xref: /freebsd/sys/dev/bge/if_bge.c (revision 9823d52705ad71f19ef2205aa729547ac396e3eb)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68 
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90 
91 #include <net/bpf.h>
92 
93 #include <net/if_types.h>
94 #include <net/if_vlan_var.h>
95 
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99 #include <netinet/tcp.h>
100 
101 #include <machine/bus.h>
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108 #include "miidevs.h"
109 #include <dev/mii/brgphyreg.h>
110 
111 #ifdef __sparc64__
112 #include <dev/ofw/ofw_bus.h>
113 #include <dev/ofw/openfirm.h>
114 #include <machine/ofw_machdep.h>
115 #include <machine/ver.h>
116 #endif
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 
121 #include <dev/bge/if_bgereg.h>
122 
123 #define	BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
124 #define	ETHER_MIN_NOPAD		(ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 MODULE_DEPEND(bge, pci, 1, 1, 1);
127 MODULE_DEPEND(bge, ether, 1, 1, 1);
128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 /*
134  * Various supported device vendors/types and their names. Note: the
135  * spec seems to indicate that the hardware still has Alteon's vendor
136  * ID burned into it, though it will always be overriden by the vendor
137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
138  */
139 static const struct bge_type {
140 	uint16_t	bge_vid;
141 	uint16_t	bge_did;
142 } const bge_devs[] = {
143 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5700 },
144 	{ ALTEON_VENDORID,	ALTEON_DEVICEID_BCM5701 },
145 
146 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1000 },
147 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC1002 },
148 	{ ALTIMA_VENDORID,	ALTIMA_DEVICE_AC9100 },
149 
150 	{ APPLE_VENDORID,	APPLE_DEVICE_BCM5701 },
151 
152 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5700 },
153 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5701 },
154 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702 },
155 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702_ALT },
156 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5702X },
157 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703 },
158 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703_ALT },
159 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5703X },
160 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704C },
161 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S },
162 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5704S_ALT },
163 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705 },
164 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705F },
165 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705K },
166 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M },
167 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5705M_ALT },
168 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714C },
169 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5714S },
170 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715 },
171 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5715S },
172 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5717 },
173 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5718 },
174 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5719 },
175 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5720 },
176 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5721 },
177 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5722 },
178 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5723 },
179 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750 },
180 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5750M },
181 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751 },
182 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751F },
183 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5751M },
184 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752 },
185 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5752M },
186 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753 },
187 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753F },
188 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5753M },
189 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754 },
190 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5754M },
191 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755 },
192 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5755M },
193 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5756 },
194 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761 },
195 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761E },
196 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761S },
197 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5761SE },
198 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5764 },
199 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780 },
200 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5780S },
201 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5781 },
202 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5782 },
203 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5784 },
204 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785F },
205 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5785G },
206 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5786 },
207 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787 },
208 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787F },
209 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5787M },
210 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5788 },
211 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5789 },
212 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901 },
213 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5901A2 },
214 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5903M },
215 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906 },
216 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM5906M },
217 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57760 },
218 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57761 },
219 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57765 },
220 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57780 },
221 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57781 },
222 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57785 },
223 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57788 },
224 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57790 },
225 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57791 },
226 	{ BCOM_VENDORID,	BCOM_DEVICEID_BCM57795 },
227 
228 	{ SK_VENDORID,		SK_DEVICEID_ALTIMA },
229 
230 	{ TC_VENDORID,		TC_DEVICEID_3C996 },
231 
232 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE4 },
233 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PW008GE5 },
234 	{ FJTSU_VENDORID,	FJTSU_DEVICEID_PP250450 },
235 
236 	{ 0, 0 }
237 };
238 
239 static const struct bge_vendor {
240 	uint16_t	v_id;
241 	const char	*v_name;
242 } const bge_vendors[] = {
243 	{ ALTEON_VENDORID,	"Alteon" },
244 	{ ALTIMA_VENDORID,	"Altima" },
245 	{ APPLE_VENDORID,	"Apple" },
246 	{ BCOM_VENDORID,	"Broadcom" },
247 	{ SK_VENDORID,		"SysKonnect" },
248 	{ TC_VENDORID,		"3Com" },
249 	{ FJTSU_VENDORID,	"Fujitsu" },
250 
251 	{ 0, NULL }
252 };
253 
254 static const struct bge_revision {
255 	uint32_t	br_chipid;
256 	const char	*br_name;
257 } const bge_revisions[] = {
258 	{ BGE_CHIPID_BCM5700_A0,	"BCM5700 A0" },
259 	{ BGE_CHIPID_BCM5700_A1,	"BCM5700 A1" },
260 	{ BGE_CHIPID_BCM5700_B0,	"BCM5700 B0" },
261 	{ BGE_CHIPID_BCM5700_B1,	"BCM5700 B1" },
262 	{ BGE_CHIPID_BCM5700_B2,	"BCM5700 B2" },
263 	{ BGE_CHIPID_BCM5700_B3,	"BCM5700 B3" },
264 	{ BGE_CHIPID_BCM5700_ALTIMA,	"BCM5700 Altima" },
265 	{ BGE_CHIPID_BCM5700_C0,	"BCM5700 C0" },
266 	{ BGE_CHIPID_BCM5701_A0,	"BCM5701 A0" },
267 	{ BGE_CHIPID_BCM5701_B0,	"BCM5701 B0" },
268 	{ BGE_CHIPID_BCM5701_B2,	"BCM5701 B2" },
269 	{ BGE_CHIPID_BCM5701_B5,	"BCM5701 B5" },
270 	{ BGE_CHIPID_BCM5703_A0,	"BCM5703 A0" },
271 	{ BGE_CHIPID_BCM5703_A1,	"BCM5703 A1" },
272 	{ BGE_CHIPID_BCM5703_A2,	"BCM5703 A2" },
273 	{ BGE_CHIPID_BCM5703_A3,	"BCM5703 A3" },
274 	{ BGE_CHIPID_BCM5703_B0,	"BCM5703 B0" },
275 	{ BGE_CHIPID_BCM5704_A0,	"BCM5704 A0" },
276 	{ BGE_CHIPID_BCM5704_A1,	"BCM5704 A1" },
277 	{ BGE_CHIPID_BCM5704_A2,	"BCM5704 A2" },
278 	{ BGE_CHIPID_BCM5704_A3,	"BCM5704 A3" },
279 	{ BGE_CHIPID_BCM5704_B0,	"BCM5704 B0" },
280 	{ BGE_CHIPID_BCM5705_A0,	"BCM5705 A0" },
281 	{ BGE_CHIPID_BCM5705_A1,	"BCM5705 A1" },
282 	{ BGE_CHIPID_BCM5705_A2,	"BCM5705 A2" },
283 	{ BGE_CHIPID_BCM5705_A3,	"BCM5705 A3" },
284 	{ BGE_CHIPID_BCM5750_A0,	"BCM5750 A0" },
285 	{ BGE_CHIPID_BCM5750_A1,	"BCM5750 A1" },
286 	{ BGE_CHIPID_BCM5750_A3,	"BCM5750 A3" },
287 	{ BGE_CHIPID_BCM5750_B0,	"BCM5750 B0" },
288 	{ BGE_CHIPID_BCM5750_B1,	"BCM5750 B1" },
289 	{ BGE_CHIPID_BCM5750_C0,	"BCM5750 C0" },
290 	{ BGE_CHIPID_BCM5750_C1,	"BCM5750 C1" },
291 	{ BGE_CHIPID_BCM5750_C2,	"BCM5750 C2" },
292 	{ BGE_CHIPID_BCM5714_A0,	"BCM5714 A0" },
293 	{ BGE_CHIPID_BCM5752_A0,	"BCM5752 A0" },
294 	{ BGE_CHIPID_BCM5752_A1,	"BCM5752 A1" },
295 	{ BGE_CHIPID_BCM5752_A2,	"BCM5752 A2" },
296 	{ BGE_CHIPID_BCM5714_B0,	"BCM5714 B0" },
297 	{ BGE_CHIPID_BCM5714_B3,	"BCM5714 B3" },
298 	{ BGE_CHIPID_BCM5715_A0,	"BCM5715 A0" },
299 	{ BGE_CHIPID_BCM5715_A1,	"BCM5715 A1" },
300 	{ BGE_CHIPID_BCM5715_A3,	"BCM5715 A3" },
301 	{ BGE_CHIPID_BCM5717_A0,	"BCM5717 A0" },
302 	{ BGE_CHIPID_BCM5717_B0,	"BCM5717 B0" },
303 	{ BGE_CHIPID_BCM5719_A0,	"BCM5719 A0" },
304 	{ BGE_CHIPID_BCM5720_A0,	"BCM5720 A0" },
305 	{ BGE_CHIPID_BCM5755_A0,	"BCM5755 A0" },
306 	{ BGE_CHIPID_BCM5755_A1,	"BCM5755 A1" },
307 	{ BGE_CHIPID_BCM5755_A2,	"BCM5755 A2" },
308 	{ BGE_CHIPID_BCM5722_A0,	"BCM5722 A0" },
309 	{ BGE_CHIPID_BCM5761_A0,	"BCM5761 A0" },
310 	{ BGE_CHIPID_BCM5761_A1,	"BCM5761 A1" },
311 	{ BGE_CHIPID_BCM5784_A0,	"BCM5784 A0" },
312 	{ BGE_CHIPID_BCM5784_A1,	"BCM5784 A1" },
313 	/* 5754 and 5787 share the same ASIC ID */
314 	{ BGE_CHIPID_BCM5787_A0,	"BCM5754/5787 A0" },
315 	{ BGE_CHIPID_BCM5787_A1,	"BCM5754/5787 A1" },
316 	{ BGE_CHIPID_BCM5787_A2,	"BCM5754/5787 A2" },
317 	{ BGE_CHIPID_BCM5906_A1,	"BCM5906 A1" },
318 	{ BGE_CHIPID_BCM5906_A2,	"BCM5906 A2" },
319 	{ BGE_CHIPID_BCM57765_A0,	"BCM57765 A0" },
320 	{ BGE_CHIPID_BCM57765_B0,	"BCM57765 B0" },
321 	{ BGE_CHIPID_BCM57780_A0,	"BCM57780 A0" },
322 	{ BGE_CHIPID_BCM57780_A1,	"BCM57780 A1" },
323 
324 	{ 0, NULL }
325 };
326 
327 /*
328  * Some defaults for major revisions, so that newer steppings
329  * that we don't know about have a shot at working.
330  */
331 static const struct bge_revision const bge_majorrevs[] = {
332 	{ BGE_ASICREV_BCM5700,		"unknown BCM5700" },
333 	{ BGE_ASICREV_BCM5701,		"unknown BCM5701" },
334 	{ BGE_ASICREV_BCM5703,		"unknown BCM5703" },
335 	{ BGE_ASICREV_BCM5704,		"unknown BCM5704" },
336 	{ BGE_ASICREV_BCM5705,		"unknown BCM5705" },
337 	{ BGE_ASICREV_BCM5750,		"unknown BCM5750" },
338 	{ BGE_ASICREV_BCM5714_A0,	"unknown BCM5714" },
339 	{ BGE_ASICREV_BCM5752,		"unknown BCM5752" },
340 	{ BGE_ASICREV_BCM5780,		"unknown BCM5780" },
341 	{ BGE_ASICREV_BCM5714,		"unknown BCM5714" },
342 	{ BGE_ASICREV_BCM5755,		"unknown BCM5755" },
343 	{ BGE_ASICREV_BCM5761,		"unknown BCM5761" },
344 	{ BGE_ASICREV_BCM5784,		"unknown BCM5784" },
345 	{ BGE_ASICREV_BCM5785,		"unknown BCM5785" },
346 	/* 5754 and 5787 share the same ASIC ID */
347 	{ BGE_ASICREV_BCM5787,		"unknown BCM5754/5787" },
348 	{ BGE_ASICREV_BCM5906,		"unknown BCM5906" },
349 	{ BGE_ASICREV_BCM57765,		"unknown BCM57765" },
350 	{ BGE_ASICREV_BCM57780,		"unknown BCM57780" },
351 	{ BGE_ASICREV_BCM5717,		"unknown BCM5717" },
352 	{ BGE_ASICREV_BCM5719,		"unknown BCM5719" },
353 	{ BGE_ASICREV_BCM5720,		"unknown BCM5720" },
354 
355 	{ 0, NULL }
356 };
357 
358 #define	BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
359 #define	BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
360 #define	BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
361 #define	BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
362 #define	BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
363 #define	BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
364 #define	BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5717_PLUS)
365 
366 const struct bge_revision * bge_lookup_rev(uint32_t);
367 const struct bge_vendor * bge_lookup_vendor(uint16_t);
368 
369 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
370 
371 static int bge_probe(device_t);
372 static int bge_attach(device_t);
373 static int bge_detach(device_t);
374 static int bge_suspend(device_t);
375 static int bge_resume(device_t);
376 static void bge_release_resources(struct bge_softc *);
377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378 static int bge_dma_alloc(struct bge_softc *);
379 static void bge_dma_free(struct bge_softc *);
380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
381     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
382 
383 static void bge_devinfo(struct bge_softc *);
384 static int bge_mbox_reorder(struct bge_softc *);
385 
386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
391 
392 static void bge_txeof(struct bge_softc *, uint16_t);
393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
394 static int bge_rxeof(struct bge_softc *, uint16_t, int);
395 
396 static void bge_asf_driver_up (struct bge_softc *);
397 static void bge_tick(void *);
398 static void bge_stats_clear_regs(struct bge_softc *);
399 static void bge_stats_update(struct bge_softc *);
400 static void bge_stats_update_regs(struct bge_softc *);
401 static struct mbuf *bge_check_short_dma(struct mbuf *);
402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
403     uint16_t *, uint16_t *);
404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
405 
406 static void bge_intr(void *);
407 static int bge_msi_intr(void *);
408 static void bge_intr_task(void *, int);
409 static void bge_start_locked(struct ifnet *);
410 static void bge_start(struct ifnet *);
411 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
412 static void bge_init_locked(struct bge_softc *);
413 static void bge_init(void *);
414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
415 static void bge_stop(struct bge_softc *);
416 static void bge_watchdog(struct bge_softc *);
417 static int bge_shutdown(device_t);
418 static int bge_ifmedia_upd_locked(struct ifnet *);
419 static int bge_ifmedia_upd(struct ifnet *);
420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
421 
422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
424 
425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
427 
428 static void bge_setpromisc(struct bge_softc *);
429 static void bge_setmulti(struct bge_softc *);
430 static void bge_setvlan(struct bge_softc *);
431 
432 static __inline void bge_rxreuse_std(struct bge_softc *, int);
433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
434 static int bge_newbuf_std(struct bge_softc *, int);
435 static int bge_newbuf_jumbo(struct bge_softc *, int);
436 static int bge_init_rx_ring_std(struct bge_softc *);
437 static void bge_free_rx_ring_std(struct bge_softc *);
438 static int bge_init_rx_ring_jumbo(struct bge_softc *);
439 static void bge_free_rx_ring_jumbo(struct bge_softc *);
440 static void bge_free_tx_ring(struct bge_softc *);
441 static int bge_init_tx_ring(struct bge_softc *);
442 
443 static int bge_chipinit(struct bge_softc *);
444 static int bge_blockinit(struct bge_softc *);
445 static uint32_t bge_dma_swap_options(struct bge_softc *);
446 
447 static int bge_has_eaddr(struct bge_softc *);
448 static uint32_t bge_readmem_ind(struct bge_softc *, int);
449 static void bge_writemem_ind(struct bge_softc *, int, int);
450 static void bge_writembx(struct bge_softc *, int, int);
451 #ifdef notdef
452 static uint32_t bge_readreg_ind(struct bge_softc *, int);
453 #endif
454 static void bge_writemem_direct(struct bge_softc *, int, int);
455 static void bge_writereg_ind(struct bge_softc *, int, int);
456 
457 static int bge_miibus_readreg(device_t, int, int);
458 static int bge_miibus_writereg(device_t, int, int, int);
459 static void bge_miibus_statchg(device_t);
460 #ifdef DEVICE_POLLING
461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
462 #endif
463 
464 #define	BGE_RESET_START 1
465 #define	BGE_RESET_STOP  2
466 static void bge_sig_post_reset(struct bge_softc *, int);
467 static void bge_sig_legacy(struct bge_softc *, int);
468 static void bge_sig_pre_reset(struct bge_softc *, int);
469 static void bge_stop_fw(struct bge_softc *);
470 static int bge_reset(struct bge_softc *);
471 static void bge_link_upd(struct bge_softc *);
472 
473 /*
474  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
475  * leak information to untrusted users.  It is also known to cause alignment
476  * traps on certain architectures.
477  */
478 #ifdef BGE_REGISTER_DEBUG
479 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
480 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
481 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
482 #endif
483 static void bge_add_sysctls(struct bge_softc *);
484 static void bge_add_sysctl_stats_regs(struct bge_softc *,
485     struct sysctl_ctx_list *, struct sysctl_oid_list *);
486 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
487     struct sysctl_oid_list *);
488 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
489 
490 static device_method_t bge_methods[] = {
491 	/* Device interface */
492 	DEVMETHOD(device_probe,		bge_probe),
493 	DEVMETHOD(device_attach,	bge_attach),
494 	DEVMETHOD(device_detach,	bge_detach),
495 	DEVMETHOD(device_shutdown,	bge_shutdown),
496 	DEVMETHOD(device_suspend,	bge_suspend),
497 	DEVMETHOD(device_resume,	bge_resume),
498 
499 	/* MII interface */
500 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
501 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
502 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
503 
504 	DEVMETHOD_END
505 };
506 
507 static driver_t bge_driver = {
508 	"bge",
509 	bge_methods,
510 	sizeof(struct bge_softc)
511 };
512 
513 static devclass_t bge_devclass;
514 
515 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
516 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
517 
518 static int bge_allow_asf = 1;
519 
520 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
521 
522 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
523 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
524 	"Allow ASF mode if available");
525 
526 #define	SPARC64_BLADE_1500_MODEL	"SUNW,Sun-Blade-1500"
527 #define	SPARC64_BLADE_1500_PATH_BGE	"/pci@1f,700000/network@2"
528 #define	SPARC64_BLADE_2500_MODEL	"SUNW,Sun-Blade-2500"
529 #define	SPARC64_BLADE_2500_PATH_BGE	"/pci@1c,600000/network@3"
530 #define	SPARC64_OFW_SUBVENDOR		"subsystem-vendor-id"
531 
532 static int
533 bge_has_eaddr(struct bge_softc *sc)
534 {
535 #ifdef __sparc64__
536 	char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
537 	device_t dev;
538 	uint32_t subvendor;
539 
540 	dev = sc->bge_dev;
541 
542 	/*
543 	 * The on-board BGEs found in sun4u machines aren't fitted with
544 	 * an EEPROM which means that we have to obtain the MAC address
545 	 * via OFW and that some tests will always fail.  We distinguish
546 	 * such BGEs by the subvendor ID, which also has to be obtained
547 	 * from OFW instead of the PCI configuration space as the latter
548 	 * indicates Broadcom as the subvendor of the netboot interface.
549 	 * For early Blade 1500 and 2500 we even have to check the OFW
550 	 * device path as the subvendor ID always defaults to Broadcom
551 	 * there.
552 	 */
553 	if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
554 	    &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
555 	    (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
556 		return (0);
557 	memset(buf, 0, sizeof(buf));
558 	if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
559 		if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
560 		    strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
561 			return (0);
562 		if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
563 		    strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
564 			return (0);
565 	}
566 #endif
567 	return (1);
568 }
569 
570 static uint32_t
571 bge_readmem_ind(struct bge_softc *sc, int off)
572 {
573 	device_t dev;
574 	uint32_t val;
575 
576 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
577 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
578 		return (0);
579 
580 	dev = sc->bge_dev;
581 
582 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
583 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
584 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
585 	return (val);
586 }
587 
588 static void
589 bge_writemem_ind(struct bge_softc *sc, int off, int val)
590 {
591 	device_t dev;
592 
593 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
594 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
595 		return;
596 
597 	dev = sc->bge_dev;
598 
599 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
600 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
601 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
602 }
603 
604 #ifdef notdef
605 static uint32_t
606 bge_readreg_ind(struct bge_softc *sc, int off)
607 {
608 	device_t dev;
609 
610 	dev = sc->bge_dev;
611 
612 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
613 	return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
614 }
615 #endif
616 
617 static void
618 bge_writereg_ind(struct bge_softc *sc, int off, int val)
619 {
620 	device_t dev;
621 
622 	dev = sc->bge_dev;
623 
624 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
625 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
626 }
627 
628 static void
629 bge_writemem_direct(struct bge_softc *sc, int off, int val)
630 {
631 	CSR_WRITE_4(sc, off, val);
632 }
633 
634 static void
635 bge_writembx(struct bge_softc *sc, int off, int val)
636 {
637 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
638 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
639 
640 	CSR_WRITE_4(sc, off, val);
641 	if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
642 		CSR_READ_4(sc, off);
643 }
644 
645 /*
646  * Map a single buffer address.
647  */
648 
649 static void
650 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
651 {
652 	struct bge_dmamap_arg *ctx;
653 
654 	if (error)
655 		return;
656 
657 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
658 
659 	ctx = arg;
660 	ctx->bge_busaddr = segs->ds_addr;
661 }
662 
663 static uint8_t
664 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
665 {
666 	uint32_t access, byte = 0;
667 	int i;
668 
669 	/* Lock. */
670 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
671 	for (i = 0; i < 8000; i++) {
672 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
673 			break;
674 		DELAY(20);
675 	}
676 	if (i == 8000)
677 		return (1);
678 
679 	/* Enable access. */
680 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
681 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
682 
683 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
684 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
685 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
686 		DELAY(10);
687 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
688 			DELAY(10);
689 			break;
690 		}
691 	}
692 
693 	if (i == BGE_TIMEOUT * 10) {
694 		if_printf(sc->bge_ifp, "nvram read timed out\n");
695 		return (1);
696 	}
697 
698 	/* Get result. */
699 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
700 
701 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
702 
703 	/* Disable access. */
704 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
705 
706 	/* Unlock. */
707 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
708 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
709 
710 	return (0);
711 }
712 
713 /*
714  * Read a sequence of bytes from NVRAM.
715  */
716 static int
717 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
718 {
719 	int err = 0, i;
720 	uint8_t byte = 0;
721 
722 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
723 		return (1);
724 
725 	for (i = 0; i < cnt; i++) {
726 		err = bge_nvram_getbyte(sc, off + i, &byte);
727 		if (err)
728 			break;
729 		*(dest + i) = byte;
730 	}
731 
732 	return (err ? 1 : 0);
733 }
734 
735 /*
736  * Read a byte of data stored in the EEPROM at address 'addr.' The
737  * BCM570x supports both the traditional bitbang interface and an
738  * auto access interface for reading the EEPROM. We use the auto
739  * access method.
740  */
741 static uint8_t
742 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
743 {
744 	int i;
745 	uint32_t byte = 0;
746 
747 	/*
748 	 * Enable use of auto EEPROM access so we can avoid
749 	 * having to use the bitbang method.
750 	 */
751 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
752 
753 	/* Reset the EEPROM, load the clock period. */
754 	CSR_WRITE_4(sc, BGE_EE_ADDR,
755 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
756 	DELAY(20);
757 
758 	/* Issue the read EEPROM command. */
759 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
760 
761 	/* Wait for completion */
762 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
763 		DELAY(10);
764 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
765 			break;
766 	}
767 
768 	if (i == BGE_TIMEOUT * 10) {
769 		device_printf(sc->bge_dev, "EEPROM read timed out\n");
770 		return (1);
771 	}
772 
773 	/* Get result. */
774 	byte = CSR_READ_4(sc, BGE_EE_DATA);
775 
776 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
777 
778 	return (0);
779 }
780 
781 /*
782  * Read a sequence of bytes from the EEPROM.
783  */
784 static int
785 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
786 {
787 	int i, error = 0;
788 	uint8_t byte = 0;
789 
790 	for (i = 0; i < cnt; i++) {
791 		error = bge_eeprom_getbyte(sc, off + i, &byte);
792 		if (error)
793 			break;
794 		*(dest + i) = byte;
795 	}
796 
797 	return (error ? 1 : 0);
798 }
799 
800 static int
801 bge_miibus_readreg(device_t dev, int phy, int reg)
802 {
803 	struct bge_softc *sc;
804 	uint32_t val;
805 	int i;
806 
807 	sc = device_get_softc(dev);
808 
809 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
810 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
811 		CSR_WRITE_4(sc, BGE_MI_MODE,
812 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
813 		DELAY(80);
814 	}
815 
816 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
817 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
818 
819 	/* Poll for the PHY register access to complete. */
820 	for (i = 0; i < BGE_TIMEOUT; i++) {
821 		DELAY(10);
822 		val = CSR_READ_4(sc, BGE_MI_COMM);
823 		if ((val & BGE_MICOMM_BUSY) == 0) {
824 			DELAY(5);
825 			val = CSR_READ_4(sc, BGE_MI_COMM);
826 			break;
827 		}
828 	}
829 
830 	if (i == BGE_TIMEOUT) {
831 		device_printf(sc->bge_dev,
832 		    "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
833 		    phy, reg, val);
834 		val = 0;
835 	}
836 
837 	/* Restore the autopoll bit if necessary. */
838 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
839 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
840 		DELAY(80);
841 	}
842 
843 	if (val & BGE_MICOMM_READFAIL)
844 		return (0);
845 
846 	return (val & 0xFFFF);
847 }
848 
849 static int
850 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
851 {
852 	struct bge_softc *sc;
853 	int i;
854 
855 	sc = device_get_softc(dev);
856 
857 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
858 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
859 		return (0);
860 
861 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
862 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
863 		CSR_WRITE_4(sc, BGE_MI_MODE,
864 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
865 		DELAY(80);
866 	}
867 
868 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
869 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
870 
871 	for (i = 0; i < BGE_TIMEOUT; i++) {
872 		DELAY(10);
873 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
874 			DELAY(5);
875 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
876 			break;
877 		}
878 	}
879 
880 	/* Restore the autopoll bit if necessary. */
881 	if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
882 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
883 		DELAY(80);
884 	}
885 
886 	if (i == BGE_TIMEOUT)
887 		device_printf(sc->bge_dev,
888 		    "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
889 		    phy, reg, val);
890 
891 	return (0);
892 }
893 
894 static void
895 bge_miibus_statchg(device_t dev)
896 {
897 	struct bge_softc *sc;
898 	struct mii_data *mii;
899 	uint32_t mac_mode, rx_mode, tx_mode;
900 
901 	sc = device_get_softc(dev);
902 	if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
903 		return;
904 	mii = device_get_softc(sc->bge_miibus);
905 
906 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
907 	    (IFM_ACTIVE | IFM_AVALID)) {
908 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
909 		case IFM_10_T:
910 		case IFM_100_TX:
911 			sc->bge_link = 1;
912 			break;
913 		case IFM_1000_T:
914 		case IFM_1000_SX:
915 		case IFM_2500_SX:
916 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
917 				sc->bge_link = 1;
918 			else
919 				sc->bge_link = 0;
920 			break;
921 		default:
922 			sc->bge_link = 0;
923 			break;
924 		}
925 	} else
926 		sc->bge_link = 0;
927 	if (sc->bge_link == 0)
928 		return;
929 
930 	/*
931 	 * APE firmware touches these registers to keep the MAC
932 	 * connected to the outside world.  Try to keep the
933 	 * accesses atomic.
934 	 */
935 
936 	/* Set the port mode (MII/GMII) to match the link speed. */
937 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
938 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
939 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
940 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
941 
942 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
943 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
944 		mac_mode |= BGE_PORTMODE_GMII;
945 	else
946 		mac_mode |= BGE_PORTMODE_MII;
947 
948 	/* Set MAC flow control behavior to match link flow control settings. */
949 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
950 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
951 	if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) {
952 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
953 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
954 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
955 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
956 	} else
957 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
958 
959 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
960 	DELAY(40);
961 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
962 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
963 }
964 
965 /*
966  * Intialize a standard receive ring descriptor.
967  */
968 static int
969 bge_newbuf_std(struct bge_softc *sc, int i)
970 {
971 	struct mbuf *m;
972 	struct bge_rx_bd *r;
973 	bus_dma_segment_t segs[1];
974 	bus_dmamap_t map;
975 	int error, nsegs;
976 
977 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
978 	    (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
979 	    ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
980 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
981 		if (m == NULL)
982 			return (ENOBUFS);
983 		m->m_len = m->m_pkthdr.len = MJUM9BYTES;
984 	} else {
985 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
986 		if (m == NULL)
987 			return (ENOBUFS);
988 		m->m_len = m->m_pkthdr.len = MCLBYTES;
989 	}
990 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
991 		m_adj(m, ETHER_ALIGN);
992 
993 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
994 	    sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
995 	if (error != 0) {
996 		m_freem(m);
997 		return (error);
998 	}
999 	if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1000 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1001 		    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1002 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1003 		    sc->bge_cdata.bge_rx_std_dmamap[i]);
1004 	}
1005 	map = sc->bge_cdata.bge_rx_std_dmamap[i];
1006 	sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1007 	sc->bge_cdata.bge_rx_std_sparemap = map;
1008 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1009 	sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1010 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1011 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1012 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1013 	r->bge_flags = BGE_RXBDFLAG_END;
1014 	r->bge_len = segs[0].ds_len;
1015 	r->bge_idx = i;
1016 
1017 	bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1018 	    sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Initialize a jumbo receive ring descriptor. This allocates
1025  * a jumbo buffer from the pool managed internally by the driver.
1026  */
1027 static int
1028 bge_newbuf_jumbo(struct bge_softc *sc, int i)
1029 {
1030 	bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1031 	bus_dmamap_t map;
1032 	struct bge_extrx_bd *r;
1033 	struct mbuf *m;
1034 	int error, nsegs;
1035 
1036 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1037 	if (m == NULL)
1038 		return (ENOBUFS);
1039 
1040 	m_cljget(m, M_DONTWAIT, MJUM9BYTES);
1041 	if (!(m->m_flags & M_EXT)) {
1042 		m_freem(m);
1043 		return (ENOBUFS);
1044 	}
1045 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1046 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1047 		m_adj(m, ETHER_ALIGN);
1048 
1049 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1050 	    sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1051 	if (error != 0) {
1052 		m_freem(m);
1053 		return (error);
1054 	}
1055 
1056 	if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1057 		bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1058 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1059 		bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1060 		    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1061 	}
1062 	map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1063 	sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1064 	    sc->bge_cdata.bge_rx_jumbo_sparemap;
1065 	sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1066 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1067 	sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1068 	sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1069 	sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1070 	sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1071 
1072 	/*
1073 	 * Fill in the extended RX buffer descriptor.
1074 	 */
1075 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1076 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1077 	r->bge_idx = i;
1078 	r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1079 	switch (nsegs) {
1080 	case 4:
1081 		r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1082 		r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1083 		r->bge_len3 = segs[3].ds_len;
1084 		sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1085 	case 3:
1086 		r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1087 		r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1088 		r->bge_len2 = segs[2].ds_len;
1089 		sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1090 	case 2:
1091 		r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1092 		r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1093 		r->bge_len1 = segs[1].ds_len;
1094 		sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1095 	case 1:
1096 		r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1097 		r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1098 		r->bge_len0 = segs[0].ds_len;
1099 		sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1100 		break;
1101 	default:
1102 		panic("%s: %d segments\n", __func__, nsegs);
1103 	}
1104 
1105 	bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1106 	    sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1107 
1108 	return (0);
1109 }
1110 
1111 static int
1112 bge_init_rx_ring_std(struct bge_softc *sc)
1113 {
1114 	int error, i;
1115 
1116 	bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1117 	sc->bge_std = 0;
1118 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1119 		if ((error = bge_newbuf_std(sc, i)) != 0)
1120 			return (error);
1121 		BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1122 	}
1123 
1124 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1125 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1126 
1127 	sc->bge_std = 0;
1128 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1129 
1130 	return (0);
1131 }
1132 
1133 static void
1134 bge_free_rx_ring_std(struct bge_softc *sc)
1135 {
1136 	int i;
1137 
1138 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1139 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1140 			bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1141 			    sc->bge_cdata.bge_rx_std_dmamap[i],
1142 			    BUS_DMASYNC_POSTREAD);
1143 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1144 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
1145 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1146 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1147 		}
1148 		bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1149 		    sizeof(struct bge_rx_bd));
1150 	}
1151 }
1152 
1153 static int
1154 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1155 {
1156 	struct bge_rcb *rcb;
1157 	int error, i;
1158 
1159 	bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1160 	sc->bge_jumbo = 0;
1161 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1162 		if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1163 			return (error);
1164 		BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1165 	}
1166 
1167 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1168 	    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1169 
1170 	sc->bge_jumbo = 0;
1171 
1172 	/* Enable the jumbo receive producer ring. */
1173 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1174 	rcb->bge_maxlen_flags =
1175 	    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1176 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1177 
1178 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1179 
1180 	return (0);
1181 }
1182 
1183 static void
1184 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1185 {
1186 	int i;
1187 
1188 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1189 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1190 			bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1191 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1192 			    BUS_DMASYNC_POSTREAD);
1193 			bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1194 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1195 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1196 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1197 		}
1198 		bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1199 		    sizeof(struct bge_extrx_bd));
1200 	}
1201 }
1202 
1203 static void
1204 bge_free_tx_ring(struct bge_softc *sc)
1205 {
1206 	int i;
1207 
1208 	if (sc->bge_ldata.bge_tx_ring == NULL)
1209 		return;
1210 
1211 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1212 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1213 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1214 			    sc->bge_cdata.bge_tx_dmamap[i],
1215 			    BUS_DMASYNC_POSTWRITE);
1216 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1217 			    sc->bge_cdata.bge_tx_dmamap[i]);
1218 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1219 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1220 		}
1221 		bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1222 		    sizeof(struct bge_tx_bd));
1223 	}
1224 }
1225 
1226 static int
1227 bge_init_tx_ring(struct bge_softc *sc)
1228 {
1229 	sc->bge_txcnt = 0;
1230 	sc->bge_tx_saved_considx = 0;
1231 
1232 	bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1233 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1234 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1235 
1236 	/* Initialize transmit producer index for host-memory send ring. */
1237 	sc->bge_tx_prodidx = 0;
1238 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1239 
1240 	/* 5700 b2 errata */
1241 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1242 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1243 
1244 	/* NIC-memory send ring not used; initialize to zero. */
1245 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1246 	/* 5700 b2 errata */
1247 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1248 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1249 
1250 	return (0);
1251 }
1252 
1253 static void
1254 bge_setpromisc(struct bge_softc *sc)
1255 {
1256 	struct ifnet *ifp;
1257 
1258 	BGE_LOCK_ASSERT(sc);
1259 
1260 	ifp = sc->bge_ifp;
1261 
1262 	/* Enable or disable promiscuous mode as needed. */
1263 	if (ifp->if_flags & IFF_PROMISC)
1264 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1265 	else
1266 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1267 }
1268 
1269 static void
1270 bge_setmulti(struct bge_softc *sc)
1271 {
1272 	struct ifnet *ifp;
1273 	struct ifmultiaddr *ifma;
1274 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1275 	int h, i;
1276 
1277 	BGE_LOCK_ASSERT(sc);
1278 
1279 	ifp = sc->bge_ifp;
1280 
1281 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1282 		for (i = 0; i < 4; i++)
1283 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1284 		return;
1285 	}
1286 
1287 	/* First, zot all the existing filters. */
1288 	for (i = 0; i < 4; i++)
1289 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1290 
1291 	/* Now program new ones. */
1292 	if_maddr_rlock(ifp);
1293 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294 		if (ifma->ifma_addr->sa_family != AF_LINK)
1295 			continue;
1296 		h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1297 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1298 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1299 	}
1300 	if_maddr_runlock(ifp);
1301 
1302 	for (i = 0; i < 4; i++)
1303 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1304 }
1305 
1306 static void
1307 bge_setvlan(struct bge_softc *sc)
1308 {
1309 	struct ifnet *ifp;
1310 
1311 	BGE_LOCK_ASSERT(sc);
1312 
1313 	ifp = sc->bge_ifp;
1314 
1315 	/* Enable or disable VLAN tag stripping as needed. */
1316 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1317 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1318 	else
1319 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1320 }
1321 
1322 static void
1323 bge_sig_pre_reset(struct bge_softc *sc, int type)
1324 {
1325 
1326 	/*
1327 	 * Some chips don't like this so only do this if ASF is enabled
1328 	 */
1329 	if (sc->bge_asf_mode)
1330 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1331 
1332 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1333 		switch (type) {
1334 		case BGE_RESET_START:
1335 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1336 			    BGE_FW_DRV_STATE_START);
1337 			break;
1338 		case BGE_RESET_STOP:
1339 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1340 			    BGE_FW_DRV_STATE_UNLOAD);
1341 			break;
1342 		}
1343 	}
1344 }
1345 
1346 static void
1347 bge_sig_post_reset(struct bge_softc *sc, int type)
1348 {
1349 
1350 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1351 		switch (type) {
1352 		case BGE_RESET_START:
1353 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1354 			    BGE_FW_DRV_STATE_START_DONE);
1355 			/* START DONE */
1356 			break;
1357 		case BGE_RESET_STOP:
1358 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1359 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1360 			break;
1361 		}
1362 	}
1363 }
1364 
1365 static void
1366 bge_sig_legacy(struct bge_softc *sc, int type)
1367 {
1368 
1369 	if (sc->bge_asf_mode) {
1370 		switch (type) {
1371 		case BGE_RESET_START:
1372 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1373 			    BGE_FW_DRV_STATE_START);
1374 			break;
1375 		case BGE_RESET_STOP:
1376 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1377 			    BGE_FW_DRV_STATE_UNLOAD);
1378 			break;
1379 		}
1380 	}
1381 }
1382 
1383 static void
1384 bge_stop_fw(struct bge_softc *sc)
1385 {
1386 	int i;
1387 
1388 	if (sc->bge_asf_mode) {
1389 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1390 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1391 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1392 
1393 		for (i = 0; i < 100; i++ ) {
1394 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1395 			    BGE_RX_CPU_DRV_EVENT))
1396 				break;
1397 			DELAY(10);
1398 		}
1399 	}
1400 }
1401 
1402 static uint32_t
1403 bge_dma_swap_options(struct bge_softc *sc)
1404 {
1405 	uint32_t dma_options;
1406 
1407 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1408 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1409 #if BYTE_ORDER == BIG_ENDIAN
1410 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1411 #endif
1412 	if ((sc)->bge_asicrev == BGE_ASICREV_BCM5720)
1413 		dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1414 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
1415 		    BGE_MODECTL_HTX2B_ENABLE;
1416 
1417 	return (dma_options);
1418 }
1419 
1420 /*
1421  * Do endian, PCI and DMA initialization.
1422  */
1423 static int
1424 bge_chipinit(struct bge_softc *sc)
1425 {
1426 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1427 	uint16_t val;
1428 	int i;
1429 
1430 	/* Set endianness before we access any non-PCI registers. */
1431 	misc_ctl = BGE_INIT;
1432 	if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1433 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1434 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1435 
1436 	/* Clear the MAC control register */
1437 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1438 	DELAY(40);
1439 
1440 	/*
1441 	 * Clear the MAC statistics block in the NIC's
1442 	 * internal memory.
1443 	 */
1444 	for (i = BGE_STATS_BLOCK;
1445 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1446 		BGE_MEMWIN_WRITE(sc, i, 0);
1447 
1448 	for (i = BGE_STATUS_BLOCK;
1449 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1450 		BGE_MEMWIN_WRITE(sc, i, 0);
1451 
1452 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1453 		/*
1454 		 *  Fix data corruption caused by non-qword write with WB.
1455 		 *  Fix master abort in PCI mode.
1456 		 *  Fix PCI latency timer.
1457 		 */
1458 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1459 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1460 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1461 	}
1462 
1463 	/*
1464 	 * Set up the PCI DMA control register.
1465 	 */
1466 	dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1467 	    BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1468 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1469 		if (sc->bge_mps >= 256)
1470 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1471 		else
1472 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1473 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1474 		if (BGE_IS_5714_FAMILY(sc)) {
1475 			/* 256 bytes for read and write. */
1476 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1477 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1478 			dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1479 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1480 			    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1481 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1482 			/*
1483 			 * In the BCM5703, the DMA read watermark should
1484 			 * be set to less than or equal to the maximum
1485 			 * memory read byte count of the PCI-X command
1486 			 * register.
1487 			 */
1488 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1489 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1490 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1491 			/* 1536 bytes for read, 384 bytes for write. */
1492 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1493 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1494 		} else {
1495 			/* 384 bytes for read and write. */
1496 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1497 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1498 			    0x0F;
1499 		}
1500 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1501 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1502 			uint32_t tmp;
1503 
1504 			/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1505 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1506 			if (tmp == 6 || tmp == 7)
1507 				dma_rw_ctl |=
1508 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1509 
1510 			/* Set PCI-X DMA write workaround. */
1511 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1512 		}
1513 	} else {
1514 		/* Conventional PCI bus: 256 bytes for read and write. */
1515 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1516 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1517 
1518 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1519 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1520 			dma_rw_ctl |= 0x0F;
1521 	}
1522 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1523 	    sc->bge_asicrev == BGE_ASICREV_BCM5701)
1524 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1525 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1526 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1527 	    sc->bge_asicrev == BGE_ASICREV_BCM5704)
1528 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1529 	if (BGE_IS_5717_PLUS(sc)) {
1530 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1531 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1532 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1533 		/*
1534 		 * Enable HW workaround for controllers that misinterpret
1535 		 * a status tag update and leave interrupts permanently
1536 		 * disabled.
1537 		 */
1538 		if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1539 		    sc->bge_asicrev != BGE_ASICREV_BCM57765)
1540 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1541 	}
1542 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1543 
1544 	/*
1545 	 * Set up general mode register.
1546 	 */
1547 	mode_ctl = bge_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1548 	    BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1549 
1550 	/*
1551 	 * BCM5701 B5 have a bug causing data corruption when using
1552 	 * 64-bit DMA reads, which can be terminated early and then
1553 	 * completed later as 32-bit accesses, in combination with
1554 	 * certain bridges.
1555 	 */
1556 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1557 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1558 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1559 
1560 	/*
1561 	 * Tell the firmware the driver is running
1562 	 */
1563 	if (sc->bge_asf_mode & ASF_STACKUP)
1564 		mode_ctl |= BGE_MODECTL_STACKUP;
1565 
1566 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1567 
1568 	/*
1569 	 * Disable memory write invalidate.  Apparently it is not supported
1570 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1571 	 * as these chips need it even when using MSI.
1572 	 */
1573 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1574 	    PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
1575 
1576 	/* Set the timer prescaler (always 66Mhz) */
1577 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1578 
1579 	/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1580 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1581 		DELAY(40);	/* XXX */
1582 
1583 		/* Put PHY into ready state */
1584 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1585 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1586 		DELAY(40);
1587 	}
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 bge_blockinit(struct bge_softc *sc)
1594 {
1595 	struct bge_rcb *rcb;
1596 	bus_size_t vrcb;
1597 	bge_hostaddr taddr;
1598 	uint32_t dmactl, val;
1599 	int i, limit;
1600 
1601 	/*
1602 	 * Initialize the memory window pointer register so that
1603 	 * we can access the first 32K of internal NIC RAM. This will
1604 	 * allow us to set up the TX send ring RCBs and the RX return
1605 	 * ring RCBs, plus other things which live in NIC memory.
1606 	 */
1607 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1608 
1609 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1610 
1611 	if (!(BGE_IS_5705_PLUS(sc))) {
1612 		/* Configure mbuf memory pool */
1613 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1614 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1615 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1616 		else
1617 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1618 
1619 		/* Configure DMA resource pool */
1620 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1621 		    BGE_DMA_DESCRIPTORS);
1622 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1623 	}
1624 
1625 	/* Configure mbuf pool watermarks */
1626 	if (BGE_IS_5717_PLUS(sc)) {
1627 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1628 		if (sc->bge_ifp->if_mtu > ETHERMTU) {
1629 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1630 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1631 		} else {
1632 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1633 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1634 		}
1635 	} else if (!BGE_IS_5705_PLUS(sc)) {
1636 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1637 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1638 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1639 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1640 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1641 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1642 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1643 	} else {
1644 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1645 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1646 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1647 	}
1648 
1649 	/* Configure DMA resource watermarks */
1650 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1651 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1652 
1653 	/* Enable buffer manager */
1654 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1655 	/*
1656 	 * Change the arbitration algorithm of TXMBUF read request to
1657 	 * round-robin instead of priority based for BCM5719.  When
1658 	 * TXFIFO is almost empty, RDMA will hold its request until
1659 	 * TXFIFO is not almost empty.
1660 	 */
1661 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1662 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1663 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1664 
1665 	/* Poll for buffer manager start indication */
1666 	for (i = 0; i < BGE_TIMEOUT; i++) {
1667 		DELAY(10);
1668 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1669 			break;
1670 	}
1671 
1672 	if (i == BGE_TIMEOUT) {
1673 		device_printf(sc->bge_dev, "buffer manager failed to start\n");
1674 		return (ENXIO);
1675 	}
1676 
1677 	/* Enable flow-through queues */
1678 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1679 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1680 
1681 	/* Wait until queue initialization is complete */
1682 	for (i = 0; i < BGE_TIMEOUT; i++) {
1683 		DELAY(10);
1684 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1685 			break;
1686 	}
1687 
1688 	if (i == BGE_TIMEOUT) {
1689 		device_printf(sc->bge_dev, "flow-through queue init failed\n");
1690 		return (ENXIO);
1691 	}
1692 
1693 	/*
1694 	 * Summary of rings supported by the controller:
1695 	 *
1696 	 * Standard Receive Producer Ring
1697 	 * - This ring is used to feed receive buffers for "standard"
1698 	 *   sized frames (typically 1536 bytes) to the controller.
1699 	 *
1700 	 * Jumbo Receive Producer Ring
1701 	 * - This ring is used to feed receive buffers for jumbo sized
1702 	 *   frames (i.e. anything bigger than the "standard" frames)
1703 	 *   to the controller.
1704 	 *
1705 	 * Mini Receive Producer Ring
1706 	 * - This ring is used to feed receive buffers for "mini"
1707 	 *   sized frames to the controller.
1708 	 * - This feature required external memory for the controller
1709 	 *   but was never used in a production system.  Should always
1710 	 *   be disabled.
1711 	 *
1712 	 * Receive Return Ring
1713 	 * - After the controller has placed an incoming frame into a
1714 	 *   receive buffer that buffer is moved into a receive return
1715 	 *   ring.  The driver is then responsible to passing the
1716 	 *   buffer up to the stack.  Many versions of the controller
1717 	 *   support multiple RR rings.
1718 	 *
1719 	 * Send Ring
1720 	 * - This ring is used for outgoing frames.  Many versions of
1721 	 *   the controller support multiple send rings.
1722 	 */
1723 
1724 	/* Initialize the standard receive producer ring control block. */
1725 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1726 	rcb->bge_hostaddr.bge_addr_lo =
1727 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1728 	rcb->bge_hostaddr.bge_addr_hi =
1729 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1730 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1731 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1732 	if (BGE_IS_5717_PLUS(sc)) {
1733 		/*
1734 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1735 		 * Bits 15-2 : Maximum RX frame size
1736 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1737 		 * Bit 0     : Reserved
1738 		 */
1739 		rcb->bge_maxlen_flags =
1740 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
1741 	} else if (BGE_IS_5705_PLUS(sc)) {
1742 		/*
1743 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1744 		 * Bits 15-2 : Reserved (should be 0)
1745 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1746 		 * Bit 0     : Reserved
1747 		 */
1748 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1749 	} else {
1750 		/*
1751 		 * Ring size is always XXX entries
1752 		 * Bits 31-16: Maximum RX frame size
1753 		 * Bits 15-2 : Reserved (should be 0)
1754 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1755 		 * Bit 0     : Reserved
1756 		 */
1757 		rcb->bge_maxlen_flags =
1758 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1759 	}
1760 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1761 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1762 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1763 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1764 	else
1765 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1766 	/* Write the standard receive producer ring control block. */
1767 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1768 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1769 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1770 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1771 
1772 	/* Reset the standard receive producer ring producer index. */
1773 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1774 
1775 	/*
1776 	 * Initialize the jumbo RX producer ring control
1777 	 * block.  We set the 'ring disabled' bit in the
1778 	 * flags field until we're actually ready to start
1779 	 * using this ring (i.e. once we set the MTU
1780 	 * high enough to require it).
1781 	 */
1782 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1783 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1784 		/* Get the jumbo receive producer ring RCB parameters. */
1785 		rcb->bge_hostaddr.bge_addr_lo =
1786 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1787 		rcb->bge_hostaddr.bge_addr_hi =
1788 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1789 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1790 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1791 		    BUS_DMASYNC_PREREAD);
1792 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1793 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1794 		if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1795 		    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1796 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1797 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1798 		else
1799 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1800 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1801 		    rcb->bge_hostaddr.bge_addr_hi);
1802 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1803 		    rcb->bge_hostaddr.bge_addr_lo);
1804 		/* Program the jumbo receive producer ring RCB parameters. */
1805 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1806 		    rcb->bge_maxlen_flags);
1807 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1808 		/* Reset the jumbo receive producer ring producer index. */
1809 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1810 	}
1811 
1812 	/* Disable the mini receive producer ring RCB. */
1813 	if (BGE_IS_5700_FAMILY(sc)) {
1814 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1815 		rcb->bge_maxlen_flags =
1816 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1817 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1818 		    rcb->bge_maxlen_flags);
1819 		/* Reset the mini receive producer ring producer index. */
1820 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1821 	}
1822 
1823 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1824 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1825 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1826 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1827 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
1828 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1829 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1830 	}
1831 	/*
1832 	 * The BD ring replenish thresholds control how often the
1833 	 * hardware fetches new BD's from the producer rings in host
1834 	 * memory.  Setting the value too low on a busy system can
1835 	 * starve the hardware and recue the throughpout.
1836 	 *
1837 	 * Set the BD ring replentish thresholds. The recommended
1838 	 * values are 1/8th the number of descriptors allocated to
1839 	 * each ring.
1840 	 * XXX The 5754 requires a lower threshold, so it might be a
1841 	 * requirement of all 575x family chips.  The Linux driver sets
1842 	 * the lower threshold for all 5705 family chips as well, but there
1843 	 * are reports that it might not need to be so strict.
1844 	 *
1845 	 * XXX Linux does some extra fiddling here for the 5906 parts as
1846 	 * well.
1847 	 */
1848 	if (BGE_IS_5705_PLUS(sc))
1849 		val = 8;
1850 	else
1851 		val = BGE_STD_RX_RING_CNT / 8;
1852 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1853 	if (BGE_IS_JUMBO_CAPABLE(sc))
1854 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1855 		    BGE_JUMBO_RX_RING_CNT/8);
1856 	if (BGE_IS_5717_PLUS(sc)) {
1857 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1858 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1859 	}
1860 
1861 	/*
1862 	 * Disable all send rings by setting the 'ring disabled' bit
1863 	 * in the flags field of all the TX send ring control blocks,
1864 	 * located in NIC memory.
1865 	 */
1866 	if (!BGE_IS_5705_PLUS(sc))
1867 		/* 5700 to 5704 had 16 send rings. */
1868 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1869 	else
1870 		limit = 1;
1871 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1872 	for (i = 0; i < limit; i++) {
1873 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1874 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1875 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1876 		vrcb += sizeof(struct bge_rcb);
1877 	}
1878 
1879 	/* Configure send ring RCB 0 (we use only the first ring) */
1880 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1881 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1882 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1883 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1884 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1885 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1886 	    sc->bge_asicrev == BGE_ASICREV_BCM5720)
1887 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1888 	else
1889 		RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1890 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1891 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1892 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1893 
1894 	/*
1895 	 * Disable all receive return rings by setting the
1896 	 * 'ring diabled' bit in the flags field of all the receive
1897 	 * return ring control blocks, located in NIC memory.
1898 	 */
1899 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
1900 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
1901 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
1902 		/* Should be 17, use 16 until we get an SRAM map. */
1903 		limit = 16;
1904 	} else if (!BGE_IS_5705_PLUS(sc))
1905 		limit = BGE_RX_RINGS_MAX;
1906 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1907 	    sc->bge_asicrev == BGE_ASICREV_BCM57765)
1908 		limit = 4;
1909 	else
1910 		limit = 1;
1911 	/* Disable all receive return rings. */
1912 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1913 	for (i = 0; i < limit; i++) {
1914 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1915 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1916 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1917 		    BGE_RCB_FLAG_RING_DISABLED);
1918 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1919 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1920 		    (i * (sizeof(uint64_t))), 0);
1921 		vrcb += sizeof(struct bge_rcb);
1922 	}
1923 
1924 	/*
1925 	 * Set up receive return ring 0.  Note that the NIC address
1926 	 * for RX return rings is 0x0.  The return rings live entirely
1927 	 * within the host, so the nicaddr field in the RCB isn't used.
1928 	 */
1929 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1930 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1931 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1932 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1933 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1934 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1935 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1936 
1937 	/* Set random backoff seed for TX */
1938 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1939 	    IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1940 	    IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1941 	    IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1942 	    BGE_TX_BACKOFF_SEED_MASK);
1943 
1944 	/* Set inter-packet gap */
1945 	val = 0x2620;
1946 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
1947 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1948 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1949 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1950 
1951 	/*
1952 	 * Specify which ring to use for packets that don't match
1953 	 * any RX rules.
1954 	 */
1955 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1956 
1957 	/*
1958 	 * Configure number of RX lists. One interrupt distribution
1959 	 * list, sixteen active lists, one bad frames class.
1960 	 */
1961 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1962 
1963 	/* Inialize RX list placement stats mask. */
1964 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1965 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1966 
1967 	/* Disable host coalescing until we get it set up */
1968 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1969 
1970 	/* Poll to make sure it's shut down. */
1971 	for (i = 0; i < BGE_TIMEOUT; i++) {
1972 		DELAY(10);
1973 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1974 			break;
1975 	}
1976 
1977 	if (i == BGE_TIMEOUT) {
1978 		device_printf(sc->bge_dev,
1979 		    "host coalescing engine failed to idle\n");
1980 		return (ENXIO);
1981 	}
1982 
1983 	/* Set up host coalescing defaults */
1984 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1985 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1986 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1987 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1988 	if (!(BGE_IS_5705_PLUS(sc))) {
1989 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1990 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1991 	}
1992 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1993 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1994 
1995 	/* Set up address of statistics block */
1996 	if (!(BGE_IS_5705_PLUS(sc))) {
1997 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1998 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1999 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2000 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2001 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2002 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2003 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2004 	}
2005 
2006 	/* Set up address of status block */
2007 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2008 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2009 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2010 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2011 
2012 	/* Set up status block size. */
2013 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2014 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2015 		val = BGE_STATBLKSZ_FULL;
2016 		bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2017 	} else {
2018 		val = BGE_STATBLKSZ_32BYTE;
2019 		bzero(sc->bge_ldata.bge_status_block, 32);
2020 	}
2021 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2022 	    sc->bge_cdata.bge_status_map,
2023 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2024 
2025 	/* Turn on host coalescing state machine */
2026 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2027 
2028 	/* Turn on RX BD completion state machine and enable attentions */
2029 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2030 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2031 
2032 	/* Turn on RX list placement state machine */
2033 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2034 
2035 	/* Turn on RX list selector state machine. */
2036 	if (!(BGE_IS_5705_PLUS(sc)))
2037 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2038 
2039 	/* Turn on DMA, clear stats. */
2040 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2041 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2042 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2043 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2044 
2045 	if (sc->bge_flags & BGE_FLAG_TBI)
2046 		val |= BGE_PORTMODE_TBI;
2047 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2048 		val |= BGE_PORTMODE_GMII;
2049 	else
2050 		val |= BGE_PORTMODE_MII;
2051 
2052 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2053 	DELAY(40);
2054 
2055 	/* Set misc. local control, enable interrupts on attentions */
2056 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2057 
2058 #ifdef notdef
2059 	/* Assert GPIO pins for PHY reset */
2060 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2061 	    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2062 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2063 	    BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2064 #endif
2065 
2066 	/* Turn on DMA completion state machine */
2067 	if (!(BGE_IS_5705_PLUS(sc)))
2068 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2069 
2070 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2071 
2072 	/* Enable host coalescing bug fix. */
2073 	if (BGE_IS_5755_PLUS(sc))
2074 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2075 
2076 	/* Request larger DMA burst size to get better performance. */
2077 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2078 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2079 
2080 	/* Turn on write DMA state machine */
2081 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2082 	DELAY(40);
2083 
2084 	/* Turn on read DMA state machine */
2085 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2086 
2087 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2088 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2089 
2090 	if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2091 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2092 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2093 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2094 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2095 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2096 	if (sc->bge_flags & BGE_FLAG_PCIE)
2097 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2098 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2099 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2100 		if (sc->bge_flags & BGE_FLAG_TSO3 ||
2101 		    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2102 		    sc->bge_asicrev == BGE_ASICREV_BCM57780)
2103 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2104 	}
2105 
2106 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2107 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2108 			BGE_RDMAMODE_H2BNC_VLAN_DET;
2109 		/*
2110 		 * Allow multiple outstanding read requests from
2111 		 * non-LSO read DMA engine.
2112 		 */
2113 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2114 	}
2115 
2116 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2117 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2118 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2119 	    sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2120 	    BGE_IS_5717_PLUS(sc)) {
2121 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2122 		/*
2123 		 * Adjust tx margin to prevent TX data corruption and
2124 		 * fix internal FIFO overflow.
2125 		 */
2126 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2127 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2128 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2129 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2130 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2131 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2132 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2133 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2134 		}
2135 		/*
2136 		 * Enable fix for read DMA FIFO overruns.
2137 		 * The fix is to limit the number of RX BDs
2138 		 * the hardware would fetch at a fime.
2139 		 */
2140 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2141 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2142 	}
2143 
2144 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2145 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2146 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2147 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2148 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2149 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2150 		/*
2151 		 * Allow 4KB burst length reads for non-LSO frames.
2152 		 * Enable 512B burst length reads for buffer descriptors.
2153 		 */
2154 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2155 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2156 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2157 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2158 	}
2159 
2160 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2161 	DELAY(40);
2162 
2163 	/* Turn on RX data completion state machine */
2164 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2165 
2166 	/* Turn on RX BD initiator state machine */
2167 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2168 
2169 	/* Turn on RX data and RX BD initiator state machine */
2170 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2171 
2172 	/* Turn on Mbuf cluster free state machine */
2173 	if (!(BGE_IS_5705_PLUS(sc)))
2174 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2175 
2176 	/* Turn on send BD completion state machine */
2177 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2178 
2179 	/* Turn on send data completion state machine */
2180 	val = BGE_SDCMODE_ENABLE;
2181 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2182 		val |= BGE_SDCMODE_CDELAY;
2183 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2184 
2185 	/* Turn on send data initiator state machine */
2186 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2187 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2188 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2189 	else
2190 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2191 
2192 	/* Turn on send BD initiator state machine */
2193 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2194 
2195 	/* Turn on send BD selector state machine */
2196 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2197 
2198 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2199 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2200 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2201 
2202 	/* ack/clear link change events */
2203 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2204 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2205 	    BGE_MACSTAT_LINK_CHANGED);
2206 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2207 
2208 	/*
2209 	 * Enable attention when the link has changed state for
2210 	 * devices that use auto polling.
2211 	 */
2212 	if (sc->bge_flags & BGE_FLAG_TBI) {
2213 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2214 	} else {
2215 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2216 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2217 			DELAY(80);
2218 		}
2219 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2220 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2221 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2222 			    BGE_EVTENB_MI_INTERRUPT);
2223 	}
2224 
2225 	/*
2226 	 * Clear any pending link state attention.
2227 	 * Otherwise some link state change events may be lost until attention
2228 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2229 	 * It's not necessary on newer BCM chips - perhaps enabling link
2230 	 * state change attentions implies clearing pending attention.
2231 	 */
2232 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2233 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2234 	    BGE_MACSTAT_LINK_CHANGED);
2235 
2236 	/* Enable link state change attentions. */
2237 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2238 
2239 	return (0);
2240 }
2241 
2242 const struct bge_revision *
2243 bge_lookup_rev(uint32_t chipid)
2244 {
2245 	const struct bge_revision *br;
2246 
2247 	for (br = bge_revisions; br->br_name != NULL; br++) {
2248 		if (br->br_chipid == chipid)
2249 			return (br);
2250 	}
2251 
2252 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2253 		if (br->br_chipid == BGE_ASICREV(chipid))
2254 			return (br);
2255 	}
2256 
2257 	return (NULL);
2258 }
2259 
2260 const struct bge_vendor *
2261 bge_lookup_vendor(uint16_t vid)
2262 {
2263 	const struct bge_vendor *v;
2264 
2265 	for (v = bge_vendors; v->v_name != NULL; v++)
2266 		if (v->v_id == vid)
2267 			return (v);
2268 
2269 	panic("%s: unknown vendor %d", __func__, vid);
2270 	return (NULL);
2271 }
2272 
2273 /*
2274  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2275  * against our list and return its name if we find a match.
2276  *
2277  * Note that since the Broadcom controller contains VPD support, we
2278  * try to get the device name string from the controller itself instead
2279  * of the compiled-in string. It guarantees we'll always announce the
2280  * right product name. We fall back to the compiled-in string when
2281  * VPD is unavailable or corrupt.
2282  */
2283 static int
2284 bge_probe(device_t dev)
2285 {
2286 	char buf[96];
2287 	char model[64];
2288 	const struct bge_revision *br;
2289 	const char *pname;
2290 	struct bge_softc *sc = device_get_softc(dev);
2291 	const struct bge_type *t = bge_devs;
2292 	const struct bge_vendor *v;
2293 	uint32_t id;
2294 	uint16_t did, vid;
2295 
2296 	sc->bge_dev = dev;
2297 	vid = pci_get_vendor(dev);
2298 	did = pci_get_device(dev);
2299 	while(t->bge_vid != 0) {
2300 		if ((vid == t->bge_vid) && (did == t->bge_did)) {
2301 			id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2302 			    BGE_PCIMISCCTL_ASICREV_SHIFT;
2303 			if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2304 				/*
2305 				 * Find the ASCI revision.  Different chips
2306 				 * use different registers.
2307 				 */
2308 				switch (pci_get_device(dev)) {
2309 				case BCOM_DEVICEID_BCM5717:
2310 				case BCOM_DEVICEID_BCM5718:
2311 				case BCOM_DEVICEID_BCM5719:
2312 				case BCOM_DEVICEID_BCM5720:
2313 					id = pci_read_config(dev,
2314 					    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2315 					break;
2316 				case BCOM_DEVICEID_BCM57761:
2317 				case BCOM_DEVICEID_BCM57765:
2318 				case BCOM_DEVICEID_BCM57781:
2319 				case BCOM_DEVICEID_BCM57785:
2320 				case BCOM_DEVICEID_BCM57791:
2321 				case BCOM_DEVICEID_BCM57795:
2322 					id = pci_read_config(dev,
2323 					    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2324 					break;
2325 				default:
2326 					id = pci_read_config(dev,
2327 					    BGE_PCI_PRODID_ASICREV, 4);
2328 				}
2329 			}
2330 			br = bge_lookup_rev(id);
2331 			v = bge_lookup_vendor(vid);
2332 			if (bge_has_eaddr(sc) &&
2333 			    pci_get_vpd_ident(dev, &pname) == 0)
2334 				snprintf(model, 64, "%s", pname);
2335 			else
2336 				snprintf(model, 64, "%s %s", v->v_name,
2337 				    br != NULL ? br->br_name :
2338 				    "NetXtreme Ethernet Controller");
2339 			snprintf(buf, 96, "%s, %sASIC rev. %#08x", model,
2340 			    br != NULL ? "" : "unknown ", id);
2341 			device_set_desc_copy(dev, buf);
2342 			return (0);
2343 		}
2344 		t++;
2345 	}
2346 
2347 	return (ENXIO);
2348 }
2349 
2350 static void
2351 bge_dma_free(struct bge_softc *sc)
2352 {
2353 	int i;
2354 
2355 	/* Destroy DMA maps for RX buffers. */
2356 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2357 		if (sc->bge_cdata.bge_rx_std_dmamap[i])
2358 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2359 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
2360 	}
2361 	if (sc->bge_cdata.bge_rx_std_sparemap)
2362 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2363 		    sc->bge_cdata.bge_rx_std_sparemap);
2364 
2365 	/* Destroy DMA maps for jumbo RX buffers. */
2366 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2367 		if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2368 			bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2369 			    sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2370 	}
2371 	if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2372 		bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2373 		    sc->bge_cdata.bge_rx_jumbo_sparemap);
2374 
2375 	/* Destroy DMA maps for TX buffers. */
2376 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2377 		if (sc->bge_cdata.bge_tx_dmamap[i])
2378 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2379 			    sc->bge_cdata.bge_tx_dmamap[i]);
2380 	}
2381 
2382 	if (sc->bge_cdata.bge_rx_mtag)
2383 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2384 	if (sc->bge_cdata.bge_mtag_jumbo)
2385 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2386 	if (sc->bge_cdata.bge_tx_mtag)
2387 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2388 
2389 	/* Destroy standard RX ring. */
2390 	if (sc->bge_cdata.bge_rx_std_ring_map)
2391 		bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2392 		    sc->bge_cdata.bge_rx_std_ring_map);
2393 	if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
2394 		bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2395 		    sc->bge_ldata.bge_rx_std_ring,
2396 		    sc->bge_cdata.bge_rx_std_ring_map);
2397 
2398 	if (sc->bge_cdata.bge_rx_std_ring_tag)
2399 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2400 
2401 	/* Destroy jumbo RX ring. */
2402 	if (sc->bge_cdata.bge_rx_jumbo_ring_map)
2403 		bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2404 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2405 
2406 	if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
2407 	    sc->bge_ldata.bge_rx_jumbo_ring)
2408 		bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2409 		    sc->bge_ldata.bge_rx_jumbo_ring,
2410 		    sc->bge_cdata.bge_rx_jumbo_ring_map);
2411 
2412 	if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2413 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2414 
2415 	/* Destroy RX return ring. */
2416 	if (sc->bge_cdata.bge_rx_return_ring_map)
2417 		bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2418 		    sc->bge_cdata.bge_rx_return_ring_map);
2419 
2420 	if (sc->bge_cdata.bge_rx_return_ring_map &&
2421 	    sc->bge_ldata.bge_rx_return_ring)
2422 		bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2423 		    sc->bge_ldata.bge_rx_return_ring,
2424 		    sc->bge_cdata.bge_rx_return_ring_map);
2425 
2426 	if (sc->bge_cdata.bge_rx_return_ring_tag)
2427 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2428 
2429 	/* Destroy TX ring. */
2430 	if (sc->bge_cdata.bge_tx_ring_map)
2431 		bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2432 		    sc->bge_cdata.bge_tx_ring_map);
2433 
2434 	if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
2435 		bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2436 		    sc->bge_ldata.bge_tx_ring,
2437 		    sc->bge_cdata.bge_tx_ring_map);
2438 
2439 	if (sc->bge_cdata.bge_tx_ring_tag)
2440 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2441 
2442 	/* Destroy status block. */
2443 	if (sc->bge_cdata.bge_status_map)
2444 		bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2445 		    sc->bge_cdata.bge_status_map);
2446 
2447 	if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
2448 		bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2449 		    sc->bge_ldata.bge_status_block,
2450 		    sc->bge_cdata.bge_status_map);
2451 
2452 	if (sc->bge_cdata.bge_status_tag)
2453 		bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2454 
2455 	/* Destroy statistics block. */
2456 	if (sc->bge_cdata.bge_stats_map)
2457 		bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2458 		    sc->bge_cdata.bge_stats_map);
2459 
2460 	if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
2461 		bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2462 		    sc->bge_ldata.bge_stats,
2463 		    sc->bge_cdata.bge_stats_map);
2464 
2465 	if (sc->bge_cdata.bge_stats_tag)
2466 		bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2467 
2468 	if (sc->bge_cdata.bge_buffer_tag)
2469 		bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2470 
2471 	/* Destroy the parent tag. */
2472 	if (sc->bge_cdata.bge_parent_tag)
2473 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2474 }
2475 
2476 static int
2477 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2478     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2479     bus_addr_t *paddr, const char *msg)
2480 {
2481 	struct bge_dmamap_arg ctx;
2482 	int error;
2483 
2484 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2485 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2486 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2487 	if (error != 0) {
2488 		device_printf(sc->bge_dev,
2489 		    "could not create %s dma tag\n", msg);
2490 		return (ENOMEM);
2491 	}
2492 	/* Allocate DMA'able memory for ring. */
2493 	error = bus_dmamem_alloc(*tag, (void **)ring,
2494 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2495 	if (error != 0) {
2496 		device_printf(sc->bge_dev,
2497 		    "could not allocate DMA'able memory for %s\n", msg);
2498 		return (ENOMEM);
2499 	}
2500 	/* Load the address of the ring. */
2501 	ctx.bge_busaddr = 0;
2502 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2503 	    &ctx, BUS_DMA_NOWAIT);
2504 	if (error != 0) {
2505 		device_printf(sc->bge_dev,
2506 		    "could not load DMA'able memory for %s\n", msg);
2507 		return (ENOMEM);
2508 	}
2509 	*paddr = ctx.bge_busaddr;
2510 	return (0);
2511 }
2512 
2513 static int
2514 bge_dma_alloc(struct bge_softc *sc)
2515 {
2516 	bus_addr_t lowaddr;
2517 	bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz;
2518 	int i, error;
2519 
2520 	lowaddr = BUS_SPACE_MAXADDR;
2521 	if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2522 		lowaddr = BGE_DMA_MAXADDR;
2523 	/*
2524 	 * Allocate the parent bus DMA tag appropriate for PCI.
2525 	 */
2526 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2527 	    1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2528 	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2529 	    0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2530 	if (error != 0) {
2531 		device_printf(sc->bge_dev,
2532 		    "could not allocate parent dma tag\n");
2533 		return (ENOMEM);
2534 	}
2535 
2536 	/* Create tag for standard RX ring. */
2537 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2538 	    &sc->bge_cdata.bge_rx_std_ring_tag,
2539 	    (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2540 	    &sc->bge_cdata.bge_rx_std_ring_map,
2541 	    &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2542 	if (error)
2543 		return (error);
2544 
2545 	/* Create tag for RX return ring. */
2546 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2547 	    &sc->bge_cdata.bge_rx_return_ring_tag,
2548 	    (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2549 	    &sc->bge_cdata.bge_rx_return_ring_map,
2550 	    &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2551 	if (error)
2552 		return (error);
2553 
2554 	/* Create tag for TX ring. */
2555 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2556 	    &sc->bge_cdata.bge_tx_ring_tag,
2557 	    (uint8_t **)&sc->bge_ldata.bge_tx_ring,
2558 	    &sc->bge_cdata.bge_tx_ring_map,
2559 	    &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2560 	if (error)
2561 		return (error);
2562 
2563 	/*
2564 	 * Create tag for status block.
2565 	 * Because we only use single Tx/Rx/Rx return ring, use
2566 	 * minimum status block size except BCM5700 AX/BX which
2567 	 * seems to want to see full status block size regardless
2568 	 * of configured number of ring.
2569 	 */
2570 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2571 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2572 		sbsz = BGE_STATUS_BLK_SZ;
2573 	else
2574 		sbsz = 32;
2575 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2576 	    &sc->bge_cdata.bge_status_tag,
2577 	    (uint8_t **)&sc->bge_ldata.bge_status_block,
2578 	    &sc->bge_cdata.bge_status_map,
2579 	    &sc->bge_ldata.bge_status_block_paddr, "status block");
2580 	if (error)
2581 		return (error);
2582 
2583 	/* Create tag for statistics block. */
2584 	error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2585 	    &sc->bge_cdata.bge_stats_tag,
2586 	    (uint8_t **)&sc->bge_ldata.bge_stats,
2587 	    &sc->bge_cdata.bge_stats_map,
2588 	    &sc->bge_ldata.bge_stats_paddr, "statistics block");
2589 	if (error)
2590 		return (error);
2591 
2592 	/* Create tag for jumbo RX ring. */
2593 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2594 		error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
2595 		    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
2596 		    (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
2597 		    &sc->bge_cdata.bge_rx_jumbo_ring_map,
2598 		    &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
2599 		if (error)
2600 			return (error);
2601 	}
2602 
2603 	/* Create parent tag for buffers. */
2604 	if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
2605 		/*
2606 		 * XXX
2607 		 * watchdog timeout issue was observed on BCM5704 which
2608 		 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
2609 		 * Both limiting DMA address space to 32bits and flushing
2610 		 * mailbox write seem to address the issue.
2611 		 */
2612 		if (sc->bge_pcixcap != 0)
2613 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
2614 	}
2615 	error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr,
2616 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
2617 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
2618 	    &sc->bge_cdata.bge_buffer_tag);
2619 	if (error != 0) {
2620 		device_printf(sc->bge_dev,
2621 		    "could not allocate buffer dma tag\n");
2622 		return (ENOMEM);
2623 	}
2624 	/* Create tag for Tx mbufs. */
2625 	if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2626 		txsegsz = BGE_TSOSEG_SZ;
2627 		txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
2628 	} else {
2629 		txsegsz = MCLBYTES;
2630 		txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
2631 	}
2632 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
2633 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2634 	    txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
2635 	    &sc->bge_cdata.bge_tx_mtag);
2636 
2637 	if (error) {
2638 		device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
2639 		return (ENOMEM);
2640 	}
2641 
2642 	/* Create tag for Rx mbufs. */
2643 	if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
2644 		rxmaxsegsz = MJUM9BYTES;
2645 	else
2646 		rxmaxsegsz = MCLBYTES;
2647 	error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
2648 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
2649 	    rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
2650 
2651 	if (error) {
2652 		device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
2653 		return (ENOMEM);
2654 	}
2655 
2656 	/* Create DMA maps for RX buffers. */
2657 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2658 	    &sc->bge_cdata.bge_rx_std_sparemap);
2659 	if (error) {
2660 		device_printf(sc->bge_dev,
2661 		    "can't create spare DMA map for RX\n");
2662 		return (ENOMEM);
2663 	}
2664 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2665 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
2666 			    &sc->bge_cdata.bge_rx_std_dmamap[i]);
2667 		if (error) {
2668 			device_printf(sc->bge_dev,
2669 			    "can't create DMA map for RX\n");
2670 			return (ENOMEM);
2671 		}
2672 	}
2673 
2674 	/* Create DMA maps for TX buffers. */
2675 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
2676 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
2677 			    &sc->bge_cdata.bge_tx_dmamap[i]);
2678 		if (error) {
2679 			device_printf(sc->bge_dev,
2680 			    "can't create DMA map for TX\n");
2681 			return (ENOMEM);
2682 		}
2683 	}
2684 
2685 	/* Create tags for jumbo RX buffers. */
2686 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2687 		error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
2688 		    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2689 		    NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2690 		    0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2691 		if (error) {
2692 			device_printf(sc->bge_dev,
2693 			    "could not allocate jumbo dma tag\n");
2694 			return (ENOMEM);
2695 		}
2696 		/* Create DMA maps for jumbo RX buffers. */
2697 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2698 		    0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
2699 		if (error) {
2700 			device_printf(sc->bge_dev,
2701 			    "can't create spare DMA map for jumbo RX\n");
2702 			return (ENOMEM);
2703 		}
2704 		for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2705 			error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2706 				    0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2707 			if (error) {
2708 				device_printf(sc->bge_dev,
2709 				    "can't create DMA map for jumbo RX\n");
2710 				return (ENOMEM);
2711 			}
2712 		}
2713 	}
2714 
2715 	return (0);
2716 }
2717 
2718 /*
2719  * Return true if this device has more than one port.
2720  */
2721 static int
2722 bge_has_multiple_ports(struct bge_softc *sc)
2723 {
2724 	device_t dev = sc->bge_dev;
2725 	u_int b, d, f, fscan, s;
2726 
2727 	d = pci_get_domain(dev);
2728 	b = pci_get_bus(dev);
2729 	s = pci_get_slot(dev);
2730 	f = pci_get_function(dev);
2731 	for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2732 		if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
2733 			return (1);
2734 	return (0);
2735 }
2736 
2737 /*
2738  * Return true if MSI can be used with this device.
2739  */
2740 static int
2741 bge_can_use_msi(struct bge_softc *sc)
2742 {
2743 	int can_use_msi = 0;
2744 
2745 	if (sc->bge_msi == 0)
2746 		return (0);
2747 
2748 	/* Disable MSI for polling(4). */
2749 #ifdef DEVICE_POLLING
2750 	return (0);
2751 #endif
2752 	switch (sc->bge_asicrev) {
2753 	case BGE_ASICREV_BCM5714_A0:
2754 	case BGE_ASICREV_BCM5714:
2755 		/*
2756 		 * Apparently, MSI doesn't work when these chips are
2757 		 * configured in single-port mode.
2758 		 */
2759 		if (bge_has_multiple_ports(sc))
2760 			can_use_msi = 1;
2761 		break;
2762 	case BGE_ASICREV_BCM5750:
2763 		if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2764 		    sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2765 			can_use_msi = 1;
2766 		break;
2767 	default:
2768 		if (BGE_IS_575X_PLUS(sc))
2769 			can_use_msi = 1;
2770 	}
2771 	return (can_use_msi);
2772 }
2773 
2774 static int
2775 bge_mbox_reorder(struct bge_softc *sc)
2776 {
2777 	/* Lists of PCI bridges that are known to reorder mailbox writes. */
2778 	static const struct mbox_reorder {
2779 		const uint16_t vendor;
2780 		const uint16_t device;
2781 		const char *desc;
2782 	} const mbox_reorder_lists[] = {
2783 		{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
2784 	};
2785 	devclass_t pci, pcib;
2786 	device_t bus, dev;
2787 	int i;
2788 
2789 	pci = devclass_find("pci");
2790 	pcib = devclass_find("pcib");
2791 	dev = sc->bge_dev;
2792 	bus = device_get_parent(dev);
2793 	for (;;) {
2794 		dev = device_get_parent(bus);
2795 		bus = device_get_parent(dev);
2796 		if (device_get_devclass(dev) != pcib)
2797 			break;
2798 		for (i = 0; i < nitems(mbox_reorder_lists); i++) {
2799 			if (pci_get_vendor(dev) ==
2800 			    mbox_reorder_lists[i].vendor &&
2801 			    pci_get_device(dev) ==
2802 			    mbox_reorder_lists[i].device) {
2803 				device_printf(sc->bge_dev,
2804 				    "enabling MBOX workaround for %s\n",
2805 				    mbox_reorder_lists[i].desc);
2806 				return (1);
2807 			}
2808 		}
2809 		if (device_get_devclass(bus) != pci)
2810 			break;
2811 	}
2812 	return (0);
2813 }
2814 
2815 static void
2816 bge_devinfo(struct bge_softc *sc)
2817 {
2818 	uint32_t cfg, clk;
2819 
2820 	device_printf(sc->bge_dev,
2821 	    "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
2822 	    sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
2823 	if (sc->bge_flags & BGE_FLAG_PCIE)
2824 		printf("PCI-E\n");
2825 	else if (sc->bge_flags & BGE_FLAG_PCIX) {
2826 		printf("PCI-X ");
2827 		cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2828 		if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
2829 			clk = 133;
2830 		else {
2831 			clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
2832 			switch (clk) {
2833 			case 0:
2834 				clk = 33;
2835 				break;
2836 			case 2:
2837 				clk = 50;
2838 				break;
2839 			case 4:
2840 				clk = 66;
2841 				break;
2842 			case 6:
2843 				clk = 100;
2844 				break;
2845 			case 7:
2846 				clk = 133;
2847 				break;
2848 			}
2849 		}
2850 		printf("%u MHz\n", clk);
2851 	} else {
2852 		if (sc->bge_pcixcap != 0)
2853 			printf("PCI on PCI-X ");
2854 		else
2855 			printf("PCI ");
2856 		cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
2857 		if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
2858 			clk = 66;
2859 		else
2860 			clk = 33;
2861 		if (cfg & BGE_PCISTATE_32BIT_BUS)
2862 			printf("%u MHz; 32bit\n", clk);
2863 		else
2864 			printf("%u MHz; 64bit\n", clk);
2865 	}
2866 }
2867 
2868 static int
2869 bge_attach(device_t dev)
2870 {
2871 	struct ifnet *ifp;
2872 	struct bge_softc *sc;
2873 	uint32_t hwcfg = 0, misccfg;
2874 	u_char eaddr[ETHER_ADDR_LEN];
2875 	int capmask, error, f, msicount, phy_addr, reg, rid, trys;
2876 
2877 	sc = device_get_softc(dev);
2878 	sc->bge_dev = dev;
2879 
2880 	BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2881 	TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
2882 	callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2883 
2884 	/*
2885 	 * Map control/status registers.
2886 	 */
2887 	pci_enable_busmaster(dev);
2888 
2889 	rid = PCIR_BAR(0);
2890 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2891 	    RF_ACTIVE);
2892 
2893 	if (sc->bge_res == NULL) {
2894 		device_printf (sc->bge_dev, "couldn't map memory\n");
2895 		error = ENXIO;
2896 		goto fail;
2897 	}
2898 
2899 	/* Save various chip information. */
2900 	sc->bge_chipid =
2901 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2902 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2903 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2904 		/*
2905 		 * Find the ASCI revision.  Different chips use different
2906 		 * registers.
2907 		 */
2908 		switch (pci_get_device(dev)) {
2909 		case BCOM_DEVICEID_BCM5717:
2910 		case BCOM_DEVICEID_BCM5718:
2911 		case BCOM_DEVICEID_BCM5719:
2912 		case BCOM_DEVICEID_BCM5720:
2913 			sc->bge_chipid = pci_read_config(dev,
2914 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
2915 			break;
2916 		case BCOM_DEVICEID_BCM57761:
2917 		case BCOM_DEVICEID_BCM57765:
2918 		case BCOM_DEVICEID_BCM57781:
2919 		case BCOM_DEVICEID_BCM57785:
2920 		case BCOM_DEVICEID_BCM57791:
2921 		case BCOM_DEVICEID_BCM57795:
2922 			sc->bge_chipid = pci_read_config(dev,
2923 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
2924 			break;
2925 		default:
2926 			sc->bge_chipid = pci_read_config(dev,
2927 			    BGE_PCI_PRODID_ASICREV, 4);
2928 		}
2929 	}
2930 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2931 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2932 
2933 	/* Set default PHY address. */
2934 	phy_addr = 1;
2935 	 /*
2936 	  * PHY address mapping for various devices.
2937 	  *
2938 	  *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2939 	  * ---------+-------+-------+-------+-------+
2940 	  * BCM57XX  |   1   |   X   |   X   |   X   |
2941 	  * BCM5704  |   1   |   X   |   1   |   X   |
2942 	  * BCM5717  |   1   |   8   |   2   |   9   |
2943 	  * BCM5719  |   1   |   8   |   2   |   9   |
2944 	  * BCM5720  |   1   |   8   |   2   |   9   |
2945 	  *
2946 	  * Other addresses may respond but they are not
2947 	  * IEEE compliant PHYs and should be ignored.
2948 	  */
2949 	if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2950 	    sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2951 	    sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2952 		f = pci_get_function(dev);
2953 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2954 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2955 			    BGE_SGDIGSTS_IS_SERDES)
2956 				phy_addr = f + 8;
2957 			else
2958 				phy_addr = f + 1;
2959 		} else {
2960 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2961 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2962 				phy_addr = f + 8;
2963 			else
2964 				phy_addr = f + 1;
2965 		}
2966 	}
2967 
2968 	/*
2969 	 * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2970 	 * 5705 A0 and A1 chips.
2971 	 */
2972 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2973 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2974 	    (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2975 	    sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2976 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2977 		sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
2978 
2979 	if (bge_has_eaddr(sc))
2980 		sc->bge_flags |= BGE_FLAG_EADDR;
2981 
2982 	/* Save chipset family. */
2983 	switch (sc->bge_asicrev) {
2984 	case BGE_ASICREV_BCM5717:
2985 	case BGE_ASICREV_BCM5719:
2986 	case BGE_ASICREV_BCM5720:
2987 	case BGE_ASICREV_BCM57765:
2988 		sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
2989 		    BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
2990 		    BGE_FLAG_JUMBO_FRAME;
2991 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
2992 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2993 			/* Jumbo frame on BCM5719 A0 does not work. */
2994 			sc->bge_flags &= ~BGE_FLAG_JUMBO;
2995 		}
2996 		break;
2997 	case BGE_ASICREV_BCM5755:
2998 	case BGE_ASICREV_BCM5761:
2999 	case BGE_ASICREV_BCM5784:
3000 	case BGE_ASICREV_BCM5785:
3001 	case BGE_ASICREV_BCM5787:
3002 	case BGE_ASICREV_BCM57780:
3003 		sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3004 		    BGE_FLAG_5705_PLUS;
3005 		break;
3006 	case BGE_ASICREV_BCM5700:
3007 	case BGE_ASICREV_BCM5701:
3008 	case BGE_ASICREV_BCM5703:
3009 	case BGE_ASICREV_BCM5704:
3010 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3011 		break;
3012 	case BGE_ASICREV_BCM5714_A0:
3013 	case BGE_ASICREV_BCM5780:
3014 	case BGE_ASICREV_BCM5714:
3015 		sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3016 		/* FALLTHROUGH */
3017 	case BGE_ASICREV_BCM5750:
3018 	case BGE_ASICREV_BCM5752:
3019 	case BGE_ASICREV_BCM5906:
3020 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
3021 		/* FALLTHROUGH */
3022 	case BGE_ASICREV_BCM5705:
3023 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
3024 		break;
3025 	}
3026 
3027 	/* Add SYSCTLs, requires the chipset family to be set. */
3028 	bge_add_sysctls(sc);
3029 
3030 	/* Set various PHY bug flags. */
3031 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3032 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3033 		sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3034 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3035 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3036 		sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3037 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3038 		sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3039 	if (pci_get_subvendor(dev) == DELL_VENDORID)
3040 		sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3041 	if ((BGE_IS_5705_PLUS(sc)) &&
3042 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3043 	    sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
3044 	    sc->bge_asicrev != BGE_ASICREV_BCM5719 &&
3045 	    sc->bge_asicrev != BGE_ASICREV_BCM5720 &&
3046 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3047 	    sc->bge_asicrev != BGE_ASICREV_BCM57765 &&
3048 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
3049 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3050 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3051 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3052 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3053 			if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3054 			    pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3055 				sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3056 			if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3057 				sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3058 		} else
3059 			sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3060 	}
3061 
3062 	/* Identify the chips that use an CPMU. */
3063 	if (BGE_IS_5717_PLUS(sc) ||
3064 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3065 	    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3066 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3067 	    sc->bge_asicrev == BGE_ASICREV_BCM57780)
3068 		sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3069 	if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3070 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3071 	else
3072 		sc->bge_mi_mode = BGE_MIMODE_BASE;
3073 	/* Enable auto polling for BCM570[0-5]. */
3074 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3075 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3076 
3077 	/*
3078 	 * All Broadcom controllers have 4GB boundary DMA bug.
3079 	 * Whenever an address crosses a multiple of the 4GB boundary
3080 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3081 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3082 	 * state machine will lockup and cause the device to hang.
3083 	 */
3084 	sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3085 
3086 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
3087 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3088 		sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3089 
3090 	/*
3091 	 * BCM5719 cannot handle DMA requests for DMA segments that
3092 	 * have larger than 4KB in size.  However the maximum DMA
3093 	 * segment size created in DMA tag is 4KB for TSO, so we
3094 	 * wouldn't encounter the issue here.
3095 	 */
3096 	if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3097 		sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3098 
3099 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3100 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3101 		if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3102 		    misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3103 			sc->bge_flags |= BGE_FLAG_5788;
3104 	}
3105 
3106 	capmask = BMSR_DEFCAPMASK;
3107 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3108 	    (misccfg == 0x4000 || misccfg == 0x8000)) ||
3109 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3110 	    pci_get_vendor(dev) == BCOM_VENDORID &&
3111 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3112 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3113 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3114 	    (pci_get_vendor(dev) == BCOM_VENDORID &&
3115 	    (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3116 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3117 	    pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3118 	    pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3119 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3120 		/* These chips are 10/100 only. */
3121 		capmask &= ~BMSR_EXTSTAT;
3122 	}
3123 
3124 	/*
3125 	 * Some controllers seem to require a special firmware to use
3126 	 * TSO. But the firmware is not available to FreeBSD and Linux
3127 	 * claims that the TSO performed by the firmware is slower than
3128 	 * hardware based TSO. Moreover the firmware based TSO has one
3129 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3130 	 * header is greater than 80 bytes. The workaround for the TSO
3131 	 * bug exist but it seems it's too expensive than not using
3132 	 * TSO at all. Some hardwares also have the TSO bug so limit
3133 	 * the TSO to the controllers that are not affected TSO issues
3134 	 * (e.g. 5755 or higher).
3135 	 */
3136 	if (BGE_IS_5717_PLUS(sc)) {
3137 		/* BCM5717 requires different TSO configuration. */
3138 		sc->bge_flags |= BGE_FLAG_TSO3;
3139 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3140 		    sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3141 			/* TSO on BCM5719 A0 does not work. */
3142 			sc->bge_flags &= ~BGE_FLAG_TSO3;
3143 		}
3144 	} else if (BGE_IS_5755_PLUS(sc)) {
3145 		/*
3146 		 * BCM5754 and BCM5787 shares the same ASIC id so
3147 		 * explicit device id check is required.
3148 		 * Due to unknown reason TSO does not work on BCM5755M.
3149 		 */
3150 		if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3151 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3152 		    pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3153 			sc->bge_flags |= BGE_FLAG_TSO;
3154 	}
3155 
3156 	/*
3157 	 * Check if this is a PCI-X or PCI Express device.
3158 	 */
3159 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3160 		/*
3161 		 * Found a PCI Express capabilities register, this
3162 		 * must be a PCI Express device.
3163 		 */
3164 		sc->bge_flags |= BGE_FLAG_PCIE;
3165 		sc->bge_expcap = reg;
3166 		/* Extract supported maximum payload size. */
3167 		sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3168 		    PCIER_DEVICE_CAP, 2);
3169 		sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3170 		if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3171 		    sc->bge_asicrev == BGE_ASICREV_BCM5720)
3172 			sc->bge_expmrq = 2048;
3173 		else
3174 			sc->bge_expmrq = 4096;
3175 		pci_set_max_read_req(dev, sc->bge_expmrq);
3176 	} else {
3177 		/*
3178 		 * Check if the device is in PCI-X Mode.
3179 		 * (This bit is not valid on PCI Express controllers.)
3180 		 */
3181 		if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3182 			sc->bge_pcixcap = reg;
3183 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3184 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
3185 			sc->bge_flags |= BGE_FLAG_PCIX;
3186 	}
3187 
3188 	/*
3189 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3190 	 * not actually a MAC controller bug but an issue with the embedded
3191 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3192 	 */
3193 	if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3194 		sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3195 	/*
3196 	 * Some PCI-X bridges are known to trigger write reordering to
3197 	 * the mailbox registers. Typical phenomena is watchdog timeouts
3198 	 * caused by out-of-order TX completions.  Enable workaround for
3199 	 * PCI-X devices that live behind these bridges.
3200 	 * Note, PCI-X controllers can run in PCI mode so we can't use
3201 	 * BGE_FLAG_PCIX flag to detect PCI-X controllers.
3202 	 */
3203 	if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3204 		sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3205 	/*
3206 	 * Allocate the interrupt, using MSI if possible.  These devices
3207 	 * support 8 MSI messages, but only the first one is used in
3208 	 * normal operation.
3209 	 */
3210 	rid = 0;
3211 	if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3212 		sc->bge_msicap = reg;
3213 		if (bge_can_use_msi(sc)) {
3214 			msicount = pci_msi_count(dev);
3215 			if (msicount > 1)
3216 				msicount = 1;
3217 		} else
3218 			msicount = 0;
3219 		if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
3220 			rid = 1;
3221 			sc->bge_flags |= BGE_FLAG_MSI;
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * All controllers except BCM5700 supports tagged status but
3227 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3228 	 * MSI on BCM5717 does not work.
3229 	 */
3230 #ifndef DEVICE_POLLING
3231 	if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3232 		sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3233 #endif
3234 
3235 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3236 	    RF_SHAREABLE | RF_ACTIVE);
3237 
3238 	if (sc->bge_irq == NULL) {
3239 		device_printf(sc->bge_dev, "couldn't map interrupt\n");
3240 		error = ENXIO;
3241 		goto fail;
3242 	}
3243 
3244 	bge_devinfo(sc);
3245 
3246 	/* Try to reset the chip. */
3247 	if (bge_reset(sc)) {
3248 		device_printf(sc->bge_dev, "chip reset failed\n");
3249 		error = ENXIO;
3250 		goto fail;
3251 	}
3252 
3253 	sc->bge_asf_mode = 0;
3254 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3255 	    BGE_SRAM_DATA_SIG_MAGIC)) {
3256 		if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG)
3257 		    & BGE_HWCFG_ASF) {
3258 			sc->bge_asf_mode |= ASF_ENABLE;
3259 			sc->bge_asf_mode |= ASF_STACKUP;
3260 			if (BGE_IS_575X_PLUS(sc))
3261 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3262 		}
3263 	}
3264 
3265 	/* Try to reset the chip again the nice way. */
3266 	bge_stop_fw(sc);
3267 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
3268 	if (bge_reset(sc)) {
3269 		device_printf(sc->bge_dev, "chip reset failed\n");
3270 		error = ENXIO;
3271 		goto fail;
3272 	}
3273 
3274 	bge_sig_legacy(sc, BGE_RESET_STOP);
3275 	bge_sig_post_reset(sc, BGE_RESET_STOP);
3276 
3277 	if (bge_chipinit(sc)) {
3278 		device_printf(sc->bge_dev, "chip initialization failed\n");
3279 		error = ENXIO;
3280 		goto fail;
3281 	}
3282 
3283 	error = bge_get_eaddr(sc, eaddr);
3284 	if (error) {
3285 		device_printf(sc->bge_dev,
3286 		    "failed to read station address\n");
3287 		error = ENXIO;
3288 		goto fail;
3289 	}
3290 
3291 	/* 5705 limits RX return ring to 512 entries. */
3292 	if (BGE_IS_5717_PLUS(sc))
3293 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3294 	else if (BGE_IS_5705_PLUS(sc))
3295 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3296 	else
3297 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3298 
3299 	if (bge_dma_alloc(sc)) {
3300 		device_printf(sc->bge_dev,
3301 		    "failed to allocate DMA resources\n");
3302 		error = ENXIO;
3303 		goto fail;
3304 	}
3305 
3306 	/* Set default tuneable values. */
3307 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3308 	sc->bge_rx_coal_ticks = 150;
3309 	sc->bge_tx_coal_ticks = 150;
3310 	sc->bge_rx_max_coal_bds = 10;
3311 	sc->bge_tx_max_coal_bds = 10;
3312 
3313 	/* Initialize checksum features to use. */
3314 	sc->bge_csum_features = BGE_CSUM_FEATURES;
3315 	if (sc->bge_forced_udpcsum != 0)
3316 		sc->bge_csum_features |= CSUM_UDP;
3317 
3318 	/* Set up ifnet structure */
3319 	ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3320 	if (ifp == NULL) {
3321 		device_printf(sc->bge_dev, "failed to if_alloc()\n");
3322 		error = ENXIO;
3323 		goto fail;
3324 	}
3325 	ifp->if_softc = sc;
3326 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3327 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3328 	ifp->if_ioctl = bge_ioctl;
3329 	ifp->if_start = bge_start;
3330 	ifp->if_init = bge_init;
3331 	ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
3332 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
3333 	IFQ_SET_READY(&ifp->if_snd);
3334 	ifp->if_hwassist = sc->bge_csum_features;
3335 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3336 	    IFCAP_VLAN_MTU;
3337 	if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3338 		ifp->if_hwassist |= CSUM_TSO;
3339 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
3340 	}
3341 #ifdef IFCAP_VLAN_HWCSUM
3342 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
3343 #endif
3344 	ifp->if_capenable = ifp->if_capabilities;
3345 #ifdef DEVICE_POLLING
3346 	ifp->if_capabilities |= IFCAP_POLLING;
3347 #endif
3348 
3349 	/*
3350 	 * 5700 B0 chips do not support checksumming correctly due
3351 	 * to hardware bugs.
3352 	 */
3353 	if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3354 		ifp->if_capabilities &= ~IFCAP_HWCSUM;
3355 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3356 		ifp->if_hwassist = 0;
3357 	}
3358 
3359 	/*
3360 	 * Figure out what sort of media we have by checking the
3361 	 * hardware config word in the first 32k of NIC internal memory,
3362 	 * or fall back to examining the EEPROM if necessary.
3363 	 * Note: on some BCM5700 cards, this value appears to be unset.
3364 	 * If that's the case, we have to rely on identifying the NIC
3365 	 * by its PCI subsystem ID, as we do below for the SysKonnect
3366 	 * SK-9D41.
3367 	 */
3368 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3369 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3370 	else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3371 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3372 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3373 		    sizeof(hwcfg))) {
3374 			device_printf(sc->bge_dev, "failed to read EEPROM\n");
3375 			error = ENXIO;
3376 			goto fail;
3377 		}
3378 		hwcfg = ntohl(hwcfg);
3379 	}
3380 
3381 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3382 	if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3383 	    SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3384 		if (BGE_IS_5705_PLUS(sc))
3385 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
3386 		else
3387 			sc->bge_flags |= BGE_FLAG_TBI;
3388 	}
3389 
3390 	if (sc->bge_flags & BGE_FLAG_TBI) {
3391 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3392 		    bge_ifmedia_sts);
3393 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3394 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3395 		    0, NULL);
3396 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3397 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3398 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3399 	} else {
3400 		/*
3401 		 * Do transceiver setup and tell the firmware the
3402 		 * driver is down so we can try to get access the
3403 		 * probe if ASF is running.  Retry a couple of times
3404 		 * if we get a conflict with the ASF firmware accessing
3405 		 * the PHY.
3406 		 */
3407 		trys = 0;
3408 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3409 again:
3410 		bge_asf_driver_up(sc);
3411 
3412 		error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
3413 		    bge_ifmedia_sts, capmask, phy_addr, MII_OFFSET_ANY,
3414 		    MIIF_DOPAUSE);
3415 		if (error != 0) {
3416 			if (trys++ < 4) {
3417 				device_printf(sc->bge_dev, "Try again\n");
3418 				bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
3419 				    BMCR_RESET);
3420 				goto again;
3421 			}
3422 			device_printf(sc->bge_dev, "attaching PHYs failed\n");
3423 			goto fail;
3424 		}
3425 
3426 		/*
3427 		 * Now tell the firmware we are going up after probing the PHY
3428 		 */
3429 		if (sc->bge_asf_mode & ASF_STACKUP)
3430 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3431 	}
3432 
3433 	/*
3434 	 * When using the BCM5701 in PCI-X mode, data corruption has
3435 	 * been observed in the first few bytes of some received packets.
3436 	 * Aligning the packet buffer in memory eliminates the corruption.
3437 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3438 	 * which do not support unaligned accesses, we will realign the
3439 	 * payloads by copying the received packets.
3440 	 */
3441 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3442 	    sc->bge_flags & BGE_FLAG_PCIX)
3443                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3444 
3445 	/*
3446 	 * Call MI attach routine.
3447 	 */
3448 	ether_ifattach(ifp, eaddr);
3449 
3450 	/* Tell upper layer we support long frames. */
3451 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
3452 
3453 	/*
3454 	 * Hookup IRQ last.
3455 	 */
3456 	if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3457 		/* Take advantage of single-shot MSI. */
3458 		CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3459 		    ~BGE_MSIMODE_ONE_SHOT_DISABLE);
3460 		sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3461 		    taskqueue_thread_enqueue, &sc->bge_tq);
3462 		if (sc->bge_tq == NULL) {
3463 			device_printf(dev, "could not create taskqueue.\n");
3464 			ether_ifdetach(ifp);
3465 			error = ENOMEM;
3466 			goto fail;
3467 		}
3468 		taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq",
3469 		    device_get_nameunit(sc->bge_dev));
3470 		error = bus_setup_intr(dev, sc->bge_irq,
3471 		    INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3472 		    &sc->bge_intrhand);
3473 	} else
3474 		error = bus_setup_intr(dev, sc->bge_irq,
3475 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3476 		    &sc->bge_intrhand);
3477 
3478 	if (error) {
3479 		ether_ifdetach(ifp);
3480 		device_printf(sc->bge_dev, "couldn't set up irq\n");
3481 	}
3482 
3483 fail:
3484 	if (error)
3485 		bge_detach(dev);
3486 	return (error);
3487 }
3488 
3489 static int
3490 bge_detach(device_t dev)
3491 {
3492 	struct bge_softc *sc;
3493 	struct ifnet *ifp;
3494 
3495 	sc = device_get_softc(dev);
3496 	ifp = sc->bge_ifp;
3497 
3498 #ifdef DEVICE_POLLING
3499 	if (ifp->if_capenable & IFCAP_POLLING)
3500 		ether_poll_deregister(ifp);
3501 #endif
3502 
3503 	if (device_is_attached(dev)) {
3504 		ether_ifdetach(ifp);
3505 		BGE_LOCK(sc);
3506 		bge_stop(sc);
3507 		BGE_UNLOCK(sc);
3508 		callout_drain(&sc->bge_stat_ch);
3509 	}
3510 
3511 	if (sc->bge_tq)
3512 		taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3513 
3514 	if (sc->bge_flags & BGE_FLAG_TBI) {
3515 		ifmedia_removeall(&sc->bge_ifmedia);
3516 	} else {
3517 		bus_generic_detach(dev);
3518 		device_delete_child(dev, sc->bge_miibus);
3519 	}
3520 
3521 	bge_release_resources(sc);
3522 
3523 	return (0);
3524 }
3525 
3526 static void
3527 bge_release_resources(struct bge_softc *sc)
3528 {
3529 	device_t dev;
3530 
3531 	dev = sc->bge_dev;
3532 
3533 	if (sc->bge_tq != NULL)
3534 		taskqueue_free(sc->bge_tq);
3535 
3536 	if (sc->bge_intrhand != NULL)
3537 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3538 
3539 	if (sc->bge_irq != NULL)
3540 		bus_release_resource(dev, SYS_RES_IRQ,
3541 		    sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
3542 
3543 	if (sc->bge_flags & BGE_FLAG_MSI)
3544 		pci_release_msi(dev);
3545 
3546 	if (sc->bge_res != NULL)
3547 		bus_release_resource(dev, SYS_RES_MEMORY,
3548 		    PCIR_BAR(0), sc->bge_res);
3549 
3550 	if (sc->bge_ifp != NULL)
3551 		if_free(sc->bge_ifp);
3552 
3553 	bge_dma_free(sc);
3554 
3555 	if (mtx_initialized(&sc->bge_mtx))	/* XXX */
3556 		BGE_LOCK_DESTROY(sc);
3557 }
3558 
3559 static int
3560 bge_reset(struct bge_softc *sc)
3561 {
3562 	device_t dev;
3563 	uint32_t cachesize, command, pcistate, reset, val;
3564 	void (*write_op)(struct bge_softc *, int, int);
3565 	uint16_t devctl;
3566 	int i;
3567 
3568 	dev = sc->bge_dev;
3569 
3570 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3571 	    (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3572 		if (sc->bge_flags & BGE_FLAG_PCIE)
3573 			write_op = bge_writemem_direct;
3574 		else
3575 			write_op = bge_writemem_ind;
3576 	} else
3577 		write_op = bge_writereg_ind;
3578 
3579 	/* Save some important PCI state. */
3580 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
3581 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
3582 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3583 
3584 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3585 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3586 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3587 
3588 	/* Disable fastboot on controllers that support it. */
3589 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
3590 	    BGE_IS_5755_PLUS(sc)) {
3591 		if (bootverbose)
3592 			device_printf(dev, "Disabling fastboot\n");
3593 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
3594 	}
3595 
3596 	/*
3597 	 * Write the magic number to SRAM at offset 0xB50.
3598 	 * When firmware finishes its initialization it will
3599 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
3600 	 */
3601 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3602 
3603 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3604 
3605 	/* XXX: Broadcom Linux driver. */
3606 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3607 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3608 		    (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
3609 			if (CSR_READ_4(sc, 0x7E2C) == 0x60)	/* PCIE 1.0 */
3610 				CSR_WRITE_4(sc, 0x7E2C, 0x20);
3611 		}
3612 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3613 			/* Prevent PCIE link training during global reset */
3614 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3615 			reset |= 1 << 29;
3616 		}
3617 	}
3618 
3619 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3620 		val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3621 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3622 		    val | BGE_VCPU_STATUS_DRV_RESET);
3623 		val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3624 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3625 		    val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3626 	}
3627 
3628 	/*
3629 	 * Set GPHY Power Down Override to leave GPHY
3630 	 * powered up in D0 uninitialized.
3631 	 */
3632 	if (BGE_IS_5705_PLUS(sc) &&
3633 	    (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
3634 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3635 
3636 	/* Issue global reset */
3637 	write_op(sc, BGE_MISC_CFG, reset);
3638 
3639 	DELAY(1000);
3640 
3641 	/* XXX: Broadcom Linux driver. */
3642 	if (sc->bge_flags & BGE_FLAG_PCIE) {
3643 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3644 			DELAY(500000); /* wait for link training to complete */
3645 			val = pci_read_config(dev, 0xC4, 4);
3646 			pci_write_config(dev, 0xC4, val | (1 << 15), 4);
3647 		}
3648 		devctl = pci_read_config(dev,
3649 		    sc->bge_expcap + PCIER_DEVICE_CTL, 2);
3650 		/* Clear enable no snoop and disable relaxed ordering. */
3651 		devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
3652 		    PCIEM_CTL_NOSNOOP_ENABLE);
3653 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
3654 		    devctl, 2);
3655 		pci_set_max_read_req(dev, sc->bge_expmrq);
3656 		/* Clear error status. */
3657 		pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
3658 		    PCIEM_STA_CORRECTABLE_ERROR |
3659 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
3660 		    PCIEM_STA_UNSUPPORTED_REQ, 2);
3661 	}
3662 
3663 	/* Reset some of the PCI state that got zapped by reset. */
3664 	pci_write_config(dev, BGE_PCI_MISC_CTL,
3665 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3666 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
3667 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
3668 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
3669 	write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
3670 	/*
3671 	 * Disable PCI-X relaxed ordering to ensure status block update
3672 	 * comes first then packet buffer DMA. Otherwise driver may
3673 	 * read stale status block.
3674 	 */
3675 	if (sc->bge_flags & BGE_FLAG_PCIX) {
3676 		devctl = pci_read_config(dev,
3677 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
3678 		devctl &= ~PCIXM_COMMAND_ERO;
3679 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
3680 			devctl &= ~PCIXM_COMMAND_MAX_READ;
3681 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3682 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3683 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
3684 			    PCIXM_COMMAND_MAX_READ);
3685 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
3686 		}
3687 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
3688 		    devctl, 2);
3689 	}
3690 	/* Re-enable MSI, if necessary, and enable the memory arbiter. */
3691 	if (BGE_IS_5714_FAMILY(sc)) {
3692 		/* This chip disables MSI on reset. */
3693 		if (sc->bge_flags & BGE_FLAG_MSI) {
3694 			val = pci_read_config(dev,
3695 			    sc->bge_msicap + PCIR_MSI_CTRL, 2);
3696 			pci_write_config(dev,
3697 			    sc->bge_msicap + PCIR_MSI_CTRL,
3698 			    val | PCIM_MSICTRL_MSI_ENABLE, 2);
3699 			val = CSR_READ_4(sc, BGE_MSI_MODE);
3700 			CSR_WRITE_4(sc, BGE_MSI_MODE,
3701 			    val | BGE_MSIMODE_ENABLE);
3702 		}
3703 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3704 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3705 	} else
3706 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3707 
3708 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3709 		for (i = 0; i < BGE_TIMEOUT; i++) {
3710 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3711 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3712 				break;
3713 			DELAY(100);
3714 		}
3715 		if (i == BGE_TIMEOUT) {
3716 			device_printf(dev, "reset timed out\n");
3717 			return (1);
3718 		}
3719 	} else {
3720 		/*
3721 		 * Poll until we see the 1's complement of the magic number.
3722 		 * This indicates that the firmware initialization is complete.
3723 		 * We expect this to fail if no chip containing the Ethernet
3724 		 * address is fitted though.
3725 		 */
3726 		for (i = 0; i < BGE_TIMEOUT; i++) {
3727 			DELAY(10);
3728 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3729 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
3730 				break;
3731 		}
3732 
3733 		if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
3734 			device_printf(dev,
3735 			    "firmware handshake timed out, found 0x%08x\n",
3736 			    val);
3737 		/* BCM57765 A0 needs additional time before accessing. */
3738 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
3739 			DELAY(10 * 1000);	/* XXX */
3740 	}
3741 
3742 	/*
3743 	 * XXX Wait for the value of the PCISTATE register to
3744 	 * return to its original pre-reset state. This is a
3745 	 * fairly good indicator of reset completion. If we don't
3746 	 * wait for the reset to fully complete, trying to read
3747 	 * from the device's non-PCI registers may yield garbage
3748 	 * results.
3749 	 */
3750 	for (i = 0; i < BGE_TIMEOUT; i++) {
3751 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
3752 			break;
3753 		DELAY(10);
3754 	}
3755 
3756 	/* Fix up byte swapping. */
3757 	CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
3758 
3759 	/* Tell the ASF firmware we are up */
3760 	if (sc->bge_asf_mode & ASF_STACKUP)
3761 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3762 
3763 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3764 	DELAY(40);
3765 
3766 	/*
3767 	 * The 5704 in TBI mode apparently needs some special
3768 	 * adjustment to insure the SERDES drive level is set
3769 	 * to 1.2V.
3770 	 */
3771 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3772 	    sc->bge_flags & BGE_FLAG_TBI) {
3773 		val = CSR_READ_4(sc, BGE_SERDES_CFG);
3774 		val = (val & ~0xFFF) | 0x880;
3775 		CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
3776 	}
3777 
3778 	/* XXX: Broadcom Linux driver. */
3779 	if (sc->bge_flags & BGE_FLAG_PCIE &&
3780 	    !BGE_IS_5717_PLUS(sc) &&
3781 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3782 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3783 		/* Enable Data FIFO protection. */
3784 		val = CSR_READ_4(sc, 0x7C00);
3785 		CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
3786 	}
3787 
3788 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
3789 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
3790 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
3791 
3792 	return (0);
3793 }
3794 
3795 static __inline void
3796 bge_rxreuse_std(struct bge_softc *sc, int i)
3797 {
3798 	struct bge_rx_bd *r;
3799 
3800 	r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
3801 	r->bge_flags = BGE_RXBDFLAG_END;
3802 	r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
3803 	r->bge_idx = i;
3804 	BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3805 }
3806 
3807 static __inline void
3808 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
3809 {
3810 	struct bge_extrx_bd *r;
3811 
3812 	r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
3813 	r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
3814 	r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
3815 	r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
3816 	r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
3817 	r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
3818 	r->bge_idx = i;
3819 	BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3820 }
3821 
3822 /*
3823  * Frame reception handling. This is called if there's a frame
3824  * on the receive return list.
3825  *
3826  * Note: we have to be able to handle two possibilities here:
3827  * 1) the frame is from the jumbo receive ring
3828  * 2) the frame is from the standard receive ring
3829  */
3830 
3831 static int
3832 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
3833 {
3834 	struct ifnet *ifp;
3835 	int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
3836 	uint16_t rx_cons;
3837 
3838 	rx_cons = sc->bge_rx_saved_considx;
3839 
3840 	/* Nothing to do. */
3841 	if (rx_cons == rx_prod)
3842 		return (rx_npkts);
3843 
3844 	ifp = sc->bge_ifp;
3845 
3846 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3847 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3848 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3849 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
3850 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
3851 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
3852 	    (MCLBYTES - ETHER_ALIGN))
3853 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3854 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
3855 
3856 	while (rx_cons != rx_prod) {
3857 		struct bge_rx_bd	*cur_rx;
3858 		uint32_t		rxidx;
3859 		struct mbuf		*m = NULL;
3860 		uint16_t		vlan_tag = 0;
3861 		int			have_tag = 0;
3862 
3863 #ifdef DEVICE_POLLING
3864 		if (ifp->if_capenable & IFCAP_POLLING) {
3865 			if (sc->rxcycles <= 0)
3866 				break;
3867 			sc->rxcycles--;
3868 		}
3869 #endif
3870 
3871 		cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
3872 
3873 		rxidx = cur_rx->bge_idx;
3874 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3875 
3876 		if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
3877 		    cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3878 			have_tag = 1;
3879 			vlan_tag = cur_rx->bge_vlan_tag;
3880 		}
3881 
3882 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3883 			jumbocnt++;
3884 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3885 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3886 				bge_rxreuse_jumbo(sc, rxidx);
3887 				continue;
3888 			}
3889 			if (bge_newbuf_jumbo(sc, rxidx) != 0) {
3890 				bge_rxreuse_jumbo(sc, rxidx);
3891 				ifp->if_iqdrops++;
3892 				continue;
3893 			}
3894 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3895 		} else {
3896 			stdcnt++;
3897 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3898 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3899 				bge_rxreuse_std(sc, rxidx);
3900 				continue;
3901 			}
3902 			if (bge_newbuf_std(sc, rxidx) != 0) {
3903 				bge_rxreuse_std(sc, rxidx);
3904 				ifp->if_iqdrops++;
3905 				continue;
3906 			}
3907 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3908 		}
3909 
3910 		ifp->if_ipackets++;
3911 #ifndef __NO_STRICT_ALIGNMENT
3912 		/*
3913 		 * For architectures with strict alignment we must make sure
3914 		 * the payload is aligned.
3915 		 */
3916 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3917 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3918 			    cur_rx->bge_len);
3919 			m->m_data += ETHER_ALIGN;
3920 		}
3921 #endif
3922 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3923 		m->m_pkthdr.rcvif = ifp;
3924 
3925 		if (ifp->if_capenable & IFCAP_RXCSUM)
3926 			bge_rxcsum(sc, cur_rx, m);
3927 
3928 		/*
3929 		 * If we received a packet with a vlan tag,
3930 		 * attach that information to the packet.
3931 		 */
3932 		if (have_tag) {
3933 			m->m_pkthdr.ether_vtag = vlan_tag;
3934 			m->m_flags |= M_VLANTAG;
3935 		}
3936 
3937 		if (holdlck != 0) {
3938 			BGE_UNLOCK(sc);
3939 			(*ifp->if_input)(ifp, m);
3940 			BGE_LOCK(sc);
3941 		} else
3942 			(*ifp->if_input)(ifp, m);
3943 		rx_npkts++;
3944 
3945 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
3946 			return (rx_npkts);
3947 	}
3948 
3949 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3950 	    sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
3951 	if (stdcnt > 0)
3952 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3953 		    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3954 
3955 	if (jumbocnt > 0)
3956 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3957 		    sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3958 
3959 	sc->bge_rx_saved_considx = rx_cons;
3960 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3961 	if (stdcnt)
3962 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
3963 		    BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
3964 	if (jumbocnt)
3965 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
3966 		    BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
3967 #ifdef notyet
3968 	/*
3969 	 * This register wraps very quickly under heavy packet drops.
3970 	 * If you need correct statistics, you can enable this check.
3971 	 */
3972 	if (BGE_IS_5705_PLUS(sc))
3973 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3974 #endif
3975 	return (rx_npkts);
3976 }
3977 
3978 static void
3979 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
3980 {
3981 
3982 	if (BGE_IS_5717_PLUS(sc)) {
3983 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
3984 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3985 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3986 				if ((cur_rx->bge_error_flag &
3987 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
3988 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3989 			}
3990 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
3991 				m->m_pkthdr.csum_data =
3992 				    cur_rx->bge_tcp_udp_csum;
3993 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3994 				    CSUM_PSEUDO_HDR;
3995 			}
3996 		}
3997 	} else {
3998 		if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3999 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4000 			if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4001 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4002 		}
4003 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4004 		    m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4005 			m->m_pkthdr.csum_data =
4006 			    cur_rx->bge_tcp_udp_csum;
4007 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4008 			    CSUM_PSEUDO_HDR;
4009 		}
4010 	}
4011 }
4012 
4013 static void
4014 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4015 {
4016 	struct bge_tx_bd *cur_tx;
4017 	struct ifnet *ifp;
4018 
4019 	BGE_LOCK_ASSERT(sc);
4020 
4021 	/* Nothing to do. */
4022 	if (sc->bge_tx_saved_considx == tx_cons)
4023 		return;
4024 
4025 	ifp = sc->bge_ifp;
4026 
4027 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4028 	    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4029 	/*
4030 	 * Go through our tx ring and free mbufs for those
4031 	 * frames that have been sent.
4032 	 */
4033 	while (sc->bge_tx_saved_considx != tx_cons) {
4034 		uint32_t		idx;
4035 
4036 		idx = sc->bge_tx_saved_considx;
4037 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4038 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4039 			ifp->if_opackets++;
4040 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4041 			bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4042 			    sc->bge_cdata.bge_tx_dmamap[idx],
4043 			    BUS_DMASYNC_POSTWRITE);
4044 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4045 			    sc->bge_cdata.bge_tx_dmamap[idx]);
4046 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4047 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4048 		}
4049 		sc->bge_txcnt--;
4050 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4051 	}
4052 
4053 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4054 	if (sc->bge_txcnt == 0)
4055 		sc->bge_timer = 0;
4056 }
4057 
4058 #ifdef DEVICE_POLLING
4059 static int
4060 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
4061 {
4062 	struct bge_softc *sc = ifp->if_softc;
4063 	uint16_t rx_prod, tx_cons;
4064 	uint32_t statusword;
4065 	int rx_npkts = 0;
4066 
4067 	BGE_LOCK(sc);
4068 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4069 		BGE_UNLOCK(sc);
4070 		return (rx_npkts);
4071 	}
4072 
4073 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4074 	    sc->bge_cdata.bge_status_map,
4075 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4076 	/* Fetch updates from the status block. */
4077 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4078 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4079 
4080 	statusword = sc->bge_ldata.bge_status_block->bge_status;
4081 	/* Clear the status so the next pass only sees the changes. */
4082 	sc->bge_ldata.bge_status_block->bge_status = 0;
4083 
4084 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4085 	    sc->bge_cdata.bge_status_map,
4086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4087 
4088 	/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4089 	if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4090 		sc->bge_link_evt++;
4091 
4092 	if (cmd == POLL_AND_CHECK_STATUS)
4093 		if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4094 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4095 		    sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4096 			bge_link_upd(sc);
4097 
4098 	sc->rxcycles = count;
4099 	rx_npkts = bge_rxeof(sc, rx_prod, 1);
4100 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4101 		BGE_UNLOCK(sc);
4102 		return (rx_npkts);
4103 	}
4104 	bge_txeof(sc, tx_cons);
4105 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4106 		bge_start_locked(ifp);
4107 
4108 	BGE_UNLOCK(sc);
4109 	return (rx_npkts);
4110 }
4111 #endif /* DEVICE_POLLING */
4112 
4113 static int
4114 bge_msi_intr(void *arg)
4115 {
4116 	struct bge_softc *sc;
4117 
4118 	sc = (struct bge_softc *)arg;
4119 	/*
4120 	 * This interrupt is not shared and controller already
4121 	 * disabled further interrupt.
4122 	 */
4123 	taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4124 	return (FILTER_HANDLED);
4125 }
4126 
4127 static void
4128 bge_intr_task(void *arg, int pending)
4129 {
4130 	struct bge_softc *sc;
4131 	struct ifnet *ifp;
4132 	uint32_t status, status_tag;
4133 	uint16_t rx_prod, tx_cons;
4134 
4135 	sc = (struct bge_softc *)arg;
4136 	ifp = sc->bge_ifp;
4137 
4138 	BGE_LOCK(sc);
4139 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4140 		BGE_UNLOCK(sc);
4141 		return;
4142 	}
4143 
4144 	/* Get updated status block. */
4145 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4146 	    sc->bge_cdata.bge_status_map,
4147 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4148 
4149 	/* Save producer/consumer indices. */
4150 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4151 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4152 	status = sc->bge_ldata.bge_status_block->bge_status;
4153 	status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4154 	/* Dirty the status flag. */
4155 	sc->bge_ldata.bge_status_block->bge_status = 0;
4156 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4157 	    sc->bge_cdata.bge_status_map,
4158 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4159 	if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4160 		status_tag = 0;
4161 
4162 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4163 		bge_link_upd(sc);
4164 
4165 	/* Let controller work. */
4166 	bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4167 
4168 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4169 	    sc->bge_rx_saved_considx != rx_prod) {
4170 		/* Check RX return ring producer/consumer. */
4171 		BGE_UNLOCK(sc);
4172 		bge_rxeof(sc, rx_prod, 0);
4173 		BGE_LOCK(sc);
4174 	}
4175 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4176 		/* Check TX ring producer/consumer. */
4177 		bge_txeof(sc, tx_cons);
4178 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4179 			bge_start_locked(ifp);
4180 	}
4181 	BGE_UNLOCK(sc);
4182 }
4183 
4184 static void
4185 bge_intr(void *xsc)
4186 {
4187 	struct bge_softc *sc;
4188 	struct ifnet *ifp;
4189 	uint32_t statusword;
4190 	uint16_t rx_prod, tx_cons;
4191 
4192 	sc = xsc;
4193 
4194 	BGE_LOCK(sc);
4195 
4196 	ifp = sc->bge_ifp;
4197 
4198 #ifdef DEVICE_POLLING
4199 	if (ifp->if_capenable & IFCAP_POLLING) {
4200 		BGE_UNLOCK(sc);
4201 		return;
4202 	}
4203 #endif
4204 
4205 	/*
4206 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
4207 	 * disable interrupts by writing nonzero like we used to, since with
4208 	 * our current organization this just gives complications and
4209 	 * pessimizations for re-enabling interrupts.  We used to have races
4210 	 * instead of the necessary complications.  Disabling interrupts
4211 	 * would just reduce the chance of a status update while we are
4212 	 * running (by switching to the interrupt-mode coalescence
4213 	 * parameters), but this chance is already very low so it is more
4214 	 * efficient to get another interrupt than prevent it.
4215 	 *
4216 	 * We do the ack first to ensure another interrupt if there is a
4217 	 * status update after the ack.  We don't check for the status
4218 	 * changing later because it is more efficient to get another
4219 	 * interrupt than prevent it, not quite as above (not checking is
4220 	 * a smaller optimization than not toggling the interrupt enable,
4221 	 * since checking doesn't involve PCI accesses and toggling require
4222 	 * the status check).  So toggling would probably be a pessimization
4223 	 * even with MSI.  It would only be needed for using a task queue.
4224 	 */
4225 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4226 
4227 	/*
4228 	 * Do the mandatory PCI flush as well as get the link status.
4229 	 */
4230 	statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4231 
4232 	/* Make sure the descriptor ring indexes are coherent. */
4233 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4234 	    sc->bge_cdata.bge_status_map,
4235 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4236 	rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4237 	tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4238 	sc->bge_ldata.bge_status_block->bge_status = 0;
4239 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4240 	    sc->bge_cdata.bge_status_map,
4241 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4242 
4243 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4244 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4245 	    statusword || sc->bge_link_evt)
4246 		bge_link_upd(sc);
4247 
4248 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4249 		/* Check RX return ring producer/consumer. */
4250 		bge_rxeof(sc, rx_prod, 1);
4251 	}
4252 
4253 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4254 		/* Check TX ring producer/consumer. */
4255 		bge_txeof(sc, tx_cons);
4256 	}
4257 
4258 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
4259 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
4260 		bge_start_locked(ifp);
4261 
4262 	BGE_UNLOCK(sc);
4263 }
4264 
4265 static void
4266 bge_asf_driver_up(struct bge_softc *sc)
4267 {
4268 	if (sc->bge_asf_mode & ASF_STACKUP) {
4269 		/* Send ASF heartbeat aprox. every 2s */
4270 		if (sc->bge_asf_count)
4271 			sc->bge_asf_count --;
4272 		else {
4273 			sc->bge_asf_count = 2;
4274 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4275 			    BGE_FW_CMD_DRV_ALIVE);
4276 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4277 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4278 			    BGE_FW_HB_TIMEOUT_SEC);
4279 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4280 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4281 			    BGE_RX_CPU_DRV_EVENT);
4282 		}
4283 	}
4284 }
4285 
4286 static void
4287 bge_tick(void *xsc)
4288 {
4289 	struct bge_softc *sc = xsc;
4290 	struct mii_data *mii = NULL;
4291 
4292 	BGE_LOCK_ASSERT(sc);
4293 
4294 	/* Synchronize with possible callout reset/stop. */
4295 	if (callout_pending(&sc->bge_stat_ch) ||
4296 	    !callout_active(&sc->bge_stat_ch))
4297 		return;
4298 
4299 	if (BGE_IS_5705_PLUS(sc))
4300 		bge_stats_update_regs(sc);
4301 	else
4302 		bge_stats_update(sc);
4303 
4304 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4305 		mii = device_get_softc(sc->bge_miibus);
4306 		/*
4307 		 * Do not touch PHY if we have link up. This could break
4308 		 * IPMI/ASF mode or produce extra input errors
4309 		 * (extra errors was reported for bcm5701 & bcm5704).
4310 		 */
4311 		if (!sc->bge_link)
4312 			mii_tick(mii);
4313 	} else {
4314 		/*
4315 		 * Since in TBI mode auto-polling can't be used we should poll
4316 		 * link status manually. Here we register pending link event
4317 		 * and trigger interrupt.
4318 		 */
4319 #ifdef DEVICE_POLLING
4320 		/* In polling mode we poll link state in bge_poll(). */
4321 		if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
4322 #endif
4323 		{
4324 		sc->bge_link_evt++;
4325 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4326 		    sc->bge_flags & BGE_FLAG_5788)
4327 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4328 		else
4329 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4330 		}
4331 	}
4332 
4333 	bge_asf_driver_up(sc);
4334 	bge_watchdog(sc);
4335 
4336 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4337 }
4338 
4339 static void
4340 bge_stats_update_regs(struct bge_softc *sc)
4341 {
4342 	struct ifnet *ifp;
4343 	struct bge_mac_stats *stats;
4344 
4345 	ifp = sc->bge_ifp;
4346 	stats = &sc->bge_mac_stats;
4347 
4348 	stats->ifHCOutOctets +=
4349 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4350 	stats->etherStatsCollisions +=
4351 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4352 	stats->outXonSent +=
4353 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4354 	stats->outXoffSent +=
4355 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4356 	stats->dot3StatsInternalMacTransmitErrors +=
4357 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4358 	stats->dot3StatsSingleCollisionFrames +=
4359 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4360 	stats->dot3StatsMultipleCollisionFrames +=
4361 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4362 	stats->dot3StatsDeferredTransmissions +=
4363 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4364 	stats->dot3StatsExcessiveCollisions +=
4365 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4366 	stats->dot3StatsLateCollisions +=
4367 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4368 	stats->ifHCOutUcastPkts +=
4369 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4370 	stats->ifHCOutMulticastPkts +=
4371 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4372 	stats->ifHCOutBroadcastPkts +=
4373 	    CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4374 
4375 	stats->ifHCInOctets +=
4376 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4377 	stats->etherStatsFragments +=
4378 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4379 	stats->ifHCInUcastPkts +=
4380 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4381 	stats->ifHCInMulticastPkts +=
4382 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4383 	stats->ifHCInBroadcastPkts +=
4384 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4385 	stats->dot3StatsFCSErrors +=
4386 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4387 	stats->dot3StatsAlignmentErrors +=
4388 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4389 	stats->xonPauseFramesReceived +=
4390 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4391 	stats->xoffPauseFramesReceived +=
4392 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4393 	stats->macControlFramesReceived +=
4394 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4395 	stats->xoffStateEntered +=
4396 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4397 	stats->dot3StatsFramesTooLong +=
4398 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4399 	stats->etherStatsJabbers +=
4400 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4401 	stats->etherStatsUndersizePkts +=
4402 	    CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4403 
4404 	stats->FramesDroppedDueToFilters +=
4405 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4406 	stats->DmaWriteQueueFull +=
4407 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4408 	stats->DmaWriteHighPriQueueFull +=
4409 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4410 	stats->NoMoreRxBDs +=
4411 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4412 	/*
4413 	 * XXX
4414 	 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4415 	 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4416 	 * includes number of unwanted multicast frames.  This comes
4417 	 * from silicon bug and known workaround to get rough(not
4418 	 * exact) counter is to enable interrupt on MBUF low water
4419 	 * attention.  This can be accomplished by setting
4420 	 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4421 	 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4422 	 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4423 	 * However that change would generate more interrupts and
4424 	 * there are still possibilities of losing multiple frames
4425 	 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4426 	 * Given that the workaround still would not get correct
4427 	 * counter I don't think it's worth to implement it.  So
4428 	 * ignore reading the counter on controllers that have the
4429 	 * silicon bug.
4430 	 */
4431 	if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4432 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4433 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4434 		stats->InputDiscards +=
4435 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4436 	stats->InputErrors +=
4437 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4438 	stats->RecvThresholdHit +=
4439 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4440 
4441 	ifp->if_collisions = (u_long)stats->etherStatsCollisions;
4442 	ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
4443 	    stats->InputErrors);
4444 }
4445 
4446 static void
4447 bge_stats_clear_regs(struct bge_softc *sc)
4448 {
4449 
4450 	CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4451 	CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4452 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4453 	CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4454 	CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4455 	CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4456 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4457 	CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4458 	CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4459 	CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4460 	CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4461 	CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4462 	CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4463 
4464 	CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4465 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4466 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4467 	CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4468 	CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4469 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4470 	CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4471 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4472 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4473 	CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4474 	CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4475 	CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4476 	CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4477 	CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4478 
4479 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4480 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4481 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4482 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4483 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4484 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4485 	CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4486 }
4487 
4488 static void
4489 bge_stats_update(struct bge_softc *sc)
4490 {
4491 	struct ifnet *ifp;
4492 	bus_size_t stats;
4493 	uint32_t cnt;	/* current register value */
4494 
4495 	ifp = sc->bge_ifp;
4496 
4497 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4498 
4499 #define	READ_STAT(sc, stats, stat) \
4500 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4501 
4502 	cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4503 	ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
4504 	sc->bge_tx_collisions = cnt;
4505 
4506 	cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4507 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
4508 	sc->bge_rx_nobds = cnt;
4509 	cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4510 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
4511 	sc->bge_rx_inerrs = cnt;
4512 	cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4513 	ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
4514 	sc->bge_rx_discards = cnt;
4515 
4516 	cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4517 	ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
4518 	sc->bge_tx_discards = cnt;
4519 
4520 #undef	READ_STAT
4521 }
4522 
4523 /*
4524  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4525  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4526  * but when such padded frames employ the bge IP/TCP checksum offload,
4527  * the hardware checksum assist gives incorrect results (possibly
4528  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4529  * If we pad such runts with zeros, the onboard checksum comes out correct.
4530  */
4531 static __inline int
4532 bge_cksum_pad(struct mbuf *m)
4533 {
4534 	int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
4535 	struct mbuf *last;
4536 
4537 	/* If there's only the packet-header and we can pad there, use it. */
4538 	if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
4539 	    M_TRAILINGSPACE(m) >= padlen) {
4540 		last = m;
4541 	} else {
4542 		/*
4543 		 * Walk packet chain to find last mbuf. We will either
4544 		 * pad there, or append a new mbuf and pad it.
4545 		 */
4546 		for (last = m; last->m_next != NULL; last = last->m_next);
4547 		if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
4548 			/* Allocate new empty mbuf, pad it. Compact later. */
4549 			struct mbuf *n;
4550 
4551 			MGET(n, M_DONTWAIT, MT_DATA);
4552 			if (n == NULL)
4553 				return (ENOBUFS);
4554 			n->m_len = 0;
4555 			last->m_next = n;
4556 			last = n;
4557 		}
4558 	}
4559 
4560 	/* Now zero the pad area, to avoid the bge cksum-assist bug. */
4561 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
4562 	last->m_len += padlen;
4563 	m->m_pkthdr.len += padlen;
4564 
4565 	return (0);
4566 }
4567 
4568 static struct mbuf *
4569 bge_check_short_dma(struct mbuf *m)
4570 {
4571 	struct mbuf *n;
4572 	int found;
4573 
4574 	/*
4575 	 * If device receive two back-to-back send BDs with less than
4576 	 * or equal to 8 total bytes then the device may hang.  The two
4577 	 * back-to-back send BDs must in the same frame for this failure
4578 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4579 	 * send BDs are there. If this is the case, allocate new mbuf
4580 	 * and copy the frame to workaround the silicon bug.
4581 	 */
4582 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4583 		if (n->m_len < 8) {
4584 			found++;
4585 			if (found > 1)
4586 				break;
4587 			continue;
4588 		}
4589 		found = 0;
4590 	}
4591 
4592 	if (found > 1) {
4593 		n = m_defrag(m, M_DONTWAIT);
4594 		if (n == NULL)
4595 			m_freem(m);
4596 	} else
4597 		n = m;
4598 	return (n);
4599 }
4600 
4601 static struct mbuf *
4602 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
4603     uint16_t *flags)
4604 {
4605 	struct ip *ip;
4606 	struct tcphdr *tcp;
4607 	struct mbuf *n;
4608 	uint16_t hlen;
4609 	uint32_t poff;
4610 
4611 	if (M_WRITABLE(m) == 0) {
4612 		/* Get a writable copy. */
4613 		n = m_dup(m, M_DONTWAIT);
4614 		m_freem(m);
4615 		if (n == NULL)
4616 			return (NULL);
4617 		m = n;
4618 	}
4619 	m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
4620 	if (m == NULL)
4621 		return (NULL);
4622 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4623 	poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
4624 	m = m_pullup(m, poff + sizeof(struct tcphdr));
4625 	if (m == NULL)
4626 		return (NULL);
4627 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4628 	m = m_pullup(m, poff + (tcp->th_off << 2));
4629 	if (m == NULL)
4630 		return (NULL);
4631 	/*
4632 	 * It seems controller doesn't modify IP length and TCP pseudo
4633 	 * checksum. These checksum computed by upper stack should be 0.
4634 	 */
4635 	*mss = m->m_pkthdr.tso_segsz;
4636 	ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
4637 	ip->ip_sum = 0;
4638 	ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
4639 	/* Clear pseudo checksum computed by TCP stack. */
4640 	tcp = (struct tcphdr *)(mtod(m, char *) + poff);
4641 	tcp->th_sum = 0;
4642 	/*
4643 	 * Broadcom controllers uses different descriptor format for
4644 	 * TSO depending on ASIC revision. Due to TSO-capable firmware
4645 	 * license issue and lower performance of firmware based TSO
4646 	 * we only support hardware based TSO.
4647 	 */
4648 	/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
4649 	hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
4650 	if (sc->bge_flags & BGE_FLAG_TSO3) {
4651 		/*
4652 		 * For BCM5717 and newer controllers, hardware based TSO
4653 		 * uses the 14 lower bits of the bge_mss field to store the
4654 		 * MSS and the upper 2 bits to store the lowest 2 bits of
4655 		 * the IP/TCP header length.  The upper 6 bits of the header
4656 		 * length are stored in the bge_flags[14:10,4] field.  Jumbo
4657 		 * frames are supported.
4658 		 */
4659 		*mss |= ((hlen & 0x3) << 14);
4660 		*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
4661 	} else {
4662 		/*
4663 		 * For BCM5755 and newer controllers, hardware based TSO uses
4664 		 * the lower 11	bits to store the MSS and the upper 5 bits to
4665 		 * store the IP/TCP header length. Jumbo frames are not
4666 		 * supported.
4667 		 */
4668 		*mss |= (hlen << 11);
4669 	}
4670 	return (m);
4671 }
4672 
4673 /*
4674  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
4675  * pointers to descriptors.
4676  */
4677 static int
4678 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
4679 {
4680 	bus_dma_segment_t	segs[BGE_NSEG_NEW];
4681 	bus_dmamap_t		map;
4682 	struct bge_tx_bd	*d;
4683 	struct mbuf		*m = *m_head;
4684 	uint32_t		idx = *txidx;
4685 	uint16_t		csum_flags, mss, vlan_tag;
4686 	int			nsegs, i, error;
4687 
4688 	csum_flags = 0;
4689 	mss = 0;
4690 	vlan_tag = 0;
4691 	if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
4692 	    m->m_next != NULL) {
4693 		*m_head = bge_check_short_dma(m);
4694 		if (*m_head == NULL)
4695 			return (ENOBUFS);
4696 		m = *m_head;
4697 	}
4698 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
4699 		*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
4700 		if (*m_head == NULL)
4701 			return (ENOBUFS);
4702 		csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
4703 		    BGE_TXBDFLAG_CPU_POST_DMA;
4704 	} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
4705 		if (m->m_pkthdr.csum_flags & CSUM_IP)
4706 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4707 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
4708 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4709 			if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
4710 			    (error = bge_cksum_pad(m)) != 0) {
4711 				m_freem(m);
4712 				*m_head = NULL;
4713 				return (error);
4714 			}
4715 		}
4716 		if (m->m_flags & M_LASTFRAG)
4717 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
4718 		else if (m->m_flags & M_FRAG)
4719 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
4720 	}
4721 
4722 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
4723 		if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
4724 		    m->m_pkthdr.len > ETHER_MAX_LEN)
4725 			csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
4726 		if (sc->bge_forced_collapse > 0 &&
4727 		    (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
4728 			/*
4729 			 * Forcedly collapse mbuf chains to overcome hardware
4730 			 * limitation which only support a single outstanding
4731 			 * DMA read operation.
4732 			 */
4733 			if (sc->bge_forced_collapse == 1)
4734 				m = m_defrag(m, M_DONTWAIT);
4735 			else
4736 				m = m_collapse(m, M_DONTWAIT,
4737 				    sc->bge_forced_collapse);
4738 			if (m == NULL)
4739 				m = *m_head;
4740 			*m_head = m;
4741 		}
4742 	}
4743 
4744 	map = sc->bge_cdata.bge_tx_dmamap[idx];
4745 	error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
4746 	    &nsegs, BUS_DMA_NOWAIT);
4747 	if (error == EFBIG) {
4748 		m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
4749 		if (m == NULL) {
4750 			m_freem(*m_head);
4751 			*m_head = NULL;
4752 			return (ENOBUFS);
4753 		}
4754 		*m_head = m;
4755 		error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
4756 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
4757 		if (error) {
4758 			m_freem(m);
4759 			*m_head = NULL;
4760 			return (error);
4761 		}
4762 	} else if (error != 0)
4763 		return (error);
4764 
4765 	/* Check if we have enough free send BDs. */
4766 	if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
4767 		bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
4768 		return (ENOBUFS);
4769 	}
4770 
4771 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
4772 
4773 	if (m->m_flags & M_VLANTAG) {
4774 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
4775 		vlan_tag = m->m_pkthdr.ether_vtag;
4776 	}
4777 	for (i = 0; ; i++) {
4778 		d = &sc->bge_ldata.bge_tx_ring[idx];
4779 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
4780 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
4781 		d->bge_len = segs[i].ds_len;
4782 		d->bge_flags = csum_flags;
4783 		d->bge_vlan_tag = vlan_tag;
4784 		d->bge_mss = mss;
4785 		if (i == nsegs - 1)
4786 			break;
4787 		BGE_INC(idx, BGE_TX_RING_CNT);
4788 	}
4789 
4790 	/* Mark the last segment as end of packet... */
4791 	d->bge_flags |= BGE_TXBDFLAG_END;
4792 
4793 	/*
4794 	 * Insure that the map for this transmission
4795 	 * is placed at the array index of the last descriptor
4796 	 * in this chain.
4797 	 */
4798 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
4799 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
4800 	sc->bge_cdata.bge_tx_chain[idx] = m;
4801 	sc->bge_txcnt += nsegs;
4802 
4803 	BGE_INC(idx, BGE_TX_RING_CNT);
4804 	*txidx = idx;
4805 
4806 	return (0);
4807 }
4808 
4809 /*
4810  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4811  * to the mbuf data regions directly in the transmit descriptors.
4812  */
4813 static void
4814 bge_start_locked(struct ifnet *ifp)
4815 {
4816 	struct bge_softc *sc;
4817 	struct mbuf *m_head;
4818 	uint32_t prodidx;
4819 	int count;
4820 
4821 	sc = ifp->if_softc;
4822 	BGE_LOCK_ASSERT(sc);
4823 
4824 	if (!sc->bge_link ||
4825 	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4826 	    IFF_DRV_RUNNING)
4827 		return;
4828 
4829 	prodidx = sc->bge_tx_prodidx;
4830 
4831 	for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
4832 		if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
4833 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4834 			break;
4835 		}
4836 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
4837 		if (m_head == NULL)
4838 			break;
4839 
4840 		/*
4841 		 * XXX
4842 		 * The code inside the if() block is never reached since we
4843 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
4844 		 * requests to checksum TCP/UDP in a fragmented packet.
4845 		 *
4846 		 * XXX
4847 		 * safety overkill.  If this is a fragmented packet chain
4848 		 * with delayed TCP/UDP checksums, then only encapsulate
4849 		 * it if we have enough descriptors to handle the entire
4850 		 * chain at once.
4851 		 * (paranoia -- may not actually be needed)
4852 		 */
4853 		if (m_head->m_flags & M_FIRSTFRAG &&
4854 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4855 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4856 			    m_head->m_pkthdr.csum_data + 16) {
4857 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4858 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4859 				break;
4860 			}
4861 		}
4862 
4863 		/*
4864 		 * Pack the data into the transmit ring. If we
4865 		 * don't have room, set the OACTIVE flag and wait
4866 		 * for the NIC to drain the ring.
4867 		 */
4868 		if (bge_encap(sc, &m_head, &prodidx)) {
4869 			if (m_head == NULL)
4870 				break;
4871 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
4872 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4873 			break;
4874 		}
4875 		++count;
4876 
4877 		/*
4878 		 * If there's a BPF listener, bounce a copy of this frame
4879 		 * to him.
4880 		 */
4881 #ifdef ETHER_BPF_MTAP
4882 		ETHER_BPF_MTAP(ifp, m_head);
4883 #else
4884 		BPF_MTAP(ifp, m_head);
4885 #endif
4886 	}
4887 
4888 	if (count > 0) {
4889 		bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4890 		    sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
4891 		/* Transmit. */
4892 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4893 		/* 5700 b2 errata */
4894 		if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
4895 			bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4896 
4897 		sc->bge_tx_prodidx = prodidx;
4898 
4899 		/*
4900 		 * Set a timeout in case the chip goes out to lunch.
4901 		 */
4902 		sc->bge_timer = 5;
4903 	}
4904 }
4905 
4906 /*
4907  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4908  * to the mbuf data regions directly in the transmit descriptors.
4909  */
4910 static void
4911 bge_start(struct ifnet *ifp)
4912 {
4913 	struct bge_softc *sc;
4914 
4915 	sc = ifp->if_softc;
4916 	BGE_LOCK(sc);
4917 	bge_start_locked(ifp);
4918 	BGE_UNLOCK(sc);
4919 }
4920 
4921 static void
4922 bge_init_locked(struct bge_softc *sc)
4923 {
4924 	struct ifnet *ifp;
4925 	uint16_t *m;
4926 	uint32_t mode;
4927 
4928 	BGE_LOCK_ASSERT(sc);
4929 
4930 	ifp = sc->bge_ifp;
4931 
4932 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4933 		return;
4934 
4935 	/* Cancel pending I/O and flush buffers. */
4936 	bge_stop(sc);
4937 
4938 	bge_stop_fw(sc);
4939 	bge_sig_pre_reset(sc, BGE_RESET_START);
4940 	bge_reset(sc);
4941 	bge_sig_legacy(sc, BGE_RESET_START);
4942 	bge_sig_post_reset(sc, BGE_RESET_START);
4943 
4944 	bge_chipinit(sc);
4945 
4946 	/*
4947 	 * Init the various state machines, ring
4948 	 * control blocks and firmware.
4949 	 */
4950 	if (bge_blockinit(sc)) {
4951 		device_printf(sc->bge_dev, "initialization failure\n");
4952 		return;
4953 	}
4954 
4955 	ifp = sc->bge_ifp;
4956 
4957 	/* Specify MTU. */
4958 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4959 	    ETHER_HDR_LEN + ETHER_CRC_LEN +
4960 	    (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
4961 
4962 	/* Load our MAC address. */
4963 	m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
4964 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4965 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4966 
4967 	/* Program promiscuous mode. */
4968 	bge_setpromisc(sc);
4969 
4970 	/* Program multicast filter. */
4971 	bge_setmulti(sc);
4972 
4973 	/* Program VLAN tag stripping. */
4974 	bge_setvlan(sc);
4975 
4976 	/* Override UDP checksum offloading. */
4977 	if (sc->bge_forced_udpcsum == 0)
4978 		sc->bge_csum_features &= ~CSUM_UDP;
4979 	else
4980 		sc->bge_csum_features |= CSUM_UDP;
4981 	if (ifp->if_capabilities & IFCAP_TXCSUM &&
4982 	    ifp->if_capenable & IFCAP_TXCSUM) {
4983 		ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
4984 		ifp->if_hwassist |= sc->bge_csum_features;
4985 	}
4986 
4987 	/* Init RX ring. */
4988 	if (bge_init_rx_ring_std(sc) != 0) {
4989 		device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
4990 		bge_stop(sc);
4991 		return;
4992 	}
4993 
4994 	/*
4995 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4996 	 * memory to insure that the chip has in fact read the first
4997 	 * entry of the ring.
4998 	 */
4999 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5000 		uint32_t		v, i;
5001 		for (i = 0; i < 10; i++) {
5002 			DELAY(20);
5003 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5004 			if (v == (MCLBYTES - ETHER_ALIGN))
5005 				break;
5006 		}
5007 		if (i == 10)
5008 			device_printf (sc->bge_dev,
5009 			    "5705 A0 chip failed to load RX ring\n");
5010 	}
5011 
5012 	/* Init jumbo RX ring. */
5013 	if (BGE_IS_JUMBO_CAPABLE(sc) &&
5014 	    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
5015 	    (MCLBYTES - ETHER_ALIGN)) {
5016 		if (bge_init_rx_ring_jumbo(sc) != 0) {
5017 			device_printf(sc->bge_dev,
5018 			    "no memory for jumbo Rx buffers.\n");
5019 			bge_stop(sc);
5020 			return;
5021 		}
5022 	}
5023 
5024 	/* Init our RX return ring index. */
5025 	sc->bge_rx_saved_considx = 0;
5026 
5027 	/* Init our RX/TX stat counters. */
5028 	sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5029 
5030 	/* Init TX ring. */
5031 	bge_init_tx_ring(sc);
5032 
5033 	/* Enable TX MAC state machine lockup fix. */
5034 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5035 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5036 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5037 	if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
5038 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5039 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5040 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5041 	}
5042 	/* Turn on transmitter. */
5043 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5044 	DELAY(100);
5045 
5046 	/* Turn on receiver. */
5047 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5048 	DELAY(10);
5049 
5050 	/*
5051 	 * Set the number of good frames to receive after RX MBUF
5052 	 * Low Watermark has been reached. After the RX MAC receives
5053 	 * this number of frames, it will drop subsequent incoming
5054 	 * frames until the MBUF High Watermark is reached.
5055 	 */
5056 	if (sc->bge_asicrev == BGE_ASICREV_BCM57765)
5057 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5058 	else
5059 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5060 
5061 	/* Clear MAC statistics. */
5062 	if (BGE_IS_5705_PLUS(sc))
5063 		bge_stats_clear_regs(sc);
5064 
5065 	/* Tell firmware we're alive. */
5066 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5067 
5068 #ifdef DEVICE_POLLING
5069 	/* Disable interrupts if we are polling. */
5070 	if (ifp->if_capenable & IFCAP_POLLING) {
5071 		BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5072 		    BGE_PCIMISCCTL_MASK_PCI_INTR);
5073 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5074 	} else
5075 #endif
5076 
5077 	/* Enable host interrupts. */
5078 	{
5079 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5080 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5081 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5082 	}
5083 
5084 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5085 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5086 
5087 	bge_ifmedia_upd_locked(ifp);
5088 
5089 	callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5090 }
5091 
5092 static void
5093 bge_init(void *xsc)
5094 {
5095 	struct bge_softc *sc = xsc;
5096 
5097 	BGE_LOCK(sc);
5098 	bge_init_locked(sc);
5099 	BGE_UNLOCK(sc);
5100 }
5101 
5102 /*
5103  * Set media options.
5104  */
5105 static int
5106 bge_ifmedia_upd(struct ifnet *ifp)
5107 {
5108 	struct bge_softc *sc = ifp->if_softc;
5109 	int res;
5110 
5111 	BGE_LOCK(sc);
5112 	res = bge_ifmedia_upd_locked(ifp);
5113 	BGE_UNLOCK(sc);
5114 
5115 	return (res);
5116 }
5117 
5118 static int
5119 bge_ifmedia_upd_locked(struct ifnet *ifp)
5120 {
5121 	struct bge_softc *sc = ifp->if_softc;
5122 	struct mii_data *mii;
5123 	struct mii_softc *miisc;
5124 	struct ifmedia *ifm;
5125 
5126 	BGE_LOCK_ASSERT(sc);
5127 
5128 	ifm = &sc->bge_ifmedia;
5129 
5130 	/* If this is a 1000baseX NIC, enable the TBI port. */
5131 	if (sc->bge_flags & BGE_FLAG_TBI) {
5132 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5133 			return (EINVAL);
5134 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
5135 		case IFM_AUTO:
5136 			/*
5137 			 * The BCM5704 ASIC appears to have a special
5138 			 * mechanism for programming the autoneg
5139 			 * advertisement registers in TBI mode.
5140 			 */
5141 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5142 				uint32_t sgdig;
5143 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5144 				if (sgdig & BGE_SGDIGSTS_DONE) {
5145 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5146 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5147 					sgdig |= BGE_SGDIGCFG_AUTO |
5148 					    BGE_SGDIGCFG_PAUSE_CAP |
5149 					    BGE_SGDIGCFG_ASYM_PAUSE;
5150 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5151 					    sgdig | BGE_SGDIGCFG_SEND);
5152 					DELAY(5);
5153 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5154 				}
5155 			}
5156 			break;
5157 		case IFM_1000_SX:
5158 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5159 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5160 				    BGE_MACMODE_HALF_DUPLEX);
5161 			} else {
5162 				BGE_SETBIT(sc, BGE_MAC_MODE,
5163 				    BGE_MACMODE_HALF_DUPLEX);
5164 			}
5165 			DELAY(40);
5166 			break;
5167 		default:
5168 			return (EINVAL);
5169 		}
5170 		return (0);
5171 	}
5172 
5173 	sc->bge_link_evt++;
5174 	mii = device_get_softc(sc->bge_miibus);
5175 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5176 		PHY_RESET(miisc);
5177 	mii_mediachg(mii);
5178 
5179 	/*
5180 	 * Force an interrupt so that we will call bge_link_upd
5181 	 * if needed and clear any pending link state attention.
5182 	 * Without this we are not getting any further interrupts
5183 	 * for link state changes and thus will not UP the link and
5184 	 * not be able to send in bge_start_locked. The only
5185 	 * way to get things working was to receive a packet and
5186 	 * get an RX intr.
5187 	 * bge_tick should help for fiber cards and we might not
5188 	 * need to do this here if BGE_FLAG_TBI is set but as
5189 	 * we poll for fiber anyway it should not harm.
5190 	 */
5191 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5192 	    sc->bge_flags & BGE_FLAG_5788)
5193 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5194 	else
5195 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5196 
5197 	return (0);
5198 }
5199 
5200 /*
5201  * Report current media status.
5202  */
5203 static void
5204 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5205 {
5206 	struct bge_softc *sc = ifp->if_softc;
5207 	struct mii_data *mii;
5208 
5209 	BGE_LOCK(sc);
5210 
5211 	if (sc->bge_flags & BGE_FLAG_TBI) {
5212 		ifmr->ifm_status = IFM_AVALID;
5213 		ifmr->ifm_active = IFM_ETHER;
5214 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5215 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5216 			ifmr->ifm_status |= IFM_ACTIVE;
5217 		else {
5218 			ifmr->ifm_active |= IFM_NONE;
5219 			BGE_UNLOCK(sc);
5220 			return;
5221 		}
5222 		ifmr->ifm_active |= IFM_1000_SX;
5223 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5224 			ifmr->ifm_active |= IFM_HDX;
5225 		else
5226 			ifmr->ifm_active |= IFM_FDX;
5227 		BGE_UNLOCK(sc);
5228 		return;
5229 	}
5230 
5231 	mii = device_get_softc(sc->bge_miibus);
5232 	mii_pollstat(mii);
5233 	ifmr->ifm_active = mii->mii_media_active;
5234 	ifmr->ifm_status = mii->mii_media_status;
5235 
5236 	BGE_UNLOCK(sc);
5237 }
5238 
5239 static int
5240 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
5241 {
5242 	struct bge_softc *sc = ifp->if_softc;
5243 	struct ifreq *ifr = (struct ifreq *) data;
5244 	struct mii_data *mii;
5245 	int flags, mask, error = 0;
5246 
5247 	switch (command) {
5248 	case SIOCSIFMTU:
5249 		if (BGE_IS_JUMBO_CAPABLE(sc) ||
5250 		    (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5251 			if (ifr->ifr_mtu < ETHERMIN ||
5252 			    ifr->ifr_mtu > BGE_JUMBO_MTU) {
5253 				error = EINVAL;
5254 				break;
5255 			}
5256 		} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5257 			error = EINVAL;
5258 			break;
5259 		}
5260 		BGE_LOCK(sc);
5261 		if (ifp->if_mtu != ifr->ifr_mtu) {
5262 			ifp->if_mtu = ifr->ifr_mtu;
5263 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5264 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5265 				bge_init_locked(sc);
5266 			}
5267 		}
5268 		BGE_UNLOCK(sc);
5269 		break;
5270 	case SIOCSIFFLAGS:
5271 		BGE_LOCK(sc);
5272 		if (ifp->if_flags & IFF_UP) {
5273 			/*
5274 			 * If only the state of the PROMISC flag changed,
5275 			 * then just use the 'set promisc mode' command
5276 			 * instead of reinitializing the entire NIC. Doing
5277 			 * a full re-init means reloading the firmware and
5278 			 * waiting for it to start up, which may take a
5279 			 * second or two.  Similarly for ALLMULTI.
5280 			 */
5281 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5282 				flags = ifp->if_flags ^ sc->bge_if_flags;
5283 				if (flags & IFF_PROMISC)
5284 					bge_setpromisc(sc);
5285 				if (flags & IFF_ALLMULTI)
5286 					bge_setmulti(sc);
5287 			} else
5288 				bge_init_locked(sc);
5289 		} else {
5290 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5291 				bge_stop(sc);
5292 			}
5293 		}
5294 		sc->bge_if_flags = ifp->if_flags;
5295 		BGE_UNLOCK(sc);
5296 		error = 0;
5297 		break;
5298 	case SIOCADDMULTI:
5299 	case SIOCDELMULTI:
5300 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
5301 			BGE_LOCK(sc);
5302 			bge_setmulti(sc);
5303 			BGE_UNLOCK(sc);
5304 			error = 0;
5305 		}
5306 		break;
5307 	case SIOCSIFMEDIA:
5308 	case SIOCGIFMEDIA:
5309 		if (sc->bge_flags & BGE_FLAG_TBI) {
5310 			error = ifmedia_ioctl(ifp, ifr,
5311 			    &sc->bge_ifmedia, command);
5312 		} else {
5313 			mii = device_get_softc(sc->bge_miibus);
5314 			error = ifmedia_ioctl(ifp, ifr,
5315 			    &mii->mii_media, command);
5316 		}
5317 		break;
5318 	case SIOCSIFCAP:
5319 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5320 #ifdef DEVICE_POLLING
5321 		if (mask & IFCAP_POLLING) {
5322 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
5323 				error = ether_poll_register(bge_poll, ifp);
5324 				if (error)
5325 					return (error);
5326 				BGE_LOCK(sc);
5327 				BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5328 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5329 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5330 				ifp->if_capenable |= IFCAP_POLLING;
5331 				BGE_UNLOCK(sc);
5332 			} else {
5333 				error = ether_poll_deregister(ifp);
5334 				/* Enable interrupt even in error case */
5335 				BGE_LOCK(sc);
5336 				BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5337 				    BGE_PCIMISCCTL_MASK_PCI_INTR);
5338 				bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5339 				ifp->if_capenable &= ~IFCAP_POLLING;
5340 				BGE_UNLOCK(sc);
5341 			}
5342 		}
5343 #endif
5344 		if ((mask & IFCAP_TXCSUM) != 0 &&
5345 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
5346 			ifp->if_capenable ^= IFCAP_TXCSUM;
5347 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
5348 				ifp->if_hwassist |= sc->bge_csum_features;
5349 			else
5350 				ifp->if_hwassist &= ~sc->bge_csum_features;
5351 		}
5352 
5353 		if ((mask & IFCAP_RXCSUM) != 0 &&
5354 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
5355 			ifp->if_capenable ^= IFCAP_RXCSUM;
5356 
5357 		if ((mask & IFCAP_TSO4) != 0 &&
5358 		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
5359 			ifp->if_capenable ^= IFCAP_TSO4;
5360 			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
5361 				ifp->if_hwassist |= CSUM_TSO;
5362 			else
5363 				ifp->if_hwassist &= ~CSUM_TSO;
5364 		}
5365 
5366 		if (mask & IFCAP_VLAN_MTU) {
5367 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
5368 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5369 			bge_init(sc);
5370 		}
5371 
5372 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5373 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
5374 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
5375 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5376 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
5377 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
5378 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
5379 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
5380 			BGE_LOCK(sc);
5381 			bge_setvlan(sc);
5382 			BGE_UNLOCK(sc);
5383 		}
5384 #ifdef VLAN_CAPABILITIES
5385 		VLAN_CAPABILITIES(ifp);
5386 #endif
5387 		break;
5388 	default:
5389 		error = ether_ioctl(ifp, command, data);
5390 		break;
5391 	}
5392 
5393 	return (error);
5394 }
5395 
5396 static void
5397 bge_watchdog(struct bge_softc *sc)
5398 {
5399 	struct ifnet *ifp;
5400 
5401 	BGE_LOCK_ASSERT(sc);
5402 
5403 	if (sc->bge_timer == 0 || --sc->bge_timer)
5404 		return;
5405 
5406 	ifp = sc->bge_ifp;
5407 
5408 	if_printf(ifp, "watchdog timeout -- resetting\n");
5409 
5410 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5411 	bge_init_locked(sc);
5412 
5413 	ifp->if_oerrors++;
5414 }
5415 
5416 static void
5417 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5418 {
5419 	int i;
5420 
5421 	BGE_CLRBIT(sc, reg, bit);
5422 
5423 	for (i = 0; i < BGE_TIMEOUT; i++) {
5424 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5425 			return;
5426 		DELAY(100);
5427         }
5428 }
5429 
5430 /*
5431  * Stop the adapter and free any mbufs allocated to the
5432  * RX and TX lists.
5433  */
5434 static void
5435 bge_stop(struct bge_softc *sc)
5436 {
5437 	struct ifnet *ifp;
5438 
5439 	BGE_LOCK_ASSERT(sc);
5440 
5441 	ifp = sc->bge_ifp;
5442 
5443 	callout_stop(&sc->bge_stat_ch);
5444 
5445 	/* Disable host interrupts. */
5446 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5447 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5448 
5449 	/*
5450 	 * Tell firmware we're shutting down.
5451 	 */
5452 	bge_stop_fw(sc);
5453 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
5454 
5455 	/*
5456 	 * Disable all of the receiver blocks.
5457 	 */
5458 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5459 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5460 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5461 	if (BGE_IS_5700_FAMILY(sc))
5462 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5463 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5464 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5465 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5466 
5467 	/*
5468 	 * Disable all of the transmit blocks.
5469 	 */
5470 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5471 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5472 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5473 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5474 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5475 	if (BGE_IS_5700_FAMILY(sc))
5476 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5477 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5478 
5479 	/*
5480 	 * Shut down all of the memory managers and related
5481 	 * state machines.
5482 	 */
5483 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5484 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5485 	if (BGE_IS_5700_FAMILY(sc))
5486 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5487 
5488 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5489 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5490 	if (!(BGE_IS_5705_PLUS(sc))) {
5491 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5492 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5493 	}
5494 	/* Update MAC statistics. */
5495 	if (BGE_IS_5705_PLUS(sc))
5496 		bge_stats_update_regs(sc);
5497 
5498 	bge_reset(sc);
5499 	bge_sig_legacy(sc, BGE_RESET_STOP);
5500 	bge_sig_post_reset(sc, BGE_RESET_STOP);
5501 
5502 	/*
5503 	 * Keep the ASF firmware running if up.
5504 	 */
5505 	if (sc->bge_asf_mode & ASF_STACKUP)
5506 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5507 	else
5508 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5509 
5510 	/* Free the RX lists. */
5511 	bge_free_rx_ring_std(sc);
5512 
5513 	/* Free jumbo RX list. */
5514 	if (BGE_IS_JUMBO_CAPABLE(sc))
5515 		bge_free_rx_ring_jumbo(sc);
5516 
5517 	/* Free TX buffers. */
5518 	bge_free_tx_ring(sc);
5519 
5520 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5521 
5522 	/* Clear MAC's link state (PHY may still have link UP). */
5523 	if (bootverbose && sc->bge_link)
5524 		if_printf(sc->bge_ifp, "link DOWN\n");
5525 	sc->bge_link = 0;
5526 
5527 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5528 }
5529 
5530 /*
5531  * Stop all chip I/O so that the kernel's probe routines don't
5532  * get confused by errant DMAs when rebooting.
5533  */
5534 static int
5535 bge_shutdown(device_t dev)
5536 {
5537 	struct bge_softc *sc;
5538 
5539 	sc = device_get_softc(dev);
5540 	BGE_LOCK(sc);
5541 	bge_stop(sc);
5542 	bge_reset(sc);
5543 	BGE_UNLOCK(sc);
5544 
5545 	return (0);
5546 }
5547 
5548 static int
5549 bge_suspend(device_t dev)
5550 {
5551 	struct bge_softc *sc;
5552 
5553 	sc = device_get_softc(dev);
5554 	BGE_LOCK(sc);
5555 	bge_stop(sc);
5556 	BGE_UNLOCK(sc);
5557 
5558 	return (0);
5559 }
5560 
5561 static int
5562 bge_resume(device_t dev)
5563 {
5564 	struct bge_softc *sc;
5565 	struct ifnet *ifp;
5566 
5567 	sc = device_get_softc(dev);
5568 	BGE_LOCK(sc);
5569 	ifp = sc->bge_ifp;
5570 	if (ifp->if_flags & IFF_UP) {
5571 		bge_init_locked(sc);
5572 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5573 			bge_start_locked(ifp);
5574 	}
5575 	BGE_UNLOCK(sc);
5576 
5577 	return (0);
5578 }
5579 
5580 static void
5581 bge_link_upd(struct bge_softc *sc)
5582 {
5583 	struct mii_data *mii;
5584 	uint32_t link, status;
5585 
5586 	BGE_LOCK_ASSERT(sc);
5587 
5588 	/* Clear 'pending link event' flag. */
5589 	sc->bge_link_evt = 0;
5590 
5591 	/*
5592 	 * Process link state changes.
5593 	 * Grrr. The link status word in the status block does
5594 	 * not work correctly on the BCM5700 rev AX and BX chips,
5595 	 * according to all available information. Hence, we have
5596 	 * to enable MII interrupts in order to properly obtain
5597 	 * async link changes. Unfortunately, this also means that
5598 	 * we have to read the MAC status register to detect link
5599 	 * changes, thereby adding an additional register access to
5600 	 * the interrupt handler.
5601 	 *
5602 	 * XXX: perhaps link state detection procedure used for
5603 	 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
5604 	 */
5605 
5606 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
5607 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
5608 		status = CSR_READ_4(sc, BGE_MAC_STS);
5609 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5610 			mii = device_get_softc(sc->bge_miibus);
5611 			mii_pollstat(mii);
5612 			if (!sc->bge_link &&
5613 			    mii->mii_media_status & IFM_ACTIVE &&
5614 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5615 				sc->bge_link++;
5616 				if (bootverbose)
5617 					if_printf(sc->bge_ifp, "link UP\n");
5618 			} else if (sc->bge_link &&
5619 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5620 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5621 				sc->bge_link = 0;
5622 				if (bootverbose)
5623 					if_printf(sc->bge_ifp, "link DOWN\n");
5624 			}
5625 
5626 			/* Clear the interrupt. */
5627 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5628 			    BGE_EVTENB_MI_INTERRUPT);
5629 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
5630 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
5631 			    BRGPHY_INTRS);
5632 		}
5633 		return;
5634 	}
5635 
5636 	if (sc->bge_flags & BGE_FLAG_TBI) {
5637 		status = CSR_READ_4(sc, BGE_MAC_STS);
5638 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5639 			if (!sc->bge_link) {
5640 				sc->bge_link++;
5641 				if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5642 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5643 					    BGE_MACMODE_TBI_SEND_CFGS);
5644 					DELAY(40);
5645 				}
5646 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5647 				if (bootverbose)
5648 					if_printf(sc->bge_ifp, "link UP\n");
5649 				if_link_state_change(sc->bge_ifp,
5650 				    LINK_STATE_UP);
5651 			}
5652 		} else if (sc->bge_link) {
5653 			sc->bge_link = 0;
5654 			if (bootverbose)
5655 				if_printf(sc->bge_ifp, "link DOWN\n");
5656 			if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
5657 		}
5658 	} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
5659 		/*
5660 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
5661 		 * in status word always set. Workaround this bug by reading
5662 		 * PHY link status directly.
5663 		 */
5664 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
5665 
5666 		if (link != sc->bge_link ||
5667 		    sc->bge_asicrev == BGE_ASICREV_BCM5700) {
5668 			mii = device_get_softc(sc->bge_miibus);
5669 			mii_pollstat(mii);
5670 			if (!sc->bge_link &&
5671 			    mii->mii_media_status & IFM_ACTIVE &&
5672 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5673 				sc->bge_link++;
5674 				if (bootverbose)
5675 					if_printf(sc->bge_ifp, "link UP\n");
5676 			} else if (sc->bge_link &&
5677 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5678 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
5679 				sc->bge_link = 0;
5680 				if (bootverbose)
5681 					if_printf(sc->bge_ifp, "link DOWN\n");
5682 			}
5683 		}
5684 	} else {
5685 		/*
5686 		 * For controllers that call mii_tick, we have to poll
5687 		 * link status.
5688 		 */
5689 		mii = device_get_softc(sc->bge_miibus);
5690 		mii_pollstat(mii);
5691 		bge_miibus_statchg(sc->bge_dev);
5692 	}
5693 
5694 	/* Disable MAC attention when link is up. */
5695 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
5696 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
5697 	    BGE_MACSTAT_LINK_CHANGED);
5698 }
5699 
5700 static void
5701 bge_add_sysctls(struct bge_softc *sc)
5702 {
5703 	struct sysctl_ctx_list *ctx;
5704 	struct sysctl_oid_list *children;
5705 	char tn[32];
5706 	int unit;
5707 
5708 	ctx = device_get_sysctl_ctx(sc->bge_dev);
5709 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
5710 
5711 #ifdef BGE_REGISTER_DEBUG
5712 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
5713 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
5714 	    "Debug Information");
5715 
5716 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
5717 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
5718 	    "Register Read");
5719 
5720 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
5721 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
5722 	    "Memory Read");
5723 
5724 #endif
5725 
5726 	unit = device_get_unit(sc->bge_dev);
5727 	/*
5728 	 * A common design characteristic for many Broadcom client controllers
5729 	 * is that they only support a single outstanding DMA read operation
5730 	 * on the PCIe bus. This means that it will take twice as long to fetch
5731 	 * a TX frame that is split into header and payload buffers as it does
5732 	 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
5733 	 * these controllers, coalescing buffers to reduce the number of memory
5734 	 * reads is effective way to get maximum performance(about 940Mbps).
5735 	 * Without collapsing TX buffers the maximum TCP bulk transfer
5736 	 * performance is about 850Mbps. However forcing coalescing mbufs
5737 	 * consumes a lot of CPU cycles, so leave it off by default.
5738 	 */
5739 	sc->bge_forced_collapse = 0;
5740 	snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
5741 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
5742 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
5743 	    CTLFLAG_RW, &sc->bge_forced_collapse, 0,
5744 	    "Number of fragmented TX buffers of a frame allowed before "
5745 	    "forced collapsing");
5746 
5747 	sc->bge_msi = 1;
5748 	snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
5749 	TUNABLE_INT_FETCH(tn, &sc->bge_msi);
5750 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
5751 	    CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
5752 
5753 	/*
5754 	 * It seems all Broadcom controllers have a bug that can generate UDP
5755 	 * datagrams with checksum value 0 when TX UDP checksum offloading is
5756 	 * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
5757 	 * Even though the probability of generating such UDP datagrams is
5758 	 * low, I don't want to see FreeBSD boxes to inject such datagrams
5759 	 * into network so disable UDP checksum offloading by default.  Users
5760 	 * still override this behavior by setting a sysctl variable,
5761 	 * dev.bge.0.forced_udpcsum.
5762 	 */
5763 	sc->bge_forced_udpcsum = 0;
5764 	snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
5765 	TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
5766 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
5767 	    CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
5768 	    "Enable UDP checksum offloading even if controller can "
5769 	    "generate UDP checksum value 0");
5770 
5771 	if (BGE_IS_5705_PLUS(sc))
5772 		bge_add_sysctl_stats_regs(sc, ctx, children);
5773 	else
5774 		bge_add_sysctl_stats(sc, ctx, children);
5775 }
5776 
5777 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
5778 	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
5779 	    sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
5780 	    desc)
5781 
5782 static void
5783 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5784     struct sysctl_oid_list *parent)
5785 {
5786 	struct sysctl_oid *tree;
5787 	struct sysctl_oid_list *children, *schildren;
5788 
5789 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5790 	    NULL, "BGE Statistics");
5791 	schildren = children = SYSCTL_CHILDREN(tree);
5792 	BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
5793 	    children, COSFramesDroppedDueToFilters,
5794 	    "FramesDroppedDueToFilters");
5795 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
5796 	    children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
5797 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
5798 	    children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
5799 	BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
5800 	    children, nicNoMoreRxBDs, "NoMoreRxBDs");
5801 	BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
5802 	    children, ifInDiscards, "InputDiscards");
5803 	BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
5804 	    children, ifInErrors, "InputErrors");
5805 	BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
5806 	    children, nicRecvThresholdHit, "RecvThresholdHit");
5807 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
5808 	    children, nicDmaReadQueueFull, "DmaReadQueueFull");
5809 	BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
5810 	    children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
5811 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
5812 	    children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
5813 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
5814 	    children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
5815 	BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
5816 	    children, nicRingStatusUpdate, "RingStatusUpdate");
5817 	BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
5818 	    children, nicInterrupts, "Interrupts");
5819 	BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
5820 	    children, nicAvoidedInterrupts, "AvoidedInterrupts");
5821 	BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
5822 	    children, nicSendThresholdHit, "SendThresholdHit");
5823 
5824 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
5825 	    NULL, "BGE RX Statistics");
5826 	children = SYSCTL_CHILDREN(tree);
5827 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
5828 	    children, rxstats.ifHCInOctets, "ifHCInOctets");
5829 	BGE_SYSCTL_STAT(sc, ctx, "Fragments",
5830 	    children, rxstats.etherStatsFragments, "Fragments");
5831 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
5832 	    children, rxstats.ifHCInUcastPkts, "UnicastPkts");
5833 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
5834 	    children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
5835 	BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
5836 	    children, rxstats.dot3StatsFCSErrors, "FCSErrors");
5837 	BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
5838 	    children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
5839 	BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
5840 	    children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
5841 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
5842 	    children, rxstats.xoffPauseFramesReceived,
5843 	    "xoffPauseFramesReceived");
5844 	BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
5845 	    children, rxstats.macControlFramesReceived,
5846 	    "ControlFramesReceived");
5847 	BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
5848 	    children, rxstats.xoffStateEntered, "xoffStateEntered");
5849 	BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
5850 	    children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
5851 	BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
5852 	    children, rxstats.etherStatsJabbers, "Jabbers");
5853 	BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
5854 	    children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
5855 	BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
5856 	    children, rxstats.inRangeLengthError, "inRangeLengthError");
5857 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
5858 	    children, rxstats.outRangeLengthError, "outRangeLengthError");
5859 
5860 	tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
5861 	    NULL, "BGE TX Statistics");
5862 	children = SYSCTL_CHILDREN(tree);
5863 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
5864 	    children, txstats.ifHCOutOctets, "ifHCOutOctets");
5865 	BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
5866 	    children, txstats.etherStatsCollisions, "Collisions");
5867 	BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
5868 	    children, txstats.outXonSent, "XonSent");
5869 	BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
5870 	    children, txstats.outXoffSent, "XoffSent");
5871 	BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
5872 	    children, txstats.flowControlDone, "flowControlDone");
5873 	BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
5874 	    children, txstats.dot3StatsInternalMacTransmitErrors,
5875 	    "InternalMacTransmitErrors");
5876 	BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
5877 	    children, txstats.dot3StatsSingleCollisionFrames,
5878 	    "SingleCollisionFrames");
5879 	BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
5880 	    children, txstats.dot3StatsMultipleCollisionFrames,
5881 	    "MultipleCollisionFrames");
5882 	BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
5883 	    children, txstats.dot3StatsDeferredTransmissions,
5884 	    "DeferredTransmissions");
5885 	BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
5886 	    children, txstats.dot3StatsExcessiveCollisions,
5887 	    "ExcessiveCollisions");
5888 	BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
5889 	    children, txstats.dot3StatsLateCollisions,
5890 	    "LateCollisions");
5891 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
5892 	    children, txstats.ifHCOutUcastPkts, "UnicastPkts");
5893 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
5894 	    children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
5895 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
5896 	    children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
5897 	BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
5898 	    children, txstats.dot3StatsCarrierSenseErrors,
5899 	    "CarrierSenseErrors");
5900 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
5901 	    children, txstats.ifOutDiscards, "Discards");
5902 	BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
5903 	    children, txstats.ifOutErrors, "Errors");
5904 }
5905 
5906 #undef BGE_SYSCTL_STAT
5907 
5908 #define	BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
5909 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
5910 
5911 static void
5912 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
5913     struct sysctl_oid_list *parent)
5914 {
5915 	struct sysctl_oid *tree;
5916 	struct sysctl_oid_list *child, *schild;
5917 	struct bge_mac_stats *stats;
5918 
5919 	stats = &sc->bge_mac_stats;
5920 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
5921 	    NULL, "BGE Statistics");
5922 	schild = child = SYSCTL_CHILDREN(tree);
5923 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
5924 	    &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
5925 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
5926 	    &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
5927 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
5928 	    &stats->DmaWriteHighPriQueueFull,
5929 	    "NIC DMA Write High Priority Queue Full");
5930 	BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
5931 	    &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
5932 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
5933 	    &stats->InputDiscards, "Discarded Input Frames");
5934 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
5935 	    &stats->InputErrors, "Input Errors");
5936 	BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
5937 	    &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
5938 
5939 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
5940 	    NULL, "BGE RX Statistics");
5941 	child = SYSCTL_CHILDREN(tree);
5942 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
5943 	    &stats->ifHCInOctets, "Inbound Octets");
5944 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
5945 	    &stats->etherStatsFragments, "Fragments");
5946 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5947 	    &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
5948 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5949 	    &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
5950 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
5951 	    &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
5952 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
5953 	    &stats->dot3StatsFCSErrors, "FCS Errors");
5954 	BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
5955 	    &stats->dot3StatsAlignmentErrors, "Alignment Errors");
5956 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
5957 	    &stats->xonPauseFramesReceived, "XON Pause Frames Received");
5958 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
5959 	    &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
5960 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
5961 	    &stats->macControlFramesReceived, "MAC Control Frames Received");
5962 	BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
5963 	    &stats->xoffStateEntered, "XOFF State Entered");
5964 	BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
5965 	    &stats->dot3StatsFramesTooLong, "Frames Too Long");
5966 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
5967 	    &stats->etherStatsJabbers, "Jabbers");
5968 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
5969 	    &stats->etherStatsUndersizePkts, "Undersized Packets");
5970 
5971 	tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
5972 	    NULL, "BGE TX Statistics");
5973 	child = SYSCTL_CHILDREN(tree);
5974 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
5975 	    &stats->ifHCOutOctets, "Outbound Octets");
5976 	BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
5977 	    &stats->etherStatsCollisions, "TX Collisions");
5978 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
5979 	    &stats->outXonSent, "XON Sent");
5980 	BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
5981 	    &stats->outXoffSent, "XOFF Sent");
5982 	BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
5983 	    &stats->dot3StatsInternalMacTransmitErrors,
5984 	    "Internal MAC TX Errors");
5985 	BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
5986 	    &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
5987 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
5988 	    &stats->dot3StatsMultipleCollisionFrames,
5989 	    "Multiple Collision Frames");
5990 	BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
5991 	    &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
5992 	BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
5993 	    &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
5994 	BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
5995 	    &stats->dot3StatsLateCollisions, "Late Collisions");
5996 	BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
5997 	    &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
5998 	BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
5999 	    &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6000 	BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6001 	    &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6002 }
6003 
6004 #undef	BGE_SYSCTL_STAT_ADD64
6005 
6006 static int
6007 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6008 {
6009 	struct bge_softc *sc;
6010 	uint32_t result;
6011 	int offset;
6012 
6013 	sc = (struct bge_softc *)arg1;
6014 	offset = arg2;
6015 	result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6016 	    offsetof(bge_hostaddr, bge_addr_lo));
6017 	return (sysctl_handle_int(oidp, &result, 0, req));
6018 }
6019 
6020 #ifdef BGE_REGISTER_DEBUG
6021 static int
6022 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6023 {
6024 	struct bge_softc *sc;
6025 	uint16_t *sbdata;
6026 	int error, result, sbsz;
6027 	int i, j;
6028 
6029 	result = -1;
6030 	error = sysctl_handle_int(oidp, &result, 0, req);
6031 	if (error || (req->newptr == NULL))
6032 		return (error);
6033 
6034 	if (result == 1) {
6035 		sc = (struct bge_softc *)arg1;
6036 
6037 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6038 		    sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6039 			sbsz = BGE_STATUS_BLK_SZ;
6040 		else
6041 			sbsz = 32;
6042 		sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6043 		printf("Status Block:\n");
6044 		BGE_LOCK(sc);
6045 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6046 		    sc->bge_cdata.bge_status_map,
6047 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6048 		for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6049 			printf("%06x:", i);
6050 			for (j = 0; j < 8; j++)
6051 				printf(" %04x", sbdata[i++]);
6052 			printf("\n");
6053 		}
6054 
6055 		printf("Registers:\n");
6056 		for (i = 0x800; i < 0xA00; ) {
6057 			printf("%06x:", i);
6058 			for (j = 0; j < 8; j++) {
6059 				printf(" %08x", CSR_READ_4(sc, i));
6060 				i += 4;
6061 			}
6062 			printf("\n");
6063 		}
6064 		BGE_UNLOCK(sc);
6065 
6066 		printf("Hardware Flags:\n");
6067 		if (BGE_IS_5717_PLUS(sc))
6068 			printf(" - 5717 Plus\n");
6069 		if (BGE_IS_5755_PLUS(sc))
6070 			printf(" - 5755 Plus\n");
6071 		if (BGE_IS_575X_PLUS(sc))
6072 			printf(" - 575X Plus\n");
6073 		if (BGE_IS_5705_PLUS(sc))
6074 			printf(" - 5705 Plus\n");
6075 		if (BGE_IS_5714_FAMILY(sc))
6076 			printf(" - 5714 Family\n");
6077 		if (BGE_IS_5700_FAMILY(sc))
6078 			printf(" - 5700 Family\n");
6079 		if (sc->bge_flags & BGE_FLAG_JUMBO)
6080 			printf(" - Supports Jumbo Frames\n");
6081 		if (sc->bge_flags & BGE_FLAG_PCIX)
6082 			printf(" - PCI-X Bus\n");
6083 		if (sc->bge_flags & BGE_FLAG_PCIE)
6084 			printf(" - PCI Express Bus\n");
6085 		if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6086 			printf(" - No 3 LEDs\n");
6087 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6088 			printf(" - RX Alignment Bug\n");
6089 	}
6090 
6091 	return (error);
6092 }
6093 
6094 static int
6095 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6096 {
6097 	struct bge_softc *sc;
6098 	int error;
6099 	uint16_t result;
6100 	uint32_t val;
6101 
6102 	result = -1;
6103 	error = sysctl_handle_int(oidp, &result, 0, req);
6104 	if (error || (req->newptr == NULL))
6105 		return (error);
6106 
6107 	if (result < 0x8000) {
6108 		sc = (struct bge_softc *)arg1;
6109 		val = CSR_READ_4(sc, result);
6110 		printf("reg 0x%06X = 0x%08X\n", result, val);
6111 	}
6112 
6113 	return (error);
6114 }
6115 
6116 static int
6117 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6118 {
6119 	struct bge_softc *sc;
6120 	int error;
6121 	uint16_t result;
6122 	uint32_t val;
6123 
6124 	result = -1;
6125 	error = sysctl_handle_int(oidp, &result, 0, req);
6126 	if (error || (req->newptr == NULL))
6127 		return (error);
6128 
6129 	if (result < 0x8000) {
6130 		sc = (struct bge_softc *)arg1;
6131 		val = bge_readmem_ind(sc, result);
6132 		printf("mem 0x%06X = 0x%08X\n", result, val);
6133 	}
6134 
6135 	return (error);
6136 }
6137 #endif
6138 
6139 static int
6140 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6141 {
6142 
6143 	if (sc->bge_flags & BGE_FLAG_EADDR)
6144 		return (1);
6145 
6146 #ifdef __sparc64__
6147 	OF_getetheraddr(sc->bge_dev, ether_addr);
6148 	return (0);
6149 #endif
6150 	return (1);
6151 }
6152 
6153 static int
6154 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6155 {
6156 	uint32_t mac_addr;
6157 
6158 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6159 	if ((mac_addr >> 16) == 0x484b) {
6160 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6161 		ether_addr[1] = (uint8_t)mac_addr;
6162 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6163 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6164 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6165 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6166 		ether_addr[5] = (uint8_t)mac_addr;
6167 		return (0);
6168 	}
6169 	return (1);
6170 }
6171 
6172 static int
6173 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6174 {
6175 	int mac_offset = BGE_EE_MAC_OFFSET;
6176 
6177 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6178 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6179 
6180 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6181 	    ETHER_ADDR_LEN));
6182 }
6183 
6184 static int
6185 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6186 {
6187 
6188 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6189 		return (1);
6190 
6191 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6192 	   ETHER_ADDR_LEN));
6193 }
6194 
6195 static int
6196 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6197 {
6198 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6199 		/* NOTE: Order is critical */
6200 		bge_get_eaddr_fw,
6201 		bge_get_eaddr_mem,
6202 		bge_get_eaddr_nvram,
6203 		bge_get_eaddr_eeprom,
6204 		NULL
6205 	};
6206 	const bge_eaddr_fcn_t *func;
6207 
6208 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6209 		if ((*func)(sc, eaddr) == 0)
6210 			break;
6211 	}
6212 	return (*func == NULL ? ENXIO : 0);
6213 }
6214