1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 227 228 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 229 230 { TC_VENDORID, TC_DEVICEID_3C996 }, 231 232 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 233 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 234 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 235 236 { 0, 0 } 237 }; 238 239 static const struct bge_vendor { 240 uint16_t v_id; 241 const char *v_name; 242 } const bge_vendors[] = { 243 { ALTEON_VENDORID, "Alteon" }, 244 { ALTIMA_VENDORID, "Altima" }, 245 { APPLE_VENDORID, "Apple" }, 246 { BCOM_VENDORID, "Broadcom" }, 247 { SK_VENDORID, "SysKonnect" }, 248 { TC_VENDORID, "3Com" }, 249 { FJTSU_VENDORID, "Fujitsu" }, 250 251 { 0, NULL } 252 }; 253 254 static const struct bge_revision { 255 uint32_t br_chipid; 256 const char *br_name; 257 } const bge_revisions[] = { 258 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 259 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 260 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 261 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 262 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 263 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 264 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 265 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 266 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 267 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 268 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 269 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 270 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 271 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 272 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 273 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 274 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 275 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 276 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 277 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 278 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 279 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 280 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 281 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 282 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 283 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 284 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 285 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 286 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 287 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 288 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 289 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 290 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 291 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 292 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 293 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 294 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 295 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 296 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 297 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 298 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 299 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 300 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 301 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 302 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 303 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 304 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 305 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 306 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 307 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 308 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 309 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 310 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 311 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 312 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 313 /* 5754 and 5787 share the same ASIC ID */ 314 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 315 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 316 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 317 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 318 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 319 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 320 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 321 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 322 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 323 324 { 0, NULL } 325 }; 326 327 /* 328 * Some defaults for major revisions, so that newer steppings 329 * that we don't know about have a shot at working. 330 */ 331 static const struct bge_revision const bge_majorrevs[] = { 332 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 333 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 334 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 335 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 336 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 337 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 338 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 339 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 340 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 341 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 342 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 343 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 344 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 345 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 346 /* 5754 and 5787 share the same ASIC ID */ 347 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 348 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 349 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 350 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 351 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 352 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 353 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 354 355 { 0, NULL } 356 }; 357 358 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 359 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 360 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 361 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 362 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 363 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 364 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 365 366 const struct bge_revision * bge_lookup_rev(uint32_t); 367 const struct bge_vendor * bge_lookup_vendor(uint16_t); 368 369 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 370 371 static int bge_probe(device_t); 372 static int bge_attach(device_t); 373 static int bge_detach(device_t); 374 static int bge_suspend(device_t); 375 static int bge_resume(device_t); 376 static void bge_release_resources(struct bge_softc *); 377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 378 static int bge_dma_alloc(struct bge_softc *); 379 static void bge_dma_free(struct bge_softc *); 380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 381 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 382 383 static void bge_devinfo(struct bge_softc *); 384 static int bge_mbox_reorder(struct bge_softc *); 385 386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 391 392 static void bge_txeof(struct bge_softc *, uint16_t); 393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 394 static int bge_rxeof(struct bge_softc *, uint16_t, int); 395 396 static void bge_asf_driver_up (struct bge_softc *); 397 static void bge_tick(void *); 398 static void bge_stats_clear_regs(struct bge_softc *); 399 static void bge_stats_update(struct bge_softc *); 400 static void bge_stats_update_regs(struct bge_softc *); 401 static struct mbuf *bge_check_short_dma(struct mbuf *); 402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 403 uint16_t *, uint16_t *); 404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 405 406 static void bge_intr(void *); 407 static int bge_msi_intr(void *); 408 static void bge_intr_task(void *, int); 409 static void bge_start_locked(struct ifnet *); 410 static void bge_start(struct ifnet *); 411 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 412 static void bge_init_locked(struct bge_softc *); 413 static void bge_init(void *); 414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 415 static void bge_stop(struct bge_softc *); 416 static void bge_watchdog(struct bge_softc *); 417 static int bge_shutdown(device_t); 418 static int bge_ifmedia_upd_locked(struct ifnet *); 419 static int bge_ifmedia_upd(struct ifnet *); 420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 421 422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 424 425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 427 428 static void bge_setpromisc(struct bge_softc *); 429 static void bge_setmulti(struct bge_softc *); 430 static void bge_setvlan(struct bge_softc *); 431 432 static __inline void bge_rxreuse_std(struct bge_softc *, int); 433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 434 static int bge_newbuf_std(struct bge_softc *, int); 435 static int bge_newbuf_jumbo(struct bge_softc *, int); 436 static int bge_init_rx_ring_std(struct bge_softc *); 437 static void bge_free_rx_ring_std(struct bge_softc *); 438 static int bge_init_rx_ring_jumbo(struct bge_softc *); 439 static void bge_free_rx_ring_jumbo(struct bge_softc *); 440 static void bge_free_tx_ring(struct bge_softc *); 441 static int bge_init_tx_ring(struct bge_softc *); 442 443 static int bge_chipinit(struct bge_softc *); 444 static int bge_blockinit(struct bge_softc *); 445 static uint32_t bge_dma_swap_options(struct bge_softc *); 446 447 static int bge_has_eaddr(struct bge_softc *); 448 static uint32_t bge_readmem_ind(struct bge_softc *, int); 449 static void bge_writemem_ind(struct bge_softc *, int, int); 450 static void bge_writembx(struct bge_softc *, int, int); 451 #ifdef notdef 452 static uint32_t bge_readreg_ind(struct bge_softc *, int); 453 #endif 454 static void bge_writemem_direct(struct bge_softc *, int, int); 455 static void bge_writereg_ind(struct bge_softc *, int, int); 456 457 static int bge_miibus_readreg(device_t, int, int); 458 static int bge_miibus_writereg(device_t, int, int, int); 459 static void bge_miibus_statchg(device_t); 460 #ifdef DEVICE_POLLING 461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 462 #endif 463 464 #define BGE_RESET_START 1 465 #define BGE_RESET_STOP 2 466 static void bge_sig_post_reset(struct bge_softc *, int); 467 static void bge_sig_legacy(struct bge_softc *, int); 468 static void bge_sig_pre_reset(struct bge_softc *, int); 469 static void bge_stop_fw(struct bge_softc *); 470 static int bge_reset(struct bge_softc *); 471 static void bge_link_upd(struct bge_softc *); 472 473 /* 474 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 475 * leak information to untrusted users. It is also known to cause alignment 476 * traps on certain architectures. 477 */ 478 #ifdef BGE_REGISTER_DEBUG 479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 482 #endif 483 static void bge_add_sysctls(struct bge_softc *); 484 static void bge_add_sysctl_stats_regs(struct bge_softc *, 485 struct sysctl_ctx_list *, struct sysctl_oid_list *); 486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 487 struct sysctl_oid_list *); 488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 489 490 static device_method_t bge_methods[] = { 491 /* Device interface */ 492 DEVMETHOD(device_probe, bge_probe), 493 DEVMETHOD(device_attach, bge_attach), 494 DEVMETHOD(device_detach, bge_detach), 495 DEVMETHOD(device_shutdown, bge_shutdown), 496 DEVMETHOD(device_suspend, bge_suspend), 497 DEVMETHOD(device_resume, bge_resume), 498 499 /* MII interface */ 500 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 501 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 502 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 503 504 DEVMETHOD_END 505 }; 506 507 static driver_t bge_driver = { 508 "bge", 509 bge_methods, 510 sizeof(struct bge_softc) 511 }; 512 513 static devclass_t bge_devclass; 514 515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 517 518 static int bge_allow_asf = 1; 519 520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 521 522 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 524 "Allow ASF mode if available"); 525 526 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 527 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 528 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 529 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 530 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 531 532 static int 533 bge_has_eaddr(struct bge_softc *sc) 534 { 535 #ifdef __sparc64__ 536 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 537 device_t dev; 538 uint32_t subvendor; 539 540 dev = sc->bge_dev; 541 542 /* 543 * The on-board BGEs found in sun4u machines aren't fitted with 544 * an EEPROM which means that we have to obtain the MAC address 545 * via OFW and that some tests will always fail. We distinguish 546 * such BGEs by the subvendor ID, which also has to be obtained 547 * from OFW instead of the PCI configuration space as the latter 548 * indicates Broadcom as the subvendor of the netboot interface. 549 * For early Blade 1500 and 2500 we even have to check the OFW 550 * device path as the subvendor ID always defaults to Broadcom 551 * there. 552 */ 553 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 554 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 555 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 556 return (0); 557 memset(buf, 0, sizeof(buf)); 558 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 559 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 560 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 561 return (0); 562 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 563 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 564 return (0); 565 } 566 #endif 567 return (1); 568 } 569 570 static uint32_t 571 bge_readmem_ind(struct bge_softc *sc, int off) 572 { 573 device_t dev; 574 uint32_t val; 575 576 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 577 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 578 return (0); 579 580 dev = sc->bge_dev; 581 582 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 583 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 584 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 585 return (val); 586 } 587 588 static void 589 bge_writemem_ind(struct bge_softc *sc, int off, int val) 590 { 591 device_t dev; 592 593 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 594 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 595 return; 596 597 dev = sc->bge_dev; 598 599 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 600 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 601 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 602 } 603 604 #ifdef notdef 605 static uint32_t 606 bge_readreg_ind(struct bge_softc *sc, int off) 607 { 608 device_t dev; 609 610 dev = sc->bge_dev; 611 612 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 613 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 614 } 615 #endif 616 617 static void 618 bge_writereg_ind(struct bge_softc *sc, int off, int val) 619 { 620 device_t dev; 621 622 dev = sc->bge_dev; 623 624 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 625 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 626 } 627 628 static void 629 bge_writemem_direct(struct bge_softc *sc, int off, int val) 630 { 631 CSR_WRITE_4(sc, off, val); 632 } 633 634 static void 635 bge_writembx(struct bge_softc *sc, int off, int val) 636 { 637 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 638 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 639 640 CSR_WRITE_4(sc, off, val); 641 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 642 CSR_READ_4(sc, off); 643 } 644 645 /* 646 * Map a single buffer address. 647 */ 648 649 static void 650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 651 { 652 struct bge_dmamap_arg *ctx; 653 654 if (error) 655 return; 656 657 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 658 659 ctx = arg; 660 ctx->bge_busaddr = segs->ds_addr; 661 } 662 663 static uint8_t 664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 665 { 666 uint32_t access, byte = 0; 667 int i; 668 669 /* Lock. */ 670 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 671 for (i = 0; i < 8000; i++) { 672 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 673 break; 674 DELAY(20); 675 } 676 if (i == 8000) 677 return (1); 678 679 /* Enable access. */ 680 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 681 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 682 683 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 684 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 685 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 686 DELAY(10); 687 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 688 DELAY(10); 689 break; 690 } 691 } 692 693 if (i == BGE_TIMEOUT * 10) { 694 if_printf(sc->bge_ifp, "nvram read timed out\n"); 695 return (1); 696 } 697 698 /* Get result. */ 699 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 700 701 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 702 703 /* Disable access. */ 704 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 705 706 /* Unlock. */ 707 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 708 CSR_READ_4(sc, BGE_NVRAM_SWARB); 709 710 return (0); 711 } 712 713 /* 714 * Read a sequence of bytes from NVRAM. 715 */ 716 static int 717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 718 { 719 int err = 0, i; 720 uint8_t byte = 0; 721 722 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 723 return (1); 724 725 for (i = 0; i < cnt; i++) { 726 err = bge_nvram_getbyte(sc, off + i, &byte); 727 if (err) 728 break; 729 *(dest + i) = byte; 730 } 731 732 return (err ? 1 : 0); 733 } 734 735 /* 736 * Read a byte of data stored in the EEPROM at address 'addr.' The 737 * BCM570x supports both the traditional bitbang interface and an 738 * auto access interface for reading the EEPROM. We use the auto 739 * access method. 740 */ 741 static uint8_t 742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 743 { 744 int i; 745 uint32_t byte = 0; 746 747 /* 748 * Enable use of auto EEPROM access so we can avoid 749 * having to use the bitbang method. 750 */ 751 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 752 753 /* Reset the EEPROM, load the clock period. */ 754 CSR_WRITE_4(sc, BGE_EE_ADDR, 755 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 756 DELAY(20); 757 758 /* Issue the read EEPROM command. */ 759 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 760 761 /* Wait for completion */ 762 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 763 DELAY(10); 764 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 765 break; 766 } 767 768 if (i == BGE_TIMEOUT * 10) { 769 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 770 return (1); 771 } 772 773 /* Get result. */ 774 byte = CSR_READ_4(sc, BGE_EE_DATA); 775 776 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 777 778 return (0); 779 } 780 781 /* 782 * Read a sequence of bytes from the EEPROM. 783 */ 784 static int 785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 786 { 787 int i, error = 0; 788 uint8_t byte = 0; 789 790 for (i = 0; i < cnt; i++) { 791 error = bge_eeprom_getbyte(sc, off + i, &byte); 792 if (error) 793 break; 794 *(dest + i) = byte; 795 } 796 797 return (error ? 1 : 0); 798 } 799 800 static int 801 bge_miibus_readreg(device_t dev, int phy, int reg) 802 { 803 struct bge_softc *sc; 804 uint32_t val; 805 int i; 806 807 sc = device_get_softc(dev); 808 809 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 810 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 811 CSR_WRITE_4(sc, BGE_MI_MODE, 812 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 813 DELAY(80); 814 } 815 816 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 817 BGE_MIPHY(phy) | BGE_MIREG(reg)); 818 819 /* Poll for the PHY register access to complete. */ 820 for (i = 0; i < BGE_TIMEOUT; i++) { 821 DELAY(10); 822 val = CSR_READ_4(sc, BGE_MI_COMM); 823 if ((val & BGE_MICOMM_BUSY) == 0) { 824 DELAY(5); 825 val = CSR_READ_4(sc, BGE_MI_COMM); 826 break; 827 } 828 } 829 830 if (i == BGE_TIMEOUT) { 831 device_printf(sc->bge_dev, 832 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 833 phy, reg, val); 834 val = 0; 835 } 836 837 /* Restore the autopoll bit if necessary. */ 838 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 839 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 840 DELAY(80); 841 } 842 843 if (val & BGE_MICOMM_READFAIL) 844 return (0); 845 846 return (val & 0xFFFF); 847 } 848 849 static int 850 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 851 { 852 struct bge_softc *sc; 853 int i; 854 855 sc = device_get_softc(dev); 856 857 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 858 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 859 return (0); 860 861 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 862 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 863 CSR_WRITE_4(sc, BGE_MI_MODE, 864 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 865 DELAY(80); 866 } 867 868 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 869 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 870 871 for (i = 0; i < BGE_TIMEOUT; i++) { 872 DELAY(10); 873 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 874 DELAY(5); 875 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 876 break; 877 } 878 } 879 880 /* Restore the autopoll bit if necessary. */ 881 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 882 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 883 DELAY(80); 884 } 885 886 if (i == BGE_TIMEOUT) 887 device_printf(sc->bge_dev, 888 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 889 phy, reg, val); 890 891 return (0); 892 } 893 894 static void 895 bge_miibus_statchg(device_t dev) 896 { 897 struct bge_softc *sc; 898 struct mii_data *mii; 899 uint32_t mac_mode, rx_mode, tx_mode; 900 901 sc = device_get_softc(dev); 902 if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 903 return; 904 mii = device_get_softc(sc->bge_miibus); 905 906 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 907 (IFM_ACTIVE | IFM_AVALID)) { 908 switch (IFM_SUBTYPE(mii->mii_media_active)) { 909 case IFM_10_T: 910 case IFM_100_TX: 911 sc->bge_link = 1; 912 break; 913 case IFM_1000_T: 914 case IFM_1000_SX: 915 case IFM_2500_SX: 916 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 917 sc->bge_link = 1; 918 else 919 sc->bge_link = 0; 920 break; 921 default: 922 sc->bge_link = 0; 923 break; 924 } 925 } else 926 sc->bge_link = 0; 927 if (sc->bge_link == 0) 928 return; 929 930 /* 931 * APE firmware touches these registers to keep the MAC 932 * connected to the outside world. Try to keep the 933 * accesses atomic. 934 */ 935 936 /* Set the port mode (MII/GMII) to match the link speed. */ 937 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 938 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 939 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 940 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 941 942 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 943 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 944 mac_mode |= BGE_PORTMODE_GMII; 945 else 946 mac_mode |= BGE_PORTMODE_MII; 947 948 /* Set MAC flow control behavior to match link flow control settings. */ 949 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 950 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 951 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 952 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 953 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 954 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 955 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 956 } else 957 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 958 959 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 960 DELAY(40); 961 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 962 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 963 } 964 965 /* 966 * Intialize a standard receive ring descriptor. 967 */ 968 static int 969 bge_newbuf_std(struct bge_softc *sc, int i) 970 { 971 struct mbuf *m; 972 struct bge_rx_bd *r; 973 bus_dma_segment_t segs[1]; 974 bus_dmamap_t map; 975 int error, nsegs; 976 977 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 978 (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 979 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 980 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 981 if (m == NULL) 982 return (ENOBUFS); 983 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 984 } else { 985 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 986 if (m == NULL) 987 return (ENOBUFS); 988 m->m_len = m->m_pkthdr.len = MCLBYTES; 989 } 990 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 991 m_adj(m, ETHER_ALIGN); 992 993 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 994 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 995 if (error != 0) { 996 m_freem(m); 997 return (error); 998 } 999 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1000 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1001 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1002 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1003 sc->bge_cdata.bge_rx_std_dmamap[i]); 1004 } 1005 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1006 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1007 sc->bge_cdata.bge_rx_std_sparemap = map; 1008 sc->bge_cdata.bge_rx_std_chain[i] = m; 1009 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1010 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1011 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1012 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1013 r->bge_flags = BGE_RXBDFLAG_END; 1014 r->bge_len = segs[0].ds_len; 1015 r->bge_idx = i; 1016 1017 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1018 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1019 1020 return (0); 1021 } 1022 1023 /* 1024 * Initialize a jumbo receive ring descriptor. This allocates 1025 * a jumbo buffer from the pool managed internally by the driver. 1026 */ 1027 static int 1028 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1029 { 1030 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1031 bus_dmamap_t map; 1032 struct bge_extrx_bd *r; 1033 struct mbuf *m; 1034 int error, nsegs; 1035 1036 MGETHDR(m, M_DONTWAIT, MT_DATA); 1037 if (m == NULL) 1038 return (ENOBUFS); 1039 1040 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1041 if (!(m->m_flags & M_EXT)) { 1042 m_freem(m); 1043 return (ENOBUFS); 1044 } 1045 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1046 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1047 m_adj(m, ETHER_ALIGN); 1048 1049 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1050 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1051 if (error != 0) { 1052 m_freem(m); 1053 return (error); 1054 } 1055 1056 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1057 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1058 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1059 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1060 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1061 } 1062 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1063 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1064 sc->bge_cdata.bge_rx_jumbo_sparemap; 1065 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1066 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1067 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1068 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1069 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1070 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1071 1072 /* 1073 * Fill in the extended RX buffer descriptor. 1074 */ 1075 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1076 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1077 r->bge_idx = i; 1078 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1079 switch (nsegs) { 1080 case 4: 1081 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1082 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1083 r->bge_len3 = segs[3].ds_len; 1084 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1085 case 3: 1086 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1087 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1088 r->bge_len2 = segs[2].ds_len; 1089 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1090 case 2: 1091 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1092 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1093 r->bge_len1 = segs[1].ds_len; 1094 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1095 case 1: 1096 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1097 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1098 r->bge_len0 = segs[0].ds_len; 1099 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1100 break; 1101 default: 1102 panic("%s: %d segments\n", __func__, nsegs); 1103 } 1104 1105 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1106 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1107 1108 return (0); 1109 } 1110 1111 static int 1112 bge_init_rx_ring_std(struct bge_softc *sc) 1113 { 1114 int error, i; 1115 1116 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1117 sc->bge_std = 0; 1118 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1119 if ((error = bge_newbuf_std(sc, i)) != 0) 1120 return (error); 1121 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1122 } 1123 1124 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1125 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1126 1127 sc->bge_std = 0; 1128 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1129 1130 return (0); 1131 } 1132 1133 static void 1134 bge_free_rx_ring_std(struct bge_softc *sc) 1135 { 1136 int i; 1137 1138 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1139 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1140 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1141 sc->bge_cdata.bge_rx_std_dmamap[i], 1142 BUS_DMASYNC_POSTREAD); 1143 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1144 sc->bge_cdata.bge_rx_std_dmamap[i]); 1145 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1146 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1147 } 1148 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1149 sizeof(struct bge_rx_bd)); 1150 } 1151 } 1152 1153 static int 1154 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1155 { 1156 struct bge_rcb *rcb; 1157 int error, i; 1158 1159 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1160 sc->bge_jumbo = 0; 1161 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1162 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1163 return (error); 1164 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1165 } 1166 1167 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1168 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1169 1170 sc->bge_jumbo = 0; 1171 1172 /* Enable the jumbo receive producer ring. */ 1173 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1174 rcb->bge_maxlen_flags = 1175 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1176 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1177 1178 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1179 1180 return (0); 1181 } 1182 1183 static void 1184 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1185 { 1186 int i; 1187 1188 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1189 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1190 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1191 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1192 BUS_DMASYNC_POSTREAD); 1193 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1194 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1195 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1196 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1197 } 1198 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1199 sizeof(struct bge_extrx_bd)); 1200 } 1201 } 1202 1203 static void 1204 bge_free_tx_ring(struct bge_softc *sc) 1205 { 1206 int i; 1207 1208 if (sc->bge_ldata.bge_tx_ring == NULL) 1209 return; 1210 1211 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1212 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1213 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1214 sc->bge_cdata.bge_tx_dmamap[i], 1215 BUS_DMASYNC_POSTWRITE); 1216 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1217 sc->bge_cdata.bge_tx_dmamap[i]); 1218 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1219 sc->bge_cdata.bge_tx_chain[i] = NULL; 1220 } 1221 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1222 sizeof(struct bge_tx_bd)); 1223 } 1224 } 1225 1226 static int 1227 bge_init_tx_ring(struct bge_softc *sc) 1228 { 1229 sc->bge_txcnt = 0; 1230 sc->bge_tx_saved_considx = 0; 1231 1232 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1233 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1234 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1235 1236 /* Initialize transmit producer index for host-memory send ring. */ 1237 sc->bge_tx_prodidx = 0; 1238 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1239 1240 /* 5700 b2 errata */ 1241 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1242 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1243 1244 /* NIC-memory send ring not used; initialize to zero. */ 1245 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1246 /* 5700 b2 errata */ 1247 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1248 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1249 1250 return (0); 1251 } 1252 1253 static void 1254 bge_setpromisc(struct bge_softc *sc) 1255 { 1256 struct ifnet *ifp; 1257 1258 BGE_LOCK_ASSERT(sc); 1259 1260 ifp = sc->bge_ifp; 1261 1262 /* Enable or disable promiscuous mode as needed. */ 1263 if (ifp->if_flags & IFF_PROMISC) 1264 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1265 else 1266 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1267 } 1268 1269 static void 1270 bge_setmulti(struct bge_softc *sc) 1271 { 1272 struct ifnet *ifp; 1273 struct ifmultiaddr *ifma; 1274 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1275 int h, i; 1276 1277 BGE_LOCK_ASSERT(sc); 1278 1279 ifp = sc->bge_ifp; 1280 1281 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1282 for (i = 0; i < 4; i++) 1283 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1284 return; 1285 } 1286 1287 /* First, zot all the existing filters. */ 1288 for (i = 0; i < 4; i++) 1289 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1290 1291 /* Now program new ones. */ 1292 if_maddr_rlock(ifp); 1293 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1294 if (ifma->ifma_addr->sa_family != AF_LINK) 1295 continue; 1296 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1297 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1298 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1299 } 1300 if_maddr_runlock(ifp); 1301 1302 for (i = 0; i < 4; i++) 1303 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1304 } 1305 1306 static void 1307 bge_setvlan(struct bge_softc *sc) 1308 { 1309 struct ifnet *ifp; 1310 1311 BGE_LOCK_ASSERT(sc); 1312 1313 ifp = sc->bge_ifp; 1314 1315 /* Enable or disable VLAN tag stripping as needed. */ 1316 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1317 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1318 else 1319 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1320 } 1321 1322 static void 1323 bge_sig_pre_reset(struct bge_softc *sc, int type) 1324 { 1325 1326 /* 1327 * Some chips don't like this so only do this if ASF is enabled 1328 */ 1329 if (sc->bge_asf_mode) 1330 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1331 1332 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1333 switch (type) { 1334 case BGE_RESET_START: 1335 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1336 BGE_FW_DRV_STATE_START); 1337 break; 1338 case BGE_RESET_STOP: 1339 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1340 BGE_FW_DRV_STATE_UNLOAD); 1341 break; 1342 } 1343 } 1344 } 1345 1346 static void 1347 bge_sig_post_reset(struct bge_softc *sc, int type) 1348 { 1349 1350 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1351 switch (type) { 1352 case BGE_RESET_START: 1353 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1354 BGE_FW_DRV_STATE_START_DONE); 1355 /* START DONE */ 1356 break; 1357 case BGE_RESET_STOP: 1358 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1359 BGE_FW_DRV_STATE_UNLOAD_DONE); 1360 break; 1361 } 1362 } 1363 } 1364 1365 static void 1366 bge_sig_legacy(struct bge_softc *sc, int type) 1367 { 1368 1369 if (sc->bge_asf_mode) { 1370 switch (type) { 1371 case BGE_RESET_START: 1372 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1373 BGE_FW_DRV_STATE_START); 1374 break; 1375 case BGE_RESET_STOP: 1376 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1377 BGE_FW_DRV_STATE_UNLOAD); 1378 break; 1379 } 1380 } 1381 } 1382 1383 static void 1384 bge_stop_fw(struct bge_softc *sc) 1385 { 1386 int i; 1387 1388 if (sc->bge_asf_mode) { 1389 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1390 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1391 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1392 1393 for (i = 0; i < 100; i++ ) { 1394 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1395 BGE_RX_CPU_DRV_EVENT)) 1396 break; 1397 DELAY(10); 1398 } 1399 } 1400 } 1401 1402 static uint32_t 1403 bge_dma_swap_options(struct bge_softc *sc) 1404 { 1405 uint32_t dma_options; 1406 1407 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1408 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1409 #if BYTE_ORDER == BIG_ENDIAN 1410 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1411 #endif 1412 if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720) 1413 dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1414 BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE | 1415 BGE_MODECTL_HTX2B_ENABLE; 1416 1417 return (dma_options); 1418 } 1419 1420 /* 1421 * Do endian, PCI and DMA initialization. 1422 */ 1423 static int 1424 bge_chipinit(struct bge_softc *sc) 1425 { 1426 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1427 uint16_t val; 1428 int i; 1429 1430 /* Set endianness before we access any non-PCI registers. */ 1431 misc_ctl = BGE_INIT; 1432 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1433 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1434 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1435 1436 /* Clear the MAC control register */ 1437 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 1438 DELAY(40); 1439 1440 /* 1441 * Clear the MAC statistics block in the NIC's 1442 * internal memory. 1443 */ 1444 for (i = BGE_STATS_BLOCK; 1445 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1446 BGE_MEMWIN_WRITE(sc, i, 0); 1447 1448 for (i = BGE_STATUS_BLOCK; 1449 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1450 BGE_MEMWIN_WRITE(sc, i, 0); 1451 1452 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1453 /* 1454 * Fix data corruption caused by non-qword write with WB. 1455 * Fix master abort in PCI mode. 1456 * Fix PCI latency timer. 1457 */ 1458 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1459 val |= (1 << 10) | (1 << 12) | (1 << 13); 1460 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1461 } 1462 1463 /* 1464 * Set up the PCI DMA control register. 1465 */ 1466 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1467 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1468 if (sc->bge_flags & BGE_FLAG_PCIE) { 1469 if (sc->bge_mps >= 256) 1470 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1471 else 1472 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1473 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1474 if (BGE_IS_5714_FAMILY(sc)) { 1475 /* 256 bytes for read and write. */ 1476 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1477 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1478 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1479 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1480 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1481 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1482 /* 1483 * In the BCM5703, the DMA read watermark should 1484 * be set to less than or equal to the maximum 1485 * memory read byte count of the PCI-X command 1486 * register. 1487 */ 1488 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1489 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1490 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1491 /* 1536 bytes for read, 384 bytes for write. */ 1492 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1493 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1494 } else { 1495 /* 384 bytes for read and write. */ 1496 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1497 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1498 0x0F; 1499 } 1500 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1501 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1502 uint32_t tmp; 1503 1504 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1505 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1506 if (tmp == 6 || tmp == 7) 1507 dma_rw_ctl |= 1508 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1509 1510 /* Set PCI-X DMA write workaround. */ 1511 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1512 } 1513 } else { 1514 /* Conventional PCI bus: 256 bytes for read and write. */ 1515 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1516 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1517 1518 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1519 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1520 dma_rw_ctl |= 0x0F; 1521 } 1522 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1523 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1524 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1525 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1526 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1527 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1528 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1529 if (BGE_IS_5717_PLUS(sc)) { 1530 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1531 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1532 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1533 /* 1534 * Enable HW workaround for controllers that misinterpret 1535 * a status tag update and leave interrupts permanently 1536 * disabled. 1537 */ 1538 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1539 sc->bge_asicrev != BGE_ASICREV_BCM57765) 1540 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1541 } 1542 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1543 1544 /* 1545 * Set up general mode register. 1546 */ 1547 mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR | 1548 BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM; 1549 1550 /* 1551 * BCM5701 B5 have a bug causing data corruption when using 1552 * 64-bit DMA reads, which can be terminated early and then 1553 * completed later as 32-bit accesses, in combination with 1554 * certain bridges. 1555 */ 1556 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1557 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1558 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1559 1560 /* 1561 * Tell the firmware the driver is running 1562 */ 1563 if (sc->bge_asf_mode & ASF_STACKUP) 1564 mode_ctl |= BGE_MODECTL_STACKUP; 1565 1566 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1567 1568 /* 1569 * Disable memory write invalidate. Apparently it is not supported 1570 * properly by these devices. Also ensure that INTx isn't disabled, 1571 * as these chips need it even when using MSI. 1572 */ 1573 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1574 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1575 1576 /* Set the timer prescaler (always 66Mhz) */ 1577 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1578 1579 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1580 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1581 DELAY(40); /* XXX */ 1582 1583 /* Put PHY into ready state */ 1584 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1585 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1586 DELAY(40); 1587 } 1588 1589 return (0); 1590 } 1591 1592 static int 1593 bge_blockinit(struct bge_softc *sc) 1594 { 1595 struct bge_rcb *rcb; 1596 bus_size_t vrcb; 1597 bge_hostaddr taddr; 1598 uint32_t dmactl, val; 1599 int i, limit; 1600 1601 /* 1602 * Initialize the memory window pointer register so that 1603 * we can access the first 32K of internal NIC RAM. This will 1604 * allow us to set up the TX send ring RCBs and the RX return 1605 * ring RCBs, plus other things which live in NIC memory. 1606 */ 1607 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1608 1609 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1610 1611 if (!(BGE_IS_5705_PLUS(sc))) { 1612 /* Configure mbuf memory pool */ 1613 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1614 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1615 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1616 else 1617 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1618 1619 /* Configure DMA resource pool */ 1620 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1621 BGE_DMA_DESCRIPTORS); 1622 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1623 } 1624 1625 /* Configure mbuf pool watermarks */ 1626 if (BGE_IS_5717_PLUS(sc)) { 1627 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1628 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1629 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1630 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1631 } else { 1632 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1633 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1634 } 1635 } else if (!BGE_IS_5705_PLUS(sc)) { 1636 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1637 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1638 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1639 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1640 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1641 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1642 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1643 } else { 1644 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1645 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1646 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1647 } 1648 1649 /* Configure DMA resource watermarks */ 1650 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1651 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1652 1653 /* Enable buffer manager */ 1654 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1655 /* 1656 * Change the arbitration algorithm of TXMBUF read request to 1657 * round-robin instead of priority based for BCM5719. When 1658 * TXFIFO is almost empty, RDMA will hold its request until 1659 * TXFIFO is not almost empty. 1660 */ 1661 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1662 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1663 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1664 1665 /* Poll for buffer manager start indication */ 1666 for (i = 0; i < BGE_TIMEOUT; i++) { 1667 DELAY(10); 1668 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1669 break; 1670 } 1671 1672 if (i == BGE_TIMEOUT) { 1673 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 1674 return (ENXIO); 1675 } 1676 1677 /* Enable flow-through queues */ 1678 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 1679 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 1680 1681 /* Wait until queue initialization is complete */ 1682 for (i = 0; i < BGE_TIMEOUT; i++) { 1683 DELAY(10); 1684 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 1685 break; 1686 } 1687 1688 if (i == BGE_TIMEOUT) { 1689 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 1690 return (ENXIO); 1691 } 1692 1693 /* 1694 * Summary of rings supported by the controller: 1695 * 1696 * Standard Receive Producer Ring 1697 * - This ring is used to feed receive buffers for "standard" 1698 * sized frames (typically 1536 bytes) to the controller. 1699 * 1700 * Jumbo Receive Producer Ring 1701 * - This ring is used to feed receive buffers for jumbo sized 1702 * frames (i.e. anything bigger than the "standard" frames) 1703 * to the controller. 1704 * 1705 * Mini Receive Producer Ring 1706 * - This ring is used to feed receive buffers for "mini" 1707 * sized frames to the controller. 1708 * - This feature required external memory for the controller 1709 * but was never used in a production system. Should always 1710 * be disabled. 1711 * 1712 * Receive Return Ring 1713 * - After the controller has placed an incoming frame into a 1714 * receive buffer that buffer is moved into a receive return 1715 * ring. The driver is then responsible to passing the 1716 * buffer up to the stack. Many versions of the controller 1717 * support multiple RR rings. 1718 * 1719 * Send Ring 1720 * - This ring is used for outgoing frames. Many versions of 1721 * the controller support multiple send rings. 1722 */ 1723 1724 /* Initialize the standard receive producer ring control block. */ 1725 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 1726 rcb->bge_hostaddr.bge_addr_lo = 1727 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 1728 rcb->bge_hostaddr.bge_addr_hi = 1729 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 1730 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1731 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 1732 if (BGE_IS_5717_PLUS(sc)) { 1733 /* 1734 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 1735 * Bits 15-2 : Maximum RX frame size 1736 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 1737 * Bit 0 : Reserved 1738 */ 1739 rcb->bge_maxlen_flags = 1740 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 1741 } else if (BGE_IS_5705_PLUS(sc)) { 1742 /* 1743 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 1744 * Bits 15-2 : Reserved (should be 0) 1745 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1746 * Bit 0 : Reserved 1747 */ 1748 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 1749 } else { 1750 /* 1751 * Ring size is always XXX entries 1752 * Bits 31-16: Maximum RX frame size 1753 * Bits 15-2 : Reserved (should be 0) 1754 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 1755 * Bit 0 : Reserved 1756 */ 1757 rcb->bge_maxlen_flags = 1758 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 1759 } 1760 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1761 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1762 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1763 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 1764 else 1765 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 1766 /* Write the standard receive producer ring control block. */ 1767 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 1768 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 1769 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1770 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 1771 1772 /* Reset the standard receive producer ring producer index. */ 1773 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 1774 1775 /* 1776 * Initialize the jumbo RX producer ring control 1777 * block. We set the 'ring disabled' bit in the 1778 * flags field until we're actually ready to start 1779 * using this ring (i.e. once we set the MTU 1780 * high enough to require it). 1781 */ 1782 if (BGE_IS_JUMBO_CAPABLE(sc)) { 1783 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1784 /* Get the jumbo receive producer ring RCB parameters. */ 1785 rcb->bge_hostaddr.bge_addr_lo = 1786 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1787 rcb->bge_hostaddr.bge_addr_hi = 1788 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 1789 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1790 sc->bge_cdata.bge_rx_jumbo_ring_map, 1791 BUS_DMASYNC_PREREAD); 1792 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 1793 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 1794 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1795 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1796 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1797 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 1798 else 1799 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 1800 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 1801 rcb->bge_hostaddr.bge_addr_hi); 1802 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 1803 rcb->bge_hostaddr.bge_addr_lo); 1804 /* Program the jumbo receive producer ring RCB parameters. */ 1805 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 1806 rcb->bge_maxlen_flags); 1807 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 1808 /* Reset the jumbo receive producer ring producer index. */ 1809 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 1810 } 1811 1812 /* Disable the mini receive producer ring RCB. */ 1813 if (BGE_IS_5700_FAMILY(sc)) { 1814 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 1815 rcb->bge_maxlen_flags = 1816 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 1817 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 1818 rcb->bge_maxlen_flags); 1819 /* Reset the mini receive producer ring producer index. */ 1820 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 1821 } 1822 1823 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 1824 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1825 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 1826 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 1827 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 1828 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 1829 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 1830 } 1831 /* 1832 * The BD ring replenish thresholds control how often the 1833 * hardware fetches new BD's from the producer rings in host 1834 * memory. Setting the value too low on a busy system can 1835 * starve the hardware and recue the throughpout. 1836 * 1837 * Set the BD ring replentish thresholds. The recommended 1838 * values are 1/8th the number of descriptors allocated to 1839 * each ring. 1840 * XXX The 5754 requires a lower threshold, so it might be a 1841 * requirement of all 575x family chips. The Linux driver sets 1842 * the lower threshold for all 5705 family chips as well, but there 1843 * are reports that it might not need to be so strict. 1844 * 1845 * XXX Linux does some extra fiddling here for the 5906 parts as 1846 * well. 1847 */ 1848 if (BGE_IS_5705_PLUS(sc)) 1849 val = 8; 1850 else 1851 val = BGE_STD_RX_RING_CNT / 8; 1852 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 1853 if (BGE_IS_JUMBO_CAPABLE(sc)) 1854 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 1855 BGE_JUMBO_RX_RING_CNT/8); 1856 if (BGE_IS_5717_PLUS(sc)) { 1857 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 1858 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 1859 } 1860 1861 /* 1862 * Disable all send rings by setting the 'ring disabled' bit 1863 * in the flags field of all the TX send ring control blocks, 1864 * located in NIC memory. 1865 */ 1866 if (!BGE_IS_5705_PLUS(sc)) 1867 /* 5700 to 5704 had 16 send rings. */ 1868 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 1869 else 1870 limit = 1; 1871 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1872 for (i = 0; i < limit; i++) { 1873 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1874 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 1875 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1876 vrcb += sizeof(struct bge_rcb); 1877 } 1878 1879 /* Configure send ring RCB 0 (we use only the first ring) */ 1880 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 1881 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 1882 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1883 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1884 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1885 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1886 sc->bge_asicrev == BGE_ASICREV_BCM5720) 1887 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 1888 else 1889 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 1890 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 1891 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1892 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 1893 1894 /* 1895 * Disable all receive return rings by setting the 1896 * 'ring diabled' bit in the flags field of all the receive 1897 * return ring control blocks, located in NIC memory. 1898 */ 1899 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 1900 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 1901 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 1902 /* Should be 17, use 16 until we get an SRAM map. */ 1903 limit = 16; 1904 } else if (!BGE_IS_5705_PLUS(sc)) 1905 limit = BGE_RX_RINGS_MAX; 1906 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 1907 sc->bge_asicrev == BGE_ASICREV_BCM57765) 1908 limit = 4; 1909 else 1910 limit = 1; 1911 /* Disable all receive return rings. */ 1912 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1913 for (i = 0; i < limit; i++) { 1914 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 1915 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 1916 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1917 BGE_RCB_FLAG_RING_DISABLED); 1918 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1919 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 1920 (i * (sizeof(uint64_t))), 0); 1921 vrcb += sizeof(struct bge_rcb); 1922 } 1923 1924 /* 1925 * Set up receive return ring 0. Note that the NIC address 1926 * for RX return rings is 0x0. The return rings live entirely 1927 * within the host, so the nicaddr field in the RCB isn't used. 1928 */ 1929 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 1930 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 1931 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 1932 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 1933 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 1934 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 1935 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 1936 1937 /* Set random backoff seed for TX */ 1938 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 1939 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 1940 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 1941 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 1942 BGE_TX_BACKOFF_SEED_MASK); 1943 1944 /* Set inter-packet gap */ 1945 val = 0x2620; 1946 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 1947 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 1948 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 1949 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 1950 1951 /* 1952 * Specify which ring to use for packets that don't match 1953 * any RX rules. 1954 */ 1955 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 1956 1957 /* 1958 * Configure number of RX lists. One interrupt distribution 1959 * list, sixteen active lists, one bad frames class. 1960 */ 1961 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 1962 1963 /* Inialize RX list placement stats mask. */ 1964 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 1965 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 1966 1967 /* Disable host coalescing until we get it set up */ 1968 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 1969 1970 /* Poll to make sure it's shut down. */ 1971 for (i = 0; i < BGE_TIMEOUT; i++) { 1972 DELAY(10); 1973 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 1974 break; 1975 } 1976 1977 if (i == BGE_TIMEOUT) { 1978 device_printf(sc->bge_dev, 1979 "host coalescing engine failed to idle\n"); 1980 return (ENXIO); 1981 } 1982 1983 /* Set up host coalescing defaults */ 1984 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 1985 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 1986 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 1987 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 1988 if (!(BGE_IS_5705_PLUS(sc))) { 1989 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 1990 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 1991 } 1992 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 1993 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 1994 1995 /* Set up address of statistics block */ 1996 if (!(BGE_IS_5705_PLUS(sc))) { 1997 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 1998 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 1999 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2000 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2001 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2002 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2003 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2004 } 2005 2006 /* Set up address of status block */ 2007 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2008 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2009 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2010 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2011 2012 /* Set up status block size. */ 2013 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2014 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2015 val = BGE_STATBLKSZ_FULL; 2016 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2017 } else { 2018 val = BGE_STATBLKSZ_32BYTE; 2019 bzero(sc->bge_ldata.bge_status_block, 32); 2020 } 2021 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2022 sc->bge_cdata.bge_status_map, 2023 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2024 2025 /* Turn on host coalescing state machine */ 2026 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2027 2028 /* Turn on RX BD completion state machine and enable attentions */ 2029 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2030 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2031 2032 /* Turn on RX list placement state machine */ 2033 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2034 2035 /* Turn on RX list selector state machine. */ 2036 if (!(BGE_IS_5705_PLUS(sc))) 2037 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2038 2039 /* Turn on DMA, clear stats. */ 2040 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2041 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2042 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2043 BGE_MACMODE_FRMHDR_DMA_ENB; 2044 2045 if (sc->bge_flags & BGE_FLAG_TBI) 2046 val |= BGE_PORTMODE_TBI; 2047 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2048 val |= BGE_PORTMODE_GMII; 2049 else 2050 val |= BGE_PORTMODE_MII; 2051 2052 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2053 DELAY(40); 2054 2055 /* Set misc. local control, enable interrupts on attentions */ 2056 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2057 2058 #ifdef notdef 2059 /* Assert GPIO pins for PHY reset */ 2060 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2061 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2062 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2063 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2064 #endif 2065 2066 /* Turn on DMA completion state machine */ 2067 if (!(BGE_IS_5705_PLUS(sc))) 2068 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2069 2070 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2071 2072 /* Enable host coalescing bug fix. */ 2073 if (BGE_IS_5755_PLUS(sc)) 2074 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2075 2076 /* Request larger DMA burst size to get better performance. */ 2077 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2078 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2079 2080 /* Turn on write DMA state machine */ 2081 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2082 DELAY(40); 2083 2084 /* Turn on read DMA state machine */ 2085 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2086 2087 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2088 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2089 2090 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2091 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2092 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2093 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2094 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2095 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2096 if (sc->bge_flags & BGE_FLAG_PCIE) 2097 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2098 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2099 val |= BGE_RDMAMODE_TSO4_ENABLE; 2100 if (sc->bge_flags & BGE_FLAG_TSO3 || 2101 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2102 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2103 val |= BGE_RDMAMODE_TSO6_ENABLE; 2104 } 2105 2106 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2107 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2108 BGE_RDMAMODE_H2BNC_VLAN_DET; 2109 /* 2110 * Allow multiple outstanding read requests from 2111 * non-LSO read DMA engine. 2112 */ 2113 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2114 } 2115 2116 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2117 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2118 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2119 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2120 BGE_IS_5717_PLUS(sc)) { 2121 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 2122 /* 2123 * Adjust tx margin to prevent TX data corruption and 2124 * fix internal FIFO overflow. 2125 */ 2126 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2127 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2128 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2129 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2130 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2131 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2132 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2133 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2134 } 2135 /* 2136 * Enable fix for read DMA FIFO overruns. 2137 * The fix is to limit the number of RX BDs 2138 * the hardware would fetch at a fime. 2139 */ 2140 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 2141 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2142 } 2143 2144 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2145 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2146 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2147 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2148 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2149 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2150 /* 2151 * Allow 4KB burst length reads for non-LSO frames. 2152 * Enable 512B burst length reads for buffer descriptors. 2153 */ 2154 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2155 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2156 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2157 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2158 } 2159 2160 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2161 DELAY(40); 2162 2163 /* Turn on RX data completion state machine */ 2164 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2165 2166 /* Turn on RX BD initiator state machine */ 2167 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2168 2169 /* Turn on RX data and RX BD initiator state machine */ 2170 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2171 2172 /* Turn on Mbuf cluster free state machine */ 2173 if (!(BGE_IS_5705_PLUS(sc))) 2174 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2175 2176 /* Turn on send BD completion state machine */ 2177 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2178 2179 /* Turn on send data completion state machine */ 2180 val = BGE_SDCMODE_ENABLE; 2181 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2182 val |= BGE_SDCMODE_CDELAY; 2183 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2184 2185 /* Turn on send data initiator state machine */ 2186 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2187 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2188 BGE_SDIMODE_HW_LSO_PRE_DMA); 2189 else 2190 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2191 2192 /* Turn on send BD initiator state machine */ 2193 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2194 2195 /* Turn on send BD selector state machine */ 2196 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2197 2198 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2199 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2200 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2201 2202 /* ack/clear link change events */ 2203 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2204 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2205 BGE_MACSTAT_LINK_CHANGED); 2206 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2207 2208 /* 2209 * Enable attention when the link has changed state for 2210 * devices that use auto polling. 2211 */ 2212 if (sc->bge_flags & BGE_FLAG_TBI) { 2213 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2214 } else { 2215 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2216 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2217 DELAY(80); 2218 } 2219 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2220 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2221 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2222 BGE_EVTENB_MI_INTERRUPT); 2223 } 2224 2225 /* 2226 * Clear any pending link state attention. 2227 * Otherwise some link state change events may be lost until attention 2228 * is cleared by bge_intr() -> bge_link_upd() sequence. 2229 * It's not necessary on newer BCM chips - perhaps enabling link 2230 * state change attentions implies clearing pending attention. 2231 */ 2232 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2233 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2234 BGE_MACSTAT_LINK_CHANGED); 2235 2236 /* Enable link state change attentions. */ 2237 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2238 2239 return (0); 2240 } 2241 2242 const struct bge_revision * 2243 bge_lookup_rev(uint32_t chipid) 2244 { 2245 const struct bge_revision *br; 2246 2247 for (br = bge_revisions; br->br_name != NULL; br++) { 2248 if (br->br_chipid == chipid) 2249 return (br); 2250 } 2251 2252 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2253 if (br->br_chipid == BGE_ASICREV(chipid)) 2254 return (br); 2255 } 2256 2257 return (NULL); 2258 } 2259 2260 const struct bge_vendor * 2261 bge_lookup_vendor(uint16_t vid) 2262 { 2263 const struct bge_vendor *v; 2264 2265 for (v = bge_vendors; v->v_name != NULL; v++) 2266 if (v->v_id == vid) 2267 return (v); 2268 2269 panic("%s: unknown vendor %d", __func__, vid); 2270 return (NULL); 2271 } 2272 2273 /* 2274 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2275 * against our list and return its name if we find a match. 2276 * 2277 * Note that since the Broadcom controller contains VPD support, we 2278 * try to get the device name string from the controller itself instead 2279 * of the compiled-in string. It guarantees we'll always announce the 2280 * right product name. We fall back to the compiled-in string when 2281 * VPD is unavailable or corrupt. 2282 */ 2283 static int 2284 bge_probe(device_t dev) 2285 { 2286 char buf[96]; 2287 char model[64]; 2288 const struct bge_revision *br; 2289 const char *pname; 2290 struct bge_softc *sc = device_get_softc(dev); 2291 const struct bge_type *t = bge_devs; 2292 const struct bge_vendor *v; 2293 uint32_t id; 2294 uint16_t did, vid; 2295 2296 sc->bge_dev = dev; 2297 vid = pci_get_vendor(dev); 2298 did = pci_get_device(dev); 2299 while(t->bge_vid != 0) { 2300 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2301 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2302 BGE_PCIMISCCTL_ASICREV_SHIFT; 2303 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2304 /* 2305 * Find the ASCI revision. Different chips 2306 * use different registers. 2307 */ 2308 switch (pci_get_device(dev)) { 2309 case BCOM_DEVICEID_BCM5717: 2310 case BCOM_DEVICEID_BCM5718: 2311 case BCOM_DEVICEID_BCM5719: 2312 case BCOM_DEVICEID_BCM5720: 2313 id = pci_read_config(dev, 2314 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2315 break; 2316 case BCOM_DEVICEID_BCM57761: 2317 case BCOM_DEVICEID_BCM57765: 2318 case BCOM_DEVICEID_BCM57781: 2319 case BCOM_DEVICEID_BCM57785: 2320 case BCOM_DEVICEID_BCM57791: 2321 case BCOM_DEVICEID_BCM57795: 2322 id = pci_read_config(dev, 2323 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2324 break; 2325 default: 2326 id = pci_read_config(dev, 2327 BGE_PCI_PRODID_ASICREV, 4); 2328 } 2329 } 2330 br = bge_lookup_rev(id); 2331 v = bge_lookup_vendor(vid); 2332 if (bge_has_eaddr(sc) && 2333 pci_get_vpd_ident(dev, &pname) == 0) 2334 snprintf(model, 64, "%s", pname); 2335 else 2336 snprintf(model, 64, "%s %s", v->v_name, 2337 br != NULL ? br->br_name : 2338 "NetXtreme Ethernet Controller"); 2339 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2340 br != NULL ? "" : "unknown ", id); 2341 device_set_desc_copy(dev, buf); 2342 return (0); 2343 } 2344 t++; 2345 } 2346 2347 return (ENXIO); 2348 } 2349 2350 static void 2351 bge_dma_free(struct bge_softc *sc) 2352 { 2353 int i; 2354 2355 /* Destroy DMA maps for RX buffers. */ 2356 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2357 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2358 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2359 sc->bge_cdata.bge_rx_std_dmamap[i]); 2360 } 2361 if (sc->bge_cdata.bge_rx_std_sparemap) 2362 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2363 sc->bge_cdata.bge_rx_std_sparemap); 2364 2365 /* Destroy DMA maps for jumbo RX buffers. */ 2366 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2367 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2368 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2369 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2370 } 2371 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2372 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2373 sc->bge_cdata.bge_rx_jumbo_sparemap); 2374 2375 /* Destroy DMA maps for TX buffers. */ 2376 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2377 if (sc->bge_cdata.bge_tx_dmamap[i]) 2378 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2379 sc->bge_cdata.bge_tx_dmamap[i]); 2380 } 2381 2382 if (sc->bge_cdata.bge_rx_mtag) 2383 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2384 if (sc->bge_cdata.bge_mtag_jumbo) 2385 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2386 if (sc->bge_cdata.bge_tx_mtag) 2387 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2388 2389 /* Destroy standard RX ring. */ 2390 if (sc->bge_cdata.bge_rx_std_ring_map) 2391 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2392 sc->bge_cdata.bge_rx_std_ring_map); 2393 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2394 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2395 sc->bge_ldata.bge_rx_std_ring, 2396 sc->bge_cdata.bge_rx_std_ring_map); 2397 2398 if (sc->bge_cdata.bge_rx_std_ring_tag) 2399 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2400 2401 /* Destroy jumbo RX ring. */ 2402 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2403 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2404 sc->bge_cdata.bge_rx_jumbo_ring_map); 2405 2406 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2407 sc->bge_ldata.bge_rx_jumbo_ring) 2408 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2409 sc->bge_ldata.bge_rx_jumbo_ring, 2410 sc->bge_cdata.bge_rx_jumbo_ring_map); 2411 2412 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2413 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2414 2415 /* Destroy RX return ring. */ 2416 if (sc->bge_cdata.bge_rx_return_ring_map) 2417 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2418 sc->bge_cdata.bge_rx_return_ring_map); 2419 2420 if (sc->bge_cdata.bge_rx_return_ring_map && 2421 sc->bge_ldata.bge_rx_return_ring) 2422 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2423 sc->bge_ldata.bge_rx_return_ring, 2424 sc->bge_cdata.bge_rx_return_ring_map); 2425 2426 if (sc->bge_cdata.bge_rx_return_ring_tag) 2427 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2428 2429 /* Destroy TX ring. */ 2430 if (sc->bge_cdata.bge_tx_ring_map) 2431 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2432 sc->bge_cdata.bge_tx_ring_map); 2433 2434 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2435 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2436 sc->bge_ldata.bge_tx_ring, 2437 sc->bge_cdata.bge_tx_ring_map); 2438 2439 if (sc->bge_cdata.bge_tx_ring_tag) 2440 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2441 2442 /* Destroy status block. */ 2443 if (sc->bge_cdata.bge_status_map) 2444 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2445 sc->bge_cdata.bge_status_map); 2446 2447 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2448 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2449 sc->bge_ldata.bge_status_block, 2450 sc->bge_cdata.bge_status_map); 2451 2452 if (sc->bge_cdata.bge_status_tag) 2453 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2454 2455 /* Destroy statistics block. */ 2456 if (sc->bge_cdata.bge_stats_map) 2457 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2458 sc->bge_cdata.bge_stats_map); 2459 2460 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2461 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2462 sc->bge_ldata.bge_stats, 2463 sc->bge_cdata.bge_stats_map); 2464 2465 if (sc->bge_cdata.bge_stats_tag) 2466 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2467 2468 if (sc->bge_cdata.bge_buffer_tag) 2469 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2470 2471 /* Destroy the parent tag. */ 2472 if (sc->bge_cdata.bge_parent_tag) 2473 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2474 } 2475 2476 static int 2477 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2478 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2479 bus_addr_t *paddr, const char *msg) 2480 { 2481 struct bge_dmamap_arg ctx; 2482 int error; 2483 2484 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2485 alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2486 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2487 if (error != 0) { 2488 device_printf(sc->bge_dev, 2489 "could not create %s dma tag\n", msg); 2490 return (ENOMEM); 2491 } 2492 /* Allocate DMA'able memory for ring. */ 2493 error = bus_dmamem_alloc(*tag, (void **)ring, 2494 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2495 if (error != 0) { 2496 device_printf(sc->bge_dev, 2497 "could not allocate DMA'able memory for %s\n", msg); 2498 return (ENOMEM); 2499 } 2500 /* Load the address of the ring. */ 2501 ctx.bge_busaddr = 0; 2502 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2503 &ctx, BUS_DMA_NOWAIT); 2504 if (error != 0) { 2505 device_printf(sc->bge_dev, 2506 "could not load DMA'able memory for %s\n", msg); 2507 return (ENOMEM); 2508 } 2509 *paddr = ctx.bge_busaddr; 2510 return (0); 2511 } 2512 2513 static int 2514 bge_dma_alloc(struct bge_softc *sc) 2515 { 2516 bus_addr_t lowaddr; 2517 bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz; 2518 int i, error; 2519 2520 lowaddr = BUS_SPACE_MAXADDR; 2521 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2522 lowaddr = BGE_DMA_MAXADDR; 2523 /* 2524 * Allocate the parent bus DMA tag appropriate for PCI. 2525 */ 2526 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2527 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2528 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2529 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2530 if (error != 0) { 2531 device_printf(sc->bge_dev, 2532 "could not allocate parent dma tag\n"); 2533 return (ENOMEM); 2534 } 2535 2536 /* Create tag for standard RX ring. */ 2537 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2538 &sc->bge_cdata.bge_rx_std_ring_tag, 2539 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2540 &sc->bge_cdata.bge_rx_std_ring_map, 2541 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2542 if (error) 2543 return (error); 2544 2545 /* Create tag for RX return ring. */ 2546 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2547 &sc->bge_cdata.bge_rx_return_ring_tag, 2548 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2549 &sc->bge_cdata.bge_rx_return_ring_map, 2550 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2551 if (error) 2552 return (error); 2553 2554 /* Create tag for TX ring. */ 2555 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2556 &sc->bge_cdata.bge_tx_ring_tag, 2557 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2558 &sc->bge_cdata.bge_tx_ring_map, 2559 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2560 if (error) 2561 return (error); 2562 2563 /* 2564 * Create tag for status block. 2565 * Because we only use single Tx/Rx/Rx return ring, use 2566 * minimum status block size except BCM5700 AX/BX which 2567 * seems to want to see full status block size regardless 2568 * of configured number of ring. 2569 */ 2570 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2571 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2572 sbsz = BGE_STATUS_BLK_SZ; 2573 else 2574 sbsz = 32; 2575 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2576 &sc->bge_cdata.bge_status_tag, 2577 (uint8_t **)&sc->bge_ldata.bge_status_block, 2578 &sc->bge_cdata.bge_status_map, 2579 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2580 if (error) 2581 return (error); 2582 2583 /* Create tag for statistics block. */ 2584 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2585 &sc->bge_cdata.bge_stats_tag, 2586 (uint8_t **)&sc->bge_ldata.bge_stats, 2587 &sc->bge_cdata.bge_stats_map, 2588 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2589 if (error) 2590 return (error); 2591 2592 /* Create tag for jumbo RX ring. */ 2593 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2594 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2595 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2596 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2597 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2598 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2599 if (error) 2600 return (error); 2601 } 2602 2603 /* Create parent tag for buffers. */ 2604 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 2605 /* 2606 * XXX 2607 * watchdog timeout issue was observed on BCM5704 which 2608 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 2609 * Both limiting DMA address space to 32bits and flushing 2610 * mailbox write seem to address the issue. 2611 */ 2612 if (sc->bge_pcixcap != 0) 2613 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2614 } 2615 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr, 2616 BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 2617 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 2618 &sc->bge_cdata.bge_buffer_tag); 2619 if (error != 0) { 2620 device_printf(sc->bge_dev, 2621 "could not allocate buffer dma tag\n"); 2622 return (ENOMEM); 2623 } 2624 /* Create tag for Tx mbufs. */ 2625 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2626 txsegsz = BGE_TSOSEG_SZ; 2627 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2628 } else { 2629 txsegsz = MCLBYTES; 2630 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2631 } 2632 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2633 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2634 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2635 &sc->bge_cdata.bge_tx_mtag); 2636 2637 if (error) { 2638 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2639 return (ENOMEM); 2640 } 2641 2642 /* Create tag for Rx mbufs. */ 2643 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 2644 rxmaxsegsz = MJUM9BYTES; 2645 else 2646 rxmaxsegsz = MCLBYTES; 2647 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2648 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 2649 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2650 2651 if (error) { 2652 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2653 return (ENOMEM); 2654 } 2655 2656 /* Create DMA maps for RX buffers. */ 2657 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2658 &sc->bge_cdata.bge_rx_std_sparemap); 2659 if (error) { 2660 device_printf(sc->bge_dev, 2661 "can't create spare DMA map for RX\n"); 2662 return (ENOMEM); 2663 } 2664 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2665 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 2666 &sc->bge_cdata.bge_rx_std_dmamap[i]); 2667 if (error) { 2668 device_printf(sc->bge_dev, 2669 "can't create DMA map for RX\n"); 2670 return (ENOMEM); 2671 } 2672 } 2673 2674 /* Create DMA maps for TX buffers. */ 2675 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2676 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 2677 &sc->bge_cdata.bge_tx_dmamap[i]); 2678 if (error) { 2679 device_printf(sc->bge_dev, 2680 "can't create DMA map for TX\n"); 2681 return (ENOMEM); 2682 } 2683 } 2684 2685 /* Create tags for jumbo RX buffers. */ 2686 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2687 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 2688 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2689 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 2690 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 2691 if (error) { 2692 device_printf(sc->bge_dev, 2693 "could not allocate jumbo dma tag\n"); 2694 return (ENOMEM); 2695 } 2696 /* Create DMA maps for jumbo RX buffers. */ 2697 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2698 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 2699 if (error) { 2700 device_printf(sc->bge_dev, 2701 "can't create spare DMA map for jumbo RX\n"); 2702 return (ENOMEM); 2703 } 2704 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2705 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 2706 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2707 if (error) { 2708 device_printf(sc->bge_dev, 2709 "can't create DMA map for jumbo RX\n"); 2710 return (ENOMEM); 2711 } 2712 } 2713 } 2714 2715 return (0); 2716 } 2717 2718 /* 2719 * Return true if this device has more than one port. 2720 */ 2721 static int 2722 bge_has_multiple_ports(struct bge_softc *sc) 2723 { 2724 device_t dev = sc->bge_dev; 2725 u_int b, d, f, fscan, s; 2726 2727 d = pci_get_domain(dev); 2728 b = pci_get_bus(dev); 2729 s = pci_get_slot(dev); 2730 f = pci_get_function(dev); 2731 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 2732 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 2733 return (1); 2734 return (0); 2735 } 2736 2737 /* 2738 * Return true if MSI can be used with this device. 2739 */ 2740 static int 2741 bge_can_use_msi(struct bge_softc *sc) 2742 { 2743 int can_use_msi = 0; 2744 2745 if (sc->bge_msi == 0) 2746 return (0); 2747 2748 /* Disable MSI for polling(4). */ 2749 #ifdef DEVICE_POLLING 2750 return (0); 2751 #endif 2752 switch (sc->bge_asicrev) { 2753 case BGE_ASICREV_BCM5714_A0: 2754 case BGE_ASICREV_BCM5714: 2755 /* 2756 * Apparently, MSI doesn't work when these chips are 2757 * configured in single-port mode. 2758 */ 2759 if (bge_has_multiple_ports(sc)) 2760 can_use_msi = 1; 2761 break; 2762 case BGE_ASICREV_BCM5750: 2763 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 2764 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 2765 can_use_msi = 1; 2766 break; 2767 default: 2768 if (BGE_IS_575X_PLUS(sc)) 2769 can_use_msi = 1; 2770 } 2771 return (can_use_msi); 2772 } 2773 2774 static int 2775 bge_mbox_reorder(struct bge_softc *sc) 2776 { 2777 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 2778 static const struct mbox_reorder { 2779 const uint16_t vendor; 2780 const uint16_t device; 2781 const char *desc; 2782 } const mbox_reorder_lists[] = { 2783 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 2784 }; 2785 devclass_t pci, pcib; 2786 device_t bus, dev; 2787 int i; 2788 2789 pci = devclass_find("pci"); 2790 pcib = devclass_find("pcib"); 2791 dev = sc->bge_dev; 2792 bus = device_get_parent(dev); 2793 for (;;) { 2794 dev = device_get_parent(bus); 2795 bus = device_get_parent(dev); 2796 if (device_get_devclass(dev) != pcib) 2797 break; 2798 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 2799 if (pci_get_vendor(dev) == 2800 mbox_reorder_lists[i].vendor && 2801 pci_get_device(dev) == 2802 mbox_reorder_lists[i].device) { 2803 device_printf(sc->bge_dev, 2804 "enabling MBOX workaround for %s\n", 2805 mbox_reorder_lists[i].desc); 2806 return (1); 2807 } 2808 } 2809 if (device_get_devclass(bus) != pci) 2810 break; 2811 } 2812 return (0); 2813 } 2814 2815 static void 2816 bge_devinfo(struct bge_softc *sc) 2817 { 2818 uint32_t cfg, clk; 2819 2820 device_printf(sc->bge_dev, 2821 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 2822 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 2823 if (sc->bge_flags & BGE_FLAG_PCIE) 2824 printf("PCI-E\n"); 2825 else if (sc->bge_flags & BGE_FLAG_PCIX) { 2826 printf("PCI-X "); 2827 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 2828 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 2829 clk = 133; 2830 else { 2831 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 2832 switch (clk) { 2833 case 0: 2834 clk = 33; 2835 break; 2836 case 2: 2837 clk = 50; 2838 break; 2839 case 4: 2840 clk = 66; 2841 break; 2842 case 6: 2843 clk = 100; 2844 break; 2845 case 7: 2846 clk = 133; 2847 break; 2848 } 2849 } 2850 printf("%u MHz\n", clk); 2851 } else { 2852 if (sc->bge_pcixcap != 0) 2853 printf("PCI on PCI-X "); 2854 else 2855 printf("PCI "); 2856 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 2857 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 2858 clk = 66; 2859 else 2860 clk = 33; 2861 if (cfg & BGE_PCISTATE_32BIT_BUS) 2862 printf("%u MHz; 32bit\n", clk); 2863 else 2864 printf("%u MHz; 64bit\n", clk); 2865 } 2866 } 2867 2868 static int 2869 bge_attach(device_t dev) 2870 { 2871 struct ifnet *ifp; 2872 struct bge_softc *sc; 2873 uint32_t hwcfg = 0, misccfg; 2874 u_char eaddr[ETHER_ADDR_LEN]; 2875 int capmask, error, f, msicount, phy_addr, reg, rid, trys; 2876 2877 sc = device_get_softc(dev); 2878 sc->bge_dev = dev; 2879 2880 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 2881 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 2882 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 2883 2884 /* 2885 * Map control/status registers. 2886 */ 2887 pci_enable_busmaster(dev); 2888 2889 rid = PCIR_BAR(0); 2890 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 2891 RF_ACTIVE); 2892 2893 if (sc->bge_res == NULL) { 2894 device_printf (sc->bge_dev, "couldn't map memory\n"); 2895 error = ENXIO; 2896 goto fail; 2897 } 2898 2899 /* Save various chip information. */ 2900 sc->bge_chipid = 2901 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2902 BGE_PCIMISCCTL_ASICREV_SHIFT; 2903 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 2904 /* 2905 * Find the ASCI revision. Different chips use different 2906 * registers. 2907 */ 2908 switch (pci_get_device(dev)) { 2909 case BCOM_DEVICEID_BCM5717: 2910 case BCOM_DEVICEID_BCM5718: 2911 case BCOM_DEVICEID_BCM5719: 2912 case BCOM_DEVICEID_BCM5720: 2913 sc->bge_chipid = pci_read_config(dev, 2914 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2915 break; 2916 case BCOM_DEVICEID_BCM57761: 2917 case BCOM_DEVICEID_BCM57765: 2918 case BCOM_DEVICEID_BCM57781: 2919 case BCOM_DEVICEID_BCM57785: 2920 case BCOM_DEVICEID_BCM57791: 2921 case BCOM_DEVICEID_BCM57795: 2922 sc->bge_chipid = pci_read_config(dev, 2923 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2924 break; 2925 default: 2926 sc->bge_chipid = pci_read_config(dev, 2927 BGE_PCI_PRODID_ASICREV, 4); 2928 } 2929 } 2930 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 2931 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 2932 2933 /* Set default PHY address. */ 2934 phy_addr = 1; 2935 /* 2936 * PHY address mapping for various devices. 2937 * 2938 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2939 * ---------+-------+-------+-------+-------+ 2940 * BCM57XX | 1 | X | X | X | 2941 * BCM5704 | 1 | X | 1 | X | 2942 * BCM5717 | 1 | 8 | 2 | 9 | 2943 * BCM5719 | 1 | 8 | 2 | 9 | 2944 * BCM5720 | 1 | 8 | 2 | 9 | 2945 * 2946 * Other addresses may respond but they are not 2947 * IEEE compliant PHYs and should be ignored. 2948 */ 2949 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2950 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2951 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2952 f = pci_get_function(dev); 2953 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2954 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 2955 BGE_SGDIGSTS_IS_SERDES) 2956 phy_addr = f + 8; 2957 else 2958 phy_addr = f + 1; 2959 } else { 2960 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2961 BGE_CPMU_PHY_STRAP_IS_SERDES) 2962 phy_addr = f + 8; 2963 else 2964 phy_addr = f + 1; 2965 } 2966 } 2967 2968 /* 2969 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the 2970 * 5705 A0 and A1 chips. 2971 */ 2972 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 2973 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 2974 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 2975 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || 2976 sc->bge_asicrev == BGE_ASICREV_BCM5906) 2977 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 2978 2979 if (bge_has_eaddr(sc)) 2980 sc->bge_flags |= BGE_FLAG_EADDR; 2981 2982 /* Save chipset family. */ 2983 switch (sc->bge_asicrev) { 2984 case BGE_ASICREV_BCM5717: 2985 case BGE_ASICREV_BCM5719: 2986 case BGE_ASICREV_BCM5720: 2987 case BGE_ASICREV_BCM57765: 2988 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 2989 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 2990 BGE_FLAG_JUMBO_FRAME; 2991 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2992 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2993 /* Jumbo frame on BCM5719 A0 does not work. */ 2994 sc->bge_flags &= ~BGE_FLAG_JUMBO; 2995 } 2996 break; 2997 case BGE_ASICREV_BCM5755: 2998 case BGE_ASICREV_BCM5761: 2999 case BGE_ASICREV_BCM5784: 3000 case BGE_ASICREV_BCM5785: 3001 case BGE_ASICREV_BCM5787: 3002 case BGE_ASICREV_BCM57780: 3003 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3004 BGE_FLAG_5705_PLUS; 3005 break; 3006 case BGE_ASICREV_BCM5700: 3007 case BGE_ASICREV_BCM5701: 3008 case BGE_ASICREV_BCM5703: 3009 case BGE_ASICREV_BCM5704: 3010 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3011 break; 3012 case BGE_ASICREV_BCM5714_A0: 3013 case BGE_ASICREV_BCM5780: 3014 case BGE_ASICREV_BCM5714: 3015 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3016 /* FALLTHROUGH */ 3017 case BGE_ASICREV_BCM5750: 3018 case BGE_ASICREV_BCM5752: 3019 case BGE_ASICREV_BCM5906: 3020 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3021 /* FALLTHROUGH */ 3022 case BGE_ASICREV_BCM5705: 3023 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3024 break; 3025 } 3026 3027 /* Add SYSCTLs, requires the chipset family to be set. */ 3028 bge_add_sysctls(sc); 3029 3030 /* Set various PHY bug flags. */ 3031 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3032 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3033 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3034 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3035 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3036 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3037 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3038 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3039 if (pci_get_subvendor(dev) == DELL_VENDORID) 3040 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3041 if ((BGE_IS_5705_PLUS(sc)) && 3042 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3043 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 3044 sc->bge_asicrev != BGE_ASICREV_BCM5719 && 3045 sc->bge_asicrev != BGE_ASICREV_BCM5720 && 3046 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3047 sc->bge_asicrev != BGE_ASICREV_BCM57765 && 3048 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 3049 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3050 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3051 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3052 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3053 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3054 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3055 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3056 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3057 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3058 } else 3059 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3060 } 3061 3062 /* Identify the chips that use an CPMU. */ 3063 if (BGE_IS_5717_PLUS(sc) || 3064 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3065 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3066 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3067 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3068 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3069 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3070 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3071 else 3072 sc->bge_mi_mode = BGE_MIMODE_BASE; 3073 /* Enable auto polling for BCM570[0-5]. */ 3074 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3075 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3076 3077 /* 3078 * All Broadcom controllers have 4GB boundary DMA bug. 3079 * Whenever an address crosses a multiple of the 4GB boundary 3080 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3081 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3082 * state machine will lockup and cause the device to hang. 3083 */ 3084 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3085 3086 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3087 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3088 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3089 3090 /* 3091 * BCM5719 cannot handle DMA requests for DMA segments that 3092 * have larger than 4KB in size. However the maximum DMA 3093 * segment size created in DMA tag is 4KB for TSO, so we 3094 * wouldn't encounter the issue here. 3095 */ 3096 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3097 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3098 3099 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3100 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3101 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3102 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3103 sc->bge_flags |= BGE_FLAG_5788; 3104 } 3105 3106 capmask = BMSR_DEFCAPMASK; 3107 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3108 (misccfg == 0x4000 || misccfg == 0x8000)) || 3109 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3110 pci_get_vendor(dev) == BCOM_VENDORID && 3111 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3112 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3113 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3114 (pci_get_vendor(dev) == BCOM_VENDORID && 3115 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3116 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3117 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3118 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3119 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3120 /* These chips are 10/100 only. */ 3121 capmask &= ~BMSR_EXTSTAT; 3122 } 3123 3124 /* 3125 * Some controllers seem to require a special firmware to use 3126 * TSO. But the firmware is not available to FreeBSD and Linux 3127 * claims that the TSO performed by the firmware is slower than 3128 * hardware based TSO. Moreover the firmware based TSO has one 3129 * known bug which can't handle TSO if ethernet header + IP/TCP 3130 * header is greater than 80 bytes. The workaround for the TSO 3131 * bug exist but it seems it's too expensive than not using 3132 * TSO at all. Some hardwares also have the TSO bug so limit 3133 * the TSO to the controllers that are not affected TSO issues 3134 * (e.g. 5755 or higher). 3135 */ 3136 if (BGE_IS_5717_PLUS(sc)) { 3137 /* BCM5717 requires different TSO configuration. */ 3138 sc->bge_flags |= BGE_FLAG_TSO3; 3139 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3140 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3141 /* TSO on BCM5719 A0 does not work. */ 3142 sc->bge_flags &= ~BGE_FLAG_TSO3; 3143 } 3144 } else if (BGE_IS_5755_PLUS(sc)) { 3145 /* 3146 * BCM5754 and BCM5787 shares the same ASIC id so 3147 * explicit device id check is required. 3148 * Due to unknown reason TSO does not work on BCM5755M. 3149 */ 3150 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3151 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3152 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3153 sc->bge_flags |= BGE_FLAG_TSO; 3154 } 3155 3156 /* 3157 * Check if this is a PCI-X or PCI Express device. 3158 */ 3159 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3160 /* 3161 * Found a PCI Express capabilities register, this 3162 * must be a PCI Express device. 3163 */ 3164 sc->bge_flags |= BGE_FLAG_PCIE; 3165 sc->bge_expcap = reg; 3166 /* Extract supported maximum payload size. */ 3167 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3168 PCIER_DEVICE_CAP, 2); 3169 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3170 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3171 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3172 sc->bge_expmrq = 2048; 3173 else 3174 sc->bge_expmrq = 4096; 3175 pci_set_max_read_req(dev, sc->bge_expmrq); 3176 } else { 3177 /* 3178 * Check if the device is in PCI-X Mode. 3179 * (This bit is not valid on PCI Express controllers.) 3180 */ 3181 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3182 sc->bge_pcixcap = reg; 3183 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3184 BGE_PCISTATE_PCI_BUSMODE) == 0) 3185 sc->bge_flags |= BGE_FLAG_PCIX; 3186 } 3187 3188 /* 3189 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3190 * not actually a MAC controller bug but an issue with the embedded 3191 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3192 */ 3193 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3194 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3195 /* 3196 * Some PCI-X bridges are known to trigger write reordering to 3197 * the mailbox registers. Typical phenomena is watchdog timeouts 3198 * caused by out-of-order TX completions. Enable workaround for 3199 * PCI-X devices that live behind these bridges. 3200 * Note, PCI-X controllers can run in PCI mode so we can't use 3201 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3202 */ 3203 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3204 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3205 /* 3206 * Allocate the interrupt, using MSI if possible. These devices 3207 * support 8 MSI messages, but only the first one is used in 3208 * normal operation. 3209 */ 3210 rid = 0; 3211 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3212 sc->bge_msicap = reg; 3213 if (bge_can_use_msi(sc)) { 3214 msicount = pci_msi_count(dev); 3215 if (msicount > 1) 3216 msicount = 1; 3217 } else 3218 msicount = 0; 3219 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 3220 rid = 1; 3221 sc->bge_flags |= BGE_FLAG_MSI; 3222 } 3223 } 3224 3225 /* 3226 * All controllers except BCM5700 supports tagged status but 3227 * we use tagged status only for MSI case on BCM5717. Otherwise 3228 * MSI on BCM5717 does not work. 3229 */ 3230 #ifndef DEVICE_POLLING 3231 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3232 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3233 #endif 3234 3235 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3236 RF_SHAREABLE | RF_ACTIVE); 3237 3238 if (sc->bge_irq == NULL) { 3239 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3240 error = ENXIO; 3241 goto fail; 3242 } 3243 3244 bge_devinfo(sc); 3245 3246 /* Try to reset the chip. */ 3247 if (bge_reset(sc)) { 3248 device_printf(sc->bge_dev, "chip reset failed\n"); 3249 error = ENXIO; 3250 goto fail; 3251 } 3252 3253 sc->bge_asf_mode = 0; 3254 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3255 BGE_SRAM_DATA_SIG_MAGIC)) { 3256 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) 3257 & BGE_HWCFG_ASF) { 3258 sc->bge_asf_mode |= ASF_ENABLE; 3259 sc->bge_asf_mode |= ASF_STACKUP; 3260 if (BGE_IS_575X_PLUS(sc)) 3261 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3262 } 3263 } 3264 3265 /* Try to reset the chip again the nice way. */ 3266 bge_stop_fw(sc); 3267 bge_sig_pre_reset(sc, BGE_RESET_STOP); 3268 if (bge_reset(sc)) { 3269 device_printf(sc->bge_dev, "chip reset failed\n"); 3270 error = ENXIO; 3271 goto fail; 3272 } 3273 3274 bge_sig_legacy(sc, BGE_RESET_STOP); 3275 bge_sig_post_reset(sc, BGE_RESET_STOP); 3276 3277 if (bge_chipinit(sc)) { 3278 device_printf(sc->bge_dev, "chip initialization failed\n"); 3279 error = ENXIO; 3280 goto fail; 3281 } 3282 3283 error = bge_get_eaddr(sc, eaddr); 3284 if (error) { 3285 device_printf(sc->bge_dev, 3286 "failed to read station address\n"); 3287 error = ENXIO; 3288 goto fail; 3289 } 3290 3291 /* 5705 limits RX return ring to 512 entries. */ 3292 if (BGE_IS_5717_PLUS(sc)) 3293 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3294 else if (BGE_IS_5705_PLUS(sc)) 3295 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3296 else 3297 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3298 3299 if (bge_dma_alloc(sc)) { 3300 device_printf(sc->bge_dev, 3301 "failed to allocate DMA resources\n"); 3302 error = ENXIO; 3303 goto fail; 3304 } 3305 3306 /* Set default tuneable values. */ 3307 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3308 sc->bge_rx_coal_ticks = 150; 3309 sc->bge_tx_coal_ticks = 150; 3310 sc->bge_rx_max_coal_bds = 10; 3311 sc->bge_tx_max_coal_bds = 10; 3312 3313 /* Initialize checksum features to use. */ 3314 sc->bge_csum_features = BGE_CSUM_FEATURES; 3315 if (sc->bge_forced_udpcsum != 0) 3316 sc->bge_csum_features |= CSUM_UDP; 3317 3318 /* Set up ifnet structure */ 3319 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3320 if (ifp == NULL) { 3321 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3322 error = ENXIO; 3323 goto fail; 3324 } 3325 ifp->if_softc = sc; 3326 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3327 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3328 ifp->if_ioctl = bge_ioctl; 3329 ifp->if_start = bge_start; 3330 ifp->if_init = bge_init; 3331 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3332 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3333 IFQ_SET_READY(&ifp->if_snd); 3334 ifp->if_hwassist = sc->bge_csum_features; 3335 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3336 IFCAP_VLAN_MTU; 3337 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3338 ifp->if_hwassist |= CSUM_TSO; 3339 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3340 } 3341 #ifdef IFCAP_VLAN_HWCSUM 3342 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3343 #endif 3344 ifp->if_capenable = ifp->if_capabilities; 3345 #ifdef DEVICE_POLLING 3346 ifp->if_capabilities |= IFCAP_POLLING; 3347 #endif 3348 3349 /* 3350 * 5700 B0 chips do not support checksumming correctly due 3351 * to hardware bugs. 3352 */ 3353 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3354 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3355 ifp->if_capenable &= ~IFCAP_HWCSUM; 3356 ifp->if_hwassist = 0; 3357 } 3358 3359 /* 3360 * Figure out what sort of media we have by checking the 3361 * hardware config word in the first 32k of NIC internal memory, 3362 * or fall back to examining the EEPROM if necessary. 3363 * Note: on some BCM5700 cards, this value appears to be unset. 3364 * If that's the case, we have to rely on identifying the NIC 3365 * by its PCI subsystem ID, as we do below for the SysKonnect 3366 * SK-9D41. 3367 */ 3368 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3369 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3370 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3371 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3372 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3373 sizeof(hwcfg))) { 3374 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3375 error = ENXIO; 3376 goto fail; 3377 } 3378 hwcfg = ntohl(hwcfg); 3379 } 3380 3381 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3382 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3383 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3384 if (BGE_IS_5705_PLUS(sc)) 3385 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3386 else 3387 sc->bge_flags |= BGE_FLAG_TBI; 3388 } 3389 3390 if (sc->bge_flags & BGE_FLAG_TBI) { 3391 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3392 bge_ifmedia_sts); 3393 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3394 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3395 0, NULL); 3396 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3397 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3398 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3399 } else { 3400 /* 3401 * Do transceiver setup and tell the firmware the 3402 * driver is down so we can try to get access the 3403 * probe if ASF is running. Retry a couple of times 3404 * if we get a conflict with the ASF firmware accessing 3405 * the PHY. 3406 */ 3407 trys = 0; 3408 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3409 again: 3410 bge_asf_driver_up(sc); 3411 3412 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3413 bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY, 3414 MIIF_DOPAUSE); 3415 if (error != 0) { 3416 if (trys++ < 4) { 3417 device_printf(sc->bge_dev, "Try again\n"); 3418 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR, 3419 BMCR_RESET); 3420 goto again; 3421 } 3422 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3423 goto fail; 3424 } 3425 3426 /* 3427 * Now tell the firmware we are going up after probing the PHY 3428 */ 3429 if (sc->bge_asf_mode & ASF_STACKUP) 3430 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3431 } 3432 3433 /* 3434 * When using the BCM5701 in PCI-X mode, data corruption has 3435 * been observed in the first few bytes of some received packets. 3436 * Aligning the packet buffer in memory eliminates the corruption. 3437 * Unfortunately, this misaligns the packet payloads. On platforms 3438 * which do not support unaligned accesses, we will realign the 3439 * payloads by copying the received packets. 3440 */ 3441 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3442 sc->bge_flags & BGE_FLAG_PCIX) 3443 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3444 3445 /* 3446 * Call MI attach routine. 3447 */ 3448 ether_ifattach(ifp, eaddr); 3449 3450 /* Tell upper layer we support long frames. */ 3451 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3452 3453 /* 3454 * Hookup IRQ last. 3455 */ 3456 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3457 /* Take advantage of single-shot MSI. */ 3458 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3459 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3460 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3461 taskqueue_thread_enqueue, &sc->bge_tq); 3462 if (sc->bge_tq == NULL) { 3463 device_printf(dev, "could not create taskqueue.\n"); 3464 ether_ifdetach(ifp); 3465 error = ENOMEM; 3466 goto fail; 3467 } 3468 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3469 device_get_nameunit(sc->bge_dev)); 3470 error = bus_setup_intr(dev, sc->bge_irq, 3471 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3472 &sc->bge_intrhand); 3473 } else 3474 error = bus_setup_intr(dev, sc->bge_irq, 3475 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3476 &sc->bge_intrhand); 3477 3478 if (error) { 3479 ether_ifdetach(ifp); 3480 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3481 } 3482 3483 fail: 3484 if (error) 3485 bge_detach(dev); 3486 return (error); 3487 } 3488 3489 static int 3490 bge_detach(device_t dev) 3491 { 3492 struct bge_softc *sc; 3493 struct ifnet *ifp; 3494 3495 sc = device_get_softc(dev); 3496 ifp = sc->bge_ifp; 3497 3498 #ifdef DEVICE_POLLING 3499 if (ifp->if_capenable & IFCAP_POLLING) 3500 ether_poll_deregister(ifp); 3501 #endif 3502 3503 if (device_is_attached(dev)) { 3504 ether_ifdetach(ifp); 3505 BGE_LOCK(sc); 3506 bge_stop(sc); 3507 BGE_UNLOCK(sc); 3508 callout_drain(&sc->bge_stat_ch); 3509 } 3510 3511 if (sc->bge_tq) 3512 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3513 3514 if (sc->bge_flags & BGE_FLAG_TBI) { 3515 ifmedia_removeall(&sc->bge_ifmedia); 3516 } else { 3517 bus_generic_detach(dev); 3518 device_delete_child(dev, sc->bge_miibus); 3519 } 3520 3521 bge_release_resources(sc); 3522 3523 return (0); 3524 } 3525 3526 static void 3527 bge_release_resources(struct bge_softc *sc) 3528 { 3529 device_t dev; 3530 3531 dev = sc->bge_dev; 3532 3533 if (sc->bge_tq != NULL) 3534 taskqueue_free(sc->bge_tq); 3535 3536 if (sc->bge_intrhand != NULL) 3537 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3538 3539 if (sc->bge_irq != NULL) 3540 bus_release_resource(dev, SYS_RES_IRQ, 3541 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3542 3543 if (sc->bge_flags & BGE_FLAG_MSI) 3544 pci_release_msi(dev); 3545 3546 if (sc->bge_res != NULL) 3547 bus_release_resource(dev, SYS_RES_MEMORY, 3548 PCIR_BAR(0), sc->bge_res); 3549 3550 if (sc->bge_ifp != NULL) 3551 if_free(sc->bge_ifp); 3552 3553 bge_dma_free(sc); 3554 3555 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3556 BGE_LOCK_DESTROY(sc); 3557 } 3558 3559 static int 3560 bge_reset(struct bge_softc *sc) 3561 { 3562 device_t dev; 3563 uint32_t cachesize, command, pcistate, reset, val; 3564 void (*write_op)(struct bge_softc *, int, int); 3565 uint16_t devctl; 3566 int i; 3567 3568 dev = sc->bge_dev; 3569 3570 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3571 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3572 if (sc->bge_flags & BGE_FLAG_PCIE) 3573 write_op = bge_writemem_direct; 3574 else 3575 write_op = bge_writemem_ind; 3576 } else 3577 write_op = bge_writereg_ind; 3578 3579 /* Save some important PCI state. */ 3580 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3581 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3582 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3583 3584 pci_write_config(dev, BGE_PCI_MISC_CTL, 3585 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3586 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3587 3588 /* Disable fastboot on controllers that support it. */ 3589 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3590 BGE_IS_5755_PLUS(sc)) { 3591 if (bootverbose) 3592 device_printf(dev, "Disabling fastboot\n"); 3593 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3594 } 3595 3596 /* 3597 * Write the magic number to SRAM at offset 0xB50. 3598 * When firmware finishes its initialization it will 3599 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 3600 */ 3601 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 3602 3603 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3604 3605 /* XXX: Broadcom Linux driver. */ 3606 if (sc->bge_flags & BGE_FLAG_PCIE) { 3607 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3608 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 3609 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 3610 CSR_WRITE_4(sc, 0x7E2C, 0x20); 3611 } 3612 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 3613 /* Prevent PCIE link training during global reset */ 3614 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 3615 reset |= 1 << 29; 3616 } 3617 } 3618 3619 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3620 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3621 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 3622 val | BGE_VCPU_STATUS_DRV_RESET); 3623 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 3624 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 3625 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 3626 } 3627 3628 /* 3629 * Set GPHY Power Down Override to leave GPHY 3630 * powered up in D0 uninitialized. 3631 */ 3632 if (BGE_IS_5705_PLUS(sc) && 3633 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 3634 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 3635 3636 /* Issue global reset */ 3637 write_op(sc, BGE_MISC_CFG, reset); 3638 3639 DELAY(1000); 3640 3641 /* XXX: Broadcom Linux driver. */ 3642 if (sc->bge_flags & BGE_FLAG_PCIE) { 3643 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 3644 DELAY(500000); /* wait for link training to complete */ 3645 val = pci_read_config(dev, 0xC4, 4); 3646 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 3647 } 3648 devctl = pci_read_config(dev, 3649 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 3650 /* Clear enable no snoop and disable relaxed ordering. */ 3651 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 3652 PCIEM_CTL_NOSNOOP_ENABLE); 3653 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 3654 devctl, 2); 3655 pci_set_max_read_req(dev, sc->bge_expmrq); 3656 /* Clear error status. */ 3657 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 3658 PCIEM_STA_CORRECTABLE_ERROR | 3659 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 3660 PCIEM_STA_UNSUPPORTED_REQ, 2); 3661 } 3662 3663 /* Reset some of the PCI state that got zapped by reset. */ 3664 pci_write_config(dev, BGE_PCI_MISC_CTL, 3665 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3666 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3667 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 3668 pci_write_config(dev, BGE_PCI_CMD, command, 4); 3669 write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 3670 /* 3671 * Disable PCI-X relaxed ordering to ensure status block update 3672 * comes first then packet buffer DMA. Otherwise driver may 3673 * read stale status block. 3674 */ 3675 if (sc->bge_flags & BGE_FLAG_PCIX) { 3676 devctl = pci_read_config(dev, 3677 sc->bge_pcixcap + PCIXR_COMMAND, 2); 3678 devctl &= ~PCIXM_COMMAND_ERO; 3679 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 3680 devctl &= ~PCIXM_COMMAND_MAX_READ; 3681 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3682 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 3683 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 3684 PCIXM_COMMAND_MAX_READ); 3685 devctl |= PCIXM_COMMAND_MAX_READ_2048; 3686 } 3687 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 3688 devctl, 2); 3689 } 3690 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 3691 if (BGE_IS_5714_FAMILY(sc)) { 3692 /* This chip disables MSI on reset. */ 3693 if (sc->bge_flags & BGE_FLAG_MSI) { 3694 val = pci_read_config(dev, 3695 sc->bge_msicap + PCIR_MSI_CTRL, 2); 3696 pci_write_config(dev, 3697 sc->bge_msicap + PCIR_MSI_CTRL, 3698 val | PCIM_MSICTRL_MSI_ENABLE, 2); 3699 val = CSR_READ_4(sc, BGE_MSI_MODE); 3700 CSR_WRITE_4(sc, BGE_MSI_MODE, 3701 val | BGE_MSIMODE_ENABLE); 3702 } 3703 val = CSR_READ_4(sc, BGE_MARB_MODE); 3704 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 3705 } else 3706 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 3707 3708 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3709 for (i = 0; i < BGE_TIMEOUT; i++) { 3710 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 3711 if (val & BGE_VCPU_STATUS_INIT_DONE) 3712 break; 3713 DELAY(100); 3714 } 3715 if (i == BGE_TIMEOUT) { 3716 device_printf(dev, "reset timed out\n"); 3717 return (1); 3718 } 3719 } else { 3720 /* 3721 * Poll until we see the 1's complement of the magic number. 3722 * This indicates that the firmware initialization is complete. 3723 * We expect this to fail if no chip containing the Ethernet 3724 * address is fitted though. 3725 */ 3726 for (i = 0; i < BGE_TIMEOUT; i++) { 3727 DELAY(10); 3728 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 3729 if (val == ~BGE_SRAM_FW_MB_MAGIC) 3730 break; 3731 } 3732 3733 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 3734 device_printf(dev, 3735 "firmware handshake timed out, found 0x%08x\n", 3736 val); 3737 /* BCM57765 A0 needs additional time before accessing. */ 3738 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 3739 DELAY(10 * 1000); /* XXX */ 3740 } 3741 3742 /* 3743 * XXX Wait for the value of the PCISTATE register to 3744 * return to its original pre-reset state. This is a 3745 * fairly good indicator of reset completion. If we don't 3746 * wait for the reset to fully complete, trying to read 3747 * from the device's non-PCI registers may yield garbage 3748 * results. 3749 */ 3750 for (i = 0; i < BGE_TIMEOUT; i++) { 3751 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) 3752 break; 3753 DELAY(10); 3754 } 3755 3756 /* Fix up byte swapping. */ 3757 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 3758 3759 /* Tell the ASF firmware we are up */ 3760 if (sc->bge_asf_mode & ASF_STACKUP) 3761 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3762 3763 CSR_WRITE_4(sc, BGE_MAC_MODE, 0); 3764 DELAY(40); 3765 3766 /* 3767 * The 5704 in TBI mode apparently needs some special 3768 * adjustment to insure the SERDES drive level is set 3769 * to 1.2V. 3770 */ 3771 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 3772 sc->bge_flags & BGE_FLAG_TBI) { 3773 val = CSR_READ_4(sc, BGE_SERDES_CFG); 3774 val = (val & ~0xFFF) | 0x880; 3775 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 3776 } 3777 3778 /* XXX: Broadcom Linux driver. */ 3779 if (sc->bge_flags & BGE_FLAG_PCIE && 3780 !BGE_IS_5717_PLUS(sc) && 3781 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 3782 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 3783 /* Enable Data FIFO protection. */ 3784 val = CSR_READ_4(sc, 0x7C00); 3785 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 3786 } 3787 3788 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 3789 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 3790 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 3791 3792 return (0); 3793 } 3794 3795 static __inline void 3796 bge_rxreuse_std(struct bge_softc *sc, int i) 3797 { 3798 struct bge_rx_bd *r; 3799 3800 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 3801 r->bge_flags = BGE_RXBDFLAG_END; 3802 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 3803 r->bge_idx = i; 3804 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3805 } 3806 3807 static __inline void 3808 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 3809 { 3810 struct bge_extrx_bd *r; 3811 3812 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 3813 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 3814 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 3815 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 3816 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 3817 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 3818 r->bge_idx = i; 3819 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3820 } 3821 3822 /* 3823 * Frame reception handling. This is called if there's a frame 3824 * on the receive return list. 3825 * 3826 * Note: we have to be able to handle two possibilities here: 3827 * 1) the frame is from the jumbo receive ring 3828 * 2) the frame is from the standard receive ring 3829 */ 3830 3831 static int 3832 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 3833 { 3834 struct ifnet *ifp; 3835 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 3836 uint16_t rx_cons; 3837 3838 rx_cons = sc->bge_rx_saved_considx; 3839 3840 /* Nothing to do. */ 3841 if (rx_cons == rx_prod) 3842 return (rx_npkts); 3843 3844 ifp = sc->bge_ifp; 3845 3846 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3847 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 3848 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3849 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 3850 if (BGE_IS_JUMBO_CAPABLE(sc) && 3851 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 3852 (MCLBYTES - ETHER_ALIGN)) 3853 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3854 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 3855 3856 while (rx_cons != rx_prod) { 3857 struct bge_rx_bd *cur_rx; 3858 uint32_t rxidx; 3859 struct mbuf *m = NULL; 3860 uint16_t vlan_tag = 0; 3861 int have_tag = 0; 3862 3863 #ifdef DEVICE_POLLING 3864 if (ifp->if_capenable & IFCAP_POLLING) { 3865 if (sc->rxcycles <= 0) 3866 break; 3867 sc->rxcycles--; 3868 } 3869 #endif 3870 3871 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 3872 3873 rxidx = cur_rx->bge_idx; 3874 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 3875 3876 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 3877 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 3878 have_tag = 1; 3879 vlan_tag = cur_rx->bge_vlan_tag; 3880 } 3881 3882 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 3883 jumbocnt++; 3884 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 3885 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3886 bge_rxreuse_jumbo(sc, rxidx); 3887 continue; 3888 } 3889 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 3890 bge_rxreuse_jumbo(sc, rxidx); 3891 ifp->if_iqdrops++; 3892 continue; 3893 } 3894 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 3895 } else { 3896 stdcnt++; 3897 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 3898 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 3899 bge_rxreuse_std(sc, rxidx); 3900 continue; 3901 } 3902 if (bge_newbuf_std(sc, rxidx) != 0) { 3903 bge_rxreuse_std(sc, rxidx); 3904 ifp->if_iqdrops++; 3905 continue; 3906 } 3907 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 3908 } 3909 3910 ifp->if_ipackets++; 3911 #ifndef __NO_STRICT_ALIGNMENT 3912 /* 3913 * For architectures with strict alignment we must make sure 3914 * the payload is aligned. 3915 */ 3916 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 3917 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 3918 cur_rx->bge_len); 3919 m->m_data += ETHER_ALIGN; 3920 } 3921 #endif 3922 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 3923 m->m_pkthdr.rcvif = ifp; 3924 3925 if (ifp->if_capenable & IFCAP_RXCSUM) 3926 bge_rxcsum(sc, cur_rx, m); 3927 3928 /* 3929 * If we received a packet with a vlan tag, 3930 * attach that information to the packet. 3931 */ 3932 if (have_tag) { 3933 m->m_pkthdr.ether_vtag = vlan_tag; 3934 m->m_flags |= M_VLANTAG; 3935 } 3936 3937 if (holdlck != 0) { 3938 BGE_UNLOCK(sc); 3939 (*ifp->if_input)(ifp, m); 3940 BGE_LOCK(sc); 3941 } else 3942 (*ifp->if_input)(ifp, m); 3943 rx_npkts++; 3944 3945 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 3946 return (rx_npkts); 3947 } 3948 3949 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 3950 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 3951 if (stdcnt > 0) 3952 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 3953 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 3954 3955 if (jumbocnt > 0) 3956 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 3957 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 3958 3959 sc->bge_rx_saved_considx = rx_cons; 3960 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 3961 if (stdcnt) 3962 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 3963 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 3964 if (jumbocnt) 3965 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 3966 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 3967 #ifdef notyet 3968 /* 3969 * This register wraps very quickly under heavy packet drops. 3970 * If you need correct statistics, you can enable this check. 3971 */ 3972 if (BGE_IS_5705_PLUS(sc)) 3973 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 3974 #endif 3975 return (rx_npkts); 3976 } 3977 3978 static void 3979 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 3980 { 3981 3982 if (BGE_IS_5717_PLUS(sc)) { 3983 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 3984 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3985 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3986 if ((cur_rx->bge_error_flag & 3987 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 3988 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3989 } 3990 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 3991 m->m_pkthdr.csum_data = 3992 cur_rx->bge_tcp_udp_csum; 3993 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 3994 CSUM_PSEUDO_HDR; 3995 } 3996 } 3997 } else { 3998 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 3999 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4000 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4001 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4002 } 4003 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4004 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4005 m->m_pkthdr.csum_data = 4006 cur_rx->bge_tcp_udp_csum; 4007 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4008 CSUM_PSEUDO_HDR; 4009 } 4010 } 4011 } 4012 4013 static void 4014 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4015 { 4016 struct bge_tx_bd *cur_tx; 4017 struct ifnet *ifp; 4018 4019 BGE_LOCK_ASSERT(sc); 4020 4021 /* Nothing to do. */ 4022 if (sc->bge_tx_saved_considx == tx_cons) 4023 return; 4024 4025 ifp = sc->bge_ifp; 4026 4027 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4028 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4029 /* 4030 * Go through our tx ring and free mbufs for those 4031 * frames that have been sent. 4032 */ 4033 while (sc->bge_tx_saved_considx != tx_cons) { 4034 uint32_t idx; 4035 4036 idx = sc->bge_tx_saved_considx; 4037 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4038 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4039 ifp->if_opackets++; 4040 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4041 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4042 sc->bge_cdata.bge_tx_dmamap[idx], 4043 BUS_DMASYNC_POSTWRITE); 4044 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4045 sc->bge_cdata.bge_tx_dmamap[idx]); 4046 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4047 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4048 } 4049 sc->bge_txcnt--; 4050 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4051 } 4052 4053 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4054 if (sc->bge_txcnt == 0) 4055 sc->bge_timer = 0; 4056 } 4057 4058 #ifdef DEVICE_POLLING 4059 static int 4060 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 4061 { 4062 struct bge_softc *sc = ifp->if_softc; 4063 uint16_t rx_prod, tx_cons; 4064 uint32_t statusword; 4065 int rx_npkts = 0; 4066 4067 BGE_LOCK(sc); 4068 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4069 BGE_UNLOCK(sc); 4070 return (rx_npkts); 4071 } 4072 4073 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4074 sc->bge_cdata.bge_status_map, 4075 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4076 /* Fetch updates from the status block. */ 4077 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4078 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4079 4080 statusword = sc->bge_ldata.bge_status_block->bge_status; 4081 /* Clear the status so the next pass only sees the changes. */ 4082 sc->bge_ldata.bge_status_block->bge_status = 0; 4083 4084 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4085 sc->bge_cdata.bge_status_map, 4086 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4087 4088 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4089 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4090 sc->bge_link_evt++; 4091 4092 if (cmd == POLL_AND_CHECK_STATUS) 4093 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4094 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4095 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4096 bge_link_upd(sc); 4097 4098 sc->rxcycles = count; 4099 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4100 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4101 BGE_UNLOCK(sc); 4102 return (rx_npkts); 4103 } 4104 bge_txeof(sc, tx_cons); 4105 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4106 bge_start_locked(ifp); 4107 4108 BGE_UNLOCK(sc); 4109 return (rx_npkts); 4110 } 4111 #endif /* DEVICE_POLLING */ 4112 4113 static int 4114 bge_msi_intr(void *arg) 4115 { 4116 struct bge_softc *sc; 4117 4118 sc = (struct bge_softc *)arg; 4119 /* 4120 * This interrupt is not shared and controller already 4121 * disabled further interrupt. 4122 */ 4123 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4124 return (FILTER_HANDLED); 4125 } 4126 4127 static void 4128 bge_intr_task(void *arg, int pending) 4129 { 4130 struct bge_softc *sc; 4131 struct ifnet *ifp; 4132 uint32_t status, status_tag; 4133 uint16_t rx_prod, tx_cons; 4134 4135 sc = (struct bge_softc *)arg; 4136 ifp = sc->bge_ifp; 4137 4138 BGE_LOCK(sc); 4139 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4140 BGE_UNLOCK(sc); 4141 return; 4142 } 4143 4144 /* Get updated status block. */ 4145 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4146 sc->bge_cdata.bge_status_map, 4147 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4148 4149 /* Save producer/consumer indices. */ 4150 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4151 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4152 status = sc->bge_ldata.bge_status_block->bge_status; 4153 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4154 /* Dirty the status flag. */ 4155 sc->bge_ldata.bge_status_block->bge_status = 0; 4156 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4157 sc->bge_cdata.bge_status_map, 4158 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4159 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4160 status_tag = 0; 4161 4162 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4163 bge_link_upd(sc); 4164 4165 /* Let controller work. */ 4166 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4167 4168 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4169 sc->bge_rx_saved_considx != rx_prod) { 4170 /* Check RX return ring producer/consumer. */ 4171 BGE_UNLOCK(sc); 4172 bge_rxeof(sc, rx_prod, 0); 4173 BGE_LOCK(sc); 4174 } 4175 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4176 /* Check TX ring producer/consumer. */ 4177 bge_txeof(sc, tx_cons); 4178 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4179 bge_start_locked(ifp); 4180 } 4181 BGE_UNLOCK(sc); 4182 } 4183 4184 static void 4185 bge_intr(void *xsc) 4186 { 4187 struct bge_softc *sc; 4188 struct ifnet *ifp; 4189 uint32_t statusword; 4190 uint16_t rx_prod, tx_cons; 4191 4192 sc = xsc; 4193 4194 BGE_LOCK(sc); 4195 4196 ifp = sc->bge_ifp; 4197 4198 #ifdef DEVICE_POLLING 4199 if (ifp->if_capenable & IFCAP_POLLING) { 4200 BGE_UNLOCK(sc); 4201 return; 4202 } 4203 #endif 4204 4205 /* 4206 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4207 * disable interrupts by writing nonzero like we used to, since with 4208 * our current organization this just gives complications and 4209 * pessimizations for re-enabling interrupts. We used to have races 4210 * instead of the necessary complications. Disabling interrupts 4211 * would just reduce the chance of a status update while we are 4212 * running (by switching to the interrupt-mode coalescence 4213 * parameters), but this chance is already very low so it is more 4214 * efficient to get another interrupt than prevent it. 4215 * 4216 * We do the ack first to ensure another interrupt if there is a 4217 * status update after the ack. We don't check for the status 4218 * changing later because it is more efficient to get another 4219 * interrupt than prevent it, not quite as above (not checking is 4220 * a smaller optimization than not toggling the interrupt enable, 4221 * since checking doesn't involve PCI accesses and toggling require 4222 * the status check). So toggling would probably be a pessimization 4223 * even with MSI. It would only be needed for using a task queue. 4224 */ 4225 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4226 4227 /* 4228 * Do the mandatory PCI flush as well as get the link status. 4229 */ 4230 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4231 4232 /* Make sure the descriptor ring indexes are coherent. */ 4233 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4234 sc->bge_cdata.bge_status_map, 4235 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4236 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4237 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4238 sc->bge_ldata.bge_status_block->bge_status = 0; 4239 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4240 sc->bge_cdata.bge_status_map, 4241 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4242 4243 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4244 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4245 statusword || sc->bge_link_evt) 4246 bge_link_upd(sc); 4247 4248 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4249 /* Check RX return ring producer/consumer. */ 4250 bge_rxeof(sc, rx_prod, 1); 4251 } 4252 4253 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4254 /* Check TX ring producer/consumer. */ 4255 bge_txeof(sc, tx_cons); 4256 } 4257 4258 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4259 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4260 bge_start_locked(ifp); 4261 4262 BGE_UNLOCK(sc); 4263 } 4264 4265 static void 4266 bge_asf_driver_up(struct bge_softc *sc) 4267 { 4268 if (sc->bge_asf_mode & ASF_STACKUP) { 4269 /* Send ASF heartbeat aprox. every 2s */ 4270 if (sc->bge_asf_count) 4271 sc->bge_asf_count --; 4272 else { 4273 sc->bge_asf_count = 2; 4274 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4275 BGE_FW_CMD_DRV_ALIVE); 4276 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4277 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4278 BGE_FW_HB_TIMEOUT_SEC); 4279 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4280 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4281 BGE_RX_CPU_DRV_EVENT); 4282 } 4283 } 4284 } 4285 4286 static void 4287 bge_tick(void *xsc) 4288 { 4289 struct bge_softc *sc = xsc; 4290 struct mii_data *mii = NULL; 4291 4292 BGE_LOCK_ASSERT(sc); 4293 4294 /* Synchronize with possible callout reset/stop. */ 4295 if (callout_pending(&sc->bge_stat_ch) || 4296 !callout_active(&sc->bge_stat_ch)) 4297 return; 4298 4299 if (BGE_IS_5705_PLUS(sc)) 4300 bge_stats_update_regs(sc); 4301 else 4302 bge_stats_update(sc); 4303 4304 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4305 mii = device_get_softc(sc->bge_miibus); 4306 /* 4307 * Do not touch PHY if we have link up. This could break 4308 * IPMI/ASF mode or produce extra input errors 4309 * (extra errors was reported for bcm5701 & bcm5704). 4310 */ 4311 if (!sc->bge_link) 4312 mii_tick(mii); 4313 } else { 4314 /* 4315 * Since in TBI mode auto-polling can't be used we should poll 4316 * link status manually. Here we register pending link event 4317 * and trigger interrupt. 4318 */ 4319 #ifdef DEVICE_POLLING 4320 /* In polling mode we poll link state in bge_poll(). */ 4321 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4322 #endif 4323 { 4324 sc->bge_link_evt++; 4325 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4326 sc->bge_flags & BGE_FLAG_5788) 4327 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4328 else 4329 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4330 } 4331 } 4332 4333 bge_asf_driver_up(sc); 4334 bge_watchdog(sc); 4335 4336 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4337 } 4338 4339 static void 4340 bge_stats_update_regs(struct bge_softc *sc) 4341 { 4342 struct ifnet *ifp; 4343 struct bge_mac_stats *stats; 4344 4345 ifp = sc->bge_ifp; 4346 stats = &sc->bge_mac_stats; 4347 4348 stats->ifHCOutOctets += 4349 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4350 stats->etherStatsCollisions += 4351 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4352 stats->outXonSent += 4353 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4354 stats->outXoffSent += 4355 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4356 stats->dot3StatsInternalMacTransmitErrors += 4357 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4358 stats->dot3StatsSingleCollisionFrames += 4359 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4360 stats->dot3StatsMultipleCollisionFrames += 4361 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4362 stats->dot3StatsDeferredTransmissions += 4363 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4364 stats->dot3StatsExcessiveCollisions += 4365 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4366 stats->dot3StatsLateCollisions += 4367 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4368 stats->ifHCOutUcastPkts += 4369 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4370 stats->ifHCOutMulticastPkts += 4371 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4372 stats->ifHCOutBroadcastPkts += 4373 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4374 4375 stats->ifHCInOctets += 4376 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4377 stats->etherStatsFragments += 4378 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4379 stats->ifHCInUcastPkts += 4380 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4381 stats->ifHCInMulticastPkts += 4382 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4383 stats->ifHCInBroadcastPkts += 4384 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4385 stats->dot3StatsFCSErrors += 4386 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4387 stats->dot3StatsAlignmentErrors += 4388 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4389 stats->xonPauseFramesReceived += 4390 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4391 stats->xoffPauseFramesReceived += 4392 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4393 stats->macControlFramesReceived += 4394 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4395 stats->xoffStateEntered += 4396 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4397 stats->dot3StatsFramesTooLong += 4398 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4399 stats->etherStatsJabbers += 4400 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4401 stats->etherStatsUndersizePkts += 4402 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4403 4404 stats->FramesDroppedDueToFilters += 4405 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4406 stats->DmaWriteQueueFull += 4407 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4408 stats->DmaWriteHighPriQueueFull += 4409 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4410 stats->NoMoreRxBDs += 4411 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4412 /* 4413 * XXX 4414 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4415 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4416 * includes number of unwanted multicast frames. This comes 4417 * from silicon bug and known workaround to get rough(not 4418 * exact) counter is to enable interrupt on MBUF low water 4419 * attention. This can be accomplished by setting 4420 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4421 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4422 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4423 * However that change would generate more interrupts and 4424 * there are still possibilities of losing multiple frames 4425 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4426 * Given that the workaround still would not get correct 4427 * counter I don't think it's worth to implement it. So 4428 * ignore reading the counter on controllers that have the 4429 * silicon bug. 4430 */ 4431 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4432 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4433 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4434 stats->InputDiscards += 4435 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4436 stats->InputErrors += 4437 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4438 stats->RecvThresholdHit += 4439 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4440 4441 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4442 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4443 stats->InputErrors); 4444 } 4445 4446 static void 4447 bge_stats_clear_regs(struct bge_softc *sc) 4448 { 4449 4450 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4451 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4452 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4453 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4454 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4455 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4456 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4457 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4458 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4459 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4460 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4461 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4462 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4463 4464 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4465 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4466 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4467 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4468 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4469 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4470 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4471 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4472 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4473 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4474 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4475 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4476 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4477 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4478 4479 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4480 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4481 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4482 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4483 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4484 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4485 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4486 } 4487 4488 static void 4489 bge_stats_update(struct bge_softc *sc) 4490 { 4491 struct ifnet *ifp; 4492 bus_size_t stats; 4493 uint32_t cnt; /* current register value */ 4494 4495 ifp = sc->bge_ifp; 4496 4497 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4498 4499 #define READ_STAT(sc, stats, stat) \ 4500 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4501 4502 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4503 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4504 sc->bge_tx_collisions = cnt; 4505 4506 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4507 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds); 4508 sc->bge_rx_nobds = cnt; 4509 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4510 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs); 4511 sc->bge_rx_inerrs = cnt; 4512 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4513 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4514 sc->bge_rx_discards = cnt; 4515 4516 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4517 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4518 sc->bge_tx_discards = cnt; 4519 4520 #undef READ_STAT 4521 } 4522 4523 /* 4524 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4525 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4526 * but when such padded frames employ the bge IP/TCP checksum offload, 4527 * the hardware checksum assist gives incorrect results (possibly 4528 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4529 * If we pad such runts with zeros, the onboard checksum comes out correct. 4530 */ 4531 static __inline int 4532 bge_cksum_pad(struct mbuf *m) 4533 { 4534 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4535 struct mbuf *last; 4536 4537 /* If there's only the packet-header and we can pad there, use it. */ 4538 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4539 M_TRAILINGSPACE(m) >= padlen) { 4540 last = m; 4541 } else { 4542 /* 4543 * Walk packet chain to find last mbuf. We will either 4544 * pad there, or append a new mbuf and pad it. 4545 */ 4546 for (last = m; last->m_next != NULL; last = last->m_next); 4547 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4548 /* Allocate new empty mbuf, pad it. Compact later. */ 4549 struct mbuf *n; 4550 4551 MGET(n, M_DONTWAIT, MT_DATA); 4552 if (n == NULL) 4553 return (ENOBUFS); 4554 n->m_len = 0; 4555 last->m_next = n; 4556 last = n; 4557 } 4558 } 4559 4560 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4561 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4562 last->m_len += padlen; 4563 m->m_pkthdr.len += padlen; 4564 4565 return (0); 4566 } 4567 4568 static struct mbuf * 4569 bge_check_short_dma(struct mbuf *m) 4570 { 4571 struct mbuf *n; 4572 int found; 4573 4574 /* 4575 * If device receive two back-to-back send BDs with less than 4576 * or equal to 8 total bytes then the device may hang. The two 4577 * back-to-back send BDs must in the same frame for this failure 4578 * to occur. Scan mbuf chains and see whether two back-to-back 4579 * send BDs are there. If this is the case, allocate new mbuf 4580 * and copy the frame to workaround the silicon bug. 4581 */ 4582 for (n = m, found = 0; n != NULL; n = n->m_next) { 4583 if (n->m_len < 8) { 4584 found++; 4585 if (found > 1) 4586 break; 4587 continue; 4588 } 4589 found = 0; 4590 } 4591 4592 if (found > 1) { 4593 n = m_defrag(m, M_DONTWAIT); 4594 if (n == NULL) 4595 m_freem(m); 4596 } else 4597 n = m; 4598 return (n); 4599 } 4600 4601 static struct mbuf * 4602 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4603 uint16_t *flags) 4604 { 4605 struct ip *ip; 4606 struct tcphdr *tcp; 4607 struct mbuf *n; 4608 uint16_t hlen; 4609 uint32_t poff; 4610 4611 if (M_WRITABLE(m) == 0) { 4612 /* Get a writable copy. */ 4613 n = m_dup(m, M_DONTWAIT); 4614 m_freem(m); 4615 if (n == NULL) 4616 return (NULL); 4617 m = n; 4618 } 4619 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 4620 if (m == NULL) 4621 return (NULL); 4622 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4623 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 4624 m = m_pullup(m, poff + sizeof(struct tcphdr)); 4625 if (m == NULL) 4626 return (NULL); 4627 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4628 m = m_pullup(m, poff + (tcp->th_off << 2)); 4629 if (m == NULL) 4630 return (NULL); 4631 /* 4632 * It seems controller doesn't modify IP length and TCP pseudo 4633 * checksum. These checksum computed by upper stack should be 0. 4634 */ 4635 *mss = m->m_pkthdr.tso_segsz; 4636 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 4637 ip->ip_sum = 0; 4638 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 4639 /* Clear pseudo checksum computed by TCP stack. */ 4640 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 4641 tcp->th_sum = 0; 4642 /* 4643 * Broadcom controllers uses different descriptor format for 4644 * TSO depending on ASIC revision. Due to TSO-capable firmware 4645 * license issue and lower performance of firmware based TSO 4646 * we only support hardware based TSO. 4647 */ 4648 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 4649 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 4650 if (sc->bge_flags & BGE_FLAG_TSO3) { 4651 /* 4652 * For BCM5717 and newer controllers, hardware based TSO 4653 * uses the 14 lower bits of the bge_mss field to store the 4654 * MSS and the upper 2 bits to store the lowest 2 bits of 4655 * the IP/TCP header length. The upper 6 bits of the header 4656 * length are stored in the bge_flags[14:10,4] field. Jumbo 4657 * frames are supported. 4658 */ 4659 *mss |= ((hlen & 0x3) << 14); 4660 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 4661 } else { 4662 /* 4663 * For BCM5755 and newer controllers, hardware based TSO uses 4664 * the lower 11 bits to store the MSS and the upper 5 bits to 4665 * store the IP/TCP header length. Jumbo frames are not 4666 * supported. 4667 */ 4668 *mss |= (hlen << 11); 4669 } 4670 return (m); 4671 } 4672 4673 /* 4674 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4675 * pointers to descriptors. 4676 */ 4677 static int 4678 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 4679 { 4680 bus_dma_segment_t segs[BGE_NSEG_NEW]; 4681 bus_dmamap_t map; 4682 struct bge_tx_bd *d; 4683 struct mbuf *m = *m_head; 4684 uint32_t idx = *txidx; 4685 uint16_t csum_flags, mss, vlan_tag; 4686 int nsegs, i, error; 4687 4688 csum_flags = 0; 4689 mss = 0; 4690 vlan_tag = 0; 4691 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 4692 m->m_next != NULL) { 4693 *m_head = bge_check_short_dma(m); 4694 if (*m_head == NULL) 4695 return (ENOBUFS); 4696 m = *m_head; 4697 } 4698 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 4699 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 4700 if (*m_head == NULL) 4701 return (ENOBUFS); 4702 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 4703 BGE_TXBDFLAG_CPU_POST_DMA; 4704 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 4705 if (m->m_pkthdr.csum_flags & CSUM_IP) 4706 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4707 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 4708 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4709 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 4710 (error = bge_cksum_pad(m)) != 0) { 4711 m_freem(m); 4712 *m_head = NULL; 4713 return (error); 4714 } 4715 } 4716 if (m->m_flags & M_LASTFRAG) 4717 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; 4718 else if (m->m_flags & M_FRAG) 4719 csum_flags |= BGE_TXBDFLAG_IP_FRAG; 4720 } 4721 4722 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 4723 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 4724 m->m_pkthdr.len > ETHER_MAX_LEN) 4725 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 4726 if (sc->bge_forced_collapse > 0 && 4727 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 4728 /* 4729 * Forcedly collapse mbuf chains to overcome hardware 4730 * limitation which only support a single outstanding 4731 * DMA read operation. 4732 */ 4733 if (sc->bge_forced_collapse == 1) 4734 m = m_defrag(m, M_DONTWAIT); 4735 else 4736 m = m_collapse(m, M_DONTWAIT, 4737 sc->bge_forced_collapse); 4738 if (m == NULL) 4739 m = *m_head; 4740 *m_head = m; 4741 } 4742 } 4743 4744 map = sc->bge_cdata.bge_tx_dmamap[idx]; 4745 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 4746 &nsegs, BUS_DMA_NOWAIT); 4747 if (error == EFBIG) { 4748 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 4749 if (m == NULL) { 4750 m_freem(*m_head); 4751 *m_head = NULL; 4752 return (ENOBUFS); 4753 } 4754 *m_head = m; 4755 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 4756 m, segs, &nsegs, BUS_DMA_NOWAIT); 4757 if (error) { 4758 m_freem(m); 4759 *m_head = NULL; 4760 return (error); 4761 } 4762 } else if (error != 0) 4763 return (error); 4764 4765 /* Check if we have enough free send BDs. */ 4766 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 4767 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 4768 return (ENOBUFS); 4769 } 4770 4771 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 4772 4773 if (m->m_flags & M_VLANTAG) { 4774 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 4775 vlan_tag = m->m_pkthdr.ether_vtag; 4776 } 4777 for (i = 0; ; i++) { 4778 d = &sc->bge_ldata.bge_tx_ring[idx]; 4779 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 4780 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 4781 d->bge_len = segs[i].ds_len; 4782 d->bge_flags = csum_flags; 4783 d->bge_vlan_tag = vlan_tag; 4784 d->bge_mss = mss; 4785 if (i == nsegs - 1) 4786 break; 4787 BGE_INC(idx, BGE_TX_RING_CNT); 4788 } 4789 4790 /* Mark the last segment as end of packet... */ 4791 d->bge_flags |= BGE_TXBDFLAG_END; 4792 4793 /* 4794 * Insure that the map for this transmission 4795 * is placed at the array index of the last descriptor 4796 * in this chain. 4797 */ 4798 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 4799 sc->bge_cdata.bge_tx_dmamap[idx] = map; 4800 sc->bge_cdata.bge_tx_chain[idx] = m; 4801 sc->bge_txcnt += nsegs; 4802 4803 BGE_INC(idx, BGE_TX_RING_CNT); 4804 *txidx = idx; 4805 4806 return (0); 4807 } 4808 4809 /* 4810 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4811 * to the mbuf data regions directly in the transmit descriptors. 4812 */ 4813 static void 4814 bge_start_locked(struct ifnet *ifp) 4815 { 4816 struct bge_softc *sc; 4817 struct mbuf *m_head; 4818 uint32_t prodidx; 4819 int count; 4820 4821 sc = ifp->if_softc; 4822 BGE_LOCK_ASSERT(sc); 4823 4824 if (!sc->bge_link || 4825 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4826 IFF_DRV_RUNNING) 4827 return; 4828 4829 prodidx = sc->bge_tx_prodidx; 4830 4831 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 4832 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 4833 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4834 break; 4835 } 4836 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 4837 if (m_head == NULL) 4838 break; 4839 4840 /* 4841 * XXX 4842 * The code inside the if() block is never reached since we 4843 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting 4844 * requests to checksum TCP/UDP in a fragmented packet. 4845 * 4846 * XXX 4847 * safety overkill. If this is a fragmented packet chain 4848 * with delayed TCP/UDP checksums, then only encapsulate 4849 * it if we have enough descriptors to handle the entire 4850 * chain at once. 4851 * (paranoia -- may not actually be needed) 4852 */ 4853 if (m_head->m_flags & M_FIRSTFRAG && 4854 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 4855 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 4856 m_head->m_pkthdr.csum_data + 16) { 4857 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4858 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4859 break; 4860 } 4861 } 4862 4863 /* 4864 * Pack the data into the transmit ring. If we 4865 * don't have room, set the OACTIVE flag and wait 4866 * for the NIC to drain the ring. 4867 */ 4868 if (bge_encap(sc, &m_head, &prodidx)) { 4869 if (m_head == NULL) 4870 break; 4871 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 4872 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4873 break; 4874 } 4875 ++count; 4876 4877 /* 4878 * If there's a BPF listener, bounce a copy of this frame 4879 * to him. 4880 */ 4881 #ifdef ETHER_BPF_MTAP 4882 ETHER_BPF_MTAP(ifp, m_head); 4883 #else 4884 BPF_MTAP(ifp, m_head); 4885 #endif 4886 } 4887 4888 if (count > 0) { 4889 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4890 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 4891 /* Transmit. */ 4892 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4893 /* 5700 b2 errata */ 4894 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 4895 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 4896 4897 sc->bge_tx_prodidx = prodidx; 4898 4899 /* 4900 * Set a timeout in case the chip goes out to lunch. 4901 */ 4902 sc->bge_timer = 5; 4903 } 4904 } 4905 4906 /* 4907 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 4908 * to the mbuf data regions directly in the transmit descriptors. 4909 */ 4910 static void 4911 bge_start(struct ifnet *ifp) 4912 { 4913 struct bge_softc *sc; 4914 4915 sc = ifp->if_softc; 4916 BGE_LOCK(sc); 4917 bge_start_locked(ifp); 4918 BGE_UNLOCK(sc); 4919 } 4920 4921 static void 4922 bge_init_locked(struct bge_softc *sc) 4923 { 4924 struct ifnet *ifp; 4925 uint16_t *m; 4926 uint32_t mode; 4927 4928 BGE_LOCK_ASSERT(sc); 4929 4930 ifp = sc->bge_ifp; 4931 4932 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4933 return; 4934 4935 /* Cancel pending I/O and flush buffers. */ 4936 bge_stop(sc); 4937 4938 bge_stop_fw(sc); 4939 bge_sig_pre_reset(sc, BGE_RESET_START); 4940 bge_reset(sc); 4941 bge_sig_legacy(sc, BGE_RESET_START); 4942 bge_sig_post_reset(sc, BGE_RESET_START); 4943 4944 bge_chipinit(sc); 4945 4946 /* 4947 * Init the various state machines, ring 4948 * control blocks and firmware. 4949 */ 4950 if (bge_blockinit(sc)) { 4951 device_printf(sc->bge_dev, "initialization failure\n"); 4952 return; 4953 } 4954 4955 ifp = sc->bge_ifp; 4956 4957 /* Specify MTU. */ 4958 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 4959 ETHER_HDR_LEN + ETHER_CRC_LEN + 4960 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 4961 4962 /* Load our MAC address. */ 4963 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 4964 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 4965 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 4966 4967 /* Program promiscuous mode. */ 4968 bge_setpromisc(sc); 4969 4970 /* Program multicast filter. */ 4971 bge_setmulti(sc); 4972 4973 /* Program VLAN tag stripping. */ 4974 bge_setvlan(sc); 4975 4976 /* Override UDP checksum offloading. */ 4977 if (sc->bge_forced_udpcsum == 0) 4978 sc->bge_csum_features &= ~CSUM_UDP; 4979 else 4980 sc->bge_csum_features |= CSUM_UDP; 4981 if (ifp->if_capabilities & IFCAP_TXCSUM && 4982 ifp->if_capenable & IFCAP_TXCSUM) { 4983 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 4984 ifp->if_hwassist |= sc->bge_csum_features; 4985 } 4986 4987 /* Init RX ring. */ 4988 if (bge_init_rx_ring_std(sc) != 0) { 4989 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 4990 bge_stop(sc); 4991 return; 4992 } 4993 4994 /* 4995 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 4996 * memory to insure that the chip has in fact read the first 4997 * entry of the ring. 4998 */ 4999 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5000 uint32_t v, i; 5001 for (i = 0; i < 10; i++) { 5002 DELAY(20); 5003 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5004 if (v == (MCLBYTES - ETHER_ALIGN)) 5005 break; 5006 } 5007 if (i == 10) 5008 device_printf (sc->bge_dev, 5009 "5705 A0 chip failed to load RX ring\n"); 5010 } 5011 5012 /* Init jumbo RX ring. */ 5013 if (BGE_IS_JUMBO_CAPABLE(sc) && 5014 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 5015 (MCLBYTES - ETHER_ALIGN)) { 5016 if (bge_init_rx_ring_jumbo(sc) != 0) { 5017 device_printf(sc->bge_dev, 5018 "no memory for jumbo Rx buffers.\n"); 5019 bge_stop(sc); 5020 return; 5021 } 5022 } 5023 5024 /* Init our RX return ring index. */ 5025 sc->bge_rx_saved_considx = 0; 5026 5027 /* Init our RX/TX stat counters. */ 5028 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5029 5030 /* Init TX ring. */ 5031 bge_init_tx_ring(sc); 5032 5033 /* Enable TX MAC state machine lockup fix. */ 5034 mode = CSR_READ_4(sc, BGE_TX_MODE); 5035 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5036 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5037 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 5038 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5039 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5040 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5041 } 5042 /* Turn on transmitter. */ 5043 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5044 DELAY(100); 5045 5046 /* Turn on receiver. */ 5047 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5048 DELAY(10); 5049 5050 /* 5051 * Set the number of good frames to receive after RX MBUF 5052 * Low Watermark has been reached. After the RX MAC receives 5053 * this number of frames, it will drop subsequent incoming 5054 * frames until the MBUF High Watermark is reached. 5055 */ 5056 if (sc->bge_asicrev == BGE_ASICREV_BCM57765) 5057 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5058 else 5059 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5060 5061 /* Clear MAC statistics. */ 5062 if (BGE_IS_5705_PLUS(sc)) 5063 bge_stats_clear_regs(sc); 5064 5065 /* Tell firmware we're alive. */ 5066 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5067 5068 #ifdef DEVICE_POLLING 5069 /* Disable interrupts if we are polling. */ 5070 if (ifp->if_capenable & IFCAP_POLLING) { 5071 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5072 BGE_PCIMISCCTL_MASK_PCI_INTR); 5073 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5074 } else 5075 #endif 5076 5077 /* Enable host interrupts. */ 5078 { 5079 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5080 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5081 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5082 } 5083 5084 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5085 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5086 5087 bge_ifmedia_upd_locked(ifp); 5088 5089 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5090 } 5091 5092 static void 5093 bge_init(void *xsc) 5094 { 5095 struct bge_softc *sc = xsc; 5096 5097 BGE_LOCK(sc); 5098 bge_init_locked(sc); 5099 BGE_UNLOCK(sc); 5100 } 5101 5102 /* 5103 * Set media options. 5104 */ 5105 static int 5106 bge_ifmedia_upd(struct ifnet *ifp) 5107 { 5108 struct bge_softc *sc = ifp->if_softc; 5109 int res; 5110 5111 BGE_LOCK(sc); 5112 res = bge_ifmedia_upd_locked(ifp); 5113 BGE_UNLOCK(sc); 5114 5115 return (res); 5116 } 5117 5118 static int 5119 bge_ifmedia_upd_locked(struct ifnet *ifp) 5120 { 5121 struct bge_softc *sc = ifp->if_softc; 5122 struct mii_data *mii; 5123 struct mii_softc *miisc; 5124 struct ifmedia *ifm; 5125 5126 BGE_LOCK_ASSERT(sc); 5127 5128 ifm = &sc->bge_ifmedia; 5129 5130 /* If this is a 1000baseX NIC, enable the TBI port. */ 5131 if (sc->bge_flags & BGE_FLAG_TBI) { 5132 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5133 return (EINVAL); 5134 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5135 case IFM_AUTO: 5136 /* 5137 * The BCM5704 ASIC appears to have a special 5138 * mechanism for programming the autoneg 5139 * advertisement registers in TBI mode. 5140 */ 5141 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5142 uint32_t sgdig; 5143 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5144 if (sgdig & BGE_SGDIGSTS_DONE) { 5145 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5146 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5147 sgdig |= BGE_SGDIGCFG_AUTO | 5148 BGE_SGDIGCFG_PAUSE_CAP | 5149 BGE_SGDIGCFG_ASYM_PAUSE; 5150 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5151 sgdig | BGE_SGDIGCFG_SEND); 5152 DELAY(5); 5153 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5154 } 5155 } 5156 break; 5157 case IFM_1000_SX: 5158 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5159 BGE_CLRBIT(sc, BGE_MAC_MODE, 5160 BGE_MACMODE_HALF_DUPLEX); 5161 } else { 5162 BGE_SETBIT(sc, BGE_MAC_MODE, 5163 BGE_MACMODE_HALF_DUPLEX); 5164 } 5165 DELAY(40); 5166 break; 5167 default: 5168 return (EINVAL); 5169 } 5170 return (0); 5171 } 5172 5173 sc->bge_link_evt++; 5174 mii = device_get_softc(sc->bge_miibus); 5175 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5176 PHY_RESET(miisc); 5177 mii_mediachg(mii); 5178 5179 /* 5180 * Force an interrupt so that we will call bge_link_upd 5181 * if needed and clear any pending link state attention. 5182 * Without this we are not getting any further interrupts 5183 * for link state changes and thus will not UP the link and 5184 * not be able to send in bge_start_locked. The only 5185 * way to get things working was to receive a packet and 5186 * get an RX intr. 5187 * bge_tick should help for fiber cards and we might not 5188 * need to do this here if BGE_FLAG_TBI is set but as 5189 * we poll for fiber anyway it should not harm. 5190 */ 5191 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5192 sc->bge_flags & BGE_FLAG_5788) 5193 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5194 else 5195 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5196 5197 return (0); 5198 } 5199 5200 /* 5201 * Report current media status. 5202 */ 5203 static void 5204 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5205 { 5206 struct bge_softc *sc = ifp->if_softc; 5207 struct mii_data *mii; 5208 5209 BGE_LOCK(sc); 5210 5211 if (sc->bge_flags & BGE_FLAG_TBI) { 5212 ifmr->ifm_status = IFM_AVALID; 5213 ifmr->ifm_active = IFM_ETHER; 5214 if (CSR_READ_4(sc, BGE_MAC_STS) & 5215 BGE_MACSTAT_TBI_PCS_SYNCHED) 5216 ifmr->ifm_status |= IFM_ACTIVE; 5217 else { 5218 ifmr->ifm_active |= IFM_NONE; 5219 BGE_UNLOCK(sc); 5220 return; 5221 } 5222 ifmr->ifm_active |= IFM_1000_SX; 5223 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5224 ifmr->ifm_active |= IFM_HDX; 5225 else 5226 ifmr->ifm_active |= IFM_FDX; 5227 BGE_UNLOCK(sc); 5228 return; 5229 } 5230 5231 mii = device_get_softc(sc->bge_miibus); 5232 mii_pollstat(mii); 5233 ifmr->ifm_active = mii->mii_media_active; 5234 ifmr->ifm_status = mii->mii_media_status; 5235 5236 BGE_UNLOCK(sc); 5237 } 5238 5239 static int 5240 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5241 { 5242 struct bge_softc *sc = ifp->if_softc; 5243 struct ifreq *ifr = (struct ifreq *) data; 5244 struct mii_data *mii; 5245 int flags, mask, error = 0; 5246 5247 switch (command) { 5248 case SIOCSIFMTU: 5249 if (BGE_IS_JUMBO_CAPABLE(sc) || 5250 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5251 if (ifr->ifr_mtu < ETHERMIN || 5252 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5253 error = EINVAL; 5254 break; 5255 } 5256 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5257 error = EINVAL; 5258 break; 5259 } 5260 BGE_LOCK(sc); 5261 if (ifp->if_mtu != ifr->ifr_mtu) { 5262 ifp->if_mtu = ifr->ifr_mtu; 5263 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5264 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5265 bge_init_locked(sc); 5266 } 5267 } 5268 BGE_UNLOCK(sc); 5269 break; 5270 case SIOCSIFFLAGS: 5271 BGE_LOCK(sc); 5272 if (ifp->if_flags & IFF_UP) { 5273 /* 5274 * If only the state of the PROMISC flag changed, 5275 * then just use the 'set promisc mode' command 5276 * instead of reinitializing the entire NIC. Doing 5277 * a full re-init means reloading the firmware and 5278 * waiting for it to start up, which may take a 5279 * second or two. Similarly for ALLMULTI. 5280 */ 5281 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5282 flags = ifp->if_flags ^ sc->bge_if_flags; 5283 if (flags & IFF_PROMISC) 5284 bge_setpromisc(sc); 5285 if (flags & IFF_ALLMULTI) 5286 bge_setmulti(sc); 5287 } else 5288 bge_init_locked(sc); 5289 } else { 5290 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5291 bge_stop(sc); 5292 } 5293 } 5294 sc->bge_if_flags = ifp->if_flags; 5295 BGE_UNLOCK(sc); 5296 error = 0; 5297 break; 5298 case SIOCADDMULTI: 5299 case SIOCDELMULTI: 5300 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5301 BGE_LOCK(sc); 5302 bge_setmulti(sc); 5303 BGE_UNLOCK(sc); 5304 error = 0; 5305 } 5306 break; 5307 case SIOCSIFMEDIA: 5308 case SIOCGIFMEDIA: 5309 if (sc->bge_flags & BGE_FLAG_TBI) { 5310 error = ifmedia_ioctl(ifp, ifr, 5311 &sc->bge_ifmedia, command); 5312 } else { 5313 mii = device_get_softc(sc->bge_miibus); 5314 error = ifmedia_ioctl(ifp, ifr, 5315 &mii->mii_media, command); 5316 } 5317 break; 5318 case SIOCSIFCAP: 5319 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5320 #ifdef DEVICE_POLLING 5321 if (mask & IFCAP_POLLING) { 5322 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5323 error = ether_poll_register(bge_poll, ifp); 5324 if (error) 5325 return (error); 5326 BGE_LOCK(sc); 5327 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5328 BGE_PCIMISCCTL_MASK_PCI_INTR); 5329 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5330 ifp->if_capenable |= IFCAP_POLLING; 5331 BGE_UNLOCK(sc); 5332 } else { 5333 error = ether_poll_deregister(ifp); 5334 /* Enable interrupt even in error case */ 5335 BGE_LOCK(sc); 5336 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5337 BGE_PCIMISCCTL_MASK_PCI_INTR); 5338 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5339 ifp->if_capenable &= ~IFCAP_POLLING; 5340 BGE_UNLOCK(sc); 5341 } 5342 } 5343 #endif 5344 if ((mask & IFCAP_TXCSUM) != 0 && 5345 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 5346 ifp->if_capenable ^= IFCAP_TXCSUM; 5347 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5348 ifp->if_hwassist |= sc->bge_csum_features; 5349 else 5350 ifp->if_hwassist &= ~sc->bge_csum_features; 5351 } 5352 5353 if ((mask & IFCAP_RXCSUM) != 0 && 5354 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5355 ifp->if_capenable ^= IFCAP_RXCSUM; 5356 5357 if ((mask & IFCAP_TSO4) != 0 && 5358 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5359 ifp->if_capenable ^= IFCAP_TSO4; 5360 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5361 ifp->if_hwassist |= CSUM_TSO; 5362 else 5363 ifp->if_hwassist &= ~CSUM_TSO; 5364 } 5365 5366 if (mask & IFCAP_VLAN_MTU) { 5367 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5368 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5369 bge_init(sc); 5370 } 5371 5372 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5373 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5374 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5375 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5376 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5377 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5378 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5379 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5380 BGE_LOCK(sc); 5381 bge_setvlan(sc); 5382 BGE_UNLOCK(sc); 5383 } 5384 #ifdef VLAN_CAPABILITIES 5385 VLAN_CAPABILITIES(ifp); 5386 #endif 5387 break; 5388 default: 5389 error = ether_ioctl(ifp, command, data); 5390 break; 5391 } 5392 5393 return (error); 5394 } 5395 5396 static void 5397 bge_watchdog(struct bge_softc *sc) 5398 { 5399 struct ifnet *ifp; 5400 5401 BGE_LOCK_ASSERT(sc); 5402 5403 if (sc->bge_timer == 0 || --sc->bge_timer) 5404 return; 5405 5406 ifp = sc->bge_ifp; 5407 5408 if_printf(ifp, "watchdog timeout -- resetting\n"); 5409 5410 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5411 bge_init_locked(sc); 5412 5413 ifp->if_oerrors++; 5414 } 5415 5416 static void 5417 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5418 { 5419 int i; 5420 5421 BGE_CLRBIT(sc, reg, bit); 5422 5423 for (i = 0; i < BGE_TIMEOUT; i++) { 5424 if ((CSR_READ_4(sc, reg) & bit) == 0) 5425 return; 5426 DELAY(100); 5427 } 5428 } 5429 5430 /* 5431 * Stop the adapter and free any mbufs allocated to the 5432 * RX and TX lists. 5433 */ 5434 static void 5435 bge_stop(struct bge_softc *sc) 5436 { 5437 struct ifnet *ifp; 5438 5439 BGE_LOCK_ASSERT(sc); 5440 5441 ifp = sc->bge_ifp; 5442 5443 callout_stop(&sc->bge_stat_ch); 5444 5445 /* Disable host interrupts. */ 5446 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5447 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5448 5449 /* 5450 * Tell firmware we're shutting down. 5451 */ 5452 bge_stop_fw(sc); 5453 bge_sig_pre_reset(sc, BGE_RESET_STOP); 5454 5455 /* 5456 * Disable all of the receiver blocks. 5457 */ 5458 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5459 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5460 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5461 if (BGE_IS_5700_FAMILY(sc)) 5462 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5463 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5464 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5465 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5466 5467 /* 5468 * Disable all of the transmit blocks. 5469 */ 5470 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5471 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5472 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5473 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5474 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5475 if (BGE_IS_5700_FAMILY(sc)) 5476 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5477 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5478 5479 /* 5480 * Shut down all of the memory managers and related 5481 * state machines. 5482 */ 5483 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5484 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5485 if (BGE_IS_5700_FAMILY(sc)) 5486 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5487 5488 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5489 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5490 if (!(BGE_IS_5705_PLUS(sc))) { 5491 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5492 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5493 } 5494 /* Update MAC statistics. */ 5495 if (BGE_IS_5705_PLUS(sc)) 5496 bge_stats_update_regs(sc); 5497 5498 bge_reset(sc); 5499 bge_sig_legacy(sc, BGE_RESET_STOP); 5500 bge_sig_post_reset(sc, BGE_RESET_STOP); 5501 5502 /* 5503 * Keep the ASF firmware running if up. 5504 */ 5505 if (sc->bge_asf_mode & ASF_STACKUP) 5506 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5507 else 5508 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5509 5510 /* Free the RX lists. */ 5511 bge_free_rx_ring_std(sc); 5512 5513 /* Free jumbo RX list. */ 5514 if (BGE_IS_JUMBO_CAPABLE(sc)) 5515 bge_free_rx_ring_jumbo(sc); 5516 5517 /* Free TX buffers. */ 5518 bge_free_tx_ring(sc); 5519 5520 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5521 5522 /* Clear MAC's link state (PHY may still have link UP). */ 5523 if (bootverbose && sc->bge_link) 5524 if_printf(sc->bge_ifp, "link DOWN\n"); 5525 sc->bge_link = 0; 5526 5527 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5528 } 5529 5530 /* 5531 * Stop all chip I/O so that the kernel's probe routines don't 5532 * get confused by errant DMAs when rebooting. 5533 */ 5534 static int 5535 bge_shutdown(device_t dev) 5536 { 5537 struct bge_softc *sc; 5538 5539 sc = device_get_softc(dev); 5540 BGE_LOCK(sc); 5541 bge_stop(sc); 5542 bge_reset(sc); 5543 BGE_UNLOCK(sc); 5544 5545 return (0); 5546 } 5547 5548 static int 5549 bge_suspend(device_t dev) 5550 { 5551 struct bge_softc *sc; 5552 5553 sc = device_get_softc(dev); 5554 BGE_LOCK(sc); 5555 bge_stop(sc); 5556 BGE_UNLOCK(sc); 5557 5558 return (0); 5559 } 5560 5561 static int 5562 bge_resume(device_t dev) 5563 { 5564 struct bge_softc *sc; 5565 struct ifnet *ifp; 5566 5567 sc = device_get_softc(dev); 5568 BGE_LOCK(sc); 5569 ifp = sc->bge_ifp; 5570 if (ifp->if_flags & IFF_UP) { 5571 bge_init_locked(sc); 5572 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5573 bge_start_locked(ifp); 5574 } 5575 BGE_UNLOCK(sc); 5576 5577 return (0); 5578 } 5579 5580 static void 5581 bge_link_upd(struct bge_softc *sc) 5582 { 5583 struct mii_data *mii; 5584 uint32_t link, status; 5585 5586 BGE_LOCK_ASSERT(sc); 5587 5588 /* Clear 'pending link event' flag. */ 5589 sc->bge_link_evt = 0; 5590 5591 /* 5592 * Process link state changes. 5593 * Grrr. The link status word in the status block does 5594 * not work correctly on the BCM5700 rev AX and BX chips, 5595 * according to all available information. Hence, we have 5596 * to enable MII interrupts in order to properly obtain 5597 * async link changes. Unfortunately, this also means that 5598 * we have to read the MAC status register to detect link 5599 * changes, thereby adding an additional register access to 5600 * the interrupt handler. 5601 * 5602 * XXX: perhaps link state detection procedure used for 5603 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5604 */ 5605 5606 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5607 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5608 status = CSR_READ_4(sc, BGE_MAC_STS); 5609 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5610 mii = device_get_softc(sc->bge_miibus); 5611 mii_pollstat(mii); 5612 if (!sc->bge_link && 5613 mii->mii_media_status & IFM_ACTIVE && 5614 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5615 sc->bge_link++; 5616 if (bootverbose) 5617 if_printf(sc->bge_ifp, "link UP\n"); 5618 } else if (sc->bge_link && 5619 (!(mii->mii_media_status & IFM_ACTIVE) || 5620 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5621 sc->bge_link = 0; 5622 if (bootverbose) 5623 if_printf(sc->bge_ifp, "link DOWN\n"); 5624 } 5625 5626 /* Clear the interrupt. */ 5627 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5628 BGE_EVTENB_MI_INTERRUPT); 5629 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); 5630 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, 5631 BRGPHY_INTRS); 5632 } 5633 return; 5634 } 5635 5636 if (sc->bge_flags & BGE_FLAG_TBI) { 5637 status = CSR_READ_4(sc, BGE_MAC_STS); 5638 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5639 if (!sc->bge_link) { 5640 sc->bge_link++; 5641 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5642 BGE_CLRBIT(sc, BGE_MAC_MODE, 5643 BGE_MACMODE_TBI_SEND_CFGS); 5644 DELAY(40); 5645 } 5646 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5647 if (bootverbose) 5648 if_printf(sc->bge_ifp, "link UP\n"); 5649 if_link_state_change(sc->bge_ifp, 5650 LINK_STATE_UP); 5651 } 5652 } else if (sc->bge_link) { 5653 sc->bge_link = 0; 5654 if (bootverbose) 5655 if_printf(sc->bge_ifp, "link DOWN\n"); 5656 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 5657 } 5658 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 5659 /* 5660 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 5661 * in status word always set. Workaround this bug by reading 5662 * PHY link status directly. 5663 */ 5664 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 5665 5666 if (link != sc->bge_link || 5667 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 5668 mii = device_get_softc(sc->bge_miibus); 5669 mii_pollstat(mii); 5670 if (!sc->bge_link && 5671 mii->mii_media_status & IFM_ACTIVE && 5672 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5673 sc->bge_link++; 5674 if (bootverbose) 5675 if_printf(sc->bge_ifp, "link UP\n"); 5676 } else if (sc->bge_link && 5677 (!(mii->mii_media_status & IFM_ACTIVE) || 5678 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5679 sc->bge_link = 0; 5680 if (bootverbose) 5681 if_printf(sc->bge_ifp, "link DOWN\n"); 5682 } 5683 } 5684 } else { 5685 /* 5686 * For controllers that call mii_tick, we have to poll 5687 * link status. 5688 */ 5689 mii = device_get_softc(sc->bge_miibus); 5690 mii_pollstat(mii); 5691 bge_miibus_statchg(sc->bge_dev); 5692 } 5693 5694 /* Disable MAC attention when link is up. */ 5695 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 5696 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 5697 BGE_MACSTAT_LINK_CHANGED); 5698 } 5699 5700 static void 5701 bge_add_sysctls(struct bge_softc *sc) 5702 { 5703 struct sysctl_ctx_list *ctx; 5704 struct sysctl_oid_list *children; 5705 char tn[32]; 5706 int unit; 5707 5708 ctx = device_get_sysctl_ctx(sc->bge_dev); 5709 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 5710 5711 #ifdef BGE_REGISTER_DEBUG 5712 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 5713 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 5714 "Debug Information"); 5715 5716 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 5717 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 5718 "Register Read"); 5719 5720 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 5721 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 5722 "Memory Read"); 5723 5724 #endif 5725 5726 unit = device_get_unit(sc->bge_dev); 5727 /* 5728 * A common design characteristic for many Broadcom client controllers 5729 * is that they only support a single outstanding DMA read operation 5730 * on the PCIe bus. This means that it will take twice as long to fetch 5731 * a TX frame that is split into header and payload buffers as it does 5732 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 5733 * these controllers, coalescing buffers to reduce the number of memory 5734 * reads is effective way to get maximum performance(about 940Mbps). 5735 * Without collapsing TX buffers the maximum TCP bulk transfer 5736 * performance is about 850Mbps. However forcing coalescing mbufs 5737 * consumes a lot of CPU cycles, so leave it off by default. 5738 */ 5739 sc->bge_forced_collapse = 0; 5740 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 5741 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 5742 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 5743 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 5744 "Number of fragmented TX buffers of a frame allowed before " 5745 "forced collapsing"); 5746 5747 sc->bge_msi = 1; 5748 snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit); 5749 TUNABLE_INT_FETCH(tn, &sc->bge_msi); 5750 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 5751 CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI"); 5752 5753 /* 5754 * It seems all Broadcom controllers have a bug that can generate UDP 5755 * datagrams with checksum value 0 when TX UDP checksum offloading is 5756 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 5757 * Even though the probability of generating such UDP datagrams is 5758 * low, I don't want to see FreeBSD boxes to inject such datagrams 5759 * into network so disable UDP checksum offloading by default. Users 5760 * still override this behavior by setting a sysctl variable, 5761 * dev.bge.0.forced_udpcsum. 5762 */ 5763 sc->bge_forced_udpcsum = 0; 5764 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 5765 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 5766 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 5767 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 5768 "Enable UDP checksum offloading even if controller can " 5769 "generate UDP checksum value 0"); 5770 5771 if (BGE_IS_5705_PLUS(sc)) 5772 bge_add_sysctl_stats_regs(sc, ctx, children); 5773 else 5774 bge_add_sysctl_stats(sc, ctx, children); 5775 } 5776 5777 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 5778 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 5779 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 5780 desc) 5781 5782 static void 5783 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5784 struct sysctl_oid_list *parent) 5785 { 5786 struct sysctl_oid *tree; 5787 struct sysctl_oid_list *children, *schildren; 5788 5789 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5790 NULL, "BGE Statistics"); 5791 schildren = children = SYSCTL_CHILDREN(tree); 5792 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 5793 children, COSFramesDroppedDueToFilters, 5794 "FramesDroppedDueToFilters"); 5795 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 5796 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 5797 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 5798 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 5799 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 5800 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 5801 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 5802 children, ifInDiscards, "InputDiscards"); 5803 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 5804 children, ifInErrors, "InputErrors"); 5805 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 5806 children, nicRecvThresholdHit, "RecvThresholdHit"); 5807 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 5808 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 5809 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 5810 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 5811 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 5812 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 5813 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 5814 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 5815 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 5816 children, nicRingStatusUpdate, "RingStatusUpdate"); 5817 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 5818 children, nicInterrupts, "Interrupts"); 5819 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 5820 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 5821 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 5822 children, nicSendThresholdHit, "SendThresholdHit"); 5823 5824 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 5825 NULL, "BGE RX Statistics"); 5826 children = SYSCTL_CHILDREN(tree); 5827 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 5828 children, rxstats.ifHCInOctets, "ifHCInOctets"); 5829 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 5830 children, rxstats.etherStatsFragments, "Fragments"); 5831 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 5832 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 5833 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 5834 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 5835 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 5836 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 5837 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 5838 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 5839 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 5840 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 5841 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 5842 children, rxstats.xoffPauseFramesReceived, 5843 "xoffPauseFramesReceived"); 5844 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 5845 children, rxstats.macControlFramesReceived, 5846 "ControlFramesReceived"); 5847 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 5848 children, rxstats.xoffStateEntered, "xoffStateEntered"); 5849 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 5850 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 5851 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 5852 children, rxstats.etherStatsJabbers, "Jabbers"); 5853 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 5854 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 5855 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 5856 children, rxstats.inRangeLengthError, "inRangeLengthError"); 5857 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 5858 children, rxstats.outRangeLengthError, "outRangeLengthError"); 5859 5860 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 5861 NULL, "BGE TX Statistics"); 5862 children = SYSCTL_CHILDREN(tree); 5863 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 5864 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 5865 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 5866 children, txstats.etherStatsCollisions, "Collisions"); 5867 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 5868 children, txstats.outXonSent, "XonSent"); 5869 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 5870 children, txstats.outXoffSent, "XoffSent"); 5871 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 5872 children, txstats.flowControlDone, "flowControlDone"); 5873 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 5874 children, txstats.dot3StatsInternalMacTransmitErrors, 5875 "InternalMacTransmitErrors"); 5876 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 5877 children, txstats.dot3StatsSingleCollisionFrames, 5878 "SingleCollisionFrames"); 5879 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 5880 children, txstats.dot3StatsMultipleCollisionFrames, 5881 "MultipleCollisionFrames"); 5882 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 5883 children, txstats.dot3StatsDeferredTransmissions, 5884 "DeferredTransmissions"); 5885 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 5886 children, txstats.dot3StatsExcessiveCollisions, 5887 "ExcessiveCollisions"); 5888 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 5889 children, txstats.dot3StatsLateCollisions, 5890 "LateCollisions"); 5891 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 5892 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 5893 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 5894 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 5895 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 5896 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 5897 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 5898 children, txstats.dot3StatsCarrierSenseErrors, 5899 "CarrierSenseErrors"); 5900 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 5901 children, txstats.ifOutDiscards, "Discards"); 5902 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 5903 children, txstats.ifOutErrors, "Errors"); 5904 } 5905 5906 #undef BGE_SYSCTL_STAT 5907 5908 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 5909 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 5910 5911 static void 5912 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 5913 struct sysctl_oid_list *parent) 5914 { 5915 struct sysctl_oid *tree; 5916 struct sysctl_oid_list *child, *schild; 5917 struct bge_mac_stats *stats; 5918 5919 stats = &sc->bge_mac_stats; 5920 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 5921 NULL, "BGE Statistics"); 5922 schild = child = SYSCTL_CHILDREN(tree); 5923 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 5924 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 5925 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 5926 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 5927 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 5928 &stats->DmaWriteHighPriQueueFull, 5929 "NIC DMA Write High Priority Queue Full"); 5930 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 5931 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 5932 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 5933 &stats->InputDiscards, "Discarded Input Frames"); 5934 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 5935 &stats->InputErrors, "Input Errors"); 5936 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 5937 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 5938 5939 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 5940 NULL, "BGE RX Statistics"); 5941 child = SYSCTL_CHILDREN(tree); 5942 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 5943 &stats->ifHCInOctets, "Inbound Octets"); 5944 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 5945 &stats->etherStatsFragments, "Fragments"); 5946 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5947 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 5948 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5949 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 5950 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 5951 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 5952 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 5953 &stats->dot3StatsFCSErrors, "FCS Errors"); 5954 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 5955 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 5956 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 5957 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 5958 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 5959 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 5960 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 5961 &stats->macControlFramesReceived, "MAC Control Frames Received"); 5962 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 5963 &stats->xoffStateEntered, "XOFF State Entered"); 5964 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 5965 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 5966 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 5967 &stats->etherStatsJabbers, "Jabbers"); 5968 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 5969 &stats->etherStatsUndersizePkts, "Undersized Packets"); 5970 5971 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 5972 NULL, "BGE TX Statistics"); 5973 child = SYSCTL_CHILDREN(tree); 5974 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 5975 &stats->ifHCOutOctets, "Outbound Octets"); 5976 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 5977 &stats->etherStatsCollisions, "TX Collisions"); 5978 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 5979 &stats->outXonSent, "XON Sent"); 5980 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 5981 &stats->outXoffSent, "XOFF Sent"); 5982 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 5983 &stats->dot3StatsInternalMacTransmitErrors, 5984 "Internal MAC TX Errors"); 5985 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 5986 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 5987 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 5988 &stats->dot3StatsMultipleCollisionFrames, 5989 "Multiple Collision Frames"); 5990 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 5991 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 5992 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 5993 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 5994 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 5995 &stats->dot3StatsLateCollisions, "Late Collisions"); 5996 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 5997 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 5998 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 5999 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6000 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6001 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6002 } 6003 6004 #undef BGE_SYSCTL_STAT_ADD64 6005 6006 static int 6007 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6008 { 6009 struct bge_softc *sc; 6010 uint32_t result; 6011 int offset; 6012 6013 sc = (struct bge_softc *)arg1; 6014 offset = arg2; 6015 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6016 offsetof(bge_hostaddr, bge_addr_lo)); 6017 return (sysctl_handle_int(oidp, &result, 0, req)); 6018 } 6019 6020 #ifdef BGE_REGISTER_DEBUG 6021 static int 6022 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6023 { 6024 struct bge_softc *sc; 6025 uint16_t *sbdata; 6026 int error, result, sbsz; 6027 int i, j; 6028 6029 result = -1; 6030 error = sysctl_handle_int(oidp, &result, 0, req); 6031 if (error || (req->newptr == NULL)) 6032 return (error); 6033 6034 if (result == 1) { 6035 sc = (struct bge_softc *)arg1; 6036 6037 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6038 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6039 sbsz = BGE_STATUS_BLK_SZ; 6040 else 6041 sbsz = 32; 6042 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6043 printf("Status Block:\n"); 6044 BGE_LOCK(sc); 6045 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6046 sc->bge_cdata.bge_status_map, 6047 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6048 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6049 printf("%06x:", i); 6050 for (j = 0; j < 8; j++) 6051 printf(" %04x", sbdata[i++]); 6052 printf("\n"); 6053 } 6054 6055 printf("Registers:\n"); 6056 for (i = 0x800; i < 0xA00; ) { 6057 printf("%06x:", i); 6058 for (j = 0; j < 8; j++) { 6059 printf(" %08x", CSR_READ_4(sc, i)); 6060 i += 4; 6061 } 6062 printf("\n"); 6063 } 6064 BGE_UNLOCK(sc); 6065 6066 printf("Hardware Flags:\n"); 6067 if (BGE_IS_5717_PLUS(sc)) 6068 printf(" - 5717 Plus\n"); 6069 if (BGE_IS_5755_PLUS(sc)) 6070 printf(" - 5755 Plus\n"); 6071 if (BGE_IS_575X_PLUS(sc)) 6072 printf(" - 575X Plus\n"); 6073 if (BGE_IS_5705_PLUS(sc)) 6074 printf(" - 5705 Plus\n"); 6075 if (BGE_IS_5714_FAMILY(sc)) 6076 printf(" - 5714 Family\n"); 6077 if (BGE_IS_5700_FAMILY(sc)) 6078 printf(" - 5700 Family\n"); 6079 if (sc->bge_flags & BGE_FLAG_JUMBO) 6080 printf(" - Supports Jumbo Frames\n"); 6081 if (sc->bge_flags & BGE_FLAG_PCIX) 6082 printf(" - PCI-X Bus\n"); 6083 if (sc->bge_flags & BGE_FLAG_PCIE) 6084 printf(" - PCI Express Bus\n"); 6085 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6086 printf(" - No 3 LEDs\n"); 6087 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6088 printf(" - RX Alignment Bug\n"); 6089 } 6090 6091 return (error); 6092 } 6093 6094 static int 6095 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6096 { 6097 struct bge_softc *sc; 6098 int error; 6099 uint16_t result; 6100 uint32_t val; 6101 6102 result = -1; 6103 error = sysctl_handle_int(oidp, &result, 0, req); 6104 if (error || (req->newptr == NULL)) 6105 return (error); 6106 6107 if (result < 0x8000) { 6108 sc = (struct bge_softc *)arg1; 6109 val = CSR_READ_4(sc, result); 6110 printf("reg 0x%06X = 0x%08X\n", result, val); 6111 } 6112 6113 return (error); 6114 } 6115 6116 static int 6117 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6118 { 6119 struct bge_softc *sc; 6120 int error; 6121 uint16_t result; 6122 uint32_t val; 6123 6124 result = -1; 6125 error = sysctl_handle_int(oidp, &result, 0, req); 6126 if (error || (req->newptr == NULL)) 6127 return (error); 6128 6129 if (result < 0x8000) { 6130 sc = (struct bge_softc *)arg1; 6131 val = bge_readmem_ind(sc, result); 6132 printf("mem 0x%06X = 0x%08X\n", result, val); 6133 } 6134 6135 return (error); 6136 } 6137 #endif 6138 6139 static int 6140 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6141 { 6142 6143 if (sc->bge_flags & BGE_FLAG_EADDR) 6144 return (1); 6145 6146 #ifdef __sparc64__ 6147 OF_getetheraddr(sc->bge_dev, ether_addr); 6148 return (0); 6149 #endif 6150 return (1); 6151 } 6152 6153 static int 6154 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6155 { 6156 uint32_t mac_addr; 6157 6158 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6159 if ((mac_addr >> 16) == 0x484b) { 6160 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6161 ether_addr[1] = (uint8_t)mac_addr; 6162 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6163 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6164 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6165 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6166 ether_addr[5] = (uint8_t)mac_addr; 6167 return (0); 6168 } 6169 return (1); 6170 } 6171 6172 static int 6173 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6174 { 6175 int mac_offset = BGE_EE_MAC_OFFSET; 6176 6177 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6178 mac_offset = BGE_EE_MAC_OFFSET_5906; 6179 6180 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6181 ETHER_ADDR_LEN)); 6182 } 6183 6184 static int 6185 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6186 { 6187 6188 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6189 return (1); 6190 6191 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6192 ETHER_ADDR_LEN)); 6193 } 6194 6195 static int 6196 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6197 { 6198 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6199 /* NOTE: Order is critical */ 6200 bge_get_eaddr_fw, 6201 bge_get_eaddr_mem, 6202 bge_get_eaddr_nvram, 6203 bge_get_eaddr_eeprom, 6204 NULL 6205 }; 6206 const bge_eaddr_fcn_t *func; 6207 6208 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6209 if ((*func)(sc, eaddr) == 0) 6210 break; 6211 } 6212 return (*func == NULL ? ENXIO : 0); 6213 } 6214