated to
2178 	 * each ring.
2179 	 * XXX The 5754 requires a lower threshold, so it might be a
2180 	 * requirement of all 575x family chips.  The Linux driver sets
2181 	 * the lower threshold for all 5705 family chips as well, but there
2182 	 * are reports that it might not need to be so strict.
2183 	 *
2184 	 * XXX Linux does some extra fiddling here for the 5906 parts as
2185 	 * well.
2186 	 */
2187 	if (BGE_IS_5705_PLUS(sc))
2188 		val = 8;
2189 	else
2190 		val = BGE_STD_RX_RING_CNT / 8;
2191 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2192 	if (BGE_IS_JUMBO_CAPABLE(sc))
2193 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2194 		    BGE_JUMBO_RX_RING_CNT/8);
2195 	if (BGE_IS_5717_PLUS(sc)) {
2196 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2197 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2198 	}
2199 
2200 	/*
2201 	 * Disable all send rings by setting the 'ring disabled' bit
2202 	 * in the flags field of all the TX send ring control blocks,
2203 	 * located in NIC memory.
2204 	 */
2205 	if (!BGE_IS_5705_PLUS(sc))
2206 		/* 5700 to 5704 had 16 send rings. */
2207 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2208 	else
2209 		limit = 1;
2210 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2211 	for (i = 0; i < limit; i++) {
2212 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2213 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2214 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2215 		vrcb += sizeof(struct bge_rcb);
2216 	}
2217 
2218 	/* Configure send ring RCB 0 (we use only the first ring) */
2219 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2220 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2221 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2222 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2223 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2224 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2225 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
2226 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2227 	else
2228 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2229 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2230 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2231 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2232 
2233 	/*
2234 	 * Disable all receive return rings by setting the
2235 	 * 'ring diabled' bit in the flags field of all the receive
2236 	 * return ring control blocks, located in NIC memory.
2237 	 */
2238 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2239 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2240 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2241 		/* Should be 17, use 16 until we get an SRAM map. */
2242 		limit = 16;
2243 	} else if (!BGE_IS_5705_PLUS(sc))
2244 		limit = BGE_RX_RINGS_MAX;
2245 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2246 	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
2247 		limit = 4;
2248 	else
2249 		limit = 1;
2250 	/* Disable all receive return rings. */
2251 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2252 	for (i = 0; i < limit; i++) {
2253 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2254 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2255 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2256 		    BGE_RCB_FLAG_RING_DISABLED);
2257 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2258 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2259 		    (i * (sizeof(uint64_t))), 0);
2260 		vrcb += sizeof(struct bge_rcb);
2261 	}
2262 
2263 	/*
2264 	 * Set up receive return ring 0.  Note that the NIC address
2265 	 * for RX return rings is 0x0.  The return rings live entirely
2266 	 * within the host, so the nicaddr field in the RCB isn't used.
2267 	 */
2268 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2269 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2270 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2271 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2272 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2273 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2274 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2275 
2276 	/* Set random backoff seed for TX */
2277 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2278 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
2279 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
2280 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
2281 	    BGE_TX_BACKOFF_SEED_MASK);
2282 
2283 	/* Set inter-packet gap */
2284 	val = 0x2620;
2285 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
2286 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2287 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2288 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2289 
2290 	/*
2291 	 * Specify which ring to use for packets that don't match
2292 	 * any RX rules.
2293 	 */
2294 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2295 
2296 	/*
2297 	 * Configure number of RX lists. One interrupt distribution
2298 	 * list, sixteen active lists, one bad frames class.
2299 	 */
2300 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2301 
2302 	/* Inialize RX list placement stats mask. */
2303 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2304 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2305 
2306 	/* Disable host coalescing until we get it set up */
2307 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2308 
2309 	/* Poll to make sure it's shut down. */
2310 	for (i = 0; i < BGE_TIMEOUT; i++) {
2311 		DELAY(10);
2312 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2313 			break;
2314 	}
2315 
2316 	if (i == BGE_TIMEOUT) {
2317 		device_printf(sc->bge_dev,
2318 		    "host coalescing engine failed to idle\n");
2319 		return (ENXIO);
2320 	}
2321 
2322 	/* Set up host coalescing defaults */
2323 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2324 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2325 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2326 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2327 	if (!(BGE_IS_5705_PLUS(sc))) {
2328 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2329 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2330 	}
2331 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2332 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2333 
2334 	/* Set up address of statistics block */
2335 	if (!(BGE_IS_5705_PLUS(sc))) {
2336 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2337 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2338 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2339 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2340 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2341 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2342 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2343 	}
2344 
2345 	/* Set up address of status block */
2346 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2347 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2348 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2349 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2350 
2351 	/* Set up status block size. */
2352 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2353 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2354 		val = BGE_STATBLKSZ_FULL;
2355 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2356 	} else {
2357 		val = BGE_STATBLKSZ_32BYTE;
2358 		bzero(sc->bge_ldata.bge_status_block, 32);
2359 	}
2360 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2361 	    sc->bge_cdata.bge_status_map,
2362 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2363 
2364 	/* Turn on host coalescing state machine */
2365 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2366 
2367 	/* Turn on RX BD completion state machine and enable attentions */
2368 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2369 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2370 
2371 	/* Turn on RX list placement state machine */
2372 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2373 
2374 	/* Turn on RX list selector state machine. */
2375 	if (!(BGE_IS_5705_PLUS(sc)))
2376 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2377 
2378 	/* Turn on DMA, clear stats. */
2379 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2380 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2381 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2382 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2383 
2384 	if (sc->bge_flags & BGE_FLAG_TBI)
2385 		val |= BGE_PORTMODE_TBI;
2386 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2387 		val |= BGE_PORTMODE_GMII;
2388 	else
2389 		val |= BGE_PORTMODE_MII;
2390 
2391 	/* Allow APE to send/receive frames. */
2392 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2393 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2394 
2395 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2396 	DELAY(40);
2397 
2398 	/* Set misc. local control, enable interrupts on attentions */
2399 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2400 
2401 #ifdef notdef
2402 	/* Assert GPIO pins for PHY reset */
2403 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2404 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2405 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2406 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2407 #endif
2408 
2409 	/* Turn on DMA completion state machine */
2410 	if (!(BGE_IS_5705_PLUS(sc)))
2411 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2412 
2413 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2414 
2415 	/* Enable host coalescing bug fix. */
2416 	if (BGE_IS_5755_PLUS(sc))
2417 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2418 
2419 	/* Request larger DMA burst size to get better performance. */
2420 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2421 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2422 
2423 	/* Turn on write DMA state machine */
2424 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2425 	DELAY(40);
2426 
2427 	/* Turn on read DMA state machine */
2428 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2429 
2430 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2431 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2432 
2433 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2434 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2435 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2436 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2437 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2438 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2439 	if (sc->bge_flags & BGE_FLAG_PCIE)
2440 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2441 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2442 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2443 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2444 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2445 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2446 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2447 	}
2448 
2449 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2450 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2451 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2452 		/*
2453 		 * Allow multiple outstanding read requests from
2454 		 * non-LSO read DMA engine.
2455 		 */
2456 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2457 	}
2458 
2459 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2460 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2461 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2462 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2463 	    BGE_IS_5717_PLUS(sc)) {
2464 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2465 		/*
2466 		 * Adjust tx margin to prevent TX data corruption and
2467 		 * fix internal FIFO overflow.
2468 		 */
2469 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2470 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2471 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2472 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2473 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2474 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2475 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2476 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2477 		}
2478 		/*
2479 		 * Enable fix for read DMA FIFO overruns.
2480 		 * The fix is to limit the number of RX BDs
2481 		 * the hardware would fetch at a fime.
2482 		 */
2483 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2484 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2485 	}
2486 
2487 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2488 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2489 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2490 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2491 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2492 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2493 		/*
2494 		 * Allow 4KB burst length reads for non-LSO frames.
2495 		 * Enable 512B burst length reads for buffer descriptors.
2496 		 */
2497 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2498 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2499 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2500 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2501 	}
2502 
2503 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2504 	DELAY(40);
2505 
2506 	/* Turn on RX data completion state machine */
2507 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2508 
2509 	/* Turn on RX BD initiator state machine */
2510 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2511 
2512 	/* Turn on RX data and RX BD initiator state machine */
2513 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2514 
2515 	/* Turn on Mbuf cluster free state machine */
2516 	if (!(BGE_IS_5705_PLUS(sc)))
2517 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2518 
2519 	/* Turn on send BD completion state machine */
2520 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2521 
2522 	/* Turn on send data completion state machine */
2523 	val = BGE_SDCMODE_ENABLE;
2524 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2525 		val |= BGE_SDCMODE_CDELAY;
2526 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2527 
2528 	/* Turn on send data initiator state machine */
2529 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2530 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2531 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2532 	else
2533 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2534 
2535 	/* Turn on send BD initiator state machine */
2536 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2537 
2538 	/* Turn on send BD selector state machine */
2539 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2540 
2541 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2542 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2543 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2544 
2545 	/* ack/clear link change events */
2546 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2547 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2548 	    BGE_MACSTAT_LINK_CHANGED);
2549 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2550 
2551 	/*
2552 	 * Enable attention when the link has changed state for
2553 	 * devices that use auto polling.
2554 	 */
2555 	if (sc->bge_flags & BGE_FLAG_TBI) {
2556 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2557 	} else {
2558 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2559 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2560 			DELAY(80);
2561 		}
2562 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2563 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2564 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2565 			    BGE_EVTENB_MI_INTERRUPT);
2566 	}
2567 
2568 	/*
2569 	 * Clear any pending link state attention.
2570 	 * Otherwise some link state change events may be lost until attention
2571 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2572 	 * It's not necessary on newer BCM chips - perhaps enabling link
2573 	 * state change attentions implies clearing pending attention.
2574 	 */
2575 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2576 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2577 	    BGE_MACSTAT_LINK_CHANGED);
2578 
2579 	/* Enable link state change attentions. */
2580 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2581 
2582 	return (0);
2583 }
2584 
2585 const struct bge_revision *
2586 bge_lookup_rev(uint32_t chipid)
2587 {
2588 	const struct bge_revision *br;
2589 
2590 	for (br = bge_revisions; br->br_name != NULL; br++) {
2591 		if (br->br_chipid == chipid)
2592 			return (br);
2593 	}
2594 
2595 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2596 		if (br->br_chipid == BGE_ASICREV(chipid))
2597 			return (br);
2598 	}
2599 
2600 	return (NULL);
2601 }
2602 
2603 const struct bge_vendor *
2604 bge_lookup_vendor(uint16_t vid)
2605 {
2606 	const struct bge_vendor *v;
2607 
2608 	for (v = bge_vendors; v->v_name != NULL; v++)
2609 		if (v->v_id == vid)
2610 			return (v);
2611 
2612 	panic("%s: unknown vendor %d", __func__, vid);
2613 	return (NULL);
2614 }
2615 
2616 /*
2617  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2618  * against our list and return its name if we find a match.
2619  *
2620  * Note that since the Broadcom controller contains VPD support, we
2621  * try to get the device name string from the controller itself instead
2622  * of the compiled-in string. It guarantees we'll always announce the
2623  * right product name. We fall back to the compiled-in string when
2624  * VPD is unavailable or corrupt.
2625  */
2626 static int
2627 bge_probe(device_t dev)
2628 {
2629 	char buf[96];
2630 	char model[64];
2631 	const struct bge_revision *br;
2632 	const char *pname;
2633 	struct bge_softc *sc = device_get_softc(dev);
2634 	const struct bge_type *t = bge_devs;
2635 	const struct bge_vendor *v;
2636 	uint32_t id;
2637 	uint16_t did, vid;
2638 
2639 	sc->bge_dev = dev;
2640 	vid = pci_get_vendor(dev);
2641 	did = pci_get_device(dev);
2642 	while(t->bge_vid != 0) {
2643 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2644 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2645 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2646 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2647 				/*
2648 				 * Find the ASCI revision.  Different chips
2649 				 * use different registers.
2650 				 */
2651 				switch (pci_get_device(dev)) {
2652 				case BCOM_DEVICEID_BCM5717:
2653 				case BCOM_DEVICEID_BCM5718:
2654 				case BCOM_DEVICEID_BCM5719:
2655 				case BCOM_DEVICEID_BCM5720:
2656 					id = pci_read_config(dev,
2657 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2658 					break;
2659 				case BCOM_DEVICEID_BCM57761:
2660 				case BCOM_DEVICEID_BCM57765:
2661 				case BCOM_DEVICEID_BCM57781:
2662 				case BCOM_DEVICEID_BCM57785:
2663 				case BCOM_DEVICEID_BCM57791:
2664 				case BCOM_DEVICEID_BCM57795:
2665 					id = pci_read_config(dev,
2666 					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2667 					break;
2668 				default:
2669 					id = pci_read_config(dev,
2670 					    BGE_PCI_PRODID_ASICREV, 4);
2671 				}
2672 			}
2673 			br = bge_lookup_rev(id);
2674 			v = bge_lookup_vendor(vid);
2675 			if (bge_has_eaddr(sc) &&
2676 			    pci_get_vpd_ident(dev, &pname) == 0)
2677 				snprintf(model, 64, "%s", pname);
2678 			else
2679 				snprintf(model, 64, "%s %s", v->v_name,
2680 				    br != NULL ? br->br_name :
2681 				    "NetXtreme Ethernet Controller");
2682 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2683 			    br != NULL ? "" : "unknown ", id);
2684 			device_set_desc_copy(dev, buf);
2685 			return (0);
2686 		}
2687 		t++;
2688 	}
2689 
2690 	return (ENXIO);
2691 }
2692 
2693 static void
2694 bge_dma_free(struct bge_softc *sc)
2695 {
2696 	int i;
2697 
2698 	/* Destroy DMA maps for RX buffers. */
2699 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2700 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2701 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2702 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2703 	}
2704 	if (sc->bge_cdata.bge_rx_std_sparemap)
2705 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2706 		    sc->bge_cdata.bge_rx_std_sparemap);
2707 
2708 	/* Destroy DMA maps for jumbo RX buffers. */
2709 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2710 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2711 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2712 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2713 	}
2714 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2715 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2716 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2717 
2718 	/* Destroy DMA maps for TX buffers. */
2719 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2720 		if (sc->bge_cdata.bge_tx_dmamap[i])
2721 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2722 			    sc->bge_cdata.bge_tx_dmamap[i]);
2723 	}
2724 
2725 	if (sc->bge_cdata.bge_rx_mtag)
2726 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2727 	if (sc->bge_cdata.bge_mtag_jumbo)
2728 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2729 	if (sc->bge_cdata.bge_tx_mtag)
2730 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2731 
2732 	/* Destroy standard RX ring. */
2733 	if (sc->bge_cdata.bge_rx_std_ring_map)
2734 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2735 		    sc->bge_cdata.bge_rx_std_ring_map);
2736 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2737 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2738 		    sc->bge_ldata.bge_rx_std_ring,
2739 		    sc->bge_cdata.bge_rx_std_ring_map);
2740 
2741 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2742 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2743 
2744 	/* Destroy jumbo RX ring. */
2745 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2746 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2747 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2748 
2749 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2750 	    sc->bge_ldata.bge_rx_jumbo_ring)
2751 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2752 		    sc->bge_ldata.bge_rx_jumbo_ring,
2753 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2754 
2755 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2756 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2757 
2758 	/* Destroy RX return ring. */
2759 	if (sc->bge_cdata.bge_rx_return_ring_map)
2760 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2761 		    sc->bge_cdata.bge_rx_return_ring_map);
2762 
2763 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2764 	    sc->bge_ldata.bge_rx_return_ring)
2765 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2766 		    sc->bge_ldata.bge_rx_return_ring,
2767 		    sc->bge_cdata.bge_rx_return_ring_map);
2768 
2769 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2770 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2771 
2772 	/* Destroy TX ring. */
2773 	if (sc->bge_cdata.bge_tx_ring_map)
2774 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2775 		    sc->bge_cdata.bge_tx_ring_map);
2776 
2777 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2778 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2779 		    sc->bge_ldata.bge_tx_ring,
2780 		    sc->bge_cdata.bge_tx_ring_map);
2781 
2782 	if (sc->bge_cdata.bge_tx_ring_tag)
2783 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2784 
2785 	/* Destroy status block. */
2786 	if (sc->bge_cdata.bge_status_map)
2787 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2788 		    sc->bge_cdata.bge_status_map);
2789 
2790 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2791 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2792 		    sc->bge_ldata.bge_status_block,
2793 		    sc->bge_cdata.bge_status_map);
2794 
2795 	if (sc->bge_cdata.bge_status_tag)
2796 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2797 
2798 	/* Destroy statistics block. */
2799 	if (sc->bge_cdata.bge_stats_map)
2800 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2801 		    sc->bge_cdata.bge_stats_map);
2802 
2803 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2804 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2805 		    sc->bge_ldata.bge_stats,
2806 		    sc->bge_cdata.bge_stats_map);
2807 
2808 	if (sc->bge_cdata.bge_stats_tag)
2809 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2810 
2811 	if (sc->bge_cdata.bge_buffer_tag)
2812 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2813 
2814 	/* Destroy the parent tag. */
2815 	if (sc->bge_cdata.bge_parent_tag)
2816 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2817 }
2818 
2819 static int
2820 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2821     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2822     bus_addr_t *paddr, const char *msg)
2823 {
2824 	struct bge_dmamap_arg ctx;
2825 	int error;
2826 
2827 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2828 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2829 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2830 	if (error != 0) {
2831 		device_printf(sc->bge_dev,
2832 		    "could not create %s dma tag\n", msg);
2833 		return (ENOMEM);
2834 	}
2835 	/* Allocate DMA'able memory for ring. */
2836 	error = bus_dmamem_alloc(*tag, (void **)ring,
2837 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2838 	if (error != 0) {
2839 		device_printf(sc->bge_dev,
2840 		    "could not allocate DMA'able memory for %s\n", msg);
2841 		return (ENOMEM);
2842 	}
2843 	/* Load the address of the ring. */
2844 	ctx.bge_busaddr = 0;
2845 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2846 	    &ctx, BUS_DMA_NOWAIT);
2847 	if (error != 0) {
2848 		device_printf(sc->bge_dev,
2849 		    "could not load DMA'able memory for %s\n", msg);
2850 		return (ENOMEM);
2851 	}
2852 	*paddr = ctx.bge_busaddr;
2853 	return (0);
2854 }
2855 
2856 static int
2857 bge_dma_alloc(struct bge_softc *sc)
2858 {
2859 	bus_addr_t lowaddr;
2860 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2861 	int i, error;
2862 
2863 	lowaddr = BUS_SPACE_MAXADDR;
2864 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2865 		lowaddr = BGE_DMA_MAXADDR;
2866 	/*
2867 	 * Allocate the parent bus DMA tag appropriate for PCI.
2868 	 */
2869 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2870 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2871 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2872 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2873 	if (error != 0) {
2874 		device_printf(sc->bge_dev,
2875 		    "could not allocate parent dma tag\n");
2876 		return (ENOMEM);
2877 	}
2878 
2879 	/* Create tag for standard RX ring. */
2880 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2881 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2882 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2883 	    &sc->bge_cdata.bge_rx_std_ring_map,
2884 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2885 	if (error)
2886 		return (error);
2887 
2888 	/* Create tag for RX return ring. */
2889 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2890 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2891 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2892 	    &sc->bge_cdata.bge_rx_return_ring_map,
2893 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2894 	if (error)
2895 		return (error);
2896 
2897 	/* Create tag for TX ring. */
2898 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2899 	    &sc->bge_cdata.bge_tx_ring_tag,
2900 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2901 	    &sc->bge_cdata.bge_tx_ring_map,
2902 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2903 	if (error)
2904 		return (error);
2905 
2906 	/*
2907 	 * Create tag for status block.
2908 	 * Because we only use single Tx/Rx/Rx return ring, use
2909 	 * minimum status block size except BCM5700 AX/BX which
2910 	 * seems to want to see full status block size regardless
2911 	 * of configured number of ring.
2912 	 */
2913 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2914 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2915 		sbsz = BGE_STATUS_BLK_SZ;
2916 	else
2917 		sbsz = 32;
2918 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2919 	    &sc->bge_cdata.bge_status_tag,
2920 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2921 	    &sc->bge_cdata.bge_status_map,
2922 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2923 	if (error)
2924 		return (error);
2925 
2926 	/* Create tag for statistics block. */
2927 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2928 	    &sc->bge_cdata.bge_stats_tag,
2929 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2930 	    &sc->bge_cdata.bge_stats_map,
2931 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2932 	if (error)
2933 		return (error);
2934 
2935 	/* Create tag for jumbo RX ring. */
2936 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2937 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2938 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2939 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2940 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2941 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2942 		if (error)
2943 			return (error);
2944 	}
2945 
2946 	/* Create parent tag for buffers. */
2947 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2948 		/*
2949 		 * XXX
2950 		 * watchdog timeout issue was observed on BCM5704 which
2951 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2952 		 * Both limiting DMA address space to 32bits and flushing
2953 		 * mailbox write seem to address the issue.
2954 		 */
2955 		if (sc->bge_pcixcap != 0)
2956 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2957 	}
2958 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2959 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2960 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2961 	    &sc->bge_cdata.bge_buffer_tag);
2962 	if (error != 0) {
2963 		device_printf(sc->bge_dev,
2964 		    "could not allocate buffer dma tag\n");
2965 		return (ENOMEM);
2966 	}
2967 	/* Create tag for Tx mbufs. */
2968 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2969 		txsegsz = BGE_TSOSEG_SZ;
2970 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2971 	} else {
2972 		txsegsz = MCLBYTES;
2973 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2974 	}
2975 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2976 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2977 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2978 	    &sc->bge_cdata.bge_tx_mtag);
2979 
2980 	if (error) {
2981 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2982 		return (ENOMEM);
2983 	}
2984 
2985 	/* Create tag for Rx mbufs. */
2986 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2987 		rxmaxsegsz = MJUM9BYTES;
2988 	else
2989 		rxmaxsegsz = MCLBYTES;
2990 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2991 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2992 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2993 
2994 	if (error) {
2995 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2996 		return (ENOMEM);
2997 	}
2998 
2999 	/* Create DMA maps for RX buffers. */
3000 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3001 	    &sc->bge_cdata.bge_rx_std_sparemap);
3002 	if (error) {
3003 		device_printf(sc->bge_dev,
3004 		    "can't create spare DMA map for RX\n");
3005 		return (ENOMEM);
3006 	}
3007 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3008 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3009 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
3010 		if (error) {
3011 			device_printf(sc->bge_dev,
3012 			    "can't create DMA map for RX\n");
3013 			return (ENOMEM);
3014 		}
3015 	}
3016 
3017 	/* Create DMA maps for TX buffers. */
3018 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3019 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3020 			    &sc->bge_cdata.bge_tx_dmamap[i]);
3021 		if (error) {
3022 			device_printf(sc->bge_dev,
3023 			    "can't create DMA map for TX\n");
3024 			return (ENOMEM);
3025 		}
3026 	}
3027 
3028 	/* Create tags for jumbo RX buffers. */
3029 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3030 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3031 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3032 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3033 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3034 		if (error) {
3035 			device_printf(sc->bge_dev,
3036 			    "could not allocate jumbo dma tag\n");
3037 			return (ENOMEM);
3038 		}
3039 		/* Create DMA maps for jumbo RX buffers. */
3040 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3041 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3042 		if (error) {
3043 			device_printf(sc->bge_dev,
3044 			    "can't create spare DMA map for jumbo RX\n");
3045 			return (ENOMEM);
3046 		}
3047 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3048 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3049 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3050 			if (error) {
3051 				device_printf(sc->bge_dev,
3052 				    "can't create DMA map for jumbo RX\n");
3053 				return (ENOMEM);
3054 			}
3055 		}
3056 	}
3057 
3058 	return (0);
3059 }
3060 
3061 /*
3062  * Return true if this device has more than one port.
3063  */
3064 static int
3065 bge_has_multiple_ports(struct bge_softc *sc)
3066 {
3067 	device_t dev = sc->bge_dev;
3068 	u_int b, d, f, fscan, s;
3069 
3070 	d = pci_get_domain(dev);
3071 	b = pci_get_bus(dev);
3072 	s = pci_get_slot(dev);
3073 	f = pci_get_function(dev);
3074 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3075 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3076 			return (1);
3077 	return (0);
3078 }
3079 
3080 /*
3081  * Return true if MSI can be used with this device.
3082  */
3083 static int
3084 bge_can_use_msi(struct bge_softc *sc)
3085 {
3086 	int can_use_msi = 0;
3087 
3088 	if (sc->bge_msi == 0)
3089 		return (0);
3090 
3091 	/* Disable MSI for polling(4). */
3092 #ifdef DEVICE_POLLING
3093 	return (0);
3094 #endif
3095 	switch (sc->bge_asicrev) {
3096 	case BGE_ASICREV_BCM5714_A0:
3097 	case BGE_ASICREV_BCM5714:
3098 		/*
3099 		 * Apparently, MSI doesn't work when these chips are
3100 		 * configured in single-port mode.
3101 		 */
3102 		if (bge_has_multiple_ports(sc))
3103 			can_use_msi = 1;
3104 		break;
3105 	case BGE_ASICREV_BCM5750:
3106 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3107 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3108 			can_use_msi = 1;
3109 		break;
3110 	default:
3111 		if (BGE_IS_575X_PLUS(sc))
3112 			can_use_msi = 1;
3113 	}
3114 	return (can_use_msi);
3115 }
3116 
3117 static int
3118 bge_mbox_reorder(struct bge_softc *sc)
3119 {
3120 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
3121 	static const struct mbox_reorder {
3122 		const uint16_t vendor;
3123 		const uint16_t device;
3124 		const char *desc;
3125 	} const mbox_reorder_lists[] = {
3126 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3127 	};
3128 	devclass_t pci, pcib;
3129 	device_t bus, dev;
3130 	int i;
3131 
3132 	pci = devclass_find("pci");
3133 	pcib = devclass_find("pcib");
3134 	dev = sc->bge_dev;
3135 	bus = device_get_parent(dev);
3136 	for (;;) {
3137 		dev = device_get_parent(bus);
3138 		bus = device_get_parent(dev);
3139 		if (device_get_devclass(dev) != pcib)
3140 			break;
3141 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3142 			if (pci_get_vendor(dev) ==
3143 			    mbox_reorder_lists[i].vendor &&
3144 			    pci_get_device(dev) ==
3145 			    mbox_reorder_lists[i].device) {
3146 				device_printf(sc->bge_dev,
3147 				    "enabling MBOX workaround for %s\n",
3148 				    mbox_reorder_lists[i].desc);
3149 				return (1);
3150 			}
3151 		}
3152 		if (device_get_devclass(bus) != pci)
3153 			break;
3154 	}
3155 	return (0);
3156 }
3157 
3158 static void
3159 bge_devinfo(struct bge_softc *sc)
3160 {
3161 	uint32_t cfg, clk;
3162 
3163 	device_printf(sc->bge_dev,
3164 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3165 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3166 	if (sc->bge_flags & BGE_FLAG_PCIE)
3167 		printf("PCI-E\n");
3168 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
3169 		printf("PCI-X ");
3170 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3171 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3172 			clk = 133;
3173 		else {
3174 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3175 			switch (clk) {
3176 			case 0:
3177 				clk = 33;
3178 				break;
3179 			case 2:
3180 				clk = 50;
3181 				break;
3182 			case 4:
3183 				clk = 66;
3184 				break;
3185 			case 6:
3186 				clk = 100;
3187 				break;
3188 			case 7:
3189 				clk = 133;
3190 				break;
3191 			}
3192 		}
3193 		printf("%u MHz\n", clk);
3194 	} else {
3195 		if (sc->bge_pcixcap != 0)
3196 			printf("PCI on PCI-X ");
3197 		else
3198 			printf("PCI ");
3199 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3200 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3201 			clk = 66;
3202 		else
3203 			clk = 33;
3204 		if (cfg & BGE_PCISTATE_32BIT_BUS)
3205 			printf("%u MHz; 32bit\n", clk);
3206 		else
3207 			printf("%u MHz; 64bit\n", clk);
3208 	}
3209 }
3210 
3211 static int
3212 bge_attach(device_t dev)
3213 {
3214 	struct ifnet *ifp;
3215 	struct bge_softc *sc;
3216 	uint32_t hwcfg = 0, misccfg, pcistate;
3217 	u_char eaddr[ETHER_ADDR_LEN];
3218 	int capmask, error, msicount, phy_addr, reg, rid, trys;
3219 
3220 	sc = device_get_softc(dev);
3221 	sc->bge_dev = dev;
3222 
3223 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3224 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3225 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3226 
3227 	/*
3228 	 * Map control/status registers.
3229 	 */
3230 	pci_enable_busmaster(dev);
3231 
3232 	rid = PCIR_BAR(0);
3233 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3234 	    RF_ACTIVE);
3235 
3236 	if (sc->bge_res == NULL) {
3237 		device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3238 		error = ENXIO;
3239 		goto fail;
3240 	}
3241 
3242 	/* Save various chip information. */
3243 	sc->bge_func_addr = pci_get_function(dev);
3244 	sc->bge_chipid =
3245 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
3246 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
3247 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
3248 		/*
3249 		 * Find the ASCI revision.  Different chips use different
3250 		 * registers.
3251 		 */
3252 		switch (pci_get_device(dev)) {
3253 		case BCOM_DEVICEID_BCM5717:
3254 		case BCOM_DEVICEID_BCM5718:
3255 		case BCOM_DEVICEID_BCM5719:
3256 		case BCOM_DEVICEID_BCM5720:
3257 			sc->bge_chipid = pci_read_config(dev,
3258 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
3259 			break;
3260 		case BCOM_DEVICEID_BCM57761:
3261 		case BCOM_DEVICEID_BCM57765:
3262 		case BCOM_DEVICEID_BCM57781:
3263 		case BCOM_DEVICEID_BCM57785:
3264 		case BCOM_DEVICEID_BCM57791:
3265 		case BCOM_DEVICEID_BCM57795:
3266 			sc->bge_chipid = pci_read_config(dev,
3267 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
3268 			break;
3269 		default:
3270 			sc->bge_chipid = pci_read_config(dev,
3271 			    BGE_PCI_PRODID_ASICREV, 4);
3272 		}
3273 	}
3274 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3275 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3276 
3277 	/* Set default PHY address. */
3278 	phy_addr = 1;
3279 	 /*
3280 	  * PHY address mapping for various devices.
3281 	  *
3282 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3283 	  * ---------+-------+-------+-------+-------+
3284 	  * BCM57XX  |   1   |   X   |   X   |   X   |
3285 	  * BCM5704  |   1   |   X   |   1   |   X   |
3286 	  * BCM5717  |   1   |   8   |   2   |   9   |
3287 	  * BCM5719  |   1   |   8   |   2   |   9   |
3288 	  * BCM5720  |   1   |   8   |   2   |   9   |
3289 	  *
3290 	  *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3291 	  * ---------+-------+-------+-------+-------+
3292 	  * BCM57XX  |   X   |   X   |   X   |   X   |
3293 	  * BCM5704  |   X   |   X   |   X   |   X   |
3294 	  * BCM5717  |   X   |   X   |   X   |   X   |
3295 	  * BCM5719  |   3   |   10  |   4   |   11  |
3296 	  * BCM5720  |   X   |   X   |   X   |   X   |
3297 	  *
3298 	  * Other addresses may respond but they are not
3299 	  * IEEE compliant PHYs and should be ignored.
3300 	  */
3301 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3302 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3303 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3304 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3305 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3306 			    BGE_SGDIGSTS_IS_SERDES)
3307 				phy_addr = sc->bge_func_addr + 8;
3308 			else
3309 				phy_addr = sc->bge_func_addr + 1;
3310 		} else {
3311 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3312 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
3313 				phy_addr = sc->bge_func_addr + 8;
3314 			else
3315 				phy_addr = sc->bge_func_addr + 1;
3316 		}
3317 	}
3318 
3319 	/*
3320 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
3321 	 * 5705 A0 and A1 chips.
3322 	 */
3323 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3324 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3325 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3326 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
3327 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
3328 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3329 
3330 	if (bge_has_eaddr(sc))
3331 		sc->bge_flags |= BGE_FLAG_EADDR;
3332 
3333 	/* Save chipset family. */
3334 	switch (sc->bge_asicrev) {
3335 	case BGE_ASICREV_BCM5717:
3336 	case BGE_ASICREV_BCM5719:
3337 	case BGE_ASICREV_BCM5720:
3338 	case BGE_ASICREV_BCM57765:
3339 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3340 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3341 		    BGE_FLAG_JUMBO_FRAME;
3342 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3343 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3344 			/* Jumbo frame on BCM5719 A0 does not work. */
3345 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
3346 		}
3347 		break;
3348 	case BGE_ASICREV_BCM5755:
3349 	case BGE_ASICREV_BCM5761:
3350 	case BGE_ASICREV_BCM5784:
3351 	case BGE_ASICREV_BCM5785:
3352 	case BGE_ASICREV_BCM5787:
3353 	case BGE_ASICREV_BCM57780:
3354 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3355 		    BGE_FLAG_5705_PLUS;
3356 		break;
3357 	case BGE_ASICREV_BCM5700:
3358 	case BGE_ASICREV_BCM5701:
3359 	case BGE_ASICREV_BCM5703:
3360 	case BGE_ASICREV_BCM5704:
3361 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3362 		break;
3363 	case BGE_ASICREV_BCM5714_A0:
3364 	case BGE_ASICREV_BCM5780:
3365 	case BGE_ASICREV_BCM5714:
3366 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3367 		/* FALLTHROUGH */
3368 	case BGE_ASICREV_BCM5750:
3369 	case BGE_ASICREV_BCM5752:
3370 	case BGE_ASICREV_BCM5906:
3371 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3372 		/* FALLTHROUGH */
3373 	case BGE_ASICREV_BCM5705:
3374 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3375 		break;
3376 	}
3377 
3378 	/* Identify chips with APE processor. */
3379 	switch (sc->bge_asicrev) {
3380 	case BGE_ASICREV_BCM5717:
3381 	case BGE_ASICREV_BCM5719:
3382 	case BGE_ASICREV_BCM5720:
3383 	case BGE_ASICREV_BCM5761:
3384 		sc->bge_flags |= BGE_FLAG_APE;
3385 		break;
3386 	}
3387 
3388 	/* Chips with APE need BAR2 access for APE registers/memory. */
3389 	if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3390 		rid = PCIR_BAR(2);
3391 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3392 		    RF_ACTIVE);
3393 		if (sc->bge_res2 == NULL) {
3394 			device_printf (sc->bge_dev,
3395 			    "couldn't map BAR2 memory\n");
3396 			error = ENXIO;
3397 			goto fail;
3398 		}
3399 
3400 		/* Enable APE register/memory access by host driver. */
3401 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3402 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3403 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3404 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3405 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3406 
3407 		bge_ape_lock_init(sc);
3408 		bge_ape_read_fw_ver(sc);
3409 	}
3410 
3411 	/* Add SYSCTLs, requires the chipset family to be set. */
3412 	bge_add_sysctls(sc);
3413 
3414 	/* Set various PHY bug flags. */
3415 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3416 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3417 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3418 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3419 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3420 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3421 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3422 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3423 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3424 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3425 	if ((BGE_IS_5705_PLUS(sc)) &&
3426 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3427 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3428 	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
3429 	    sc->bge_asicrev != BGE_ASICREV_BCM5720 &&
3430 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3431 	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
3432 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
3433 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3434 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3435 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3436 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3437 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3438 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3439 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3440 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3441 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3442 		} else
3443 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3444 	}
3445 
3446 	/* Identify the chips that use an CPMU. */
3447 	if (BGE_IS_5717_PLUS(sc) ||
3448 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3449 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3450 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3451 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3452 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3453 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3454 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3455 	else
3456 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3457 	/* Enable auto polling for BCM570[0-5]. */
3458 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3459 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3460 
3461 	/*
3462 	 * All Broadcom controllers have 4GB boundary DMA bug.
3463 	 * Whenever an address crosses a multiple of the 4GB boundary
3464 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3465 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3466 	 * state machine will lockup and cause the device to hang.
3467 	 */
3468 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3469 
3470 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3471 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3472 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3473 
3474 	/*
3475 	 * BCM5719 cannot handle DMA requests for DMA segments that
3476 	 * have larger than 4KB in size.  However the maximum DMA
3477 	 * segment size created in DMA tag is 4KB for TSO, so we
3478 	 * wouldn't encounter the issue here.
3479 	 */
3480 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3481 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3482 
3483 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3484 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3485 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3486 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3487 			sc->bge_flags |= BGE_FLAG_5788;
3488 	}
3489 
3490 	capmask = BMSR_DEFCAPMASK;
3491 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3492 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3493 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3494 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3495 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3496 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3497 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3498 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3499 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3500 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3501 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3502 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3503 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3504 		/* These chips are 10/100 only. */
3505 		capmask &= ~BMSR_EXTSTAT;
3506 	}
3507 
3508 	/*
3509 	 * Some controllers seem to require a special firmware to use
3510 	 * TSO. But the firmware is not available to FreeBSD and Linux
3511 	 * claims that the TSO performed by the firmware is slower than
3512 	 * hardware based TSO. Moreover the firmware based TSO has one
3513 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3514 	 * header is greater than 80 bytes. The workaround for the TSO
3515 	 * bug exist but it seems it's too expensive than not using
3516 	 * TSO at all. Some hardwares also have the TSO bug so limit
3517 	 * the TSO to the controllers that are not affected TSO issues
3518 	 * (e.g. 5755 or higher).
3519 	 */
3520 	if (BGE_IS_5717_PLUS(sc)) {
3521 		/* BCM5717 requires different TSO configuration. */
3522 		sc->bge_flags |= BGE_FLAG_TSO3;
3523 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3524 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3525 			/* TSO on BCM5719 A0 does not work. */
3526 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3527 		}
3528 	} else if (BGE_IS_5755_PLUS(sc)) {
3529 		/*
3530 		 * BCM5754 and BCM5787 shares the same ASIC id so
3531 		 * explicit device id check is required.
3532 		 * Due to unknown reason TSO does not work on BCM5755M.
3533 		 */
3534 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3535 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3536 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3537 			sc->bge_flags |= BGE_FLAG_TSO;
3538 	}
3539 
3540 	/*
3541 	 * Check if this is a PCI-X or PCI Express device.
3542 	 */
3543 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3544 		/*
3545 		 * Found a PCI Express capabilities register, this
3546 		 * must be a PCI Express device.
3547 		 */
3548 		sc->bge_flags |= BGE_FLAG_PCIE;
3549 		sc->bge_expcap = reg;
3550 		/* Extract supported maximum payload size. */
3551 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3552 		    PCIER_DEVICE_CAP, 2);
3553 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3554 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3555 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3556 			sc->bge_expmrq = 2048;
3557 		else
3558 			sc->bge_expmrq = 4096;
3559 		pci_set_max_read_req(dev, sc->bge_expmrq);
3560 	} else {
3561 		/*
3562 		 * Check if the device is in PCI-X Mode.
3563 		 * (This bit is not valid on PCI Express controllers.)
3564 		 */
3565 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3566 			sc->bge_pcixcap = reg;
3567 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3568 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3569 			sc->bge_flags |= BGE_FLAG_PCIX;
3570 	}
3571 
3572 	/*
3573 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3574 	 * not actually a MAC controller bug but an issue with the embedded
3575 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3576 	 */
3577 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3578 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3579 	/*
3580 	 * Some PCI-X bridges are known to trigger write reordering to
3581 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3582 	 * caused by out-of-order TX completions.  Enable workaround for
3583 	 * PCI-X devices that live behind these bridges.
3584 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3585 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3586 	 */
3587 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3588 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3589 	/*
3590 	 * Allocate the interrupt, using MSI if possible.  These devices
3591 	 * support 8 MSI messages, but only the first one is used in
3592 	 * normal operation.
3593 	 */
3594 	rid = 0;
3595 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3596 		sc->bge_msicap = reg;
3597 		if (bge_can_use_msi(sc)) {
3598 			msicount = pci_msi_count(dev);
3599 			if (msicount > 1)
3600 				msicount = 1;
3601 		} else
3602 			msicount = 0;
3603 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3604 			rid = 1;
3605 			sc->bge_flags |= BGE_FLAG_MSI;
3606 		}
3607 	}
3608 
3609 	/*
3610 	 * All controllers except BCM5700 supports tagged status but
3611 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3612 	 * MSI on BCM5717 does not work.
3613 	 */
3614 #ifndef DEVICE_POLLING
3615 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3616 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3617 #endif
3618 
3619 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3620 	    RF_SHAREABLE | RF_ACTIVE);
3621 
3622 	if (sc->bge_irq == NULL) {
3623 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3624 		error = ENXIO;
3625 		goto fail;
3626 	}
3627 
3628 	bge_devinfo(sc);
3629 
3630 	sc->bge_asf_mode = 0;
3631 	/* No ASF if APE present. */
3632 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3633 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3634 		    BGE_SRAM_DATA_SIG_MAGIC)) {
3635 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3636 			    BGE_HWCFG_ASF) {
3637 				sc->bge_asf_mode |= ASF_ENABLE;
3638 				sc->bge_asf_mode |= ASF_STACKUP;
3639 				if (BGE_IS_575X_PLUS(sc))
3640 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3641 			}
3642 		}
3643 	}
3644 
3645 	bge_stop_fw(sc);
3646 	bge_sig_pre_reset(sc, BGE_RESET_START);
3647 	if (bge_reset(sc)) {
3648 		device_printf(sc->bge_dev, "chip reset failed\n");
3649 		error = ENXIO;
3650 		goto fail;
3651 	}
3652 
3653 	bge_sig_legacy(sc, BGE_RESET_START);
3654 	bge_sig_post_reset(sc, BGE_RESET_START);
3655 
3656 	if (bge_chipinit(sc)) {
3657 		device_printf(sc->bge_dev, "chip initialization failed\n");
3658 		error = ENXIO;
3659 		goto fail;
3660 	}
3661 
3662 	error = bge_get_eaddr(sc, eaddr);
3663 	if (error) {
3664 		device_printf(sc->bge_dev,
3665 		    "failed to read station address\n");
3666 		error = ENXIO;
3667 		goto fail;
3668 	}
3669 
3670 	/* 5705 limits RX return ring to 512 entries. */
3671 	if (BGE_IS_5717_PLUS(sc))
3672 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3673 	else if (BGE_IS_5705_PLUS(sc))
3674 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3675 	else
3676 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3677 
3678 	if (bge_dma_alloc(sc)) {
3679 		device_printf(sc->bge_dev,
3680 		    "failed to allocate DMA resources\n");
3681 		error = ENXIO;
3682 		goto fail;
3683 	}
3684 
3685 	/* Set default tuneable values. */
3686 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3687 	sc->bge_rx_coal_ticks = 150;
3688 	sc->bge_tx_coal_ticks = 150;
3689 	sc->bge_rx_max_coal_bds = 10;
3690 	sc->bge_tx_max_coal_bds = 10;
3691 
3692 	/* Initialize checksum features to use. */
3693 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3694 	if (sc->bge_forced_udpcsum != 0)
3695 		sc->bge_csum_features |= CSUM_UDP;
3696 
3697 	/* Set up ifnet structure */
3698 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3699 	if (ifp == NULL) {
3700 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3701 		error = ENXIO;
3702 		goto fail;
3703 	}
3704 	ifp->if_softc = sc;
3705 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3706 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3707 	ifp->if_ioctl = bge_ioctl;
3708 	ifp->if_start = bge_start;
3709 	ifp->if_init = bge_init;
3710 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3711 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3712 	IFQ_SET_READY(&ifp->if_snd);
3713 	ifp->if_hwassist = sc->bge_csum_features;
3714 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3715 	    IFCAP_VLAN_MTU;
3716 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3717 		ifp->if_hwassist |= CSUM_TSO;
3718 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3719 	}
3720 #ifdef IFCAP_VLAN_HWCSUM
3721 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3722 #endif
3723 	ifp->if_capenable = ifp->if_capabilities;
3724 #ifdef DEVICE_POLLING
3725 	ifp->if_capabilities |= IFCAP_POLLING;
3726 #endif
3727 
3728 	/*
3729 	 * 5700 B0 chips do not support checksumming correctly due
3730 	 * to hardware bugs.
3731 	 */
3732 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3733 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3734 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3735 		ifp->if_hwassist = 0;
3736 	}
3737 
3738 	/*
3739 	 * Figure out what sort of media we have by checking the
3740 	 * hardware config word in the first 32k of NIC internal memory,
3741 	 * or fall back to examining the EEPROM if necessary.
3742 	 * Note: on some BCM5700 cards, this value appears to be unset.
3743 	 * If that's the case, we have to rely on identifying the NIC
3744 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3745 	 * SK-9D41.
3746 	 */
3747 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3748 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3749 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3750 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3751 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3752 		    sizeof(hwcfg))) {
3753 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3754 			error = ENXIO;
3755 			goto fail;
3756 		}
3757 		hwcfg = ntohl(hwcfg);
3758 	}
3759 
3760 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3761 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3762 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3763 		if (BGE_IS_5705_PLUS(sc))
3764 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3765 		else
3766 			sc->bge_flags |= BGE_FLAG_TBI;
3767 	}
3768 
3769 	if (sc->bge_flags & BGE_FLAG_TBI) {
3770 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3771 		    bge_ifmedia_sts);
3772 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3773 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3774 		    0, NULL);
3775 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3776 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3777 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3778 	} else {
3779 		/*
3780 		 * Do transceiver setup and tell the firmware the
3781 		 * driver is down so we can try to get access the
3782 		 * probe if ASF is running.  Retry a couple of times
3783 		 * if we get a conflict with the ASF firmware accessing
3784 		 * the PHY.
3785 		 */
3786 		trys = 0;
3787 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3788 again:
3789 		bge_asf_driver_up(sc);
3790 
3791 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3792 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3793 		    MIIF_DOPAUSE);
3794 		if (error != 0) {
3795 			if (trys++ < 4) {
3796 				device_printf(sc->bge_dev, "Try again\n");
3797 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3798 				    BMCR_RESET);
3799 				goto again;
3800 			}
3801 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3802 			goto fail;
3803 		}
3804 
3805 		/*
3806 		 * Now tell the firmware we are going up after probing the PHY
3807 		 */
3808 		if (sc->bge_asf_mode & ASF_STACKUP)
3809 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3810 	}
3811 
3812 	/*
3813 	 * When using the BCM5701 in PCI-X mode, data corruption has
3814 	 * been observed in the first few bytes of some received packets.
3815 	 * Aligning the packet buffer in memory eliminates the corruption.
3816 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3817 	 * which do not support unaligned accesses, we will realign the
3818 	 * payloads by copying the received packets.
3819 	 */
3820 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3821 	    sc->bge_flags & BGE_FLAG_PCIX)
3822                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3823 
3824 	/*
3825 	 * Call MI attach routine.
3826 	 */
3827 	ether_ifattach(ifp, eaddr);
3828 
3829 	/* Tell upper layer we support long frames. */
3830 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3831 
3832 	/*
3833 	 * Hookup IRQ last.
3834 	 */
3835 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3836 		/* Take advantage of single-shot MSI. */
3837 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3838 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3839 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3840 		    taskqueue_thread_enqueue, &sc->bge_tq);
3841 		if (sc->bge_tq == NULL) {
3842 			device_printf(dev, "could not create taskqueue.\n");
3843 			ether_ifdetach(ifp);
3844 			error = ENOMEM;
3845 			goto fail;
3846 		}
3847 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3848 		    device_get_nameunit(sc->bge_dev));
3849 		error = bus_setup_intr(dev, sc->bge_irq,
3850 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3851 		    &sc->bge_intrhand);
3852 	} else
3853 		error = bus_setup_intr(dev, sc->bge_irq,
3854 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3855 		    &sc->bge_intrhand);
3856 
3857 	if (error) {
3858 		ether_ifdetach(ifp);
3859 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3860 	}
3861 
3862 fail:
3863 	if (error)
3864 		bge_detach(dev);
3865 	return (error);
3866 }
3867 
3868 static int
3869 bge_detach(device_t dev)
3870 {
3871 	struct bge_softc *sc;
3872 	struct ifnet *ifp;
3873 
3874 	sc = device_get_softc(dev);
3875 	ifp = sc->bge_ifp;
3876 
3877 #ifdef DEVICE_POLLING
3878 	if (ifp->if_capenable & IFCAP_POLLING)
3879 		ether_poll_deregister(ifp);
3880 #endif
3881 
3882 	if (device_is_attached(dev)) {
3883 		ether_ifdetach(ifp);
3884 		BGE_LOCK(sc);
3885 		bge_stop(sc);
3886 		BGE_UNLOCK(sc);
3887 		callout_drain(&sc->bge_stat_ch);
3888 	}
3889 
3890 	if (sc->bge_tq)
3891 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3892 
3893 	if (sc->bge_flags & BGE_FLAG_TBI) {
3894 		ifmedia_removeall(&sc->bge_ifmedia);
3895 	} else {
3896 		bus_generic_detach(dev);
3897 		device_delete_child(dev, sc->bge_miibus);
3898 	}
3899 
3900 	bge_release_resources(sc);
3901 
3902 	return (0);
3903 }
3904 
3905 static void
3906 bge_release_resources(struct bge_softc *sc)
3907 {
3908 	device_t dev;
3909 
3910 	dev = sc->bge_dev;
3911 
3912 	if (sc->bge_tq != NULL)
3913 		taskqueue_free(sc->bge_tq);
3914 
3915 	if (sc->bge_intrhand != NULL)
3916 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3917 
3918 	if (sc->bge_irq != NULL)
3919 		bus_release_resource(dev, SYS_RES_IRQ,
3920 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3921 
3922 	if (sc->bge_flags & BGE_FLAG_MSI)
3923 		pci_release_msi(dev);
3924 
3925 	if (sc->bge_res != NULL)
3926 		bus_release_resource(dev, SYS_RES_MEMORY,
3927 		    PCIR_BAR(0), sc->bge_res);
3928 
3929 	if (sc->bge_res2 != NULL)
3930 		bus_release_resource(dev, SYS_RES_MEMORY,
3931 		    PCIR_BAR(2), sc->bge_res2);
3932 
3933 	if (sc->bge_ifp != NULL)
3934 		if_free(sc->bge_ifp);
3935 
3936 	bge_dma_free(sc);
3937 
3938 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3939 		BGE_LOCK_DESTROY(sc);
3940 }
3941 
3942 static int
3943 bge_reset(struct bge_softc *sc)
3944 {
3945 	device_t dev;
3946 	uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
3947 	void (*write_op)(struct bge_softc *, int, int);
3948 	uint16_t devctl;
3949 	int i;
3950 
3951 	dev = sc->bge_dev;
3952 
3953 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3954 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3955 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3956 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3957 
3958 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3959 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3960 		if (sc->bge_flags & BGE_FLAG_PCIE)
3961 			write_op = bge_writemem_direct;
3962 		else
3963 			write_op = bge_writemem_ind;
3964 	} else
3965 		write_op = bge_writereg_ind;
3966 
3967 	/* Take APE lock when performing reset. */
3968 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3969 
3970 	/* Save some important PCI state. */
3971 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3972 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3973 
3974 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3975 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3976 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3977 
3978 	/* Disable fastboot on controllers that support it. */
3979 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3980 	    BGE_IS_5755_PLUS(sc)) {
3981 		if (bootverbose)
3982 			device_printf(dev, "Disabling fastboot\n");
3983 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3984 	}
3985 
3986 	/*
3987 	 * Write the magic number to SRAM at offset 0xB50.
3988 	 * When firmware finishes its initialization it will
3989 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3990 	 */
3991 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3992 
3993 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3994 
3995 	/* XXX: Broadcom Linux driver. */
3996 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3997 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3998 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
3999 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
4000 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
4001 		}
4002 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4003 			/* Prevent PCIE link training during global reset */
4004 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4005 			reset |= 1 << 29;
4006 		}
4007 	}
4008 
4009 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4010 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4011 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4012 		    val | BGE_VCPU_STATUS_DRV_RESET);
4013 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4014 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4015 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4016 	}
4017 
4018 	/*
4019 	 * Set GPHY Power Down Override to leave GPHY
4020 	 * powered up in D0 uninitialized.
4021 	 */
4022 	if (BGE_IS_5705_PLUS(sc) &&
4023 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4024 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4025 
4026 	/* Issue global reset */
4027 	write_op(sc, BGE_MISC_CFG, reset);
4028 
4029 	if (sc->bge_flags & BGE_FLAG_PCIE)
4030 		DELAY(100 * 1000);
4031 	else
4032 		DELAY(1000);
4033 
4034 	/* XXX: Broadcom Linux driver. */
4035 	if (sc->bge_flags & BGE_FLAG_PCIE) {
4036 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4037 			DELAY(500000); /* wait for link training to complete */
4038 			val = pci_read_config(dev, 0xC4, 4);
4039 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4040 		}
4041 		devctl = pci_read_config(dev,
4042 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4043 		/* Clear enable no snoop and disable relaxed ordering. */
4044 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4045 		    PCIEM_CTL_NOSNOOP_ENABLE);
4046 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4047 		    devctl, 2);
4048 		pci_set_max_read_req(dev, sc->bge_expmrq);
4049 		/* Clear error status. */
4050 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4051 		    PCIEM_STA_CORRECTABLE_ERROR |
4052 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4053 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
4054 	}
4055 
4056 	/* Reset some of the PCI state that got zapped by reset. */
4057 	pci_write_config(dev, BGE_PCI_MISC_CTL,
4058 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4059 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4060 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4061 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4062 	    (sc->bge_flags & BGE_FLAG_PCIX) != 0)
4063 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4064 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4065 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4066 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4067 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4068 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4069 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4070 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
4071 	/*
4072 	 * Disable PCI-X relaxed ordering to ensure status block update
4073 	 * comes first then packet buffer DMA. Otherwise driver may
4074 	 * read stale status block.
4075 	 */
4076 	if (sc->bge_flags & BGE_FLAG_PCIX) {
4077 		devctl = pci_read_config(dev,
4078 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
4079 		devctl &= ~PCIXM_COMMAND_ERO;
4080 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4081 			devctl &= ~PCIXM_COMMAND_MAX_READ;
4082 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4083 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4084 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4085 			    PCIXM_COMMAND_MAX_READ);
4086 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
4087 		}
4088 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4089 		    devctl, 2);
4090 	}
4091 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4092 	if (BGE_IS_5714_FAMILY(sc)) {
4093 		/* This chip disables MSI on reset. */
4094 		if (sc->bge_flags & BGE_FLAG_MSI) {
4095 			val = pci_read_config(dev,
4096 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
4097 			pci_write_config(dev,
4098 			    sc->bge_msicap + PCIR_MSI_CTRL,
4099 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
4100 			val = CSR_READ_4(sc, BGE_MSI_MODE);
4101 			CSR_WRITE_4(sc, BGE_MSI_MODE,
4102 			    val | BGE_MSIMODE_ENABLE);
4103 		}
4104 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4105 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4106 	} else
4107 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4108 
4109 	/* Fix up byte swapping. */
4110 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4111 
4112 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4113 	val = (val & ~mac_mode_mask) | mac_mode;
4114 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4115 	DELAY(40);
4116 
4117 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4118 
4119 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4120 		for (i = 0; i < BGE_TIMEOUT; i++) {
4121 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4122 			if (val & BGE_VCPU_STATUS_INIT_DONE)
4123 				break;
4124 			DELAY(100);
4125 		}
4126 		if (i == BGE_TIMEOUT) {
4127 			device_printf(dev, "reset timed out\n");
4128 			return (1);
4129 		}
4130 	} else {
4131 		/*
4132 		 * Poll until we see the 1's complement of the magic number.
4133 		 * This indicates that the firmware initialization is complete.
4134 		 * We expect this to fail if no chip containing the Ethernet
4135 		 * address is fitted though.
4136 		 */
4137 		for (i = 0; i < BGE_TIMEOUT; i++) {
4138 			DELAY(10);
4139 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4140 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
4141 				break;
4142 		}
4143 
4144 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4145 			device_printf(dev,
4146 			    "firmware handshake timed out, found 0x%08x\n",
4147 			    val);
4148 		/* BCM57765 A0 needs additional time before accessing. */
4149 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4150 			DELAY(10 * 1000);	/* XXX */
4151 	}
4152 
4153 	/*
4154 	 * The 5704 in TBI mode apparently needs some special
4155 	 * adjustment to insure the SERDES drive level is set
4156 	 * to 1.2V.
4157 	 */
4158 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4159 	    sc->bge_flags & BGE_FLAG_TBI) {
4160 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
4161 		val = (val & ~0xFFF) | 0x880;
4162 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4163 	}
4164 
4165 	/* XXX: Broadcom Linux driver. */
4166 	if (sc->bge_flags & BGE_FLAG_PCIE &&
4167 	    !BGE_IS_5717_PLUS(sc) &&
4168 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4169 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4170 		/* Enable Data FIFO protection. */
4171 		val = CSR_READ_4(sc, 0x7C00);
4172 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4173 	}
4174 
4175 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4176 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4177 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4178 
4179 	return (0);
4180 }
4181 
4182 static __inline void
4183 bge_rxreuse_std(struct bge_softc *sc, int i)
4184 {
4185 	struct bge_rx_bd *r;
4186 
4187 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4188 	r->bge_flags = BGE_RXBDFLAG_END;
4189 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4190 	r->bge_idx = i;
4191 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4192 }
4193 
4194 static __inline void
4195 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4196 {
4197 	struct bge_extrx_bd *r;
4198 
4199 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4200 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4201 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4202 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4203 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4204 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4205 	r->bge_idx = i;
4206 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4207 }
4208 
4209 /*
4210  * Frame reception handling. This is called if there's a frame
4211  * on the receive return list.
4212  *
4213  * Note: we have to be able to handle two possibilities here:
4214  * 1) the frame is from the jumbo receive ring
4215  * 2) the frame is from the standard receive ring
4216  */
4217 
4218 static int
4219 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4220 {
4221 	struct ifnet *ifp;
4222 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4223 	uint16_t rx_cons;
4224 
4225 	rx_cons = sc->bge_rx_saved_considx;
4226 
4227 	/* Nothing to do. */
4228 	if (rx_cons == rx_prod)
4229 		return (rx_npkts);
4230 
4231 	ifp = sc->bge_ifp;
4232 
4233 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4234 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4235 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4236 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4237 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
4238 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4239 	    (MCLBYTES - ETHER_ALIGN))
4240 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4241 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4242 
4243 	while (rx_cons != rx_prod) {
4244 		struct bge_rx_bd	*cur_rx;
4245 		uint32_t		rxidx;
4246 		struct mbuf		*m = NULL;
4247 		uint16_t		vlan_tag = 0;
4248 		int			have_tag = 0;
4249 
4250 #ifdef DEVICE_POLLING
4251 		if (ifp->if_capenable & IFCAP_POLLING) {
4252 			if (sc->rxcycles <= 0)
4253 				break;
4254 			sc->rxcycles--;
4255 		}
4256 #endif
4257 
4258 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4259 
4260 		rxidx = cur_rx->bge_idx;
4261 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4262 
4263 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
4264 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4265 			have_tag = 1;
4266 			vlan_tag = cur_rx->bge_vlan_tag;
4267 		}
4268 
4269 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4270 			jumbocnt++;
4271 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4272 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4273 				bge_rxreuse_jumbo(sc, rxidx);
4274 				continue;
4275 			}
4276 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4277 				bge_rxreuse_jumbo(sc, rxidx);
4278 				ifp->if_iqdrops++;
4279 				continue;
4280 			}
4281 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4282 		} else {
4283 			stdcnt++;
4284 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4285 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4286 				bge_rxreuse_std(sc, rxidx);
4287 				continue;
4288 			}
4289 			if (bge_newbuf_std(sc, rxidx) != 0) {
4290 				bge_rxreuse_std(sc, rxidx);
4291 				ifp->if_iqdrops++;
4292 				continue;
4293 			}
4294 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4295 		}
4296 
4297 		ifp->if_ipackets++;
4298 #ifndef __NO_STRICT_ALIGNMENT
4299 		/*
4300 		 * For architectures with strict alignment we must make sure
4301 		 * the payload is aligned.
4302 		 */
4303 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4304 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4305 			    cur_rx->bge_len);
4306 			m->m_data += ETHER_ALIGN;
4307 		}
4308 #endif
4309 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4310 		m->m_pkthdr.rcvif = ifp;
4311 
4312 		if (ifp->if_capenable & IFCAP_RXCSUM)
4313 			bge_rxcsum(sc, cur_rx, m);
4314 
4315 		/*
4316 		 * If we received a packet with a vlan tag,
4317 		 * attach that information to the packet.
4318 		 */
4319 		if (have_tag) {
4320 			m->m_pkthdr.ether_vtag = vlan_tag;
4321 			m->m_flags |= M_VLANTAG;
4322 		}
4323 
4324 		if (holdlck != 0) {
4325 			BGE_UNLOCK(sc);
4326 			(*ifp->if_input)(ifp, m);
4327 			BGE_LOCK(sc);
4328 		} else
4329 			(*ifp->if_input)(ifp, m);
4330 		rx_npkts++;
4331 
4332 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
4333 			return (rx_npkts);
4334 	}
4335 
4336 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4337 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4338 	if (stdcnt > 0)
4339 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4340 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4341 
4342 	if (jumbocnt > 0)
4343 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4344 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4345 
4346 	sc->bge_rx_saved_considx = rx_cons;
4347 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4348 	if (stdcnt)
4349 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4350 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4351 	if (jumbocnt)
4352 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4353 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4354 #ifdef notyet
4355 	/*
4356 	 * This register wraps very quickly under heavy packet drops.
4357 	 * If you need correct statistics, you can enable this check.
4358 	 */
4359 	if (BGE_IS_5705_PLUS(sc))
4360 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4361 #endif
4362 	return (rx_npkts);
4363 }
4364 
4365 static void
4366 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4367 {
4368 
4369 	if (BGE_IS_5717_PLUS(sc)) {
4370 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4371 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4372 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4373 				if ((cur_rx->bge_error_flag &
4374 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4375 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4376 			}
4377 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4378 				m->m_pkthdr.csum_data =
4379 				    cur_rx->bge_tcp_udp_csum;
4380 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4381 				    CSUM_PSEUDO_HDR;
4382 			}
4383 		}
4384 	} else {
4385 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4386 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4387 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4388 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4389 		}
4390 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4391 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4392 			m->m_pkthdr.csum_data =
4393 			    cur_rx->bge_tcp_udp_csum;
4394 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4395 			    CSUM_PSEUDO_HDR;
4396 		}
4397 	}
4398 }
4399 
4400 static void
4401 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4402 {
4403 	struct bge_tx_bd *cur_tx;
4404 	struct ifnet *ifp;
4405 
4406 	BGE_LOCK_ASSERT(sc);
4407 
4408 	/* Nothing to do. */
4409 	if (sc->bge_tx_saved_considx == tx_cons)
4410 		return;
4411 
4412 	ifp = sc->bge_ifp;
4413 
4414 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4415 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4416 	/*
4417 	 * Go through our tx ring and free mbufs for those
4418 	 * frames that have been sent.
4419 	 */
4420 	while (sc->bge_tx_saved_considx != tx_cons) {
4421 		uint32_t		idx;
4422 
4423 		idx = sc->bge_tx_saved_considx;
4424 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4425 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4426 			ifp->if_opackets++;
4427 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4428 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4429 			    sc->bge_cdata.bge_tx_dmamap[idx],
4430 			    BUS_DMASYNC_POSTWRITE);
4431 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4432 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4433 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4434 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4435 		}
4436 		sc->bge_txcnt--;
4437 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4438 	}
4439 
4440 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4441 	if (sc->bge_txcnt == 0)
4442 		sc->bge_timer = 0;
4443 }
4444 
4445 #ifdef DEVICE_POLLING
4446 static int
4447 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4448 {
4449 	struct bge_softc *sc = ifp->if_softc;
4450 	uint16_t rx_prod, tx_cons;
4451 	uint32_t statusword;
4452 	int rx_npkts = 0;
4453 
4454 	BGE_LOCK(sc);
4455 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4456 		BGE_UNLOCK(sc);
4457 		return (rx_npkts);
4458 	}
4459 
4460 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4461 	    sc->bge_cdata.bge_status_map,
4462 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4463 	/* Fetch updates from the status block. */
4464 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4465 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4466 
4467 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4468 	/* Clear the status so the next pass only sees the changes. */
4469 	sc->bge_ldata.bge_status_block->bge_status = 0;
4470 
4471 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4472 	    sc->bge_cdata.bge_status_map,
4473 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4474 
4475 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4476 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4477 		sc->bge_link_evt++;
4478 
4479 	if (cmd == POLL_AND_CHECK_STATUS)
4480 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4481 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4482 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4483 			bge_link_upd(sc);
4484 
4485 	sc->rxcycles = count;
4486 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4487 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4488 		BGE_UNLOCK(sc);
4489 		return (rx_npkts);
4490 	}
4491 	bge_txeof(sc, tx_cons);
4492 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4493 		bge_start_locked(ifp);
4494 
4495 	BGE_UNLOCK(sc);
4496 	return (rx_npkts);
4497 }
4498 #endif /* DEVICE_POLLING */
4499 
4500 static int
4501 bge_msi_intr(void *arg)
4502 {
4503 	struct bge_softc *sc;
4504 
4505 	sc = (struct bge_softc *)arg;
4506 	/*
4507 	 * This interrupt is not shared and controller already
4508 	 * disabled further interrupt.
4509 	 */
4510 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4511 	return (FILTER_HANDLED);
4512 }
4513 
4514 static void
4515 bge_intr_task(void *arg, int pending)
4516 {
4517 	struct bge_softc *sc;
4518 	struct ifnet *ifp;
4519 	uint32_t status, status_tag;
4520 	uint16_t rx_prod, tx_cons;
4521 
4522 	sc = (struct bge_softc *)arg;
4523 	ifp = sc->bge_ifp;
4524 
4525 	BGE_LOCK(sc);
4526 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4527 		BGE_UNLOCK(sc);
4528 		return;
4529 	}
4530 
4531 	/* Get updated status block. */
4532 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4533 	    sc->bge_cdata.bge_status_map,
4534 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4535 
4536 	/* Save producer/consumer indices. */
4537 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4538 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4539 	status = sc->bge_ldata.bge_status_block->bge_status;
4540 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4541 	/* Dirty the status flag. */
4542 	sc->bge_ldata.bge_status_block->bge_status = 0;
4543 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4544 	    sc->bge_cdata.bge_status_map,
4545 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4546 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4547 		status_tag = 0;
4548 
4549 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4550 		bge_link_upd(sc);
4551 
4552 	/* Let controller work. */
4553 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4554 
4555 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4556 	    sc->bge_rx_saved_considx != rx_prod) {
4557 		/* Check RX return ring producer/consumer. */
4558 		BGE_UNLOCK(sc);
4559 		bge_rxeof(sc, rx_prod, 0);
4560 		BGE_LOCK(sc);
4561 	}
4562 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4563 		/* Check TX ring producer/consumer. */
4564 		bge_txeof(sc, tx_cons);
4565 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4566 			bge_start_locked(ifp);
4567 	}
4568 	BGE_UNLOCK(sc);
4569 }
4570 
4571 static void
4572 bge_intr(void *xsc)
4573 {
4574 	struct bge_softc *sc;
4575 	struct ifnet *ifp;
4576 	uint32_t statusword;
4577 	uint16_t rx_prod, tx_cons;
4578 
4579 	sc = xsc;
4580 
4581 	BGE_LOCK(sc);
4582 
4583 	ifp = sc->bge_ifp;
4584 
4585 #ifdef DEVICE_POLLING
4586 	if (ifp->if_capenable & IFCAP_POLLING) {
4587 		BGE_UNLOCK(sc);
4588 		return;
4589 	}
4590 #endif
4591 
4592 	/*
4593 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4594 	 * disable interrupts by writing nonzero like we used to, since with
4595 	 * our current organization this just gives complications and
4596 	 * pessimizations for re-enabling interrupts.  We used to have races
4597 	 * instead of the necessary complications.  Disabling interrupts
4598 	 * would just reduce the chance of a status update while we are
4599 	 * running (by switching to the interrupt-mode coalescence
4600 	 * parameters), but this chance is already very low so it is more
4601 	 * efficient to get another interrupt than prevent it.
4602 	 *
4603 	 * We do the ack first to ensure another interrupt if there is a
4604 	 * status update after the ack.  We don't check for the status
4605 	 * changing later because it is more efficient to get another
4606 	 * interrupt than prevent it, not quite as above (not checking is
4607 	 * a smaller optimization than not toggling the interrupt enable,
4608 	 * since checking doesn't involve PCI accesses and toggling require
4609 	 * the status check).  So toggling would probably be a pessimization
4610 	 * even with MSI.  It would only be needed for using a task queue.
4611 	 */
4612 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4613 
4614 	/*
4615 	 * Do the mandatory PCI flush as well as get the link status.
4616 	 */
4617 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4618 
4619 	/* Make sure the descriptor ring indexes are coherent. */
4620 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4621 	    sc->bge_cdata.bge_status_map,
4622 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4623 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4624 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4625 	sc->bge_ldata.bge_status_block->bge_status = 0;
4626 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4627 	    sc->bge_cdata.bge_status_map,
4628 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4629 
4630 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4631 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4632 	    statusword || sc->bge_link_evt)
4633 		bge_link_upd(sc);
4634 
4635 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4636 		/* Check RX return ring producer/consumer. */
4637 		bge_rxeof(sc, rx_prod, 1);
4638 	}
4639 
4640 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4641 		/* Check TX ring producer/consumer. */
4642 		bge_txeof(sc, tx_cons);
4643 	}
4644 
4645 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4646 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4647 		bge_start_locked(ifp);
4648 
4649 	BGE_UNLOCK(sc);
4650 }
4651 
4652 static void
4653 bge_asf_driver_up(struct bge_softc *sc)
4654 {
4655 	if (sc->bge_asf_mode & ASF_STACKUP) {
4656 		/* Send ASF heartbeat aprox. every 2s */
4657 		if (sc->bge_asf_count)
4658 			sc->bge_asf_count --;
4659 		else {
4660 			sc->bge_asf_count = 2;
4661 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4662 			    BGE_FW_CMD_DRV_ALIVE);
4663 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4664 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4665 			    BGE_FW_HB_TIMEOUT_SEC);
4666 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4667 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4668 			    BGE_RX_CPU_DRV_EVENT);
4669 		}
4670 	}
4671 }
4672 
4673 static void
4674 bge_tick(void *xsc)
4675 {
4676 	struct bge_softc *sc = xsc;
4677 	struct mii_data *mii = NULL;
4678 
4679 	BGE_LOCK_ASSERT(sc);
4680 
4681 	/* Synchronize with possible callout reset/stop. */
4682 	if (callout_pending(&sc->bge_stat_ch) ||
4683 	    !callout_active(&sc->bge_stat_ch))
4684 		return;
4685 
4686 	if (BGE_IS_5705_PLUS(sc))
4687 		bge_stats_update_regs(sc);
4688 	else
4689 		bge_stats_update(sc);
4690 
4691 	/* XXX Add APE heartbeat check here? */
4692 
4693 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4694 		mii = device_get_softc(sc->bge_miibus);
4695 		/*
4696 		 * Do not touch PHY if we have link up. This could break
4697 		 * IPMI/ASF mode or produce extra input errors
4698 		 * (extra errors was reported for bcm5701 & bcm5704).
4699 		 */
4700 		if (!sc->bge_link)
4701 			mii_tick(mii);
4702 	} else {
4703 		/*
4704 		 * Since in TBI mode auto-polling can't be used we should poll
4705 		 * link status manually. Here we register pending link event
4706 		 * and trigger interrupt.
4707 		 */
4708 #ifdef DEVICE_POLLING
4709 		/* In polling mode we poll link state in bge_poll(). */
4710 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4711 #endif
4712 		{
4713 		sc->bge_link_evt++;
4714 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4715 		    sc->bge_flags & BGE_FLAG_5788)
4716 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4717 		else
4718 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4719 		}
4720 	}
4721 
4722 	bge_asf_driver_up(sc);
4723 	bge_watchdog(sc);
4724 
4725 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4726 }
4727 
4728 static void
4729 bge_stats_update_regs(struct bge_softc *sc)
4730 {
4731 	struct ifnet *ifp;
4732 	struct bge_mac_stats *stats;
4733 
4734 	ifp = sc->bge_ifp;
4735 	stats = &sc->bge_mac_stats;
4736 
4737 	stats->ifHCOutOctets +=
4738 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4739 	stats->etherStatsCollisions +=
4740 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4741 	stats->outXonSent +=
4742 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4743 	stats->outXoffSent +=
4744 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4745 	stats->dot3StatsInternalMacTransmitErrors +=
4746 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4747 	stats->dot3StatsSingleCollisionFrames +=
4748 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4749 	stats->dot3StatsMultipleCollisionFrames +=
4750 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4751 	stats->dot3StatsDeferredTransmissions +=
4752 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4753 	stats->dot3StatsExcessiveCollisions +=
4754 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4755 	stats->dot3StatsLateCollisions +=
4756 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4757 	stats->ifHCOutUcastPkts +=
4758 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4759 	stats->ifHCOutMulticastPkts +=
4760 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4761 	stats->ifHCOutBroadcastPkts +=
4762 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4763 
4764 	stats->ifHCInOctets +=
4765 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4766 	stats->etherStatsFragments +=
4767 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4768 	stats->ifHCInUcastPkts +=
4769 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4770 	stats->ifHCInMulticastPkts +=
4771 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4772 	stats->ifHCInBroadcastPkts +=
4773 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4774 	stats->dot3StatsFCSErrors +=
4775 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4776 	stats->dot3StatsAlignmentErrors +=
4777 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4778 	stats->xonPauseFramesReceived +=
4779 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4780 	stats->xoffPauseFramesReceived +=
4781 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4782 	stats->macControlFramesReceived +=
4783 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4784 	stats->xoffStateEntered +=
4785 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4786 	stats->dot3StatsFramesTooLong +=
4787 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4788 	stats->etherStatsJabbers +=
4789 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4790 	stats->etherStatsUndersizePkts +=
4791 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4792 
4793 	stats->FramesDroppedDueToFilters +=
4794 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4795 	stats->DmaWriteQueueFull +=
4796 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4797 	stats->DmaWriteHighPriQueueFull +=
4798 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4799 	stats->NoMoreRxBDs +=
4800 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4801 	/*
4802 	 * XXX
4803 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4804 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4805 	 * includes number of unwanted multicast frames.  This comes
4806 	 * from silicon bug and known workaround to get rough(not
4807 	 * exact) counter is to enable interrupt on MBUF low water
4808 	 * attention.  This can be accomplished by setting
4809 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4810 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4811 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4812 	 * However that change would generate more interrupts and
4813 	 * there are still possibilities of losing multiple frames
4814 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4815 	 * Given that the workaround still would not get correct
4816 	 * counter I don't think it's worth to implement it.  So
4817 	 * ignore reading the counter on controllers that have the
4818 	 * silicon bug.
4819 	 */
4820 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4821 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4822 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4823 		stats->InputDiscards +=
4824 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4825 	stats->InputErrors +=
4826 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4827 	stats->RecvThresholdHit +=
4828 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4829 
4830 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4831 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4832 	    stats->InputErrors);
4833 }
4834 
4835 static void
4836 bge_stats_clear_regs(struct bge_softc *sc)
4837 {
4838 
4839 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4840 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4841 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4842 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4843 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4844 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4845 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4846 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4847 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4848 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4849 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4850 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4851 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4852 
4853 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4854 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4855 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4856 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4857 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4858 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4859 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4860 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4861 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4862 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4863 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4864 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4865 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4866 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4867 
4868 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4869 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4870 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4871 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4872 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4873 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4874 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4875 }
4876 
4877 static void
4878 bge_stats_update(struct bge_softc *sc)
4879 {
4880 	struct ifnet *ifp;
4881 	bus_size_t stats;
4882 	uint32_t cnt;	/* current register value */
4883 
4884 	ifp = sc->bge_ifp;
4885 
4886 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4887 
4888 #define	READ_STAT(sc, stats, stat) \
4889 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4890 
4891 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4892 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4893 	sc->bge_tx_collisions = cnt;
4894 
4895 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4896 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4897 	sc->bge_rx_nobds = cnt;
4898 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4899 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4900 	sc->bge_rx_inerrs = cnt;
4901 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4902 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4903 	sc->bge_rx_discards = cnt;
4904 
4905 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4906 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4907 	sc->bge_tx_discards = cnt;
4908 
4909 #undef	READ_STAT
4910 }
4911 
4912 /*
4913  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4914  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4915  * but when such padded frames employ the bge IP/TCP checksum offload,
4916  * the hardware checksum assist gives incorrect results (possibly
4917  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4918  * If we pad such runts with zeros, the onboard checksum comes out correct.
4919  */
4920 static __inline int
4921 bge_cksum_pad(struct mbuf *m)
4922 {
4923 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4924 	struct mbuf *last;
4925 
4926 	/* If there's only the packet-header and we can pad there, use it. */
4927 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4928 	    M_TRAILINGSPACE(m) >= padlen) {
4929 		last = m;
4930 	} else {
4931 		/*
4932 		 * Walk packet chain to find last mbuf. We will either
4933 		 * pad there, or append a new mbuf and pad it.
4934 		 */
4935 		for (last = m; last->m_next != NULL; last = last->m_next);
4936 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4937 			/* Allocate new empty mbuf, pad it. Compact later. */
4938 			struct mbuf *n;
4939 
4940 			MGET(n, M_DONTWAIT, MT_DATA);
4941 			if (n == NULL)
4942 				return (ENOBUFS);
4943 			n->m_len = 0;
4944 			last->m_next = n;
4945 			last = n;
4946 		}
4947 	}
4948 
4949 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4950 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4951 	last->m_len += padlen;
4952 	m->m_pkthdr.len += padlen;
4953 
4954 	return (0);
4955 }
4956 
4957 static struct mbuf *
4958 bge_check_short_dma(struct mbuf *m)
4959 {
4960 	struct mbuf *n;
4961 	int found;
4962 
4963 	/*
4964 	 * If device receive two back-to-back send BDs with less than
4965 	 * or equal to 8 total bytes then the device may hang.  The two
4966 	 * back-to-back send BDs must in the same frame for this failure
4967 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4968 	 * send BDs are there. If this is the case, allocate new mbuf
4969 	 * and copy the frame to workaround the silicon bug.
4970 	 */
4971 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4972 		if (n->m_len < 8) {
4973 			found++;
4974 			if (found > 1)
4975 				break;
4976 			continue;
4977 		}
4978 		found = 0;
4979 	}
4980 
4981 	if (found > 1) {
4982 		n = m_defrag(m, M_DONTWAIT);
4983 		if (n == NULL)
4984 			m_freem(m);
4985 	} else
4986 		n = m;
4987 	return (n);
4988 }
4989 
4990 static struct mbuf *
4991 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4992     uint16_t *flags)
4993 {
4994 	struct ip *ip;
4995 	struct tcphdr *tcp;
4996 	struct mbuf *n;
4997 	uint16_t hlen;
4998 	uint32_t poff;
4999 
5000 	if (M_WRITABLE(m) == 0) {
5001 		/* Get a writable copy. */
5002 		n = m_dup(m, M_DONTWAIT);
5003 		m_freem(m);
5004 		if (n == NULL)
5005 			return (NULL);
5006 		m = n;
5007 	}
5008 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5009 	if (m == NULL)
5010 		return (NULL);
5011 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5012 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5013 	m = m_pullup(m, poff + sizeof(struct tcphdr));
5014 	if (m == NULL)
5015 		return (NULL);
5016 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5017 	m = m_pullup(m, poff + (tcp->th_off << 2));
5018 	if (m == NULL)
5019 		return (NULL);
5020 	/*
5021 	 * It seems controller doesn't modify IP length and TCP pseudo
5022 	 * checksum. These checksum computed by upper stack should be 0.
5023 	 */
5024 	*mss = m->m_pkthdr.tso_segsz;
5025 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5026 	ip->ip_sum = 0;
5027 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5028 	/* Clear pseudo checksum computed by TCP stack. */
5029 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5030 	tcp->th_sum = 0;
5031 	/*
5032 	 * Broadcom controllers uses different descriptor format for
5033 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
5034 	 * license issue and lower performance of firmware based TSO
5035 	 * we only support hardware based TSO.
5036 	 */
5037 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5038 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5039 	if (sc->bge_flags & BGE_FLAG_TSO3) {
5040 		/*
5041 		 * For BCM5717 and newer controllers, hardware based TSO
5042 		 * uses the 14 lower bits of the bge_mss field to store the
5043 		 * MSS and the upper 2 bits to store the lowest 2 bits of
5044 		 * the IP/TCP header length.  The upper 6 bits of the header
5045 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
5046 		 * frames are supported.
5047 		 */
5048 		*mss |= ((hlen & 0x3) << 14);
5049 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5050 	} else {
5051 		/*
5052 		 * For BCM5755 and newer controllers, hardware based TSO uses
5053 		 * the lower 11	bits to store the MSS and the upper 5 bits to
5054 		 * store the IP/TCP header length. Jumbo frames are not
5055 		 * supported.
5056 		 */
5057 		*mss |= (hlen << 11);
5058 	}
5059 	return (m);
5060 }
5061 
5062 /*
5063  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
5064  * pointers to descriptors.
5065  */
5066 static int
5067 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5068 {
5069 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
5070 	bus_dmamap_t		map;
5071 	struct bge_tx_bd	*d;
5072 	struct mbuf		*m = *m_head;
5073 	uint32_t		idx = *txidx;
5074 	uint16_t		csum_flags, mss, vlan_tag;
5075 	int			nsegs, i, error;
5076 
5077 	csum_flags = 0;
5078 	mss = 0;
5079 	vlan_tag = 0;
5080 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5081 	    m->m_next != NULL) {
5082 		*m_head = bge_check_short_dma(m);
5083 		if (*m_head == NULL)
5084 			return (ENOBUFS);
5085 		m = *m_head;
5086 	}
5087 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5088 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5089 		if (*m_head == NULL)
5090 			return (ENOBUFS);
5091 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5092 		    BGE_TXBDFLAG_CPU_POST_DMA;
5093 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5094 		if (m->m_pkthdr.csum_flags & CSUM_IP)
5095 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5096 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5097 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5098 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5099 			    (error = bge_cksum_pad(m)) != 0) {
5100 				m_freem(m);
5101 				*m_head = NULL;
5102 				return (error);
5103 			}
5104 		}
5105 		if (m->m_flags & M_LASTFRAG)
5106 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
5107 		else if (m->m_flags & M_FRAG)
5108 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
5109 	}
5110 
5111 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5112 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5113 		    m->m_pkthdr.len > ETHER_MAX_LEN)
5114 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5115 		if (sc->bge_forced_collapse > 0 &&
5116 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5117 			/*
5118 			 * Forcedly collapse mbuf chains to overcome hardware
5119 			 * limitation which only support a single outstanding
5120 			 * DMA read operation.
5121 			 */
5122 			if (sc->bge_forced_collapse == 1)
5123 				m = m_defrag(m, M_DONTWAIT);
5124 			else
5125 				m = m_collapse(m, M_DONTWAIT,
5126 				    sc->bge_forced_collapse);
5127 			if (m == NULL)
5128 				m = *m_head;
5129 			*m_head = m;
5130 		}
5131 	}
5132 
5133 	map = sc->bge_cdata.bge_tx_dmamap[idx];
5134 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5135 	    &nsegs, BUS_DMA_NOWAIT);
5136 	if (error == EFBIG) {
5137 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
5138 		if (m == NULL) {
5139 			m_freem(*m_head);
5140 			*m_head = NULL;
5141 			return (ENOBUFS);
5142 		}
5143 		*m_head = m;
5144 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5145 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
5146 		if (error) {
5147 			m_freem(m);
5148 			*m_head = NULL;
5149 			return (error);
5150 		}
5151 	} else if (error != 0)
5152 		return (error);
5153 
5154 	/* Check if we have enough free send BDs. */
5155 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5156 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5157 		return (ENOBUFS);
5158 	}
5159 
5160 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5161 
5162 	if (m->m_flags & M_VLANTAG) {
5163 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5164 		vlan_tag = m->m_pkthdr.ether_vtag;
5165 	}
5166 	for (i = 0; ; i++) {
5167 		d = &sc->bge_ldata.bge_tx_ring[idx];
5168 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5169 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5170 		d->bge_len = segs[i].ds_len;
5171 		d->bge_flags = csum_flags;
5172 		d->bge_vlan_tag = vlan_tag;
5173 		d->bge_mss = mss;
5174 		if (i == nsegs - 1)
5175 			break;
5176 		BGE_INC(idx, BGE_TX_RING_CNT);
5177 	}
5178 
5179 	/* Mark the last segment as end of packet... */
5180 	d->bge_flags |= BGE_TXBDFLAG_END;
5181 
5182 	/*
5183 	 * Insure that the map for this transmission
5184 	 * is placed at the array index of the last descriptor
5185 	 * in this chain.
5186 	 */
5187 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5188 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
5189 	sc->bge_cdata.bge_tx_chain[idx] = m;
5190 	sc->bge_txcnt += nsegs;
5191 
5192 	BGE_INC(idx, BGE_TX_RING_CNT);
5193 	*txidx = idx;
5194 
5195 	return (0);
5196 }
5197 
5198 /*
5199  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5200  * to the mbuf data regions directly in the transmit descriptors.
5201  */
5202 static void
5203 bge_start_locked(struct ifnet *ifp)
5204 {
5205 	struct bge_softc *sc;
5206 	struct mbuf *m_head;
5207 	uint32_t prodidx;
5208 	int count;
5209 
5210 	sc = ifp->if_softc;
5211 	BGE_LOCK_ASSERT(sc);
5212 
5213 	if (!sc->bge_link ||
5214 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5215 	    IFF_DRV_RUNNING)
5216 		return;
5217 
5218 	prodidx = sc->bge_tx_prodidx;
5219 
5220 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
5221 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5222 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5223 			break;
5224 		}
5225 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
5226 		if (m_head == NULL)
5227 			break;
5228 
5229 		/*
5230 		 * XXX
5231 		 * The code inside the if() block is never reached since we
5232 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
5233 		 * requests to checksum TCP/UDP in a fragmented packet.
5234 		 *
5235 		 * XXX
5236 		 * safety overkill.  If this is a fragmented packet chain
5237 		 * with delayed TCP/UDP checksums, then only encapsulate
5238 		 * it if we have enough descriptors to handle the entire
5239 		 * chain at once.
5240 		 * (paranoia -- may not actually be needed)
5241 		 */
5242 		if (m_head->m_flags & M_FIRSTFRAG &&
5243 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5244 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5245 			    m_head->m_pkthdr.csum_data + 16) {
5246 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5247 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5248 				break;
5249 			}
5250 		}
5251 
5252 		/*
5253 		 * Pack the data into the transmit ring. If we
5254 		 * don't have room, set the OACTIVE flag and wait
5255 		 * for the NIC to drain the ring.
5256 		 */
5257 		if (bge_encap(sc, &m_head, &prodidx)) {
5258 			if (m_head == NULL)
5259 				break;
5260 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
5261 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5262 			break;
5263 		}
5264 		++count;
5265 
5266 		/*
5267 		 * If there's a BPF listener, bounce a copy of this frame
5268 		 * to him.
5269 		 */
5270 #ifdef ETHER_BPF_MTAP
5271 		ETHER_BPF_MTAP(ifp, m_head);
5272 #else
5273 		BPF_MTAP(ifp, m_head);
5274 #endif
5275 	}
5276 
5277 	if (count > 0) {
5278 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5279 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5280 		/* Transmit. */
5281 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5282 		/* 5700 b2 errata */
5283 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5284 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5285 
5286 		sc->bge_tx_prodidx = prodidx;
5287 
5288 		/*
5289 		 * Set a timeout in case the chip goes out to lunch.
5290 		 */
5291 		sc->bge_timer = 5;
5292 	}
5293 }
5294 
5295 /*
5296  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5297  * to the mbuf data regions directly in the transmit descriptors.
5298  */
5299 static void
5300 bge_start(struct ifnet *ifp)
5301 {
5302 	struct bge_softc *sc;
5303 
5304 	sc = ifp->if_softc;
5305 	BGE_LOCK(sc);
5306 	bge_start_locked(ifp);
5307 	BGE_UNLOCK(sc);
5308 }
5309 
5310 static void
5311 bge_init_locked(struct bge_softc *sc)
5312 {
5313 	struct ifnet *ifp;
5314 	uint16_t *m;
5315 	uint32_t mode;
5316 
5317 	BGE_LOCK_ASSERT(sc);
5318 
5319 	ifp = sc->bge_ifp;
5320 
5321 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5322 		return;
5323 
5324 	/* Cancel pending I/O and flush buffers. */
5325 	bge_stop(sc);
5326 
5327 	bge_stop_fw(sc);
5328 	bge_sig_pre_reset(sc, BGE_RESET_START);
5329 	bge_reset(sc);
5330 	bge_sig_legacy(sc, BGE_RESET_START);
5331 	bge_sig_post_reset(sc, BGE_RESET_START);
5332 
5333 	bge_chipinit(sc);
5334 
5335 	/*
5336 	 * Init the various state machines, ring
5337 	 * control blocks and firmware.
5338 	 */
5339 	if (bge_blockinit(sc)) {
5340 		device_printf(sc->bge_dev, "initialization failure\n");
5341 		return;
5342 	}
5343 
5344 	ifp = sc->bge_ifp;
5345 
5346 	/* Specify MTU. */
5347 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5348 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
5349 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5350 
5351 	/* Load our MAC address. */
5352 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
5353 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5354 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5355 
5356 	/* Program promiscuous mode. */
5357 	bge_setpromisc(sc);
5358 
5359 	/* Program multicast filter. */
5360 	bge_setmulti(sc);
5361 
5362 	/* Program VLAN tag stripping. */
5363 	bge_setvlan(sc);
5364 
5365 	/* Override UDP checksum offloading. */
5366 	if (sc->bge_forced_udpcsum == 0)
5367 		sc->bge_csum_features &= ~CSUM_UDP;
5368 	else
5369 		sc->bge_csum_features |= CSUM_UDP;
5370 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
5371 	    ifp->if_capenable & IFCAP_TXCSUM) {
5372 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
5373 		ifp->if_hwassist |= sc->bge_csum_features;
5374 	}
5375 
5376 	/* Init RX ring. */
5377 	if (bge_init_rx_ring_std(sc) != 0) {
5378 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5379 		bge_stop(sc);
5380 		return;
5381 	}
5382 
5383 	/*
5384 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5385 	 * memory to insure that the chip has in fact read the first
5386 	 * entry of the ring.
5387 	 */
5388 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5389 		uint32_t		v, i;
5390 		for (i = 0; i < 10; i++) {
5391 			DELAY(20);
5392 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5393 			if (v == (MCLBYTES - ETHER_ALIGN))
5394 				break;
5395 		}
5396 		if (i == 10)
5397 			device_printf (sc->bge_dev,
5398 			    "5705 A0 chip failed to load RX ring\n");
5399 	}
5400 
5401 	/* Init jumbo RX ring. */
5402 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5403 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5404 	    (MCLBYTES - ETHER_ALIGN)) {
5405 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5406 			device_printf(sc->bge_dev,
5407 			    "no memory for jumbo Rx buffers.\n");
5408 			bge_stop(sc);
5409 			return;
5410 		}
5411 	}
5412 
5413 	/* Init our RX return ring index. */
5414 	sc->bge_rx_saved_considx = 0;
5415 
5416 	/* Init our RX/TX stat counters. */
5417 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5418 
5419 	/* Init TX ring. */
5420 	bge_init_tx_ring(sc);
5421 
5422 	/* Enable TX MAC state machine lockup fix. */
5423 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5424 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5425 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5426 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5427 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5428 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5429 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5430 	}
5431 	/* Turn on transmitter. */
5432 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5433 	DELAY(100);
5434 
5435 	/* Turn on receiver. */
5436 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5437 	if (BGE_IS_5755_PLUS(sc))
5438 		mode |= BGE_RXMODE_IPV6_ENABLE;
5439 	CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5440 	DELAY(10);
5441 
5442 	/*
5443 	 * Set the number of good frames to receive after RX MBUF
5444 	 * Low Watermark has been reached. After the RX MAC receives
5445 	 * this number of frames, it will drop subsequent incoming
5446 	 * frames until the MBUF High Watermark is reached.
5447 	 */
5448 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5449 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5450 	else
5451 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5452 
5453 	/* Clear MAC statistics. */
5454 	if (BGE_IS_5705_PLUS(sc))
5455 		bge_stats_clear_regs(sc);
5456 
5457 	/* Tell firmware we're alive. */
5458 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5459 
5460 #ifdef DEVICE_POLLING
5461 	/* Disable interrupts if we are polling. */
5462 	if (ifp->if_capenable & IFCAP_POLLING) {
5463 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5464 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5465 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5466 	} else
5467 #endif
5468 
5469 	/* Enable host interrupts. */
5470 	{
5471 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5472 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5473 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5474 	}
5475 
5476 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5477 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5478 
5479 	bge_ifmedia_upd_locked(ifp);
5480 
5481 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5482 }
5483 
5484 static void
5485 bge_init(void *xsc)
5486 {
5487 	struct bge_softc *sc = xsc;
5488 
5489 	BGE_LOCK(sc);
5490 	bge_init_locked(sc);
5491 	BGE_UNLOCK(sc);
5492 }
5493 
5494 /*
5495  * Set media options.
5496  */
5497 static int
5498 bge_ifmedia_upd(struct ifnet *ifp)
5499 {
5500 	struct bge_softc *sc = ifp->if_softc;
5501 	int res;
5502 
5503 	BGE_LOCK(sc);
5504 	res = bge_ifmedia_upd_locked(ifp);
5505 	BGE_UNLOCK(sc);
5506 
5507 	return (res);
5508 }
5509 
5510 static int
5511 bge_ifmedia_upd_locked(struct ifnet *ifp)
5512 {
5513 	struct bge_softc *sc = ifp->if_softc;
5514 	struct mii_data *mii;
5515 	struct mii_softc *miisc;
5516 	struct ifmedia *ifm;
5517 
5518 	BGE_LOCK_ASSERT(sc);
5519 
5520 	ifm = &sc->bge_ifmedia;
5521 
5522 	/* If this is a 1000baseX NIC, enable the TBI port. */
5523 	if (sc->bge_flags & BGE_FLAG_TBI) {
5524 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5525 			return (EINVAL);
5526 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5527 		case IFM_AUTO:
5528 			/*
5529 			 * The BCM5704 ASIC appears to have a special
5530 			 * mechanism for programming the autoneg
5531 			 * advertisement registers in TBI mode.
5532 			 */
5533 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5534 				uint32_t sgdig;
5535 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5536 				if (sgdig & BGE_SGDIGSTS_DONE) {
5537 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5538 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5539 					sgdig |= BGE_SGDIGCFG_AUTO |
5540 					    BGE_SGDIGCFG_PAUSE_CAP |
5541 					    BGE_SGDIGCFG_ASYM_PAUSE;
5542 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5543 					    sgdig | BGE_SGDIGCFG_SEND);
5544 					DELAY(5);
5545 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5546 				}
5547 			}
5548 			break;
5549 		case IFM_1000_SX:
5550 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5551 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5552 				    BGE_MACMODE_HALF_DUPLEX);
5553 			} else {
5554 				BGE_SETBIT(sc, BGE_MAC_MODE,
5555 				    BGE_MACMODE_HALF_DUPLEX);
5556 			}
5557 			DELAY(40);
5558 			break;
5559 		default:
5560 			return (EINVAL);
5561 		}
5562 		return (0);
5563 	}
5564 
5565 	sc->bge_link_evt++;
5566 	mii = device_get_softc(sc->bge_miibus);
5567 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5568 		PHY_RESET(miisc);
5569 	mii_mediachg(mii);
5570 
5571 	/*
5572 	 * Force an interrupt so that we will call bge_link_upd
5573 	 * if needed and clear any pending link state attention.
5574 	 * Without this we are not getting any further interrupts
5575 	 * for link state changes and thus will not UP the link and
5576 	 * not be able to send in bge_start_locked. The only
5577 	 * way to get things working was to receive a packet and
5578 	 * get an RX intr.
5579 	 * bge_tick should help for fiber cards and we might not
5580 	 * need to do this here if BGE_FLAG_TBI is set but as
5581 	 * we poll for fiber anyway it should not harm.
5582 	 */
5583 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5584 	    sc->bge_flags & BGE_FLAG_5788)
5585 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5586 	else
5587 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5588 
5589 	return (0);
5590 }
5591 
5592 /*
5593  * Report current media status.
5594  */
5595 static void
5596 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5597 {
5598 	struct bge_softc *sc = ifp->if_softc;
5599 	struct mii_data *mii;
5600 
5601 	BGE_LOCK(sc);
5602 
5603 	if (sc->bge_flags & BGE_FLAG_TBI) {
5604 		ifmr->ifm_status = IFM_AVALID;
5605 		ifmr->ifm_active = IFM_ETHER;
5606 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5607 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5608 			ifmr->ifm_status |= IFM_ACTIVE;
5609 		else {
5610 			ifmr->ifm_active |= IFM_NONE;
5611 			BGE_UNLOCK(sc);
5612 			return;
5613 		}
5614 		ifmr->ifm_active |= IFM_1000_SX;
5615 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5616 			ifmr->ifm_active |= IFM_HDX;
5617 		else
5618 			ifmr->ifm_active |= IFM_FDX;
5619 		BGE_UNLOCK(sc);
5620 		return;
5621 	}
5622 
5623 	mii = device_get_softc(sc->bge_miibus);
5624 	mii_pollstat(mii);
5625 	ifmr->ifm_active = mii->mii_media_active;
5626 	ifmr->ifm_status = mii->mii_media_status;
5627 
5628 	BGE_UNLOCK(sc);
5629 }
5630 
5631 static int
5632 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5633 {
5634 	struct bge_softc *sc = ifp->if_softc;
5635 	struct ifreq *ifr = (struct ifreq *) data;
5636 	struct mii_data *mii;
5637 	int flags, mask, error = 0;
5638 
5639 	switch (command) {
5640 	case SIOCSIFMTU:
5641 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5642 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5643 			if (ifr->ifr_mtu < ETHERMIN ||
5644 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5645 				error = EINVAL;
5646 				break;
5647 			}
5648 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5649 			error = EINVAL;
5650 			break;
5651 		}
5652 		BGE_LOCK(sc);
5653 		if (ifp->if_mtu != ifr->ifr_mtu) {
5654 			ifp->if_mtu = ifr->ifr_mtu;
5655 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5656 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5657 				bge_init_locked(sc);
5658 			}
5659 		}
5660 		BGE_UNLOCK(sc);
5661 		break;
5662 	case SIOCSIFFLAGS:
5663 		BGE_LOCK(sc);
5664 		if (ifp->if_flags & IFF_UP) {
5665 			/*
5666 			 * If only the state of the PROMISC flag changed,
5667 			 * then just use the 'set promisc mode' command
5668 			 * instead of reinitializing the entire NIC. Doing
5669 			 * a full re-init means reloading the firmware and
5670 			 * waiting for it to start up, which may take a
5671 			 * second or two.  Similarly for ALLMULTI.
5672 			 */
5673 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5674 				flags = ifp->if_flags ^ sc->bge_if_flags;
5675 				if (flags & IFF_PROMISC)
5676 					bge_setpromisc(sc);
5677 				if (flags & IFF_ALLMULTI)
5678 					bge_setmulti(sc);
5679 			} else
5680 				bge_init_locked(sc);
5681 		} else {
5682 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5683 				bge_stop(sc);
5684 			}
5685 		}
5686 		sc->bge_if_flags = ifp->if_flags;
5687 		BGE_UNLOCK(sc);
5688 		error = 0;
5689 		break;
5690 	case SIOCADDMULTI:
5691 	case SIOCDELMULTI:
5692 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5693 			BGE_LOCK(sc);
5694 			bge_setmulti(sc);
5695 			BGE_UNLOCK(sc);
5696 			error = 0;
5697 		}
5698 		break;
5699 	case SIOCSIFMEDIA:
5700 	case SIOCGIFMEDIA:
5701 		if (sc->bge_flags & BGE_FLAG_TBI) {
5702 			error = ifmedia_ioctl(ifp, ifr,
5703 			    &sc->bge_ifmedia, command);
5704 		} else {
5705 			mii = device_get_softc(sc->bge_miibus);
5706 			error = ifmedia_ioctl(ifp, ifr,
5707 			    &mii->mii_media, command);
5708 		}
5709 		break;
5710 	case SIOCSIFCAP:
5711 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5712 #ifdef DEVICE_POLLING
5713 		if (mask & IFCAP_POLLING) {
5714 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5715 				error = ether_poll_register(bge_poll, ifp);
5716 				if (error)
5717 					return (error);
5718 				BGE_LOCK(sc);
5719 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5720 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5721 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5722 				ifp->if_capenable |= IFCAP_POLLING;
5723 				BGE_UNLOCK(sc);
5724 			} else {
5725 				error = ether_poll_deregister(ifp);
5726 				/* Enable interrupt even in error case */
5727 				BGE_LOCK(sc);
5728 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5729 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5730 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5731 				ifp->if_capenable &= ~IFCAP_POLLING;
5732 				BGE_UNLOCK(sc);
5733 			}
5734 		}
5735 #endif
5736 		if ((mask & IFCAP_TXCSUM) != 0 &&
5737 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5738 			ifp->if_capenable ^= IFCAP_TXCSUM;
5739 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5740 				ifp->if_hwassist |= sc->bge_csum_features;
5741 			else
5742 				ifp->if_hwassist &= ~sc->bge_csum_features;
5743 		}
5744 
5745 		if ((mask & IFCAP_RXCSUM) != 0 &&
5746 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5747 			ifp->if_capenable ^= IFCAP_RXCSUM;
5748 
5749 		if ((mask & IFCAP_TSO4) != 0 &&
5750 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5751 			ifp->if_capenable ^= IFCAP_TSO4;
5752 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5753 				ifp->if_hwassist |= CSUM_TSO;
5754 			else
5755 				ifp->if_hwassist &= ~CSUM_TSO;
5756 		}
5757 
5758 		if (mask & IFCAP_VLAN_MTU) {
5759 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5760 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5761 			bge_init(sc);
5762 		}
5763 
5764 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5765 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5766 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5767 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5768 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5769 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5770 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5771 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5772 			BGE_LOCK(sc);
5773 			bge_setvlan(sc);
5774 			BGE_UNLOCK(sc);
5775 		}
5776 #ifdef VLAN_CAPABILITIES
5777 		VLAN_CAPABILITIES(ifp);
5778 #endif
5779 		break;
5780 	default:
5781 		error = ether_ioctl(ifp, command, data);
5782 		break;
5783 	}
5784 
5785 	return (error);
5786 }
5787 
5788 static void
5789 bge_watchdog(struct bge_softc *sc)
5790 {
5791 	struct ifnet *ifp;
5792 
5793 	BGE_LOCK_ASSERT(sc);
5794 
5795 	if (sc->bge_timer == 0 || --sc->bge_timer)
5796 		return;
5797 
5798 	ifp = sc->bge_ifp;
5799 
5800 	if_printf(ifp, "watchdog timeout -- resetting\n");
5801 
5802 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5803 	bge_init_locked(sc);
5804 
5805 	ifp->if_oerrors++;
5806 }
5807 
5808 static void
5809 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5810 {
5811 	int i;
5812 
5813 	BGE_CLRBIT(sc, reg, bit);
5814 
5815 	for (i = 0; i < BGE_TIMEOUT; i++) {
5816 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5817 			return;
5818 		DELAY(100);
5819         }
5820 }
5821 
5822 /*
5823  * Stop the adapter and free any mbufs allocated to the
5824  * RX and TX lists.
5825  */
5826 static void
5827 bge_stop(struct bge_softc *sc)
5828 {
5829 	struct ifnet *ifp;
5830 
5831 	BGE_LOCK_ASSERT(sc);
5832 
5833 	ifp = sc->bge_ifp;
5834 
5835 	callout_stop(&sc->bge_stat_ch);
5836 
5837 	/* Disable host interrupts. */
5838 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5839 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5840 
5841 	/*
5842 	 * Tell firmware we're shutting down.
5843 	 */
5844 	bge_stop_fw(sc);
5845 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5846 
5847 	/*
5848 	 * Disable all of the receiver blocks.
5849 	 */
5850 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5851 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5852 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5853 	if (BGE_IS_5700_FAMILY(sc))
5854 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5855 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5856 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5857 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5858 
5859 	/*
5860 	 * Disable all of the transmit blocks.
5861 	 */
5862 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5863 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5864 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5865 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5866 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5867 	if (BGE_IS_5700_FAMILY(sc))
5868 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5869 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5870 
5871 	/*
5872 	 * Shut down all of the memory managers and related
5873 	 * state machines.
5874 	 */
5875 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5876 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5877 	if (BGE_IS_5700_FAMILY(sc))
5878 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5879 
5880 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5881 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5882 	if (!(BGE_IS_5705_PLUS(sc))) {
5883 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5884 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5885 	}
5886 	/* Update MAC statistics. */
5887 	if (BGE_IS_5705_PLUS(sc))
5888 		bge_stats_update_regs(sc);
5889 
5890 	bge_reset(sc);
5891 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5892 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5893 
5894 	/*
5895 	 * Keep the ASF firmware running if up.
5896 	 */
5897 	if (sc->bge_asf_mode & ASF_STACKUP)
5898 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5899 	else
5900 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5901 
5902 	/* Free the RX lists. */
5903 	bge_free_rx_ring_std(sc);
5904 
5905 	/* Free jumbo RX list. */
5906 	if (BGE_IS_JUMBO_CAPABLE(sc))
5907 		bge_free_rx_ring_jumbo(sc);
5908 
5909 	/* Free TX buffers. */
5910 	bge_free_tx_ring(sc);
5911 
5912 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5913 
5914 	/* Clear MAC's link state (PHY may still have link UP). */
5915 	if (bootverbose && sc->bge_link)
5916 		if_printf(sc->bge_ifp, "link DOWN\n");
5917 	sc->bge_link = 0;
5918 
5919 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5920 }
5921 
5922 /*
5923  * Stop all chip I/O so that the kernel's probe routines don't
5924  * get confused by errant DMAs when rebooting.
5925  */
5926 static int
5927 bge_shutdown(device_t dev)
5928 {
5929 	struct bge_softc *sc;
5930 
5931 	sc = device_get_softc(dev);
5932 	BGE_LOCK(sc);
5933 	bge_stop(sc);
5934 	BGE_UNLOCK(sc);
5935 
5936 	return (0);
5937 }
5938 
5939 static int
5940 bge_suspend(device_t dev)
5941 {
5942 	struct bge_softc *sc;
5943 
5944 	sc = device_get_softc(dev);
5945 	BGE_LOCK(sc);
5946 	bge_stop(sc);
5947 	BGE_UNLOCK(sc);
5948 
5949 	return (0);
5950 }
5951 
5952 static int
5953 bge_resume(device_t dev)
5954 {
5955 	struct bge_softc *sc;
5956 	struct ifnet *ifp;
5957 
5958 	sc = device_get_softc(dev);
5959 	BGE_LOCK(sc);
5960 	ifp = sc->bge_ifp;
5961 	if (ifp->if_flags & IFF_UP) {
5962 		bge_init_locked(sc);
5963 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5964 			bge_start_locked(ifp);
5965 	}
5966 	BGE_UNLOCK(sc);
5967 
5968 	return (0);
5969 }
5970 
5971 static void
5972 bge_link_upd(struct bge_softc *sc)
5973 {
5974 	struct mii_data *mii;
5975 	uint32_t link, status;
5976 
5977 	BGE_LOCK_ASSERT(sc);
5978 
5979 	/* Clear 'pending link event' flag. */
5980 	sc->bge_link_evt = 0;
5981 
5982 	/*
5983 	 * Process link state changes.
5984 	 * Grrr. The link status word in the status block does
5985 	 * not work correctly on the BCM5700 rev AX and BX chips,
5986 	 * according to all available information. Hence, we have
5987 	 * to enable MII interrupts in order to properly obtain
5988 	 * async link changes. Unfortunately, this also means that
5989 	 * we have to read the MAC status register to detect link
5990 	 * changes, thereby adding an additional register access to
5991 	 * the interrupt handler.
5992 	 *
5993 	 * XXX: perhaps link state detection procedure used for
5994 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5995 	 */
5996 
5997 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5998 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5999 		status = CSR_READ_4(sc, BGE_MAC_STS);
6000 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6001 			mii = device_get_softc(sc->bge_miibus);
6002 			mii_pollstat(mii);
6003 			if (!sc->bge_link &&
6004 			    mii->mii_media_status & IFM_ACTIVE &&
6005 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6006 				sc->bge_link++;
6007 				if (bootverbose)
6008 					if_printf(sc->bge_ifp, "link UP\n");
6009 			} else if (sc->bge_link &&
6010 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6011 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6012 				sc->bge_link = 0;
6013 				if (bootverbose)
6014 					if_printf(sc->bge_ifp, "link DOWN\n");
6015 			}
6016 
6017 			/* Clear the interrupt. */
6018 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6019 			    BGE_EVTENB_MI_INTERRUPT);
6020 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
6021 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
6022 			    BRGPHY_INTRS);
6023 		}
6024 		return;
6025 	}
6026 
6027 	if (sc->bge_flags & BGE_FLAG_TBI) {
6028 		status = CSR_READ_4(sc, BGE_MAC_STS);
6029 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6030 			if (!sc->bge_link) {
6031 				sc->bge_link++;
6032 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6033 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6034 					    BGE_MACMODE_TBI_SEND_CFGS);
6035 					DELAY(40);
6036 				}
6037 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6038 				if (bootverbose)
6039 					if_printf(sc->bge_ifp, "link UP\n");
6040 				if_link_state_change(sc->bge_ifp,
6041 				    LINK_STATE_UP);
6042 			}
6043 		} else if (sc->bge_link) {
6044 			sc->bge_link = 0;
6045 			if (bootverbose)
6046 				if_printf(sc->bge_ifp, "link DOWN\n");
6047 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6048 		}
6049 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6050 		/*
6051 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6052 		 * in status word always set. Workaround this bug by reading
6053 		 * PHY link status directly.
6054 		 */
6055 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6056 
6057 		if (link != sc->bge_link ||
6058 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6059 			mii = device_get_softc(sc->bge_miibus);
6060 			mii_pollstat(mii);
6061 			if (!sc->bge_link &&
6062 			    mii->mii_media_status & IFM_ACTIVE &&
6063 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6064 				sc->bge_link++;
6065 				if (bootverbose)
6066 					if_printf(sc->bge_ifp, "link UP\n");
6067 			} else if (sc->bge_link &&
6068 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6069 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6070 				sc->bge_link = 0;
6071 				if (bootverbose)
6072 					if_printf(sc->bge_ifp, "link DOWN\n");
6073 			}
6074 		}
6075 	} else {
6076 		/*
6077 		 * For controllers that call mii_tick, we have to poll
6078 		 * link status.
6079 		 */
6080 		mii = device_get_softc(sc->bge_miibus);
6081 		mii_pollstat(mii);
6082 		bge_miibus_statchg(sc->bge_dev);
6083 	}
6084 
6085 	/* Disable MAC attention when link is up. */
6086 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6087 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6088 	    BGE_MACSTAT_LINK_CHANGED);
6089 }
6090 
6091 static void
6092 bge_add_sysctls(struct bge_softc *sc)
6093 {
6094 	struct sysctl_ctx_list *ctx;
6095 	struct sysctl_oid_list *children;
6096 	char tn[32];
6097 	int unit;
6098 
6099 	ctx = device_get_sysctl_ctx(sc->bge_dev);
6100 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6101 
6102 #ifdef BGE_REGISTER_DEBUG
6103 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6104 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
6105 	    "Debug Information");
6106 
6107 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6108 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
6109 	    "MAC Register Read");
6110 
6111 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6112 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
6113 	    "APE Register Read");
6114 
6115 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6116 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
6117 	    "Memory Read");
6118 
6119 #endif
6120 
6121 	unit = device_get_unit(sc->bge_dev);
6122 	/*
6123 	 * A common design characteristic for many Broadcom client controllers
6124 	 * is that they only support a single outstanding DMA read operation
6125 	 * on the PCIe bus. This means that it will take twice as long to fetch
6126 	 * a TX frame that is split into header and payload buffers as it does
6127 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6128 	 * these controllers, coalescing buffers to reduce the number of memory
6129 	 * reads is effective way to get maximum performance(about 940Mbps).
6130 	 * Without collapsing TX buffers the maximum TCP bulk transfer
6131 	 * performance is about 850Mbps. However forcing coalescing mbufs
6132 	 * consumes a lot of CPU cycles, so leave it off by default.
6133 	 */
6134 	sc->bge_forced_collapse = 0;
6135 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
6136 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
6137 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6138 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
6139 	    "Number of fragmented TX buffers of a frame allowed before "
6140 	    "forced collapsing");
6141 
6142 	sc->bge_msi = 1;
6143 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
6144 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
6145 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6146 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
6147 
6148 	/*
6149 	 * It seems all Broadcom controllers have a bug that can generate UDP
6150 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
6151 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
6152 	 * Even though the probability of generating such UDP datagrams is
6153 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
6154 	 * into network so disable UDP checksum offloading by default.  Users
6155 	 * still override this behavior by setting a sysctl variable,
6156 	 * dev.bge.0.forced_udpcsum.
6157 	 */
6158 	sc->bge_forced_udpcsum = 0;
6159 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
6160 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
6161 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6162 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
6163 	    "Enable UDP checksum offloading even if controller can "
6164 	    "generate UDP checksum value 0");
6165 
6166 	if (BGE_IS_5705_PLUS(sc))
6167 		bge_add_sysctl_stats_regs(sc, ctx, children);
6168 	else
6169 		bge_add_sysctl_stats(sc, ctx, children);
6170 }
6171 
6172 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6173 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
6174 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
6175 	    desc)
6176 
6177 static void
6178 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6179     struct sysctl_oid_list *parent)
6180 {
6181 	struct sysctl_oid *tree;
6182 	struct sysctl_oid_list *children, *schildren;
6183 
6184 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6185 	    NULL, "BGE Statistics");
6186 	schildren = children = SYSCTL_CHILDREN(tree);
6187 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6188 	    children, COSFramesDroppedDueToFilters,
6189 	    "FramesDroppedDueToFilters");
6190 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6191 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6192 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6193 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6194 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6195 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
6196 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6197 	    children, ifInDiscards, "InputDiscards");
6198 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6199 	    children, ifInErrors, "InputErrors");
6200 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6201 	    children, nicRecvThresholdHit, "RecvThresholdHit");
6202 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6203 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
6204 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6205 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6206 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6207 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6208 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6209 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6210 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6211 	    children, nicRingStatusUpdate, "RingStatusUpdate");
6212 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6213 	    children, nicInterrupts, "Interrupts");
6214 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6215 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
6216 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6217 	    children, nicSendThresholdHit, "SendThresholdHit");
6218 
6219 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
6220 	    NULL, "BGE RX Statistics");
6221 	children = SYSCTL_CHILDREN(tree);
6222 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6223 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
6224 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6225 	    children, rxstats.etherStatsFragments, "Fragments");
6226 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6227 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6228 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6229 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6230 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6231 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6232 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6233 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6234 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6235 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6236 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6237 	    children, rxstats.xoffPauseFramesReceived,
6238 	    "xoffPauseFramesReceived");
6239 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6240 	    children, rxstats.macControlFramesReceived,
6241 	    "ControlFramesReceived");
6242 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6243 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
6244 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6245 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6246 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6247 	    children, rxstats.etherStatsJabbers, "Jabbers");
6248 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6249 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6250 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6251 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
6252 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6253 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
6254 
6255 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
6256 	    NULL, "BGE TX Statistics");
6257 	children = SYSCTL_CHILDREN(tree);
6258 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6259 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
6260 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6261 	    children, txstats.etherStatsCollisions, "Collisions");
6262 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6263 	    children, txstats.outXonSent, "XonSent");
6264 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6265 	    children, txstats.outXoffSent, "XoffSent");
6266 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6267 	    children, txstats.flowControlDone, "flowControlDone");
6268 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6269 	    children, txstats.dot3StatsInternalMacTransmitErrors,
6270 	    "InternalMacTransmitErrors");
6271 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6272 	    children, txstats.dot3StatsSingleCollisionFrames,
6273 	    "SingleCollisionFrames");
6274 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6275 	    children, txstats.dot3StatsMultipleCollisionFrames,
6276 	    "MultipleCollisionFrames");
6277 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6278 	    children, txstats.dot3StatsDeferredTransmissions,
6279 	    "DeferredTransmissions");
6280 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6281 	    children, txstats.dot3StatsExcessiveCollisions,
6282 	    "ExcessiveCollisions");
6283 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6284 	    children, txstats.dot3StatsLateCollisions,
6285 	    "LateCollisions");
6286 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6287 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6288 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6289 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6290 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6291 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6292 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6293 	    children, txstats.dot3StatsCarrierSenseErrors,
6294 	    "CarrierSenseErrors");
6295 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6296 	    children, txstats.ifOutDiscards, "Discards");
6297 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6298 	    children, txstats.ifOutErrors, "Errors");
6299 }
6300 
6301 #undef BGE_SYSCTL_STAT
6302 
6303 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
6304 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6305 
6306 static void
6307 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6308     struct sysctl_oid_list *parent)
6309 {
6310 	struct sysctl_oid *tree;
6311 	struct sysctl_oid_list *child, *schild;
6312 	struct bge_mac_stats *stats;
6313 
6314 	stats = &sc->bge_mac_stats;
6315 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
6316 	    NULL, "BGE Statistics");
6317 	schild = child = SYSCTL_CHILDREN(tree);
6318 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6319 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6320 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6321 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6322 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6323 	    &stats->DmaWriteHighPriQueueFull,
6324 	    "NIC DMA Write High Priority Queue Full");
6325 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6326 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6327 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6328 	    &stats->InputDiscards, "Discarded Input Frames");
6329 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6330 	    &stats->InputErrors, "Input Errors");
6331 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6332 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6333 
6334 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
6335 	    NULL, "BGE RX Statistics");
6336 	child = SYSCTL_CHILDREN(tree);
6337 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6338 	    &stats->ifHCInOctets, "Inbound Octets");
6339 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6340 	    &stats->etherStatsFragments, "Fragments");
6341 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6342 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6343 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6344 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6345 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6346 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6347 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6348 	    &stats->dot3StatsFCSErrors, "FCS Errors");
6349 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6350 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
6351 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6352 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
6353 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6354 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6355 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6356 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
6357 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6358 	    &stats->xoffStateEntered, "XOFF State Entered");
6359 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6360 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
6361 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6362 	    &stats->etherStatsJabbers, "Jabbers");
6363 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6364 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
6365 
6366 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
6367 	    NULL, "BGE TX Statistics");
6368 	child = SYSCTL_CHILDREN(tree);
6369 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6370 	    &stats->ifHCOutOctets, "Outbound Octets");
6371 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6372 	    &stats->etherStatsCollisions, "TX Collisions");
6373 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6374 	    &stats->outXonSent, "XON Sent");
6375 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6376 	    &stats->outXoffSent, "XOFF Sent");
6377 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6378 	    &stats->dot3StatsInternalMacTransmitErrors,
6379 	    "Internal MAC TX Errors");
6380 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6381 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6382 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6383 	    &stats->dot3StatsMultipleCollisionFrames,
6384 	    "Multiple Collision Frames");
6385 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6386 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6387 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6388 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6389 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6390 	    &stats->dot3StatsLateCollisions, "Late Collisions");
6391 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6392 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6393 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6394 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6395 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6396 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6397 }
6398 
6399 #undef	BGE_SYSCTL_STAT_ADD64
6400 
6401 static int
6402 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6403 {
6404 	struct bge_softc *sc;
6405 	uint32_t result;
6406 	int offset;
6407 
6408 	sc = (struct bge_softc *)arg1;
6409 	offset = arg2;
6410 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6411 	    offsetof(bge_hostaddr, bge_addr_lo));
6412 	return (sysctl_handle_int(oidp, &result, 0, req));
6413 }
6414 
6415 #ifdef BGE_REGISTER_DEBUG
6416 static int
6417 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6418 {
6419 	struct bge_softc *sc;
6420 	uint16_t *sbdata;
6421 	int error, result, sbsz;
6422 	int i, j;
6423 
6424 	result = -1;
6425 	error = sysctl_handle_int(oidp, &result, 0, req);
6426 	if (error || (req->newptr == NULL))
6427 		return (error);
6428 
6429 	if (result == 1) {
6430 		sc = (struct bge_softc *)arg1;
6431 
6432 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6433 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6434 			sbsz = BGE_STATUS_BLK_SZ;
6435 		else
6436 			sbsz = 32;
6437 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6438 		printf("Status Block:\n");
6439 		BGE_LOCK(sc);
6440 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6441 		    sc->bge_cdata.bge_status_map,
6442 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6443 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6444 			printf("%06x:", i);
6445 			for (j = 0; j < 8; j++)
6446 				printf(" %04x", sbdata[i++]);
6447 			printf("\n");
6448 		}
6449 
6450 		printf("Registers:\n");
6451 		for (i = 0x800; i < 0xA00; ) {
6452 			printf("%06x:", i);
6453 			for (j = 0; j < 8; j++) {
6454 				printf(" %08x", CSR_READ_4(sc, i));
6455 				i += 4;
6456 			}
6457 			printf("\n");
6458 		}
6459 		BGE_UNLOCK(sc);
6460 
6461 		printf("Hardware Flags:\n");
6462 		if (BGE_IS_5717_PLUS(sc))
6463 			printf(" - 5717 Plus\n");
6464 		if (BGE_IS_5755_PLUS(sc))
6465 			printf(" - 5755 Plus\n");
6466 		if (BGE_IS_575X_PLUS(sc))
6467 			printf(" - 575X Plus\n");
6468 		if (BGE_IS_5705_PLUS(sc))
6469 			printf(" - 5705 Plus\n");
6470 		if (BGE_IS_5714_FAMILY(sc))
6471 			printf(" - 5714 Family\n");
6472 		if (BGE_IS_5700_FAMILY(sc))
6473 			printf(" - 5700 Family\n");
6474 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6475 			printf(" - Supports Jumbo Frames\n");
6476 		if (sc->bge_flags & BGE_FLAG_PCIX)
6477 			printf(" - PCI-X Bus\n");
6478 		if (sc->bge_flags & BGE_FLAG_PCIE)
6479 			printf(" - PCI Express Bus\n");
6480 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6481 			printf(" - No 3 LEDs\n");
6482 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6483 			printf(" - RX Alignment Bug\n");
6484 	}
6485 
6486 	return (error);
6487 }
6488 
6489 static int
6490 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6491 {
6492 	struct bge_softc *sc;
6493 	int error;
6494 	uint16_t result;
6495 	uint32_t val;
6496 
6497 	result = -1;
6498 	error = sysctl_handle_int(oidp, &result, 0, req);
6499 	if (error || (req->newptr == NULL))
6500 		return (error);
6501 
6502 	if (result < 0x8000) {
6503 		sc = (struct bge_softc *)arg1;
6504 		val = CSR_READ_4(sc, result);
6505 		printf("reg 0x%06X = 0x%08X\n", result, val);
6506 	}
6507 
6508 	return (error);
6509 }
6510 
6511 static int
6512 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6513 {
6514 	struct bge_softc *sc;
6515 	int error;
6516 	uint16_t result;
6517 	uint32_t val;
6518 
6519 	result = -1;
6520 	error = sysctl_handle_int(oidp, &result, 0, req);
6521 	if (error || (req->newptr == NULL))
6522 		return (error);
6523 
6524 	if (result < 0x8000) {
6525 		sc = (struct bge_softc *)arg1;
6526 		val = APE_READ_4(sc, result);
6527 		printf("reg 0x%06X = 0x%08X\n", result, val);
6528 	}
6529 
6530 	return (error);
6531 }
6532 
6533 static int
6534 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6535 {
6536 	struct bge_softc *sc;
6537 	int error;
6538 	uint16_t result;
6539 	uint32_t val;
6540 
6541 	result = -1;
6542 	error = sysctl_handle_int(oidp, &result, 0, req);
6543 	if (error || (req->newptr == NULL))
6544 		return (error);
6545 
6546 	if (result < 0x8000) {
6547 		sc = (struct bge_softc *)arg1;
6548 		val = bge_readmem_ind(sc, result);
6549 		printf("mem 0x%06X = 0x%08X\n", result, val);
6550 	}
6551 
6552 	return (error);
6553 }
6554 #endif
6555 
6556 static int
6557 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6558 {
6559 
6560 	if (sc->bge_flags & BGE_FLAG_EADDR)
6561 		return (1);
6562 
6563 #ifdef __sparc64__
6564 	OF_getetheraddr(sc->bge_dev, ether_addr);
6565 	return (0);
6566 #endif
6567 	return (1);
6568 }
6569 
6570 static int
6571 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6572 {
6573 	uint32_t mac_addr;
6574 
6575 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6576 	if ((mac_addr >> 16) == 0x484b) {
6577 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6578 		ether_addr[1] = (uint8_t)mac_addr;
6579 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6580 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6581 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6582 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6583 		ether_addr[5] = (uint8_t)mac_addr;
6584 		return (0);
6585 	}
6586 	return (1);
6587 }
6588 
6589 static int
6590 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6591 {
6592 	int mac_offset = BGE_EE_MAC_OFFSET;
6593 
6594 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6595 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6596 
6597 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6598 	    ETHER_ADDR_LEN));
6599 }
6600 
6601 static int
6602 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6603 {
6604 
6605 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6606 		return (1);
6607 
6608 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6609 	   ETHER_ADDR_LEN));
6610 }
6611 
6612 static int
6613 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6614 {
6615 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6616 		/* NOTE: Order is critical */
6617 		bge_get_eaddr_fw,
6618 		bge_get_eaddr_mem,
6619 		bge_get_eaddr_nvram,
6620 		bge_get_eaddr_eeprom,
6621 		NULL
6622 	};
6623 	const bge_eaddr_fcn_t *func;
6624 
6625 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6626 		if ((*func)(sc, eaddr) == 0)
6627 			break;
6628 	}
6629 	return (*func == NULL ? ENXIO : 0);
6630 }
6631