1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2001 4 * Bill Paul <wpaul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. 39 * 40 * The Broadcom BCM5700 is based on technology originally developed by 41 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 42 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 43 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 44 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 45 * frames, highly configurable RX filtering, and 16 RX and TX queues 46 * (which, along with RX filter rules, can be used for QOS applications). 47 * Other features, such as TCP segmentation, may be available as part 48 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 49 * firmware images can be stored in hardware and need not be compiled 50 * into the driver. 51 * 52 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 53 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 54 * 55 * The BCM5701 is a single-chip solution incorporating both the BCM5700 56 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 57 * does not support external SSRAM. 58 * 59 * Broadcom also produces a variation of the BCM5700 under the "Altima" 60 * brand name, which is functionally similar but lacks PCI-X support. 61 * 62 * Without external SSRAM, you can only have at most 4 TX rings, 63 * and the use of the mini RX ring is disabled. This seems to imply 64 * that these features are simply not available on the BCM5701. As a 65 * result, this driver does not implement any support for the mini RX 66 * ring. 67 */ 68 69 #ifdef HAVE_KERNEL_OPTION_HEADERS 70 #include "opt_device_polling.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/endian.h> 75 #include <sys/systm.h> 76 #include <sys/sockio.h> 77 #include <sys/mbuf.h> 78 #include <sys/malloc.h> 79 #include <sys/kernel.h> 80 #include <sys/module.h> 81 #include <sys/socket.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ethernet.h> 88 #include <net/if_dl.h> 89 #include <net/if_media.h> 90 91 #include <net/bpf.h> 92 93 #include <net/if_types.h> 94 #include <net/if_vlan_var.h> 95 96 #include <netinet/in_systm.h> 97 #include <netinet/in.h> 98 #include <netinet/ip.h> 99 #include <netinet/tcp.h> 100 101 #include <machine/bus.h> 102 #include <machine/resource.h> 103 #include <sys/bus.h> 104 #include <sys/rman.h> 105 106 #include <dev/mii/mii.h> 107 #include <dev/mii/miivar.h> 108 #include "miidevs.h" 109 #include <dev/mii/brgphyreg.h> 110 111 #ifdef __sparc64__ 112 #include <dev/ofw/ofw_bus.h> 113 #include <dev/ofw/openfirm.h> 114 #include <machine/ofw_machdep.h> 115 #include <machine/ver.h> 116 #endif 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 121 #include <dev/bge/if_bgereg.h> 122 123 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 125 126 MODULE_DEPEND(bge, pci, 1, 1, 1); 127 MODULE_DEPEND(bge, ether, 1, 1, 1); 128 MODULE_DEPEND(bge, miibus, 1, 1, 1); 129 130 /* "device miibus" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 /* 134 * Various supported device vendors/types and their names. Note: the 135 * spec seems to indicate that the hardware still has Alteon's vendor 136 * ID burned into it, though it will always be overriden by the vendor 137 * ID in the EEPROM. Just to be safe, we cover all possibilities. 138 */ 139 static const struct bge_type { 140 uint16_t bge_vid; 141 uint16_t bge_did; 142 } const bge_devs[] = { 143 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 144 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 145 146 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 147 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 148 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 149 150 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 151 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 227 228 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 229 230 { TC_VENDORID, TC_DEVICEID_3C996 }, 231 232 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 233 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 234 { FJTSU_VENDORID, FJTSU_DEVICEID_PP250450 }, 235 236 { 0, 0 } 237 }; 238 239 static const struct bge_vendor { 240 uint16_t v_id; 241 const char *v_name; 242 } const bge_vendors[] = { 243 { ALTEON_VENDORID, "Alteon" }, 244 { ALTIMA_VENDORID, "Altima" }, 245 { APPLE_VENDORID, "Apple" }, 246 { BCOM_VENDORID, "Broadcom" }, 247 { SK_VENDORID, "SysKonnect" }, 248 { TC_VENDORID, "3Com" }, 249 { FJTSU_VENDORID, "Fujitsu" }, 250 251 { 0, NULL } 252 }; 253 254 static const struct bge_revision { 255 uint32_t br_chipid; 256 const char *br_name; 257 } const bge_revisions[] = { 258 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 259 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 260 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 261 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 262 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 263 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 264 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 265 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 266 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 267 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 268 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 269 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 270 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 271 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 272 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 273 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 274 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 275 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 276 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 277 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 278 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 279 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 280 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 281 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 282 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 283 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 284 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 285 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 286 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 287 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 288 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 289 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 290 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 291 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 292 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 293 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 294 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 295 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 296 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 297 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 298 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 299 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 300 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 301 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 302 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 303 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 304 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 305 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 306 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 307 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 308 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 309 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 310 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 311 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 312 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 313 /* 5754 and 5787 share the same ASIC ID */ 314 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 315 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 316 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 317 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 318 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 319 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 320 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 321 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 322 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 323 324 { 0, NULL } 325 }; 326 327 /* 328 * Some defaults for major revisions, so that newer steppings 329 * that we don't know about have a shot at working. 330 */ 331 static const struct bge_revision const bge_majorrevs[] = { 332 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 333 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 334 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 335 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 336 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 337 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 338 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 339 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 340 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 341 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 342 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 343 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 344 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 345 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 346 /* 5754 and 5787 share the same ASIC ID */ 347 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 348 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 349 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 350 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 351 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 352 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 353 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 354 355 { 0, NULL } 356 }; 357 358 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 359 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 360 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 361 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 362 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 363 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 364 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 365 366 const struct bge_revision * bge_lookup_rev(uint32_t); 367 const struct bge_vendor * bge_lookup_vendor(uint16_t); 368 369 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 370 371 static int bge_probe(device_t); 372 static int bge_attach(device_t); 373 static int bge_detach(device_t); 374 static int bge_suspend(device_t); 375 static int bge_resume(device_t); 376 static void bge_release_resources(struct bge_softc *); 377 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 378 static int bge_dma_alloc(struct bge_softc *); 379 static void bge_dma_free(struct bge_softc *); 380 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 381 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 382 383 static void bge_devinfo(struct bge_softc *); 384 static int bge_mbox_reorder(struct bge_softc *); 385 386 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 387 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 388 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 389 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 390 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 391 392 static void bge_txeof(struct bge_softc *, uint16_t); 393 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 394 static int bge_rxeof(struct bge_softc *, uint16_t, int); 395 396 static void bge_asf_driver_up (struct bge_softc *); 397 static void bge_tick(void *); 398 static void bge_stats_clear_regs(struct bge_softc *); 399 static void bge_stats_update(struct bge_softc *); 400 static void bge_stats_update_regs(struct bge_softc *); 401 static struct mbuf *bge_check_short_dma(struct mbuf *); 402 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 403 uint16_t *, uint16_t *); 404 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 405 406 static void bge_intr(void *); 407 static int bge_msi_intr(void *); 408 static void bge_intr_task(void *, int); 409 static void bge_start_locked(struct ifnet *); 410 static void bge_start(struct ifnet *); 411 static int bge_ioctl(struct ifnet *, u_long, caddr_t); 412 static void bge_init_locked(struct bge_softc *); 413 static void bge_init(void *); 414 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 415 static void bge_stop(struct bge_softc *); 416 static void bge_watchdog(struct bge_softc *); 417 static int bge_shutdown(device_t); 418 static int bge_ifmedia_upd_locked(struct ifnet *); 419 static int bge_ifmedia_upd(struct ifnet *); 420 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 421 422 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 423 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 424 425 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 426 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 427 428 static void bge_setpromisc(struct bge_softc *); 429 static void bge_setmulti(struct bge_softc *); 430 static void bge_setvlan(struct bge_softc *); 431 432 static __inline void bge_rxreuse_std(struct bge_softc *, int); 433 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 434 static int bge_newbuf_std(struct bge_softc *, int); 435 static int bge_newbuf_jumbo(struct bge_softc *, int); 436 static int bge_init_rx_ring_std(struct bge_softc *); 437 static void bge_free_rx_ring_std(struct bge_softc *); 438 static int bge_init_rx_ring_jumbo(struct bge_softc *); 439 static void bge_free_rx_ring_jumbo(struct bge_softc *); 440 static void bge_free_tx_ring(struct bge_softc *); 441 static int bge_init_tx_ring(struct bge_softc *); 442 443 static int bge_chipinit(struct bge_softc *); 444 static int bge_blockinit(struct bge_softc *); 445 static uint32_t bge_dma_swap_options(struct bge_softc *); 446 447 static int bge_has_eaddr(struct bge_softc *); 448 static uint32_t bge_readmem_ind(struct bge_softc *, int); 449 static void bge_writemem_ind(struct bge_softc *, int, int); 450 static void bge_writembx(struct bge_softc *, int, int); 451 #ifdef notdef 452 static uint32_t bge_readreg_ind(struct bge_softc *, int); 453 #endif 454 static void bge_writemem_direct(struct bge_softc *, int, int); 455 static void bge_writereg_ind(struct bge_softc *, int, int); 456 457 static int bge_miibus_readreg(device_t, int, int); 458 static int bge_miibus_writereg(device_t, int, int, int); 459 static void bge_miibus_statchg(device_t); 460 #ifdef DEVICE_POLLING 461 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 462 #endif 463 464 #define BGE_RESET_SHUTDOWN 0 465 #define BGE_RESET_START 1 466 #define BGE_RESET_SUSPEND 2 467 static void bge_sig_post_reset(struct bge_softc *, int); 468 static void bge_sig_legacy(struct bge_softc *, int); 469 static void bge_sig_pre_reset(struct bge_softc *, int); 470 static void bge_stop_fw(struct bge_softc *); 471 static int bge_reset(struct bge_softc *); 472 static void bge_link_upd(struct bge_softc *); 473 474 static void bge_ape_lock_init(struct bge_softc *); 475 static void bge_ape_read_fw_ver(struct bge_softc *); 476 static int bge_ape_lock(struct bge_softc *, int); 477 static void bge_ape_unlock(struct bge_softc *, int); 478 static void bge_ape_send_event(struct bge_softc *, uint32_t); 479 static void bge_ape_driver_state_change(struct bge_softc *, int); 480 481 /* 482 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 483 * leak information to untrusted users. It is also known to cause alignment 484 * traps on certain architectures. 485 */ 486 #ifdef BGE_REGISTER_DEBUG 487 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 488 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 489 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 490 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 491 #endif 492 static void bge_add_sysctls(struct bge_softc *); 493 static void bge_add_sysctl_stats_regs(struct bge_softc *, 494 struct sysctl_ctx_list *, struct sysctl_oid_list *); 495 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 496 struct sysctl_oid_list *); 497 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 498 499 static device_method_t bge_methods[] = { 500 /* Device interface */ 501 DEVMETHOD(device_probe, bge_probe), 502 DEVMETHOD(device_attach, bge_attach), 503 DEVMETHOD(device_detach, bge_detach), 504 DEVMETHOD(device_shutdown, bge_shutdown), 505 DEVMETHOD(device_suspend, bge_suspend), 506 DEVMETHOD(device_resume, bge_resume), 507 508 /* MII interface */ 509 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 510 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 511 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 512 513 DEVMETHOD_END 514 }; 515 516 static driver_t bge_driver = { 517 "bge", 518 bge_methods, 519 sizeof(struct bge_softc) 520 }; 521 522 static devclass_t bge_devclass; 523 524 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 525 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 526 527 static int bge_allow_asf = 1; 528 529 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf); 530 531 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters"); 532 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0, 533 "Allow ASF mode if available"); 534 535 #define SPARC64_BLADE_1500_MODEL "SUNW,Sun-Blade-1500" 536 #define SPARC64_BLADE_1500_PATH_BGE "/pci@1f,700000/network@2" 537 #define SPARC64_BLADE_2500_MODEL "SUNW,Sun-Blade-2500" 538 #define SPARC64_BLADE_2500_PATH_BGE "/pci@1c,600000/network@3" 539 #define SPARC64_OFW_SUBVENDOR "subsystem-vendor-id" 540 541 static int 542 bge_has_eaddr(struct bge_softc *sc) 543 { 544 #ifdef __sparc64__ 545 char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)]; 546 device_t dev; 547 uint32_t subvendor; 548 549 dev = sc->bge_dev; 550 551 /* 552 * The on-board BGEs found in sun4u machines aren't fitted with 553 * an EEPROM which means that we have to obtain the MAC address 554 * via OFW and that some tests will always fail. We distinguish 555 * such BGEs by the subvendor ID, which also has to be obtained 556 * from OFW instead of the PCI configuration space as the latter 557 * indicates Broadcom as the subvendor of the netboot interface. 558 * For early Blade 1500 and 2500 we even have to check the OFW 559 * device path as the subvendor ID always defaults to Broadcom 560 * there. 561 */ 562 if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR, 563 &subvendor, sizeof(subvendor)) == sizeof(subvendor) && 564 (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID)) 565 return (0); 566 memset(buf, 0, sizeof(buf)); 567 if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) { 568 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 && 569 strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0) 570 return (0); 571 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 && 572 strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0) 573 return (0); 574 } 575 #endif 576 return (1); 577 } 578 579 static uint32_t 580 bge_readmem_ind(struct bge_softc *sc, int off) 581 { 582 device_t dev; 583 uint32_t val; 584 585 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 586 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 587 return (0); 588 589 dev = sc->bge_dev; 590 591 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 592 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 593 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 594 return (val); 595 } 596 597 static void 598 bge_writemem_ind(struct bge_softc *sc, int off, int val) 599 { 600 device_t dev; 601 602 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 603 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 604 return; 605 606 dev = sc->bge_dev; 607 608 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 609 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 610 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 611 } 612 613 #ifdef notdef 614 static uint32_t 615 bge_readreg_ind(struct bge_softc *sc, int off) 616 { 617 device_t dev; 618 619 dev = sc->bge_dev; 620 621 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 622 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 623 } 624 #endif 625 626 static void 627 bge_writereg_ind(struct bge_softc *sc, int off, int val) 628 { 629 device_t dev; 630 631 dev = sc->bge_dev; 632 633 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 634 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 635 } 636 637 static void 638 bge_writemem_direct(struct bge_softc *sc, int off, int val) 639 { 640 CSR_WRITE_4(sc, off, val); 641 } 642 643 static void 644 bge_writembx(struct bge_softc *sc, int off, int val) 645 { 646 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 647 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 648 649 CSR_WRITE_4(sc, off, val); 650 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 651 CSR_READ_4(sc, off); 652 } 653 654 /* 655 * Clear all stale locks and select the lock for this driver instance. 656 */ 657 static void 658 bge_ape_lock_init(struct bge_softc *sc) 659 { 660 uint32_t bit, regbase; 661 int i; 662 663 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 664 regbase = BGE_APE_LOCK_GRANT; 665 else 666 regbase = BGE_APE_PER_LOCK_GRANT; 667 668 /* Clear any stale locks. */ 669 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 670 switch (i) { 671 case BGE_APE_LOCK_PHY0: 672 case BGE_APE_LOCK_PHY1: 673 case BGE_APE_LOCK_PHY2: 674 case BGE_APE_LOCK_PHY3: 675 bit = BGE_APE_LOCK_GRANT_DRIVER0; 676 break; 677 default: 678 if (sc->bge_func_addr != 0) 679 bit = BGE_APE_LOCK_GRANT_DRIVER0; 680 else 681 bit = (1 << sc->bge_func_addr); 682 } 683 APE_WRITE_4(sc, regbase + 4 * i, bit); 684 } 685 686 /* Select the PHY lock based on the device's function number. */ 687 switch (sc->bge_func_addr) { 688 case 0: 689 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 690 break; 691 case 1: 692 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 693 break; 694 case 2: 695 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 696 break; 697 case 3: 698 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 699 break; 700 default: 701 device_printf(sc->bge_dev, 702 "PHY lock not supported on this function\n"); 703 } 704 } 705 706 /* 707 * Check for APE firmware, set flags, and print version info. 708 */ 709 static void 710 bge_ape_read_fw_ver(struct bge_softc *sc) 711 { 712 const char *fwtype; 713 uint32_t apedata, features; 714 715 /* Check for a valid APE signature in shared memory. */ 716 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 717 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 718 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 719 return; 720 } 721 722 /* Check if APE firmware is running. */ 723 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 724 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 725 device_printf(sc->bge_dev, "APE signature found " 726 "but FW status not ready! 0x%08x\n", apedata); 727 return; 728 } 729 730 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 731 732 /* Fetch the APE firwmare type and version. */ 733 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 734 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 735 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 736 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 737 fwtype = "NCSI"; 738 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 739 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 740 fwtype = "DASH"; 741 } else 742 fwtype = "UNKN"; 743 744 /* Print the APE firmware version. */ 745 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 746 fwtype, 747 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 748 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 749 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 750 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 751 } 752 753 static int 754 bge_ape_lock(struct bge_softc *sc, int locknum) 755 { 756 uint32_t bit, gnt, req, status; 757 int i, off; 758 759 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 760 return (0); 761 762 /* Lock request/grant registers have different bases. */ 763 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 764 req = BGE_APE_LOCK_REQ; 765 gnt = BGE_APE_LOCK_GRANT; 766 } else { 767 req = BGE_APE_PER_LOCK_REQ; 768 gnt = BGE_APE_PER_LOCK_GRANT; 769 } 770 771 off = 4 * locknum; 772 773 switch (locknum) { 774 case BGE_APE_LOCK_GPIO: 775 /* Lock required when using GPIO. */ 776 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 777 return (0); 778 if (sc->bge_func_addr == 0) 779 bit = BGE_APE_LOCK_REQ_DRIVER0; 780 else 781 bit = (1 << sc->bge_func_addr); 782 break; 783 case BGE_APE_LOCK_GRC: 784 /* Lock required to reset the device. */ 785 if (sc->bge_func_addr == 0) 786 bit = BGE_APE_LOCK_REQ_DRIVER0; 787 else 788 bit = (1 << sc->bge_func_addr); 789 break; 790 case BGE_APE_LOCK_MEM: 791 /* Lock required when accessing certain APE memory. */ 792 if (sc->bge_func_addr == 0) 793 bit = BGE_APE_LOCK_REQ_DRIVER0; 794 else 795 bit = (1 << sc->bge_func_addr); 796 break; 797 case BGE_APE_LOCK_PHY0: 798 case BGE_APE_LOCK_PHY1: 799 case BGE_APE_LOCK_PHY2: 800 case BGE_APE_LOCK_PHY3: 801 /* Lock required when accessing PHYs. */ 802 bit = BGE_APE_LOCK_REQ_DRIVER0; 803 break; 804 default: 805 return (EINVAL); 806 } 807 808 /* Request a lock. */ 809 APE_WRITE_4(sc, req + off, bit); 810 811 /* Wait up to 1 second to acquire lock. */ 812 for (i = 0; i < 20000; i++) { 813 status = APE_READ_4(sc, gnt + off); 814 if (status == bit) 815 break; 816 DELAY(50); 817 } 818 819 /* Handle any errors. */ 820 if (status != bit) { 821 device_printf(sc->bge_dev, "APE lock %d request failed! " 822 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 823 locknum, req + off, bit & 0xFFFF, gnt + off, 824 status & 0xFFFF); 825 /* Revoke the lock request. */ 826 APE_WRITE_4(sc, gnt + off, bit); 827 return (EBUSY); 828 } 829 830 return (0); 831 } 832 833 static void 834 bge_ape_unlock(struct bge_softc *sc, int locknum) 835 { 836 uint32_t bit, gnt; 837 int off; 838 839 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 840 return; 841 842 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 843 gnt = BGE_APE_LOCK_GRANT; 844 else 845 gnt = BGE_APE_PER_LOCK_GRANT; 846 847 off = 4 * locknum; 848 849 switch (locknum) { 850 case BGE_APE_LOCK_GPIO: 851 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 852 return; 853 if (sc->bge_func_addr == 0) 854 bit = BGE_APE_LOCK_GRANT_DRIVER0; 855 else 856 bit = (1 << sc->bge_func_addr); 857 break; 858 case BGE_APE_LOCK_GRC: 859 if (sc->bge_func_addr == 0) 860 bit = BGE_APE_LOCK_GRANT_DRIVER0; 861 else 862 bit = (1 << sc->bge_func_addr); 863 break; 864 case BGE_APE_LOCK_MEM: 865 if (sc->bge_func_addr == 0) 866 bit = BGE_APE_LOCK_GRANT_DRIVER0; 867 else 868 bit = (1 << sc->bge_func_addr); 869 break; 870 case BGE_APE_LOCK_PHY0: 871 case BGE_APE_LOCK_PHY1: 872 case BGE_APE_LOCK_PHY2: 873 case BGE_APE_LOCK_PHY3: 874 bit = BGE_APE_LOCK_GRANT_DRIVER0; 875 break; 876 default: 877 return; 878 } 879 880 APE_WRITE_4(sc, gnt + off, bit); 881 } 882 883 /* 884 * Send an event to the APE firmware. 885 */ 886 static void 887 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 888 { 889 uint32_t apedata; 890 int i; 891 892 /* NCSI does not support APE events. */ 893 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 894 return; 895 896 /* Wait up to 1ms for APE to service previous event. */ 897 for (i = 10; i > 0; i--) { 898 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 899 break; 900 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 901 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 902 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 903 BGE_APE_EVENT_STATUS_EVENT_PENDING); 904 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 905 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 906 break; 907 } 908 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 909 DELAY(100); 910 } 911 if (i == 0) 912 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 913 event); 914 } 915 916 static void 917 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 918 { 919 uint32_t apedata, event; 920 921 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 922 return; 923 924 switch (kind) { 925 case BGE_RESET_START: 926 /* If this is the first load, clear the load counter. */ 927 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 928 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 929 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 930 else { 931 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 932 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 933 } 934 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 935 BGE_APE_HOST_SEG_SIG_MAGIC); 936 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 937 BGE_APE_HOST_SEG_LEN_MAGIC); 938 939 /* Add some version info if bge(4) supports it. */ 940 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 941 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 942 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 943 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 944 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 945 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 946 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 947 BGE_APE_HOST_DRVR_STATE_START); 948 event = BGE_APE_EVENT_STATUS_STATE_START; 949 break; 950 case BGE_RESET_SHUTDOWN: 951 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 952 BGE_APE_HOST_DRVR_STATE_UNLOAD); 953 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 954 break; 955 case BGE_RESET_SUSPEND: 956 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 957 break; 958 default: 959 return; 960 } 961 962 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 963 BGE_APE_EVENT_STATUS_STATE_CHNGE); 964 } 965 966 /* 967 * Map a single buffer address. 968 */ 969 970 static void 971 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 972 { 973 struct bge_dmamap_arg *ctx; 974 975 if (error) 976 return; 977 978 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 979 980 ctx = arg; 981 ctx->bge_busaddr = segs->ds_addr; 982 } 983 984 static uint8_t 985 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 986 { 987 uint32_t access, byte = 0; 988 int i; 989 990 /* Lock. */ 991 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 992 for (i = 0; i < 8000; i++) { 993 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 994 break; 995 DELAY(20); 996 } 997 if (i == 8000) 998 return (1); 999 1000 /* Enable access. */ 1001 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 1002 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 1003 1004 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 1005 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 1006 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1007 DELAY(10); 1008 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 1009 DELAY(10); 1010 break; 1011 } 1012 } 1013 1014 if (i == BGE_TIMEOUT * 10) { 1015 if_printf(sc->bge_ifp, "nvram read timed out\n"); 1016 return (1); 1017 } 1018 1019 /* Get result. */ 1020 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 1021 1022 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 1023 1024 /* Disable access. */ 1025 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1026 1027 /* Unlock. */ 1028 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1029 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1030 1031 return (0); 1032 } 1033 1034 /* 1035 * Read a sequence of bytes from NVRAM. 1036 */ 1037 static int 1038 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1039 { 1040 int err = 0, i; 1041 uint8_t byte = 0; 1042 1043 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1044 return (1); 1045 1046 for (i = 0; i < cnt; i++) { 1047 err = bge_nvram_getbyte(sc, off + i, &byte); 1048 if (err) 1049 break; 1050 *(dest + i) = byte; 1051 } 1052 1053 return (err ? 1 : 0); 1054 } 1055 1056 /* 1057 * Read a byte of data stored in the EEPROM at address 'addr.' The 1058 * BCM570x supports both the traditional bitbang interface and an 1059 * auto access interface for reading the EEPROM. We use the auto 1060 * access method. 1061 */ 1062 static uint8_t 1063 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1064 { 1065 int i; 1066 uint32_t byte = 0; 1067 1068 /* 1069 * Enable use of auto EEPROM access so we can avoid 1070 * having to use the bitbang method. 1071 */ 1072 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1073 1074 /* Reset the EEPROM, load the clock period. */ 1075 CSR_WRITE_4(sc, BGE_EE_ADDR, 1076 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1077 DELAY(20); 1078 1079 /* Issue the read EEPROM command. */ 1080 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1081 1082 /* Wait for completion */ 1083 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1084 DELAY(10); 1085 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1086 break; 1087 } 1088 1089 if (i == BGE_TIMEOUT * 10) { 1090 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1091 return (1); 1092 } 1093 1094 /* Get result. */ 1095 byte = CSR_READ_4(sc, BGE_EE_DATA); 1096 1097 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Read a sequence of bytes from the EEPROM. 1104 */ 1105 static int 1106 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1107 { 1108 int i, error = 0; 1109 uint8_t byte = 0; 1110 1111 for (i = 0; i < cnt; i++) { 1112 error = bge_eeprom_getbyte(sc, off + i, &byte); 1113 if (error) 1114 break; 1115 *(dest + i) = byte; 1116 } 1117 1118 return (error ? 1 : 0); 1119 } 1120 1121 static int 1122 bge_miibus_readreg(device_t dev, int phy, int reg) 1123 { 1124 struct bge_softc *sc; 1125 uint32_t val; 1126 int i; 1127 1128 sc = device_get_softc(dev); 1129 1130 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1131 return (0); 1132 1133 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1134 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1135 CSR_WRITE_4(sc, BGE_MI_MODE, 1136 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1137 DELAY(80); 1138 } 1139 1140 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1141 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1142 1143 /* Poll for the PHY register access to complete. */ 1144 for (i = 0; i < BGE_TIMEOUT; i++) { 1145 DELAY(10); 1146 val = CSR_READ_4(sc, BGE_MI_COMM); 1147 if ((val & BGE_MICOMM_BUSY) == 0) { 1148 DELAY(5); 1149 val = CSR_READ_4(sc, BGE_MI_COMM); 1150 break; 1151 } 1152 } 1153 1154 if (i == BGE_TIMEOUT) { 1155 device_printf(sc->bge_dev, 1156 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1157 phy, reg, val); 1158 val = 0; 1159 } 1160 1161 /* Restore the autopoll bit if necessary. */ 1162 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1163 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1164 DELAY(80); 1165 } 1166 1167 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1168 1169 if (val & BGE_MICOMM_READFAIL) 1170 return (0); 1171 1172 return (val & 0xFFFF); 1173 } 1174 1175 static int 1176 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1177 { 1178 struct bge_softc *sc; 1179 int i; 1180 1181 sc = device_get_softc(dev); 1182 1183 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1184 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1185 return (0); 1186 1187 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1188 return (0); 1189 1190 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1191 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1192 CSR_WRITE_4(sc, BGE_MI_MODE, 1193 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1194 DELAY(80); 1195 } 1196 1197 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1198 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1199 1200 for (i = 0; i < BGE_TIMEOUT; i++) { 1201 DELAY(10); 1202 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1203 DELAY(5); 1204 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1205 break; 1206 } 1207 } 1208 1209 /* Restore the autopoll bit if necessary. */ 1210 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1211 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1212 DELAY(80); 1213 } 1214 1215 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1216 1217 if (i == BGE_TIMEOUT) 1218 device_printf(sc->bge_dev, 1219 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1220 phy, reg, val); 1221 1222 return (0); 1223 } 1224 1225 static void 1226 bge_miibus_statchg(device_t dev) 1227 { 1228 struct bge_softc *sc; 1229 struct mii_data *mii; 1230 uint32_t mac_mode, rx_mode, tx_mode; 1231 1232 sc = device_get_softc(dev); 1233 if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1234 return; 1235 mii = device_get_softc(sc->bge_miibus); 1236 1237 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1238 (IFM_ACTIVE | IFM_AVALID)) { 1239 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1240 case IFM_10_T: 1241 case IFM_100_TX: 1242 sc->bge_link = 1; 1243 break; 1244 case IFM_1000_T: 1245 case IFM_1000_SX: 1246 case IFM_2500_SX: 1247 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1248 sc->bge_link = 1; 1249 else 1250 sc->bge_link = 0; 1251 break; 1252 default: 1253 sc->bge_link = 0; 1254 break; 1255 } 1256 } else 1257 sc->bge_link = 0; 1258 if (sc->bge_link == 0) 1259 return; 1260 1261 /* 1262 * APE firmware touches these registers to keep the MAC 1263 * connected to the outside world. Try to keep the 1264 * accesses atomic. 1265 */ 1266 1267 /* Set the port mode (MII/GMII) to match the link speed. */ 1268 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1269 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1270 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1271 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1272 1273 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1274 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1275 mac_mode |= BGE_PORTMODE_GMII; 1276 else 1277 mac_mode |= BGE_PORTMODE_MII; 1278 1279 /* Set MAC flow control behavior to match link flow control settings. */ 1280 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1281 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1282 if (IFM_OPTIONS(mii->mii_media_active & IFM_FDX) != 0) { 1283 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1284 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1285 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1286 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1287 } else 1288 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1289 1290 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1291 DELAY(40); 1292 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1293 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1294 } 1295 1296 /* 1297 * Intialize a standard receive ring descriptor. 1298 */ 1299 static int 1300 bge_newbuf_std(struct bge_softc *sc, int i) 1301 { 1302 struct mbuf *m; 1303 struct bge_rx_bd *r; 1304 bus_dma_segment_t segs[1]; 1305 bus_dmamap_t map; 1306 int error, nsegs; 1307 1308 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1309 (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + 1310 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1311 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1312 if (m == NULL) 1313 return (ENOBUFS); 1314 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1315 } else { 1316 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1317 if (m == NULL) 1318 return (ENOBUFS); 1319 m->m_len = m->m_pkthdr.len = MCLBYTES; 1320 } 1321 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1322 m_adj(m, ETHER_ALIGN); 1323 1324 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1325 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1326 if (error != 0) { 1327 m_freem(m); 1328 return (error); 1329 } 1330 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1331 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1332 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1333 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1334 sc->bge_cdata.bge_rx_std_dmamap[i]); 1335 } 1336 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1337 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1338 sc->bge_cdata.bge_rx_std_sparemap = map; 1339 sc->bge_cdata.bge_rx_std_chain[i] = m; 1340 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1341 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1342 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1343 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1344 r->bge_flags = BGE_RXBDFLAG_END; 1345 r->bge_len = segs[0].ds_len; 1346 r->bge_idx = i; 1347 1348 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1349 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1350 1351 return (0); 1352 } 1353 1354 /* 1355 * Initialize a jumbo receive ring descriptor. This allocates 1356 * a jumbo buffer from the pool managed internally by the driver. 1357 */ 1358 static int 1359 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1360 { 1361 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1362 bus_dmamap_t map; 1363 struct bge_extrx_bd *r; 1364 struct mbuf *m; 1365 int error, nsegs; 1366 1367 MGETHDR(m, M_DONTWAIT, MT_DATA); 1368 if (m == NULL) 1369 return (ENOBUFS); 1370 1371 m_cljget(m, M_DONTWAIT, MJUM9BYTES); 1372 if (!(m->m_flags & M_EXT)) { 1373 m_freem(m); 1374 return (ENOBUFS); 1375 } 1376 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1377 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1378 m_adj(m, ETHER_ALIGN); 1379 1380 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1381 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1382 if (error != 0) { 1383 m_freem(m); 1384 return (error); 1385 } 1386 1387 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1388 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1389 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1390 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1391 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1392 } 1393 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1394 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1395 sc->bge_cdata.bge_rx_jumbo_sparemap; 1396 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1397 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1398 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1399 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1400 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1401 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1402 1403 /* 1404 * Fill in the extended RX buffer descriptor. 1405 */ 1406 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1407 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1408 r->bge_idx = i; 1409 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1410 switch (nsegs) { 1411 case 4: 1412 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1413 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1414 r->bge_len3 = segs[3].ds_len; 1415 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1416 case 3: 1417 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1418 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1419 r->bge_len2 = segs[2].ds_len; 1420 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1421 case 2: 1422 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1423 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1424 r->bge_len1 = segs[1].ds_len; 1425 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1426 case 1: 1427 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1428 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1429 r->bge_len0 = segs[0].ds_len; 1430 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1431 break; 1432 default: 1433 panic("%s: %d segments\n", __func__, nsegs); 1434 } 1435 1436 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1437 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1438 1439 return (0); 1440 } 1441 1442 static int 1443 bge_init_rx_ring_std(struct bge_softc *sc) 1444 { 1445 int error, i; 1446 1447 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1448 sc->bge_std = 0; 1449 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1450 if ((error = bge_newbuf_std(sc, i)) != 0) 1451 return (error); 1452 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1453 } 1454 1455 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1456 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1457 1458 sc->bge_std = 0; 1459 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1460 1461 return (0); 1462 } 1463 1464 static void 1465 bge_free_rx_ring_std(struct bge_softc *sc) 1466 { 1467 int i; 1468 1469 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1470 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1471 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1472 sc->bge_cdata.bge_rx_std_dmamap[i], 1473 BUS_DMASYNC_POSTREAD); 1474 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1475 sc->bge_cdata.bge_rx_std_dmamap[i]); 1476 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1477 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1478 } 1479 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1480 sizeof(struct bge_rx_bd)); 1481 } 1482 } 1483 1484 static int 1485 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1486 { 1487 struct bge_rcb *rcb; 1488 int error, i; 1489 1490 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1491 sc->bge_jumbo = 0; 1492 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1493 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1494 return (error); 1495 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1496 } 1497 1498 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1499 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1500 1501 sc->bge_jumbo = 0; 1502 1503 /* Enable the jumbo receive producer ring. */ 1504 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1505 rcb->bge_maxlen_flags = 1506 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1507 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1508 1509 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1510 1511 return (0); 1512 } 1513 1514 static void 1515 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1516 { 1517 int i; 1518 1519 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1520 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1521 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1522 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1523 BUS_DMASYNC_POSTREAD); 1524 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1525 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1526 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1527 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1528 } 1529 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1530 sizeof(struct bge_extrx_bd)); 1531 } 1532 } 1533 1534 static void 1535 bge_free_tx_ring(struct bge_softc *sc) 1536 { 1537 int i; 1538 1539 if (sc->bge_ldata.bge_tx_ring == NULL) 1540 return; 1541 1542 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1543 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1544 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1545 sc->bge_cdata.bge_tx_dmamap[i], 1546 BUS_DMASYNC_POSTWRITE); 1547 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1548 sc->bge_cdata.bge_tx_dmamap[i]); 1549 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1550 sc->bge_cdata.bge_tx_chain[i] = NULL; 1551 } 1552 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1553 sizeof(struct bge_tx_bd)); 1554 } 1555 } 1556 1557 static int 1558 bge_init_tx_ring(struct bge_softc *sc) 1559 { 1560 sc->bge_txcnt = 0; 1561 sc->bge_tx_saved_considx = 0; 1562 1563 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1564 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1565 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1566 1567 /* Initialize transmit producer index for host-memory send ring. */ 1568 sc->bge_tx_prodidx = 0; 1569 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1570 1571 /* 5700 b2 errata */ 1572 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1573 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1574 1575 /* NIC-memory send ring not used; initialize to zero. */ 1576 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1577 /* 5700 b2 errata */ 1578 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1579 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1580 1581 return (0); 1582 } 1583 1584 static void 1585 bge_setpromisc(struct bge_softc *sc) 1586 { 1587 struct ifnet *ifp; 1588 1589 BGE_LOCK_ASSERT(sc); 1590 1591 ifp = sc->bge_ifp; 1592 1593 /* Enable or disable promiscuous mode as needed. */ 1594 if (ifp->if_flags & IFF_PROMISC) 1595 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1596 else 1597 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1598 } 1599 1600 static void 1601 bge_setmulti(struct bge_softc *sc) 1602 { 1603 struct ifnet *ifp; 1604 struct ifmultiaddr *ifma; 1605 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1606 int h, i; 1607 1608 BGE_LOCK_ASSERT(sc); 1609 1610 ifp = sc->bge_ifp; 1611 1612 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 1613 for (i = 0; i < 4; i++) 1614 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1615 return; 1616 } 1617 1618 /* First, zot all the existing filters. */ 1619 for (i = 0; i < 4; i++) 1620 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1621 1622 /* Now program new ones. */ 1623 if_maddr_rlock(ifp); 1624 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1625 if (ifma->ifma_addr->sa_family != AF_LINK) 1626 continue; 1627 h = ether_crc32_le(LLADDR((struct sockaddr_dl *) 1628 ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F; 1629 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1630 } 1631 if_maddr_runlock(ifp); 1632 1633 for (i = 0; i < 4; i++) 1634 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1635 } 1636 1637 static void 1638 bge_setvlan(struct bge_softc *sc) 1639 { 1640 struct ifnet *ifp; 1641 1642 BGE_LOCK_ASSERT(sc); 1643 1644 ifp = sc->bge_ifp; 1645 1646 /* Enable or disable VLAN tag stripping as needed. */ 1647 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) 1648 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1649 else 1650 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1651 } 1652 1653 static void 1654 bge_sig_pre_reset(struct bge_softc *sc, int type) 1655 { 1656 1657 /* 1658 * Some chips don't like this so only do this if ASF is enabled 1659 */ 1660 if (sc->bge_asf_mode) 1661 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1662 1663 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1664 switch (type) { 1665 case BGE_RESET_START: 1666 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1667 BGE_FW_DRV_STATE_START); 1668 break; 1669 case BGE_RESET_SHUTDOWN: 1670 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1671 BGE_FW_DRV_STATE_UNLOAD); 1672 break; 1673 case BGE_RESET_SUSPEND: 1674 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1675 BGE_FW_DRV_STATE_SUSPEND); 1676 break; 1677 } 1678 } 1679 1680 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1681 bge_ape_driver_state_change(sc, type); 1682 } 1683 1684 static void 1685 bge_sig_post_reset(struct bge_softc *sc, int type) 1686 { 1687 1688 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1689 switch (type) { 1690 case BGE_RESET_START: 1691 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1692 BGE_FW_DRV_STATE_START_DONE); 1693 /* START DONE */ 1694 break; 1695 case BGE_RESET_SHUTDOWN: 1696 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1697 BGE_FW_DRV_STATE_UNLOAD_DONE); 1698 break; 1699 } 1700 } 1701 if (type == BGE_RESET_SHUTDOWN) 1702 bge_ape_driver_state_change(sc, type); 1703 } 1704 1705 static void 1706 bge_sig_legacy(struct bge_softc *sc, int type) 1707 { 1708 1709 if (sc->bge_asf_mode) { 1710 switch (type) { 1711 case BGE_RESET_START: 1712 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1713 BGE_FW_DRV_STATE_START); 1714 break; 1715 case BGE_RESET_SHUTDOWN: 1716 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1717 BGE_FW_DRV_STATE_UNLOAD); 1718 break; 1719 } 1720 } 1721 } 1722 1723 static void 1724 bge_stop_fw(struct bge_softc *sc) 1725 { 1726 int i; 1727 1728 if (sc->bge_asf_mode) { 1729 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1730 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1731 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1732 1733 for (i = 0; i < 100; i++ ) { 1734 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1735 BGE_RX_CPU_DRV_EVENT)) 1736 break; 1737 DELAY(10); 1738 } 1739 } 1740 } 1741 1742 static uint32_t 1743 bge_dma_swap_options(struct bge_softc *sc) 1744 { 1745 uint32_t dma_options; 1746 1747 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1748 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1749 #if BYTE_ORDER == BIG_ENDIAN 1750 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1751 #endif 1752 return (dma_options); 1753 } 1754 1755 /* 1756 * Do endian, PCI and DMA initialization. 1757 */ 1758 static int 1759 bge_chipinit(struct bge_softc *sc) 1760 { 1761 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1762 uint16_t val; 1763 int i; 1764 1765 /* Set endianness before we access any non-PCI registers. */ 1766 misc_ctl = BGE_INIT; 1767 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1768 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1769 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1770 1771 /* 1772 * Clear the MAC statistics block in the NIC's 1773 * internal memory. 1774 */ 1775 for (i = BGE_STATS_BLOCK; 1776 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1777 BGE_MEMWIN_WRITE(sc, i, 0); 1778 1779 for (i = BGE_STATUS_BLOCK; 1780 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1781 BGE_MEMWIN_WRITE(sc, i, 0); 1782 1783 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1784 /* 1785 * Fix data corruption caused by non-qword write with WB. 1786 * Fix master abort in PCI mode. 1787 * Fix PCI latency timer. 1788 */ 1789 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1790 val |= (1 << 10) | (1 << 12) | (1 << 13); 1791 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1792 } 1793 1794 /* 1795 * Set up the PCI DMA control register. 1796 */ 1797 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1798 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1799 if (sc->bge_flags & BGE_FLAG_PCIE) { 1800 if (sc->bge_mps >= 256) 1801 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1802 else 1803 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1804 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1805 if (BGE_IS_5714_FAMILY(sc)) { 1806 /* 256 bytes for read and write. */ 1807 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1808 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1809 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1810 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1811 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1812 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1813 /* 1814 * In the BCM5703, the DMA read watermark should 1815 * be set to less than or equal to the maximum 1816 * memory read byte count of the PCI-X command 1817 * register. 1818 */ 1819 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1820 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1821 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1822 /* 1536 bytes for read, 384 bytes for write. */ 1823 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1824 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1825 } else { 1826 /* 384 bytes for read and write. */ 1827 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1828 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1829 0x0F; 1830 } 1831 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1832 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1833 uint32_t tmp; 1834 1835 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1836 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1837 if (tmp == 6 || tmp == 7) 1838 dma_rw_ctl |= 1839 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1840 1841 /* Set PCI-X DMA write workaround. */ 1842 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1843 } 1844 } else { 1845 /* Conventional PCI bus: 256 bytes for read and write. */ 1846 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1847 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1848 1849 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1850 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1851 dma_rw_ctl |= 0x0F; 1852 } 1853 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1854 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1855 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1856 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1857 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1858 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1859 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1860 if (BGE_IS_5717_PLUS(sc)) { 1861 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1862 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1863 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1864 /* 1865 * Enable HW workaround for controllers that misinterpret 1866 * a status tag update and leave interrupts permanently 1867 * disabled. 1868 */ 1869 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1870 sc->bge_asicrev != BGE_ASICREV_BCM57765) 1871 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1872 } 1873 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1874 1875 /* 1876 * Set up general mode register. 1877 */ 1878 mode_ctl = bge_dma_swap_options(sc); 1879 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 1880 /* Retain Host-2-BMC settings written by APE firmware. */ 1881 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1882 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1883 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1884 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1885 } 1886 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1887 BGE_MODECTL_TX_NO_PHDR_CSUM; 1888 1889 /* 1890 * BCM5701 B5 have a bug causing data corruption when using 1891 * 64-bit DMA reads, which can be terminated early and then 1892 * completed later as 32-bit accesses, in combination with 1893 * certain bridges. 1894 */ 1895 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1896 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1897 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1898 1899 /* 1900 * Tell the firmware the driver is running 1901 */ 1902 if (sc->bge_asf_mode & ASF_STACKUP) 1903 mode_ctl |= BGE_MODECTL_STACKUP; 1904 1905 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1906 1907 /* 1908 * Disable memory write invalidate. Apparently it is not supported 1909 * properly by these devices. Also ensure that INTx isn't disabled, 1910 * as these chips need it even when using MSI. 1911 */ 1912 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, 1913 PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4); 1914 1915 /* Set the timer prescaler (always 66Mhz) */ 1916 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1917 1918 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1919 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1920 DELAY(40); /* XXX */ 1921 1922 /* Put PHY into ready state */ 1923 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1924 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1925 DELAY(40); 1926 } 1927 1928 return (0); 1929 } 1930 1931 static int 1932 bge_blockinit(struct bge_softc *sc) 1933 { 1934 struct bge_rcb *rcb; 1935 bus_size_t vrcb; 1936 bge_hostaddr taddr; 1937 uint32_t dmactl, val; 1938 int i, limit; 1939 1940 /* 1941 * Initialize the memory window pointer register so that 1942 * we can access the first 32K of internal NIC RAM. This will 1943 * allow us to set up the TX send ring RCBs and the RX return 1944 * ring RCBs, plus other things which live in NIC memory. 1945 */ 1946 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1947 1948 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1949 1950 if (!(BGE_IS_5705_PLUS(sc))) { 1951 /* Configure mbuf memory pool */ 1952 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1953 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1954 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1955 else 1956 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1957 1958 /* Configure DMA resource pool */ 1959 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1960 BGE_DMA_DESCRIPTORS); 1961 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1962 } 1963 1964 /* Configure mbuf pool watermarks */ 1965 if (BGE_IS_5717_PLUS(sc)) { 1966 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1967 if (sc->bge_ifp->if_mtu > ETHERMTU) { 1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1969 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1970 } else { 1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1973 } 1974 } else if (!BGE_IS_5705_PLUS(sc)) { 1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1976 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1977 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1978 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1979 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1980 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1981 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1982 } else { 1983 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1984 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1985 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1986 } 1987 1988 /* Configure DMA resource watermarks */ 1989 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1990 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1991 1992 /* Enable buffer manager */ 1993 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1994 /* 1995 * Change the arbitration algorithm of TXMBUF read request to 1996 * round-robin instead of priority based for BCM5719. When 1997 * TXFIFO is almost empty, RDMA will hold its request until 1998 * TXFIFO is not almost empty. 1999 */ 2000 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2001 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 2002 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 2003 2004 /* Poll for buffer manager start indication */ 2005 for (i = 0; i < BGE_TIMEOUT; i++) { 2006 DELAY(10); 2007 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2008 break; 2009 } 2010 2011 if (i == BGE_TIMEOUT) { 2012 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2013 return (ENXIO); 2014 } 2015 2016 /* Enable flow-through queues */ 2017 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2018 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2019 2020 /* Wait until queue initialization is complete */ 2021 for (i = 0; i < BGE_TIMEOUT; i++) { 2022 DELAY(10); 2023 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2024 break; 2025 } 2026 2027 if (i == BGE_TIMEOUT) { 2028 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2029 return (ENXIO); 2030 } 2031 2032 /* 2033 * Summary of rings supported by the controller: 2034 * 2035 * Standard Receive Producer Ring 2036 * - This ring is used to feed receive buffers for "standard" 2037 * sized frames (typically 1536 bytes) to the controller. 2038 * 2039 * Jumbo Receive Producer Ring 2040 * - This ring is used to feed receive buffers for jumbo sized 2041 * frames (i.e. anything bigger than the "standard" frames) 2042 * to the controller. 2043 * 2044 * Mini Receive Producer Ring 2045 * - This ring is used to feed receive buffers for "mini" 2046 * sized frames to the controller. 2047 * - This feature required external memory for the controller 2048 * but was never used in a production system. Should always 2049 * be disabled. 2050 * 2051 * Receive Return Ring 2052 * - After the controller has placed an incoming frame into a 2053 * receive buffer that buffer is moved into a receive return 2054 * ring. The driver is then responsible to passing the 2055 * buffer up to the stack. Many versions of the controller 2056 * support multiple RR rings. 2057 * 2058 * Send Ring 2059 * - This ring is used for outgoing frames. Many versions of 2060 * the controller support multiple send rings. 2061 */ 2062 2063 /* Initialize the standard receive producer ring control block. */ 2064 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2065 rcb->bge_hostaddr.bge_addr_lo = 2066 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2067 rcb->bge_hostaddr.bge_addr_hi = 2068 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2069 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2070 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2071 if (BGE_IS_5717_PLUS(sc)) { 2072 /* 2073 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2074 * Bits 15-2 : Maximum RX frame size 2075 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2076 * Bit 0 : Reserved 2077 */ 2078 rcb->bge_maxlen_flags = 2079 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2080 } else if (BGE_IS_5705_PLUS(sc)) { 2081 /* 2082 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2083 * Bits 15-2 : Reserved (should be 0) 2084 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2085 * Bit 0 : Reserved 2086 */ 2087 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2088 } else { 2089 /* 2090 * Ring size is always XXX entries 2091 * Bits 31-16: Maximum RX frame size 2092 * Bits 15-2 : Reserved (should be 0) 2093 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2094 * Bit 0 : Reserved 2095 */ 2096 rcb->bge_maxlen_flags = 2097 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2098 } 2099 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2100 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2101 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2102 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2103 else 2104 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2105 /* Write the standard receive producer ring control block. */ 2106 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2107 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2108 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2109 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2110 2111 /* Reset the standard receive producer ring producer index. */ 2112 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2113 2114 /* 2115 * Initialize the jumbo RX producer ring control 2116 * block. We set the 'ring disabled' bit in the 2117 * flags field until we're actually ready to start 2118 * using this ring (i.e. once we set the MTU 2119 * high enough to require it). 2120 */ 2121 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2122 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2123 /* Get the jumbo receive producer ring RCB parameters. */ 2124 rcb->bge_hostaddr.bge_addr_lo = 2125 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2126 rcb->bge_hostaddr.bge_addr_hi = 2127 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2128 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2129 sc->bge_cdata.bge_rx_jumbo_ring_map, 2130 BUS_DMASYNC_PREREAD); 2131 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2132 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2133 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2134 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2135 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2136 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2137 else 2138 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2139 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2140 rcb->bge_hostaddr.bge_addr_hi); 2141 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2142 rcb->bge_hostaddr.bge_addr_lo); 2143 /* Program the jumbo receive producer ring RCB parameters. */ 2144 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2145 rcb->bge_maxlen_flags); 2146 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2147 /* Reset the jumbo receive producer ring producer index. */ 2148 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2149 } 2150 2151 /* Disable the mini receive producer ring RCB. */ 2152 if (BGE_IS_5700_FAMILY(sc)) { 2153 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2154 rcb->bge_maxlen_flags = 2155 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2156 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2157 rcb->bge_maxlen_flags); 2158 /* Reset the mini receive producer ring producer index. */ 2159 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2160 } 2161 2162 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2163 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2164 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2165 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2166 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2167 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2168 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2169 } 2170 /* 2171 * The BD ring replenish thresholds control how often the 2172 * hardware fetches new BD's from the producer rings in host 2173 * memory. Setting the value too low on a busy system can 2174 * starve the hardware and recue the throughpout. 2175 * 2176 * Set the BD ring replentish thresholds. The recommended 2177 * values are 1/8th the number of descriptors allocated to 2178 * each ring. 2179 * XXX The 5754 requires a lower threshold, so it might be a 2180 * requirement of all 575x family chips. The Linux driver sets 2181 * the lower threshold for all 5705 family chips as well, but there 2182 * are reports that it might not need to be so strict. 2183 * 2184 * XXX Linux does some extra fiddling here for the 5906 parts as 2185 * well. 2186 */ 2187 if (BGE_IS_5705_PLUS(sc)) 2188 val = 8; 2189 else 2190 val = BGE_STD_RX_RING_CNT / 8; 2191 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2192 if (BGE_IS_JUMBO_CAPABLE(sc)) 2193 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2194 BGE_JUMBO_RX_RING_CNT/8); 2195 if (BGE_IS_5717_PLUS(sc)) { 2196 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2197 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2198 } 2199 2200 /* 2201 * Disable all send rings by setting the 'ring disabled' bit 2202 * in the flags field of all the TX send ring control blocks, 2203 * located in NIC memory. 2204 */ 2205 if (!BGE_IS_5705_PLUS(sc)) 2206 /* 5700 to 5704 had 16 send rings. */ 2207 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2208 else 2209 limit = 1; 2210 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2211 for (i = 0; i < limit; i++) { 2212 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2213 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2214 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2215 vrcb += sizeof(struct bge_rcb); 2216 } 2217 2218 /* Configure send ring RCB 0 (we use only the first ring) */ 2219 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2220 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2221 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2222 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2223 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2224 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2225 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2226 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2227 else 2228 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2229 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2230 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2231 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2232 2233 /* 2234 * Disable all receive return rings by setting the 2235 * 'ring diabled' bit in the flags field of all the receive 2236 * return ring control blocks, located in NIC memory. 2237 */ 2238 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2239 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2240 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2241 /* Should be 17, use 16 until we get an SRAM map. */ 2242 limit = 16; 2243 } else if (!BGE_IS_5705_PLUS(sc)) 2244 limit = BGE_RX_RINGS_MAX; 2245 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2246 sc->bge_asicrev == BGE_ASICREV_BCM57765) 2247 limit = 4; 2248 else 2249 limit = 1; 2250 /* Disable all receive return rings. */ 2251 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2252 for (i = 0; i < limit; i++) { 2253 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2254 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2255 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2256 BGE_RCB_FLAG_RING_DISABLED); 2257 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2258 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2259 (i * (sizeof(uint64_t))), 0); 2260 vrcb += sizeof(struct bge_rcb); 2261 } 2262 2263 /* 2264 * Set up receive return ring 0. Note that the NIC address 2265 * for RX return rings is 0x0. The return rings live entirely 2266 * within the host, so the nicaddr field in the RCB isn't used. 2267 */ 2268 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2269 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2270 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2271 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2272 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2273 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2274 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2275 2276 /* Set random backoff seed for TX */ 2277 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2278 IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 2279 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 2280 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] + 2281 BGE_TX_BACKOFF_SEED_MASK); 2282 2283 /* Set inter-packet gap */ 2284 val = 0x2620; 2285 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 2286 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2287 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2288 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2289 2290 /* 2291 * Specify which ring to use for packets that don't match 2292 * any RX rules. 2293 */ 2294 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2295 2296 /* 2297 * Configure number of RX lists. One interrupt distribution 2298 * list, sixteen active lists, one bad frames class. 2299 */ 2300 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2301 2302 /* Inialize RX list placement stats mask. */ 2303 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2304 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2305 2306 /* Disable host coalescing until we get it set up */ 2307 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2308 2309 /* Poll to make sure it's shut down. */ 2310 for (i = 0; i < BGE_TIMEOUT; i++) { 2311 DELAY(10); 2312 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2313 break; 2314 } 2315 2316 if (i == BGE_TIMEOUT) { 2317 device_printf(sc->bge_dev, 2318 "host coalescing engine failed to idle\n"); 2319 return (ENXIO); 2320 } 2321 2322 /* Set up host coalescing defaults */ 2323 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2324 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2325 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2326 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2327 if (!(BGE_IS_5705_PLUS(sc))) { 2328 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2329 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2330 } 2331 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2332 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2333 2334 /* Set up address of statistics block */ 2335 if (!(BGE_IS_5705_PLUS(sc))) { 2336 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2337 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2338 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2339 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2340 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2341 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2342 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2343 } 2344 2345 /* Set up address of status block */ 2346 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2347 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2348 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2349 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2350 2351 /* Set up status block size. */ 2352 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2353 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2354 val = BGE_STATBLKSZ_FULL; 2355 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2356 } else { 2357 val = BGE_STATBLKSZ_32BYTE; 2358 bzero(sc->bge_ldata.bge_status_block, 32); 2359 } 2360 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2361 sc->bge_cdata.bge_status_map, 2362 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2363 2364 /* Turn on host coalescing state machine */ 2365 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2366 2367 /* Turn on RX BD completion state machine and enable attentions */ 2368 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2369 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2370 2371 /* Turn on RX list placement state machine */ 2372 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2373 2374 /* Turn on RX list selector state machine. */ 2375 if (!(BGE_IS_5705_PLUS(sc))) 2376 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2377 2378 /* Turn on DMA, clear stats. */ 2379 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2380 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2381 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2382 BGE_MACMODE_FRMHDR_DMA_ENB; 2383 2384 if (sc->bge_flags & BGE_FLAG_TBI) 2385 val |= BGE_PORTMODE_TBI; 2386 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2387 val |= BGE_PORTMODE_GMII; 2388 else 2389 val |= BGE_PORTMODE_MII; 2390 2391 /* Allow APE to send/receive frames. */ 2392 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2393 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2394 2395 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2396 DELAY(40); 2397 2398 /* Set misc. local control, enable interrupts on attentions */ 2399 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2400 2401 #ifdef notdef 2402 /* Assert GPIO pins for PHY reset */ 2403 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2404 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2405 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2406 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2407 #endif 2408 2409 /* Turn on DMA completion state machine */ 2410 if (!(BGE_IS_5705_PLUS(sc))) 2411 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2412 2413 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2414 2415 /* Enable host coalescing bug fix. */ 2416 if (BGE_IS_5755_PLUS(sc)) 2417 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2418 2419 /* Request larger DMA burst size to get better performance. */ 2420 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2421 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2422 2423 /* Turn on write DMA state machine */ 2424 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2425 DELAY(40); 2426 2427 /* Turn on read DMA state machine */ 2428 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2429 2430 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2431 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2432 2433 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2434 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2435 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2436 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2437 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2438 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2439 if (sc->bge_flags & BGE_FLAG_PCIE) 2440 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2441 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2442 val |= BGE_RDMAMODE_TSO4_ENABLE; 2443 if (sc->bge_flags & BGE_FLAG_TSO3 || 2444 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2445 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2446 val |= BGE_RDMAMODE_TSO6_ENABLE; 2447 } 2448 2449 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2450 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2451 BGE_RDMAMODE_H2BNC_VLAN_DET; 2452 /* 2453 * Allow multiple outstanding read requests from 2454 * non-LSO read DMA engine. 2455 */ 2456 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2457 } 2458 2459 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2460 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2461 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2462 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2463 BGE_IS_5717_PLUS(sc)) { 2464 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 2465 /* 2466 * Adjust tx margin to prevent TX data corruption and 2467 * fix internal FIFO overflow. 2468 */ 2469 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 2470 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 2471 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2472 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2473 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2474 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2475 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2476 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2477 } 2478 /* 2479 * Enable fix for read DMA FIFO overruns. 2480 * The fix is to limit the number of RX BDs 2481 * the hardware would fetch at a fime. 2482 */ 2483 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 2484 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2485 } 2486 2487 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2488 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2489 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2490 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2491 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2492 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2493 /* 2494 * Allow 4KB burst length reads for non-LSO frames. 2495 * Enable 512B burst length reads for buffer descriptors. 2496 */ 2497 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2498 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2499 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2500 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2501 } 2502 2503 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2504 DELAY(40); 2505 2506 /* Turn on RX data completion state machine */ 2507 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2508 2509 /* Turn on RX BD initiator state machine */ 2510 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2511 2512 /* Turn on RX data and RX BD initiator state machine */ 2513 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2514 2515 /* Turn on Mbuf cluster free state machine */ 2516 if (!(BGE_IS_5705_PLUS(sc))) 2517 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2518 2519 /* Turn on send BD completion state machine */ 2520 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2521 2522 /* Turn on send data completion state machine */ 2523 val = BGE_SDCMODE_ENABLE; 2524 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2525 val |= BGE_SDCMODE_CDELAY; 2526 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2527 2528 /* Turn on send data initiator state machine */ 2529 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2530 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2531 BGE_SDIMODE_HW_LSO_PRE_DMA); 2532 else 2533 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2534 2535 /* Turn on send BD initiator state machine */ 2536 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2537 2538 /* Turn on send BD selector state machine */ 2539 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2540 2541 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2542 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2543 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2544 2545 /* ack/clear link change events */ 2546 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2547 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2548 BGE_MACSTAT_LINK_CHANGED); 2549 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2550 2551 /* 2552 * Enable attention when the link has changed state for 2553 * devices that use auto polling. 2554 */ 2555 if (sc->bge_flags & BGE_FLAG_TBI) { 2556 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2557 } else { 2558 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2559 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2560 DELAY(80); 2561 } 2562 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2563 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2564 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2565 BGE_EVTENB_MI_INTERRUPT); 2566 } 2567 2568 /* 2569 * Clear any pending link state attention. 2570 * Otherwise some link state change events may be lost until attention 2571 * is cleared by bge_intr() -> bge_link_upd() sequence. 2572 * It's not necessary on newer BCM chips - perhaps enabling link 2573 * state change attentions implies clearing pending attention. 2574 */ 2575 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2576 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2577 BGE_MACSTAT_LINK_CHANGED); 2578 2579 /* Enable link state change attentions. */ 2580 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2581 2582 return (0); 2583 } 2584 2585 const struct bge_revision * 2586 bge_lookup_rev(uint32_t chipid) 2587 { 2588 const struct bge_revision *br; 2589 2590 for (br = bge_revisions; br->br_name != NULL; br++) { 2591 if (br->br_chipid == chipid) 2592 return (br); 2593 } 2594 2595 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2596 if (br->br_chipid == BGE_ASICREV(chipid)) 2597 return (br); 2598 } 2599 2600 return (NULL); 2601 } 2602 2603 const struct bge_vendor * 2604 bge_lookup_vendor(uint16_t vid) 2605 { 2606 const struct bge_vendor *v; 2607 2608 for (v = bge_vendors; v->v_name != NULL; v++) 2609 if (v->v_id == vid) 2610 return (v); 2611 2612 panic("%s: unknown vendor %d", __func__, vid); 2613 return (NULL); 2614 } 2615 2616 /* 2617 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2618 * against our list and return its name if we find a match. 2619 * 2620 * Note that since the Broadcom controller contains VPD support, we 2621 * try to get the device name string from the controller itself instead 2622 * of the compiled-in string. It guarantees we'll always announce the 2623 * right product name. We fall back to the compiled-in string when 2624 * VPD is unavailable or corrupt. 2625 */ 2626 static int 2627 bge_probe(device_t dev) 2628 { 2629 char buf[96]; 2630 char model[64]; 2631 const struct bge_revision *br; 2632 const char *pname; 2633 struct bge_softc *sc = device_get_softc(dev); 2634 const struct bge_type *t = bge_devs; 2635 const struct bge_vendor *v; 2636 uint32_t id; 2637 uint16_t did, vid; 2638 2639 sc->bge_dev = dev; 2640 vid = pci_get_vendor(dev); 2641 did = pci_get_device(dev); 2642 while(t->bge_vid != 0) { 2643 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2644 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2645 BGE_PCIMISCCTL_ASICREV_SHIFT; 2646 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2647 /* 2648 * Find the ASCI revision. Different chips 2649 * use different registers. 2650 */ 2651 switch (pci_get_device(dev)) { 2652 case BCOM_DEVICEID_BCM5717: 2653 case BCOM_DEVICEID_BCM5718: 2654 case BCOM_DEVICEID_BCM5719: 2655 case BCOM_DEVICEID_BCM5720: 2656 id = pci_read_config(dev, 2657 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2658 break; 2659 case BCOM_DEVICEID_BCM57761: 2660 case BCOM_DEVICEID_BCM57765: 2661 case BCOM_DEVICEID_BCM57781: 2662 case BCOM_DEVICEID_BCM57785: 2663 case BCOM_DEVICEID_BCM57791: 2664 case BCOM_DEVICEID_BCM57795: 2665 id = pci_read_config(dev, 2666 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2667 break; 2668 default: 2669 id = pci_read_config(dev, 2670 BGE_PCI_PRODID_ASICREV, 4); 2671 } 2672 } 2673 br = bge_lookup_rev(id); 2674 v = bge_lookup_vendor(vid); 2675 if (bge_has_eaddr(sc) && 2676 pci_get_vpd_ident(dev, &pname) == 0) 2677 snprintf(model, 64, "%s", pname); 2678 else 2679 snprintf(model, 64, "%s %s", v->v_name, 2680 br != NULL ? br->br_name : 2681 "NetXtreme Ethernet Controller"); 2682 snprintf(buf, 96, "%s, %sASIC rev. %#08x", model, 2683 br != NULL ? "" : "unknown ", id); 2684 device_set_desc_copy(dev, buf); 2685 return (0); 2686 } 2687 t++; 2688 } 2689 2690 return (ENXIO); 2691 } 2692 2693 static void 2694 bge_dma_free(struct bge_softc *sc) 2695 { 2696 int i; 2697 2698 /* Destroy DMA maps for RX buffers. */ 2699 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2700 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2701 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2702 sc->bge_cdata.bge_rx_std_dmamap[i]); 2703 } 2704 if (sc->bge_cdata.bge_rx_std_sparemap) 2705 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2706 sc->bge_cdata.bge_rx_std_sparemap); 2707 2708 /* Destroy DMA maps for jumbo RX buffers. */ 2709 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2710 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2711 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2712 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2713 } 2714 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2715 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2716 sc->bge_cdata.bge_rx_jumbo_sparemap); 2717 2718 /* Destroy DMA maps for TX buffers. */ 2719 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2720 if (sc->bge_cdata.bge_tx_dmamap[i]) 2721 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2722 sc->bge_cdata.bge_tx_dmamap[i]); 2723 } 2724 2725 if (sc->bge_cdata.bge_rx_mtag) 2726 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2727 if (sc->bge_cdata.bge_mtag_jumbo) 2728 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2729 if (sc->bge_cdata.bge_tx_mtag) 2730 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2731 2732 /* Destroy standard RX ring. */ 2733 if (sc->bge_cdata.bge_rx_std_ring_map) 2734 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2735 sc->bge_cdata.bge_rx_std_ring_map); 2736 if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring) 2737 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2738 sc->bge_ldata.bge_rx_std_ring, 2739 sc->bge_cdata.bge_rx_std_ring_map); 2740 2741 if (sc->bge_cdata.bge_rx_std_ring_tag) 2742 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2743 2744 /* Destroy jumbo RX ring. */ 2745 if (sc->bge_cdata.bge_rx_jumbo_ring_map) 2746 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2747 sc->bge_cdata.bge_rx_jumbo_ring_map); 2748 2749 if (sc->bge_cdata.bge_rx_jumbo_ring_map && 2750 sc->bge_ldata.bge_rx_jumbo_ring) 2751 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2752 sc->bge_ldata.bge_rx_jumbo_ring, 2753 sc->bge_cdata.bge_rx_jumbo_ring_map); 2754 2755 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2756 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2757 2758 /* Destroy RX return ring. */ 2759 if (sc->bge_cdata.bge_rx_return_ring_map) 2760 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2761 sc->bge_cdata.bge_rx_return_ring_map); 2762 2763 if (sc->bge_cdata.bge_rx_return_ring_map && 2764 sc->bge_ldata.bge_rx_return_ring) 2765 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2766 sc->bge_ldata.bge_rx_return_ring, 2767 sc->bge_cdata.bge_rx_return_ring_map); 2768 2769 if (sc->bge_cdata.bge_rx_return_ring_tag) 2770 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2771 2772 /* Destroy TX ring. */ 2773 if (sc->bge_cdata.bge_tx_ring_map) 2774 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2775 sc->bge_cdata.bge_tx_ring_map); 2776 2777 if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring) 2778 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2779 sc->bge_ldata.bge_tx_ring, 2780 sc->bge_cdata.bge_tx_ring_map); 2781 2782 if (sc->bge_cdata.bge_tx_ring_tag) 2783 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2784 2785 /* Destroy status block. */ 2786 if (sc->bge_cdata.bge_status_map) 2787 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2788 sc->bge_cdata.bge_status_map); 2789 2790 if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block) 2791 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2792 sc->bge_ldata.bge_status_block, 2793 sc->bge_cdata.bge_status_map); 2794 2795 if (sc->bge_cdata.bge_status_tag) 2796 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2797 2798 /* Destroy statistics block. */ 2799 if (sc->bge_cdata.bge_stats_map) 2800 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2801 sc->bge_cdata.bge_stats_map); 2802 2803 if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats) 2804 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2805 sc->bge_ldata.bge_stats, 2806 sc->bge_cdata.bge_stats_map); 2807 2808 if (sc->bge_cdata.bge_stats_tag) 2809 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2810 2811 if (sc->bge_cdata.bge_buffer_tag) 2812 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2813 2814 /* Destroy the parent tag. */ 2815 if (sc->bge_cdata.bge_parent_tag) 2816 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2817 } 2818 2819 static int 2820 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2821 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2822 bus_addr_t *paddr, const char *msg) 2823 { 2824 struct bge_dmamap_arg ctx; 2825 int error; 2826 2827 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2828 alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 2829 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2830 if (error != 0) { 2831 device_printf(sc->bge_dev, 2832 "could not create %s dma tag\n", msg); 2833 return (ENOMEM); 2834 } 2835 /* Allocate DMA'able memory for ring. */ 2836 error = bus_dmamem_alloc(*tag, (void **)ring, 2837 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2838 if (error != 0) { 2839 device_printf(sc->bge_dev, 2840 "could not allocate DMA'able memory for %s\n", msg); 2841 return (ENOMEM); 2842 } 2843 /* Load the address of the ring. */ 2844 ctx.bge_busaddr = 0; 2845 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2846 &ctx, BUS_DMA_NOWAIT); 2847 if (error != 0) { 2848 device_printf(sc->bge_dev, 2849 "could not load DMA'able memory for %s\n", msg); 2850 return (ENOMEM); 2851 } 2852 *paddr = ctx.bge_busaddr; 2853 return (0); 2854 } 2855 2856 static int 2857 bge_dma_alloc(struct bge_softc *sc) 2858 { 2859 bus_addr_t lowaddr; 2860 bus_size_t rxmaxsegsz, sbsz, txsegsz, txmaxsegsz; 2861 int i, error; 2862 2863 lowaddr = BUS_SPACE_MAXADDR; 2864 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2865 lowaddr = BGE_DMA_MAXADDR; 2866 /* 2867 * Allocate the parent bus DMA tag appropriate for PCI. 2868 */ 2869 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2870 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2871 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2872 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2873 if (error != 0) { 2874 device_printf(sc->bge_dev, 2875 "could not allocate parent dma tag\n"); 2876 return (ENOMEM); 2877 } 2878 2879 /* Create tag for standard RX ring. */ 2880 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2881 &sc->bge_cdata.bge_rx_std_ring_tag, 2882 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2883 &sc->bge_cdata.bge_rx_std_ring_map, 2884 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2885 if (error) 2886 return (error); 2887 2888 /* Create tag for RX return ring. */ 2889 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2890 &sc->bge_cdata.bge_rx_return_ring_tag, 2891 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2892 &sc->bge_cdata.bge_rx_return_ring_map, 2893 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2894 if (error) 2895 return (error); 2896 2897 /* Create tag for TX ring. */ 2898 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2899 &sc->bge_cdata.bge_tx_ring_tag, 2900 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2901 &sc->bge_cdata.bge_tx_ring_map, 2902 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2903 if (error) 2904 return (error); 2905 2906 /* 2907 * Create tag for status block. 2908 * Because we only use single Tx/Rx/Rx return ring, use 2909 * minimum status block size except BCM5700 AX/BX which 2910 * seems to want to see full status block size regardless 2911 * of configured number of ring. 2912 */ 2913 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2914 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2915 sbsz = BGE_STATUS_BLK_SZ; 2916 else 2917 sbsz = 32; 2918 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2919 &sc->bge_cdata.bge_status_tag, 2920 (uint8_t **)&sc->bge_ldata.bge_status_block, 2921 &sc->bge_cdata.bge_status_map, 2922 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2923 if (error) 2924 return (error); 2925 2926 /* Create tag for statistics block. */ 2927 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2928 &sc->bge_cdata.bge_stats_tag, 2929 (uint8_t **)&sc->bge_ldata.bge_stats, 2930 &sc->bge_cdata.bge_stats_map, 2931 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 2932 if (error) 2933 return (error); 2934 2935 /* Create tag for jumbo RX ring. */ 2936 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2937 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 2938 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 2939 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 2940 &sc->bge_cdata.bge_rx_jumbo_ring_map, 2941 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 2942 if (error) 2943 return (error); 2944 } 2945 2946 /* Create parent tag for buffers. */ 2947 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 2948 /* 2949 * XXX 2950 * watchdog timeout issue was observed on BCM5704 which 2951 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 2952 * Both limiting DMA address space to 32bits and flushing 2953 * mailbox write seem to address the issue. 2954 */ 2955 if (sc->bge_pcixcap != 0) 2956 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2957 } 2958 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 1, 0, lowaddr, 2959 BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 2960 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 2961 &sc->bge_cdata.bge_buffer_tag); 2962 if (error != 0) { 2963 device_printf(sc->bge_dev, 2964 "could not allocate buffer dma tag\n"); 2965 return (ENOMEM); 2966 } 2967 /* Create tag for Tx mbufs. */ 2968 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2969 txsegsz = BGE_TSOSEG_SZ; 2970 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 2971 } else { 2972 txsegsz = MCLBYTES; 2973 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 2974 } 2975 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 2976 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 2977 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 2978 &sc->bge_cdata.bge_tx_mtag); 2979 2980 if (error) { 2981 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 2982 return (ENOMEM); 2983 } 2984 2985 /* Create tag for Rx mbufs. */ 2986 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 2987 rxmaxsegsz = MJUM9BYTES; 2988 else 2989 rxmaxsegsz = MCLBYTES; 2990 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 2991 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 2992 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 2993 2994 if (error) { 2995 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 2996 return (ENOMEM); 2997 } 2998 2999 /* Create DMA maps for RX buffers. */ 3000 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3001 &sc->bge_cdata.bge_rx_std_sparemap); 3002 if (error) { 3003 device_printf(sc->bge_dev, 3004 "can't create spare DMA map for RX\n"); 3005 return (ENOMEM); 3006 } 3007 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3008 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3009 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3010 if (error) { 3011 device_printf(sc->bge_dev, 3012 "can't create DMA map for RX\n"); 3013 return (ENOMEM); 3014 } 3015 } 3016 3017 /* Create DMA maps for TX buffers. */ 3018 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3019 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3020 &sc->bge_cdata.bge_tx_dmamap[i]); 3021 if (error) { 3022 device_printf(sc->bge_dev, 3023 "can't create DMA map for TX\n"); 3024 return (ENOMEM); 3025 } 3026 } 3027 3028 /* Create tags for jumbo RX buffers. */ 3029 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3030 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3031 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3032 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3033 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3034 if (error) { 3035 device_printf(sc->bge_dev, 3036 "could not allocate jumbo dma tag\n"); 3037 return (ENOMEM); 3038 } 3039 /* Create DMA maps for jumbo RX buffers. */ 3040 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3041 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3042 if (error) { 3043 device_printf(sc->bge_dev, 3044 "can't create spare DMA map for jumbo RX\n"); 3045 return (ENOMEM); 3046 } 3047 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3048 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3049 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3050 if (error) { 3051 device_printf(sc->bge_dev, 3052 "can't create DMA map for jumbo RX\n"); 3053 return (ENOMEM); 3054 } 3055 } 3056 } 3057 3058 return (0); 3059 } 3060 3061 /* 3062 * Return true if this device has more than one port. 3063 */ 3064 static int 3065 bge_has_multiple_ports(struct bge_softc *sc) 3066 { 3067 device_t dev = sc->bge_dev; 3068 u_int b, d, f, fscan, s; 3069 3070 d = pci_get_domain(dev); 3071 b = pci_get_bus(dev); 3072 s = pci_get_slot(dev); 3073 f = pci_get_function(dev); 3074 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3075 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3076 return (1); 3077 return (0); 3078 } 3079 3080 /* 3081 * Return true if MSI can be used with this device. 3082 */ 3083 static int 3084 bge_can_use_msi(struct bge_softc *sc) 3085 { 3086 int can_use_msi = 0; 3087 3088 if (sc->bge_msi == 0) 3089 return (0); 3090 3091 /* Disable MSI for polling(4). */ 3092 #ifdef DEVICE_POLLING 3093 return (0); 3094 #endif 3095 switch (sc->bge_asicrev) { 3096 case BGE_ASICREV_BCM5714_A0: 3097 case BGE_ASICREV_BCM5714: 3098 /* 3099 * Apparently, MSI doesn't work when these chips are 3100 * configured in single-port mode. 3101 */ 3102 if (bge_has_multiple_ports(sc)) 3103 can_use_msi = 1; 3104 break; 3105 case BGE_ASICREV_BCM5750: 3106 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3107 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3108 can_use_msi = 1; 3109 break; 3110 default: 3111 if (BGE_IS_575X_PLUS(sc)) 3112 can_use_msi = 1; 3113 } 3114 return (can_use_msi); 3115 } 3116 3117 static int 3118 bge_mbox_reorder(struct bge_softc *sc) 3119 { 3120 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3121 static const struct mbox_reorder { 3122 const uint16_t vendor; 3123 const uint16_t device; 3124 const char *desc; 3125 } const mbox_reorder_lists[] = { 3126 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3127 }; 3128 devclass_t pci, pcib; 3129 device_t bus, dev; 3130 int i; 3131 3132 pci = devclass_find("pci"); 3133 pcib = devclass_find("pcib"); 3134 dev = sc->bge_dev; 3135 bus = device_get_parent(dev); 3136 for (;;) { 3137 dev = device_get_parent(bus); 3138 bus = device_get_parent(dev); 3139 if (device_get_devclass(dev) != pcib) 3140 break; 3141 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3142 if (pci_get_vendor(dev) == 3143 mbox_reorder_lists[i].vendor && 3144 pci_get_device(dev) == 3145 mbox_reorder_lists[i].device) { 3146 device_printf(sc->bge_dev, 3147 "enabling MBOX workaround for %s\n", 3148 mbox_reorder_lists[i].desc); 3149 return (1); 3150 } 3151 } 3152 if (device_get_devclass(bus) != pci) 3153 break; 3154 } 3155 return (0); 3156 } 3157 3158 static void 3159 bge_devinfo(struct bge_softc *sc) 3160 { 3161 uint32_t cfg, clk; 3162 3163 device_printf(sc->bge_dev, 3164 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3165 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3166 if (sc->bge_flags & BGE_FLAG_PCIE) 3167 printf("PCI-E\n"); 3168 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3169 printf("PCI-X "); 3170 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3171 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3172 clk = 133; 3173 else { 3174 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3175 switch (clk) { 3176 case 0: 3177 clk = 33; 3178 break; 3179 case 2: 3180 clk = 50; 3181 break; 3182 case 4: 3183 clk = 66; 3184 break; 3185 case 6: 3186 clk = 100; 3187 break; 3188 case 7: 3189 clk = 133; 3190 break; 3191 } 3192 } 3193 printf("%u MHz\n", clk); 3194 } else { 3195 if (sc->bge_pcixcap != 0) 3196 printf("PCI on PCI-X "); 3197 else 3198 printf("PCI "); 3199 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3200 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3201 clk = 66; 3202 else 3203 clk = 33; 3204 if (cfg & BGE_PCISTATE_32BIT_BUS) 3205 printf("%u MHz; 32bit\n", clk); 3206 else 3207 printf("%u MHz; 64bit\n", clk); 3208 } 3209 } 3210 3211 static int 3212 bge_attach(device_t dev) 3213 { 3214 struct ifnet *ifp; 3215 struct bge_softc *sc; 3216 uint32_t hwcfg = 0, misccfg, pcistate; 3217 u_char eaddr[ETHER_ADDR_LEN]; 3218 int capmask, error, msicount, reg, rid, trys; 3219 3220 sc = device_get_softc(dev); 3221 sc->bge_dev = dev; 3222 3223 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3224 TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3225 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3226 3227 /* 3228 * Map control/status registers. 3229 */ 3230 pci_enable_busmaster(dev); 3231 3232 rid = PCIR_BAR(0); 3233 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3234 RF_ACTIVE); 3235 3236 if (sc->bge_res == NULL) { 3237 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3238 error = ENXIO; 3239 goto fail; 3240 } 3241 3242 /* Save various chip information. */ 3243 sc->bge_func_addr = pci_get_function(dev); 3244 sc->bge_chipid = 3245 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 3246 BGE_PCIMISCCTL_ASICREV_SHIFT; 3247 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { 3248 /* 3249 * Find the ASCI revision. Different chips use different 3250 * registers. 3251 */ 3252 switch (pci_get_device(dev)) { 3253 case BCOM_DEVICEID_BCM5717: 3254 case BCOM_DEVICEID_BCM5718: 3255 case BCOM_DEVICEID_BCM5719: 3256 case BCOM_DEVICEID_BCM5720: 3257 sc->bge_chipid = pci_read_config(dev, 3258 BGE_PCI_GEN2_PRODID_ASICREV, 4); 3259 break; 3260 case BCOM_DEVICEID_BCM57761: 3261 case BCOM_DEVICEID_BCM57765: 3262 case BCOM_DEVICEID_BCM57781: 3263 case BCOM_DEVICEID_BCM57785: 3264 case BCOM_DEVICEID_BCM57791: 3265 case BCOM_DEVICEID_BCM57795: 3266 sc->bge_chipid = pci_read_config(dev, 3267 BGE_PCI_GEN15_PRODID_ASICREV, 4); 3268 break; 3269 default: 3270 sc->bge_chipid = pci_read_config(dev, 3271 BGE_PCI_PRODID_ASICREV, 4); 3272 } 3273 } 3274 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3275 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3276 3277 /* Set default PHY address. */ 3278 sc->bge_phy_addr = 1; 3279 /* 3280 * PHY address mapping for various devices. 3281 * 3282 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3283 * ---------+-------+-------+-------+-------+ 3284 * BCM57XX | 1 | X | X | X | 3285 * BCM5704 | 1 | X | 1 | X | 3286 * BCM5717 | 1 | 8 | 2 | 9 | 3287 * BCM5719 | 1 | 8 | 2 | 9 | 3288 * BCM5720 | 1 | 8 | 2 | 9 | 3289 * 3290 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3291 * ---------+-------+-------+-------+-------+ 3292 * BCM57XX | X | X | X | X | 3293 * BCM5704 | X | X | X | X | 3294 * BCM5717 | X | X | X | X | 3295 * BCM5719 | 3 | 10 | 4 | 11 | 3296 * BCM5720 | X | X | X | X | 3297 * 3298 * Other addresses may respond but they are not 3299 * IEEE compliant PHYs and should be ignored. 3300 */ 3301 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3302 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3303 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3304 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3305 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3306 BGE_SGDIGSTS_IS_SERDES) 3307 sc->bge_phy_addr = sc->bge_func_addr + 8; 3308 else 3309 sc->bge_phy_addr = sc->bge_func_addr + 1; 3310 } else { 3311 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3312 BGE_CPMU_PHY_STRAP_IS_SERDES) 3313 sc->bge_phy_addr = sc->bge_func_addr + 8; 3314 else 3315 sc->bge_phy_addr = sc->bge_func_addr + 1; 3316 } 3317 } 3318 3319 if (bge_has_eaddr(sc)) 3320 sc->bge_flags |= BGE_FLAG_EADDR; 3321 3322 /* Save chipset family. */ 3323 switch (sc->bge_asicrev) { 3324 case BGE_ASICREV_BCM5717: 3325 case BGE_ASICREV_BCM5719: 3326 case BGE_ASICREV_BCM5720: 3327 case BGE_ASICREV_BCM57765: 3328 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3329 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3330 BGE_FLAG_JUMBO_FRAME; 3331 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3332 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3333 /* Jumbo frame on BCM5719 A0 does not work. */ 3334 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3335 } 3336 break; 3337 case BGE_ASICREV_BCM5755: 3338 case BGE_ASICREV_BCM5761: 3339 case BGE_ASICREV_BCM5784: 3340 case BGE_ASICREV_BCM5785: 3341 case BGE_ASICREV_BCM5787: 3342 case BGE_ASICREV_BCM57780: 3343 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3344 BGE_FLAG_5705_PLUS; 3345 break; 3346 case BGE_ASICREV_BCM5700: 3347 case BGE_ASICREV_BCM5701: 3348 case BGE_ASICREV_BCM5703: 3349 case BGE_ASICREV_BCM5704: 3350 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3351 break; 3352 case BGE_ASICREV_BCM5714_A0: 3353 case BGE_ASICREV_BCM5780: 3354 case BGE_ASICREV_BCM5714: 3355 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3356 /* FALLTHROUGH */ 3357 case BGE_ASICREV_BCM5750: 3358 case BGE_ASICREV_BCM5752: 3359 case BGE_ASICREV_BCM5906: 3360 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3361 /* FALLTHROUGH */ 3362 case BGE_ASICREV_BCM5705: 3363 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3364 break; 3365 } 3366 3367 /* Identify chips with APE processor. */ 3368 switch (sc->bge_asicrev) { 3369 case BGE_ASICREV_BCM5717: 3370 case BGE_ASICREV_BCM5719: 3371 case BGE_ASICREV_BCM5720: 3372 case BGE_ASICREV_BCM5761: 3373 sc->bge_flags |= BGE_FLAG_APE; 3374 break; 3375 } 3376 3377 /* Chips with APE need BAR2 access for APE registers/memory. */ 3378 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3379 rid = PCIR_BAR(2); 3380 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3381 RF_ACTIVE); 3382 if (sc->bge_res2 == NULL) { 3383 device_printf (sc->bge_dev, 3384 "couldn't map BAR2 memory\n"); 3385 error = ENXIO; 3386 goto fail; 3387 } 3388 3389 /* Enable APE register/memory access by host driver. */ 3390 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3391 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3392 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3393 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3394 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3395 3396 bge_ape_lock_init(sc); 3397 bge_ape_read_fw_ver(sc); 3398 } 3399 3400 /* Add SYSCTLs, requires the chipset family to be set. */ 3401 bge_add_sysctls(sc); 3402 3403 /* Identify the chips that use an CPMU. */ 3404 if (BGE_IS_5717_PLUS(sc) || 3405 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3406 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3407 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3408 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3409 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3410 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3411 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3412 else 3413 sc->bge_mi_mode = BGE_MIMODE_BASE; 3414 /* Enable auto polling for BCM570[0-5]. */ 3415 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3416 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3417 3418 /* 3419 * All Broadcom controllers have 4GB boundary DMA bug. 3420 * Whenever an address crosses a multiple of the 4GB boundary 3421 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3422 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3423 * state machine will lockup and cause the device to hang. 3424 */ 3425 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3426 3427 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3428 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3429 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3430 3431 /* 3432 * BCM5719 cannot handle DMA requests for DMA segments that 3433 * have larger than 4KB in size. However the maximum DMA 3434 * segment size created in DMA tag is 4KB for TSO, so we 3435 * wouldn't encounter the issue here. 3436 */ 3437 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3438 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3439 3440 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3441 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3442 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3443 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3444 sc->bge_flags |= BGE_FLAG_5788; 3445 } 3446 3447 capmask = BMSR_DEFCAPMASK; 3448 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3449 (misccfg == 0x4000 || misccfg == 0x8000)) || 3450 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3451 pci_get_vendor(dev) == BCOM_VENDORID && 3452 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3453 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3454 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3455 (pci_get_vendor(dev) == BCOM_VENDORID && 3456 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3457 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3458 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3459 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3460 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3461 /* These chips are 10/100 only. */ 3462 capmask &= ~BMSR_EXTSTAT; 3463 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3464 } 3465 3466 /* 3467 * Some controllers seem to require a special firmware to use 3468 * TSO. But the firmware is not available to FreeBSD and Linux 3469 * claims that the TSO performed by the firmware is slower than 3470 * hardware based TSO. Moreover the firmware based TSO has one 3471 * known bug which can't handle TSO if ethernet header + IP/TCP 3472 * header is greater than 80 bytes. The workaround for the TSO 3473 * bug exist but it seems it's too expensive than not using 3474 * TSO at all. Some hardwares also have the TSO bug so limit 3475 * the TSO to the controllers that are not affected TSO issues 3476 * (e.g. 5755 or higher). 3477 */ 3478 if (BGE_IS_5717_PLUS(sc)) { 3479 /* BCM5717 requires different TSO configuration. */ 3480 sc->bge_flags |= BGE_FLAG_TSO3; 3481 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3482 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3483 /* TSO on BCM5719 A0 does not work. */ 3484 sc->bge_flags &= ~BGE_FLAG_TSO3; 3485 } 3486 } else if (BGE_IS_5755_PLUS(sc)) { 3487 /* 3488 * BCM5754 and BCM5787 shares the same ASIC id so 3489 * explicit device id check is required. 3490 * Due to unknown reason TSO does not work on BCM5755M. 3491 */ 3492 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3493 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3494 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3495 sc->bge_flags |= BGE_FLAG_TSO; 3496 } 3497 3498 /* 3499 * Check if this is a PCI-X or PCI Express device. 3500 */ 3501 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3502 /* 3503 * Found a PCI Express capabilities register, this 3504 * must be a PCI Express device. 3505 */ 3506 sc->bge_flags |= BGE_FLAG_PCIE; 3507 sc->bge_expcap = reg; 3508 /* Extract supported maximum payload size. */ 3509 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3510 PCIER_DEVICE_CAP, 2); 3511 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3512 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3513 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3514 sc->bge_expmrq = 2048; 3515 else 3516 sc->bge_expmrq = 4096; 3517 pci_set_max_read_req(dev, sc->bge_expmrq); 3518 } else { 3519 /* 3520 * Check if the device is in PCI-X Mode. 3521 * (This bit is not valid on PCI Express controllers.) 3522 */ 3523 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3524 sc->bge_pcixcap = reg; 3525 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3526 BGE_PCISTATE_PCI_BUSMODE) == 0) 3527 sc->bge_flags |= BGE_FLAG_PCIX; 3528 } 3529 3530 /* 3531 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3532 * not actually a MAC controller bug but an issue with the embedded 3533 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3534 */ 3535 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3536 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3537 /* 3538 * Some PCI-X bridges are known to trigger write reordering to 3539 * the mailbox registers. Typical phenomena is watchdog timeouts 3540 * caused by out-of-order TX completions. Enable workaround for 3541 * PCI-X devices that live behind these bridges. 3542 * Note, PCI-X controllers can run in PCI mode so we can't use 3543 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3544 */ 3545 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3546 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3547 /* 3548 * Allocate the interrupt, using MSI if possible. These devices 3549 * support 8 MSI messages, but only the first one is used in 3550 * normal operation. 3551 */ 3552 rid = 0; 3553 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3554 sc->bge_msicap = reg; 3555 if (bge_can_use_msi(sc)) { 3556 msicount = pci_msi_count(dev); 3557 if (msicount > 1) 3558 msicount = 1; 3559 } else 3560 msicount = 0; 3561 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) { 3562 rid = 1; 3563 sc->bge_flags |= BGE_FLAG_MSI; 3564 } 3565 } 3566 3567 /* 3568 * All controllers except BCM5700 supports tagged status but 3569 * we use tagged status only for MSI case on BCM5717. Otherwise 3570 * MSI on BCM5717 does not work. 3571 */ 3572 #ifndef DEVICE_POLLING 3573 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3574 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3575 #endif 3576 3577 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3578 RF_SHAREABLE | RF_ACTIVE); 3579 3580 if (sc->bge_irq == NULL) { 3581 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3582 error = ENXIO; 3583 goto fail; 3584 } 3585 3586 bge_devinfo(sc); 3587 3588 sc->bge_asf_mode = 0; 3589 /* No ASF if APE present. */ 3590 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3591 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3592 BGE_SRAM_DATA_SIG_MAGIC)) { 3593 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3594 BGE_HWCFG_ASF) { 3595 sc->bge_asf_mode |= ASF_ENABLE; 3596 sc->bge_asf_mode |= ASF_STACKUP; 3597 if (BGE_IS_575X_PLUS(sc)) 3598 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3599 } 3600 } 3601 } 3602 3603 bge_stop_fw(sc); 3604 bge_sig_pre_reset(sc, BGE_RESET_START); 3605 if (bge_reset(sc)) { 3606 device_printf(sc->bge_dev, "chip reset failed\n"); 3607 error = ENXIO; 3608 goto fail; 3609 } 3610 3611 bge_sig_legacy(sc, BGE_RESET_START); 3612 bge_sig_post_reset(sc, BGE_RESET_START); 3613 3614 if (bge_chipinit(sc)) { 3615 device_printf(sc->bge_dev, "chip initialization failed\n"); 3616 error = ENXIO; 3617 goto fail; 3618 } 3619 3620 error = bge_get_eaddr(sc, eaddr); 3621 if (error) { 3622 device_printf(sc->bge_dev, 3623 "failed to read station address\n"); 3624 error = ENXIO; 3625 goto fail; 3626 } 3627 3628 /* 5705 limits RX return ring to 512 entries. */ 3629 if (BGE_IS_5717_PLUS(sc)) 3630 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3631 else if (BGE_IS_5705_PLUS(sc)) 3632 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3633 else 3634 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3635 3636 if (bge_dma_alloc(sc)) { 3637 device_printf(sc->bge_dev, 3638 "failed to allocate DMA resources\n"); 3639 error = ENXIO; 3640 goto fail; 3641 } 3642 3643 /* Set default tuneable values. */ 3644 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3645 sc->bge_rx_coal_ticks = 150; 3646 sc->bge_tx_coal_ticks = 150; 3647 sc->bge_rx_max_coal_bds = 10; 3648 sc->bge_tx_max_coal_bds = 10; 3649 3650 /* Initialize checksum features to use. */ 3651 sc->bge_csum_features = BGE_CSUM_FEATURES; 3652 if (sc->bge_forced_udpcsum != 0) 3653 sc->bge_csum_features |= CSUM_UDP; 3654 3655 /* Set up ifnet structure */ 3656 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3657 if (ifp == NULL) { 3658 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3659 error = ENXIO; 3660 goto fail; 3661 } 3662 ifp->if_softc = sc; 3663 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3664 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3665 ifp->if_ioctl = bge_ioctl; 3666 ifp->if_start = bge_start; 3667 ifp->if_init = bge_init; 3668 ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1; 3669 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 3670 IFQ_SET_READY(&ifp->if_snd); 3671 ifp->if_hwassist = sc->bge_csum_features; 3672 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3673 IFCAP_VLAN_MTU; 3674 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3675 ifp->if_hwassist |= CSUM_TSO; 3676 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 3677 } 3678 #ifdef IFCAP_VLAN_HWCSUM 3679 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 3680 #endif 3681 ifp->if_capenable = ifp->if_capabilities; 3682 #ifdef DEVICE_POLLING 3683 ifp->if_capabilities |= IFCAP_POLLING; 3684 #endif 3685 3686 /* 3687 * 5700 B0 chips do not support checksumming correctly due 3688 * to hardware bugs. 3689 */ 3690 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3691 ifp->if_capabilities &= ~IFCAP_HWCSUM; 3692 ifp->if_capenable &= ~IFCAP_HWCSUM; 3693 ifp->if_hwassist = 0; 3694 } 3695 3696 /* 3697 * Figure out what sort of media we have by checking the 3698 * hardware config word in the first 32k of NIC internal memory, 3699 * or fall back to examining the EEPROM if necessary. 3700 * Note: on some BCM5700 cards, this value appears to be unset. 3701 * If that's the case, we have to rely on identifying the NIC 3702 * by its PCI subsystem ID, as we do below for the SysKonnect 3703 * SK-9D41. 3704 */ 3705 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3706 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3707 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3708 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3709 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3710 sizeof(hwcfg))) { 3711 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3712 error = ENXIO; 3713 goto fail; 3714 } 3715 hwcfg = ntohl(hwcfg); 3716 } 3717 3718 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3719 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3720 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3721 if (BGE_IS_5705_PLUS(sc)) { 3722 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3723 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3724 } else 3725 sc->bge_flags |= BGE_FLAG_TBI; 3726 } 3727 3728 /* Set various PHY bug flags. */ 3729 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3730 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3731 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3732 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3733 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3734 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3735 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3736 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3737 if (pci_get_subvendor(dev) == DELL_VENDORID) 3738 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3739 if ((BGE_IS_5705_PLUS(sc)) && 3740 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3741 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 3742 sc->bge_asicrev != BGE_ASICREV_BCM5719 && 3743 sc->bge_asicrev != BGE_ASICREV_BCM5720 && 3744 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3745 sc->bge_asicrev != BGE_ASICREV_BCM57765 && 3746 sc->bge_asicrev != BGE_ASICREV_BCM57780) { 3747 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3748 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3749 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3750 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3751 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3752 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3753 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3754 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3755 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3756 } else 3757 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3758 } 3759 3760 /* 3761 * Don't enable Ethernet@WireSpeed for the 5700 or the 3762 * 5705 A0 and A1 chips. 3763 */ 3764 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3765 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3766 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3767 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3768 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3769 3770 if (sc->bge_flags & BGE_FLAG_TBI) { 3771 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3772 bge_ifmedia_sts); 3773 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3774 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3775 0, NULL); 3776 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3777 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3778 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3779 } else { 3780 /* 3781 * Do transceiver setup and tell the firmware the 3782 * driver is down so we can try to get access the 3783 * probe if ASF is running. Retry a couple of times 3784 * if we get a conflict with the ASF firmware accessing 3785 * the PHY. 3786 */ 3787 trys = 0; 3788 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3789 again: 3790 bge_asf_driver_up(sc); 3791 3792 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd, 3793 bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY, 3794 MIIF_DOPAUSE); 3795 if (error != 0) { 3796 if (trys++ < 4) { 3797 device_printf(sc->bge_dev, "Try again\n"); 3798 bge_miibus_writereg(sc->bge_dev, 3799 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3800 goto again; 3801 } 3802 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3803 goto fail; 3804 } 3805 3806 /* 3807 * Now tell the firmware we are going up after probing the PHY 3808 */ 3809 if (sc->bge_asf_mode & ASF_STACKUP) 3810 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3811 } 3812 3813 /* 3814 * When using the BCM5701 in PCI-X mode, data corruption has 3815 * been observed in the first few bytes of some received packets. 3816 * Aligning the packet buffer in memory eliminates the corruption. 3817 * Unfortunately, this misaligns the packet payloads. On platforms 3818 * which do not support unaligned accesses, we will realign the 3819 * payloads by copying the received packets. 3820 */ 3821 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3822 sc->bge_flags & BGE_FLAG_PCIX) 3823 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3824 3825 /* 3826 * Call MI attach routine. 3827 */ 3828 ether_ifattach(ifp, eaddr); 3829 3830 /* Tell upper layer we support long frames. */ 3831 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 3832 3833 /* 3834 * Hookup IRQ last. 3835 */ 3836 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3837 /* Take advantage of single-shot MSI. */ 3838 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3839 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3840 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3841 taskqueue_thread_enqueue, &sc->bge_tq); 3842 if (sc->bge_tq == NULL) { 3843 device_printf(dev, "could not create taskqueue.\n"); 3844 ether_ifdetach(ifp); 3845 error = ENOMEM; 3846 goto fail; 3847 } 3848 taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, "%s taskq", 3849 device_get_nameunit(sc->bge_dev)); 3850 error = bus_setup_intr(dev, sc->bge_irq, 3851 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3852 &sc->bge_intrhand); 3853 } else 3854 error = bus_setup_intr(dev, sc->bge_irq, 3855 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3856 &sc->bge_intrhand); 3857 3858 if (error) { 3859 ether_ifdetach(ifp); 3860 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3861 } 3862 3863 fail: 3864 if (error) 3865 bge_detach(dev); 3866 return (error); 3867 } 3868 3869 static int 3870 bge_detach(device_t dev) 3871 { 3872 struct bge_softc *sc; 3873 struct ifnet *ifp; 3874 3875 sc = device_get_softc(dev); 3876 ifp = sc->bge_ifp; 3877 3878 #ifdef DEVICE_POLLING 3879 if (ifp->if_capenable & IFCAP_POLLING) 3880 ether_poll_deregister(ifp); 3881 #endif 3882 3883 if (device_is_attached(dev)) { 3884 ether_ifdetach(ifp); 3885 BGE_LOCK(sc); 3886 bge_stop(sc); 3887 BGE_UNLOCK(sc); 3888 callout_drain(&sc->bge_stat_ch); 3889 } 3890 3891 if (sc->bge_tq) 3892 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3893 3894 if (sc->bge_flags & BGE_FLAG_TBI) { 3895 ifmedia_removeall(&sc->bge_ifmedia); 3896 } else { 3897 bus_generic_detach(dev); 3898 device_delete_child(dev, sc->bge_miibus); 3899 } 3900 3901 bge_release_resources(sc); 3902 3903 return (0); 3904 } 3905 3906 static void 3907 bge_release_resources(struct bge_softc *sc) 3908 { 3909 device_t dev; 3910 3911 dev = sc->bge_dev; 3912 3913 if (sc->bge_tq != NULL) 3914 taskqueue_free(sc->bge_tq); 3915 3916 if (sc->bge_intrhand != NULL) 3917 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3918 3919 if (sc->bge_irq != NULL) 3920 bus_release_resource(dev, SYS_RES_IRQ, 3921 sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq); 3922 3923 if (sc->bge_flags & BGE_FLAG_MSI) 3924 pci_release_msi(dev); 3925 3926 if (sc->bge_res != NULL) 3927 bus_release_resource(dev, SYS_RES_MEMORY, 3928 PCIR_BAR(0), sc->bge_res); 3929 3930 if (sc->bge_res2 != NULL) 3931 bus_release_resource(dev, SYS_RES_MEMORY, 3932 PCIR_BAR(2), sc->bge_res2); 3933 3934 if (sc->bge_ifp != NULL) 3935 if_free(sc->bge_ifp); 3936 3937 bge_dma_free(sc); 3938 3939 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 3940 BGE_LOCK_DESTROY(sc); 3941 } 3942 3943 static int 3944 bge_reset(struct bge_softc *sc) 3945 { 3946 device_t dev; 3947 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 3948 void (*write_op)(struct bge_softc *, int, int); 3949 uint16_t devctl; 3950 int i; 3951 3952 dev = sc->bge_dev; 3953 3954 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 3955 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 3956 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 3957 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 3958 3959 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 3960 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3961 if (sc->bge_flags & BGE_FLAG_PCIE) 3962 write_op = bge_writemem_direct; 3963 else 3964 write_op = bge_writemem_ind; 3965 } else 3966 write_op = bge_writereg_ind; 3967 3968 /* Take APE lock when performing reset. */ 3969 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 3970 3971 /* Save some important PCI state. */ 3972 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 3973 command = pci_read_config(dev, BGE_PCI_CMD, 4); 3974 3975 pci_write_config(dev, BGE_PCI_MISC_CTL, 3976 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 3977 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 3978 3979 /* Disable fastboot on controllers that support it. */ 3980 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 3981 BGE_IS_5755_PLUS(sc)) { 3982 if (bootverbose) 3983 device_printf(dev, "Disabling fastboot\n"); 3984 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 3985 } 3986 3987 /* 3988 * Write the magic number to SRAM at offset 0xB50. 3989 * When firmware finishes its initialization it will 3990 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 3991 */ 3992 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 3993 3994 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 3995 3996 /* XXX: Broadcom Linux driver. */ 3997 if (sc->bge_flags & BGE_FLAG_PCIE) { 3998 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3999 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4000 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4001 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4002 } 4003 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4004 /* Prevent PCIE link training during global reset */ 4005 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4006 reset |= 1 << 29; 4007 } 4008 } 4009 4010 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4011 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4012 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4013 val | BGE_VCPU_STATUS_DRV_RESET); 4014 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4015 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4016 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4017 } 4018 4019 /* 4020 * Set GPHY Power Down Override to leave GPHY 4021 * powered up in D0 uninitialized. 4022 */ 4023 if (BGE_IS_5705_PLUS(sc) && 4024 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4025 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4026 4027 /* Issue global reset */ 4028 write_op(sc, BGE_MISC_CFG, reset); 4029 4030 if (sc->bge_flags & BGE_FLAG_PCIE) 4031 DELAY(100 * 1000); 4032 else 4033 DELAY(1000); 4034 4035 /* XXX: Broadcom Linux driver. */ 4036 if (sc->bge_flags & BGE_FLAG_PCIE) { 4037 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4038 DELAY(500000); /* wait for link training to complete */ 4039 val = pci_read_config(dev, 0xC4, 4); 4040 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4041 } 4042 devctl = pci_read_config(dev, 4043 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4044 /* Clear enable no snoop and disable relaxed ordering. */ 4045 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4046 PCIEM_CTL_NOSNOOP_ENABLE); 4047 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4048 devctl, 2); 4049 pci_set_max_read_req(dev, sc->bge_expmrq); 4050 /* Clear error status. */ 4051 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4052 PCIEM_STA_CORRECTABLE_ERROR | 4053 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4054 PCIEM_STA_UNSUPPORTED_REQ, 2); 4055 } 4056 4057 /* Reset some of the PCI state that got zapped by reset. */ 4058 pci_write_config(dev, BGE_PCI_MISC_CTL, 4059 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4060 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4061 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4062 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4063 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4064 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4065 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4066 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4067 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4068 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4069 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4070 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4071 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4072 /* 4073 * Disable PCI-X relaxed ordering to ensure status block update 4074 * comes first then packet buffer DMA. Otherwise driver may 4075 * read stale status block. 4076 */ 4077 if (sc->bge_flags & BGE_FLAG_PCIX) { 4078 devctl = pci_read_config(dev, 4079 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4080 devctl &= ~PCIXM_COMMAND_ERO; 4081 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4082 devctl &= ~PCIXM_COMMAND_MAX_READ; 4083 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4084 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4085 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4086 PCIXM_COMMAND_MAX_READ); 4087 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4088 } 4089 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4090 devctl, 2); 4091 } 4092 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4093 if (BGE_IS_5714_FAMILY(sc)) { 4094 /* This chip disables MSI on reset. */ 4095 if (sc->bge_flags & BGE_FLAG_MSI) { 4096 val = pci_read_config(dev, 4097 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4098 pci_write_config(dev, 4099 sc->bge_msicap + PCIR_MSI_CTRL, 4100 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4101 val = CSR_READ_4(sc, BGE_MSI_MODE); 4102 CSR_WRITE_4(sc, BGE_MSI_MODE, 4103 val | BGE_MSIMODE_ENABLE); 4104 } 4105 val = CSR_READ_4(sc, BGE_MARB_MODE); 4106 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4107 } else 4108 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4109 4110 /* Fix up byte swapping. */ 4111 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4112 4113 val = CSR_READ_4(sc, BGE_MAC_MODE); 4114 val = (val & ~mac_mode_mask) | mac_mode; 4115 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4116 DELAY(40); 4117 4118 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4119 4120 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4121 for (i = 0; i < BGE_TIMEOUT; i++) { 4122 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4123 if (val & BGE_VCPU_STATUS_INIT_DONE) 4124 break; 4125 DELAY(100); 4126 } 4127 if (i == BGE_TIMEOUT) { 4128 device_printf(dev, "reset timed out\n"); 4129 return (1); 4130 } 4131 } else { 4132 /* 4133 * Poll until we see the 1's complement of the magic number. 4134 * This indicates that the firmware initialization is complete. 4135 * We expect this to fail if no chip containing the Ethernet 4136 * address is fitted though. 4137 */ 4138 for (i = 0; i < BGE_TIMEOUT; i++) { 4139 DELAY(10); 4140 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4141 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4142 break; 4143 } 4144 4145 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4146 device_printf(dev, 4147 "firmware handshake timed out, found 0x%08x\n", 4148 val); 4149 /* BCM57765 A0 needs additional time before accessing. */ 4150 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4151 DELAY(10 * 1000); /* XXX */ 4152 } 4153 4154 /* 4155 * The 5704 in TBI mode apparently needs some special 4156 * adjustment to insure the SERDES drive level is set 4157 * to 1.2V. 4158 */ 4159 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4160 sc->bge_flags & BGE_FLAG_TBI) { 4161 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4162 val = (val & ~0xFFF) | 0x880; 4163 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4164 } 4165 4166 /* XXX: Broadcom Linux driver. */ 4167 if (sc->bge_flags & BGE_FLAG_PCIE && 4168 !BGE_IS_5717_PLUS(sc) && 4169 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4170 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4171 /* Enable Data FIFO protection. */ 4172 val = CSR_READ_4(sc, 0x7C00); 4173 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4174 } 4175 4176 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4177 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4178 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4179 4180 return (0); 4181 } 4182 4183 static __inline void 4184 bge_rxreuse_std(struct bge_softc *sc, int i) 4185 { 4186 struct bge_rx_bd *r; 4187 4188 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4189 r->bge_flags = BGE_RXBDFLAG_END; 4190 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4191 r->bge_idx = i; 4192 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4193 } 4194 4195 static __inline void 4196 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4197 { 4198 struct bge_extrx_bd *r; 4199 4200 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4201 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4202 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4203 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4204 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4205 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4206 r->bge_idx = i; 4207 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4208 } 4209 4210 /* 4211 * Frame reception handling. This is called if there's a frame 4212 * on the receive return list. 4213 * 4214 * Note: we have to be able to handle two possibilities here: 4215 * 1) the frame is from the jumbo receive ring 4216 * 2) the frame is from the standard receive ring 4217 */ 4218 4219 static int 4220 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4221 { 4222 struct ifnet *ifp; 4223 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4224 uint16_t rx_cons; 4225 4226 rx_cons = sc->bge_rx_saved_considx; 4227 4228 /* Nothing to do. */ 4229 if (rx_cons == rx_prod) 4230 return (rx_npkts); 4231 4232 ifp = sc->bge_ifp; 4233 4234 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4235 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4236 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4237 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4238 if (BGE_IS_JUMBO_CAPABLE(sc) && 4239 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 4240 (MCLBYTES - ETHER_ALIGN)) 4241 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4242 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4243 4244 while (rx_cons != rx_prod) { 4245 struct bge_rx_bd *cur_rx; 4246 uint32_t rxidx; 4247 struct mbuf *m = NULL; 4248 uint16_t vlan_tag = 0; 4249 int have_tag = 0; 4250 4251 #ifdef DEVICE_POLLING 4252 if (ifp->if_capenable & IFCAP_POLLING) { 4253 if (sc->rxcycles <= 0) 4254 break; 4255 sc->rxcycles--; 4256 } 4257 #endif 4258 4259 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4260 4261 rxidx = cur_rx->bge_idx; 4262 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4263 4264 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING && 4265 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4266 have_tag = 1; 4267 vlan_tag = cur_rx->bge_vlan_tag; 4268 } 4269 4270 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4271 jumbocnt++; 4272 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4273 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4274 bge_rxreuse_jumbo(sc, rxidx); 4275 continue; 4276 } 4277 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4278 bge_rxreuse_jumbo(sc, rxidx); 4279 ifp->if_iqdrops++; 4280 continue; 4281 } 4282 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4283 } else { 4284 stdcnt++; 4285 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4286 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4287 bge_rxreuse_std(sc, rxidx); 4288 continue; 4289 } 4290 if (bge_newbuf_std(sc, rxidx) != 0) { 4291 bge_rxreuse_std(sc, rxidx); 4292 ifp->if_iqdrops++; 4293 continue; 4294 } 4295 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4296 } 4297 4298 ifp->if_ipackets++; 4299 #ifndef __NO_STRICT_ALIGNMENT 4300 /* 4301 * For architectures with strict alignment we must make sure 4302 * the payload is aligned. 4303 */ 4304 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4305 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4306 cur_rx->bge_len); 4307 m->m_data += ETHER_ALIGN; 4308 } 4309 #endif 4310 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4311 m->m_pkthdr.rcvif = ifp; 4312 4313 if (ifp->if_capenable & IFCAP_RXCSUM) 4314 bge_rxcsum(sc, cur_rx, m); 4315 4316 /* 4317 * If we received a packet with a vlan tag, 4318 * attach that information to the packet. 4319 */ 4320 if (have_tag) { 4321 m->m_pkthdr.ether_vtag = vlan_tag; 4322 m->m_flags |= M_VLANTAG; 4323 } 4324 4325 if (holdlck != 0) { 4326 BGE_UNLOCK(sc); 4327 (*ifp->if_input)(ifp, m); 4328 BGE_LOCK(sc); 4329 } else 4330 (*ifp->if_input)(ifp, m); 4331 rx_npkts++; 4332 4333 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 4334 return (rx_npkts); 4335 } 4336 4337 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4338 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4339 if (stdcnt > 0) 4340 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4341 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4342 4343 if (jumbocnt > 0) 4344 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4345 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4346 4347 sc->bge_rx_saved_considx = rx_cons; 4348 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4349 if (stdcnt) 4350 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4351 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4352 if (jumbocnt) 4353 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4354 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4355 #ifdef notyet 4356 /* 4357 * This register wraps very quickly under heavy packet drops. 4358 * If you need correct statistics, you can enable this check. 4359 */ 4360 if (BGE_IS_5705_PLUS(sc)) 4361 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4362 #endif 4363 return (rx_npkts); 4364 } 4365 4366 static void 4367 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4368 { 4369 4370 if (BGE_IS_5717_PLUS(sc)) { 4371 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4372 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4373 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4374 if ((cur_rx->bge_error_flag & 4375 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4376 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4377 } 4378 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4379 m->m_pkthdr.csum_data = 4380 cur_rx->bge_tcp_udp_csum; 4381 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4382 CSUM_PSEUDO_HDR; 4383 } 4384 } 4385 } else { 4386 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4387 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4388 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4389 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4390 } 4391 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4392 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4393 m->m_pkthdr.csum_data = 4394 cur_rx->bge_tcp_udp_csum; 4395 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4396 CSUM_PSEUDO_HDR; 4397 } 4398 } 4399 } 4400 4401 static void 4402 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4403 { 4404 struct bge_tx_bd *cur_tx; 4405 struct ifnet *ifp; 4406 4407 BGE_LOCK_ASSERT(sc); 4408 4409 /* Nothing to do. */ 4410 if (sc->bge_tx_saved_considx == tx_cons) 4411 return; 4412 4413 ifp = sc->bge_ifp; 4414 4415 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4416 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4417 /* 4418 * Go through our tx ring and free mbufs for those 4419 * frames that have been sent. 4420 */ 4421 while (sc->bge_tx_saved_considx != tx_cons) { 4422 uint32_t idx; 4423 4424 idx = sc->bge_tx_saved_considx; 4425 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4426 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4427 ifp->if_opackets++; 4428 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4429 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4430 sc->bge_cdata.bge_tx_dmamap[idx], 4431 BUS_DMASYNC_POSTWRITE); 4432 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4433 sc->bge_cdata.bge_tx_dmamap[idx]); 4434 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4435 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4436 } 4437 sc->bge_txcnt--; 4438 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4439 } 4440 4441 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4442 if (sc->bge_txcnt == 0) 4443 sc->bge_timer = 0; 4444 } 4445 4446 #ifdef DEVICE_POLLING 4447 static int 4448 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 4449 { 4450 struct bge_softc *sc = ifp->if_softc; 4451 uint16_t rx_prod, tx_cons; 4452 uint32_t statusword; 4453 int rx_npkts = 0; 4454 4455 BGE_LOCK(sc); 4456 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4457 BGE_UNLOCK(sc); 4458 return (rx_npkts); 4459 } 4460 4461 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4462 sc->bge_cdata.bge_status_map, 4463 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4464 /* Fetch updates from the status block. */ 4465 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4466 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4467 4468 statusword = sc->bge_ldata.bge_status_block->bge_status; 4469 /* Clear the status so the next pass only sees the changes. */ 4470 sc->bge_ldata.bge_status_block->bge_status = 0; 4471 4472 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4473 sc->bge_cdata.bge_status_map, 4474 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4475 4476 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4477 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4478 sc->bge_link_evt++; 4479 4480 if (cmd == POLL_AND_CHECK_STATUS) 4481 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4482 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4483 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4484 bge_link_upd(sc); 4485 4486 sc->rxcycles = count; 4487 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4488 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4489 BGE_UNLOCK(sc); 4490 return (rx_npkts); 4491 } 4492 bge_txeof(sc, tx_cons); 4493 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4494 bge_start_locked(ifp); 4495 4496 BGE_UNLOCK(sc); 4497 return (rx_npkts); 4498 } 4499 #endif /* DEVICE_POLLING */ 4500 4501 static int 4502 bge_msi_intr(void *arg) 4503 { 4504 struct bge_softc *sc; 4505 4506 sc = (struct bge_softc *)arg; 4507 /* 4508 * This interrupt is not shared and controller already 4509 * disabled further interrupt. 4510 */ 4511 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4512 return (FILTER_HANDLED); 4513 } 4514 4515 static void 4516 bge_intr_task(void *arg, int pending) 4517 { 4518 struct bge_softc *sc; 4519 struct ifnet *ifp; 4520 uint32_t status, status_tag; 4521 uint16_t rx_prod, tx_cons; 4522 4523 sc = (struct bge_softc *)arg; 4524 ifp = sc->bge_ifp; 4525 4526 BGE_LOCK(sc); 4527 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4528 BGE_UNLOCK(sc); 4529 return; 4530 } 4531 4532 /* Get updated status block. */ 4533 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4534 sc->bge_cdata.bge_status_map, 4535 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4536 4537 /* Save producer/consumer indices. */ 4538 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4539 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4540 status = sc->bge_ldata.bge_status_block->bge_status; 4541 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4542 /* Dirty the status flag. */ 4543 sc->bge_ldata.bge_status_block->bge_status = 0; 4544 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4545 sc->bge_cdata.bge_status_map, 4546 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4547 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4548 status_tag = 0; 4549 4550 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4551 bge_link_upd(sc); 4552 4553 /* Let controller work. */ 4554 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4555 4556 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4557 sc->bge_rx_saved_considx != rx_prod) { 4558 /* Check RX return ring producer/consumer. */ 4559 BGE_UNLOCK(sc); 4560 bge_rxeof(sc, rx_prod, 0); 4561 BGE_LOCK(sc); 4562 } 4563 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4564 /* Check TX ring producer/consumer. */ 4565 bge_txeof(sc, tx_cons); 4566 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4567 bge_start_locked(ifp); 4568 } 4569 BGE_UNLOCK(sc); 4570 } 4571 4572 static void 4573 bge_intr(void *xsc) 4574 { 4575 struct bge_softc *sc; 4576 struct ifnet *ifp; 4577 uint32_t statusword; 4578 uint16_t rx_prod, tx_cons; 4579 4580 sc = xsc; 4581 4582 BGE_LOCK(sc); 4583 4584 ifp = sc->bge_ifp; 4585 4586 #ifdef DEVICE_POLLING 4587 if (ifp->if_capenable & IFCAP_POLLING) { 4588 BGE_UNLOCK(sc); 4589 return; 4590 } 4591 #endif 4592 4593 /* 4594 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4595 * disable interrupts by writing nonzero like we used to, since with 4596 * our current organization this just gives complications and 4597 * pessimizations for re-enabling interrupts. We used to have races 4598 * instead of the necessary complications. Disabling interrupts 4599 * would just reduce the chance of a status update while we are 4600 * running (by switching to the interrupt-mode coalescence 4601 * parameters), but this chance is already very low so it is more 4602 * efficient to get another interrupt than prevent it. 4603 * 4604 * We do the ack first to ensure another interrupt if there is a 4605 * status update after the ack. We don't check for the status 4606 * changing later because it is more efficient to get another 4607 * interrupt than prevent it, not quite as above (not checking is 4608 * a smaller optimization than not toggling the interrupt enable, 4609 * since checking doesn't involve PCI accesses and toggling require 4610 * the status check). So toggling would probably be a pessimization 4611 * even with MSI. It would only be needed for using a task queue. 4612 */ 4613 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4614 4615 /* 4616 * Do the mandatory PCI flush as well as get the link status. 4617 */ 4618 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4619 4620 /* Make sure the descriptor ring indexes are coherent. */ 4621 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4622 sc->bge_cdata.bge_status_map, 4623 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4624 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4625 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4626 sc->bge_ldata.bge_status_block->bge_status = 0; 4627 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4628 sc->bge_cdata.bge_status_map, 4629 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4630 4631 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4632 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4633 statusword || sc->bge_link_evt) 4634 bge_link_upd(sc); 4635 4636 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4637 /* Check RX return ring producer/consumer. */ 4638 bge_rxeof(sc, rx_prod, 1); 4639 } 4640 4641 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 4642 /* Check TX ring producer/consumer. */ 4643 bge_txeof(sc, tx_cons); 4644 } 4645 4646 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 4647 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 4648 bge_start_locked(ifp); 4649 4650 BGE_UNLOCK(sc); 4651 } 4652 4653 static void 4654 bge_asf_driver_up(struct bge_softc *sc) 4655 { 4656 if (sc->bge_asf_mode & ASF_STACKUP) { 4657 /* Send ASF heartbeat aprox. every 2s */ 4658 if (sc->bge_asf_count) 4659 sc->bge_asf_count --; 4660 else { 4661 sc->bge_asf_count = 2; 4662 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4663 BGE_FW_CMD_DRV_ALIVE); 4664 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4665 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4666 BGE_FW_HB_TIMEOUT_SEC); 4667 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4668 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4669 BGE_RX_CPU_DRV_EVENT); 4670 } 4671 } 4672 } 4673 4674 static void 4675 bge_tick(void *xsc) 4676 { 4677 struct bge_softc *sc = xsc; 4678 struct mii_data *mii = NULL; 4679 4680 BGE_LOCK_ASSERT(sc); 4681 4682 /* Synchronize with possible callout reset/stop. */ 4683 if (callout_pending(&sc->bge_stat_ch) || 4684 !callout_active(&sc->bge_stat_ch)) 4685 return; 4686 4687 if (BGE_IS_5705_PLUS(sc)) 4688 bge_stats_update_regs(sc); 4689 else 4690 bge_stats_update(sc); 4691 4692 /* XXX Add APE heartbeat check here? */ 4693 4694 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4695 mii = device_get_softc(sc->bge_miibus); 4696 /* 4697 * Do not touch PHY if we have link up. This could break 4698 * IPMI/ASF mode or produce extra input errors 4699 * (extra errors was reported for bcm5701 & bcm5704). 4700 */ 4701 if (!sc->bge_link) 4702 mii_tick(mii); 4703 } else { 4704 /* 4705 * Since in TBI mode auto-polling can't be used we should poll 4706 * link status manually. Here we register pending link event 4707 * and trigger interrupt. 4708 */ 4709 #ifdef DEVICE_POLLING 4710 /* In polling mode we poll link state in bge_poll(). */ 4711 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING)) 4712 #endif 4713 { 4714 sc->bge_link_evt++; 4715 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4716 sc->bge_flags & BGE_FLAG_5788) 4717 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4718 else 4719 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4720 } 4721 } 4722 4723 bge_asf_driver_up(sc); 4724 bge_watchdog(sc); 4725 4726 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4727 } 4728 4729 static void 4730 bge_stats_update_regs(struct bge_softc *sc) 4731 { 4732 struct ifnet *ifp; 4733 struct bge_mac_stats *stats; 4734 4735 ifp = sc->bge_ifp; 4736 stats = &sc->bge_mac_stats; 4737 4738 stats->ifHCOutOctets += 4739 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4740 stats->etherStatsCollisions += 4741 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4742 stats->outXonSent += 4743 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4744 stats->outXoffSent += 4745 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4746 stats->dot3StatsInternalMacTransmitErrors += 4747 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4748 stats->dot3StatsSingleCollisionFrames += 4749 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4750 stats->dot3StatsMultipleCollisionFrames += 4751 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4752 stats->dot3StatsDeferredTransmissions += 4753 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4754 stats->dot3StatsExcessiveCollisions += 4755 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4756 stats->dot3StatsLateCollisions += 4757 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4758 stats->ifHCOutUcastPkts += 4759 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4760 stats->ifHCOutMulticastPkts += 4761 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4762 stats->ifHCOutBroadcastPkts += 4763 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4764 4765 stats->ifHCInOctets += 4766 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4767 stats->etherStatsFragments += 4768 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4769 stats->ifHCInUcastPkts += 4770 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4771 stats->ifHCInMulticastPkts += 4772 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4773 stats->ifHCInBroadcastPkts += 4774 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4775 stats->dot3StatsFCSErrors += 4776 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4777 stats->dot3StatsAlignmentErrors += 4778 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4779 stats->xonPauseFramesReceived += 4780 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4781 stats->xoffPauseFramesReceived += 4782 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4783 stats->macControlFramesReceived += 4784 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4785 stats->xoffStateEntered += 4786 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4787 stats->dot3StatsFramesTooLong += 4788 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4789 stats->etherStatsJabbers += 4790 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4791 stats->etherStatsUndersizePkts += 4792 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4793 4794 stats->FramesDroppedDueToFilters += 4795 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4796 stats->DmaWriteQueueFull += 4797 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4798 stats->DmaWriteHighPriQueueFull += 4799 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4800 stats->NoMoreRxBDs += 4801 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4802 /* 4803 * XXX 4804 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4805 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4806 * includes number of unwanted multicast frames. This comes 4807 * from silicon bug and known workaround to get rough(not 4808 * exact) counter is to enable interrupt on MBUF low water 4809 * attention. This can be accomplished by setting 4810 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4811 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4812 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4813 * However that change would generate more interrupts and 4814 * there are still possibilities of losing multiple frames 4815 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4816 * Given that the workaround still would not get correct 4817 * counter I don't think it's worth to implement it. So 4818 * ignore reading the counter on controllers that have the 4819 * silicon bug. 4820 */ 4821 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4822 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4823 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4824 stats->InputDiscards += 4825 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4826 stats->InputErrors += 4827 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4828 stats->RecvThresholdHit += 4829 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4830 4831 ifp->if_collisions = (u_long)stats->etherStatsCollisions; 4832 ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards + 4833 stats->InputErrors); 4834 } 4835 4836 static void 4837 bge_stats_clear_regs(struct bge_softc *sc) 4838 { 4839 4840 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4841 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4842 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4843 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4844 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4845 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4846 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4847 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4848 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4849 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4850 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4851 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4852 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4853 4854 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4855 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4856 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4857 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4858 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4859 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4860 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4861 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4862 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4863 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4864 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4865 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4866 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4867 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4868 4869 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4870 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4871 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4872 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4873 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4874 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4875 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4876 } 4877 4878 static void 4879 bge_stats_update(struct bge_softc *sc) 4880 { 4881 struct ifnet *ifp; 4882 bus_size_t stats; 4883 uint32_t cnt; /* current register value */ 4884 4885 ifp = sc->bge_ifp; 4886 4887 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4888 4889 #define READ_STAT(sc, stats, stat) \ 4890 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4891 4892 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4893 ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions); 4894 sc->bge_tx_collisions = cnt; 4895 4896 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4897 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds); 4898 sc->bge_rx_nobds = cnt; 4899 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4900 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs); 4901 sc->bge_rx_inerrs = cnt; 4902 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 4903 ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards); 4904 sc->bge_rx_discards = cnt; 4905 4906 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 4907 ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards); 4908 sc->bge_tx_discards = cnt; 4909 4910 #undef READ_STAT 4911 } 4912 4913 /* 4914 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4915 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4916 * but when such padded frames employ the bge IP/TCP checksum offload, 4917 * the hardware checksum assist gives incorrect results (possibly 4918 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4919 * If we pad such runts with zeros, the onboard checksum comes out correct. 4920 */ 4921 static __inline int 4922 bge_cksum_pad(struct mbuf *m) 4923 { 4924 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 4925 struct mbuf *last; 4926 4927 /* If there's only the packet-header and we can pad there, use it. */ 4928 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 4929 M_TRAILINGSPACE(m) >= padlen) { 4930 last = m; 4931 } else { 4932 /* 4933 * Walk packet chain to find last mbuf. We will either 4934 * pad there, or append a new mbuf and pad it. 4935 */ 4936 for (last = m; last->m_next != NULL; last = last->m_next); 4937 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 4938 /* Allocate new empty mbuf, pad it. Compact later. */ 4939 struct mbuf *n; 4940 4941 MGET(n, M_DONTWAIT, MT_DATA); 4942 if (n == NULL) 4943 return (ENOBUFS); 4944 n->m_len = 0; 4945 last->m_next = n; 4946 last = n; 4947 } 4948 } 4949 4950 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 4951 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 4952 last->m_len += padlen; 4953 m->m_pkthdr.len += padlen; 4954 4955 return (0); 4956 } 4957 4958 static struct mbuf * 4959 bge_check_short_dma(struct mbuf *m) 4960 { 4961 struct mbuf *n; 4962 int found; 4963 4964 /* 4965 * If device receive two back-to-back send BDs with less than 4966 * or equal to 8 total bytes then the device may hang. The two 4967 * back-to-back send BDs must in the same frame for this failure 4968 * to occur. Scan mbuf chains and see whether two back-to-back 4969 * send BDs are there. If this is the case, allocate new mbuf 4970 * and copy the frame to workaround the silicon bug. 4971 */ 4972 for (n = m, found = 0; n != NULL; n = n->m_next) { 4973 if (n->m_len < 8) { 4974 found++; 4975 if (found > 1) 4976 break; 4977 continue; 4978 } 4979 found = 0; 4980 } 4981 4982 if (found > 1) { 4983 n = m_defrag(m, M_DONTWAIT); 4984 if (n == NULL) 4985 m_freem(m); 4986 } else 4987 n = m; 4988 return (n); 4989 } 4990 4991 static struct mbuf * 4992 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 4993 uint16_t *flags) 4994 { 4995 struct ip *ip; 4996 struct tcphdr *tcp; 4997 struct mbuf *n; 4998 uint16_t hlen; 4999 uint32_t poff; 5000 5001 if (M_WRITABLE(m) == 0) { 5002 /* Get a writable copy. */ 5003 n = m_dup(m, M_DONTWAIT); 5004 m_freem(m); 5005 if (n == NULL) 5006 return (NULL); 5007 m = n; 5008 } 5009 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5010 if (m == NULL) 5011 return (NULL); 5012 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5013 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5014 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5015 if (m == NULL) 5016 return (NULL); 5017 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5018 m = m_pullup(m, poff + (tcp->th_off << 2)); 5019 if (m == NULL) 5020 return (NULL); 5021 /* 5022 * It seems controller doesn't modify IP length and TCP pseudo 5023 * checksum. These checksum computed by upper stack should be 0. 5024 */ 5025 *mss = m->m_pkthdr.tso_segsz; 5026 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5027 ip->ip_sum = 0; 5028 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5029 /* Clear pseudo checksum computed by TCP stack. */ 5030 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5031 tcp->th_sum = 0; 5032 /* 5033 * Broadcom controllers uses different descriptor format for 5034 * TSO depending on ASIC revision. Due to TSO-capable firmware 5035 * license issue and lower performance of firmware based TSO 5036 * we only support hardware based TSO. 5037 */ 5038 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5039 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5040 if (sc->bge_flags & BGE_FLAG_TSO3) { 5041 /* 5042 * For BCM5717 and newer controllers, hardware based TSO 5043 * uses the 14 lower bits of the bge_mss field to store the 5044 * MSS and the upper 2 bits to store the lowest 2 bits of 5045 * the IP/TCP header length. The upper 6 bits of the header 5046 * length are stored in the bge_flags[14:10,4] field. Jumbo 5047 * frames are supported. 5048 */ 5049 *mss |= ((hlen & 0x3) << 14); 5050 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5051 } else { 5052 /* 5053 * For BCM5755 and newer controllers, hardware based TSO uses 5054 * the lower 11 bits to store the MSS and the upper 5 bits to 5055 * store the IP/TCP header length. Jumbo frames are not 5056 * supported. 5057 */ 5058 *mss |= (hlen << 11); 5059 } 5060 return (m); 5061 } 5062 5063 /* 5064 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5065 * pointers to descriptors. 5066 */ 5067 static int 5068 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5069 { 5070 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5071 bus_dmamap_t map; 5072 struct bge_tx_bd *d; 5073 struct mbuf *m = *m_head; 5074 uint32_t idx = *txidx; 5075 uint16_t csum_flags, mss, vlan_tag; 5076 int nsegs, i, error; 5077 5078 csum_flags = 0; 5079 mss = 0; 5080 vlan_tag = 0; 5081 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5082 m->m_next != NULL) { 5083 *m_head = bge_check_short_dma(m); 5084 if (*m_head == NULL) 5085 return (ENOBUFS); 5086 m = *m_head; 5087 } 5088 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5089 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5090 if (*m_head == NULL) 5091 return (ENOBUFS); 5092 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5093 BGE_TXBDFLAG_CPU_POST_DMA; 5094 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5095 if (m->m_pkthdr.csum_flags & CSUM_IP) 5096 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5097 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5098 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5099 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5100 (error = bge_cksum_pad(m)) != 0) { 5101 m_freem(m); 5102 *m_head = NULL; 5103 return (error); 5104 } 5105 } 5106 } 5107 5108 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5109 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5110 m->m_pkthdr.len > ETHER_MAX_LEN) 5111 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5112 if (sc->bge_forced_collapse > 0 && 5113 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5114 /* 5115 * Forcedly collapse mbuf chains to overcome hardware 5116 * limitation which only support a single outstanding 5117 * DMA read operation. 5118 */ 5119 if (sc->bge_forced_collapse == 1) 5120 m = m_defrag(m, M_DONTWAIT); 5121 else 5122 m = m_collapse(m, M_DONTWAIT, 5123 sc->bge_forced_collapse); 5124 if (m == NULL) 5125 m = *m_head; 5126 *m_head = m; 5127 } 5128 } 5129 5130 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5131 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5132 &nsegs, BUS_DMA_NOWAIT); 5133 if (error == EFBIG) { 5134 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW); 5135 if (m == NULL) { 5136 m_freem(*m_head); 5137 *m_head = NULL; 5138 return (ENOBUFS); 5139 } 5140 *m_head = m; 5141 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5142 m, segs, &nsegs, BUS_DMA_NOWAIT); 5143 if (error) { 5144 m_freem(m); 5145 *m_head = NULL; 5146 return (error); 5147 } 5148 } else if (error != 0) 5149 return (error); 5150 5151 /* Check if we have enough free send BDs. */ 5152 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5153 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5154 return (ENOBUFS); 5155 } 5156 5157 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5158 5159 if (m->m_flags & M_VLANTAG) { 5160 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5161 vlan_tag = m->m_pkthdr.ether_vtag; 5162 } 5163 for (i = 0; ; i++) { 5164 d = &sc->bge_ldata.bge_tx_ring[idx]; 5165 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5166 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5167 d->bge_len = segs[i].ds_len; 5168 d->bge_flags = csum_flags; 5169 d->bge_vlan_tag = vlan_tag; 5170 d->bge_mss = mss; 5171 if (i == nsegs - 1) 5172 break; 5173 BGE_INC(idx, BGE_TX_RING_CNT); 5174 } 5175 5176 /* Mark the last segment as end of packet... */ 5177 d->bge_flags |= BGE_TXBDFLAG_END; 5178 5179 /* 5180 * Insure that the map for this transmission 5181 * is placed at the array index of the last descriptor 5182 * in this chain. 5183 */ 5184 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5185 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5186 sc->bge_cdata.bge_tx_chain[idx] = m; 5187 sc->bge_txcnt += nsegs; 5188 5189 BGE_INC(idx, BGE_TX_RING_CNT); 5190 *txidx = idx; 5191 5192 return (0); 5193 } 5194 5195 /* 5196 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5197 * to the mbuf data regions directly in the transmit descriptors. 5198 */ 5199 static void 5200 bge_start_locked(struct ifnet *ifp) 5201 { 5202 struct bge_softc *sc; 5203 struct mbuf *m_head; 5204 uint32_t prodidx; 5205 int count; 5206 5207 sc = ifp->if_softc; 5208 BGE_LOCK_ASSERT(sc); 5209 5210 if (!sc->bge_link || 5211 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5212 IFF_DRV_RUNNING) 5213 return; 5214 5215 prodidx = sc->bge_tx_prodidx; 5216 5217 for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) { 5218 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5219 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5220 break; 5221 } 5222 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 5223 if (m_head == NULL) 5224 break; 5225 5226 /* 5227 * Pack the data into the transmit ring. If we 5228 * don't have room, set the OACTIVE flag and wait 5229 * for the NIC to drain the ring. 5230 */ 5231 if (bge_encap(sc, &m_head, &prodidx)) { 5232 if (m_head == NULL) 5233 break; 5234 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 5235 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 5236 break; 5237 } 5238 ++count; 5239 5240 /* 5241 * If there's a BPF listener, bounce a copy of this frame 5242 * to him. 5243 */ 5244 #ifdef ETHER_BPF_MTAP 5245 ETHER_BPF_MTAP(ifp, m_head); 5246 #else 5247 BPF_MTAP(ifp, m_head); 5248 #endif 5249 } 5250 5251 if (count > 0) { 5252 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5253 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5254 /* Transmit. */ 5255 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5256 /* 5700 b2 errata */ 5257 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5258 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5259 5260 sc->bge_tx_prodidx = prodidx; 5261 5262 /* 5263 * Set a timeout in case the chip goes out to lunch. 5264 */ 5265 sc->bge_timer = 5; 5266 } 5267 } 5268 5269 /* 5270 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5271 * to the mbuf data regions directly in the transmit descriptors. 5272 */ 5273 static void 5274 bge_start(struct ifnet *ifp) 5275 { 5276 struct bge_softc *sc; 5277 5278 sc = ifp->if_softc; 5279 BGE_LOCK(sc); 5280 bge_start_locked(ifp); 5281 BGE_UNLOCK(sc); 5282 } 5283 5284 static void 5285 bge_init_locked(struct bge_softc *sc) 5286 { 5287 struct ifnet *ifp; 5288 uint16_t *m; 5289 uint32_t mode; 5290 5291 BGE_LOCK_ASSERT(sc); 5292 5293 ifp = sc->bge_ifp; 5294 5295 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5296 return; 5297 5298 /* Cancel pending I/O and flush buffers. */ 5299 bge_stop(sc); 5300 5301 bge_stop_fw(sc); 5302 bge_sig_pre_reset(sc, BGE_RESET_START); 5303 bge_reset(sc); 5304 bge_sig_legacy(sc, BGE_RESET_START); 5305 bge_sig_post_reset(sc, BGE_RESET_START); 5306 5307 bge_chipinit(sc); 5308 5309 /* 5310 * Init the various state machines, ring 5311 * control blocks and firmware. 5312 */ 5313 if (bge_blockinit(sc)) { 5314 device_printf(sc->bge_dev, "initialization failure\n"); 5315 return; 5316 } 5317 5318 ifp = sc->bge_ifp; 5319 5320 /* Specify MTU. */ 5321 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 5322 ETHER_HDR_LEN + ETHER_CRC_LEN + 5323 (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5324 5325 /* Load our MAC address. */ 5326 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 5327 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5328 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5329 5330 /* Program promiscuous mode. */ 5331 bge_setpromisc(sc); 5332 5333 /* Program multicast filter. */ 5334 bge_setmulti(sc); 5335 5336 /* Program VLAN tag stripping. */ 5337 bge_setvlan(sc); 5338 5339 /* Override UDP checksum offloading. */ 5340 if (sc->bge_forced_udpcsum == 0) 5341 sc->bge_csum_features &= ~CSUM_UDP; 5342 else 5343 sc->bge_csum_features |= CSUM_UDP; 5344 if (ifp->if_capabilities & IFCAP_TXCSUM && 5345 ifp->if_capenable & IFCAP_TXCSUM) { 5346 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP); 5347 ifp->if_hwassist |= sc->bge_csum_features; 5348 } 5349 5350 /* Init RX ring. */ 5351 if (bge_init_rx_ring_std(sc) != 0) { 5352 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5353 bge_stop(sc); 5354 return; 5355 } 5356 5357 /* 5358 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5359 * memory to insure that the chip has in fact read the first 5360 * entry of the ring. 5361 */ 5362 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5363 uint32_t v, i; 5364 for (i = 0; i < 10; i++) { 5365 DELAY(20); 5366 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5367 if (v == (MCLBYTES - ETHER_ALIGN)) 5368 break; 5369 } 5370 if (i == 10) 5371 device_printf (sc->bge_dev, 5372 "5705 A0 chip failed to load RX ring\n"); 5373 } 5374 5375 /* Init jumbo RX ring. */ 5376 if (BGE_IS_JUMBO_CAPABLE(sc) && 5377 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN > 5378 (MCLBYTES - ETHER_ALIGN)) { 5379 if (bge_init_rx_ring_jumbo(sc) != 0) { 5380 device_printf(sc->bge_dev, 5381 "no memory for jumbo Rx buffers.\n"); 5382 bge_stop(sc); 5383 return; 5384 } 5385 } 5386 5387 /* Init our RX return ring index. */ 5388 sc->bge_rx_saved_considx = 0; 5389 5390 /* Init our RX/TX stat counters. */ 5391 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5392 5393 /* Init TX ring. */ 5394 bge_init_tx_ring(sc); 5395 5396 /* Enable TX MAC state machine lockup fix. */ 5397 mode = CSR_READ_4(sc, BGE_TX_MODE); 5398 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5399 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5400 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 5401 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5402 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5403 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5404 } 5405 /* Turn on transmitter. */ 5406 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5407 DELAY(100); 5408 5409 /* Turn on receiver. */ 5410 mode = CSR_READ_4(sc, BGE_RX_MODE); 5411 if (BGE_IS_5755_PLUS(sc)) 5412 mode |= BGE_RXMODE_IPV6_ENABLE; 5413 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5414 DELAY(10); 5415 5416 /* 5417 * Set the number of good frames to receive after RX MBUF 5418 * Low Watermark has been reached. After the RX MAC receives 5419 * this number of frames, it will drop subsequent incoming 5420 * frames until the MBUF High Watermark is reached. 5421 */ 5422 if (sc->bge_asicrev == BGE_ASICREV_BCM57765) 5423 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5424 else 5425 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5426 5427 /* Clear MAC statistics. */ 5428 if (BGE_IS_5705_PLUS(sc)) 5429 bge_stats_clear_regs(sc); 5430 5431 /* Tell firmware we're alive. */ 5432 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5433 5434 #ifdef DEVICE_POLLING 5435 /* Disable interrupts if we are polling. */ 5436 if (ifp->if_capenable & IFCAP_POLLING) { 5437 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5438 BGE_PCIMISCCTL_MASK_PCI_INTR); 5439 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5440 } else 5441 #endif 5442 5443 /* Enable host interrupts. */ 5444 { 5445 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5446 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5447 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5448 } 5449 5450 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5451 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5452 5453 bge_ifmedia_upd_locked(ifp); 5454 5455 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5456 } 5457 5458 static void 5459 bge_init(void *xsc) 5460 { 5461 struct bge_softc *sc = xsc; 5462 5463 BGE_LOCK(sc); 5464 bge_init_locked(sc); 5465 BGE_UNLOCK(sc); 5466 } 5467 5468 /* 5469 * Set media options. 5470 */ 5471 static int 5472 bge_ifmedia_upd(struct ifnet *ifp) 5473 { 5474 struct bge_softc *sc = ifp->if_softc; 5475 int res; 5476 5477 BGE_LOCK(sc); 5478 res = bge_ifmedia_upd_locked(ifp); 5479 BGE_UNLOCK(sc); 5480 5481 return (res); 5482 } 5483 5484 static int 5485 bge_ifmedia_upd_locked(struct ifnet *ifp) 5486 { 5487 struct bge_softc *sc = ifp->if_softc; 5488 struct mii_data *mii; 5489 struct mii_softc *miisc; 5490 struct ifmedia *ifm; 5491 5492 BGE_LOCK_ASSERT(sc); 5493 5494 ifm = &sc->bge_ifmedia; 5495 5496 /* If this is a 1000baseX NIC, enable the TBI port. */ 5497 if (sc->bge_flags & BGE_FLAG_TBI) { 5498 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5499 return (EINVAL); 5500 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5501 case IFM_AUTO: 5502 /* 5503 * The BCM5704 ASIC appears to have a special 5504 * mechanism for programming the autoneg 5505 * advertisement registers in TBI mode. 5506 */ 5507 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5508 uint32_t sgdig; 5509 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5510 if (sgdig & BGE_SGDIGSTS_DONE) { 5511 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5512 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5513 sgdig |= BGE_SGDIGCFG_AUTO | 5514 BGE_SGDIGCFG_PAUSE_CAP | 5515 BGE_SGDIGCFG_ASYM_PAUSE; 5516 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5517 sgdig | BGE_SGDIGCFG_SEND); 5518 DELAY(5); 5519 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5520 } 5521 } 5522 break; 5523 case IFM_1000_SX: 5524 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5525 BGE_CLRBIT(sc, BGE_MAC_MODE, 5526 BGE_MACMODE_HALF_DUPLEX); 5527 } else { 5528 BGE_SETBIT(sc, BGE_MAC_MODE, 5529 BGE_MACMODE_HALF_DUPLEX); 5530 } 5531 DELAY(40); 5532 break; 5533 default: 5534 return (EINVAL); 5535 } 5536 return (0); 5537 } 5538 5539 sc->bge_link_evt++; 5540 mii = device_get_softc(sc->bge_miibus); 5541 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5542 PHY_RESET(miisc); 5543 mii_mediachg(mii); 5544 5545 /* 5546 * Force an interrupt so that we will call bge_link_upd 5547 * if needed and clear any pending link state attention. 5548 * Without this we are not getting any further interrupts 5549 * for link state changes and thus will not UP the link and 5550 * not be able to send in bge_start_locked. The only 5551 * way to get things working was to receive a packet and 5552 * get an RX intr. 5553 * bge_tick should help for fiber cards and we might not 5554 * need to do this here if BGE_FLAG_TBI is set but as 5555 * we poll for fiber anyway it should not harm. 5556 */ 5557 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5558 sc->bge_flags & BGE_FLAG_5788) 5559 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5560 else 5561 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5562 5563 return (0); 5564 } 5565 5566 /* 5567 * Report current media status. 5568 */ 5569 static void 5570 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5571 { 5572 struct bge_softc *sc = ifp->if_softc; 5573 struct mii_data *mii; 5574 5575 BGE_LOCK(sc); 5576 5577 if (sc->bge_flags & BGE_FLAG_TBI) { 5578 ifmr->ifm_status = IFM_AVALID; 5579 ifmr->ifm_active = IFM_ETHER; 5580 if (CSR_READ_4(sc, BGE_MAC_STS) & 5581 BGE_MACSTAT_TBI_PCS_SYNCHED) 5582 ifmr->ifm_status |= IFM_ACTIVE; 5583 else { 5584 ifmr->ifm_active |= IFM_NONE; 5585 BGE_UNLOCK(sc); 5586 return; 5587 } 5588 ifmr->ifm_active |= IFM_1000_SX; 5589 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5590 ifmr->ifm_active |= IFM_HDX; 5591 else 5592 ifmr->ifm_active |= IFM_FDX; 5593 BGE_UNLOCK(sc); 5594 return; 5595 } 5596 5597 mii = device_get_softc(sc->bge_miibus); 5598 mii_pollstat(mii); 5599 ifmr->ifm_active = mii->mii_media_active; 5600 ifmr->ifm_status = mii->mii_media_status; 5601 5602 BGE_UNLOCK(sc); 5603 } 5604 5605 static int 5606 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 5607 { 5608 struct bge_softc *sc = ifp->if_softc; 5609 struct ifreq *ifr = (struct ifreq *) data; 5610 struct mii_data *mii; 5611 int flags, mask, error = 0; 5612 5613 switch (command) { 5614 case SIOCSIFMTU: 5615 if (BGE_IS_JUMBO_CAPABLE(sc) || 5616 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5617 if (ifr->ifr_mtu < ETHERMIN || 5618 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5619 error = EINVAL; 5620 break; 5621 } 5622 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5623 error = EINVAL; 5624 break; 5625 } 5626 BGE_LOCK(sc); 5627 if (ifp->if_mtu != ifr->ifr_mtu) { 5628 ifp->if_mtu = ifr->ifr_mtu; 5629 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5630 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5631 bge_init_locked(sc); 5632 } 5633 } 5634 BGE_UNLOCK(sc); 5635 break; 5636 case SIOCSIFFLAGS: 5637 BGE_LOCK(sc); 5638 if (ifp->if_flags & IFF_UP) { 5639 /* 5640 * If only the state of the PROMISC flag changed, 5641 * then just use the 'set promisc mode' command 5642 * instead of reinitializing the entire NIC. Doing 5643 * a full re-init means reloading the firmware and 5644 * waiting for it to start up, which may take a 5645 * second or two. Similarly for ALLMULTI. 5646 */ 5647 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5648 flags = ifp->if_flags ^ sc->bge_if_flags; 5649 if (flags & IFF_PROMISC) 5650 bge_setpromisc(sc); 5651 if (flags & IFF_ALLMULTI) 5652 bge_setmulti(sc); 5653 } else 5654 bge_init_locked(sc); 5655 } else { 5656 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5657 bge_stop(sc); 5658 } 5659 } 5660 sc->bge_if_flags = ifp->if_flags; 5661 BGE_UNLOCK(sc); 5662 error = 0; 5663 break; 5664 case SIOCADDMULTI: 5665 case SIOCDELMULTI: 5666 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 5667 BGE_LOCK(sc); 5668 bge_setmulti(sc); 5669 BGE_UNLOCK(sc); 5670 error = 0; 5671 } 5672 break; 5673 case SIOCSIFMEDIA: 5674 case SIOCGIFMEDIA: 5675 if (sc->bge_flags & BGE_FLAG_TBI) { 5676 error = ifmedia_ioctl(ifp, ifr, 5677 &sc->bge_ifmedia, command); 5678 } else { 5679 mii = device_get_softc(sc->bge_miibus); 5680 error = ifmedia_ioctl(ifp, ifr, 5681 &mii->mii_media, command); 5682 } 5683 break; 5684 case SIOCSIFCAP: 5685 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 5686 #ifdef DEVICE_POLLING 5687 if (mask & IFCAP_POLLING) { 5688 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5689 error = ether_poll_register(bge_poll, ifp); 5690 if (error) 5691 return (error); 5692 BGE_LOCK(sc); 5693 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5694 BGE_PCIMISCCTL_MASK_PCI_INTR); 5695 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5696 ifp->if_capenable |= IFCAP_POLLING; 5697 BGE_UNLOCK(sc); 5698 } else { 5699 error = ether_poll_deregister(ifp); 5700 /* Enable interrupt even in error case */ 5701 BGE_LOCK(sc); 5702 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5703 BGE_PCIMISCCTL_MASK_PCI_INTR); 5704 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5705 ifp->if_capenable &= ~IFCAP_POLLING; 5706 BGE_UNLOCK(sc); 5707 } 5708 } 5709 #endif 5710 if ((mask & IFCAP_TXCSUM) != 0 && 5711 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 5712 ifp->if_capenable ^= IFCAP_TXCSUM; 5713 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 5714 ifp->if_hwassist |= sc->bge_csum_features; 5715 else 5716 ifp->if_hwassist &= ~sc->bge_csum_features; 5717 } 5718 5719 if ((mask & IFCAP_RXCSUM) != 0 && 5720 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) 5721 ifp->if_capenable ^= IFCAP_RXCSUM; 5722 5723 if ((mask & IFCAP_TSO4) != 0 && 5724 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 5725 ifp->if_capenable ^= IFCAP_TSO4; 5726 if ((ifp->if_capenable & IFCAP_TSO4) != 0) 5727 ifp->if_hwassist |= CSUM_TSO; 5728 else 5729 ifp->if_hwassist &= ~CSUM_TSO; 5730 } 5731 5732 if (mask & IFCAP_VLAN_MTU) { 5733 ifp->if_capenable ^= IFCAP_VLAN_MTU; 5734 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5735 bge_init(sc); 5736 } 5737 5738 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5739 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 5740 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 5741 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5742 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 5743 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 5744 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 5745 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 5746 BGE_LOCK(sc); 5747 bge_setvlan(sc); 5748 BGE_UNLOCK(sc); 5749 } 5750 #ifdef VLAN_CAPABILITIES 5751 VLAN_CAPABILITIES(ifp); 5752 #endif 5753 break; 5754 default: 5755 error = ether_ioctl(ifp, command, data); 5756 break; 5757 } 5758 5759 return (error); 5760 } 5761 5762 static void 5763 bge_watchdog(struct bge_softc *sc) 5764 { 5765 struct ifnet *ifp; 5766 5767 BGE_LOCK_ASSERT(sc); 5768 5769 if (sc->bge_timer == 0 || --sc->bge_timer) 5770 return; 5771 5772 ifp = sc->bge_ifp; 5773 5774 if_printf(ifp, "watchdog timeout -- resetting\n"); 5775 5776 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5777 bge_init_locked(sc); 5778 5779 ifp->if_oerrors++; 5780 } 5781 5782 static void 5783 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5784 { 5785 int i; 5786 5787 BGE_CLRBIT(sc, reg, bit); 5788 5789 for (i = 0; i < BGE_TIMEOUT; i++) { 5790 if ((CSR_READ_4(sc, reg) & bit) == 0) 5791 return; 5792 DELAY(100); 5793 } 5794 } 5795 5796 /* 5797 * Stop the adapter and free any mbufs allocated to the 5798 * RX and TX lists. 5799 */ 5800 static void 5801 bge_stop(struct bge_softc *sc) 5802 { 5803 struct ifnet *ifp; 5804 5805 BGE_LOCK_ASSERT(sc); 5806 5807 ifp = sc->bge_ifp; 5808 5809 callout_stop(&sc->bge_stat_ch); 5810 5811 /* Disable host interrupts. */ 5812 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5813 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5814 5815 /* 5816 * Tell firmware we're shutting down. 5817 */ 5818 bge_stop_fw(sc); 5819 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5820 5821 /* 5822 * Disable all of the receiver blocks. 5823 */ 5824 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5825 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5826 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5827 if (BGE_IS_5700_FAMILY(sc)) 5828 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5829 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5830 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5831 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5832 5833 /* 5834 * Disable all of the transmit blocks. 5835 */ 5836 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5837 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5838 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5839 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5840 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5841 if (BGE_IS_5700_FAMILY(sc)) 5842 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5843 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5844 5845 /* 5846 * Shut down all of the memory managers and related 5847 * state machines. 5848 */ 5849 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5850 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5851 if (BGE_IS_5700_FAMILY(sc)) 5852 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5853 5854 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5855 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5856 if (!(BGE_IS_5705_PLUS(sc))) { 5857 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5858 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5859 } 5860 /* Update MAC statistics. */ 5861 if (BGE_IS_5705_PLUS(sc)) 5862 bge_stats_update_regs(sc); 5863 5864 bge_reset(sc); 5865 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 5866 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 5867 5868 /* 5869 * Keep the ASF firmware running if up. 5870 */ 5871 if (sc->bge_asf_mode & ASF_STACKUP) 5872 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5873 else 5874 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5875 5876 /* Free the RX lists. */ 5877 bge_free_rx_ring_std(sc); 5878 5879 /* Free jumbo RX list. */ 5880 if (BGE_IS_JUMBO_CAPABLE(sc)) 5881 bge_free_rx_ring_jumbo(sc); 5882 5883 /* Free TX buffers. */ 5884 bge_free_tx_ring(sc); 5885 5886 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5887 5888 /* Clear MAC's link state (PHY may still have link UP). */ 5889 if (bootverbose && sc->bge_link) 5890 if_printf(sc->bge_ifp, "link DOWN\n"); 5891 sc->bge_link = 0; 5892 5893 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 5894 } 5895 5896 /* 5897 * Stop all chip I/O so that the kernel's probe routines don't 5898 * get confused by errant DMAs when rebooting. 5899 */ 5900 static int 5901 bge_shutdown(device_t dev) 5902 { 5903 struct bge_softc *sc; 5904 5905 sc = device_get_softc(dev); 5906 BGE_LOCK(sc); 5907 bge_stop(sc); 5908 BGE_UNLOCK(sc); 5909 5910 return (0); 5911 } 5912 5913 static int 5914 bge_suspend(device_t dev) 5915 { 5916 struct bge_softc *sc; 5917 5918 sc = device_get_softc(dev); 5919 BGE_LOCK(sc); 5920 bge_stop(sc); 5921 BGE_UNLOCK(sc); 5922 5923 return (0); 5924 } 5925 5926 static int 5927 bge_resume(device_t dev) 5928 { 5929 struct bge_softc *sc; 5930 struct ifnet *ifp; 5931 5932 sc = device_get_softc(dev); 5933 BGE_LOCK(sc); 5934 ifp = sc->bge_ifp; 5935 if (ifp->if_flags & IFF_UP) { 5936 bge_init_locked(sc); 5937 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5938 bge_start_locked(ifp); 5939 } 5940 BGE_UNLOCK(sc); 5941 5942 return (0); 5943 } 5944 5945 static void 5946 bge_link_upd(struct bge_softc *sc) 5947 { 5948 struct mii_data *mii; 5949 uint32_t link, status; 5950 5951 BGE_LOCK_ASSERT(sc); 5952 5953 /* Clear 'pending link event' flag. */ 5954 sc->bge_link_evt = 0; 5955 5956 /* 5957 * Process link state changes. 5958 * Grrr. The link status word in the status block does 5959 * not work correctly on the BCM5700 rev AX and BX chips, 5960 * according to all available information. Hence, we have 5961 * to enable MII interrupts in order to properly obtain 5962 * async link changes. Unfortunately, this also means that 5963 * we have to read the MAC status register to detect link 5964 * changes, thereby adding an additional register access to 5965 * the interrupt handler. 5966 * 5967 * XXX: perhaps link state detection procedure used for 5968 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 5969 */ 5970 5971 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 5972 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 5973 status = CSR_READ_4(sc, BGE_MAC_STS); 5974 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5975 mii = device_get_softc(sc->bge_miibus); 5976 mii_pollstat(mii); 5977 if (!sc->bge_link && 5978 mii->mii_media_status & IFM_ACTIVE && 5979 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5980 sc->bge_link++; 5981 if (bootverbose) 5982 if_printf(sc->bge_ifp, "link UP\n"); 5983 } else if (sc->bge_link && 5984 (!(mii->mii_media_status & IFM_ACTIVE) || 5985 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 5986 sc->bge_link = 0; 5987 if (bootverbose) 5988 if_printf(sc->bge_ifp, "link DOWN\n"); 5989 } 5990 5991 /* Clear the interrupt. */ 5992 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5993 BGE_EVTENB_MI_INTERRUPT); 5994 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 5995 BRGPHY_MII_ISR); 5996 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 5997 BRGPHY_MII_IMR, BRGPHY_INTRS); 5998 } 5999 return; 6000 } 6001 6002 if (sc->bge_flags & BGE_FLAG_TBI) { 6003 status = CSR_READ_4(sc, BGE_MAC_STS); 6004 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6005 if (!sc->bge_link) { 6006 sc->bge_link++; 6007 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6008 BGE_CLRBIT(sc, BGE_MAC_MODE, 6009 BGE_MACMODE_TBI_SEND_CFGS); 6010 DELAY(40); 6011 } 6012 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6013 if (bootverbose) 6014 if_printf(sc->bge_ifp, "link UP\n"); 6015 if_link_state_change(sc->bge_ifp, 6016 LINK_STATE_UP); 6017 } 6018 } else if (sc->bge_link) { 6019 sc->bge_link = 0; 6020 if (bootverbose) 6021 if_printf(sc->bge_ifp, "link DOWN\n"); 6022 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6023 } 6024 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6025 /* 6026 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6027 * in status word always set. Workaround this bug by reading 6028 * PHY link status directly. 6029 */ 6030 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6031 6032 if (link != sc->bge_link || 6033 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6034 mii = device_get_softc(sc->bge_miibus); 6035 mii_pollstat(mii); 6036 if (!sc->bge_link && 6037 mii->mii_media_status & IFM_ACTIVE && 6038 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6039 sc->bge_link++; 6040 if (bootverbose) 6041 if_printf(sc->bge_ifp, "link UP\n"); 6042 } else if (sc->bge_link && 6043 (!(mii->mii_media_status & IFM_ACTIVE) || 6044 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6045 sc->bge_link = 0; 6046 if (bootverbose) 6047 if_printf(sc->bge_ifp, "link DOWN\n"); 6048 } 6049 } 6050 } else { 6051 /* 6052 * For controllers that call mii_tick, we have to poll 6053 * link status. 6054 */ 6055 mii = device_get_softc(sc->bge_miibus); 6056 mii_pollstat(mii); 6057 bge_miibus_statchg(sc->bge_dev); 6058 } 6059 6060 /* Disable MAC attention when link is up. */ 6061 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6062 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6063 BGE_MACSTAT_LINK_CHANGED); 6064 } 6065 6066 static void 6067 bge_add_sysctls(struct bge_softc *sc) 6068 { 6069 struct sysctl_ctx_list *ctx; 6070 struct sysctl_oid_list *children; 6071 char tn[32]; 6072 int unit; 6073 6074 ctx = device_get_sysctl_ctx(sc->bge_dev); 6075 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6076 6077 #ifdef BGE_REGISTER_DEBUG 6078 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6079 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I", 6080 "Debug Information"); 6081 6082 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6083 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I", 6084 "MAC Register Read"); 6085 6086 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6087 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I", 6088 "APE Register Read"); 6089 6090 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6091 CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I", 6092 "Memory Read"); 6093 6094 #endif 6095 6096 unit = device_get_unit(sc->bge_dev); 6097 /* 6098 * A common design characteristic for many Broadcom client controllers 6099 * is that they only support a single outstanding DMA read operation 6100 * on the PCIe bus. This means that it will take twice as long to fetch 6101 * a TX frame that is split into header and payload buffers as it does 6102 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6103 * these controllers, coalescing buffers to reduce the number of memory 6104 * reads is effective way to get maximum performance(about 940Mbps). 6105 * Without collapsing TX buffers the maximum TCP bulk transfer 6106 * performance is about 850Mbps. However forcing coalescing mbufs 6107 * consumes a lot of CPU cycles, so leave it off by default. 6108 */ 6109 sc->bge_forced_collapse = 0; 6110 snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit); 6111 TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse); 6112 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6113 CTLFLAG_RW, &sc->bge_forced_collapse, 0, 6114 "Number of fragmented TX buffers of a frame allowed before " 6115 "forced collapsing"); 6116 6117 sc->bge_msi = 1; 6118 snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit); 6119 TUNABLE_INT_FETCH(tn, &sc->bge_msi); 6120 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6121 CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI"); 6122 6123 /* 6124 * It seems all Broadcom controllers have a bug that can generate UDP 6125 * datagrams with checksum value 0 when TX UDP checksum offloading is 6126 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6127 * Even though the probability of generating such UDP datagrams is 6128 * low, I don't want to see FreeBSD boxes to inject such datagrams 6129 * into network so disable UDP checksum offloading by default. Users 6130 * still override this behavior by setting a sysctl variable, 6131 * dev.bge.0.forced_udpcsum. 6132 */ 6133 sc->bge_forced_udpcsum = 0; 6134 snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit); 6135 TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum); 6136 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6137 CTLFLAG_RW, &sc->bge_forced_udpcsum, 0, 6138 "Enable UDP checksum offloading even if controller can " 6139 "generate UDP checksum value 0"); 6140 6141 if (BGE_IS_5705_PLUS(sc)) 6142 bge_add_sysctl_stats_regs(sc, ctx, children); 6143 else 6144 bge_add_sysctl_stats(sc, ctx, children); 6145 } 6146 6147 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6148 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \ 6149 sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \ 6150 desc) 6151 6152 static void 6153 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6154 struct sysctl_oid_list *parent) 6155 { 6156 struct sysctl_oid *tree; 6157 struct sysctl_oid_list *children, *schildren; 6158 6159 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6160 NULL, "BGE Statistics"); 6161 schildren = children = SYSCTL_CHILDREN(tree); 6162 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6163 children, COSFramesDroppedDueToFilters, 6164 "FramesDroppedDueToFilters"); 6165 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6166 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6167 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6168 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6169 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6170 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6171 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6172 children, ifInDiscards, "InputDiscards"); 6173 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6174 children, ifInErrors, "InputErrors"); 6175 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6176 children, nicRecvThresholdHit, "RecvThresholdHit"); 6177 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6178 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6179 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6180 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6181 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6182 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6183 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6184 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6185 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6186 children, nicRingStatusUpdate, "RingStatusUpdate"); 6187 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6188 children, nicInterrupts, "Interrupts"); 6189 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6190 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6191 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6192 children, nicSendThresholdHit, "SendThresholdHit"); 6193 6194 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD, 6195 NULL, "BGE RX Statistics"); 6196 children = SYSCTL_CHILDREN(tree); 6197 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6198 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6199 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6200 children, rxstats.etherStatsFragments, "Fragments"); 6201 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6202 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6203 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6204 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6205 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6206 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6207 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6208 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6209 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6210 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6211 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6212 children, rxstats.xoffPauseFramesReceived, 6213 "xoffPauseFramesReceived"); 6214 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6215 children, rxstats.macControlFramesReceived, 6216 "ControlFramesReceived"); 6217 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6218 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6219 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6220 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6221 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6222 children, rxstats.etherStatsJabbers, "Jabbers"); 6223 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6224 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6225 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6226 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6227 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6228 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6229 6230 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD, 6231 NULL, "BGE TX Statistics"); 6232 children = SYSCTL_CHILDREN(tree); 6233 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6234 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6235 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6236 children, txstats.etherStatsCollisions, "Collisions"); 6237 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6238 children, txstats.outXonSent, "XonSent"); 6239 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6240 children, txstats.outXoffSent, "XoffSent"); 6241 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6242 children, txstats.flowControlDone, "flowControlDone"); 6243 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6244 children, txstats.dot3StatsInternalMacTransmitErrors, 6245 "InternalMacTransmitErrors"); 6246 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6247 children, txstats.dot3StatsSingleCollisionFrames, 6248 "SingleCollisionFrames"); 6249 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6250 children, txstats.dot3StatsMultipleCollisionFrames, 6251 "MultipleCollisionFrames"); 6252 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6253 children, txstats.dot3StatsDeferredTransmissions, 6254 "DeferredTransmissions"); 6255 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6256 children, txstats.dot3StatsExcessiveCollisions, 6257 "ExcessiveCollisions"); 6258 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6259 children, txstats.dot3StatsLateCollisions, 6260 "LateCollisions"); 6261 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6262 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6263 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6264 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6265 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6266 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6267 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6268 children, txstats.dot3StatsCarrierSenseErrors, 6269 "CarrierSenseErrors"); 6270 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6271 children, txstats.ifOutDiscards, "Discards"); 6272 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6273 children, txstats.ifOutErrors, "Errors"); 6274 } 6275 6276 #undef BGE_SYSCTL_STAT 6277 6278 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6279 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6280 6281 static void 6282 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6283 struct sysctl_oid_list *parent) 6284 { 6285 struct sysctl_oid *tree; 6286 struct sysctl_oid_list *child, *schild; 6287 struct bge_mac_stats *stats; 6288 6289 stats = &sc->bge_mac_stats; 6290 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD, 6291 NULL, "BGE Statistics"); 6292 schild = child = SYSCTL_CHILDREN(tree); 6293 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6294 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6295 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6296 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6297 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6298 &stats->DmaWriteHighPriQueueFull, 6299 "NIC DMA Write High Priority Queue Full"); 6300 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6301 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6302 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6303 &stats->InputDiscards, "Discarded Input Frames"); 6304 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6305 &stats->InputErrors, "Input Errors"); 6306 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6307 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6308 6309 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, 6310 NULL, "BGE RX Statistics"); 6311 child = SYSCTL_CHILDREN(tree); 6312 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6313 &stats->ifHCInOctets, "Inbound Octets"); 6314 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6315 &stats->etherStatsFragments, "Fragments"); 6316 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6317 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6318 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6319 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6320 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6321 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6322 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6323 &stats->dot3StatsFCSErrors, "FCS Errors"); 6324 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6325 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6326 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6327 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6328 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6329 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6330 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6331 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6332 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6333 &stats->xoffStateEntered, "XOFF State Entered"); 6334 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6335 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6336 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6337 &stats->etherStatsJabbers, "Jabbers"); 6338 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6339 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6340 6341 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, 6342 NULL, "BGE TX Statistics"); 6343 child = SYSCTL_CHILDREN(tree); 6344 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6345 &stats->ifHCOutOctets, "Outbound Octets"); 6346 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6347 &stats->etherStatsCollisions, "TX Collisions"); 6348 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6349 &stats->outXonSent, "XON Sent"); 6350 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6351 &stats->outXoffSent, "XOFF Sent"); 6352 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6353 &stats->dot3StatsInternalMacTransmitErrors, 6354 "Internal MAC TX Errors"); 6355 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6356 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6357 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6358 &stats->dot3StatsMultipleCollisionFrames, 6359 "Multiple Collision Frames"); 6360 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6361 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6362 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6363 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6364 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6365 &stats->dot3StatsLateCollisions, "Late Collisions"); 6366 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6367 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6368 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6369 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6370 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6371 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6372 } 6373 6374 #undef BGE_SYSCTL_STAT_ADD64 6375 6376 static int 6377 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6378 { 6379 struct bge_softc *sc; 6380 uint32_t result; 6381 int offset; 6382 6383 sc = (struct bge_softc *)arg1; 6384 offset = arg2; 6385 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6386 offsetof(bge_hostaddr, bge_addr_lo)); 6387 return (sysctl_handle_int(oidp, &result, 0, req)); 6388 } 6389 6390 #ifdef BGE_REGISTER_DEBUG 6391 static int 6392 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6393 { 6394 struct bge_softc *sc; 6395 uint16_t *sbdata; 6396 int error, result, sbsz; 6397 int i, j; 6398 6399 result = -1; 6400 error = sysctl_handle_int(oidp, &result, 0, req); 6401 if (error || (req->newptr == NULL)) 6402 return (error); 6403 6404 if (result == 1) { 6405 sc = (struct bge_softc *)arg1; 6406 6407 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6408 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6409 sbsz = BGE_STATUS_BLK_SZ; 6410 else 6411 sbsz = 32; 6412 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6413 printf("Status Block:\n"); 6414 BGE_LOCK(sc); 6415 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6416 sc->bge_cdata.bge_status_map, 6417 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6418 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6419 printf("%06x:", i); 6420 for (j = 0; j < 8; j++) 6421 printf(" %04x", sbdata[i++]); 6422 printf("\n"); 6423 } 6424 6425 printf("Registers:\n"); 6426 for (i = 0x800; i < 0xA00; ) { 6427 printf("%06x:", i); 6428 for (j = 0; j < 8; j++) { 6429 printf(" %08x", CSR_READ_4(sc, i)); 6430 i += 4; 6431 } 6432 printf("\n"); 6433 } 6434 BGE_UNLOCK(sc); 6435 6436 printf("Hardware Flags:\n"); 6437 if (BGE_IS_5717_PLUS(sc)) 6438 printf(" - 5717 Plus\n"); 6439 if (BGE_IS_5755_PLUS(sc)) 6440 printf(" - 5755 Plus\n"); 6441 if (BGE_IS_575X_PLUS(sc)) 6442 printf(" - 575X Plus\n"); 6443 if (BGE_IS_5705_PLUS(sc)) 6444 printf(" - 5705 Plus\n"); 6445 if (BGE_IS_5714_FAMILY(sc)) 6446 printf(" - 5714 Family\n"); 6447 if (BGE_IS_5700_FAMILY(sc)) 6448 printf(" - 5700 Family\n"); 6449 if (sc->bge_flags & BGE_FLAG_JUMBO) 6450 printf(" - Supports Jumbo Frames\n"); 6451 if (sc->bge_flags & BGE_FLAG_PCIX) 6452 printf(" - PCI-X Bus\n"); 6453 if (sc->bge_flags & BGE_FLAG_PCIE) 6454 printf(" - PCI Express Bus\n"); 6455 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6456 printf(" - No 3 LEDs\n"); 6457 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6458 printf(" - RX Alignment Bug\n"); 6459 } 6460 6461 return (error); 6462 } 6463 6464 static int 6465 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6466 { 6467 struct bge_softc *sc; 6468 int error; 6469 uint16_t result; 6470 uint32_t val; 6471 6472 result = -1; 6473 error = sysctl_handle_int(oidp, &result, 0, req); 6474 if (error || (req->newptr == NULL)) 6475 return (error); 6476 6477 if (result < 0x8000) { 6478 sc = (struct bge_softc *)arg1; 6479 val = CSR_READ_4(sc, result); 6480 printf("reg 0x%06X = 0x%08X\n", result, val); 6481 } 6482 6483 return (error); 6484 } 6485 6486 static int 6487 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6488 { 6489 struct bge_softc *sc; 6490 int error; 6491 uint16_t result; 6492 uint32_t val; 6493 6494 result = -1; 6495 error = sysctl_handle_int(oidp, &result, 0, req); 6496 if (error || (req->newptr == NULL)) 6497 return (error); 6498 6499 if (result < 0x8000) { 6500 sc = (struct bge_softc *)arg1; 6501 val = APE_READ_4(sc, result); 6502 printf("reg 0x%06X = 0x%08X\n", result, val); 6503 } 6504 6505 return (error); 6506 } 6507 6508 static int 6509 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6510 { 6511 struct bge_softc *sc; 6512 int error; 6513 uint16_t result; 6514 uint32_t val; 6515 6516 result = -1; 6517 error = sysctl_handle_int(oidp, &result, 0, req); 6518 if (error || (req->newptr == NULL)) 6519 return (error); 6520 6521 if (result < 0x8000) { 6522 sc = (struct bge_softc *)arg1; 6523 val = bge_readmem_ind(sc, result); 6524 printf("mem 0x%06X = 0x%08X\n", result, val); 6525 } 6526 6527 return (error); 6528 } 6529 #endif 6530 6531 static int 6532 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6533 { 6534 6535 if (sc->bge_flags & BGE_FLAG_EADDR) 6536 return (1); 6537 6538 #ifdef __sparc64__ 6539 OF_getetheraddr(sc->bge_dev, ether_addr); 6540 return (0); 6541 #endif 6542 return (1); 6543 } 6544 6545 static int 6546 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6547 { 6548 uint32_t mac_addr; 6549 6550 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6551 if ((mac_addr >> 16) == 0x484b) { 6552 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6553 ether_addr[1] = (uint8_t)mac_addr; 6554 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6555 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6556 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6557 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6558 ether_addr[5] = (uint8_t)mac_addr; 6559 return (0); 6560 } 6561 return (1); 6562 } 6563 6564 static int 6565 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6566 { 6567 int mac_offset = BGE_EE_MAC_OFFSET; 6568 6569 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6570 mac_offset = BGE_EE_MAC_OFFSET_5906; 6571 6572 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6573 ETHER_ADDR_LEN)); 6574 } 6575 6576 static int 6577 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6578 { 6579 6580 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6581 return (1); 6582 6583 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6584 ETHER_ADDR_LEN)); 6585 } 6586 6587 static int 6588 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6589 { 6590 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6591 /* NOTE: Order is critical */ 6592 bge_get_eaddr_fw, 6593 bge_get_eaddr_mem, 6594 bge_get_eaddr_nvram, 6595 bge_get_eaddr_eeprom, 6596 NULL 6597 }; 6598 const bge_eaddr_fcn_t *func; 6599 6600 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6601 if ((*func)(sc, eaddr) == 0) 6602 break; 6603 } 6604 return (*func == NULL ? ENXIO : 0); 6605 } 6606