xref: /freebsd/sys/dev/bge/if_bge.c (revision 984485a02eb3e63b4170dd911b72de38b35b2289)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
218 
219 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
220 
221 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
222 
223 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
224 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
225 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
226 
227 	{ 0, 0 }
228 };
229 
230 static const struct bge_vendor {
231 	uint16_t	v_id;
232 	const char	*v_name;
233 } bge_vendors[] = {
234 	{ ALTEON_VENDORID,	"Alteon" },
235 	{ ALTIMA_VENDORID,	"Altima" },
236 	{ APPLE_VENDORID,	"Apple" },
237 	{ BCOM_VENDORID,	"Broadcom" },
238 	{ SK_VENDORID,		"SysKonnect" },
239 	{ TC_VENDORID,		"3Com" },
240 	{ FJTSU_VENDORID,	"Fujitsu" },
241 
242 	{ 0, NULL }
243 };
244 
245 static const struct bge_revision {
246 	uint32_t	br_chipid;
247 	const char	*br_name;
248 } bge_revisions[] = {
249 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
250 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
251 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
252 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
253 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
254 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
255 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
256 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
257 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
258 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
259 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
260 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
261 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
262 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
263 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
264 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
265 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
266 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
267 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
268 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
269 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
270 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
271 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
272 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
273 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
274 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
275 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
276 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
277 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
278 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
279 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
280 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
281 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
282 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
283 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
284 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
285 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
286 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
287 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
288 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
289 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
290 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
291 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
292 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
293 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
294 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
295 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
296 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
297 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
298 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
299 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
300 	/* 5754 and 5787 share the same ASIC ID */
301 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
302 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
303 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
304 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
305 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
306 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
307 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
308 
309 	{ 0, NULL }
310 };
311 
312 /*
313  * Some defaults for major revisions, so that newer steppings
314  * that we don't know about have a shot at working.
315  */
316 static const struct bge_revision bge_majorrevs[] = {
317 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
318 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
319 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
320 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
321 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
322 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
323 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
324 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
325 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
326 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
327 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
328 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
329 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
330 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
331 	/* 5754 and 5787 share the same ASIC ID */
332 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
333 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
334 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
335 
336 	{ 0, NULL }
337 };
338 
339 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
340 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
341 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
342 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
343 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
344 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
345 
346 const struct bge_revision * bge_lookup_rev(uint32_t);
347 const struct bge_vendor * bge_lookup_vendor(uint16_t);
348 
349 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
350 
351 static int bge_probe(device_t);
352 static int bge_attach(device_t);
353 static int bge_detach(device_t);
354 static int bge_suspend(device_t);
355 static int bge_resume(device_t);
356 static void bge_release_resources(struct bge_softc *);
357 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
358 static int bge_dma_alloc(device_t);
359 static void bge_dma_free(struct bge_softc *);
360 
361 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
362 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
363 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
364 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
365 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
366 
367 static void bge_txeof(struct bge_softc *, uint16_t);
368 static int bge_rxeof(struct bge_softc *, uint16_t, int);
369 
370 static void bge_asf_driver_up (struct bge_softc *);
371 static void bge_tick(void *);
372 static void bge_stats_update(struct bge_softc *);
373 static void bge_stats_update_regs(struct bge_softc *);
374 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
375     uint16_t *);
376 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
377 
378 static void bge_intr(void *);
379 static int bge_msi_intr(void *);
380 static void bge_intr_task(void *, int);
381 static void bge_start_locked(struct ifnet *);
382 static void bge_start(struct ifnet *);
383 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
384 static void bge_init_locked(struct bge_softc *);
385 static void bge_init(void *);
386 static void bge_stop(struct bge_softc *);
387 static void bge_watchdog(struct bge_softc *);
388 static int bge_shutdown(device_t);
389 static int bge_ifmedia_upd_locked(struct ifnet *);
390 static int bge_ifmedia_upd(struct ifnet *);
391 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
392 
393 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
394 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
395 
396 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
397 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
398 
399 static void bge_setpromisc(struct bge_softc *);
400 static void bge_setmulti(struct bge_softc *);
401 static void bge_setvlan(struct bge_softc *);
402 
403 static int bge_newbuf_std(struct bge_softc *, int);
404 static int bge_newbuf_jumbo(struct bge_softc *, int);
405 static int bge_init_rx_ring_std(struct bge_softc *);
406 static void bge_free_rx_ring_std(struct bge_softc *);
407 static int bge_init_rx_ring_jumbo(struct bge_softc *);
408 static void bge_free_rx_ring_jumbo(struct bge_softc *);
409 static void bge_free_tx_ring(struct bge_softc *);
410 static int bge_init_tx_ring(struct bge_softc *);
411 
412 static int bge_chipinit(struct bge_softc *);
413 static int bge_blockinit(struct bge_softc *);
414 
415 static int bge_has_eaddr(struct bge_softc *);
416 static uint32_t bge_readmem_ind(struct bge_softc *, int);
417 static void bge_writemem_ind(struct bge_softc *, int, int);
418 static void bge_writembx(struct bge_softc *, int, int);
419 #ifdef notdef
420 static uint32_t bge_readreg_ind(struct bge_softc *, int);
421 #endif
422 static void bge_writemem_direct(struct bge_softc *, int, int);
423 static void bge_writereg_ind(struct bge_softc *, int, int);
424 static void bge_set_max_readrq(struct bge_softc *);
425 
426 static int bge_miibus_readreg(device_t, int, int);
427 static int bge_miibus_writereg(device_t, int, int, int);
428 static void bge_miibus_statchg(device_t);
429 #ifdef DEVICE_POLLING
430 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
431 #endif
432 
433 #define	BGE_RESET_START 1
434 #define	BGE_RESET_STOP  2
435 static void bge_sig_post_reset(struct bge_softc *, int);
436 static void bge_sig_legacy(struct bge_softc *, int);
437 static void bge_sig_pre_reset(struct bge_softc *, int);
438 static int bge_reset(struct bge_softc *);
439 static void bge_link_upd(struct bge_softc *);
440 
441 /*
442  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
443  * leak information to untrusted users.  It is also known to cause alignment
444  * traps on certain architectures.
445  */
446 #ifdef BGE_REGISTER_DEBUG
447 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
448 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
449 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
450 #endif
451 static void bge_add_sysctls(struct bge_softc *);
452 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
453 
454 static device_method_t bge_methods[] = {
455 	/* Device interface */
456 	DEVMETHOD(device_probe,		bge_probe),
457 	DEVMETHOD(device_attach,	bge_attach),
458 	DEVMETHOD(device_detach,	bge_detach),
459 	DEVMETHOD(device_shutdown,	bge_shutdown),
460 	DEVMETHOD(device_suspend,	bge_suspend),
461 	DEVMETHOD(device_resume,	bge_resume),
462 
463 	/* bus interface */
464 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
465 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
466 
467 	/* MII interface */
468 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
469 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
470 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
471 
472 	{ 0, 0 }
473 };
474 
475 static driver_t bge_driver = {
476 	"bge",
477 	bge_methods,
478 	sizeof(struct bge_softc)
479 };
480 
481 static devclass_t bge_devclass;
482 
483 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
484 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
485 
486 static int bge_allow_asf = 1;
487 
488 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
489 
490 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
491 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
492 	"Allow ASF mode if available");
493 
494 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
495 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
496 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
497 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
498 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
499 
500 static int
501 bge_has_eaddr(struct bge_softc *sc)
502 {
503 #ifdef __sparc64__
504 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
505 	device_t dev;
506 	uint32_t subvendor;
507 
508 	dev = sc->bge_dev;
509 
510 	/*
511 	 * The on-board BGEs found in sun4u machines aren't fitted with
512 	 * an EEPROM which means that we have to obtain the MAC address
513 	 * via OFW and that some tests will always fail.  We distinguish
514 	 * such BGEs by the subvendor ID, which also has to be obtained
515 	 * from OFW instead of the PCI configuration space as the latter
516 	 * indicates Broadcom as the subvendor of the netboot interface.
517 	 * For early Blade 1500 and 2500 we even have to check the OFW
518 	 * device path as the subvendor ID always defaults to Broadcom
519 	 * there.
520 	 */
521 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
522 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
523 	    subvendor == SUN_VENDORID)
524 		return (0);
525 	memset(buf, 0, sizeof(buf));
526 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
527 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
528 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
529 			return (0);
530 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
531 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
532 			return (0);
533 	}
534 #endif
535 	return (1);
536 }
537 
538 static uint32_t
539 bge_readmem_ind(struct bge_softc *sc, int off)
540 {
541 	device_t dev;
542 	uint32_t val;
543 
544 	dev = sc->bge_dev;
545 
546 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
547 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
548 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
549 	return (val);
550 }
551 
552 static void
553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
554 {
555 	device_t dev;
556 
557 	dev = sc->bge_dev;
558 
559 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
560 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
561 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
562 }
563 
564 /*
565  * PCI Express only
566  */
567 static void
568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 	device_t dev;
571 	uint16_t val;
572 
573 	dev = sc->bge_dev;
574 
575 	val = pci_read_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
576 	if ((val & PCIM_EXP_CTL_MAX_READ_REQUEST) !=
577 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
578 		if (bootverbose)
579 			device_printf(dev, "adjust device control 0x%04x ",
580 			    val);
581 		val &= ~PCIM_EXP_CTL_MAX_READ_REQUEST;
582 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
583 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
584 		    val, 2);
585 		if (bootverbose)
586 			printf("-> 0x%04x\n", val);
587 	}
588 }
589 
590 #ifdef notdef
591 static uint32_t
592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 	device_t dev;
595 
596 	dev = sc->bge_dev;
597 
598 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
599 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
600 }
601 #endif
602 
603 static void
604 bge_writereg_ind(struct bge_softc *sc, int off, int val)
605 {
606 	device_t dev;
607 
608 	dev = sc->bge_dev;
609 
610 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
611 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
612 }
613 
614 static void
615 bge_writemem_direct(struct bge_softc *sc, int off, int val)
616 {
617 	CSR_WRITE_4(sc, off, val);
618 }
619 
620 static void
621 bge_writembx(struct bge_softc *sc, int off, int val)
622 {
623 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
624 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
625 
626 	CSR_WRITE_4(sc, off, val);
627 }
628 
629 /*
630  * Map a single buffer address.
631  */
632 
633 static void
634 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
635 {
636 	struct bge_dmamap_arg *ctx;
637 
638 	if (error)
639 		return;
640 
641 	ctx = arg;
642 
643 	if (nseg > ctx->bge_maxsegs) {
644 		ctx->bge_maxsegs = 0;
645 		return;
646 	}
647 
648 	ctx->bge_busaddr = segs->ds_addr;
649 }
650 
651 static uint8_t
652 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
653 {
654 	uint32_t access, byte = 0;
655 	int i;
656 
657 	/* Lock. */
658 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
659 	for (i = 0; i < 8000; i++) {
660 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
661 			break;
662 		DELAY(20);
663 	}
664 	if (i == 8000)
665 		return (1);
666 
667 	/* Enable access. */
668 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
669 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
670 
671 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
672 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
673 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
674 		DELAY(10);
675 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
676 			DELAY(10);
677 			break;
678 		}
679 	}
680 
681 	if (i == BGE_TIMEOUT * 10) {
682 		if_printf(sc->bge_ifp, "nvram read timed out\n");
683 		return (1);
684 	}
685 
686 	/* Get result. */
687 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
688 
689 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
690 
691 	/* Disable access. */
692 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
693 
694 	/* Unlock. */
695 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
696 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
697 
698 	return (0);
699 }
700 
701 /*
702  * Read a sequence of bytes from NVRAM.
703  */
704 static int
705 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
706 {
707 	int err = 0, i;
708 	uint8_t byte = 0;
709 
710 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
711 		return (1);
712 
713 	for (i = 0; i < cnt; i++) {
714 		err = bge_nvram_getbyte(sc, off + i, &byte);
715 		if (err)
716 			break;
717 		*(dest + i) = byte;
718 	}
719 
720 	return (err ? 1 : 0);
721 }
722 
723 /*
724  * Read a byte of data stored in the EEPROM at address 'addr.' The
725  * BCM570x supports both the traditional bitbang interface and an
726  * auto access interface for reading the EEPROM. We use the auto
727  * access method.
728  */
729 static uint8_t
730 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
731 {
732 	int i;
733 	uint32_t byte = 0;
734 
735 	/*
736 	 * Enable use of auto EEPROM access so we can avoid
737 	 * having to use the bitbang method.
738 	 */
739 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
740 
741 	/* Reset the EEPROM, load the clock period. */
742 	CSR_WRITE_4(sc, BGE_EE_ADDR,
743 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
744 	DELAY(20);
745 
746 	/* Issue the read EEPROM command. */
747 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
748 
749 	/* Wait for completion */
750 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
751 		DELAY(10);
752 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
753 			break;
754 	}
755 
756 	if (i == BGE_TIMEOUT * 10) {
757 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
758 		return (1);
759 	}
760 
761 	/* Get result. */
762 	byte = CSR_READ_4(sc, BGE_EE_DATA);
763 
764 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
765 
766 	return (0);
767 }
768 
769 /*
770  * Read a sequence of bytes from the EEPROM.
771  */
772 static int
773 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
774 {
775 	int i, error = 0;
776 	uint8_t byte = 0;
777 
778 	for (i = 0; i < cnt; i++) {
779 		error = bge_eeprom_getbyte(sc, off + i, &byte);
780 		if (error)
781 			break;
782 		*(dest + i) = byte;
783 	}
784 
785 	return (error ? 1 : 0);
786 }
787 
788 static int
789 bge_miibus_readreg(device_t dev, int phy, int reg)
790 {
791 	struct bge_softc *sc;
792 	uint32_t val, autopoll;
793 	int i;
794 
795 	sc = device_get_softc(dev);
796 
797 	/*
798 	 * Broadcom's own driver always assumes the internal
799 	 * PHY is at GMII address 1. On some chips, the PHY responds
800 	 * to accesses at all addresses, which could cause us to
801 	 * bogusly attach the PHY 32 times at probe type. Always
802 	 * restricting the lookup to address 1 is simpler than
803 	 * trying to figure out which chips revisions should be
804 	 * special-cased.
805 	 */
806 	if (phy != 1)
807 		return (0);
808 
809 	/* Reading with autopolling on may trigger PCI errors */
810 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
811 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
812 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
813 		DELAY(40);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	for (i = 0; i < BGE_TIMEOUT; i++) {
820 		DELAY(10);
821 		val = CSR_READ_4(sc, BGE_MI_COMM);
822 		if (!(val & BGE_MICOMM_BUSY))
823 			break;
824 	}
825 
826 	if (i == BGE_TIMEOUT) {
827 		device_printf(sc->bge_dev,
828 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
829 		    phy, reg, val);
830 		val = 0;
831 		goto done;
832 	}
833 
834 	DELAY(5);
835 	val = CSR_READ_4(sc, BGE_MI_COMM);
836 
837 done:
838 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
839 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
840 		DELAY(40);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	uint32_t autopoll;
854 	int i;
855 
856 	sc = device_get_softc(dev);
857 
858 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
859 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
860 		return(0);
861 
862 	/* Reading with autopolling on may trigger PCI errors */
863 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
864 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
865 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
866 		DELAY(40);
867 	}
868 
869 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
870 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
871 
872 	for (i = 0; i < BGE_TIMEOUT; i++) {
873 		DELAY(10);
874 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
875 			DELAY(5);
876 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
877 			break;
878 		}
879 	}
880 
881 	if (i == BGE_TIMEOUT) {
882 		device_printf(sc->bge_dev,
883 		    "PHY write timed out (phy %d, reg %d, val %d)\n",
884 		    phy, reg, val);
885 		return (0);
886 	}
887 
888 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
889 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
890 		DELAY(40);
891 	}
892 
893 	return (0);
894 }
895 
896 static void
897 bge_miibus_statchg(device_t dev)
898 {
899 	struct bge_softc *sc;
900 	struct mii_data *mii;
901 	sc = device_get_softc(dev);
902 	mii = device_get_softc(sc->bge_miibus);
903 
904 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
905 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
906 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
907 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
908 	else
909 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
910 
911 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
912 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
913 	else
914 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
915 }
916 
917 /*
918  * Intialize a standard receive ring descriptor.
919  */
920 static int
921 bge_newbuf_std(struct bge_softc *sc, int i)
922 {
923 	struct mbuf *m;
924 	struct bge_rx_bd *r;
925 	bus_dma_segment_t segs[1];
926 	bus_dmamap_t map;
927 	int error, nsegs;
928 
929 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
930 	if (m == NULL)
931 		return (ENOBUFS);
932 	m->m_len = m->m_pkthdr.len = MCLBYTES;
933 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
934 		m_adj(m, ETHER_ALIGN);
935 
936 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
937 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
938 	if (error != 0) {
939 		m_freem(m);
940 		return (error);
941 	}
942 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
943 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
944 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
945 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
946 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
947 	}
948 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
949 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
950 	sc->bge_cdata.bge_rx_std_sparemap = map;
951 	sc->bge_cdata.bge_rx_std_chain[i] = m;
952 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
953 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
954 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
955 	r->bge_flags = BGE_RXBDFLAG_END;
956 	r->bge_len = segs[0].ds_len;
957 	r->bge_idx = i;
958 
959 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
960 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
961 
962 	return (0);
963 }
964 
965 /*
966  * Initialize a jumbo receive ring descriptor. This allocates
967  * a jumbo buffer from the pool managed internally by the driver.
968  */
969 static int
970 bge_newbuf_jumbo(struct bge_softc *sc, int i)
971 {
972 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
973 	bus_dmamap_t map;
974 	struct bge_extrx_bd *r;
975 	struct mbuf *m;
976 	int error, nsegs;
977 
978 	MGETHDR(m, M_DONTWAIT, MT_DATA);
979 	if (m == NULL)
980 		return (ENOBUFS);
981 
982 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
983 	if (!(m->m_flags & M_EXT)) {
984 		m_freem(m);
985 		return (ENOBUFS);
986 	}
987 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
988 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
989 		m_adj(m, ETHER_ALIGN);
990 
991 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
992 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
993 	if (error != 0) {
994 		m_freem(m);
995 		return (error);
996 	}
997 
998 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] == NULL) {
999 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1000 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1001 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1002 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1003 	}
1004 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1005 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1006 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1007 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1008 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1009 	/*
1010 	 * Fill in the extended RX buffer descriptor.
1011 	 */
1012 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1013 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1014 	r->bge_idx = i;
1015 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1016 	switch (nsegs) {
1017 	case 4:
1018 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1019 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1020 		r->bge_len3 = segs[3].ds_len;
1021 	case 3:
1022 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1023 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1024 		r->bge_len2 = segs[2].ds_len;
1025 	case 2:
1026 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1027 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1028 		r->bge_len1 = segs[1].ds_len;
1029 	case 1:
1030 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1031 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1032 		r->bge_len0 = segs[0].ds_len;
1033 		break;
1034 	default:
1035 		panic("%s: %d segments\n", __func__, nsegs);
1036 	}
1037 
1038 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1039 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1046  * that's 1MB or memory, which is a lot. For now, we fill only the first
1047  * 256 ring entries and hope that our CPU is fast enough to keep up with
1048  * the NIC.
1049  */
1050 static int
1051 bge_init_rx_ring_std(struct bge_softc *sc)
1052 {
1053 	int error, i;
1054 
1055 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1056 	sc->bge_std = 0;
1057 	for (i = 0; i < BGE_SSLOTS; i++) {
1058 		if ((error = bge_newbuf_std(sc, i)) != 0)
1059 			return (error);
1060 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1061 	};
1062 
1063 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1064 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1065 
1066 	sc->bge_std = i - 1;
1067 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1068 
1069 	return (0);
1070 }
1071 
1072 static void
1073 bge_free_rx_ring_std(struct bge_softc *sc)
1074 {
1075 	int i;
1076 
1077 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1078 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1079 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1080 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1081 			    BUS_DMASYNC_POSTREAD);
1082 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1083 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1084 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1085 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1086 		}
1087 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1088 		    sizeof(struct bge_rx_bd));
1089 	}
1090 }
1091 
1092 static int
1093 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1094 {
1095 	struct bge_rcb *rcb;
1096 	int error, i;
1097 
1098 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1099 	sc->bge_jumbo = 0;
1100 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1101 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1102 			return (error);
1103 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1104 	};
1105 
1106 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1107 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1108 
1109 	sc->bge_jumbo = i - 1;
1110 
1111 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1112 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1113 				    BGE_RCB_FLAG_USE_EXT_RX_BD);
1114 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1115 
1116 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1117 
1118 	return (0);
1119 }
1120 
1121 static void
1122 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1127 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1128 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1129 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1130 			    BUS_DMASYNC_POSTREAD);
1131 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1132 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1133 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1134 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1135 		}
1136 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1137 		    sizeof(struct bge_extrx_bd));
1138 	}
1139 }
1140 
1141 static void
1142 bge_free_tx_ring(struct bge_softc *sc)
1143 {
1144 	int i;
1145 
1146 	if (sc->bge_ldata.bge_tx_ring == NULL)
1147 		return;
1148 
1149 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1150 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1151 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1152 			    sc->bge_cdata.bge_tx_dmamap[i],
1153 			    BUS_DMASYNC_POSTWRITE);
1154 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1155 			    sc->bge_cdata.bge_tx_dmamap[i]);
1156 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1157 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1158 		}
1159 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1160 		    sizeof(struct bge_tx_bd));
1161 	}
1162 }
1163 
1164 static int
1165 bge_init_tx_ring(struct bge_softc *sc)
1166 {
1167 	sc->bge_txcnt = 0;
1168 	sc->bge_tx_saved_considx = 0;
1169 
1170 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1171 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1172 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1173 
1174 	/* Initialize transmit producer index for host-memory send ring. */
1175 	sc->bge_tx_prodidx = 0;
1176 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1177 
1178 	/* 5700 b2 errata */
1179 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1180 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1181 
1182 	/* NIC-memory send ring not used; initialize to zero. */
1183 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1184 	/* 5700 b2 errata */
1185 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1186 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1187 
1188 	return (0);
1189 }
1190 
1191 static void
1192 bge_setpromisc(struct bge_softc *sc)
1193 {
1194 	struct ifnet *ifp;
1195 
1196 	BGE_LOCK_ASSERT(sc);
1197 
1198 	ifp = sc->bge_ifp;
1199 
1200 	/* Enable or disable promiscuous mode as needed. */
1201 	if (ifp->if_flags & IFF_PROMISC)
1202 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1203 	else
1204 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1205 }
1206 
1207 static void
1208 bge_setmulti(struct bge_softc *sc)
1209 {
1210 	struct ifnet *ifp;
1211 	struct ifmultiaddr *ifma;
1212 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1213 	int h, i;
1214 
1215 	BGE_LOCK_ASSERT(sc);
1216 
1217 	ifp = sc->bge_ifp;
1218 
1219 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1220 		for (i = 0; i < 4; i++)
1221 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1222 		return;
1223 	}
1224 
1225 	/* First, zot all the existing filters. */
1226 	for (i = 0; i < 4; i++)
1227 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1228 
1229 	/* Now program new ones. */
1230 	if_maddr_rlock(ifp);
1231 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1232 		if (ifma->ifma_addr->sa_family != AF_LINK)
1233 			continue;
1234 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1235 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1236 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1237 	}
1238 	if_maddr_runlock(ifp);
1239 
1240 	for (i = 0; i < 4; i++)
1241 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1242 }
1243 
1244 static void
1245 bge_setvlan(struct bge_softc *sc)
1246 {
1247 	struct ifnet *ifp;
1248 
1249 	BGE_LOCK_ASSERT(sc);
1250 
1251 	ifp = sc->bge_ifp;
1252 
1253 	/* Enable or disable VLAN tag stripping as needed. */
1254 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1255 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1256 	else
1257 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1258 }
1259 
1260 static void
1261 bge_sig_pre_reset(sc, type)
1262 	struct bge_softc *sc;
1263 	int type;
1264 {
1265 	/*
1266 	 * Some chips don't like this so only do this if ASF is enabled
1267 	 */
1268 	if (sc->bge_asf_mode)
1269 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1270 
1271 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1272 		switch (type) {
1273 		case BGE_RESET_START:
1274 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1275 			break;
1276 		case BGE_RESET_STOP:
1277 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1278 			break;
1279 		}
1280 	}
1281 }
1282 
1283 static void
1284 bge_sig_post_reset(sc, type)
1285 	struct bge_softc *sc;
1286 	int type;
1287 {
1288 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1289 		switch (type) {
1290 		case BGE_RESET_START:
1291 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1292 			/* START DONE */
1293 			break;
1294 		case BGE_RESET_STOP:
1295 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1296 			break;
1297 		}
1298 	}
1299 }
1300 
1301 static void
1302 bge_sig_legacy(sc, type)
1303 	struct bge_softc *sc;
1304 	int type;
1305 {
1306 	if (sc->bge_asf_mode) {
1307 		switch (type) {
1308 		case BGE_RESET_START:
1309 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1310 			break;
1311 		case BGE_RESET_STOP:
1312 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1313 			break;
1314 		}
1315 	}
1316 }
1317 
1318 void bge_stop_fw(struct bge_softc *);
1319 void
1320 bge_stop_fw(sc)
1321 	struct bge_softc *sc;
1322 {
1323 	int i;
1324 
1325 	if (sc->bge_asf_mode) {
1326 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1327 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1328 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1329 
1330 		for (i = 0; i < 100; i++ ) {
1331 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1332 				break;
1333 			DELAY(10);
1334 		}
1335 	}
1336 }
1337 
1338 /*
1339  * Do endian, PCI and DMA initialization.
1340  */
1341 static int
1342 bge_chipinit(struct bge_softc *sc)
1343 {
1344 	uint32_t dma_rw_ctl;
1345 	int i;
1346 
1347 	/* Set endianness before we access any non-PCI registers. */
1348 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1349 
1350 	/* Clear the MAC control register */
1351 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1352 
1353 	/*
1354 	 * Clear the MAC statistics block in the NIC's
1355 	 * internal memory.
1356 	 */
1357 	for (i = BGE_STATS_BLOCK;
1358 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1359 		BGE_MEMWIN_WRITE(sc, i, 0);
1360 
1361 	for (i = BGE_STATUS_BLOCK;
1362 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1363 		BGE_MEMWIN_WRITE(sc, i, 0);
1364 
1365 	/*
1366 	 * Set up the PCI DMA control register.
1367 	 */
1368 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1369 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1370 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1371 		/* Read watermark not used, 128 bytes for write. */
1372 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1373 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1374 		if (BGE_IS_5714_FAMILY(sc)) {
1375 			/* 256 bytes for read and write. */
1376 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1377 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1378 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1379 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1380 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1381 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1382 			/* 1536 bytes for read, 384 bytes for write. */
1383 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1384 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1385 		} else {
1386 			/* 384 bytes for read and write. */
1387 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1388 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1389 			    0x0F;
1390 		}
1391 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1392 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1393 			uint32_t tmp;
1394 
1395 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1397 			if (tmp == 6 || tmp == 7)
1398 				dma_rw_ctl |=
1399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1400 
1401 			/* Set PCI-X DMA write workaround. */
1402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1403 		}
1404 	} else {
1405 		/* Conventional PCI bus: 256 bytes for read and write. */
1406 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1407 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1408 
1409 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1410 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1411 			dma_rw_ctl |= 0x0F;
1412 	}
1413 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1414 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1415 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1416 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1417 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1418 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1419 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1420 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1421 
1422 	/*
1423 	 * Set up general mode register.
1424 	 */
1425 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1426 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1427 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1428 
1429 	/*
1430 	 * BCM5701 B5 have a bug causing data corruption when using
1431 	 * 64-bit DMA reads, which can be terminated early and then
1432 	 * completed later as 32-bit accesses, in combination with
1433 	 * certain bridges.
1434 	 */
1435 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1436 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1437 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1438 
1439 	/*
1440 	 * Tell the firmware the driver is running
1441 	 */
1442 	if (sc->bge_asf_mode & ASF_STACKUP)
1443 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1444 
1445 	/*
1446 	 * Disable memory write invalidate.  Apparently it is not supported
1447 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1448 	 * as these chips need it even when using MSI.
1449 	 */
1450 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1451 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1452 
1453 	/* Set the timer prescaler (always 66Mhz) */
1454 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1455 
1456 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1457 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1458 		DELAY(40);	/* XXX */
1459 
1460 		/* Put PHY into ready state */
1461 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1462 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1463 		DELAY(40);
1464 	}
1465 
1466 	return (0);
1467 }
1468 
1469 static int
1470 bge_blockinit(struct bge_softc *sc)
1471 {
1472 	struct bge_rcb *rcb;
1473 	bus_size_t vrcb;
1474 	bge_hostaddr taddr;
1475 	uint32_t val;
1476 	int i;
1477 
1478 	/*
1479 	 * Initialize the memory window pointer register so that
1480 	 * we can access the first 32K of internal NIC RAM. This will
1481 	 * allow us to set up the TX send ring RCBs and the RX return
1482 	 * ring RCBs, plus other things which live in NIC memory.
1483 	 */
1484 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1485 
1486 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1487 
1488 	if (!(BGE_IS_5705_PLUS(sc))) {
1489 		/* Configure mbuf memory pool */
1490 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1491 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1492 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1493 		else
1494 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1495 
1496 		/* Configure DMA resource pool */
1497 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1498 		    BGE_DMA_DESCRIPTORS);
1499 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1500 	}
1501 
1502 	/* Configure mbuf pool watermarks */
1503 	if (!BGE_IS_5705_PLUS(sc)) {
1504 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1505 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1506 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1507 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1508 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1509 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1510 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1511 	} else {
1512 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1515 	}
1516 
1517 	/* Configure DMA resource watermarks */
1518 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1519 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1520 
1521 	/* Enable buffer manager */
1522 	if (!(BGE_IS_5705_PLUS(sc))) {
1523 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1524 		    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1525 
1526 		/* Poll for buffer manager start indication */
1527 		for (i = 0; i < BGE_TIMEOUT; i++) {
1528 			DELAY(10);
1529 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1530 				break;
1531 		}
1532 
1533 		if (i == BGE_TIMEOUT) {
1534 			device_printf(sc->bge_dev,
1535 			    "buffer manager failed to start\n");
1536 			return (ENXIO);
1537 		}
1538 	}
1539 
1540 	/* Enable flow-through queues */
1541 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1542 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1543 
1544 	/* Wait until queue initialization is complete */
1545 	for (i = 0; i < BGE_TIMEOUT; i++) {
1546 		DELAY(10);
1547 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1548 			break;
1549 	}
1550 
1551 	if (i == BGE_TIMEOUT) {
1552 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1553 		return (ENXIO);
1554 	}
1555 
1556 	/* Initialize the standard RX ring control block */
1557 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1558 	rcb->bge_hostaddr.bge_addr_lo =
1559 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1560 	rcb->bge_hostaddr.bge_addr_hi =
1561 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1562 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1563 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1564 	if (BGE_IS_5705_PLUS(sc))
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	else
1567 		rcb->bge_maxlen_flags =
1568 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1569 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1570 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1571 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1572 
1573 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1574 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1575 
1576 	/*
1577 	 * Initialize the jumbo RX ring control block
1578 	 * We set the 'ring disabled' bit in the flags
1579 	 * field until we're actually ready to start
1580 	 * using this ring (i.e. once we set the MTU
1581 	 * high enough to require it).
1582 	 */
1583 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1584 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1585 
1586 		rcb->bge_hostaddr.bge_addr_lo =
1587 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1588 		rcb->bge_hostaddr.bge_addr_hi =
1589 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1590 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1591 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1592 		    BUS_DMASYNC_PREREAD);
1593 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1594 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1595 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1596 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1597 		    rcb->bge_hostaddr.bge_addr_hi);
1598 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1599 		    rcb->bge_hostaddr.bge_addr_lo);
1600 
1601 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1602 		    rcb->bge_maxlen_flags);
1603 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1604 
1605 		/* Set up dummy disabled mini ring RCB */
1606 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1607 		rcb->bge_maxlen_flags =
1608 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1609 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 	}
1612 
1613 	/*
1614 	 * Set the BD ring replentish thresholds. The recommended
1615 	 * values are 1/8th the number of descriptors allocated to
1616 	 * each ring.
1617 	 * XXX The 5754 requires a lower threshold, so it might be a
1618 	 * requirement of all 575x family chips.  The Linux driver sets
1619 	 * the lower threshold for all 5705 family chips as well, but there
1620 	 * are reports that it might not need to be so strict.
1621 	 *
1622 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1623 	 * well.
1624 	 */
1625 	if (BGE_IS_5705_PLUS(sc))
1626 		val = 8;
1627 	else
1628 		val = BGE_STD_RX_RING_CNT / 8;
1629 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1630 	if (BGE_IS_JUMBO_CAPABLE(sc))
1631 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1632 		    BGE_JUMBO_RX_RING_CNT/8);
1633 
1634 	/*
1635 	 * Disable all unused send rings by setting the 'ring disabled'
1636 	 * bit in the flags field of all the TX send ring control blocks.
1637 	 * These are located in NIC memory.
1638 	 */
1639 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1640 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1641 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1643 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1644 		vrcb += sizeof(struct bge_rcb);
1645 	}
1646 
1647 	/* Configure TX RCB 0 (we use only the first ring) */
1648 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1649 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1650 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1651 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1652 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1653 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1654 	if (!(BGE_IS_5705_PLUS(sc)))
1655 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1657 
1658 	/* Disable all unused RX return rings */
1659 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1660 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1661 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1662 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1663 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1664 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1665 		    BGE_RCB_FLAG_RING_DISABLED));
1666 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1667 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1668 		    (i * (sizeof(uint64_t))), 0);
1669 		vrcb += sizeof(struct bge_rcb);
1670 	}
1671 
1672 	/* Initialize RX ring indexes */
1673 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1674 	if (BGE_IS_JUMBO_CAPABLE(sc))
1675 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1676 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1677 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1678 
1679 	/*
1680 	 * Set up RX return ring 0
1681 	 * Note that the NIC address for RX return rings is 0x00000000.
1682 	 * The return rings live entirely within the host, so the
1683 	 * nicaddr field in the RCB isn't used.
1684 	 */
1685 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1686 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1687 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1688 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1689 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1690 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1691 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1692 
1693 	/* Set random backoff seed for TX */
1694 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1695 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1696 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1697 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1698 	    BGE_TX_BACKOFF_SEED_MASK);
1699 
1700 	/* Set inter-packet gap */
1701 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1702 
1703 	/*
1704 	 * Specify which ring to use for packets that don't match
1705 	 * any RX rules.
1706 	 */
1707 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1708 
1709 	/*
1710 	 * Configure number of RX lists. One interrupt distribution
1711 	 * list, sixteen active lists, one bad frames class.
1712 	 */
1713 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1714 
1715 	/* Inialize RX list placement stats mask. */
1716 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1717 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1718 
1719 	/* Disable host coalescing until we get it set up */
1720 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1721 
1722 	/* Poll to make sure it's shut down. */
1723 	for (i = 0; i < BGE_TIMEOUT; i++) {
1724 		DELAY(10);
1725 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1726 			break;
1727 	}
1728 
1729 	if (i == BGE_TIMEOUT) {
1730 		device_printf(sc->bge_dev,
1731 		    "host coalescing engine failed to idle\n");
1732 		return (ENXIO);
1733 	}
1734 
1735 	/* Set up host coalescing defaults */
1736 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1737 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1740 	if (!(BGE_IS_5705_PLUS(sc))) {
1741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1742 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1743 	}
1744 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1745 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1746 
1747 	/* Set up address of statistics block */
1748 	if (!(BGE_IS_5705_PLUS(sc))) {
1749 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1750 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1751 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1752 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1753 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1754 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1755 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1756 	}
1757 
1758 	/* Set up address of status block */
1759 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1760 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1761 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1762 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1763 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1764 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1765 
1766 	/* Set up status block size. */
1767 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1768 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
1769 		val = BGE_STATBLKSZ_FULL;
1770 	else
1771 		val = BGE_STATBLKSZ_32BYTE;
1772 
1773 	/* Turn on host coalescing state machine */
1774 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1775 
1776 	/* Turn on RX BD completion state machine and enable attentions */
1777 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1778 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1779 
1780 	/* Turn on RX list placement state machine */
1781 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1782 
1783 	/* Turn on RX list selector state machine. */
1784 	if (!(BGE_IS_5705_PLUS(sc)))
1785 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1786 
1787 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1788 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1789 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1790 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1791 
1792 	if (sc->bge_flags & BGE_FLAG_TBI)
1793 		val |= BGE_PORTMODE_TBI;
1794 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1795 		val |= BGE_PORTMODE_GMII;
1796 	else
1797 		val |= BGE_PORTMODE_MII;
1798 
1799 	/* Turn on DMA, clear stats */
1800 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1801 
1802 	/* Set misc. local control, enable interrupts on attentions */
1803 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1804 
1805 #ifdef notdef
1806 	/* Assert GPIO pins for PHY reset */
1807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1808 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1809 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1810 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1811 #endif
1812 
1813 	/* Turn on DMA completion state machine */
1814 	if (!(BGE_IS_5705_PLUS(sc)))
1815 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1816 
1817 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1818 
1819 	/* Enable host coalescing bug fix. */
1820 	if (BGE_IS_5755_PLUS(sc))
1821 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1822 
1823 	/* Turn on write DMA state machine */
1824 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1825 	DELAY(40);
1826 
1827 	/* Turn on read DMA state machine */
1828 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1830 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1831 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
1832 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1833 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1834 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1835 	if (sc->bge_flags & BGE_FLAG_PCIE)
1836 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1837 	if (sc->bge_flags & BGE_FLAG_TSO)
1838 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1839 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1840 	DELAY(40);
1841 
1842 	/* Turn on RX data completion state machine */
1843 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1844 
1845 	/* Turn on RX BD initiator state machine */
1846 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1847 
1848 	/* Turn on RX data and RX BD initiator state machine */
1849 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1850 
1851 	/* Turn on Mbuf cluster free state machine */
1852 	if (!(BGE_IS_5705_PLUS(sc)))
1853 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1854 
1855 	/* Turn on send BD completion state machine */
1856 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1857 
1858 	/* Turn on send data completion state machine */
1859 	val = BGE_SDCMODE_ENABLE;
1860 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1861 		val |= BGE_SDCMODE_CDELAY;
1862 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1863 
1864 	/* Turn on send data initiator state machine */
1865 	if (sc->bge_flags & BGE_FLAG_TSO)
1866 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1867 	else
1868 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1869 
1870 	/* Turn on send BD initiator state machine */
1871 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1872 
1873 	/* Turn on send BD selector state machine */
1874 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1875 
1876 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1877 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1878 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1879 
1880 	/* ack/clear link change events */
1881 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1882 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1883 	    BGE_MACSTAT_LINK_CHANGED);
1884 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1885 
1886 	/* Enable PHY auto polling (for MII/GMII only) */
1887 	if (sc->bge_flags & BGE_FLAG_TBI) {
1888 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1889 	} else {
1890 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1891 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1892 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1893 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1894 			    BGE_EVTENB_MI_INTERRUPT);
1895 	}
1896 
1897 	/*
1898 	 * Clear any pending link state attention.
1899 	 * Otherwise some link state change events may be lost until attention
1900 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
1901 	 * It's not necessary on newer BCM chips - perhaps enabling link
1902 	 * state change attentions implies clearing pending attention.
1903 	 */
1904 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1905 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1906 	    BGE_MACSTAT_LINK_CHANGED);
1907 
1908 	/* Enable link state change attentions. */
1909 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1910 
1911 	return (0);
1912 }
1913 
1914 const struct bge_revision *
1915 bge_lookup_rev(uint32_t chipid)
1916 {
1917 	const struct bge_revision *br;
1918 
1919 	for (br = bge_revisions; br->br_name != NULL; br++) {
1920 		if (br->br_chipid == chipid)
1921 			return (br);
1922 	}
1923 
1924 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1925 		if (br->br_chipid == BGE_ASICREV(chipid))
1926 			return (br);
1927 	}
1928 
1929 	return (NULL);
1930 }
1931 
1932 const struct bge_vendor *
1933 bge_lookup_vendor(uint16_t vid)
1934 {
1935 	const struct bge_vendor *v;
1936 
1937 	for (v = bge_vendors; v->v_name != NULL; v++)
1938 		if (v->v_id == vid)
1939 			return (v);
1940 
1941 	panic("%s: unknown vendor %d", __func__, vid);
1942 	return (NULL);
1943 }
1944 
1945 /*
1946  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1947  * against our list and return its name if we find a match.
1948  *
1949  * Note that since the Broadcom controller contains VPD support, we
1950  * try to get the device name string from the controller itself instead
1951  * of the compiled-in string. It guarantees we'll always announce the
1952  * right product name. We fall back to the compiled-in string when
1953  * VPD is unavailable or corrupt.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958 	const struct bge_type *t = bge_devs;
1959 	struct bge_softc *sc = device_get_softc(dev);
1960 	uint16_t vid, did;
1961 
1962 	sc->bge_dev = dev;
1963 	vid = pci_get_vendor(dev);
1964 	did = pci_get_device(dev);
1965 	while(t->bge_vid != 0) {
1966 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
1967 			char model[64], buf[96];
1968 			const struct bge_revision *br;
1969 			const struct bge_vendor *v;
1970 			uint32_t id;
1971 
1972 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1973 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
1974 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG)
1975 				id = pci_read_config(dev,
1976 				    BGE_PCI_PRODID_ASICREV, 4);
1977 			br = bge_lookup_rev(id);
1978 			v = bge_lookup_vendor(vid);
1979 			{
1980 #if __FreeBSD_version > 700024
1981 				const char *pname;
1982 
1983 				if (bge_has_eaddr(sc) &&
1984 				    pci_get_vpd_ident(dev, &pname) == 0)
1985 					snprintf(model, 64, "%s", pname);
1986 				else
1987 #endif
1988 					snprintf(model, 64, "%s %s",
1989 					    v->v_name,
1990 					    br != NULL ? br->br_name :
1991 					    "NetXtreme Ethernet Controller");
1992 			}
1993 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
1994 			    br != NULL ? "" : "unknown ", id);
1995 			device_set_desc_copy(dev, buf);
1996 			if (pci_get_subvendor(dev) == DELL_VENDORID)
1997 				sc->bge_flags |= BGE_FLAG_NO_3LED;
1998 			if (did == BCOM_DEVICEID_BCM5755M)
1999 				sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
2000 			return (0);
2001 		}
2002 		t++;
2003 	}
2004 
2005 	return (ENXIO);
2006 }
2007 
2008 static void
2009 bge_dma_free(struct bge_softc *sc)
2010 {
2011 	int i;
2012 
2013 	/* Destroy DMA maps for RX buffers. */
2014 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2015 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2016 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2017 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2018 	}
2019 	if (sc->bge_cdata.bge_rx_std_sparemap)
2020 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2021 		    sc->bge_cdata.bge_rx_std_sparemap);
2022 
2023 	/* Destroy DMA maps for jumbo RX buffers. */
2024 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2025 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2026 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2027 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2028 	}
2029 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2030 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2031 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2032 
2033 	/* Destroy DMA maps for TX buffers. */
2034 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2035 		if (sc->bge_cdata.bge_tx_dmamap[i])
2036 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2037 			    sc->bge_cdata.bge_tx_dmamap[i]);
2038 	}
2039 
2040 	if (sc->bge_cdata.bge_rx_mtag)
2041 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2042 	if (sc->bge_cdata.bge_tx_mtag)
2043 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2044 
2045 
2046 	/* Destroy standard RX ring. */
2047 	if (sc->bge_cdata.bge_rx_std_ring_map)
2048 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2049 		    sc->bge_cdata.bge_rx_std_ring_map);
2050 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2051 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2052 		    sc->bge_ldata.bge_rx_std_ring,
2053 		    sc->bge_cdata.bge_rx_std_ring_map);
2054 
2055 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2056 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2057 
2058 	/* Destroy jumbo RX ring. */
2059 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2060 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2061 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2062 
2063 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2064 	    sc->bge_ldata.bge_rx_jumbo_ring)
2065 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2066 		    sc->bge_ldata.bge_rx_jumbo_ring,
2067 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2068 
2069 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2070 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2071 
2072 	/* Destroy RX return ring. */
2073 	if (sc->bge_cdata.bge_rx_return_ring_map)
2074 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2075 		    sc->bge_cdata.bge_rx_return_ring_map);
2076 
2077 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2078 	    sc->bge_ldata.bge_rx_return_ring)
2079 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2080 		    sc->bge_ldata.bge_rx_return_ring,
2081 		    sc->bge_cdata.bge_rx_return_ring_map);
2082 
2083 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2084 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2085 
2086 	/* Destroy TX ring. */
2087 	if (sc->bge_cdata.bge_tx_ring_map)
2088 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2089 		    sc->bge_cdata.bge_tx_ring_map);
2090 
2091 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2092 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2093 		    sc->bge_ldata.bge_tx_ring,
2094 		    sc->bge_cdata.bge_tx_ring_map);
2095 
2096 	if (sc->bge_cdata.bge_tx_ring_tag)
2097 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2098 
2099 	/* Destroy status block. */
2100 	if (sc->bge_cdata.bge_status_map)
2101 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2102 		    sc->bge_cdata.bge_status_map);
2103 
2104 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2105 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2106 		    sc->bge_ldata.bge_status_block,
2107 		    sc->bge_cdata.bge_status_map);
2108 
2109 	if (sc->bge_cdata.bge_status_tag)
2110 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2111 
2112 	/* Destroy statistics block. */
2113 	if (sc->bge_cdata.bge_stats_map)
2114 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2115 		    sc->bge_cdata.bge_stats_map);
2116 
2117 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2118 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2119 		    sc->bge_ldata.bge_stats,
2120 		    sc->bge_cdata.bge_stats_map);
2121 
2122 	if (sc->bge_cdata.bge_stats_tag)
2123 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2124 
2125 	/* Destroy the parent tag. */
2126 	if (sc->bge_cdata.bge_parent_tag)
2127 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2128 }
2129 
2130 static int
2131 bge_dma_alloc(device_t dev)
2132 {
2133 	struct bge_dmamap_arg ctx;
2134 	struct bge_softc *sc;
2135 	bus_addr_t lowaddr;
2136 	bus_size_t sbsz, txsegsz, txmaxsegsz;
2137 	int i, error;
2138 
2139 	sc = device_get_softc(dev);
2140 
2141 	lowaddr = BUS_SPACE_MAXADDR;
2142 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2143 		lowaddr = BGE_DMA_MAXADDR;
2144 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0)
2145 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
2146 	/*
2147 	 * Allocate the parent bus DMA tag appropriate for PCI.
2148 	 */
2149 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2150 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2151 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2152 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2153 
2154 	if (error != 0) {
2155 		device_printf(sc->bge_dev,
2156 		    "could not allocate parent dma tag\n");
2157 		return (ENOMEM);
2158 	}
2159 
2160 	/*
2161 	 * Create tag for Tx mbufs.
2162 	 */
2163 	if (sc->bge_flags & BGE_FLAG_TSO) {
2164 		txsegsz = BGE_TSOSEG_SZ;
2165 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2166 	} else {
2167 		txsegsz = MCLBYTES;
2168 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2169 	}
2170 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2171 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2172 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2173 	    &sc->bge_cdata.bge_tx_mtag);
2174 
2175 	if (error) {
2176 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2177 		return (ENOMEM);
2178 	}
2179 
2180 	/*
2181 	 * Create tag for Rx mbufs.
2182 	 */
2183 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
2184 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
2185 	    MCLBYTES, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2186 
2187 	if (error) {
2188 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2189 		return (ENOMEM);
2190 	}
2191 
2192 	/* Create DMA maps for RX buffers. */
2193 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2194 	    &sc->bge_cdata.bge_rx_std_sparemap);
2195 	if (error) {
2196 		device_printf(sc->bge_dev,
2197 		    "can't create spare DMA map for RX\n");
2198 		return (ENOMEM);
2199 	}
2200 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2201 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2202 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2203 		if (error) {
2204 			device_printf(sc->bge_dev,
2205 			    "can't create DMA map for RX\n");
2206 			return (ENOMEM);
2207 		}
2208 	}
2209 
2210 	/* Create DMA maps for TX buffers. */
2211 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2212 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2213 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2214 		if (error) {
2215 			device_printf(sc->bge_dev,
2216 			    "can't create DMA map for TX\n");
2217 			return (ENOMEM);
2218 		}
2219 	}
2220 
2221 	/* Create tag for standard RX ring. */
2222 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2223 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2224 	    NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2225 	    NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2226 
2227 	if (error) {
2228 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2229 		return (ENOMEM);
2230 	}
2231 
2232 	/* Allocate DMA'able memory for standard RX ring. */
2233 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2234 	    (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2235 	    &sc->bge_cdata.bge_rx_std_ring_map);
2236 	if (error)
2237 		return (ENOMEM);
2238 
2239 	bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2240 
2241 	/* Load the address of the standard RX ring. */
2242 	ctx.bge_maxsegs = 1;
2243 	ctx.sc = sc;
2244 
2245 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2246 	    sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2247 	    BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2248 
2249 	if (error)
2250 		return (ENOMEM);
2251 
2252 	sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2253 
2254 	/* Create tags for jumbo mbufs. */
2255 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2256 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2257 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2258 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2259 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2260 		if (error) {
2261 			device_printf(sc->bge_dev,
2262 			    "could not allocate jumbo dma tag\n");
2263 			return (ENOMEM);
2264 		}
2265 
2266 		/* Create tag for jumbo RX ring. */
2267 		error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2268 		    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2269 		    NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2270 		    NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2271 
2272 		if (error) {
2273 			device_printf(sc->bge_dev,
2274 			    "could not allocate jumbo ring dma tag\n");
2275 			return (ENOMEM);
2276 		}
2277 
2278 		/* Allocate DMA'able memory for jumbo RX ring. */
2279 		error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2280 		    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2281 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2282 		    &sc->bge_cdata.bge_rx_jumbo_ring_map);
2283 		if (error)
2284 			return (ENOMEM);
2285 
2286 		/* Load the address of the jumbo RX ring. */
2287 		ctx.bge_maxsegs = 1;
2288 		ctx.sc = sc;
2289 
2290 		error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2291 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
2292 		    sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2293 		    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2294 
2295 		if (error)
2296 			return (ENOMEM);
2297 
2298 		sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2299 
2300 		/* Create DMA maps for jumbo RX buffers. */
2301 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2302 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2303 		if (error) {
2304 			device_printf(sc->bge_dev,
2305 			    "can't create spare DMA map for jumbo RX\n");
2306 			return (ENOMEM);
2307 		}
2308 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2309 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2310 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2311 			if (error) {
2312 				device_printf(sc->bge_dev,
2313 				    "can't create DMA map for jumbo RX\n");
2314 				return (ENOMEM);
2315 			}
2316 		}
2317 
2318 	}
2319 
2320 	/* Create tag for RX return ring. */
2321 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2322 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2323 	    NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2324 	    NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2325 
2326 	if (error) {
2327 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2328 		return (ENOMEM);
2329 	}
2330 
2331 	/* Allocate DMA'able memory for RX return ring. */
2332 	error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2333 	    (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2334 	    &sc->bge_cdata.bge_rx_return_ring_map);
2335 	if (error)
2336 		return (ENOMEM);
2337 
2338 	bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2339 	    BGE_RX_RTN_RING_SZ(sc));
2340 
2341 	/* Load the address of the RX return ring. */
2342 	ctx.bge_maxsegs = 1;
2343 	ctx.sc = sc;
2344 
2345 	error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2346 	    sc->bge_cdata.bge_rx_return_ring_map,
2347 	    sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2348 	    bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2349 
2350 	if (error)
2351 		return (ENOMEM);
2352 
2353 	sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2354 
2355 	/* Create tag for TX ring. */
2356 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2357 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2358 	    NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2359 	    &sc->bge_cdata.bge_tx_ring_tag);
2360 
2361 	if (error) {
2362 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2363 		return (ENOMEM);
2364 	}
2365 
2366 	/* Allocate DMA'able memory for TX ring. */
2367 	error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2368 	    (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2369 	    &sc->bge_cdata.bge_tx_ring_map);
2370 	if (error)
2371 		return (ENOMEM);
2372 
2373 	bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2374 
2375 	/* Load the address of the TX ring. */
2376 	ctx.bge_maxsegs = 1;
2377 	ctx.sc = sc;
2378 
2379 	error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2380 	    sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2381 	    BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2382 
2383 	if (error)
2384 		return (ENOMEM);
2385 
2386 	sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2387 
2388 	/*
2389 	 * Create tag for status block.
2390 	 * Because we only use single Tx/Rx/Rx return ring, use
2391 	 * minimum status block size except BCM5700 AX/BX which
2392 	 * seems to want to see full status block size regardless
2393 	 * of configured number of ring.
2394 	 */
2395 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2396 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2397 		sbsz = BGE_STATUS_BLK_SZ;
2398 	else
2399 		sbsz = 32;
2400 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2401 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2402 	    NULL, sbsz, 1, sbsz, 0, NULL, NULL, &sc->bge_cdata.bge_status_tag);
2403 
2404 	if (error) {
2405 		device_printf(sc->bge_dev,
2406 		    "could not allocate status dma tag\n");
2407 		return (ENOMEM);
2408 	}
2409 
2410 	/* Allocate DMA'able memory for status block. */
2411 	error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2412 	    (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2413 	    &sc->bge_cdata.bge_status_map);
2414 	if (error)
2415 		return (ENOMEM);
2416 
2417 	bzero((char *)sc->bge_ldata.bge_status_block, sbsz);
2418 
2419 	/* Load the address of the status block. */
2420 	ctx.sc = sc;
2421 	ctx.bge_maxsegs = 1;
2422 
2423 	error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2424 	    sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2425 	    sbsz, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2426 
2427 	if (error)
2428 		return (ENOMEM);
2429 
2430 	sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2431 
2432 	/* Create tag for statistics block. */
2433 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2434 	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2435 	    NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2436 	    &sc->bge_cdata.bge_stats_tag);
2437 
2438 	if (error) {
2439 		device_printf(sc->bge_dev, "could not allocate dma tag\n");
2440 		return (ENOMEM);
2441 	}
2442 
2443 	/* Allocate DMA'able memory for statistics block. */
2444 	error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2445 	    (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2446 	    &sc->bge_cdata.bge_stats_map);
2447 	if (error)
2448 		return (ENOMEM);
2449 
2450 	bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2451 
2452 	/* Load the address of the statstics block. */
2453 	ctx.sc = sc;
2454 	ctx.bge_maxsegs = 1;
2455 
2456 	error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2457 	    sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2458 	    BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2459 
2460 	if (error)
2461 		return (ENOMEM);
2462 
2463 	sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2464 
2465 	return (0);
2466 }
2467 
2468 /*
2469  * Return true if this device has more than one port.
2470  */
2471 static int
2472 bge_has_multiple_ports(struct bge_softc *sc)
2473 {
2474 	device_t dev = sc->bge_dev;
2475 	u_int b, d, f, fscan, s;
2476 
2477 	d = pci_get_domain(dev);
2478 	b = pci_get_bus(dev);
2479 	s = pci_get_slot(dev);
2480 	f = pci_get_function(dev);
2481 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2482 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2483 			return (1);
2484 	return (0);
2485 }
2486 
2487 /*
2488  * Return true if MSI can be used with this device.
2489  */
2490 static int
2491 bge_can_use_msi(struct bge_softc *sc)
2492 {
2493 	int can_use_msi = 0;
2494 
2495 	switch (sc->bge_asicrev) {
2496 	case BGE_ASICREV_BCM5714_A0:
2497 	case BGE_ASICREV_BCM5714:
2498 		/*
2499 		 * Apparently, MSI doesn't work when these chips are
2500 		 * configured in single-port mode.
2501 		 */
2502 		if (bge_has_multiple_ports(sc))
2503 			can_use_msi = 1;
2504 		break;
2505 	case BGE_ASICREV_BCM5750:
2506 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2507 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2508 			can_use_msi = 1;
2509 		break;
2510 	default:
2511 		if (BGE_IS_575X_PLUS(sc))
2512 			can_use_msi = 1;
2513 	}
2514 	return (can_use_msi);
2515 }
2516 
2517 static int
2518 bge_attach(device_t dev)
2519 {
2520 	struct ifnet *ifp;
2521 	struct bge_softc *sc;
2522 	uint32_t hwcfg = 0, misccfg;
2523 	u_char eaddr[ETHER_ADDR_LEN];
2524 	int error, msicount, reg, rid, trys;
2525 
2526 	sc = device_get_softc(dev);
2527 	sc->bge_dev = dev;
2528 
2529 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2530 
2531 	/*
2532 	 * Map control/status registers.
2533 	 */
2534 	pci_enable_busmaster(dev);
2535 
2536 	rid = BGE_PCI_BAR0;
2537 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2538 	    RF_ACTIVE);
2539 
2540 	if (sc->bge_res == NULL) {
2541 		device_printf (sc->bge_dev, "couldn't map memory\n");
2542 		error = ENXIO;
2543 		goto fail;
2544 	}
2545 
2546 	/* Save various chip information. */
2547 	sc->bge_chipid =
2548 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2549 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2550 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2551 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV,
2552 		    4);
2553 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2554 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2555 
2556 	/*
2557 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2558 	 * 5705 A0 and A1 chips.
2559 	 */
2560 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2561 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2562 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2563 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2564 		sc->bge_flags |= BGE_FLAG_WIRESPEED;
2565 
2566 	if (bge_has_eaddr(sc))
2567 		sc->bge_flags |= BGE_FLAG_EADDR;
2568 
2569 	/* Save chipset family. */
2570 	switch (sc->bge_asicrev) {
2571 	case BGE_ASICREV_BCM5755:
2572 	case BGE_ASICREV_BCM5761:
2573 	case BGE_ASICREV_BCM5784:
2574 	case BGE_ASICREV_BCM5785:
2575 	case BGE_ASICREV_BCM5787:
2576 	case BGE_ASICREV_BCM57780:
2577 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2578 		    BGE_FLAG_5705_PLUS;
2579 		break;
2580 	case BGE_ASICREV_BCM5700:
2581 	case BGE_ASICREV_BCM5701:
2582 	case BGE_ASICREV_BCM5703:
2583 	case BGE_ASICREV_BCM5704:
2584 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2585 		break;
2586 	case BGE_ASICREV_BCM5714_A0:
2587 	case BGE_ASICREV_BCM5780:
2588 	case BGE_ASICREV_BCM5714:
2589 		sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2590 		/* FALLTHROUGH */
2591 	case BGE_ASICREV_BCM5750:
2592 	case BGE_ASICREV_BCM5752:
2593 	case BGE_ASICREV_BCM5906:
2594 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2595 		/* FALLTHROUGH */
2596 	case BGE_ASICREV_BCM5705:
2597 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2598 		break;
2599 	}
2600 
2601 	/* Set various bug flags. */
2602 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2603 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2604 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
2605 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2606 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2607 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
2608 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2609 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2610 	if (BGE_IS_5705_PLUS(sc) &&
2611 	    !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2612 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2613 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2614 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2615 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2616 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
2617 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
2618 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2619 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2620 			sc->bge_flags |= BGE_FLAG_BER_BUG;
2621 	}
2622 
2623 	/*
2624 	 * All controllers that are not 5755 or higher have 4GB
2625 	 * boundary DMA bug.
2626 	 * Whenever an address crosses a multiple of the 4GB boundary
2627 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
2628 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
2629 	 * state machine will lockup and cause the device to hang.
2630 	 */
2631 	if (BGE_IS_5755_PLUS(sc) == 0)
2632 		sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
2633 
2634 	/*
2635 	 * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
2636 	 * but I do not know the DEVICEID for the 5788M.
2637 	 */
2638 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
2639 	if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2640 	    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
2641 		sc->bge_flags |= BGE_FLAG_5788;
2642 
2643 	/*
2644 	 * Some controllers seem to require a special firmware to use
2645 	 * TSO. But the firmware is not available to FreeBSD and Linux
2646 	 * claims that the TSO performed by the firmware is slower than
2647 	 * hardware based TSO. Moreover the firmware based TSO has one
2648 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2649 	 * header is greater than 80 bytes. The workaround for the TSO
2650 	 * bug exist but it seems it's too expensive than not using
2651 	 * TSO at all. Some hardwares also have the TSO bug so limit
2652 	 * the TSO to the controllers that are not affected TSO issues
2653 	 * (e.g. 5755 or higher).
2654 	 */
2655 	if (BGE_IS_5755_PLUS(sc)) {
2656 		/*
2657 		 * BCM5754 and BCM5787 shares the same ASIC id so
2658 		 * explicit device id check is required.
2659 		 */
2660 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
2661 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M)
2662 			sc->bge_flags |= BGE_FLAG_TSO;
2663 	}
2664 
2665   	/*
2666 	 * Check if this is a PCI-X or PCI Express device.
2667   	 */
2668 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2669 		/*
2670 		 * Found a PCI Express capabilities register, this
2671 		 * must be a PCI Express device.
2672 		 */
2673 		sc->bge_flags |= BGE_FLAG_PCIE;
2674 		sc->bge_expcap = reg;
2675 		bge_set_max_readrq(sc);
2676 	} else {
2677 		/*
2678 		 * Check if the device is in PCI-X Mode.
2679 		 * (This bit is not valid on PCI Express controllers.)
2680 		 */
2681 		if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0)
2682 			sc->bge_pcixcap = reg;
2683 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
2684 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
2685 			sc->bge_flags |= BGE_FLAG_PCIX;
2686 	}
2687 
2688 	/*
2689 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2690 	 * not actually a MAC controller bug but an issue with the embedded
2691 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2692 	 */
2693 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2694 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
2695 	/*
2696 	 * Allocate the interrupt, using MSI if possible.  These devices
2697 	 * support 8 MSI messages, but only the first one is used in
2698 	 * normal operation.
2699 	 */
2700 	rid = 0;
2701 	if (pci_find_extcap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
2702 		sc->bge_msicap = reg;
2703 		if (bge_can_use_msi(sc)) {
2704 			msicount = pci_msi_count(dev);
2705 			if (msicount > 1)
2706 				msicount = 1;
2707 		} else
2708 			msicount = 0;
2709 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2710 			rid = 1;
2711 			sc->bge_flags |= BGE_FLAG_MSI;
2712 		}
2713 	}
2714 
2715 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2716 	    RF_SHAREABLE | RF_ACTIVE);
2717 
2718 	if (sc->bge_irq == NULL) {
2719 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
2720 		error = ENXIO;
2721 		goto fail;
2722 	}
2723 
2724 	if (bootverbose)
2725 		device_printf(dev,
2726 		    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2727 		    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2728 		    (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
2729 		    ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
2730 
2731 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2732 
2733 	/* Try to reset the chip. */
2734 	if (bge_reset(sc)) {
2735 		device_printf(sc->bge_dev, "chip reset failed\n");
2736 		error = ENXIO;
2737 		goto fail;
2738 	}
2739 
2740 	sc->bge_asf_mode = 0;
2741 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2742 	    == BGE_MAGIC_NUMBER)) {
2743 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2744 		    & BGE_HWCFG_ASF) {
2745 			sc->bge_asf_mode |= ASF_ENABLE;
2746 			sc->bge_asf_mode |= ASF_STACKUP;
2747 			if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2748 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2749 			}
2750 		}
2751 	}
2752 
2753 	/* Try to reset the chip again the nice way. */
2754 	bge_stop_fw(sc);
2755 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2756 	if (bge_reset(sc)) {
2757 		device_printf(sc->bge_dev, "chip reset failed\n");
2758 		error = ENXIO;
2759 		goto fail;
2760 	}
2761 
2762 	bge_sig_legacy(sc, BGE_RESET_STOP);
2763 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2764 
2765 	if (bge_chipinit(sc)) {
2766 		device_printf(sc->bge_dev, "chip initialization failed\n");
2767 		error = ENXIO;
2768 		goto fail;
2769 	}
2770 
2771 	error = bge_get_eaddr(sc, eaddr);
2772 	if (error) {
2773 		device_printf(sc->bge_dev,
2774 		    "failed to read station address\n");
2775 		error = ENXIO;
2776 		goto fail;
2777 	}
2778 
2779 	/* 5705 limits RX return ring to 512 entries. */
2780 	if (BGE_IS_5705_PLUS(sc))
2781 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2782 	else
2783 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2784 
2785 	if (bge_dma_alloc(dev)) {
2786 		device_printf(sc->bge_dev,
2787 		    "failed to allocate DMA resources\n");
2788 		error = ENXIO;
2789 		goto fail;
2790 	}
2791 
2792 	/* Set default tuneable values. */
2793 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2794 	sc->bge_rx_coal_ticks = 150;
2795 	sc->bge_tx_coal_ticks = 150;
2796 	sc->bge_rx_max_coal_bds = 10;
2797 	sc->bge_tx_max_coal_bds = 10;
2798 
2799 	/* Set up ifnet structure */
2800 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2801 	if (ifp == NULL) {
2802 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
2803 		error = ENXIO;
2804 		goto fail;
2805 	}
2806 	ifp->if_softc = sc;
2807 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2808 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2809 	ifp->if_ioctl = bge_ioctl;
2810 	ifp->if_start = bge_start;
2811 	ifp->if_init = bge_init;
2812 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2813 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2814 	IFQ_SET_READY(&ifp->if_snd);
2815 	ifp->if_hwassist = BGE_CSUM_FEATURES;
2816 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2817 	    IFCAP_VLAN_MTU;
2818 	if ((sc->bge_flags & BGE_FLAG_TSO) != 0) {
2819 		ifp->if_hwassist |= CSUM_TSO;
2820 		ifp->if_capabilities |= IFCAP_TSO4;
2821 	}
2822 #ifdef IFCAP_VLAN_HWCSUM
2823 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2824 #endif
2825 	ifp->if_capenable = ifp->if_capabilities;
2826 #ifdef DEVICE_POLLING
2827 	ifp->if_capabilities |= IFCAP_POLLING;
2828 #endif
2829 
2830 	/*
2831 	 * 5700 B0 chips do not support checksumming correctly due
2832 	 * to hardware bugs.
2833 	 */
2834 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2835 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
2836 		ifp->if_capenable &= ~IFCAP_HWCSUM;
2837 		ifp->if_hwassist = 0;
2838 	}
2839 
2840 	/*
2841 	 * Figure out what sort of media we have by checking the
2842 	 * hardware config word in the first 32k of NIC internal memory,
2843 	 * or fall back to examining the EEPROM if necessary.
2844 	 * Note: on some BCM5700 cards, this value appears to be unset.
2845 	 * If that's the case, we have to rely on identifying the NIC
2846 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2847 	 * SK-9D41.
2848 	 */
2849 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2850 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2851 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2852 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2853 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2854 		    sizeof(hwcfg))) {
2855 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
2856 			error = ENXIO;
2857 			goto fail;
2858 		}
2859 		hwcfg = ntohl(hwcfg);
2860 	}
2861 
2862 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2863 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
2864 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2865 		if (BGE_IS_5714_FAMILY(sc))
2866 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2867 		else
2868 			sc->bge_flags |= BGE_FLAG_TBI;
2869 	}
2870 
2871 	if (sc->bge_flags & BGE_FLAG_TBI) {
2872 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2873 		    bge_ifmedia_sts);
2874 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2875 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2876 		    0, NULL);
2877 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2878 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2879 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2880 	} else {
2881 		/*
2882 		 * Do transceiver setup and tell the firmware the
2883 		 * driver is down so we can try to get access the
2884 		 * probe if ASF is running.  Retry a couple of times
2885 		 * if we get a conflict with the ASF firmware accessing
2886 		 * the PHY.
2887 		 */
2888 		trys = 0;
2889 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2890 again:
2891 		bge_asf_driver_up(sc);
2892 
2893 		if (mii_phy_probe(dev, &sc->bge_miibus,
2894 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
2895 			if (trys++ < 4) {
2896 				device_printf(sc->bge_dev, "Try again\n");
2897 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2898 				    BMCR_RESET);
2899 				goto again;
2900 			}
2901 
2902 			device_printf(sc->bge_dev, "MII without any PHY!\n");
2903 			error = ENXIO;
2904 			goto fail;
2905 		}
2906 
2907 		/*
2908 		 * Now tell the firmware we are going up after probing the PHY
2909 		 */
2910 		if (sc->bge_asf_mode & ASF_STACKUP)
2911 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2912 	}
2913 
2914 	/*
2915 	 * When using the BCM5701 in PCI-X mode, data corruption has
2916 	 * been observed in the first few bytes of some received packets.
2917 	 * Aligning the packet buffer in memory eliminates the corruption.
2918 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2919 	 * which do not support unaligned accesses, we will realign the
2920 	 * payloads by copying the received packets.
2921 	 */
2922 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2923 	    sc->bge_flags & BGE_FLAG_PCIX)
2924                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2925 
2926 	/*
2927 	 * Call MI attach routine.
2928 	 */
2929 	ether_ifattach(ifp, eaddr);
2930 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2931 
2932 	/* Tell upper layer we support long frames. */
2933 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2934 
2935 	/*
2936 	 * Hookup IRQ last.
2937 	 */
2938 #if __FreeBSD_version > 700030
2939 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
2940 		/* Take advantage of single-shot MSI. */
2941 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
2942 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
2943 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
2944 		    taskqueue_thread_enqueue, &sc->bge_tq);
2945 		if (sc->bge_tq == NULL) {
2946 			device_printf(dev, "could not create taskqueue.\n");
2947 			ether_ifdetach(ifp);
2948 			error = ENXIO;
2949 			goto fail;
2950 		}
2951 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
2952 		    device_get_nameunit(sc->bge_dev));
2953 		error = bus_setup_intr(dev, sc->bge_irq,
2954 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
2955 		    &sc->bge_intrhand);
2956 		if (error)
2957 			ether_ifdetach(ifp);
2958 	} else
2959 		error = bus_setup_intr(dev, sc->bge_irq,
2960 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
2961 		    &sc->bge_intrhand);
2962 #else
2963 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2964 	   bge_intr, sc, &sc->bge_intrhand);
2965 #endif
2966 
2967 	if (error) {
2968 		bge_detach(dev);
2969 		device_printf(sc->bge_dev, "couldn't set up irq\n");
2970 	}
2971 
2972 	bge_add_sysctls(sc);
2973 
2974 	return (0);
2975 
2976 fail:
2977 	bge_release_resources(sc);
2978 
2979 	return (error);
2980 }
2981 
2982 static int
2983 bge_detach(device_t dev)
2984 {
2985 	struct bge_softc *sc;
2986 	struct ifnet *ifp;
2987 
2988 	sc = device_get_softc(dev);
2989 	ifp = sc->bge_ifp;
2990 
2991 #ifdef DEVICE_POLLING
2992 	if (ifp->if_capenable & IFCAP_POLLING)
2993 		ether_poll_deregister(ifp);
2994 #endif
2995 
2996 	BGE_LOCK(sc);
2997 	bge_stop(sc);
2998 	bge_reset(sc);
2999 	BGE_UNLOCK(sc);
3000 
3001 	callout_drain(&sc->bge_stat_ch);
3002 
3003 	if (sc->bge_tq)
3004 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3005 	ether_ifdetach(ifp);
3006 
3007 	if (sc->bge_flags & BGE_FLAG_TBI) {
3008 		ifmedia_removeall(&sc->bge_ifmedia);
3009 	} else {
3010 		bus_generic_detach(dev);
3011 		device_delete_child(dev, sc->bge_miibus);
3012 	}
3013 
3014 	bge_release_resources(sc);
3015 
3016 	return (0);
3017 }
3018 
3019 static void
3020 bge_release_resources(struct bge_softc *sc)
3021 {
3022 	device_t dev;
3023 
3024 	dev = sc->bge_dev;
3025 
3026 	if (sc->bge_tq != NULL)
3027 		taskqueue_free(sc->bge_tq);
3028 
3029 	if (sc->bge_intrhand != NULL)
3030 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3031 
3032 	if (sc->bge_irq != NULL)
3033 		bus_release_resource(dev, SYS_RES_IRQ,
3034 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3035 
3036 	if (sc->bge_flags & BGE_FLAG_MSI)
3037 		pci_release_msi(dev);
3038 
3039 	if (sc->bge_res != NULL)
3040 		bus_release_resource(dev, SYS_RES_MEMORY,
3041 		    BGE_PCI_BAR0, sc->bge_res);
3042 
3043 	if (sc->bge_ifp != NULL)
3044 		if_free(sc->bge_ifp);
3045 
3046 	bge_dma_free(sc);
3047 
3048 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3049 		BGE_LOCK_DESTROY(sc);
3050 }
3051 
3052 static int
3053 bge_reset(struct bge_softc *sc)
3054 {
3055 	device_t dev;
3056 	uint32_t cachesize, command, pcistate, reset, val;
3057 	void (*write_op)(struct bge_softc *, int, int);
3058 	uint16_t devctl;
3059 	int i;
3060 
3061 	dev = sc->bge_dev;
3062 
3063 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3064 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3065 		if (sc->bge_flags & BGE_FLAG_PCIE)
3066 			write_op = bge_writemem_direct;
3067 		else
3068 			write_op = bge_writemem_ind;
3069 	} else
3070 		write_op = bge_writereg_ind;
3071 
3072 	/* Save some important PCI state. */
3073 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3074 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3075 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3076 
3077 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3078 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3079 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3080 
3081 	/* Disable fastboot on controllers that support it. */
3082 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3083 	    BGE_IS_5755_PLUS(sc)) {
3084 		if (bootverbose)
3085 			device_printf(sc->bge_dev, "Disabling fastboot\n");
3086 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3087 	}
3088 
3089 	/*
3090 	 * Write the magic number to SRAM at offset 0xB50.
3091 	 * When firmware finishes its initialization it will
3092 	 * write ~BGE_MAGIC_NUMBER to the same location.
3093 	 */
3094 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3095 
3096 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3097 
3098 	/* XXX: Broadcom Linux driver. */
3099 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3100 		if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3101 			CSR_WRITE_4(sc, 0x7E2C, 0x20);
3102 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3103 			/* Prevent PCIE link training during global reset */
3104 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3105 			reset |= 1 << 29;
3106 		}
3107 	}
3108 
3109 	/*
3110 	 * Set GPHY Power Down Override to leave GPHY
3111 	 * powered up in D0 uninitialized.
3112 	 */
3113 	if (BGE_IS_5705_PLUS(sc))
3114 		reset |= 0x04000000;
3115 
3116 	/* Issue global reset */
3117 	write_op(sc, BGE_MISC_CFG, reset);
3118 
3119 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3120 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3121 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3122 		    val | BGE_VCPU_STATUS_DRV_RESET);
3123 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3124 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3125 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3126 	}
3127 
3128 	DELAY(1000);
3129 
3130 	/* XXX: Broadcom Linux driver. */
3131 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3132 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3133 			DELAY(500000); /* wait for link training to complete */
3134 			val = pci_read_config(dev, 0xC4, 4);
3135 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3136 		}
3137 		devctl = pci_read_config(dev,
3138 		    sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL, 2);
3139 		/* Clear enable no snoop and disable relaxed ordering. */
3140 		devctl &= ~(0x0010 | 0x0800);
3141 		/* Set PCIE max payload size to 128. */
3142 		devctl &= ~PCIM_EXP_CTL_MAX_PAYLOAD;
3143 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_CTL,
3144 		    devctl, 2);
3145 		/* Clear error status. */
3146 		pci_write_config(dev, sc->bge_expcap + PCIR_EXPRESS_DEVICE_STA,
3147 		    0, 2);
3148 	}
3149 
3150 	/* Reset some of the PCI state that got zapped by reset. */
3151 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3152 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3153 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3154 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3155 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3156 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3157 
3158 	/* Re-enable MSI, if neccesary, and enable the memory arbiter. */
3159 	if (BGE_IS_5714_FAMILY(sc)) {
3160 		/* This chip disables MSI on reset. */
3161 		if (sc->bge_flags & BGE_FLAG_MSI) {
3162 			val = pci_read_config(dev,
3163 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3164 			pci_write_config(dev,
3165 			    sc->bge_msicap + PCIR_MSI_CTRL,
3166 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3167 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3168 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3169 			    val | BGE_MSIMODE_ENABLE);
3170 		}
3171 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3172 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3173 	} else
3174 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3175 
3176 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3177 		for (i = 0; i < BGE_TIMEOUT; i++) {
3178 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3179 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3180 				break;
3181 			DELAY(100);
3182 		}
3183 		if (i == BGE_TIMEOUT) {
3184 			device_printf(sc->bge_dev, "reset timed out\n");
3185 			return (1);
3186 		}
3187 	} else {
3188 		/*
3189 		 * Poll until we see the 1's complement of the magic number.
3190 		 * This indicates that the firmware initialization is complete.
3191 		 * We expect this to fail if no chip containing the Ethernet
3192 		 * address is fitted though.
3193 		 */
3194 		for (i = 0; i < BGE_TIMEOUT; i++) {
3195 			DELAY(10);
3196 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3197 			if (val == ~BGE_MAGIC_NUMBER)
3198 				break;
3199 		}
3200 
3201 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3202 			device_printf(sc->bge_dev, "firmware handshake timed out, "
3203 			    "found 0x%08x\n", val);
3204 	}
3205 
3206 	/*
3207 	 * XXX Wait for the value of the PCISTATE register to
3208 	 * return to its original pre-reset state. This is a
3209 	 * fairly good indicator of reset completion. If we don't
3210 	 * wait for the reset to fully complete, trying to read
3211 	 * from the device's non-PCI registers may yield garbage
3212 	 * results.
3213 	 */
3214 	for (i = 0; i < BGE_TIMEOUT; i++) {
3215 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3216 			break;
3217 		DELAY(10);
3218 	}
3219 
3220 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3221 		reset = bge_readmem_ind(sc, 0x7C00);
3222 		bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
3223 	}
3224 
3225 	/* Fix up byte swapping. */
3226 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
3227 	    BGE_MODECTL_BYTESWAP_DATA);
3228 
3229 	/* Tell the ASF firmware we are up */
3230 	if (sc->bge_asf_mode & ASF_STACKUP)
3231 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3232 
3233 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3234 
3235 	/*
3236 	 * The 5704 in TBI mode apparently needs some special
3237 	 * adjustment to insure the SERDES drive level is set
3238 	 * to 1.2V.
3239 	 */
3240 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3241 	    sc->bge_flags & BGE_FLAG_TBI) {
3242 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3243 		val = (val & ~0xFFF) | 0x880;
3244 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3245 	}
3246 
3247 	/* XXX: Broadcom Linux driver. */
3248 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3249 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3250 		val = CSR_READ_4(sc, 0x7C00);
3251 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3252 	}
3253 	DELAY(10000);
3254 
3255 	return(0);
3256 }
3257 
3258 /*
3259  * Frame reception handling. This is called if there's a frame
3260  * on the receive return list.
3261  *
3262  * Note: we have to be able to handle two possibilities here:
3263  * 1) the frame is from the jumbo receive ring
3264  * 2) the frame is from the standard receive ring
3265  */
3266 
3267 static int
3268 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3269 {
3270 	struct ifnet *ifp;
3271 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3272 	uint16_t rx_cons;
3273 
3274 	rx_cons = sc->bge_rx_saved_considx;
3275 
3276 	/* Nothing to do. */
3277 	if (rx_cons == rx_prod)
3278 		return (rx_npkts);
3279 
3280 	ifp = sc->bge_ifp;
3281 
3282 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3283 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3284 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3285 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3286 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3287 	    (MCLBYTES - ETHER_ALIGN))
3288 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3289 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3290 
3291 	while (rx_cons != rx_prod) {
3292 		struct bge_rx_bd	*cur_rx;
3293 		uint32_t		rxidx;
3294 		struct mbuf		*m = NULL;
3295 		uint16_t		vlan_tag = 0;
3296 		int			have_tag = 0;
3297 
3298 #ifdef DEVICE_POLLING
3299 		if (ifp->if_capenable & IFCAP_POLLING) {
3300 			if (sc->rxcycles <= 0)
3301 				break;
3302 			sc->rxcycles--;
3303 		}
3304 #endif
3305 
3306 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3307 
3308 		rxidx = cur_rx->bge_idx;
3309 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3310 
3311 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3312 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3313 			have_tag = 1;
3314 			vlan_tag = cur_rx->bge_vlan_tag;
3315 		}
3316 
3317 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3318 			jumbocnt++;
3319 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3320 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3321 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3322 				continue;
3323 			}
3324 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3325 				BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3326 				ifp->if_iqdrops++;
3327 				continue;
3328 			}
3329 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3330 		} else {
3331 			stdcnt++;
3332 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3333 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3334 				continue;
3335 			}
3336 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3337 			if (bge_newbuf_std(sc, rxidx) != 0) {
3338 				BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3339 				ifp->if_iqdrops++;
3340 				continue;
3341 			}
3342 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3343 		}
3344 
3345 		ifp->if_ipackets++;
3346 #ifndef __NO_STRICT_ALIGNMENT
3347 		/*
3348 		 * For architectures with strict alignment we must make sure
3349 		 * the payload is aligned.
3350 		 */
3351 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3352 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3353 			    cur_rx->bge_len);
3354 			m->m_data += ETHER_ALIGN;
3355 		}
3356 #endif
3357 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3358 		m->m_pkthdr.rcvif = ifp;
3359 
3360 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3361 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3362 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3363 				if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3364 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3365 			}
3366 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3367 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3368 				m->m_pkthdr.csum_data =
3369 				    cur_rx->bge_tcp_udp_csum;
3370 				m->m_pkthdr.csum_flags |=
3371 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3372 			}
3373 		}
3374 
3375 		/*
3376 		 * If we received a packet with a vlan tag,
3377 		 * attach that information to the packet.
3378 		 */
3379 		if (have_tag) {
3380 #if __FreeBSD_version > 700022
3381 			m->m_pkthdr.ether_vtag = vlan_tag;
3382 			m->m_flags |= M_VLANTAG;
3383 #else
3384 			VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3385 			if (m == NULL)
3386 				continue;
3387 #endif
3388 		}
3389 
3390 		if (holdlck != 0) {
3391 			BGE_UNLOCK(sc);
3392 			(*ifp->if_input)(ifp, m);
3393 			BGE_LOCK(sc);
3394 		} else
3395 			(*ifp->if_input)(ifp, m);
3396 		rx_npkts++;
3397 
3398 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3399 			return (rx_npkts);
3400 	}
3401 
3402 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3403 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3404 	if (stdcnt > 0)
3405 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3406 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3407 
3408 	if (jumbocnt > 0)
3409 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3410 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3411 
3412 	sc->bge_rx_saved_considx = rx_cons;
3413 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3414 	if (stdcnt)
3415 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3416 	if (jumbocnt)
3417 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3418 #ifdef notyet
3419 	/*
3420 	 * This register wraps very quickly under heavy packet drops.
3421 	 * If you need correct statistics, you can enable this check.
3422 	 */
3423 	if (BGE_IS_5705_PLUS(sc))
3424 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3425 #endif
3426 	return (rx_npkts);
3427 }
3428 
3429 static void
3430 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3431 {
3432 	struct bge_tx_bd *cur_tx = NULL;
3433 	struct ifnet *ifp;
3434 
3435 	BGE_LOCK_ASSERT(sc);
3436 
3437 	/* Nothing to do. */
3438 	if (sc->bge_tx_saved_considx == tx_cons)
3439 		return;
3440 
3441 	ifp = sc->bge_ifp;
3442 
3443 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3444 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
3445 	/*
3446 	 * Go through our tx ring and free mbufs for those
3447 	 * frames that have been sent.
3448 	 */
3449 	while (sc->bge_tx_saved_considx != tx_cons) {
3450 		uint32_t		idx = 0;
3451 
3452 		idx = sc->bge_tx_saved_considx;
3453 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3454 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3455 			ifp->if_opackets++;
3456 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3457 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
3458 			    sc->bge_cdata.bge_tx_dmamap[idx],
3459 			    BUS_DMASYNC_POSTWRITE);
3460 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3461 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3462 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3463 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3464 		}
3465 		sc->bge_txcnt--;
3466 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3467 	}
3468 
3469 	if (cur_tx != NULL)
3470 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3471 	if (sc->bge_txcnt == 0)
3472 		sc->bge_timer = 0;
3473 }
3474 
3475 #ifdef DEVICE_POLLING
3476 static int
3477 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3478 {
3479 	struct bge_softc *sc = ifp->if_softc;
3480 	uint16_t rx_prod, tx_cons;
3481 	uint32_t statusword;
3482 	int rx_npkts = 0;
3483 
3484 	BGE_LOCK(sc);
3485 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3486 		BGE_UNLOCK(sc);
3487 		return (rx_npkts);
3488 	}
3489 
3490 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3491 	    sc->bge_cdata.bge_status_map,
3492 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3493 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3494 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3495 
3496 	statusword = atomic_readandclear_32(
3497 	    &sc->bge_ldata.bge_status_block->bge_status);
3498 
3499 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3500 	    sc->bge_cdata.bge_status_map,
3501 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3502 
3503 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3504 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3505 		sc->bge_link_evt++;
3506 
3507 	if (cmd == POLL_AND_CHECK_STATUS)
3508 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3509 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3510 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3511 			bge_link_upd(sc);
3512 
3513 	sc->rxcycles = count;
3514 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
3515 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3516 		BGE_UNLOCK(sc);
3517 		return (rx_npkts);
3518 	}
3519 	bge_txeof(sc, tx_cons);
3520 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3521 		bge_start_locked(ifp);
3522 
3523 	BGE_UNLOCK(sc);
3524 	return (rx_npkts);
3525 }
3526 #endif /* DEVICE_POLLING */
3527 
3528 static int
3529 bge_msi_intr(void *arg)
3530 {
3531 	struct bge_softc *sc;
3532 
3533 	sc = (struct bge_softc *)arg;
3534 	/*
3535 	 * This interrupt is not shared and controller already
3536 	 * disabled further interrupt.
3537 	 */
3538 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
3539 	return (FILTER_HANDLED);
3540 }
3541 
3542 static void
3543 bge_intr_task(void *arg, int pending)
3544 {
3545 	struct bge_softc *sc;
3546 	struct ifnet *ifp;
3547 	uint32_t status;
3548 	uint16_t rx_prod, tx_cons;
3549 
3550 	sc = (struct bge_softc *)arg;
3551 	ifp = sc->bge_ifp;
3552 
3553 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
3554 		return;
3555 
3556 	/* Get updated status block. */
3557 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3558 	    sc->bge_cdata.bge_status_map,
3559 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3560 
3561 	/* Save producer/consumer indexess. */
3562 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3563 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3564 	status = sc->bge_ldata.bge_status_block->bge_status;
3565 	sc->bge_ldata.bge_status_block->bge_status = 0;
3566 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3567 	    sc->bge_cdata.bge_status_map,
3568 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3569 	/* Let controller work. */
3570 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3571 
3572 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) {
3573 		BGE_LOCK(sc);
3574 		bge_link_upd(sc);
3575 		BGE_UNLOCK(sc);
3576 	}
3577 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3578 		/* Check RX return ring producer/consumer. */
3579 		bge_rxeof(sc, rx_prod, 0);
3580 	}
3581 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3582 		BGE_LOCK(sc);
3583 		/* Check TX ring producer/consumer. */
3584 		bge_txeof(sc, tx_cons);
3585 	    	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3586 			bge_start_locked(ifp);
3587 		BGE_UNLOCK(sc);
3588 	}
3589 }
3590 
3591 static void
3592 bge_intr(void *xsc)
3593 {
3594 	struct bge_softc *sc;
3595 	struct ifnet *ifp;
3596 	uint32_t statusword;
3597 	uint16_t rx_prod, tx_cons;
3598 
3599 	sc = xsc;
3600 
3601 	BGE_LOCK(sc);
3602 
3603 	ifp = sc->bge_ifp;
3604 
3605 #ifdef DEVICE_POLLING
3606 	if (ifp->if_capenable & IFCAP_POLLING) {
3607 		BGE_UNLOCK(sc);
3608 		return;
3609 	}
3610 #endif
3611 
3612 	/*
3613 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3614 	 * disable interrupts by writing nonzero like we used to, since with
3615 	 * our current organization this just gives complications and
3616 	 * pessimizations for re-enabling interrupts.  We used to have races
3617 	 * instead of the necessary complications.  Disabling interrupts
3618 	 * would just reduce the chance of a status update while we are
3619 	 * running (by switching to the interrupt-mode coalescence
3620 	 * parameters), but this chance is already very low so it is more
3621 	 * efficient to get another interrupt than prevent it.
3622 	 *
3623 	 * We do the ack first to ensure another interrupt if there is a
3624 	 * status update after the ack.  We don't check for the status
3625 	 * changing later because it is more efficient to get another
3626 	 * interrupt than prevent it, not quite as above (not checking is
3627 	 * a smaller optimization than not toggling the interrupt enable,
3628 	 * since checking doesn't involve PCI accesses and toggling require
3629 	 * the status check).  So toggling would probably be a pessimization
3630 	 * even with MSI.  It would only be needed for using a task queue.
3631 	 */
3632 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3633 
3634 	/*
3635 	 * Do the mandatory PCI flush as well as get the link status.
3636 	 */
3637 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3638 
3639 	/* Make sure the descriptor ring indexes are coherent. */
3640 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3641 	    sc->bge_cdata.bge_status_map,
3642 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3643 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
3644 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
3645 	sc->bge_ldata.bge_status_block->bge_status = 0;
3646 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3647 	    sc->bge_cdata.bge_status_map,
3648 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3649 
3650 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3651 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3652 	    statusword || sc->bge_link_evt)
3653 		bge_link_upd(sc);
3654 
3655 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3656 		/* Check RX return ring producer/consumer. */
3657 		bge_rxeof(sc, rx_prod, 1);
3658 	}
3659 
3660 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3661 		/* Check TX ring producer/consumer. */
3662 		bge_txeof(sc, tx_cons);
3663 	}
3664 
3665 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3666 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3667 		bge_start_locked(ifp);
3668 
3669 	BGE_UNLOCK(sc);
3670 }
3671 
3672 static void
3673 bge_asf_driver_up(struct bge_softc *sc)
3674 {
3675 	if (sc->bge_asf_mode & ASF_STACKUP) {
3676 		/* Send ASF heartbeat aprox. every 2s */
3677 		if (sc->bge_asf_count)
3678 			sc->bge_asf_count --;
3679 		else {
3680 			sc->bge_asf_count = 5;
3681 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3682 			    BGE_FW_DRV_ALIVE);
3683 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3684 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3685 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3686 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3687 		}
3688 	}
3689 }
3690 
3691 static void
3692 bge_tick(void *xsc)
3693 {
3694 	struct bge_softc *sc = xsc;
3695 	struct mii_data *mii = NULL;
3696 
3697 	BGE_LOCK_ASSERT(sc);
3698 
3699 	/* Synchronize with possible callout reset/stop. */
3700 	if (callout_pending(&sc->bge_stat_ch) ||
3701 	    !callout_active(&sc->bge_stat_ch))
3702 	    	return;
3703 
3704 	if (BGE_IS_5705_PLUS(sc))
3705 		bge_stats_update_regs(sc);
3706 	else
3707 		bge_stats_update(sc);
3708 
3709 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3710 		mii = device_get_softc(sc->bge_miibus);
3711 		/*
3712 		 * Do not touch PHY if we have link up. This could break
3713 		 * IPMI/ASF mode or produce extra input errors
3714 		 * (extra errors was reported for bcm5701 & bcm5704).
3715 		 */
3716 		if (!sc->bge_link)
3717 			mii_tick(mii);
3718 	} else {
3719 		/*
3720 		 * Since in TBI mode auto-polling can't be used we should poll
3721 		 * link status manually. Here we register pending link event
3722 		 * and trigger interrupt.
3723 		 */
3724 #ifdef DEVICE_POLLING
3725 		/* In polling mode we poll link state in bge_poll(). */
3726 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3727 #endif
3728 		{
3729 		sc->bge_link_evt++;
3730 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3731 		    sc->bge_flags & BGE_FLAG_5788)
3732 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3733 		else
3734 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3735 		}
3736 	}
3737 
3738 	bge_asf_driver_up(sc);
3739 	bge_watchdog(sc);
3740 
3741 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3742 }
3743 
3744 static void
3745 bge_stats_update_regs(struct bge_softc *sc)
3746 {
3747 	struct ifnet *ifp;
3748 
3749 	ifp = sc->bge_ifp;
3750 
3751 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3752 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3753 
3754 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3755 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3756 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3757 }
3758 
3759 static void
3760 bge_stats_update(struct bge_softc *sc)
3761 {
3762 	struct ifnet *ifp;
3763 	bus_size_t stats;
3764 	uint32_t cnt;	/* current register value */
3765 
3766 	ifp = sc->bge_ifp;
3767 
3768 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3769 
3770 #define	READ_STAT(sc, stats, stat) \
3771 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3772 
3773 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3774 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3775 	sc->bge_tx_collisions = cnt;
3776 
3777 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3778 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3779 	sc->bge_rx_discards = cnt;
3780 
3781 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3782 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3783 	sc->bge_tx_discards = cnt;
3784 
3785 #undef	READ_STAT
3786 }
3787 
3788 /*
3789  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3790  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3791  * but when such padded frames employ the bge IP/TCP checksum offload,
3792  * the hardware checksum assist gives incorrect results (possibly
3793  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3794  * If we pad such runts with zeros, the onboard checksum comes out correct.
3795  */
3796 static __inline int
3797 bge_cksum_pad(struct mbuf *m)
3798 {
3799 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3800 	struct mbuf *last;
3801 
3802 	/* If there's only the packet-header and we can pad there, use it. */
3803 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3804 	    M_TRAILINGSPACE(m) >= padlen) {
3805 		last = m;
3806 	} else {
3807 		/*
3808 		 * Walk packet chain to find last mbuf. We will either
3809 		 * pad there, or append a new mbuf and pad it.
3810 		 */
3811 		for (last = m; last->m_next != NULL; last = last->m_next);
3812 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3813 			/* Allocate new empty mbuf, pad it. Compact later. */
3814 			struct mbuf *n;
3815 
3816 			MGET(n, M_DONTWAIT, MT_DATA);
3817 			if (n == NULL)
3818 				return (ENOBUFS);
3819 			n->m_len = 0;
3820 			last->m_next = n;
3821 			last = n;
3822 		}
3823 	}
3824 
3825 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
3826 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3827 	last->m_len += padlen;
3828 	m->m_pkthdr.len += padlen;
3829 
3830 	return (0);
3831 }
3832 
3833 static struct mbuf *
3834 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss)
3835 {
3836 	struct ether_header *eh;
3837 	struct ip *ip;
3838 	struct tcphdr *tcp;
3839 	struct mbuf *n;
3840 	uint16_t hlen;
3841 	uint32_t ip_off, poff;
3842 
3843 	if (M_WRITABLE(m) == 0) {
3844 		/* Get a writable copy. */
3845 		n = m_dup(m, M_DONTWAIT);
3846 		m_freem(m);
3847 		if (n == NULL)
3848 			return (NULL);
3849 		m = n;
3850 	}
3851 	ip_off = sizeof(struct ether_header);
3852 	m = m_pullup(m, ip_off);
3853 	if (m == NULL)
3854 		return (NULL);
3855 	eh = mtod(m, struct ether_header *);
3856 	/* Check the existence of VLAN tag. */
3857 	if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
3858 		ip_off = sizeof(struct ether_vlan_header);
3859 		m = m_pullup(m, ip_off);
3860 		if (m == NULL)
3861 			return (NULL);
3862 	}
3863 	m = m_pullup(m, ip_off + sizeof(struct ip));
3864 	if (m == NULL)
3865 		return (NULL);
3866 	ip = (struct ip *)(mtod(m, char *) + ip_off);
3867 	poff = ip_off + (ip->ip_hl << 2);
3868 	m = m_pullup(m, poff + sizeof(struct tcphdr));
3869 	if (m == NULL)
3870 		return (NULL);
3871 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
3872 	m = m_pullup(m, poff + sizeof(struct tcphdr) + tcp->th_off);
3873 	if (m == NULL)
3874 		return (NULL);
3875 	/*
3876 	 * It seems controller doesn't modify IP length and TCP pseudo
3877 	 * checksum. These checksum computed by upper stack should be 0.
3878 	 */
3879 	*mss = m->m_pkthdr.tso_segsz;
3880 	ip->ip_sum = 0;
3881 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
3882 	/* Clear pseudo checksum computed by TCP stack. */
3883 	tcp->th_sum = 0;
3884 	/*
3885 	 * Broadcom controllers uses different descriptor format for
3886 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
3887 	 * license issue and lower performance of firmware based TSO
3888 	 * we only support hardware based TSO which is applicable for
3889 	 * BCM5755 or newer controllers. Hardware based TSO uses 11
3890 	 * bits to store MSS and upper 5 bits are used to store IP/TCP
3891 	 * header length(including IP/TCP options). The header length
3892 	 * is expressed as 32 bits unit.
3893 	 */
3894 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
3895 	*mss |= (hlen << 11);
3896 	return (m);
3897 }
3898 
3899 /*
3900  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3901  * pointers to descriptors.
3902  */
3903 static int
3904 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3905 {
3906 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
3907 	bus_dmamap_t		map;
3908 	struct bge_tx_bd	*d;
3909 	struct mbuf		*m = *m_head;
3910 	uint32_t		idx = *txidx;
3911 	uint16_t		csum_flags, mss, vlan_tag;
3912 	int			nsegs, i, error;
3913 
3914 	csum_flags = 0;
3915 	mss = 0;
3916 	vlan_tag = 0;
3917 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
3918 		*m_head = m = bge_setup_tso(sc, m, &mss);
3919 		if (*m_head == NULL)
3920 			return (ENOBUFS);
3921 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
3922 		    BGE_TXBDFLAG_CPU_POST_DMA;
3923 	} else if ((m->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) != 0) {
3924 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3925 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3926 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3927 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3928 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3929 			    (error = bge_cksum_pad(m)) != 0) {
3930 				m_freem(m);
3931 				*m_head = NULL;
3932 				return (error);
3933 			}
3934 		}
3935 		if (m->m_flags & M_LASTFRAG)
3936 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3937 		else if (m->m_flags & M_FRAG)
3938 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3939 	}
3940 
3941 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3942 	    sc->bge_forced_collapse > 0 &&
3943 	    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
3944 		/*
3945 		 * Forcedly collapse mbuf chains to overcome hardware
3946 		 * limitation which only support a single outstanding
3947 		 * DMA read operation.
3948 		 */
3949 		if (sc->bge_forced_collapse == 1)
3950 			m = m_defrag(m, M_DONTWAIT);
3951 		else
3952 			m = m_collapse(m, M_DONTWAIT, sc->bge_forced_collapse);
3953 		if (m == NULL)
3954 			m = *m_head;
3955 		*m_head = m;
3956 	}
3957 
3958 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3959 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
3960 	    &nsegs, BUS_DMA_NOWAIT);
3961 	if (error == EFBIG) {
3962 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
3963 		if (m == NULL) {
3964 			m_freem(*m_head);
3965 			*m_head = NULL;
3966 			return (ENOBUFS);
3967 		}
3968 		*m_head = m;
3969 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
3970 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3971 		if (error) {
3972 			m_freem(m);
3973 			*m_head = NULL;
3974 			return (error);
3975 		}
3976 	} else if (error != 0)
3977 		return (error);
3978 
3979 	/* Check if we have enough free send BDs. */
3980 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
3981 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
3982 		return (ENOBUFS);
3983 	}
3984 
3985 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3986 
3987 #if __FreeBSD_version > 700022
3988 	if (m->m_flags & M_VLANTAG) {
3989 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3990 		vlan_tag = m->m_pkthdr.ether_vtag;
3991 	}
3992 #else
3993 	{
3994 		struct m_tag		*mtag;
3995 
3996 		if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3997 			csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3998 			vlan_tag = VLAN_TAG_VALUE(mtag);
3999 		}
4000 	}
4001 #endif
4002 	for (i = 0; ; i++) {
4003 		d = &sc->bge_ldata.bge_tx_ring[idx];
4004 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4005 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4006 		d->bge_len = segs[i].ds_len;
4007 		d->bge_flags = csum_flags;
4008 		d->bge_vlan_tag = vlan_tag;
4009 		d->bge_mss = mss;
4010 		if (i == nsegs - 1)
4011 			break;
4012 		BGE_INC(idx, BGE_TX_RING_CNT);
4013 	}
4014 
4015 	/* Mark the last segment as end of packet... */
4016 	d->bge_flags |= BGE_TXBDFLAG_END;
4017 
4018 	/*
4019 	 * Insure that the map for this transmission
4020 	 * is placed at the array index of the last descriptor
4021 	 * in this chain.
4022 	 */
4023 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4024 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4025 	sc->bge_cdata.bge_tx_chain[idx] = m;
4026 	sc->bge_txcnt += nsegs;
4027 
4028 	BGE_INC(idx, BGE_TX_RING_CNT);
4029 	*txidx = idx;
4030 
4031 	return (0);
4032 }
4033 
4034 /*
4035  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4036  * to the mbuf data regions directly in the transmit descriptors.
4037  */
4038 static void
4039 bge_start_locked(struct ifnet *ifp)
4040 {
4041 	struct bge_softc *sc;
4042 	struct mbuf *m_head;
4043 	uint32_t prodidx;
4044 	int count;
4045 
4046 	sc = ifp->if_softc;
4047 	BGE_LOCK_ASSERT(sc);
4048 
4049 	if (!sc->bge_link ||
4050 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4051 	    IFF_DRV_RUNNING)
4052 		return;
4053 
4054 	prodidx = sc->bge_tx_prodidx;
4055 
4056 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4057 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4058 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4059 			break;
4060 		}
4061 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4062 		if (m_head == NULL)
4063 			break;
4064 
4065 		/*
4066 		 * XXX
4067 		 * The code inside the if() block is never reached since we
4068 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4069 		 * requests to checksum TCP/UDP in a fragmented packet.
4070 		 *
4071 		 * XXX
4072 		 * safety overkill.  If this is a fragmented packet chain
4073 		 * with delayed TCP/UDP checksums, then only encapsulate
4074 		 * it if we have enough descriptors to handle the entire
4075 		 * chain at once.
4076 		 * (paranoia -- may not actually be needed)
4077 		 */
4078 		if (m_head->m_flags & M_FIRSTFRAG &&
4079 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4080 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4081 			    m_head->m_pkthdr.csum_data + 16) {
4082 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4083 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4084 				break;
4085 			}
4086 		}
4087 
4088 		/*
4089 		 * Pack the data into the transmit ring. If we
4090 		 * don't have room, set the OACTIVE flag and wait
4091 		 * for the NIC to drain the ring.
4092 		 */
4093 		if (bge_encap(sc, &m_head, &prodidx)) {
4094 			if (m_head == NULL)
4095 				break;
4096 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4097 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4098 			break;
4099 		}
4100 		++count;
4101 
4102 		/*
4103 		 * If there's a BPF listener, bounce a copy of this frame
4104 		 * to him.
4105 		 */
4106 #ifdef ETHER_BPF_MTAP
4107 		ETHER_BPF_MTAP(ifp, m_head);
4108 #else
4109 		BPF_MTAP(ifp, m_head);
4110 #endif
4111 	}
4112 
4113 	if (count > 0) {
4114 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4115 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4116 		/* Transmit. */
4117 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4118 		/* 5700 b2 errata */
4119 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4120 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4121 
4122 		sc->bge_tx_prodidx = prodidx;
4123 
4124 		/*
4125 		 * Set a timeout in case the chip goes out to lunch.
4126 		 */
4127 		sc->bge_timer = 5;
4128 	}
4129 }
4130 
4131 /*
4132  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4133  * to the mbuf data regions directly in the transmit descriptors.
4134  */
4135 static void
4136 bge_start(struct ifnet *ifp)
4137 {
4138 	struct bge_softc *sc;
4139 
4140 	sc = ifp->if_softc;
4141 	BGE_LOCK(sc);
4142 	bge_start_locked(ifp);
4143 	BGE_UNLOCK(sc);
4144 }
4145 
4146 static void
4147 bge_init_locked(struct bge_softc *sc)
4148 {
4149 	struct ifnet *ifp;
4150 	uint16_t *m;
4151 
4152 	BGE_LOCK_ASSERT(sc);
4153 
4154 	ifp = sc->bge_ifp;
4155 
4156 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4157 		return;
4158 
4159 	/* Cancel pending I/O and flush buffers. */
4160 	bge_stop(sc);
4161 
4162 	bge_stop_fw(sc);
4163 	bge_sig_pre_reset(sc, BGE_RESET_START);
4164 	bge_reset(sc);
4165 	bge_sig_legacy(sc, BGE_RESET_START);
4166 	bge_sig_post_reset(sc, BGE_RESET_START);
4167 
4168 	bge_chipinit(sc);
4169 
4170 	/*
4171 	 * Init the various state machines, ring
4172 	 * control blocks and firmware.
4173 	 */
4174 	if (bge_blockinit(sc)) {
4175 		device_printf(sc->bge_dev, "initialization failure\n");
4176 		return;
4177 	}
4178 
4179 	ifp = sc->bge_ifp;
4180 
4181 	/* Specify MTU. */
4182 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4183 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4184 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4185 
4186 	/* Load our MAC address. */
4187 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4188 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4189 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4190 
4191 	/* Program promiscuous mode. */
4192 	bge_setpromisc(sc);
4193 
4194 	/* Program multicast filter. */
4195 	bge_setmulti(sc);
4196 
4197 	/* Program VLAN tag stripping. */
4198 	bge_setvlan(sc);
4199 
4200 	/* Init RX ring. */
4201 	if (bge_init_rx_ring_std(sc) != 0) {
4202 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4203 		bge_stop(sc);
4204 		return;
4205 	}
4206 
4207 	/*
4208 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4209 	 * memory to insure that the chip has in fact read the first
4210 	 * entry of the ring.
4211 	 */
4212 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4213 		uint32_t		v, i;
4214 		for (i = 0; i < 10; i++) {
4215 			DELAY(20);
4216 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4217 			if (v == (MCLBYTES - ETHER_ALIGN))
4218 				break;
4219 		}
4220 		if (i == 10)
4221 			device_printf (sc->bge_dev,
4222 			    "5705 A0 chip failed to load RX ring\n");
4223 	}
4224 
4225 	/* Init jumbo RX ring. */
4226 	if (ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
4227 	    (MCLBYTES - ETHER_ALIGN)) {
4228 		if (bge_init_rx_ring_jumbo(sc) != 0) {
4229 			device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4230 			bge_stop(sc);
4231 			return;
4232 		}
4233 	}
4234 
4235 	/* Init our RX return ring index. */
4236 	sc->bge_rx_saved_considx = 0;
4237 
4238 	/* Init our RX/TX stat counters. */
4239 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
4240 
4241 	/* Init TX ring. */
4242 	bge_init_tx_ring(sc);
4243 
4244 	/* Turn on transmitter. */
4245 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4246 
4247 	/* Turn on receiver. */
4248 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4249 
4250 	/* Tell firmware we're alive. */
4251 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4252 
4253 #ifdef DEVICE_POLLING
4254 	/* Disable interrupts if we are polling. */
4255 	if (ifp->if_capenable & IFCAP_POLLING) {
4256 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4257 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
4258 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4259 	} else
4260 #endif
4261 
4262 	/* Enable host interrupts. */
4263 	{
4264 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4265 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4266 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4267 	}
4268 
4269 	bge_ifmedia_upd_locked(ifp);
4270 
4271 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4272 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4273 
4274 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4275 }
4276 
4277 static void
4278 bge_init(void *xsc)
4279 {
4280 	struct bge_softc *sc = xsc;
4281 
4282 	BGE_LOCK(sc);
4283 	bge_init_locked(sc);
4284 	BGE_UNLOCK(sc);
4285 }
4286 
4287 /*
4288  * Set media options.
4289  */
4290 static int
4291 bge_ifmedia_upd(struct ifnet *ifp)
4292 {
4293 	struct bge_softc *sc = ifp->if_softc;
4294 	int res;
4295 
4296 	BGE_LOCK(sc);
4297 	res = bge_ifmedia_upd_locked(ifp);
4298 	BGE_UNLOCK(sc);
4299 
4300 	return (res);
4301 }
4302 
4303 static int
4304 bge_ifmedia_upd_locked(struct ifnet *ifp)
4305 {
4306 	struct bge_softc *sc = ifp->if_softc;
4307 	struct mii_data *mii;
4308 	struct mii_softc *miisc;
4309 	struct ifmedia *ifm;
4310 
4311 	BGE_LOCK_ASSERT(sc);
4312 
4313 	ifm = &sc->bge_ifmedia;
4314 
4315 	/* If this is a 1000baseX NIC, enable the TBI port. */
4316 	if (sc->bge_flags & BGE_FLAG_TBI) {
4317 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4318 			return (EINVAL);
4319 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4320 		case IFM_AUTO:
4321 			/*
4322 			 * The BCM5704 ASIC appears to have a special
4323 			 * mechanism for programming the autoneg
4324 			 * advertisement registers in TBI mode.
4325 			 */
4326 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4327 				uint32_t sgdig;
4328 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4329 				if (sgdig & BGE_SGDIGSTS_DONE) {
4330 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4331 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4332 					sgdig |= BGE_SGDIGCFG_AUTO |
4333 					    BGE_SGDIGCFG_PAUSE_CAP |
4334 					    BGE_SGDIGCFG_ASYM_PAUSE;
4335 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4336 					    sgdig | BGE_SGDIGCFG_SEND);
4337 					DELAY(5);
4338 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4339 				}
4340 			}
4341 			break;
4342 		case IFM_1000_SX:
4343 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4344 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4345 				    BGE_MACMODE_HALF_DUPLEX);
4346 			} else {
4347 				BGE_SETBIT(sc, BGE_MAC_MODE,
4348 				    BGE_MACMODE_HALF_DUPLEX);
4349 			}
4350 			break;
4351 		default:
4352 			return (EINVAL);
4353 		}
4354 		return (0);
4355 	}
4356 
4357 	sc->bge_link_evt++;
4358 	mii = device_get_softc(sc->bge_miibus);
4359 	if (mii->mii_instance)
4360 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4361 			mii_phy_reset(miisc);
4362 	mii_mediachg(mii);
4363 
4364 	/*
4365 	 * Force an interrupt so that we will call bge_link_upd
4366 	 * if needed and clear any pending link state attention.
4367 	 * Without this we are not getting any further interrupts
4368 	 * for link state changes and thus will not UP the link and
4369 	 * not be able to send in bge_start_locked. The only
4370 	 * way to get things working was to receive a packet and
4371 	 * get an RX intr.
4372 	 * bge_tick should help for fiber cards and we might not
4373 	 * need to do this here if BGE_FLAG_TBI is set but as
4374 	 * we poll for fiber anyway it should not harm.
4375 	 */
4376 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4377 	    sc->bge_flags & BGE_FLAG_5788)
4378 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4379 	else
4380 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4381 
4382 	return (0);
4383 }
4384 
4385 /*
4386  * Report current media status.
4387  */
4388 static void
4389 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4390 {
4391 	struct bge_softc *sc = ifp->if_softc;
4392 	struct mii_data *mii;
4393 
4394 	BGE_LOCK(sc);
4395 
4396 	if (sc->bge_flags & BGE_FLAG_TBI) {
4397 		ifmr->ifm_status = IFM_AVALID;
4398 		ifmr->ifm_active = IFM_ETHER;
4399 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4400 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4401 			ifmr->ifm_status |= IFM_ACTIVE;
4402 		else {
4403 			ifmr->ifm_active |= IFM_NONE;
4404 			BGE_UNLOCK(sc);
4405 			return;
4406 		}
4407 		ifmr->ifm_active |= IFM_1000_SX;
4408 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4409 			ifmr->ifm_active |= IFM_HDX;
4410 		else
4411 			ifmr->ifm_active |= IFM_FDX;
4412 		BGE_UNLOCK(sc);
4413 		return;
4414 	}
4415 
4416 	mii = device_get_softc(sc->bge_miibus);
4417 	mii_pollstat(mii);
4418 	ifmr->ifm_active = mii->mii_media_active;
4419 	ifmr->ifm_status = mii->mii_media_status;
4420 
4421 	BGE_UNLOCK(sc);
4422 }
4423 
4424 static int
4425 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4426 {
4427 	struct bge_softc *sc = ifp->if_softc;
4428 	struct ifreq *ifr = (struct ifreq *) data;
4429 	struct mii_data *mii;
4430 	int flags, mask, error = 0;
4431 
4432 	switch (command) {
4433 	case SIOCSIFMTU:
4434 		if (ifr->ifr_mtu < ETHERMIN ||
4435 		    ((BGE_IS_JUMBO_CAPABLE(sc)) &&
4436 		    ifr->ifr_mtu > BGE_JUMBO_MTU) ||
4437 		    ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
4438 		    ifr->ifr_mtu > ETHERMTU))
4439 			error = EINVAL;
4440 		else if (ifp->if_mtu != ifr->ifr_mtu) {
4441 			ifp->if_mtu = ifr->ifr_mtu;
4442 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4443 			bge_init(sc);
4444 		}
4445 		break;
4446 	case SIOCSIFFLAGS:
4447 		BGE_LOCK(sc);
4448 		if (ifp->if_flags & IFF_UP) {
4449 			/*
4450 			 * If only the state of the PROMISC flag changed,
4451 			 * then just use the 'set promisc mode' command
4452 			 * instead of reinitializing the entire NIC. Doing
4453 			 * a full re-init means reloading the firmware and
4454 			 * waiting for it to start up, which may take a
4455 			 * second or two.  Similarly for ALLMULTI.
4456 			 */
4457 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4458 				flags = ifp->if_flags ^ sc->bge_if_flags;
4459 				if (flags & IFF_PROMISC)
4460 					bge_setpromisc(sc);
4461 				if (flags & IFF_ALLMULTI)
4462 					bge_setmulti(sc);
4463 			} else
4464 				bge_init_locked(sc);
4465 		} else {
4466 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4467 				bge_stop(sc);
4468 			}
4469 		}
4470 		sc->bge_if_flags = ifp->if_flags;
4471 		BGE_UNLOCK(sc);
4472 		error = 0;
4473 		break;
4474 	case SIOCADDMULTI:
4475 	case SIOCDELMULTI:
4476 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4477 			BGE_LOCK(sc);
4478 			bge_setmulti(sc);
4479 			BGE_UNLOCK(sc);
4480 			error = 0;
4481 		}
4482 		break;
4483 	case SIOCSIFMEDIA:
4484 	case SIOCGIFMEDIA:
4485 		if (sc->bge_flags & BGE_FLAG_TBI) {
4486 			error = ifmedia_ioctl(ifp, ifr,
4487 			    &sc->bge_ifmedia, command);
4488 		} else {
4489 			mii = device_get_softc(sc->bge_miibus);
4490 			error = ifmedia_ioctl(ifp, ifr,
4491 			    &mii->mii_media, command);
4492 		}
4493 		break;
4494 	case SIOCSIFCAP:
4495 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4496 #ifdef DEVICE_POLLING
4497 		if (mask & IFCAP_POLLING) {
4498 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
4499 				error = ether_poll_register(bge_poll, ifp);
4500 				if (error)
4501 					return (error);
4502 				BGE_LOCK(sc);
4503 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4504 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4505 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4506 				ifp->if_capenable |= IFCAP_POLLING;
4507 				BGE_UNLOCK(sc);
4508 			} else {
4509 				error = ether_poll_deregister(ifp);
4510 				/* Enable interrupt even in error case */
4511 				BGE_LOCK(sc);
4512 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4513 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
4514 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4515 				ifp->if_capenable &= ~IFCAP_POLLING;
4516 				BGE_UNLOCK(sc);
4517 			}
4518 		}
4519 #endif
4520 		if (mask & IFCAP_HWCSUM) {
4521 			ifp->if_capenable ^= IFCAP_HWCSUM;
4522 			if (IFCAP_HWCSUM & ifp->if_capenable &&
4523 			    IFCAP_HWCSUM & ifp->if_capabilities)
4524 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4525 			else
4526 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4527 #ifdef VLAN_CAPABILITIES
4528 			VLAN_CAPABILITIES(ifp);
4529 #endif
4530 		}
4531 
4532 		if ((mask & IFCAP_TSO4) != 0 &&
4533 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
4534 			ifp->if_capenable ^= IFCAP_TSO4;
4535 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
4536 				ifp->if_hwassist |= CSUM_TSO;
4537 			else
4538 				ifp->if_hwassist &= ~CSUM_TSO;
4539 		}
4540 
4541 		if (mask & IFCAP_VLAN_MTU) {
4542 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
4543 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4544 			bge_init(sc);
4545 		}
4546 
4547 		if (mask & IFCAP_VLAN_HWTAGGING) {
4548 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
4549 			BGE_LOCK(sc);
4550 			bge_setvlan(sc);
4551 			BGE_UNLOCK(sc);
4552 #ifdef VLAN_CAPABILITIES
4553 			VLAN_CAPABILITIES(ifp);
4554 #endif
4555 		}
4556 
4557 		break;
4558 	default:
4559 		error = ether_ioctl(ifp, command, data);
4560 		break;
4561 	}
4562 
4563 	return (error);
4564 }
4565 
4566 static void
4567 bge_watchdog(struct bge_softc *sc)
4568 {
4569 	struct ifnet *ifp;
4570 
4571 	BGE_LOCK_ASSERT(sc);
4572 
4573 	if (sc->bge_timer == 0 || --sc->bge_timer)
4574 		return;
4575 
4576 	ifp = sc->bge_ifp;
4577 
4578 	if_printf(ifp, "watchdog timeout -- resetting\n");
4579 
4580 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4581 	bge_init_locked(sc);
4582 
4583 	ifp->if_oerrors++;
4584 }
4585 
4586 /*
4587  * Stop the adapter and free any mbufs allocated to the
4588  * RX and TX lists.
4589  */
4590 static void
4591 bge_stop(struct bge_softc *sc)
4592 {
4593 	struct ifnet *ifp;
4594 
4595 	BGE_LOCK_ASSERT(sc);
4596 
4597 	ifp = sc->bge_ifp;
4598 
4599 	callout_stop(&sc->bge_stat_ch);
4600 
4601 	/* Disable host interrupts. */
4602 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4603 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4604 
4605 	/*
4606 	 * Tell firmware we're shutting down.
4607 	 */
4608 	bge_stop_fw(sc);
4609 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4610 
4611 	/*
4612 	 * Disable all of the receiver blocks.
4613 	 */
4614 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4615 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4616 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4617 	if (!(BGE_IS_5705_PLUS(sc)))
4618 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4619 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4620 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4621 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4622 
4623 	/*
4624 	 * Disable all of the transmit blocks.
4625 	 */
4626 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4627 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4628 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4629 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4630 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4631 	if (!(BGE_IS_5705_PLUS(sc)))
4632 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4633 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4634 
4635 	/*
4636 	 * Shut down all of the memory managers and related
4637 	 * state machines.
4638 	 */
4639 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4640 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4641 	if (!(BGE_IS_5705_PLUS(sc)))
4642 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4643 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4644 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4645 	if (!(BGE_IS_5705_PLUS(sc))) {
4646 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4647 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4648 	}
4649 
4650 	bge_reset(sc);
4651 	bge_sig_legacy(sc, BGE_RESET_STOP);
4652 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4653 
4654 	/*
4655 	 * Keep the ASF firmware running if up.
4656 	 */
4657 	if (sc->bge_asf_mode & ASF_STACKUP)
4658 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4659 	else
4660 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4661 
4662 	/* Free the RX lists. */
4663 	bge_free_rx_ring_std(sc);
4664 
4665 	/* Free jumbo RX list. */
4666 	if (BGE_IS_JUMBO_CAPABLE(sc))
4667 		bge_free_rx_ring_jumbo(sc);
4668 
4669 	/* Free TX buffers. */
4670 	bge_free_tx_ring(sc);
4671 
4672 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4673 
4674 	/* Clear MAC's link state (PHY may still have link UP). */
4675 	if (bootverbose && sc->bge_link)
4676 		if_printf(sc->bge_ifp, "link DOWN\n");
4677 	sc->bge_link = 0;
4678 
4679 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4680 }
4681 
4682 /*
4683  * Stop all chip I/O so that the kernel's probe routines don't
4684  * get confused by errant DMAs when rebooting.
4685  */
4686 static int
4687 bge_shutdown(device_t dev)
4688 {
4689 	struct bge_softc *sc;
4690 
4691 	sc = device_get_softc(dev);
4692 	BGE_LOCK(sc);
4693 	bge_stop(sc);
4694 	bge_reset(sc);
4695 	BGE_UNLOCK(sc);
4696 
4697 	return (0);
4698 }
4699 
4700 static int
4701 bge_suspend(device_t dev)
4702 {
4703 	struct bge_softc *sc;
4704 
4705 	sc = device_get_softc(dev);
4706 	BGE_LOCK(sc);
4707 	bge_stop(sc);
4708 	BGE_UNLOCK(sc);
4709 
4710 	return (0);
4711 }
4712 
4713 static int
4714 bge_resume(device_t dev)
4715 {
4716 	struct bge_softc *sc;
4717 	struct ifnet *ifp;
4718 
4719 	sc = device_get_softc(dev);
4720 	BGE_LOCK(sc);
4721 	ifp = sc->bge_ifp;
4722 	if (ifp->if_flags & IFF_UP) {
4723 		bge_init_locked(sc);
4724 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4725 			bge_start_locked(ifp);
4726 	}
4727 	BGE_UNLOCK(sc);
4728 
4729 	return (0);
4730 }
4731 
4732 static void
4733 bge_link_upd(struct bge_softc *sc)
4734 {
4735 	struct mii_data *mii;
4736 	uint32_t link, status;
4737 
4738 	BGE_LOCK_ASSERT(sc);
4739 
4740 	/* Clear 'pending link event' flag. */
4741 	sc->bge_link_evt = 0;
4742 
4743 	/*
4744 	 * Process link state changes.
4745 	 * Grrr. The link status word in the status block does
4746 	 * not work correctly on the BCM5700 rev AX and BX chips,
4747 	 * according to all available information. Hence, we have
4748 	 * to enable MII interrupts in order to properly obtain
4749 	 * async link changes. Unfortunately, this also means that
4750 	 * we have to read the MAC status register to detect link
4751 	 * changes, thereby adding an additional register access to
4752 	 * the interrupt handler.
4753 	 *
4754 	 * XXX: perhaps link state detection procedure used for
4755 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4756 	 */
4757 
4758 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4759 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4760 		status = CSR_READ_4(sc, BGE_MAC_STS);
4761 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4762 			mii = device_get_softc(sc->bge_miibus);
4763 			mii_pollstat(mii);
4764 			if (!sc->bge_link &&
4765 			    mii->mii_media_status & IFM_ACTIVE &&
4766 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4767 				sc->bge_link++;
4768 				if (bootverbose)
4769 					if_printf(sc->bge_ifp, "link UP\n");
4770 			} else if (sc->bge_link &&
4771 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4772 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4773 				sc->bge_link = 0;
4774 				if (bootverbose)
4775 					if_printf(sc->bge_ifp, "link DOWN\n");
4776 			}
4777 
4778 			/* Clear the interrupt. */
4779 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4780 			    BGE_EVTENB_MI_INTERRUPT);
4781 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4782 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4783 			    BRGPHY_INTRS);
4784 		}
4785 		return;
4786 	}
4787 
4788 	if (sc->bge_flags & BGE_FLAG_TBI) {
4789 		status = CSR_READ_4(sc, BGE_MAC_STS);
4790 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4791 			if (!sc->bge_link) {
4792 				sc->bge_link++;
4793 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4794 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4795 					    BGE_MACMODE_TBI_SEND_CFGS);
4796 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4797 				if (bootverbose)
4798 					if_printf(sc->bge_ifp, "link UP\n");
4799 				if_link_state_change(sc->bge_ifp,
4800 				    LINK_STATE_UP);
4801 			}
4802 		} else if (sc->bge_link) {
4803 			sc->bge_link = 0;
4804 			if (bootverbose)
4805 				if_printf(sc->bge_ifp, "link DOWN\n");
4806 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4807 		}
4808 	} else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4809 		/*
4810 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4811 		 * in status word always set. Workaround this bug by reading
4812 		 * PHY link status directly.
4813 		 */
4814 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4815 
4816 		if (link != sc->bge_link ||
4817 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4818 			mii = device_get_softc(sc->bge_miibus);
4819 			mii_pollstat(mii);
4820 			if (!sc->bge_link &&
4821 			    mii->mii_media_status & IFM_ACTIVE &&
4822 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4823 				sc->bge_link++;
4824 				if (bootverbose)
4825 					if_printf(sc->bge_ifp, "link UP\n");
4826 			} else if (sc->bge_link &&
4827 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4828 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4829 				sc->bge_link = 0;
4830 				if (bootverbose)
4831 					if_printf(sc->bge_ifp, "link DOWN\n");
4832 			}
4833 		}
4834 	} else {
4835 		/*
4836 		 * Discard link events for MII/GMII controllers
4837 		 * if MI auto-polling is disabled.
4838 		 */
4839 	}
4840 
4841 	/* Clear the attention. */
4842 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4843 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4844 	    BGE_MACSTAT_LINK_CHANGED);
4845 }
4846 
4847 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
4848 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
4849 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
4850 	    desc)
4851 
4852 static void
4853 bge_add_sysctls(struct bge_softc *sc)
4854 {
4855 	struct sysctl_ctx_list *ctx;
4856 	struct sysctl_oid_list *children, *schildren;
4857 	struct sysctl_oid *tree;
4858 
4859 	ctx = device_get_sysctl_ctx(sc->bge_dev);
4860 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4861 
4862 #ifdef BGE_REGISTER_DEBUG
4863 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4864 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4865 	    "Debug Information");
4866 
4867 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4868 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4869 	    "Register Read");
4870 
4871 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4872 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4873 	    "Memory Read");
4874 
4875 #endif
4876 
4877 	/*
4878 	 * A common design characteristic for many Broadcom client controllers
4879 	 * is that they only support a single outstanding DMA read operation
4880 	 * on the PCIe bus. This means that it will take twice as long to fetch
4881 	 * a TX frame that is split into header and payload buffers as it does
4882 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
4883 	 * these controllers, coalescing buffers to reduce the number of memory
4884 	 * reads is effective way to get maximum performance(about 940Mbps).
4885 	 * Without collapsing TX buffers the maximum TCP bulk transfer
4886 	 * performance is about 850Mbps. However forcing coalescing mbufs
4887 	 * consumes a lot of CPU cycles, so leave it off by default.
4888 	 */
4889 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
4890 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
4891 	    "Number of fragmented TX buffers of a frame allowed before "
4892 	    "forced collapsing");
4893 	resource_int_value(device_get_name(sc->bge_dev),
4894 	    device_get_unit(sc->bge_dev), "forced_collapse",
4895 	    &sc->bge_forced_collapse);
4896 
4897 	if (BGE_IS_5705_PLUS(sc))
4898 		return;
4899 
4900 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
4901 	    NULL, "BGE Statistics");
4902 	schildren = children = SYSCTL_CHILDREN(tree);
4903 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
4904 	    children, COSFramesDroppedDueToFilters,
4905 	    "FramesDroppedDueToFilters");
4906 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
4907 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
4908 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
4909 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
4910 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
4911 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
4912 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
4913 	    children, ifInDiscards, "InputDiscards");
4914 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
4915 	    children, ifInErrors, "InputErrors");
4916 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
4917 	    children, nicRecvThresholdHit, "RecvThresholdHit");
4918 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
4919 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
4920 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
4921 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
4922 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
4923 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
4924 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
4925 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
4926 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
4927 	    children, nicRingStatusUpdate, "RingStatusUpdate");
4928 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
4929 	    children, nicInterrupts, "Interrupts");
4930 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
4931 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
4932 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
4933 	    children, nicSendThresholdHit, "SendThresholdHit");
4934 
4935 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
4936 	    NULL, "BGE RX Statistics");
4937 	children = SYSCTL_CHILDREN(tree);
4938 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
4939 	    children, rxstats.ifHCInOctets, "Octets");
4940 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
4941 	    children, rxstats.etherStatsFragments, "Fragments");
4942 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
4943 	    children, rxstats.ifHCInUcastPkts, "UcastPkts");
4944 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
4945 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
4946 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
4947 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
4948 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
4949 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
4950 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
4951 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
4952 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
4953 	    children, rxstats.xoffPauseFramesReceived,
4954 	    "xoffPauseFramesReceived");
4955 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
4956 	    children, rxstats.macControlFramesReceived,
4957 	    "ControlFramesReceived");
4958 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
4959 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
4960 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
4961 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
4962 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
4963 	    children, rxstats.etherStatsJabbers, "Jabbers");
4964 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
4965 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
4966 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
4967 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
4968 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
4969 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
4970 
4971 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
4972 	    NULL, "BGE TX Statistics");
4973 	children = SYSCTL_CHILDREN(tree);
4974 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
4975 	    children, txstats.ifHCOutOctets, "Octets");
4976 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
4977 	    children, txstats.etherStatsCollisions, "Collisions");
4978 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
4979 	    children, txstats.outXonSent, "XonSent");
4980 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
4981 	    children, txstats.outXoffSent, "XoffSent");
4982 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
4983 	    children, txstats.flowControlDone, "flowControlDone");
4984 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
4985 	    children, txstats.dot3StatsInternalMacTransmitErrors,
4986 	    "InternalMacTransmitErrors");
4987 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
4988 	    children, txstats.dot3StatsSingleCollisionFrames,
4989 	    "SingleCollisionFrames");
4990 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
4991 	    children, txstats.dot3StatsMultipleCollisionFrames,
4992 	    "MultipleCollisionFrames");
4993 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
4994 	    children, txstats.dot3StatsDeferredTransmissions,
4995 	    "DeferredTransmissions");
4996 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
4997 	    children, txstats.dot3StatsExcessiveCollisions,
4998 	    "ExcessiveCollisions");
4999 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5000 	    children, txstats.dot3StatsLateCollisions,
5001 	    "LateCollisions");
5002 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5003 	    children, txstats.ifHCOutUcastPkts, "UcastPkts");
5004 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5005 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5006 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5007 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5008 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5009 	    children, txstats.dot3StatsCarrierSenseErrors,
5010 	    "CarrierSenseErrors");
5011 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5012 	    children, txstats.ifOutDiscards, "Discards");
5013 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5014 	    children, txstats.ifOutErrors, "Errors");
5015 }
5016 
5017 static int
5018 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
5019 {
5020 	struct bge_softc *sc;
5021 	uint32_t result;
5022 	int offset;
5023 
5024 	sc = (struct bge_softc *)arg1;
5025 	offset = arg2;
5026 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
5027 	    offsetof(bge_hostaddr, bge_addr_lo));
5028 	return (sysctl_handle_int(oidp, &result, 0, req));
5029 }
5030 
5031 #ifdef BGE_REGISTER_DEBUG
5032 static int
5033 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5034 {
5035 	struct bge_softc *sc;
5036 	uint16_t *sbdata;
5037 	int error;
5038 	int result;
5039 	int i, j;
5040 
5041 	result = -1;
5042 	error = sysctl_handle_int(oidp, &result, 0, req);
5043 	if (error || (req->newptr == NULL))
5044 		return (error);
5045 
5046 	if (result == 1) {
5047 		sc = (struct bge_softc *)arg1;
5048 
5049 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
5050 		printf("Status Block:\n");
5051 		for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
5052 			printf("%06x:", i);
5053 			for (j = 0; j < 8; j++) {
5054 				printf(" %04x", sbdata[i]);
5055 				i += 4;
5056 			}
5057 			printf("\n");
5058 		}
5059 
5060 		printf("Registers:\n");
5061 		for (i = 0x800; i < 0xA00; ) {
5062 			printf("%06x:", i);
5063 			for (j = 0; j < 8; j++) {
5064 				printf(" %08x", CSR_READ_4(sc, i));
5065 				i += 4;
5066 			}
5067 			printf("\n");
5068 		}
5069 
5070 		printf("Hardware Flags:\n");
5071 		if (BGE_IS_5755_PLUS(sc))
5072 			printf(" - 5755 Plus\n");
5073 		if (BGE_IS_575X_PLUS(sc))
5074 			printf(" - 575X Plus\n");
5075 		if (BGE_IS_5705_PLUS(sc))
5076 			printf(" - 5705 Plus\n");
5077 		if (BGE_IS_5714_FAMILY(sc))
5078 			printf(" - 5714 Family\n");
5079 		if (BGE_IS_5700_FAMILY(sc))
5080 			printf(" - 5700 Family\n");
5081 		if (sc->bge_flags & BGE_FLAG_JUMBO)
5082 			printf(" - Supports Jumbo Frames\n");
5083 		if (sc->bge_flags & BGE_FLAG_PCIX)
5084 			printf(" - PCI-X Bus\n");
5085 		if (sc->bge_flags & BGE_FLAG_PCIE)
5086 			printf(" - PCI Express Bus\n");
5087 		if (sc->bge_flags & BGE_FLAG_NO_3LED)
5088 			printf(" - No 3 LEDs\n");
5089 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
5090 			printf(" - RX Alignment Bug\n");
5091 	}
5092 
5093 	return (error);
5094 }
5095 
5096 static int
5097 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
5098 {
5099 	struct bge_softc *sc;
5100 	int error;
5101 	uint16_t result;
5102 	uint32_t val;
5103 
5104 	result = -1;
5105 	error = sysctl_handle_int(oidp, &result, 0, req);
5106 	if (error || (req->newptr == NULL))
5107 		return (error);
5108 
5109 	if (result < 0x8000) {
5110 		sc = (struct bge_softc *)arg1;
5111 		val = CSR_READ_4(sc, result);
5112 		printf("reg 0x%06X = 0x%08X\n", result, val);
5113 	}
5114 
5115 	return (error);
5116 }
5117 
5118 static int
5119 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
5120 {
5121 	struct bge_softc *sc;
5122 	int error;
5123 	uint16_t result;
5124 	uint32_t val;
5125 
5126 	result = -1;
5127 	error = sysctl_handle_int(oidp, &result, 0, req);
5128 	if (error || (req->newptr == NULL))
5129 		return (error);
5130 
5131 	if (result < 0x8000) {
5132 		sc = (struct bge_softc *)arg1;
5133 		val = bge_readmem_ind(sc, result);
5134 		printf("mem 0x%06X = 0x%08X\n", result, val);
5135 	}
5136 
5137 	return (error);
5138 }
5139 #endif
5140 
5141 static int
5142 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5143 {
5144 
5145 	if (sc->bge_flags & BGE_FLAG_EADDR)
5146 		return (1);
5147 
5148 #ifdef __sparc64__
5149 	OF_getetheraddr(sc->bge_dev, ether_addr);
5150 	return (0);
5151 #endif
5152 	return (1);
5153 }
5154 
5155 static int
5156 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5157 {
5158 	uint32_t mac_addr;
5159 
5160 	mac_addr = bge_readmem_ind(sc, 0x0c14);
5161 	if ((mac_addr >> 16) == 0x484b) {
5162 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5163 		ether_addr[1] = (uint8_t)mac_addr;
5164 		mac_addr = bge_readmem_ind(sc, 0x0c18);
5165 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5166 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5167 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5168 		ether_addr[5] = (uint8_t)mac_addr;
5169 		return (0);
5170 	}
5171 	return (1);
5172 }
5173 
5174 static int
5175 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5176 {
5177 	int mac_offset = BGE_EE_MAC_OFFSET;
5178 
5179 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5180 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5181 
5182 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5183 	    ETHER_ADDR_LEN));
5184 }
5185 
5186 static int
5187 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5188 {
5189 
5190 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5191 		return (1);
5192 
5193 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5194 	   ETHER_ADDR_LEN));
5195 }
5196 
5197 static int
5198 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5199 {
5200 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5201 		/* NOTE: Order is critical */
5202 		bge_get_eaddr_fw,
5203 		bge_get_eaddr_mem,
5204 		bge_get_eaddr_nvram,
5205 		bge_get_eaddr_eeprom,
5206 		NULL
5207 	};
5208 	const bge_eaddr_fcn_t *func;
5209 
5210 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5211 		if ((*func)(sc, eaddr) == 0)
5212 			break;
5213 	}
5214 	return (*func == NULL ? ENXIO : 0);
5215 }
5216